
Exhaustive Reuse of Subquery Plans to stretch
Iterative Dynamic Programming for Complex

Query optimization

Meduri Venkata Vamsikrishna

HT071146N

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48636461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGEMENT

I would like to express my deep and sincere gratitude to my supervisor, Prof. Tan

Kian Lee. I am grateful for his invaluable support. His wide knowledge and his

conscientious attitude of working set me a good example. His understanding and

guidance have provided a good basis of my thesis. I would like to thank Su Zhan

and Cao Yu. I really appreciate the help they gave me during the work. Their

enthusiasm in research has encouraged me a lot.

Finally, I would like to thank my parents for their endless love and support.

CONTENTS

Acknowledgement ii

Summary viii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Our Approach . 2

1.2 Contribution . 3

1.3 Organization of our Thesis . 7

2 Related Work 10

2.1 Iterative Dynamic programming . 11

2.2 Exploiting largest similar sub queries for Randomized query opti-

mization . 13

2.3 Pruning based reduction of Dynamic Programming search space . . 14

2.4 Top Down query optimization . 15

iii

iv

2.5 Approaches to enumerate only a fraction of the exponential search

space . 16

2.5.1 Avoiding Cartesian Products 16

2.5.2 Rank based pruning . 17

2.5.3 Including cartesian products for Optimality 18

2.5.4 Multi-query optimization: reuse during processing 18

2.5.5 Parameterized search space enumeration 19

2.6 Genetic approach to query optimization 19

2.7 Randomized algorithms for query optimization 19

2.8 Ordering of relations and operators in the plan tree 21

2.9 Inclusion of new joins to query optimizer 21

2.10 Detection of Subgraph isomorphism 22

2.10.1 Top down approach to detect subgraph isomorphism 22

2.10.2 Bottom up approach to detect subgraph isomorphism 23

2.10.3 Finding maximum common subgraph 23

2.10.4 Slightly lateral areas using subgraph detection 26

3 Sub query plan Reuse based algorithms : SRDP and SRIDP 27

3.1 Sub query Plan reuse based Dynamic programming (SRDP) 27

3.2 Building query graph . 33

3.3 Generating cover set of similar subgraphs 34

3.3.1 Construction of seed List . 36

3.3.2 Growth of seed list and subgraphs 37

3.4 Plan generation using similar sub queries 42

3.5 Memory efficient algorithms . 44

3.5.1 Improving Cover set generation 44

3.5.2 Improving Plan generation 46

v

3.6 Embedding our scheme in Iterative Dynamic Programming (SRIDP) 47

4 Performance Study 58

4.1 Experiment 1: Varying the number of relations 60

4.2 Experiment 2: Varying density . 64

4.3 Experiment 3: Varying similarity parameters 64

4.4 Experiment 4: Varying similar subgraph sets held in memory 66

5 Conclusion 72

LIST OF FIGURES

1.1 Search space generation in Dynamic programming lattice through

sub-query plan reuse. 4

1.2 Varying densities for a star query based on join column. 9

3.1 A Sample query Graph with similar subgraphs. 29

3.2 CoverSet of subgraphs for the Sample QueryGraph. 30

3.3 Cheapest Plan reuse for Plan’. 33

3.4 Sets of similar subgraphs for level 2. 37

3.5 Growth of seeds versus growth of subgraphs. 39

3.6 Example to illustrate growth of a seed in the seed list. 50

3.7 Growth of a seed versus growth of a subgraph. 52

3.8 Plan reuse within the same similar subgraph set. 52

3.9 Increase in population of a subgraph set with error bound relaxation. 55

3.10 Growth of selected subgraph sets. 56

4.1 K-value versus number of relations. 61

4.2 Plan cost versus number of relations for medium density. 63

vi

vii

4.3 Optimization time versus number of relations. 64

4.4 Query Execution time versus number of relations. 65

4.5 Total Query Running time (optimization + execution) versus num-

ber of relations. 66

4.6 Plan cost versus number of relation for high density. 67

4.7 Total running time (optimization + execution) versus number of

relations for high density. 68

4.8 Plan cost versus number of relation for various density levels. 69

4.9 Plan cost versus table size and selectivity relaxation in % for a 13-

table query. 69

4.10 Plan cost versus table size and selectivity relaxation in % for an

18-table query. 70

4.11 Plan cost versus prune factor. 70

4.12 optimization time versus prune factor. 71

viii

SUMMARY

Query optimization using Dynamic Programming is known to produce the best

quality plans thus enabling the execution of queries in optimal time. But Dynamic

programming cannot be used for complex queries because of its inherent exponential

nature owing to the explosive search space. Hence greedy and randomized methods

of query optimization come into play. Since these algorithms cannot give optimal

plans, the focus has always been on reducing the compromise in plan quality and

still handle larger queries.

This thesis studies the various approaches that were adopted to address this

problem. One of the earliest approaches was Iterative Dynamic Programming.

Based on the study of the previous work, we proposed a scheme to reduce the

search space of Dynamic Programming based on reuse of query plans among similar

subqueries. The method generates the cover set of similar subgraphs present in

the query graph and allows their corresponding subqueries to share query plans

among themselves in the search space. Numerous variants to this scheme have

been developed for enhanced memory efficiency and one of them has been found

better suited to improve the performance of Iterative Dynamic Programming.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Dynamic Programming(DP) generates the most optimal plan for a query. Complex

queries typically have large number of tables and clauses (predicates) and make

it infeasible for Dynamic Programming to optimize them as the query optimizer

easily runs out of memory in such cases. In this work we intend to find similar

subqueries of all sizes whose plans can be reused. The search space of Dynamic

programming(DP) for a query with ”n” relations can be expressed as a lattice

with a combinatorial set of sub plans, ∀n−1
i=0 |Plansi| ≥ nCi for each level i, where

Plansi indicates the set of sub plans at level i. It can be seen that the count of

sub plans is lower bounded by a combinatorial value because each combination

of relations generates a different plan for each of the different join orders and

different combinations of join methods that can be applied for each join operator

in a query plan. However it should be noted that if the count of sub query plans

2

drops beneath the intended combinatorial value, it means that the plans involving

cartesian products among relations have been eliminated.

Genetic, randomized and greedy heuristics have been proposed to enumerate

only a fraction of this search space and generate query plan. But this cannot give

an optimal plan of high quality. On the other hand, following the search space

enumeration of DP is infeasible as the number of tables and clauses in the query go

higher. Hence it is essential to strike a balance between scalability and optimality.

Our scheme is aimed at generating the search space efficiently and to bring about

an optimal plan.

Here is our problem statement.

“Optimization of complex queries to obtain high quality plans using Dynamic

Programming based algorithms”

1.1.1 Our Approach

To optimize complex queries using DP-based algorithms, search space enumeration

becomes a bottleneck. Instead of fully generating the exponential search space,

we aim at generating a part of the search space and reusing it for the remaining

fraction, thus bringing about computational and memory savings, and getting a

high quality query plan close to optimality.

Our principle idea is to reduce the size of the set Plansi for all levels in the

DP lattice, i.e. for all values of i ranging from 0 to n − 1, through sub plan

reuse. This needs the detection of similar sub queries which in turn requires the

identification of similar sub graphs in the query graph (query graph is a way of

representing the query as a graph with relations being nodes and predicates being

the edges between them). Hence, the problem has been converted to a graph

problem where we need to discover sub graph isomorphism internally, i.e. within

3

a large graph. The collection of sets of similar subgraphs from all levels in the

DP lattice is termed as the cover set of similar subgraphs. Once the cover set of

subgraphs is generated, construction of query plans for each level in the DP lattice

begins and because of exhaustive re-use of sub query plans among the similar

subqueries identified by similar subgraphs present in the cover set, memory savings

are found. These memory savings enable our scheme to push query optimization

to the next level in the DP lattice. Figure 1.1 gives a pictorial representation of

our scheme after the identification of similar subqueries. Similar subquery sets are

fed to the DP lattice at each level. In the figure, during plan generation for level

3, the optimizer identifies from the similar subquery set that (1,2,3) is similar to

(4,5,6) and hence the least cost plan of (1,2,3) is reused for (4,5,6). The plan for

(4,5,6) is still constructed but in a light weight manner by imitating the join order,

join methods and indexing decisions at join node and scan node respectively, thus

bringing upon computation savings by avoiding the conventional method of plan

generation. Memory savings are brought about since the plans for the various join

orders of (4,5,6) are not being generated. So our scheme benefits from a mixture

of CPU and memory savings.

1.2 Contribution

We propose a memory-efficient scheme for generating similar subqueries and the

query plans at each level in the DP lattice.

In cases where DP runs out of memory before generating query plans at a par-

ticular level, our scheme can perform better because of memory savings. However

the savings are significant in the case of Iterative Dynamic Programming(IDP). It-

erative dynamic programming (IDP) is a variant of Dynamic Programming which

4

1 2

3

4 5

6

1

2 3

...

1 3

2

copied

CPU time salvage

4

5 6

4 6

5

…

Pruned plan space Freshly generated plans + copied(reused) plan space

Memory savings Computation savings

Similar subquery

sets for level 3

Similar subquery

sets for level 2

Similar subquery

sets for level k

Figure 1.1: Search space generation in Dynamic programming lattice through sub-
query plan reuse.

breaks to greedy optimization method at regular intervals as defined by a parame-

ter ”k”, before starting the next iteration of DP. The higher the value of ”k”, the

better will be the plan quality since IDP gets to run in an ideal DP fashion for a

longer time before breaking to a greedy point. But for each query, depending on its

complexity, there will be an optimal value of ”k” for which IDP can run to comple-

tion and return a query plan. If the value of ”k” is higher than the optimal, IDP

will run out of memory. In the experiments, we are going to demonstrate memory

savings on sparsely and densely connected queries with our scheme embedded in

IDP. As a result, we are going to show cases where our IDP based approach can run

5

to completion for a higher value of ”k” thus giving a good quality plan. Intuitively

it can be inferred that dense queries are at advantage in using our scheme because

the more dense the queries are, the more the predicates are and hence the sub

query reuse is also high enough to push IDP to the next level in the DP lattice.

In real world, OLAP queries are dense and TPC-H benchmark is known to

contain OLAP queries. Also, we have one more interesting observation to show

how commonplace dense queries are in real applications and benchmarks. Let us

consider two versions of a 4-table star query.

Table 1.1: 4-predicate star queries with different join columns run on PostgreSQL
optimizer

Query DP Lattice:
Q1: SELECT COUNT(*) FROM

emp, sal, dept, mngr WHERE

emp.sal id = sal.sal id

AND emp.dept id = dept.dept id

AND emp.mngr id = mngr.mngr id;

LEVEL 2: NUM OF QUERY PLANS = 3

LEVEL 3: NUM OF QUERY PLANS = 6

LEVEL 4: NUM OF QUERY PLANS = 3

Q2: SELECT COUNT(*) FROM

emp, sal, dept, mngr WHERE

emp.emp id = sal.emp id

AND emp.emp id = dept.emp id

AND emp.emp id = mngr.emp id;

LEVEL 2: NUM OF QUERY PLANS = 6

LEVEL 3: NUM OF QUERY PLANS = 12

LEVEL 4: NUM OF QUERY PLANS = 7

A star query is essentially a sparse query with ”n” relations and ”n-1” edges

where the hub relation at the center is connected to the remaining relations by

predicates. In query Q1, in Table 1.2 the hub table emp never gets to join with

any two tables on the same join column, the primary key of a table is never multi-

referenced (assuming that all the predicates follow Primary key foreign key re-

lationships). Whereas in query Q2, emp joins with the remaining tables on the

same column emp id. We can see that the number of query plans (as generated

by PostgreSQL 8.3.7 optimizer) at each level is higher in the case of query Q2.

This happens because the optimizer applies the transitive property and infers new

6

relationships among the tables. For example, in Figure 1.2, the sub query plans

for level ”2” in the DP lattice are enumerated for Q1 and Q2 and the predicates

which have been inferred from transitive property in the case of Q2 are depicted in

dotted lines.

This holds true for further levels in the DP lattice too with search space differing

significantly depending on the homogeneity or heterogeneity of the join columns

used in the predicates. This gives more scope for our scheme to perform better,

because even in sparse queries, multiple references of a column are commonplace

leading to inferred edges and enhanced density of the query graph.

In the TPC-H schema, the column “NATION KEY” belonging to the table NA-

TION is referenced by tables SUPPLIER and CUSTOMER. Similarly in the schema

of TPC-E, the primary key S SYMB is referenced by the tables LAST TRADE,

TRADE REQUEST and TRADE. Query Q5 in TPC-H benchmark is being list-

ed below. We can see in italicized predicates, how s nationkey is being multi-

referenced.

select n name, sum(l extendedprice * (1 - l discount)) as

revenue from customer, orders, lineitem, supplier, nation, region

where c custkey = o custkey and l orderkey = o orderkey and

l suppkey = s suppkey and

c nationkey = s nationkey and s nationkey = n nationkey

and n regionkey = r regionkey and

r name = ’[REGION]’ and o orderdate >= date ’[DATE]’ and

o orderdate < date ’[DATE]’ + interval ’1’ year group by

n name order by revenue desc;

Table 4.2 has an example of a dense query for our scheme gives a better query

plan.

7

Table 1.2: Plan Cost parameters for randomly connected query graph with multi
referenced columns in predicates
Query
(Number of
tables)

Number
of edges

Scheme Memory(in
MB)

Time(in
secs)

Plan Cost

12 36 DP out of memory N/A N/A

” ” IDP(k=8) out of memory N/A N/A

” ” IDP(k=7) 945.26 23.93 3.67x104

” ” Subplan reuse ID-
P(k=10)(0.4,0.4)

1475.69 37.74 2.38x104

” ” Skyline DP out of memory N/A N/A

While optimizing the query mentioned in Table 4.2 DP runs out of memory

before generating query plans at level 8 in the DP lattice. IDP needs a ”k” value

lesser than 8 to run because if DP is running out of memory at level 8, even IDP

does, unless it breaks to greedy plan selection at a lattice level earlier than 8.

Whereas, our algorithm, Subquery plan reuse embedded in IDP, can sustain a ”k”

value of 8, because of the stretching we achieve due to plan reuse. That means we

are breaking latter to a greedy point than IDP which leads to enhancement of plan

quality with our scheme.

1.3 Organization of our Thesis

The rest of the thesis is organized as follows:

• Chapter 2 describes the existing approaches to reduce the search space of

plan enumeration in Dynamic programming, randomized methods of query

optimization and the detection of subgraph isomorphism.

• Chapter 3 presents our approach. It discusses our proposed solution: gen-

eration of the cover set of similar subgraphs and also the core aspect, reuse

of sub-query plans among similar subqueries obtained from the cover set for

8

query plan generation. The scheme is implemented in both Dynamic pro-

gramming and Iterative Dynamic Programming. We describe our naive ap-

proach and a memory conscious one for improving cover set generation and

plan generation.

• Chapter 4 presents our experimental results demonstrating the CPU time

speed up and memory savings on various queries.

• Chapter 5 marks the conclusion of our thesis providing a summary of our

work and future directions.

9

EMP

SAL

DEPT MNGR

EMP

SAL

DEPT MNGR

STAR QUERY Q1 STAR QUERY Q2

emp.emp_id=sal.emp_id

emp.emp_id=dept.emp_id

emp.emp_id=mngr.emp_id

emp.sal_id=sal.sal_id

emp.dept_id=dept.dept_id

emp.mngr_id=mngr.mngr_id

PLANS FOR “Q1” AT LEVEL 2

EMP SAL EMP DEPT EMP MNGR

PLANS FOR “Q2” AT LEVEL 2

EMP SAL EMP DEPT EMP MNGR

SAL DEPT DEPT MNGR MNGR SAL

Inferred predicates in “Q2”

EMP

SAL

DEPT MNGR

emp.sal_id=sal.sal_id emp.dept_id=dept.dept_id emp.mngr_id=mngr.mngr_id

emp.emp_id=sal.emp_id emp.emp_id=dept.emp_id emp.emp_id=mngr.emp_id

sal.emp_id=dept.emp_id dept.emp_id=mngr.emp_id mngr.emp_id=sal.emp_id

Figure 1.2: Varying densities for a star query based on join column.

10

CHAPTER 2

RELATED WORK

Our related work mainly comprises three main sections which are closely relat-

ed to our work. They are Iterative Dynamic programming, Randomized query

optimization using largest similar subqueries and Pruning based reduction of Dy-

namic programming search space. [17] proposes Iterative Dynamic programming.

[40] handles optimization of complex queries using randomized algorithms but it

cannot guarantee an optimal plan. [5] aims at improving memory efficiency of Dy-

namic Programming for queries with large number of tables but it greedily employs

pruning of join candidates generated at each level in DP. Other essential related

work includes various approaches to reduce DP search space, randomized query

optimization algorithms and identification of subgraph isomorphism.

11

2.1 Iterative Dynamic programming

Our work aims at modifying the Standard best row variant of IDP. The standard

best row variant of IDP tries to reduce the search space of DP by running DP for

a while, and then adopting a greedy method of plan selection before resuming DP

for the next iteration. In essence, DP is being run iteratively to retain optimality

in query plan, and the greedy method’s intervention is aimed at cutting down the

search space and extending DP for complex queries. The algorithm for IDP is being

presented in Algorithm 1.

A query with ”n” relations has to go through exhaustive plan generation when

DP is applied. For instance at level lev, nClev combinations of relations are gener-

ated assuming cross products are not eliminated. For each of these combinations,

a plan is constructed for each of the various join orders. In the case of IDP, it tries

to limit this exponential plan generation iteratively. A parameter ”k” is fixed by

assigning a value between 2 and rel where rel is the total number of relations in the

DP lattice. Plan generation follows DP way of plan generation from lattice levels

2 to k. That means the number of combinations generated at levels 2,3,..,k-1 are

nC2,
nC3,..,

nCk−1 respectively. But at level ”k”, out of the nCk combinations, only

one combination is greedily picked up for which the plan cost is the least. Plans for

the remaining nCk − 1 combinations are pruned because their cost is higher than

the cheapest. Also, all the plans from level 2 to k− 1 are discarded before starting

the next iteration. The cheapest plan that has been picked up will be used as a

building block along with the 1-way join plans of relations not participating in the

k-way join plan that was chosen just now. Then DP resumes with iteration number

2 on levels 1 to k which translates to k+1,k+2,..,2k-1 before greedily applying a

cost based pruning at level ”2k” followed by iteration number 3 of DP. This goes

on till level rel is reached.

12

Algorithm 1 : Standard best row Variant of IDP
Require: Query
Require: k
Ensure: queryplan
1: numRels = numOfRels(Query)
2: numOfIterations = numRels/k
3: for iteration = 0 to numOfIterations− 1 do
4: for lev = 1 to k do
5: Plans[lev]= ApplyDP(Plans[])
6: end for
7: Plans[lev] = makeGreedySelection(Plans[lev])
8: participatingRels = relationsIn(Plans[lev])
9: Plans[1] = Plans[1] - 1-wayPlansFor(participatingRels) + Plans[lev]
10: end for
11: return Plans[lev]

Algorithm 1 describes the standard best row variant of IDP. k indicates the

number of levels in the DP lattice for which plan generation can follow conventional

DP style before breaking to greedy stage. Since the number of levels in the DP

lattice is equal to the number of relations in the query, it is retrieved in line 1

and the number of iterations is obtained in line 2. ApplyDP indicates the regular

DP plan generation and is run for an iteration on the set of plans available till

then (shown in lines 4 to 6). makeGreedySelection chooses the cheapest plan and

prunes the remaining plans belonging to array index lev (denoting the last index

in that specific iteration) from the plan array. It also prunes all the plans for DP

lattice levels 2 to k − 1 before starting the next iteration afresh. In line number

8, the set of relations participating in the k-way greedy plan are retrieved and in

line number 9, the 1-way plans for those relations are deleted from lattice level 1.

Instead of those “k” plans, the k-way greedy plan that was chosen will be appended

to the set of plans in lattice level 1. Then the next iteration of IDP will be run

from level 1 to k. Readers should note that this translates to the generation of

plans for higher lattice levels.

To illustrate with an example, suppose k=2. {A,B,C,D} is a set of relations.

13

1-way and 2-way join plans of this set are generated using dynamic programming

algorithm. But when 3-way join has to be computed, by greedy approach, we

choose the plan for {A,C} if it has the least cost among the join candidates at that

lattice level. All other 2-way join plans are deleted like those for {A,B}, {B,C} etc..

One-way plans for {A} and {C} are also deleted. Now we have the chosen plan for

{A,C} which is called as new plan {T} and 1-way plans for {B} and {D}. On these

three plans {T}, plan{B}, plan{D}, the next iteration of IDP is applied. Till we

reach 2-way join plan on these plans DP is applied and greedy phase arrives before

staring the next iteration. This goes on till the plan for entire set of relations is

generated.

Since the parameter k is the deciding factor of plan quality, the higher the ”k”,

the better is the plan. So our aim is to extend k to improve IDP for better plan.

2.2 Exploiting largest similar sub queries for Ran-

domized query optimization

[40] uses the notion of similar subqueries for complex query optimization. It repre-

sents the query as a query graph and looks for largest similar substructures within

the query graph. Exact common subgraphs may be difficult to find but the notion

of similarity allows relaxation of various parameters defining commonality, thus

providing more subgraphs that can be termed similar. The method then gener-

ates a plan for the representative query using randomized algorithms like AB or II

and re-uses the plan for the remaining subqueries indicated by similar subgraphs.

These plans are then executed and the similar subgraphs in the query graph are

replaced by the result tables from each subquery execution. This is repeated for all

other sets of similar subgraphs identified in the query graph. Query optimization is

14

continued on the resulting query graph again using a randomized algorithm. There

are two issues with this method:

• The representative subquery plan generated by the randomized algorithm is

not guaranteed to be optimal.

• The plan is pre-maturely being executed without knowing whether it is an

optimal join order and it is being replaced by the result node, this being a

serious hindrance to optimality.

This can be illustrated by an example. If a query has 20 nodes(relations) and

if the subgraph formed by nodes ”1 to 5” is similar to that formed by ”15 to 20”,

and also if these are the largest similar subgraphs found in the query graph, a

plan will be generated for the representative subgraph ”1 to 5” and the same plan

will be re-used for ”15 to 20”. The respective plans are immediately executed and

replaced by their result relations in the query graph. Now optimization resumes on

the modified query graph with 12 nodes. This implies that the method is baselessly

assuming that nodes ”1 to 5” should be joined first and so about ”15 to 20”. But

that may not be the optimal join order the query ideally requires. DP might have

wanted ”3 to 7” to be joined first.

But to use DP for complex queries, a more memory efficient algorithm is re-

quired.

2.3 Pruning based reduction of Dynamic Pro-

gramming search space

[5] employs pruning to extend DP to higher levels. Their method is tailored to

star-chain queries. They identify hub relations (relations with highest degree) in

15

the join graph (same as query graph) that are difficult to optimize and apply a

skyline function based on features rows, cost, selectivity to prune away certain

combinations that fail to provide least cost. The problem with this approach is

that certain join candidates are getting pruned. Let us take the same example

query of 20 relations stated above. Suppose in the query graph, it is found that

relation “5” and “15” have a degree of 4, which is the highest degree among all the

20 relations, pruning is applied on the edges of 5 and 15. Suppose 5 is connected to

(6,7,8,9) and 15 is connected to (16,17,18,19), after applying the skyline function,

only the least cost edges will remain out of 4 in each case. If (5,6) is the least cost

edge, (5,7), (5,8) and(5,9) are pruned. Similarly let us say (15,16) alone is retained.

In the following iterations of Dynamic Programming, if a plan for (5,7,8) has to be

generated, the join order (5,7) followed by 8 will never arise because it has already

been deleted. But possibly it would have been the most optimal join order for this

combination.

Our work mainly focusses on retaining the quality of the optimal plan as gen-

erated by DP, yet to be able to extend it to complex queries with large number of

tables avoiding pruning completely and also without fixing join order.

2.4 Top Down query optimization

Top down query optimization proposes memoization as against dynamic program-

ming (bottom up). Just like Dynamic Programming stores all possible sub solutions

before finding a new solution, in a top down approach, optimal sub-expressions of a

query which can yield better plans are stored and this is the definition of memoiza-

tion. In a DP lattice, the top most expression is a collection of all relations. A top

down enumeration algorithm will keep searching for optimal sub expressions of the

16

higher level’s expression at subsequent lower levels in the DP lattice. In [31], the

algorithm estimates the lower and upper bounds of top-down query optimization.

The paper states that in Cascades optimizer (adopting top down approach), the

scheme looks for logically equivalent subexpressions within a group at a particular

level in the DP lattice and avoids generation of plans for all those expressions whose

estimated cost is higher. We should note that our scheme is different from this one

because in this scheme, logically equivalent subexpressions refer to different join

orders of the same set of relations. They do not search for similar subexpressions

across different sets of relations as we do.

In [6], the authors propose a top down join enumeration algorithm that is dif-

ferent from top down transformational join enumeration. Their algorithm searches

for minimal cutsets that can split a query graph into two connected components at

each level in the DP lattice. They prove that top down search incurs no extra cost

by adopting it instead of the traditional bottom up enumeration of DP lattice. The

paper studies flexible memo table construction where plan reuse is plausible across

different queries (inter query plan sharing only for exactly same tables) as against

our approach which shares plans within the same query (intra query plan sharing

for combination of relations termed similar, not necessarily same sets of tables).

2.5 Approaches to enumerate only a fraction of

the exponential search space

2.5.1 Avoiding Cartesian Products

In [22] the authors attempt to reduce the search space by formulating connected

subgraphs of a query graph in such a way that query plans need to be constructed

17

only for the sub queries corresponding to those connected subgraphs. DPSub and

DPSubAlt algorithms ([21]) are variants of DP which look for connectivity in an

enumerated subgraph (in the query graph) and its complement subgraph. If either

one of them is not connected, it would contribute to a cartesian product and is

hence pruned. The authors use Breadth first search to test the connectedness of

the subgraph and its complement. Also, expressing the subgraph as a bitmap helps

fast generation of subgraphs. #csg denotes the number of connected subgraphs and

#cmp denotes the number of complementary graphs that are non overlapping with

the given subgraph. So #ccp can be defined as the number of csg-cmp-pairs which

is equivalent to the number of non overlapping relation pairs which will contribute

to the sub query plan search space.

As a supplementary to our algorithm, we too proposed an algorithm in which

we can test for the connectedness of every combination of relations using Depth

first search and avoid plan generation if they cannot give a connected subgraph,

but we later realized that PostgreSQL optimizer, by default, does that checking

and chooses only connected components for plan generation.

2.5.2 Rank based pruning

In [3], the authors propose a deterministic join enumeration algorithm to perform

DP-based query optimization implemented in Sybase SQL for memory constrained

environment as found in hand held devices. But their algorithm is not anywhere

close to optimal plan given by DP for the simple reason that it is a very greedy

way of growing plans by estimation of plan costs and selectivity at each level, that

too by retaining only one best. For example if the join order for ”k” relations

has been obtained till now, while enumerating ”k+1”th relation, the candidate

relations are ranked based on cardinality, out degree and whether an equi-join edge

18

(corresponding to predicate) exists between the new relation and one of the ”k”

tables, eventually the table with the best rank is added to generate the (k+1)-

table plan. This is done to reduce the search space drastically using ”branch and

bound” technique (branching among many relations and bounding to the one with

least cost) and also left deep join trees are employed.

2.5.3 Including cartesian products for Optimality

In [36], Vance and Maier propose an interesting phenomenon of including the com-

binations of relations contributing to cross products into the DP lattice. They

challenge the conventional ideas of eliminating cross products and developing left

deep trees which were perceived to be efficient in reducing the search space of DP.

Their claim is that a cross product could also be optimal. They also avoid singleton

relations used for left deep trees and consider bushy plans instead. A subset of rela-

tions involving a cross product is split into two sets of non-singleton relations. The

pair of relation sets which incurs least cost is termed as the best split to compute

cartesian product.

2.5.4 Multi-query optimization: reuse during processing

Since exhaustive plan space is expensive to search, identifying common subex-

pressions of a relational algebraic expression formed out of a query (intra query

optimization) and also across multiple queries (inter query optimization).But both

these methods are aimed at reusing the results of these common sub expressions

than to reuse the plans themselves. The result reuse is during query processing as

against the plan reuse in our work during query optimization.

19

2.5.5 Parameterized search space enumeration

In [18], the authors conclude that bushy plans combined with randomized query

optimization is the best solution when DP search space becomes intractable. [24]

addresses query optimization in Starburst optimizer and allows enumeration of

cartesian products and composite inner joins which are nothing but bushy joins

where the inner relation doesn’t have to be a base relation unlike left deep trees.

This is done to obtain high quality plans but at the same time, parameterized

search space enumeration is introduced to keep a bound on the number of cartesian

products and bushy trees. Starburst’s optimizer can also detect inferred predicates

like the one in PostgreSQL.

[8] proposes a random, uniformly distributed selection of query plans from the

exponential search space and then applies a cost model to evaluate the best plans

among those selected plans. This is proposed as an alternative to transformation

based randomized schemes like iterative improvement and simulated annealing.

2.6 Genetic approach to query optimization

In [12] the authors focus on both left deep and bushy trees representing query plans

by treating them as chromosomes and generating join output by joining the best

plans. Search space reduction is done by choosing the local best.

2.7 Randomized algorithms for query optimiza-

tion

There are several randomized algorithms that were proposed as an alternative ap-

proach for search space enumeration. Instead of considering the exponential search

20

space to get the best plan, supposedly low cost plans are obtained by considering

a set of seed plans and moving to better plans by moves applied on the seeds and

on the newer plans obtained. A move is defined as a single transformation which

may involve flipping the left and right children of an operator in the plan tree, or

changing the join method of the operator. For example in iterative improvement(II)

algorithm, the plan space is referred to as strategic space contains states(strategies)

which are nothing but plans. II always moves from a state to another state only

if the newer state has a lesser plan cost. So the aim is to move towards a local

minimum on which the transformation is applied again. This repeatedly happens

till the least cost local minimum is found. In simulated annealing, instead of just

moving to local minimum, a plan can also be transformed to get a higher cost plan

but with a certain probability. This probability is reduced as time progresses (to

put a check on the number of random uphill moves and to encourage more down-

hill moves) till it reaches zero when we reach with a least cost state among all the

states that have been visited. But uphill moves are allowed in first place to avoid

the algorithm from getting stuck in a local minimum. 2PO(2 phase optimization)

is a combination of both the algorithms, where II is run in the first phase and from

the output state, we run the second phase of SA by feeding it as the input state for

the new phase with a low probability for uphill moves which will soon reach zero

eventually. In [13], the authors study the cost functions evaluated for the strategy

spaces of the three algorithms (II, SA, 2PO) and conclude that query optimization

on bushy trees is easier than left deep trees which is contradictory to popular belief,

because most of the previous work states that left deep trees are easier to describe

the search space with, than bushy trees.

Tabu search [23] is also a randomized algorithm which prevents repetition of

states in the move set, i.e, as moves are applied on states in the strategy space,

21

there is a danger of an older state getting repeated. This algorithm keeps track

of the most recent states visited in a tabu list and makes sure that none of them

occur as a result of a new move.

In KBZ algorithm, the minimum spanning tree is found from the query graph

and with each node as the root, the join graph is linearized, followed by detection

of the appropriate join sequence (among those linearized trees) with least cost as

the optimal query plan. AB algorithm modifies KBZ algorithm to include cyclic

queries, various join methods are applied on each of the joins, and also swapping

relations to find interesting orders is also adopted. These are done to remove the

constraints in KBZ algorithm and also to finish the search space enumeration and

generate plan in polynomial time.

2.8 Ordering of relations and operators in the

plan tree

[32] focusses on combining heuristics with randomized algorithms for query opti-

mization. The heuristics involve pushing selections down the join tree, applying

projections as early as possible and enumerating combinations involving cross prod-

ucts from the search space as late as possible. The augmentation heuristic and local

optimization focus on ordering the relations to be joined in the order of increasing

intermediate result sizes and ordering relations into clusters respectively.

2.9 Inclusion of new joins to query optimizer

In [9] the authors focus on how to include one-sided outer join and full outer join in-

to the conventional optimizer using associative properties, reordering mechanisms,

22

simplifications of outer join into a regular join and finally enumerate the join or-

derings properly to be able to construct a plan tree.

Similarly [7] also talks about fixing the execution order when a ”group by”

operator is present in the join tree and when to evaluate it. It also discusses the

transformation of sub queries by representing the given query in various ways in

relational algebra and introducing additional sub expressions into the algebraic

expression, if necessary, in order to remove sub queries.

In [25], the authors aim at constructing extended eligibility lists to handle outer

join and anti join through reordering using associative and commutative operations.

2.10 Detection of Subgraph isomorphism

Our work is aimed at detecting similar subgraphs of all sizes within a given query

graph. We reviewed the various approaches of finding graph isomorphism before

deciding on our approach.

2.10.1 Top down approach to detect subgraph isomorphism

Identification of similar subgraphs are usually done bottom-up. In the case of

top-down optimization, the given graph is split into two subgraphs using cutset

identification. If we want to find similar subgraphs between two given query graphs

(G1,G2), a cutset can split G into two connected subgraphs G11 and G12. Another

cutset can split G2 into two connected subgraphs G21and G22. If similar subgraphs

are found among the newly obtained subgraphs
∑2

i=1

∑2
j=1Gij, the cutsets have

been chosen correctly to detect inter-query similar subgraphs. The same applies

to intra-query similar subgraph identification. The cutset has to be constructed in

such a way that the connected subgraphs obtained are similar to each other, and

23

this procedure can continue recursively to find similar subgraphs of smaller sizes.

Partitioned Pattern count(PPC) trees ([37]) and divide-and-conquer based split

search algorithm in feature trees ([26]) are examples of similar subtree detection

done in a top-down way. Mining closed frequent common sub graphs and inferring

all other subgraphs from them instead of enumerating all common subgraphs can

be a useful alternative.

This is not applicable to bottom-up DP lattice construction, where if subgraph

reuse is targeted, similar subgraphs should also be identified in a bottom-up man-

ner.

2.10.2 Bottom up approach to detect subgraph isomorphis-

m

[40] adopts a bottom-up way of sub query identification but it aims at identifying

only the largest similar subgraphs within a query graph, where it is not necessary

to exhaustively look for all-sized similar subgraphs. So their algorithm is greedy in

some sense, similar subgraphs are expanded till no more nodes can be added, but

all the small-sized similar subgraphs are discarded. So the motive at every substep

during expansion is to make sure the node being added has many unselected nodes

(meaning nodes that are not participating in any similar subgraphs) adjacent to it

satisfying the similarity requirement. This is because, that gives a scope for the

expanded subgraph to be as large as possible, unlike our approach which searches

for exhaustive collection of similar subgraphs irrespective of their sizes.

2.10.3 Finding maximum common subgraph

There are several works on finding maximum common subgraphs between two given

graphs. Commonality is defined by the specific application (eg., Biology, Chem-

24

istry) depending on the attributes (eg., molecular features) and the accepted value

of error bound between the attribute values. McGregor’s similarity approach ([19])

adopts a back tracking algorithm while adding feasible pairs to enumerate all the

common subgraphs before choosing the maximum sized pair. Durand-Pasari algo-

rithm forms an association graph (in which similar vertex pairs from the original

graph form vertices themselves and similar edge pairs from the original graph form

edges themselves) from the given graph and reduces the maximum common sub-

graph detection problem in the original graph pair to a maximum clique detection

problem in the association graph. Since each vertex in an association graph rep-

resents a pair of compatible vertices and each edge denotes a pair of compatible

edges, the maximum clique in this graph will denote densely connected pairs, i.e,

most compatible vertex pairs which will reflect to maximum common subgraph in

the original graph. [1] proposes sorting of the subgraph pairs obtained on the basis

of similarity scores obtained on the basis of degree of nodes and their neighbors,

node and edge attribute similarity. Only common subgraphs of large sizes with

scores above a threshold are retained and remaining are discarded.

[27] gives a thorough survey of the various approaches towards the detection

of subgraph isomorphism. [34] is also aimed at finding the largest common sub-

graph from a set of graphs. It is a dynamic programming based technique where

subproblem solutions are cached rather than recomputing. But since the original

problem is NP-complete the algorithm provides a solution of polynomial time com-

plexity to find connected common subgraph only when the participating graphs

can be classified as ’almost trees with bounded degree’. This means the graphs

are biconnected components having a number of edges within a constant differ-

ence from the number of vertices. Similarly there are genetic-based, greedy and

randomized approaches to reduce the search space while detecting the maximum

25

common subgraphs. Screening methods introduce a lower bound to define similarity

among graph substructures, thus allowing approximate solutions instead of exact

similarity requirement which is rigorous. [40] also adopts screening by relaxing

”commonality” to ”similarity” which reflects in our approach too.

[4] aims at finding the largest common induced subgraph of two graphs. An

induced subgraph, I of a graph G means that I is a subgraph of G such that all the

edges in G which have both their end vertices in I are present in I. The algorithm

constructs a labelled tree of connected subgraphs common to both the input graphs

and returns the largest common subgraph.

Given a query graph Q and a set of graphs S, [39] finds all graphs in S which

contain subgraphs similar to Q within a specific relaxation ratio. The algorithm

reduces the number of direct structural comparisons of the graphs by introducing

a feature based comparison which will prune a lot of non-matching graphs from

S. A feature-graph matrix is constructed with features as rows and graphs in S as

columns. The number of times a feature appears in a graph (number of embeddings

of a given feature in a given graph)is the entry. The number of embeddings of each

of the features in the query graph is also computed. If the difference of feature

values between the query graph Q and a member in S is within the upper bound

of relaxation, the graph member is further eligible for substructure similarity. Else,

the graph member is pruned and not considered for structural comparison. Thus,

the search space of graphs to be compared from S for a given query graph is

reduced.

[35] attempts to check if for a given graph G, isomorphic subgraphs can be found

in G′. The enumeration algorithm expresses the graphs as adjacency matrices and

tries to find 1:1 correspondence between the matrix of G and a sub-matrix of G′

and in this process, some of the 1’s from the matrix of G′ are removed to reduce

26

the search space comparisons.

2.10.4 Slightly lateral areas using subgraph detection

[2] aims at finding locally maximum dense graph clusters. Vital nodes which par-

ticipate in more than one of these locally dense clusters are the ones which create

overlap among those clusters. The idea of this algorithm is to find such communi-

ties (clusters) which are highly dense and overlapping. This can give us interesting

information about a social network, for example, the communities in which an indi-

vidual may actively participate, or related communities that share a lot of followers

etc..

Image mining using inexact maximal common subgraph of multiple ARGs de-

scribes images as attributed relational graphs(ARGs) and discovers most common

patterns in those images by finding the maximum common subgraph of the ARGs.

The algorithm uses backtrack depth first search algorithm to detect maximum

common subgraph.

From a slightly lateral topic, we studied a work in logic,([10]) where the prob-

lem is to find more than one Boolean formula which can define a subset of rows

in the 0-1 data set, which is termed as re-description mining used in real world to

detect genomes among people that are similar. To find such formulae which are

syntactically different but logically same, the solution is supposed to enumerate

the search space of Boolean formulae. So the algorithm ends up pruning the ex-

ponential search space of Boolean queries using greedy algorithms to prune away

formulae based on Jaccard similarity and p-value which are measures of similari-

ty and interestingness(significance) respectively. It also mines closed itemsets and

sorts them by p-value and retains the best ones.

27

CHAPTER 3

SUB QUERY PLAN REUSE BASED
ALGORITHMS : SRDP AND SRIDP

In this chapter, we describe our proposed approach in detail. In section 3.1, we

present the basic plan generation algorithm and illustrate it by an example. Our

scheme involves two essential steps: Cover set generation and plan construction by

reuse. Sections 3.2 and 3.3 describe the construction of a query graph and the

cover set of similar subgraphs respectively. The similar subqueries identified from

the cover set are exploited for plan reuse in section 3.4. For enhanced memory

efficiency, we try to make both the steps memory sensitive. Section 3.5 holds the

algorithms for improving cover set generation and plan construction. Finally we

present our scheme embedded in IDP algorithm in section 3.6.

3.1 Sub query Plan reuse based Dynamic pro-

gramming (SRDP)

Our method is a modification of traditional Dynamic Programming for Query Op-

timization to make it more memory efficient. Initially, we are going to illustrate

our approach with respect to Dynamic Programming with an example. In the later

28

sections, we will explain how our method works in the case of Iterative Dynamic

Programming. Our approach involves two steps:

• Generation of the cover set of similar subgraphs from the query graph.

• Re-use of query plans for similar subqueries represented by the similar sub-

graphs.

The major traits of this method that differentiate it from the existing works

[40] and [5] are:

1. It doesn’t generate the largest similar subgraphs alone, rather it searches for

all-sized common subgraphs within the query graph to aggressively re-use

plans during the generation of plans at each level in DP.

2. It avoids pruning completely.

Algorithm 2 : Plan generation with subgraph reuse
Require: Query(Selectivity and row error bounds are pre-set)
Ensure: plan in the case of ”explain query”, result if query is executed
1: QueryGraph = makeQueryGraph(Query)
2: CoverSet = buildCoverSet(QueryGraph)
3: for lev=2 to levelsNeeded in the DP lattice do
4: Plans[lev] = newBuildPlanRel(Plans,CoverSet)
5: end for
6: return Plans

As mentioned in Algorithm 2, after constructing the query graph (using make-

QueryGraph()) from the join predicates participating in the query, the cover set

of similar subgraphs is built using buildCoverSet(). This means, from lev=2 to

lev=levelsNeeded, sets of similar subgraphs are identified at each level which are

aggregately termed as ”cover set”. They are passed to the plan generation phase.

So the plan generator looks for possibilities of plan reuse using the cover set. Sup-

pose the plan generator has to construct plans for candidates at level 5 in the DP

29

lattice, it gets plans for all possible candidates from levels 1 to 4 and also a cov-

er set of similar subgraphs. Before constructing a plan for a particular candidate

(subquery), it checks if that candidate’s query graph is present in the similar sub-

graph sets corresponding to level 5. If the candidate subquery is present in a set

Si, the plan generator verifies if any of the other candidates present in Si had their

plans generated. If yes, the plan is re-used and fresh plan generation is avoided.

By reuse, it is meant that conventional method of plan generation is not followed.

But a simpler plan is still constructed exactly similar to the existing plan giving

memory and time savings. This is because the base relations differ from one can-

didate’s plan to another, thus demanding the construction of a new plan. Memory

savings are obtained because, usually for a particular join candidate, multiple plans

are generated and stored before identifying the cheapest. But in the case of plan

reuse, only the cheapest plan is reused. That implies, for the new candidate, only

minimum number of plans are constructed thus saving memory.

If at a particular level, similar subgraphs are no longer there, plan generation

is done the usual DP way.

Generation of cover set and plan reuse are elaborated in the following sections.

 1

2

3
4

5

1’

2’

3’ 4’

5’

Figure 3.1: A Sample query Graph with similar subgraphs.

30

1!>2

1’!>2’

1!>5

1’!>5’

2!>3

2’!>3’

4!>5

4’!>5’

1!>2!>3

1’!>2’!>3’

1!>2!>3

1’!>2’!>3’

3!>4!>5

3’!>4’!>5’

1!>2!>3!>4

1’!>2’!>3’!>4’

1!>2!>4!>5

1’!>2’!>4’!>5’

2!>3!>4!>5

2’!>3’!>4’!>5’

SETS for LEV!2

SETS for LEV!3

SETS for LEV!4

………

………………………….

………………………….

SETS for LEV!5

1!>2!>3!>4!>5

1’!>2’!>3’!>4’!>5’

(1,2) similar to (1’,2’)

Figure 3.2: CoverSet of subgraphs for the Sample QueryGraph.

For the given Figure 3.1, a query graph is shown with two pentagons being

identified as largest similar subgraphs.

Let us examine how two of the most relevant works construct plans for this

query graph.

1. According to [40], these two pentagons are identified and the query plan which

is generated for one pentagon is immediately used for the other. The plans

are immediately executed. The two pentagons are replaced by two result

relations and the new query graph would be two nodes connected to each

other. Further optimization is done on this new query graph which has a

single edge and two vertices using some greedy approach. This means the

algorithm has somehow fixed that 1,2,3,4,5 should be joined first and same

31

about 1’,2’,3’,4’,5’ and executed those plans.

2. In the case of pruning algorithm according to [5], hubs will be identified.

In this case, hubs are 2’ and 5. It will then prune away a few edges which

it thinks are costlier in terms of table sizes and selectivity and continues

optimization on the new pruned query graph.

But according to our algorithm, an optimal plan has to be generated with lesser

cost without pruning and not fixing join order. From structural information of the

graph like table sizes and index information, we find that 1 is similar to 1’, 2 is

similar to 2’ ,..., 5 is similar to 5’ such that the table size differences are within

acceptable error bounds. These pairs are referred to as seed lists. The members

of a seed list are grown to find similar subgraphs of size 2 (or 2 vertices). Similar

subgraphs should have their table size differences and also selectivity differences

between corresponding edges lying within acceptable error bounds. For example

(1,2) and (1’,2’) are 2-sized similar subgraphs because selectivities of (1,2) and

(1’,2’) differ within the selectivity error bound. Such similar subgraphs are put

into the same set. (1,5) and(1’,5’) are similar to each other but are unrelated to

(1,2) or (1’,2’). So they go into a new similar subgraph set at the same level.

(Please refer Figure 3.2).

These similar subgraphs can lead to reuse of plans and thus give savings. But

if largest sub query graphs alone are re-used as in [40], the savings are mild in the

case of Dynamic Programming. Thus cover set of similar subgraphs are generated

as shown in Figure 3.2. It should be noted that each similar subgraph set in this

example consists only of 2 entries. This is because in Figure 3.1, we just have 2

subgraphs. If the number of similar subgraphs are “k”, we have to make “k” entries

into each set.

32

At level 2, if the plan generator wants to create a plan for (1’,2’) it will re-use

the plan generated for (1,2), of course by replacing the base relations with (1’,2’).

Subgraph sets from level 2 are grown to generate subgraph sets for level 3. At

level 3, (1,2,3)’s plan is reused for (1’,2’,3’). For(1,2,3) DP plan generator would

have originally constructed many plans with various join orders like (2,3) joined first

followed by 1, (1,2) joined first followed by 3 and so on. (Please refer Figure 3.3). All

these plans would have incurred memory overhead and optimization time overhead.

The same expenditure would have been done for (1’,2’,3’) too which is avoided by

our algorithm. Suppose (2,3) followed by 1 is the cheapest plan out of all the plans

following various join orders for (1,2,3) the same is reused for (1’,2’,3’).

Suppose DP has to build a plan for (1’,2’,3’), it will generate all possible join

orders and build all possible plans and finally sets the cheapest join order and stores

that plan as the cheapest plan. In further iterations of DP at higher levels, this

cheapest plan is used whenever the need to use the plan for (1’,2’,3’) arises. Because

of plan reuse, we are actually avoiding all those steps and directly generating the

plan with ideal join order for (1’,2’,3’).

As mentioned earlier, reuse means reconstruction of plan in the same way. Sup-

pose if merge join is used at root node for Plan, the same join method will be used

for Plan′ also. Likewise, if a leaf node in Plan has an index plan constructed on its

base table, an index plan should be constructed for the corresponding leaf node in

Plan′ provided an index has been built for this relation. Hence it is vital to check

if the relations are similar not only with respect to table sizes but also indexing

information. Plan reuse is clearly illustrated in Figure 3.3

Similar subgraph growth and plan reuses are done at level 4 and 5 too. As

there are no more subgraph sets from level 6 to 10, pure Dynamic Programming is

used according to the basic algorithm. But nowhere in this entire procedure have

33

we prematurely executed a copied plan unlike [40]. The plan copying is done only

because the sub queries are similar, but the copied plan is not executed immediately.

Finally, choosing the optimal plan at a particular level and execution is done by

DP in its usual way. Likewise, we are not getting rid of certain join candidates to

speed up our process unlike [5]. Thus without fixing join order or pruning, savings

are brought up.

Create Merge Join

(Nested

loop Join)

1

2 3

1’

2’ 3’

1

2 3 1 2

23

3 1

Cheapest Plan selected
New Plan after copy

List of plans for Relations (1,2,3) from which Cheapest Plan is Selected to reuse for (1’,2’,3’)

(Scan Plan) (Index Plan)

Create Scan Plan

Create Scan Plan Create Index Plan

……………

(Merge Join)

(Scan Plan)

Create Nested loop Join

Figure 3.3: Cheapest Plan reuse for Plan’.

3.2 Building query graph

A query graph is a set of vertices ”V” and edges ”E” such that each vertex denotes

a relation ”R” present in the query and every edge incident on it represents the

34

predicate in which the vertex participates. A cover set is defined as the set of all

possible subsets of the given set. Similarly the cover set of similar subgraphs should

consist of all possible sets of similar subgraphs of various sizes in the given query

graph.

Algorithm 3 : makeQueryGraph
Require: Query
Ensure: QueryGraph
1: initialize adjacencyList = ∅
2: predSet = extractJoinPredicates(Query)
3: while predSet has more predicates do
4: predicate = popFromPredSet(predSet)
5: makeEntryAdjacencyList(left(predicate),right(predicate))
6: end while
7: QueryGraph = adjacencyList
8: return QueryGraph

Algorithm 3 explains how join predicates are extracted from the query and

corresponding edges are added to the query graph. Entry of the right table’s

relation id is appended to the left table’s row in the adjacency list (representing

query graph) and vice versa. Each node in the “QueryGraph’s” adjacency list

is a structure holding selectivity and relation size information in addition to the

relationId. makeEntryAdjacencyList() makes these entries.

3.3 Generating cover set of similar subgraphs

Given a query Q̂, with a set of relations R={R1, . . . , Rn} and a set of predicates

P={p1, . . . , pk}, let ”Q” be the query graph for Q̂ . Let V={v1, . . . , vn} be the set of

vertices and E={e1, . . . , er} be the set of edges in Q with an edge ei corresponding

to a predicate pj where pjϵP . Each vertex in Q represents a table instance and each

edge corresponds to a set of predicates, since two table instances can participate in

multiple join predicates.

35

A pair of common subgraphs {S, S ′} is defined as a pair of isomorphic subgraphs

having the same graph structure and features, i.e, each vertex in S should have a

corresponding vertex in S’ with same table size and each edge in S should have

a corresponding edge in S’ with same selectivity. But such isomorphic graphs are

difficult to find in all cases. Thus, if we can relax row difference and selectivity

difference, similar subgraphs can be found in all queries.

A pair of similar subgraphs {S, S ′} is defined as a pair of subgraphs having the

same graph structure and similar features, i.e, each vertex, v, in S should have

a corresponding vertex, v’, in S’ such that differences between table sizes and

selectivities of the containing edges lie within the corresponding error bounds.

The idea is to generate sets of similar subgraphs and not just pairs, so that the

query plan generated for one representative subquery corresponding to the sub-

graph can be re-used by all other subqueries indicated by the remaining subgraphs

in the similar set. Unlike [40], we do not want to generate the largest similar sub-

graphs. Rather we want to generate all sized-similar subgraphs. This is because,

if we want to push DP to higher levels, at each level of plan generation, we need

savings. This is possible if there are sets of similar subgraphs at each level so that

plan re-use can be done at each step progressively.

So the cover set of subgraphs can be expressed as
∑n

lev=2 Setslev where Setslev =∑total
i=1 Subgraphseti. Here ”total” indicates the total number of similar subgraph

sets at level ”lev”. Subgraphseti indicates the ith similar subgraph set. The sum-

mation or total collection of all such subgraph sets at level ”lev” is represented by

Setslev. The total collection of all such subgraph sets over all levels gives the cover

set of subgraphs. Generation of cover set involves two stages:

1. Formation and growth of seed list to form lev2 sized subgraph sets.

2. Growth of “lev” sized similar subgraph sets to obtain “lev+1” sized sets.

36

Stage 2 is run iteratively till we can no longer find similar subgraph sets.

Algorithm 4 : buildCoverSet
Require: QueryGraph
Require: relErrorBound
Require: selErrorBound
Ensure: coverSet
1: initialize coverSet = ∅
2: seedList = makeSeedList(QueryGraph)
3: lev=2
4: Sets2 = growSeedList(seedList)
5: while Setslev can be extended to get new subgraph sets do
6: Setslev+1 = growSubGraph(Setslev)
7: lev++
8: end while
9: return

∑lev
i=2 Setsi

3.3.1 Construction of seed List

Seed list construction involves partitioning all the base relations participating in

the query into various groups based upon their table size differences and indexing

information. If

|relSize(Ri)−relSize(Rj)|
max(relSize(Ri),relSize(Rj))

< relErrorBound

where relErrorBound is the acceptable fractional difference in table sizes, and if

Ri and Rj are similar with respect to indexes, Ri and Rj fall into the same group

in the seed list. If Ri is indexed, Rj also should have an index and vice-versa,

else both of them should not have any indexes. But if both are indexed, it is not

necessary that both the relations should have the same index, they are allowed to

have different kind of indexes built upon them. Seed list for the query graph in

Figure 3.1 is shown below in Table 3.1.

As per algorithm 5, each row in the seedList corresponds to a group of similar

seeds. So for each relation Ri, a flag selected[i] is initialized to 0. The algorithm

checks if Ri can match with any of the existing groups (or rows) in the seedList.

37

Table 3.1: SeedList
GroupId Seeds

0 1,1’
1 2, 2’
2 3, 3’
3 4, 4’
4 5, 5’

1->2

3->4

6->8

……

31->33

5->7

10->12

18->20

………

44->45

32->35

42->45

Figure 3.4: Sets of similar subgraphs for level 2.

If there is a match, Ri is appended to the row and its flag is set to 1. If there are

no matches, upon looking at the flag value of 0, a new row (group) is added to the

seedList with Ri as its first member.

3.3.2 Growth of seed list and subgraphs

Growing the seed list implies the formation of sets of similar subgraphs for level

2. Each set holds graph entries that are similar to each other, and each graph is

represented as a linked list of relation-id s of base tables.

An example list of level 2 similar subgraph sets can be seen in Figure 3.4.

Each set in Figure 3.4 is shown to contain many graphs. Internally it is not

just a set of graphs, but a set of structures with each structure holding a graph.

The structure holds additional information like the bitmapset of relation id’s in the

graph and also a join-relation holding a pointer to the set of result plans constructed

for that graph. The bitmapset facilitates comparison of graphs thereby avoiding

scanning the graphs to save processing time. The join-relation is mainly used in

38

Algorithm 5 : makeSeedList
Require: QueryGraph
Require: relErrorBound
Ensure: seedList
1: initialize seedList = ∅, numGroups = 0
2: numOfRelations = numOfRows(QueryGraph)
3: for i = 0 To numOfRelations do
4: initialize a flag array selected[i] = 0
5: for groupId = 0 To numGroups do
6: compareSeed = getF irstSeed(seedList[groupId])
7: get relSize(Ri) from QueryGraph
8: get relSize(compareSeed) from QueryGraph
9: Rj = compareSeed

10: if
|relSize(Ri)−relSize(Rj)|

max(relSize(Ri),relSize(Rj))
< relErrorBound then

11: if bothIndexed(Ri, Rj) Or bothNotIndexed(Ri, Rj) then
12: append Ri to seedList[groupId]
13: selected[i] = 1
14: break
15: end if
16: end if
17: end for
18: if selected[i] == 0 then
19: numGroups++
20: FirstSeed(seedList[groupId]) = Ri

21: end if
22: end for
23: return seedList

plan copying and plan reuse which will be described in the later sections.

Just like growSeedList() forms sets of subgraphs for level 2 from a set of seeds,

growSubGraph() grows sets of subgraphs at an arbitrary level k to form level (k+1)

sets of subgraphs. Both of them adopt the same style of algorithms. Growth of list

and growth of sets of similar subgraphs are illustrated in Figure 3.5.

Given a seed list and a query graph, growSeedList explores possibilities of

forming level 2 sets of subgraphs from each seed belonging to every group present

in the seed list.

To grow an arbitrary seed Seedi, we need to fetch the neighbours of Seedi from

the query graph. If neighbours(Seedi) denotes the set of neighbours, each entry

39

Growing a seed List Growing sets of similar subgraphs

..…………

1!>2

1’!>2’

3’!>5’

31!>33

8’!10’

9!>14

1 2 n

Sets2

1!>2!>……k

1’!>2’!>….k’

3’!>5’!>….k’’

31!>33!>………k

8’!10’!>………..k’

9!>14!>…………k’’

..………

2!sized graph

1!>2!>……k!>k+1

1’!>2’!>….k’!>(k+1)’

3’!>5’!>….k’’!>(k+1)’’

..…

31!>33!>……k!>k+1

8’!>10’!>….k!>(k+1)’

9’!>14’!>….k’!>(k+1)’’

Seeds Setsk

K+1!sized graph sets Setsk+1

k!sized graph sets

..…

Figure 3.5: Growth of seeds versus growth of subgraphs.

in this list has to be extracted and paired with Seedi to form a 2-sized graph or

a 2-vertex graph. If we can find other 2-vertex graphs similar to this graph, all of

them together can form a similar subgraph set.

Let (Seedi, Reli) be the candidate graph for which similar subgraphs have to

be found. There are two ways to accomplish this:

• Check other neighbours of Seedi barring Reli. Combine each of them with

Seedi to form a new subgraph and verify its similarity with the candidate

graph.

• Grow another seed, Seedj from the same group as Seedi. Compare the grown

graph with candidate graph for similarity.

The idea behind this method of similar subgraph identification is that when we

use the 1st way, we are covering all possible subgraphs that contain the same seed.

40

When we use the 2nd way, we are covering all possible subgraphs that contain the

other seeds. Other seeds are feature wise (table size is a feature) similar to the

candidate seed. So we are covering all possible ways in which similar subgraphs

can be identified since a subgraph not containing the same seed or a similar seed

can never be similar to the candidate graph. This signifies the importance of seed

list construction.

This method can be illustrated with an example shown in Figure 3.6. Algo-

rithm 6 explains the above steps in a detailed manner. Lines 4 to 9 explain the

generation of a candidate graph using the neighbour list of the seed. Lines 10 to 21

explain the generation of similar subgraphs using the same seed and its remaining

neighbours. Lines 22 to 27 explain the generation of similar subgraphs from other

seeds in the same seed group. The algorithm also explains how to avoid repeti-

tion of sets. The first candidate graph in the set has to be thoroughly checked

for duplication in all the existing sets of similar subgraphs at level 2 (in line 7).

The remaining graph entries should do a duplication check only in the last (or the

latest) set before getting appended to it (lines 13 and 26). This is valid because if

the top entry of the set is new, the remaining similar candidates are bound to be

fresh as well.

Two edges are similar if the participating nodes are similar with respect to index

presence and have their table sizes differing within relErrorBound and selectivity

difference between the predicates is within selErrorBound i.e,

|sel(Ri)−sel(Rj)|
max(sel(Ri),sel(Rj))

< selErrorBound.

Growth of similar subgraph sets at a particular level k to produce level (k+1)

sets also uses a similar algorithm. The only difference is that a list of level k sets

are being grown instead of seeds. In the case of growSeedList, we have a seed list

with each row corresponding to a seed group. But in this scenario, we have a list

41

of sets with each set corresponding to a similar subgraph group of k-sized graphs.

A seed group is also a similar subgraph group but of graph size 1.

To grow a seed, we fetch all its neighbours to construct level 2 sized subgraphs.

But to grow a subgraph, we need to fetch neighbours of all the vertices (base

relations) participating in the subgraph. This is because subgraph growth can

happen via any of the constituent vertices. Figure 3.7 illustrates the difference

between growing a seed and growth of a graph. To grow a seed Si, its neighbour Ni

is fetched from the query graph (adjacency list). Whereas, to grow a k-sized graph

consisting of nodes Si to Sk, neighbours of each node, namely, Ni to Nk arrive from

the query graph. So in this case, there are many more candidate subgraphs for

level(k+1) formed from the k-sized subgraph and any of the neighbours.

Similar subgraphs for a candidate subgraph of level (k+1) are identified as

follows:

• Try growing the level k subgraph with any other neighbour of any of the

constituent nodes, S1 to Sk. Compare the new (k+1)-sized subgraph with

the candidate subgraph.

• Grow any other level k subgraph belonging to the same similar subgraph set

as the k-sized subgraph from which the candidate subgraph of size (k+1) has

been grown.

Algorithm for subgraph growth is being listed in Algorithm 7 and it is almost

similar to growSeedList() except that the input is Setsk instead of seedList and

the output is Setsk+1 instead of Sets2. Also in line 4, growSeedList extracts

neighbours of the seed. Whereas, in this case, we need to extract neighbours of all

the vertices participating in the subgraph to be grown.

42

3.4 Plan generation using similar sub queries

The basic algorithm has already been listed in Section 3.1 as Algorithm 2. Lines 1

and 2 of that algorithm have been described till now in sections 3.2 and 3.3. The

crux of our approach is using the cover set of similar subgraphs for plan generation

which is stated in lines 3 to 5. As mentioned earlier in Section 3.3.2 using Figure 3.4,

each set of similar subgraphs holds graphs encapsulated in well-defined structures.

By accessing those structures, we can retrieve not only the base relation ids of

tables participating in the graph but also pointers to the subquery plans. A join-

relation holds the pointers initially pointing to NULL as long as the plans for that

subgraph haven’t been generated. But once the plans are generated, pointer entries

are made. Suppose there are “n” similar subgraphs S1, S2,..., Sn in a set, and one

of them, say Si had its set of plans generated through the traditional Dynamic

Programming approach. It is not just one plan but a set of plans, because each

plan follows a different join order of the constituent relations and all these plans are

held in memory. When we need to generate a plan for any other member among

the remaining (n-1) subgraphs in the set, we can just access the cheapest among

the set of plans for Si and reuse it for the new subgraph. Pointer to the plan for

the new subgraph is stored in its structure.

In Figure 3.8, a new plan has to be constructed for the join relation set (5,6,..k’).

So our algorithm scans all the subgraph sets at level “i” (as mentioned in Figure 3.5

in Section 3.3, the collection of sets at level “i” is termed Setsi). If it does not

find the entry of (5,6,..k’) in any of the sets, it will build the set of plans for the

relations using DP. But in this case the entry is found in one of the sets. Then

we check if any other subgraphs in that set had their plans built already. If not,

we have to build the set of plans for (5,6,..k’) using DP and subsequently make an

entry of the pointer to the plan list in the set. But in this case, the relation set is

43

in the same similar subgraph set as (1,2,..k). So from the list of plans generated

for (1,2,..k), the cheapest plan is extracted and reused for construction of a new

plan for (5,6,..k’). As against “i” plans constructed for (1,2,..k) only one plan is

constructed for (5,6,..k’) bringing memory and computation savings. In Chapter

4, we are going to show that the cost incurred in scanning the sets of subgraphs

combined with the cost of plan reuse as proposed by our algorithm is very less

compared to the cost incurred in fresh construction of the plan set done by DP.

Algorithm 8 explains the plan reuse. Reuse of a plan happens from Plan to

newPlan using a recursive function. The function takes the root node of Plan

and the subgraphs corresponding to Plan and newPlan as inputs and gives out

the root node of the newPlan as output. While building a plan node at each level

(be it root or intermediate node), the function checks the type of join used for the

original plan at that level and reuses the same kind of join. The left and right

child nodes for the current node of newPlan are built by recursive calls of this

function on left and right child nodes of the current node from Plan . For base

relations, the algorithm checks the kind of scan plan or index plan built on Plan’s

base relations and reuses the same type of plan for newPlan’s base relations. To

identify the corresponding base relation in newPlan for a base relation from Plan,

the subgraphs Subgraph and Subgraph′ are used for lookup. Suppose an index scan

is built on a base relation Ra, the recursive function will identify the corresponding

base relation, R′
a from the subgraph for newPlan and then build an index scan on

R′
a.

Example for Plan re-use has already been illustrated in Figure 3.3.

44

3.5 Memory efficient algorithms

Algorithm 2 assumes that the entire cover set can fit into the main memory before

passing it over to plan generation. But in complex queries, as the number of

relations and predicates increases, (especially when the number of relations crosses

30 and the query graph is dense), holding the entire cover set in memory is not

possible. Even the generation of the cover set takes longer time. So a more memory-

efficient approach has been adopted.

3.5.1 Improving Cover set generation

To save time and memory spent on the generation of cover set, growSubgraph()

chooses to selectively grow sets containing large number of subgraphs. Essentially,

the more subgraph sets we have, the higher the query plan reuse is among the

similar subgraphs. But in the case of complete (or very dense) query graphs of large

sizes, the number of relations is high and the number of edges between the vertices

in a subgraph is as high or close to |numOfV ertices|2 where |numOfV ertices|

indicates the number of vertices in a subgraph. In this scenario, the number of

similar subgraph sets will be extremely huge. Out of them, there will be some sets

having many subgraph entries and few other sets may have less number of entries.

In Figure 3.9, there are 4 largest common subgraphs in the query graph. Each

of them is a dense subgraph with an arbitrary number of vertices assumed to be

high. Ideally if the relErrorBound is 0 and selErrorBound is 0, which means that

the relation sizes should be exactly similar and selectivities of predicates must be

same between similar subgraphs, we can find only four entries in each set holding

similar subgraphs. But if the selectivity and relation size error bounds are relaxed

slightly, more similar subgraphs can be found and this eventually leads to more

45

entries of subgraphs in each set. This explains the time taken in generating these

sets on a very dense graph.

There may be sets which hold fewer subgraphs. If we do not generate such sets,

we lose the plan reuse opportunity among the subqueries corresponding to those

subgraphs. But it is worthwhile given the amount of time we save by not generating

them, and the price we pay is that, in plan generation phase we cannot reuse plans

and we need to freshly generate plans for candidates belonging to those pruned

subgraph sets. This procedure will not affect the optimality of the plan because

pruning is done during common subgraph generation but not to the DP candidates

themselves. This pruning (or avoiding generation) of certain similar subgraph sets

is done by fixing a parameter allowedStrength. If the number of subgraphs within

a set is less than allowedStrength, that set is not grown. It should be noted that

for sparse query graphs or averagely dense query graphs, this pruning is not even

required.

Fixing allowedStrength happens in the following manner. Among all the sets,

the set with the largest number of subgraphs is examined and this count is stored

in largestSetStrength.

allowedStrength = largestSetStrength
j

. For different values of ”j”, allowedStrength

is set to different values. So, the prune factor can be defined as γ = 1
j
. When

γ=1, there is absolute pruning and no growth of sets at that level. When γ=0.5,

the criterion for a subgraph set to grow is that it should contain at least as many

similar subgraphs as half of the strength of the largest subgraph set at that level.

For example in Figure 3.10, the set with strength of 60 is identified to be the largest

and prune factor=0.25. So all sets which have at least as much as γ ∗ 60 = 15 are

grown, remaining sets are pruned.

46

3.5.2 Improving Plan generation

In section 3.5.1, we discussed how to improve memory efficiency of cover set gen-

eration by making the cover set smaller and its generation faster. But it is still

required to hold the entire cover set in main memory. This becomes a bottleneck to

plan generation, because while building the subquery plans, they start competing

with the cover set for memory. But cover set is essential for looking up to similar

subgraphs and cannot be deleted. So we try to enhance the available space for

subquery plans by avoiding the construction of cover set at one go. Rather we

interleave cover set generation and plan generation as shown in Algorithm 9. First

level 2 similar subgraphs sets are built and stored in memory by growing the seed

list of similar base relations. Immediately for level 2 in the DP lattice, subquery

plans are constructed. Then level 3 similar subgraph sets are generated from level

2 similar subgraph sets using growSelectedSubGraph and level 2 subgraph sets are

deleted as they are no longer required. Because now we need to construct plans for

level 3, and for that to happen, we need to look up to subgraph sets corresponding

to level 3 only.

Growth of subgraphs happens only on need, and the subgraphs are deleted when

they are no longer required.

If we want to generate plans at an arbitrary level “lev”, we need to construct

similar subgraph sets for level “lev” from the subgraph sets corresponding to level

“lev − 1” and immediately delete the “lev − 1” subgraph sets. This means, at any

point of time, main memory has to hold subgraph sets only from at least one level

and not more than two levels. Refer lines 7 to 9 in Algorithm 9 to understand

dynamic subgraph construction and deletion on the fly. Line 11 portrays the con-

struction of subquery plans at a particular level by looking up to subgraph sets

corresponding to that level.

47

3.6 Embedding our scheme in Iterative Dynamic

Programming (SRIDP)

We observed that with our scheme in Dynamic Programming, the memory savings

come from reduction of the number of various alternatives arising from the different

join orders of a combination of relations. A set of m relations typically needs O(m!)

join orders. These are logical plans which specify a relation x should be joined

with a relation y before joining the result node to z. But after applying various

join methods, the number of possible physical plans shoots up. For instance, we

have a candidate relation set {1,2,3,4} for which a query plan needs to be built.

The optimizer generates various plans for different join orders using different join

methods before selecting the cheapest plan. Even after setting the cheapest plan

with an ideal join order, PostgreSQL’s version of DP still holds the plans for the

remaining join orders in memory. If our scheme identifies that relation set {5,6,7,8}

is similar to {1,2,3,4}, we build a plan for 5,6,7,8 similar to the cheapest plan

of {1,2,3,4} and thereby avoid generating plans for the remaining join orders of

{5,6,7,8}. This gives memory savings in our scheme. But we should note that no

particular combination of relations is being denied plan construction by our scheme.

If the number of join candidates at a level “r” is nCr, our scheme still constructs

plans for all the nCr candidates because we do not trade savings with optimality.

Because of not pruning the number of join candidates despite plan reuse, there is

a chance that for certain queries, our scheme can push the Dynamic Programming

method of query optimization to a few more levels in the DP lattice and stop. For

example given a complex query with 30 relations, DP may run out of memory at

level 15 in the DP lattice. Our scheme may run out of memory at level 25, still the

savings may not count since the query could not be run to completion even with

48

our scheme.

So we need a platform to demonstrate our savings clearly. Iterative Dynamic

programming (IDP) is one such algorithm which can make use of our scheme ef-

fectively. Theoretically, for a query of a typical complexity, IDP can always find

a “k” which can enable it to run to completion and return a query plan. In the

above mentioned example of a complex query with 30 relations, if we set “k” to

any value higher than 15, IDP cannot run to completion. Because if k=15, IDP

needs to use traditional DP method of query optimization from level 2 to level 14 in

the DP lattice. Only at level 15, it can greedily choose, typically out of 30C15 join

candidates, only one join candidate whose plan cost is cheaper than the remaining

30C15 − 1 join candidates (and append the plan to 1-way plans at lattice level 1)

before resuming 2nd round of DP on levels 16 to 30 in the DP lattice. (It should be

understood that lattice levels 16 to 30 are portrayed as levels 1 to 15 in iteration

number 2 of IDP.) So if “k” is set to a value higher than 15, IDP is forced to run

DP for levels 2 to k-1 which will run out of memory at level 15. Hence, IDP as

such cannot run for a “k” higher than 15.

Whereas, with our scheme embedded in IDP, the maximum possible value of “k”

can be stretched to 25. That means for levels 2 to 24, sub query reuse based DP can

run without memory issues and at level 25, greedy method of plan selection can be

applied. The advantage is that, because of extending “k”, greedy selection is being

postponed to a latter point in the DP lattice and a better plan is obtained. The

plan quality of subquery reuse based IDP(k=25) will be higher than IDP(k=15).

This will be shown in the experiments section.

The bottom line of this approach is that any amount of memory savings achieved

in the “push” created in DP lattice can be transformed to real benefits by integrat-

ing our scheme with IDP.

49

The detailed algorithm of our IDP based approach is listed in Algorithm 10

50

Vi/Vj {Query Graph as Adjacency list} grpId/Seeds

1 2 5

2 1 3

.

.

.

.

.

. 1’ 2’ 5’

0 1 , 1’

1

2

3

4

2, 2’

3, 3’

4, 4’

5, 5’

Seed List

Steps to grow seed “1” in Grp-0:

A) Check neighbours of relation 1

B) Form candidate (1����2)

C) Check other neighbours of 1 to find subgraphs similar to (1->2)

D) Is (1->5) similar to (1->2) ? IF yes, append to set, No proceed to step E

1->2

1’->2’

E) Check other seeds in Grp-0, next seed is 1’

F) Check neighbours of 1’

G) Is (1’->2’) similar to (1->2) ? IF yes, append

to set, No proceed to step H

H) Is (1’->5’) similar to (1->2) ? IF yes, append to

set, else proceed to grow next seed in seed list

YES

level-2-Set

Figure 3.6: Example to illustrate growth of a seed in the seed list.

51

Algorithm 6 : growSeedList
Require: seedList
Require: QueryGraph
Require: rowErrorBound
Require: selErrorBound
Ensure: Sets2
1: initialize Sets2 = ∅, latestSet = ∅
2: for each row in seedList indicated by seedGroup do
3: for each seed in the group seedGroup do
4: neighbours(seed)=ExtractNeighbours(QueryGraph,seed)
5: for each neighbour in neighbours(seed) do
6: candidateGraph = makeNewGraph(seed, neighbour)
7: if candidateGraph already exists in any of the sets in Sets2 then
8: continue
9: end if
10: while there are more neighbours in neighbours(seed) do
11: extract another neighbour′ from neighbours(seed)
12: candidateGraph′ = makeNewGraph(seed, neighbour′)
13: if similar(candidateGraph, candidateGraph′) within row and selectivity

error bounds and candidateGraph′ not a duplicate then
14: if FirstMember(latestSet)!=candidateGraph then
15: latestSet = makeSet(candidateGraph,candidategraph′)
16: else
17: append candidateGraph′ to latestSet
18: end if
19: append latestSet to Sets2
20: end if
21: end while
22: while there are more seeds in seedGroup do
23: extract another seed′ from seedGroup
24: grow seed′ using queryGraph to form CandidateGraph′

25: candidateGraph′ = makeNewGraph(seed′, neighbour(seed′))
26: add candidateGraph′ to latestSet if it is similar to candidateGraph and

not a duplicate entry
27: end while
28: end for
29: end for
30: end for
31: return Sets2

52

Adjacency

List

Arrives from adjacency

list as a neighbour

Si Ni

..…………

k!sized Subgraph to be grown

S1 S2 Sk

N1

N2 N3

Neighbours arriving

from adjacency list

Growth of a seed versus growth of a graph

Figure 3.7: Growth of a seed versus growth of a subgraph.

1 >2 >….. >k!!!!PLANS!

5 >6 >…. >k’!!!!PLANS’!

!

PLAN1 PLAN2! ……… PLANi

NEW!PLAN

REUSE!FOR!NEW!PLAN!

PLAN2!IS!CHEAPEST!

Figure 3.8: Plan reuse within the same similar subgraph set.

53

Algorithm 7 : growSubGraph
Require: Setsk
Require: QueryGraph
Require: rowErrorBound
Require: selErrorBound
Ensure: Setsk+1

1: initialize Setsk+1 = ∅, latestSet = ∅
2: for each set in Setsk indicated by setGroup do
3: for each subGraph in the group setGroup do
4: neighbours(subGraph)=ExtractNeighbours(QueryGraph,∑k

i=1 vertexi(subGraph))
5: for each neighbour in neighbours(subGraph) do
6: candidateGraph = makeNewGraph(subGraph, neighbour)
7: if candidateGraph already exists in any of the sets in Setsk+1 then
8: continue
9: end if
10: while there are more neighbours in neighbours(subGraph) do
11: extract another neighbour′ from neighbours(subGraph)
12: candidateGraph′ = makeNewGraph(subGraph, neighbour′)
13: if similar(candidateGraph, candidateGraph′) within row and selectivity

error bounds then
14: if FirstMember(latestSet)!=candidateGraph then
15: latestSet = makeSet(candidateGraph,candidategraph′)
16: else
17: append candidateGraph′ to latestSet
18: end if
19: append latestSet to Setsk+1

20: end if
21: end while
22: while there are more subgraphs in setGroup do
23: extract another subGraph′ from setGroup
24: grow subGraph′ using queryGraph to form CandidateGraph′

25: candidateGraph′ = makeNewGraph(subGraph′, neighbour(subGraph′))
26: add candidateGraph′ to latestSet if it is similar to candidateGraph and

not a duplicate entry
27: end while
28: end for
29: end for
30: end for
31: return Setsk+1

54

Algorithm 8 : Recursive function for Plan reuse

Require: node: root node of Plan, Subgraph, Subgraph′

Ensure: newNode: root node of newPlan
1: if node is a joinPlanNode then
2: joinType = joinType(node)
3: leftChild = PlanReuse(leftChild(node), Subgraph, Subgraph′)
4: rightChild = PlanReuse(rightChild(node), Subgraph, Subgraph′)
5: newNode = buildJoinPlan(joinType, leftChild, rightChild)
6: else
7: if node is a ScanPlan then
8: oldBaseRel = BaseRel(node)
9: newBaseRel = FindBaseRel(Subgraph, Subgraph′, oldBaseRel)
10: newNode = buildScanPlan(newBaseRel)
11: end if
12: if node is an IndexPlan then
13: oldBaseRel = BaseRel(node)
14: newBaseRel = FindBaseRel(Subgraph, Subgraph′, oldBaseRel)
15: newNode = buildIndexPlan(newBaseRel)
16: end if
17: end if
18: return newNode

Algorithm 9 : Memory efficient Plan generation with subgraph reuse
Require: Query(Selectivity and row error bounds are pre-set)
Require: pruneFactor
Ensure: plan in the case of ”explain query”, result if query is executed
1: QueryGraph = makeQueryGraph(Query)
2: seedList = makeSeedList(QueryGraph)
3: lev=2
4: Sets2 = growSeedList(seedList)
5: Plans[2] = newBuildPlanRel(Plans,Sets2)
6: for lev=3 to levelsNeeded do
7: if Setslev−1 can be extended to get new subgraph sets then
8: Setslev = growSelectedSubGraph(Setslev−1, pruneFactor)
9: delete(Setslev−1)
10: end if
11: Plans[lev] = newBuildPlanRel(Plans,Setslev)
12: end for
13: return Plans

55

|!
|!
|!
|!
|!
|!
|

|
|
|
|
|
|
|

Setsi! R14 >R19 >… >R1m!

R24 >R29 >… >R2m!

R34 >R39 >… >R3m!

R44 >R49 >… >R4m

R11 R12

R13

R14

R1k

R21 R22

R23

R24

R2k

R31
R32

R33

R34

R3k

R41 R42

R43

R44

R4k

relErrorBound=0

selErrorBound=0

Setsi!

R14 >R19 >… >R1m

R12 >R16 >… >R1l!

!

R24 >R29 >… >R2m!

R22 >R26 >… >R2l!

!

R34 >R39 >… >R3m!

R32 >R36 >… >R3l!

!

R44 >R49 >… >R4m!

R42 >R46 >… >R4l!

!

relErrorBound=10%

=0.1

selErrorBound=10%

=0.1

R13 >R18 >… >R1n!

R23 >R28 >… >R2n!

R33 >R38 >… >R3n!

R43 >R48 >… >R4n!

………………

…………………

R13 >R18>… >R1n!

R11 >R14 >… >R1c!

!

R23 >R28 >… >R2n!

R21 >R24 >… >R2c!

!

R34 >R39 >… >R3m!

R31 >R34 >… >R3c!

!

R44 >R49 >… >R4m!

R41 >R44 >… >R4c!

!

………………

…………………

………………… ……………….

……………….. ………………..!

……………………!

……………………

Figure 3.9: Increase in population of a subgraph set with error bound relaxation.

56

Strength=10

……………………

Strength=20

Growth Factor= ! = 0.25

Setsi

Seti1 Seti2 Setik

Strength=60

Maximum strength= 60

Grow only if strength > = (!*Maximum strength)

GROW GROW DON’T GROW

Figure 3.10: Growth of selected subgraph sets.

57

Algorithm 10 : Memory efficient Sub query plan reuse based IDP :
SRIDP
Require: Query
Require: k
Ensure: queryplan
1: numRels = numOfRels(Query)
2: numOfIterations = numRels/k
3: QueryGraph = makeQueryGraph(Query)
4: seedList = makeSeedList(QueryGraph)
5: for iteration = 0 to numOfIterations− 1 do
6: for lev = iteration1 to k do
7: if lev=2 then
8: Sets2 = growSeedList(seedList)
9: Plans[2] = newBuildPlanRel(Plans,Sets2)
10: else
11: if Setslev−1 can be extended to get new subgraph sets then
12: Setslev = growSelectedSubGraph(Setslev−1, pruneFactor)
13: delete(Setslev−1)
14: end if
15: Plans[lev] = newBuildPlanRel(Plans,Setslev)
16: end if
17: end for
18: Plans[lev] = makeGreedySelection(Plans[lev])
19: participatingRels = relationsIn(Plans[lev])
20: Plans[1] = Plans[1] - 1-wayPlansFor(participatingRels) + Plans[lev]
21: end for
22: return Plans[lev]

58

CHAPTER 4

PERFORMANCE STUDY

In this chapter, we are going to measure the performance of our approach and

compare it with the existing methods. We fix the default values to the parameters

and vary each one of them thus producing a comparative study of the behaviors

of different schemes with respect to the particular parameter thus knowing how

sensitive that parameter is in influencing performance.

The experiments were run on a PC with Intel(R) Xeon(R) 2.33GHz CPU and 3

GB RAM. All the algorithms were implemented in PostgreSQL 8.3.7. Our experi-

mental database consists of 80 tables. While populating the database, the user can

either choose to set the relation sizes manually for each relation or set the relation

size of the first table and the percentage difference between relation sizes of any

two consecutive tables Ri and Ri+1. The way the relation sizes are set and the

relations are populated determines the seed list and common subgraphs that are

generated eventually. Therefore, we cover various scenarios in these experiments

that bring about the structural differences in the database. In all the scenarios,

the table sizes vary from 1000 to 8,000,000 tuples.

On a micro level, construction of a query plan for a join candidate using tradi-

tional DP takes 27 microsec for 2 relations to 110 microsec for 10 relations. But

59

using our scheme, the time expended in a light weight plan construction by reuse

remains constant at 2 micro sec for any number of relations. Because for large

number of relations, traditional plan generation needs to consider combinations

from all the lower levels before constructing the final plan but plan reuse needs to

copy from the cheapest plan of the similar subquery straight away without making

any cost estimation for subplans. So the effort put for reuse remains the same. If

scan of subgraph sets is done and if there is no match for the given subquery or

if there is no other candidate in the subgraph set providing reuse, construction of

plan has to be done afresh. Even in that case, the overhead incurred in scan of sets

is 1 micro sec. If at a particular level in the DP lattice, there are no more similar

subgraphs, even that overhead of subgraph set scan will disappear.

But there is always some extra time incurred in the generation of cover set of

similar subgraphs which is controlled by the prune factor (γ). So our aim is to

stay as close as possible to conventional IDP in query optimization time but to get

a better plan. This happens when our subquery plan reuse based IDP can push

the value of ”k”, where “k” determines the level in the DP lattice where a shift to

greedy plan selection happens (as mentioned in the previous section).

Our experiments measure the plan quality (which is essentially related to plan

cost) and optimization time over various parameter settings. The parameters are

number of relations, query density, similarity measures for subqueries (percentage

relaxations over similarity in relation size and selectivity) and prune factor on cover

set generation(fraction of similar subgraph sets at each level that will be retained

in main memory).

60

4.1 Experiment 1: Varying the number of rela-

tions

Figure 4.1 portrays how our scheme SRIDP “Subquery plan Reuse based IDP”

pushes the value of “k” beyond what IDP is capable of. The default settings are

listed in Table 4.1.

Table 4.1: Default Parameter Settings
Density Level Similarity relaxation prune factor

2 30,30 30

We have various density levels with which queries are generated, namely, 1,2,4,8.

It is a randomized manner of generating queries by fixing a lower and upper bound

on the number of allowable predicates for a particular density level. The default

density setting used is 2 which is the 2nd level of density from the highest. While

making sure we generate a connected graph (without any disjoint sets) we assign

each node a random degree between the lower bound and the allowed maximum

degree at that level. For example, at density level “k” the maximum allowed degree

is defined as #Relations/k.

Similarity relaxation is in percentage. 30,30 denotes the relaxation in table

size and selectivity difference among subgraphs to be deemed similar. That means

two or more subgraphs are considered similar to each other if their table size and

selectivity differences are within 30%. Prune factor’s denominator is listed as 30,

which means that similar subgraph sets of strength with 1/30 th fraction of the

highest populated subgraph set should be pruned off. The denominator of the

prune factor is listed in the table. This default fraction is indeed very low because

we do not wish to lose the opportunity of subquery plan reuse. This value of prune

factor can be considered equivalent to ”no pruning of similar subgraph sets”.

61

It can be seen in Figure 4.1 that the value of “k” has consistently improved

using our scheme SRIDP as compared to IDP over the varying number of relations

thus retaining optimality for longer number of iterations before making a greedy

choice. It must be noted that Skyline DP proposed purely on the basis of pruning

to reduce search space hasn’t finished optimization and ran out of memory for all

the queries shown in the figure.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 12 13 14 15 16 17 18 19 20

K
-V

al
ue

Number of relations

IDP SRIDP

Figure 4.1: K-value versus number of relations.

Figure 4.2 shows whether the increase in “k” using our scheme has translated

to improved plan quality. Actual costing (in plans) is being listed here in Table

4.2 since it is difficult to make out the values from the figure.

It can be noted that plan quality using SRIDP has been better than that of

IDP at most of the points. Except that at 14,16 and 19 plan quality has been

worse slightly. The plan quality using our scheme was better manifold at 12, 13,

17, 18 and 20. This highly depends on the effect of similar subplan reuse over the

62

Table 4.2: Costing in Plans for medium dense queries
Number of relations Plan cost IDP Plan Cost SRIDP Skyline DP(pruning)

12 34571.29 33174.26 out of memory
13 40316.21 37849.12 out of memory
14 48755.22 49652.81 out of memory
16 392045.96 407081.06 out of memory
17 544761.71 85452.12 out of memory
18 415910.6 359533.91 out of memory
19 340097.2 422955.86 out of memory
20 566904.82 420731.09 out of memory

specific queries at those points. Increasing the value of “k” is combated by the

similarity relaxation. At number of relations=14, the value of “k” using SRIDP

has risen from 6 to 7. But, probably the sub plans that were reused for that query

may not be the ideal ones. This led to a drop in plan quality but by a meager

percentage. Figure 4.3 shows the optimization time in seconds. This sacrifice is

worthwhile given the enhancement in plan quality. SRIDP takes longer than IDP

because cover set generation needs time. In one of the following experiments we

show how generating only a fraction of the cover set by pruning off a few similar

subgraph sets (not plans) can lead to enhanced time performance without affecting

plan quality.

Figures 4.4 and 4.5 show the execution time and total running time respec-

tively for a set of medium dense (density level 2) queries. It should be noted that

this is a different random query set from what has been used for Figure 4.3. N-

evertheless these readings emphasize that the gain in execution time is worthwhile

the optimization time overhead, thus making SRIDP win in overall query running

time.

Figure 4.6 shows the savings in plan cost and enhancement in plan quality using

SRIDP as compared to IDP for high-density queries of density level 1 . It should

be noted that skyline DP based on pruning of subplans has only one point plotted

63

 0

 100000

 200000

 300000

 400000

 500000

 600000

 12 13 14 15 16 17 18 19 20

P
la

n
C

os
t

Number of relations

IDP SRIDP

Figure 4.2: Plan cost versus number of relations for medium density.

since that is the only query for which that scheme has finished plan generation.

For the subsequent points it ran out of memory. Table 4.3 lists the values of plan

costs in detail. Figure 4.7 plots the total running time for a high density query set

against the number of relations.

Table 4.3: Costing in Plans for highly dense queries
Number of relations Plan cost IDP Plan Cost SRIDP Skyline DP(pruning)

11 31903.28 12486.45 7729.86
12 36729.46 23866.3 out of memory
13 46183.5 44360.81 out of memory
14 17192.68 17714.26 out of memory
15 326531.96 325158.31 out of memory
16 82425.42 47818.18 out of memory

64

 10

 20

 30

 40

 50

 60

 70

 80

 12 13 14 15 16 17 18

O
pt

im
iz

at
io

n
tim

e
(in

 s
ec

s)

Number of relations

IDP
SRIDP

Figure 4.3: Optimization time versus number of relations.

4.2 Experiment 2: Varying density

Figure 4.8 shows the variance in plan cost with the difference in density level. This

is for queries whose number of relations is 13 and the remaining default settings do

not vary. 13 table queries were chosen to cover a wide range of density levels.

It can be observed that SRIDP consistently performs better than IDP with

respect to plan quality.

4.3 Experiment 3: Varying similarity parameters

The parameters to adjust similarity among subqueries are allowed percentage differ-

ence in table size and selectivity. For a 13-table query of default settings, similarity

relaxation was varied and the effect it had on plan cost was studied. Figure 4.9

shows the changes in plan cost with respect to variance in similarity parameters.

65

 0

 100

 200

 300

 400

 500

 600

 700

 12 13 14 15 16 17

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

#Tables

IDP
SRIDP

Figure 4.4: Query Execution time versus number of relations.

We noticed that a relaxation of 10% was insufficient for SRIDP to work at a

“k” value of 7 as compared to IDP whose maximum reachable “k” was 6. Since it

ran out of memory, that point is not plotted. From 20% to 40% relaxation, plan

cost increased thereby worsening plan quality due to increased relaxation. At 60%

it suddenly peaks to a plan cost level more than that of IDP before dropping down

to a static optimal for 70% to 90%.

Figure 4.10 plots the change in plan quality with similarity relaxation for an

18-table query of default settings.

We expected that as relaxation increases, the plan cost becomes higher and

higher thereby worsening plan quality. But in all the cases, SRIDP performed

better than IDP for the 18-table query. However we cannot always ensure that

plan cost will monotonically increase with similarity relaxation. This is because, we

cannot be sure of the number of copied (similarly reconstructed) plans participate

66

 0

 100

 200

 300

 400

 500

 600

 700

 12 12.5 13 13.5 14 14.5 15

T
ot

al
 r

un
ni

ng
 ti

m
e

(in
 s

ec
on

ds
)

#Tables

IDP
SRIDP

Figure 4.5: Total Query Running time (optimization + execution) versus number
of relations.

in the final plan. Also we cannot be sure that copied plans are always worse, they

might actually be optimal enough.

4.4 Experiment 4: Varying similar subgraph sets

held in memory

Generating the entire cover set of similar subgraph sets is time consuming. So we

conducted a few experiments varying the subgraph set prune factor. This leads

to reduced number of similar subgraph sets that are generated and thereby lessens

memory consumption. We measured plan cost and optimization time. We observed

that plan quality is least affected by the prune factor. However when considerable

subgraph sets are pruned, the opportunity for subquery plan reuse decreases and

67

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 11 12 13 14 15 16

P
la

n
C

os
t

Number of relations

IDP
SRIDP

SkylineDP

Figure 4.6: Plan cost versus number of relation for high density.

hence the sub query plans need to be freshly generated. So at a very high fraction

of prune factor, SRIDP runs out of memory. Else there is no considerable effect

on plan quality, but optimization time reduces as the fraction of pruned sets grows

higher.

Figure 4.11 plots plan cost against prune factor while Figure 4.12 depicts opti-

mization time versus prune factor for a 13-table query with density level 1 (highly

dense) and similarity relaxation at 70%. SRIDP pushes “k” to 7 as against IDP

which can reach only a maximum “k” of 6 for this query. Because the default

settings of density level 2 and 30% relaxation show extremely minor (insignificant

changes) in optimization time as well as plan quality with variance in prune fac-

tor. So we chose a highly dense and a higher similarity relaxation to measure the

changes.

In Figure 4.11, we can observe that prune factor may change but the plan cost

68

 50

 100

 150

 200

 250

 300

 350

 12 12.5 13 13.5 14 14.5 15

T
ot

al
 r

un
ni

ng
 ti

m
e

(in
 s

ec
on

ds
)

#Tables

IDP
SRIDP

Figure 4.7: Total running time (optimization + execution) versus number of rela-
tions for high density.

of SRIDP remains constant. The plan generated by IDP has also been plotted for

cost comparison. Whereas in Figure 4.12, we can observe that when prune factor

(denominator of fraction) is lower, the fraction of pruned subgraphs becomes higher

and hence optimization time drops. When prune factor is 5 and higher, there was

no effect on optimization time but at 3 and 2, the drop is seen. Anything beneath

that causes SRIDP to run out of memory at that “k” level.

69

 26000
 28000
 30000
 32000
 34000
 36000
 38000
 40000
 42000
 44000
 46000
 48000

 1 1.5 2 2.5 3 3.5 4

P
la

n
C

os
t

Density level

IDP
SRIDP

Figure 4.8: Plan cost versus number of relation for various density levels.

 37000

 37500

 38000

 38500

 39000

 39500

 40000

 40500

 41000

 20 30 40 50 60 70 80 90

P
la

n
C

os
t

Similarity relaxation(in %)

IDP
SRIDP

Figure 4.9: Plan cost versus table size and selectivity relaxation in % for a 13-table
query.

70

 320000

 330000

 340000

 350000

 360000

 370000

 380000

 390000

 400000

 410000

 420000

 20 30 40 50 60 70 80 90

P
la

n
C

os
t

Similarity relaxation(in %)

IDP
SRIDP

Figure 4.10: Plan cost versus table size and selectivity relaxation in % for an 18-
table query.

 38000

 40000

 42000

 44000

 46000

 48000

 50000

 0 5 10 15 20 25 30

P
la

n
C

os
t

Subgraph prune factor(denominator)

IDP
SRIDP

Figure 4.11: Plan cost versus prune factor.

71

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

O
pt

im
iz

at
io

n
tim

e
(in

 s
ec

s)

Prune factor(denominator)

IDP
SRIDP

Figure 4.12: optimization time versus prune factor.

72

CHAPTER 5

CONCLUSION

In our work, we proposed and implemented a memory efficient approach, SRIDP,

to generate high quality plans using an IDP based query optimizer. The basic

idea is to reuse the plans of similar sub queries among themselves and to bring

about memory savings from avoiding plan generation for various join orders for

a particular candidate in the DP lattice. The innovative techniques embodied in

SRIDP include:

• The generation of the collection of similar subgraph sets over the entire DP

lattice termed as cover set is done as efficiently as possible. Incremental

construction of subgraph sets on the fly and deletion of sets which are no

longer required has improved the time and memory efficiency of our scheme.

• Plan construction has been done by re-using the query plans among similar

subqueries identified by cover set, again by avoiding multiple plan construc-

tion for each join candidate and hence making it memory efficient.

73

Without mere pruning of join candidates to do a straight forward reduction in

search space, we resorted to reuse combined with reduction in the number of plans

constructed for each join candidate by finding the ideal join orders from similar

subqueries which helped in retaining optimality and achieving memory efficiency.

Our results report a consistent increase in the value of “k” using our scheme

SRIDP as compared to IDP and better plan of higher quality in most of the cases.

Our experiments studied the performance variance over a variety of parameters.

In our future work, we intend to extend our work by multi-threading our opti-

mization algorithm for modern hardware like multi-core architecture and distribut-

ing the join candidates ideally among various threads.

BIBLIOGRAPHY

[1] Yu Wang 0014 and Carsten Maple. A novel efficient algorithm for determining

maximum common subgraphs. In International Conference on Information

Visualisation, pages 657–663, 2005.

[2] Jeffrey Baumes, Mark K. Goldberg, Mukkai S. Krishnamoorthy, Malik

Magdon-Ismail, and Nathan Preston. Finding communities by clustering a

graph into overlapping subgraphs. In IADIS AC, pages 97–104, 2005.

[3] Ivan T. Bowman and G. N. Paulley. Join enumeration in a memory-constrained

environment. In ICDE, pages 645–654, 2000.

[4] Bertrand Cuissart and Jean-Jacques Hébrard. A direct algorithm to find a

largest common connected induced subgraph of two graphs. In GbRPR, pages

162–171, 2005.

[5] Gopal Chandra Das and Jayant R. Haritsa. Robust heuristics for scalable

optimization of complex sql queries. In ICDE, pages 1281–1283, 2007.

74

75

[6] David DeHaan and Frank Wm. Tompa. Optimal top-down join enumeration.

In SIGMOD Conference, pages 785–796, 2007.

[7] César A. Galindo-Legaria and Milind Joshi. Orthogonal optimization of sub-

queries and aggregation. In SIGMOD Conference, pages 571–581, 2001.

[8] César A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten. Fast,

randomized join-order selection - why use transformations? In Jorge B. Bocca,

Matthias Jarke, and Carlo Zaniolo, editors, VLDB’94, Proceedings of 20th

International Conference on Very Large Data Bases, September 12-15, 1994,

Santiago de Chile, Chile, pages 85–95. Morgan Kaufmann, 1994.

[9] César A. Galindo-Legaria and Arnon Rosenthal. How to extend a conventional

optimizer to handle one- and two-sided outerjoin. In ICDE, pages 402–409,

1992.

[10] Arianna Gallo, Pauli Miettinen, and Heikki Mannila. Finding subgroups hav-

ing several descriptions: Algorithms for redescription mining. In SDM, pages

334–345, 2008.

[11] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.

Surv., 25(2):73–170, 1993.

[12] Jorng-Tzong Horng, Baw-Jhiune Liu, and Cheng-Yan Kao. A genetic algo-

rithm for database query optimization. In International Conference on Evo-

lutionary Computation, pages 350–355, 1994.

[13] Yannis E. Ioannidis and Younkyung Cha Kang. Left-deep vs. bushy trees:

An analysis of strategy spaces and its implications for query optimization. In

SIGMOD Conference, pages 168–177, 1991.

76

[14] Yannis E. Ioannidis and Eugene Wong. Query optimization by simulated

annealing. In SIGMOD Conference, pages 9–22, 1987.

[15] Matthias Jarke and Jürgen Koch. Query optimization in database systems.

ACM Comput. Surv., 16(2):111–152, 1984.

[16] H. Jiang and C. W. Ngo. Image mining using inexact maximal common sub-

graph of multiple args. In Int. Conf. on Visual Information Systems, 2003.

[17] Donald Kossmann and Konrad Stocker. Iterative dynamic programming: A

new class of query optimization algorithms. ACM Trans. on Database Systems,

25:2000, 1998.

[18] Rosana S. G. Lanzelotte, Patrick Valduriez, and Mohamed Zäıt. On the ef-

fectiveness of optimization search strategies for parallel execution spaces. In

VLDB, pages 493–504, 1993.

[19] James J. McGregor. Backtrack search algorithms and the maximal common

subgraph problem. Softw., Pract. Exper., 12(1):23–34, 1982.

[20] Guido Moerkotte. Analysis of two existing and one new dynamic programming

algorithm for the generation of optimal bushy join trees without cross products.

In In Proc. 32nd International Conference on Very Large Data Bases, pages

930–941, 2006.

[21] Guido Moerkotte. Dp-counter analytics. Technical report, 2006.

[22] Guido Moerkotte and Thomas Neumann. Dynamic programming strikes back.

In SIGMOD Conference, pages 539–552, 2008.

[23] Tadeusz Morzy, Maciej Matysiak, and Silvio Salza. Tabu search optimization

of large join queries. In EDBT, pages 309–322, 1994.

77

[24] Kiyoshi Ono and Guy M. Lohman. Measuring the complexity of join enu-

meration in query optimization. In Dennis McLeod, Ron Sacks-Davis, and

Hans-Jörg Schek, editors, 16th International Conference on Very Large Da-

ta Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings,

pages 314–325. Morgan Kaufmann, 1990.

[25] Jun Rao, Bruce G. Lindsay, Guy M. Lohman, Hamid Pirahesh, and David E.

Simmen. Using eels, a practical approach to outerjoin and antijoin reordering.

In ICDE, pages 585–594, 2001.

[26] Matthias Rarey and J. Scott Dixon. Feature trees: A new molecular similar-

ity measure based on tree matching. Journal of Computer-Aided Molecular

Design, 12(5):471–490, 1998.

[27] John W. Raymond and Peter Willett 0002. Maximum common subgraph

isomorphism algorithms for the matching of chemical structures. Journal of

Computer-Aided Molecular Design, 16(7):521–533, 2002.

[28] John W. Raymond, Eleanor J. Gardiner, and Peter Willett. Rascal: Cal-

culation of graph similarity using maximum common edge subgraphs. The

Computer Journal, 45:2002, 2002.

[29] Patricia G. Selinger and Michel E. Adiba. Access path selection in distributed

database management systems. In ICOD, pages 204–215, 1980.

[30] Timos K. Sellis. Global query optimization. In SIGMOD Conference, pages

191–205, 1986.

[31] Leonard D. Shapiro, David Maier, Paul Benninghoff, Keith Billings, Yubo

Fan, Kavita Hatwal, Quan Wang, Yu Zhang, Hsiao min Wu, and Bennet

78

Vance. Exploiting upper and lower bounds in top-down query optimization.

In IDEAS, pages 20–33, 2001.

[32] Arun N. Swami. Optimization of large join queries: Combining heuristic and

combinatorial techniques. In SIGMOD Conference, pages 367–376, 1989.

[33] Arun N. Swami and Balakrishna R. Iyer. A polynomial time algorithm for

optimizing join queries. In ICDE, pages 345–354, 1993.

[34] Akutsu Tatsuya. A polynomial time algorithm for finding a largest common

subgraph of almost trees of bounded degree. IEICE transactions on fundamen-

tals of electronics, communications and computer sciences, 76(9):1488–1493,

1993-09-25.

[35] Julian R. Ullmann. An algorithm for subgraph isomorphism. J. ACM,

23(1):31–42, 1976.

[36] Bennet Vance and David Maier. Rapid bushy join-order optimization with

cartesian products. In In Proc. of the ACM SIGMOD Conf. on Management

of Data, pages 35–46, 1996.

[37] P. Viswanath, M. Narasimha Murty, and Shalabh Bhatnagar. Fusion of multi-

ple approximate nearest neighbor classifiers for fast and efficient classification.

Information Fusion, 5(4):239–250, 2004.

[38] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph pat-

terns. In KDD, pages 286–295, 2003.

[39] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in

graph databases. In SIGMOD Conference, pages 766–777, 2005.

79

[40] Qiang Zhu, Yingying Tao, and Calisto Zuzarte. Optimizing complex queries

based on similarities of subqueries. Knowl. Inf. Syst., 8(3):350–373, 2005.

