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Summary

Agent-based technology is one of the most vibrant and important areas of research
and development that have emerged in information technology in recent years. An in-
telligent agent is an autonomous entity which observes and acts upon an environment
and directs its activity towards achieving goals.

The distinguishing characteristics of intelligent agents are that they are autonomous,
responsive, proactive and social. The key features of intelligent agents that has made
them so is that intelligent agents have their knowledge of the world and themselves
and that they have the capability to make deductions. Hence it is our belief that
knowledge representation and reasoning is one of the most important research areas
in agent-based technologies.

In the current stage, we have identified four challenges related to the field of agent
knowledge representation and reasoning. (1) The interoperability and heterogeneity
problem is how agents with different domains of discourse, employing different prob-
lem solving paradigms, and with different assumptions about their world and each
other, can be made to interact in an effective and scalable manner. (2) As agents
have a necessarily partial perspective of their world, and because their problem do-
main is open, complex and distributed, they require sophisticated mechanisms for
reasoning with uncertain, incomplete and contradictory information. (3) Rules are
natural means to specify reactive and possibly proactive behavior. It is a challenge
for agents to perform reasoning on and with such rules. (4) The knowledge of an in-
telligent agent typically deals with what agents consider possible given their current
information. This includes knowledge about facts as well as higher-order information
about information that other agents have. It is a challenging task to enable system-
atic design of such intelligent agents as the reasoning process of interacting agents
can be extremely complex.

This thesis presents our contribution to the solutions to the challenges. More specifi-
cally we employ a formal modeling approach to verifying ontology-based agent knowl-
edge. We also extend the current state-of-the-art ontology language with the ability
to model certainty factors about facts and proposed the corresponding reasoning al-
gorithms. We define a set of notion for the quality of agent rule base and provide an
automated checking mechanism. Lastly we present a formal hierarchical framework
for specifying and reasoning about higher-order agent knowledge.

Key words: Knowledge, reasoning, Semantic Web, ontology, epistemic
logic
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Chapter 1

Introduction

1.1 Motivations and Goals

Agent-based technology is one of the most vibrant and important areas of research

and development to have emerged in information technology in recent years. In the

field of artificial intelligence, an intelligent agent [117] is an autonomous entity which

observes and acts upon an environment and directs its activity towards achieving

goals. Intelligent agents are a relatively new paradigm for developing software ap-

plications. Currently, agents are the focus of intense interest on the part of many

sub-fields of computer science and artificial intelligence. Agents are being used in an

increasingly wide variety of applications, ranging from comparatively small systems

such as email filters to large, open, complex, mission critical systems such as air traffic

1



Chapter 1. Introduction

control.

Intelligent agent represents a new way of analyzing, designing and implementing com-

plex software system. For agent-based technologies, the objectives are to create

systems situated in dynamic and open environments, able to adapt to these envi-

ronments and capable of incorporating autonomous and self-interested components.

Agent-based systems provides concrete advantages such as: improving operational

robustness with intelligent failure recovery, reducing sourcing costs by computing

the most beneficial acquisition policies in online market and improving efficiency of

manufacturing processes in dynamic environments.

There are some distinguishing characteristics of intelligent agents [66].

• Autonomous: Agents should be able to perform the majority of their problem

solving tasks without the direct intervention of humans or other agents, and they

should have a degree of control over their own actions and their own internal

state.

• Responsive: Agents should perceive their environment (which may be the phys-

ical world, a user, a collection of agents, the Internet, etc.) and respond in a

timely fashion to changes that occur in it.

• Proactive: Agents should not simply act in response to their environment, they

should be able to exhibit opportunistic, goal-directed behavior and take the

2



1.1. Motivations and Goals

initiative where appropriate.

• Social: Agents should be able to interact, when they deem appropriate, with

other artificial agents and humans in order to complete their own problem solv-

ing and to help others with their activities.

One of the key features of intelligent agents that has made them autonomous, re-

sponsive, proactive and social is that intelligent agents have their knowledge and

perception of the world and themselves. Many of the problems machines are ex-

pected to solve will require extensive knowledge about the world. Among the things

that AI needs to represent are: objects, properties, categories and relations between

objects; situations, events, states and time; causes and effects; and knowledge about

knowledge.

Humans are intelligent creatures not only because they possess vast amount of knowl-

edge, but also because humans have the ability to reason about their knowledge. One

classical example for deductive reasoning is that from the facts that “all humans are

mortal” and that “socrates is a human”, one can conclude that “socrates is mortal”.

In order for agents to be intelligent, it is also important for agents to be able to

represent large quantity of knowledge in an effective way and to have an efficient way

of inferring new knowledge from existing knowledge.

We have identified a number of challenges related to knowledge representation and

3



Chapter 1. Introduction

reasoning of intelligent agents at the current stage of agent-based research.

• Interoperability and Heterogeneity: Agent-based research is only just be-

ginning to grapple with problems associated with the inevitable heterogeneity

of its problem solving components. The basic problem is how agents with differ-

ent domains of discourse, employing different knowledge representation schemes,

different problem solving paradigms, and with different assumptions about their

world and each other, can be made to interact in an effective and scalable man-

ner.

• Uncertainty, Vagueness and Incompleteness: As agents have a necessarily

partial perspective of their world, and because their problem domain is open,

complex and distributed, they require sophisticated mechanisms for reasoning

with uncertain, incomplete and contradictory information if they are to exhibit

the desired degree of flexibility and robustness.

• Rules-based Agent Knowledge and Reasoning: Agents are situated in an

environment and exhibit reactive and possibly proactive behavior. Rules are

natural means to specify these forms of agent behavior. It is a challenge for

agents to perform reasoning on and with such rules.

• Multi-agent Knowledge Representation and Reasoning: The area of

multi-agent systems is traditionally concerned with formal representation of the

4
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mental state of autonomous agents in a distributed setting. The knowledge of an

intelligent agent typically deals with what agents consider possible given their

current information. This includes knowledge about facts as well as higher-order

information about information that other agents have. It is a challenging task

to enable systematic design of such intelligent agents as the reasoning process

of interacting agents can be extremely complex.

In this thesis it is our goal to address the above challenges by focusing on providing

various reasoning support for knowledge-based multi-agent systems.

1.2 Thesis Outline

1.2.1 Chapter 2 - Background Overview

Chapter 2 is devoted to an introduction of the languages, notions and tools that are

used in this thesis.

One of the knowledge representation formalisms used in this thesis is the Semantic

Web languages. Hence we first introduce the Semantic Web technology in general

and introducing a family of ontology languages, focusing on the current W3C recom-

mendation for ontology language, Web Ontology Language (OWL). We present the

5



Chapter 1. Introduction

syntax and semantics of the main language constructs, followed by a brief discussion

on their tool support.

Two specification and verification frameworks are used in this thesis for the purpose

of knowledge reasoning, namely the Prototype Verification System [87] and the con-

straint logic programming technique [61]. Therefore we will give a brief overview of

the two frameworks in Chapter 2. We briefly describe the PVS modelling language

and how formal proofs can be constructed and checked in the PVS theorem prover.

We also introduce the language features of Constraint Logic Programming and its

operational model. We choose to use Chapter 2 to provide a general introduction of

the formalisms and tools and we explain details to later chapters where they are used.

1.2.2 Chapter 3 - Checking Ontology-based Agent Knowl-

edge

In Chapter 3, we demonstrate the ability of the PVS specification language and

theorem prover in expressing ontology-based agent knowledge and checking ontology-

related properties. Specifically, we define the semantics of ontology language OWL

in the PVS language. By automatically transforming OWL and ontologies into PVS

specification theories, core ontology reasoning services, namely concept subsumption,

satisfiability and instantiation checking can be performed in the powerful PVS the-

6
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orem prover. Further more we can also check for properties beyond the modelling

power of the ontology language using our approach.

1.2.3 Chapter 4 - Checking Agent Knowledge With Uncer-

tainty

As the Semantic Web is an extremely complex, globally distributed and constantly

evolving medium, it is often the case that information on different sites is incomplete

or inconsistent with respect to each other. Hence, intelligent agents need to cope with

knowledge with uncertainty.

The Belief-augmented Frames (BAF) [105] is an extension to the Minsky frame knowl-

edge representation system [81]. Its unique feature is that it adds a belief and a

disbelief value to each frame in a frame system.

Chapter 4 is devoted to proposing to integrate BAF with OWL DL to form a new

ontology language BOWL (Belief-augmented OWL) that can easily express beliefs.

We systematically extend the syntax and semantics of OWL. We also define reasoning

algorithms for the proposed language.

7
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1.2.4 Chapter 5 - Checking Rule-based Agent Knowledge

Chapter 5 targets the reasoning support for rule-based intelligent agents. Information

in the Semantic Web is semantically marked up so that not only human-to-human

communication is possible, intelligent agents can also interpret and process the data.

Ontology languages like Web Ontology Language (OWL) [79] provide the basic vocab-

ularies for representing complex agent knowledge. In addition, Semantic Web Rules

Language (SWRL) [56] provides a convenient mechanism for specifying Horn-style

rules.

In Chapter 5, we define a set of notions for the correctness of rule base of an agent’s

knowledge. We demonstrate how to use the combination of the state-of-the-art Se-

mantic Web reasoners and the constraint logic programming technique to help de-

signer of such rule-based intelligent agent systems detect anomalies in the rule base.

1.2.5 Chapter 6 - Checking Higher-order Agent Knowledge

In Chapter 6, we presented a formal hierarchical framework for specifying and rea-

soning about higher-order agent knowledge, i.e. knowledge about knowledge. We

encoded a hierarchy of epistemic logics K , S5, S5C , PAC and PAL-C in the PVS

specification language. We show that the PVS theorem prover can be used as a

powerful reasoner for the logics, especially for systems with an arbitrary number of

8
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intelligent agents.

1.2.6 Chapter 7 - Conclusion

Chapter 7 concludes the thesis, summarizes the main contributions and discusses

future work directions.

1.3 Publications

Most of the work presented in this thesis has been published or accepted in interna-

tional conferences proceedings.

The work on PVS semantics for OWL and SWRL and on using PVS to reason about

OWL and SWRL (Chapter 3) is one of the first attempts in the literature to pro-

vide reasoning facilities for SWRL and beyond OWL. It has been published in the

First International Colloquium on Theoretical Aspects of Computing (ICTAC 2004,

Guiyang, China) [28].

The work on using BAF to incorporate uncertainty in ontology based agent knowledge

(Chapter 4) has been published in the Twelfth IEEE International Conference on

Engineering Complex Computer Systems (ICECCS 2007, Auckland, New Zealand)

[38]. An extended journal version which includes in addition the reasoning algorithms

9
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and CLP implementation has been submitted to Innovations in Systems and Software

Engineering, A NASA Journal. [30].

The work on checking various types of SWRL rule anomalies by using a combination

of a DL reasoner and CLP (Chapter 5) has been accepted for publication by the

4th IEEE International Conference on Secure Software Integration and Reliability

Improvement (SSIRI 2010, Singapore) [39]. Furthermore, an extended journal version

has been submitted for review to Transactions on Autonomous and Adaptive Systems

[40].

The work on the integrated tools environment was presented at The Twelfth Asia-

Pacific Software Engineering Conference (APSEC 2005, Taipei) [29].

The work on the formal hierarchical framework for specifying and reasoning about

higher-order agent knowledge in PVS (Chapter 6) has been published in the Ninth

International Conference on Formal Engineering Methods (ICFEM 2007, Boca Raton,

USA) [26]. An extended version including the support for systems of arbitrary number

of agents has been submitted for review to Formal Aspects of Computing [27].

I have also made contributions to other published work [41, 32, 31].
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Chapter 2

Background Overview

2.1 Semantic Web

Proposed by Tim Berners-Lee et al., the Semantic Web (SW) [18] is a vision of next

generation of the Web. Unlike conventional web as we have now, the Semantic Web

is a platform for inter-machine data and information exchange, filtering, integration,

etc., across organizational boundaries without human supervision. It extends the

current web and reaches its full potential by making it truly ubiquitous and ready for

the machines.

Semantic Web ontologies give precise and unambiguous meaning to Web resources,

enabling software agents to understand them. An ontology is a specification of a

11



Chapter 2. Background Overview

conceptualization [49]. It is a description of the concepts and relationships for a

particular application domain. Ontologies can be used by software agents to precisely

categorize and deduce knowledge.

2.1.1 Semantic Web Languages

Ontology languages are the building blocks of the Semantic Web. The development

of ontology languages takes a layered approach. Depicted in Figure 2.1, the Semantic

Web languages are constructed on top of mature languages and standards such as the

XML [118], Unicode and Uniform Resource Identifier (URI) [16]. In the rest of this

section, we briefly present some important languages in the Semantic Web.

Built on top of XML, the Resource Description Framework (RDF) [77] is a model of

metadata defining a mechanism for describing resources without assumptions about

a particular application domain. RDF describes web resources in a simple triplet

format: 〈subject predicate object〉, where subject is the resource of interest, predicate is

one the properties of this resource and object states the value of this property. Besides

this basic structure, a set of basic vocabularies are defined to describe RDF ontologies.

This set includes vocabularies for defining and referencing RDF resources, declaring

containers such as bags, lists, and collections. It also has a formal semantics that

defines the interpretation of the vocabularies, the entailment between RDF graphs,

etc. RDF Schema [22] provides facilities to describe RDF data. RDF Schema allows

12



2.1. Semantic Web

Figure 2.1: Semantic Web Stack

structured and semi-structured data to be mixed together, which makes them hard

for machines to process.

The syntactic ambiguity and relatively limited expressiveness of RDF Schema is par-

tially overcome by the DARPA Agent Markup Language (DAML) [112], which is built

on top of RDF Schema and based on description logics. DAML pooled effort with the

Ontology Inference Layer project [19] to produce the ontology language DAML+OIL.

It provides a richer set of language primitives to describe classes and properties than

RDF Schema and allows only structured data.

In 2004, a new ontology language based on DAML+OIL, the Web Ontology Language

(OWL) [79] became the W3C Recommendation. It consists of three sublanguages:

13



Chapter 2. Background Overview

OWL Lite, DL & Full, with increasing expressiveness. These languages are designed

for user groups with different requirements. OWL Lite & DL are decidable but

Full is generally not. The undecidability of OWL Full comes from relaxing certain

constraints from OWL DL. For example, OWL Full does not enforce the mutual

exclusiveness between classes, properties, data values and individuals. DAML+OIL

is most comparable to OWL DL, which is a notational variance of description logic

SHOIN (D) [57].

Although the design of OWL has taken into consideration of the different expres-

siveness needs of different user groups, it is still not expressive enough. Some very

desirable properties cannot be expressed even in OWL Full. An important reason for

this is that although the language provides a relatively rich set of language primitives

for describing classes, it does not provide as many primitives for describing proper-

ties. For example, it does not support property composition. In the light of this

weakness, Horrocks and Patel-Schneider proposed an extension to OWL, the OWL

Rules Language (ORL) [55] which is syntactically and semantically coherent to OWL.

The major extensions of ORL are the inclusion of Horn clause rules and variable

declarations. The rules are in the form of antecedent → consequent, where both

antecedent and consequent are conjunctions of atoms: class membership, property

membership, individual (in)equalities or built-ins. Informally, a rule means that if

the antecedent holds, then the consequent must also hold. ORL is now known as

14
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Semantic Web Rule Language (SWRL) [56], with some sets of built-ins for handling

data type, such as numbers, boolean values, strings, date and time, etc.

2.1.2 Semantic Web Reasoners

Besides ontology languages, we also witness the growth of ontology reasoners in the

recent years. Here we survey some well known reasoners.

Closed world machine (CWM) [17] is a general-purpose data processor for the Seman-

tic Web. Implemented in Python and command-line based, it is a forward chaining

reasoner for RDF.

Triple [98] is an RDF query, inference and transformation language. It does not have

a built-in semantics for RDF Schema, allowing semantics of languages to be defined

with rules on top of RDF. This feature of Triple facilitates data aggregation as user

can perform RDF reasoning and transformation under different semantics.

Fast Classification of Terminologies (FaCT) [54] is a TBox reasoner that supports au-

tomated concept-level reasoning. It does not support ABox (assertion Box, instance-

level) reasoning. FaCT implements a reasoner for the description logic SHIQ [58].

It is implemented in Common Lisp.

KAON2 is a Java reasoner for SHIQ extended with the DL-safe fragment of SWRL.

It implements a resolution-based decision procedure for general TBoxes (subsumption,

15
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satisfiability, classification) and ABoxes (retrieval, conjunctive query answering). It

comes with its own, Java-based interface, and supports the DIG-API.

RACER (Renamed ABox and Concept Expression Reasoner) [50] is a reasoner for

the description logic ALCQHIR+(D)− [51]. It can be regarded as (a) a SW inference

engine, (b) a description logic reasoning system capable of both TBox and ABox

reasoning and (c) a prover for modal logic Km. In the SW domain, RACER’s func-

tionalities include creating, maintaining and deleting ontologies, concepts, roles and

individuals; querying, retrieving and evaluating the knowledge base, etc. It supports

RDF, DAML+OIL and OWL. The RACER system has been commercialized and it

is now known as RacerPro1.

Pellet [99] is a free open-source Java-based reasoner for SROIQ with simple data

types (i.e., for OWL 1.1). It implements a tableau-based decision procedure for

general TBoxes and ABoxes . Pellet employs many of the optimizations for standard

DL reasoning as other state-of-the-art DL reasoners. It directly supports entailment

checks and optimized ABox querying through its interface. Pellet supports the OWL-

API, the DIG-API, and Jena interface [59].

1http://www.racer-systems.com/
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2.2 Prototype Verification System

Prototype Verification System (PVS) [87] is an integrated environment for formal

specification and formal verification. It builds on over 25 years experience at SRI in

developing and using tools to support formal methods. The primary purpose of PVS

is to provide formal support for conceptualization and debugging in the early stages of

the life cycle of the design of a hardware or software system. It supports a wide range

of activities involved in creating, analyzing, modifying, managing, and documenting

theories and proofs. The distinguishing feature of PVS is its synergistic integration of

a highly expressive specification language and powerful theorem-proving capabilities.

A PVS specification consists of a collection of theories. Each theory consists of a

signature for the type names and constants introduced in the theory, and the axioms,

definitions, and theorems associated with the signature. A theory can build on other

theories. A theory can be parametric in certain specified types and values. It is

possible to place constraints, called assumptions, on the parameters of a theory.

The PVS specification language is based on simply typed higher-order logic. Within

a theory, types can be defined starting from base types (Booleans, numbers, etc.)

using the function, record, and tuple type constructions. The terms of the language

can be constructed using function application, lambda abstraction, and record and

tuple construction. The PVS type system also features dependent function, record,
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and tuple type constructions. There is also a facility for defining a certain class of

abstract datatype (namely well-founded trees) theories automatically.

PVS has a powerful interactive theorem prover [87]. The basic deductive steps in

PVS are large compared with many other systems; there are atomic commands for

induction, quantifier reasoning, automatic condition rewriting, simplification, etc.

The primary emphasis in the PVS proof checker is on supporting the construction of

readable proofs. User-defined proof strategies can be used to enhance the automation.

in the proof checker. On the whole, PVS provides more automation than a low-

level proof checker such as LCF [47] and HOL [46], and more control than a highly

automatic theorem prover such as Otter [78].

The prover maintains a proof tree. The users’ goal is to construct a complete proof

tree, in which all leaves (proof goals) are recognized as true. The proof goals in PVS

are represented as sequents which consist of a list of formulae called the antecedents

and a list of formulae called the consequents. The formal interpretation of a sequent is

that the conjunction of the antecedents implies the disjunction of the consequents. Ei-

ther or both of the antecedents and consequents may be empty. An empty antecedent

is equivalent to the sequent being true, and an empty consequent is equivalent to the

sequent being false. So if both are empty, the sequent is false. Every proof in PVS

starts with a empty antecedent and a single consequent.

The PVS Prelude Library is a collection of basic theories about logic, functions,
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predicates, sets, numbers, and other datatypes. The theories in the prelude library

are visible in all PVS contexts, unlike those from other libraries that have to explicitly

imported. Broadly speaking, the prelude can be divided into the logic, functions,

relations, induction, sets, numbers, sequences, sum types, quotient types, and mu-

calculus.

2.3 Constraint Logic Programming

Constraint Logic Programming (CLP) [61] began as a natural combination of two

declarative paradigms: constraint solving and logic programming. This combination

helps make CLP programs both expressive and flexible, and in some cases, more

efficient than other kinds of programs. CLP has been successfully applied to model

programs and transition systems for the purpose of verification [63], showing that

their approach performs better than the well-known state-of-the-art systems with

higher efficiency.

The CLP scheme defines a class of languages based upon the paradigm of rule-based

constraint programming, where CLP(R) [62] is an instance of this class with the

special support of real numbers.

A CLP atom is of the form p(tl , . . . , tn) where p is a predicate symbol distinct from

=, <, and ≤, and tl , . . . , tn are terms which can be predicates, variables or constants.
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A variable starts with a upper-case letter whereas a constant starts with a lower-case

letter.

A CLP rule is of the form

A0 :- α1, . . . , αk .

where each αi , is either a primitive constraint (such as an arithmetic comparison) or

an atom. The atom A0 is called the head of the rule while the remaining atoms and

primitive constraints are known collectively as the body of the rule. In case there are

no atoms in the body, we may call the rule a fact or a unit rule.

A CLP program is defined as a finite set of rules. Rules in CLP have much the

same format as those in PROLOG except that primitive constraints may appear with

atoms in the body. The same applies to a CLP goal which is of the form

? - α1, . . . , αk .

where each αi , is either a primitive constraint or an atom.

Furthermore, each primitive constraint in a goal is classified as being either solved or

delayed. A sub-collection of the atoms and constraints in a goal is sometimes called

a subgoal of the goal.

The operational model of CLP can be explained as follows. let P denote a CLP

program. Let G denote a goal with a subsequence of atoms denoted by A1, . . . ,An ,
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a subsequence of solved constraints denoted by α1, . . . , αm , and a subsequence of

delayed constraints denoted by β1, . . . , βk . We say that there is a derivation step

from G to another goal G ′ if one of the following holds:

• G ′ denotes a goal with a subsequence of atoms denoted by A1, . . . ,An , a sub-

sequence of solved constraints denoted by α1, . . . , αm , βi , and a subsequence

of delayed constraints denoted by β1, . . . , βi−1, βi+1, . . . , βk . Furthermore the

conjunction of the solved constraints in G ′ is solvable.

• P contains a rule R which can be renamed so that it contains only new vari-

ables and takes the form: the head atom is B , the subsequence of body atoms

are denoted by B1, . . . ,Bs , and the subsequence of constraints in the body are

γ1, . . . , γt . In G ′, the subsequence of atoms are A1, . . . ,Aj−l ,B1, . . . ,Bs ,Aj+l , . . . ,An ,

the subsequence of solved constraints are α1, . . . , αm , the subsequence of delayed

constraints are β1, . . . , βk ,A = B , γ1, . . . , γt . Furthermore, the conjunction of

the solved constraints in G ′ is solvable.

Roughly speaking, in each derivation step either an atom gets expanded by applying

a rule (by using techniques similar to unification and SLD-resolution) or a delayed

constraint gets solved.

In an initial goal, all the constraints are delayed. A derivation sequence is a possibly

infinite sequence of goals, starting with an initial goal, wherein there is a derivation
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step to each goal from the preceding goal. A sequence is successful if it is finite and

its last goal contains only solved constraints. A sequence is conditionally successful

if it is finite and its last goal contains only solved and delayed constraints. Finally,

a finitely failed sequence is finite, neither successful nor conditionally successful, and

such that no derivation step is possible from its last goal.
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Chapter 3

Checking Ontology-based Agent

Knowledge

As we have identified in Chapter 1, one of the challenges for the realization of intel-

ligent agents is the problem of interoperability and heterogeneity. More specifically,

the basic problem is how agents with different domains of discourse, employing dif-

ferent knowledge representation schemes, different problem solving paradigms, and

with different assumptions about their world and each other, can be made to interact

in an effective and scalable manner.

The Semantic Web [18] technology is one of the most promising solutions to the

problem. In the past decade, there has been increasing interest in the use of the Se-

23



Chapter 3. Checking Ontology-based Agent Knowledge

mantic Web for semantically marking up information and services for intelligent agent

to interpret, creating a platform for inter-machine data and information exchange, fil-

tering, and integration across domain boundaries without human supervision.

Based on Description Logic [7], ontology languages such as DAML+OIL and (part

of) OWL were originally designed to be decidable [112, 65], in order for intelligent

software agents to automatically process data on the Semantic Web. However, the

trade-off is the limited expressiveness, which forbids some very complex, but desirable

properties to be specified. For this reason, OWL Rules Language (ORL) [55], which

is later extended to Semantic Web Rule Language [56], has been proposed.

However such extensions are beyond the power of current state-of-the-art Semantic

Web reasoners such as FaCT++ [108] and RACER [50]. This means that it is not

possible to use such reasoners to reason about knowledge represented in the extended

ontology language. Furthermore some very desirable, domain-specific properties, such

as those with multiple quantification, still cannot be expressed even in the extended

ontology language.

The lack of the above-mentioned knowledge reasoning capabilities prevents the real-

ization of reliable intelligent agent-based systems and hence calls for a complementary

reasoning support. In this chapter we demonstrate how PVS [87] can be used to rea-

son about complex properties in ontology-based agent knowledge.
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We begin by presenting the encoding of the OWL DL language semantic in the PVS

specification language in Section 3.1. In Section 3.2 we demonstrate the different

reasoning tasks that PVS can perform. Section 3.3 summarizes the main contributions

of this chapter.

3.1 PVS Semantics for OWL DL

In order to use PVS to verify ontologies with SWRL axioms, it is necessary to define

the PVS semantics for OWL DL & SWRL. In this section, we present the PVS

semantic encoding of the OWL DL and SWRL language primitives. We start with

basic concepts and then describe the encoding for class descriptions, axioms and

assertions.

3.1.1 Basic Concepts

Everything in the Semantic Web is a resource. We model it by defining an abstract

datatype in PVS.
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Resource[Class,Individual,Dtype,Datavalue,O_Property,D_Property: TYPE]: DATATYPE

BEGIN

cls(c: Class): cls?

idv(i: Individual): idv?

dtt(d: Dtype): dtt?

dtv(d: Datavalue): dtv?

oppt(p: O_Property): oppt?

dppt(p: D_Property): dppt?

END Resource

It simply states the forms a resource can take. For example, cls(c: Class): cls?

states that a resource can be of type (cls?) (for classes) by using the constructor

cls and an argument c of type Class which is passed as one of the type parameters.

Similarly a resource can be an individual, a datatype, a datavalue, an object property

and a datatype property.

To facilitate reasoning about literals, we define datavalue also in a PVS abstract

datatype as follows.

Datavalue: DATATYPE

BEGIN

natDV(n: nat): natDV?

intDV(i: int): intDV?

realDV(r: real): realDV?

boolDV(b: bool): boolDV?

stringDV(s: string): stringDV?

END Datavalue

A datavalue can be a natural number datavalue, an integer datavalue, a real number

datavalue, a boolean datavalue, or a string datavalue. This abstract datatype can be

extended to support other semantic web datavalues.

26



3.1. PVS Semantics for OWL DL

Then in the main semantics definition theory we define Class, O_Property, D_Property,

Dtype and Individual as uninterpreted nonempty types. By the PVS language se-

mantics, uninterpreted types are mutually disjoint. Then we import the two abstract

datatypes. Each class in OWL has a number of individuals associated with it, the

instances of this class. Similarly each datatype has a set of datavalues associated with

it. So we define two functions instances and datavalues that map a class to a set

of individuals, and a datatype to a set of datavalues respectively. A property can be

either an object properties or a datatype properties. Object properties have individu-

als as their ranges whereas datatype properties have datavalues as their ranges. Also

every property has a set of tuples associated with it: the property instances. So we

define two functions sub_val_O and sub_val_D that map an object property and a

datatype property to their property instances respectively.

Class,O_Property,D_Property,Dtype,Individual: TYPE+

IMPORTING Datavalue

IMPORTING Resource[Class,Individual,Dtype,Datavalue,O_Property,D_Property]

instances: [(cls?) -> set[(idv?)]]

datavalues: [(dtt?) -> set[(dtv?)]]

sub_val_O: [(oppt?) -> set[[(idv?), (idv?)]]]

sub_val_D: [(dppt?) -> set[[(idv?), (dtv?)]]]
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3.1.2 Class Descriptions

Classes in OWL are first-class citizens. A class description describes an OWL class,

either by a class name or by specifying the class extension of an unnamed anonymous

class. In this sub-section, we description how different class descriptions in OWL can

be modelled in PVS. OWL distinguishes four types of class descriptions:

1. a class identifier (a URI reference)

2. an exhaustive enumeration of individuals that together form the instances of a

class

3. a property restriction

4. a set operation on one or more class descriptions

The first type is special in the sense that it describes a class through a class name

(syntactically represented as a URI reference). Two special basic classes are pre-

defined in OWL. The class Thing contains all individuals and the class Nothing

contains no individual. So we define the following classes and their associated axioms.

Thing: (cls?)

Thing_ax: AXIOM FORALL (i: (idv?)): member(i, instances(Thing))

Nothing: (cls?)

Nothing_ax: AXIOM FORALL (i: (idv?)): NOT member(i, instances(Nothing))
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A class description of the ”enumeration” kind is defined with the owl:oneOf property.

The value of this built-in OWL property must be a list of individuals that are the

instances of the class. This enables a class to be described by exhaustively enumer-

ating its instances. So we define oneOf as a function from a list of individuals to a

class. The semantics of the class description is defined as by the axiom oneOf_ax.

oneOf : [list[(idv?)] -> (cls?)]

oneOf_ax : AXIOM FORALL (li:list[(idv?)]),(c:(cls?)):

(c = oneOf(li) IMPLIES FORALL (i:(idv?)):

(member(i,instances(c)) IFF member(i,li)))

A property restriction is a special kind of class description. It describes an anonymous

class, namely a class of all individuals that satisfy the restriction. OWL distinguishes

two kinds of property restrictions: value constraints and cardinality constraints.

A value constraint puts constraints on the range of the property when applied to

this particular class description. There are three types of value constraint, namely

owl:allValuesFrom, owl:someValuesFrom and owl:hasValue.

The property owl:allValuesFrom attempts to establish a maximal set of individuals

as a class. It defines a class c1 of all individuals i1 for which it holds that if the pair

(i1,i2) is in the property p then i2 is an instance of class c2. So we model it as a

function from a property p and a class c2 to a class c1 and specify its meaning as an

axiom as follows. We also have a variant for the case where p is a datatype property

and c2 a datatype.
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allValuesFrom_O : [(oppt?), (cls?) -> (cls?)]

allValuesFrom_O_ax : AXIOM

FORALL (c1, c2: (cls?)),(p: (oppt?)):

(c1 = allValuesFrom_O(p, c2) IMPLIES

FORALL (i1: (idv?)): (member(i1, instances(c1)) IFF

FORALL (i2: (idv?)):

(member((i1,i2),sub_val_O(p)) IMPLIES

member(i2,instances(c2)))))

allValuesFrom_D: [(dppt?), (dtt?) -> (cls?)]

allValuesFrom_D_ax: AXIOM

FORALL (c1: (cls?)),(p: (dppt?)),(c2: (dtt?)):

(c1 = allValuesFrom_D(p,c2) IMPLIES

FORALL (i1:(idv?)): (member(i1,instances(c1)) IFF

FORALL (i2: (dtv?)):

(member((i1,i2),sub_val_D(p)) IMPLIES

member(i2,datavalues(c2)))))

The value constraint owl:someValuesFrom is a built-in OWL property that links a

restriction class to a class description or a data range. A restriction containing an

owl:someValuesFrom constraint describes a class of all individuals for which at least

one value of the property concerned is an instance of the class description or a data

value in the data range. In other words, it attempts to establish a maximal set of

individuals as a class. It defines a class c1 of all individuals i1 for which it holds that

there exists an individual i2 such that (i1,i2) is in the property p and that i2 is an

instance of class c2. So we model it as a function from a property p and a class c2

to a class c1 and specify its meaning as an axiom as follows. We also have a variant

for the case where p is a datatype property and c2 a datatype.
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someValuesFrom_O : [(oppt?), (cls?) -> (cls?)]

someValuesFrom_O_ax : AXIOM

FORALL (c1, c2: (cls?)),(p: (oppt?)):

(c1 = someValuesFrom_O(p, c2) IMPLIES

FORALL (i1: (idv?)): (member(i1, instances(c1)) IFF

EXISTS (i2: (idv?)):

(member((i1,i2),sub_val_O(p)) AND member(i2,instances(c2)))))

someValuesFrom_D: [(dppt?), (dtt?) -> (cls?)]

someValuesFrom_D_ax: AXIOM

FORALL (c1: (cls?)),(p: (dppt?)),(c2: (dtt?)):

(c1 = allValuesFrom_D(p,c2) IMPLIES

FORALL (i1:(idv?)): (member(i1,instances(c1)) IFF

EXISTS (i2: (dtv?)):

(member((i1,i2),sub_val_D(p)) AND member(i2,datavalues(c2)))))

The value constraint owl:hasValue is a built-in OWL property that links a restriction

class to a value, which can be either an individual or a data value. A restriction

containing a owl:hasValue constraint describes a class of all individuals for which the

property concerned has at least one value semantically equal to the given value. In

other words, it attempts to establish a maximal set of individuals as a class. It defines

a class c of all individuals i1 for which it holds that there exists an individual i2 such

that (i1,i2) is in the property p. So we model it as a function from a property p

and an individual i2 to a class c and specify its meaning as an axiom as follows. We

also have a variant for the case where p is a datatype property and i a data value.
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hasValue_O : [(oppt?), (idv?) -> (cls?)]

hasValue_O_ax : AXIOM

FORALL (i2: (idv?)),(c: (cls?)),(p: (oppt?)):

(c = hasValue_O(p, i2) IMPLIES

FORALL (i1: (idv?)): (member(i1, instances(c)) IFF

member((i1,i2),sub_val_O(p))))

hasValue_D: [(dppt?), (dtv?) -> (cls?)]

hasValue_D_ax: AXIOM

FORALL (i2: (idv?)),(c: (cls?)),(p: (dppt?))):

(c = hasValue_D(p, i2) IMPLIES

FORALL (i1:(idv?)): (member(i1,instances(c1)) IFF

member((i1,i2),sub_val_D(p))))

A cardinality constraint puts constraints on the number of values a property can take,

in the context of this particular class description.

The cardinality constraint owl:maxCardinality is a built-in OWL property that links

a restriction class to a data value belonging to the value space of the XML Schema

datatype nonNegativeInteger. A restriction containing an owl:maxCardinality con-

straint describes a class of all individuals that have at most N semantically distinct

values (individuals or data values) for the property concerned, where N is the value

of the cardinality constraint. We have the following two variants of the semantics

encoding, one for object properties and one for datatype properties.
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maxCardinality_O: [(oppt?), nat -> (cls?)]

maxCardinality_O_ax: AXIOM

FORALL (c: (cls?)), (op: (oppt?)), (n: nat):

(c = maxCardinality_O(op, n) IMPLIES

FORALL (i: (idv?)): member(i, instances(c)) IFF

EXISTS (s: finite_set[(idv?)]):

card(s) = n AND subset?(image(sub_val_O(op),singleton(i)),s))

maxCardinality_D: [(dppt?), nat -> (cls?)]

maxCardinality_D_ax: AXIOM

FORALL (c: (cls?)), (dp: (dppt?)), (n: nat):

(c = maxCardinality_D(dp,n) IMPLIES

FORALL (i: (idv?)): member(i, instances(c)) IFF

EXISTS (s: finite_set[(dtv?)]):

card(s) = n AND subset?(image(sub_val_D(dp),singleton(i)),s))

The cardinality constraint owl:minCardinality is a built-in OWL property that links

a restriction class to a data value belonging to the value space of the XML Schema

datatype nonNegativeInteger. A restriction containing an owl:minCardinality con-

straint describes a class of all individuals that have at least N semantically distinct

values (individuals or data values) for the property concerned, where N is the value

of the cardinality constraint. We have the following two variants of the semantics

encoding, one for object properties and one for datatype properties.
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minCardinality_O: [(oppt?), nat -> (cls?)]

minCardinality_O_ax: AXIOM

FORALL (c: (cls?)), (op: (oppt?)), (n: nat):

(c = minCardinality_O(op, n) IMPLIES

FORALL (i: (idv?)): member(i, instances(c)) IFF

EXISTS (s: finite_set[(idv?)]):

card(s) = n AND subset?(s,image(sub_val_O(op),singleton(i))))

minCardinality_D: [(dppt?), nat -> (cls?)]

minCardinality_D_ax: AXIOM

FORALL (c: (cls?)), (dp: (dppt?)), (n: nat):

(c = minCardinality_D(dp,n) IMPLIES

FORALL (i: (idv?)): member(i, instances(c)) IFF

EXISTS (s: finite_set[(dtv?)]):

card(s) = n AND subset?(s,image(sub_val_D(dp),singleton(i))))

The cardinality constraint owl:cardinality is a built-in OWL property that links a

restriction class to a data value belonging to the range of the XML Schema datatype

nonNegativeInteger. A restriction containing an owl:cardinality constraint describes

a class of all individuals that have exactly N semantically distinct values (individuals

or data values) for the property concerned, where N is the value of the cardinality

constraint. We have the following two variants of the semantics encoding, one for

object properties and one for datatype properties.
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cardinality_O: [(oppt?), nat -> (cls?)]

cardinality_O_ax: AXIOM

FORALL (c: (cls?)), (op: (oppt?)), (n: nat):

(c = cardinality_O(op, n) IMPLIES

FORALL (i: (idv?)): member(i, instances(c)) IFF

EXISTS (s: finite_set[(idv?)]):

card(s) = n AND s = image(sub_val_O(op),singleton(i)))

cardinality_D: [(dppt?), nat -> (cls?)]

cardinality_D_ax: AXIOM

FORALL (c: (cls?)), (dp: (dppt?)), (n: nat):

(c = cardinality_D(dp,n) IMPLIES

FORALL (i: (idv?)): member(i, instances(c)) IFF

EXISTS (s: finite_set[(dtv?)]):

card(s) = n AND s = image(sub_val_D(dp),singleton(i)))

An OWL class can also be described by using set operations on one or more class

descriptions. There are three types of class description related to set operations,

namely owl:intersectionOf, owl:unionOf and owl:complementOf.

The owl:intersectionOf property links a class to a list of class descriptions. An

owl:intersectionOf statement describes a class for which the class extension con-

tains precisely those individuals that are members of the class extension of all class

descriptions in the list. Thus we define it as a function from a list of classes to a class.

intersectionOf : [list[(cls?)] -> (cls?)]

intersectionOf_ax : AXIOM FORALL (lc:list[(cls?)]),(c:(cls?)):

(c = intersectionOf(lc) IMPLIES FORALL (i:(idv?)):

(member(i,instances(c)) IFF FORALL (sc:(cls?)):

(member(sc,lc) IMPLIES member(i,instances(sc)))))
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The owl:unionOf property links a class to a list of class descriptions. An owl:unionOf

statement describes an anonymous class for which the class extension contains those

individuals that occur in at least one of the class extensions of the class descriptions

in the list. Thus we define it as a function from a list of classes to a class.

unionOf : [list[(cls?)] -> (cls?)]

unionOf_ax : AXIOM FORALL (lc:list[(cls?)]),(c:(cls?)):

(c = unionOf(lc) IMPLIES FORALL (i:(idv?)):

(member(i,instances(c)) IFF EXISTS (sc:(cls?)):

(member(sc,lc) AND member(i,instances(sc)))))

An owl:complementOf property links a class to precisely one class description. An

owl:complementOf statement describes a class for which the class extension contains

exactly those individuals that do not belong to the class extension of the class de-

scription that is the object of the statement. Thus we define it as a function from a

classes to another class.

complementOf : [(cls?) -> (cls?)]

complementOf_ax : AXIOM FORALL (c1,c2:(cls?)):

(c2 = complementOf(c1) IMPLIES FORALL (i:(idv?)):

(member(i,instances(c1)) IFF NOT member(i,instances(c2))))

3.1.3 Axioms

Class descriptions form the building blocks for defining classes through class axioms.

The simplest form of a class axiom is a class description of type 1, It just states the

existence of a class, using owl:Class with a class identifier.

The rdfs:subClassOf construct is defined as part of RDF Schema. Its meaning in
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OWL is exactly the same: if the class description C1 is defined as a subclass of

class description C2, then the set of individuals in the class extension of C1 should

be a subset of the set of individuals in the class extension of C2. The property

rdfs:subClassOf is defined as a boolean function from two classes. Here we make use

of the some predicate pre-defined in the PVS prelude.

subClassOf?(c1,c2:(cls?)): bool = subset?(instances(c1),instances(c2))

A class axiom may contain (multiple) owl:equivalentClass statements. owl:equivalentClass

is a built-in property that links a class description to another class description. The

meaning of such a class axiom is that the two class descriptions involved have the

same class extension (i.e., both class extensions contain exactly the same set of in-

dividuals). We similarly model owl:equivalentClass as a boolean function as shown

below.

equivalentClass?(c1,c2:(cls?)): bool =

FORALL (i:(idv?)): (member(i,instances(c1)) IFF member(i,instances(c2)))

A class axiom may also contain (multiple) owl:disjointWith statements. owl:disjointWith

is a built-in OWL property with a class description as domain and range. Each

owl:disjointWith statement asserts that the class extensions of the two class descrip-

tions involved have no individuals in common. We similarly model owl:disjointWith

as a boolean function as shown below.

disjointWith?(c1,c2:(cls?)): bool =

FORALL (i:(idv?)): (member(i,instances(c1)) IFF NOT member(i,instances(c2)))
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A rdfs:subPropertyOf axiom defines that the property is a subproperty of some other

property. Formally this means that if P1 is a subproperty of P2, then the property

extension of P1 (a set of pairs) should be a subset of the property extension of P2

(also a set of pairs). Therefore it is modeled as a boolean function of two properties.

We use the overloading mechanism in PVS to capture the different cases of object

and datatype properties.

subPropertyOf?(p1,p2:(oppt?)): bool = subset?(sub_val_O(p1),sub_val_O(p2))

subPropertyOf?(p1,p2:(dppt?)): bool = subset?(sub_val_D(p1),sub_val_D(p2))

The owl:equivalentProperty construct can be used to state that two properties have

the same property extension. Syntactically, owl:equivalentProperty is a built-in OWL

property with rdf:Property as both its domain and range. We similarly model it as

boolean functions.

equivalentProperty?(p1,p2:(oppt?)): bool = FORALL (i1,i2:(idv?)):

(member((i1,i2),sub_val_O(p1)) IFF member((i1,i2),sub_val_O(p2)))

equivalentProperty?(p1,p2:(dppt?)): bool = FORALL (i1:(idv?),i2:(dtv?)):

(member((i1,i2),sub_val_P(p1)) IFF member((i1,i2),sub_val_P(p2)))

Syntactically, owl:inverseOf is a built-in OWL property with owl:ObjectProperty as

its domain and range. An axiom of the form P1 owl:inverseOf P2 asserts that for

every pair (x,y) in the property extension of P1, there is a pair (y,x) in the property

extension of P2, and vice versa. We similarly model it as a boolean function in PVS.

inverseOf?(p1,p2:(oppt?)): bool = FORALL (i1,i2:(idv?)):

(member((i1,i2),sub_val_O(p1)) IFF member((i2,i1),sub_val_O(p2)))

For a property one can define (multiple) rdfs:domain axioms. Syntactically, rdfs:domain
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is a built-in property that links a property to a class description. An rdfs:domain ax-

iom asserts that the subjects of such property statements must belong to the class

extension of the indicated class description. Thus we define

domain?(p:(oppt?),c:(cls?)): bool = FORALL (i1:(idv?),i2:(idv?)):

(member((i1,i2),sub_val_O(p)) IMPLIES member(i1,instances(c)))

domain?(p:(dppt?),c:(cls?)): bool = FORALL (i1:(idv?),i2:(dtv?)):

(member((i1,i2),sub_val_D(p)) IMPLIES member(i1,instances(c)))

For a property one can define (multiple) rdfs:range axioms. Syntactically, rdfs:range

is a built-in property that links a property to either a class description or a data

range. An rdfs:range axiom asserts that the values of this property must belong

to the class extension of the class description or to the data values in the specified

data range. The semantic definitions for rdfs:range is a little more complicated for

datatype properties. We have to consider different cases for different datatypes of

ontology languages.
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range?(p:(oppt?),c:(cls?)): bool = FORALL (i1,i2:(idv?)):

(member((i1,i2),sub_val_O(p)) IMPLIES member(i2,instances(c)))

dnat, dint, dreal, dbool, dstring: (dtt?)

range?(p:(dppt?),dt:(dtt?)): bool =

IF dt = dnat THEN FORALL (i1:(idv?),i2:Datavalue):

(member((i1,dtv(i2)),sub_val_D(p)) IMPLIES (natDV?)(i2))

ELSIF dt = dint THEN FORALL (i1:(idv?),i2:Datavalue):

(member((i1,dtv(i2)),sub_val_D(p)) IMPLIES (intDV?)(i2))

ELSIF dt = dreal THEN FORALL (i1:(idv?),i2:Datavalue):

(member((i1,dtv(i2)),sub_val_D(p)) IMPLIES (realDV?)(i2))

ELSIF dt = dbool THEN FORALL (i1:(idv?),i2:Datavalue):

(member((i1,dtv(i2)),sub_val_D(p)) IMPLIES (boolDV?)(i2))

ELSIF dt = dstring THEN FORALL (i1:(idv?),i2:Datavalue):

(member((i1,dtv(i2)),sub_val_D(p)) IMPLIES (stringDV?)(i2))

ELSE FALSE ENDIF

A functional property is a property that can have only one (unique) value y for each

instance x, i.e. there cannot be two distinct values y1 and y2 such that the pairs

(x,y1) and (x,y2) are both instances of this property. Thus the OWL semantic for

owl:FunctionalProperty is defined as follows.

functionalProperty?(p:(oppt?)): bool = FORALL (r1,r2,r3:(idv?)):

(member((r1,r2),sub_val_O(p)) AND member((r1,r3),sub_val_O(p)))

IMPLIES r2 = r3

functionalProperty?(p:(dppt?)): bool = FORALL (r1:(idv?)),(r2,r3:(dtv?)):

(member((r1,r2),sub_val_D(p)) AND member((r1,r3),sub_val_D(p)))

IMPLIES r2 = r3

If a property is declared to be inverse-functional, then the object of a property state-

ment uniquely determines the subject (some individual). More formally, if we state

that P is an owl:InverseFunctionalProperty, then this asserts that a value y can only

be the value of P for a single instance x, i.e. there cannot be two distinct instances
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x1 and x2 such that both pairs (x1,y) and (x2,y) are instances of P. Thus the OWL

semantic for owl:InverseFunctionalProperty is defined as follows.

inverseFunctionalProperty?(p:(oppt?)): bool = FORALL (r1,r2,r3:(idv?)):

(member((r1,r3),sub_val_O(p)) AND member((r2,r3),sub_val_O(p)))

IMPLIES r1 = r2

inverseFunctionalProperty?(p:(dppt?)): bool = FORALL (r1:(idv?)),(r2,r3:(dtv?)):

(member((r1,r3),sub_val_D(p)) AND member((r2,r3),sub_val_D(p)))

IMPLIES r1 = r2

When one defines a property P to be a transitive property, this means that if a pair

(x,y) is an instance of P, and the pair (y,z) is also instance of P, then we can infer the

the pair (x,z) is also an instance of P. The OWL semantic for owl:TransitiveProperty

is defined as follows.

transitiveProperty?(p:(oppt?)): bool = FORALL (r1,r2,r3:(idv?)):

(member((r1,r3),sub_val_O(p)) AND member((r2,r3),sub_val_O(p)))

IMPLIES member((r1,r3),sub_val_O(p))

A symmetric property is a property for which holds that if the pair (x,y) is an in-

stance of P, then the pair (y,x) is also an instance of P. The OWL semantic for

owl:SymmetricProperty is defined as follows.

symmetricProperty?(p:(oppt?)): bool = FORALL (r1,r2:(idv?)):

(member((r1,r2),sub_val_O(p)) IFF member((r2,r1),sub_val_O(p)))

3.1.4 Assertions

The built-in OWL property owl:sameAs links an individual to an individual. Such

an owl:sameAs statement indicates that two URI references actually refer to the
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same thing. The built-in OWL owl:differentFrom property links an individual to an

individual. An owl:differentFrom statement indicates that two URI references refer

to different individuals. We model the semantics as follows.

sameAs?(r1,r2:(idv?)): bool = (r1 = r2)

differentFrom?(r1,r2:(idv?)): bool = NOT (r1 = r2)

3.1.5 SWRL Rules

In SWRL [56] a rule consists of an antecedent and a consequent, each of which con-

sists of a (possibly empty) set of atoms. Atoms can be of the form C (x ), P(x , y),

sameAs(x , y), differentFrom(x , y) or a built-in atom where C is an OWL class de-

scription, P is an OWL property, and x , y are either variables, OWL individuals

or OWL data values. Informally, an atom C (x ) holds if x is an instance of the

class description C , an atom P(x , y) holds if x is related to y by property P , an

atom sameAs(x , y) holds if x is interpreted as the same object as y , and an atom

differentFrom(x , y) holds if x and y are interpreted as different objects. A rule may

be read as meaning that if the antecedent holds (is “true”), then the consequent must

also hold.

A SWRL rule will be modeled as a PVS rewrite rule, e.g., a universally quantified

predicate of the form

a1 ∧ a2 ∧ ... ∧ am ⇒ c1 ∧ c2 ∧ ... ∧ cn
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where ai and cj are one of the four forms of atoms.

3.1.6 Proof Support for PVS

To make the proving process of PVS more automated, a set of rewrite rules and

theorems is also defined. They aim to hide certain amount of underlying model from

the verification and reasoning and to achieve abstraction and automation. Usually

these rules relate several classes and properties by defining the effect of using them

in a particular way. Before using the theorems, we first need to prove that they are

valid based on our semantic encoding.

One simple example is the subClassOf_transitive theorem. It states that if a class c1

is a sub-class of a class c2 and c2 is a sub-class of a class c3, then c1 is a sub-class

of c3.

subClassOf_transitive: THEOREM FORALL (c1,c2,c3:(cls?)):

subClassOf?(c1,c2) AND subClassOf?(c2,c3) IMPLIES subClassOf?(c1,c3)

This theorem can be easily proved by asserting the definition of subClassOf? and

issuing the (grind) command.

The following theorem, member subClassOf states that an instance of a particular

class is also an instance of all the super classes of this class.

member_subClassOf: THEOREM FORALL (i:(idv?)),(c1,c2:(cls?)):

member(i, instances(c1)) AND subClassOf?(c1,c2) IMPLIES member(i, instances(c2))
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The development of the reasoning rules is an incremental process. We start with

20 reasoning rules which we feel are useful in performing the initial Semantic Web

reasoning tasks. In the process of reasoning, we constantly include, prove and use

more reasoning rules in the rule set. This is useful because the proof of such rules can

help verify the correctness of our semantic encoding. Another reason for developing

the reasoning rules is that most of the reasoning rules are re-used more than once.

Currently there are altogether more than 200 rules stored in the PVS theory.

3.2 Reasoning about Ontologies in PVS

In this section, we demonstrate how PVS can be used to check ontology-related prop-

erties and to reason beyond the modeling power of OWL & ORL. It is presented in

two parts. Firstly, standard SW reasoning are performed. In the second part, we

show how PVS can reason ORL and more complex properties that even ORL cannot

express.

3.2.1 Standard SW Reasoning

Standard SW reasoning includes three categories, namely inconsistency checking, sub-

sumption reasoning and instantiation reasoning. The following subsections illustrate

each category with an example.
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Inconsistency Checking

Ensuring the consistency of ontologies is an important task in various stages of on-

tology development, as inconsistent ontologies may lead agents to reason erroneously

and make wrong conclusions.

To be precise, knowledge base consistency amounts to verifying whether every concept

in the knowledge base admits at least one individual [84].

The following is an example of inconsistency checking in the animal ontology. After

transforming the ontology into a PVS specification, we identified the following closely

related classes, properties and their axioms.

Animal,Vegetarian,Cow,MadCow,Food,Meat,Vegetable: (cls?)

eats: (oppt?)

Vegetarian_subClassOf_ax_1: AXIOM subClassOf?(Vegetarian,Animal)

Vegetarian_allValuesFrom_ax_1: AXIOM Vegetarian = allValuesFrom(eats,Vegetable)

Cow_subClassOf_ax_1: AXIOM subClassOf?(Cow,Vegetarian)

MadCow_subClassOf_ax_1: AXIOM subClassOf?(MadCow,Cow)

MadCow_subClassOf_ax_2: AXIOM subClassOf?(MadCow,someValuesFrom(eats,Meat))

Meat_subClassOf_ax_1: AXIOM subClassOf?(Meat,Food)

Vegetable_subClassOf_ax_1: AXIOM subClassOf?(Vegetable,Food)

Vegetable_disjointWith_ax_1: AXIOM disjointWith?(Vegetable,Meat)

We suspect that there is an inconsistency in the class of MadCow . To prove that, we

assert the following theorem, which means that the class of MadCow does not admit

any individual.

MadCow_inconsistent: THEOREM

(EXISTS (i:INDIVIDUAL):member(i, instances(MadCow))) IMPLIES FALSE

45



Chapter 3. Checking Ontology-based Agent Knowledge

After applying (lemma) to supply PVS with known facts (axioms), applying (skolem!)

to remove quantifiers and instructing PVS to understand the subclass relationship

between MadCow and Vegetarian, we need to prove

member(i!1,instances(Vegetarian)), that i !1 is a member of Vegetarian, which can be

proved by the theorem member subClassOf introduced in Section 3.1.6.

By expanding the definition of Vegetarian and exploiting the fact that MadCow is a

subclass of an anonymous class that eats Meat , we can finish up the proof using a

(grind), which is a catch-all strategy that is frequently used to automatically complete

a proof branch or to apply all the obvious simplifications.

Subsumption Reasoning

The task of subsumption reasoning is to infer that an OWL class is a sub-class of

another. This could be accomplished in PVS fairly automatically. One of the simplest

ways is by using the fact that subClassOf? is a transitive property, which can be easily

proved by PVS.

There are other ways of proving subsumption relationships. One of them is by inter-

class relationships such as intersectionOf and UnionOf. For example, we have the

following transformed ontology fragment and we want to prove that the class TallMan

is a subclass of Person using theorem TallMan subClassOf Person.
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TallMan_intersection_ax: AXIOM

TallMan=intersectionOf((:TallThing,Man:))

Person_union_ax: AXIOM

Person=unionOf((:Man,Woman:))

TallMan_subClassOf_Person: THEOREM

subClassOf?(TallMan,Person)

The main steps of this proof are to prove separately subClassOf?(TallMan,Man) and

subClassOf?(Man,Person). Then the simple subsumption reasoning can finish proving

the theorem. The above two goals can be proved by the application of two user

defined theorems relating intersectionOf and unionOf to subClassOf , respectively.

Instantiation Reasoning

Instantiation reasoning asserts that one resource is or is not an instance of a class.

Some SW reasoning tools such as FaCT are designed to only support concept-level

reasoning. Hence reasoning at the instance-level cannot be performed by these tools.

We demonstrate through an example that PVS supports instance-level reasoning.

In the example ontology, we defined an individual called Santa, who can move by

both walking and flying, by the following axioms.

Santa_moves_walk_ax: AXIOM moves(Santa,walk)

Santa_moves_fly_ax: AXIOM moves(Santa,fly)

We want to prove that Santa is not an instance of the class Person. By stating the

facts that all instances of the Person class can move only by walk, that the individual
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Santa can fly, and that walk and fly are disjoint, we can finish the proof with a (grind)

command.

3.2.2 Checking SWRL & Beyond

The above examples demonstrate PVS’s power of performing consistency, subsump-

tion and instantiation reasoning about OWL ontologies with certain degree of au-

tomation. Now we shall illustrate that PVS can reason about ORL and more complex

properties that even ORL cannot capture.

SWRL Reasoning

We illustrate our idea with an example ontology about scheduling agents for different

tasks, which is represented in n3 [15] syntax below in Table 3.1. Informally, there is a

set of tasks and a set of agents. Any task can be assigned to any agent. There is also

a set of discrete time points and a set of data. A time point may precede another.

Each task starts and ends at particular time points and may possibly use a piece of

data. A task could relate to another task. Some tasks may overlap with some other

task(s).

We first check the consistency the the ontology by using the methodology described

in the previous section. We omit the details and the result shows the ontology is

48



3.2. Reasoning about Ontologies in PVS

Table 3.1: The Model of Scheduling Tasks
:Agent a owl:Class. :a1 a Agent. :tp1 a TimePoint;
:Task a owl:Class. :a2 a Agent. :precedes :tp2.
:TimePoint a owl:Class. :t1 a Task; :tp2 a TimePoint;
:Data a owl:Class. :starts :tp1; :precedes :tp3.
:relatesTo a owl:TransitiveProperty; :ends :tp3; :tp3 a TimePoint;

rdfs:domain Task; :assignedTo :a1. :precedes :tp4.
rdfs:range Task; :t2 a Task; :tp4 a TimePoint;

:assignedTo a owl:ObjectProperty; :starts :tp2; :precedes :tp5.
rdfs:domain Task; :ends :tp4; :tp5 a TimePoint.
rdfs:range Agent. :uses :d2; :d1 a Data.

:starts a owl:ObjectProperty; :assignedTo :a2. :d2 a Data.
rdfs:domain Task; :t3 a Task;
rdfs:range TimePoint. :starts :tp4;

:ends a owl:ObjectProperty; :ends :tp5;
rdfs:domain Task; :relatesTo :t1;
rdfs:range TimePoint. :uses :d1;

:precedes a owl:TransitiveProperty; :assignedTo :a2.
rdfs:domain TimePoint;
rdfs:range TimePoint.

:overlaps a owl:ObjectProperty;
rdfs:domain Task;
rdfs:range Task.

:uses a owl:ObjectProperty;
rdfs:domain Task;
rdfs:range Data.

consistent.

On top of the OWL and RDF ontology, there are four SWRL rules. The first one

states that an agent cannot be assigned to two overlapping tasks.

Task(?t1) ∧ Task(?t2) ∧ Agent(?a1) ∧ Agent(?a2) ∧
assignedTo(?t1, ?a1) ∧ assignedTo(?t2, ?a2) ∧ overlaps(?t1, ?t2)

→
differentFrom(?a1, ?a2)

The transformed PVS theorem is given below.
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rule_1: AXIOM FORALL(t1,t2,a1,a2 : (idv?)):

member(t1,instances(Task)) AND

member(t2,instances(Task)) AND

member(a1,instances(Agent)) AND

member(a2,instances(Agent)) AND

member((t1,a1),sub_val_O(assignedTo)) AND

member((t2,a2),sub_val_O(assignedTo)) AND

member((t1,t2),sub_val_O(overlaps))

IMPLIES

differentFrom?(a1,a2)

The second rule requires that related tasks must be assigned to the same agent.

Task(?t1) ∧ Task(?t2) ∧ Agent(?a1) ∧ Agent(?a2) ∧
assignedTo(?t1, ?a1) ∧ assignedTo(?t2, ?a2) ∧ relatesTo(?t1, ?t2)

→
sameAs?(?a1, ?a2)

The transformed PVS theorem is given below.

rule_2: AXIOM FORALL(t1,t2,a1,a2 : (idv?)):

member(t1,instances(Task)) AND

member(t2,instances(Task)) AND

member(a1,instances(Agent)) AND

member(a2,instances(Agent)) AND

member((t1,a1),sub_val_O(assignedTo)) AND

member((t2,a2),sub_val_O(assignedTo)) AND

member((t1,t2),sub_val_O(relatesTo))

IMPLIES

sameAs?(a1,a2)

The third rule requires that any two overlapping tasks cannot use the same piece of

data.
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Task(?t1) ∧ Task(?t2) ∧ Data(?d1) ∧ Data(?d2) ∧
uses(?t1, ?d1) ∧ uses(?t2, ?d2) ∧ overlaps(?t1, ?t2)

→
differentFrom?(?d1, ?d2)

The transformed PVS theorem is given below.

rule_3: AXIOM FORALL(t1,t2,d1,d2 : (idv?)):

member(t1,instances(Task)) AND

member(t2,instances(Task)) AND

member(d1,instances(Data)) AND

member(d2,instances(Data)) AND

member((t1,d1),sub_val_O(uses)) AND

member((t2,d2),sub_val_O(uses)) AND

member((t1,t2),sub_val_O(overlaps))

IMPLIES

differentFrom?(d1,d2)

The last rule defines when two tasks are overlapping - when one task that starts

earlier ends after the other task starts.

Task(?t1) ∧ Task(?t2) ∧
TimePoint(?tp1) ∧ TimePoint(?tp2) ∧ TimePoint(?tp3) ∧ TimePoint(?tp4) ∧
starts(?t1, ?tp1) ∧ ends(?t1, ?tp2) ∧ starts(?t2, ?tp3) ∧ ends(?t2, ?tp4) ∧
precedes(?tp1, ?tp3) ∧ precedes(?tp3, ?tp2)

→
overlaps(?t1, ?t2)

The transformed PVS theorem is given below.
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rule_4: AXIOM FORALL(t1,t2,tp1,tp2,tp3,tp4 : (idv?)):

member(t1,instances(Task)) AND

member(t2,instances(Task)) AND

member(tp1,instances(TimePoint)) AND

member(tp2,instances(TimePoint)) AND

member(tp3,instances(TimePoint)) AND

member(tp4,instances(TimePoint)) AND

member((t1,tp1),sub_val_O(starts)) AND

member((t1,tp2),sub_val_O(ends)) AND

member((t2,tp3),sub_val_O(starts)) AND

member((t2,tp4),sub_val_O(starts)) AND

member((tp1,tp3),sub_val_O(precedes)) AND

member((tp3,tp2),sub_val_O(precedes))

IMPLIES

overlaps?(t1,t2)

To prove that the SWRL rule is not consistent with the ontology, we simply prove

the following PVS theorem: violateConstraint: theorem FALSE.

A proof strategy is intended to capture patterns of inference steps. A defined proof

rule is a strategy that is applied in a single atomic step so that only the final effect of

the strategy is visible and the intermediate steps are hidden from the user. We define a

number of proof strategies, such as (installTimePoint), (installData), (installAgent),

etc., each of which introduces all the axioms one by one of a particular class. The

following strategy introduces to PVS all facts related to all the time points.
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(defstep installTimePoint ()

(then

(lemma "tp1_instanceOf_ax")

(lemma "tp1_precedes_ax")

(lemma "tp2_instanceOf_ax")

(lemma "tp2_precedes_ax")

(lemma "tp3_instanceOf_ax")

(lemma "tp3_precedes_ax")

(lemma "tp4_instanceOf_ax")

(lemma "tp4_precedes_ax")

(lemma "tp5_instanceOf_ax")

)

"Installing all axioms of TimePoint"

"Installing all axioms of TimePoint"

)

Then we also define a strategy which finds and installs the transitive closure of the

property precedes, i.e., the relative temporal order of all pairs of time points, as

follows. This is needed for determining instances of the overlaps property later.

(defstep installAllPrecedes ()

(then

(lemma "precedes_transitive_ax")

(rewrite "transitiveProperty?")

(try (forward-chain -1) (installAllPrecedes) (delete -1))

)

"Finding and installing all precedes property instances"

"Finding and installing all precedes property instances"

)

Basically this strategy repeatedly forward-chains the precedes_transitive_ax axiom

until there is no more effect. Similarly, we find all instances of the property relatesTo

by using the strategy installAllRelatesTo (not shown here).
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Now we apply the rules. First, we apply the fourth rule to discover all instances of

the property overlaps by using the strategy installAllOverlaps below.

(defstep installAllOverlaps ()

(then

(lemma "rule_4")

(try (forward-chain -1) (installAllOverlaps) (delete -1))

)

"Finding and installing all overlaps property instances"

"Finding and installing all overlaps property instances"

)

Then we can apply the other three rules one by one by using strategies similarly.

We apply the (grind) command, which proves the theorem. It means that the rules

are inconsistent with the ontology and the instances. A closer look at the ontology

discovers that tasks t1 and t2 are related and yet overlapping.

Reasoning Beyond SWRL

Although SWRL greatly increases the expressiveness of the family of ontology lan-

guages, there are still many complex, domain-specific properties which cannot be

expressed even in SWRL. In this section, we illustrate how PVS can be used to

express and prove such properties.

One of the restrictions of SWRL is that it allows only universal quantification. This

prevent many desirable properties from being specified. For example, in our example

ontology we want to specify a “liveness” property that all agents that are not assigned
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a task which starts before a given time point will be assigned at least one task which

starts after that time point. This property involves nested universal and existential

quantification and clearly cannot be expressed even in SWRL. However it can be

easily specified using our framework in PVS as follows.

liveness_ax: theorem

FORALL (a:(idv?)):

member(a,instances(Agent)) IMPLIES

NOT EXISTS (t1,tp1:(idv?)):

(member(t1,instances(Task)) AND

member(tp1,instances(TimePoint)) AND

member((t1,a),sub_val_O(assignedTo)) AND

member((t1,tp1),sub_val_O(starts)) AND

member((tp1,tp),sub_val_O(precedes))) IMPLIES

EXISTS (t2,tp2:(idv?)):

(member(t2,instances(Task)) AND

member(tp2,instances(TimePoint)) AND

member((t2,a),sub_val_O(assignedTo)) AND

member((t2,tp2),sub_val_O(starts)) AND

member((tp,tp2),sub_val_O(precedes))))

To prove that this theorem is not satisfiable, we prove the negated theorem. Using a

similar approach with proof strategies as described in the previous section (asserting

the known axioms, finding property closures and applying rules), we can prove the

negated theorem with different values for the given time point tp to a large degree of

automation in the PVS theorem prover.

Generally speaking, the formulation of the PVS theorems is done through the inter-

actions between domain experts, ontology developers and PVS users. The domain
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experts state desired properties and requirements while ontology developers and the

PVS users decide which of the properties can be part of the ontology and which are

too complex and can only be stated as PVS theorems.

3.3 Chapter Summary

The contribution of this chapter is three-fold.

1. We have defined the PVS semantics for the ontology languages OWL DL and

SWRL, which is the foundation for the later work on checking Web ontologies

using the PVS theorem prover.

2. We have also developed a substantial set of reasoning rules on top of the se-

mantics encoding. The set of reasoning rules can not only verify the correctness

of our encoding, but also help improve the degree of automation for the later

reasoning process.

3. We have demonstrated how the PVS theorem prover can be used to perform

not only standard Semantic Web reasoning tasks such as inconsistency checking,

subsumption reasoning and instantiation reasoning, but also, more importantly,

advanced SWRL rule checking and even checking complex properties which

cannot even be expressed in SWRL.
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Our work on the extended support for checking SWRL-enabled OWL ontologies is,

to our knowledge, the first reasoning support for SWRL in the literature.
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Chapter 4

Checking Agent Knowledge With

Uncertainty

In the previous chapter, we have seen how PVS theorem prover can be effective for

the purpose of advanced knowledge reasoning for intelligent agents. As agents have

a necessarily partial perspective of their world, and because their problem domain is

open, complex and distributed, they require sophisticated mechanisms for reasoning

with uncertain, incomplete and contradictory information if they are to exhibit the

desired degree of flexibility and robustness.

The cornerstone language in the Semantic Web is Web Ontology Language (OWL) [11],

which provides core language constructs to semantically mark up resources. OWL
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is based on description logic [7], a subset of first-order predicate logic. This dictates

that any formula can be inferred from an inconsistent knowledge base (aggregate in-

formation). This is neither practical nor desirable as no useful reasoning services are

available even in the presence of very slight inconsistency. Hence, a mechanism of

representing confidence and ignorance is very desirable.

The Belief-augmented Frames (BAF) [105] is an extension to the Minsky frame knowl-

edge representation system [81]. Its unique feature is that it adds a belief and a dis-

belief value to each frame in a frame system. In BAF, belief and disbelief values are

independent from each other, allowing for greater flexibility in modeling arguments

for and against a fact. Consequently, ignorance and confidence can be incorporated

based on these values.

In this chapter, we propose to integrate BAF with OWL DL to form a new ontology

language BOWL (Belief-augmented OWL) that can easily express beliefs. We start

by discussing the OWL abstract syntax and model-theoretic semantics in Section 4.1

and Section 4.2. We give an overview of BAF in Section 4.3. In Section 4.4 we present

how OWL can be extended with BAF in a syntactically and semantically coherent

manner. Section 4.5 discusses how we can reason about BOWL ontologies and how

confidence factors can be computed. In Section 4.6, we present an example in the

sensor fusion domain to demonstrate the reasoning process in BOWL. Section 4.7

summarizes the main contributions of this chapter and compares some related work.
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4.1 OWL Abstract Syntax

In OWL, abstract concepts are classes, related by binary relations called properties

and are populated by concrete individuals. In a compact form, OWL can be presented

in the Description Logics (DL) syntax [57].

Classes in OWL are first-class citizens. Existing classes can be used in class ex-

pressions to define new complex ones using class constructors as shown in Fig. 4.1

where C represents (possible complex) class expressions; C is a class name; P stands

for a property; n is a natural number and ai ’s are individuals. In OWL, datatype

properties and object properties are distinguished. Without loss of generality and for

brevity reasons, we omit the discussion related to datatypes. They can be treated in

a similar manner.

C ::= C
| >
| ⊥
| C t C
| C u C
| ¬ C
| ∀P .C
| ∃P .C
| P : o
| ≥ n P
| ≤ n P
| {a1, · · · , an}

[Class name]
[Top class]
[Bottom class]
[Class union]
[Class intersection]
[Class negation]
[Universal quantification]
[Existential quantification]
[Value restriction]
[At least number restriction]
[At most number restriction]
[Enumeration]

Figure 4.1: OWL class expressions
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OWL also defines class axioms that inter-relate classes. These class axioms, shown in

Fig. 4.2 below, include class subsumption, equivalence, disjointness, etc. Axioms are

also defined for describing properties. These include property subsumption, equiva-

lence, domain, range, etc.

AX ::= C v C
| C = C
| C u C = ⊥
| P v P
| P = P
| ≥ 1 P v C
| > v ∀P .C
| > v≤ 1 P
| P = (−P)

[Class subsumption]
[Class equivalence]
[Class disjointness]
[Property subsumption]
[Property equivalence]
[Property domain]
[Property range]
[Functional property]
[Inverse property]

Figure 4.2: OWL class axioms

Assertions in OWL are used to model individuals. An assertion can model the fact

that an individual is an instance of a class, or an individual is related to another

individual by a property. In addition, assertions can be used to state the (in)equality

of two individuals. Fig. 4.3 shows the assertions available in OWL. Note that the

symbol AS represents assertions.
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AS ::= a ∈ C
| 〈a, b〉 ∈ P
| a = b
| a 6= b

[Class membership]
[Property membership]
[Individual equality]
[Individual inequality]

Figure 4.3: OWL assertions

4.2 OWL Semantics

OWL has direct model-theoretic semantics [88] which starts with the notion of a

vocabulary.

Definition 4.2.1 (OWL Vocabulary) An OWL vocabulary V consists of a set of

literals VL and the following seven sets of URI references.

• VC : the set of the class names containing owl:Thing and owl:Nothing

• VD : the set of the datatype names

• VAP : the set of the annotation property names

• VIP : the set of the individual-valued property names

• VDP : the set of the data-valued property names

• VI : the set of the individual names

• VO : the set of the ontology names
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In any vocabulary, VC and VD are disjoint and VDP , VIP , VAP , and VOP are pairwise

disjoint.

Definition 4.2.2 (OWL Datatype) As in RDF, a datatype d is characterized by

a lexical space, L(d), which is a set of Unicode strings; a value space, V (d); and a

total mapping L2V (d) from the lexical space to the value space.

Definition 4.2.3 (Datatype Map) A datatype map D is a partial mapping from

URI references to datatypes that maps xsd:string and xsd:integer to the appropriate

XML Schema datatypes.

Definition 4.2.4 (Abstract OWL Interpretation) An abstract OWL interpreta-

tion with respect to a datatype map D with vocabulary VL, VC , VD , VI , VDP , VIP ,

VAP , and VO is a tuple of the form: I = 〈R,EC ,ER,L, S ,LV 〉 where (with P being

the power set operator)

• R: the resources of I , is a non-empty set

• LV : the literal values of I which is a subset of R

• EC: a mapping such that

– EC : VC → P(O) where O is a non-empty subset of R and disjoint from

LV
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– EC : VD → P(LV )

– EC (owl:Thing) = O

– EC (owl:Nothing) = {}

– EC (rdfs:Literal) = LV

• ER: a mapping such that

– ER : VDP → P(O × LV )

– ER : VIP → P(O ×O)

– ER : VAP ∪ rdf : type → P(R × R)

• L : TL → LV where TL is the set of typed literals in VL

• S: a mapping such that

– S : VC ∪VD ∪VDP ∪VIP ∪VAP ∪VO ∪{owl:Ontology, owl:DeprecatedClass,

owl:DeprecatedProperty} → R

– S : VI → O

In other words, if we denote the domain of interpretation as ∆I , then the interpreta-

tion function ·I maps an individual name into a member of the domain ∆I ; a class

name into a set of elements in the domain and a property name (note that we are

talking about object properties) into a set of pairs of domain elements (∆I ×∆I).
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The class expressions, axioms, assertions and their interpretation can be summarized

in Table 4.1, Table 4.2 and Table 4.3 below.

OWL class expression Interpretation

C C I ⊆ ∆I

> >I = ∆

⊥ ⊥I = ∅

C1 t C2 CI1 ∪ CI2

C1 u C2 CI1 ∩ CI2

¬ C ∆I \ CI

∀P .C {x | ∀ y .〈x , y〉 ∈ PI → y ∈ CI}

∃P .C {x | ∃ y .〈x , y〉 ∈ PI ∧ y ∈ CI}

P : o {x | 〈x , oI〉 ∈ PI}

≥ n P {x | #{y | 〈x , y〉 ∈ PI} ≥ n}

≤ n P {x | #{y | 〈x , y〉 ∈ PI} ≤ n}

{a1, · · · , an} {aI1 , · · · , aIn }

Table 4.1: OWL class expressions & their interpretations

Definition 4.2.5 (Ontology Satisfaction) An abstract OWL interpretation I with

respect to a datatype map D with vocabulary consisting of VL, VC , VD , VI , VDP , VIP ,

VAP , and VO satisfies an OWL ontology O if and only if
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Table 4.2: OWL axioms & their interpretations

OWL axiom Interpretation

C1 v C2 C I
1 ⊆ C I

2

C1 = C2 C I
1 = C I

2

C1 u C2 = ⊥ C I
1 ∩ C I

2 = ∅

Table 4.3: OWL assertions & their interpretations

OWL assertion Interpretation

a ∈ C aI ∈ CI

〈a, b〉 ∈ P 〈aI , bI〉 ∈ PI

a = b aI = bI

a 6= b aI 6= bI

• each URI reference in O used as a class ID (datatype ID, individual ID, data-

valued property ID, individual-valued property ID, annotation property ID, on-

tology ID) belongs to VC (VD , VI , VDP , VIP , VAP , VO , respectively);

• each literal in O belongs to VL;

• I satisfies each axiom and each fact in O, except for Ontology Annotations; and

• I satisfies each ontology mentioned in an owl:imports annotation directive of

O.
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Definition 4.2.6 (Ontology Consistency) A collection of abstract OWL ontolo-

gies and axioms and facts is consistent with respect to datatype map D if and only

if there is some interpretation I with respect to D such that I satisfies each ontology

and axiom and fact in the collection.

4.3 Belief-augmented Frames

In belief models the possibility of an event occurring is modeled as a range of values

rather than as a single point probability. This range allows us to express ignorance,

which standard statistical measures do not accommodate. Statistical measures only

provide limited ability to express ignorance. For example, a service agent, who pre-

dicted with a certainty of x% that a particular service is available at a certain point

of time, may be reluctant to predict with a certainty of (100− x )% that the service

is not available. This apparent contradiction is a reflection of classical statistics’ in-

ability to cater to ignorance. Various models of beliefs have been proposed, including

the seminal Dempster-Shafer theory [24, 97]. Smets generalized the model in [101]

to form the Transferable Belief Model. Picard [91] proposed the Probabilistic Argu-

mentation System, which combines propositional logic with probability measures to

perform reasoning.
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4.3.1 Belief Augmented Systems

In classical AI a frame represents an object in the world, and slots within the frame

indicate the possible relations that this object can have with other objects. A value (or

set of values) in a slot indicates the other objects that are related to this object through

the relation represented by the slot. The existence of a slot-value pair indicates a

relation.

• In BAFs each slot-value pair is augmented by a pair of belief/disbelief masses.

We define this pair as BAF, with BAF range as the value range from 0 to 1, i.e.,

[0, 1]. Hence, a BAF b is a pair 〈at , af 〉, where at and af are from BAF range.

• Furthermore, we define two functions φT and φF to project out the belief/disbelief

values of a BAF value pair1.

φT, φF : BAF→ BAF range

∀ x : BAF • φT(x ) = x .1 ∧ φF(x ) = x .2

Note that φT and φF of a particular BAF may not necessarily sum to 1. This

frees us from the classical statistical assumption that φT(rel) = 1− φF(rel) and

it allows us to model ignorance. It is also possible that φT(rel) + φF(rel) > 1.

More information on this can be found in [105] where ignorance is discussed in

detail. Both φT and φF may be derived from various independent sources, or

1The symbol • can be interpreted as ‘such that’.
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may be computed by using a system of logic called ”BAF-Logic” which will be

presented in the next subsection. Effectively this allows us to model the belief

in a problem as a set of arguments for the belief, and a set of arguments against

it.

• While φT and φF represent the degree of belief for and against a claim, the

overall truth is given by the Degree of Inclination DI, a function from BAF, pairs

of BAF values, to DI range, an interval from -1 to 1 ([-1, 1]).

DI : BAF→ DI range

∀ x : BAF • DI(x ) = φT(x )− φF(x )

DI(rel) measures the overall degree of truth of the relationship rel , with -1

representing falsehood, 1 representing truth, and values in between representing

various degrees of truth and falsehood. As an example, we could take -0.25 to

mean “possibly false”, -0.5 to mean “probably false”, etc.

• The Utility Function U is defined as follows:

U : BAF→ BAF range

∀ x : BAF • U(x ) =
1 + DI(x )

2

U maps the Degree of Inclination to a [0, 1] range. If we normalize the Utility

Functions for all relations so that they sum to 1, we can use these normalized

values as statistical measures representing the probability of a relation being

true.
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It can be easily verified that for any BAF value b, U(b) = 1 − U(¬ Bb) and if

U(b) ≥ n, then U(¬Bb) ≤ 1− n, for n ∈ [0, 1]. Note that the BAF not operator

¬B will be introduced in the next subsection.

4.3.2 Predefined Beliefs

We define three predefined BAFs φone = 〈1, 0〉 and φzero = 〈0, 1〉. They are convenient

shorthand for frequently used BAF values.

4.3.3 Belief Augmented Frames Logic

Belief Augmented Frame Logic (BAF-Logic) is a system designed to reason about the

φT and φF values in the frame.

• We define the BAF conjunction ∩B as a function from two BAFs to a BAF. Hence,

given two BAFs P and Q , their conjunction P ∩B Q is defined as follows.

∩B : BAF× BAF→ BAF

∀P ,Q : BAF •
φT(P ∩B Q) = min (φT(P), φT(Q)) ∧
φF(P ∩B Q) = max (φF(P), φF(Q))

This definition is based on the intuitive idea that the strength of P ∩B Q being

true rests on the strength of the weakest proposition P or Q . Likewise, if either

P or Q were false, then P ∩B Q would be false, and we can base our degree of
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belief in P ∩B Q being false on the strongest proposition that either P or Q is

false.

• Similarly we define the BAF disjunction ∪B between P and Q as:

∪B : BAF× BAF→ BAF

∀P ,Q : BAF •
φT(P ∪B Q) = max (φT(P), φT(Q)) ∧
φF(P ∪B Q) = min(φF(P), φF(Q))

• Finally, we define the BAF not operator ¬B as:

¬B : BAF→ BAF

∀P : BAF •
φT(¬BP) = φF(P) ∧ φF(¬BP) = φT(P)

This means that the degree that we believe that our data support ¬BP is equal

to the degree that they refute P . Likewise the degree that our data refute ¬BP

is equal to the degree that they support P .

4.4 Belief-augmented OWL (BOWL)

The Belief-augmented OWL incorporates belief/disbelief values defined in BAF into

OWL to enable the representation & reasoning of incomplete, subjective and some-

times conflicting resources on the Semantic Web. In this section, we introduce BOWL

and present its semantics by defining interpretations of the various language con-

structs of BOWL.
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4.4.1 BAF

Each fact in BOWL is augmented with a BAF, a pair consisting of a belief and a

disbelief measure of the type BAF range. Hence, a BAF value is of the form 〈bt , bf 〉,

where bt and bf are the belief/disbelief values, respectively. So we add the following

to the OWL abstract syntax.

BAF ::= 〈BAF range, BAF range〉

BAF range can be viewed as a data type derived from float defined in XML Schema [119].

In the following, we will use angle brackets “〈〉” to denote the association of an OWL

language construct and its BAF value.

4.4.2 BOWL Syntax Extension

As in OWL, BOWL axioms are about classes and properties and BOWL assertions are

facts about ground knowledge entities such as individuals and data values. BOWL

augments OWL assertions with BAF values, as follows. Both class and property

membership assertions are treated alike. For any OWL assertion, its BOWL extension

is summarized in Figure. 4.4.

The second kind of facts asserts the relationship between individuals. BOWL attaches

φone to each of these assertions hence the (in)equality between individuals will be

treated in the same way as in OWL.
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AS ::= 〈a ∈ C, BAF〉
| 〈〈a, b〉 ∈ P , BAF〉
| 〈a = b, φone〉
| 〈a 6= b, φone〉

[Class membership]
[Property membership]
[Individual equality]
[Individual inequality]

Figure 4.4: BOWL assertions

4.4.3 BOWL Semantic Extension

We construct the semantics of BOWL by extending the model-theoretic semantics of

OWL [88]. Firstly, we assume that the datatype map D (as in OWL) is extended

to include a mapping from the (abbreviated) URI bowl:BAF to the datatype BAF, as

defined in Section 4.3. For brevity reasons and without loss of generality, we leave

out the discussion related to data types, such as datatype properties, etc. They can

be treated similarly as object properties.

The BOWL Interpretation

A BAF extended interpretation Ib is a pair Ib = (∆Ib , ·Ib), where ∆Ib is, as in the

OWL case, the domain of interpretation and ·Ib is the interpretation function. In

OWL, the interpretation function maps an individual name into a member of the

domain; a class name into a set of elements in the domain and a property name into

a set of pairs of domain elements ∆I ×∆I . The BOWL interpretation still maps an

individual name into a member of the domain ∆Ib . However, it maps a class (resp. a
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property) into a function from members of ∆Ib (resp. pairs of members of ∆Ib) into

a BAF value.

CIb : ∆Ib → BAF

PIb : ∆Ib ×∆Ib → BAF

As defined above, each of the BOWL classes and properties is a function returning

a BAF value. Intuitively, the BAF interpretation returns this value as the belief/

disbelief value of an individual (resp. a pair of individuals) being a member of the

class (resp. property).

The class expressions in BOWL are interpreted as functions returning a BAF value

as shown in Table 4.4. With a little abuse of notation, we use lambda expressions to

represent the functions.

The duality of the concept relationships in the BOWL interpretation are worth dis-

cussing. In the following, the symbol ∼= denotes concept equivalence. We have

in BOWL ¬ > ∼= ⊥, C u > ∼= C , C t > ∼= >, C u ⊥ ∼= ⊥, C t ⊥ ∼= C ,

¬ ¬ C ∼= C , ¬ (C t D) ∼= (¬ C ) u (¬ D), ¬ (C u D) ∼= (¬ C ) t (¬ D),

C1 u (C2 tC3) ∼= (C1 uC2) t (C1 uC3), C1 t (C2 uC3) ∼= (C1 tC2) u (C1 tC3). For

concepts involving roles, we have ¬ (∀P .C ) ∼= ∃P .(¬ C ), ∀P .> ∼= >, ∃P .⊥ ∼= ⊥

and (∀P .C ) u (∀P .D) ∼= ∀P .(C u D). The proof of these equivalence relationships

are obvious to see and omitted.
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Class Expression Interpretation

C C Ib ∈ ∆Ib → BAF

> λ a.φone

⊥ λ a.φzero

C1 t C2 λ a.CIb1 (a) ∪B CIb2 (a)

C1 u C2 λ a.CIb1 (a) ∩B CIb2 (a)

¬ C λ a.¬BCIb(a)

∀P .C λ a.
⋂B

b∈∆Ib (¬BPIb(a, b) ∪B CIb(b))

∃P .C λ a.∪B
b∈∆Ib

(PIb(a, b) ∩B CIb(b))

P : o λ a.PIb(a, oIb)

≥ n P λ a.∪B
(∩B n

i=1
PI(a, bi)), for all {b1, b2, · · · , bn} ⊆ ∆Ib

≤ n P λ a.¬B(∪B
(∩B n+1

i=1
PI(a, bi))), for all {b1, · · · , bn+1} ⊆ ∆Ib

{a1, · · · , an} λ a. IF a = aIbi THEN φone ELSE φzero

Table 4.4: BOWL class expressions & their interpretations

Interpreting BOWL Axioms

Because BOWL interprets classes and properties in a different way, the conditions for

BOWL axioms to be satisfied by an BOWL interpretation have to be changed too.

Definition 4.4.1 (Class Subsumption) A given abstract BOWL interpretation Ib

satisfies a class subsumption axiom C v D if and only if DI(∩B
a∈∆Ib

(¬BC Ib(a) ∪B
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DIb(a))) > 0.

The above interpretation is made by viewing C v D as a first-order logic formula

∀ c.c ∈ C → c ∈ D ≡ ∀ c.(¬ c ∈ C ) ∨ c ∈ D . Intuitively, the universal quantifier is

translated to the distributed BAF conjunction, the logical not is translated to a BAF

negation and the logical or is translated to a BAF or. The class subsumption axiom

is true if and only if the degree of inclination of the corresponding BAF is positive.

Definition 4.4.2 (Class Equivalence) A given abstract BOWL interpretation Ib

satisfies a class subsumption axiom C ≡ D if and only if DI(∩B
a∈∆Ib

((C Ib(a) ∩B

DIb(a)) ∪B (¬BC Ib(a) ∩B DIb(a)))) > 0.

Similarly we define BOWL axiom satisfaction conditions for all OWL axioms. For

the sake of space, we do not elaborate them all.

Interpreting BOWL Assertions

As shown above, the BOWL interpretation is of the form 〈α, b〉, where α is an assertion

in OWL and b is a value in BAF. For assertion 〈α, b〉, its interpretation is just the

BAF value b.
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Knowledge Base, Satisfiability and Entailment

As for the OWL case, the BOWL knowledge base consists of a finite number of BOWL

axioms and assertions. We denote the knowledge base by Σ, the TBox by ΣT and

the ABox by ΣA.

A BOWL interpretation Ib satisfies a knowledge base Σ iff it satisfies all of its elements

(axioms and/or assertions). Then the interpretation is a model of the knowledge base.

The satisfiability of an axiom/assertion of the form 〈α, b〉 by a BOWL interpretation

is denoted by Ib ² 〈α, b〉.

Since BAF is a pair of values in the range of [0, 1], a single value needs to be derived

from this pair of values to determine the satisfiability of the axiom by the interpreta-

tion.

The Utility function U defined in BAF (Section 4.3) is a normalized version of the

Degree of Inclination, which is the difference between the belief and disbelief values.

Given a BAF value, its utility gives the overall truth value, ideally suited for the

above purpose.

Therefore, Ib ² 〈α, b〉 iff U(αIb) ≥ U(b), where α can be an axiom, C1 v C2, C1 = C2

or C1 u C2 = ⊥; or an assertion 〈a〉 ∈ C or 〈a1, a2〉 ∈ P , etc. The interpretation

of α is, as given in the previous two subsections, a BAF value. Hence, the utility

function U gives a single value for comparison. If the utility of the interpretation of

78



4.5. Reasoning about BOWL

α is greater than or equal to that of b, then we conclude that the axiom is satisfied

by the interpretation.

A knowledge base Σ entails an axiom 〈α, b〉, denoted by Σ ² 〈α, b〉, iff it is sat-

isfied by each of the models (interpretation) of Σ. Similarly, a knowledge base Σ

entails an assertion 〈α, b〉, denoted by Σ ² 〈α, b〉, iff all its models satisfies 〈α, b〉.

A BOWL interpretation Ib satisfies an assertion 〈a ∈ C , b〉 iff U(C Ib(aIb)) ≥ U(b).

The same applies to the case of property assertions of the form 〈〈a1, a2〉 ∈ P , b〉, i.e.,

U(PIb(aIb1 , aIb2 ) ≥ U(b).

4.5 Reasoning about BOWL

As we have discussed earlier, each fact in OWL is augmented with a BAF, a pair

consisting of a belief value and a disbelief value. In this section, we present some

algorithms for BOWL class membership and property membership entailment. More

specifically, given an ontology and a BOWL class or property membership assertion,

the algorithm determines if the ontology entails the BOWL assertion.

4.5.1 Class Membership

We explain the algorithm for class membership. Algorithm 1 is simply the outer

algorithm which calls Algorithm 2 to compute the BAF values of a class membership
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assertion in an ontology.

Data: Ontology O, and BOWL assertion 〈a ∈ C, β〉 where a is an individual,
C is a class description and β is a BAF

Result: Returns true if O ² 〈a ∈ C, β〉 and false otherwise
compute the belief values, γ, of a ∈ C in O by Algorithm 2;
return γ ≥B β;

Algorithm 1: BOWL class membership assertion entailment
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Data: Ontology O and OWL assertion a ∈ C where a is an individual and
C is a class description

Result: Computes the BAF values of a ∈ C in O, or compute(O, a, C)
if 〈a ∈ C, β〉 is given in O then

return β;
else

if C is a class name then
β1 ← φzero;
for Di v C do

β1 ← β1∪B compute(O, a, Di);
end
β2 ← φzero;
for Di = C or C = Di do

β2 ← β2∪B compute(O, a, Di);
end
β3 ← φzero;
for ≥ 1 Pi v C do

γ ← φzero;
for (a, aj ) ∈ P do

γ ← γ∪B compute(O, a, aj , Pi);
end
β3 ← β3 ∪B γ;

end
β4 ← φzero;
for > v ∀P .C do

γ ← φzero;
for (aj , a) ∈ P do

γ ← γ∪B compute(O, a, aj , Pi);
end
β4 ← β4 ∪B γ;

end
return β1 ∪B β2 ∪B β3 ∪B β4;

endif
else if C is > then

return φone;
endif
else if C is ⊥ then

return φzero;
endif
else if C is C1 t C2 then

return compute(O, a, C1) ∪B compute(O, a, C2);
endif
else

omitted...
endif

endif

Algorithm 2: Computing class membership assertion belief values
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Algorithm 2 works as follows. It first checks if the requested BAF values are already

given in the ontology. If so, it halts and returns it directly. Otherwise it computes the

BAF values according to the types of the class description. If it is the top or bottom

class, it simply returns φone and φzero respectively. If it is a class name, it computes

the BAF values by four axioms, namely class subsumption, class equivalence, property

domain and property range, doing a BAF disjunction of the four results which are

obtained by recursively calling Algorithm 2 and 4. If the class description is a class

union, we return the BAF union of the BAF values for the individual to be the

instance of the two classes. The other cases are closely related to the semantics of

class descriptions introduced in Section 4.4.3 and are left out for brevity.

4.5.2 Property Membership

The reasoning algorithm for property membership is simpler than that for class mem-

bership, because neither OWL nor BOWL allows the notion of property description;

we can describe a property only by referencing its name. Thus the reasoning algo-

rithms are described in Algorithm 3 and 4, where Algorithm 3 is the outer algorithm

for property membership entailment and Algorithm 4 is for computing the belief val-

ues of a given property membership assertion. In Algorithm 4, we only consider sub

property, equivalent property, inverse property and transitive property relationships
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and take the BAF disjunction when computing the belief values.

Data: Ontology O, and BOWL assertion 〈(a1, a2) ∈ P , β〉 where a1 and a2

are two individual, P is a property name and β is a BAF
Result: Returns true if O ² 〈(a1, a2) ∈ P , β〉 and false otherwise
compute the belief values, γ, of (a1, a2) ∈ P in O by Algorithm 4;
return γ ≥B β;

Algorithm 3: BOWL property membership assertion entailment

Data: Ontology O and OWL assertion (a1, a2) ∈ P where a1, a2 are
individuals and P is a property name

Result: Computes the BAF values of (a1, a2) ∈ P in O, or compute(O, a1,
a2, P)

if 〈(a1, a2) ∈ P , β〉 is given in O then
return β;

else
β1 ← φzero;
for Qi v P do

β1 ← β1∪B compute(O, a1, a2, Qi);
end
β2 ← φzero;
for Qi = P or P = Qi do

β2 ← β2∪B compute(O, a1, a2, Qi);
end
β3 ← φzero;
for P = (−Qi) or (−Qi) = P do

β3 ← β3∪B compute(O, a1, a2, Qi);
end
β4 ← φzero;
if Tr(P) then

for (a1, bi), (bi , a2) ∈ P do
γ = compute(O, a1, bi , Qi) ∩B compute(O, bi , a2, Qi)
β4 ← β4 ∪B γ;

end

else

endif
return β1 ∪B β2 ∪B β3 ∪B β4;

endif

Algorithm 4: Computing property membership assertion belief values
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4.5.3 Simple Implementation in CLP(R)

Following the reasoning algorithms above, we have implemented a simple reasoner for

BOWL in CLP(R).

For class membership computations, we define a CLP predicate computeClass(I,C,A,B)

with I being an individual, C being a class (which can be both a class name or

a complicated class description), A being the belief value and B being the disbelief

value for the particular class membership assertion. For property membership com-

putations, we similarly define a CLP predicate computeClass(I1,P,I2,A,B) with

I1 and I2 being individuals, P being a property name, A being the belief value

and B being the disbelief value for the particular property membership assertion.

Then for the entailment of class membership assertions, we define a CLP predicate

entails(instance(I,C),A,B) with I being an individual, C being a class, and A and

B being the belief and disbelief values respectively. Similarly for the entailment of

property membership assertions, we define a predicate entails(sub_val(I1,P,I2),A,B)

with I1 and I2 being individuals, P being a property name, A being the belief value

and B being the disbelief value for the particular property membership assertion.

Then the algorithms can be easily converted to CLP(R) programmes. A partial code

listing for Algorithm 2 can be found in Appendix. I. Because our CLP program is

highly recursive, we apply the coinductive tabling [64] techniques to prevent infinite

loops and reduce unnecessary invocations of the rules.
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4.6 Case Study

In this section, we present an example in the sensor fusion domain to demonstrate

the derivation of belief values using BAF-Logics. Sensor fusion [23] technologies aim

at fusing information from different sensors (possibly of different types) to detect,

recognize, identify or track a target. Sensor fusion has important applications in the

defense domain where accurate sensor decisions minimize casualty and improve strike

efficiency.

Decision fusion [23] is a branch of sensor fusion technology where sensors are combined

in various configurations (parallel, serial, etc.) and their decisions are given confidence

factors by the decision fusion processor, which calculates the final decision after a

number of iterations.

We believe that decision fusion can be a new application domain for the Semantic

Web as sensors may reside at different geographical sites and communications between

sensors and the decision fusion processor can be expressed in terms of ontologies to

maximize portability and inter-operability of the sensor networks.

4.6.1 The Sensor Ontology

We developed a BOWL ontology which defines taxonomies of sensors, environmental

conditions, targets, etc. It also defines an object-property isAffectedBy, capturing the
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fact that sensors are affected by environmental conditions. Furthermore we define a

class CurrentCondition as a sub class of Environment and a BAF value is attached to

every environment condition instance to capture how certain we are about the pres-

ence of the condition in the working environment of the sensors. Ontology fragments

are presented in the DL syntax. Note that whenever the BAF value is omitted from

the quadruple, it is assumed to be φone, which is 〈1, 0〉.
Sensor v >
ActiveSensor v Sensor
PassiveSensor v Sensor
EMFrequencySensor v Sensor
OtherSensor v Sensor
≥ 1 is affected by v Sensor
> v ∀ is affected by .CurrentCondition
Environment v >
CurrentCondition v Environment
LightCondition v Environment
TerrainCondition v Environment
WeatherCondition v Environment
RainCondition v WeatherCondition
SmokeConditioin v WeatherCondition
WindCondition v WeatherCondition

Sensors and sensor networks identify targets. Thus we define a class called Target and

an object-property called identifies as follows. The object property identifies has as

domain the union of the classes Sensor and SensorNetwork and has as range Target.

Target v >
≥ 1 identifies v (Sensor t SensorNetwork)
(> v ∀ identifies .Target)

Certain kinds of sensors are more affected by certain environmental conditions than
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others. To capture this information in BOWL, we could have defined some sub prop-

erties of isAffectedBy, such as isSlightlyAffectedBy and isSeverelyAffectedBy. Unfor-

tunately, such properties are by no means clear or meaningful to software agents,

decision fusion processors in this case. Linguistic hedges like “very” and “quite”

are impossible to represent in bi-valued logic systems such as classic description

logics, but can be easily captured in belief systems such as BAF-Logic. In our

example, different sensors are affected by various environmental conditions differ-

ently. We unify several properties into a single property isAffectedBy. Then its

fuzzy set [120] is {completely , severely ,moderately , slightly , not}. Now, we can as-

sign a BAF supporting value to each element in the fuzzy set to express the ex-

tent to which a certain sensor is affected by an environmental condition. Follow-

ing the conventions used in fuzzy sets, the isAffectedBy set may be modeled as

{1/completely , 0.75/severely , 0.5/moderately , 0.25/slightly , 0/not}.

Here we assume complete knowledge (no ignorance) of the sensors and compute the

refuting masses by subtracting the supporting masses from 1. Then we get the BAF

values 〈1, 0〉, 〈0.75, 0.25〉, 〈0.50, 0.50〉, 〈0.25, 0.75〉 and 〈0, 1〉 respectively.

The following shows how BAFs are added to ground facts (instances). We know

the existence of Speed7Wind1, a wind instance and a chemical sensor ChmSensor1.

ChmSensor1 is affected by Speed7Wind1 with supporting and refuting measures of

0.75, 0.25 respectively.
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〈Speed7Wind1 ∈ WindCondition, 〈1.0, 0.0〉〉
〈Speed7Wind1 ∈ CurrentCondition, 〈0.8, 0.1〉〉
〈ChmSensor1 ∈ ChemicalSensor , 〈1.0, 0.0〉〉
〈(ChmSensor1, Speed7Wind1) ∈ isAffectedBy , 〈0.75, 0.25〉〉

4.6.2 Computing Confidence Values of Sensors

As stated in [23], initial sensor confidence values are important for the overall system

performance. In our examples, the initial sensor confidence values are an effect of the

conjunction of several environment conditions. We define a class TrustedSensor to

denote the belief that the decision fusion processor puts in a particular sensor.

TrustedSensor ≡ Sensor u ∀ isAffectedBy .CurrentCondition

This axiom states that the degree of a sensor instance is trusted depends on how it

is affected by current conditions. As defined in the semantics, if a certain sensor is

affected by more than one environmental condition, the conjunction of all these con-

ditions is taken into account. For example, night vision devices are severely affected

by both rain conditions and smoke conditions. We first define the class NightVision-

Device as follows. All subsumption axioms have BAF value of φone.

EMFrequencySensor v Sensor
ElectroOpticalSensor v EMFrequencySensor
NightVisionDevice v ElectroOpticalSensor

Suppose that a night-vision device nvd1 is currently deployed in an area where both

rain rain1 and smoke smoke1 are present. The sensor fusion processor has certain
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belief value for each condition to be current. Since night vision devices are severely

affected by these conditions, we associate a BAF value 〈0.75, 0.25〉 to each of the

property instances for isAffectedBy as follows.

〈nvd1 ∈ NightVisionDevice, 〈1.0, 0.0〉〉
〈rain1 ∈ RainCondition, 〈1.0, 0.0〉〉
〈smoke1 ∈ SmokeCondition, 〈1.0.0.0〉〉
〈rain1 ∈ CurrentCondition, 〈0.7, 0.3〉〉
〈smoke1 ∈ CurrentCondition, 〈0.5, 0.5〉〉
〈(nvd1, rain1) ∈ isAffectedBy , 〈0.75, 0.25〉〉
〈(nvd1, smoke1) ∈ isAffectedBy , 〈0.75, 0.25〉〉

Our goal is to see whether the knowledge entails the assertion that nvd1 is a trusted

sensor with belief value 〈0.7, 0.3〉. So we formulate a CLP goal

entails(instance(nvd1,trustedSensor),0.7,0.3)

The programme terminates and returns a “No”. This means that the BAF values of

the assertion calculated from the BOWL ontology gives a smaller utility value than

〈0.7, 0.3〉 does. If we are interested in finding the precise BAF values of the specific

assertion we can fire the CLP goal

computeClass(nvd1,trustedSensor,A,B)

Then the programme returns A = 0.5 and B = 0.5. Further analysis shows U(〈0.5, 0.5〉) =

0.5 < 0.7 = U(〈0.7, 0.3〉). Therefore, U(α) = 0.7 > U(〈0.5, 0.5〉) = 0.5. Hence, sensor

nvd1 cannot be inferred to be a trusted sensor with that high confidence.
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4.7 Chapter Summary

In this chapter, we propose BOWL, Belief-augmented OWL, as an ontology language

enriched with belief information. As an extension of OWL DL, BOWL can be used

to associate belief and disbelief factors directly with web resources, enabling software

agents to perform more flexible and accurate reasoning. We define the abstract syntax

of BOWL and augment the model-theoretic semantics of OWL to incorporate belief

values. We also define the reasoning tasks and algorithms for BOWL and present a

prototype implementation using the constraint logic programming technique.

Expert systems are used to assist decision making in individual narrow application

domains, such as the medical domain. Historically, uncertainty has been an research

subject in expert systems. A comprehensive survey can be found at [85]. Probabilistic

measures were used in expert systems to deal with uncertainty. For example, the

Pathfinder project [52] uses subjective probability theory, belief networks, for decision

support system for hematopathology diagnoses. It uses influence diagrams to track

dependencies among observed features. Possibility theory was also incorporated in

some expert systems for dealing with uncertain information. The Cadiag-2 [1] system

was developed to diagnose rheumatic, hepatic and pancreatic diseases. It is based

on fuzzy theory and fuzzy set [120] and uses fuzzy inference to propagate and track

belief. In general, expert systems are very limited in scope and specifically designed for

particular application domains. On the contrary, the Semantic Web is envisioned to
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be an open environment, encompassing more complex and more unreliable resources

and data.

There have been many proposals [70, 102, 107] on probabilistic/fuzzy extensions to

description logics such as ALC and Classic, which are less expressive than the de-

scription logic (SHOIN (D)) on which is OWL based. Ding and Peng proposed a

Bayesian network-based probabilistic extension to OWL [25]. The main focus of their

works is the modeling of a priori and conditional probabilities of OWL classes and

the reasoning tasks are concept satisfiability, overlapping and subsumption, which is

different from ours. Nottelmann and Fuhr proposed a probabilistic Datalog-based ex-

tension to DAML+OIL [86]. Their approach is less general than ours in the sense that

a fact with both true and false evidence present is considered inconsistent, whereas in

our approach evidence for and against a fact are allowable and ignorance is computed

based on these values. Straccia [102] proposed a fuzzy extension for the description

logic ALC, which is less expressive than SHOIN (D). Based on this work, Straccia

proposed a fuzzy extension for OWL [103]. Again, based on fuzzy set, each assertion

is associated with a single value representing its fuzziness. Therefore, our approach

is more flexibility as software agents may very possibly receive both supporting and

refuting values for a certain assertion. BOWL enables agents to make use of these

values at their own discretion. The other approaches, however, hide this step of

processing and is hence more rigid and less transparent.
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Checking Rule-based Agent

Knowledge

In computer science, rule-based systems are used as a way to store and manipulate

knowledge to interpret information in a useful way. They are often used in artificial

intelligence applications and research because they are modular, easy to understand,

executable, expressive and declarative.

Rule-based agents have played an important role in other areas of AI, as evinced

by rule-based agent architectures such as SOAR [71] and Sim-Agent [100]. Such

architectures allow a great degree of abstraction in specifying the behaviour of agents.

Rule-based programming extensions are also increasingly being offered as add-ons to
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existing, lower-level, agent toolkits, e.g. JADE [13] and FIPA-OS [93].

The consistency and correctness of their knowledge bases are vital to the proper

functioning of intelligent agents. For Semantic Web agent in particular, ontology

reasoning tools such as RACER [50] and FaCT++ [108] have been developed for this

purpose. With the inclusion of the rule language into the family of ontology languages,

it is important to verify not only that an ontology is consistent with respect to a set

of rules but also that the set of rules is consistent by itself. Most current ontology

reasoning tools have mainly focused on ontology without rules.

In Chapter 3, we have demonstrated how PVS, a generic theorem prover, can be used

to verify SWRL rules and beyond in the ontology-based agent knowledge representa-

tion. This ensures that an ontology is consistent with respect to a set of rules. In this

chapter we go one step further by proposing an ontology and rule verification mecha-

nism for discovering rule anomalies such as inconsistency, redundancy and circularity

among rules by combining the Constraint Logic Programming (CLP) framework and

the state-of-the-art Semantic Web reasoning technique. We place our focus on OWL

DL from which SWRL is extended.

This chapter is organized as follows. Section 5.1 introduces the Semantic Web Rule

Language (SWRL) with a focus on its semantics. We discuss how rules formulated

on top of ontologies can be analyzed for anomalies in Section 5.2. We describe our

prototype implementation in Section 5.3 and apply our approach to a context-aware
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system in Section 5.4. Section 5.5 concludes the contribution of the chapter and

discusses some related work.

5.1 Semantic Web Rules Language

Extended from OWL DL, Semantic Web Rules Language (SWRL) [56] is syntacti-

cally and semantically coherent to OWL. The major extensions of SWRL with respect

to OWL includes Horn-style rules and (universally quantified) variable declaration.

The rules are in the form of antecedent → consequent, where both antecedent

and consequent are conjunctions of atoms. Atoms can be of the form C (x ), P(x , y),

sameAs(x , y), differentFrom(x , y) or a pre-defined built-ins where C is an OWL de-

scription, P is an OWL property, and x and y are either variables, OWL individuals

or OWL data values. Informally, a rule means that if the antecedent holds, the

consequent must also hold.

A simple example rule shown below states that if action task ?b is a sub task of action

task ?a, then ?b’s duration should be inside of ?a’s duration.

ActionTask(?a) ∧ ActionTask(?b) ∧
differentFrom(?a, ?b) ∧ hasAsASubAction(?a, ?b) ∧
startTime(?a, ?ast) ∧ endTime(?a, ?aet) ∧
startTime(?b, ?bst) ∧ endTime(?b, ?bte)

→ lessThan(?ast , ?bst) ∧ lessThan(?bet , ?aet)

Formally the semantics of SWRL is an extension of that of OWL.
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Definition 5.1.1 (Binding) Given an abstract OWL interpretation I , a binding

B(I ) is an abstract OWL interpretation that extends I such that S maps individual

variables to elements of O and L maps data variables to elements of LV respectively.

A rule atom is satisfied by a binding under some conditions described in [56].

Definition 5.1.2 (Rule Satisfaction) A binding B(I ) satisfies an antecedent A if

and only if A is empty or B(I ) satisfies every atom in A. A binding B(I ) satisfies a

consequent C if and only if C is not empty and B(I ) satisfies every atom in C . A

rule is satisfied by an interpretation I if and only if for every binding B(I ) such that

B(I ) satisfies the antecedent, B(I ) also satisfies the consequent.

The semantic conditions relating to facts, axioms and ontologies are unchanged, with

rules being treated as axioms.

5.2 Analyzing Agent Rule Bases

We are able to detect three types of anomalies related to a set of rules, namely

inconsistency, redundancy and circularity, as identified in [94]. In this section we

give formal definitions for each type of anomalies and describe how a combination of

description logic reasoners and CLP can be used to detect the anomalies.
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To discover rule anomalies, each SWRL rule is translated into a CLP atom of the

form rule(name,head,body) where name is the name of the rule, head and body are

two lists of atom which are translated from the rule head and rule body respectively.

We translate rule variables into CLP variables and rule constants into CLP constants

accordingly. Keeping the rule variables as CLP variables makes it easier for unification

which is important when we want to establish subsumption relationships between two

lists of predicates. It should also be noted that we require the ontology on which the

rules are based to be checked for consistency before the rules can be analyzed for

various types of anomalies.

5.2.1 Inconsistency

Rule inconsistency means that the SWRL rules are not correct. In other words,

conflicting results can be inferred from the rules. To differentiate rule inconsistency

from ontology inconsistency, we do not consider SWRL rules as OWL axioms.

Definition 5.2.1 (Rule Inconsistency) A set of rules R defined on top of an on-

tology O containing a collection of axioms and facts is inconsistent with respect to

a datatype map D if and only if there is some interpretation I such that I satisfies

all axioms and facts, but for all such I there always exists a rule r in R such that

there exists some binding B such that B(I ) satisfies the antecedent of r , but does not
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satisfy the consequent of r .

We define three types of inconsistency, namely conflicting antecedent/consequent,

contradicting consequents and chained inconsistency.

Conflicting Antecedent/Consequent

Inconsistency by conflicting antecedent occurs when a rule has two or more antecedent

atoms which cannot be satisfied at the same time.

Definition 5.2.2 (Conflicting Antecedent) A rule A1 ∧ A2 ∧ . . . ∧ An → C1 ∧

C2 ∧ . . . ∧ Cm is said to have a conflicting antecedent if and only if ¬ (Ai1 ∧ . . . ∧ Aip)

for some 1 ≤ i1, . . . , ip ≤ n.

In the above definition, ¬ (Ai1 ∧ . . . ∧ Aip) is interpreted as “with the inclusion

of assertions Ai1 through Ai1 (variables replaced by fresh constants), the original

ontology becomes inconsistent”. Similar interpretation is employed in the following

definitions in this section.

In terms of the original model-theoretic (MT) definition, we have

Definition 5.2.3 (Conflicting Antecedent(MT)) A rule r defined on top of an

ontology O containing a collection of axioms and facts is said to have a conflicting
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antecedent if and only if for all interpretations I that satisfies the axioms and facts of

O, there exists some binding B such that B(I ) does not satisfy the antecedent of r .

We check rules with conflicting antecedent as follows. First we check the consistency of

the given ontology. Then for each rule, we assert the antecedent atoms into the original

ontology in FaCT++ as facts and collect the built-ins. For each atom assertion, if

we encounter a individual ID or a data value, we assert it as it is. If we encounter

a SWRL rule variable, we replace it with a fresh individual name not existing in

the ontology and assert the new atom. In such a way we assert the antecedent atoms

with all the variables skolemized into constants. Then we check the consistency of the

resultant ontology and solve the collected constraints using the CLP constraint solving

capability. The SWRL rule has conflicting antecedent if and only if the resultant

ontology is inconsistent or the collected constraints are unsatisfiable. In the end we

remove all asserted atoms from the ontology to preserve its correctness.

Inconsistency by conflicting consequent occurs when a rule has two or more consequent

atoms which cannot be satisfied at the same time.

Definition 5.2.4 (Conflicting Consequent) A rule A1 ∧ A2 ∧ . . . ∧ An → C1 ∧

C2 ∧ . . . ∧ Cm is said to have a conflicting consequent if and only if ¬ (Cj1 ∧ . . . ∧ Cjq )

for some 1 ≤ j1, . . . , jq ≤ m.

Similarly we have the model-theoretic definition.
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Definition 5.2.5 (Conflicting Consequent(MT)) A rule r defined on top of an

ontology O containing a collection of axioms and facts is said to have a conflicting

consequent if and only if for all interpretations I that satisfies the axioms and facts

of O, there exists some binding B such that B(I ) does not satisfy the consequent of

r .

The steps for checking conflicting consequent are similar to those for checking conflict-

ing antecedent, only that we assert the consequent atoms instead of the antecedent

atoms.

Contradicting Consequents

Inconsistency by contradicting consequents means that a rule, whose antecedent sub-

sumes that of another rule, has a consequent atom contradicting with that of the

other rule. First we define conjunction subsumption.

Definition 5.2.6 (Conjunction Subsumption) Consider two conjunctions of rule

atoms

l1 : A1 ∧ A2 ∧ . . . ∧ An

l2 : B1 ∧ B2 ∧ . . . ∧ Bm

where each Ai and Bj are predicates over some constants and variables. Therefore we

do not consider built-in atoms at the moment. l1 is subsumed by l2 (or l2 subsumes
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l1) under the substitutions σ1 and σ2, denoted l1 ⊆(σ1,σ2) l2, if and only if {Aiσ1 | 1 ≤

i ≤ n} ⊆ {Bjσ2 | 1 ≤ j ≤ m}.

The substitution we discuss in this paper is restricted to replacing a variable with

another variable or replacing a variable to a constant, but not replacing a constant

with a variable.

Definition 5.2.7 (Antecedent/Consequent Subsumption) Consider two antecedents

(consequents) of rule atoms

l1 : AP1 ∧ . . . ∧ APn1 ∧ AC1 ∧ . . . ∧ ACm1

l2 : BP1 ∧ . . . ∧ BPn2 ∧ BC1 ∧ . . . ∧ BCm2

where AP1 through APn1 and BP1 through BPn2 are SWRL non-built-in atoms and

AC1 through ACm1 and BC1 through BCm2 are SWRL built-ins. Then we have l1

is subsumed by l2 (or l2 subsumes l1) under the substitutions σ1 and σ2, denoted

l1 ⊆(σ1,σ2) l2, if and only if (1) AP1 ∧ . . . ∧ APn1 ⊆(σ1,σ2) BP1 ∧ . . . ∧ BPn2, and (2)

(BC1 ∧ . . . ∧ BCm2)σ2 ⇒ (AC1 ∧ . . . ∧ ACm1)σ2.

In this definition, the symbol ⇒ means logical implication. Intuitively speaking,

we treat the subsumption relationship of antecedents (consequents) with built-ins as

follows. We group the non-built-in atoms of each antecedent (consequent) together

and check if these two conjunctions of non-built-in atoms have a subsumption relation
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under two substitutions. If so, we apply the two substitutions to the two remaining

groups of built-ins and check if an implication relation can be established between

these two groups of built-ins.

In terms of model-theoretic semantics, we have the following generalized definition

for the subsumption.

Definition 5.2.8 (Antecedent/Consequent Subsumption (MT)) Given an ab-

stract interpretation I , a conjunction of rule atoms l1 is subsumed by a conjunction

of rule atoms l2 if and only if there exists a binding B such that if B(I ) satisfies l2,

then it also satisfies l1.

The above definition of subsumption is general in a semantic sense and is compu-

tationally expensive. In implementation, we implement the following CLP rules for

checking term subsumption in terms of a substitution. By terms we mean single

CLP predicates. T1 and T2 are predicates, possibly with constants and variables.

subsume(T1,T2) succeeds if T2 is more general than T1. The operator =.. converts

a CLP atom p(t1, . . . , tn) into a list of length n + 1 with the p being the head of the

list and a list containing t1 through tn as the tail of the list. We omit details of low

level implementation for predicates such as skolemization. Basically the program

assigns constants to the variables in T1 and matches T1 to T2.
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subsume(T1,T2) :-

T1 =.. [Type|L11], T2 =.. [Type|L21],

L11 = [H1|L1], L21 = [H2|L2],

assert(store(L1,L2)), retract(store(M1,M2)),

skolemization(M1),

find_substitution(M1,M2,L1,L2).

Then we can easily construct CLP rules for subsumption between two lists of terms.

At this point the unification mechanism of CLP plays an important part in ensuring

that the substitution is carried forward from one term subsumption to the others, thus

helping us deal with the problem of maintaining the same substitution with ease.

list_subsume(_,[]). list_subsume(L2,[X1|L1]) :-

list_subsume2(L2,X1), list_subsume(L2,L1).

list_subsume2([Y|_],X) :- subsume(Y,X). list_subsume2([_|R],X) :-

list_subsume2(R,X).

We also implement CLP code to check if a set of built-ins imply another set of built-

ins. More specifically, to check if X1, . . . ,Xn ⇒ Y1, . . . ,Ym we simply query the goal

X1,...,Xn,not (Y1,...,Ym). The implication holds if and only if the goal fails. We

implement this using a CLP predicate builtin_imply/2. Here the constraint solv-

ing capability is utilized for checking implication relations between sets of built-ins

in an easy and natural way. At the moment, most comparison and mathematical

built-ins can be handled with ease, except that for some built-ins, we are restricted

by the limitation of CLP(R). For example, we require that the constraints involv-

ing swrlb:multiply, swrlb:divide, swrlb:integerDivide, swrlb:mod, swrlb:pow, swrlb:abs,

swrlb:sin, swrlb:cos, swrlb:tan to be linear for the constraint solver in CLP to work.
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Then we can formally define the notion of inconsistency by contradicting consequents.

Definition 5.2.9 (Contradicting Consequents) Two rules

A1 ∧ A2 ∧ . . . ∧ An → C1 ∧ C2 ∧ . . . ∧ Cm

B1 ∧ B2 ∧ . . . ∧ Bp → D1 ∧ D2 ∧ . . . ∧ Dq

are said to have contradicting consequents if and only if there exists substitutions σ1

and σ2, A1 ∧ A2 ∧ . . . ∧ An ⊆(σ1,σ2) B1 ∧ B2 ∧ . . . ∧ Bp and ¬ ((C1 ∧ C2 ∧ . . . ∧

Cm)σ1 ∧ (D1 ∧ D2 ∧ . . . ∧ Dq)σ2).

In terms of model-theoretic definition, we have

Definition 5.2.10 (Contradicting Consequents(MT)) Two rules r1 and r2 de-

fined on top of an ontology O containing a collection of axioms and facts are said to

have contradicting consequents if and only if (1) the antecedent of r1 is subsumed by

that of r2 (2) for all interpretations I that satisfy all axioms and facts, (i) I satisfies

r1 and r2 separately and (ii) there exists some binding B such that B(I ) satisfies the

antecedents of r1 and r2, but does not satisfy the consequent of r1 and r2.

The steps for checking inconsistency by contradicting consequents are as follows. As

the first step, we eliminate all possible rule inconsistency by conflicting consequent.

We then run the CLP code in the following code box to get the pairs of rules with
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subsuming antecedents. Then for each pair, we skolemize the variables in the two sets

of consequent atoms and assert them into the ontology. Following that we check for

ontology inconsistency by using the FaCT++ reasoner. The rule has contradicting

consequents if the new ontology is inconsistent. At last we remove the asserted atoms

after each round.

subsumingBody(R1,R2) :-

rule(R1,Head1,Body1), rule(R2,Head2,Body2),

not R1 = R2, list_subsume(Body2,Body1).

Chained Inconsistency

Unlike inconsistency by conflicting antecedent or contradicting consequents, which

involves one or two rules, chained inconsistency involves an arbitrary number of rules

and is the most expensive to find. Informally speaking, chained inconsistency occurs

when a set of rules can be connected to form a chain by using → and the consequent

of the last rule consists of an atom which is in conflict with an antecedent element of

the first rule.

Definition 5.2.11 (Chained Inconsistency) A set of p rules

A1
1 ∧ A1

2 ∧ . . . ∧ A1
n1

→ C 1
1 ∧ C 1

2 ∧ . . . ∧ C 1
m1

· · ·

Ai
1 ∧ Ai

2 ∧ . . . ∧ Ai
ni

→ C i
1 ∧ C i

2 ∧ . . . ∧ C i
mi
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· · ·

Ap
1 ∧ Ap

1 ∧ . . . ∧ Ap
np

→ C p
1 ∧ C p

2 ∧ . . . ∧ C p
mp

is said to have chained inconsistency if and only if there exists p substitution σ1

through σp such that for all q where 2 ≤ q ≤ p, Aq
1 ∧ . . . ∧ Aq

nq
⊆(σq ,σq−1) C q−1

1 ∧

. . . ∧ C q−1
mq−1

and ¬ ((A1
1 ∧ A1

2 ∧ . . . ∧ A1
n1

)σ1 ∧ (C p
1 ∧ C p

2 ∧ . . . ∧ C p
mp

)σp). Then the

chain is said to have length p − 1.

We detect inconsistency by chained inconsistency by the following steps. We allow the

users to provide the chain length as a parameter, say n. Then we start from length 1,

that is, we start detecting chained inconsistency by two rules. We invoke the following

CLP rules with Length being 1. This will give us a set of rule pairs satisfying the

chained condition. Then we do the skolemized assertion of the antecedent atoms of

the first rule and the consequent atoms of the second rule and check for ontological

inconsistency in FaCT++. After the checking we remove all asserted atoms. A

chained inconsistency of length 1 is found if and only if an inconsistency is found by

FaCT++. Then we repeat the process for lengths up to n.

chained(R1,Length) :-

rule(R1,Head1,Body1), rule(R2,Head2,Body2),

not R1 = R2, list_subsume(Body2,Head1),

chained(Body1,R2,Length-1).

chained(_,_,0). chained(Body1,R2,Length) :-

rule(R2,Head2,Body2), rule(R3,Head3,Body3),

not R2 = R3, list_subsume(Body3,Head2),

chained(Body1,R3,Length-1).
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5.2.2 Redundancy

Unlike inconsistency, redundancy does not mean that the rule or the rule set is in-

correct, but rather that the rule set can be more succinct. However, according to

our experience with the case studies, it is often the case that redundancy is a result

of defining some rule incorrectly. Hence it is useful to identify rule redundancy as

an indication of rule inconsistency. We define three types of redundancy, namely

subsumption of rules, implication of superclasses and antecedent redundancy.

Subsumption of Rules

A rule R is redundant if another rule R′ subsumes it. A rule R′ subsumes another

rule R if the antecedent of R′ is more general than that of R and the consequent of

R is more general than that of R′.

Definition 5.2.12 (Rule Subsumption) Consider two rules

R1 : A1 ∧ A2 ∧ . . . ∧ An → C1 ∧ C2 ∧ . . . ∧ Cm

R2 : B1 ∧ B2 ∧ . . . ∧ Bp → D1 ∧ D2 ∧ . . . ∧ Dq

R2 subsumes R1 if and only if for some substitutions σ1 and σ2, B1 ∧ . . . ∧ Bp ⊆(σ2,σ1)

A1 ∧ . . . ∧ An and C1 ∧ . . . ∧ Cm ⊆(σ1,σ2) D1 ∧ . . . ∧ Dq .

The model-theoretic definition of rule subsumption is as follows.
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Definition 5.2.13 (Rule Subsumption(MT)) Given an abstract interpretation I ,

a rule r1 is subsumed by a rule r2 if and only if there exists a binding B such that (1)

if B(I ) satisfies the antecedent of r1, then it also satisfies the antecedent of r2 and (2)

if B(I ) satisfies the consequent of r2, then it also satisfies the consequent of r1.

This rule redundancy can be checked completely by CLP programs without the need

for description logic reasoner. The CLP rules for detecting subsumption between

rule are as follows. We reuse some rules defined earlier, such as builtin_imply for

checking constraint implication.

rule_subsumption :-

rule(R1,Head1,Body1), rule(R2,Head2,Body2),

not R1 = R2,

list_subsume(Head1,Head2),

builtin_imply(Head1,Head2),

list_subsume(Body2,Body1),

builtin_imply(Body2,Body1).

Antecedent Redundancy

Antecedent redundancy means that some antecedent atoms can be inferred from the

rest of the antecedent atoms. In other words, the redundant atom can be removed.

Definition 5.2.14 (Antecedent Redundancy) A rule A1 ∧ . . . ∧ An → C1 ∧ . . . ∧ Cm

is said to have antecedent redundancy if and only if Aj1 ∧ . . . ∧ Ajk ⇒ Ai where

j1, . . . , jk , i ∈ {1, . . . , n} and i 6∈ {j1, . . . , jk}.
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More formally, the notion of antecedent redundancy is defined as follows.

Definition 5.2.15 (Antecedent Redundancy(MT)) A rule A1 ∧ A2 ∧ . . . ∧

An → C1 ∧ C2 ∧ . . . ∧ Cm is said to have antecedent redundancy if and only if for all

interpretations I , every binding B(I ) that satisfies a strict subset of the antecedent

satisfies an antecedent atom outside the subset.

We detect antecedent redundancy by using only FaCT++ as follows. For each rule,

we skolemize all variables as we do for the previous types of anomalies. Then for each

atom, we assert the rest of the atoms into the ontology and see if the atom can be

inferred from the new ontology. The atom is redundant and hence can be removed

from the rule if it can be inferred from the new ontology.

5.2.3 Circularity

A rule set is said to have a circularity anomaly when a rule has circular dependencies

between its antecedent and consequent or when two rules have mutual dependency

between their antecedents and consequents. While circularity will not cause any

problems in some cases, it sometimes leads to non-termination of rule invocation. So

we believe that it is useful to indicate rule circularity in a rule set and let the designers

decide if the circularity is intended.
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Definition 5.2.16 (Single-rule Circularity) A rule A1 ∧ . . . ∧ An → C1 ∧ . . . ∧ Cm

has single-rule circularity if and only if Cj ⇒ Ai , for some i and j where 1 ≤ i ≤

n, 1 ≤ j ≤ m.

More formally, the notion of single-rule circularity is defined as follows.

Definition 5.2.17 (Single-rule Circularity) A rule A1 ∧ A2 ∧ . . . ∧ An → C1 ∧

C2 ∧ . . . ∧ Cm is said to have single-rule circularity if and only if for all interpreta-

tions I , every binding B(I ) that satisfies an consequent atom satisfies an antecedent

atom.

The algorithm for detecting single-rule circularity is similar to that for detecting

antecedent and consequent redundancy. For this case, we check, by using FaCT++,

for each antecedent atom to see if it can be inferred from the ontology after we

skolemize the rule and assert the consequent atoms.

Definition 5.2.18 (Double-rule Circularity) Consider two rules

R1 : A1 ∧ A2 ∧ . . . ∧ An → C1 ∧ C2 ∧ . . . ∧ Cm

R2 : B1 ∧ B2 ∧ . . . ∧ Bp → D1 ∧ D2 ∧ . . . ∧ Dq

R1 and R2 have double-rule circularity if and only if there exists substitutions σ1 and

σ2 such that Ci ⊆(σ1,σ2) B1 ∧ B2 ∧ . . . ∧ Bp and Dj ⊆(σ2,σ1) A1 ∧ A2 ∧ . . . ∧ An where

1 ≤ i ≤ m, 1 ≤ j ≤ q.

110



5.3. Prototype Implementation

Double-rule circularity can be checked by using only CLP. The CLP rules for detecting

double-rule circularity anomalies are as follows.

double_circularity :-

rule(R1,Head1,Body1), rule(R2,Head2,Body2),

not R1 = R2, member(H1,Head1),

member(H2,Head2), list_subsume([H1],Body2),

builtin_imply([H1],Body2),

list_subsume([H2],Body1),

builtin_imply([H2],Body1).

5.3 Prototype Implementation

This work is a continuation from our previous work [34, 33, 35, 28, 29], in which

we applied a spectrum of formal methods and tools such as Z, Alloy, and PVS to

complement the state-of-the-art ontology reasoning tools in checking some ontology-

based domain models to verify some advanced properties beyond the expressiveness

of the ontology languages. In [29], we presented a tools environment to realize our

approach. The tools environment allows a domain engineer to construct or load a

given ontology, to invoke a standard reasoner to check the consistency of the ontology,

to issue queries to the ontology, to translate the ontology into various formalisms and

languages, to invoke external tools to verify complex domain properties. The tool

is implemented in Java and uses a number of external packages such as Jena [59],

Protege [69] and OWL-API [12].

We extend the tool environment to implement the SWRL rule verification mechanism
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described in this paper. A screen shot of the tool with some sample rules is shown

in Fig. 5.1. The tabs in the main window accommodate the original ontology, the

translated specification in various formalisms. The SWRL Rules tab is divided into

two blocks. The left block is used for displaying the SWRL rules found in the ontology

which is loaded in the ontology tab.

The rules are displayed in a table. For easier readability, we have employed a human

readable syntax for the rules. This syntax is modified from what is described in

[56]. In this syntax, a rule is broken down to three parts, namely the rule name, the

antecedent atoms and the consequent atoms. Both antecedent atoms and consequent

atom are conjunctions of atoms in the form a1 ∧ a2 ∧ ... ∧ an . The conjunction sign

is written as the character “^”. Variables are indicated using the standard convention

of prefixing them with a question mark (e.g. ?x). All ontology entities such as classes,

properties, individuals and rules use local names, which means that name spaces are

not displayed.

There are three buttons on the left block above the table for creating a new rule,

editing a selected rule and deleting a selected rule respectively. For rule creation and

modification, we implement a predictive editing mechanism in which the users can

construct the rules by having the tool automatically generating part of the rule (for

example the matching parentheses) and by choosing from a list of referenced classes,

properties and individuals. Every time a rule is changed, we perform checking on the
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syntax and rule safety by which we mean all variables that appear in the consequent

atoms appear in the antecedent and all class names, property names and individual

names that appear in the antecedent and consequent are defined in the ontology.

The block on the right hand side of the SWRL rule tab contains all the buttons for

performing various types rule verification, with those for inconsistency, redundancy

and circularity grouped together respectively. If a button, say Conflicting Antecedent,

gets pushed, it will go through all the rules currently in the rule table on the left and

find the first rule which has the corresponding anomaly. The result of the checking is

given by highlighting the rules and the atoms with anomalies. The ontology engineer

can choose to edit the rule, ignore the anomaly and proceed with checking, or abort

the checking operation. The Check All button is used when the ontology engineer

wants to check for all types of anomalies in one go.

Although we primarily use the DL reasoner FaCT++ and the constraint logic pro-

gramming technique, we hide these two internal tools away from the domain engineers

by interfacing with the DIG sockets and local temporary files. So the rule checking

is completely automated and the integration of the formalisms is seamless.
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Figure 5.1: Prototype Screen Shot

5.4 Case Study

In this section, we present preliminary experimental results of applying our approach

to an actual ontology-based context-aware system. The objective of these experiments

is to conduct a quantitative feasibility study for checking ontology rule anomalies.

Our case study is an extended version of CONON [115] which was proposed to model

general context in a pervasive computing environment. It provides an upper context
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ontology that captures general concepts as well as extensibility for adding domain-

specific ontology in a hierarchical manner. A typical and successful use of ontologies

for context representation, CONON is part of a Semantic Space infrastructure [114]

which was deployed by networking a diversity of sensors and context wrappers for

sensing and markup of various contexts including location, schedule, temperature,

noise, light, door status, device status and computer application status.

The original CONON was encoded in pure OWL DL. The user-defined context rea-

soning rules are small in number (10 rules) and are specified using horn-like rules,

but not exactly in SWRL. We extend CONON ontology with more classes and prop-

erties. We also enrich the set of user-defined rules and specify them in legal SWRL.

The extended ontology contains 223 OWL classes, 1136 RDF triples and 23 rules.

The experiments are conducted on a WindowsXP system with a Pentium 4, 3.0GHz

processor and 1GB DDR2 RAM.

Our program reports four anomaly cases. The first anomaly detected is of the type

antecedent redundancy resulted by the following two rules. It takes our program 1.8

seconds to detect this anomaly.
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User(?u) ∧ Workstation(?ws) ∧ hasWorkstation(?u, ?ws) ∧
hasScheduledSkypeMeeting(?u,Now) ∧
hasApplication(?ws , Skype) ∧ hasStatus(Skype,On) ∧
Microphone(?mp) ∧ hasDevice(?ws , ?mp) ∧
hasStatus(?mp,On)

→ hasSituation(?u,AtSkypeConversation)

User(?u) ∧ Workstation(?ws) ∧ hasWorkstation(?u, ?ws) ∧
hasScheduledSkypeMeeting(?u,Now) ∧
hasApplication(?ws , Skype)

→ hasStatus(Skype,On)

The first rule is a situation inference rule which says that if a user has a scheduled

Skype meeting at the current time and both the Skype application and microphone

on his workstation are on, then he or she has the situation AtSkypeConversation. The

second rule is used to automatically trigger the user’s Skype application if he or she

has a scheduled Skype meeting at the current time. After a closer investigation of

the rules, we find that in the first rule the status of Skype is redundant and can be

inferred from the rest of the antecedent atoms as a result of the second rule. Hence

hasApplication(?ws , Skype) and hasStatus(Skype,On) should be removed.

The second anomaly detected is of the type subsumption of rules resulted by the

following two rules. It takes our program 2.3 seconds to detect this anomaly.
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User(?u) ∧ LivingRoom(?lr) ∧ TV(?tv) ∧
isLocatedIn(?u, ?lr) ∧ isLocatedIn(?tv , ?lr) ∧
hasStatus(?tv ,On)

→ hasSituation(?u,Entertaining)

User(?u) ∧ LivingRoom(?lr) ∧ TV(?tv) ∧ GamePlayer(?gp) ∧
isLocatedIn(?u, ?lr) ∧ isLocatedIn(?tv , ?lr) ∧
isLocatedIn(?gp, ?lr) ∧ hasStatus(?tv ,On)
hasStatus(?gp,On)

→ hasSituation(?u,Entertaining)

These two rules are used to capture the different cases of a user having a situation of

Entertaining, i.e., when he or she is watching TV or playing video game. The first rule

says that if a user is in the living room where the TV is on, then he/she is entertaining.

The second rule says that if a user is in the living room where both the TV and the

game player are on, then he/she is entertaining. The first rule has less conditions

(more general antecedent), but a conclusion as strong as that of the second rule.

According to the definition of rule subsumption, the first rule subsumes the second

rule. Therefore the second rule is redundant and should be removed without loss of

information. Actually after studying the system requirements, both rules are needed

and two situations should be distinguished. The conclusions of the two rules need to

be strengthened to WatchingTV and PlayingGame respectively.

The third kind of anomaly detected is of the type chained inconsistency resulted from

the following three rules. It takes our program 7.6 seconds to detect this anomaly.
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AmlyopiaPatient(?u) ∧ LightService(?lightService) ∧
Ward(?w) ∧ isLocatedIn(?u, ?w) ∧ isLocatedIn(?ls , ?w) ∧
hasStatus(?ls ,On)

→ hasCondition(?u,Awake)

User(?u) ∧ condition(?u,AWAKE )
→ DayTime(Now)

LightService(?ls) ∧ DayTime(Now)
→ status(?ls ,Off )

The first rule is used to infer if a patient is awake. It says that if a user has vision

defects and the light of his or her ward is on, then the user is awake. The second rule

says that if a user is awake, then it means now is day time. The third rule says that in

the day time, the light should be switched off. Each of the three rules seems to make

some sense by itself at a glance, but will cause an inconsistency when put together.

More specifically we have chain conditions from the first rule to the third rule. It

gives a contradiction that light on implies light off. After analyzing the rules and the

system requirements, we found the second rule is wrong and needs to be removed.

The last anomaly detected is of the type circularity resulted from the following two

rules. It takes our program 2.5 seconds to detect this anomaly.

User(?u) ∧ Room(?r) ∧ LightService(?ls) ∧
isLocatedIn(?u, ?r) ∧ isLocatedIn(?ls , ?r) ∧
isSleepingTime(?u,Now) ∧ hasStatus(?ls ,Off )

→ hasSituation(?u, Sleeping)

User(?u) ∧ Room(?r) ∧ LightService(?ls) ∧
isLocatedIn(?u, ?r) ∧ isLocatedIn(?ls , ?r) ∧
hasSituation(?u, Sleeping)

→ hasStatus(?ls ,Off )
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The first rule is a typical rule used to infer a high level situation, Sleeping, from

low level context information, light status and time. Serving a different purpose, the

second rule is used to control the light service of a room according to the occupant’s

situation. Our tool detects a double-rule circularity. Indeed, assuming no original

or asserted knowledge about the situation or light status, a query to either of these

two goals will cause the rules to fire one after another repeatedly. After analyzing

the system, we find the knowledge about light status can be asserted by light service

controller and light sensor wrapper into the knowledge base. In that case the non-

termination will not happen.

5.5 Chapter Summary

The Semantic Web provides standard, formal and semantic-rich languages to repre-

sent an intelligent agent’s knowledge, greatly enhancing the interoperability of het-

erogeneous agents. While the inclusion of rule language into the Semantic Web has

added more expressiveness, it also introduces new challenges for ontology reasoning

at the same time. As new facts can be inferred from rules, it is important to provide

standard ontology reasoning support in the presence of rules. Furthermore as rules

can also be redundant and/or inconsistent by themselves, it is important to provide

facilities to check rule anomalies too. In this chapter we propose to use a combina-
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tion of standard DL reasoning and the constraint logic programming techniques to

discover anomalies in a SWRL agent rule base.

Some popular Semantic Web tools have recently included support for reasoning about

rules. The widely used ontology editor Protégé [69] has a plugin for SWRL Jess [42]

tab. It is a (partial) SWRL reasoner implemented on top of a rule-based system. It

suffers from the limitations that it does not support class restrictions and that it does

not handle the inconsistency between rule-inferred knowledge and the OWL ontology,

which are all supported in our tool. Pellet [99] recently releases preliminary support

for DL-safe SWRL reasoning, a subset of SWRL rules. But it does not support

anonymous classes, datatype properties or built-in functions, which are easily dealt

with in our approach.

Researchers have also made considerable amount of effort to combine the strengths

of both the Semantic Web and logic programming. One branch is on extending

the Semantic Web with logic programming rules for more expressiveness [83]. Their

focus is on adding more modelling power to ontology languages while preserving

decidability. In the other branch the possibility of using logic programming techniques

for reasoning about ontologies is studied [17, 95, 48, 42, 36]. Compared to these works,

which focus on only ontology reasoning, our approach has much stronger support

for rules. We support not only a much larger set of SWRL built-ins, thanks to

the strong support from CLP(R) for concrete domains, but also more importantly
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checking rule anomalies which none of the above tools supports. The only previous

work on discovering anomalies among SWRL rules is [10]. But they focus on the basic

features of SWRL and OWL. SWRL built-ins are omitted. Only a subset of OWL DL

containing subclass relations and property transitivity, complement and disjointness

is considered.
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Chapter 6

Checking Higher-order Agent

Knowledge

In the previous chapters we have considered providing various reasoning support for

agent knowledge in the form of facts (Chapter 3), facts with uncertainties (Chapter

4 and rules(Chapter 3 and 5). In this chapter we take the knowledge of agent to

a higher level; we are interested in reasoning about the knowledge of an intelligent

agent about the knowledge of other agents.

The area of multi-agent systems is traditionally concerned with formal representation

of the mental state of autonomous agents in a distributed setting. For this purpose,

many modal logics have been developed and investigated. Among them epistemic
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logic, the logic of knowledge, is one of the most studied and has grown to find diverse

applications such as artificial intelligence in computer science and game theory in

economics as a means of reasoning about the knowledge and/or belief of agents.

Typical applications include protocol verification in computer securities [37, 80].

Epistemic logic typically deals with what agents consider possible given their current

information. This includes knowledge about facts as well as higher-order information

about information that other agents have.

The knowledge of an agent is more complex than a simple collection of static data; it

evolves with time, typically as a result of agent communication. Public announcement

is one of the simplest form of communication action. Public announcement logic [92]

extends normal epistemic logics with modal operator for public announcement. These

logics can be perceived as a basis not only for specification languages of a particular

spectrum of multi-agent systems, but also for mechanized machine-aided reasoning.

Researchers have proposed several approaches towards reasoning about agent knowl-

edge represented in modal logics, including tableau-based provers and SAT-based

algorithms with representative systems such as FaCT [54] and KSATC [45]. Recently

some state-of-the-art model checkers [43, 90, 111] have been developed for automated

verification of epistemic properties. However such approaches suffer from some major

drawbacks. Firstly, the system to be verified has to be fully specified even if the

property only concerns with a fragment of the system. Secondly, as the sizes of the
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states and relation are exponential to the number of proposition of the system, the

model checkers suffer from what is known as the state explosion problem. The task of

representing and verifying against all possible computations of a system may not be

problematic for small examples, but may become infeasible for realistic multi-agent

systems. Lastly and perhaps most importantly, these model checkers typically deal

with systems with fixed number of epistemic states. But we are often faced with

systems with an arbitrary number of epistemic states as the number of agents is nei-

ther fixed nor known in advance. Consequently the properties are often beyond the

expressiveness of epistemic logic and hence cannot be verified by model checkers.

In this chapter we explore a complementary approach. In the specification language of

a well established interactive theorem prover, we build a reasoning framework which

consists of (1) logic-level proof systems for deriving logic theorems, (2) theorem sets

for storing the logic-level theorems, (3) object-level reasoning systems for application

modelling and verification, and (4) reasoning rule sets for the object-level reasoning

system. With this separation of concerns between the logic meta-level and application

object-level, we are able to not only derive all valid formulae of a logic but also specify

multi-agent applications and perform verification under one umbrella.

Other than obtaining a sound and complete reasoning system, many other advantages

arise from using this translation approach. Firstly we can exploit the well supported

theorem prover for the purpose of doing proofs in the multi-agent logic. Secondly as
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we are able to quantify over functions, we obtain the generality and power of higher-

order logic. Thirdly, theories in PVS can be easily extended and reused. This means

that we can extend our framework to support other epistemic logics with minimal

effort. At the same time, system developers can easily select the suitable reasoning

system to specify and verify the system being developed. Lastly we can utilize the

power of proof strategies in PVS for proof automation.

This chapter is organized as follows. In Section 6.1, we provide a brief overview of

some well accepted epistemic logics, detailing their language syntax and semantics

and some model checkers for epistemic logics. We describe our reasoning framework

in detail in Section 6.2, which also includes a discussion on how the system is typ-

ically used. An example will be used to explain the proof process and how we use

proof strategies to enhance automation in Section 6.3. Section 6.4 summarizes the

contribution of the chapter and compares some related work.

6.1 Epistemic Logic

In computer science, it is often useful to reason about modes of truth. Modal logic,

or (less commonly) intensional logic is the branch of logic that deals with sentences

that are qualified by modalities such as can, could, might, may, must, possibly, and

necessarily, and others. A formal modal logic represents modalities using modal
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sentential operators. The basic set of modal operators are usually given to be 2 and

3. In alethic modal logic (i.e. the logic of necessity and possibility) 2 represents

necessity and 3 represents possibility.

When applied to knowledge representation and reasoning about multi-agent systems,

the specific type of modal logics is called epistemic logic. For example each of many

interacting agents may have different knowledge about the environment. Furthermore,

each agent may have different knowledge about the knowledge of other agents. The

formula 2ϕ is read as: it is known that ϕ.

In the context of epistemic logic, one can view worlds that are possible for an agent

in a world as epistemic alternatives, that are compatible with the agent’s information

in that world.

Epistemic logic K is the weakest epistemic logic that does not have any ‘optional’

formula schemes. It is based on a set of atomic propositions and a set of agents. It

just contains propositional logic and all instances of formula scheme K . Here the

operator K has exactly the same properties as 2.

Definition 6.1.1 Let P be the set of atomic propositions, and A a set of agents. The

language of the logic, LK is defined by the following grammar.

φ ::= > | ⊥ | p | ¬ φ | φ ∧ φ | φ ∨ φ | φ → φ | φ ↔ φ | Kaφ

where p ∈ P and a ∈ A. Kaφ means that ‘agent a knows that φ holds’.
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Also known as S5, KT45 is probably one of the most well known epistemic logics.

Having the same language as logic K , KT45 adds three axioms:

• Truth: The agent knows only true things.

• Positive Introspection: If an agent knows something, he knows that he knows

it.

• Negative Introspection: If the agent does not know something, he knows that

he does not know it.

When reasoning about the knowledge of a group of agents, it becomes useful to

reason not just about knowledge of an individual agent, but also about the knowledge

of the group. Epistemic logic KT45n which is also known as S5C extends KT45

by providing support for shared knowledge and common knowledge among a set of

agents.

Definition 6.1.2 The language of the logic, LKT45n is defined by the following gram-

mar.

φ ::= > | ⊥ | p | ¬ φ | φ ∧ φ | φ ∨ φ | φ → φ | φ ↔ φ | Kaφ | EGφ | CGφ

where EGφ (shared knowledge) means that every agent in the group G knows φ and

CGφ (common knowledge) means that every agent in G knows about φ and every
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agent knows that every agent knows φ, etc. It captures a higher state of knowledge

and can be thought of as an infinite conjunction EGφ ∧ EGEGφ ∧ EGEGEGφ ∧ ...

First studied by Lewis [72], the notion common knowledge has received much attention

in the area of economics and computer science after Aumann’s seminal result [6]. The

inclusion of common knowledge for a group of agents adds much more complexity to

the task of reasoning about multi-agent systems. As a result, many previous reasoning

systems of epistemic logic have left out the notion of common knowledge.

The knowledge of an agent is more complex than a collection of static data; it evolves

typically as a result of agent communication. Dynamic epistemic logics analyze

changes in both basic and higher-order information. A public announcement in pub-

lic announcement logic (PAL) [92] is an epistemic update where all agents commonly

know that they learn that a certain formula holds. Public announcement logic with

common knowledge (PAL-C) extends PAL with support for common knowledge.

Definition 6.1.3 The language of the logic, LPAL is defined by the following gram-

mar.

φ ::= > | ⊥ | p | ¬ φ | φ ∧ φ | φ ∨ φ | φ → φ | φ ↔ φ | Kaφ | [φ]φ

The language of the logic, LPAL-C is defined by the following grammar.

φ ::= > | ⊥ | p | ¬ φ | φ ∧ φ | φ ∨ φ | φ → φ | φ ↔ φ | Kaφ | EGφ | CGφ | [φ]φ

where [ϕ]ψ means that ‘ψ holds after every announcement of ϕ’.
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There have been various discussions of the equivalence and translations between S5

and PAL [8, 44]. Every formula in the language of public announcement logic without

common knowledge is equivalent to a formula in the language of epistemic logic.

Theorem 6.1.1 For any arbitrary atomic proposition p and PAL formulae ϕ, ψ and

χ, the following hold.

[ϕ]p ↔ (ϕ → p)

[ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

[ϕ](ψ → χ) ↔ ([ϕ]ψ → [ϕ]χ)

[ϕ]¬ ψ ↔ (ϕ → ¬ [ϕ]ψ)

[ϕ]Kaψ ↔ (ϕ → Ka [ϕ]ψ)

[ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ

These results conveniently provide us with a rewrite system that allows us to elim-

inate announcement from the logical language. In other words PAL is a syntactical

extension to S5 and is equivalent to S5. However when common knowledge is added,

an equivalence cannot be formulated, thus creating complexity for reasoning with

common knowledge in dynamic epistemic logic.
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6.1.1 Semantics

Typically the semantics of various epistemic logics are given using the idea of possible

worlds and Kripke structures.

Definition 6.1.4 Given a set of atomic propositions P and a set of agents A, a

Kripke model is a structure M = 〈S,R,V〉, where

• S is a set of states or possible worlds. It is sometimes also called the domain

D(M) of M.

• R : A → S×S is a function, which maps from each agent a ∈ A to its possibility

relation. Intuitively, (s , t) ∈ R(a) if agent a cannot differentiate between s and

t.

• V : P → 2S is an evaluation function that for every p ∈ P yields the set of

states in which p is true.

Epistemic formulae are interpreted on epistemic states (M, s) consisting of a Kripke

model M = 〈S,R,V〉 and a state s ∈ S.

Definition 6.1.5 Given a model M = 〈S,R,V〉 we have that a formula ϕ is true in

(M, s), written as M, s |= ϕ, as follows:
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M, s |= p iff s ∈ V(p)

M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ

M, s |= ¬ ϕ iff not M, s |= ϕ

M, s |= Kaϕ iff for all t such that (s , t) ∈ R(a), M, t |= ϕ

M, s |= EGϕ iff for all a such that a ∈ G, M, t |= Kaϕ

M, s |= CGϕ iff for all t such that (s , t) ∈ T ∗, M, t |= ϕ,

M, s |= [ϕ]ψ iff M, s |= ϕ implies M|ϕ, s |= ψ

where T ∗ is the reflexive transitive closure of
⋃

a∈G R(a) and the model M|ϕ =

〈S ′,R′,V ′〉 is defined by restricting M to those worlds where ϕ holds. So S ′ = [[ϕ]],

R′ = R(a) ∩ [[ϕ]]2 and V ′(p) = V(p) ∩ [[ϕ]], where [[ϕ]] = {s ∈ S | M, s |= ϕ}.

When M, s |= ϕ for all s ∈ D(M), we write M |= ϕ. If M |= ϕ for all Kripke

models M, we say that ϕ is valid. If for formula ϕ there is a state (M, s) such that

M, s |= ϕ, we say that ϕ is satisfied in (M, s).

Kripke semantics makes our epistemic logic intensional, in the sense that we give up

the property of extensionality, which dictates that the truth of a formula is completely

determined by the truth of its sub-formulae.
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6.1.2 A Classical Example

Now we present a classical example of epistemic logics, the Three Wise Men problem

[67], which captures the knowledge and the reasoning process of a typical agent in a

multi-agent environment. We take the following problem specification as in [37].

There are three wise men. It is common knowledge that there are three red hats and

two white hats. The king puts a hat on each of them so that they cannot see their own

hat, and asks each one in turn if they know the colour of the their hats. Suppose

the first man says he does not know; then the second says he does not know either. It

follows that the third man must be able to tell his hat is red.

We can formalize the problem as follows, very similar to the formalization in [60],

only adding public announcement features. Let pi be the proposition meaning that

the wise man i has a red hat; so ¬ pi means that he has a white hat. Let Γ be the

set of formulae

{C (p1 ∨ p2 ∨ p3),
C (p1 → K2p1),C (¬ p1 → K2¬ p1),C (p1 → K3p1),C (¬ p1 → K3¬ p1),
C (p2 → K1p2),C (¬ p2 → K1¬ p2),C (p2 → K3p2),C (¬ p2 → K3¬ p2),
C (p3 → K1p3),C (¬ p3 → K1¬ p3),C (p3 → K2p3),C (¬ p3 → K2¬ p3)}

We want to prove

Γ ` [¬ (K1p1 ∨ K1¬ p1)][¬ (K2p2 ∨ K2¬ p2)]K3p3
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6.1.3 Reasoning about Epistemic Logics - The Model Check-

ing Approach

As the semantics of epistemic logic are given in Kripke structures, model checking

is a natural method of verifying epistemic properties. There have been some recent

results along this line of research [14, 109, 116, 90, 43, 111]. In this section, we briefly

survey the three model checkers and discuss their strengths and weaknesses.

MCK (Model Checking Knowledge) [43] is a prototype model checker for temporal

and knowledge specifications. It deals with the logic of knowledge and both linear and

branching time using BDD based algorithms. The overall setup assumes a number

of agents acting in an environment, by temporal development. This is modeled by

an interpreted system where agents perform actions according to a protocol. Actions

and the environment may be only partially observable at each instant in time.

MCMAS (Model Checking Multi-Agent Systems) [90] employs ordered binary deci-

sion diagrams comparable to the approach used in MCK for verification of system

description and protocol properties. It allows input in terms of interpreted systems.

In MCMAS the global state is represented by the tuple of the local states of the

agents.

DEMO (Dynamic Epistemic MOdelling) [111] is an explicit state model checker based

on a dynamic epistemic logic. It allows modeling epistemic updates, graphical display
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of Kripke structures involved (i.e., epistemic or state models, and action models that

represent epistemic actions), formula evaluation in epistemic states, etc. Epistemic

models are minimized under bi-simulation. As an example we present a specification

of the Three Wise Men problem in DEMO as shown in Fig. 6.1.

We use three agent a, b, and c for the three wise men. The proposition p0 is true

if and only if agent a is wearing a red hat. The proposition p1 is true if and only if

agent a is wearing a white hat. Similarly propositions q0, q1, r0 and r1 are for agent

b and c. The states are specified in val and the accessibility relation is explicitly

specified in acc. Finally the property to verify is specified as check.

Though the model checking technique is advantageous over theorem proving for its

automation, it has some drawbacks. For one, the system to be verified has to be

fully specified even if the property only concerns with a fragment of the system. It is

even worse for the case of DEMO in which all states and accessibility relations have

to be manually specified. The sizes of the states and relation are exponential to the

number of proposition of the system. For another, while model checking technique

provides a fully automated mechanism for verifying properties of a system, it suffers

from what is known as the state explosion problem. The task of representing and

verifying against all possible computations of a system may not be problematic for

small examples, but may become unfeasible for realistic multi-agent systems. The

last and most important drawback is that these model checkers only deal with finite
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module twm where import DEMO

a_announce = public(K a (Neg a_knows_a))

b_announce = public(K b (Neg b_knows_b))

a_knows_a = Disj[K a p0, K a p1]

a_knows_b = Disj[Disj[(Neg q0), K a q0], Disj[(Neg q1), K a q1]]

a_knows_c = Disj[Disj[(Neg r0), K a r0], Disj[(Neg r1), K a r1]]

b_knows_b = Disj[K b q0, K b q1]

b_knows_a = Disj[Disj[(Neg p0), K b p0], Disj[(Neg p1), K b p1]]

b_knows_c = Disj[Disj[(Neg r0), K b r0], Disj[(Neg r1), K b r1]]

c_knows_c = Disj[K c r0, K c r1]

c_knows_a = Disj[Disj[(Neg p0), K c p0], Disj[(Neg p1), K c p1]]

c_knows_b = Disj[Disj[(Neg q0), K c q0], Disj[(Neg q1), K c q1]]

check = isTrue ( upd ( upd twm a_announce ) b_announce) (c_knows_c)

twm :: EpistM

twm = (Pmod [0..6] val acc [0]) where

val = [(0,[P 0,Q 0,R 1]), (1,[P 0,Q 1,R 0]), (2,[P 0,Q 1,R 1]),

(3,[P 1,Q 0,R 0]), (4,[P 1,Q 0,R 1]), (5,[P 1,Q 1,R 0]),

(6,[P 1,Q 1,R 1])]

acc = [(a,0,0),(a,0,4),(a,1,1),(a,1,5),(a,2,2),(a,2,6),(a,3,3),(a,4,0),

(a,4,4),(a,5,1),(a,5,5),(a,6,2),(a,6,6),(b,0,0),(b,0,2),(b,1,1),

(b,2,0),(b,2,2),(b,3,3),(b,3,5),(b,4,4),(b,4,6),(b,5,3),(b,5,5),

(b,6,4),(b,6,6),(c,0,0),(c,1,1),(c,1,2),(c,2,1),(c,2,2),(c,3,3),

(c,3,4),(c,4,3),(c,4,4),(c,5,5),(c,5,6),(c,6,5),(c,6,6)]

p0, p1, q0, q1, r0, r1:: Form

p0 = Prop (P 0); p1 = Prop (P 1)

q0 = Prop (Q 0); q1 = Prop (Q 1)

r0 = Prop (R 0); r1 = Prop (R 1)

Figure 6.1: Three Wise Men problem in DEMO
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state systems, but in many cases the state space is infinite due to arbitrary number

of agents involved.

Hence in this work we take a different and complementary approach. We encode the

epistemic logics in an expressive specification language and perform the reasoning

in a well supported theorem prover in a user-guided fashion. However for simplic-

ity, our current framework allows only public announcement and leaves out private

announcement to future work.

6.2 Reasoning Framework

The system architecture of our reasoning framework is depicted in Fig. 6.2. Based on

the encoding of the logic formulae, the framework primarily consists of four compo-

nents, namely Proof Systems, Theorem Sets, Reasoning Systems and Reasoning Rule

Sets. A solid arrow from a component B to a component A indicates that A imports

B. A dotted arrow from a component A to a component B represents dataflow from

A to B.

In addition, because of the relationship between the epistemic logics, we organize

the encodings for each epistemic logic in a hierarchical fashion too, as shown in

Fig. 6.3. So we have in effect established a two-dimensional hierarchy – horizontal

hierarchy among different components for a particular logic and vertical hierarchy
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Figure 6.2: Framework Architecture

among different logics. As a result, system developers can easily select and reuse the

desired system environment for specification and reasoning.

In this section, we explain the functionalities of each individual component and how

they are used with each other as a system. Due to space limitations, the full PVS

Figure 6.3: Logic Hierarchy
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specification is not completely shown, but can be found online1.

The logic formulae are encoded using the PVS abstract datatype construct as shown

below.

1. palc_formula[AGENT: TYPE]: DATATYPE BEGIN

2. ktop: ktop?

3. kbottom: kbottom?

4. base: base?

5. knot(sub: palc_formula): knot?

6. kand(left: palc_formula, right: palc_formula): kand?

7. kor(left: palc_formula, right: palc_formula): kor?

8. kif(left: palc_formula, right: palc_formula): kif?

9. kiff(left: palc_formula, right: palc_formula): kiff?

10. k(agent: AGENT, sub: palc_formula): k?

11. e(agents: set[AGENT], sub: palc_formula): e?

12. c(agents: set[AGENT], sub: palc_formula): c?

13. pa(inner: palc_formula, outer: palc_formula): pa?

14. END palc_formula

The PVS abstract datatype mechanism is useful because it automatically generates

theories containing axioms and definitions for a class of recursive datatypes. The

datatype declaration simply specifies the ways a logic formula can be constructed.

For example the 10th line

k(agent: AGENT, sub: palc_formula): k?

specifies that a formula can be constructed by using a constructor k and two argu-

ments where the first is of type AGENT and the second is a palc_formula. k? is a

1http://www.comp.nus.edu.sg/~fengyz/PVSFramework
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recognizer for formulae constructed in this way. Hence it is later easy to assert if a

formula is of a certain type. agent and sub are accessors for the arguments.

Type-checking the datatype specification automatically generates two separate PVS

theory files named palc_formula_adt.pvs and palc_formula_adt_reduce.pvswhich

contain axioms and definitions over the logic formulae, which are very useful when

proving theorems. An example is shown below. It defines what is meant by two k?

formulae being equivalent.

palc_formula_k_extensionality: AXIOM FORALL (k?_var: (k?), k?_var2:(k?)):

agent(k?_var) = agent(k?_var2) AND sub(k?_var) = sub(k?_var2)

IMPLIES k?_var = k?_var2;

6.2.1 Proof Systems

A logic is a set of formulae. An axiomatization is a syntactic way to specify a logic:

it gives a core set of formulae, called axioms, and inference rules, from which all

other valid formulae in the logic can be derived. Now we formalize the definition of

derivations and theorems.

Definition 6.2.1 Let X be an axiomatization of an arbitrary logic with axioms A1, . . . ,An

and derivation rules R1, . . . ,Rm . Then a derivation for a formula ϕ within X is a

finite sequence ϕ1, . . . , ϕk of formulae such that ϕk = ϕ and every ϕi in the sequence

is an instance of one of the axioms A1, . . . ,An , or the result of the application of one

of the rules R1, . . . ,Rm to some formulae ϕj where j < i . If there is a derivation for
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ϕ in X, we write X ` ϕ, or if the system X is clear from the context, we just write

` ϕ. We also say that ϕ is a theorem of X.

We want to construct a framework that can be used to reason about an arbitrary

model. On the one hand, we need to be sure that our system is complete; all valid

formulae can be proved. On the other hand, we want the base model to be as concise

as possible. Hence we encode the axiomatizations, obtaining completeness at minimal

cost.

In our architecture, the Proof Systems component captures the axiomatizations of

various epistemic logics. Because some axiomatizations extend some others, we uti-

lize the reuse facilities of PVS by storing each sub-component in a separate theory

and using the IMPORTING clause to capture the extensional relationship. In effect,

we construct a hierarchy of proof systems following the relationships among various

logics.

System K

The basic axiomatization K for the epistemic logic K is comprised of the axioms A1

and A2, together with the derivation rules R1 and R2 as given below.

The encoding of the axiomatization for the logic K is shown below.
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A1 ϕ ϕ is any propositional tautology

A2 (Kaϕ ∧ Ka(ϕ → ψ)) → Kaψ K -axiom

R1 ` ϕ,` ϕ → ψ ⇒ ` ψ Modus Ponens

R2 ` ϕ ⇒ ` Kaϕ K -Necessitation

Figure 6.4: Axiomatization K

systemK[AGENT: TYPE] : THEORY BEGIN

IMPORTING palc_formula_adt[AGENT]

derives: [palc_formula -> bool]

tautology: [palc_formula -> bool]

pro_tauto: AXIOM FORALL (p: palc_formula): tautology(p) IMPLIES derives(p)

k_axiom : AXIOM FORALL (p1,p2: palc_formula),(a: AGENT):

derives(kif(kand(k(a,p1),k(a,kif(p1,p2))),k(a,p2)))

modus_ponens : AXIOM FORALL (p1,p2: palc_formula):

derives(p1) AND derives(kif(p1,p2)) IMPLIES derives(p2)

k_necessitation: AXIOM FORALL (p: palc_formula),(a: AGENT):

derives(p) IMPLIES derives(k(a,p))

END systemK

In this encoding, derives is defined as a function from a palc_formula to a boolean

value. Formally derives(ϕ) holds if and only if ϕ is a theorem in the system, that is

` ϕ. The two logic axioms and the two derivation rules are specified as PVS axioms.

With the axioms and derivation rule, the proof systems can be proved to be sound

and complete. We adopt the soundness and completeness results of [110] and omit

the proof here.
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As we have discussed in Section 6.1, the logic PAL is as expressive as the logic S5.

Furthermore it has been shown that the computation complexity of PAL coincide with

that of epistemic logic S5 [74]. But the logical language of public announcement is a

convenient specification tool to express this particular sort of dynamics of multi-agent

systems. In fact it has been shown that there are properties that can be expressed

exponentially more succinctly in PAL than in S5. Hence in our framework, PAL

is not encoded as S5. Being an essentially syntactical extension to S5, the proof

system of PAL is encoded by extending that of S5 with additional axioms based on

the equivalence. The purpose of doing so, like the purpose of having PAL with the

existence of S5, is to provide the users with flexibility and convenience to specify the

systems. Furthermore it establish a higher level of reasoning by providing axioms and

theorems on the public announcement operator rather than simply the K operator.

System S5

As we have discussed in Section 6.1, the logic S5 extends the logic K by adding

three axioms, namely Truth axiom, positive introspection and negative introspection.

These three axioms are captured in the axiomatization of logic S5 as shown in Fig.

6.5.

The corresponding PVS encoding is shown below. As illustrated, we only need to

import the theory systemK and add the three new axioms.
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A1 ϕ ϕ is any propositional tautology

A2 (Kaϕ ∧ Ka(ϕ → ψ)) → Kaψ K -axiom

A3 Kaϕ → ϕ K -veridicality

A4 Kaϕ → KaKaϕ positive introspection

A5 ¬ Kaϕ → Ka¬ Kaϕ negative introspection

R1 ` ϕ,` ϕ → ψ ⇒ ` ψ Modus Ponens

R2 ` ϕ ⇒ ` Kaϕ K -Necessitation

Figure 6.5: Axiomatization S5

systemS5[AGENT : TYPE] : THEORY BEGIN

IMPORTING systemK[AGENT]

k_veridicality : AXIOM FORALL (p:palc_formula),(a:AGENT) :

derives(kif(k(a,p),p))

pos_intro : AXIOM FORALL (p:palc_formula),(a:AGENT) :

derives(kif(k(a,p),k(a,k(a,p))))

neg_intro : AXIOM FORALL (p:palc_formula),(a:AGENT) :

derives(kif(knot(k(a,p)),k(a,knot(k(a,p)))))

END systemS5

System S5C

The logic S5C extends the logic S5 by adding the notion of group knowledge. The

axiomatization S5C of S5C extends S5 by adding four axioms and one derivation

rule as shown in Fig. 6.6.

Axiom A6 states that common knowledge is veridical. Axiom A7 ensures all re-
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A1 ϕ ϕ is any propositional tautology

A2 (Kaϕ ∧ Ka(ϕ → ψ)) → Kaψ K -axiom

A3 Kaϕ → ϕ K -veridicality

A4 Kaϕ → KaKaϕ positive introspection

A5 ¬ Kaϕ → Ka¬ Kaϕ negative introspection

A6 CBϕ → ϕ C -veridicality

A7 CBϕ → EBCBϕ iteration

A8 (CBϕ ∧ CB(ϕ → ψ)) → CBψ normality

A9 CB(ϕ → EBϕ) → (ϕ → CBϕ) induction

R1 ` ϕ,` ϕ → ψ ⇒ ` ψ Modus Ponens

R2 ` ϕ ⇒ ` Kaϕ K -Necessitation

R3 ` ϕ ⇒ ` CBϕ C -Necessitation

Figure 6.6: Axiomatization S5C
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strictions of the definition of common knowledge, that is for every k ∈ N, we have

` CBϕ → E k
Bϕ. Axiom A8 and derivation rule R3 ensures that C is a normal modal

operator. Finally A9 explains how one can derive that ϕ is a common knowledge.

The corresponding PVS encoding is shown below.

systemS5C[AGENT : TYPE] : THEORY BEGIN

IMPORTING systemS5[AGENT]

c_veridicality : AXIOM FORALL (p:palc_formula),(g:set[AGENT]) :

derives(kif(c(g,p),p))

iteration : AXIOM FORALL (p:palc_formula),(g:set[AGENT]) :

derives(kif(c(g,p),e(g,c(g,p))))

normality : AXIOM FORALL (p1,p2:palc_formula),(g:set[AGENT]) :

derives(kif(kand(c(g,p1),c(g,kif(p1,p2))),c(g,p2)))

induction : AXIOM FORALL (p:palc_formula),(g:set[AGENT]) :

derives(kif(c(g,kif(p,e(g,p))),kif(p,c(g,p))))

c_necessitation : AXIOM FORALL (p:palc_formula),(g:set[AGENT]) :

derives(p) IMPLIES derives(c(g,p))

END systemS5C

System PA

The logic PAL extends the logic S5 by incorporating the public announcement op-

erator. As shown in Fig. 6.7, the axiomatization PA of PAL extends that of S5

by adding the announcement elimination axioms(A6 through A9), an announcement

composition axiom(A10) and a derivation rule for announcement necessitation(R3).

The announcement elimination axioms reduces a formula with public announcement

operators to one without them. In other words, when no common knowledge is in-
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A1 ϕ ϕ is any propositional tautology

A2 (Kaϕ ∧ Ka(ϕ → ψ)) → Kaψ K -axiom

A3 Kaϕ → ϕ K -veridicality

A4 Kaϕ → KaKaϕ positive introspection

A5 ¬ Kaϕ → Ka¬ Kaϕ negative introspection

A6 [ϕ]p ↔ (ϕ → p) atomic permanence

A7 [ϕ]¬ ψ ↔ (ϕ → ¬ [ϕ]ψ) announcement and negation

A8 [ϕ](ψ ∧ χ) ↔ [ϕ]ψ ∧ [ϕ]χ announcement and conjunction

A9 [ϕ]Kaψ ↔ (ϕ → Ka [ϕ]ψ) announcement and knowledge

A10 [ϕ][ψ]χ ↔ [ϕ ∧ [ψ]χ] announcement composition

R1 ` ϕ,` ϕ → ψ ⇒` ψ Modus Ponens

R2 ` ϕ ⇒ ` Kaϕ K -Necessitation

R3 ` ϕ ⇒ ` [ψ]ϕ Announcement Necessitation

Figure 6.7: Axiomatization PA

volved, the public announcement operator does not add expressiveness. However this

is not true when common knowledge is involved. We shall discuss more in Section

6.2.1.

The corresponding PVS encoding is shown below.
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systemPA[AGENT : TYPE] : THEORY BEGIN

IMPORTING systemS5[AGENT]

atomic_permanance : AXIOM FORALL (f:palc_formula),(p:(base?)) :

derives(kiff(pa(f,p),kif(f,p)))

announce_neg : AXIOM FORALL (f:palc_formula),(p:(knot?)) :

derives(kiff(pa(f,p),kif(f,knot(pa(f,sub(p))))))

announce_con : AXIOM FORALL (f:palc_formula),(p:(kand?)) :

derives(kiff(pa(f,p),kand(pa(f,left(p)),pa(f,right(p)))))

announce_k : AXIOM FORALL (f:palc_formula),(p:(k?)) :

derives(kiff(pa(f,p),kif(f,k(agent(p),pa(f,sub(p))))))

announce_compo : AXIOM FORALL (f:palc_formula),(p:(pa?)) :

derives(kiff(pa(f,p),pa(kand(f,pa(f,inner(p))),outer(p))))

announce_necessitation : AXIOM FORALL (p1,p2:palc_formula) :

derives(p2) IMPLIES derives(pa(p1,p2))

END systemPA

System PAC

The axiomatization PAC of the logic PAL-C extends both S5C (for common knowl-

edge aspect) and PA (for announcement aspect). Furthermore it adds a derivation

rule for announcement and common knowledge. The full axiomatization is shown in

Fig. 6.8. We skip the discussions of axiomatization of the logic S5, S5C and PAL. To

illustrate the advantage of using the PVS reuse mechanism, we consider the axiom-

atization PAC (not shown here) of the logic PAL-C and its corresponding encoding

which is shown below. PAC has fourteen axioms and 5 derivation rules, but the

corresponding encoding has only one PVS axiom for one of the derivation rules.

The corresponding PVS encoding of PAC is shown below. As we have discussed the
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A1 ϕ ϕ is any propositional tautology

A2 (Kaϕ ∧ Ka(ϕ → ψ)) → Kaψ K -axiom

A3 Kaϕ → ϕ K -veridicality

A4 Kaϕ → KaKaϕ positive introspection

A5 ¬ Kaϕ → Ka¬ Kaϕ negative introspection

A6 CBϕ → ϕ C -veridicality

A7 CBϕ → EBCBϕ iteration

A8 (CBϕ ∧ CB (ϕ → ψ)) → CBψ normality

A9 CB (ϕ → EBϕ) → (ϕ → CBϕ) induction

A10 [ϕ]p ↔ (ϕ → p) atomic permanence

A11 [ϕ]¬ ψ ↔ (ϕ → ¬ [ϕ]ψ) announcement and negation

A12 [ϕ](ψ ∧ χ) ↔ [ϕ]ψ ∧ [ϕ]χ announcement and conjunction

A13 [ϕ]Kaψ ↔ (ϕ → Ka [ϕ]ψ) announcement and knowledge

A14 [ϕ][ψ]χ ↔ [ϕ ∧ [ψ]χ] announcement composition

R1 ` ϕ,` ϕ → ψ ⇒ ` ψ Modus Ponens

R2 ` ϕ ⇒ ` Kaϕ K -Necessitation

R3 ` ϕ ⇒ ` CBϕ C -Necessitation

R4 ` ϕ ⇒ ` [ψ]ϕ Announcement Necessitation

R5 ` χ → [ϕ]ψ,` χ ∧ ϕ → EBχ Announcement and Common Knowledge

⇒ ` χ → [ϕ]CBψ

Figure 6.8: Axiomatization PAC
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encoding of PAC imports both S5C and PA.

systemPAC[AGENT : TYPE] : THEORY BEGIN

IMPORTING systemS5C[AGENT]

IMPORTING systemPA[AGENT]

announce_c : AXIOM FORALL (p1,p2,p3:palc_formula),(g:set[AGENT]) :

derives(kif(p1,pa(p2,p3))) AND derives(kif(kand(p1,p2),e(g,p3)))

IMPLIES derives(kif(p1,pa(p2,c(g,p3))))

END systemPAC

6.2.2 Theorem Sets

This component contains a set of theorem sets, one for each of the proof systems. Each

theorem set contains the theorems that have been proved in the corresponding proof

system. More formally, for all formulae ϕ in the theorem set derives(ϕ) evaluates to

true. In other words, these theorems can be applied to any arbitrary model expressed

in the logic. The importing relationships among the theorem sets are the same. Such

structure makes the access to a particular logic with its proof system and theorems

easier. It should be noted that, although the proof systems are complete, these

theorem sets are by no means complete. It initially contains some basic and commonly

used theorems such as the axioms in the axiomatization. These theorems can be used

(and hence do not need to be proved again) with the derivation rules for proving new

theorems which are then added back into the theorem set. Therefore the size of the

theorem set grows with the use of the system. It should be emphasized that the proof

systems being complete ensures that all valid formulae can be proved as theorems.
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6.2.3 Reasoning Systems

As compared with the proof systems which aim at proving general theorems at logic

level, the reasoning systems build an environment for reasoning about concrete object-

level models. This component evaluates a formula on a given model. We specify the

reasoning system for logic K below.

reasonerK : THEORY BEGIN

Agent : TYPE

IMPORTING systemK[Agent]

Knowledge : TYPE = palc_formula

eval : [Knowledge -> bool]

knot_ax : AXIOM FORALL (k:Knowledge):

eval(knot(k)) IMPLIES NOT eval(k)

kand_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kand(k1,k2)) IMPLIES (eval(k1) AND eval(k2))

kor_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kor(k1,k2)) IMPLIES (eval(k1) OR eval(k2))

kif_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kif(k1,k2)) IMPLIES (eval(k1) IMPLIES eval(k2))

kiff_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kiff(k1,k2)) IMPLIES (eval(k1) IFF eval(k2))

END reasonerK

Agent is defined as an uninterpreted type and is passed down to the proof systems as

a type parameter. Knowledge is defined as a type equivalent to logic formulae. Given

a model every piece of knowledge should have a truth value at any time. Therefore we

define a evaluation function eval. More formally, for a formula ϕ of a given model,

eval(ϕ) holds if and only if the formula ϕ evaluates to true in the model. We have

151



Chapter 6. Checking Higher-order Agent Knowledge

defined five logical connectives for knowledge corresponding to the logical negation,

conjunction, disjunction, implication and equivalence. The advantage of doing this is

that we can easily compose new knowledge from existing ones. As a result we need

to define a set of evaluation axioms which map the logical connectives for knowledge

to their logic counterparts straightforwardly.

We maintain the hierarchical structure of the whole verification framework by spec-

ifying a reasoning system for each of the logics. However the reasoning systems for

different logics do not differ a lot because much of the difference is reflected in the

underlying proof systems and theorem sets. We still specify the reasoning systems in

separate theories for consistency. The reasoning systems of S5 and PAL are the same

as that of K . The reasoning system of PAL-C is the same as that of S5C . So we only

describe the reasoning system for S5C below.

reasonerS5C: THEORY BEGIN

IMPORTING reasonerS5, systemS5C[Agent]

e_ax: AXIOM FORALL (g: set[Agent]),(k1: Knowledge):

eval(e(g,k1)) IFF FORALL (a: Agent): member(a,g) IMPLIES eval(k(a,k1))

c_ax: AXIOM FORALL (g: set[Agent]),(k1: Knowledge):

eval(c(g,k1)) IFF eval(e(g,k1)) AND eval(c(g,e(g,k1)))

END reasonerK

We define evaluation axioms for modal connectives for shared knowledge and common

knowledge. As we have discussed earlier, C is in fact an infinite conjunction of E . As

PVS only allows finite conjunctions we model the evaluation function for the common

knowledge connective using a recursive definition. During the reasoning process we
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can choose the extent to which we expand the axiom.

6.2.4 Reasoning Rule Sets

Definitions and evaluation functions alone are not sufficient to prove the properties

efficiently. The last component of the framework is the Reasoning Rule Sets. They

are encoded based on the reasoning systems. In other words, they are applied when

reasoning about actual models. Therefore their aims are not to make the system com-

plete, but to achieve a higher degree of automation by abstracting certain amount

of underlying model from the reasoning process. The reasoning rule sets are con-

structed hierarchically, similar to the other three components. Each reasoning rule

set of a logic initially contains the (non-inherited) axioms from the corresponding

proof systems. For example the encoding of the reasoning rule set for S5 is shown

below.

reasoningRuleS5: THEORY BEGIN

IMPORTING reasonerS5, reasoningRuleK

Truth : THEOREM FORALL (k:Knowledge),(a:Agent): eval(K(a,k)) IMPLIES eval(k)

Positive_Introspection : THEOREM FORALL (k:Knowledge),(a:Agent):

eval(K(a,k)) IMPLIES eval(K(a,(K(a,k))))

Negative_Introspection : THEOREM FORALL (k:Knowledge),(a:Agent):

eval(knot(K(a,k))) IMPLIES eval(K(a,(knot(K(a,k)))))

END reasoningRuleS5

The way of encoding for the reasoning rules is slightly different from the corresponding

axiom in the proof system, mainly because they are used for different purposes. The
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ones in proof systems are for deriving other theorems whereas the ones here are

applied to a particular model for evaluation of formulae. Hence there are two ways

to construct the reasoning rules. Firstly new reasoning rules can be derived from

existing ones. Secondly new reasoning rules for a logic can be obtained by translating

theorems from the corresponding theorem set. Theorems in the theorem set are of the

form FORALL Q: derives(F) where Q is a set of bound variables and F is formula in

the corresponding logic. We do not change the quantifier or the bound variables and

translate only the quantified formula. The translated formula is FORALL Q: F’ where

F’ uses the evaluation function eval. We have implemented a simple translation

program which works recursively on the propositional structure of the formula. The

algorithm takes in such theorems as input and produces the corresponding reasoning

rule as given in Algorithm 5.

6.2.5 Framework Workflow

Having described the components of the verification framework, we explain the frame-

work methodology as depicted in Fig. 6.9.

When the framework is first used, the theorem sets and reasoning rule sets contain

the initial theorems and reasoning rules, as discussed in the Section 6.2.2 and 6.2.4.

Subsequently,
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Require: FORALL Q: derives(F) is an encoded theorem in the theorem set

Ensure: FORALL Q: F’ is the corresponding encoded reasoning rule

1: if F is of the form knot(F1) then

2: return NOT translate(F1)

3: else if F is of the form kand(F1,F2) then

4: return translate(F1) AND translate(F2)

5: else if F is of the form kor(F1,F2) then

6: return translate(F1) OR translate(F2)

7: else if F is of the form kif(F1,F2) then

8: return translate(F1) IMPLIES translate(F2)

9: else if F is of the form kiff(F1,F2) then

10: return translate(F1) IFF translate(F2)

11: else

12: return eval(F)

13: end if

Algorithm 5: F’ = translate(F)
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Figure 6.9: Framework Workflow
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1. Given a system, formalize it using an appropriate epistemic logic to produce the

system specification. Specify the property to be proved about system.

2. With the appropriate reasoning system and reasoning rule set, try to prove the

property. If the property is proved, exit.

3. Construct a reasoning rule which may help prove the property.

4. Try to prove the new reasoning rule in PVS based on the existing reasoning

rules in the reasoning rule set. If the rule is proved, add it to the reasoning rule

set and go to step 2. Otherwise translate it into theorem format.

5. Try to prove the translated theorem in proof system based on existing theorems

in the theorem set. If successful, add the theorem to the theorem set and the

reasoning rule to the reasoning rule set and go to step 2. Otherwise go to step

3.

In effect, the user keeps trying to prove the property with reasoning rules which can

be proved by using either the existing reasoning rules or the existing theorems. In

the process the reasoning rule set and the theorem set are incrementally constructed.

Thus multiple instances of the prover can be invoked at the same time.
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6.3 Examples

As a demonstration of how to use the framework, we now illustrate with the running

example, the Three Wise Men problem. We also highlight the advantage of using

our approach by extending the number of agents from three to an arbitrary number

which is beyond the capabilities of state-of-the-arts epistemic model checkers. The

procedures follow the work flow explained in Section 6.2.5.

6.3.1 Formalizing the System

We can formalize the problem in our reasoning framework as shown below. As we

can see the specification is a direct translation of the model in Section 6.1.2.
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twm: THEORY BEGIN

IMPORTING reasonerPAC

IMPORTING reasoningRulePAC

m1, m2, m3: Agent

p1, p2, p3: (base?)

g: set[Agent] = {a : Agent | a = m1 OR a = m2 OR a = m3}

init: AXIOM eval(c(g,kor(kor(p1,p2),p3)))

init_m1: AXIOM

eval(c(g,kif(p1,k(m2,p1)))) AND eval(c(g,kif(knot(p1),k(m2,knot(p1))))) AND

eval(c(g,kif(p1,k(m3,p1)))) AND eval(c(g,kif(knot(p1),k(m3,knot(p1)))))

init_m2: AXIOM

eval(c(g,kif(p2,k(m1,p2)))) AND eval(c(g,kif(knot(p2),k(m1,knot(p2))))) AND

eval(c(g,kif(p2,k(m3,p2)))) AND eval(c(g,kif(knot(p2),k(m3,knot(p2)))))

init_m3: AXIOM

eval(c(g,kif(p3,k(m2,p3)))) AND eval(c(g,kif(knot(p3),k(m2,knot(p3))))) AND

eval(c(g,kif(p3,k(m1,p3)))) AND eval(c(g,kif(knot(p3),k(m1,knot(p3)))))

conclude: THEOREM

eval(pa(knot(kor(k(m1,p1),k(m1,knot(p1)))),

pa(knot(kor(k(m2,p2),k(m2,knot(p2)))),k(m3,p3))))

END twm

As we are going to use the logic PAL-C for reasoning, we import the reasoning system

reasonerPAC and the reasoning rule set reasoningRulePAC. We first define the three

wise men as agents and define three pieces of ground knowledge p1, p2 and p3 each

of which corresponds to the proposition meaning that the i-th man is wearing a red

hat. Then the negation of them means that the i-th man is wearing a white hat. For

ease of specifying the system we define the group of agents g containing the three

agents. The fact that initially it is commonly known that at least one of them is

wearing a red hat (implied from the fact that there are two white hats and three red
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hats) is captured by the axiom init. The fact that the colour of one’s hat is known

to the others is captured by the three axioms init_1, init_2 and init_3. Then

conclude is the property we want to prove, that is, after the first two men declared

their ignorance about the colour of their hat, the third knows his hat is red. Formally

this is

[¬ (K1p1 ∨ K1¬ p1)][¬ (K2p2 ∨ K2¬ p2)]K3p3

6.3.2 Constructing and Proving Reasoning Rules

The PVS prover cannot prove the property automatically. Hence according to the

workflow we need to construct some reasoning rules. There are 9 reasoning rules that

we need for proving the property. Some of these reasoning rules are from the original

reasoning rule set, while others cannot be proved directly from other reasoning rules.

Therefore we input them into the translation program to obtain the corresponding

theorems and then prove them in the proof system PAC. Due to space limitation,

simple proofs for the lemmas are omitted.

Let ϕ, ϕ1, ϕ2, ψ and ω be arbitrary formulae, p a ground proposition, B an arbitrary

set of agents, and a an agent in B then the following lemmas hold.

Lemma 6.3.1 ` CBϕ → Kaϕ ∧ CBKaϕ.

Lemma 6.3.2 ` [ϕ ∧ [ϕ]ψ]ω → [ϕ][ψ]ω.
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Lemma 6.3.3 ` (ϕ → Ka [ϕ]ψ) → [ϕ]Kaψ.

Lemma 6.3.4 ` (ϕ → p) → [ϕ]p.

Lemma 6.3.5 ` ϕ ∧ [ϕ]¬ ψ → ¬ [ϕ]ψ.

Lemma 6.3.6 ` ϕ ∧ [ϕ]Kaψ → Ka [ϕ]ψ.

Lemma 6.3.7 ` [ϕ](ψ ∧ ω) → [ϕ]ψ ∧ [ϕ]ω.

Lemma 6.3.8 ` (ϕ1 → ϕ2) → (Kaϕ1 → Kaϕ2).

Lemma 6.3.9 ` Kaϕ1 → (Kaϕ2 → Ka(ϕ1 ∧ ϕ2)).

With the reasoning rules, it is now sufficient to prove the property. Due to space

limitation, we would not show the proof details such as proof commands used in this

proof. The simplified proof tree is shown in Fig. 6.10. To improve readability and save

space in the proof tree, ¬ K1p1 ∧ ¬ K1¬ p1 is renamed to ϕ1 and ¬ K2p2 ∧ ¬ K2¬ p2

to ϕ2 in some parts of the proof without loss of correctness.

6.3.3 Proof Strategies

PVS proof strategies provide an accessible means of increasing the degree of automa-

tion available to PVS users. A proof strategy is intended to capture patterns of
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p1 ∨ p2 ∨ p3,¬ p3,¬ p2 ` p1,
[k elim]

K1(p1 ∨ p2 ∨ p3),K1¬ p3,K1¬ p2 ` K1p1,

K1(p1 ∨ p2 ∨ p3),¬ pi → Kj¬ pi ,¬ p3,¬ p2 ` K1p1,

K1(p1 ∨ p2 ∨ p3),¬ pi → Kj¬ pi ,¬ K1p1,¬ K1¬ p1,¬ p3 ` p2

K1(p1 ∨ p2 ∨ p3),¬ pi → Kj¬ pi ,¬ K1p1 ∧ ¬ K1¬ p1,¬ p3 ` p2

K1(p1 ∨ p2 ∨ p3),¬ pi → Kj¬ pi ,¬ p3 ` (¬ K1p1 ∧ ¬ K1¬ p1) → p2
[Lem. 4]

K1(p1 ∨ p2 ∨ p3),¬ pi → Kj¬ pi ,¬ p3 ` [¬ K1p1 ∧ ¬ K1¬ p1]p2
[k elim]

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),K2¬ p3 ` K2[¬ K1p1 ∧ ¬ K1¬ p1]p2

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi ,¬ p3 ` K2[¬ K1p1 ∧ ¬ K1¬ p1]p2

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi ,¬ K2[¬ K1p1 ∧ ¬ K1¬ p1]p2 ` p3

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi , ϕ1,¬ K2[ϕ1]p2,¬ K2[ϕ1]¬ p2 ` p3
[Lem. 5,6]

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi , ϕ1, [ϕ1]¬ K2p2, [ϕ1]¬ K2¬ p2 ` p3
[Lem. 7]

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi , ϕ1, [ϕ1](ϕ2) ` p3

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi , ϕ1 ∧ [ϕ1]ϕ2 ` p3

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi ` ϕ1 ∧ [ϕ1]ϕ2 → p3
[Lem. 4]

K2K1(p1 ∨ p2 ∨ p3),K2(¬ pi → Kj¬ pi ),¬ pi → Kj¬ pi ` [ϕ1 ∧ [ϕ1]ϕ2]p3
[k elim]

K3K2K1(p1 ∨ p2 ∨ p3),K3K2(¬ pi → Kj¬ pi ),K3(¬ pi → Kj¬ pi ) ` K3[ϕ1 ∧ [ϕ1]ϕ2]p3

K3K2K1(p1 ∨ p2 ∨ p3),K3K2(¬ pi → Kj¬ pi ),K3(¬ pi → Kj¬ pi ), ϕ1 ∧ [ϕ1]ϕ2 ` K3[ϕ1 ∧ [ϕ1]ϕ2]p3

K3K2K1(p1 ∨ p2 ∨ p3),K3K2(¬ pi → Kj¬ pi ),K3(¬ pi → Kj¬ pi ) ` ϕ1 ∧ [ϕ1]ϕ2 → K3[ϕ1 ∧ [ϕ1]ϕ2]p3
[Lem. 3]

K3K2K1(p1 ∨ p2 ∨ p3),K3K2(¬ pi → Kj¬ pi ),K3(¬ pi → Kj¬ pi ) ` [ϕ1 ∧ [ϕ1]ϕ2]K3p3
[Lem. 2]

K3K2K1(p1 ∨ p2 ∨ p3),K3K2(¬ pi → Kj¬ pi ),K3(¬ pi → Kj¬ pi ) ` [ϕ1][ϕ2]K3p3
[Lem. 1]

C (p1 ∨ p2 ∨ p3),C (pi → Kj pi ),C (¬ pi → Kj¬ pi ) ` [ϕ1][ϕ2]K3p3

Figure 6.10: Simplified proof tree for the three wise men problem
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¬ p2,¬ p3, p1 ∨ p2 ∨ p3 ` p1
[K]

K1¬ p2,K1¬ p3,K1(p1 ∨ p2 ∨ p3) ` K1p1

Figure 6.11: Proof Fragment for K elimination

inference steps. A defined proof rule is a strategy that is applied in a single atomic

step so that only the final effect of the strategy is visible and the intermediate steps

are hidden from the user. PVS provides strong support for writing strategies. There-

fore being able to use proof strategies to increase the degree of automation is a major

motivation for using PVS.

To illustrate how proof strategies can be useful, consider the proof fragment we have

discussed in the Three Wise Men example shown in Fig. 6.11.

This figure represents the situation whereby there are n antecedent formulae and 1

consequent formula, all of which are of the form Kaϕ. We want to simulate the effect

of dashed boxes in natural deduction (as shown in Fig. 6.12) by stripping away Ka ,

so that the sequent can be simplified.

The following would be the naive method.

1. apply the k_collect reasoning rule n−1 times to merge the antecedent formulae

into one formula (in this case, K1(¬ p2 ∧ ¬ p3 ∧ (p1 ∨ p2 ∨ p3))),

2. apply the kbox rule to remove the K operator from both the antecedent and

the consequent
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Figure 6.12: K introduction in natural deduction

3. apply evaluation axioms n−1 times to break the single antecedent formula into

n antecedent formulae

The problem with the naive method is that in the general case the number of an-

tecedent formulae is neither fixed nor known. It is desired that we can achieve the

effect with a single proof command regardless of the number of antecedent formulae.

However it is important to note that such strategy is applicable only when all an-

tecedent and consequent formulae are of the same modal operator (in this case K1)

to ensure the soundness of the deduction. The proof strategies are shown below. The

strategy simply repeatedly applies the k_collect rule until there is no further effect

to combine the formulae and recursively applies the kand_collapse rule to split the

formulae.
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(defstep k_elim ()

(try (try (forward-chain "k_collect")

(then (hide -2) (try (forward-chain -1)

(then (hide -2) (k_elim))

(then (fail) (fail))))

(skip))

(kand_collapse)

(skip))

"k box: eliminating k operator" "k box: eliminating k operator")

(defstep kand_collapse ()

(try (forward-chain "kand_ax")

(then (hide -2) (kand_collapse))

(skip))

"collapsing kand clause" "collapsing kand clause")

In a similar way, we defined proof strategies for eliminating all types of modal op-

erators such as shared knowledge, common knowledge and public announcement.

Because the strategies are similar, we show only the k_elim strategy for illustration.

6.3.4 Generalizing the Example

An observation from the three wise men problem is that a generalized version of the

problem, where there are n, an arbitrary number, wise men presents a system with

an arbitrary number of epistemic states. In fact it is true that the last wise man

would be able to know that he or she has a red hat if the previous n−1 wise men had

declared their ignorance. It is clear that such a system is beyond the expressiveness of
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the spectrum of epistemic logics discussed in this paper. It is not possible to represent

the system in the model checkers we have discussed, let alone to prove the property

by using them. In this section, we demonstrated how such system can be represented

and how the property can be proved using our framework.

n: nat

atLeastTwoWiseMen: AXIOM n >= 2

Range: TYPE+ = {m: nat | 1 <= m AND m <= n}

wm: [Range -> Agent]

p: [Range -> (base?)]

getAgents(wm: [Range -> Agent], i: Range, j: Range): set[Agent] =

{a: Agent | EXISTS (m: Range): m >= i AND m <= j AND wm(m) = a}

We first define an arbitrary natural number constant n for the number of wise men

and then define an axiom atLeastTwoWiseMen to state that there are at least two

wise men in this problem. The type Range is a subtype of natural number between 1

and n. wm is a function which maps each value in Range to an agent. This makes it

easy to refer to every single agent in the problem. p is a function which maps each

value in Range to a base formula such that p(i) denotes that the ith wise man is

wearing a red hat. So both the agents and the propositions are indexed by the values

in Range. Then the function getAgents returns the set of agents indexed between i

and j inclusive.
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atLeastOneWhite(i : Range) : RECURSIVE Knowledge =

IF i = 1 THEN p(1) ELSE kor(p(i), atLeastOneWhite(i-1)) ENDIF

MEASURE i

init_1 : AXIOM eval(c(getAgents(wm, 1, n), atLeastOneWhite(n)))

init_2 : AXIOM FORALL (i,j : Range) : i /= j IMPLIES

eval(c(getAgents(wm, 1, n), kif(p(i), k(wm(j), p(i)))))

init_3 : AXIOM FORALL (i,j : Range) : i /= j IMPLIES

eval(c(getAgents(wm, 1, n), kif(knot(p(i)), k(wm(j), knot(p(i))))))

Our generalized problem is one with an arbitrary number of agents. We cannot

specify the fact that at least one of the agents is wearing a white hat (p1 ∨ p2 ∨

. . . pn) explicitly like what we did to the three wise man problem, because we simply

cannot list them all. Here we use the recursive definition in PVS. The function

atLeastOneWhite is recursively defined with a measure expression which is normally

used to ensure termination. Then we can easily specify the three initial axioms as

init_1, init_2 and init_3.

ignorance(i : Range) : Knowledge =

kand(knot(k(wm(i), p(i))), knot(k(wm(i), knot(p(i)))))

cons1(i : Range, e : Knowledge) : RECURSIVE Knowledge =

IF i = 1 THEN pa(ignorance(1), e) ELSE cons1(i-1, pa(ignorance(i), e)) ENDIF

MEASURE i

nwmProperty : THEOREM eval(cons1(n-1, k(wm(n),p(n))))

For reusability and easy readability, we define a function called ignorance specifying

that a given agent does not know the colour of his or her hat. The recursive function

cons1 serves a constructive purpose. It simply constructs the arbitrary-length formula

[¬ K1p1 ∧ ¬ K1¬ p1][¬ K2p2 ∧ ¬ K2¬ p2] . . . [¬ Kipi ∧ ¬ Ki¬ pi ]e where e is an

arbitrary formula given as an argument. Then the property we want to prove can be
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easily formulated as a theorem called nwmProperty.

cons2(i: Range): RECURSIVE Knowledge =

IF i = n THEN p(n) ELSE kor(p(i), cons2(i+1)) ENDIF

MEASURE n - i

cons3(i: Range, j : ({l: Range | i <= l}), e: Knowledge): RECURSIVE Knowledge =

IF (i = j) THEN k(wm(i), e) ELSE cons3(i+1, j, k(wm(i),e)) ENDIF

MEASURE j - i

lemma1: LEMMA FORALL (i: Range): i < n IMPLIES

eval(cons1(i, cons3(i+1, n, cons2(i+1))))

In fact the theorem is the result an application of a general theorem.

∀ i : 1..n,
[¬ K1p1 ∧ ¬ K1¬ p1][¬ K2p2 ∧ ¬ K2¬ p2] . . . [¬ Kipi ∧ ¬ Ki¬ pi ]
KnKn−1 . . .Ki+1(pi+1 ∨ pi+2 ∨ . . . ∨ pn)

This is specified as a lemma called lemma1 which utilizes two more recursively defined

functions called cons2 and cons3.

We prove by using induction on i which leaves us with two proof obligations, the base

case and the inductive case. The base case is

` [¬ K1p1 ∧ ¬ K1¬ p1]KnKn−1 . . .K2(p2 ∨ p3 ∨ . . . ∨ pn)

and the inductive case is

[¬ K1p1 ∧ ¬ K1¬ p1][¬ K2p2 ∧ ¬ K2¬ p2] . . . [¬ Kipi ∧ ¬ Ki¬ pi ]
KnKn−1 . . .Ki+1(pi+1 ∨ pi+2 ∨ . . . ∨ pn)
`
[¬ K1p1 ∧ ¬ K1¬ p1][¬ K2p2 ∧ ¬ K2¬ p2] . . . [¬ Ki+1pi+1 ∧ ¬ Ki+1¬ pi+1]
KnKn−1 . . .Ki+2(pi+2 ∨ pi+3 ∨ . . . ∨ pn)

The simplified proof trees for the base case and the inductive case are shown in Fig.

6.13 and Fig. 6.14
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p1 ∨ p2 ∨ . . . ∨ pn ,¬ (p2 ∨ p3 ∨ . . . ∨ pn ) ` p1

K1(p1 ∨ p2 ∨ . . . ∨ pn ),K1¬ (p2 ∨ p3 ∨ . . . ∨ pn ) ` K1p1

K1(p1 ∨ p2 ∨ . . . ∨ pn ),¬ pi → Kj¬ pi ,¬ (p2 ∨ p3 ∨ . . . ∨ pn ) ` K1p1

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi ),¬ K1p1,¬ K1¬ p1 ` p2 ∨ p3 ∨ . . . ∨ pn

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi )ϕ1 ` p2 ∨ p3 ∨ . . . ∨ pn

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi ) ` ϕ1 → (p2 ∨ p3 ∨ . . . ∨ pn )

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi ) ` [ϕ1](p2 ∨ p3 ∨ . . . ∨ pn )

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi ) ` [ϕ1]Kn−1 . . .K2(p2 ∨ p3 ∨ . . . ∨ pn )

KnC (p1 ∨ p2 ∨ . . . ∨ pn ),KnC (¬ pi → Kj¬ pi ) ` Kn [ϕ1]Kn−1 . . .K2(p2 ∨ p3 ∨ . . . ∨ pn )

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi ) ` Kn [ϕ1]Kn−1 . . .K2(p2 ∨ p3 ∨ . . . ∨ pn )

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi ) ` ϕ1 → Kn [ϕ1]Kn−1 . . .K2(p2 ∨ p3 ∨ . . . ∨ pn )

C (p1 ∨ p2 ∨ . . . ∨ pn ),C (¬ pi → Kj¬ pi ) ` [ϕ1]KnKn−1 . . .K2(p2 ∨ p3 ∨ . . . ∨ pn )

Figure 6.13: Simplified proof tree for the base case

pj+1 ∨ . . . ∨ pn , pj+2 ∨ . . . ∨ pn ` pj+1

Kj+1(pj+1 ∨ . . . ∨ pn ),Kj+1(pj+2 ∨ . . . ∨ pn ) ` Kj+1pj+1

Kj+1(pj+1 ∨ . . . ∨ pn ),¬ Kj+1pj+1,¬ px → Ky¬ px ` pj+2 ∨ . . . ∨ pn

Kj+1(pj+1 ∨ . . . ∨ pn ),¬ Kj+1pj+1 ` pj+2 ∨ . . . ∨ pn

Kj+1(pj+1 ∨ . . . ∨ pn ) ` ϕj+1 → (pj+2 ∨ . . . ∨ pn )

Kj+1(pj+1 ∨ . . . ∨ pn ) ` [ϕj+1](pj+2 ∨ . . . ∨ pn )

Kn−1 . . .Kj+1(pj+1 ∨ . . . ∨ pn ) ` [ϕj+1]Kn−1 . . .Kj+2(pj+2 ∨ . . . ∨ pn )

Kn . . .Kj+1(pj+1 ∨ . . . ∨ pn ) ` Kn [ϕj+1]Kn−1 . . .Kj+2(pj+2 ∨ . . . ∨ pn )

Kn . . .Kj+1(pj+1 ∨ . . . ∨ pn ) ` ϕj+1 → Kn [ϕj+1]Kn−1 . . .Kj+2(pj+2 ∨ . . . ∨ pn )

Kn . . .Kj+1(pj+1 ∨ . . . ∨ pn ) ` [ϕj+1]Kn . . .Kj+2(pj+2 ∨ . . . ∨ pn )

[ϕ2] . . . [ϕj ]Kn . . .Kj+1(pj+1 ∨ . . . ∨ pn ) ` [ϕ2] . . . [ϕj+1]Kn . . .Kj+2(pj+2 ∨ . . . ∨ pn )

[ϕ1] . . . [ϕj ]Kn . . .Kj+1(pj+1 ∨ . . . ∨ pn ) ` [ϕ1] . . . [ϕj+1]Kn . . .Kj+2(pj+2 ∨ . . . ∨ pn )

Figure 6.14: Simplified proof tree for the inductive case
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6.4 Chapter Summary

In this chapter we presented a formal hierarchical framework for specifying and rea-

soning about higher-order agent knowledge. We encoded a hierarchy of epistemic

logics K , S5, S5C , PAC and PAL-C in the PVS specification language. The frame-

work mainly consists of four components: Proof Systems for the ability to completely

derive theorems of a particular logic, Theorem Sets for storing the theorems derived

from the proof systems, Reasoning Systems for evaluating a formula of a concrete

model, and Reasoning Rule Sets for storing reasoning rules for better proof automa-

tion. Proof Systems and Theorem Sets work on the meta-level while Reasoning Sys-

tems and Reasoning Rule Sets work on the object level. We demonstrated the idea by

solving the classical Three Wise Men problem. One of the important contributions

of this chapter is that we are able to use the proposed framework to specify systems

with an arbitrary number of agents and epistemic states, which are not possible in

the state-of-the-art epistemic model checkers. We have illustrated the advantage with

the generalized version of the wise men problem.

Some researchers have done related work along a similar line. Kim and Kowalski used

meta-reasoning with common knowledge based on a Prolog implementation to solve

the same Three Wise Men puzzle [68]. Compared with their work, our approach has

the advantage of being able to quantify over agent, knowledge and even functions,

i.e., offering higher-order logic benefits. In [9], Basin et al. presented a theoreti-
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cal and practical approach to the modular natural deduction presentation of a class

of modal logics using Isabelle [89]. In [96], the sequent calculus of classical linear

logic KDT4lin is coded in the higher order logic using the proof assistant COQ [21]

with two-level meta-reasoning. These two pieces of work include neither the com-

mon knowledge operator nor the public announcement operator which adds much

complexity to the reasoning process. A similar approach to our work was taken by

Arkoudas and Bringsjord in [5]. Instead of encoding the logic and the axiomatization,

they encode the sequent calculus for a epistemic logic in Athena [4], an interactive

theorem prover too, and reason about the reasoning process in the logic. Two other

major differences are that their work did not provide support for public announcement

operators and that they did not comment on the completeness of their system.
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Chapter 7

Conclusion

7.1 Main Contribution of the Thesis

Agent software technologies are currently still in an early stage of market development,

where, arguably, the majority of users adopting the technology are visionaries who

have recognized the long-term potential of agent systems. Despite the potential,

one of the key problems awaiting to be resolved in agent-based technology is how

to represent the agent’s knowledge about the world and other interacting agents in

such a way that effective and efficient reasoning about complex properties of agent

knowledge can be performed.

More specifically, as we have identified in Chapter 1, the following four challenges,
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among others, in the field of knowledge representation and reasoning in the intelligent

agent domain exist and are of special interest to us. Here we iterate them again.

• Interoperability and Heterogeneity: Agent-based research is only just be-

ginning to grapple with problems associated with the inevitable heterogeneity

of its problem solving components. The basic problem is how agents with differ-

ent domains of discourse, employing different knowledge representation schemes,

different problem solving paradigms, and with different assumptions about their

world and each other, can be made to interact in an effective and scalable man-

ner.

• Uncertainty, Vagueness and Incompleteness: As agents have a necessarily

partial perspective of their world, and because their problem domain is open,

complex and distributed, they require sophisticated mechanisms for reasoning

with uncertain, incomplete and contradictory information if they are to exhibit

the desired degree of flexibility and robustness.

• Rules-based Agent Knowledge and Reasoning: Agents are situated in an

environment and exhibit reactive and possibly proactive behavior. Rules are

natural means to specify these forms of agent behavior. It is a challenge for

agents to perform reasoning on and with such rules.

• Multi-agent Knowledge Representation and Reasoning: The area of
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multi-agent systems is traditionally concerned with formal representation of the

mental state of autonomous agents in a distributed setting. The knowledge of an

intelligent agent typically deals with what agents consider possible given their

current information. This includes knowledge about facts as well as higher-order

information about information that other agents have. It is a challenging task

to enable systematic design of such intelligent agents as the reasoning process

of interacting agents can be extremely complex.

This thesis presents our research works in tackling these challenges. The four main

contributions of this thesis can be summarized as follows.

1. We have defined the PVS semantics for the ontology languages OWL DL and

SWRL (Chapter 3), making it possible to use the PVS theorem prover to per-

form complex reasoning tasks on Semantic Web ontologies. We have shown that

properties crucial to the validity of ontology-based knowledge can be checked

by PVS. Some of these properties are beyond the expressiveness of the current

ontology languages, including SWRL.

2. We propose Belief-augmented OWL (Chapter 4), as an ontology language en-

riched with belief information. As an extension of OWL DL, BOWL can be

used to associate belief and disbelief factors directly with web resources, en-

abling software agents to perform more flexible and accurate reasoning. We
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define the abstract syntax of BOWL and augment the model-theoretic seman-

tics of OWL to incorporate belief values. We also define the reasoning tasks

and algorithms for BOWL and present a prototype implementation using the

constraint logic programming technique.

3. We defined a set of notions for the anomalies that may exist in a set of rules

that an intelligent agent may possess (Chapter 5). Such anomalies include rule

inconsistency, redundancy and circularity. We propose to use a combination

of standard DL reasoning and the constraint logic programming techniques to

discover anomalies in a SWRL agent rule base.

4. We presented a formal hierarchical framework for specifying and reasoning

about higher-order agent knowledge (Chapter 6). We encoded a hierarchy of

epistemic logics in the PVS specification language. The framework mainly con-

sists of four components: Proof Systems for the ability to completely derive

theorems of a particular logic, Theorem Sets for storing the theorems derived

from the proof systems, Reasoning Systems for evaluating a formula of a con-

crete model, and Reasoning Rule Sets for storing reasoning rules for better

proof automation. Proof Systems and Theorem Sets work on the meta-level

while Reasoning Systems and Reasoning Rule Sets work on the object level. We

demonstrated the idea by solving the classical multi-agent epistemic problem.

One important contribution is that we are able to use the proposed framework
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to specify systems with an arbitrary number of agents and epistemic states,

which are not possible in the state-of-the-art epistemic model checkers.

7.2 Future Work Directions

Based on the work presented in this thesis, there are a number of directions of future

research that may be pursued. In this section, some of these possible research works

are briefly discussed.

7.2.1 Reasoning about Semantic Web Services

The Semantic Web should enable greater access not only to content but also to ser-

vices. Users and software agents should be able to discover, invoke, compose, and

monitor Web resources offering particular services and having particular properties,

and should be able to do so with a high degree of automation if desired.

The OWL-S [106] ontology has been developed to enrich Web Services with semantics.

The semantic markup of OWL-S enables the automated discovery, invocation, com-

position, interoperation and monitoring of Web services. This automation is achieved

by providing a standard ontology for declaring and describing Web Services.

Being an OWL ontology, OWL-S defines a set of essential vocabularies to describe the
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three components of a service: profile, model and grounding, as shown in Figure 7.1.

A service can have several profiles and one service model. The service model, in turn,

may have one or more service groundings. In summary, a service profile describes

what the service does; the service model describes how the service works and the

grounding provides a concrete specification of how the service can be accessed.

Figure 7.1: The main components of the OWL-S ontology.

The ServiceProfile class provides a bridge between service requesters and service

providers. The instances of this class advertise an existing service by describing

it in a general way that can be understood both by humans and computer agents. It

is also possible to use a service profile to advertise a needed service request.

OWL-S provides a subclass of ServiceProfile, Profile. This default class should include

provider information, a functional description and host properties of the described ser-
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vice. It is possible to define other profile classes that specify the service characteristics

more precisely.

The ServiceModel class uses the subclass Process to provide a process view on the

service. This view can be thought of as a specification of the ways a client may

interact with a service. The service model defines the inputs, outputs, preconditions

and effects (IOPEs) and the control flow of composite processes.

The ServiceGrounding class provides a concrete specification of how the service can

be accessed. Of main interest here are subjects including protocol, message formats,

serialization, transport and addressing. The grounding can be thought of as the

concrete part of the Semantic Web service description, compared to the service profile

and service model which both describe the service on an abstract level.

Model checking techniques [20] may prove to be applicable in this domain. Commu-

nicating Sequential Processes (CSP) [53] is a well-known event-based formal notation

primarily aimed at describing the sequencing of behavior within a process and the

synchronization of behavior between different processes. We plan to apply a recently

developed model checker, PAT [73, 104], to reason about semantic-based services.

The analysis will include the checking of reachability, deadlock and refinement, and

the verification of LTL formulae. Furthermore, PAT’s strength is in verifying liveness

properties under fairness assumptions, such as weak fairness and strong local/global

fairness.
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Complex Semantic Web services may have intricate data state, autonomous process

behavior and concurrent interactions. The design of such systems requires precise and

powerful modeling techniques to capture not only the ontology domain properties but

also the services’ process behavior and functionalities. Another approach is to apply

an integrated formal modeling language, Timed Communicating Object-Z (TCOZ)

[75, 76], to design SW services [113].

7.2.2 Combining Knowledge Uncertainty and Rules

We have seen in Chapter 4 and 5 how uncertainty reasoning and rule reasoning are

possible in the context of ontology-based knowledge representation. In particular we

have extended the ontology language OWL DL with belief factors. As SWRL is an

extension of OWL DL with rule axioms. It is natural to provide reasoning support for

belief-augmented rules. Certainty factors can be augmented to both the rule atoms

or the whole implication.

7.2.3 Higher Automation for PVS Verification

Proof Strategies

We defined 30 proof strategies in Chapter 3 and 24 in Chapter 6 to make PVS proofs

more automated. These strategies were designed according to the encoding of the
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corresponding semantics in PVS. Currently, we are in the process of developing more

intelligent strategies to implement heuristics found from our experiments, such as

backtracking.

We are inspired by the work [2, 3, 82] which developed a tool TAME (Timed Au-

tomata Modeling Environment) based upon PVS, allowing users to specify and prove

properties of three classes of automata without much effort. TAME utilized the ca-

pability of proof strategies in PVS and provided a collection of high level strategies

dedicated to assisting mechanized proofs of particular properties, specifically, proofs

of invariants and of weak refinement by means of induction.

Reasoning Rule Management

The frameworks we have proposed achieves a higher space bound than the current

state-of-the-art model checkers for both ontology languages and epistemic logic, at

the expense of automation. From time to time, the user has to select one from a

set of rules that is applicable in some stage of the reasoning process. This requires

much human expertise. Currently the reasoning rules are simply collected in a set

which grows with the use of the systems. A better rule management will be able to

categorize the rules according to some criteria such as the type of formula involved,

the number of premises or the number of bound variables.
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