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Summary 
 

 

For various lossy video compression and network transmissions systems, 

video artefacts are introduced during the process.  As image quality is perceived by 

the human observer, it would be ideal if only those video artefacts that are discernable 

to human eyes are detected during quality evaluation.  Such quality evaluation 

requires much computational power and careful understanding of the human visual 

sensitivity towards these video artefacts. 

 

This work involves a study of the human visual sensitivity towards video 

artefacts on mobile imaging devices.  In our experiments, we evaluate the sensitivity 

of fifteen users towards some common video artefacts using a database of test video 

sequences recorded off the screen of a PDA device. 

 

Our results show that the human eye is very sensitive to spatial content loss 

and its sensitivity towards “blockiness” is dependent on video content.
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1 Introduction 

 

The field of multimedia is constantly growing and there is an ever-increasing 

number of new imaging displays and devices.  Commonly used displays include those 

in mobile devices such as Personal Digital Assistants (PDA) and mobile hand phones 

and most of these are able to handle low bit rate videos.  However, such compact 

imaging devices are not able to render the displayed images in high quality due to 

various limitations (of the hardware & etc).  As such a tool for evaluating the quality 

of images produced by these mobile devices would be useful for the manufacturers of 

such devices. 

 

This evaluation of the video/image quality of the mobile devices would have 

to be based on the hardware specifications of the device and displayed video 

clips/images.  This is accomplished traditionally by displaying a reference video clip 

in the device, and manually examining the displayed output for the presence of any 

video artefacts, which are the undesirable distortions or defects of the video sequences 

[1] [2].  In this work, we design a system to quantify the sensitivity of the human 

visual system with respect to each video artefact. 
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Figure 1.  The Video Quality Evaluation Flow Chart 

 

Figure 1 shows an example of a typical video quality evaluation arrangement 

where first, a reference video sequence is source coded to compress it into an encoded 

low bit-rate form.  At the next stage, a channel simulator which simulates the 

behaviour of a network sends the encoded data to the imaging device (presented in the 

form of a monitor screen in Figure 1) which displays the received images.  The video 

displayed on the imaging device display is then subjected to visual analysis and 

measurement.  This workflow results in the imaging device displaying video artefacts.   

 

Video artefacts are the undesirable distortions or defects of the video 

sequences, and are usually the results of hardware or software defect.  It is therefore 

useful to be able to detect the presence of video artefacts.  However, the combination 
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Measurement 

Channel simulator 

Source 
coding 
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of both the elements of hardware and software can produce variations of video 

artefacts which are difficult to detect.  The hardware elements that could contribute to 

the appearance of the artefacts are the image capture card or screen defects.  Software 

designs that could contribute to the appearance of the artefacts include coding and 

quantization.   

 

A major consideration in designing an automated system is the human visual 

system which has a range of sensitivities that makes it more attentive to certain details 

as compared to others.  For example, it would be a waste of resources to remove video 

artefacts that the human viewer is not able to perceive.  Therefore, a good 

understanding of the human visual sensitivity to different video artefacts is needed to 

design a system for artefact detection.  Human visual sensitivity is discussed in detail 

in Section 2.1. 

 

1.1 Previous Works 
 

The issue of detecting video artefacts is closely related with the field of video 

quality measurement which has been widely studied.  For video quality metrics, the 

most important task is to quantify the quality of the video, or alternatively to quantify 

the impact of distortion within the video based on an understanding of the human 

visual system.  The goal of this work is to quantify the sensitivity of the human visual 

system with respect to each video artefact. 

 

Many video quality metrics in the research field use a standard defined by the 

International Telecommunications Union (ITU) technical paper “Methodology for the 
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subjective assessment of the quality of television pictures” [3].  This work conducted a 

series of subjective tests which tabulated the mean opinion scores (MOS) against a 

database of videos.  The performance of several video quality metrics is then 

compared against the results from the subjective tests.  The results from the subjective 

tests serve as a valuable benchmark for the output of video quality metrics in research, 

as well as provide the environmental conditions required for a subjective test.  This 

thesis will often make reference to the ITU work for the design of the subjective tests.  

Out of several video metrics created [4][5][6][7][8], one of the better performing 

metric was the National Telecommunications and Information Administration (NTIA) 

video quality metric (VQM) [4], which scores relatively better over a wide range of 

videos.  The VQM metric used a set of weighted-parameters on several components 

such as image blurriness, colour, and presence of blockiness.  These parameters were 

determined through intensive subject testing and studies by NTIA.  However, the 

performances of these video quality metrics are poor when tested upon a set of videos 

with a limited bit rate range.  In another work [9], the results showed that video 

quality metrics in general did not perform well when restricted to the videos with low 

bit ranges.   

 

Although there is research on the effect of the video artefacts toward the 

overall video quality, there has been limited research on the individual artefacts itself.  

A previous work by Qi was done as a subjective test which measured the effect of 

frame freezing and frame skipping on the video quality [10].  In this work, the freeze 

artefacts and loss artefacts are inserted randomly into parts of the sequences.  

However, the results of the experiment still aimed at determining the overall video 

quality, instead of the individual artefacts.  The methods for evaluating the subjective 
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tests and the video sets were based on the Subjective Assessment Methodology for 

Video Quality (SAMVIQ), which focused on the use of streamlined videos from a 

network [11].  An important point demonstrated by this work is that research in 

human vision studies had paid lesser attention to the temporal aspects of video as 

compared to the spatial aspect.  In another artefact work by Lu, the effect of frame-

dropping and blurriness on the overall video quality is measured, to examine the 

relative strength of each artefact to each other [12].  The various factors that 

contributed to the perceived blur effect included the motion, image contrast and 

orientation of the distorted videos.  The targeted range of videos covered was that of 

the low bit-rate videos. 

 

Among the various video artefacts, the blockiness artefact is the most studied 

artefact in the field of image processing.  While many metrics and studies aim at 

investigating the effects of blockiness artefacts on the overall quality of the video 

sequence, there are relatively few tests trying to quantify the presence of the 

blockiness artefact itself [13] - [21].  Most of these works are related to the video 

processing field, which try to reduce the effects of blockiness present, and cannot be 

used to detect the blockiness that is induced through hardware defects. 

 

To our knowledge, there have been industrial products that are supposed to 

measure these artefacts, but these systems are intensive in computations, expensive 

and are only used for the measurement of the processed videos against referenced 

videos.  These systems are not usable for a video quality pipeline which considers the 

quality of the video as viewed from the device’s display.  Most of the targeted videos 
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in hardware applications are stream-lined videos from a network with no reference 

videos. 

 

1.2 Proposed Study 

 

In this work, we conduct a study aimed at evaluating the sensitivity of the 

human visual system sensitivity towards 3 common video artefacts, namely: ‘freeze’, 

‘frame loss’, and ‘blockiness’.  Video artefacts are inserted into the test videos to 

simulate the post-effects of hardware defects. 

 

A good understanding of the nature of the video artefacts is needed before the 

features/parameters that need to be extracted/ measured can be identified.  These 

features/parameters will be measured by conducting a series of subjective tests to 

measure the human visual sensitivity to each of the artefacts.   

 

In order to test the validity of the subjective results, the extracted parameters 

are applied onto another set of video sequences with different video content.  Much of 

the work done in this field focuses on quantifying the overall video quality rather than 

quantifying the threshold of the individual video artefacts. 

 

1.3 Thesis Overview 
 

 

The next chapter provides details of the human visual system, video artefacts 

and developments in the field of video quality analysis.  In Chapter 3, we discuss 
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details of the video artefacts examined in this work.  Algorithms for detecting the 

video artefacts are also described here.  Chapter 4 describes the materials and 

environment of the subjective test while in chapter 5 we describe the subjective test 

procedures.  In Chapter 6, the results of the study is presented and further examined 

while in Chapter 7 we conclude the thesis with discussions and possible future works. 



 16

2 Literature Review 

 

2.1 Human Visual Sensitivity 

 

In the field of video processing, the quality of an image is traditionally 

evaluated using methods such as the Peak Signal-to-Noise Ratio (PSNR) or the Mean 

Squared Error (MSE) method.  However, these methods pose several problems that 

make it difficult for both practical integration and implementation into a video 

pipeline.  The first feature of these methods is the initial requirement for a reference 

image.  This reference image with no distortion is then computed against the distorted 

counterpart to determine the amount of distortion [22].  Based on this issue, these 

methods cannot be employed in the use of an environment where no reference image 

is available.  In a quality analysis pipeline, it is often the case that a reference image is 

not readily available.  Placing the reference image through an imaging device would 

result in a blurring effect when viewed on its display screen, which is what the human 

eye will see as the end result.  Since different types of hardware devices with varying 

display surfaces is used in the testing process, it is not ideal to keep creating reference 

images that must be placed and viewed through the various device displays.  In this 

thesis work, the video artefacts are simulated as the defects of the hardware imaging 

device. 

 

The second issue with the PSNR/ MSE method is that the sensitivity of the 

human eye is not considered into its computations.  While this makes the 

computations relatively fast and elegant, it is not a completely accurate interpretation 
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of what the human visual sensitivity notices.  The human visual system is structured 

such that the eye is only sensitive to a certain range of artefacts or differences.  This 

means that a significant amount of details could be removed before the perceptual 

difference is noticed by the human subject.  It is then possible to either reduce or 

compress the data transmitted without compromising the perceptual quality of the 

video.  In many video processing applications, this perceptual insensitivity is 

commonly used in the stage of video compression.  This is used where a reduction of 

the bit rate is desirable.  By making use of the human eyes insensitivity to details, 

minimal information is required for the user to appreciate same level of video quality.  

In many perceptual quality works, the term ‘just-noticeable-difference’ of an image 

refers to the threshold that determines the amount of the distortion that must occur 

between the original images and the distorted images before the subjective viewer 

notices the difference between the images  [23]. 

 

Another human-visual related field is the topic of visual attention, where a 

person’s attention is most focused on an area of interest on the screen.  During a 

visual search, the human eye uses a saccadic eye movement which is rapid and jumpy 

in order to perform quick searches.  When focused on a point of interest, the human 

eye changes its movement to a fixation, where it focuses on the object of interest.  The 

spatial focus is narrowed on the stimulus.  The viewer is then likely to be most 

sensitive to changes made on the area within the eyes’ fixation focuswhich is a point 

of interest to the viewer (e.g., a human face).  Several contributing factors that will 

determine the focus of interest include the colour, contrast sensitivity and movement 

of objects within the video scene  [24]. 
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To design an automated process for video quality analysis, it is necessary to 

understand some characteristics of the human visual system with relation to video 

artefact.  This will allow for a design which is more coherent with the human 

perception of the image quality.  The first reason to consider the human visual system 

in the process design includes the fact that the human eye is the ultimate end-process 

evaluator of the image.   

 

2.2 Video Artefacts 

 

Video artefacts constitute the undesirable distortions of a video sequences, 

which renders the video unpleasant to the viewers’ eyes.  There are several types of 

video artefacts, ranging from blurriness, blockiness, and ringing.  Most works aim at 

reducing the presence of these artefacts at the software level, but not at the detection 

of these artefacts.  

 

In the research done on the evaluation of image artefacts by A. Punchihewa 

[1], objective quality measures were used to evaluate the video quality with relation to 

the blockiness, edge-blur, ringing and contouring artefacts.  In another work about 

video artefacts [2], he outlined the various components of a video pipeline and the 

artefacts mitigation in these pipelines .  Most artefacts come about due to a trade-off 

between the limited bandwidth and optimizing the video quality and so there is a need 

to better understand the processes in which video artefacts are introduced   to aid in 

the development of a suitable workflow for proper evaluation of the video quality and 

the artefacts that arise through the process. 
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A complication which undermines the study of video artefacts is the spatial-

temporal relationship present.  Most works evaluate the final quality of the video 

sequence with relation to the video artefacts added to it, such as the work by Qi  [10].  

Another type of work which is done in the video processing field is to create a 

workflow to reduce the number of artefacts in a video sequence  [16] .  

 

In this thesis work, the number of artefact occurrences is measured through the 

detection by a real-time system such as a mobile device  [25].  
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3 Common Video Artefacts 

 
 

In this work, the three video artefacts evaluated are the freeze, frame loss, and 

blockiness artefacts.  These are artefacts which are commonly seen in transmitted 

videos, such as those in wireless networks.  The relation of these video artefacts to 

visual perception is a key area of examination in this work.  By studying the cause 

and characteristics of these video artefacts, suitable threshold parameters are chosen 

for measurements during the subjective experiments.  

 

3.1 Frame Freeze Artefacts 

 

The freeze video artefact is a video artefact which appears to have no visible 

change in content during a consecutive sequence of video frames.  This freeze effect 

creates a discontinuous disparity in the video playback, which is perceived as 

unpleasing to the viewer’s eyes.  

 

The presence of this artefact is caused by the slow capturing rate of the camera 

device, or by the inability of the handheld device to process and display the imaging 

data at its optimum frame rate.  For a network transmission, the freeze video artefact 

occurs when insufficient data packets are transmitted to form the consecutive frame, 

and the display algorithm duplicates the previous frame for display.  The occurrence 

of the freeze video artefact is usually followed by an abrupt motion jerk within the 

video sequence.  Due to these characteristics, the freeze artefact affects both the 

temporal and spatial aspects of the video sequence.  
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Previous frame to next consecutive frame 

 

Figure 2.  A Pair of Frames with a Potential Freeze Artefact 

 

The images in Figure 2 show an example of a potential freeze video artefact 

occurrence.  The two consecutive frames (previous and current frames) appear to 

exhibit none or minimal noticeable changes.  The term ‘noticeable’ is the keyword 

here since the grey level differences between the two video frames cannot be detected 

by the human eyes, and therefore appears to have no content change.  Even if there 

are differences in pixel values, the viewer will deem the lack of content change as a 

potential freeze artefact. 

 

Based on the understanding of its characteristics, detecting the freeze video 

artefact requires 2 components to be measured during the subjective experiments: the 

spatial and the temporal aspects of the artefact’s occurrence.  The spatial component 

refers to the amount of content change between 2 consecutive frames.  As mentioned, 

the human viewer considers a potential freeze artefact only if there is no noticeable 

content changes.  The spatial variable is measured as the minimal change of grey 

values of the pixels between consecutive frames.  The grey value channel consists of 
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the luminance of the video, and consists of the majority of the information about the 

video frame.  For the temporal component, it is seen that the freeze artefact affects the 

temporal continuity of the video.  Not only must there be a lack of noticeable content 

change, this occurrence must last at least a specific length of time.  This length of time 

duration of the artefact is the threshold that needs to be measured in the experiment 

later.  This threshold is expressed in the subjective experiments as the number of 

frames, and is determined under the situation of 30 frames per seconds (fps).   

 

Designing an automatic method for the detection of the freeze artefact is made 

complicated by a trade off between the measured thresholds and the presence of noise 

within the video.  Noisy artefacts in the video sequence are caused by either software 

defects such as corruption of the image during transmission or hardware defects.  

Faulty display of the imaging device, screen reflectance and other external hardware 

defects such as camera resolutions reduce the chance of gaining the original pixel 

values of the video sequences.   

 

As measuring the pixel grey values is an important component of content 

change measurements in this work, it is found that a large amount of noise present in 

the environment affects the detection of the freeze video artefact.  Therefore, the 

threshold of content change could be adjusted along with the consideration of noise 

tolerance included.  Under the presence of noise, this work will determine the spatial 

and temporal thresholds in which the human eye will detect the freeze artefact.  This 

is based on the understanding that human eye will detect a freeze artefact only if the 

conditions of time duration and a lack of content changes are fulfilled. 
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With the understanding above, we perform the subjective experiments in 

Section 5, and aim to emulate the results achieved from these experiments.  The 

detection algorithm makes use of the characteristics of the freeze artefact occurrence 

as mentioned.  The 2 conditions for the freeze video artefact are: 

 

1. The content change between 2 consecutive frames must not be 

perceptually visible. 

2. The freeze artefact must occur for a significant period of time. 

 

The threshold results from the subjective experiment are used with the 

conditions for detecting the freeze video artefact.  A perceptual threshold is 

determined for noticing change in details between consecutive frames.  If the amount 

of grey level changes between consecutive frames is below this threshold, the human 

eye does not see the details.  For the experiments, the freeze artefact was simulated by 

repeating the frames in-between.  The human eye is most sensitive to the luminance 

value of the frame, with the grey level values ranging from 0 to 255. 

 

The first condition requires the detection of these ‘freeze frames’; the video 

frames without any visible content.  The second condition requires the time duration 

of the freeze frames to be at least of a minimum threshold.  Therefore, the main task 

in a detection algorithm is to firstly determine the presence of freeze frames, and 

secondly measure the duration of their occurrences.  The methods taken to detect the 

freeze video artefact is described in the following paragraphs.  The flowchart and 

details of the program for this algorithm is presented in the Appendix A. 
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To determine if the current frame is a freeze frame, the change in content 

between consecutive frames is measured.  This change in content is represented by a 

discriminant value D1, which is computed by using the highest absolute difference 

between 2 consecutive frames.   

 

At frame fi, the discriminant value D1 is computed as: 

 

)A*)ff(absmax(D ii 11     (1) 

 

Where: 
D1 is the discriminant value computed, 
i is the number index of the current frame being analysed, 
 fi  is the current frame being analysed, 
fi-1 is the previous frame being analysed, 
A is an averaging filter. 
 

An averaging filter A is applied to the recorded image sequence to reduce the 

external environmental noises that influence the readings.  The averaging filter A is a 

3 x 3 matrix given as: 


















111
111
111

9
1A      (2) 

 

Discriminant value D1 is reflective of the content change between consecutive 

frames.  When this discriminate value is smaller than a specific threshold, there is 

insufficient noticeable content change between consecutive frames.  From the 

subjective experiments, the threshold for the discriminate value D1 was found to be 

16.5.  The values of the discriminate value was determined by examining the 



 25

subjective videos in which participants had noticed the artefacts and measuring the 

change between the frames based on Equation 1 above.  In the presence of noise, this 

threshold could be given a higher value to enable a small percentage of noise to be 

tolerated.  In lighting and camera situations with higher noise levels, where the 

original threshold is deemed to be too sensitive, it is found that the threshold value for 

D1 can be adjusted to 19.5. 

 

After a freeze frame is identified, the time duration of this freeze frame 

occurrence has to be measured.  The result of time threshold comes from the results of 

the subjective experiments detailed in Section 5, and was stated to be the duration of 3 

frames.  During the detection process, the system tracks the number of consecutive 

freeze frames that had occurred.   

 

Once the threshold (i.e. 3 frames) has been reached, this sequence of frames is 

identified as a single occurrence of freeze artefact.  Any freeze frame which occurs 

after these 3 frames also constitutes as the same freeze artefact.  If a non-freeze frame 

(a video frame that consists of a change of image content) is present thereafter, this 

signals that the current instance of freeze artefact has ended.  The detailed diagram of 

the freeze detection algorithm is shown in Appendix A. 

 

 

3.2 Frame Loss Artefacts 

 

The frame loss artefact is a video artefact which appears as a sudden loss of 

video data or frames.  This is commonly noted by a discontinuity in the content of the 
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image sequence.  The affected video sequence would appear to have a momentary 

flicker on the screen if the loss artefact occurred briefly.  Otherwise, it would be 

displayed as a sudden blank screen.  The loss video artefact affects both the spatial 

and temporal aspect of the video sequence, creating an unpleasant flickering effect.  

The effects of the different loss artefacts (full-loss and half-loss frame types) can be 

seen in consecutive images in the following Figure 3.  Video flickering caused by the 

loss video artefact is unpleasant to the user viewing the imaging device.  Loss of 

visual content is a very critical issue in video processing and network applications. 
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Normal Frame 

 

  

Full Loss Frame (Lossy) 

 

 
Half Loss Frame (Lossy) 

 

Figure 3.  Comparison of a Normal Frame and Lossy Frames 
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In this work, the loss video artefact is categorized into the two types shown in 

Figure 3: a full-loss frame, and a half-loss frame.  The presence of a full-loss and half-

loss frame will bring about the effect of a screen flicker or blank screen.  The 

presence of loss video artefacts in a video sequence is due to loss of data packets 

during the network transmission.  When data packets are lost and the imaging device 

still attempts to continue displaying the transmitted video frames, the lost packet 

components form the blank parts in the frame loss.  As a result, the receiving display 

will display video frames that are either completely blank (full-loss frames) or 

incomplete (half-loss frames). 

 

The video loss artefact is characterized with the sudden loss of data, with the 

following consecutive frames not expressing any useful data for the viewer.  Similar 

to the freeze video artefact, the loss video artefact affects both the spatial and 

temporal component of the video.  Loss of video content severely affects both the 

spatial component and the temporal continuity of the video sequence.  Therefore, 2 

thresholds parameters need to be measured from the subjective experiments: firstly, 

the threshold of distortion within the video frame, and secondly, the threshold of the 

time duration of the artefact.  The threshold of distortion within the video frame is a 

numerical value derived from change of pixels grey levels within consecutive video 

frames.  The threshold of time duration is measured as number of consecutive frames 

occurrence, under the imaging device’s play-rate of 30 fps. 

 

Difficulties of designing an automatic method of detecting loss artefact 

involve the false alarms of selecting frames with the fade-out effect and sudden scene 
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changes.  The fade-out effect is a typical video effect which makes the scene darken 

to a blank screen and is typically used in film production for transition to another 

scene.  The method should be designed with consideration of minimizing the chance 

of false alarm detections.   

 

The detection algorithm for the loss video artefact considers both the spatial 

and temporal aspects of the video.  The 2 conditions of a loss video artefact are 

defined by the following: 

 

1. The content change between 2 consecutive frames must be abrupt and 

significant. 

2. The content change must be viewed as a loss of data, where the 

changed pixels become pixels of low grey level value. 

   

Based on the two conditions, it is necessary to keep the knowledge of the 

previous and current frame status, which requires knowing whether they are 

considered as loss frames.  In this work, we consider three possible types of loss 

frame statuses that are based on the percentage of data loss : Full, Half, and Normal.    

The Full and Half types are considered as contributors to the frame loss artefacts. 

 

Using the first condition, the first task is to detect sudden and significant 

content change between consecutive frames.  This content change is represented by a 

disciminant value D2, which is computed as the absolute change in the mean pixel 

grey levels.  If this discriminant value is larger than the perceptual threshold, there is 

said to be sufficient content change between the frames.   
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For each video frame, the system computes the discriminant value, until it 

encounters a video frame with a disciminant value larger than the perceptual 

threshold.  This perceptual threshold found from the videos used during the subjective 

experiments is 9.5.  Thereafter this video frame can be evaluated for its image content 

to determine its frame status with respect to the loss artefact.  Any later consecutive 

video frame that does not differ largely in disciminant value is likely to be of the same 

frame status. 

 

The equation for the discriminant value D2 is given to be: 
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Where:  
D2 is the discriminant value, 
i is the number index of the current frame, 
 fi (x,y) is the pixel value of the current frame at position (x, y), 
fi-1 (x,y) is the pixel value of the previous frame at position (x,y), 
n is the horizontal length of the frame, 
m is the vertical length of the frame. 

 

Upon finding the first frame that exhibits a significant change in content, the 

next condition is to identify whether it is a loss frame and measure the duration of the 

occurrence.  In order to identify the status of the frame, the percentage of data loss 

between the previous and current frame is measured.  Based on the knowledge of the 

previous frame and the amount of data loss, the current given frame is determined to 

be a Full or Half loss frame, or a Normal frame.  In this work, the Half frame loss 

refers to any frame with 50 – 85% data loss.  A higher data loss (more than 85%) 

indicates a Full frame loss, whilst lower data loss (lesser than 50%) indicates a 
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Normal frame.  The percentage of data loss chosen for the Normal frame were placed 

at higher value of 50% as this reduces the chance of false alarms through gradual 

scene change. 

 

Two different measurements are used based on the previous frame.  The first 

case is when the previous frame state is a Normal or Half frame, while the second 

situation is when the previous frame state is a Full loss frame.  This is because of the 

possible frame state transitions when there is content change between the consecutive 

frames. 

 

In the first scenario where the previous frame state is a Normal or Half frame, 

the data loss is determined by the following: 









G
gD         (4) 

 
Where:  

D is the ratio of data loss, 
G is the number of pixels which have a difference of more than 20 grey 
levels between consecutive frames 
g is the subset of G which also exhibit grey level values lower than 40  
 

 

For the second scenario where the previous frame state is a Full loss frame, 

the amount of data loss is determined by: 


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


mn
gD         (5) 

 
Where:  

D is the ratio of data loss, 
G is the number of pixels which have a difference of more than 20 grey 
levels between consecutive frames 
n is the horizontal length of the frame 
m is the vertical length of the frame 
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The computation of data loss is dependent on the number of pixels which have 

experienced a change in grey levels and the ratio of these pixels which had became 

low grey values. 

 

After identifying a loss frame, the algorithm will determine the duration of the 

loss artefact.  Using the results from the subjective experiments in Section 5, it was 

found that the number of frames required for a loss artefact to be noticed is 1.  This 

means that the occurrence of a single loss frame is sufficient for this to be a frame loss 

artefact.  This is due to the human visual system being sensitive to sudden changes in 

spatial content.  A consecutive sequence of loss frames is considered to be a single 

occurrence of a loss artefact.  When a Normal frame is encountered after a sequence 

of loss frames, this is considered to be the end of a loss artefact occurrence.   

 

This algorithm workflow prevents fade-out effects from being detected as 

false alarms.  The fade-out effect is a common transition scene used in movie clips.  

As the fade-out effect usually progresses over a significant number of frames, the 

human eye does not pick this up as a loss artefact.  This implemented workflow will 

also prevent picking the scene change as a false alarm as the next scene consists of 

image information.  The detailed diagram and parameters table for the loss artefact 

detection algorithm is found in the Appendix B, whilst Section 6 describes the 

implementation of the subjective test results. 
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3.3 Frame Blockiness Artefacts 

 

The blockiness video artefact embeds discontinuous edges of blocks into the 

video image, making it discomforting to the viewer’s eyes.  The blockiness artefact is 

commonly seen together with the other two video artefacts in video transmission.  The 

presence of this artefact is also often found together with many other kinds of image-

related artefacts such as blurring and ringing.   

 

The following Figure 4 shows an example of the blockiness video artefact.  

The presence of the blockiness artefact is mostly introduced during video 

compression processes with block-transforming techniques, such as the MPEG 

compression.  Such methods make use of lossy quantization processes in order to 

maximize the compression of the video to low bit rates.  For networks, blockiness 

artefacts tend to appear along side with loss video artefacts when there is a loss in data 

packets during a video transmission. 
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Figure 4.  A Blocky Video Artefact 

 

Among the known imaging artefacts, the blockiness artefact is a frequently 

studied artefact in research.  There had been several research papers written on the 

effects of the blocking artefacts on the overall quality of the video sequences, but 

several issues within these works have not been addressed [13] - [21].  Firstly, these 

works do not measure the quantity of blockiness artefact alone, but instead relate the 

blockiness quantity with the overall video quality.  Secondly, most of the existing 

related-works still use the mean square error as the main method for measuring the 

severity of distortion, which does not accurately reflect the sensitivity of the human 

visual system. 

 

As it is often seen in the presence of other artefacts, the detection of the 

blockiness video artefact alone presents a difficulty.  The work is to determine the 

conditions where the subjective viewer will start to notice the blockiness artefact.  
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Other details of interest include the characteristic of the videos where the blockiness 

artefact occurs. 

  

The blockiness artefact affects the spatial aspect of the video.  The parameter 

that is considered is the rate of compression done on the video and the content 

characteristics of the videos.  The procedures for subjective experiments are further 

described in Section 5.2.   
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4 Designing Subjective Experiments 

 

In the experimental procedures for video artefact detection, the main driving 

factors behind the designs are the human visual system and the video quality pipeline.  

The video quality pipeline is aimed at detecting the video artefacts on a mobile 

imaging device using a non-reference method. 

 

Figure 5 shows the proposed pipeline which takes into consideration human 

visual system: 

   

 

Figure 5.  Proposed Video Quality Evaluation Pipeline 

 

The proposed video quality evaluation pipeline setup is similar to that in 

Figure 1.  The concept behind the pipeline is as follows: if a video sequence with no 
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Source 
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distortion was placed into an imaging device (such as a PDA), the system could 

perform quality evaluation based on the hardware defects of the imaging device.  

During the playback of the video sequence in the imaging device, the screen of the 

imaging device is recorded.  Analyzing this recorded playback off the device screen 

will allow for the testing of the artefact based on the hardware defects, although this 

method assumes that the recording device has minimal errors introduced. 

 

However, it is difficult to create and control the amount of hardware artefacts 

in quantity.  Therefore, the situation in Figure 5 is simulated using another method.  

First, video sequences with added and controlled quantities of artefacts are generated.  

These distorted sequences are then placed into the imaging device.  The imaging 

device in this case, is a PDA device.  The final output on the imaging device display 

will appear to the viewer in a similar output as a hardware artefact.  This displayed 

image is recorded by a camera system, which can pass the captured video frames to 

the computer for video quality analysis.  The camera device has to be adjusted to 

obtain a clear image of the imaging device, and its parameters are fixed between the 

experiments.  In this work, the captured video frames are used as the control group for 

the subjective experiments in Section 5.  The new workflow using the distorted video 

sequences with quality loss is shown in Figure 6. 
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Figure 6.  Flowchart for Obtaining the Image for Evaluation 

 

The pipeline shown in Figure 6 will produce output images from the device 

screen that will be analysed.  In a typical video quality analysis, these images will be 

processed by the computer. 

 

The experimental study carried out in this work will determine the following 

factors for each video artefact: 

1) The characteristic of each video artefact 

2) The thresholds and parameters that should be measured with respect to the 

human visual system 

3) Determining the validity of the threshold parameters obtained in the 

subjective experiments 

 

Camera System 

Captured Video 
Images 

PDA Screen 
 

Video Sequence with 
Artefacts 
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The characteristic of each video artefact was described in Section 3.  With 

respect to each of the video artefact, the subjective experiments are carried out in 

different stages to determine each of the factors.  These thresholds are determined 

with relation to the human visual sensitivity.  After achieving the threshold 

parameters, following the workflow in Figure 6, the results can be validified with 

experimental programs.  The experiment program reads the output video images from 

the camera, and is expected to give similar results to the subjective experiments. 

 

The experiment is dependent on the environmental design and setup.  In this 

work, the camera is used to capture the image of the video playing on the PDA screen 

and do automatic detection of the video artefact in real time.  As the camera needs to 

record the video image off the imaging device screen, external environment factors 

such as lighting and the camera focus become factors that can affect the results of the 

experiment.  The camera focus and resolution is adjusted to obtain optimum sharpness 

where the details of the image can be seen without the presence of electrostatic lines.  

In a video quality evaluation, this pipeline process will allow for the system to pick up 

a video artefact based on the hardware.  In an automatic detection case, this will allow 

for a detection of the video artefact due to the hardware defect, assuming minimal 

defect in the camera device.   

 

4.1 Camera Setup 

 

The camera setup is shown in Figure 7.  The camera used for the image 

capture process was a CV-M9 CL model JAI camera [26] which is a progressive scan 

RGB colour CCD camera with a maximum resolution of 1024 x 768 pixels.   
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Figure 7.  Camera and System Physical Setup 

 

The camera records the image of the PDA screen which will be analysed by 

the computer in real time.  For the subjective tests, the captured video sequences 

recorded by the camera are used for the subjective experiments.  In this work, the 

imaging device under investigation is a D810 Dopod model PDA.  The distance of the 

camera to the screen is adjusted so that the captured area of interest would be about 

the size of a typical VGA video frame (640 x 480 pixels).  By default, the maximum 

resolution of the camera is bigger (1024 x 768 pixels) but the smaller VGA frame size 

is used because it is more commonly used, especially for PC based processing and the 

smaller VGA frame size allows for faster computations.  An Intel Pentium-4 PC with 

clock speed of 3.0GHz, 1 GB RAM, and SCSI hard disk of speed 10,000 rpm was 

used for the processing of the captured video sequences. 

 

Due to the physical setup, there are some problems with the captured images.  

Firstly is the presence of electro-static lines distortions that appears on the captured 

frames.  To overcome this issue, the camera lens focus had to be re-adjusted to a trade 

off so that the details of the resultant image could be seen, along with a reduction in 



 41

the presence of electrostatic lines.  The second issue deals with the surrounding 

environment and has a strong influence on the captured image of the PDA screen.  

Excessive light thrown onto the PDA screen will result in an output image which has 

lower contrast and thus, makes the image content harder to view and process.  In this 

work, the PDA screen is adjusted to be brightly lit, while the surrounding room 

environment is kept dark.     

 

4.2 Subjective Videos Setup 

 

Other than the camera, the PDA, and the surrounding environment, test videos 

were also required for the subjective experiments.  For this work, test videos were 

prepared for the subjective experiments and loaded into the PDA, which in turn 

displays the videos that are then captured by the camera at a resolution of 640 x 480 

(VGA).  The processed video sequences used for the subjective tests were of 

progressive type (non-interlaced); of video size 352 x 288 (CIF) pixels, and YUV 

4:2:0 formats.  

 

Five sets of video sequences were selected from the Moving Pictures Experts 

Group (MPEG) video dataset [27].  These video sets are commonly used in video 

compression research and in this work.  These videos were used as the main reference 

videos.  Using these reference videos, video sequences with varying quantity of 

artefacts were generated for the subjective experiments.  The following Table 1 lists 

the video sequences with some brief description of the contents. 



 42

 

Video 

Sequence 

Description of Video Sequence Content 

Foreman A man with a headgear talks in the foreground, with a various number of 

facial expressions.  In the beginning of the video, the background scene is 

static, while the end of the video shows the background shifting very 

quickly. 

Tempete A group of plants is shown.  There are many flying leaves which are 

quickly falling.  The camera slowly pans out as the video progresses. 

Mobile A toy train moves slowly in a room.  The room environment consists of 

many objects such as a spinning metal piece, and a calendar on the wall.  

The background scene shifts slowly. 

News This video consists of 2 news-announcers in the foreground and a 

television screen in the background.  The news-announcers are sitting in 

stationary poses and talking.  The television shows a ballerina moving 

vigorously. 

Hall This static scene consists of a corridor within an office.  Two men start at 

different angles of the office and walk in opposite direction past each 

other. 

  

Table 1. Video Sequences with Descriptions 
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Video Sequence Speed of Foreground 

object 
Speed of Background 

objects 
Foreman Medium - high Stationary - high 
Tempete High Medium 
Mobile Low Low 
News Low Stationary 
Hall Medium Stationary 

 

Table 2. Content Characteristics of Video Sequences 
 

 

Table 2 provides information of the speed of the moving objects in the video 

sequences.  The video artefacts added to each video sequences are as follows: 

 Freeze artefacts:  For every set of m video frames in the sequence, remove 

n normal frames and insert n freeze frames.  Freeze frames were produced 

by replicating the first frame of the consecutive set before the removal.  By 

duplicating the frames, there is no content change within that time period, 

hence simulating the ‘freeze’ effect.  In this work, the value of m is fixed 

at 12, whilst the value of n was used for producing the artefacts in the 

subjective experiments ranged from 1 to 5. 

 Loss artefacts:  The operation of adding loss artefacts is similar to that of 

freeze artefacts.  For every set of m number of video frames in the original 

video sequence, n number of video frames are removed, and replaced with 

n number of black screens.  The black screens in this work are blank 

empty frames with no significant content in them.  The lossy frame is 

defined as a complete black screen which abruptly occurs.  In this work, 

the value of m is 10, and the value of n ranges from 1 to 3.  The videos 

used in the subjective experiments used the full-loss artefacts. 
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 Blockiness artefacts:  To generate the artefacts for these videos, the 

reference videos were passed through an MPEG-2 encoder for 

compression.  They were then decompressed again to obtain the video at 

different bit rates.  The blockiness effect was obtained through the 

quantization process.  The bit rates used were 128, 256, 384, 512, 768 and 

1024 kbits per second. 

 

Using the original 5 reference videos, the total number of test videos generated 

with artefacts was 70 videos.  The videos were generated under controlled conditions.  

Each video consisted of 250 frames.  25 of the videos were added with the freeze 

artefact, 30 sequences were with the blockiness artefacts, and 15 sequences consisted 

of the loss frames artefacts.  These 3 simulated artefacts are considered as the video 

artefacts that are commonly introduced through the hardware process. 
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5 The Subjective Experiments  

 
The subjective experiments are carried out to quantify the sensitivity of the 

human visual system to the video artefacts.  The subjective experiments were 

conducted using the videos sequences created (see Chapter 4).  The experiments 

consisted of 15 participants (subjects) watching the video sequences (i.e, the recorded 

images of the PDA screen) in randomised order on a monitor.   

 

5.1 Setup of Subjective Experiment 

 

The video sequences were placed and viewed by the subjects on a Tobii 1750 

eyetracker LCD monitor, of which its specifications are shown in Table 3.  

 

Monitor size 17 inch, 1280x1024pixels 
Monitor Resolution 1280x1024pixels 

Resolution of Video Frame CIF size 
Monitor Refresh rate 75 

 
Table 3. Hardware Specifications of Monitor 

 

Similar to the video recording process, the room in which the subjective 

experiments were carried out was kept dark.  This enabled the details on the monitor 

to be viewed clearly without interference from other light sources on the monitor 

screen.  This setup enables the experiment participants to focus fully on the 

information displayed on the monitor which is considered as the standard way for 

conducting subjective experiments.  [3] 
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During the subject experiment, the test participant is seated in front of a LCD 

monitor (the Tobii Eyetracker system).  The viewing distance between the participant 

and the LCD monitor is 4H, where H is the length of the image when displayed on the 

monitor.  In this work, the participant sits at a distance of 60cm from the monitor 

screen. 

 

5.2 Procedure of Subjective Experiment 

 

Most subjective experiments require the participants to quantify the overall 

video quality.  In this work, the subjective experiment is conducted to determine the 

participants’ visual sensitivity to the individual video artefacts.  The objective is to 

determine the human perceptual sensitivity to each artefact which is later validated 

with further experimentation.  The subjective experiment is conducted by displaying a 

series of videos with varying quantities of added artefacts.  Thereafter, the participant 

is asked to rate the individual artefacts based on the severity of its presence.  If the 

presence of the artefact in the video is visually annoying, the participant gives a 

higher rating for the artefact’s severity.  While individual opinion may differ, these 

results generally reflect how sensitive the human eye is to the presence of video 

artefacts.  

 

The procedure of the subjective experiments is similar to the ITU work [3], 

but with some modifications.  We used a modified version of the Double Stimulus 

Impairment Scale Method (DSIS) where part of the method was demonstrated and 

shown in Lu’s work [12].  The original DSIS method is complex and requires the 

participant to do a high amount of manual entry during the experiment.  The selected 
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DSIS variant II method reduces the effort needed on the part of the participants, and 

differs on the way participant answer questions during the experiments. 

 

The original DSIS procedure is as follows; first the reference video sequence 

is shown, followed by the processed video sequence.  The participant rates the video 

quality thereafter.  The reference video sequence is the original uncompressed 

sequence, while the processed video sequence consists of added video artefacts.  The 

DSIS variant II procedure in Lu’s work [12] differs in that it repeats the original 

sequence and processed sequence twice as shown in Figure 8.  This additional 

procedure gives the participant more opportunity to compare the videos and identify 

the artefacts.  Another difference between the DSIS variant II procedure and its 

original is in the way the questions are posed to the participants and the way 

participants answer these questions.  In the original DSIS method, 5 varying levels of 

descriptions are used to express the range of video quality.  These levels consists of 

‘Bad’, ‘Poor’, ‘Fair’, ‘Good’, and ‘Excellent’.  The levels are respectively represented 

by a score range of 1 to 5, with ‘Bad’ having the lowest score of 1 and ‘Excellent’ 

having the highest score of 5.  

 

However, our experiments focus on the sensitivity to the presence of artefacts 

while the original method was intended to quantify the severity of distortion on the 

overall video quality.  Therefore, the questions posed in the subjective experiment 

have been changed.  The scoring range is replaced with a ‘yes’/ ‘no’ type question and 

the assessor was asked if he/she noted the presence of any video artefacts in the 

processed video.  By randomizing the videos and tabulating the results, the threshold 

for each parameter described in Section 3 can be estimated. 
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Instructions for the experiments were described in English.  All participants 

come from an English speaking background and therefore have a reasonable level of 

understanding to participate in the experiment.  During the experiments, an 

experiment conductor was on-site to help explain the experiments procedures, answer 

any questions and control the pace of the experiments. 

 
 

 

 Reference Processed Reference 

A B A*  B*  

Processed 

Vote 1 

 

 

Figure 8.  DSIS Variant II Basic Test Cell Process 

  

Figure 8 shows the procedure of the DSIS variant II basic test cell.  A fixed set 

of display operations is performed for each processed sequence.  Screen messages are 

inserted between the displays of each sequence; this will assist in keeping the pace of 

the experiment and signalling to the assessor of the upcoming video status.  The 

screen messages were shown briefly on the screen for about 2 seconds.  They consist 

of the alphabets ‘A’, ‘B’, and the word ‘Vote’.  Display of the letter ‘A’ meant that 

the upcoming video was a reference video, ‘B’ meant that the video was a processed 

video, whilst having a ‘*’ symbol next to the corresponding letter indicated that the 

upcoming video was being displayed for a second time.  The ‘Vote’ screen indicated 

the time period where the participant could give his answer and comments. 
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Figure 9.  Screen Messages used during Subjective Tests 

 

Figure 9 shows the individual screen messages of ‘A’, ‘B’, and ‘Vote’, which 

were displayed for each set of the DSIS cell.  The procedure is as shown in Figure 8.   
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The message ‘Vote’ remains on the screen until the participant provides 

his/her input about the presence of the video artefact.  The participant must determine 

if a video artefact (freeze, loss or blockiness) is present in the processed video 

sequence.  These video artefacts are the simulation of hardware artefacts.  

 

5.3 Preparations for the Experiments 

 

Each experiment participant is trained before the actual subjective experiment.  

This provides the participants with some confidence and understanding before the 

actual experiment.  Before the actual experiment, the experiment procedure was 

explained carefully to the participant.  Following the explanation, examples of each 

video artefact were shown.  These video artefacts were generated with a MPEG 

reference video set called ‘hill’, which is the sequence used for training the 

participant.  This video consists of a progressively moving camera which shows 

scenery consisting of flowers and a house.  The objects in the video content are 

moving at a moderate speed.  This training exercise was done in the same order of the 

DSIS cell shown in Figure 8.   

 

For subjective experiments, the threshold parameters were obtained using 15 

participants as this would help to develop a sufficient large database.  15 participants 

were chosen as a sufficient large sampling database.  They are a mixture of male & 

female experts from the image processing field and non-experts, and some wore 

spectacles.  The participants’ ages range from 20 to 50 years old.  Each participant 

was scheduled for the experiment at individual timings.  The summary of the 

subjective experiment participants topology are listed in the following Table 4. 



 51

 

 

Subject Gender Spectacles 
1 Male No 
2 Male Yes 
3 Male Yes 
4 Male Yes 
5 Female No 
6 Female Yes 
7 Female No 
8 Male Yes 
9 Male Yes 
10 Male Yes 
11 Female Yes 
12 Male No 
13 Female Yes 
14 Male Yes 
15 Male No 

 
Table 4: Overall Subject statistics 

 
 

Throughout the experiment, the participants’ responses were recorded and 

tabulated by the experiment conductor who was there to control the pace and timing 

of the experiment. 
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6 Experimental Results 

 

The results of the subjective experiments are collected and tabulated.  The 

results for the freeze frames subjective experiment presented in Table 5 shows the 

number of freeze frames occurrences required before each assessor considers the 

occurring artefact as a freeze frame artefact.  There is a set of outlier values present in 

user 12, for the News and Hall video sequences, but its impact is reduced due to 

averaging between the participants. 

 

Subject Fore_ 
freeze 

Temp_ 
freeze 

Mobile_ 
freeze 

News_ 
freeze 

Hall_ 
freeze 

1 3 3 3 2 2 
2 2 3 2 2 2 
3 3 3 3 2 2 
4 3 3 4 3 3 
5 3 2 3 2 3 
6 3 2 2 2 2 
7 3 3 4 2 2 
8 2 3 3 3 2 
9 2 2 2 2 2 

10 2 4 3 2 2 
11 4 3 4 3 3 
12 2 3 2 6 6 
13 2 3 2 5 3 
14 3 3 3 3 2 
15 2 3 2 2 2 

Mean 2.6 2.8667 2.8 2.7333 2.5333 
 

Table 5: Results of Freeze Subjective Test 
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Similarly, the results for the loss video artefact are tabulated in Table 6.  The 

recorded values are the number of loss frames occurrence required for the assessor to 

consider it as a loss video artefact.   

 

Subject 
Fore_ 
loss 

Temp_ 
loss 

Mobile_ 
loss 

News_ 
loss 

Hall_ 
loss 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 
4 1 1 1 1 1 
5 1 1 1 1 1 
6 1 1 1 1 1 
7 1 1 1 1 1 
8 1 1 1 1 1 
9 1 1 1 1 1 

10 1 1 1 1 1 
11 1 1 1 1 1 
12 1 1 1 1 1 
13 1 1 1 1 1 
14 1 1 1 1 1 
15 1 1 1 1 1 

Mean 1 1 1 1 1 
 

Table 6: Results of Loss Subjective Test 
 

 

Table 7 summarizes the results from Table 5 and Table 6, about the average 

number of artefact frames occurrences required for each video sequence.  The left 

column of Table 7 indicates that it takes at least more than 2 consecutive freeze 

frames to notice a freeze artefact for all video contents.  For the practical execution of 

the verification program, the frame number input is required to be an integer value, so 

the threshold value for the freeze frames occurrence is rounded up to 3.  The right 

column of Table 7 shows that it takes only one loss frame for the loss artefact to be 

noticed. 
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 Average 
Number of 

Freeze Frames 

Average 
Number of Loss 

Frames 
Fore 2.6 1 
Temp 2.8667 1 

Mobile 2.8 1 
News 2.7333 1 
Hall 2.5333 1 

 
Table 7: Tabulation of Overall Freeze and Loss Video Artefacts Results 

 
 
 

Compared to freeze and loss, the blockiness video artefact is more dependent 

on video content.  The factor identified for the subjective experiment was the amount 

of compression required before the assessor considers the video sequence to be a 

blocky one.  The amount of compression is defined by the bit rate of the compressed 

video.  Results of the blockiness subjective experiments in following Table 8 shows 

all of the assessors considered videos from 3 sequences (namely, Fore, News, and 

Hall), and consisting of compression rate of less than 768 kbits/sec to consist of 

blocky video artefacts.  The tabulated results for the blockiness test are shown in 

Table 9.  It can be seen that for videos consisting of the Temp and Mobile sequences, 

some assessors considered the videos of lower compression rate of 1024 kbits/sec to 

still be blocky. 
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Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

128 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
256 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
384 Y - Y Y Y Y Y Y - Y Y Y Y Y Y 
512 Y - Y Y - - - Y - Y Y - Y Y Y Fo

re
 

768 Y - - Y - - - - - Y - - Y - - 
128 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
256 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
384 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
512 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
768 - Y Y Y Y Y - Y Y Y - Y Y Y Y 

Te
m

p 

1024 - Y - - - - - Y Y - - - - - - 
128 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
256 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
384 Y - Y Y Y Y Y Y Y Y Y Y Y Y Y 
512 Y - Y Y Y Y Y Y Y Y Y Y Y Y Y 
768 Y - Y Y - Y Y Y Y Y Y Y Y Y - 

M
ob

ile
 

1024 Y - - - - - - Y Y - - - - - - 
128 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
256 Y Y Y Y Y Y - Y Y Y Y Y Y Y Y 
384 Y Y - Y - Y - - - Y Y - Y Y - 
512 Y - - Y - - - - - Y - - Y Y - N

ew
s 

768 - - - - - - - - - Y - - Y - - 
128 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
256 Y Y Y Y Y Y - Y Y Y Y Y Y Y Y 
384 Y - Y Y - - - Y Y Y - Y Y Y Y 
512 - - - - - - - - - Y - Y Y Y - 

H
al

l 

768 - - - - - - - - - - - - Y - - 
 

Table 8: Results of Blocking Subjective Test 
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Su
bj

ec
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fo
re

 
768 256 512 768 384 384 384 512 256 768 512 384 768 512 512 

Te
m

p 

512 1024 768 768 768 768 512 1024 1024 768 512 768 768 768 768 

M
ob

ile
 1024 256 768 768 512 768 768 1024 1024 768 768 768 768 768 512 

N
ew

s  

512 384 256 512 256 384 128 256 256 768 384 256 768 512 256 

H
al

l 

384 256 384 384 256 256 128 384 384 512 256 512 768 512 384 

 
Table 9: Tabulated Results of Blocking Subjective Test 

 

The results for the freeze and loss video artefacts are consistent for the various 

sequences.  The results from these two subjective tests are verified with algorithms in 

the following sections.  Using another set of video sequences with known number of 

freeze and loss frames occurrences, the threshold retrieved from Table 7 will enable 

the artefacts in this new set of sequences to be detected.  The physical setup for the 

camera, imaging device and computer system follows that of Section 4.1.  The 

detection algorithms used for the freeze and loss video artefacts are explained in 

Sections 3.1 and 3.2.  We examine the validity of the test results in the following 

section. 
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6.1 Examining Validity of Subjective Test Results 

 

A C++ based software application is created to test the subjective test results.  

This application detects the artefacts from the mobile device screen in real time.  A 

screenshot of this application is shown in Figure 10.  

 

The program runs in real time on a PC, and displays the current captured 

camera image.  Users are able to draw an area of interest around the image in the 

screen of the PDA device to select the area of interest for detection analysis. 

 

Figure 10.  GUI of Artefact Detection Application 
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Figure 11.  Area of Interest drawn around the Image  
 

The parameters values obtained from the subjective experiments are tested 

using another set of video sequences.  Given these values, the implemented 

application should detect the artefacts on this set of sequences. 

 

The set of video sequences consists of videos from MPEG standards and the 

RSSCA testing video set.  The video set consists of the sequences: coastal guard, 

dancer, group, royangle, and squirrel.  The video artefacts were inserted in the method 

used in Section 4.2.  Similarly, the physical environment follows the conditions in 

Section 5.1.  For the MPEG video set, there were 20 occurrences of freeze artefacts 

and 25 occurrences of loss artefacts respectively.  The RSSCA video set consisted of 

fewer artefacts but each artefact lasted for a longer duration.  On multiple loops of the 

camera recording the video from the PDA screen, the implementation should be able 

to detect the artefacts consistently. 

 

Given a test sequence with p artefact frames, if the system accurately detects q 

artefacts and picks up r artefacts of false alarm, the detection accuracy is computed as  
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the formula: (q-r)/p*100%.  During the experiment, any artefact detections done by 

the system is recorded, and the results can be examined by viewing these recordings.  

The following paragraphs present the individual results for the freeze and loss 

artefacts. 

 

Freeze video artefacts: In an optimum situation, the detection system was able 

to detect 95% of the freeze video artefacts.  In the worst case, there was a case of false 

alarm when 2 consecutive freeze sequences were counted as a single occurrence of 

freeze artefact. 

 

Loss video artefacts: The system detection rate was 97%.  There were less 

occurrences of false alarms for the loss artefact as compared to the freeze artefact.  

However, from examining the video recordings, there were instances of missed 

detections where a Half loss frame is labelled as a Normal frame instead.  This is due 

to the percentage of data loss between consecutive frames not being significant 

enough to trigger detection within the system.  These Half loss frames consist of data 

loss and therefore would be considered as lossy frames to the viewer. 

 

6.2 Discussion 

 

In following section, we raise several issues about this work with respect to 

the subjective experiments and the characteristics of the individual artefacts.  The 

frame loss and blockiness video artefacts exhibit specific cases which may affect the 

effectiveness of the algorithm. 
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For the frame loss artefact, the assumption used in the detection workflow is 

that frames with loss artefacts consist of low grey level values, as shown in Figure 3.  

However, if this definition is expanded to loss frame with high grey level values, the 

algorithm used would need to be corrected.  For this situation, the mean variance of 

the image frame could be used as the means for detection instead. 

 

The frame loss detection implemented in Section 3.2  would fail in cases of a 

scene transition to a dark scene.  Although this is not a frequent case, this situation 

must be noted.  It would be picked up as a false alarm. 

 

During the subjective experiments, the blockiness artefact appears to have less 

consistent results between assessors as seen in Table 9 due to its dependence on its 

content and the assessors’ varying opinions.  Although the detection algorithm was 

not implemented to detect the blockiness video artefact, several characteristics of the 

blockiness artefact can be observed during the experiments.  Firstly, video sequences 

with fast moving objects have blocky artefacts that are spotted by the assessors even 

at higher bit rates.  One sample sequence is the tempete video with fast falling leaves.  

Another type of video with such noticeable artefacts is the image sequence with 

complicated textures: mobile sequence.  This is due to the quantization process in 

compression creating the blocky regions at areas of the image which are moving or 

consist of complicated textures. 

 

Besides the individual video artefacts, one of the topics that are not covered is 

how the video content contributes to the human visual sensitivity.  For instance, the 
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human visual system has a heightened sensitivity to artefacts found on the human face 

in the foreman video.   
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7 Conclusion 
 

In this work, subjective experiments are conducted to obtain threshold 

parameters for the human perceptual sensitivity for three common video artefacts: the 

frame freeze, frame loss, and blockiness artefacts.  The workflow is designed with the 

purpose of performing automated video quality analysis of mobile devices.  This 

setup is used to pick up on hardware faults through detection of the video artefacts. 

 

Video sequences are recorded off the PDA screen, using a camera in real time, 

in a dark room environment.  Through the subjective experiments, the parameters and 

related variables were determined.  From the subjective tests, it is shown that it takes 

an average of 3 freeze frames to occur before an assessor notices a freeze artefact, and 

it takes 1 loss frame for the assessor to notice the loss artefact.  For the blockiness 

artefact, it is seen that for videos with fast moving content or complicated textures, the 

assessors detects the artefacts at roughly 1024 kbits/sec.  For other set of videos, the 

blockiness artefact was detected at 768 kbits/sec. 

 

The parameters were dependent on the spatial and temporal properties of the 

video artefacts.  The results of the experiment are then passed through a software 

implementation of the detection algorithm, using a second set of video sequences.  

The implemented software tests have a range of over 90% detection rate for the 

validation stages. 
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7.1 Future Works 
 

The results of the subjective tests could be used for further investigations in 

the area of quality analysis.  While this work provides a way to automatically detect 

the artefacts, the environment is still heavily controlled and uses several assumptions 

in its implementation.  By understanding the limits of the human visual, it brings 

further foresight towards future developments in the field of video quality metrics or 

quality evaluation. 

 

Another possible area of future research is how each video artefact dominates 

in the presence of each other.  In broadcasted video sequences, there are often cases 

where the freeze and blockiness artefacts occur at the same time.  A subjective 

experiment could be designed such that controlled pairs of artefacts are placed into 

the viewed video sequences.  Hence, the point of interest is which artefact is more 

likely to be noted by the assessor.   
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Appendix A 
 

This appendix consists of all the diagrams and parameters which were used in the 

freeze algorithm. 

Freeze Artefact Detection Algorithm 

Figure 12 shows the diagram of the workflow used for detecting the freeze 

artefact as explained in Section 3.1. 

 

 

Figure 12.  Flowchart for the Detection of the Freeze Video Artefact 
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For the freeze artefact algorithm in Figure 12, the following terms and 

parameters in Table 10 are used: 

 

Parameters Detail 

counter The integer variable records the number of freeze frames (frames 

with no visible content change) that has occurred in consecutive 

frame sequence.  Its default value is 0.  If the next frame is 

detected as a non-freeze frame, the counter parameter resets to its 

default value. 

in_Freeze This is a TRUE/FALSE flag variable that indicates that the 

algorithm is in the process of evaluating a possible sequence of 

consecutive freeze frames.  Its default value is FALSE.  The 

in_Freeze variable is TRUE when at least 1 freeze frame is 

detected.  When the encountered consecutive frame is a freeze 

frame, the value remains as TRUE, otherwise, the value resets. 

FreezeThreshold This is a float threshold parameter which is used to determine the 

frame status.  Another discriminant value is first computed from 

two consecutive frames to determine the amount of content 

change.  This discriminent value is checked against the 

FreezeThreshold parameter; if the discriminant value is lower than 

the threshold, this means there is a lack of content change between 

the frames, and therefore the current frame is considered as a 

‘freeze frame’ and in_Freeze value is changed to TRUE.  The 

higher the value of FreezeThreshold the more noise and motion is 

tolerated before determining the frame to be a freeze frame. 
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FreezeLimits This is an integer threshold parameter.  Before a consecutive series 

of freeze frames is considered to be a single occurrence of a freeze 

video artefact, the minimum number of freeze frames required 

must be known.  The value for this threshold parameter was found 

through the subjective experiments in Section 5.  The value for this 

was 3 frames. 

FreezeFlag This is a TRUE/FALSE flag variable.  The default value is 

FALSE.  When one or more freeze video artefacts are detected, the 

value is TRUE, otherwise, the value resets to default. 

 
Table 10: List of Parameters used in Freeze Artefact Detection 



 70

Appendix B 
 

This appendix consists of all the diagrams and parameters which were used in the 

freeze algorithm. 

Loss Artefact Detection Algorithm  

Figure 13 shows the diagram of the workflow used for detecting the frame loss 

artefact as explained in Section 3.2.  The step ‘Update FrameState’ involves another 

sub-process which is further illustrated in Figure 14. 
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Figure 13.  Flowchart for the Detection of the Loss Video Artefact 
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For the loss artefact detection algorithm in Figure 13, the following terms and 

parameters in Table 11 are used: 

 

Parameters Detail 

Current_FrameState This variable records the current frame state.  3 possible values 

for this parameter are Normal, Half, and Full.  The initial 

default for this variable is Normal.  This variable is updated 

through the sub-process UpdateFrameState. 

counter This is an integer variable which records the number of 

consecutive loss frames occurrences.  The default value is 0.  

This variable is incremented for each occurrence of frames 

with loss artefacts.  When a normal frame is encountered 

again, this counter is reset to its default. 

in_Loss This flag variable indicates the process of evaluating a loss 

artefact.  When at least one loss frame is detected, the flag 

variable is TRUE.  The default value is FALSE.  When the 

system encounters a normal frame again, the in_Loss 

parameter will return to its default value. 

LossThreshold This is the threshold parameter that determines the maximum 

amount of pixel change that must occur before a frame status 

(CurrentFrameState) check is done.  Its value must be a float.  

If the discriminant value D2  is larger than the LossThreshold, it 

means there was a significant change in the image content.  

Otherwise, there was no significant change, and the next pair 

of consecutive frames can be retrieved.  To check the frame 
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status, the sub-process UpdateFrameState is called.   

LossLimits This is the integer threshold parameter that determines the 

minimum number of loss frames that must occur before it is 

considered as a loss artefact.  For this range of frames, in_Loss 

value must remain TRUE.  The value for this parameter was 

found through the subjective experiments in Section 5. 

LossFlag This is a flag variable which value depends on the detection of 

the loss artefact.  Its default value is FALSE.  When a loss 

artefact is detected, the flag variable value is TRUE.  

Otherwise, the occurrence of a non-loss frame will reset the 

value of variable. 

 

Table 11: List of Parameters used in Loss Artefact Detection 
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Figure 14 shows the process used for determining the current frame status as 

described in Section 3.2. 

 

 

Figure 14.  Sub-Process of the UpdateFrameState found in Loss Detection 
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For the sub-process of determining the frame state in diagram Figure 14, the 

following terms and parameters in Table 12 are used: 

 
 
Parameters Detail 

Update FrameState The sub-process to update the loss status of the 

current frame. 

Previous_FrameState This variable stores the previous frame state.  The 

values could be Full, Half or Normal. 

Num_ChangedPixels This variable represents the number of pixels whose 

grey level values have changed significantly between 

the previous frame and current frame due to possible 

data loss.  For this work, the value of change required 

between grey levels is 20. 

Num_ChangedLowGreyPixels This variable stores the number of pixels within 

variable Num_ChangedPixels which are of low grey 

level values.  Pixels of interest are those with grey 

level values of 40 and lower. 

UpperLimits This parameter sets a threshold which is used to 

determine if the current frame is a Full loss frame.  

This process is used when the previous frame state is 

Normal or Half.  The parameter UpperLimits is set at 

a percentage of 85%. 

LowLimits Similar to the UpperLimits parameter, this sets the 

threshold to determine if the current frame state was 
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Half or Normal.  This process is used when the 

previous frame state is Normal or Half.  The 

parameter LowLimits is set at a percentage of 50%. 

Limits When the previous frame state was a Full loss frame, 

this parameter represents a threshold percentage 

needed to determine if the current frame state is 

Normal or Half.  This parameter is used if the 

previous frame state was a Full loss frame.  The 

value of this parameter is set at a percentage value of 

75%.   

FrameSize This variable is the total number of pixels within the 

frame, and is a product of the width and length of the 

video frame. 

 

Table 12: List of Parameters used in the Sub-Process UpdateFrameState 
 

 


