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Summary

Optical fiber plays a key role in both high-speed optical communication and sensor

systems. High-speed optical fiber transmission systems have been studied for several

decades and still attract a lot of attention. Optical fiber has been used in distributed

sensing systems on measuring the temperature and strain along the fiber. However,

the performance of both high-speed optical transmission networks and fiber sensing

systems are affected by the physical effects of optical fiber. In this thesis, several topics

on application of fiber nonlinear effects and management of degradations induced by

fiber physical effects are studied.

Firstly, a high-speed multi-channel optical pulse train generation based on para-

metric process through highly-nonlinear fiber (HNLF) is demonstrated. The wave-

length of pump pulse is optimized to satisfy phase-matching condition and to obtain

large gain and wide bandwidth. 6-channel 80-GHz optical pulse trains with high ex-

tinction ratio are generated using one pulsed pump and three continuous wave chan-

nels. The qualities of the amplified signal and generated idler channels are analyzed

numerically by calculating the bit-error rate of each channel.

Secondly, chromatic dispersion (CD) and polarization-mode dispersion (PMD)

monitoring method in high-speed transmission systems is proposed. The methods are

based on radio frequency (RF) power measurement and optical filtering. In the absence

of filter, RF power is affected by both CD and PMD. By filtering the optical compo-

vii



SUMMARY

nents in one of sidebands, the CD effect can be eliminated and PMD measurement can

be achieved. The power ratio of filtered and non-filtered signal is only affected by CD;

therefore, PMD-insensitive CD monitoring can be achieved. The center wavelength

of optical filter can be optimized to achieve wide measurement range and high mea-

surement resolution. Both simulation and experimental results show that the proposed

method is efficient and cost effective.

Lastly, the polarization induced signal fluctuation in Brillouin distributed sensing

system is studied. A polarization diversity scheme containing two polarization beam

splitters (PBSs) and a piece of single-mode fiber (SMF) is proposed. Both theoret-

ical analysis and experimental results show that the proposed scheme is efficient on

eliminating polarization induced fluctuation in Brillouin optical time domain analy-

sis (BOTDA) fiber optic distributed sensing system. This scheme does not need any

feedback control and the measurement time is only 3 second. Stable distributed tem-

perature and strain measurements are demonstrated along a 1.2 km SMF.

viii
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Chapter 1

Introduction

Optical fiber transmission systems have been studied for several decades and still at-

tract a lot of attentions. Thanks to the property of high bandwidth and low loss in opti-

cal fibers, multi-channel long-haul transmission between continents has been achieved.

Recently, the high-speed internet as well as high-definition television have been real-

ized as a benefit of large bandwidth in optical transmission systems. Besides transmis-

sion systems, optical fiber can also be utilized as a detector in fiber sensor systems.

Various parameters, such as temperature, strain along the fiber, can be measured ow-

ing to the physical effects of optical fibers. Compared with conventional sensors which

contains electronic components, optical fiber sensors have many advantages, such as

immunity to electromagnetic interference, flexibility, light weight and stable chemical

characteristic. Therefore, optical fiber sensors are applicable to various environments.

The performances of both high-speed optical transmission systems and optical

sensor systems are affected by the physical effects of optical fibers. In order to ob-

tain high performance in optical systems, fiber physical effects should be studied and

managed. On the other hand, fiber physical effects have a lot of applications such as

wavelength conversion, optical signal processing and optical sensor. Therefore, the

1



1.1 The Physical Effects in Optical Fibers

management of fiber physical effects is important in both optical transmission and

sensor systems. In this chapter, the physical effects of optical fibers are introduced in

section 1.1. The limitation and applications of the nonlinearities in high-speed optical

transmission systems are discussed in section 1.2. The applications of nonlinear effects

in optical sensing systems are analyzed in section 1.3. The objectives of the work are

presented in section 1.4.

1.1 The Physical Effects in Optical Fibers

Optical fiber transmission is based on the phenomenon of total internal reflection which

is achieved by the difference of refractive index between the core and cladding of

fibers. Beside the basic property, many other characteristics of optical fiber have been

studied and managed to achieve better performance in optical transmission and sensor

systems. Chromatic dispersion (CD) and polarization-mode dispersion (PMD) limit

the performance of optical transmission systems, especially the high bit-rate systems.

The nonlinear effects, such as self-phase modulation (SPM), cross-phase modulation

(XPM), parametric processes, stimulated Raman scattering (SRS), and stimulated Bril-

louin scattering (SBS), have been studied extensively in optical systems. The fiber

physical effects as well as their characteristics are discussed in this section.

Chromatic Dispersion

Chromatic dispersion is one of major effects limiting the transmission length in high-

speed optical transmission systems. As higher bit-rate (>100-Gbit/s) transmissions are

required in the future networks, the pulse trains are much narrower, the CD and PMD

tolerances become much smaller. The chromatic dispersion is induced because the

response to a electromagnetic wave in optical fibers depends on the optical frequency ω
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[1]. The effects of fiber dispersion can be explained by the mode-propagation constant

β in a Taylor series relative to the frequency ω:

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + · · · , (1.1)

where

βm =

(
dmβ

dωm

)

ω=ω0

, (1.2)

β1 and dispersion D are related to the refractive index n:

β1 =
1

vg

=
ng

c
=

1

c

(
n + ω

dn

dω

)
, (1.3)

D =
dβ1

dλ
= −2πc

λ2
β2 ≈ λ

c

d2n

dλ2
(1.4)

As a result of chromatic dispersion, the signal at different wavelengths has dif-

ferent transmission speeds. The signal spectra is broadened by CD, which limits the

transmission bit rate. CD compensation has long been studied and many methods have

been proposed, such as dispersion-compensating fiber (DCF). The dispersion can be

changed by varying the core diameter and the core-cladding index difference of the

fiber.

Polarization-mode Dispersion

The polarization mode dispersion (PMD) is induced by the birefringence in the optical

fiber. The light in single mode fiber actually contains two orthogonal modes which

propagate at slightly different speeds along the two axes (fast axis and slow axis) of

the fiber. The mode-propagation constant β is different for the two modes. The strength

of modal birefringence is

Bm =
| βx − βy |

k0

=| nx − ny |, (1.5)
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where βx and βy are the mode propagation constant at the two orthogonal polarization

states, nx and ny are the modal refractive indices for the two orthogonal polarization

states. After transmission through a fiber link with birefringence, the two states will

have a time spread, which induces the broadening of the optical pulse. If the time

spread and the symbol duration are comparable, the pulse is distorted and the sys-

tem performance is degraded. PMD is a time varying effect, and it is affected by the

environment changes. PMD changes randomly in the fiber and optical components.

It has been studied extensively as it limits the performance of the high-speed optical

transmission and sensor systems [2, 3].

Self-Phase Modulation and Cross-Phase Modulation

Self-phase modulation (SPM) and cross-phase modulation (XPM) occur in nonlinear

optical media. They result in intensity dependent refractive index changing, which

leads to spectral broadening of optical pulses. SPM was first observed in 1967 in the

transient self-focusing of optical pulses propagating in a CS2-filled cell [4]. A study

of SPM in a silica-core fiber was reported in [5].

The SPM-induced spectral broadening is a result of the time dependence of non-

linear phase shift ΦNL. A temporally varying phase implies that the instantaneous

optical frequency differs from its central value ω0, which is referred to as frequency

chirping. The chirp induced by SPM increases in magnitude with the propagated

distance [1]. Therefore, new frequency components are generated continuously as

the pulse propagates in the fiber link. These SPM-generated frequency components

broaden the spectrum over its initial width. The temporal variation of the induced

chirp δω has several features. First, δω is negative near the leading edge and becomes

positive near the trailing edge of the pulse. Second, the chirp is linear and positive over

a large central region of the Gaussian pulse. Third, the chirp is considerably larger for
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pulses with steeper leading and trailing edges. Fourth, super-Gaussian pulses behave

differently than Gaussian pulses because the chirp occurs only near pulse edges and

does not vary in a linear fashion.

If the optical pulse is very short and the dispersion length is comparable to the

fiber length, it is necessary to consider the combined effects of group-velocity disper-

sion (GVD) and SPM [6]. In the normal-dispersion regime (β2>0), the pulse broaden-

ing rate is increased by the effect of SPM. This is because red-shifted and blue-shifted

frequencies are generated in the leading and trailing edge, respectively. In other words,

more frequency components are generated through SPM. Therefore, the pulse broaden

rate is faster under the effect of SPM. In the anomalous-dispersion regime (β2<0) of

optical fiber, the SPM-induced positive chirp and GVD-induced negative chirp nearly

cancels each other, and the optical soliton can be achieved.

If more than one optical pulses with different wavelengths propagate in fiber link,

they will interact with each other through optical nonlinear effects. One of the effects,

with no energy transfer, is XPM [7]. Similar to SPM, the combined effects of GVD

and XPM may support soliton pairs transmit in the anomalous-dispersion regime of

the optical fiber. Both SPM and XPM are elastic nonlinear effects, where no energy

transition occurs between the input light and nonlinear medium.

Stimulated Raman Scattering and Stimulated Brillouin Scattering

Stimulated Raman scattering (SRS) is a inelastic scattering which can transfer energy

from one wavelength to another. It was first observed in 1962 [8]. In the SRS process,

an intense incident light, serving as a pump, transfers most of its energy to a frequency-

shifted light, called the Stokes wave, as long as the frequency difference of the two light

equals to the Raman shift (about 13.2 THz in pure silica). Optical phonon is involved in

the process. The scattering can be described quantum-mechanically as if annihilation
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of a pump photon creates a Stocks photon and a optical phonon simultaneously. The

frequencies and wave vectors of the waves can be expressed by

ωV = ωp − ωs, kV = kp − ks, (1.6)

where ωV is the vibration frequency of the optical phonon; ωp and ωs are the frequen-

cies of pump light and stocks wave, respectively. kV , kp, and ks are the wave vectors.

SRS effect has been studied extensively on Raman amplifiers [9–11] and tunable Ra-

man lasers [12–15].

Stimulated Brillouin scattering (SBS), first observed and studied in 1964 [16,17],

is a nonlinear effect which is similar to SRS. Acoustical phonon is involved in the

process. Frequency downshifted Stocks wave is generated through SBS. The scattering

can be viewed quantum-mechanically as if a pump photon disappeared and gives its

energy to Stocks wave and an acoustic phonon. Both energy and momentum should

be conserved during the process. The frequencies and wave vectors of the waves can

be expressed by

ΩA = ωp − ωs, kA = kp − ks, (1.7)

where ΩA is the frequency of the acoustic wave, also known as Brillouin shift; ωp and

ωs are the frequencies of pump light and stocks wave, respectively. kA, kp, and ks are

the wave vectors. The Brillouin shift is determined by the refractive index of nonlinear

medium. SBS has been used to achieve fiber based Brillouin amplifiers [18, 19] and

lasers [20–22]. However, SBS is different from SRS in several aspects. Firstly, only

backward propagating Stokes wave is generated through SBS; whereas, SRS occurs in

both forward and backward direction. Secondly, the Stocks shift (about 11 GHz in the

1550 nm region) is much smaller than that of SRS. Thirdly, SBS has lower threshold

than SRS. As a result, SBS is harmful to the optical communication systems [23, 24].
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Parametric Processes

Parametric process is a nonlinear phenomena, where the optical fibers play a passive

role in the process. The frequency of generated wave does not depend on the property

of nonlinear medium, but the applied optical field. Parametric process includes four-

wave mixing (FWM) and harmonic generation, both of which generate waves with

new frequencies. It can be classified as second- or third-order process depending on

whether the second-order susceptibility χ(2) or third-order susceptibility χ(3) is respon-

sible for the parametric process [1]. As the silica is an isotropic medium, second-order

susceptibility χ(2) vanished and no second-order harmonic occurs in optical fibers.

The third-order parametric processes include third harmonic generation, four-

wave mixing and parametric amplification [25,26]. Four-wave mixing is one of impor-

tant parametric processes as it is an efficient phenomenon on new frequencies genera-

tion. In general, if three optical waves with frequencies ω1, ω2, and ω3 are transmitting

in the fiber simultaneously, a new wave ω4 will be generated through FWM. The gen-

erated frequency could be

ω4 = ω1 ± ω2 ± ω3, (1.8)

It seems that ω4 can be anyone of them. However, in order to achieve efficient FWM,

phase-matching condition should be satisfied:

k1 + k2 = k3 + k4, (1.9)

where k1, k2, k3, k4 are wave vectors. The phase-matching condition is easy to be

satisfied when ω4 = ω1 +ω2−ω3. Therefore, this frequency will be generated through

FWM. If ω1 = ω2, only three waves with different frequencies are involved in the

nonlinear process. It is called three-wave mixing, also known as degenerate FWM.
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1.2 High-Speed Optical Transmission Systems

It is well known that optical fiber transmission is based on the phenomenon of total

internal reflection which is realized by the refractive index difference between the core

and cladding of optical fiber. Beside the basic property, many other characteristics of

optical fiber have been studied to achieve higher bit-rate, longer distance, and better

performance in optical transmission systems. As the pulse trains in the high bit-rate

transmission systems are narrower, the CD and PMD tolerances become much smaller.

Therefore, accurate and dynamic CD and/or PMD monitoring and compensation meth-

ods have attracted a lot of interests. In WDM systems, the nonlinear effects of optical

fiber may lead to interchannel and intrachannel crosstalk which degrades the perfor-

mance of system. Besides, the channel spacing of dense wavelength-division multi-

plexing (DWDM) systems becomes smaller (∼50-GHz) in order to improve the spec-

tral efficiency. The FWM induced crosstalk between different channels is increased.

On the other hand, nonlinear effects can also be used in many applications, such as

optical wavelength conversion, optical pulse generation and signal processing. In this

section, the limitations as well as applications of fiber physical effects in optical trans-

mission systems are introduced.

1.2.1 Limitations of Fiber Physical Effects

Chromatic dispersion (CD) is a linear effect in optical fiber. As EDFA eliminates the

problem of fiber loss in long-haul transmission systems, CD becomes a key effect

which limits the transmission length in high-speed transmission systems. The bit rate-

distance product of a transmission system is limited by the dispersion. The effect of

dispersion on the bit rate B can be estimated by using criterion [27]

BL|D|∆λ < 1, (1.10)
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Figure 1.1: SPM-induced frequency chirp for 1-st and 3-rd order Gaussian pulses [1].

where D is dispersion parameter, L is transmission length and ∆λ is the spectral width

of laser source.

On the other hand, CD accumulates in the fiber links and various optical com-

ponents. It may change with network reconfigurations and many environmental con-

ditions. Therefore, dispersion management is a key issue in high bit-rate, long-haul

transmission systems. CD management can be implemented at the transmitter, at the

receiver, or along the fiber link [28–32].

Nonlinear effects play an important role in the optical fiber. This is due to the

fact that response of any dielectric to light becomes nonlinear for intense electromag-

netic fields [27]. Although silica is not a highly nonlinear material, nonlinear effects

are quite important in the optical transmission systems as the light is confined in a

small area in the fiber. Nonlinear effect is one of key issues which limit the transmis-

sion power. The nonlinear effects degrade the performance of lightwave systems in

following aspects.

Self-phase modulation leads to frequency chirping of optical pulses. The fre-
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quency chirp is proportional to the derivative dP/dt and also depends on the shape of

optical pulse. P is optical power. Fig.1.1 shows the frequency chirp varies as a func-

tion of time for 1-st and 3-rd order Gaussian pulses [1]. The SPM induced frequency

chirp changes pulse shape through the effect of dispersion. SPM-induced phase shift

accumulates over multiple amplifiers. In order to reduce the effect of SPM in the trans-

mission system, the input peak power should satisfy [27]

Pin < 0.1α/(γNA), (1.11)

where α is the fiber loss, γ is nonlinear coefficient of fiber and NA is the number

of amplifiers in the transmission link. Therefore, SPM limits the optical power and

transmission length of lightwave systems.

In the DWDM systems, the interference between different channels should be

taken into consideration. XPM is one of phenomena which leads to crosstalk between

different channels. The phase shift of a channel does not depend only on the power

of the channel but also other channels through XPM. Besides, the dispersion of each

channel is different, the XPM induces pulse shape change.

The nonlinear phenomena of SPM and XPM change the phase of one or other

channels, and no energy is transferred in the precesses. The inelastic scattering, SRS

and SBS, may transfer energy from one field to anther. In WDM systems, the opti-

cal power is converted from longer wavelength to lower wavelength as long as their

spacing is within the Raman spectrum through SRS. As the power change is bit pat-

tern dependent, the performance is degraded and power penalty is introduced in the

transmission system [27]. Therefore, SRS affects the performance of WDM systems

considerably if the optical power exceeds the threshold. Methods on reducing of Ra-

man crosstalk have been proposed in [34, 35].

SBS does not lead to interchannel crosstalk in WDM systems, which is due to the

fact that the Brillouin shift (∼10 GHz) is smaller than the channel spacing of WDM
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Figure 1.2: Output signal power and reflected SBS power as a function of input power.

systems and the Brillouin gain bandwidth (∼20 MHz) is extremely narrow. How-

ever, as Stocks wave propagates in the backward direction in SBS, the reflection signal

power increases dramatically if the threshold value is achieved. Fig.1.2 shows the out-

put optical power and reflected SBS power as a function of input power in a 15 km

single-mode fiber. It is observed that once the input power achieves a critical value,

most of optical power is reflected back through SBS effect. Therefore, the channel

power is limited to a few milliwatts by the SBS process. Fig.1.2 was obtained when

the input light was a continuous wave. If short pulses were transmitting in the fiber

link, the SBS threshold increases [36]. For a short pulse whose width is much smaller

than the phonon lifetime, Brillouin gain is reduced below the Raman gain [1]. Besides,

the SBS threshold depends on the polarization state of input power. It increases by

50% when the pump field is completely polarization scrambled [37]. Several methods

have been proposed to increase SBS threshold [38–40] and thus to increase the signal

launch power. Phase modulation is one of efficient methods on SBS suppression.

The FWM induced power transfer results in power loss and interchannel crosstalk,

both of which degrade the performance of optical transmission systems [41,42]. In the
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system, where the channels are not equally spaced, most of generated frequencies will

fall in between the channels. Therefore, the interchannel crosstalk is not as severe as

that in the equally spaced system [41, 43]. However, the unequal channel spacing is

not practical. As the efficiency of FWM depends on the phase-matching condition of

the involved waves, it can be suppressed by breaking the phase-matching condition.

WDM systems eliminate FWM by using the technique of dispersion management in

which GVD is locally high while it is quite low in average [44, 45].

1.2.2 Applications of Fiber Physical Effects

Although nonlinear effects of optical fiber induce performance degradation in trans-

mission systems, they are also useful in optical systems. Various applications, such as

fiber amplifier, fiber laser, soliton transmission, and wavelength conversion, have been

extensively studied [46–69].

Soliton transmission in optical fiber is based on the balance of group-velocity

dispersion (GVD) and SPM/XPM. In a soliton transmission system, the optical pulse

can maintain their width over long distance. The use of soliton was proposed in 1973

[46] and it has been studied extensively in the following decades [47–49].

Fiber amplifier can be realized by nonlinear effects, such as SRS, SBS and para-

metric process. Optical phonons, which have relatively larger energy compared with

acoustical phonons, are involved in SRS, and the Raman gain bandwidth is quite wide

(∼ 5 THz); while acoustic phonons, which have relatively small energy, are involved

in SBS, and the Brillouin gain bandwidth is very narrow (∼ 20 MHz). The large

bandwidth of Raman amplifiers makes them attractive in the optical transmission sys-

tems [50, 51]. Three channels semiconductor laser were amplified simultaneously in

a Raman amplifier with a pump of 1470 nm [50]. Raman amplifiers can cooperate

with erbium-doped fiber amplifier (EDFA) to achieve large gain bandwidth for WDM
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systems. A fiber amplifier with a bandwidth of 80 nm and gain of 30 dB was real-

ized by combining an EDFA and two Raman amplifiers [51]. Nearly uniform gain

was achieved in the region of 1530 to 1610 nm. The optical fibers were designed to

have broad band and flat Raman gain [52, 53]. A simulation result showed that a 3 dB

Raman gain bandwidth of 90 nm can be achieved by choosing the parameters of a dual

core fiber [52]. A tellurite-based fiber was reported and a Raman amplifier with a band-

width of 160 nm and gain of 10 dB was achieved [53]. For the fiber amplifiers based

on parametric process, phase-matching is a key issue. Dispersion shifted fiber [56, 57]

and dispersion flattened fiber [58] have been studied to achieve the phase-matching

condition in the parametric processes. A parametric amplifier with a bandwidth of 47

nm using DSF was reported [57]. In [54], a parametric amplifier with a gain of 70 dB

was proposed. In [55], a combination of Raman and parametric amplifier with gain

bandwidth of 200 nm was achieved.

The use of FWM for wavelength conversion [59–63] has attracted a lot of interests

owing to the ultra-fast nonlinear effect. Conversion efficiency is one of key parameters

in the all-optical wavelength conversion system. In order to achieve high conversion

efficiency through FWM, optical fibers with high nonlinear coefficient γ has been em-

ployed [62, 63]. In [62], the fiber nonlinear coefficient and dispersion slope are 25

W−1Km−1 and +0.010ps/nm2/km, respectively. Conversion efficiency is improved

by 8 dB compared to conventional highly nonlinear fiber (HNLF). In [63], Bismuth

highly nonlinear fiber (Bi-HNLF) with a nonlinear coefficient of 1100 W−1Km−1 was

reported. As the FWM process is affected by the phase-matching condition, which de-

pends on the dispersion and dispersion slope of nonlinear medium. Optical fibers with

flat dispersion [64,65] was developed to achieve larger conversion bandwidth. In [65],

a dispersion of -3 ps/(km · nm) over 1500-1600 nm was applied and a conversion

bandwidth of 40 nm was achieved.
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Figure 1.3: Optical spectra of pump and signals in a multicasting system [67].

FWM is a ultra-fast process, and it can be used to make all-optical multicasting

[63,66,67]. A 1-to-40 multicasting with 100 GHz channel spacing was reported in [67].

A 100 m HNLF with nonlinear coefficient γ of 16W−1Km−1 was utilized. Fig.1.3

shows the optical spectra of the pump and generated signals [67]. Another application

of FWM is optical demultiplexing for the optical time domain multiplexing (OTDM)

signal [68], which is also because it is an ultra-fast process. All-optical delay line was

proposed by combining dispersion and wavelength conversion through FWM in [69].

1.3 Optical Sensor Systems

Optical fiber sensors based on fiber physical effects have been extensively studied and

widely used as they are flexible, light weighted, immune to electromagnetic interfer-

ence, and have stable chemical characteristic. Therefore, fiber sensors are applicable

to various environments. FBG based fiber sensors have been used in instrumentation

applications, such as oil leak detection, flow measurement and displacement moni-

14



1.3 Optical Sensor Systems

toring [71–83]. By using optical fiber as a detector, distributed fiber sensing systems

can be achieved through SBS process. Various parameters, such as temperature, strain

along optical fiber, can be measured by SBS based optical sensing systems [84–89].

Besides, In this section, optical sensor using fiber Bragg grating as well as the dis-

tributed fiber sensor based on nonlinear effect (stimulated Brillouin scattering) are in-

troduced.

1.3.1 Optical Sensor Based on Fiber Bragg Grating

Fiber Bragg grating (FBG) is an optical filter, whose center frequency is determined by

Bragg wavelength λB = 2n̄Λ, where Λ is the grating period and n̄ is the average mode

index. The refractive index of FBG changes periodically along the grating, and the

frequencies close to Bragg wavelength λB are reflected back [27]. Bragg wavelength

λB is affected by many environment factors, such as temperature, strain and refractive

index of surrounding material [70]. It was also widely used in bridge, petroleum tube,

river surveillance monitoring, and civil structural monitoring.

Depending on the change of refractive index in FBG, it can be divided to uniform

fiber Bragg gratings, chirped fiber Bragg gratings, tilted fiber Bragg gratings, and long-

period fiber gratings. In a uniform FBG, the period grating is a constant, which is

around 500nm. Various applications of uniform FBG have been reported [71–73].

Chirped FBGs have a relative wide stop band and were proposed to compensate

dispersion in telecommunication systems [27]. The chirped FBG with linear variation

of the grating period reflects a spectral band of light with roughly equal intensity.

Perturbations of the uniformly increasing grating period caused by local strain produce

changes in the reflected spectrum [74]. Chirped FBGs have been applied on damage

monitoring in composite materials, bonded joints and sandwich structures [74–76].

The sensors not only detect strain but also locate the position of damage in composite
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materials.

In standard FBGs, the gratings are vertical to the fiber axis. In the tilted FBGs,

the gratings are aligned at a certain angle to the fiber axis. The angle of tilt has an ef-

fect on the reflected wavelength and bandwidth. In tilted FBGs, a core mode resonance

and several cladding-mode resonances appear simultaneously. The cladding modes are

sensitive to external perturbations (e.g., temperature, strain, refractive index, bending),

while the core mode is only sensitive to temperature and strain. In practice, the temper-

ature sensitivity of the cladding modes is similar to that of the core mode. The temper-

ature influence can thus be removed from a comparison between the shifts of the core

mode and the selected cladding modes [77]. Temperature-independent sensors can

therefore be realized without requiring any additional device for compensation [78,79]

Long-period fiber grating (LPG), whose period is in the range of 100um to 1mm,

was reported in 1996 [80]. The high attenuation of the cladding modes results in mul-

tiple attenuation bands centered at discrete wavelengths. Each attenuation band corre-

sponding to the coupling to a different cladding mode. LPGs have potential applica-

tions in sensing strain, temperature, bend radius and external index of refraction [81].

Besides, multi-parameter sensors, which can measure several environment parameters

simultaneously, have been developed [82, 83].

1.3.2 Distributed Fiber Sensor Based on Brillouin Optical Time

Domain Analysis

Stimulated Brillouin scattering has relatively low threshold compared with other non-

linear effects. It can be used to make distributed fiber sensors over long distances

[84–89]. The Brillouin gain spectrum (BGS) is affected by temperature and strain

along the fiber under test (FUT), and can be used to monitoring these parameters. Bril-
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Figure 1.4: System setup for distributed Brillouin gain spectrum measurements, which

uses EOM to generate the interacting optical signals [86].

louin optical time domain analysis (BOTDA) is based on the interaction between a

pulsed pump and a continuous probe wave counter propagating in an optical fiber [84].

When their optical frequency difference is in the BGS at some point in the fiber, the

continuous light wave is amplified by the pulsed pump wave. The amplified probe

wave is detected at the fiber end. If the attenuation fiber is uniform along its length, the

BOTDA signal decays exponentially, corresponding to the pulsed pump suffering fiber

attenuation. However, when the Brillouin frequency shift at some point in the fiber is

changed, owing to a temperature or strain variation, the amplification of probe signal

at that point will be changed. Thus spatially distributed temperature sensing is made

possible by measuring the Brillouin frequency shift distribution with BOTDA. The

sensitivity of Brillouin shift to temperature and strain applied to the fiber makes SBS

highly suitable for sensing applications [85]. There is a trade-off between the spatial

resolution and measurement accuracy in an BOTDA sensing system [90]. The spatial

resolution depends on the pulse width. However, a short pulse will give a broadened

Brillouin gain spectrum and worse measurement accuracy.
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A distributed temperature sensor utilizing a single laser source was proposed

in [86]. The schematic diagram for distributed Brillouin gain shift measurements is

shown in Fig.1.4. The pump and the probe are pulsed signals that both propagate back

and forth through the sensing fiber. A spatial resolution of 45 m and temperature mea-

surement resolution of 0.25 ◦C was achieved in a 1.2 km single-mode fiber. In another

work, a temperature resolution of 1 ◦C and a spatial resolution of 5 m was realized for a

22 km fiber sensor [87]. In [88], a sensor accuracy of ±1 ◦C for temperature and ± 20

µε for deformation was proposed. The spatial resolution is 1 m and the sensor range is

more than 20 km. A differential pulse pair was proposed to improve the measurement

accuracy and spatial resolution in a long distance distributed temperature sensing sys-

tem [89]. A temperature uncertainty of 0.25 ◦C and a spatial resolution of 10 cm was

achieved over 12 km single-mode fiber.

SBS is a polarization sensitive process, the polarization sensitivity remains a key

problem for SBS based distributed fiber sensing system. The variation of polarization

state of pump and probe waves along the fiber under test will induce the polarization

noise and reduce the signal to noise ratio of the fiber sensor. Several schemes have

been proposed to overcome the polarization induced fluctuation in BOTDA sensing

systems [91–94].

1.3.3 Distributed Fiber Sensor Based on Brillouin Optical Coher-

ent Domain Analysis

Due to the pulse-based nature of the BOTDA sensing system, the spatial resolutions

are limited to several tens of centimeters. A continuous-wave-based Brillouin sys-

tem, Brillouin optical correlation domain analysis (BOCDA), has been proposed and

studied [96–99]. Correlation between pump and probe lightwaves are synthesized so

18



1.4 Focus and Structure of the Thesis

that the stimulated Brillouin scattering is generated only at a narrow section along an

optical fiber. By sweeping the section, distribution of the Brillouin frequency shift is

measured along the fiber. BOCDA sensing system has advantage on high spatial reso-

lution and short measurement time 10 (∼ms). However, the measurement range is not

as long as that in BOTDA systems.

The spatial resolution of the BOCDA system is determined by the modulation

parameters (amplitude and frequency) of a light source [96]. The measurement range

dm and spatial resolution ∆z are given by [96]

dm = Vg/2fm, (1.12)

∆z = Vg∆νB/2πfm∆f, (1.13)

where Vg is the group velocity of light; fmand ∆f are the modulation frequency and

the modulation amplitude of the light source; ∆νB is the Brillouin gain bandwidth in

optical fibers. It is obvious that there is a trade-off between measurement range and

spatial resolution.

A spatial resolution of 1 cm was achieved in a BOCDA strain sensor with a 2.4

m measurement range [97]. By using a lock-in detection scheme, a spatial resolution

of 1.6 mm in a 5 m fiber was obtained in [98]. A BOCDA based structural health

monitoring strain sensor was reported in [99]. The distribution of fiber Brillouin gain

spectrum over 500 m measurement range with 50 mm spatial resolution and ± 13 µε

strain accuracy was achieved.

1.4 Focus and Structure of the Thesis

The organization of this thesis is as follows. Chapter 2 introduces a multi-channel

high-speed optical pulse trains generation based on parametric process. The genera-
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tion of 6-channel 80 GHz short pulse train is experimentally demonstrated through 1

km highly-nonlinear fiber. The performance of the optical parametric amplification

system is demonstrated. The BER measurements of generated short pulses are ana-

lyzed in VPItransmissionMaker 7.0. Chapter 3 demonstrates multi-wavelength source

generation using a single phase modulator in an amplified loop. Generation of 125-

channel light source with more than 30 dB optical signal-to-noise ratio is demonstrated

experimentally. In Chapter 4, a CD-insensitive PMD monitoring technique based on

radio frequency (RF) power measurement is investigated. By using a FBG notch filter

centered at 10-GHz away from the optical carrier, the CD effects on 10-GHz RF power

can be eliminated. It is experimentally shown that the proposed scheme is efficient

on CD-insensitive PMD monitoring in high-speed transmission systems. The effect

of FBG filter bandwidth and frequency detuning are analyzed numerically. Chapter

5 evaluates two methods on chromatic dispersion monitoring. One is based on FBG

filtering and RF power ratio measurement, the other one is based on amplitude ratio

of asynchronous delay-tap sampling plot. Chapter 6 is devoted to suppression of the

polarization induced signal fluctuation in BOTDA fiber distributed sensor system. A

polarization diversity scheme was proposed to reduce the degree of polarization of

pump pulse. Stable distributed temperature and strain measurement were achieved ex-

perimentally. Finally, Chapter 7 concludes this thesis and proposes several topics of

future work.
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Chapter 2

Multi-Channel Optical Pulse Train

Generation Based on Parametric

Process in Highly-Nonlinear Fiber

A high-speed optical pulse train has wide applications. It can be used as an opti-

cal clock, for optical sampling, or to imprint optical data bits. Multi-channel optical

pulse train generation has attracted great attention as it is essential for wavelength-

division-multiplexing (WDM) transmission systems and optical sensor systems. The

traditional method to generate high-speed pulse train is using a mode-locked laser,

which is for a single channel and the tuning range of the wavelength is very limited.

For WDM applications, it will require several expensive mode-locked lasers, which

is not cost-effective. Fiber optical parametric process has been used in many appli-

cations in high-speed optical communication systems, since it can provide high gain

over a wide bandwidth. Optical parametric process was used to realize optical am-

plifiers [55, 100, 101], wavelength converters [102], demultiplexers [103], and pulse

source generation [64, 104–106]. Three WDM channel at 10-Gbit/s are amplified
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2.1 Principle of Multi-Channel Optical Pulse Train Generation Through
Parametric Process

based on parametric gain in [100] and a 10-GHz pulse source with a pulse width of

6 ps was generated via higher order FWM in a saturated optical parametric amplifier

(OPA) in [104]. In addition, wavelength tunable RZ pulse source with a full width at

half maximum (FWHM) of 7 ps and repetition rate of 10-GHz was generated based on

optical parametric process [105] and 14 channels 10-GHz short-pulses with pulsewidth

of 4 ps were obtained through XPM and FWM in a nonlinear optical loop mirror [64].

Recently, a single channel 40-Gbit/s RZ pulse was generated in an OPA [106] and a

40-Gbit/s 1-to-40 multicasting was obtained in a wideband parametric amplifier [67].

In this chapter, multi-channel high-speed optical pulse train generation based on

optical parametric process in HNLF over a wide bandwidth is demonstrated. Six-

channel 80 GHz pulse train generation in an all-optical system was achieved experi-

mentally. The extinction ratio (ER) of the amplified signal channels is more than 19

dB and it is larger than 30 dB for the generated idler channels. The waveforms of the

generated pulse trains are monitored by an auto-correlator. The bit error rate (BER)

measurements of the each channel was analyzed numerically in VPItransmissionMaker

7.0. In the back-to-back case, the power penalties of the generated pulse trains are less

than 0.5 dB. This scheme can be applied to higher repetition rate beyond 100 GHz.

2.1 Principle of Multi-Channel Optical Pulse Train Gen-

eration Through Parametric Process

For a single pump is used for parametric amplification, an intense pump light and

a weak signal light are coupled into a piece of nonlinear fiber, the pump light loses

photons as some are converted to signal wavelength and some are given to the idler

wavelength. At the end of the nonlinear fiber, the signal light is amplified and an idler

light is generated at a new wavelength through optical parametric process. The signal
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2.1 Principle of Multi-Channel Optical Pulse Train Generation Through
Parametric Process

and idler have nearly the same power when the pump power is large enough such that

the converted photons are much more than the weak input signal. In the non-phase

matching condition (κ À γP0), amplification factor Gp (gain of input signal) is given

by [1]

Gp ≈ 1 + (2γP0L)2 sin(κL/2)2

(κL/2)2
, (2.1)

where γ is nonlinear parameter of fiber, P0 is the pump power, κ= ∆kW +∆kNL +∆kM

and L is the length of fiber. The amplification factor Gp is proportional to P 2
0 . In the

phase matching condition (κ=0), Gp increases exponentially with P0 and can be written

as [1]

Gp ≈ exp(2γP0L)/4 (2.2)

From above equations, it can be observed that efficient parametric process can be

achieved if phase matching condition is satisfied. In other words, high parametric gain

can be achieved in the phase matching condition (κ=0), when ∆kM cancels ∆kW +

∆kNL. The 3 dB gain bandwidth ∆ΩA of an OPA is given by [1]

∆ΩA =
[(π/L)2 + (γP0)

2]1/2

|β2|ΩS

, (2.3)

where β2 is the group velocity dispersion (GVD) coefficient and ∆ΩS is the frequency

shift between the pump and signal waves. If the pump wavelength is placed at λ0 of

the fiber, β2 is close to zero and wide gain bandwidth can be achieved. Therefore,

an OPA has maximum gain bandwidth ∆ΩA when the pump is placed at dispersion

zero wavelength λ0. However, ∆kM is very small at λ0 and cannot cancel ∆kW +

∆kNL. Thus, the phase matching condition is not satisfied and the amplification factor

Gp is not the maximum value. It can be seen that there is a tradeoff between Gp and

23



2.2 Experimental Results

∆ΩA. In order to obtain large gain and wide bandwidth, the pump wavelength should

be optimized.

As parametric process in optical fiber is an ultra-fast process, continuous wave

(CW) light can be modulated by the pulsed pump in an OPA system. By coupling an

intense pulsed pump light and a weak CW signal light into HNLF, the CW light is

amplified when the pump pulse is “on” and has no gain when the pump pulse is “off”.

Due to the high gain of OPA system, the ER of the amplified signal and the generated

idler are high. The gain of signals and conversion efficiency of idlers are also affected

by the walk-off between pulsed pump and signals/idlers. Furthermore, due to the wide

bandwidth of OPA system, more than one channel pulse train can be generated at the

same time. If N-channel CW lights and an intense pulsed pump are coupled into a

piece of HNLF, the N-channel CWs are amplified by the pulsed pump and become

pulse trains. At the same time, another N-channel pulse trains are generated at the

converted idler wavelengths. The extinction ratios of the idler channels are larger than

that of signal channels as the power of “0” is much smaller in the idler channels.

2.2 Experimental Results

2.2.1 Performance of the Optical Parametric Amplification

The Experimental setup of optical parametric amplification system is shown in Fig.2.1.

A CW light was modulated by a phase modulation (PM) by a 10-Gbit/s pseudorandom

binary sequences (PRBS) data and served as the pump of OPA system. By using PM,

SBS effect can be suppressed and the pump power can be increased. Then the pump

light was amplified by an EDFA, whose maximum output power is 3 W, and filtered

by an optical bandpass filter (OBPF) with a 3 dB bandwidth of 0.9 nm to eliminate

the ASE noise. Another CW light whose wavelength can tuned from 1543 nm to 1580
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PC

10 Gb/s PRBS

EDFA

(0.9 nm)

CW2

PM

VOA

OBPF

CW1 OSA

Figure 2.1: Experimental setup for measurement of optical parametric amplification

system. PM: phase modulator. HNLF: highly nonlinear fiber.

TABLE 1

HNLF PARAMETERS

Quantity Value 

Length 1 km 

Zero dispersion wavelength 0 1560 nm

Dispersion slope D  0.035 ps/km-nm2

Nonlinear Coefficient  11 W-1Km-1

Polarization Dependent Loss 0.1 dB 

Table 2.1: Parameters of the HNLF used in the experiment.
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Figure 2.2: Optical spectrum when the pump and probe wavelengthes are 1559.35 nm

and 1540 nm, respectively. The pump power is 27-dBm.

nm was used as probe light. The maximum power of probe light is 10 dBm. Then the

pump and probe waves were coupled into 1 km HNLF through a 99:1 coupler. Table

2.1 shows the parameters of the HNLF used in the experiment. The amplified signal

and generated idler channels were monitored by an optical spectrum analyzer (OSA).

Fig.2.2 shows the optical spectrum when the pump and probe wavelengths are

1559.35 nm and 1540 nm, respectively. It is observed that the generated idler channel

has almost the same power as the amplified probe channel. The noise at different

wavelengths are amplified by various values, which indicates the gain bandwidth of

the OPA system.

The performance of the optical parametric amplifier was obtained by utilizing an

intense CW light (phase modulated by 10-Gbit/s PRBS data) as pump wave and a CW

tunable laser as probe signal. The pump and probe waves were coupled into 1 km

HNLF through a 99:1 coupler. Gain spectra at different pump wavelengths are shown

in Fig.2.3. The optical power of the pump and signal coupled into the HNLF are 27

dBm and -25 dBm, respectively. The maximum gain is 32 dB for 1560 nm pump;
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Figure 2.3: Gain spectra of the parametric amplifier. Pump wavelength is 1560 nm,

1559.35 nm and 1559 nm respectively. Pump power is 27-dBm and signal power

coupled into the HNLF is -25-dBm.
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Figure 2.4: Gain spectra of parametric amplifier for pump power of 25 dBm, 26 dBm

and 27 dBm. The pump wavelength is 1559.35 nm. Signal power coupled into the

HNLF is -25 dBm.

however, the 3 dB gain bandwidth is only 7.5 nm. While the gain bandwidth is 13 nm

when pump wavelength is 1559 nm, however, the maximum gain is only 12 dB. It is

obvious that there is a tradeoff between Gp and ∆ΩA in an OPA system. Considering

both gain and gain bandwidth of OPA, 1559.35 nm is the optimal pump wavelength, at

which 30 dB gain and 11 nm gain bandwidth can be achieved.

The gain spectra of the OPA with different pump powers are shown in Fig.2.4.

An intense CW light at 1559.35 nm serves as the pump and a tunable laser with an

input power of -25 dBm serves as probe signal. As the result of SRS effect, the gain

at longer wavelength is larger than that at shorter wavelength by about 1 dB. Fig.2.4

shows that the OPA gain increases dramatically with pump power. The maximum

gain is increased by 12 dB when the pump power increases from 25 dBm to 27 dBm.
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Figure 2.5: Gain of the input signal and conversion efficiency of the idler. Pump

wavelength is 1559.35 nm.

However, if the pump power is too large, large noise will be introduced on the pump

pulse and transferred to the signal and idler channels. Moreover, the signals with high

gain will be degraded by the crosstalk between the channels.

Fig.2.5 shows the parametric gain of input signals and conversion efficiency of

idlers as a function of pump power. Conversion efficiency is the power ratio between

the output and input of OPA at the idler wavelengths. An intense CW pump placed

at 1559.35 nm and three-channel signals, 1543 nm, 1547.8 nm and 1552.5 nm, were

coupled into the HNLF. The input power of each signal channel is -25 dBm. From

Fig.2.5, it can be observed that the power of the idler is almost the same as that of

amplified signal as long as the pump power exceeds a critical value. The three-channel

signals have different gains at high pump power; this is due to the bandwidth limitation

of the OPA. At a 30 dBm pump power, the gain is more than 19 dB at 1552.5 nm and
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Figure 2.6: Experimental setup for multi-channel pulse generation. PM: phase modu-

lator. HNLF: highly nonlinear fiber.

it is more than 32 dB when the signal is placed at 1543 nm, which is close to the center

of gain spectrum.

2.2.2 6-Channel 80 GHz Optical Pulse Generation

The experimental setup of multi-channel pulse train generation is shown in Fig.2.6.

A mode-locked fiber laser (MLFL), which was driven by a 10 GHz clock, provided

a short pulse train with pulse width of 3.8 ps at a repetition rate of 10 GHz. After a

3-stage optical time-division-multiplexing (OTDM), the pump pulse with a repetition

rate of 80 GHz was modulated by a phase modulation to suppress the stimulated Bril-

louin scattering (SBS). The phase modulator was synchronized to the pulses, so the

phase changes did not happen within the pulse duration, thus it will not induce extra

power penalty on the pump pulse. The 80 GHz pump pulse had an optical signal-to-

noise ratio (OSNR) of 35 dB. Then the pump light was amplified by an EDFA, whose

maximum output power is 3 W, and filtered by an optical bandpass filter (OBPF) with a

3 dB bandwidth of 0.9 nm to eliminate the ASE noise. Three-channel distributed feed-

back (DFB) lasers, with wavelength of 1543 nm, 1547.8 nm and 1552.5 nm respec-
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tively, were coupled into a polarization-maintaining arrayed waveguide grating (PM-

AWG) and served as probe signals. Then the pump and probe waves were coupled into

1 km HNLF through a 99:1 coupler. A polarization controller (PC) aligned the polar-

ization states of the probes matching with that of the pump. Fig.2.7(a) shows the dis-

persion of HNLF at different wavelengths. The dispersion slope is 0.035 ps/km−nm2.

The group delay of HNLF is shown in Fig.2.7(b). The walk-off can be obtained from

the group delay. Group delays at pump (1559.35 nm) and signals (1543 nm, 1547.8

nm and 1552.5 nm) wavelengths are 0.78 ps, 1.48 ps, 0.3 ps and 0.01 ps, respectively.

Thus the walk off between the pump (1559.35 nm) and the signals (1543 nm, 1547.8

nm and 1552.5 nm) are 0.7 ps, 0.48 ps and 0.77 ps, respectively. The walk-off between

the pump and idlers are 2.22 ps, 4.54 ps and 7.55 ps, respectively. The powers of the

CW probes were tuned by a variable optical attenuator to limit the crosstalk between

the channels. C-band OBPF (1.5 nm) and L-band OBPF (1.95 nm) were used to filter

out the signal and idler channels, respectively. The amplified signal and generated idler

channels were monitored by an optical spectrum analyzer and an auto-correlator with

a resolution of 5 fs.

An intense 80 GHz pulsed pump and the three-channel CW signals are coupled

into the HNLF. The optical spectrum at output of the HNLF is shown in Fig.2.8(a). It

can be observed that three optical channels at 1566.2 nm, 1570.9 nm and 1575.7 nm,

which corresponding to the idler of the input signals, are generated. And the ampli-

tudes of the probe and idler channels are nearly the same as the pump power exceeds

the critical power of the OPA system. Fig.2.8(b) is the spectrum of the amplified signal

which is filtered out by an OBPF and amplified by EDFA. It is shown that the signal is

modulated by the pulsed pump at 80 GHz and the signals at lower frequencies are sup-

pressed efficiently. As any noise of the pump pulse will transfer to the signal and idler

channels, the quality of pump pulse is essential to the generated channels. At a high
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Figure 2.8: Optical spectra (a) after the HNLF with three input signals (b) filtered out

and amplified signal at 1547.8 nm. The pump is multiplexed to 80 GHz and amplified

to 20 dBm.
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15.7 ps

Signal1 Signal2 Signal3

Idler1 Idler2 Idler3

Figure 2.9: Measured 80-GHz waveforms at signal and idler wavelengths by an auto-

correlator.

pump power, the pump pulse experience SPM, which broaden the optical spectrum of

pump pulse and induces timing jitter to the generated channels. Besides, the number

of generated channels is limited by the gain bandwidth of the OPA system, which is

determined by the properties of the nonlinear medium.

The waveforms of the generated 80 GHz optical pulse trains are measured by an

auto-correlator with a resolution of 5 fs. Fig.2.9 shows the measurement pulses at

signal and idler wavelengths. The optical pulses were obtained at an average pump

power of 26 dBm (the corresponding peak power is about 30 dBm). For pulsed pump,
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2.3 Simulation Results of BER Performance

the ER of signals and idlers are affected by the walk-off effect. In our OPA system,

the walk-off between pump and signals are less than 0.8 ps. Thus, the signal channels

can be amplified efficiently through parametric process. According to Fig.2.5, ER of

the signal channels is larger than 19 dB and it is more than 30 dB for idler channels.

In Fig.2.9, by using a scale factor of 6.3 ps/ms, the measured repetition period of

the pulses is 12.5 ps. The full width at half maximum (FWHM) of the pump pulse

as well as the generated 6-channel 80 GHz pulse trains are shown in Fig. 2.10. By

using a shape factor 0.71, the FWHM of the generated pulses is about 3.7 ps. The

time-bandwidth product of the generated pulses is 0.65. As the peak power of the

pump pulse is very large, XPM occurs accompany with the parametric process. And

the signal and idler pulses are compressed by XPM induced chirp. The compression

factor depends on the pulse width and peak power of the pump pulse as well as the

walk-off value. The pulse width is wide at 1575.7 nm, where the walk-off value is

large.

2.3 Simulation Results of BER Performance

In order to verify the qualities of the optical pulse trains generated in the OPA system,

numerical analysis of BER at each generated channel was performed in the simulation

tool VPItransmissionMaker 7.0. In the simulation, the pump wave was a 3.8 ps short

pulse with a repetition rate of 10 GHz and then multiplexed to 80 GHz, which was the

same as that in the experiment. It was amplified to 26 dBm by an EDFA and filtered

by an OBPF with a 3 dB bandwidth of 0.9 nm. Three channels CWs at wavelength

of 1543 nm, 1547.8 nm and 1552.5 nm with input power of -25 dBm served as probe

signals. The parameters of the HNLF are the same as that shown in Table 2.1. At the

output of the HNLF, the signal channels were amplified and three idler channels are
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2.3 Simulation Results of BER Performance

Figure 2.10: FWHM of the signal channels, idler channels and pump pulse.

generated at the same time, shown in Fig.2.11. Each generated channel was filtered

out by an OBPF with a 3 dB bandwidth of 1.92 nm and modulated by 80-Gbit/s PRBS

sequences.

Fig.2.12(a) shows the BER performance of the generated optical pulses in back-

to-back case. The performance of 3.8 ps 80 GHz pulse is shown for comparison. It is

observed that the idler channels (1566.2 nm, 1570.9 nm and 1575.7 nm) have negative

power penalties. And the power penalties of the signal channels (1543 nm, 1547.8 nm

and 1552.5 nm) are less than 0.5 dB (at 10−9 BER). This is due to the fact that the

idler channels have higher extinction ratios. Fig.2.12(b) shows the BER measurements

after transmission through 200 m single mode fiber (SMF). We notice that the quality

of signal channels are improved when they transmit through 200 m SMF.

The idler channels are generated and signal channels are amplified through para-

metric process. At the same time, the signal and idler pulses are compressed by XPM
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Figure 2.11: Simulated optical spectra at the output of HNLF. The pump is 80 GHz

pulse with an average power of 20 dBm.
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(a)

(b)

Figure 2.12: BER measurement as a function of received power for signal and idler

channels (a) back-to-back (b) after 200 m transmission. The BER of 3.8 ps pulse is

shown for comparison.
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(b)

(a)

Figure 2.13: BER measurement as a function of received power for (a) 1547.8 nm and

(b) 1570.9 nm. In back-to-back case.
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(a)

(b)

Figure 2.14: BER measurement as a function of received power for (a) 1547.8 nm and

(b) 1570.9 nm. After 200 m transmission.
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induced chirp. The compression factor and pulse quality depend on the pulse width

and peak power of the pump pulse. Therefore, the quality of pump pulse is essential to

the generated channels. Fig.2.13 shows back-to-back BER performances at 1547.8 nm

(one of signal channels) and 1570.9 nm (one of idler channels) when pump pulses with

different shapes and pulse widths are applied. First-, third-, and fifth-order Gaussian

pulse with FWHM of 3 ps, 3.8 ps and 5 ps were utilized as the pump pulses. It is

observed that the power penalties are less than 0.5 dB when different pump pulses are

used.

Fig.2.14 shows BER after 200 m transmission at two of the generated channels

(1547.8 nm and 1570.9 nm) when different pump pulses are applied. The power penal-

ties are about 1 dB for different pulses. Therefore, it can be deduced that the generated

optical short pulses have the similar performance as the pump pulse. Besides, they are

not affected much by the slight changes of shape and pulse width of the pump pulses.

It is noticed that the BER performance of the two channels are different. This is due to

the walk-off effect and extinction ratio are different for the channels.

2.4 Conclusions

It is experimentally demonstrated that 80 GHz 6-channel pulse source can be generated

based on fiber optical parametric process in HNLF using a pulsed pump and 3-channel

CW probe signals. The wavelength of pump pulse is optimized to obtain large gain and

wide gain bandwidth. Multi-channel optical pulse trains with high ER are generated.

The BER of amplified signal and generated idler channels are analyzed numerically

using VPItransmissionMaker 7.0. The power penalties of the generated optical pulses

are less than 0.5 dB in back-to-back case. The simulation results also proved that the

generated short pulses have the similar performance when pump pulses with slightly
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different shapes and pulse width are utilized. In our experiment, the number of gen-

erated channels is limited by the wavelength of the tunable lasers. More channels of

pulse source can be obtained if the lasers at the required wavelengths are available.

Note that this scheme can be applied to higher repetition rate beyond 100 GHz, and it

can be expanded to multicasting if the pump is modulated.
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Chapter 3

Broadband Multi-Wavelength Light

Source Generation Using a Single

Phase Modulator in a Loop

Multi-wavelength optical sources are required for dense wavelength division multi-

plexing (DWDM) and coherent optical frequency-division multiplexing (CO-OFDM)

systems [108]. Broadband multi-wavelength light source with high coherence, low

noise and equal spacing attracts a lot of interests. Various methods have been reported

on multi-channel light source generation. Phase modulator (PM), which can gener-

ate carriers with precise channel spacing, has been widely used to generate frequency

comb [109–111]. However, it is difficult to achieve flat spectrum using a single PM.

Therefore, intensity modulators were utilized to flatten the comb spectrum. Besides,

the number of generated channels is limited by the drive voltage of PM. Several cas-

caded PMs were used in [112] to obtain higher modulation index and more optical

channels. By optimizing the driving condition of a dual-drive Mach-Zehnder modu-

lator (MZM), frequency comb with good spectral flatness was generated [113]. How-

42



3.1 Principle of Multi-Wavelength Light Source Generation Using a Single Phase
Modulator in a Loop

ever, the number of generated channels is limited by the drive voltage of MZM. Optical

frequency comb can also be generated through supercontinuum [114, 115]. Over 130

channels have been generated using a single PM followed by an intensity modulator

and nonlinear medium [115]. However, high optical power is required in this method.

Another method of generating multi-wavelength optical source is utilizing serrodyne

modulation [116, 117]. However, the spectrum of the generated source is not flat and

can not serve as source in WDM systems.

In this chapter, we propose a new scheme that yields broadband multi-wavelength

source using a single PM in a loop. The loop structure was designed to broaden the

spectrum and increase the number of light source. Neither high optical power nor large

drive voltage is employed in this method. Generation of 125-channel light source with

more than 30 dB optical signal-to-noise ratio (OSNR) is demonstrated experimentally.

3.1 Principle of Multi-Wavelength Light Source Gen-

eration Using a Single Phase Modulator in a Loop

The system setup is shown in Figure 3.1. The loop consists of two couplers (10:90 and

1:99), a phase modulator (PM), a polarization controller (PC) and a tunable optical

delay line. The PC was inserted into the loop to maintain the polarization state of

the loop. And the optical delay line in the loop was tuned to ensure that the phase

modulator is in resonance with the loop. Suppose that the input continuous-wave (CW)

is given by

Ein(t) = exp(jωct), (3.1)

the electrical field of the output of single PM can be expressed as

Eout(t) = ejωctej π
2
βsin(ωmt), (3.2)
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Figure 3.1: Experimental setup for multi-wavelength light source generation in a Loop.

where ωc and ωm are angular frequency of carrier and modulation frequency, β is

electrical voltage normalized by the half-wavelength drive voltage, Vπ, of PM. The

Fourier transform of Eout consists of ωc ± nωm, and the amplitude of each component

is governed by Bessel function Jn( πβ/2). Therefore, large drive voltage provides

wider bandwidth and more comb channels [111]. However, the amplitude of each

component is not the same.

In the proposed loop structure, the lights which go through PM different times are

coupled together. At time t, the relation between various electric fields is

E0(t) =
√

1− k2Eb(t)e
−jπ/2, (3.3)

Ea(t) =
√

1− k1Ein(t)e−jπ/2 +
√

k1Ec(t), (3.4)

Eb(t) =
√

αe−jβsin(ωmt)Ea(t− T1), (3.5)

Ec(t) =
√

k2Eb(t− T2), (3.6)
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where E0(t), Ea(t), Eb(t) and Ec(t) are the electrical fields shown in Fig. ??; k1 and

k2 are power coupling coefficient of the couplers; T1 and T2 are time delay of left and

right half loop, respectively. After N circulations of the light through the loop, the

output electric field is given by

E0(t) = −
√

1− k1

√
1− k2

√
α

N∑
n=0

(
√

k1

√
k2

√
α)ne−jβFn(ωmt)Ein(t− T1 − iT1 − iT2),

(3.7)

where Fn(ωmt)=
∑n

i=0 sinωm[t − i(T1 + T2)]. If the loop length is tuned such that

ωm(T1 +T2)=2π, the phase modulator is in resonance with the loop and phase shift for

N circulations can be give by

βFn(ωmt) = βnsin(ωmt). (3.8)

√
k1

√
k2

√
α is the round-trip loop gain. If the loop gain equals to unity, the output

electric field is given by

E0(t) = −
√

1− k1

√
1− k2

√
αEin(t− T1)

N∑
n=0

e−jβnsin(ωmt). (3.9)

In this condition, the Fourier transform of E0(t) consists of ωc ± nωm, and the ampli-

tude of each component is given by

Ak =
∞∑

n=0

Jn(πβ/2) (3.10)

Therefore, the components at various frequencies have the same amplitude. The

generated comb spectrum is much wide although only one PM with relative small

drive voltage is applied. This method needs neither high optical power nor large drive

voltage. The channel spacing can be tuned by changing the electrical driving signal of

PM. The tunable optical delay line in the loop should be adjusted such that PM is in

resonance with the loop.
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Figure 3.2: Simulated optical spectrum generated by single PM in a loop structure. No

EDFA in the loop.

3.2 Simulation Results

The simulated results were obtained in VPItransmissionMaker 7.0. A continuous wave

at 1560.5 nm was coupled into the loop through a coupler (10:90). A PM, whose Vπ

is 5 V, was driven by an electrical clock with a repetition frequency of 10 GHz. The

generated frequency comb is coupled out through the 1% port of a 99:1 coupler.

3.2.1 Single PM in a Loop Structure without EDFA

Fig. 3.2 shows the simulated optical spectrum generated by a single PM in loop struc-

ture without EDFA. It can be observed that the amplitude of the high-order components

decrease dramatically. This is due to the loss of phase modulator and fiber loop. How-

ever, compared with the optical spectrum generated by a single phase modulator, more

channels of laser source were generated by utilizing the loop structure.
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Figure 3.3: Simulated optical spectrum generated by single PM in an amplified loop.

With EDFA in the loop.

3.2.2 Single PM in an Amplified Loop

Fig. 3.3 shows the simulated optical spectrum of the generated optical source in an

amplified loop with a single PM. More than 125 channels optical laser source were

generated by utilizing a single PM in an amplified loop. Optical attenuator was tuned

such that the losses of loop were compensated EDFA in the loop. Fig. 3.4 is the

detailed optical spectrum around 1562 nm. It can be observed that the signal-to-noise

ratio (SNR) of the optical source is more than 30 dB.

3.3 Experimental Results

A CW light at 1560.5 nm was coupled into the loop through a coupler (10:90). The

optical power coupled into the loop is 0 dBm. A PM, Vπ is 5 V, was driven by an

electrical clock with a repetition frequency of 10 GHz and an amplitude of 8 V. A

polarization controller (PC) is used to optimize the polarization state of the loop and it

can be removed if polarization maintaining fiber is used in the loop. A tunable optical
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Figure 3.4: Detailed optical spectrum at 1562 nm.

delay line were tuned to adjust the round-trip length of the loop and ensure that the

phase modulator is in resonance with the loop. More than 125 channels optical laser

sources were generated in an amplified loop with a single PM.

3.3.1 Single PM in a Loop Structure without EDFA

Fig. 3.5 shows the measured optical spectrum (0.01 nm resolution) generated by a sin-

gle PM in loop structure without EDFA. The amplitude of the high-order components

decrease dramatically, which coincides with the simulation results. Compared with

the optical spectrum generated by a single PM, more laser channels were generated by

utilizing the loop structure with a PM.
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Figure 3.5: Measured optical spectrum generated by single PM in a loop structure. No

EDFA in the loop.

3.3.2 Single PM in an Amplified Loop

Fig. 3.6 shows the measured (0.01 nm resolution) optical spectrum of the generated

optical source in the loop structure with EDFA. Optical attenuator was tuned such that

the total round-trip gain is around 1. More than 125 channels optical laser sources were

generated by utilizing a single PM in an amplified loop. The envelope of the generated

spectrum is limited by the gain bandwidth of loop. Besides, the number of generated

lasing wavelengths is also limited by the length of loop. The coherence of the lights

decreases when propagating through the fiber. In our setup, the round-trip length is

around 10 m. If the amplification medium can be improved, more channels of laser

sources can be generated.

Fig. 3.7 is the detailed optical spectrum around 1562 nm. The signal-to-noise

ratio of the generated laser source is more than 30 dB.

The channel spacing of generated frequency comb can be tuned by changing the
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Figure 3.6: Measured optical spectrum generated by single PM in an amplified loop.

With EDFA in the loop.

Figure 3.7: Measured detailed optical spectrum at 1562 nm.
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Figure 3.8: Measured optical spectra when the PM driven by clocks with different

repetition rates.
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repetition rate of electrical driving signal of phase modulator. Fig. 3.8 shows the

optical spectra when the PM driven by clocks with different repetition rates (from 6

GHz to 12 GHz). The mode interval increases linearly with the repetition rata of clock

signal. However, the envelopes of the optical spectra in high frequencies are not as

flat as that in low frequencies. In other words, the 3 dB bandwidth of the generated

frequency comb decreases as the repetition rate of driven clock decreases. This is due

to the fact that the light driven by low RF frequency should go through more rounds

in the loop to obtain a certain wavelength shift. While, the coherence decreases as the

light goes through the fiber loop. Therefore, the bandwidth of generated frequency

comb is reduced as the RF frequency decreases.

In our setup, 10:90 and 1:99 couplers were used to make a loop structure. It is

found that other kind of couplers can also be utilized, as long as the losses in the loop

are compensated by the gain of EDFA. Beside, in order to get a flat optical spectrum,

the gain of EDFA should be optimized when the power of input CW changes.

3.4 Conclusions

The proposed scheme yields broadband multi-wavelength source using a single PM in

an amplified loop. The loop length, gain and polarization state were tuned to obtain

broad optical spectrum and more channels of light sources. Generation of 125-channel

light source with more than 30 dB optical signal-to-noise ratio is demonstrated ex-

perimentally. Neither high optical power nor large drive voltage is employed in this

method.
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Chapter 4

CD-Insensitive PMD Monitoring

Based on RF Power Measurement

The introduction of ≥40-Gbit/s transmission links increases the deleterious impact on

data channels due to fiber impairments, such as chromatic dispersion (CD), polariza-

tion mode dispersion (PMD) and nonlinearities. Polarization-mode dispersion is one

of important impairments in high-speed optical transmission systems. As differential-

group-delay (DGD), which is also known as first-order polarization-mode dispersion,

is a stochastic process and it accumulates along fiber span [118, 119], dynamic PMD

monitoring is required to enable a high-speed optical transmission system with high

stability and flexibility.

Several techniques have been proposed on PMD monitoring in optical trans-

mission systems. A technique was reported to monitor the PMD by measuring the

phase difference between the two optical frequency components for the two orthog-

onal principal states of polarization (PSPs) [125]. However, polarization tracking is

required to obtain the PSPs and the phase difference. By measuring the degree of

polarization (DOP) of received signal, the degradation induced by PMD can be esti-
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mated [123, 124]. This method depends on the pulse width of the signal and the DGD

monitoring range is small for short pulses. The RF tone power varies as a function of

PMD and was proposed to monitor PMD values [120–122]. However, RF tone power

is also affected by chromatic dispersion. Thus CD-insensitive PMD monitoring tech-

niques are demanded.Eye diagram of optical signal reveals the affect of PMD and was

used on PMD monitoring [126]. However, the measurement sensitivity is limited.

We propose a technique of CD-insensitive PMD monitoring base on RF power

measurement utilizing fiber Bragg grating (FBG) filter. In high-speed (>10 GSym-

bol/s) transmission systems, a narrow band FBG notch filter filters out the optical

components 10-GHz off the carrier in one sideband. 10-GHz RF tone power is then

generated by beating of the carrier with the other sideband, which varies with PMD

but is insensitive to CD. As the 10-GHz RF tone is used as monitoring signal, com-

pared to clock tone monitoring technique, the PMD measurement range is increased

to 50 ps while the requirement of the bandwidth of photodetector (PD) is reduced to

10 GHz. The proposed method has following advantages: 1) transparent to modula-

tion format; 2) wide measurement range (the DGD measurement range is 0∼50 ps); 3)

photoreceiver with low bandwidth (10 GHz) is used. Numerical simulation results of

CD-insensitive PMD measurement for different modulation formats (DPSK, DQPSK

and Duobinary) in 40-Gbit/s systems are shown. The effects of bandwidth of FBG

notch filter on the dynamic range of DGD measurement results for different modulation

formats are analyzed. The proposed PMD monitoring scheme is also demonstrated ex-

perimentally in 38-Gbit/s DQPSK and 57-Gbit/s D8PSK systems. It is experimentally

shown that the PMD measurement results are not affected by CD and the measurement

range is increased to 50 ps in systems with symbol rate of 19 GSymbol/s.
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4.1 Principle of PMD Monitoring Based on RF Power Measurement

4.1 Principle of PMD Monitoring Based on RF Power

Measurement

Signal propagating in optical transmission links is split into two orthogonal PSPs and

each component travels along the fiber at different speeds due to the effect of DGD.

At the end of fiber transmission, the two optical components can be out-of-phase and

the corresponding RF power can be reduced through destructive interference. On the

other hand, CD induces phase difference between the two sidebands and the RF power

of the beating component is also affected by CD. The detected RF power of double

sideband (DSB) signal is given by [121]

PDSB = P0[1− 4γ(1− γ)sin2(πfRF ∆τ)]cos2(πDλ2f 2
RF /c), (4.1)

where P0 is RF power without CD and PMD effects; γ is the power splitting ratio

between the two PSPs; ∆τ is the DGD of the link; λ is the carrier wavelength; fRF is

the RF frequency; c is the speed of light; γ and ∆τ are PMD induced parameters, and

D is the collective dispersion parameter of fiber link and optical components. From

(4.1), it is observed that both CD and PMD change the RF tone power of DSB signal

and it is difficult to distinguish CD and PMD through RF power measurement. If one

of the sidebands is filtered out, the RF component power is insensitive to CD and only

varies as a function of PMD [121]. The detected RF power of single sideband (SSB)

signal is given by [121]

PSSB = P0[1− 4γ(1− γ)sin2(πfRF ∆τ)]|H(f 2
RF )|2/2, (4.2)

where H is the electrical field transfer function of the optical filter. The division by 2

is due to the removal of one of sidebands. It can be seen that the detected RF power

of SSB signal removes the affect of CD and varies as a function of DGD. It is also

noted that the RF power of SSB signal changes periodically and the period is related to
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Figure 4.1: Principle of PMD monitoring for NRZ data.

the RF frequency. From (4.2), the DGD measurement range is inversely proportional

to RF frequency. Thus, DGD measurement range can be increased by using a low

frequency RF tone as monitoring signal.

We propose a technique for CD-insensitive PMD monitoring using a narrow band

FBG notch filter placed 10 GHz off the optical carrier in high-speed transmission sys-

tems. The RF tone power at 10 GHz is used as a PMD monitoring signal, which is

insensitive to the effects of CD. By placing the FBG at 10 GHz away from the op-

tical carrier, the PMD monitoring range is increased to 0∼50 ps and the bandwidth

requirement of photodetector is reduced to 10 GHz.

Fig.4.1 shows the principle of the proposed method. At the transmitter, the optical

carrier and the sidebands have the same polarization state. After propagating through

a piece of fiber link, the optical components at two orthogonal PSPs have a phase

difference and the RF power decreases with the PMD value in the system. As the
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Figure 4.2: System setup of CD-insensitive PMD monitoring based on RF power mea-

surement.

optical component at 10 GHz away in one of sidebands is filtered out, CD can only

affect the phase of the 10 GHz RF tone but not the amplitude. Therefore, the 10 GHz

RF tone power can be used as a PMD monitoring signal, which is insensitive to CD

effects. If one of optical clock is filtered out in 40 GSymbol/s system and RF clock

power is used as PMD monitoring signal, CD-insensitive PMD measurement can be

achieved. However, the PMD measurement range is only 0∼12.5 ps. By placing the

FBG filter at 10 GHz away from the carrier, the PMD monitor range is broadened by

four-times and the bandwidth requirement of photodetector is decreased four times.

Besides, our proposed method is transparent to modulation format. This is because

that the FBG filter not only eliminates the CD effect, but also create a RF tone by

beating the carrier and the corresponding component at one sideband. Therefore, the

clock tone of the signal is not required in the proposed method.

4.2 Simulation Results

Fig.4.2 shows the system setup of the proposed CD-insensitive PMD monitoring tech-

nique based on RF power measurement in a 40-Gbit/s transmission system. In the
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system, different modulation formats (DPSK, DQPSK, duobinary, and CSRZ OOK)

were obtained by using various transmitters. CD is introduced by a piece of fiber link.

First-order PMD is emulated using a piece of polarization maintaining fiber (PMF) and

two polarization beam splitters (PBSs). An FBG notch filter (with a 3 dB bandwidth

of 20 GHz and rejection of 30 dB) is placed at 10 GHz away from the optical carrier.

The power of RF tone at 10 GHz varies as a function of PMD and is used as monitor-

ing signal. The PMD measurement range of the proposed system is 0∼50 ps, while

it is only 0∼12.5 ps if the FBG is placed at one of clocks in 40 GSymbol/s system.

A photodetector with a bandwidth of 10 GHz is used to detect the power of beating

components. 10-GHz RF tone is obtained by an electrical bandpass filter with a 3 dB

bandwidth of 800 MHz. By measuring the power of 10-GHz RF tone, CD-insensitive

PMD monitoring can be achieved and the measurement range is four times larger than

that shown in [120]. Different modulation formats (CSRZ, DPSK, DQPSK and duobi-

nary) are generated and the performances of proposed PMD monitoring method are

analyzed.

4.2.1 Effect of PMD on RF power

The numerical simulation is calculated in the simulation tool VPItransmissionMaker

7.0. Fig.4.3(a) shows optical spectrum of 40-Gbit/s DQPSK signal. The 10 GHz RF

power as a function of DGD under different CD values is shown in Fig.4.3(b). The RF

power decreases with DGD in a range of 0∼50 ps. However, chromatic dispersion also

affect the RF power, which may induce errors on PMD measurement. It is observed

that RF power is very small in the absence of CD. This is because the beat terms

between the two sidebands and carrier are out of phase. As CD induces phase shift

between the two sidebands, RF power is regenerated as CD increases. Therefore, 10

GHz RF power of DQPSK signal changes with both CD and PMD in the absence of
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Figure 4.3: 40-Gbit/s DQPSK signal (a) optical spectrum; (b) Relative RF power as a

function of DGD at different CD values.

FBG filter. Accurate PMD monitoring based on RF power can be achieved if CD effect

is eliminated.

Fig.4.4(a) shows the optical spectrum of the 40-Gbit/s DPSK signal filtered by an

FBG notch filter centered at 10 GHz away from the optical carrier. The rejection and 3-

dB bandwidth of the FBG filter is 30 dB and 20 GHz, respectively. Fig.4.4(b)-(d) show

the electrical spectra of filtered 40-Gbit/s DPSK signal received by a photodetector

under different DGD values (0, 25 and 50 ps) in the absence of CD effect. It can

be observed that the power of the beating component at 10 GHz is relatively high

when both CD and DGD are zero. The received 10 GHz RF tone power decreases

as the DGD value increases, which is due to the destructive interference induced by

DGD. If the DGD value equals to half of the period time at certain frequency, the

beating components destruct completely and has minimum power at that frequency.

As the optical components at frequencies of (2N+1)/T reach the minimum power at

the same DGD value (T/2), the electrical spectrum has a comb like spectrum, shown

as Fig.4.4(d). T is the period time and N is an integer. From Fig.4.4, it can be observed
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Figure 4.4: 40-Gbit/s DPSK signal (a) Optical spectrum of filtered signal; electrical

spectra for (b) DGD=0ps, (c) DGD=25ps, and (d) DGD=50ps. CD=0ps/nm.
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Figure 4.5: Electrical spectra of filtered 40-Gbit/s DPSK signal for (a) CD=100ps/nm,

(b) CD=200ps/nm, (c) CD=300ps/nm, and (d) CD=400ps/nm. DGD=25ps.
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Figure 4.6: (a) Optical spectrum of filtered 40-Gbit/s duobinary signal and electrical

spectra for (b) DGD=0ps, (c) DGD=25ps, and (d) DGD=50ps. CD=0ps/nm.

that the power of RF tone at 10 GHz varies as a function of PMD. Therefore, it can be

used to monitoring the PMD value in 40-Gbit/s DPSK transmission system.

Fig.4.5 shows electrical spectra of the filtered 40-Gbit/s DPSK signal under dif-

ferent CD values (100, 200, 300 and 400 ps/nm) and the same DGD value (25 ps). It

can be observed that the power of RF tone at 10 GHz has the same value and does not

change with the CD effects. The proposed method is efficient on CD-insensitive PMD

monitoring in 40-Gbit/s DPSK system.

One of the advantages of the proposed PMD monitoring method is that it is trans-

parent to modulation format. Numerical simulation results for different modulation

formats were analyzed. Fig.4.6(a) shows the optical spectrum of the 40-Gbit/s duobi-

nary signal filtered by the FBG notch filter centered at 10-GHz away from the optical

carrier. It can be seen that duobinary signal has much narrow optical spectrum com-
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Figure 4.7: Electrical spectra of filtered 40-Gbit/s duobinary signal for (a)

CD=100ps/nm, (b) CD=200ps/nm, (c) CD=300ps/nm, and (d) CD=400ps/nm.

DGD=25ps

pared with DPSK signal. In order to analyze the performance of the proposed method

in the systems of different modulation formats “fairly”, the FBG notch filter with a 3-

dB bandwidth of 20 GHz, which is the same as that used in DPSK system, is applied.

Fig.4.6 (b)-(d) show the electrical spectra of the 40-Gbit/s duobinary signal filtered by

an FBG notch filter under different DGD values (0, 25 and 50 ps) in absence of CD

effects. It can be observed that although the spectra of duobinary signal is much dif-

ferent from that of the DPSK signal, the 10-GHz RF power decreases as a function of

DGD. Therefore, the 10-GHz RF tone power varies with PMD in the transmission link

and can be used on PMD monitoring in 40-Gbit/s duobinary system.

Fig.4.7(a)-(d) show the electrical spectra of the filtered 40-Gbit/s duobinary sig-

nal under different CD values (100 to 400 ps/nm) and the same DGD value (25 ps).
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Figure 4.8: (a) Optical spectrum of filtered 40-Gbit/s DQPSK signal and electrical

spectra for (b) DGD=0ps, (c) DGD=25ps, and (d) DGD=50ps. CD=0ps/nm.

From Fig.4.7, the beating components of the filtered duobinary signal are the same at

different CD values. Thus, we can induce that the proposed method can be used to

CD-insensitive PMD monitoring in duobinary system.

Fig.4.8(a)-(d) show the optical and electrical spectra of the 40-Gbit/s DQPSK

signal filtered by the FBG notch filter centered at 10-GHz away from the optical carrier

under different DGD values (0, 25 and 50 ps) in absence of CD effects. And Fig.4.9

shows the electrical spectra of the filtered 40-Gbit/s DQPSK signal under different CD

values (100 to 400 ps/nm) and the same DGD value (25 ps). It can be observed that

the proposed method is also efficient on CD-insensitive PMD monitoring in 40-Gbit/s

DQPSK system.

For other modulation formats, such as NRZ, CSRZ, RZ DPSK, CSRZ DPSK

and MSK etc., the optical spectra are different from each other. However, by using a
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Figure 4.9: Electrical spectra of filtered 40-Gbit/s DQPSK signal for (a)

CD=100ps/nm, (b) CD=200ps/nm, (c) CD=300ps/nm, and (d) CD=400ps/nm.

DGD=25ps
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Figure 4.10: Relative RF power as a function of DGD at different CD for 40-Gbit/s

DPSK signal when FBG filter is centered at 10-GHz and 40-GHz away from the carrier.

narrow band FBG notch filter centered at 10-GHz away the carrier, the corresponding

RF tone power varies as a function of PMD and is insensitive to CD. As a result, the

proposed PMD monitoring method is transparent to modulation format and can be used

in different transmission systems.

4.2.2 CD-Insensitive PMD Monitoring Based on RF Power

Fig.4.10 shows the relative RF clock and 10-GHz power of 40-Gbit/s DPSK signal as a

function of DGD. A FBG notch filter with a rejection of 30 dB and 3 dB bandwidth of

20 GHz was centered at optical clock and 10 GHz away from the carrier, respectively.

Different CD values (100 ps/nm to 400 ps/nm) were applied in the system. It can be

observed that the DGD measurement range is only 0∼12.5 ps when the FBG filter is

centered at one of optical clock and 40-GHz RF clock is used as a DGD monitoring
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Figure 4.11: Relative RF power at 10 GHz as a function of DGD for different CD in

40-Gbit/s system: (a) CSRZ; (b) DPSK; (c) DQPSK; (d) Duobinary.

signal, while the DGD measurement range is increased to 0∼50 ps by using a FBG

filter centered at 10-GHz away from the carrier. From Fig.4.10, it is observed that

the DGD measurement range is increased four times by using the proposed method.

Besides, when the FBG filter is placed at 40-GHz away from the carrier, the dynamic

range of RF clock power is wide (>35 dB) in the absence of chromatic dispersion.

However, it decreases to less than 25 dB when the CD increases to 400 ps/nm. By

using our proposed method, the power of RF tone is insensitive to CD and the dynamic

range is relative wide (>25 dB).

The relative 10 GHz RF tone power as a function of DGD for different modulation

formats are shown in Fig.4.11. The CD various from 100 ps/nm to 400 ps/nm. The

results for 40-Gbit/s CSRZ, DPSK, DQPSK and duobinary signals are analyzed. It

can be observed that the power of 10-GHz RF tones varies as a function of DGD. The
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Figure 4.12: Dynamic range of RF tone power at 10 GHz as a function of FBG band-

width in 40-Gbit/s system.

performance (DGD measurement range and dynamic range of RF power) is almost

the same for different modulation formats. It can be induced that the proposed tech-

nique is efficient on CD-insensitive PMD measurement in the systems with different

modulation formats.

4.2.3 Effects of FBG Filter Bandwidth and Frequency Detuning

Fig.4.12 shows effects of FBG filter bandwidth on the dynamic range of 10 GHz RF

tone power in 40-Gbit/s DPSK, DQPSK and duobinary systems. An FBG filter is

centered at 10 GHz away from the optical carrier. It is observed that 10-GHz RF

power has almost the same dynamic range (∼26 dB) under FBG filters with different

bandwidths. This is due to the fact that the PMD induced RF fading can be obtained

as long as the optical component at 10-GHz away is filtered out. If narrow band FBG
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Figure 4.13: Relative 10GHz RF power as a function of DGD under FBG filter fre-

quency detuning in 40-Gbit/s (a) DQPSK and (b) duobinary systems.

filter is used, only the RF tone at 10-GHz can be used as a PMD monitoring signal

which is not affected by CD. If a wide band FBG filter is used, the 10-GHz RF tone

still reveal the PMD effect. Thus, the PMD measurement results will not be affected

much by the FBG bandwidth as long as the optical carrier and the other sideband is not

filtered away. Besides, if the notched optical spectrum is wide, the RF tones other than

10-GHz can also be used to monitor the PMD value , and the result is not affected by

CD. However, the PMD measurement range will be different for various RF tones.

The center wavelength of FBG notch filter may shift from the original value under

various environment effects, which may introduce RF power fluctuation and PMD

measurement errors. Fig.4.13 shows the effects of FBG frequency detuning on the 10

GHz RF power in 40-Gbit/s DQPSK and Duobinary systems. It is observed that the

maximum 10 GHz RF power changing is less than 1.2 dB and 0.7 dB when the FBG

frequency detuning is 1 GHz in DQPSK and duobinary system, respectively. However,

the RF power is not linearly related to the PMD value. The FBG frequency detuning

induced measurement error is different for various DGD values. The measurement

error is larger in the small DGD range, where the slope of RF power is smaller. In
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Figure 4.14: Dynamic range of 10 GHz RF power as a function of electrical filter

bandwidth (a) in duobinary, DQPSK and DPSK systems; (b) for different filter orders.

other words, if the FBG frequency detuning induced RF power changing is the same

in the whole PMD monitoring window, the measurement error is larger for small DGD

values. Therefore, the frequency detuning effect on the small DGD values is larger.

Fig.4.14(a) shows the dynamic range of 10 GHz RF power as a function of electri-

cal filter bandwidth in 40-Gbit/s duobinary, DQPSK and DPSK systems. A 3rd order

Gaussian shape filter centered at 10 GHz is used to filter out the monitoring signal. For

different modulation formats, the effects of filter bandwidth is the same. It is observed

that the dynamic range decreases with the electrical filter bandwidth. This is because

the RF tones around 10 GHz are also detected by the power meter when wide band

electrical filter is applied. When the DGD is zero, the RF tones around 10 GHz has al-

most the same power as 10 GHz RF tone. Therefore, the detected RF power change is

not affected much by the filter bandwidth. When the DGD is 50 ps, where the 10 GHz

RF power decreases to minimum value, the RF tones around 10 GHz is much larger

than that of 10 GHz RF tone. Thus the detected RF power increases dramatically if

electrical filter with large bandwidth is used. The dynamic range of 10 GHz decreases

with the electrical filter bandwidth.
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Figure 4.15: Experimental setup of PMD monitoring utilizing FBG notch filter in an

8-PSK system. LD: laser diode; PM: phase modulator.

Fig.4.14(b) shows the dynamic range of 10 GHz RF power as a function of electri-

cal filter bandwidth for different filter orders (1st, 2nd and 3rd Gaussian) in 40-Gbit/s

DPSK system. The RF power dynamic range is less than 15 dB if 1st order Gaussian

filter is used. While, RF power dynamic range is 10 dB larger if 2nd or 3rd order Gaus-

sian filter is applied. From Fig.4.14, it is obvious that in order to get large dynamic

range, the electrical filter should be narrow enough to filter out the 10 GHz RF tone

and eliminate components around 10 GHz.

4.3 Experimental Results

The experimental setup of CD-insensitive PMD monitoring in D8PSK system is shown

in Fig.4.15. Continuous wave (CW) tunable laser at the wavelength of 1550.02 nm is

launched into a transmission module. The modulators are driven by 19-Gbit/s pseudo-

random bit sequence (PRBS) data with a length of 27 − 1. 38-Gbit/s DQPSK signal is

generated by an in-phase/quadrature (IQ) modulator and 57-Gb/s D8PSK signal can be

generated by phase modulating the output signal of IQ modulator. The generated signal

passes through several spans of dispersion compensation fiber (DCF), which provide

CD from 0∼-330 ps/nm. Two polarization beam splitters (PBSs) and a tunable optical
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Figure 4.16: Optical spectrum of 38-Gbit/s DQPSK signal filtered by a narrow band

FBG notch filter.

delay line are used as a first-order PMD emulator. At the monitoring branch, An FBG

notch filter with bandwidth of 0.06 nm and reflection of 15 dB is placed at 10 GHz

away from the carrier frequency such that the measured 10 GHz RF power is insensi-

tive to CD. The filtered signal was received by a 10 GHz photodetector. A RF spectrum

analyzer is used to monitoring the 10 GHz RF tone powers. Note that the narrowband

FBG filter is only in the monitoring branch, and do not affect the received signal.

4.3.1 PMD Monitoring in 38-Gbit/s DQPSK System

Fig.4.16 shows the optical spectrum (with resolution of 0.01nm) of 38-Gbit/s DQPSK

signal filtered by an FBG notch filter. The optical component at 10 GHz away from

the carrier was filtered out by an FBG (with bandwidth of 0.06 nm and reflection of 15

dB). Therefore, the 10 GHz RF power can be used as monitoring signal to obtain CD-
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Figure 4.17: RF power at 10-GHz as a function of DGD for different CD values in

38-Gbit/s DQPSK system.

insensitive DGD. Fig.4.17 shows 10 GHz RF tone power as a function of DGD value

in 38-Gbit/s DQPSK system. Different CD values were introduced by several pieces

of DCF. The intensity of 10 GHz RF tone is quite small at a DGD of 50ps. This is due

to the optical components at the two orthogonal polarization states have a phase shift

of π and the beating component destruct completely at 10 GHz. The RF power varies

as a function of DGD and the measurement range is 0∼50 ps. As one of sideband

is filtered out by the FBG notch filter, 10 GHz RF power is insensitive to CD. The

dynamic range of RF power is around 10 dB, which is limited by the signal-to-noise

ratio of the signal.

73



4.3 Experimental Results

1549.6 1549.8 1550.0 1550.2 1550.4

-40

-30

-20

-10

O
p

ti
c
a
l 

P
o

w
e
r 

(d
B

m
)

Wavelength (nm)

Figure 4.18: Optical spectrum of 57-Gbit/s D8PSK signal filtered by a narrow band

FBG notch filter.

4.3.2 PMD Monitoring in 57-Gbit/s D8PSK System

The proposed scheme is transparent to modulation format. It is experimentally demon-

strated that the method is also efficient in DQPSK system. Fig.4.18 shows the optical

spectrum of 57-Gbit/s D8PSK signal filtered by an FBG notch filter placed 10 GHz

off the carrier. Fig.4.19 shows RF tone power at 10 GHz as a function of DGD value

in 57-Gbit/s D8PSK system. It is observed that the proposed method is also efficient

on CD-insensitive PMD monitoring in DQPSK system. The FBG notch filter can be

placed closer to the carrier, and the DGD measurement range will be increased further.

However, the bandwidth of the FBG should be very narrow to avoid the filtering of

carrier.

Fig.4.20 shows measured RF spectra (with resolution of 1 MHz) when the 38

Gb/s DQPSK signal transmits through fiber links with different DGD values. In order
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Figure 4.19: RF power at 10-GHz as a function of DGD for different CD values in

57-Gbit/s D8PSK system.
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Figure 4.20: RF spectra of 38-Gb/s DQPSK signal for different DGD values.
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to compare the RF power at 10 GHz and 19 GHz, PD with bandwidth of 40 GHz was

utilized. It can be observed that the 10 GHz RF tone power monotonically decreases

when the DGD increases from 0 to 50 ps, since the DGD measurement range is 50

ps if it is used as the monitoring signal. The DGD measurement range is only around

26.3 ps when 19 GHz RF tone power is used as the monitoring signal. In addition, we

can see that the power of 19 GHz tone decreases when DGD increases from 0 to 20 ps,

but increases again when DGD increases to 40 and 50 ps. This is due to the fact that

the optical components at the two orthogonal polarization states have a phase shift of

π and the beating component destruct completely when the DGD value equals to half

of the symbol period at certain frequency. Therefore, the DGD measurement range is

larger if a 10 GHz RF tone is used as the monitoring signal instead of a 19 GHz RF

tone.

4.4 Conclusions

A CD-insensitive PMD monitoring method based on RF power measurement and op-

tical filtering was proposed. By filtering out the optical component in one sideband,

the CD effect on RF power can be eliminated. 10 GHz RF tone power was used as a

monitoring signal in high-speed transmission systems to get larger PMD measurement

range to 0∼50 ps. Numerical simulation results of CD-insensitive PMD measurement

for different modulation formats (CSRZ, DPSK, DQPSK and duobinary) in 40-Gbit/s

systems are shown. The results show that the proposed method is insensitive to modu-

lation format. The effects of FBG filter bandwidth on the PMD monitoring for different

modulation formats are analyzed. It is shown that the dynamic range of the monitor-

ing signal is not affected much by the bandwidth of the FBG filter. The effects of

FBG frequency detuning is analyzed numerically. The maximum 10 GHz RF power
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changing is less than 1.2 dB and 0.7 dB when the FBG frequency detuning is 1 GHz in

DQPSK and duobinary system, respectively. The dynamic range of the RF power can

be improved if the bandwidth of the electrical filter is optimized.

The proposed method is also demonstrated experimentally. PMD monitoring

technique using a narrow band FBG filter is presented in 38-Gb/s DQPSK and 57-

Gb/s D8PSK systems. It is experimentally shown that the PMD measurement results

are not affected by CD and the measurement range is increased to 0∼50 ps in systems

with symbol rate of 19-GSymbol/s. Besides, the technique uses low-bandwidth PD

(10 GHz) and is therefore an efficient and cost effective PMD monitoring method.
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Chapter 5

CD Monitoring in High-speed Optical

Transmission Systems

Chromatic dispersion (CD) effect is one of major factors limiting the transmission

distance in high-speed dense wavelength division multiplexing (DWDM) systems. It

may change with network reconfigurations and many environmental conditions such

as temperature. Hence, real-time CD monitoring has attracted a lot of interests and

many techniques have been reported on CD monitoring and compensation.

The pilot tone method [127,128] was proposed to monitor CD value by measuring

phase difference between the upper and lower sidebands of the subcarrier signal. How-

ever, the pilot tone could interfere with data and cause power penalty in the system. CD

induced radio-frequency (RF) clock fading was proposed to monitor CD for return-to-

zero (RZ) and non-return-to-zero (NRZ) signals [129,130]. However, the measurement

results are affected by the received optical power and polarization mode dispersion

(PMD) effect. A technique which can monitor CD and PMD simultaneous using an

unbalanced Mach-Zehnder delay line interferometer (DLI) was reported [131]. How-

ever, additional interferometer, which is costly for real systems, is required. Another
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5. CD Monitoring in High-speed Optical Transmission Systems

method based on power ratio of two RF tone powers was proposed. It requires modi-

fication of the transmitter, and the added RF tones may introduce degradation on data

quality [132].

Eye diagrams have been considered as a useful tool for monitoring CD, PMD,

signal-to-noise ratio (SNR) and other impairments in optical transmission systems

[133]. However, clock synchronization is required so that the sampling can be syn-

chronized to the signal. Many monitoring techniques have been proposed based on

asynchronous sampling method [134–136], which can operate without clock extrac-

tion. However, it is still challenging to identify a particular impairment in the present

of other impairments. Recently, asynchronous delay-tap sampling was reported [137,

138]. This method uses a delay-tap line and a pair of data could be obtained in one

sampling. Multiple impairment measurements as well as signal quality are extracted

from the two dimensional histogram of signal. CD monitoring for DPSK signal by uti-

lizing asynchronous delay-tap sampling was proposed [139]. However, addition phase

shift of π/4 should be added in one arm of conventional DPSK receiver, which may

introduce power penalty to the received data. Asymmetry ratio of delay-tap sampling

is proposed on residual CD monitoring for CSRZ DQPSK signal [140]. However, for

the reported asynchronous delay-tap sampling methods, the measurement resolution is

not high when the residual CD is small.

In this chapter, three CD monitoring methods are demonstrated. Two of the them

are based on RF power measurement and narrow band fiber Bragg grating (FBG) fil-

tering. For an NRZ signal, the RF clock power increases with CD and decreases with

PMD. In method 1, an FBG filter is centered at the carrier wavelength, and the RF

clock power decreases with both CD and PMD. Therefore, the RF clock power ratio

of filtered and non-filtered signals can be used on PMD-insensitive CD monitoring.

Both simulation and experimental results show that it is an efficient PMD-insensitive
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CD monitoring method. It is experimentally shown that the CD measurement range

is 0∼200 ps/nm in 38-Gbit/s DQPSK system. The measurement results are not af-

fected by the optical power of received signal and good measurement sensitivity (0.14

dB/(ps/nm)) can be achieved.

In method 2, a narrow band FBG filter is placed at 10-GHz away from the car-

rier in one of the two sidebands. The 10-GHz RF tone power of the filtered signal

decreases with PMD and insensitive to CD. Therefore, the 10-GHz RF tone power can

be used as a CD-insensitive PMD monitoring signal. The PMD monitoring range is

0∼50 ps in 38-Gbit/s DQPSK system. The 10-GHz RF tone power ratio of filtered

and non-filtered signals varies with CD and insensitive to PMD. The CD monitoring

range is increased to 0∼500 ps/nm in 38-Gbit/s DQPSK system. However, the CD

measurement sensitivity is smaller than that in method 1.

Another CD measurement method is based on amplitude ratio of asynchronous

delay-tap sampling plot. The simulated results show that our method is efficient on

residual CD measurement in 40-Gbit/s 50% RZ DQPSK, CSRZ DQPSK and 60-Gbit/s

50% RZ D8PSK systems in low CD region (0∼75 ps/nm for 40-Gbit/s DQPSK sys-

tems). Since no modification on the transmitter or receiver is require, the proposed

scheme is simple and cost effective.

Among the three CD monitoring methods, method 1 and method 2 are insensitive

to PMD and have larger measurement range (0∼200 and 0∼500 ps/nm in 40-Gbit/s

DQPSK system for method1 and method 2, respectively). Compared with the first

two methods, method 3 has limited measurement range (less than 100 ps/nm in 40-

Gbit/s DQPSK system). Besides, the CD monitoring results may affected by other

impairment effects, such as PMD and OSNR. However, the measurement sensitivity

of method 3 is better.
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5.1 CD Monitoring Based on RF Tone Power Ratio Mea-

surement

For NRZ signal, there is no RF clock tone after the detection of photodetector. This

is due to the fact that the beat terms between the two sidebands and carrier are out of

phase. Chromatic dispersion through the fiber link changes the phase difference be-

tween the sidebands, which induces RF regeneration for NRZ signals and RF fading

for RZ signals [129]. However, PMD induced RF power fading may result in mea-

surement error of CD monitoring based on RF power measurement. In this section,

PMD-insensitive CD monitoring methods based on RF power ratio measurement uti-

lizing FBG filter are demonstrated.

5.1.1 Operation Principle

In the back-to-back case, the NRZ signal has no clock while the filtered NRZ signal

has large clock power. After propagation through a piece of fiber link, the accumulated

CD induces distortion on the signals. By using a narrow band FBG notch filter located

at carrier wavelength, the RF clock power decreases with CD, which is opposite to that

without filter. And the ratio of the two RF powers increases with CD and has large

dynamic range, which results in better measurement sensitivity.

On the other hand, differential group delay (DGD) results in phase difference

between the two orthogonal optical components and the corresponding RF power is

reduced through destructive interference. PMD induces RF tone power fading through

the transmission and the fading effect is the same regardless of whether the notch filter

is present or not. Therefore, by taking the ratio of the RF power without filtering to

that filtered by FBG, PMD effects on RF power can be eliminated.

We propose a technique for PMD-insensitive CD monitoring using a narrow band
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Figure 5.1: Principle of RF clock power changing under CD and PMD for NRZ and

filtered NRZ signals.

FBG notch filter placed at carrier frequency in 38-Gb/s NRZ-DQPSK and 57-Gb/s

NRZ-D8PSK transmission systems. The RF clock tone power ratio is used as a CD

monitoring signal, which is insensitive to PMD effect. The monitoring range is 0∼200-

ps/nm for both systems as their symbol rate are the same, 19-Gsymbols/s.

Fig.5.1 shows the operating principle of our proposed CD monitoring method.

Chromatic dispersion through the fiber link changes the phase of the sidebands com-

pared to the carrier, which changes the RF tone powers after detected by a photodetec-

tor. The RF tone power can be used for CD monitoring [129]. However, the RF power

is also affected by first-order PMD, which is also known as differential group delay

(DGD). If DGD value equals to half period time of a certain frequency, the optical

components at two orthogonal polarization states have a phase shift of π and there is

no beating component at corresponding RF frequency. Therefore, PMD induced RF

power fading may result in errors for CD measurement.

If a narrow band FBG notch filter is placed at 10-GHz away from the carrier in
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Figure 5.2: System setup of PMD-insensitive CD monitoring based on RF power mea-

surement.

one of the sidebands (shown in Fig.5.1), 10-GHz RF tone power will be regenerated.

The RF powers in other frequencies also increases due to the bandwidth limitation of

FBG filter. As the optical component which is 10-GHz from the carrier in one sideband

is filtered out, CD results in phase shift to the RF tone while the amplitude of 10-GHz

RF tone is constant. PMD induces RF tone power fading through transmission and

the fading effect is the same regardless of whether the notch filter is present or not.

Therefore, by taking the ratio of the 10-GHz RF power without filtering to that filtered

by FBG, PMD effects on RF power can be eliminated. Compared to the method using

clock tone as the monitoring signal, the CD measurement range is increased while the

required bandwidth of the photodetector in our technique is much lower.

5.1.2 System Setup

The experimental setup of PMD-insensitive CD monitoring in 57-Gbit/s NRZ-D8PSK

system is shown in Fig.5.2. Continuous wave (CW) tunable laser is launched into a

transmission module. The modulators are driven by 19-Gbit/s pseudorandom bit se-

quence (PRBS) data with a length of 27−1. Variable optical delays are used to decorre-

late the three channels. 38-Gb/s DQPSK signal is generated by an in-phase/quadrature

(IQ) modulator and 57-Gbit/s D8PSK signal can be achieved at the output of phase
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modulator (PM). The generated signal propagates through several spans of dispersion

compensation fiber (DCF), which provide CD from 0∼-330 ps/nm. Polarization beam

splitters (PBSs) and a tunable optical delay line are used as a first-order PMD emulator.

The monitoring channel is split into two branches by a 50:50 coupler. In one of moni-

toring branches, an FBG notch filter with bandwidth of 0.06 nm and reflection of 15 dB

is placed at the carrier wavelength, so that the RF clock power is decreases with both

CD and PMD. If the FBG is placed at one of the clock wavelength, the RF clock power

is insensitive to CD and decreases with PMD. If the FBG is placed at 10-GHz away

from carrier, 10-GHz RF tone power is the CD-insensitive PMD monitoring signal.

And the 10-GHz power ratio of filtered and non-filtered signal is a PMD-insensitive

CD monitoring signal. The filtered signal is received by a photodetector. RF spectrum

analyzer is used to monitoring the RF tone power. In the other monitoring branch,

the signal is received directly by a photodetector and the 10-GHz RF tone power is

affected by both CD and PMD effects. Note that the narrow band FBG filter is only in

the monitoring branch, and does not affect the received signal.

5.1.3 FBG Filter Centered at Optical Carrier Wavelength

A narrow band FBG notch filter centered at the optical carrier wavelength, so that the

RF clock power decreases with both CD and PMD. By using RF clock power ratio

of filtered and non-filtered signals, PMD-insensitive CD monitoring can be achieved.

Fig.5.3(a) shows the simulated optical spectrum of a 38-Gb/s NRZ-DQPSK signal

filtered by an FBG notch filter. The optical component at the carrier was filtered out

by an FBG (with bandwidth of 0.06 nm and reflection of 15 dB). The filtering induces

distortion to the original signal. However, by choosing an FBG with optimal bandwidth

and reflection, the RF clock tone can be regenerated in the back-to-back case and

decreases with CD when transmitting through fiber link and components. Fig.5.3(b)
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Figure 5.3: Simulation results of 38-Gbit/s NRZ-DQPSK (a) optical spectrum of signal

filtered by FBG filter; (b) RF clock power versus CD of nonfiltered signal; (c) RF clock

power versus CD of filtered signal; (d) RF clock power ratio versus CD.
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and (c) show the relative RF clock tone power as a function of CD for non-filtered

and filtered 38-Gbit/s NRZ-DQPSK signals, respectively. Different DGD values (0,

10 and 20 ps) were introduced by a first-order PMD emulator. It is observed that the

RF clock power is affected by both CD and DGD. There will be measurement errors

if the DGD effect is not eliminated. Fig.5.3(d) shows the RF clock tone power ratio

of non-filtered and filtered NRZ-DQPSK signal as a function of CD under different

DGD values. The clock power ratio increases with CD and is not affected by DGD

effects. The CD measurement range is 0∼200 ps/nm. Compared with that using RF

clock tone as monitoring signal, the dynamic range of monitoring signal is increased by

20% and the average sensitivity of CD measurement is improved to 0.15 dB/(ps/nm).

Moreover, as the power ratio is used as monitoring signal, the measurement results are

independent on the optical power of received signal.

The proposed CD monitoring method is also applicable on other modulation for-

mats such as NRZ-D8PSK. Fig.5.4(a) shows the simulated optical spectrum of a 57-

Gb/s NRZ-D8PSK signal filtered by an FBG centered at optical carrier. Fig.5.4(b) and

(c) show the relative RF clock tone power as a function of CD for non-filtered and

filtered 57-Gbit/s NRZ-D8PSK signals, respectively. Different DGD values (0, 10 and

20 ps) were introduced by a first-order PMD emulator. In absence of FBG filter, DGD

affects the clock tone power and may introduce error on CD measurement. Fig.5.4(d)

shows the clock tone power ratio of non-filtered and filtered NRZ-D8PSK signal ver-

sus CD. It is observed that the clock ratio increases with CD and is not affected by

DGD values. Simulation results show that the CD measurement range for 38-Gb/s

NRZ-DQPSK is 0∼200 ps/nm.

The center wavelength of FBG filter may shift from the original value under var-

ious environment effects, which may induce RF power ratio changing and errors on

CD measurement. Fig.5.5(a) shows the simulated RF clock power ratio change as a
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Figure 5.4: Simulation results of 57-Gbit/s NRZ-D8PSK (a) optical spectrum of signal

filtered by FBG filter; (b) RF clock power versus CD of non-filtered signal; (c) RF

clock power versus CD of filtered signal; (d) RF clock power ratio versus CD.
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Figure 5.5: Simulated RF clock power ratio change as a function of FBG frequency

detuning in (a)38-Gbit/s NRZ-DQPSK and (b)57-Gbit/s NRZ-D8PSK systems.
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Figure 5.6: Transmission spectrum of fiber Bragg grating.

function of FBG frequency detuning in 38-Gbit/s NRZ-DQPSK. It is observed that the

frequency detuning results in changes of RF clock power. RF clock power ratio change

is less than 1.6 dB when the frequency detuning in the range of -2 GHz∼2 GHz. If

the frequency detuning is less than 1 GHz, the power ratio change is smaller than 0.9

dB. Fig.5.5(b) shows the effect of FBG frequency detuning on RF clock power ratio in

57-Gbit/s NRZ-D8PSK systems. The RF clock power ratio change is less than 1.8 dB

when the frequency detuning in the range of -2 GHz∼2 GHz.

Fig.5.6 shows the transmission spectrum of the FBG used in the CD monitoring

scheme. The FBG filter centered at 1550.2 nm has a bandwidth of 0.06 nm and reflec-

tion of 15 dB. Fig.5.7(a) shows the measured optical spectrum (with resolution of 0.01

nm) of a 38-Gbit/s NRZ-DQPSK signal filtered by an FBG notch filter. The optical

component at the carrier was filtered out by an FBG notch filter. The filtering induces

distortion to the original signal. By choosing an FBG with optimal bandwidth and re-

flection, the RF clock tone can be regenerated in the back-to-back case and decreases

with CD when transmitting through fiber links and optical components. Fig.5.7(b)

shows experimental result of relative RF clock tone power as a function of CD in 38-
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Figure 5.7: Experimental results of 38-Gbit/s NRZ-DQPSK (a) optical spectrum of

signal filtered by FBG filter; (b) RF clock power versus CD of nonfiltered signal; (c)

RF clock power versus CD of filtered signal; (d) RF clock power ratio versus CD.

89



5.1 CD Monitoring Based on RF Tone Power Ratio Measurement

Gbit/s NRZ-DQPSK system in the absence of FBG filter. Different DGD values (0,

10 and 20 ps) were introduced by a first-order PMD emulator. The RF clock power

increases with CD, which is due to the chromatic dispersion induces phase difference

between the sidebands and the beating term is regenerated. It is observed that DGD

affects the clock tone power and may introduce errors on CD measurement. Fig.5.7(c)

shows the measured relative RF clock power versus CD at different DGD values when

the signal is filtered by an FBG notch filter placed at the carrier wavelength. The

received clock power decreases with both CD and DGD values. It is noted that the

PMD induced RF power fading for the filtered and non-filtered signals are the same.

Therefore, by taking the ratio of the two RF clock powers, the PMD effects can be

eliminated. Fig.5.7(d) shows the RF clock tone power ratio of non-filtered and filtered

NRZ-DQPSK signal as a function of CD under different DGD values. It is observed

that the clock power ratio increases with CD and is almost not affected by DGD effects.

Compared with that using RF clock tone as monitoring signal, the dynamic range of

monitoring signal is increased by 67% and the average sensitivity of CD measurement

is improved to 0.14 dB/(ps/nm).

The measurement sensitivity improvement is larger than that in the simulation

result. This is because in the absence of FBG filter, the “slope” of RF power changing

is larger in the small CD range (0∼10 ps/nm). However, it is difficult to achieve zero

CD in the experiment. There is residual CD in the system although no SMF or DCF

is added in the transmission link. Therefore, in the absence of FBG filter, the dynamic

range of RF clock power in the experiment is not as large as that in the simulation.

On the other hand, if the signal is filtered by FBG filter, the RF power change is not

large in the small CD range (0∼10 ps/nm). The dynamic range is not affected much

by the residual CD. Therefore, the dynamic range of RF clock power ratio and CD

measurement sensitivity improvement is larger in the experiment.
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Figure 5.8: Experimental results of 57-Gbit/s NRZ-D8PSK (a) optical spectrum of

signal filtered by FBG filter; (b) RF clock power versus CD of non-filtered signal; (c)

RF clock power versus CD of filtered signal; (d) RF clock power ratio versus CD.
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The proposed CD monitoring method is also applicable on other modulation for-

mats such as NRZ-D8PSK. Fig.5.8(a) shows the measured optical spectrum of a 57-

Gbit/s NRZ-D8PSK signal filtered by an FBG notch filter, the same as that used in the

NRZ-DQPSK system. Fig.5.8(b) and (c) shows the relative RF clock power as func-

tion of CD for non-filtered and filtered NRZ-D8PSK signals, respectively. Fig.5.8(d)

shows the RF clock power ratio as function of CD under different DGD values. For

various DGD values (0, 10 and 20 ps), the amplitude of the monitoring signal is al-

most the same. Therefore, the proposed method is efficient for PMD-insensitive CD

monitoring in D8PSK system.

5.1.4 FBG Filter Centered at 10-GHz Away From Carrier

We propose and demonstrate a technique on CD monitoring without the effects of

PMD and received power. Both simulation and experimental results show that the

proposed method is efficient for measuring CD in 57-Gb/s NRZ differential 8-level

phase-shift keying (D8PSK) and 38-Gb/s NRZ differential quadrature phase-shift key-

ing (DQPSK) transmission systems. As the 10-GHz RF power ratio is used as moni-

toring signal, the CD measurement range is increased to 0∼500 ps/nm.

Fig.5.9(a) shows the optical spectrum (with resolution of 0.01 nm) of a 38-Gbit/s

NRZ-DQPSK signal in one of monitoring branches. The signal is filtered by a narrow

band FBG notch filter placed at 10-GHz away from carrier. Therefore, the received 10-

GHz RF tone power decreases with DGD and is insensitive to CD. Fig.5.9(b) shows

simulation and experimental results of 10-GHz RF tone power and power ratio versus

CD in 38-Gb/s NRZ-DQPSK system. Several DGD values (0, 20 and 40 ps) were

introduced by a first-order PMD emulator. It is observed that DGD affects the RF tone

power much in absence of FBG filter, which may result in CD measurement errors.

If one of the sidebands is filtered out, chromatic dispersion induces phase shift to the
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Figure 5.9: 38-Gbit/s DQPSK (a) optical spectrum of signal filtered by FBG; (b) Rel-

ative 10-GHz RF power versus CD. (lines for simulation; stars for experiment)

RF tone while the amplitude of RF tone is constant. Therefore, the RF tone power is

insensitive to CD. As PMD induced RF power fading for the filtered and non-filtered

signals are the same, by taking the ratio of the two RF tone powers, the measure-

ment errors induced by PMD can be eliminated and accurate CD monitoring can be

achieved. Fig.5.9(b) shows that the 10-GHz RF tone power ratios are not affected by

PMD effects. The experimental results also show that PMD does not affect the CD

measurement results by using 10-GHz RF tone power ratio as monitoring signal. CD

measurement range for 38-Gbit/s NRZ-DQPSK is 0∼500 ps/nm.

The proposed CD monitoring method is applicable on other modulation formats

such as OOK and NRZ-DQPSK. Fig.5.10(a) shows measured optical spectrum of 57-

Gbit/s NRZ-D8PSK signal which is filtered by a narrow band FBG filter located at

10-GHz away from the carrier. Fig.5.10(b) shows the simulation and experimental

results of the 10-GHz RF tone power and power ratio versus CD in NRZ-DQPSK

transmission system. It is observed that the RF power ratio increases with CD and is

almost not affected by PMD effects.
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Figure 5.10: 57-Gbit/s D8PSK (a) optical spectrum of 57-Gb/s NRZ-D8PSK signal

filtered by FBG; (b) Relative 10-GHz RF power versus CD. (lines for simulation; stars

for experiment)

Compared with that using RF clock as monitoring signal, the CD measurement

range is increased by 3.6 times and the required bandwidth of the photodetector is

much lower. Moreover, as the power ratio is used as monitoring signal, the measure-

ment results are independent on the optical power of received signal. It is noted that

the monitoring branch which is filtered by FBG can be used to achieve CD-insensitive

PMD monitoring. Therefore, CD and PMD can be measured simultaneously and inde-

pendently using our proposed method.

5.2 CD Monitoring Based on Amplitude Ratio in Delay-

tap Sampling Plot

Asynchronous delay-tap sampling was reported [137, 138]. This method uses a delay-

tap line to get a pair of data in one sampling, one without delay and the other one with

delay. Multiple impairment measurements as well as signal quality are extracted from
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the two dimensional histogram of signal. Asymmetry ratio of delay-tap sampling is

proposed on residual CD monitoring for CSRZ differential quadrature phase-shift key-

ing (DQPSK) signal [140]. However, the reported asynchronous delay-tap sampling

method is not sensitive in the small CD region.

We propose an amplitude ratio in delay-tap sampling plot, which can measure the

residual CD in low CD region. The measurement range is 0∼75 ps/nm for 40-Gbit/s

DQPSK and 60-Gbit/s differential eight phase-shift keying (D8PSK) systems. The

simulated results in VPItransmissionMaker 7.0 show that the amplitude ratio decreases

from 1 to 0.58, from 0.7 to 0.45 and from 0.73 to 0.53 when residual CD change from

0 to 75 ps/nm in 40-Gbit/s 50% return-to-zero (RZ) DQPSK, 67% carrier-suppressed

return-to-zero (CSRZ) DQPSK and 60-Gbit/s 50% RZ D8PSK systems, respectively.

Our proposed CD measurement method is no affected by the received optical power.

Besides, no modification on the transmitter or receiver is required. The proposed tech-

nique is a simple and cost effective scheme.

5.2.1 Principle of Delay-tap Sampling Plot

Asynchronous delay-tap sampling is a technique which provides the information of

waveform. Compared with eye diagram, which also express the waveform information

of signals, delay-tap sampling has two advantages, which are low sampling rate and

no synchronization. Fig.5.11(a) shows the schematic graph for generating delay-tap

sampling pairs in a demodulated RZ DQPSK signal. Each point in the delay-tap sam-

pling plot comprises two parameters (x and y). The time delay between x and y is a

constant, ∆ t. It is found that the sensitivities of impairments are different when time

delay is changed. The sampling time, Ts, can be many orders of bit period. Therefore,

the sampling rate can be decreased dramatically and the CD monitoring scheme will

be simple and cost effective. Fig.5.11(b) shows the demodulated eye diagram of 50%
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Figure 5.11: Principle of delay-tap asynchronous sampling for RZ DQPSK signal. (a)

waveforms in time domain; (b) eye diagram; (c) delay-tap plot (∆t=symbol period/2).

Ts: sampling period; ∆t: time offset.
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RZ DQPSK signal. Fig.5.11(c) shows the asynchronous delay-tap sampling plot at a

time delay of half symbol period (B/2). Both graphs are in back-to-back case and no

distortion is induced.

We note that by choosing half symbol period as the time delay, the plot distortion

induced by chromatic dispersion is the largest. In all cases of our paper, the tap delay

for CD monitoring is half symbol period. We can utilize the delay-tap sampling plot

distortion induced by CD to monitor residual dispersion in the systems. In order to

quantification the information in the delay-tap plot, we define an amplitude ratio α:

α = L1/L2, (5.1)

where L1 is the distance between the center point and the cross point of diagonal line

y=x and the delay-tap sampling plot in the third quadrant; and L2 is the distance be-

tween the center point and the cross point of horizon line y=0 and the delay-tap sam-

pling plot, shown in Fig.5.11(c). The simulated results show that amplitude ratio ob-

tained from the delay-tap sampling plot decreases monotonously as the residual CD

increases and can be used as a CD monitoring signal. This technique does not need

clock or modification on transmitter/receiver. Therefore, it is a simple and cost effec-

tive monitoring method.

5.2.2 Results and Discussions

The system setup for dispersion monitoring based on asynchronous delay-tap sampling

is shown in Fig.5.12. 40-Gbit/s 50% RZ DQPSK/67% CSRZ DQPSK signal is gener-

ated by a transmitter. CD is introduced by a piece of single mode fiber (SMF). After

demodulation, the received electrical signal is split equally into two branches (X and

Y) and one of the branches is delayed by half symbol period time (B/2). The obtained

sample pairs are delay-tap sampling signals which reflect the waveform distortion in-
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Figure 5.12: System setup for dispersion monitoring based on delay-tap sampling. TX :

transmitter; EDFA: Erbium doped fiber amplifier.

formation induced by various impairments along transmission. The amplitude ratio,

which is obtained from the delay-tap sampling plot, decreases monotonously as CD

increases and can be used as a CD monitoring signal. As amplitude ratio is the moni-

toring signal, the measurement result is not affected by received optical power. By tun-

ing the bias of Mach-Zehnder modulator (MZM) in the transmitter, RZ DQPSK signal

with different duty cycle can be generated. The effectiveness of our proposed method is

demonstrated through simulation for 40-Gbit/s 50% RZ DQPSK, 67% CSRZ DQPSK

and 60-Gbit/s D8PSK signals.

Fig.5.13(a) and (d) show the demodulated eye diagram and delay-tap sampling

plot of 67% CSRZ DQPSK signal in the back-to-back case, respectively. It is observed

that the demodulated eye diagram is very clear and the delay-tap sampling plot is

symmetry in this case. The amplitude ratio of delay-tap sampling plot is relative large,

which is due to the fact that the waveform of 67% CSRZ DQPSK signal is not distorted

by the impairments. Fig. 5.13(c) and (f) show the demodulated eye diagram and delay-

tap sampling plot when dispersion is 75 ps/nm. It is observed that the demodulated eye

diagram is distorted by CD; however, it is difficult to quantify the residual CD value

from the eye diagram. On the other hand, the amplitude ratio in the delay-tap sampling

plot decreases from 1 to 0.58. Therefore, amplitude ratio is quite sensitive to dispersion

and can be used to monitor residual CD in the systems with high bit rate.
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(a) 0ps/nm (c) 75ps/nm(b) 37.5ps/nm

(d) 0ps/nm (f) 75ps/nm(e) 37.5ps/nm

Figure 5.13: 40-Gbit/s 67% CSRZ DQPSK signal (a)-(c) eye diagrams and (d)-(f)

delay-tap plots with different residual CD.
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Figure 5.14: Simulated amplitude ratio in delay-tap sampling plot as a function of

chromatic dispersion. 40-Gbit/s 67% CSRZ DQPSK signal.

Comparing Fig.5.13(a) with Fig.5.13(c), it is observed that the demodulated wave-

form of 67% CSRZ DQPSK signal is narrowed by dispersion. In the delay-tap plot,

the cross point of diagonal line y=x and the delay-tap plot in the third quadrant is re-

lated to the sample time when both x and y are the middle points, which are between

minimum and zero amplitude in the eye diagram. As the waveform is narrowed by

dispersion, the amplitude of middle point is smaller than that in the back-to-back case,

due to decreasing of L1. The cross point of horizon line y=0 and the delay-tap plot

is related to the sampling time when x is minimum and y is zero in the eye diagram.

From Fig.5.13(a) and (c), the minimum amplitude has almost no change, which cor-

responding to no change of L2. Considering both L1 and L2, CD induced distortion

decreases the amplitude ratio. As the ratio of amplitude is used as a monitoring signal,

the measurement result is not affected by received optical power.
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(a) 0ps/nm (c) 75ps/nm(b) 37.5ps/nm

(d) 0ps/nm (f) 75ps/nm(e) 37.5ps/nm

Figure 5.15: 40-Gbit/s 50% RZ DQPSK signal(a)-(c) eye diagrams and (d)-(f) delay-

tap plots with different residual CD.

Amplitude ratio of delay-tap sampling plot as a function of chromatic dispersion

for 40-Gbit/s CSRZ DQPSK signal is shown in Fig.5.14. The amplitude ratio varies

from 1 to 0.58 as the residual CD changes from 0 to 75 ps/nm, which is larger than

the technique proposed in [140]. It is observed that the amplitude ratio decreases

monotonously with residual CD, which indicates that the proposed method is efficient

on CD monitoring for CSRZ DQPSK signal.

Amplitude ratio of delay-tap sampling plot can also be applied to 50% RZ DQPSK

system to monitor residual CD. By tuning the bias of MZ modulator in the transmitter,

50% RZ DQPSK can be generated. Fig.5.15 shows the delay-tap sampling plots of

40-Gbit/s 50% RZ DQPSK signal with various CD values. Fig. 5(a) shows the delay-

tap plot in the back-to-back case. It is different from that of 67% CSRZ DQPSK as
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Figure 5.16: Simulated amplitude ratio in delay-tap sampling plot as a function of

chromatic dispersion. 40-Gbit/s 50% RZ DQPSK signal.

the pulse width of 50% RZ DQPSK is narrower. Fig.5.15(d)-(f) show the delay-tap

sampling plots with a CD of 0 ps/nm, 37.5 ps/nm and 75 ps/nm. It can be seen that the

amplitude ratio decreases as CD increases. Therefore, amplitude ratio of asynchronous

delay-tap sampling plot can be utilized to monitor residual CD in 50% RZ DQPSK

system.

Fig.5.16 shows the amplitude ratio as a function of chromatic dispersion in 40-

Gbit/s 50% RZ DQPSK system. As the pulse width of 50% RZ DQPSK is narrow, the

maximum value of amplitude ratio is 0.7, which decreases to 0.45 when the residual

CD increases to 75 ps/nm. It is observed that the amplitude ratio of asynchronous

delay-tap sampling plot decreases monotonously with residual CD, which indicates

that the proposed method is efficient on CD monitoring for 50% RZ DQPSK signal.

The simulation results show that the proposed amplitude ratio in delay-tap sam-

pling plot is also efficient on residual CD monitoring in 50% RZ D8PSK system. By
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(a)

(b) (c)

(d) (e)

L2

L1

Figure 5.17: 60-Gbit/s 50% RZ D8PSK signal(a) eye diagrams and (b)-(e) delay-tap

plots with different residual CD.
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5.3 Conclusions

using an additional phase modulator which is driven by 20-Gbit/s PRBS data, 60-Gbit/s

50% RZ D8PSK signal can be obtained. Fig.5.17(a) show the eye diagram of 50% RZ

D8PSK signal in absence of CD. It is observed that the eye diagram has two levels

of amplitude. The delay-tap sampling plots with different residual CD are shown in

Fig.5.17(b)-(e), which also show two levels of amplitude. Comparing with the delay-

tap sampling plots of DQPSK signals, that of D8PSK signals is complicated. Whereas,

the amplitude ratio of outer ring in the asynchronous delay-tap sampling plots, shown

in Fig. 5.17(b), can be used to monitor the residual CD values. It is observed that L1

decreases monotonously as the residual CD increases; while L2 keeps constant. There-

fore, the amplitude ratio (α= L1/L2) can be used as a CD monitoring signal in D8PSK

system.

Fig.5.18 shows the amplitude ratio as a function of chromatic dispersion in 60-

Gbit/s 50% RZ D8PSK system. The maximum value of amplitude ratio is 0.73, which

is decreased to 0.53 when the residual CD increases to 75 ps/nm. It is observed that the

amplitude ratio of asynchronous delay-tap sampling plot decreases monotonously with

residual CD, which indicates that the proposed method is also efficient on residual CD

monitoring for 50% RZ D8PSK signal.

5.3 Conclusions

Three CD monitoring methods are demonstrated in this chapter. Method 1 is based

on RF power ratio measurement and optical filtering. By placing the FBG filter at the

carrier wavelength, large measurement sensitivity can be achieved. However, the CD

measurement range is only 0∼200 ps/nm in 57-Gbit/s D8PSK system. In method 2,

an FBG filter is centered at 10 GHz from the carrier, and the CD measurement range

increases to 0∼500 ps/nm in 57-Gbit/s D8PSK system. However, the measurement
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Figure 5.18: Simulated amplitude ratio in delay-tap sampling plot as a function of

chromatic dispersion. 60-Gbit/s 55% RZ D8PSK signal.

sensitivity is not as good as method 1. Both simulation and experiments show that the

proposed methods are efficient for eliminating PMD effects on RF power ratio.

Another CD monitoring method is proposed by using amplitude ratio of asyn-

chronous delay-tap sampling plot. The simulated results show that the propose method

is efficient on residual CD measurement in 40-Gbit/s CSRZ DQPSK, 50% RZ DQPSK

and 60-Gbit/s 50% RZ D8PSK systems. The measurement results are not affected by

received optical power. Besides, the proposed scheme dose not needs clock or modifi-

cation on transmitter/receiver. Therefore, it is a simple and cost effective method.

Among the three methods, method 1 and method 2 are insensitive to PMD and

have larger CD measurement range (0∼200 and 0∼500 ps/nm in 40-Gbit/s DQPSK

system for method1 and method 2, respectively). Method 2 has larger measurement

range than method 1 as lower frequency (10 GHz) RF tone power ratio is used as moni-

toring signal. Compared with the first two methods, method 3 has limited measurement

range (less than 100 ps/nm in 40-Gbit/s DQPSK system). Besides, the CD monitoring

105



5.3 Conclusions

results may affected by other impairment effects, such as PMD and OSNR. However,

the measurement sensitivity of method 3 is better.
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Chapter 6

Suppression of Signal Fluctuation in

BOTDA Sensing System

Optical fiber sensors are widely used as they are flexible, immune to electromagnetic

interference, and applicable in many environments. The stimulated Brillouin scattering

(SBS) based fiber sensor is capable of sensing temperature and strain over relative

long distances by monitoring the changes of Brillouin frequency shift. However, since

the SBS is a polarization sensitive process, the polarization sensitivity remains a key

problem for SBS based distributed fiber sensing system because it will induce the

polarization noise and reduce the signal to noise ratio the of the sensor [91–94].

Several schemes have been proposed to overcome the polarization induced fluc-

tuation. A computer-controlled polarization controller has been used to eliminate the

polarization noises in a SBS-based sensor system [93]. The method has following dis-

advantages: 1) increasing measurement time significantly by finding the optimal polar-

ization state, or averaging the performance over time; 2) requirement of an additional

active component. A polarization switch (PSW) which can alternatively generate two

orthogonal polarization states is proposed [95]. However, PSW is an active component
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6.1 Distributed Sensing System Based on SBS

and it requires perfectly linear input polarization. A new configuration is reported to

eliminate the noise by using passive polarization scrambler that consists of a highly

unbalanced Mach-Zehnder interferometer [141]. However, this polarization scrambler

cannot be operated in pulsed case.

In this chapter, we demonstrate a novel method to suppress the polarization sensi-

tivity in BOTDA distributed sensing system. In our scheme, the polarization diversity

is introduced on the pulsed pump wave. A PBS splits the pump wave into two beams

with orthogonal polarization states and one of the beams is delayed by a time related to

the pulse width. After recombining of the two waves, the DOP decreases from 95% to

only 5% and the polarization induced strain fluctuation is suppressed to ±50 µε from

±300 µε. The strain measurement time in the proposed scheme is 3s which is the same

as that in the system without polarization diversity scheme.

6.1 Distributed Sensing System Based on SBS

Stimulated Brillouin scattering (SBS) occurs at relatively low power compare with

stimulated Raman scattering (SRS). If the spacing of two counter propagating chan-

nels are in the Brillouin gain spectrum and the power of the two channels are above the

Brillouin threshold, SBS occurs and a power is transferred from high frequencies to

low frequencies. The refractive index of optical fiber can be changed by the environ-

ment (temperature and strain), and the Brillouin shift ΩB of the fiber is also changed.

Thus, SBS effect in the optical fiber can be used in distributed temperature or strain

sensing system.

Brillouin scattering based distributed fiber sensor technology is a promising tech-

nique for distributed temperature and strain monitoring as it is flexible, immune to

electromagnetic interference, and applicable in many environments. In the Brillouin
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6.1 Distributed Sensing System Based on SBS

optical correlation domain analysis (BOCDA) sensing system, continuous wave (CW)

pump and probe are used. The Brillouin gain spectrum (BGS) can be detected by

the correlation between two counter propagating beams. In BOTDA sensing system,

pulsed pump and CW probe are used. It is capable of fully distributed measurements

along the fiber and the distributed temperature and/or strain can be obtained by moni-

toring the changes of Brillouin frequency shift ΩB. However, in both of the two kinds

sensing system, the system performance is affected by the relative polarization state

between the pump and probe waves.

In the BOTDA sensing system, the Brillouin gain and the Brillouin frequency

shift ΩB change when the relative polarization state between pump and probe changes.

The polarization mismatch induces the reduce of signal-to-noise ratio (SNR) the of

the optical sensing system [91–94]. We proposed a polarization diversity scheme on

the pulsed pump to suppress the signal fluctuation in the sensing system. This method

contains only two PBS and a piece of SMF. The principle of Brillouin Optical Time

Domain Analysis based sensing system and proposed polarization diversity scheme on

the pump wave are shown in this section.

6.1.1 BOTDA Sensing System

Time domain analysis of Stimulated Brillouin Scattering (SBS) in a single-mode fiber

involves the interaction between a pulsed pump beam and a counter propagating con-

tinuous wave (CW) probe beam at different wavelengths. At any section of the fiber, a

power transfer between the pulsed pump and the probe wave occurs if their frequency

offset is within the local Brillouin gain spectrum (BGS). The probe wave is modulated

by a electro-optic modulator (EOM) which is biased at transmission null point at a

frequency close to the Brillouin frequency shift (∼10.84 GHz) of the FUT. Compared

with the pulsed pump wave which has tens of nanometers width with a repetition rate
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Figure 6.1: EOM transmitted optical intensity as a function of the applied voltage and

a function of time.

of tens of microsecond, the probe wave can be assumed to be a continuous wave. In

such a system, which has a pulsed pump wave, the spatial resolution highly depends

on the pulse width of the pump (τp).

Fig.6.1 shows the transmitted intensity of the EOM as a function of the modu-

lation voltage and the time. The EOM is biased at the transmission null point and

two sidebands are generated. One of them is within the BGS and serves as a probe

wave, the other one will be filtered out by an FBG filter. By scanning the modulation

frequency of the probe beam in a frequencies range around the Brillouin shift of the

FUT, the BGS can be obtained and the peak frequency (ΩB) of the BGS signifies the

temperature or strain at the location of FUT. In other words, the variation of tempera-

ture or strain induces the change of BGS and the location of the peak frequency. For
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6.1 Distributed Sensing System Based on SBS

Figure 6.2: Maximum and minimum gain achievable in the measurement of the BGS

of a highly birefringent dispersion shifted fiber [92].

temperature measurement, the temperature at any point along the fiber is determined

by T = T0 + α(ΩB − Ω0), where T0 is reference temperature and α is temperature

sensitivity, assuming the fiber is under normal strain. For strain measurement, the dis-

tributed strain is determined by ε = ε0 + β(ΩB −Ω0), where ε0 is the reference strain

and β is the strain sensitivity, assuming the fiber is under constant temperature. The

location of the temperature or strain along the FUT can be obtained by measuring the

time-of-flight.

6.1.2 Polarization Induced Signal Fluctuation in BOTDA Sensing

System

SBS is a polarization sensitive process, the relative polarization state between pump

and probe wave affects the Brillouin gain. And polarization sensitivity is a key prob-

lem for SBS based distributed fiber sensing system. Fig.6.2 shows the measurements of
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6.2 Polarization Diversity Scheme in Distributed Sensing System

Brillouin gain spectrum performed on 140 m of highly birefringent dispersion shifted

fiber [92]. The polarizations of the launched waves are linear and parallel to one of the

birefringence axis of the fiber. If the polarization states of the two waves are orthogo-

nal, the probe has no gain. On the contrast,if the polarization states of the two waves

are parallel, maximum Brillouin gain can be achieved.

The variation of polarization states of pump and prove waves along the fiber will

induce changes of Brillouin gain. Moreover, the polarization induced gain fluctuation

will introduce errors on detection of the Brillouin shift. Therefore, polarization noise

in the fiber reduces the signal to noise ratio the of the fiber sensor. In some cases,

the polarization induced fluctuation results in errors of the distributed sensing systems.

Several schemes have been proposed to overcome the polarization induced fluctuation

in BOTDA sensing systems [91–94].

6.2 Polarization Diversity Scheme in Distributed Sens-

ing System

In the system without polarization diversity scheme, Brillouin gain varies with the

relative polarization state between the pulsed pump and CW probe waves. For the best

polarization state (when the SOP of the probe wave is the same as that of pump wave),

the probe has a maximal gain, as shown in Fig.6.3(a). And for the worst polarization

state (when the SOP of the probe wave is orthogonal to that of pump wave), the probe

beam has no gain, as shown in Fig.6.3(b).

In the proposed system, the pump pulse is divided into two orthogonal sub-

pulses. Therefore, both orthogonal polarization components of the probe wave will

be efficiently amplified by the sub-pluses of the pump. Thus the SBS gain will be

polarization-insensitive and the Brillouin frequency shift ΩB can be detected accu-
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Figure 6.3: The fluctuations of Brillouin gain due to the relative polarization state

between pump and probe waves. (a) The probe wave is parallel to the pump wave,

without polarization diversity. (b) The probe wave is orthogonal to the pump wave,

without polarization diversity. (c) The probe wave is orthogonal to the original pump

wave, with polarization diversity. (d) The probe wave is aligned at to the original

pump wave, with polarization diversity.

113



6.2 Polarization Diversity Scheme in Distributed Sensing System

rately. Fig.6.3(c) and (d) show the concept of proposed polarization diversity when

the polarization state of probe wave is orthogonal to one sub-pulse of the pump, and

aligned at θ to one sub-pulse of the pump, respectively. It is shown that the probe is

amplified by the same value regardless of the relative polarization state between the

pump and the probe waves. The Brillouin gain in the proposed scheme is 3dB smaller

than that shown in Fig.6.3(a) as the intensity of the sub-pulses of pump is half of the

original pump.

Assume the Jones vectors of the two orthogonal polarized sub-pulses are ~P1 =


E1 cos α

E1 sin α


 and ~P2 =



−E1 sin α

E1 cos α


, and the Jones vector of the probe wave is

~Pb =




E2 cos β

E2 sin β


, where E1 and E2 are constant, α and β are random phase. After

go through a piece of fiber with linear birefringence, the two orthogonal polarized sub-

pulses are ~P ′
1 =




E1 cos α

E1 sin αexp(−jφ)


, and ~P ′

2 =




−E1 sin α

E1 cos αexp(−jφ)


. As the

transmission direction of the probe is different from that of pump, the Jones vector of

the probe is ~P ′
b =




E2 cos β

E2 sin βexp(jθ)


. At the beginning of the fiber, the mixing

efficiency between the pump and probe waves is,

η =
√

(P1 · Pb)2 + (P2 · Pb)2

=
√

(E1E2 cos α cos β)2 + (E1E2 sin α sin β)2 + (−E1E2 sin α cos β)2 + (E1E2 cos α sin β)2

= E1E2 (6.1)

After go through a piece of linear birefringence fiber, the mixing efficiency be-

tween the pump and probe waves is,

η′ =
√
|P ′

1 · P ′
b|2 + |P ′

2 · P ′
b|2

= E1E2

√
| cos α cos β + sin α sin βexp(jθ − jφ)|2 + | − sin α cos β + cos α sin βexp(jθ − jφ)|2
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Figure 6.4: Experimental set-up of BOCDA fiber optic distributed sensing system with

a polarization diversity scheme on the pulsed pump wave.

= E1E2

√
(cos α cos β + sin α sin β)2 + (− sin α cos β + cos α sin β)2

= E1E2 (6.2)

From the equation above, it can be educed that the mixing efficiency η between

the pump and probe waves is depend only on the intensities of the pump and probe

waves (E1 and E2). Thus, the SBS gain remains a constant regardless of the relative

polarization state between pump and probe waves.
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6.3 Experimental Setup

Fig.6.4 shows the experimental setup of the BOTDA sensing system with a polariza-

tion diversity applied on pump wave. The output of the distributed feedback (DFB)

laser is split into two channels by a polarization maintaining coupler (30:70). One of

the output ports of the coupler is modulated by an electro-optic modulator (EOM) and

serves as a probe wave. The EOM is biased at transmission null point and generates

two sidebands. One of the two sidebands is in the BGS and the other one is filter out

by a FBG filter. The modulation frequency of the EOM can be tuned by the computer

through the RF synthesizer so as to get the BGS. The other output of the coupler is

modulated by an acousto-optic modulator (AOM) and serves as a pulsed pump wave.

The pulse width and the interval time of the pump beams are controlled by the com-

puter via data acquisition (DAQ).

The AOM is followed by a polarization diversity scheme which is efficient on

suppressing the fluctuation induced by polarization mismatch. The pulsed pump wave

is split into two beams with orthogonal polarization states by PBS1. One of the two

states is delayed by 80ns (the pulse width of the pump wave) using a 16m SMF and

then combined with the other state by PBS2. If the shorter pulse is used as pump wave,

the length of SMF decreases proportionally. In our system, the further reduction of the

pump pulse width is limited by the rising time of the AOM. PC3 aligns the polariza-

tion states of the pulse wave at the end of SMF to the principle states of polarization

(PSPs) of PBS2. PC2 is used to align the pump wave at 45 degree respect to the PSPs

of the fiber. (Note that the PCs can be eliminated by using PM fiber and 45 degree

splicing PM PBSs.) Since the pump pulse contains two orthogonal polarization states,

the Brillouin gain will be remain constant regardless of the polarization state of the

probe wave and the Brillouin frequency shift ΩB will not change when the relative
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polarization state between pump and probe waves changes.

The polarization diversity scheme is followed by an erbium doped fiber amplifier

(EDFA) and bandpass filter which are used to amplify the pump pulse to reach the

Brillouin threshold. The CW probe and pulsed pump counter-propagate in the 1.2 km

SMF, and the amplified probe is detected by a photoreceiver via a four ports circulator.

An athermal fiber Bragg grating (FBG) module is used as a notch filter to filter out the

unwanted sideband of the probe wave outside BGS.

The modulation frequency of EOM, pulse width of the pump wave and the interval

time of two pulsed pumps are controlled by a computer through a RF synthesizer.

Besides, the range of frequency sweep of EOM and the step of the sweep are also

controlled by the computer. Thus, it is easy to change these parameters to achieve a

stable measurement.

6.4 Experimental Results

The Brillouin gain spectrum (BGS) is obtained by sweeping the modulation frequency

of EOM around the Brillouin shift of the FUT (∼10.84 GHz). The step of the fre-

quency sweeping is 10 MHz. The Brillouin frequency shift ΩB at every position along

the FUT can be obtained after the sweeping and is set as a frequency reference. Then,

the modulation frequency is scanned continuously to get the instantaneous Brillouin

frequency shift. For every position along the FUT, if ΩB has no change compare with

the frequency reference, the temperature at the location is the same as room temper-

ature (or the strain at the location is the same as normal strain); otherwise, the tem-

perature is different from the room temperature (or the strain is different from normal

strain) and can be calculated through the change of Brillouin frequency shift.

In the experiment, the polarization state of the probe can be tuned by PC1 which
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Figure 6.5: Measured temperature distribution along 1.2 km SMF in the environment

of room temperature (a) without polarization diversity and (b) with polarization diver-

sity by the proposed scheme.

adjusts the polarization state automatically and supplies all possible states of polariza-

tion. The distributed temperature and strain measurements along a 1.2 km SMF are

shown in this section. The results demonstrate that the proposed polarization diver-

sity scheme suppresses the polarization induced signal fluctuation effectively. And the

measurement time is only 3s, which is the same as that without polarization diversity

scheme.

6.4.1 Distributed Temperature Measurement

For the temperature measurement, the 1.2 km SMF is under normal strain. When the

fiber under test is under room temperature, the measured distributed temperature has

a large fluctuation (more than 20◦C) when the polarization state of the probe wave

changes at the absent of polarization diversity scheme, shown in Fig. 6.5(a). On the
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Figure 6.6: Measured temperature distribution along 1.2 km SMF when putting a sec-

tion of fiber at the location of 1.1 km into hot water (a) without polarization diversity

and (b) with polarization diversity by the proposed scheme.

other hand, the DOP of the pump pulse decreases to only 5% after the proposed po-

larization diversity scheme and the temperature fluctuation under room temperature is

only ±3 ◦C when the SOP of the probe wave changes, shown in Fig. 6.5(b). Although

there are small fluctuations, the average temperature (22◦C) shown in Fig. 6.5(b) meet

the room temperature very well. As the proposed polarization scheme needs no control

system or active components, the measurement time is only 3s.

Fig.6.6 shows the distributed temperature measurement result along 1.2 km SMF.

A piece of fiber, located at 1.1 km, is put into hot water. The location of temperature

change shown in Fig.6.6 is 1.13 km and the small difference is caused by pigtails of

the components in the set up. Fig.6.6(a) shows that in the system without proposed

scheme, the fluctuation is large especially near the location of temperature change

and it is difficult to find the change position. In the system with polarization diver-
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Figure 6.7: Measured distributed strain along 1.2 km SMF under normal (a) without

polarization diversity and (b) with polarization diversity by the proposed scheme.

sity scheme, the fluctuation is much smaller and the signal is stable near the position

of temperature change although the relative polarization state between the pump and

probe wave has been changed, depicted in Fig.6.6(b). It is experimentally shown that

the proposed system is capable of measuring precise temperature and accurate location

in the distributed sensing system. And the polarization induced signal fluctuation has

been suppressed successfully.

6.4.2 Distributed Strain Measurement

The Brillouin frequency shift ΩB changes with temperature as well as strain. In our

system, only one of them can be measured in one time. For the strain measurement,

the SMF is under room temperature (21.8 ◦C). The polarization state of the probe wave

can be tuned by PC1, which adjusts the polarization state automatically and supplies

all possible states of polarization. When the FUT is under normal strain, as the change

of polarization state of the probe beam, the measured distributed strain has a large
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Figure 6.8: Measured distributed strain along 1.2 km SMF with a strain-applied section

at the location of 1.1 km (a) without polarization diversity and (b) with polarization

diversity by the proposed scheme.

fluctuation (more than ±300 µε) in the system with absent of polarization diversity

scheme, shown in Fig. 6.7(a). On the other hand, in the system with polarization

diversity scheme, the DOP of the pump pulse decreases from 95% to only 5% and the

strain fluctuation in the system is about ±50 µε, shown in Fig. 6.7(b). Although the

measured strain has small fluctuation, the system is more stable when the polarization

state of the probe wave changes.

In the experiment, a section of the FUT, located at about 1.1 km, was super glued

on two cylinders with 2.5 rounds. The distance between the cylinders was 213 cm

which can be tuned with a resolution of 5 µm. Thus the length of the strain applied

fiber is about 10.5m. The reference strain was obtained when the fiber stretching unit

under normal strain. By increasing the distance between the two cylinders, strain is

applied on the fiber. Fig. 6.8 (a) shows that in the system without polarization diversity
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scheme, the strain fluctuation induced by polarization mismatch is large (about ±300

µε) especially near the location of strain-applied fiber and it is failed to detect the

location of strain change. In the system with proposed scheme, the fluctuation induced

by polarization mismatch is much smaller (about ±50 µε) and the signal is stable near

the position of strain change, depicted in Fig. 6.8 (b). The location of strain-applied

fiber shown in Fig. 6.8 (b) is 1.13 km and the small difference is caused by pigtails of

the components in the set up.

It is experimentally shown that the proposed distributed sensing system is capable

of measuring precise strain and accurate location along the 1.2-km SMF. The polar-

ization sensitivity in the optical sensing system has been suppressed efficiently by the

proposed scheme. Besides, the measurement time is relative short, only 3 seconds,

which is the same as the system without the proposed polarization diversity scheme.

In the proposed scheme, normal PBSs are used, and it needs two PCs to align the SOP

of the pump wave to 45 degree to the PBSs. If the polarization maintaining PBSs and

PM fiber are used, the PCs can be eliminated and the scheme is easier to achieve in

real systems.

6.5 Conclusions

The proposed polarization diversity scheme in the BOTDA distributed sensing system

has successfully reduced the DOP of the pump pulse from 93.5% to 5% and achieves

a stable distributed temperature and strain measurement. The polarization induced

temperature fluctuation is suppressed to only ±3 ◦C from ±20 ◦C, and the strain fluc-

tuation is reduce to ±50 µε from ±300 µε. Beside the stable temperature and strain

measurements, accurate location information can also be obtained by the time-of-flight

in the system. The proposed scheme does not need any feedback control system and
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the measurement time is only 3s. It is also cost effective as only two PBSs and a piece

of fiber is used. Both theoretical analysis and experiment results show that the pro-

posed scheme is efficient on eliminating polarization induced fluctuation in BOTDA

fiber optic distributed sensing system.
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Chapter 7

Conclusions and Future Work

The physical effects are intrinsic properties of optical fibers, which always affect the

performance of optical systems. The study and management of fiber physical effects

make it possible to achieve higher performance in various optical systems. In this the-

sis, several fiber physical effects (chromatic dispersion, polarization mode dispersion,

parametric process and stimulated Brillouin scattering) have been studied in optical

communication and sensor systems. This chapter will conclude the main contribution

of this thesis and point out several topics in the future works.

7.1 Conclusions

In this thesis several works on management of fiber physical effects have been done.

Firstly, high-speed multi-channel optical pulse train generation based on parametric

process has been demonstrated experimentally. The generated 80 GHz pulses with

high ER can be used as optical sources in the WDM transmission systems. The char-

acteristic of the parametric amplifier using HNLF has been studied. The wavelength of

pump pulse is optimized to obtain large gain and wide gain bandwidth. The qualities of
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the generated pulse trains are analyzed numerically using VPItransmissionMaker 7.0.

The power penalties of the generated pulse trains are less than 0.5 dB in back-to-back

case.

In the second part, a broadband multi-wavelength source using a single phase

modulator is generated in an amplified loop. The loop length, gain and polarization

state were tuned to obtain broad optical spectrum and more light source channels. Gen-

eration of 125-channel light source with more than 30 dB optical signal-to-noise ratio

is demonstrated experimentally. Neither high optical power nor large drive voltage is

employed in this method.

In the third part, chromatic dispersion and polarization mode dispersion monitor-

ing methods based on RF power measurement and optical filtering are proposed. Both

simulation and experimental results show the efficiency of the methods. By using a nar-

row band FBG filter in one of sidebands, the chromatic dispersion effects on RF power

can be eliminated and CD insensitive PMD monitoring can be achieved. Besides, by

monitoring the low frequency RF power, the photodetector with low bandwidth is used

in the monitoring branch. Therefore, the monitoring range is increased and the cost of

the system is decreased. On the other hand, PMD insensitive CD monitoring utilizing

RF power ratio has been demonstrated. As the RF power decreases with PMD in both

filtered and non-filtered signals, the PMD effects on RF power can be eliminated by

using the RF power ratio of the two signals.

Lastly, a polarization diversity scheme is proposed to suppress the polarization

induced signal fluctuation in BOTDA distributed sensing system. The polarization di-

versity scheme is applied on the pump pulse, whose degree of polarization is decreased

from 93.5% to 5% dy the proposed scheme. The polarization induced temperature fluc-

tuation is suppressed to only ±3 ◦C from ±20 ◦C, and the strain fluctuation is reduce

to ±50 µε from ±300 µε. Beside the stable temperature and strain measurements,
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accurate location information can also be obtained by the time-of-flight in the system.

The proposed scheme does not need any feedback control system and the measurement

time is only 3s.

7.2 Future Work

The application and management of physical effects of optical fiber are studied in this

thesis. However, there are still many challenges to be overcome. Based on the works

have been done, following topics are valuable for further studies.

1. Chromatic dispersion and polarization mode dispersion measurement method

based on RF power were demonstrated in this thesis. The measurement result is af-

fected by the center wavelength of FBG filter. However, the reflection wavelength of a

FBG depends on the environment parameters, such as temperature and strain. There-

fore, the fixing of FBG center wavelength is a key issue in monitoring system. Besides,

the application of proposed method in WDM system is also a promising topic. Narrow

band notch filters with equal spacing , which is not affected by environment parame-

ters, are good candidates for such applications.

2. Chromatic dispersion monitoring utilizing amplitude ratio in delay-tap sam-

pling plot was proposed. However, the eye-diagram and delay-tap sampling plot are

affected by other degrading effects, such as polarization mode dispersion, and optical

signal-to-noise ratio [137]. Therefore, distinguishing various degrading effects based

on the amplitude ratio of delay-tap sampling plot is a big challenge.
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