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Summary 

Mammary stem cells (MaSC) are under stringent scrutiny these recent years, due in no 

small part to the fact that breast cancer is the most common cancer among females 

worldwide and that MaSC have been extensively studied as a system to delineate the 

pathogenesis and treatment of breast cancer. However, research on MaSC requires 

tissue biopsies which limit the quantity of samples available. Taking reference from 

other systems with epithelial cells’ lining, studies have document the presence of the of 

the stem cell in the luminal discharges due to the proximity of the stem cell niche to 

their luminal cavities. For example, mesenchymal progenitor cells have been isolated 

through the collection of human menstrual blood and urothelial stem cells have been 

derived from urine. Extrapolating these reports to a tissue of common lineage, they 

suggest the plausibility of mammary stem/ progenitor cells being shed into human 

breast milk (HBM) either by means of sloughing or active shedding into the lumen for 

yet unknown purposes during a time of intense cellular turnover. 

 

In my study, I hypothesised that stem cells are shed into the HBM and aimed to isolate 

them from HBM. Successful derivation of these cells from HBM may aid progress of 

research in mammary stem/ progenitor cells by providing a novel and non-invasive 

source. In addition to allowing a comprehensive understanding of the various 

components of HBM throughout the entire lactational period, this novel cell source may 

contribute to the reconstruction of the mammary tissues, and the unshedding of 

mechanisms behind the link between MaSC and breast cancer. 

 

HBM contains a mixed population of cells of haemopoietic, mesenchymal and neuro-

epithelial lineages. Further analysis of the adherent cultured cells reveals a 
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heterogeneous population of cells with differential expression of cytokeratin (CK)5, 

CK14, CK18 and CK19. In addition, there was a small population of nestin-positive 

cells (16.0±2.6%), of which 53.1±4.2% and 55.2±2.85% co-stained with CK5 and CK 

19 respectively, and only 22.3±1.5% and 26.0±2.7% co-stained with the more mature 

epithelial markers, CK14 and CK18 respectively. This suggests a hierachical model of 

mammary cells within our culture system with the nestin+ cells being the putative 

MaSC followed by the intermediates of nestin+CK5+ and nestin+CK19+ cells, which 

are in turn more immature than the nestin+CK14+ and nestin+CK18+ cells. The 

terminally differentiated cells in our model would be the nestin-CK14+ and nestin-

CK18+ cells. 

 

In order to prospectively isolate putative MaSC for characterisation, two different 

approaches were undertaken. Firstly, flow cytometric sorting of side population (SP) 

cells revealed that 2% of cellular component of HBM were able to exclude Hoeschst 

33342 dye, which selects for primitive stem cell populations. HBM SP cells co-

expressed nestin but not the mature epithelial marker CK18. However, attempts to 

culture expand these putative MaSC in a wide range of in vitro conditions did not result 

in any mammary nor haemopoietic stem cells. Next, prospective isolation through 

selection of CD133 positive cells was done. Two percent of HBM were CD133-positive. 

These cells did not contain any haemopoietic activity, nor were attempts to expand 

them successful.   

 

The derivation of MaSC from HBM would have availed a non-invasive source of stem 

cells of relevance to the understanding of lactation biology, oncogenesis and 

regenerative medicine. While some markers of primitive cell types of hierarchical 
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importance were detected, there was no evidence of any cell types with self-renewal 

and multi-lineage differentiation capacity. This may in part be due to poorly defined 

growth conditions, or the absence of such cell types in HBM. 
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 Lactogenesis and Lactation 

1.1.1 Lactogenesis 

Lactogenesis is defined as the process by which the mammary gland develops the 

capacity to secrete milk (Neville 1999). It can be divided into phase I and II. Phase I 

occurs during mid-pregnancy with the initiation of secretory differentiation with the 

synthesis of milk proteins and enzymes important to milk formation (Hartmann and 

Cregan 2001; Neville et al. 2001). While milk secretion through the ducts has not yet 

set in, increased concentration of lactose and α-lactalbumin can be detected in the 

plasma (Arthur et al. 1991; Atwood and Hartmann 1995) and lactose can also be 

detected in the urine (Atwood and Hartmann 1995). Phase II begins with the onset of 

copious milk secretion, typically within the first four days postpartum, following the 

drop in circulating progesterone levels (Atwood and Hartmann 1995; Neville 1999; 

Hartmann and Cregan 2001; Neville and Morton 2001).  

 

1.1.1.1 Regulation of Lactogenesis 

It has been well established that abrupt changes in the plasma concentrations of the 

hormones of pregnancy set lactogenesis in order. In a developed mammary epithelium, 

the constant presence of prolactin near 200ng/ mL and a fall in progesterone is essential 

for the onset of lactogenesis II (Kuhn 1983). In humans, this is illustrated when removal 

of placenta, the source of progesterone is necessary for initiation of milk secretion 

(Neifert et al. 1981) and that delayed lactogenesis occurs when placental fragments, 

capable of secreting progesterone is retained (Neifert et al. 1981). Besides the fall in 

progesterone, other hormones are required for the onset of lactogenesis II. Prolactin is 

essential for sustained lactation after the fall in placental lactogen that accompanies the 
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decline in progesterone levels post removal of placenta (Neville and Morton 2001). 

However, the amount of milk secreted is not directly related to the concentration of 

prolactin in the blood, but rather local mechanisms within the mammary gland (Neville 

1999).  One of them, the protein factor, FIL is secreted with the other milk components 

into the alveolar lumen and acts by reversible blockade of constitutive secretion in the 

mammary epithelial cell (Peaker and Wilde 1996). Thus, an increase in emptying brings 

about an increase in the rate of milk synthesis over a period of days and conversely, 

decreased emptying brings about a reduction in milk synthesis. 

 

1.1.1.2 Changes during Lactogenesis 

Milk production starts at less than 100mL/ day on day one postpartum and increases to 

an average of 500mL by day four. During this period, milk composition alters 

massively as lactogenesis progresses from Phase I to Phase II, with the fall in sodium 

and chloride concentrations and a rise of lactose concentration (Neville et al. 1991). 

Concurrently, the concentrations of secretory immunoglobulin A and lactoferrin 

increase dramatically and remain high up to 48hrs after birth (Lewis-Jones et al. 1985). 

Their concentrations fall rapidly after day two partly due to dilution as milk volume 

secretion increases, but their secretion rate is still substantial (2–3g/ day for each protein 

throughout lactation). Oligosaccharide concentrations are also high in early lactation, 

comprising as much as 20g/ kg of milk on day four (Coppa et al. 1993; Coppa et al. 

1999), falling significantly to a level of 14g/ kg of milk on day 30. The substantial 

volume increase between 36hrs and 96hrs reflects a massive increase in the rates of 

synthesis and/ or secretion of almost all the components of mature milk (Neville et al. 

1991), including but not limited to lactose, protein (primarily casein) (Patton et al. 1986; 

Chen et al. 1998), lipid, calcium, sodium, magnesium, and potassium.  
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1.1.1.3 Factors Associating with Lactogenesis 

There are numerous factors potentially associated with lactogenesis in humans which 

can be summarised in the following table.  

 

   Biological     Behavioural 

Maternal Parity     Motivation to breastfeed 

   Mode of Delivery   Social support 

   Labour Experience   Nursing frequency 

   Body mass index   Use of supplements 

   Smoking    Use of pacifiers 

   Breast/ Nipple abnormality  Breastfeeding experience 

   Breast/ Nipple surgery   

   Illness 

   Anxiety and stress 

   Retained placental fragments 

   Hypothyroidism, hypopituitarism 

   Ovarian theca-lutein cyst 

   Polycystic ovarian syndrome 

   Postpartum haemorrhage with Sheehan’s syndrome 

   Hormonal contraceptive administration first week postpartum 

 

 Infant  Birth weight    Temperament 

   Gestational Age   Suckling style 

   Suckling ability    
 

 

Table 1-1: Factors associated with lactogenesis. Adapted from (Dewey et al. 2001; 

Hurst 2007). 

 

The problem with failed lactogenesis can be subdivided into preglandular, glandular 

and post glandular (Morton 1994). An example of preglandular would be hormonal 

causes, such as retained placenta or lack of pituitary prolactin. Glandular causes might 

be surgical procedures, such as reduction mammoplasty or, possibly, insufficient 

mammary tissue. Lastly, postglandular would be any cause for ineffective or infrequent 

milk removal. This latter aspect has received insufficient attention. Observational 

studies have suggested that milk removal and/ or effective suckling are necessary for 

milk volume increase, at least in a proportion of females (Aperia et al. 1979; Morton 
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1994), although this is in contrary with other studies. Kulski et al suggested that milk 

removal was not necessary (Kulski et al. 1978) and Chen et al showed that it was the 

time of the first feeding and the breastfeeding frequency on day 2 postpartum that was 

positively correlated with the milk volume (Chen et al. 1998).  

 

Two other major risk factors have been shown to be responsible for delayed 

lactogenesis: long duration of labour (for natural deliveries) and urgent caesarean 

section, both of which are strongly related to the amount of stress experienced by both 

the mother and baby during parturition (Chen et al. 1998; Dewey 2001). These results 

affirm firstly, the impairing of milk ejection reflex by affecting oxytocin release during 

a feed and secondly, both maternal and fetal stress during pregnancy and childbirth are 

associated with impaired lactogenesis. Emotional stress postpartum is found to impair 

lactogenesis as well, highlighting the importance of additional care and guidance for 

women who experience highly-stressful circumstances (Dewey 2001). Initiation of 

lactogenesis has been found impaired with poorly-managed diabetes (Neville et al. 1988; 

Arthur et al. 1989; Neubauer et al. 1993) and high body mass (Hilson et al. 1997), 

which have more recently been found to be associated with delayed lactogenesis II 

(Chapman and Perez-Escamilla 1999; Chapman and Perez-Escamilla 2000).  

 

Dissecting the mechanisms in which various factors influence lactation and 

breastfeeding is required as a basis for analysing the possible effects on this process in 

situations where delayed or failed lactogenesis is suspected. Recognizing when and how 

to intervene in order to properly detect and assess the degree to which lactation is 

compromised will allow for individualized interventions and appropriate follow-up 

which would be invaluable in managing the initiation of breastfeeding, especially in 
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mothers of sick infants as well as in sick mothers of well infants (Neville and Morton 

2001; Hurst 2007). A collaborative effort between nurses, midwives, physicians, and 

lactation consultants will serve each mother with a coordinated and individualized plan 

of care for her unique situation. In addition, with the knowledge of the micro changes 

accompanying lactogenesis, as well as identifying compounds if any that may hinder 

milk secretion would provide a new index for predicting which women are likely to 

have problems initiating lactogenesis II (Neville and Morton 2001). On the whole, all 

these collectively would bring forward treatment and management soonest possible and 

on top of that, helping the mother recognize her full lactation potential, even when it 

falls short of exclusive breastfeeding, can result in a feeling of success and 

accomplishment (Hurst 2007). 

 

1.1.2 Lactation 

Lactation is the process of milk secretion which is prolonged as long as milk is removed 

from the gland on a regular basis. It is the defining characteristic of all animals of the 

class Mammalia, whereby there is the production of an externally secreted fluid, milk 

that is designed specifically to nourish the young of the species. In humans, breast milk 

has been recognized as the preferred nutrition for infants and exclusive breastfeeding up 

to six months. Thereafter, continued breastfeeding complemented by solid foods being 

recommended up to 2 years of age by international agencies and several US health 

organisations (World Health Organisation 1989; Institute of Medicine 1991; American 

Academy of Paediatrics 1997). 
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1.1.2.1 Milk Volume Production 

Milk secretion is a robust process that proceeds under normal physiologic principles as 

previously outlined [in Section 1.1.1] in at least 85% of postpartum women. Initiated at 

less than 100mL per day, it increases 36hrs after delivery, and continues to increase 

dramatically for the next 48hrs before plateauing off around 4 days postpartum (Arthur 

et al. 1989; Neville 1999). A meta-analysis of the volume of milk secreted by 

exclusively breastfeeding women showed that milk volume is remarkably fairly 

constant at about 800 mL per day in different populations throughout the world (Neville 

1999).  

 

With assistance in the techniques of breastfeeding, anecdotal evidence suggests that at 

least 97% of women can successfully breastfeed their infants. The lack of success is 

largely due to the ease in substituting breast milk with formula when infants have yet to 

adapt to the breast, at least in the Western countries (Neville 1999). However, in recent 

years, the increasing awareness of the benefits of breast milk is causing a paradigm shift 

in terms of proportion of women choosing to breastfeed who are further encouraged by 

the increasing number of support groups worldwide.  

 

1.1.2.2 Effects of Lactation 

1.1.2.2.1 Effects on breastfeeding female 

In humans, the metabolic demands of breastfeeding increase the maternal metabolism 

by about 20% of the usual metabolic output of a moderately active woman (Prentice 

and Whitehead 1987). Hence, very little adjustment, for instance, a slight increase in 

food intake or a slight increase in weight loss, is needed to compensate for the increase 
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in metabolic needs for secretion of breast milk (Neville 1999). While the adjustment in 

food intake is not drastic, calcium loss from their bones by the postpartum female 

would be significant (Cross et al. 1995; Krebs et al. 1997), due to the lack of oestrogen 

during the period of postpartum infertility when menses have yet to be resumed and 

therefore, food intake has to be adjusted to ensure increased calcium intake. 

 

It has been suggested that breastfeeding reduces stress levels in lactating females. Using 

rodents, it was found that a reduction in the usual endocrine response to stress including 

adrenocorticotropic hormone (ACTH), corticosterone, catecholamines, oxytocin and 

prolactin was found to be associated with lactation (Neville 1999). This result was 

similar in lactating women when their plasma levels of ACTH, cortisol and adrenaline 

were compared against a matched group of nonlactating women after graded treadmill 

exercise to simulate stress (Altemus et al. 1995). 

 

There have also been several studies highlighting the protective role of breastfeeding 

with regards to breast (Byers et al. 1985; McTiernan and Thomas 1986; Yuan et al. 

1988; Layde et al. 1989; Yoo et al. 1992; Yang et al. 1993; Enger et al. 1997; McCredie 

et al. 1998) and ovarian cancers (Risch et al. 1983; Rosenblatt and Thomas 1993; 

Shoham 1994). With regards to breast cancer, it was found that the level of relative risk 

reported varied from approximately 0.54 to 0.85 for the first three to six months of 

breastfeeding, from 0.39 to 0.71 at twelve months of breastfeeding, 0.4 to 0.72 for more 

than two years, and 0.35 for more than six years (Labbok 2001). The biological 

reasoning for this association include differences in cellular milieu (Kennedy 1994) and 

the lack of maturation of the mammary gland. Back in 1983, Risch et al found a 

protective effect of lactation (relative risk of 0.79 per year of lactation) in a 
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retrospective study of newly diagnosed patients with epithelial ovarian cancer although 

it was later proved to be accounted by the inhibition of ovulation through high prolactin 

levels generated by active breastfeeding (Risch et al. 1983). Subsequently by 1994, 

there were various conflicting findings on the protective effect of breastfeeding with 

ovarian cancer, with a balance towards a protective effect of breastfeeding in reducing 

risk of ovarian cancer (Shoham 1994). 

 

One of the most marked effects of lactation is its effect on fertility. Due to the presence 

of the suckling stimuli, luteinising hormone secretion remains in its suppressed state 

and secretion of ovarian steroids remains low. This results in natural contraception in 

the form of low fertility postpartum, in the presence of active breastfeeding (Neville 

1999). This postpartum suppression of fertility is believed to play an important role in 

birth spacing on a population basis in developing countries where prolonged 

breastfeeding is the norm and the use of supplementary feeding is delayed (Neville 

1999).  

 

1.1.2.2.2 Effects on infant 

There have been several studies reporting on the benefits of breast milk for the infant. 

These studies have reported a benefit of breastfeeding with respect to the reduction in 

the incidence and severity of infantile diarrhoea, respiratory and urinary tract infection, 

otitis media, Haemophilius influenzae meningitis, and other infections as well as the 

rate of sudden infant death syndrome (Pisacane et al. 1992; Owen et al. 1993; Baker et 

al. 1998; Wilson et al. 1998). Specifically, Baker and his colleagues found through 

analysing data from a survey of 8,501 women that breastfeeding for three or more 

months reduced the prevalence of wheeze and diarrhoea in the first six months of life 
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(Baker et al. 1998). Longitudinal studies also found that the protective effect of breast 

milk is dose dependent (Duncan et al. 1993; Duffy et al. 1997; Scariati et al. 1997; 

Cushing et al. 1998). 

 

It is becoming evident that breastfeeding also protects infants against illness beyond 

weaning, as indicated by several studies that included the follow-up of infants beyond 

the first few months of life (Davis et al. 1988; Koletzko et al. 1989; Takala et al. 1989; 

Howie et al. 1990; Gerstein 1994; Dewey et al. 1995; Saarinen and Kajosaari 1995; 

Wright et al. 1995; Wilson et al. 1998). Long term benefits of breastfeeding have been 

associated with reduced risks of developing allergic diseases, Type I diabetes mellitus, 

Crohn’s disease and malignant lymphoma (Davis et al. 1988; Koletzko et al. 1989; 

Gerstein 1994; Saarinen and Kajosaari 1995).  Breastfed infants are also believed to be 

at an advantage with respect to their long-term cognitive development and lower rates 

of neurologic disabilities (Lucas et al. 1992; Rogan and Gladen 1993; Lanting et al. 

1994; Temboury et al. 1994).  

 

In addition to its nutritional, anti-infective, immunologic, and developmental effects, 

breastfeeding is unique for its mode of feeding with important advantages of hygiene 

particularly in developing countries as well as physical and emotional bonding of 

mother and child (Kunz et al. 1999; Rodriguez-Palmero et al. 1999).  
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1.2 Breast Biology 

1.2.1 Anatomy 

Mammary tissue can be subdivided into the parenchymal and the stromal components. 

The parenchymal component is formed by a number of ‘treelike’ glandular structures 

derived from dichotomous branching of each of several ducts arising from the nipple. 

The major functional units of these glands are the lobular structures, situated at the end 

of the terminal ductules, which comprise several smaller blind ending ductules often 

referred to as terminal ductal lobulo-alveolar units (TDLUs), which has been defined by 

Russo and Russo as a cluster of approximately 11 small ductules or alveolar buds 

around a terminal duct that is embedded in specialized intralobular stroma (Russo and 

Russo 1987).  These TDLUs are lined by a continuous layer of luminal epithelial cells, 

which in turn are enmeshed by myoepithelial cells that contact the basement membrane.  

This entire structure is then surrounded by delimiting fibroblasts, and embedded in a 

specialized intralobular stroma (Howard and Gusterson 2000). These together with the 

adipose tissue and skin in the anatomical area constitute the stromal region (Mepham, 

1983). 

 

 During pregnancy, the terminal end ducts undergo further differentiation with the 

MaSC differentiating into alveolar epithelial cells which are arranged into single-layer 

spherical structures known as alveoli, ductal epithelial cells lining the ducts, as shown 

in Fig. 1.1 and myoepithelial cells that surrounds the alveoli, forming a layer separating 

the ductal and alveolar epithelial cells from the basement membrane. Each of the alveoli 

has a central lumen in which the synthesised milk is stored till time of release.  
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Cells in the mammary gland lie in a collagenous connective tissue framework known as 

the extracellular matrix (ECM). Extracellular matrix of the mammary gland is a highly 

complex mixture containing collagen, fibronectin, laminin, glycosaminoglycans and 

others (Streuli 1993). The basement membrane of the secretory cells is also part of the 

ECM and is produced at least in part by the secretory cell itself.  

 

 

Figure 1-1 Schematic view of lobulo-alveolar clusters. Before puberty, the cells are 

arranged into terminal end ducts. Cap cells surrounding them are postulated to be 

multipotent stem cells (A). The terminal end ducts undergo differentiation during 

pregnancy forming alveoli. Alveolar and ductal epithelial cells that line the ducts of the 

clusters are surrounded by a layer of overlapping myoepithelial cells (B). (Adapted from 

(Woodward et al. 2005). 

 

1.2.2 Cellular Component of Mammary Gland 

1.2.2.1 Epithelial Cells 

Mammary ducts are bilayered tubes composed of inner luminal epithelial cells 

surrounded by myoepithelial cells, which are in turn surrounded by an extracellular 

basement membrane (Anderson and Clarke 2004).  

 

Luminal epithelial cells express the sialomucin MUC1, which is present on their apical 

membranes, whereas myoepithelial cells express the common acute lymphoblastic 
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leukaemia antigen (CALLA) and smooth muscle actin (Gusterson et al. 1986; Taylor-

Papadimitriou et al. 1986; Taylor-Papadimitriou et al. 1992). In addition, each of these 

cell types also has a particular cytokeratin (CK) profile. Luminal epithelial cells express 

CK8 and CK18 while myoepithelial cells express CK14 (Taylor-Papadimitriou et al. 

1989). Luminal epithelial cells synthesise the various milk components and empty them 

into the lumen where they are stored. These cells are cuboidal with their apical surface 

thickly covered with microvilli about 0.1µm in diameter and up to 0.5µm in length 

(Pitelka et al. 1983). Myoepithelial cells surround the alveoli and ducts (Figure 1-1). 

These contractile cells are more elongated than secretory cells and they contract in 

response to oxytocin, releasing milk from the lumen of the alveoli (Linzell 1952). In 

addition to fostering oxytocin-induced milk ejection by virtue of their contractile 

activity, myoepithelial cells are the cells that actually contact the basement membrane 

directly and are required for the production of ECM, including laminins. Thus they are 

ideally situated to transmit structural morphogenetic information from the basement 

membrane to the luminal epithelia. Indeed, isolated luminal epithelial cells (which do 

not form their own basement membranes) fail to form properly polarized hollow 

spheres when cultured in type I collagen gels and instead form solid lumen-less 

structures with reverse polarity unless myoepithelial cells are also added, in which case 

they do form aptly polarized, hollow, bilayered acinar-like structures (Gudjonsson et al. 

2002a). 

 

Apart from the two major epithelial cell types in the mammary gland, there also exists a 

third and less common intermediate population, the MaSC (Anderson and Clarke 2004). 

Mammary tissue has to be equipped with a ready source of MaSC to replenish the 

mammary gland through cycles of pregnancy, lactation and involution. This idea was 
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first suggested nearly three decades ago by the ability of a clonal murine epithelial cell 

line to differentiate into two different cell types (Bennett et al. 1978). Since then, the 

presence of mammary stem/ progenitor cells in the mammary gland has been 

established (Smith 1996; Gudjonsson et al. 2002b). The stem cell compartment within 

the breast was demonstrated to be localised within the luminal epithelial compartment 

(Pechoux et al. 1999; Gudjonsson et al. 2002a), a result which is consistent with an 

earlier finding that proliferating cells are found in the luminal population as cell 

division and expression of antigens associated with proliferation being exceedingly rare 

in the myoepithelial cell type (Joshi et al. 1986). These cells are responsible for the 

multiple cycles of proliferation and involution of the mammary tissue when necessary 

and will be further discussed in detail in Section 1.4.1. 

 

1.2.2.2 Non-epithelial Cells 

Apart from the epithelial cells which are responsible for the production and secretion of 

milk, capillary endothelial cells are also abundant in the highly vascularised mammary 

tissue. An extensive lymphatic system with lymphocytes and monocytes being common 

infiltrators is also present. The mammary tissue contains a large component of 

adipocytes in the stroma within populations of fibroblasts, which have been 

demonstrated in the pregnant murine models to transdifferentiate into secretory 

epithelial cells (Morroni et al. 2004). 
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1.2.3 Mammary Development 

1.2.3.1 The Stages of Development 

The mammary gland is one of the few tissues that undergo repeated cycles of 

development and regression in the adult animal. Development of the mammary gland is 

a highly dynamic and orchestrated process that occurs throughout postnatal life. 

Complete differentiation and maturation of each mammary compartment is a gradual 

process and has considerable variations between different individual woman, between 

each breast and even within each breast. Full differentiation of the mammary gland is 

only achieved in parous women (Hovey et al. 2002).  

 

The process of breast formation is initiated during embryogenesis, with the formation of 

the milk streak at week 4 post fertilisation, which progresses into a bilateral mammary 

ridge (or milk line) during weeks 5 and 6 and then followed by the appearance of 

distinct placodes. Between 7
th

 and 8
th

 weeks of gestation, the formation and ingrowth of 

mammary bulbs begins, with further inward growth of the mammary parenchyma 

commencing at the 9
th

 week. Between the 10
th

 and 12
th

 weeks, initial budding of the 

nascent mammary gland will be observed followed by the indentation resulting in 

formation of epithelial buds with notches at the epithelial-stroma border  (Howard and 

Gusterson 2000; Hovey et al. 2002). A rudimentary ductal tree then forms by the 

branching of the parenchyma during the 13
th

-20
th

 week which results in 15-25 epithelial 

strips or solid cords that eventually give rise to multiple galactophores at each nipple. 

During the latter stages of fetal development via the branching process and up to 32 

weeks, the solid cords become canalized by apoptosis of the central epithelial cells. 

Finally, development of end vesicles comprising a monolayer of epithelial cells occurs 

in association with restrained lobulo-alveolar development between the 32
nd

 and 40
th
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week of pregnancy (Hovey et al. 2002). Post-parturition, the infant breast undergoes 

menopausal-like involution whereby the ductal structures persist in a relatively 

quiescent manner until puberty, beyond which breast development in males and females 

diverge. 

 

At the onset of puberty, the female human breast undergoes variable amounts of 

terminal end buds (TEB) formation, duct elongation, dichotomous and lateral branching, 

terminal duct lobular unit formation and stromal expansion directed by concurrent 

modifications in hormones and growth factors across the various reproductive stages 

(Hovey and Trott 2004; Sternlicht 2006). The male breast on the other end, remains 

quiescent but capable of further development under certain circumstances from 

exogenous estrogens, liver failure and stimulation from drugs, resulting in 

gynecomastia (Sternlicht 2006).  

 

Further into the female’s lifespan, at the onset of pregnancy and associated changes in 

hormonal and local environment, alveolar development progresses with the mammary 

epithelial cells within the gland attaining their unique ability to synthesise various milk 

components. At the last stages of gestation, the distal portion of the mammary ducts 

develops into alveolar structures and mammary epithelial cells appear secretory, such 

that with parturition, functional lactogenesis can take place (Hovey et al. 2002; Hovey 

and Trott 2004). This process is driven by the systemic hormonal stimuli that elicit local 

paracrine interactions between the developing epithelial ducts and their adjacent 

mesenchyme, to be further discussed in Section 1.2.3.2 (Sternlicht 2006).   
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Involution occurs when regular extraction of milk from the gland ceases. Milk stasis is 

the key signal for the alveolar secretory epithelial cell to undergo apoptosis and be 

removed by phagocytosis. The alveoli will collapse and by day 6, disintegrated 

completely, with both the stromal and epithelial components remodelled, while the 

ducts remain intact (Richert et al. 2000). This involves an orderly sequence of events 

including cessation of milk secretion, increased secretion of lactoferrin (Hartmann 

1973), opening of the tight junctions, apoptosis of the mammary epithelium (Strange et 

al. 1992), and changes in secretion of proteases (Lund et al. 1996), followed by the 

remodelling of the ECM, after which the gland returns nearly to its prepregnant state, 

after 3 weeks (Neville 1999; Anderson and Clarke 2004).  However, it appears that the 

human mammary gland does not revert to the virgin state but to a more differentiated 

form in terms of number of lobules in each TDLU (Russo and Russo 1987). It is 

believed that the reduction in breast cancer risk afforded by an early first full-term 

pregnancy may be related to the fact that the gland is left in a more differentiated state 

following involution (Russo et al. 2001). 

 

Eventually, the mammary gland undergoes another round of involution at menopause 

(Anderson and Clarke 2004). For this phase of involution, there is regression of ducts 

and lobules, and adipose tissue replaces the glandular epithelium and interlobular 

stroma with the eventual result of sparse scattering of atrophic acini and ducts through 

the tissue (Howard and Gusterson 2000). 
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1.2.3.2 Regulators of Development 

Each stage of the differentiation process is tightly controlled by both soluble factors 

such as hormones and growth factors and the interactions of cells with the environment 

(Guyette et al. 1979; Topper and Freeman 1980; Hobbs et al. 1982). 

 

Briefly, the ductal tubes are compactly surrounded by the myoepithelial layer, 

preventing the direct interaction of the ductal epithelium with the basement membrane 

in the nulliparous female (Figure 1-1). Increased levels of progestins, oestrogens and 

placental lactogen during pregnancy allow the budding of the alveolar epithelium. This 

brings most alveolar epithelial cells in close proximity to the basement membrane as 

myoepithelial cells build a loose network that wraps the alveolar structures. Involution 

of the mammary gland occurs when lactation ceases. The alveolar structure starts to 

disintegrate and the basement membrane is removed by ECM-degrading 

metalloproteinases (Knight 1995).  

 

1.2.3.2.1 Hormonal control 

For the hormonal influence, several studies have shown that oestrogen, progesterone, 

prolactin (PRL), growth hormone (GH), and thyroid hormones are essential for ductal 

elongation, branching, and alveolar budding, specifically, oestrogen and its 

corresponding receptor required for adolescent branching while progesterone and its 

corresponding receptor is required for adult tertiary side-branching (Sternlicht 2006).  

Adrenal steroids, prolactin (PRL), growth hormones (GH), thyroid hormones, oxytocin, 

and insulin are required for complete lobuloalveolar development and milk synthesis, 

secretion, and lactation. Some of these hormones (oestrogen, progesterone, PRL, and 
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GH) appear to be inductive while others play a more permissive role (Hovey et al. 

2002). 

 

1.2.3.2.2 Interaction with environment 

Apart from hormonal control, it has also been established that there are several other 

factors involved in branching morphogenesis, such as epidermal growth factor (EGF) 

signalling through its ligand (Coleman et al. 1988; Kenney et al. 2003) and autocrine 

signalling through ECM-mediated regulation (Fata et al. 2004). Numerous culture-

based studies show that, in addition to providing a structural foundation for cells, ECM 

components convey contextual information through cellular adhesion molecules, such 

as integrins, that transmit external ECM-derived signals to the cell interior. Indeed, the 

three-dimensional ECM environment has been shown to affect virtually all aspects of 

cell behaviour, including cell shape, proliferation, survival, migration, differentiation, 

polarity, organization, and branching. In addition to their direct effects, various ECM 

components bind and sequester other signalling molecules that affect branching, such as 

amphiregulin, FGFs, Wnts, TGF-R, and IGF-binding proteins 1 to 6. Thus enzyme-

mediated ECM remodelling can remove existing ECM signals, reveal hidden structural 

information, and release otherwise sequestered signalling molecules. Indeed, ECM 

degrading matrix metalloproteinase (MMPs) appear to have a path-clearing role in 

branching morphogenesis as well as an indirect cell signalling role that may reflect their 

ability to alter existing ECM signals, generate bioactive ECM fragments (for example 

cryptic integrin-binding sites on fibrillar collagen and a laminin-5 fragment that elicits 

epithelial cell motility), cleave cell–cell adhesion proteins (for example E-cadherin), 

degrade cell surface receptors (for example FGFR1), release ECM-bound growth 
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factors, inactivate IGF-binding proteins, activate latent TGF-1, and recruit other cell 

types to the surrounding stroma (Sternlicht and Werb 2001; Wiseman et al. 2003). 

 

The importance of interaction of cells with the environment is further affirmed that 

tissue transplantation studies in which mammary epithelium and salivary mesenchyme 

(Sakakura et al. 1976) or skin epithelium and mammary mesenchyme (Cunha et al. 

1995) were recombined demonstrate that mesenchymal cues control the branching 

pattern of the epithelium, regardless of epithelial origin. 

 

1.3 Composition of Breast Milk 

Human breast milk (HBM) has been humankind’s first food for as long as the human 

race has existed. It is a complex biological fluid and contains many different 

constituents, which provide nutrients and also protection of the newborn against 

diseases before the immune system of the newborn is established. Being extremely 

dynamic in nature, HBM varies with increasing time after the birthing process, during 

each nursing feed, and with the mother’s diet and certain diseases, adjusting to match 

the changing needs of the developing infant (Kunz et al. 1999). It provides a balanced 

nutrient composition as well as a number of conditionally essential nutrients and at least 

45 different types and classes of bioactive factors, such as enzymes, hormones, and 

growth factors. Most of them play a role in supporting infantile growth and 

development (Bates and Prentice 1994; Koldovsky 1995).  All contituents of HBM will 

be briefly discussed in this section. 
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1.3.1 Carbohydrates 

Lactose is the major carbohydrate in HBM. The most important role of lactose is to 

regulate the water content in milk since its synthesis brings in a flow of water that 

dilutes other milk constituents like protein and fat (Davies 1983). It has been suggested 

that lactose aids the growth and development of the brain as one of its subunits, 

galactose is known to form a large part of the brain matter (Davies et al., 1983). Lactose 

also forms weak complexes with metal ions such as Ca
2+

 and Fe
3+

, facilitating intestinal 

absorption of them by the infant (Davies 1983).  

 

Human milk oligosaccharides may act as soluble receptors for different pathogens, thus 

increasing the resistance of breastfed infants to these potential pathogens (Kunz et al. 

1999). The complex mixture of oligosaccharides that is present only in minute amounts 

among other uses, act as inhibitors of bacterial adhesion to epithelial surfaces, playing 

an important role in preventing infectious diseases in the newborn infant. They also 

seem to promote the development of a bifidus flora (Kunz et al. 1999), which can 

inhibit the growth of Escherichia coli and consequently protect breast-fed infants 

against gastrointestinal disease (Azuma et al. 1984).  

 

HBM is also reported to contain glucose, galactose and fructose, which are possibly 

present as residuals of metabolic processes (Sheibak et al. 1978). 

 

1.3.2 Lipids 

Mammary alveolar cells synthesise milk fat from circulating lipids derived from the 

maternal diet as well as from maternal body stores. In addition, part of the milk fat can 

be synthesized de novo in the mammary gland from glucose (Thompson and Smith 
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1985). Synthesis of milk fat is stimulated by emptying of the breast through nursing and 

by prolactin secreted from the anterior lobe of the pituitary gland. The alveolar cells 

package and secrete the lipids into the lumen in the form of milk fat globuli. These have 

a hydrophobic core consisting of triglycerides, cholesteryl esters, and retinyl esters and 

are covered with bipolar or amphipathic compounds including phospholipids, proteins, 

cholesterol and enzymes in a loose network termed the milk fat globule membrane 

(Koletzko and Braun 1991). 

 

The level of fat in HBM has been reported to vary from 0.4% to 10% rendering it the 

most variable of all milk components. 98% of lipids in human milk fat are 

triacylglycerols, followed by phospholipids (0.7%), cholesterol (0.5%), free fatty acid 

0.08%, monoacylglycerols (trace) and cholesterol esters (trace) (Bracco et al. 1972; 

Bitman et al. 1983). The level of fat in HBM is also influenced by stage of lactation, 

time of milk sampling, frequency of milk output, stress and level of mammary gland 

stimulation prior to feeding (Packard 1982). Interestingly, studies have shown that there 

are no major differences in lipid composition in milk from term and preterm mothers, 

although there were more medium- and intermediate-chain fatty chains (10:0 compared 

to 14:0) in preterm than term milk (Bitman et al. 1983; Genzel-Boroviczeny et al. 1997).  

 

The products of lipolysis and their monoglycerides after the digestion of triglycerides 

are potent microbicides that assist in controlling of infections in the stomach and small 

intestine (Hernell et al. 1989). Phospholipids in HBM, can be subdivided into major 

classes: phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, 

phosphatidylinositol and sphingomyelin and these phospholipids, being bipolar, act as 

emulsifiers to help maintain the globule emulsion (Jensen 1996).  Lastly, the several 
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classes of sphingolipids and glycolipids, which are collectively known as gangliosides 

contribute to the host defense system in human milk by binding to cholera and other 

toxins (Laegreid et al. 1986). 

 

1.3.3 Proteins 

Human milk proteins are a source of peptides, amino acids and nitrogen for the infant, 

but also in the protein fraction reside other properties of HBM that further benefit the 

developing infant.  

 

Protein in HBM comprises 40% casein and 60% whey proteins. Caseins associate under 

ionic conditions of milk to form micelles and these micelles are a source of amino acids 

for the infant. They also enable calcium and phosphorus to be transported in a stable 

form in milk (Davies 1983). Whey comprises a variety of proteins that supplement the 

immune and digestive system of the newborn and which will be discussed in the 

following sections. 

 
 

1.3.3.1 Immunoglobulins 

The main immunoglobulin in human milk is immunoglobulin A (IgA), although 

significant levels of lgG, IgM and IgD have also been detected (Goldman and 

Goldblum 1989). IgA exists in the secretory form (sIgA) in HBM and protects the 

infant against a range of enteric and respiratory pathogens; blocking the adhesion of 

potential pathogens to mucosal surfaces, hence preventing their colonisation and 

neutralising the toxins from microorganism (Telemo and Hanson 1996). It also prevents 

translocation of gut bacteria through the epithelial barrier, causes the agglutination of 

bacteria, and possibly offers protection against sepsis and function as natural 
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immunising agents that sensitises the infant to foreign antigens including microbial 

agents (Maxson et al. 1995; Steinwender et al. 1996; Garofalo and Goldman 1999); 

(Wold et al. 1994). As the sIgA molecule is too large to be filtered by the kidneys, the 

presence of a significantly higher output of intact IgA in urine of breastfed infants 

suggest that HBM can stimulate the production of IgA in the recipient infant (Goldblum 

et al. 1989; Prentice 1996).  

 

1.3.3.2 Lactoferrin 

The amount of lactoferrin in HBM declines throughout lactation, from 5-6mg/ mL in 

colostrum to 1.5mg/ mL in mature milk, defined to be milk produced beyond 10 days 

post delivery. Almost all lactoferrin in HBM is in the form of apo-lactoferrin, and it is 

this iron-free form that competes with siderophilic bacteria for ferric iron, disrupting 

their proliferation and preventing infection by these iron-requiring organisms (Brock 

1980; Stuart et al. 1984).  More recently, it was found that lactoferrin causes the release 

of lipopolysaccharide molecules from bacteria cell wall and sensitises the 

microorganisms to antibiotic and attachment by lysozyme (Packard 1982; Ellison and 

Giehl 1991). It also inhibits the complement system (Morgan et al. 1975), suppresses 

cytokine release from macrophages stimulated with bacterial products (Mattsby-Baltzer 

et al. 1996), suppresses in vitro antibody production (Duncan and McArthur 1981) and 

T lymphocytes’ proliferative response to alloantigens and phytohemagglutinin (Richie 

et al. 1987). It has also been shown to bind to specific DNA consensus sequences that 

can confer lactoferrin-induced gene transcription (He and Furmanski 1995), and has 

been suggested to enhance iron absorption (Cox et al. 1979).  
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1.3.3.3 Prolactin 

Prolactin augments the development of B and T cells (Gala 1991) and modulates 

differentiation and function of gut-associated lymphoid tissue, such as intraepithelial 

lymphocytes that express more prolactin receptors than neonatal splenocytes (Ellis et al. 

1997). In addition  to being a mitogen for T lymphocytes in culture (by induction of  

interleukin-2 and interleukin-2 receptors (Ellis and Picciano 1992; Grosvenor et al. 

1993), milk-borne prolactin is essential for neuroendocrine development during a 

critical period of 2-5 days after birth in rats (Grosvenor et al. 1993).  

 
 

1.3.3.4 Other Whey Proteins 

A host of nucleotides are also present in HBM. Using animal models, it has been shown 

that nucleotides enhance mucosal development by stimulating growth and maturation of 

the gastrointestinal tract and intestinal repair after diarrhoea (Uauy et al. 1990; Bueno et 

al. 1994). The immunomodulatory activity of nucleotides has been associated with the 

enhancement of T-cell maturation and function (Van Buren et al. 1985), improvement 

of delayed cutaneous hypersensitivity and alloantigen-induced lymphoproliferation 

(Van Buren et al. 1983) and partial resistance to infection with bacteria or other 

pathogen (Kulkarni et al. 1986). 

 

Some soluble cell adhesion molecules and their ligands detected in HBM aid in the 

defence against pathogens as well (Buescher and Malinowska 1996; Schwertmann et al. 

1996). 

 

Several cytokines, chemokines and colony-stimulating factors have been discovered in 

human milk. Interleukin 6 is believed to enhance IgA1 and IgA2 production (Fujihashi 
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et al. 1991) by the intestinal and bronchial epithelial cells which expressed the 

appropriate receptor (Shirota et al. 1990; Takizawa et al. 1996). Interleukin 10 exerts 

anti-inflammatory effect in the form of suppressing the functions of macrophage, T-cell 

and natural killer cells’ function by blocking inflammatory cytokine synthesis and 

several accessory cell functions (Kuhn et al. 1993; Moore et al. 1993; Garofalo et al. 

1995).  It also induces activated B cells to produce large amounts of IgM, IgG and IgA 

(Rousset et al. 1992). Together with interferon-γ, they modulate in vitro epithelial 

integrity and ion transport along the stomach wall of the infant, suggesting the 

expression of functional receptors for these cytokines by human epithelial cells (Archer 

and Johnson 1978; Adams et al. 1993; Madsen et al. 1997).  Among the chemokines 

present, interleukin 8, growth-related peptide-α and RANTES were found to be the 

most potent chemotactic factors for intestinal intraepithelial lymphocytes (Ebert 1995). 

 

There are also proteins in the form of enzymes and growth factors in HBM. Alpha-

lactalbumin, alpha-amylase, bile salt stimulated lipase, α1-antitrypsin and 

antichymotrypsin aid digestion in the infant (Ebner and Schanbacher 1974; Lindberg et 

al. 1982; Packard 1982) with other functional enzymes like antiproteases, sulfhydryl 

oxidase, gamma-glutamyltransferase and xanthine oxidase whose functions are 

described briefly in Table 1-2. The large array of growth factors present in HBM are 

also tabulated and categorised in Table 1-3. 
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Enzyme   Function    Reference 

Antiproteases  Protect bioactive proteins (enzymes,      (Hamosh 1995) 

   immunoglobulins) from hydrolysis in  

   milk and in intestine of newborn 

 

Sulfhydryl Oxidase Maintain structural and functional      (Isaacs et al. 1984) 

   integrity of milk proteins, enzymes   

   and immunoglobulins 

 

γ-glutamyltransferase  Involved in endo and/ or exocytotic       (Binkley et al. 1975) 

   transport of proteins     

 

Xanthine Oxidase Aid in secretion of milk fat droplets     (Mather and Keenan 1983) 

   by peroxidising lipids     

 

Table 1-2: Functional proteins present in low levels in HBM. Edited from (Packard 

1982) 

 

 

Constituent/ Activity 

A. Hormones and other substances with growth-promoting potential assayed in milk 

 1. Epidermal growth factor 

 2. Insulin 

 3. Thyroxine 

 4. Cortisol 

 5. Luteinizing hormone-releasing hormone 

 6. Prostanglandins 

 7. Transforming growth factors 

 

B. Demonstrated in vitro effect on growth of cells or tissues 

 1. Epidermal growth factor 

 2. Prostanglandins 

 3. Transforming growth factors 

 4. Lactoferrin 

 5. Granulocyte-colony stimulating factor 

 6. Macrophage-colony stimulating factor 

 7. Granulocyte-macrophage-colony stimulating factor 

 8. Bifidobacterium bifidum growth factors A and B 
 

Table 1-3: Growth factors present in HBM.  

Edited from (Morriss 1986) and (Garofalo and Goldman 1998) 
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1.3.4 Vitamins 

The vitamin content of HBM is variable and their level depends on the interrelation of 

several factors like diet, stage of lactation, alcohol or drug use of which, the general 

health of the mother, particularly her diet is perhaps the most significant and pervasive 

factor. Vitamin A, E and K are present in HBM in significant amounts to exert their 

respective functional roles which range from aiding the infant’s growth and 

development (Sommer et al. 1986; De Sole et al. 1987) to protecting against free 

radicals (Tappel 1965; Lucy 1972; Rodriguez-Palmero et al. 1999) and contributing to 

the coagulation process by supporting the synthesis of the relevant proteins (Rodriguez-

Palmero et al. 1999). 

 

1.3.5 Minerals 

Sodium, potassium and chloride are the prevalent monovalent ions in HBM. The 

concentrations of these monovalent ions in HBM regulate in part, the opening of the 

tight junctions between epithelial cells (Atkinson et al. 1995). Calcium is essential for 

the development of bones, muscle contraction, the transmission of nerve impulses and 

clotting of blood (Packard 1982). Trace minerals in HBM include cobalt, manganese, 

molybdenum, aluminium, barium, chromium, nickel, copper, iodine, boron, fluorine, 

zinc, bromine, iron, selenium, strontium and rubidium. The major factor affecting 

concentration of minerals is advancing duration of lactation, which is associated with a 

decrease in sodium and an increase in potassium. Chloride drops over time, whereas 

calcium, free phosphate and magnesium increase (Rodriguez-Palmero et al. 1999). 

Maternal age, parity and lactation history also account for the variability of trace 

element concentrations (Howell et al. 1986). 
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1.3.6 Cells 

 

The study of cells in human milk, first mentioned in 1844, has since then been studied 

extensively (Hamosh 2001). Epithelial cells, colostral cells, polymorphonuclear 

leukocytes, mononuclear phagocytes and lymphocytes have been reported in milk 

(Smith and Goldman 1968; Crago et al. 1979). The cell concentration and predominant 

cell type vary with duration of lactation and presence of breast inflammation.  

 

1.3.6.1 Immune Cells 

Colostrum defined as milk from day 1 to day 4 postpartum, contains 10
5
 to 5x10

6
 

leukocytes per mL of milk (Buescher and Pickering 1986). This concentration drops to 

the range of 10
5
 per mL within the next six days of breastfeeding. The types of 

leukocytes found in HBM include macrophages, lymphocytes and polymorphonuclear 

leukocytes, with neutrophils and macrophages accounting for 90% of leukocytes in 

HBM (Xanthou et al. 1995). The neutrophils and macrophages present appear to be 

activated and were able to phagocytose and kill bacteria and fungi and they were also 

able to elicit antibody-dependent activity (Xanthou 1997). These cells also synthesise 

complements, lysozyme and lactoferrin, which acts synergistically to the cells. 

 

Lymphocytes, though present at a much lower proportion, are also consistently found in 

HBM with T cells accounting for 80% of the total number of lymphocytes (Xanthou et 

al. 1995).  Present in the activated form (Wirt et al. 1992), they were found to be less 

efficient in their cytotoxic capability when compared against the peripheral cells of the 

same individuals (Nair et al. 1985) but capable of generating  certain lymphokines and 

growth factors (Skansen-Saphir et al. 1993). B lymphocyte deficient mice were able to 
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avoid severe infections when breastfed by normal mouse (Arvola et al. 2000) thus 

suggesting that maternal lymphocytes compensate for the developmental delay of the 

infant (Goldman et al. 1998). Maternal lymphocytes in HBM have been shown to enter 

the circulation of the offsprings, presenting themselves in the intestinal mucosa, lymph 

nodes and ducts (Weiler et al. 1983; Slade and Schwartz 1987; Jain et al. 1989; Arvola 

et al. 2000). This suggests that lymphocytes from milk may be able to induce not only 

local and also a systemic immune response (Xanthou 1997). Phagocytes count falls 

after 4 weeks of lactation, beyond which 90% of the cellular content in breast milk are 

epithelial cells (Brooker 1980).  

 

1.3.6.2 Epithelial Cells 

Three types of epithelial cells have been recognised in HBM, namely the secretory, 

myoepithelial and ductal cells. They have been described in detail in an earlier section 

(1.2.2). In HBM, secretory cells were commonly found up to 110 days postpartum, 

while the ductal cells were rarely encountered after eight days (Brooker 1980). It has 

been suggested that the presence of these epithelial cells in milk provides a means of 

evacuating dead cells which have reached the end of their secretory life although 

through trypan blue exclusion, it was found that more than 90% of these cells are viable 

(Gaffney 1982; Thompson et al. 1998). Whether these epithelial cells are present in 

HBM purely due to mechanical sloughing during milk expression or due to a yet-

unknown functional role, similar to the leukocytes present are an intriguing question 

worth pursuing. In addition to the biological reasoning behind their existence, epithelial 

cells from HBM may have several functional uses: the establishment of cell lines for 

lactogenesis studies whereby they can constitute an in vitro system for the study of 

proliferation and differentiation of mammary epithelial cells as well as application in 
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cancer research as most human breast tumours arise from the mammary epithelial cells 

that line the milk duct and milk-secreting-cells (Buehring 1972). 

 

1.4 Adult Stem Cells 

Stem cells are defined by their functional attributes. Typically, one would define the 

stem cells of a particular tissue as undifferentiated cells capable of proliferation, 

producing a large number of differentiated functional progeny and yet able to self-

maintain the population by exhibiting self-renewal. Stem cells can be subcategorized 

into cloned cells, embryonic, fetal and adult, depending on the source. Each of these has 

its own set of advantages and disadvantages of which ethical and legal concerns have 

been raised by cloning (Smaglik 2001; 2002; Check 2002), and the use of embryonic or 

fetal stem cells (Antoniou 2001). Adult stem cells, while avoiding the ethical and legal 

issues, however are believed to have much restricted potential. Historically, many adult 

tissues were thought incapable of regeneration until cells with regenerative capability 

were found in most adult tissues including the liver (Sell 1978; Thorgeirsson 1996; 

Michalopoulos and DeFrances 1997), intestines (Potten and Loeffler 1990), retina 

(Tropepe et al. 2000), skin (Watt 1998), muscle (Seale and Rudnicki 2000), central 

nervous system (Gage 2000), mammary glands (Ormerod and Rudland 1986) and 

others. Stem cells from adult tissues, now proven present, are still believed to be 

restricted in their capacity to produce cells from tissues other than the one they arose in 

(Slayton and Spangrude 2004). However, a number of studies have since challenged 

this view (Horwitz et al. 1999; Kaufman and Ildstad 1999; Krivit et al. 1999; Morroni et 

al. 2004), indicating that adult stem cells from various organs are actually highly plastic, 

and that they can differentiate into not only cells of their original source tissue, but also 

cells of unrelated tissue and even germ layers. These studies range from demonstrating 
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bone marrow-derived cells forming hepatocytes (Petersen et al. 1999), myocytes 

(Gussoni et al. 1999) and even neurons (Mezey et al. 2000).  Apart from the highly 

plastic bone marrow-derived cells, reversible transdifferentiation between the epithelial 

cells and adipocytes in the mammary gland have also been established (Morroni et al. 

2004).  

 

In conclusion, adult stem cell biology is a front runner in the emerging field of 

regenerative medicine and in the following sections, two particular adult stem cells that 

are of relevance to my research question will be reviewed in detail. 

 

1.4.1 Mammary Stem Cells 

Mammary gland development and function would not be possible without tissue-

specific stem cells. The cycle of pregnancy-associated proliferation, differentiation, 

apoptosis, and remodelling, which can occur several times during the entire lifespan, 

can only be explained by the presence of a long-lived population of stem cells with a 

near-unlimited capacity to generate functional cells (Anderson and Clarke 2004).  

 

1.4.1.1 Evidence for Their Existence 

Although the existence of MaSC have long been postulated, it was not until 1959 when 

Deome demonstrated the reconstitution of mammary gland when isolated mammary 

epithelium from donor mice were transplanted into cleared mammary fat pads (Deome 

et al. 1959). The existence of MaSC was then further verified when Ormerod and team 

demonstrates that fragments of mouse mammary epithelium can give rise to complete 

glands when transplanted into the fat pads of syngeneic hosts cleared of their 

endogenous epithelium (Ormerod and Rudland 1986). Limiting dilution studies in 



Chapter 1. Introduction 
 

33 
 

which clones derived from single cells could be identified on the basis of their patterns 

of mouse mammary tumour virus viral integration have shown that an entire fully 

functional mammary gland could be derived from a single cell and that this single cell 

can give rise to both luminal epithelial and myoepithelial cell types, suggesting the 

presence of a self-renewing pluripotent stem cell in the mouse mammary gland (Kordon 

and Smith 1998). This is further affirmed by Shackleton and team who demonstrated 

the reconstitution of a functional mammary gland capable of producing milk proteins by 

a single stem cell (Shackleton et al. 2006), proving conclusively their presence. 

 

1.4.1.2 Location of the Putative Stem Cells 

It has been suggested that the cap cells of the TEBs in the mouse mammary glands 

during the pubertal development contain the population of multipotent stem cells. This 

postulation is based on the observation that these cells have a high mitotic rate and that 

they are capable of following two different fates: either they enter the body of the TEB 

and become luminal epithelial cells, or they migrate across along the outmost stratum of 

the attached duct to become myoepithelial cells (Anderson and Clarke 2004). Although 

the human mammary gland has a TEB-like structure during pubertal development, it 

does not have a similar arrangement of cap and body cells, making it unclear whether 

the population of stem cells reside in the TEB-like structure (Anderson and Clarke 

2004). 

 

It was postulated that the MaSC should be those intermediate between the epithelial and 

myoepithelial cells which occur in growing ductal structures, particularly the TEBs. 

This is because they are able to give rise to both ductal epithelial cells and 

myoepithelial, the latter by an irreversible process (Rudland et al. 1997). The former 
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ductal epithelial cells subsequently differentiate normally into alveolar cells in a 

reversible manner or under certain pathological conditions give rise to squamous cells 

(Rudland et al. 1997). In studies conducted by other groups, it was shown that mixed 

colonies were only obtained when CK8- and CK18-positive cells were plated and never 

when common acute lymphoblastic leukaemia antigen (CALLA)-positive myoepithelial 

cells were used (Stingl et al. 1998). Collectively, this suggests that the most likely 

candidates for stem cells in the mammary gland reside alongside the luminal epithelial 

cell population, and not within the myoepithelial cell population (Anderson and Clarke 

2004). 

 

1.4.1.3 Characterisation of Mammary Epithelial Stem Cells 

Early searches for mammary-specific stem cell markers  were based on the observations 

of Smith and Medina that mammary epithelial explants contained pale or light-staining 

cells, and that only these cells, which exist both in small and large forms enter mitosis 

when placed in culture (Smith and Medina 1988; Chepko and Smith 1997). Small light 

cells were described as mammary epithelial stem cells based on the presence of mitotic 

chromosomes, lack of any specialized organelles, and their basal location within the 

gland. Their nuclei were also found to contain dense clumps of heterochromatin. These 

cells were present in side-by-side homogenous pairs as well as heterogeneous pairs, 

suggesting their ability to undergo symmetric and asymmetric division (Welm et al. 

2003). Morphological studies of the developing implants using immunocytochemical 

and ultrastructural techniques have suggested the presence of these stem cell 

populations in the basal cell layers of ducts and end-bud. The cells populations may be 

the basal clear cells (Smith and Medina 1988) or a cap cell type intermediate in 

morphology between epithelial and myoepithelial cells (Williams and Daniel 1983; 
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Ormerod and Rudland 1986; Rudland 1991). The location of the stem/ progenitor cells 

was further affirmed by a more recent study where cells of the regenerative 

compartment of the mammary gland, which is also the basal epithelial layer stained 

positive for nestin (Li et al. 2007). 

 

Various methodologies have been employed to identify and characterise these 

mammary stem/ progenitor cells but bona fide mammary stem cell markers have 

remained elusive. In mice, it was discovered that stem cell antigen (Sca-1)–positive 

cells are able to reconstitute mammary glands but since this antigen is not detectable in 

human tissues, other MaSC markers need to be found and used in place of Sca-1 and as 

yet, there is no conclusive marker for mammary stem cell, with several markers 

suggested by different research groups. Several studies have described bi-potent  

progenitors cells in normal adult mammary tissue based on the sorting with epithelial 

specific antigen (ESA), mucin-1 (MUC-1) and α6-integrin with cells that are MUC-1-

/weak/ESA+/CD10+/weak/α6-integrin+ were able to generate clones containing cells 

of both lineages (Stingl et al. 1998; Stingl et al. 2001). Gudjonsson and team reported 

that cells that give rise to mixed colonies comprising both luminal and myoepithelial 

cells expressed CK19 and are CK14
+
CK18

+
 (Gudjonsson et al. 2002a) while Dontu et al 

and Bocker et al in 2 separate research articles report that CK5-positive cells define the 

stem cell population (Bocker et al. 2002; Dontu et al. 2003a). Mammary stem/ 

progenitor cells were also found enriched in oestrogen receptor (ER)-positive 

populations (Gudjonsson et al. 2002a; Dontu et al. 2003b; Clarke et al. 2005).  

 

Using flow cytometric cell sorting based on exclusion of the fluorescent DNA dye 

Hoechst 33342, a method that has crossed over from the haemopoietic system, 3 
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different groups have a range between 0.2% (Alvi et al. 2003; Clayton et al. 2004) and 

1% (Dontu et al. 2003a), and as high as 5% (Clarke et al. 2003; Clarke et al. 2005) of 

side-population (SP) being present in human breast tissue and that only cells within this 

SP can produce colonies with both myoepithelial and luminal epithelial cell types 

(Dontu et al. 2003a; Clayton et al. 2004; Clarke et al. 2005). Drawing results from these 

murine models, it was then found that SP cells give rise to all three mammary epithelial 

cell lineages when transplanted into cleared fat pads (Welm et al. 2002; Alvi et al. 2003) 

which further support the hypothesis that the SP is enriched in mammary epithelial stem 

cells. Finally, human SP cells seem to form much larger branching colonies in matrigel 

compared to non-SP (NSP) (Clarke et al. 2005) and they are highly enriched for the 

ability to grow in non-adherent conditions as spheroids, another feature of 

stem/progenitor cells (Dontu et al. 2003a), mentioned  in detail below. 

 

In addition to surface markers and proteins, another less biased approach is the isolation 

and propagation of the mammary stem and progenitor cell using a suspension medium; 

this is a method extrapolated from the field of neural stem cells which are routinely 

grown as neurospheres (Campos 2004; Suzuki et al. 2004). For this method of isolation 

through culture, it was found that human mammary epithelial cells form spherical 

colonies at clonal densities in the serum-free medium, exhibiting a property of stem 

cells (Dontu et al. 2003a; Dontu et al. 2004; Dontu and Wicha 2005). Dontu et al further 

establish that only SP and not NSP are able to form the spherical colonies, also known 

as mammospheres (Dontu et al. 2003a). Extending the use of mammospheres’ culture to 

identify MaSC, the latter were found enriched in Lin
-
/CD24

+
/CD29

hi
 or Lin

-

/CD24
+
/CD49f

++
 population (Shackleton et al. 2006; Stingl et al. 2006a) and that the 

cells that formed the mammospheres are capable of self-renewing and they differentiate 
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into terminal ductal lobular units (TDLU) when placed into matrigel-coated plates 

(Dontu et al. 2003a). Shackleton and team also went on to quantify the frequency of 

mouse MaSC which was approximately 0.1% of the cells in freshly prepared cell 

suspension from mammary tissue (Shackleton et al. 2006). They also showed through 

flow cytometry that mammary gland of both mice and human contain a parallel 

distribution of basal and luminal subpopulations and that in both species, the most 

primitive cell types identified thus far are those that copurify with basal cells that 

express the highest level of CD49f and lower levels of CD24 (for mice) or EPCAM (for 

humans) (Stingl et al. 2006b).  

 

The observation that three types of colonies (luminal only, myoepithelial only and both 

cell types) can be formed from single mammary epithelial cells when they were plated 

at low densities (Stingl et al. 1998; Gudjonsson et al. 2002b) indicating that there are 

the luminal restricted and the myoepithelial restricted progenitors and the stem cells that 

are bipotent (Anderson and Clarke 2004). 

 

It was found that MaSC reach senescence after 40 to 50 self-renewing stem cell 

divisions (Kordon and Smith 1998). They exhibit ductal growth senescence on serial 

transplantation after six generations (Young et al. 1971; Smith et al. 2002). 

 

Stem cells are found in the mammary gland during all stages of development and very 

interestingly, there even exists a population of stem cells which are parity-induced 

(Wagner et al. 2002). Using transgenic whey acidic protein-driven Cre and Rosa 26-fl-

LacZ mice, Smith and colleagues demonstrated the presence of a new mammary 

epithelial cell population which originates from the differentiating cells during 
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pregnancy and that 5-10% of this parity-induced epithelium survives post-lactational 

involution after the first pregnancy. With successive pregnancies, the population 

percentage increases, reaching 60% of the total epithelium in multiparous females 

(Wagner et al. 2002; Henry et al. 2004; Boulanger et al. 2005). These cells served as 

progenitors and differentiate into both ductal and lobuloalveolar cells upon serial 

transplantation. They, similar to the known MaSC, proliferated to produce both luminal 

and myoepithelial cells in limiting dilution transplantation (Boulanger et al. 2005). This 

unique population of cells is implicated as a crucial factor in the observed risks of 

parous females in contracting breast cancers.  

 

1.4.1.4 Association with Tumorigenesis 

As stem cells persist in the mammary gland throughout reproductive life, they have the 

potential to accumulate genetic damage and to transmit it to their progeny and hence are 

regarded as prime targets for oncogenic transformation (Anderson and Clarke 2004). 

This is supported by increasing evidence of the presence of cancer stem cell in 

malignancies of various tissues (Reya et al. 2001; Smith 2002; Dontu et al. 2003b; 

Smalley and Ashworth 2003; Al-Hajj and Clarke 2004; Waterworth 2004). This 

together with the observation that majority of the human breast tumours arose in the 

TDLU and that they are luminal cells (Wellings et al. 1975; Taylor-Papadimitriou et al. 

1986; Taylor-Papadimitriou et al. 1989) brings about a theory that breast cancer may be 

at least in part, a stem cell disease.  

 

Nestin is expressed on the regenerative component of the mammary gland. Interestingly, 

breast tumours with a basal epithelial phenotype, which is highly aggressive and poorly 

differentiated, also express nestin in all of the sixteen tumours tested by Li et al. (Li et 
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al. 2007). Global transcriptional profiling have found that the tumours within the basal 

breast cancer subtype are particularly associated with mutations in BRCA1 (van 't Veer 

et al. 2002) and Li et al further showed that nestin expression is well correlated with 

BRCA1 associated cancer, which are classified as a basal breast cancer (Li et al. 2007). 

This suggests that at least one cancer subtype, the basal breast cancer display a 

progenitor-like phenotype (Li et al. 2007), once again implicating MaSC as an 

aetiological factor in breast cancer.  

 

Malignant mammary epithelial cells are unable to differentiate to the two mature cell 

types in culture (Rudland et al. 1997), which can possibly be explained by two different 

theories. In the first theory, there are two different types of epithelial stem cells in 

normal mammary glands, one which can differentiate to benign lesions and the other 

which give rise to malignant lesions. This was illustrated with the immunocytochemical 

staining pattern of the epithelial cells within the normal human mammary gland where 

there was a differential expression of CK19, with the malignant cells showing an 

increased expression (Taylor-Papadimitriou et al. 1983; Taylor-Papadimitriou and Lane 

1987). An alternative theory states that the ability of the epithelial stem cells  to 

differentiate is impaired when they become malignant (Rudland et al. 1997), which is 

supported by evidence obtained from experimental carcinomas in rats and observations 

made on human carcinomas. In the rodent studies, the benign tumours which contain 

predominantly only the one major epithelial cell type can develop into malignant 

metasising tumours with serial transplantation (Rudland 1987) whereas in the human, 

transfection of rat epithelial stem cells lines with cells of malignant origin will induce 

specifically the malignant cell types and not differentiate into myoepithelial-like or 

alveolar-like cells (Davies et al. 1993).  
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The above evidences strongly suggest the involvement of MaSC in tumourigenesis and 

therefore, the study of mechanism of self-renewal, the malignant transformation as well 

as the potential cell lineages that can arise from MaSC are likely to provide new 

insights into the carcinogenic process. The realisation that proper cellular differentiation 

is a powerful inhibitor of cancer initiation provides a strong rationale for pursuing the 

identification of the stem cells susceptible to carcinogenesis and of the genes that 

control this process. This would allow us to target key pathways to either induce 

differentiation or apoptosis, improving the current state of the art treatment regimen 

(Kalirai and Clarke 2006). In addition, this approach may allow the development of new 

tools for developing rational strategies for breast cancer prevention (Russo et al. 2005; 

Cariati and Purushotham 2008).  

 

1.4.2 Haemopoietic Stem and Progenitor Cells 

Haemopoietic stem cells is the first stem cell source used for transplantation purposes 

and has been in use over 30 years (Clark et al. 2003). HSC transplantation, after 

myeloablative chemotherapy in both autologous and allogeneic settings have become an 

established therapeutic option in the management of haematological malignancies, 

thalassaemia, sickle cell disease and aplastic anaemia (Vassiliou et al. 2001; Tabbara et 

al. 2002). In fact in recent years, research on HSC suggests that their therapeutic uses 

extend beyond haematological diseases. There have been many studies that illustrate the 

multi-lineage stem cell plasticity of HSC as they differentiate and contribute to the liver, 

(Lagasse et al. 2000; Forbes et al. 2002), central nervous system (Mezey et al. 2000), 

endothelia (Grant et al. 2002) and skeletal muscle (Bittner et al. 1999). All these 

collectively suggest the theoretical potential for HSC to treat many diseases. While ex 

vivo expansion of HSC may allow their sources to be viable sources of stem cells for 
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transplantation purposes and replacement therapies, it is necessary to understand that 

much is still unknown about HSC and hence, the interest in HSC, particularly its 

plasticity has to continue and this interest is very likely to be sustained.  

 

Haemopoietic stem cells (HSC) are multipotent precursors that have self-renewal 

capacity and the ability to regenerate all the different cell types that comprise the blood 

forming system which include erythrocytes, neutrophils, monocytes, macrophages, 

platelets, T lymphocytes, B lymphocytes, natural killer T cells, dendritic cells and 

others (Bonnet 2002; McCulloch and Till 2005; Broxmeyer et al. 2006). Limiting 

dilutions analysis of total bone marrow preparations allowed quantitative estimation of 

HSC frequencies ranging from 1 in 10,000  to 1 in 100,000 (Harrison 1980; Szilvassy et 

al. 1990; Harrison et al. 1993). The primitive HSC is by definition, both self-renewing 

and capable of long-term repopulation (LTR) and resides at the base of progenitor cell 

development (Lord 1997). It must have the ability to give rise to all lineages of mature 

blood cells and offer radioprotection to a lethally irradiated host (Nolta and Kohn 1997; 

Lagasse et al. 2000).  

 

Haemopoietic progenitor cells, on the other hand, have more limited capacity for self-

renewal than stem cells, and they are more restricted in their capacity to give rise to 

multiple cell types, with the hierarchy as shown in Fig. 1-2. However, more is known 

about them than HSC. This is in part because the stem cells are rarer in frequency than 

the progenitors, and assays for progenitor cells performed in vitro, are easier to do than 

assays for engrafting stem cells, which are done in vivo (Broxmeyer et al. 2006). 

Progenitors are ranked as those that are immature with enhanced proliferative capacity 

and  those with that are more mature, with decreased proliferative capacity, and those 
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that are mature, with decreased proliferative and more limited and restricted 

differentiation capability (Broxmeyer et al. 2006). It is believed that the immature 

subsets of progenitors are responsive to stimulation by combinations of growth factors 

(Shaheen and Broxmeyer 2005). Thus multipotential progenitor cells (termed colony-

forming unit-granulocyte, erythrocytes, macrophage, megakaryocytes, CFU-GEMM or 

CFU-Mix) are denoted by the colonies of mixed lineage blood cells they give rise to in 

semisolid culture medium when the cells are stimulated in vitro, with combinations of 

cytokines such as erythropoietin (Epo), stem cell factor (SCF), granulocyte-macrophage 

colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3), in the absence or 

presence of thrombopoietin (TPO) (Broxmeyer et al. 2006).  
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Figure 1-2 Scheme of Haemopoiesis. Adapted from (Lord 1997). 

 

1.4.2.1 Sources of Haemopoietic Stem/ Progenitor Cells 

Both cord blood and bone marrow are well-established sources of haemopoietic stem/ 

progenitor cells. Haematopoietic progenitor cells in cord blood are increased in 

frequency compared with those in bone marrow (Broxmeyer et al. 1989) and are 

enhanced in proliferative capacity, generation of progeny and also replating capacity in 

vitro (Broxmeyer et al. 1989; Carow et al. 1991; Broxmeyer et al. 1992; Cardoso et al. 

1993; Lansdorp et al. 1993; Lu et al. 1993). Transplantation of HSC forms the basis of 

consolidation therapy in cancer treatments and they are used to cure or ameliorate a 

number of haematologic and genetic disorders (Shizuru et al. 2005; Steward and Jarisch 

2005). As such, these cells are widely harvested from cord blood (Broxmeyer 2004; 

Broxmeyer 2005) and bone marrow for therapeutic purposes.  
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1.4.2.2 Isolation and Purification of Haemopoietic Stem/ Progenitor 

Cells 

The rarity of the primitive HSC results in the difficulty in their isolation and 

purification. The most commonly used technique for separating early progenitor cells 

today is based on the use of monoclonal antibodies. Once labelled with antibody, cells 

can be separated using solid phase immunological methods of immunomagnetic 

particles or flow cytometry (Lord 1997). One such antigen which identifies HSC is 

CD34 (Link et al. 1996), which make up approximately 1% of all human bone marrow 

cells (Hao et al. 1995). Subsequently, by assessing the coexpression with other cell 

surface markers, it is possible to obtain cell fractions that are more highly enriched for 

primitive cell types (Craig et al. 1993; Huang and Terstappen 1994; Hao et al. 1995). It 

was found that lin-/CD34+ subpopulation have defined more primitive precursors with 

haemopoietic repopulating activity that expresses combinations of the CD59 surface 

antigen related to Stem-cell antigen (Sca-1), the vascular endothelial growth factor 

receptor-2 (VEGFR2) and low levels of c-kit (CD117), Thy-1 (CD90) and CD38 (Baum 

et al. 1992; Gunji et al. 1993; Civin et al. 1996; Hill et al. 1996; Kawashima et al. 1996; 

Larochelle et al. 1996; Ziegler et al. 1999).  It was only in 1997 when CD133 become 

appreciated as another important HSC marker (Yin et al. 1997; de Wynter et al. 1998; 

Gallacher et al. 2000; Lang et al. 2004; Hess et al. 2006).  CD133, the human 

homologue of mouse Prominin-1 (Shmelkov et al. 2005) was first identified as a 

selective human HSC surface molecule. Selection for CD133+
 
haemopoietic precursors 

yields more than 90% CD34+ cells while containing all the human repopulating activity 

(Hawley et al. 2006). The lin-/ CD34+ or CD34+/ Thy-1+/ Lin- or CD34+/ CD38- or 

CD133+ purified cell types were capable of engraftment into SCID mice (Chen et al. 

1994; Murray et al. 1995; Kerre et al. 2001; Handgretinger et al. 2003).  
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Besides the use of cell surface markers, rhodamine 123 which preferentially 

accumulated in active mitochondria) and Hoechst 33342 (a bis-benzimidazole that 

binds to the adenine -thymine-rich regions of the minor groove of DNA) are two 

fluorescent dyes that have been routinely used to characterize haemopoietic precursor 

populations (Visser et al. 1981; Bertoncello et al. 1985; McAlister et al. 1990; Wolf et 

al. 1993; Leemhuis et al. 1996).  Goodell et al described a method that simultaneously 

monitors the low fluorescence intensity of Hoechst 33342 staining at 450nm and 

at >650nm after ultraviolet excitation, which identifies a rare subpopulation referred to 

as side-population (SP) cells enriched with HSC (Goodell et al. 1996). First used, on 

mouse bone marrow cells, it was found to contain the majority of long-term 

haemopoietic repopulating activity (Goodell et al. 1996). Since then, the SP assay has 

been applied to human haemopoietic tissues (Goodell et al. 1997; Storms et al. 2000; 

Uchida et al. 2001; Preffer et al. 2002; Eaker et al. 2004; Naylor et al. 2005) and this list 

is not comprehensive.  

 

1.5 Discussion 

MaSC have been isolated in both human and murine models (Dontu et al. 2003a; 

Shackleton et al. 2006). They have been suggested as the likely targets for malignant 

transformation leading to breast cancer which remains the most common malignancy 

among females worldwide. This is due to common properties of longevity and the self-

renewal property with tumorigenic cells (Dontu et al. 2003b; Dontu et al. 2005; Ponti et 

al. 2005). Research groups worldwide are attempting to identify the cell type most 

susceptible to malignancy (Dontu et al. 2005; Sleeman et al. 2006). The identification 

of susceptible cell types may allow the control of this life-threatening disease through 
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primary prevention. Identification of mammary stem cell markers will also help us in 

understanding normal development of the mammary gland, and provide tools to 

characterize the role of stem cells in breast cancer.  To date, the only source of human 

MaSC were tissues derived from reduction mammoplasties (Dontu et al. 2003a; 

Shackleton et al. 2006; Stingl et al. 2006b). Isolation of mammary stem/ progenitor 

cells from mammary tissue requires a complicated isolation technique with long 

digestion times by various enzymes. This is due to the fact that the composition of the 

mammary gland contains adipocytes, collagen-impregnated stroma surrounding ductal 

epithelium, basement membrane, and tightly interacting epithelial cells, which does not 

make it an ideal tissue to produce single cell suspension efficiently. In order to do so, 

long digestive procedures are required which  may potentially destroy and/ or mask cell 

surface epitopes important for isolation and identification of these cells (Wagner et al. 

2002; Welm et al. 2003). Therefore, there is a demand for other sources of MaSC which 

are more easily available and obtained in a less invasive manner and do not require 

cumbersome procedures to derive single cell suspension for subsequent work. 

 

The work revolving around HBM thus far has mainly been focusing on the nutritive 

value for the infant. Immune and epithelial cells are the only cell types reported to exist 

in HBM [discussed in detail in Section 1.3.6]. Until now, there has been no literature 

reporting the presence of mammary stem/ progenitor cells in HBM, although there was 

a commentary highlighting the possibility and that it could be an unappreciated source 

of stem cells (McGregor and Rogo 2006). Relating to other systems with epithelial cell 

lining, there have been some studies documenting the presence of the epithelial stem 

cell in the luminal discharges due to the proximity of the stem cell niche to their luminal 

cavities.  Most recently, mesenchymal progenitor cell types have been isolated through 
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the collection of human menstrual blood (Hida et al. 2008; Musina et al. 2008), which 

has been postulated to derive from the stromal regions of the endometrial glands. 

Similarly, it has been proposed that the epithelial stem cells reside in the niche at the 

base of the glands in the endometrium (Gargett 2007), and shown to be present just 

beneath the luminal epithelium and in the endometrial-myometrial junction (Chan and 

Gargett 2006; Cervello et al. 2007). From urine, rare stem/ progenitor cell types from 

the epithelial, urothelial and smooth muscle lineage have been identified at a clonal 

level, with the capacity for self-renewal and multi-lineage differentiation (Zhang et al. 

2008). In the gastro-intestinal system, stem cells have been localized to the basal crypts 

(Marshman et al. 2002; Bjerknes and Cheng 2006), although there have been no reports 

of these epithelial stem cells being shed into the gastrointestinal tract. Nonetheless, 

extrapolating these reports to a tissue of common lineage, they suggest the plausibility 

of stem/ progenitor cells being shed into HBM either by means of sloughing or active 

shedding into the lumen for yet unknown purposes. 

 

I aimed to identify and isolate putative stem/ progenitor cells which have shed into 

HBM during lactation, although whether this shedding serves a specific functional 

purpose sets the platform for another research question. Pursuing the question of 

whether stem cells exist in HBM would also allow the complete identification of the 

components in HBM which might elucidate other potential powerful biologic benefits 

of human lactation (McGregor and Rogo 2006). From Section 1.3.6, it has been 

established that majority of the cellular component of HBM are leukocytes (early days 

postpartum). As HSC share the common markers of CD133 and SP with MaSC, the 

possibility that these cells may be true HSC needs to be explored, although the 
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biological rationale for such a finding is still an unknown entity. Hence, I have devoted 

some energy in exploring this possibility in HBM.  

 

 

1.5.1 Hypotheses 

1. Adult stem/ progenitor cells are present in HBM. 

2. These stem cells are able to demonstrate multi-lineage differentiation capacities.  

 

1.5.2 Significance of Study 

 

This attempt to isolate stem cells from human milk may have various implications 

relating to:  

 

1. Breast tissue engineering - This will be of value to patients who have had 

mastectomies or traumatic injuries, where autologous stored stem cells could be used as 

a tissue engineering cellular source.  

 

2. Elucidating mechanisms for mutagenesis and oncogenesis in breast cancer - It has 

recently been shown that cancers, including those in the breast (Al-Hajj et al. 2003), 

arise from transformed stem cells which accounted for the heterogeneity of solid 

tumours, and their resistance to chemotherapy. Thus, the availability of MaSC will 

allow studies of mutagenesis and other events related to carcinogenesis to be studied in 

detail, and possible therapeutic agents to be developed. 
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3. Biology of lactation - Until now, it is unclear how the process of lactation is initiated 

and maintained at the cellular and glandular level. Identification of MaSC may allow 

the dissection of cellular response to changing hormonal signals which occurs during 

pregnancy and lactation. This may have implications in identifying causes for various 

lactational problems, an issue with dire consequences particularly in developing 

countries (Mepham 1983). 

 

4. Dissecting microchimerism of maternal cells in breastfed infant - If mammary and/ or 

haemopoietic stem cells are actively passed out to the infant, we could be potentially 

studying the effects of these cells in the breastfed infant which might explain in part, the 

long term benefits HBM have over formula, and certainly open up a new field of study 

worth pursuing. 

 

5.   Providing a non-invasive novel source of HSC - This potentially allows the banking 

of HSC from all lactating females for their future use, given the known fact that HSC 

transplantation has been applied to several clinical settings where they have been 

proven to be beneficial to the recipients (Vassiliou et al. 2001; Tabbara et al. 2002). 
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2 Materials and Methods 
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 2.1 Samples 

2.1.1 Research Ethics Board Approval 

Ethics approval was obtained from the Domain Specific Review Board (DSRB) of the 

National Healthcare Group (NHG) for collection of human samples (DSRB Ref: 

D/04/206). All participants gave written informed consent for the donation of samples 

for research purposes. 

 

2.1.2 Cells from Human Breast Milk 

Informed written consent were obtained from healthy lactating women who had 

delivered within a year and the breast milk samples collected in sterile containers. A 

total of forty-one breastfeeding women (duration of lactation – 1 to 12months) were 

recruited to participate in the study. All samples were collected and processed within 

four hours of expression. 

 

Whole cell population was isolated from human breast milk by centrifugation. The 

expressed human breast milk was spun down at 400g for 10mins. The cell pellet was 

then washed twice with RPMI medium before use for subsequent experiments. 

 

 

2.1.3 Umbilical Cord and Peripheral Blood Cells 

 

Umbilical cord blood was collected at normal deliveries of full term pregnancies (n=2) 

while peripheral blood were collected from a volunteer (n=1). The umbilical cord blood 

as well as the peripheral blood was diluted 4-fold with PBS (137mM NaCl, 10mM 

Phosphate, 2.7mM KCI, pH 7.4) with 2mM EDTA (Gibco). Every 35mL of diluted 
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blood was carefully layered over 15mL of Ficoll 1077 (Invitrogen, California, USA) 

and centrifuged at 400g for 35mins in a swinging-bucket rotor with brakes off. The top 

layer of plasma was removed before collecting the mononuclear cells at the interphase 

with a 22 Gauge needle attached to a 3mL syringe. The cells were washed twice with 

PBS/ 2 mM EDTA before being used as controls; cells from cord blood were used for 

methylcellulose assays and cells from peripheral blood for reverse transcription 

polymerase chain reaction; these are discussed more in detail in Sections 2.2.6 and 2.3. 

 

2.1.4 Cells from Fetal Brain 

Human fetal brain tissue samples from medically aborted fetuses at 15-18weeks of 

gestation were collected (n=5). The hippocampus, subventricular zone, thalamus, brain 

stem, cerebellum, spinal cord, anterior and posterior cerebra were teased out and 

mechanically minced with a scalpel. The minced tissues were then dissociated 

enzymatically with 0.25% trypsin for 15mins at 37°C. Thereafter, an equal volume of 

40mg/ mL of bovine serum albumin (BSA) suspended in Earles’ balanced salt solution 

(Invitrogen, Carlsbad, CA) were added to inactivate the trypsin. The cell suspension is 

then filtered through 70µm filters (BD Biosciences, Franklin Lakes, NJ) and washed 

twice with PBS (137mM NaCl, 10mM Phosphate, 2.7mM KCI, pH 7.4) before 

counting.  Viability of cells was determined with 3% acetic acid with methylene blue 

(StemCell Tech, Canada). Cells isolated from fetal brain were used for reverse 

transcription polymerase chain reaction and as one of the positive controls for spherical 

cultures. 
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2.1.5 Fetal Mesenchymal Stem Cells 

Mesenchymal stem cells were derived by flushing the bone marrow of medically 

aborted fetuses at 18weeks (n=1). This is done using a 22 Gauge needle attached to a 

syringe. The suspension is then filtered through 70µm nylon filter (BD Falcon, MA, 

USA) to get single cells. These fetal mesenchymal stem cells were used for reverse 

transcription polymerase chain reaction in Section 3.3.2. 

 

2.1.6 Breast Adenocarcinoma Cell Line, MCF-7 

MCF-7, a breast adenocarcinoma cell line was obtained from American Tissues Culture 

(ATCC, HTB - 22). This cell line is derived from a 69 year old Caucasian lady. This 

cell line is chosen as a suitable control for my work as it retains several characteristics 

of differentiated mammary epithelium. In addition, it has been reported to contain a 

group of cells known as side-population which possesses the ability to exclude Hoechst 

dye actively and these cells exhibit clonogenicity, a property of stem cells (Cariati et al. 

2008). 

 

 

2.2 Cell Culture 

2.2.1 Epithelial Cell Culture  

The cellular fraction of breast milk was suspended and cultured in RPMI (Roswell Park 

Medical Institute) supplemented with 10% heat-inactivated fetal bovine serum (FBS) 

(Gibco), 2mM L-glutamine, 4µg/ mL insulin (Sigma-Aldrich, Mossouri, USA), 0.5µg/ 

mL hydrocortisone (Sigma-Aldrich), 20ng/ mL epidermal growth factor (BD 

Bioscience, California, USA), 60ng/mL cholera toxin (Sigma-Aldrich) and 0.1mg/ mL 
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of penicillin/streptomycin/fungizone (Biowhittaker, Verviers, Belgium). The cells were 

cultured for 7 to 50 days at a density of 10
5
 cells/ cm

2
 until confluence. Cells cultured 

for immunocytochemistry were cultured on 13mm diameter circular coverslips in 24-

well tissue culture plates (Sarstedt, Numbrecht, Germany) at 37°C with 5% CO2 and 

95% relative humidity. 

 

Epithelial medium placed onto an established culture of lactocytes for 72hours were 

collected and passed through 0.2µm filters to remove cells. They were then kept in 

aliquots at -20°C till used as conditioned medium for optimisation of mammosphere 

medium subsequently. 

 
 

2.2.2 Mammosphere Culture  

To attempt to grow MaSC from cells directly isolated from HBM, cells from HBM 

were also grown in a serum-free mammary epithelial growth medium (Cambrex, New 

Jersey, United States), supplemented with B27 (Invitrogen), 20ng/ mL epidermal 

growth factor (Sigma-Aldrich), 20ng/ mL basic fibroblast growth factor (BD 

Biosciences) and 4µg/ mL heparin (Sigma-Aldrich). Cells were placed on ultra-low 

attachment plates at various densities of 1, 100, 1,000 and 3,000 cells per well of a 96-

well plate to establish their ability to grow clonally, in a manner MaSC from human 

mammary tissue were previously cultured (Dontu et al. 2003a). These cultures are then 

observed weekly after 2 weeks, up to 5 weeks for mammospheres formation. 
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2.2.2.1 Optimisation of Mammosphere Media 

Cells intended for growth into mammopsheres were first plated singly into each well of 

a 96-well plate. I next proceeded to plate the cells into low adherence 96-well plates at 

both low plating density of 3x10
3
cells/ cm

2
 and high plating density of 9x10

3
cells/ cm

2
.  

 

Further to this, I added in conditioned medium, derived as described in Section 2.2.1 in 

varying concentrations as shown in Table 2-1. Varying concentrations of epidermal 

growth factor (EGF) (Sigma-Alrich), basic fibroblast growth factor (bFGF) (Sigma-

Aldrich) and fetal bovine serum (FBS), as tabulated in Table 2-1, were also used in the 

optimisation of mammosphere medium for culture.  

 

Substances added into mammosphere medium   

Fetal Bovine Serum (%) 1 3 5 10 20 

Epidermal Growth Factor (ng/ ml) 20 40 60 80 100 

Basic Fibroblastic Growth Factor (ng/ ml) 20 40 60 80 100 

Conditioned Medium (%) 1 5 20 50 80 

 

Table 2-1: Factors for optimisation of mammosphere medium.  
 
 

2.2.2.2 Coating of Substratum  

2.2.2.2.1 Matrigel
TM coating 

Matrigel
TM

 Matrix (BD Biosciences) is a solubilized basement membrane preparation 

extracted from sarcoma, a tumor rich in extracellular matrix. At room temperature, it 

produces biologically active matrix material resembling the mammalian cellular base 

and is known to be especially suited for culture of epithelial cells. 
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Matrigel
TM

 is allowed to defrost slowly on ice. 20µl of matrigel was aliquoted and 

spread with a pipette tip into each well of a 96-well plate (Nunc, Roskilde, Denmark). 

The excess was aspirated away and the plates left to incubate on ice for 30mins 

followed by incubation at 37°C for 30mins to ensure setting of the gel. Thereafter, 

200µl of medium was added into each well. 

 

2.2.2.2.2 Collagen coating 

Twenty microliters of 1mg/ mL collagen solution (Sigma-Aldrich) was placed onto 

each well of a 96-well plate and spread using a pipette tip. The plate was left at room 

temperature to air-dry after aspirating away the excess collagen. 200µL of medium was 

then added into each well and the plate left at 37°C for an hour, before use. 

 

2.2.2.2.3 Gelatin coating 

 

Dissolve 12mg of gelatin (Sigma-Aldrich) in 12mL of sterile water.  The 0.1% gelatin 

solution was sterile-filtered before being loaded onto each well of a 96-well plate. The 

plate was then left in the incubator at 37°C for an hour, before the excess gelatin 

solution was removed. 200µL of medium was then added into each well. 

 

2.2.2.2.4 Fibronectin coating 

The recommended use of fibronectin (Sigma-Aldrich) is at a concentration of 1.5µg/ 

cm
2
 and each well of a 96-well plate has an area of 0.32cm

2
. Therefore, 8µL of 0.1% 

fibronectin was loaded onto each well. After coating the wells, the plate was left in the 

incubator at 37°C for an hour before 200µL of mammopshere medium was added into 

each well. 
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2.2.3 Neurosphere Culture 

For neurospheres initiating assays, cells isolated from the fetal brain were plated at a 

concentration of 3x10
4
 cells per mL of neurosphere medium which is 1:1 Dulbecco's 

Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/ F-12) (Gibco) supplemented 

with 1% N2 supplement (Gibco) and 1x antibiotic/antimycotic (Invitrogen) for  four 

weeks.   

 

At the end of four weeks, the neurospheres were then dissociated using TrypIE 

(Invitrogen) and mechanical dissociation. The single cells are then cultured with 

differentiation medium, DMEM/F-12 with 1% N2 supplement, 1% FBS and 1x 

antibiotic/antimycotic on poly-L-ornithine–coated coverslips for one week before the 

coverslips were washed with phosphate buffered saline (PBS) and fixed with 1:1 

methanol/ acetone for 5mins at -20°C. These were then used for immunocytochemistry. 

 

2.2.3.1 Poly-L-ornithine Coating of Coverslips 

Each coverslip was placed into a well of a 24-well plate and washed with 70% ethanol 

and left to dry. Thereafter, each glass coverslip was covered with 200µL of 0.1mg/ ml 

poly-L-ornithine solution for two hours at room temperature. The solution was then 

aspirated away and wells washed with distilled water twice. The 24-well plates were 

left to dry completely overnight in the incubator before storage at 4°C for use within a 

week. 
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2.2.4 Fetal Mesenchymal Stem Cell Culture 

These cells which were flushed out from bone marrow were cultured in DMEM 

(Dulbecco's Modified Eagle's Medium) (Gibco), supplemented with 10% FBS (Sigma-

Aldrich), 1% L-glutamine (Gibco) and 1x penicillin/ streptomycin (Gibco) in T75 flasks, 

at a cell density of 10
6
 cells per mL of culture media. The non-adherent cells were 

removed after three days and new medium added. The adherent cells were subcultured 

every two to three days when confluent, at a cell density of 10
4
 cells per cm

2
 in T75 

flasks. Adequate cell numbers were cultured and then harvested for RNA extraction, to 

be used as a positive control in Section 3.3.2. 

 
 

2.2.5 Culture of Cell Line, MCF-7 

These cells were cultured in DMEM (Dulbecco's Modified Eagle's Medium) (Gibco), 

supplemented with 10% FBS (Sigma-Aldrich), 1% L-glutamine (Gibco) and 1x 

Penicillin/ Streptomycin (Gibco) in T75 flasks. The cells were subcultured 1:3 every 

four to five days when confluent. MCF-7 cells were used as both negative [in Section 

3.3.1, 3.3.2 and 3.3.3] and positive controls [in Section 3.3.4 and 5.4.1.1.2]. 

 

2.2.6 Methylcellulose Culture 

Cells derived from cord blood and HBM were placed in HSC-CFU lite with Epo 

(Miltenyi) at 1,000 to 3,000 cells per mL as per manufacturer’s instructions. 

Specifically, individual specimens were mixed with 3 mL of methylcellulose containing 

bovine serum, stem cell factor, granulocyte-macrophage colony-stimulating factor, 

interleukins-3 and 6, erythropoietin, and plated in 35-mm tissue culture dishes in 

duplicates for two weeks and then observed for colonies formation. 
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2.3 Reverse Transcription Polymerase Chain Reaction 

2.3.1 RNA Extraction 

Whole RNA was extracted from cells using RNAeasy columns (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. The isolated DNAse-treated 

RNA was quantified with a spectrophotometer (Beckman, California, USA).  

 

2.3.2 Reverse Transcription 

One microgram of total RNA was reverse-transcribed using oligo-dT primers (Proligo, 

Sigma-Aldrich), RNase inhibitor (Roche, Basel, Switzerland) and the Sensiscript kit 

(Qiagen) at 25°C for 15mins, 42°C for 60mins and 72°C for 15mins. Negative controls, 

without reverse transcriptase, were performed for each RNA sample to ensure absence 

of DNA contamination. 

 

2.3.3 Polymerase Chain Reaction 

PCR cycling conditions were as follows: 94°C for 120s followed by 30-40 cycles of 

denaturation (94°C for 15-30s), annealing (55-68°C for 15-30s) and extension (72°C for 

60s) and a final extension at 72°C for 4mins. The PCR products were electrophoresed 

in 1.2% agarose gels stained with ethidium bromide in TE electrophoresis buffer. The 

PCR bands were visualised using a UV illuminator. RT without reverse transcriptase 

and PCR reaction with water in place of cDNA were negative controls to exclude DNA 

contamination. Commercial genomic DNA (Applied Biosystems, California, USA) was 

used as a positive control. Primers used for PCR amplification were as shown in Table 

2-2. 
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Primer           Sense 5’→3’                        Antisense 5’→3’              Size (bp) 

 

GAPDH aaggactcatgaccacagtccatg ttgatggtacatgacaaggtgcgg 673  

NES  ggtcagttcctgaagttcactcag cctagtactatcgggattcagctg 343  

CK5  cgacaaggtgcggttcctg  gcagattggcgcactg  683 

CK14  gatgacttccgcaccaagtatgag tcaatctccaggttctgcatggtg 440 

CK18  agaaatctgaaggccagcttggag taccctgcttctgctggcttaatg 372 

CD34  gacactgtggacttggtcaccag gaggaggaagccatggagatcag 310 

CD133  ccaagttctacctcatgtttgg  accaacagggagattgcaaagc 480 

ON  atttgatgatggtgcagaggaa ggtggttctggcagggattt  65 

ALP  caggctggagatggacaagttc ggacctgggcattggtgtt  68 

OP  cctgccagcaaccgaagtt  cactatcacctcggccatca  67 

MSI  gtgtgaggtgcttaacctatcagc acagatgtggagagaagagacacc  359 

NFM  cttcagccagtcctcgtccc  tcctccaggtggtccgagtc  312 

 

 Table 2-2: Primers for PCR.  

 

 

2.4 Immunostaining 

2.4.1 Slides and Controls 

Cells were either cytospun onto glass slides at a density of 2-5x10
4
 cells per slide or 

grown on glass coverslips in 24-well plates till sub-confluency.  

 

2.4.1.1  Controls for Immunocytochemistry 

Controls for immunocytochemistry include an external negative cell type known not to 

express the antigen, an external positive cell type known to express the antigen and an 

internal negative control, where the incubation with primary antibody is omitted. 

 

2.4.1.2 Controls for Flow Cytometry 

Isotype controls were used for the directly conjugated antibody. Incubation with the 

secondary antibody alone was used as control for those antigens detected via indirect 

flow cytometry. An external cell type known to express the antigen-in-study and an 
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external cell type known to be negative for the antigen-in-study were used to verify 

protocol. 

 

2.4.2 Immunocytochemistry 

A list of antibodies and concentrations used are provided in Table 2-3. Prior to staining, 

samples were rinsed with PBS and fixed with ice-cold 1:1 acetone-methanol for 10min. 

After fixation, potential non-specific binding was blocked with 10% goat serum (Vector 

Laboratories, California, United States) and 3% Bovine Serum Albumin (Sigma-

Aldrich) in Tris-buffered saline for an hour at room temperature. For 

immunocytochemistry, all incubations were done in a humidified chamber. 

 

2.4.2.1 Immunocytochemistry by Alkaline Phosphatase/ Horse 

Radish Peroxidase 

 

Cells were incubated with primary antibody overnight at 4°C for 2hours at room 

temperature and washed thrice with PBST (phosphate- buffered saline with 0.5% 

Tween-20), 5mins per wash. Thereafter, they were incubated with biotinylated 

secondary antibody (1:100) for 30mins at room temperature, washed thrice with PBST 

before incubation with streptavidin alkaline phosphatase (Vector Laboratories) or 

streptavidin horseradish peroxidase (Dakocytomation, Glostrup, Denmark) (1:100) for 

30mins at room temperature. Freshly-prepared substrate was then added and incubated 

for 10mins in the dark for colour reaction to occur. Following this, the slides were 

rinsed with distilled water, followed by absolute ethanol. Depex mounting medium 

(Electron Microscopy Sciences, Pennsylvania, USA) was used to seal the coverslips. 
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2.4.2.2 Immunocytochemistry by Immunofluorescence 

Coverslips were incubated with primary antibody overnight at 4°C and followed by 

incubation with a fluorescent-labelled secondary antibody for 30mins at room 

temperature in the dark. The slides were then washed thrice with PBS and rinsed with 

distilled water. HardSet mounting medium with DAPI (Vector Laboratories) was added 

and the cells visualised and photographed with a Zeiss Axioplan 2 fluorescent 

microscope (Carl Zeiss, New York, USA). 

 

2.4.3 Flow Cytometry 

Flow cytometry is used to measure the numbers of particles or cells as they flow in a 

fluid stream singly through a detection point. The important feature of flow cytometric 

analysis is that measurements are made on individual particles or cells within the 

suspension and not as average values for the whole cell population. Fluorescein 

isothiocyanate (FITC) and phycoerythrin (PE) conjugated antibodies were used in the 

experiments. The emission maximum of fluorescein is 530nm and is visualised as green. 

PE has an emission maximum of 578nm and is visualised as red. Indirect flow 

cytometry was also performed with the use of anti-mouse IgG AlexaFluor 488 as the 

secondary antibody. The emission maximum of AlexaFluor 488 is similar to that of 

FITC.  

 

Cells were enzymatically lifted by incubation in trypsin for 5mins at 37°C, washed, and 

re-suspended in 100µL of blocking solution comprising 2mM EDTA in PBS 

supplemented with 10% FBS and 10% goat serum. After 30mins, antibody solution was 

added. Cells were washed twice in PBS by centrifugation at 400g for 10mins. 

Secondary labelling was carried out when unconjugated primary antibodies were used. 
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This process involved incubation of the cells with a 10% solution of secondary antibody 

in PBS for 20mins in the dark. Washing was then carried out to remove unbound labels. 

Cells were fixed by incubation in 4% buffered formaldehyde for 15mins, followed by 

washing in PBS. All stained samples were analysed with Cyan
TM

 ADP analyzer 

(Dakocytomation) within 72hrs and the results analysed with software, Summit 4.2. 

 

2.4.3.1 Extracellular Antigens 

For directly labelled antibodies, cells were suspended in 90µL of staining buffer and 

10µL of fluorochrome-labelled antibody added into the suspension. After an incubation 

of 20mins in the dark, the cells were washed twice with staining buffer (0.5% BSA/ 

2mM EDTA in PBS) by centrifugation at 400g for 5mins. The cells were re-suspended 

in 1 mL staining buffer for analysis.  

 

For the indirectly-labelled antibodies, cells have to undergo a blocking step by 

incubation with 5% bovine serum albumin (Sigma-Aldrich), 20% goat’s serum (Vector 

Laboratories) for 45mins at room temperature. Cells were then incubated with primary 

antibody diluted 20 fold with blocking solution. The cells were incubated for 30mins at 

room temperature before washing twice with staining buffer (similar to above). Cells 

were re-suspended and incubated for 15mins at room temperature in the dark in 488 

AlexaFluor-labelled goat anti-mouse antibody: blocking solution (1:200). The cells 

were then washed twice with staining buffer before re-suspension in 1 mL of staining 

buffer for analysis. 
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2.4.3.2 Intracellular Antigens 

Each cell sample was suspended in 1ml PBS, with 2ml 4% paraformaldehdye 

(Integrated Contracted Manufacturing Pte Ltd, Singapore, Singapore). The cell 

suspensions were washed with staining buffer and cells spun down by centrifugation. 

Cell pellets were incubated with 1mL of methanol for 10mins at -20°C before washing 

twice with staining buffer.  The cells were then incubated in 1mL of 0.5% Nonidet P40 

(Roche) in blocking solution (as mentioned above) for 45mins at room temperature to 

permeabilise the cells.  Primary antibody was added and incubated for 30mins at room 

temperature in the dark. Cell pellet were then washed twice with staining buffer and re-

suspended for incubation at room temperature in the dark with 488 AlexaFluor-labelled 

goat anti-mouse antibody diluted 200 fold with blocking solution. The cells were 

washed twice with the staining buffer before re-suspension in 1mL of staining buffer for 

analysis. 
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Antibody 

reactive to 

Host 

species 

Dilutions used 
Manufacturer 

ICC FACS 

     

CK5 Mouse 1:50 1:20 Sigma-Aldrich 

CK14 Rabbit 1:100 1:20 Chemicon 

CK18 Mouse 1:100 1:20 Chemicon 

CK19 Mouse 1:100 1:20 Dako 

Nestin Mouse 1:100 1:20 Chemicon 

Nestin Rabbit 1:200 NA Chemicon 

594 anti-Rabbit Goat 1:400 1:10 Molecular Probes 

488 Anti-Mouse Goat 1:400 1:10 Molecular Probes 

CD133 Mouse NA 1:10 R&D Systems 

CD34 Mouse NA 1:10 Chemicon 

RPE-CD24 Mouse NA 1:10 BD Pharmingen 

FITC-CD29 Mouse NA 1:10 Chemicon 

CD49f Mouse NA 1:10 Chemicon 

CDw338 Mouse NA 1:10 StemCell  

Stro-1 Mouse NA 1:25 Chemicon 

RPE-CD117 Mouse NA 1:10 Dako 

GFAP Rabbit 1:200 NA Sigma-Aldrich 

BIII Tubulin Mouse 1:100 NA Chemicon 

PDGFRα Rabbit 1:100 NA Upstate  

RPE- IgG2a Mouse NA 1:10 Dako 

FITC- IgG2b Mouse NA 1:10 Dako 

RPE- IgG1 Mouse NA 1:10 Dako 

FITC- IgG1 Mouse NA 1:10 Dako 

PE- IgG2b Mouse NA 1:10 Miltenyi 

 
Table 2-3: List of antibodies and concentrations. 
 

2.5 Cell Sorting 

2.5.1 CD133 tagged DynabeadsTM 

Mouse Antihuman-CD45 (BD Pharmingen, California, United States) and antihuman-

CD133 monoclonal antibody (Miltenyi, Gladbach, Germany) were tagged onto 

Dynabeads
TM

 (Dynal AS, Invitrogen) and used to isolate CD45+ or CD133+ cells from 
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the whole cell population in HBM on separate occasions. Dynabeads
TM

 are first washed 

with PBS/ 0.1% BSA. Using a magnet, the Dynabeads
TM

 are then separated and 

supernatant discarded. Mouse antihuman CD133 or mouse antihuman CD45 were 

incubated with the Dynabeads
TM

 are a concentration of 0.5µg per 10
7
 Dynabeads

TM
 for 

an hour at 4°C with gentle tilting and rotation. Thereafter, the tube is placed into a 

magnet for 2mins, to separate the Dynabeads
TM

 from the supernatant which is 

discarded. The Dynabeads
TM

, now attached with relevant antibody are washed thrice 

with PBS/ 0.1% BSA before use. Isolation of the CD133+ or CD45+ cells from HBM 

were carried out based on manufacturer’s instructions. Purified mouse IgG (Chemicon) 

were bound to Dynabeads
TM

 and used as negative controls.  

 

2.5.2 Fluorescence Activated Cell Sorting  

2.5.2.1 Hoechst Dye Exclusion 

Hoechst staining was performed as previously described (Storms et al. 2000). Cells 

from HBM, cord blood, and cell line, MCF-7 were sorted. Cells were then suspended in 

culture medium with Hoechst 33342 (Sigma-Aldrich) at a final concentration of 2.5µg/ 

mL and incubated for an hour at 37°C.  In the control samples, verapamil (Sigma-

Aldrich) was added to a final concentration of 50µg/ mL. After incubation, samples 

were washed and re-suspended in Hanks Balanced Salt Solution (HBSS)(Gibco) 

supplemented with 5% FBS (Gibco). Cell populations were stained with 1µg/ mL 

propidium iodide (Sigma-Aldrich) for exclusion of dead cells in analysis. Flow 

cytometry was performed using FACStarPLUS (Becton Dickinson, New Jersey, USA) 

and FACSAria (Becton Dickinson) and the analysis done using Summit 4.2 and 

FACSDiva respectively. 
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2.5.2.2 CD133 

Cells from HBM and cord blood were incubated with phycoerythin conjugated 

CD133/2 antibody (Miltenyi) diluted 1:10 in staining buffer (0.5% BSA/ 2mM EDTA 

in PBS). The cells are washed twice with staining buffer after incubation for 20mins at 

37°C and then suspended at 10
6
cells/ mL of staining buffer for sorting. Isotype controls 

were in place and all samples were analyzed and sorted by flow cytometry using 

FACSAria and the software, FACS diva (Becton Dickinson). 

 

2.6 Proliferation Studies Using AlamarBlue® 

AlamarBlue
®

 is a commercially available reagent used as an indicator of cellular health 

of the cells-of-interest. Viable cells in culture are able to convert resazurin, the active 

ingredient in alamarBlue
® 

to resorufin. This is reflected as colour change from the 

nonfluorescence blue resazurin to the bright red fluorescent resorufin. 

 

AlamarBlue
®

 is used as per manufacturer’s instructions, and incubated with the cells for 

four hours before absorbance is read at 590nm filter with Spectrophotometer 

(Beckmann, California, United States) 

 

2.7 Statistical Analysis 

Data were first checked for compliance to normal distribution. Parametric data were 

shown as mean ± standard error mean (SEM) and analysed using Student’s t-tests and 

one-way ANOVA where applicable. Non-parametric data were shown as median ± 

SEM and analysed using Kruskal-Wallis where applicable. A p-value of <0.05 was 

considered significant.  
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3 Cellular Component of Expressed Human Breast 
Milk 
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3.1 Introduction 

Research in HBM has largely been focused on its nutritional value to the breastfed 

infant. As such, one can find numerous research articles on the nutrients like 

carbohydrates, proteins, lipids and vitamins (Mata and Wyatt 1971; Bracco et al. 1972; 

Ebner and Schanbacher 1974; Picciano and Guthrie 1976; Siimes et al. 1979; Packard 

1982; Bitman et al. 1983; Davies 1983; Howell et al. 1986; Morriss 1986; Goldman and 

Goldblum 1989; Jensen 1989; Canfield et al. 1991; Hamosh 1995; Koldovsky 1995; 

Lammi-Keefe 1995; Coppa et al. 1999).  On the other hand, research in the cellular 

component of HBM is a field less explored (Crago et al. 1979; Ho et al. 1979; Brooker 

1980; Davies 1983; Wirt et al. 1992; Xanthou 1997; Thompson et al. 1998).  

 

Working with colostrum donated from fifty-four healthy donors, Crago and team found 

a range of 1.1x10
5 

to 1.2x10
7
 cells per mL of colostrum (Crago et al. 1979). This 

cellular component comprises 30-47% macrophages, 40-60% polymorphonuclear 

leucocytes, 5.2-8.9% lymphocytes, and 1.3-2.8% colostral corpuscles. The team found a 

great variability in the total number of cells and distribution of various cell types both 

among individuals and also in the same individual studied longitudinally, although no 

significant increase or decrease in total number of cells per mL of colostrum were found 

(Crago et al. 1979). 

 

In the following year, Brooker studied the composition of HBM up to 110 days 

postpartum. He examined HBM derived from 30 lactating women and found that the 

population of intact cells was relatively low, greatly outnumbered by the membrane-

bound cytoplasmic fragments. In addition the immune cells, lymphocytes, macrophages 

and polymorphonuclear leukocytes have garnered more interest due to their role in 
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conferring immune protection to the neonate against pathogens (Brooker 1980). The 

different cell types have been found to transfer cell-mediated immunity (Mohr 1973; 

Parmely et al. 1977), produce IgA antibodies (Murillo and Goldman 1970) and 

interferon (Emodi and Just 1974), and engulf enteric pathogens (Pitt et al. 1977). The 

epithelial cells on the other hand are subjected to much lesser scrutiny. He found the 

presence of three distinct epithelial cell types: secretory cells denoted by the presence of 

abundant cisternae of rough endoplasmic reticulum, lipid droplets and a Golgi apparatus, 

squamous epithelial cells which are derived from the stratified squamous epithelium of 

the galactophores and/ or the skin of the nipple and lastly, ductal cells which are found 

in clusters of two to four cells and they occur in small numbers (Brooker 1980). He also 

established that the secretory cells are commonly found up to 110 days postpartum 

whereas the duct cells are found only up to eight days postpartum.  

 

In this chapter, I aim to extend this body of work by examining the cellular component 

of HBM beyond one year postpartum in detail, which is more than 3 times the duration 

which Brooker et al has explored. HBM is dynamic in nature and examination of the 

cellular component of HBM beyond 110 days will allow us to explore the cellular 

changes beyond the first 3 months of lactation. I will also investigate the cell types by 

applying more modern stem cell techniques, based upon the surface markers that they 

possess. 

 

3.2 Cellular Content 

In order to reduce the possiblity of cellular death post expression of HBM, all the 

samples were processed within four hours post-collection. The cell concentration in 

milk ranges widely from 10
3
 cells/ mL milk to 8x10

5
 cells/ mL milk, with a mean RNA 
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level of 2.6 ± 0.8 (SEM) pg per cell. No correlation was found between the duration of 

breastfeeding and cell concentration in HBM, in either inter-individual (n=40, r
2 

= 0.4) 

(Figure 3-1) or intra-individual samples (Figure 3-2, n=6, r
2
 < 0.03). Cellular content of 

expressed HBM comprised immune cells like neutrophils, basophils, monocytes, 

lymphocytes and macrophages as well as epithelial cells as published previously 

(Figure 3-3 & 3-4). A cell type which has not been characterised before was observed. 

These putatively novel cells were significantly smaller than the immune and epithelial 

cells, with a high nucleus-cytoplasm ratio as seen on H&E staining (Figure 3-3). 

 
 

 

Figure 3-1 Correlation of cell concentration in milk to the duration of 

breastfeeding. Cell concentrations were not related to the duration of breastfeeding in 

my study (R
2 

= 0.4) 
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Figure 3-2 Correlation of cell concentration in milk to the duration of 

breastfeeding in 6 lactating females. Cell concentrations were not related to the 

duration of breastfeeding in all 6 females when their milk samples are analysed 

longitudinally (R
2 

< 0.03). 
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Figure 3-3 Phase contrast image of total cell population in HBM. Neutrophils were 

recognised by their multi-lobed nucleus. Lymphocytes and monocytes were both 

circular and were differentiated by the nuclear cytoplasmic ratio. Lymphocytes have a 

large nucleus with a thin periphery of cytoplasm. The irregularly shaped lactocytes and 

macrophages were distinguished by the lipid inclusions exclusively found in the 

lactocytes. A group of cells with a high nuclear cytoplasmic ratio was observed. This 

group of cells, which are very small, have not been described (red arrowheads). 
 
 
 

 
                                                                                                                                    

Figure 3-4 Haematoxylin and eosin staining of cells directly spun down from HBM. 
The epithelial cells shown in high magnification here are larger than lymphocytes 

(yellow arrow). Numerous intercellular lipid droplets were observed in the epithelial 

cells.  
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In order to further characterise the heterogeneous cellular population of HBM, I 

interrogated the cells for lineage specific markers in this mixed cell population. The 

presence of haemopoietic, mesenchymal and neural-epithelial lineage specific markers 

were investigated at both mRNA and protein level. 

 

3.3 Test for Various Lineage Markers 

3.3.1 Cell Markers of Haemopoietic Lineage 

 

 

Figure 3-5 RT-PCR of haemopoietic stem markers. mRNA of haemopoietic stem 

cells (HSC) markers: CD133 and CD34 were present in whole cell population (WCP) of 

HBM (Lane 1-3). These HSC markers are absent in MCF-7, a breast cancer cell line 

(Lane 4). Lane 5 displayed mRNA of the HSC’s markers on cells isolated from 

umbilical cord blood, a positive control. 
 

Firstly, I looked for the expression of CD34 and CD133 at the mRNA level. CD34 is a 

known haemopoietic stem/ progenitor and endothelial cell marker (Fina et al. 1990). 

CD133 has been associated with a variety of primitive cells in both haemopoietic and 

neural lineage (Yin et al. 1997). As shown in Figure 3-5, CD34 and CD133 are present 

in all three milk samples while absent in a breast adenocarcinoma cell line, MCF-7. 
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This suggests the presence of haemopoietic stem/ progenitor cells in the cellular 

component of HBM.  

 

Next, I performed immunocytochemistry for CD34 on cytospun cells directly isolated 

from HBM and found high level staining even in my negative controls (Figure 3-6). 

This occurred despite employing several techniques to reduce this high level of 

background staining such as varying the blocking agent from 5% goat serum with 2% 

BSA to 10% goat serum with 5% BSA, to as high as 50% goat serum and varying the 

incubation time with the blocking agent from 30mins at room temperature to an hour at 

37°C to two hours at room temperature. This high background staining was not 

observed in other cell types tested, namely the human umbilical vein endothelial cells 

and erythrocytes (Fig. 3-6c, d). This problem is most likely due to the large amount of 

cellular debris and lipids present in expressed HBM. Hence, I attempted to optimise the 

sorting of cells from HBM for immunocytochemistry, as shown in Table 3-1. Despite 

the several rounds of optimisation, hematoxylin and eosin stained cells derived from 

cell pellets demonstrated persistence of high background staining (Figure 3-7). 

Method Procedure Undertaken 

A Centrifugation at 1,900rpm for 10mins thrice followed by incubation 

with trypsin/EDTA for 15mins followed by incubation in RPMI for 

1.5hrs before cytospun onto slides. 

 

B Centrifugation at 1,900rpm for 10mins thrice followed by three 

washes in RPMI before cytospun onto slides. 

 

C Centrifugation at 1,900rpm for 10mins thrice followed by incubation 

with trypsin/EDTA for 30mins followed by incubation in RPMI for 

2hrs before cytospun onto slides. 

 

D Centrifugation at 1,900rpm for 10mins thrice followed by incubation 

with culture medium for 2hrs before cytospun onto slides. 

                                                                                                                                     

Table 3-1: Optimisation strategy for isolation of cells for immunocytochemistry. 
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Figure 3-6 CD34 staining. Whole cell population directly isolated from HBM (a-b, b 

without primary antibody), human umbilical vein endothelial cells (c, positive control) 

and erythrocytes (d, external negative control). Magnification of 20X. 

 

 
 

 

Figure 3-7 Hematoxylin and eosin staining. Whole cell population of HBM stained, 

with a high amount of debris despite multiple washes. Magnification of 4X. 
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 Following this, I decided to use flow cytometry to investigate the protein level instead. 

Flow cytometry allows the analysis of a very large number of events, reducing errors of 

looking at too small a population as in the case of immunocytochemistry. In addition, 

flow cytometry does not require forceful spinning of cells down (with the debris) while 

allowing analysis of the cells in suspension. This reduces the clumps present, allowing a 

more reliable collection of results. The flow cytometer also allows the gating for the 

exclusion of cellular debris, typically in the bottom left hand corner of a forward-scatter, 

side-scatter plot. Appropriate isotypes were used to allow robust removal of 

autofluorescence. 

 

Next, I utilised flow cytometry in an attempt to delineate the cell types found within 

HBM. Flow cytometry of CD133, CD34 and CD117 were first carried out on a positive 

control using mononuclear cells (MNC) from umbilical cord blood collected from term 

pregnancies. In MNC of cord blood, I found 1.12% of the cells to be CD34+, a lower 

percentage of 0.41% of the cells being CD133+ and lastly, 1.28% of the cells to be c-

kit-positive. This is comparable to the published data on the cells present in cord blood 

(Nimgaonkar et al. 1995). The typical protein profile of the three haemopoietic stem/ 

progenitor cell markers was as shown (Figure 3-8). By subjecting the WCP of HBM to 

fluorescence activated cell sorting (FACS), I found a mean of 2.6±0.8% CD133-

positive cells, with 1.1±0.15% of the WCP being CD34 positive and 0% of the WCP 

being c-kit positive (Table 3-2, page 79). 
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Figure 3-8 Staining for haemopoietic stem/ progenitor markers. WCP directly 

isolated from HBM are subjected to flow cytometry, analysing 20,000 events for each 

antigen (red), with an appropriate isotype control (green). 
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Antigen  Other name            Expression determined by Flow Cytometry 

     Mean % No. of Samples SEM 
 

CD133  Prominin-like 1 2.6   4  0.8 

CD117  c-kit   0.0   3  0.0 

CD 24  BA-1   70.7   3  10.3 

CD29  β-1 Integrin  11.5   3  5.8 

CD49f  α-6 Integrin  11.4   3  7.3 

CDw338 ABCG2  21.1   3  1.8 

CD34     0.7   3  0.2 

Stro-1     27.8   3  9.1 

Nestin     4.7   3  0.2 

CK 5     0.9   3  0.2 

CK 14     0.2   3  0.2 

CK 18     2.0   3  0.1 

 

                                                                                                                                     

Table 3-2: Expression of selected proteins in WCP of HBM. 
 

 

3.3.2  Cell Markers of Mesenchymal Lineage 

Mesenchymal stem cells are able to differentiate into adipocytes, chrondrocytes and 

osteocytes (Pittenger et al. 1999). The established mesenchymal stem cells markers are 

Stro-1, CD105 as well as vimentin. However, CD105 and vimentin are also present on 

cells of the lympho-haemopoietic system. Specifically, CD105 is present on activated 

monocytes and macrophages and vimentin on lymphocytes and macrophages (Giorno 

1985; Rohde et al. 2006). Therefore, showing their presence on the WCP of HBM 

would not be indicative of mesenchymal stem/ progenitors in HBM. The immunogen 

for Stro-1 is still as yet unknown. I therefore decide to run RT-PCR for a terminal cell 

type of mesenchymal lineage. Three bone markers: osteonectin (ON), alkaline 

phosphatase (ALP) and osteopontin (OP) were investigated (Figure 3-9). ON, ALP, and 

OP are markers for early, intermediate and terminal bone respectively (Qi et al. 2003).  
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Figure 3-9 RT-PCR for bone markers. ON, ALP and OP were present in WCP of 

HBM (Lane 1-3). These bone markers were absent in MCF-7 (Lane 4), an external 

negative control. mRNA from fetal mesenchymal stem cells, an early cell type of the 

mesenchymal lineage was used as an external positive control (Lane 5).  

 
 

Fetal mesenchymal stem cell (fMSC) is an early cell type of the mesenchymal lineage 

and is used as a positive control.  An increasing expression of the bone markers, with 

the lowest expression of the early marker and the highest expression of the late bone 

marker were noticed in all three samples, shown in Lane 1 to 3.  

 

I performed flow cytometry for Stro -1, an established mesenchymal stem cell marker. I 

found a mean of 27.8±9.1% of cells which are Stro-1-positive (Table 3-2, page 79).  

 

The RNA present in WCP of HBM containing early bone markers and presence of Stro-

1 as determined by flow cytometry, suggest the presence of mesenchymal stem/ 

progenitor cells in the heterogeneous population. The presence of late bone marker 

suggests the possibility of terminal mesenchymal cell type like bone being present in 

the WCP in HBM. 
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Stro-1 

 

Figure 3-10 Staining for mesenchymal stem/ progenitor markers. Whole cell 

population directly isolated from HBM and subjected to flow cytometry, analysing 

20,000 events for Stro-1 (red), with an appropriate isotype control (green). 
 

3.3.3 Cell Markers of Neural Lineage 

 

From Figure 3-11, it was observed that only nestin is expressed at comparatively high 

levels. Musashi-1 is a central nervous system (CNS) progenitor cell marker, which is 

important for determination of mammalian cell fate, maintenance of stem cell state, 

differentiation and tumorigenesis (Okano et al. 2005). Musashi-1 was found to be 

expressed in all three samples, although at very low levels in two of the samples (Lane 

1 and 2) (Figure 3-11). A similar pattern of gene expression was observed for a 

differentiated neural cell marker, neurofilament M (NFM), which is typically expressed 

in neurons (Figure 3-11).   

 

Nestin was expressed in a mean of 4.7±0.2% of cells in HBM by FACS analysis (Table 

3-2, page 79). 
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Figure 3-11 RT-PCR for neural markers. Messenger RNA of musashi-1 (Msi), nestin 

(NES) and neurofilament-M (NFM) were observed in WCP of HBM (Lane 1-3). These 

neural markers were absent in MCF-7 (Lane 4), an external negative control. RNA 

directly isolated from human fetal brain was used as a positive control for the neural 

markers (Lane 5).  
 
 
 
 
 

 

 

 

Nestin 

 
Figure 3-12 Staining for neural stem/ progenitor markers. Whole cell population 

directly isolated from HBM and subjected to flow cytometry, analyzing 20,000 events 

for nestin (red), with an appropriate isotype control (green). 
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3.3.4 Cell Markers of Epithelial Lineage 

 

CK5, CK14 and CK18 are established markers used in characterisation of maturity of 

mammary epithelial cells. CK5 is a marker for mammary progenitor cells, CK14 is a 

marker for both mammary progenitor cells and mature myoepithelial cells, and CK18 is 

an established marker for mature luminal epithelial cells (Bocker et al. 2002). 

Messenger RNA of all 3 cytokeratins were present at high levels (Figure 3-13).  

 

 

 

Figure 3-13 RT-PCR for epithelial cell markers. Messenger RNA of CK5, 14 and 18 

were present in WCP of HBM (Lane 1-3). The mammary progenitor cell marker, CK5 

and myoepithelial cell marker, CK14 were absent in negative control of mononuclear 

cells in peripheral blood (Lane 4) and present in MCF-7, a positive control (Lane 5). 
 

 

Flow cytometry showed a mean of 0.93±0.17% CK5+, 0.25±0.16% CK14+ and 

1.97±0.05% CK18+ cells in the cellular content of HBM with a typical flow cytometry 

profile shown in Figure 3-14 (Table 3-2, page 79).  
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Figure 3-14 Staining for epithelial cell markers. Whole cell population directly 

isolated from HBM and subjected to flow cytometry, analyzing 20,000 events for CK5, 

CK14 and CK18 (red), with an isotype control (green). 
 

3.3.5 Cell Markers Representing other Functional Antigens 

 

CD24, β-1 and α-6 integrins are transmembrane glycoproteins involved in cell 

adhesions which have all been identified in MaSC (Shackleton et al. 2006; Smith 2006). 

Murine mammary cells within the lin-CD29hiCD24low population were found able to 

reconstitute an entire functional mammary gland demonstrating at the highest level, 

what would constitute a true stem cell (Shackleton et al. 2006). The presence of ATP 

binding cassette G2 (ABCG2) protein which forms a channel on cell surface that is 
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involved in the trafficking of biological molecules across membranes, is also 

characteristic of many stem/ progenitor cells and also cancerous cell lines (Challen and 

Little 2006). Therefore, in addition to lineage specific markers, I also attempted to 

investigate protein expression of these markers which have been implicated in the 

identification of MaSC, namely CD24, β-1, α-6 integrins and ABCG2. Through flow 

cytometry, I found positive expression of the four proteins (Figure 3-15) in percentages 

as shown in Table 3-2 (page 79). 
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Figure 3-15 Staining for other functional proteins. Whole cell population directly 

isolated from HBM and subjected to flow cytometry, analyzing 20,000 events for 

ABCG2, CD24, CD29 and CD49f (red), with an appropriate isotype control (green). 
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3.4 Discussion 

3.4.1 Summary of Results 

Through the use of flow cytometry and RT-PCR, I have ascertained the positive 

expression of a large number of cell surface markers and intermediate filaments (IFs) 

within the cellular component of HBM. This includes stem/ progenitor markers of 

various lineages like CD133, ABCG2, nestin, Stro-1, CD24, β-1 and α-6 integrins and 

some of these markers have never been reported present in HBM or the cellular 

component of HBM. 

 

3.4.2 Critical Assessment  

My hypothesis was that adult stem/ progenitor cells are present in HBM. In order to 

determine the plausibility of this study, I investigated the cell surface markers and IFs 

on the cells of HBM using flow cytometry and RT-PCR to discover novel antigens that 

have never been investigated before. 

 

 

Positive staining of stem/ progenitor markers of various lineages suggested the presence 

of uncharacterised cell types in the cellular component of HBM. The staining of 

ABCG2 further ascertains that potential stem/ progenitor cells are present. CD24 is a 

glycoprotein that is expressed on the surface of most B lymphocytes while β-1 and α-6 

integrins interact with each other to form heterodimers. Interestingly, CD24, β-1 and α-

6 integrins have also been implicated in MaSC (Shackleton et al. 2006; Stingl et al. 

2006b). Shackleton et al have reported the isolation of mammary stem cell within the 

Lin-CD29hiCD24low population, with these cells able to reconstitute an entire 
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functional mammary gland demonstrating at the highest level, what would be a true 

stem cell, at least in the murine model (Shackleton et al. 2006). Stingl et al on the other 

hand also showed subsets of cells from reduction mammoplasties that expressed highest 

levels of CD29 or CD49f and CD24 (termed the ‘‘double positive’’ population). These 

double positive cells were found to be enriched for mammary stem/ progenitor cells by 

transplanting these cells at limiting dilution into cleared fat pads (Stingl et al. 2006b). I 

have shown the presence of all these antigens on the WCP of HBM (n=3) at substantial 

amounts. 

 

I have also investigated the expression of a large number of IFs by flow cytometry, in 

view of their importance and specificity of their presence in cells. Intermediate 

filaments are one of the three major cytoskeletal protein filament systems of most 

vertebrate cells. They form networks that extend from the nucleus to the plasma 

membrane, attach to desmosomes, and interact with a variety of cell structures. They 

are essential in conferring tensile strength to the cells and play an indispensable role in 

determining the shape of cells (Markl and Schechter 1998). The different cytoplasmic 

IFs proteins are specifically expressed by different cell lineages: keratins in epithelia, 

vimentin in mesenchymal derived cells and tissues, desmin in muscle cells, glial 

fibrillary acidic proteins (GFAP) in astrocytes, and neurofilament proteins in neurons 

(Markl and Schechter 1998). Presence of keratins on mammary epithelium and the 

absence of desmin and vimentin in both epithelial and myoepithelial cells illustrate the 

specificity of expression of IFs (Franke et al. 1980). The presence of differentiated 

epithelial cells in HBM has been reported (Brooker 1980) and this correlates to my 

finding of CK14- and CK18-positive cells. The positive expression of CK5 and the 
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neural IFs once again, suggests the presence of a yet still uncharacterised cell 

population in HBM. 

 

Epithelial and neural cells both descend from a common germ layer known as the 

ectoderm. The presence of nestin, which is a multipotent progenitor cell marker (Wiese 

et al. 2004), suggests the potential existence of a more primitive stem/ progenitor cell 

than mammary stem/ progenitor cells. 

 

In conclusion, my results suggest the presence of novel cell type(s) in HBM. From the 

various antigens found present as well as the known established cell types in HBM, 

there is a high likelihood that this novel cell type(s) is primitive in nature, and likely to 

be either epithelial and/or haemopoietic.  
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4 In Vitro Expansion of Adherent Cells in Selective 
Medium 
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4.1 Introduction 

In the previous chapter, I have demonstrated the presence of novel markers on the 

cellular content of HBM. In this part of my thesis, an attempt to identify the possible 

cell types will be made. By drawing from the anatomical location and the current 

knowledge of cell types established in HBM, I speculate that these cells are most likely 

epithelial cells. This, in combination with the established positive expression of 

mammary stem cell markers; CD24, CD29, CD49f and ABCG2 suggests that these 

cells are likely to be primitive epithelial cells. 

 

The history of culture of epithelial cells in HBM dates back to 1972, where Beuhring 

and team introduced the derivation of epithelial cells from HBM to circumvent the 

difficulty in obtaining pure cultures of mammary epithelial cells. This method of 

obtaining epithelial cells from HBM and culturing them using Eagles’s basal medium 

with 30% fetal calf serum, polymixin, antibiotic and antimycotic solved the problem of 

contaminating fibroblasts which inevitably accompanied the mammary epithelial cells 

during biopsies and tumour explants,  which overgrows the epithelial cell types 

(Buehring 1972). Since then, there have been major improvements of the culture 

medium, which at its most initial form, is capable of achieving a confluent monolayer 

on a T75 flask over five days (Buehring 1972). Currently, the use of serum free defined 

culture medium has been formulated to grow MaSC as mammospheres, forming the 

gold standard for culture of MaSC (Dontu et al. 2003a). 

 

In Chapter 3, I have documented the difficulty in staining cells from HBM due to the 

high level of cellular debris present, leading to non-specific binding of antibodies. This 

hindered their further characterisation. In this part of my thesis, I explored the possiblity 
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of expanding these putative primitive epithelial cell types. Enrichment of these cells-of-

interests will enable more detailed characterisation of them and give some clue 

regarding their origin and behaviour. Taking into account the inclination of epithelial 

cells to be adhesion-dependent, I first explored cell expansion through two-dimensional 

monolayer cultures. I followed this up with a three-dimensional matrigel culture to 

simulate the in-vivo conditions within the mammary gland.   

 

4.2 Two-dimensional Monolayer Culture 

Cells isolated from gravitational centrifugation were plated into 24-well plates at a 

density of 10
5
 cells/ ml of medium. This was left overnight in the incubator for the 

epithelial cells to adhere using a medium that selectively aided the growth of epithelial 

cells. The wells took 7 to 30 days to reach confluency with medium changes every two 

to three days. The non-adherent cells were removed by the series of medium changes.  

Confluent monolayers as shown in (d) of Figure 4-1 were then fixed for 

immunocytochemistry work.  

 

4.2.1 Growth Kinetics 

 

There was great variation in the growth potential of the isolated cells. Cells of sample 

shown in Figure 4-1 adhered within four days and reached confluency in approximately 

18.0±4.0 days (Figure 4-2).  
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Figure 4-1 Two-dimensional monolayer of cultured epithelial cells. Cells were left 

to adhere for a day (a), after which attachment began (b) and dividing proceeds beyond 

day 4 (c) to day 18 (d) where a confluent monolayer was observed which is then fixed 

for immunocytochemistry work. Magnification of 20X (a, b and d) and 40X (c). 

 

 

 

Figure 4-2 Metabolic activity of cells grown in 2-D cultures using AlamarBlue
®

. 

Standard error means are denoted by the black bars. 
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This growth trend was confirmed by the use of a metabolic assay (AlamarBlue
®

), where 

metabolic activity rises gradually until day 17 where it plateaus, coinciding with 

confluence of the culture (n=3) (Figure 4-2). 

 

4.2.2  Characterisation of Intermediate Filaments in Adherent Cells 

4.2.2.1  Detection of RNA by RT-PCR 

I performed RT-PCR for the immature CK5, and more mature lineage specific CK14 

and CK18. Identification of these IFs would demonstrate mammary epithelial cells of 

different maturity (Franke et al. 1979; Taylor-Papadimitriou and Lane 1987).  I also 

attempted to explore expression of nestin in the cultured cells as a follow-up to the 

presence of nestin-positive cells in uncultured WCP of HBM. Semi-quantitative 

analysis of the RT-PCR was done to investigate how the expressions of the IFs change 

when the cells are placed into culture. Comparatively, I found a similar expression of 

CK18 between culture-expanded cells and uncultured WCP, but a much lower 

expression of CK5 and CK14 in the uncultured WCP. This is demonstrated in Figure 4-

3 where CK5 and CK14 expression was below the detection threshold of RT-PCR, 

while CK18 was readily detected in cells directly isolated from milk. This suggests that 

epithelial cells are sustained in the adherent monolayer. There seemed to be an increase 

in the mammary progenitor population as indicated by the increase in mRNA level of 

CK5. Consistent with my earlier findings [Section 3.3.3], I also found the presence of 

nestin in the cultured cells (Figure 4-3).   
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Figure 4-3 RT-PCR of intermediate filaments. Expression of CK5 and CK14 were 

up-regulated in cultured cells. Similar expression of CK18, nestin and GAPDH in the 

cells isolated from HBM and culture were observed. 

 

4.2.2.2  Detection of Protein by Immunocytochemistry 

4.2.2.2.1  Single staining with horseradish peroxidase 

Positive staining for CK5, 14, 18, 19 and nestin were ascertained by comparing with the 

negative controls and the percentages of stained cells were counted. I noted 50.5±7.0% 

positive staining for CK5 (n=21), 22.3±3.9% positive staining for CK14 (n=24), 

42.0±7.4% staining for CK18 (n=16) and 32.4±6.8% staining for CK19 (n=17). In 

terms of nestin staining, I observed 14.2±3.0% of nestin-positive cells in the cultures 

(n=17). In line with other reports, we found positive staining for epithelial specific 

CK18 and CK14 cells. From the counting of stained cells and as shown in Fig 4-4 and 

4-5, we observed not only a higher percentage of cells stained with CK18 and also at a 

much greater intensity compared to CK14. Interestingly, I observed a population of 

cells which co-expressed both nestin and CK5 in cells cultured from HBM (Figure 4-6). 
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Figure 4-4 Immunocytochemistry for CK18. Homogenous positive stainings of 

cultured MCF-7 cells were observed (a-c) (positive control, c without primary antibody). 

In the cultured cells, heterogeneous staining indicates differential expression of CK18 

(d, e). Erythrocytes serve as negative control (f). Magnification of 4X (a, b), 20X (c,e,f) 

and 40X (d). 

 

 

 

 

Figure 4-5 Immunocytochemistry for CK14. Lighter stainings were observed for 

CK14, which stained 22.3±3.9% of the cultured cells (a-e). Positive staining for CK14 

was done by comparing with the internal negative control without 1º antibody (f).  

Magnification of 20X (a, d, e, f) and 40X (b, c). 
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Figure 4-6 Immunocytochemistry for CK5 and nestin. Nestin staining (red arrows) 

were observed in 14.2±3.0% (n=17) of the cells (a, b). 50.5±7.0% (n=21) of the 

cultured cells stained for CK5 (blue arrow) (c). Positive stainings were determined by 

comparing with internal negative controls without primary antibody (d). Magnification 

of 40X (a) and 20X (b, c, d). 

 

 

CK5 and CK14 were not expressed in HBM by means of RT-PCR but shown to be 

present in culture-expanded cells from HBM. Hence, I segregated the staining profile of 

the above IFs based on the number of the days the cells were cultured with the intention 

of looking for trends of change in expression of the 5 IFs. I segregrated the staining 

profile into three different culture periods, between 7 and 10 days (denoted as EM), 11 

and 20 days (denoted as MM) and beyond 21 days (denoted as LM). These findings 

were tabulated as shown in Table 4-1. There was statistical difference found only in 

CK18 (p-value = 0.04, ANOVA, Kruskal-Wallis test).  



Chapter 4. In Vitro Expansion of Adherent Cells in Selective Medium 
 

 98

 

 EM MM LM 

CK5 53.0±11.3 59.1±15.9 44.1±11.6 

CK14 21.2±3.7 18.4±7.9 26.0±6.1 

CK18 22.6±2.7 74.0±11.1* 22.4±9.2 

CK19 24.4±5.8 28.4±8.4 32.0±17.7 

Nestin 15.8±5.6 14.2±4.5 6.73±2.1 

                                                                                                                                     
Table 4-1: Expression of IFs based on duration of monolayer cultures. 

 

4.2.2.2.2  Dual staining with fluorescent tags 

In order to delineate the identity of these culture-expanded cells, IF proteins were 

stained using double labelling of nestin with CK5, 14, 18 and 19. There is as yet no 

definitive marker to demonstrate identity of MaSC. However, there have been reports 

on the use of dual staining to suggest identity as a mammary stem/ progenitor cell. 

Previous publications have shown that the myoepithelial and luminal epithelial cells 

were derived from the same progenitors. These progenitors co-express CK14 and CK18 

and lose one of the two markers when differentiate into one specific terminal epithelial 

cells (Pechoux et al. 1999). CK5, 14 and 19 have also been proposed as mammary stem/ 

progenitor markers, though not definitively as CK14 is also a marker of myoepithelial 

cell and CK19 being a marker of luminal epithelial cells, like CK18 (Bocker et al. 2002; 

Boecker and Buerger 2003). In congruence with the earlier findings on 

immunocytochemical staining of single antigens through horseradish peroxidase, I 

observed positive staining for all 5 IFs (Figure 4-7, 4-8). Using fluorophore reporter 

tags, I observed 47.2±7.6% of cells being CK5-positive, 17.8±3.7%, 28.3±6.5 and 

23.6±5.1% being CK14-, 18- and 19-positive respectively. Expression of nestin was 
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present in 16.0±2.6% of cells counted. Although some differences in levels of positivity 

were observed particularly for CK18 and CK19 between detecting with horseradish 

peroxidase and fluorophore reporter, these differences turned out insignificant (p-

value > 0.2), suggesting no differences between the staining methods. Nestin, a 

multipotent stem/ progenitor cell marker was found present in the cultured cells at both 

mRNA and protein level (Figure 4-3, 4-6 and 4-8). Nestin was co-expressed with CK19 

(24.4±3.6%), CK5 (11.4±4.2%), CK14 (3.7±1.5%) and CK18 (3.3±2.7%) in decreasing 

frequencies (Figure 4-8).  
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Figure 4-7 Expression of cytokeratin markers in cells cultured from HBM.  
Fluorescent immunocytochemistry imaging of dual staining for CK14 (red), and CK18 

(a-b), CK5 (c-d) or CK19 (e-f) (green). CK18+ luminal epithelial cells were round and 

larger when compared to the CK14+ myoepithelial cells, which appears spindle-shaped 

(a). Scale: 50µm. 
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Figure 4-8 Expression of the multipotent marker, nestin with cytokeratins. Dual 

fluorescent staining for nestin (red) with CK 5 (a-c), CK14 (d-e), CK 18 (f-g) or CK 19 

(h-i) (green) in cells cultured from HBM.  Scale: 50µm.  
 

 
 

4.3 Three- dimensional Culture on Matrigel 

Three-dimensional culture of the epithelial cells was carried out to simulate a 

physiological relevant microenvironment, to allow stromal-epithelial interactions, 

mimicking the in vivo development of mammary gland. Matrigel, generated from 

Engelbreth-Holm-Swarm sarcoma was chosen as it contains not only basement 

membrane components (collagens, laminin, and proteoglycans) but also matrix 

degrading enzymes, their inhibitors and growth factors. In addition, there have been 

several reports of positive cultures of luminal, myoepithelial and precursor cells in 
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matrigel forming acinus-like structures, solid colonies and terminal ductal lobular units 

respectively (Petersen et al. 1992; Gudjonsson et al. 2002b). 

  

4.3.1  Growth Kinetics 

Cells grown as monolayers were trypsinised and cultured in matrigel-coated plates with 

the same medium. Matrigel is believed to induce differentiation of the cells, as has been 

reported by Dontu’s group using mammary stem/ progenitor cells isolated from 

reduction mammoplasties (Dontu et al. 2003a). Cells plated on matrigel-coated plates 

were cultured for 16±2days (n=40) before being used for immunocytochemistry.   

 

4.3.2  Characterisation of Intermediate Filaments 

I performed immunocytochemistry on the cells grown in matrigel coated plates and 

observed 52.4±6.2% (n =10) of the cells being nestin-positive. This is a steep increase 

of nestin’s expression from the 34.2 ± 4.3% (n= 21) in cells grown as monolayers. A 

mean percentage of 50.5±13.3% (n=8) cells in matrigel cultures were CK5-positive. 

46.2±11.7% (n=9), 33.4±14.4% (n=5) and 34.6±9.6% (n=8) of the cells grown in 

matrigel were found CK14-, CK18- and CK19-positive respectively. 

 

There were no differences in the proportion of positively-stained cells for each IF 

between two and three dimensional cultures as shown in Table 4-2 except for nestin.   
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 2D 3D p-value 

CK5 58.5±6.5 50.4±13.3 0.56 

CK14 34.6±5.3 46.2±11.7 0.31 

CK18 48.4±7.6 33.4±14.4 0.24 

CK19 43.8±6.4 34.6±9.6 0.44 

Nestin 34.2±4.2 52.4±6.2 0.02 

 
Table 4-2: Expression of IFs by immunocytochemistry based on types of cultures. 

 

 

4.4 Discussion 

4.4.1 Summary of Results 

From the growth kinetics, it is evident that epithelial cells from HBM have a wide range 

of proliferation profile, and that they are able to proliferate in both two and three-

dimensional culture systems. 

 

I have noted the presence of nestin and CK18 mRNA on cells directly derived from 

HBM (Figure 4-3).  Interestingly, these two IFs as well as CK5 and CK14 were 

expressed when cells from HBM were cultured. From the cells directly isolated from 

HBM, using semi-quantitative RT-PCR, I observed a similar amount of staining for 

CK18 whereas after culturing these cells as monolayers, I observed the appearance of 

CK5 and CK14. 
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From the co-staining experiments, I observed that heterogeneous cultures of nestin, 

CK5, CK14, CK18 and CK19 were common and that nestin had the highest proportion 

of co-staining with CK19, followed by CK5 , CK14 and lastly, CK18 (Figure 4-8).   

 

4.4.2 Critical Assessment 

4.4.2.1  Growth Kinetics 

I was able to grow the cells isolated from HBM both in two and three-dimensional 

cultures although not in a manner I have anticipated. Various groups have grown cell 

lines on three-dimensional in vitro culture models and observed the formation of 

structures resembling those in the mammary glands (Bae et al. 1993; Krause et al. 2008). 

I sought to investigate the formation of acinar structures using cells from HBM with 3D 

matrigel cultures but did not observe any formation of complex structures similar to 

acini.  

 

4.4.2.2  Pattern of Staining 

4.4.2.2.1 Two-dimensional monolayer cultures 

CK5 and CK14 were not detected in the WCP of HBM but appeared de novo in the 

culture expanded cells (Figure 4-3 and 4-7). This could be explained in three ways. The 

first explanation is that CK5- and CK 14-positive cells originated from either the nestin-

positive or CK18-positive cells or even both of them. Nestin is a well-characterised 

marker of multipotent progenitor cells and is closely associated with stem cell 

populations in bone marrow (Kabos et al. 2002), neural (Lendahl et al. 1990; 

Dahlstrand et al. 1992), pancreatic (Zulewski et al. 2001) and epithelial (Toma et al. 

2001) tissues. This in combination with the presence of nestin+/ CK5-, nestin+/ CK5+, 
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and nestin-/ CK5+ cell types (Figure 4-8) suggest that nestin+ cells found in HBM 

might be the precursor cell type.  

 

Alternatively with the semi-quantitative RT-PCR results taken into consideration, the 

other possible explanation for my observations would be that the culture media 

selectively enabled the CK5- and CK14-positive cells to expand more than the CK18-

positive cells. This would explain why these cells although present in low proportions 

in WCP of HBM, which were insufficient to give a positive signal during RT-PCR, 

manage to give positive signals for CK5 and CK14  after being cultured. 

 

The third explanation for my observation would that the culture media had brought 

about dedifferentiation of the CK18-positive cells into the CK5- and CK14-positive 

cells. In addition to explaining the appearance of bands for CK5 and CK14 in Fig. 4-3, 

this explanation would also account for the larger band of nestin observed in Fig. 4-3. 

 

4.4.2.2.2 Three-dimensional matrigel cultures 

The higher expression of nestin exhibited by cells cultured in matrigel-coated plates 

suggests a possible dedifferentiation of the epithelial cells, which contrasted with Dontu 

et al’s findings that matrigel induces differentiation into terminal structures (Petersen et 

al. 1992; Gudjonsson et al. 2002b; Dontu et al. 2003a). The lack of statistical 

significance in the cytokeratin staining however suggests that my postulation of 

dedifferentiation, based on the expression of nestin is unsubstantiated. 
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4.4.2.3  Hierachy of Adherent Cells in HBM 

Based on the IFs found on the cells in HBM as well as established information of these 

IFs, I postulate a hierarchy of cells within the lobulo-alveoli structure (Figure 4-9). I 

have shown that expressed HBM is a novel source of nestin+ putative stem cells. The 

capability of these nestin-positive cells in HBM to differentiate into cell types of other 

lineages should be explored since reports of nestin-positive stem cells 

transdifferentiating into other cell types are numerous (Zulewski et al. 2001; Kabos et al. 

2002; Amoh et al. 2005). 

 

Due to their partial co-expression with CK5 and anatomical origins, I postulate that they 

are mammary stem/ progenitors, which have been shown present. However, we will not 

be able to isolate the primitive cells-of-interest with these IFs, as they are intracellular 

and cells will have to be permeabilised, thereby destroying their plasma membrane. In 

my following chapters, I hence decide to use two surface markers, known to exist on 

stem cells, to isolate these primitive cells-of-interest to carry out further characterisation 

in order to ascertain their stemness. 
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Figure 4-9 Flow chart for hierarchy of stem/ progenitor cells of mammary lineage. 
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5 Isolation of Stem/ Progenitor Cells in Expressed 
Human Breast Milk by Hoechst Dye Exclusion 
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5.1 Introduction 

In the previous two chapters, I have firstly established the presence of yet-unknown 

cells in HBM and secondly, identified the presence of nestin-positive cells in HBM. I 

postulate that these nestin-positive cells are the most primitive cell type present in HBM. 

As it would not be possible to prospectively isolate them using nestin which is an 

intermediate filament, I decide to look for appropriate cell surface proteins that are 

commonly found on stem/ progenitor cells to attempt the isolation of these cells. 

 

 The use of cell surface markers to isolate cells is ideal as we would then be able to 

isolate viable stem/ progenitor cells. In fact, there are several cell surface markers that 

are already commonly in use to isolate primitive cells. One of the newer markers found 

by Goodell and team in 1996 is cell membrane channel which seem to be present on 

haemopoietic stem cells (Goodell et al. 1996). 

 

ABCG2 proteins function as channels on cell membranes to allow active efflux of 

substances, including toxins. The functionality of these channels can be demonstrated in 

vitro by the cells’ ability to efflux Hoechst dye. The group of cells capable of active 

efflux of Hoechst dye are termed the side-population (SP). Goodell et al. found an 

enrichment of haemopoietic stem cells in the SP of bone marrow (Goodell et al. 1996). 

Since then, SP has been reported in many stem cell populations, including mammary 

stem/ progenitor cells (Dontu et al. 2003a; Challen and Little 2006). Islam et al also 

found the co-localisation of nestin and the ABCG2 protein, on the same cells of many 

neurospheres (Islam et al. 2005) while Hayashi and team have made use of FACS and 

cell surface markers integrin α6 and CD71 to enrich for postulated corneal stem/ 

progenitor cells which he showed to have higher clonogenic capacity, a larger 
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proportion of non-dividing cells, and also express a higher level of ABCG2, a marker 

for stem/ progenitor cells (Hayashi et al. 2008).  

 

Hence in this chapter, I sought to identify viable cells-of-interest by this property of 

Hoechst dye exclusion in HBM, with the aim of isolating and characterising the 

primitive cell types. 

 

 

5.2 Occurrence of Side-population 

 

In cells directly isolated from HBM, I observed a side population (SP) that excluded 

Hoechst 33342 dye (Figure 5-1a). This group of cells was absent in the controls where 

Verapamil was used to block the membrane transporters (Figure 5-1b). I repeated 

Hoechst dye exclusion experiments on 47 milk samples (from 7 different mothers at 

various intervals) and found a distinct SP in 40 of the 47 samples (85.1%). A mean of 

2.1±0.3% of the entire cellular component was found within the SP. There was no 

significant correlation between samples from different donors as well as between 

samples collected from the same donor over a period of six months (Figure 5-2). This 

indicated that SP exists in HBM at a relatively constant percentage throughout duration 

of lactation.  
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Figure 5-1 Hoechst 33342 exclusion by SP in HBM. SP can be identified in 

approximately 2% of WCP (gated R2), while the majority of cells (ungated) stained 

intensely with Hoechst (a). Verapamil block the ABCG2 channels and serve as a 

negative control (b).   
 

 

 

Figure 5-2 Correlation analysis of SP with duration of breastfeeding. Scatterplot 

showed the lack of correlation between the percentage of SP cells and the duration of 

breastfeeding.  
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5.2.1 Controls 

Unless stimulated by granulocyte stimulating factor, adult peripheral blood does not 

usually contain stem/ progenitor cells and therefore it would be a good external negative 

control, while mononuclear cells from umbilical cord blood were used as positive 

controls to establish the method of Hoechst dye exclusion. Mononuclear cells from 

peripheral blood were incubated with Hoechst 33342 dye and no SP was observed 

(Figure 5-3a-b), while a SP was evident in the positive control (Figure 5-3c-d).  

 

 
 
Figure 5-3 Hoechst dye exclusion of controls. Incubation with Hoechst alone (a) was 

no different from the Verapamil control (b) in mononuclear cells of peripheral blood, 

indicating absence of SP whereas a clear region of SP cells was present in the 

mononuclear cells from umbilical cord blood (c) which is absent when cells were 

incubated in the presence of Verapamil (d). 
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5.3 Characterisation of Side-population 

Cells in the SP and non-SP were collected separately and expression of various proteins 

investigated by immunofluorescence and flow cytometry (n ≥ 3). The sorted cells were 

stained for nestin and CK18 using immunofluorescence. SP cells were predominantly 

nestin-positive (89.7±4.7%), compared to negligible expression in non-SP cells 

(0.67±0.54%, p-value < 0.001) (Figure 5-4b). In contrast, more non-SP than SP cells 

stained positive for the mature epithelial marker CK18 (39.4±9.8 vs 5.3±2.0%, p-value 

= 0.026) (Figure 5-4c compared to 5-4d). 

 

Figure 5-4 Immunocytochemical staining for nestin and CK18. Nestin staining of 

SP demonstrated predominantly positive cells (green cytoplasmic staining) (a) while 

largely negative in non-SP cells (b). On the other hand, CK18 staining was found 

predominantly in non-SP cells (c-d). Nucleus counterstained in DAPI. Magnification of 

20X. 
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The expression of ABCG2, CD45, CK5 and CK14 were investigated with flow 

cytometry (Figure 5-5). The low expression of ABCG2 in both populations suggested 

the presence of other protein channels responsible in bringing about the efflux of 

Hoechst dye. Presence of CD45 was observed in both SP and non-SP cellular fractions 

(5.7±2.2% vs 12.7±4.6%, Figure 5-5a). This illustrates the contribution of haemopoietic 

cells to both populations. A smaller proportion of SP cells was found CD45-positive as 

compared to non-SP cells, although not reaching statistical significance. Expression of 

the CK5 and CK14 were comparable between the SP and non-SP cells (9.4±4.4% vs 

12.1±5.9% and 15.6.7±5.4% vs 10.4±4.2% (Figure 5-5b). 

 

 
 

Figure 5-5 Flow Cytometry for CD45, ABCG2, CK5, CK14 and CK18. Comparison 

of expression of CD45 and ABCG2 (a), of CK5, CK14 and CK18 (b) between the SP 

and non-SP.  

 

 

In order to further delineate the two populations, I stained flow-sorted SP and non-SP 

for the expression of other epithelial and non-epithelial markers (Table 5-1). EPCAM, 

which is known to be expressed by bi-potent mammary progenitor cells, which give rise 

to EPCAM-positive luminal progenitors and EPCAM-negative myoepithelial 
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progenitors (Stingl et al. 2001; Eirew et al. 2008), was found to be enriched in the SP 

fraction (50.6±8.6% vs 18.1±6.0%, p-value = 0.02). We found a small increase in 

CD31-positive cells in the SP (1.9±.2% vs. 0.7±0.3%, p-value = 0.04) over the non-SP 

fraction, which may indicate the presence of haemopoietic and/ or endothelial cells, 

which are known to express CD31 (Watt et al. 1995), within the SP. 

 

Taken together, the enrichment of cells with primitive markers EPCAM and nestin and 

the lower expression of the mature epithelial marker CK18 in the SP cellular fraction of 

WCP suggest the presence of MaSC within uncultured WCP in HBM. 
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Table 5-1: Antigens expressed on the SP and NSP in HBM. 

 

5.4 Mammosphere Culture of Selected Populations 

5.4.1 In Vitro Expansion of Side-population 

Expansion of these rare cells is important in an attempt to increase cell numbers to work 

with. There is also a need to prove clonogenicity and self-renewal ability of these cells 

to identify them as stem cells (Lajtha 1979; Humphries et al. 1981). Prior to this, I 

devised a series of positive controls as will be discussed in Section 5.4.1.1. 
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5.4.1.1 Positive Controls for Mammosphere Culture 

To prepare for mammosphere cultures for my cells-of-interest, there is a need to 

ascertain the functionality of my Hoechst dye exclusion protocol as well as 

mammosphere medium.  

 

5.4.1.1.1 Culture of neurospheres 

Using neurospheres as a working system for the culture of spheroids in vitro, I 

embarked on the generation of neurospheres derived from fetal brain tissues. Single 

cells derived from eight various regions of the brain were plated into neurosphere 

medium to grow. Neurospheres as shown in Figure 5-6 were then observed after two to 

four weeks of culture. 

 

 

Figure 5-6 Free-floating neurospheres cultured from fetal cells. Spheres derived 

from the various regions were morphologically similar. Magnification of 10X. 
 
 
 

Overall, spheres were observed growing in 5 out of 5 samples and across each sample, 

spheres generally grow from all regions. Morphologically, the spheres were identified 

by their phase-bright appearance and regular cell membranes and microscopically, there 
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is little difference in the physical appearance of the neurospheres derived from the 

different regions of the second trimester fetal brain (Figure 5-6). The number of spheres 

larger than 50µm in diameter were counted and a low efficiency of lesser than 0.09% 

across the second trimester samples. From the fetus of the smallest gestational age 

(14+6weeks), we observed the lowest neurosphere initiating assay in the hippocampus 

(0.002±0.00004%) and the highest in the brain stem (0.0074±0.009%) and from the 

fetus of the oldest gestational age (23+1weeks), we observed once again, the lowest 

neurosphere initiating assay in the hippocampus (0.006±0.00004%). However, the 

anterior cerebrum was found to have the highest efficiency in neurosphere generation 

this time round (0.066% ± 0.0162%) (Figure 5-7). From the graphical representation in 

Fig. 5-7, an increasing trend for neurospheres’ initiating ability was observed between 

14weeks and 23weeks, suggesting that the largest number of neural stem cells in second 

trimester fetus is present in the later phase of second trimester, specifically 20weeks in 

the case of subventricular zone (SVZ) and hippocampus and 23+1weeks for the other 

five regions of the fetal brain. 

 

 

Figure 5-7 Neurospheres-initiating efficiency of cells derived from various regions 
of the fetal brain. Neurospheres initiating efficiency rises with increasing gestations. 
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To examine cell-specific antigen expression on the neurospheres, we allowed the 

neurospheres to attach on poly-lysine coated cells for four hours at 37°C before fixing 

and staining them. We observed across the neurospheres, positive staining for nestin, B-

tubulin III, GFAP as well as PDGFRα, ascertaining the heterogeneity of cell 

composition in neurospheres (Figure 5-8). 
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Figure 5-8 Immunocytochemical staining of neurospheres. Cells within the spheres 
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stained positive for the three known differentiated cells as well as for neural stem cells. 

Scale: 50µm. 

 

 

I next differentiated the cells by plating them onto poly-L-ornithine coverslips in 

medium containing 1% FBS and no mitogens for one week. I observed the spreading of 

the cells onto the coverslips with short processes branching out and a week later, an 

entire network of cells intertwined. The cell types of these cells were confirmed by 

staining with β-Tubulin III, GFAP and PDGFRα (Figure 5-9).  
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Figure 5-9 Differentiated cells from neurospheres derived from various regions of 

fetal brain. Cells stained for GFAP, βTubulin III, PDGFRα and nestin. Scale: 50µm. 
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5.4.1.1.2 Culture of mammospheres from MCF-7 

In addition to the use of fetal neural tissues for the generation and characterisation of 

neural stem cells, I also attempted to isolate mammosphere cultures using a breast 

carcinoma cell line, MCF-7. SP and non-SP cells from MCF-7 cultures (Figure 5-10a) 

were singly-sorted into serum-free mammosphere culture medium, where free-floating 

mammospheres were observed (Figure 5-10b) from the SP fraction of the cell line, but 

not from the non-SP fraction.  These MCF-7 SP derived  mammospheres stained 

positive for CD49f, CD326, CK18, CK14, CK5 and CK19, and negative for CD45 and 

CD10, an immunophenotype consistent with MaSC cultured as mammospheres (Figure 

5-10c).  

 

This verified two important points, first being that cells sorted through flow cytometry 

were still viable and capable of proliferating and the second point that the 

mammosphere culture media I used was able to generate mammospheres from the 

relevant cells. 
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Figure 5-10 Culture of SP of positive control, MCF-7.  Flow cytometry profile of 

MCF-7, a breast cancer cell line from which the SP was sorted out 9(a) grew into 

mammospheres after ten days (b). Immunocytochemical staining demonstrated that they 

were CD10 and CD45 negative, and positive for CK5, CK14, CK18 and CK19, and 

positive for alpha-6 integrin (CD49F) and CD326 (c, green stains with DAPI nuclear 

counterstaining).  
 

5.4.1.2 Single Cell Cultures 

Dontu and team found that SP cells obtained from mammary tissues are able to grow 

clonally (Dontu et al. 2003a). Singly-sorted SP cells were found to be able to form 

mammospheres which were not replicated in non-SP cells. As such, I attempted to 
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replicate this finding in SP cells of HBM at clonal densities. SP and non-SP cells were 

sorted singly into each well of a 96-well plate and incubated in mammosphere medium. 

I repeated this for four 96-well plates, using four different milk samples. However, all 

768 wells failed to generate any mammospheres over a period of four weeks in culture.  

 

5.4.1.3 Low Density Cell Cultures 

Next, I investigated whether the culture of higher densities of SP cells may allow the 

generation of mammospheres. This approach may allow paracrine factors to assist in the 

generation of mammospheres, as found in other culture systems for instance, MSC 

systems which rely on paracrine signalling for the rapid log phase growth (Gregory et al. 

2003). Culturing of HBM SP and non-SP cells at a low density of 3x10
3
 cells/ cm

2
 on 

low-adherence 96-well plates however, did not generate any mammospheres over four 

weeks. Further to this, I investigated the effects of different growth factors and substrata, 

which may contribute towards the successful expansion of these sorted cells. 

 

5.4.1.4 Optimisation of Expansion of Sorted Cells 

5.4.1.4.1 Use of growth factors 

Growth factors are proteins that bind to receptors on the cell surface, with the primary 

result of activating cellular proliferation and/ or differentiation. Epidermal growth factor 

(EGF) and basic fibroblast growth factor were chosen as they are already being used in 

mammosphere medium. In additon, EGF receptors have been found on mammary cells 

(Smith et al. 1984; Smith et al. 1989).  
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Fetal bovine serum contains a variety of mitogenic growth factors known to aid growth 

of cells and is routinely used in culture medium.  

 

The niche effect or microenvironment also plays an important role in stem cell biology 

(Fuchs et al. 2004). To simulate the signalling of a typical niche of these SP cells, 

conditioned medium gathered from lactocyte culture were added into the mammosphere 

medium at various concentrations (Table 5-2). However, despite daily inspection of the 

wells over 2 weeks, no increase in cell numbers to suggest the expansion of the SP cells 

was observed. Cells did not adhere and blebbing of the cell membrane characteristic of 

apoptosis was observed (Kerr et al. 1972; Wyllie et al. 1980). 

 

I repeated the sets of single cell and low density culture experiments, with 

modifications to the mammosphere medium, altering serum and other growth factors as 

indicated in Table 5-2, with the aim of successful optimisation of culture medium for 

growth of SP cells in WCP in HBM. However, none of these approaches were 

successful in the isolation of mammospheres. Reductions of AlamarBlue® was 

quantitated for each variable in the culture media as shown in Table 5-2 and compared 

to the mitomycin-treated cells, where no difference was observed, suggesting the lack 

of cellular proliferation. 

 



Chapter 5. Isolation of Stem/ Progenitor Cells in Expressed HBM by HDE  
 

 127 

 

Substances added into mammosphere medium 

Fetal Bovine Serum (%) 1 3 5 10 20 

Epidermal Growth Factor (ng/ ml) 20 40 60 80 100 

Basic Fibroblastic Growth Factor (ng/ ml) 20 40 60 80 100 

Conditioned Medium (%) 1 5 20 50 80 

 

Table 5-2: Substances for optimisation of culture medium. The four substances, 

believe to aid cell growth were added in increasing amount as indicated above to 

optimise the growth of SP cells from HBM. 

 

 

5.4.1.4.2 Use of substrata 

Within the mammary tissue, the various cells lie in an extremely complex ECM. This 

ECM contains collagens, fibronectin, laminin, glycosaminoglycans and others to 

interact with the cells, exchange signals and information, allowing the cells to respond 

accordingly, for instance repair of damaged cells or regeneration of epithelial cells 

when desired. I used various substrata (matrigel, gelatin, collagen and fibronectin) to 

line the bottom of the wells on which SP cells were grown. However, despite culturing 

them for up to 30 days, no proliferation under daily visual inspection was observed 

(Figure 5-11).  
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Figure 5-11 Optimisation of culture medium using various substrata. Growth of 

cells in the various substrata-lined wells at day 11 (left column) and day 33 (right 

column).  
 
 

5.4.1.5 Mid Density Cell Cultures 

Mid density cell cultures were established by seeding the cells at a higher density of 

9.3x10
3
cells/ cm

2
 to allow the cells to interact with each other. This is to allow the cells 

to aid growth synergistically, through exchange of signals.  Under visual inspection 

every two to three days over a period of four weeks, no increase in cell numbers was 

observed. 
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5.5 Methylcellulose Culture of Selected Population 

5.5.1 Positive Controls for Methylcellulose Cultures 

As an appropriate control, I sorted umbilical cord blood for SP cells, and plated them as 

SP and non-SP cells (Figure 5-12a) in methylcellulose. After two weeks, I observed the 

development of multi-lineage colony forming units (CFU) from the SP and not the non-

SP fraction of umbilical cord blood (Figure 5-12b). This verified two important points; 

first being that cells sorted from the FACSAria are still viable and capable of 

proliferating and differentiating, a conclusion synonymous with Section 5.4.1.1.2 and 

the second point that the methylcellulose culture system I am employing is functional. 

 
 

 

 

Figure 5-12 Culture of SP from umbilical cord blood cells. Flow cytometry profile 

of umbilical cord blood with the SP sorted out for culture in methylcellulose (a), 

confirming the presence of burst forming unit-erythrocyte (BFU-E), colony forming 

unit-erythrocyte (CFU-E), colony forming unit-macrophage (CFU-M), colony forming 

unit-granulocyte,erythrocyte,  macrophage, megakaryocyte (CFU-GEMM)  as well as 

colony forming unit-granulocyte, macrophage (CFU-GM) in the SP of cord blood (b). 

Magnification of 4X. 
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5.5.2 In Vitro Expansion  

 

As the SP fraction in bone marrow is enriched for HSCs (Goodell et al. 1996), and 

because of the abundance of haemopoietic cells found in HBM, I investigated HBM for 

the presence of haemopoietic stem cell types, by subjecting the sorted cels into the 

above methylcellulose culture system. SP and non-SP fractions of HBM were cultured 

in methylcellulose to induce the formation of haemopoietic colonies. However, I did not 

find any expansion into haemopoietic colonies (n=5) from either SP or non-SP cellular 

fraction of HBM.  

 

5.6 Discussion 

5.6.1 Summary of Results 

In this chapter, I investigated the presence of SP cells within HBM and used it as a 

putative marker of primitive cell types. SP cells from HBM are enriched for primitive 

nestin-positive cells and depleted of more mature epithelial cell types which were 

CK18-positive. The presence of SP coupled with nestin-positivity and CK18-negativity 

suggest their stem/ progenitor cells’ identity. Using flow cytometry, I attempt to look 

for differences between the SP and non-SP fraction for mammary stem cell, mammary 

epithelial and even non-epithelial markers. I found minimal differences between the two 

populations of cells except EPCAM and CD31 that are statistically significant (p-value 

of 0.02 and 0.04 respectively). I next investigated the cells’ potential to self-renew and 

differentiate down lineages. However, despite attempting to grow mammospheres at 

single cell, low-density and mid-density, no mammospheres were observed. Neither the 

addition of various growth factors at varying concentrations nor the use of various 
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substrata successfully yielded the culture of mammospheres. Controls for spheroid stem 

cell culture using fetal neural stem cells and breast carcinoma cell line, MCF-7 yielded 

positive results validating the techniques utilised in pursuing this objective. The attempt 

to delineate the identity of SP cells in HBM using haemopoietic assay confirmed their 

non-haemopoietic origin.  

 

5.6.2 Critical Assessment 

5.6.2.1 Isolation of Cells 

I have reported for the first time, the presence of SP cells in HBM. This Hoechst efflux 

phenomenon has proven to be a valuable strategy for isolating stem/ progenitor cells 

from various tissues which do not yet have any established cell surface markers. Cells 

with an SP phenotype have been described in many tissues including skeletal muscle, 

lung, liver, heart, testis, kidney, skin, brain and also the mammary gland (Challen and 

Little 2006). With the isolation of stem/ progenitor cells by Hoechst dye exclusion 

being carried out successfully on so many adult stem cell types including mammary, I 

set out to characterise these cells for stem/ progenitor markers and then to confirm their 

identity through tests for self-renewal and mutli-lineage differentiation.   

 

The comparison of the markers expressed on SP and non-SP cells were however, not 

very different. As I screened through the various known mammary stem cell markers 

like CD24, CD29, CD44 and CK5 through flow cytometry, none of them turned out 

markedly different between the SP and non-SP cells. However, the significant 

differential expression of nestin and CK18 does point towards the primitive nature of 

these SP cells.  
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5.6.2.2 Culture of SP Cells 

In order to familiarise myself to the culture system commonly employed for growth of 

MaSC, I started out the culture systems with two positive controls. After having 

successfully cultured spheroid cell clusters from primary neural stem cells as well as 

from a epithelial carcinoma cell line, MCF-7, I went on to attempt single cell cultures of 

the sorted cells into mammospheres, with an aim of proving clonogenicity and self-

renewal. The use of single cell cultures of SP cells from tissues of reduction 

mammoplasties has been reported (Clarke et al., 2005; Dontu et al., 2003a). This 

together with the known anatomy of the mammary tissues and my positive controls 

suggested the feasibility of my experimental plan. 

 

 However, I did not manage to obtain the anticipated results regardless of adjustments in 

terms of growth factors, substrata and even cell densities of the cultures, although I 

confirmed their non-haemopoietic nature through subjecting the SP cells to a semi-solid 

growth assay. The proliferative and clonogenic ability of the SP cells from mammary 

tissues, in contrast with the non-SP cells, has been verified by several groups (Dontu et 

al. 2003a; Clayton et al. 2004; Clarke et al. 2005) and hence, it is likely that the culture 

system is sub-optimal in this case. 

 

In the final results chapter of my thesis, I explored another stem cell marker which has 

been used to isolate different primary and carcinoma cell lines. 



Chapter 6. Isolation of Stem/ Progenitor Cells in Expressed HBM by CD133 
 

 133 

 

 

 

 

 

 

 

 

 

 

 

 

6 Isolation of Stem/ Progenitor Cells in Expressed 
Human Breast Milk by CD133 
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6.1 Introduction 

While there are several markers that are associated with stemness, many were not 

suitable for use to isolate cells-of-interest as they are intracellular. In terms of cell 

surface markers, CD34 is one of the earlier and more important markers for stem cells, 

particularly of the haemopoietic lineage (Civin et al. 1990). More recently, CD133, an 

antigen 120kDa in size with five transmembrane domain glycoprotein, has also been 

used as both an alternative and/ or in association for haemopoietic stem cells (Yin et al. 

1997; Kobari et al. 2001; Handgretinger et al. 2003). From its primary use as a 

haemopoietic stem cell marker, its expression has since been implicated in the 

identification of neural and endothelial stem cells, and other primitive cells (Piechaczek 

2001). Since it is a primitive cell marker present on haemopoietic and neuro-ectodermal 

stem/ progenitor cells (Yin et al. 1997; Uchida et al. 2000), I hypothesise that putative 

HBM epithelial stem cells may express CD133, allowing their prospective isolation. 

Hence in this chapter, I sought to isolate viable cells-of-interest by means of CD133 

which could potentially be primitive stem cells to carry out more characterisation, in 

particular pertaining to self-renewal and clonogenicity. 

 

6.2 Isolation of Cells-of-interest using CD133-tagged 

DynabeadsTM 

6.2.1 Occurrence of CD133+ Cells 

Incubation of WCP in HBM with CD133-tagged Dynabeads
TM

 revealed a small but 

distinct population of cells accounting for less than 1% of the total cell population 

(Figure 6-1). This was confirmed by direct immunostaining for CD133 (Figure 6-2).  
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Figure 6-1 Isolation of CD133-positive cells. CD133-tagged Dynabeads
TM

 observed 

to attach to cells (red arrows) in HBM on phase contrast microscopy. 

 

 

 

 
 
Figure 6-2 Immunocytochemical staining of CD133-positive cells. Cells isolated 

with CD133-tagged Dynabeads
TM

, positively-immunostained for CD133 (blue from 

Vector blue staining) (a) or stained with H & E (b). Erythrocytes were used as external 

negative control in this instance which were not stained (c). 
 

 

6.2.2 Growth Kinetics 

I tried culturing the cells right after isolation in a 96-well plate but was unsuccessful. 

Numerous Dynabeads
TM

 remain bound on the positive cells, despite prolonged 

incubation time with the DNase and the magnetic column. Dynabeads
TM

 isolated 

CD133+ cells were cultured in epithelial cell culture media for two weeks (n=5) but did 

not result in any proliferation. Dynabeads
TM

 were seen to be bound to the cells despite 

culturing the cells beyond a week. Reports have established a detrimental effect of 

attached Dynabeads
TM

 on cell proliferation and metabolism (Tiwari et al. 2003). Hence, 



Chapter 6. Isolation of Stem/ Progenitor Cells in Expressed HBM by CD133 
 

 136 

using Dynabeads
TM

 isolated cells may be helpful for identifying and characterising cell 

types, but not in experimental set-ups where cells are subjected to culture.  

 

6.2.3 Control Study with CD45-tagged DynabeadsTM 

I hence decided to attempt CD45 isolation of the immune cells from HBM  to ascertain 

the reliability of this technique for isolation of cells. CD45-tagged Dynabeads
TM

 was 

not able to deplete the HBM of leukocytes, leaving a large majority of CD45-positive 

leukocytes within the "negative" fraction, and hardly any cells in the tagged fraction 

(Figure 6-3). 

 

 
 
Figure 6-3 CD45-tagged Dynabeads

TM
 isolation of cells from HBM. The negative 

fraction of the isolation (a-b) was found to still contain a lot of CD45+ lymphocytes (b 

stained with H&E). The positive fraction (c) hardly had any cells (arrows), some of 

which were found to be still bound to the Dynabeads
TM

 (red arrow). Magnification of 

10X. 

 

6.2.4 Discussion 

The isolation of CD45+ cells, which comprises up to 90% of cells in HBM was of 

extremely low efficiency. MaSC derived from tissue occur at a frequency of 4 in 1000, 

based on the self-renewal property exhibited through mammosphere formation (Dontu 

et al. 2003a). It is expected that the frequency of MaSC in HBM would be several log 
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folds lower than this. Such low proportion of cells-of-interest increases the unreliability 

of this method for optimal isolation, questioning the purity of cells isolated. Moreover, 

the continued attachment of CD133 tagged-Dynabeads
TM

 to the putative stem cells over 

seven days would have impeded the ability of these cells to proliferate or function. A 

more efficient system using fluorescent-tagged antibody may overcome these problems.  

 

 

6.3 Isolation of Cells-of-interest using CD133 Antibody Tagged 

with Fluorescence 

 

6.3.1 Occurrence of CD133+ Cells 

Using RPE-tagged CD133 antibody from Miltenyi, I found that 2.0±0.003% (n=23) of 

the cellular component in HBM are CD133+ (Figure 6-4), which was unaffected by 

either the maternal age or the duration of breastfeeding (Figure 6-5).  

 

 

Figure 6-4 CD133 Sorting by FACS.  Flow cytometry of CD133 staining on cellular 

component of HBM (a), as compared to the isotype control (b).  
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Figure 6-5 Correlation Analysis of CD133+ Cells. There were no relationship 

between the frequency of CD133 cells and the duration of breastfeeding (a), nor the age 

of the mother (b).  

 

6.3.2 Characterisation of CD133+ Cells 

CD133-positive HBM cells did not demonstrate any significant differences in their 

expression of EPCAM, CD34, CD45, lineage and CD105 with CD133-negative HBM 

cells (Table 6-1). This indicated that sorting through the surface marker, CD133, 

enriched for neither the mammary epithelial cells nor cells of the non-epithelial lineage. 

 

 

Table 6-1: Antigens expressed on CD133+ and CD133- cells in HBM. 
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6.3.3 Mammosphere Culture of CD133+ Cells 

Both CD133-positive and CD133-negative HBM cells did not generate any 

mammospheres in serum-free growth conditions.  

 
 

6.3.4 Methylcellulose Culture of CD133+ Cells 

6.3.4.1 Positive Control 

As an appropriate control, I sorted the WCP from umbilical cord blood for Hoechst dye 

exclusion and then plated the sorted CD133-positive cells into the same methylcellulose 

system. CD133-positive fraction of umbilical cord blood demonstrated multi-lineage 

haemopoietic colony forming capacity after two weeks, validating our sorting protocol 

as well as methylcellulose culture system (Figure 6-6).  

 

 

Figure 6-6 Methylcellulose Culture of CD133+ Cells from Cord Blood. CD133+ 

cells from cord blood formed multi-lineage colonies on CFU assays. Magnification of 

4X. 
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6.3.4.2 In Vitro Expansion  

As the CD133 fraction in bone marrow and cord blood is enriched for haemopoietic 

stem cells (Charrier et al. 2002; Yao et al. 2006; Lu et al. 2007), I investigated CD133-

positive cells in HBM for the presence of haemopoietic stem cell types in the same 

methylcellulose culture system mentioned earlier in Section 5.5. Similar to the SP and 

non-SP fractions of HBM, I did not find the expansion of any haemopoietic colonies 

(n=3) in either the CD133-positive or CD133-negative cellular fraction from HBM.  

 
 

6.4 Discussion 

6.4.1 Summary of Results 

In this chapter, I found no more than 2% of CD133-positive cells in HBM, a 

phenomenon never described nor published before. Two methods, namely the use of 

Dynabeads
TM

 and flow sorting with fluorescent-tagged CD133 antibody were employed 

with the latter found to pull out a population of CD133-positive cells which was more 

suitable for culture purposes. 

 

With regards to the characterisation by flow cytometry, there was no significant 

difference between the CD133-positive and CD133-negative cells (p-value > 0.05). 

This is perplexing as the difference turned out more insignificant compared to the 

difference between SP and non-SP cells. 

 

I subjected the CD133-positive and CD133-negative cells to methylcellulose as well as 

mammosphere culture system and both, similar to the SP cells did not have any colonies 

or mammospheres forming respectively.  
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6.4.2 Critical Assessment 

6.4.2.1 Isolation of CD133+ Cells 

Initially, I made use of CD133-tagged Dynabeads
TM

 to selectively pull out the potential 

stem/ progenitor cells. Upon problems of high cell loss (positive cells being still present 

in the negative fraction) and the large Dynabeads
TM

 still attached onto the sorted cells, I 

believe it would be fruitful to use the same method of CD133 isolation but with a 

different kit. FACS was then employed for its high reliability and efficiency. Therefore, 

I planned to carry out isolation of CD133-positive cells using fluorescent-tagged CD133 

antibody, characterise them and examine their proliferation behaviour in various culture 

systems. 

 

 

6.4.2.2 Characterisation of CD133+ Cells 

CD133-positive cells in HBM are completely novel. It has been reported on mammary 

tumours (Wright et al. 2008) raising the question of link between the cells found in 

HBM and the tumorigenesis of mammary cells, resulting in malignancies.  

Hypothetically, these cells in HBM could serve as a potential source for research groups 

to study the transformation of mammary cells and the changes involved, which in the 

long run could bring about the better understanding and possibly even novel therapies 

for mammary cancers. 

 

The simple characterisation of these cells for EPCAM and other non-epithelial cell 

markers however did not provide further clues to their identity as from the flow 

cytometry results, there appear no difference between the CD133-positive and CD133-

negative cells. I therefore went ahead with the mammosphere and methylcellulose 
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culture so that I can conclude if there are mammary and/ or haemopoietic stem/ 

progenitor cells in either population. With the negative culture results and a positive 

control that validate my sorting and culture protocol, I can certainly conclude the 

absence of mammary and haemopoietic stem/ progenitor cells in HBM within my 

culture parameters. 
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7.1 Introduction 

The search and use of stem cells in the human has been under the spotlight particularly 

in recent years. Sources for haemopoietic stem/ progenitor cells are plentiful and many 

of which are already in use for clinical transplantation, proving their functionality and 

widespread potential. However, demand still far exceeds supply and hence, we still 

have many research groups around the world working on the in vitro expansion of these 

cells and coming up with novel sources like  making of artificial blood  to circumvent 

the shortage problem. HBM has previously been shown to contain a large amount of 

haemopoietic cell types, but it has never been explored as a source of HSC.  

 

MaSC are also under stringent scrutiny in recent years, due in no small part to the fact 

that breast cancer is the most common cancer among females worldwide and that MaSC 

have been implicated in the progress of this prevalent disease  (Dontu et al. 2003b; 

Dontu et al. 2005; Ponti et al. 2005). While MaSC have been obtained from mammary 

tissues, this involves an invasive procedure which limits its accessibility. Based on 

studies which have proved that stem cells are discharged into luminal cavities, in the 

case of mesenchymal progenitor cells in menstrual blood and epithelial, urothelial and 

smooth muscle lineage stem/ progenitor cells in urine (Hida et al. 2008; Musina et al. 

2008; Zhang et al. 2008), I proposed the question of MaSC being present in HBM, 

which is the main aim of my study. As a side question, I also decided to investigate 

HSC, given that the main cellular component of HBM is immune cells, responsible for 

much of the beneficial effects conferred to the baby. 
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In my study, I aimed to isolate MaSC and HSC from HBM, believing that with 

successful derivation of these cells from HBM, it will aid progress of research in these 

two fields and provide a novel and non-invasive source of mammary and/ or 

haemopoietic stem/ progenitor cells. In addition, this would allow a more detailed and 

complete understanding of the various components of HBM, possibly even unravelling 

more unknowns about HBM. 

 

7.2 Hypotheses 

The aim of this project was to determine whether there are any adult stem/ progenitor 

cells present in HBM and that if they are present, whether they are able to differentiate 

down various epithelial and/ or haemopoietic lineages, demonstrating multipotency. 

This would potentially have implications for breast tissue engineering, clinical 

application for haemopoietic cell use and for elucidation of the mechanisms between 

MaSC and progression to malignancy as well as the mechanism of lactogenesis. In 

Section 1.5.1, I have hypothesised that adult stem/ progenitor cells are present in HBM 

and that they are able to differentiate down various lineages and perhaps even 

transdifferentiate. Here, I set off answering my questions by (i) searching for markers of 

various lineages, (ii) culturing the adherent cells to get a purer population of cells to 

work with in search of my cells-of-interest and lastly, (iii) the use of specific markers in 

an attempt to isolate the cells of my interest. 
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7.3 Findings 

7.3.1 Cellular Component of Expressed Human Breast Milk 

I have discovered the presence of cell surface markers that have never been reported in 

the cellular component of HBM. The presence of these markers suggests the presence 

of one or more novel cell types in HBM.  Specifically, there was positive staining of 

stem/ progenitor markers of various lineages like ABCG2, CD24, β-1 and α-6 integrins, 

all of which have been implicated in the identification of MaSC (Shackleton et al. 2006; 

Stingl et al. 2006a, b). 

 

The presence of  a  large number of IFs were investigated with flow cytometry and the 

positive expression of CK5 and the neural IFs once again suggests the presence of a yet 

still uncharacterised cell population in HBM. 

 
 

7.3.2 In Vitro Expansion of Adherent Cells in Selective Medium 

I have managed to circumvent the problem of staining WCP in HBM by expanding the 

adherent cells for up to 30 days. These cells were identified as epithelial cells by 

epithelial specific immunocytochemistry. From their growth kinetics, it is apparent that 

they demonstrate great variability in doubling time and rate of proliferation.  

 

In chapter 3, I have observed the presence of CK5 RNA expression in WCP of HBM. 

However, in chapter 4, when I directly compared the expression level of CK5 and 

CK14 by means of RT-PCR, it was relatively much lower, so much so that they are 

beneath the threshold level of positivity. In the case of cultured cells, I observed nestin 

and CK5 positivity and a co-localisation of the 2 IFs in 11.4±4.2% of cells. The pattern 
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of staining seems to suggest the presence of a hierarchy of cells within the lobulo-

alveoli structure which are being sloughed off into HBM with the nestin-positive cells 

being the multipotent progenitor cells that differentiate to express CK5 as the mammary 

stem/ progenitor cells which further differentiate into the known luminal epithelial, 

myoepithelial and ductal cells. 

 

7.3.3 Attempts to Isolate the Stem/ Progenitor Cells 

7.3.3.1 Hoechst Dye Exclusion 

The method of Hoechst dye exclusion is a method employed by many stem cell groups 

to isolate a side-population of cells which possess stem cell properties like self-renewal, 

clonogenicity and the ability to differentiate into mature cell types.  In HBM, I found a 

proportion of approximately 2.1% of cells forming the side-population. The proportion 

of side-population appears to be unaffected by the duration of breastfeeding. SP was 

highly nestin-positive and not CK18, suggestive of their primitive identity. Further to 

this, flow cytometry exploring the differences between SP and non-SP for a series of 

other markers indicative of MaSC, mammary epithelial cells as well as non-epithelial 

cells concluded minimal difference with exception of EPCAM and CD31. 

 

With appropriate controls in place, it was found that neither SP nor non-SP cellular 

fraction contain mammary or haemopoietic stem/ progenitor cells that could be cultured. 

It might be due to the insufficiencies of the medium, although I have proven that 

addition of EGF, bFGF, FBS or conditioned medium does not improve the culture 

conditions for mammary or haemopoietic stem/ progenitor cells in this setting. There 
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remains a need to exhaustively try out different medium and perhaps an in vivo 

transplantation strategy. 

 

7.3.3.2 CD133 

I attempted the isolation of CD133-positive cells through two different means before 

finalising the use of fluorescence-tagged antibodies, which was preferred due to the 

pure selection, higher efficiency of sorting and suitability for culture. 

 

Comparable to SP cells, I found a proportion of 2.0% of cells that are CD133-positive 

and this proportion is unaffected by both the maternal age and the duration of 

breastfeeding. While CD133 and SP picked up the same proportion of cells, it is 

noteworthy to mention that they are unlikely to be the same cells as I have done a 

comparison of the SP and non-SP for expression of CD133, which I found to be 6.1±1.9 

and 3.9±2.0% (Table 5-1, page 116). Characterisation of CD133-positive and CD133-

negative cells to discover any differences in the other cell surface markers they possess, 

namely EPCAM, CD45, Lin, CD105 and CD34, did not show any significant difference. 

 

 Neither CD133-positive and CD133-negative cells generated mammospheres or 

colonies in the mammospheres and methylcellulose cultures, once again concluding that 

there are neither mammary nor haemopoietic stem/ progenitor cells that can be cultured 

from HBM. 
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7.4 Limitations 

This project proved to be more challenging than initially envisioned. Along the way of 

answering the hypotheses, several other factors limiting further research are detailed as 

follows. 

 

Where the recruitment of participants was concerned, I had intended to recruit from just 

one institution. But in the first year, I faced great challenges in liasing with potential 

volunteers in the first few days postpartum when their milk supply has yet to be 

established and I had difficulties getting them enrolled. In addition, there were issues 

with the volume of HBM that they are comfortable with donating. I first started out with 

a mere 10 to 15mL per donor which yielded a hardly visible cell pellet to work with. In 

the following year, I managed to get increased donations from lactating women through 

the various breastfeeding support groups, in particular the Singapore Motherhood 

Forum. Through these support groups, I managed to involve a larger number of women 

who individually are able to contribute larger volumes of HBM. 

 

In attempting to characterise the cellular component of HBM, the high background 

staining of uncultured cells proved challenging. Despite optimising the staining protocol 

with increased incubation with blocking agent, by altering the components of the 

blocking agent and adjusting the incubation times with antibodies and even antibodies 

against same antigens purchased from different companies, a high background staining 

still existed. I moved to show the presence of the various lineage markers through RT-

PCR and flow cytometry which allows the right gating of single cells as well as rapid 

analysis of at least 20,000 single cells within a short period of time. 
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In the search for an appropriate means to isolate my cells-of-interest, a major limitation 

was the lack of suitable markers. Even if the cells-of-interest were to be MaSC, the 

markers to identify them were not definitive.  The most definitive work on MaSC was 

in my opinion that of Shackleton and team where they managed to generate a functional 

mammary gland from a single mammary stem cell based on the marker of Lin-

CD29hiCD24+ (Shackleton et al. 2006). However, the same markers are also used for 

identifying white adipocyte progenitors in vivo (Rodeheffer et al. 2008). CK5 has also 

been named as a mammary stem cell marker (Bocker et al. 2002; Dontu et al. 2003a) 

but it has also been implicated in the identification of epitheloid mesothelioma (Clover 

et al. 1997) and epidermis (Mischke and Wild 1987). 

 

Finally, with the negative results I got in the culture components after sorting, the 

controls in place had to be extremely exhaustive ranging from fetal tissue to umbilical 

cord blood to cell lines which each had its own difficulty in terms of availability. 

Nonetheless, it was a great chance to work with a wide variety of tissues, an opportunity 

not many researchers get, since such tissues are scarce and not usually available. 

 

Although not entirely exhaustive, but certainly within the confines and limitations of 

my graduate study, an in vivo experimental system may be a better approach in 

identifying putative stem cells, if they are present, as evidently the in vitro conditions 

has not been well defined as yet.  
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7.5 Implications of This Research 

The significance of a positive result for this work is profound as mentioned in Section 

1.5.2. Besides providing novel cell sources for breast tissue engineering and potential 

banking of stem cells from all lactating females, a positive result would enable deeper 

understanding of the synergistic relationship breastfeeding has on the mother and infant. 

MaSC from HBM could aid to elucidate mechanisms that brings about mutagenesis and 

oncogenesis, which breastfeeding has been shown to exert a protective effect (Byers et 

al. 1985; Katsouyanni et al. 1986; Newcomb et al. 1994; Brinton et al. 1995).  

 

 

In addition, it is well studied that fetal cells have been found in maternal blood and 

organs up to 30 years after birth (O'Donoghue et al. 2004; Tan et al. 2005; O'Donoghue 

et al. 2008) but less is known of the reverse whereby maternal cells cross the placenta 

and implant in perinatal tissues. If HBM contains stem or pluripotent cells, do these 

cells implant in the infant and are the transportation of these maternal stem cells to the 

breastfeeding infant associated with possible benefits (increased population of 

progenitors that assist with repair of damaged tissues) or deleterious effects to the infant 

by causing graft versus host reactions, autoimmune processes or stem cell derived 

neoplasia? Afterall, it has already been shown in various models that leukocytes from 

milk escape digestion in the infant’s gut and enter the circulation of the infant (Weiler et 

al. 1983; Slade and Schwartz 1987; Jain et al. 1989; Arvola et al. 2000).  

 

 

With my results, we can conclude that while there are indeed promising markers, cells 

isolated with these markers were not capable of proliferating in vitro within my 

experimental parameters. This can be explained with the fact that my culture conditions, 

although optimised with a variety of growth factors and substrata remains sub-optimal. 
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The second explanation would be that stem/ progenitor cells though present in the 

mammary gland are not passed out into HBM. With respect to the latter scenario, there 

are certainly specific mechanisms within the human which prevents the sloughing of 

such important cells of our system. Instead, perhaps only cells that are meant to be 

replaced or meant for the baby’s immune system are sloughed off into HBM. Clearly, 

mammary and haemopoietic stem/ progenitor cells are not in the list. 

 

With my results, we have answered one important biological question asked not just by 

us and it will perhaps, conclude the search for these much-sought after cells in HBM, 

which was intitally viewed by us and others as a potential novel non-invasive source of 

such cells (McGregor and Rogo 2006; Cregan et al. 2007). 

 
 

7.6 Directions for Future Research 

7.6.1 Isolation of Cells-of-interest 

 

As mentioned earlier, Shackleton and team demonstrated that cells from reduction 

mammoplasties contained within the Lin-CD29hiCD24low population are able to 

reconstitute an entire functional mammary gland (Shackleton et al. 2006) and that this is, 

by far, demonstration at the highest level of what would constitute a true stem cell, at 

least in the murine model. CD29 and CD24 have been reported to be present on MaSC 

in both mouse and human (Shackleton et al. 2006; Stingl et al. 2006b). Therefore, it 

might be worthwhile to triple select for Lin-CD29hiCD24low cells and attempt a 

mammosphere culture. Removal of haemopoietic lineages from WCP from HBM 

(Rossette-separation, StemCells) by magnetic sorting can be pursued, following which, 

flow-cytometric sorting of CD29+ and CD24+ cells by dual-colour sorting can be 



Chapter 7. General Discussion 
 

 153 

carried out. As was done with the cells isolated by the other methods, these cells can be 

characterised and put into cultures to find out their proliferative ability, clonogenicity 

and ability to self-renew. 

 

7.6.2 In Vivo Work 

To prove with absolute certainty, one should transplant these cells from HBM into 

fatpad removed nonobese diabetes/severe combined immunodeficiency mice. To do this, 

one would also be required to optimise the cell numbers to be transplanted and the 

length of observation.   

 

 

7.7 Conclusions 

During the course of my studies for this thesis, I have established, for the first time, the 

presence of stem cell markers like nestin, CD133, and the presence of SP cells in 

expressed HBM. Contrary to my hypothesis, cells expressing these markers, which are 

often considered characteristic of stem/ progenitor cells, could not be cultured using the 

standard stem cell culture techniques I have employed. Although not exhaustive, the 

culture methods I have used were all I could perform within the confines and limitations 

of my graduate studies. An in vivo experimental system may therefore be necessary to 

identify the putative stem cells, if indeed they are present, as I have proved that standard 

in vitro culture methods are not able to grow any stem cells from HBM. 
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