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Summary 

The hostile nature of indoor radio environments and the rapid growth of 

commercial indoor positioning systems have placed a significant emphasis on 

developing robust localization techniques. The challenging problem of accurate 

positioning in hostile indoor environments with severe multipath and noise 

conditions is tackled through the introduction of the MUSIC super resolution 

algorithm. Due to its higher resolution capability and superior noise immunity, 

compared to other standard correlation techniques, it can be utilized to provide 

accurate time delay estimates under LoS conditions. The resultant pseudo-spectrums 

obtained by using this method, can also be used as location information rich 

fingerprints for NLoS conditions as well.  

The research work presented in this thesis focuses on the introduction of new 

variants in addition to the standard FD-MUSIC algorithm, such as the TD-MUSIC 

algorithm for more versatile and accurate performance. In-depth behavioural 

analysis is presented on the FD-MUSIC, FD-EV and TD-MUSIC algorithms to 

properly understand the strengths and limitations of each of the methods. The 

ESPRIT algorithm is introduced as an alternative, for systems that wish to forego a 

peak detection process at the expense of diminished accuracy. The variation of the 

steering vector pulse spread enabled us to identify the spectral leakage phenomenon 

of the TD-MUSIC algorithm, thereby enabling us to use it for our own advantage 

under certain conditions. The Eigen value de-weighting of the FD-EV method, is 

identified for having the capability to resurface underestimated signal peaks 

submerged beneath the noise floor, under friendly SNR and bandwidth conditions. 

The superior resolution capability, bandwidth versatility and noise immunity of the 
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TD-MUSIC algorithm is then demonstrated. Finally, we introduce the TD-EV 

method, which effectively combines the positive attributes of the TD-MUSIC 

algorithm and the FD-EV algorithm. This is done in order to utilize the superior 

resolution capability, noise immunity and bandwidth versatility of the TD-MUSIC 

algorithm and the resurfacing capability of the FD-EV method. Thus it is 

demonstrated how the TD-EV method emerges as the ultimate performer, under 

band limited conditions with low SNR, while the signal subspace dimension is 

underestimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Figures 

Figure 1.1 Direct and reflected multi-path GPS signals .................................................... 3 

Figure 1.2 Raw GPS heading errors while driving along a straight street in a dense 

urban environment (image taken from [2]) ................................................ 4 

Figure 1.3 Possible GPS signal propagation paths into a building .................................... 5 

Figure 1.4 Correlator output of a delay profile depicting the side lobe shift effect on 

the direct path (the attenuated direct path case depicted by the dashed 

line) ........................................................................................................... 8 

Figure 2.1 Tri-lateration based on TOA measurements .................................................. 26 

Figure 2.2 Positioning based on TDOA measurements .................................................. 29 

Figure 2.3 Mechanism of a RTOF based system ............................................................ 31 

Figure 2.4 Positioning based on Angulation ................................................................... 35 

Figure 2.5 Grid point distribution for a location based fingerprinting technique ............. 37 

Figure 2.6 UWB channel measurement for UDP case resulting in a large range error 

for time delay estimation techniques (image taken from [7]) ................... 38 

Figure 2.7 Distribution of various channel conditions on an indoor environment 

(image taken from [11]) .......................................................................... 39 

Figure 2.8 Indoor Positioning using GPS Repeaters ....................................................... 49 

Figure 2.9 Underground Mine ........................................................................................ 55 

Figure 3.1 Surface Plot of ��� ...................................................................................... 61 

Figure 3.2 Eigen value spread for 10 significant signal paths ......................................... 62 

Figure 3.3 Over-shifting of the TD-MUSIC steering vector ........................................... 65 

Figure 3.4 Pseudo-Spectrums of TD-MUSIC and FD-MUSIC algorithms when 

steering vector for TD-MUSIC algorithm is shifted over the upper 

bound ...................................................................................................... 65 

Figure 3.5 Flow Chart of Basic Super Resolution TOA Estimation Algorithm ............... 67 

Figure 4.1 Set of Gaussian steering vectors with pulse spread varied ............................. 80 

Figure 4.2 The Pseudo-spectrum spread for TD-MUSIC algorithm with the steering 

vector pulse spread varied at 7.5 GHz bandwidth and SNR = 10 dB ........ 82 

Figure 4.3 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 7.5 GHz bandwidth and SNR 

= 10 dB ................................................................................................... 83 



ix 

 

Figure 4.4 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 5 GHz bandwidth and SNR = 

10 dB ...................................................................................................... 84 

Figure 4.5 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 3 GHz bandwidth and SNR = 

10 dB ...................................................................................................... 84 

Figure 4.6 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 2.5 GHz bandwidth and SNR 

= 10 dB ................................................................................................... 85 

Figure 4.7 Comparison of super resolution techniques with the (+1) deviant of the 

TD-MUSIC algorithm for low bandwidth conditions (=2 GHz) ............... 88 

Figure 4.8 Comparison of standard FD-MUSIC and TD-MUSIC algorithms with 

Finer TD-MUSIC and FD-MUSIC algorithms with subsamples .............. 89 

Figure 4.9 Variation of normalized pseudo-spectrums for TD-MUSIC algorithm 

when signal subspace dimensions are varied from 0 to 5 for sound 

bandwidth (above 5 GHz) and SNR (above 5 dB) conditions ................... 92 

Figure 4.10 Variation of normalized pseudo-spectrums for FD-MUSIC algorithm 

when signal subspace dimensions are varied from 0 to 5 for sound 

bandwidth (above 5 GHz) and SNR (above 5 dB) conditions ................... 93 

Figure 4.11 Variation of normalized pseudo-spectrums for FD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for sound 

bandwidth (above 5 GHz) and SNR (above 5 dB) conditions ................... 93 

Figure 4.12 Variation of normalized pseudo-spectrums for TD-MUSIC algorithm 

when signal subspace dimensions are varied from 0 to 5 for low 

bandwidth (2 GHz) and SNR (1 dB) conditions ....................................... 94 

Figure 4.13 Variation of normalized pseudo-spectrums for FD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for low bandwidth 

(2 GHz) and SNR (1 dB) conditions ........................................................ 95 

Figure 4.14 Variation of normalized pseudo-spectrums for FD-MUSIC algorithm 

when signal subspace dimensions are varied from 0 to 5 for low 

bandwidth (2 GHz) and SNR (1 dB) conditions ....................................... 95 

Figure 4.15 Variation of normalized pseudo-spectrums for FD-EV algorithm when 

signal subspace dimensions are varied from 5 to 100 for sound 

bandwidth (above 5GHz) and SNR (above 5dB) conditions ..................... 96 



x 

 

Figure 4.16 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is underestimated as 2 (For sound BW and SNR 

conditions) .............................................................................................. 97 

Figure 5.1 Comparison of normalized pseudo-spectrums for path separation of 0.4 ns 

at sound bandwidth conditions with SNR = 10 dB ................................. 101 

Figure 5.2 Comparison of normalized pseudo-spectrums for path separation of 0.3 ns 

at sound bandwidth conditions with SNR = 10 dB ................................. 102 

Figure 5.3 Comparison of normalized pseudo-spectrums for path separation of 0.3 ns 

at sound bandwidth conditions with SNR = 5 dB ................................... 102 

Figure 5.4 Comparison of normalized pseudo-spectrums for path separation of 0.2 ns 

at sound bandwidth conditions with SNR = 5 dB ................................... 104 

Figure 5.5 Comparison of normalized pseudo-spectrums for case where 3rd path is 

lower than 2 dB in relative gain compared to other dominant multi-

paths ...................................................................................................... 105 

Figure 5.6 Comparison of normalized pseudo-spectrums for case where 3rd path is 

lower than 3 dB in relative gain compared to other dominant multi-

paths ...................................................................................................... 106 

Figure 5.7 Comparison of normalized pseudo-spectrums for SNR = 10 dB .................. 107 

Figure 5.8 Comparison of normalized pseudo-spectrums for SNR = 0 dB .................... 109 

Figure 5.9 Comparison of normalized pseudo-spectrums for SNR = -5 dB................... 109 

Figure 5.10 Variation of normalized pseudo-spectrums for FD-MUSIC algorithm 

under bandwidth change ........................................................................ 111 

Figure 5.11 Variation of normalized pseudo-spectrums for FD-EV algorithm under 

bandwidth change .................................................................................. 111 

Figure 5.12 Variation of normalized pseudo-spectrums for TD-MUSIC algorithm 

under bandwidth change ........................................................................ 112 

Figure 5.13 Variation of normalized pseudo-spectrums for TD-EV algorithm under 

bandwidth change .................................................................................. 113 

Figure 5.14 Variation of normalized pseudo-spectrums for TD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for sound 

bandwidth (above 5 GHz) and SNR (above 5 dB) conditions ................. 115 

Figure 5.15 Variation of normalized pseudo-spectrums for TD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for low bandwidth 

(2 GHz) and SNR (1 dB) conditions ...................................................... 115 



xi 

 

Figure 5.16 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is under estimated as 2. (For sound BW and SNR 

conditions) ............................................................................................ 116 

Figure 5.17 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is correctly estimated (For low BW and SNR 

conditions) ............................................................................................ 117 

Figure 5.18 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is underestimated as 2 (For low BW and SNR 

conditions) ............................................................................................ 118 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of Tables 

Table 4.1 TD-MUSIC Pseudo Spectrum Behaviour for varied steering vector pulse 

spread ...................................................................................................... 86 

 

 

 

 

 

 

 

 

 



xiii 

 

List of Abbreviations 

 

2-D   2 Dimensional 

3-D   3 Dimensional 

ACM   Auto Correlation Matrix 

AOA   Angle of Arrival 

AP   Access Points 

AWGN  Additive White Gaussian Noise 

CN-TOAG  Closest Neighbour with TOA grid  

DDP   Dominant Direct Path 

DGPS   Differential Global Positioning System 

DOA   Direction of Arrival 

DOLPHIN Distributed Object Location System for Physical-Space 

Internetworking 

DOP   Dilution of Precision 

DP   Direct Path 

DP-TOA  Direct Path Time of Arrival  

EMD   Earth Mover Distance 

ESPRIT Estimation of Signal Parameters via Rotational Invariance 

Techniques 



xiv 

 

EV   Eigen Value 

EU   European Union 

FBCM   Forward Backward Correlation Matrix 

FCM   Forwards Correlation Matrix 

FD-MUSIC  Frequency Domain Multiple Signal Classification 

FD-EV  Frequency Domain Eigen Value 

LoS   Line-of-Sight 

LS   Least Squared 

GLONASS  Global Navigation Satellite System 

GPS   Global Positioning System  

GNSS   Global Navigation Satellite Systems 

IFFT   Inverse Fast Fourier Transform 

ISM   Industrial Scientific Medical 

MLP   Multi-Layer Perceptron  

MP   Matrix Pencil 

MUSIC  Multiple Signal Classification 

N-D   N Dimensional 

NC   No Coverage 

NDDP   Non-Dominant Direct Path  

NLoS   Non Line-of-sight  

NUDP   Natural Undetected Direct Path 



xv 

 

RF   Radio Frequency 

RFID   Radio Frequency Identification 

RSS   Received Signal Strength 

RTOF   Roundtrip Time of Flight 

SMP   Shortest M-Vertex Perimeter 

SNR   Signal to Noise Ratio 

SUDP   Shadowed Undetected Direct Path 

SVM   Support Vector Machine 

TD-MUSIC  Time Domain Multiple Signal Classification 

TD-EV  Time Domain Eigen Value 

TOA   Time of Arrival 

TDOA   Time Difference of Arrival 

UDP   Undetected Direct Path 

UE   User Equipment 

US   United States 

UWB   Ultra Wide Band 

WLAN  Wireless Local Area Network 

WLS   Weighted Least Squares 

 



   1 

Chapter 1   

 

Introduction 
 

The very essence of human nature can be characterized by the never-ending 

thirst to explore the unknown. The first humans who ventured out of familiar 

surroundings in search of better sources of food sparked the beginning of an age of 

exploration that hasn’t ceased to this very day and no doubt will continue for times to 

come. As we speak, the never-ending voyages to the depths of the ocean floors, 

uncharted lands and the final frontier space itself, continue with the man’s undying 

desire to discover what is beyond the horizon.  

As exploration went beyond the known, to the unknown, to what was beyond 

where one had ever been before, the necessity to attain ones position with respect to a 

known reference system arose (for example while hunting your current position with 

respect to your home or nearby water hole). This was the birth of the very first 

primitive navigation and positioning system. Distance and direction were measured 

from prominent landmarks to describe location, giving birth to the concept of 

coordinate systems and reference points. Measuring distance and direction accurately 

was now of the utmost importance.  

Without an exception, as all of man’s creations which are flawed upon 

conception, positioning systems also require continual upgrades. Increasing accuracy 

is the primordial necessity in positioning, and the increase of which would lead man 

beyond the borders of what was possible; what was known; what was once beyond 
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our grasp; and what was merely science fiction only perhaps a year back. It is the 

potential that accurate positioning has upon our day to day needs in this millennium 

that has lead to such a rapid growth in a sector, which only half a century before was 

still in infancy. So much of our needs are tied to where we are at a given time and the 

significance of identifying where someone else is of equal importance. The launch of 

such behemoth projects as the GPS system and the Galileo system, serves evidence to 

the importance of positioning in this day and age.  

 

1.1 Limitations of GPS Systems 
 

The dawn of the new millennia has witnessed a significant surge in wireless 

systems. Lately the ever growing, wide ranging, wireless technological applications 

have shown for a need of integrating location aware functionality in wireless systems 

to cater to some of our diverse requirements. As it may be evident accurate location 

estimation is the key research task for any location aware system. The most popular 

and widely used positioning- system, the- GPS was originally developed by the US 

Department of Defence and is presently managed by the US Air Force. It is currently 

the only fully functional satellite navigation system in the world. Other systems, such 

as the Russian GLONASS system, the EU Galileo system and the Chinese Beidou 

system have limited operation, and are in the process of being developed as 

alternatives to GPS. 

GPS, despite its success and global acceptance has a number of limitations. 

Satellite navigation systems do not work well in heavily urbanized metropolitan areas 

with high-rise buildings (e.g. New York, Singapore, Tokyo) aptly named urban 

canyons. The existence of multiple structures, of varied geometry, in the surrounding 
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environment presents multiple reflective surfaces, thereby causing the presence of 

multi-paths as depicted in Figure 1.1. LoS signals transmitted from the geostationary 

satellites tend to diminish in strength as a result of free space loss. Further, high-rise 

buildings in urban environments at times block the LoS between the GPS receiver and 

the transmitter, hence completely blocking the direct path signal as shown in Figure 

1.1. This renders GPS receivers unable to function properly due to the absence of the 

direct path [1]. The effects of multi-path and Non-LoS conditions are evident in data 

collected by Trimble™ manual [2] when measuring a vehicle’s heading error while 

driving on a straight street in a dense urban environment, as shown in Figure 1.2.  

 

 

 

Figure 1.1 Direct and reflected multi-path GPS signals 
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Figure 1.2 Raw GPS heading errors while driving along a straight street in a dense 

urban environment (image taken from [2]) 

 

GNSS are subjected to even more hostile channel conditions when operating 

indoors and underground. The severe multi-path conditions render these systems 

practically inept to handle localization under such conditions. Unlike outdoor 

positioning systems, an indoor positioning system would experience severe multi-path 

effects and near-far effects [3]. It should be noted that the positioning algorithms in 

GPS systems were not designed to withstand the severe multi-path and noise 

conditions present in indoor environments. Further the level of precision required in 

small regions for certain indoor applications is beyond the range of most GPS 

receivers. Even if the signal does penetrate the barriers, GPS receiver sensitivity may 

not be sufficient in indoor environments to accurately capture the weak satellite 

signals transmitted [4]. Depending on the indoor building geometry and their material 

distribution pattern, large attenuations and non-homogeneities may occur causing the 

signals measured by the receivers to only be NLoS signals that may cause large 

position errors in standard GPS systems, as illustrated in Figure 1.3.  
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Figure 1.3 Possible GPS signal propagation paths into a building 

 

1.2 Motivation  
 

The primary progress in indoor positioning system technology has been made 

during the past decade or so. The rapid growth in research interest for Non-GPS 

positioning systems especially for indoor environments was due to the previously 

mentioned limitations of GPS when operating under these hostile channel conditions. 

Therefore, both the research and commercial products in this area are relatively new, 

and many people in academia and within the industry are currently involved in the 

research and development of these systems. An astonishing growth of wireless 

systems has been witnessed in recent years, as location awareness has become a prime 

necessity for any wireless system. Wireless localization technologies have entered the 

realm of consumer applications, as well as security, defence and public safety 

logistics, and medical, manufacturing industrial, entertainment, exploration and 
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transport systems as well as many other applications. Since wireless information 

access is now widely available, there is a high demand for accurate positioning in 

wireless networks, especially for indoor and underground environments [5, 6].   

Research interest for Non-GPS based positioning systems has surged in the 

last decade. Therefore our research work focused on two main aspects:  

I. Introducing versatile parameter estimation based positioning algorithms with 

enhanced performance, operating under LoS conditions in hostile indoor 

environments with severe multi-path and low SNR conditions. 

II. Development of a robust location information rich fingerprint, as the unique 

identifier for location based fingerprinting systems, operating under NLoS 

conditions, commonly present in indoor environments. 

It is commonly accepted among research circles that TOA based UWB 

wireless sensor networks are the most accurate for indoor geolocation [7] among all 

currently researched variants, for LoS conditions The synchronization requirement of 

TOA systems can be limited just either to transmitter side or receiver side as shown in 

[8]  by utilizing a TDOA scheme. Other parameter estimation techniques such as the 

RSS based positioning systems for instance, suffer severe deviations from mean 

signal strengths due to fading, its accuracy suffers greatly with distance, and finally it 

is very sensitive to the estimated path-loss model parameters [9]. AOA estimation 

techniques require antenna arrays at each node to determine the angular power 

spectrum which is required for Direction of Arrival estimation [10]. 

Conventional TOA estimation techniques which utilize either inverse fast 

Fourier transforms or correlation based methods, though simplistic, (used in GPS 

systems) are highly error prone, under severe multi-path conditions and have very low 
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noise immunity. It is known that the indoor channel consists of a large number of 

closely spaced multi-paths that arrive at the receiver side in clusters under DDP 

conditions [11]. When the time intervals between two adjacent multi-paths within a 

cluster are too close together, as customary in indoor environments, both these 

methods fail to resolve the direct path properly. The peak of the direct path lobe 

which symbolizes the time delay of the LoS signal is shifted, as a result of the 

overlaps between unresolved multi-path lobes and the actual direct path lobe, as 

illustrated in Figure 1.4. The resolution of these standard methods is limited by the 

inverse of the signal bandwidth. For example in inverse fast Fourier transform based 

techniques, the bandwidth required is the inverse of the minimum time delay in the 

channel. This means for one meter distance resolution, we need 300 MHz bandwidth, 

which is a significant amount for common systems such as 802.11 a, b and g. Thus it 

becomes impossible to resolve more closely spaced multipath signals, an essential 

criterion for many indoor applications [12]. Therefore multi-path is the primary 

source of error under DDP conditions [11].  
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Figure 1.4 Correlator output of a delay profile depicting the side lobe shift effect on 

the direct path (the attenuated direct path case depicted by the dashed line) 

  
 

Therefore use of super-resolution methods tends to be more attractive as a 

means of improving the spectral efficiency and measurement accuracy of a 

positioning system. Generally, a good super-resolution method must be robust, have 

high noise immunity, high resolution capability, high accuracy and low bandwidth 

requirements. Due to the higher bandwidth in UWB signals, the fine time resolution 

can be accurate to within one inch [13]. However under dense multi-path conditions 

as mentioned above the accuracy of the direct path TOA estimate is affected by the 

processing algorithm’s resolvability. In addition, our agenda is to develop versatile 

algorithms capable of producing, robust location information rich signatures for NLoS 

conditions, and accurate location estimates even for commercial low-budget systems 

having poor noise performance. Thus our interest is primarily focused on utilizing the 

principles of subspace separation for the development and improvement of super 

resolution algorithms, first introduced in [14, 15] for spectral estimation applications. 

This improves the resolution capability of the TOA estimation process. Super 
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Resolution techniques are a bandwidth efficient method of extracting the time delay 

parameters in a multi-path system bathed in noise. Its high resolution, as will be 

shown later, even enables the separation of closely spaced signal components from 

one another in band limited environments with severe multi-path effects. Super 

resolution techniques are mainly of two types; parametric techniques such like the 

Prony algorithm and Eigen analysis based frequency estimation techniques such as 

the MUSIC algorithm.  

The Prony algorithm is used in variety of methods for localization. In the basic 

method it equates the frequency sample points in a received signal spectra of a 

multipath channel used for indoor position estimation, to time sample points in a 

standard Prony application used for complex frequency estimation. Thus estimating 

complex frequencies via the Prony method is equivalent to obtaining the parameters 

of complex sinusoids generated in the frequency domain due to time delayed signals 

in the time domain of the indoor positioning channel [10]. This fundamental mapping 

logic is used in most localization systems. In another method, a Multi Carrier system 

was proposed for TDOA estimation as detailed in [8]. The Prony algorithm was used 

to obtain the time delay values of a multi-carrier signal received under noise. 

Estimation of frequencies of multiple anharmonically spaced sinusoidal signals from a 

noisy linear combination is summarized in [15]. The state space approach [16] which 

permits exact solution of � component frequencies and amplitudes, for � > 2� 
samples can be considered, and the model order selections can be based on [17]. Thus 

given a transmitted signal with � components in its multi carrier comb, we may 

extract the measurement parameter: 

 �� − 
��,   
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where ��  is the source clock offset and 
�� is the time of arrival of the kth path 
between the transmitter and n

th
 receiver sites). The number of multi-paths is assumed 

to be: 

 � ≤  ����� � − 1,   
where N is the number of multi-paths. From which TDOAs can be calculated through 

the cancellation of offset times since the source is common. TDOAs of the multipaths 

will yield large errors when applied to the location algorithm thus enabling the system 

to isolate the TDOAs of the DP. 

As opposed to the prior method the Eigen analysis based frequency estimation 

techniques have superior noise immunity. These techniques have been proposed for 

use in TOA estimation quite recently due to the added advantages they offer in 

resolution and noise immunity. The additional benefits the Eigen based methods offer 

over parametric methods in terms of noise immunity have being comparatively 

analyzed in [14]. The MUSIC algorithm in the frequency domain was suggested for 

localization in [18], as an alternative for the previously mentioned correlation based 

and inverse fast Fourier transform based techniques. Here possible diversity scenarios 

were also explored. The primary focus was on mapping the basic MUSIC algorithm 

fundamentals to a TOA estimation framework in the frequency domain, and 

comparing the resolution enhancement to the aforementioned traditional time delay 

estimation techniques. In addition to these the MP algorithm was utilized in [19] for 

indoor positioning applications. These techniques have mainly focused on mapping 

the professed super resolution techniques used for spectral estimation and direction of 

arrival estimation, in array systems, to a TOA estimation framework, while operating 

completely in the frequency domain, in an indoor positioning environment. Eigen 
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value de-weighting was done in these works to primarily reduce the spurious nature of 

the pseudo-spectrum as suggested in [20]. This analysis was primarily focused on 

appreciating the resolution enhancement achievable compared to the correlation based 

and inverse fast Fourier transform based methods. All solutions in this analysis 

focused on providing reliable time delay estimates merely for indoor positioning 

systems operating only under LoS conditions. Further, there wasn’t any emphasis 

given to development of variants to the standard MUSIC algorithm. Also no in-depth 

behavioural analysis was conducted to identify strengths and weaknesses or 

limitations of these methods so that they can be improved upon according to the 

prevailing environmental conditions. The multi-path effect was considered only as a 

‘noisy element’ as opposed to actual information that can be used for the benefit of 

positioning. Thus our research work focused on the next-step which was to explore 

these super resolution techniques in detail and depth, so that it can provide the means 

to develop more robust and versatile algorithms that can provide solutions for 

positioning problems in both LoS and Non-LoS indoor environments. 

 

1.3 Contributions 
 

As the need of providing positioning solutions for indoor environments in both 

LoS and Non-LoS is an essential practical requisite, our research focused on 

developing algorithms and solutions that would benefit for both scenarios.  Thus in 

our two fold approach the pseudo-spectrum generated as output of the suggested 

algorithms were examined as reliable sources of information for both LoS and Non-

LoS scenarios.  
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I. The peaks of the pseudo-spectrum were considered as possible inputs 

for time delay estimation based systems, operating under LoS 

conditions.  

II. The overall multi-path spread obtained by the pseudo-spectrum was 

explored as a possible candidate for a location based fingerprint under 

Non-LoS conditions. 

Previous research work on super resolution techniques has primarily focused 

on mapping methods such as MUSIC and Prony algorithms, to a TOA estimation 

framework suited for indoor positioning. Emphasis was on simply mapping these 

methods to provide a resolution improvement compared to simpler time delay 

estimation techniques, such as correlation based and inverse Fast Fourier Transform 

based techniques. Their domain of operation was frequency domain and Eigen value 

de-weighting was only done to reduce the spurious nature of the peaks. In addition 

these methods focused only on providing positioning solutions to TOA estimation 

systems operating under LoS conditions. Therefore our work focused on the next step 

in terms of super resolution algorithms for indoor environments.  

First in this research, we introduced the TD-MUSIC algorithm in addition to 

the FD-MUSIC algorithm, by making modifications in the objective function and 

steering vector to accommodate for the domain change. Then an in-depth behavioural 

analysis of both these techniques and the FD-EV method was conducted. The 

algorithm’s behaviour was comprehensively analyzed under normal as well as hostile 

radio conditions. This enabled us to properly understand the limitations, and to test 

the versatility of these methods, so that positive attributes and suitable application 

scenarios can be identified for each variant, hence allowing us to provide possible 

improvements. Algorithms were developed as viable candidates for localization in 
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indoor environments where low resolution techniques such as correlation based 

methods have proven to be ineffective. In our work, emphasis was on constructing 

versatile super resolution algorithms capable of handling the most adverse conditions 

prevailing in indoor environments (for example Low SNR; limited bandwidth; 

erroneous estimation of signal subspace dimensions). 

A mathematical model of the ESPRIT algorithm was developed for time delay 

estimation in indoor positioning. The ESPRIT algorithm is an alternative method to 

the MUSIC super resolution algorithm, in the direction of arrival estimation problems 

for array-based systems. It has the virtue of not relying on a peak detection process for 

parameter estimation. The downside of this is that it can only be used in an impulsive 

response case or if the signal spectrum is flat in the frequency sampling region. In 

addition, it is not as accurate an estimation tool as the MUSIC algorithms, and cannot 

generate the visual output that is required for a delay profile based fingerprint in Non-

LoS environments. However, it is presented here as a viable alternative for systems 

which desire less computations at the expense of accuracy.  

The extensive behavioural analysis conducted on the TD-MUSIC, FD-MUSIC 

and FD-EV algorithms under varying conditions enabled us to comparatively 

scrutinize the resolution capability, noise immunity, bandwidth versatility and impact 

of erroneous estimation of the signal subspace dimension of these techniques. Under 

the severe multi-path conditions prevailing in indoor environments, path resolvability 

becomes a key performance indicator. Considering that one of the fundamental 

reasons for utilizing super resolution based techniques compared to other approaches 

is its path resolvability, it is only fitting that the algorithms we developed provided the 

best possible resolution under hostile channel conditions. Path resolvability of these 

algorithms were comparatively analysed by identifying which methods continued to 
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accurately resolve all multi-paths present, while path separation between adjacent 

multi-paths were gradually decreased. It is important to keep in mind that an effective 

multi-path resolution comprises of two key steps. First, the algorithm should be able 

to identify the existence of two separate signal paths which is ensured when there is 

evidence of two separately identifiable peaks present in the resultant pseudo-

spectrum. Second, for the process to be deemed complete, the peaks must be placed at 

the correct locations corresponding to the relevant time delays. This is a fundamental 

criterion in resolution because as stated earlier the ‘peak shift’ that takes place due to 

adjacent paths causes an estimation error which is one of the underlying reasons for 

opting to use a super resolution technique in the first place. It was observed that the 

TD-MUSIC algorithm introduced in this work provided the best path resolvability in 

terms of path separation capability, when compared with its frequency domain 

counterparts. 

We further analyzed the effects of relative gain variations of multi-path 

components to understand which techniques have better ability to resolve significantly 

weaker multi-paths. The analysis provided us with evidence of the TD-MUSIC 

algorithm’s superior resolution capability, for detection and resolution of low gain 

multipaths. As the ability to provide location rich information is an essential criterion 

for fingerprint generation, the TD-MUSIC algorithm’s ability to resolve significantly 

weaker multi-paths, is of great significance for location based fingerprinting systems. 

The impact SNR conditions have on the pseudo-spectrum ‘shape’ and ability 

of the algorithm to resolve the multipaths under low SNR conditions is a 

measurement of the method’s ‘noise immunity’. Noise immunity becomes the 

underlying criterion for selection if we were to select a less expensive signalling 

technique such as ultra sound or audible sound for the positioning application. On the 
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other hand even for UWB based systems, the signal processing tool’s noise separation 

capability is essential for generating an accurate multi path profile of the transmitter 

to receiver channel. Part of the noise present maybe the resultant of interfering 

dynamic scatterers present at the real-time application stage, which were absent 

during the calibration stage of a location based fingerprinting positioning system used 

under NLoS conditions. It was verified in this research work that the introduced TD-

MUSIC algorithm had a superior noise performance, thus making TD-MUSIC the 

prime candidate for high noise – low cost and Non-LOS location based finger printing 

applications.  

The spectral leakage phenomena of the TD-MUSIC algorithm was identified 

for the first time by the research work presented in this thesis. It was discovered that 

the TD-MUSIC algorithm yields an optimum deviant for a given channel bandwidth, 

based on the signal template selected, and environmental conditions present. These 

deviants of the TD-MUSIC algorithm were produced by varying the pulse spread of 

the steering vector. When the algorithm behaviour was analyzed under varying band-

width conditions, the TD-MUSIC algorithm emerged the most robust under band-

limited environments, as it provided the least amount of shape deformation in the 

pseudo-spectrum under bandwidth fluctuations. Further, under certain bandwidth 

conditions it was discovered that the optimum deviant of the TD-MUSIC algorithm 

not only outperformed its frequency domain counterparts, but the original TD-MUSIC 

algorithm as well, to produce an extremely reliable pseudo-spectrum.  Thus under low 

bandwidth conditions the spectral leakage phenomena can actually be used to our 

advantage if the optimum deviant is known in advance. This can therefore be done by 

using the ultimate performer for the given channel conditions to generate the pseudo-

spectrum for time delay estimation or location based fingerprint construction. 
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A critical parameter for TOA estimation and location based fingerprint 

generation under subspace separation techniques is the value of the signal subspace 

dimension or the assumed number of signal paths in the channel. The inaccurate 

estimation of signal subspace dimension causes erroneous TOA estimates and 

generates deceiving multi-path profiles for standard MUSIC algorithms. Thus most 

previous research was focused on developing techniques to accurately determine the 

number of signal paths prior to subspace separation. The Eigen Value method was 

only suggested in spectral estimation, to reduce the spurious nature of the pseudo-

spectrum. In this work we were able to identify for the first time, that the Eigen value 

de-weighting done in FD-EV method resulted in resurfacing of the under estimated 

signal peaks, which were otherwise submerged beneath the noise floor for the MUSIC 

algorithms. But it was also noticed that this performance was achievable only under 

friendly bandwidth and SNR conditions. This result is of great importance, since, for 

the first time we have means of resurfacing submerged peaks when the signal 

subspace dimensions were underestimated, thereby relieving the computational 

burden at the pre-subspace separation stage. 

These discoveries lead us to develop the TD-EV method, which encompassed 

the “best of both worlds”, that is it strives to combine the positive attributes of both 

the TD-MUSIC algorithm and FD-EV methods’. As expected it was observed in this 

work, that the TD-EV method inherited the superior resolution capability, bandwidth 

versatility and the noise immunity of the TD-MUSIC algorithm, and the FD-EV 

method’s ability to resurface the underestimated signal peaks submerged beneath the 

noise floor even under the most hostile radio channel conditions. The TD-EV method 

only suffers a slight but affordable decrease in resolution, while inheriting all the 

positive attributes of the TD-MUSIC and FD-EV algorithms. The TD-EV method 
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produces the only informative pseudo-spectrum output, under band limited channel 

conditions with low SNR, where the signal subspace dimension is underestimated, 

while all other methods failed, thereby further establishing its superior versatility. 

 

1.4 Overview of Thesis Content 
 

The contents of this thesis are organised as follows: 

Chapter 1 Provides a general overview and introduction of the thesis. Describes 

the motivation behind the work and contributions achieved. 

Chapter 2   Contains a detailed assessment of indoor positioning systems 

literature in relation to the proposed research work. Presents 

application possibilities for indoor localization. 

Chapter 3   Contains a theoretical analysis of the super resolution techniques 

developed in our research. Details on practical constraints are 

presented. 

Chapter 4   The results of the behavioural analysis for the FD-MUSIC, FD-EV 

and TD-MUSIC are presented. The effects due to the variations of the 

steering vector pulse spread are studied and the spectral leakage 

phenomenon is introduced. The impact of erroneous estimation of the 

signal subspace dimension is analyzed and the resurfacing capability 

of the FD-EV method is presented. 

Chapter 5   The versatility of the time domain techniques is verified. The superior 

resolution capability, noise immunity and bandwidth versatility of the 

TD-MUSIC algorithm is demonstrated. The TD-EV algorithm is 
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introduced to combine the versatility of the TD-MUSIC algorithm and 

resurfacing capability of the FD-EV method. 

Chapter 6   Concludes the dissertation by summarizing the findings and outlining 

possible future work. 
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Chapter 2   

 

Indoor Positioning Systems, 

Solutions and Applications 

Scenarios 
 

This chapter first reviews appropriate topics from both scientific and other 

referenced sources of literature pertinent to this research in order to put the work 

presented in the next few chapters in perspective. It provides a detailed overview of 

various indoor positioning techniques as well as the evolution of research work in 

indoor positioning through the recent past. This aims to provide the reader with an 

understanding about the general direction as well as the extent of research work in this 

area. As there is a wide array of positioning solutions suggested in the literature, we 

aim to provide an effectively informative overview of all the major types of 

positioning solutions. The final section of the chapter presents the wide range of 

applications that have risen out of indoor positioning systems. So the reader may fully 

appreciate the reasons behind the sudden surge in research interest towards 

development of indoor localization solutions in the last decade or so. 

Different applications may require different types of location information. For 

example many applications may require a physical location which is expressed as 

coordinates on a 2-D/3-D map. Some may require a symbolic location expressed in a 

statement such as “user is in room 2A” or “object has reached gate B1 in terminal 

2”etc. Obtaining symbolic location is becoming increasingly important with the 

growth of context aware applications in wireless technology. The context aware 
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applications strive to combine both content and location to create an ambient 

intelligent internet of things. In addition, relative location refers to location with 

respect to a known baseline or reference frame. Finally, the absolute location can be 

given using the parameters longitude, latitude, and altitude. Whatever the desired 

output may be the positioning system needs to rely on accurate parameters or 

fingerprints at the navigation solution stage to generate a reliable position estimate. 

Our work focuses on the signal processing stage of a positioning system where the 

algorithms researched extracts raw noisy inputs from the sensor network and converts 

them into reliable parameter estimates or location information rich fingerprints, so 

that the final stage of the system can provide accurate positioning information to the 

end user in accordance to the desired application scenario.  

It needs be pointed out that the actual positioning takes place either on the 

receiver or the transmitter depending on the network topology utilized. There are four 

main topologies used in positioning systems [21]. In the first topology, the remote 

positioning system has a mobile transmitter whose signal is received by several fixed 

measurement units and the positioning is determined in a master station. The reverse 

of this, the second topology, is the self-positioning system where the mobile receiver 

determines its own location based on signals received by fixed transmitters at known 

locations. In both these cases if the positioning is done using fingerprinting, it is not 

necessary to have prior knowledge of the locations of the fixed units. As for the final 

two topologies, if a wireless data link is provided to send the positioning result, from 

a remote positioning system to the mobile user, it is called an indirect self-positioning 

system and conversely when the data link provides the remote system with the result 

derived from a mobile transceiver it is called an indirect remote positioning system. 

Here it should be pointed out that our work focuses on determining the time delay 
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estimate or generating the location based fingerprint, irrespective of the network 

topology at a single link level. This information is then processed by the navigation 

system at the mobile user, or the remote system, to provide the actual location. 

It is not easy to theoretically model the radio propagation in indoor 

environments because of severe multi-path conditions, Non-LoS conditions, and site-

specific parameters such as floor layout, moving objects, and numerous reflecting 

surfaces. There is no good model for indoor radio multi-path characteristic so far [6]. 

Therefore various parameter based positioning systems, as well as fingerprinting 

schemes, have been suggested to provide feasible solutions to the wide variety of 

scenarios.  

 

2.1 Various Parameter Estimation techniques 

used for Positioning 
 

We will first examine the various parameter estimation techniques available 

for indoor positioning in LoS environments. These techniques use triangulation as 

means of identifying the location of a given user. Triangulation is using properties of 

triangles to determine target location. It has two derivatives namely lateration and 

angulation.  

 

2.1.1 Lateration Techniques 

In the lateration technique location of the target is determined based on 

distance to the target from multiple reference points whose location is previously 

known through surveying techniques. It is also called range measurement techniques. 

Most initial positioning systems including GPS use multi-lateration to determine user 
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location. Tri-lateration refers to determining location based on three reference points 

as it is the theoretical minimum requirement for determination of a 3-D coordinate 

based on range measurements. But as range measurements contain range errors due to 

various factors such as synchronization errors, multi-path and noise etc. The range 

estimated using the measured parameter is called a pseudo-range, and rather than a 

point the tri-lateration results yields an area. Thus multi-lateration, which makes use 

of more than three range measurements, is used in practice and LS or WLS based 

techniques are used to determine the navigation solution from the noisy 

measurements. 

All these techniques are referred to as parameter estimation based techniques 

due to the fact that they resort to measuring a parameter from which the distance can 

be calculated, rather than direct distance measurement. In localization research, 

parameters such as TOA, TDOA, RTOF and RSS are used to determine range.  

We need to utilize the most accurate and cost-effective parameter estimation 

technique from the aforementioned lateration techniques. The next phase of the 

system is of significant importance as well, because what is ultimately desired is a 3-

D position estimate. Here we provide a summary of a standard navigation solution 

based on a linearization scheme utilizing a Taylor series approximation for a TOA 

based GPS system. This will enable us to better understand the importance of 

minimizing range errors for parameter based systems. This system can utilize any of 

the four topologies mentioned previously as its architecture (the basic calculation 

remains the same while the receiver transmitter notations gets altered). If we are to 

use a pure TOA scheme, the clock offset of the user will be the fourth variable to be 

determined, in addition to the 3-D coordinates. This in turn will result in a minimum 

requirement of four time delay estimates for accurate positioning. If a TDOA based 
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technique is to be used, as mentioned in [22], the need to synchronize the user clock 

with the source clocks becomes irrelevant. 

Let us consider a case detailed in [23] where the noisy time delay 

measurements are available from at least four sources, the user position � =
 ��� �� ��� and receiver clock offset ��, are to be determined. Here we take the 
case where the user acting as a receiver does its own calculation. The reverse case 

where the user is the transmitter is identical in its approach to determine the 

navigation solution.  If � =  �� � � � is the position of the !"# transmitter and $   
is the time delay measurement pertaining to the !"# transmitter: 

$ =∥ �! − & ∥  +(�)     (2.1) 

$ = * � ��, ��, ��, ���    (2.2) 

Now there are four non-linear equations and four unknowns. Therefore it is 

possible to either use a tedious closed form solution or linearize the equation set using 

the Taylor series approximation. In the Taylor series approximation method, LS or 

WLS approach will be used to obtain the position from the noisy measurements. In 

the latter case, increase in the number of sources will yield a better position estimate. 

In both cases an approximate initial solution is used and iterated till a certain 

convergence bound is met. The matrix formulation of the problem can be summarized 

as �*+, - = 4 (/01�: 
23 = 425      (2.3) 
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where, 

23 = 678978:78;78<
=    , H = >/?� /@�/?� /@� /A� 1/A� 1/?B /@B/?C /@C /AB 1/AC 1D  , Δ5 =  6 7?F7@F7AF�G7"F

= and Δ denotes the 
deviation from the linearization point. Note  6/?H/@H/AH = is the unit vector from the 
linearization point to the I"# transmitter. If the linearization point is close enough to 
the user from (2.3) we get, 

  25 = 4�J23      (2.4)                              

Formulating solution in LS fashion yields: 

25 = �4K4��JLM23    (2.5)  

or WLS: 

  25 = �4K�N�J4��JLM�N�J23   (2.6)   

where �N�J is the covariance matrix associated with the measurement errors. If 3K  is 
the vector of error free time delay values, 3O is the vector of time delay values 
computed at the linearization point and P3 represents the net error in time delay 
values, 

23 =  3K − 3O + P3     (2.7)  

and similarly, 

25 =  5K − 5O + P5     (2.8)  

where 5K is the error free position and offset time, 5O  the position and time defined 
as the linearization point, and P5  the error in the position and time estimate. Thus: 

Q5 = R�4K4��JLMSQ3 = TP3   (2.9)  
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since  �3K − 3O� = 4�UK − UO�. Matrix T maps error in time delay measurements to 

error in computed position and time (neglecting linearization errors). Equation (2.9) is 

analogous with the relationship: 

1VWX =  1YZ[ × 1]^_    �2.10� 
where 1VWX is the overall error in the positioning solution, 1bcW is the error due to the 
geometric factor and 1]^_ is the time of arrival estimation error. This relationship 
shows the importance of obtaining accurate time delay estimates, as well as 

minimizing the geometric factor, termed as DOP in popular terminology. The DOP 

parameters depend on the relative positioning of the sources with respect to the user in 

3-Dimentional space. Therefore the reliable TOA estimates obtained utilizing our 

super resolution techniques, coupled with careful planning at installation of system, 

will improve DOP results in accurate positioning solutions. It should be noted that the 

DOP in the vertical and the horizontal planes can be improved by having better spatial 

diversity among APs and the UE. 

 

2.1.1.1 TOA Techniques 

It is widely accepted in the research community that TOA based UWB 

systems are the most accurate [7] parametric based system in LoS environments. Thus 

TOA estimation has become the most popular choice for parameter estimation in 

localization in UWB based, as well as Non-UWB based systems. In TOA based 

systems the one-way propagation time from AP to UE is used. The distance from AP 

to UE is directly proportional to the measured DP-TOA parameter as depicted in 

Figure 2.1. As mentioned in the earlier section a theoretical minimum of three TOA 

estimates is required for a 3-D position estimate. The actual navigation solution can 
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use the geometric method of intersection of circles to obtain the position. Practically 

due to noise in the range measurements the intersection will demarcate a probable 

area rather than a point. In addition as there is a time offset due to the synchronization 

error between the clocks in the AP network (an assumption can be made that the 

clocks in the AP network are synchronized) and the UE, another unknown is added to 

the navigation solution, thus a minimum of four TOA estimates are needed to obtain a 

position in the 3-D space. Thus multi-lateration techniques that utilize LS or WLS 

formulations enable accurate positioning in the presence of noisy measurements.  

 

 

Figure 2.1 Tri-lateration based on TOA measurements 

 

 

For most systems the speed of light �( = 3 × 10ef0��� is the propagation 
speed that acts as the proportionality constant binding the TOA estimate with 

distance. This implies that a slight error in the TOA estimation process even in the 

order of a few microseconds could result in an error in the order of meters in the 

position estimate. This makes the accurate estimation of the TOA estimation 
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parameter paramount. It has been discovered that multi-path is the main source of 

ranging error for TOA based systems under DDP conditions due to resolution 

limitations of the time delay estimation techniques [11]. In traditional TOA based 

indoor geolocation systems we use the inverse fast Fourier transform of the received 

signal or a matched filter output in a correlation based scheme received above a 

certain detection threshold to estimate the DP-TOA, and thereby calculate the distance 

between AP and UE. The direct sequence spread spectrum based techniques in [25, 

26] for example utilize such schemes. In a single path ideal environment, the actual 

expected and estimated DP is the same. However, in multi-path environments where 

adjacent multi-paths are closely spaced to the DP, the peak of the channel profile is 

shifted from the expected TOA resulting in a TOA estimation error. This can be 

solved by utilizing the super resolution techniques newly found in this research work, 

which can resolve the closely spaced multi-paths effectively, thereby yielding 

accurate TOA estimates for LoS conditions. 

Some economical wireless sensor networks utilize ultra sound and audible 

sound for localization, while using RF signals for synchronization. The simple 

wireless sensor network Beep [27] uses audible sound for positioning and wireless 

LAN for synchronization. DOLPHIN an ultra sound based distributed positioning 

system with signalling and synchronization done by a RF pulse has been proposed in 

[28]. Both these systems use simple correlation or counter based peak detection 

algorithms for the TOA estimation process. Even with such simple methods; for 

example Beep yields accuracy to within 2 feet in 97% of cases for the 2-D case and a 

corresponding accuracy to within 3 feet in 95% of cases for the 3-D case. The fact 

that the speed of sound is significantly less than the speed of light reduces the errors 

in distances caused by incorrect time delay estimation. This has made such systems 
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attractive for commercial indoor positioning systems [29]. Ultrasonic and audible 

sound systems display poor performance under noisy conditions and such occurrences 

are frequent in indoor environments [30]. Use of noise immune super resolution 

techniques introduced in our work may significantly improve the performance of such 

cost-effective systems. Though our work utilizes impulsive type UWB signals in the 

GHz range for analytical purposes, one need not limit the possibility of application to 

just UWB based systems. Our emphasis is on constructing robust signal processing 

techniques that can produce desirable outputs independent of the underlying 

communication platform. 

 

2.1.1.2 TDOA Techniques 

The idea of TDOA estimation is to determine position of the UE by 

considering the difference in signal arrival times from multiple APs, rather than 

absolute time of arrival from each AP as done in previous section. For each TDOA 

estimate, the UE lies on a hyperboloid with a constant range difference between the 

two APs. The equation of the hyperboloid is given by: 

gH, =  h��H − ��� + ��H − ��� + ��H − ���  −  

ij� − �k� + j� − �k� + j� − �k�
  (2.11) 

where ��H �H �H� and �� � � � represent the locations of the fixed APs I, ! and 
�� � �� represent the UE location. A closed form Non-linear solution to the 
hyperboloid equation set generated by multiple measurements of (2.11) for various 

�I, !� AP sets was suggested in [31]. The easier solution is to linearize the equations 
through a Taylor series expansion and obtain location through an iterative algorithm 

[32, 33].  
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A 2-D location can be obtained as depicted in Figure 2.2 by the intersection of 

two or more hyperbolas. Similarly through intersection of three or more hyperboloids 

the 3-D location can be obtained. Notice to generate two hyperbolas for a 2-D 

coordinate 3 APs is required. 

 

 

Figure 2.2 Positioning based on TDOA measurements 

 

The TDOA parameters are normally obtained via cross correlation of received 

signals. If the transmitted signals from the APs are identical and all the AP clocks are 

properly synchronized the TDOA is obtained from the cross correlation function:  

gl?m,?n�
� = 1 op q �Hr� ���. �  �� − 
�. s�   (2.12) 

where �H  ��� and �  ��� are signal received by UE from  t�H and  t� . The TDOA is 
the 
 value that maximizes gl?m,?n�
�. The main advantage of TDOA scheme is that it 
cancels out the correlated errors between the differenced signal paths. This is very 

similar to the double differencing concept used in GPS [23]. What this signifies in a 

practical sense is that there is no need to synchronize the UE or the mobile unit clock 
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with the fixed AP network clock, as the offset error is cancelled out due to the 

differencing. As mentioned earlier obtaining the range measurements through super 

resolution techniques directly and differencing them is more accurate in indoor 

environments with severe multi-path conditions compared to correlation based 

methods. As examples of practical TDOA systems, in [8] a multi-carrier UWB system 

utilizing Prony method and in [22] frequency translator based system utilizing a 

TDOA scheme is presented.  

 

2.1.1.3 RTOF Techniques 

This method measures the roundtrip time traversed by the signal from the UE 

to the fixed AP and back. The range measurement mechanism and the positioning 

algorithm can be the same as of a TOA based system. As opposed to the TOA method 

in this method a more relaxed time synchronization method can be utilized. Even as 

the mechanism is similar to the operation of radar, the AP is not a passive reflector, 

hence the existence of a processing delay. The system can be considered as a simple 

probe request and response system where the AP sends back an acknowledgment to 

the incoming probe request (see Figure 2.3). The processing delay at the AP is not 

deterministic, and may result in a large positioning error especially for small range 

systems. However for long and medium range systems, as the delay is negligible, 

compared to the transmission time, it can be ignored. In [1] the WLAN standard 

protocol is utilized to negate the effect of the processing delay. The AP measures the 

time difference between it receiving the request and it sending the acknowledgment, 

and transmits that value. The UE can use this transmitted value, and the time 

difference it measures on its own to cancel out the effect of the processing delay. 

Another scheme to obtain the roundtrip times of WLANs is presented in [34]. Finally 
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the concept of modulated reflection can be utilized to obtain RTOF for short range 

systems [35]. 

 
Figure 2.3 Mechanism of a RTOF based system 

 

It should be realized that for all these time delay estimation techniques the 

measured time delay estimates have to be for the DP. The need for a LoS path 

between UE and all APs is essential for the success of these methods. If the first 

dominant path above the defined threshold is not the DP, that would result in a large 

range error. 

 

2.1.1.4 Received Signal Phase Techniques 

The received signal phase methods use carrier signal phase to determine 

location of target. Signals are transmitted from APs as pure sinusoids with zero phase 

offset simultaneously. Signal transmitted from AP to UE has a finite transmission 

delay, which is measured as the phase delay at the UE. The delay translated to 

distance is measured as a fraction of the wavelength.  
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uH = vwm�xy        (2.13) 

where I = 1: - (n is the number of APs) and {H��� = sin�2�*� +  �H� are the received 
signal from I"# AP. As long as �0 <  �H  < 2�)  i.e. as long as the maximum range 
measurement is less than the signal wavelength the ambiguity problem can be 

avoided. Otherwise similar to GPS, the carrier phase ambiguity needs to be resolved 

through an ambiguity resolution process [23]. Once the phase is known the navigation 

solution is similar to that of TOA schemes. 

 

2.1.1.5 RSS Techniques 

RSS or signal attenuation based techniques attempt to calculate the distance 

based on the signal attenuation or path loss from AP to UE. Theoretical and empirical 

models are used to map degradation in signal strength along the propagation path into 

distance. In [9], the mean received power of the signal is measured for a specific 

duration:  

�� =  �"��"� q |���� ∗ ℎ��� + -���|�s�"�"�    (2.14) 

The received power �� is modelled using the transmitted pulse shape ���� convolved 
with the channel impulse response ℎ���. Additionally a white Gaussian noise 
component -��� is taken into account. Then the mean decay of the signal strength is 
modelled using a path loss model such as: 

�� = �� − 10-�+� �s s�p � + {    (2.15) 

where �� is the power at reference point, s� is the distance away from the source, and 
{ is a log normal random variable with zero mean accounting for the large scale 
fading. As can be noted, the greatest virtue of the RSS technique is its simplicity in 

theory and its implementation. But the RSS technique suffers severe deviations from 
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its mean signal strength due to multi-path fading and shadowing. Second, its accuracy 

suffers greatly with distance, and third, it is very sensitive to the estimated path-loss 

model parameters. Therefore even with a careful calibration scheme, the RSS 

technique produces much worse results in terms of accuracy as compared to its 

counter parts. The accuracy of this method can be improved by utilizing pre-measured 

RSS contours centred on the AP [36].  In [37] the first path power as well as strongest 

path power statics have been utilized to obtain reliable position estimates. For LoS 

environments, it was shown that the first path signal power static provides sub-meter 

level accuracy for a low complexity positioning system using UWB signalling. 

Similarly the strongest path static provided a reliable metric for Non-LoS 

environments, as more location rich information is contained there. This result again 

highlights the importance of utilizing information provided by the full multi-path 

profile for localization as suggested in this research work. 

A better way of utilizing the RSS technique for positioning is to employ it as a 

signature for a closest neighbour determination algorithm as employed in [38]. 

Similar to most signature-based systems, this method produces better results 

compared to the direct approach, and it uses RSS measurements obtained from 

multiple APs to improve accuracy. For a system with  f APs the pre-calibrated
 �"# 

reference point entry on the radio map and observed vector are respectively: 

� ��� , ��� =  R��� ��� … ���S  
and  

� =  R�� �� … ��S  
Then the Euclidean distance vector, which is to be minimized in the closest neighbour 

algorithm, will be: 
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u� =  h∑ ��H − ��H���H��     (2.16)  

But the resolution of such an algorithm will be limited by the resolution of the grid 

defined for the location based fingerprinting system. And its calibration process, as a 

resultant will be tedious. However location-based fingerprinting schemes are 

becoming more popular in indoor positioning research and will be covered in more 

detail in Section 2.2 of this chapter. 

As various information obtained from signal strength measurement contain 

location rich information that can be utilized to form linguistic variables. For the 

fuzzy logic system introduced in [39], a two stage fuzzy logic approach is used for 

positioning in a WLAN based system.  The signal strength parameter used in their 

application is the SNR. The fuzzy logic system uses, matching between calibration 

and observation data, of parameters such as mean value of SNR, max value of SNR 

and standard deviation of SNR for positioning. Parameters which contain location 

rich information can be used as reliable inputs to a fuzzy logic system. This places an 

added importance on the resultant pseudo-spectrums generated in this work, as they 

contain location specific details about the surrounding environment through its 

detailed high resolution multi-path profile. 

 

2.1.2 Angulation Techniques 

 AOA based methods use the intersection point of several pairs of angular 

directional lines, each formed by the circular radius from a fixed AP, to obtain the 

position of the target mobile UE. As illustrated in Figure 2.4 a minimum of two AOA 

values, from two reference APs, are required to obtain the 2-D location of the mobile 

UE, according to basic triangulation. Estimation of AOA, known as direction finding, 
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is accomplished by the use of an antennae array or directional antennae. Although no 

synchronization is required, these schemes have the disadvantage of requiring 

relatively large and complex hardware [10]. In addition the location estimate accuracy 

degrades, as mobile UE moves further away from the reference APs. Finally the 

accuracy of the AOA estimates of a wireless positioning system will be further 

limited by the directivity of the measuring aperture, shadowing and multi-path 

reflections arriving from misleading directions due to the hostile channel conditions 

prevailing in indoor environments. It should be noted that in certain literature AOA 

estimation is referred to as DOA estimation. More detailed accounts of these 

techniques can be found in [40, 41].  

 

Figure 2.4 Positioning based on Angulation 
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2.2 Location based Fingerprinting Techniques 
 

Location based fingerprinting refers to positioning methods which first collect 

features of the surroundings (a fingerprints of the scene) at a pre-defined resolution 

(see Figure 2.5), stores them in a database, and then matches the information 

(fingerprint) obtained at a real-time application stage to the closest a priori 

fingerprint(s) to estimate location. RSS based fingerprints were the first and most 

popularly used fingerprinting technique due to its simplicity in theory and application. 

The fingerprint should contain some information from the received signal(s) that are 

location dependant. There are two main stages in location based fingerprinting: 

 

I. Offline stage (or the calibration stage): A site survey is performed and 

grid points are decided according to the resolution requirement. After 

which the coordinates and fingerprints of the respective grid points are 

collected and stored. 

II. Online stage (or the real-time application stage): The UE measures a 

fingerprint from an unknown location, and uses a matching technique 

to determine the location, by utilizing the correlations between 

measured and stored fingerprints. 
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Figure 2.5 Grid point distribution for a location based fingerprinting technique 

 

As classified and analyzed in detail in [7, 11] the indoor channel can be 

broadly categorized into DDP, NDDP, UDP and NC cases. For the first two cases in 

this classification, the DP is detectable. Thus standard time delay estimation based 

localization techniques can be applied with reasonable accuracy, while the super 

resolution based techniques introduced in this thesis may be used to further minimize 

the ranging error. As the NC case simply implies that there is no coverage, since no 

detectable signal is received by the user (the total power is below threshold), therefore 

it is not analyzed or addressed further in our discussions.  

Location based fingerprinting techniques were first introduced due to the 

existence of the UDP cases. UDP condition occurs when the average received power 

of the DP falls below an established threshold. The UDP case was first observed in 

[43]. In detectable DP environments, the TOA of the first detected path is close to the 



   38 

TOA of the DP, resulting in smaller range errors. Whereas for UDP conditions where 

the DP is below the detectable threshold, time delay estimation techniques can result 

in large errors, because AP to UE distance is estimated by using time delay 

parameters obtained from a Non-LoS path as illustrated in Figure 2.6. 

 

 

Figure 2.6 UWB channel measurement for UDP case resulting in a large range error 

for time delay estimation techniques (image taken from [7]) 

 

It is identified that the UDP case can be subdivided as NUDP (Natural UDP) 

and SUDP (Shadowed UDP). NUDP conditions occur when the direct path fades 

below the threshold. In this case the DP is not detectable anymore, but the next 

detectable path is within the same cluster as the DP. As this path is relatively closer to 

the DP this condition results in smaller range errors. For the SUDP case unlike the NC 

scenario, the total power received is sufficient to establish a communication link 

between transmitter and receiver. Nevertheless, the entire first cluster which contains 

the DP is blocked. This results in a much larger range error from time delay 
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estimation techniques, which now rely on a Non-LoS path from the next cluster to 

conduct the range estimation. Normally for these SUDP scenarios the first cluster of 

paths containing DP is totally blocked by metallic obstacles, such as elevator shafts, 

metal chambers, metal doors etc. The distribution of these scenarios on an indoor 

environment with walls as well as a metallic object is illustrated in Figure 2.7. This 

was obtained from research work conducted in [11]. This visualizes the severity and 

impact of UDP cases in indoor environments. The SUDP case was generated by 

placing a metallic object parallel to the vertical axis. 

 

 

Figure 2.7 Distribution of various channel conditions on an indoor environment 

(image taken from [11]) 

 

Therefore our work which attempts to present a viable solution for both LoS 

and Non-LoS conditions, through the same signal processing algorithm, is of great 

practical importance, as it enables the same underlying technology to be used in a 

different manner, when transferring from a DDP to UDP environment. In the 
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proceeding sections of this chapter, elaborations of various location-based 

fingerprinting techniques will be presented, so that the importance of selecting proper 

location-based fingerprints with location rich information can be fully appreciated.  

RSS based fingerprints have been the most popular approach in initial 

fingerprinting related work, as comprehended in the earlier Section 2.1.1.5. There it 

was presented, how an m-dimensional RSS based vector was constructed for each of 

the grid points, based on RSS values obtained from ′f� APs. These vectors were 
stored in a database, and then matched with the m-dimensional observation vector, 

using a Euclidean distance minimization scheme to obtain the current location of the 

UE [38]. In [44], RSS values obtained from APs in an existing wireless LAN were 

used to construct a radio map to obtain positioning estimates. Similarly a TOA based 

vector can be utilized as a location-based fingerprint, as done so in the CN-TOAG 

algorithm implemented in [45]. Here the range values calculated from TOA estimates 

of four APs are used to construct a basic fingerprint. Similar to the RSS based vector 

scheme mentioned before, a Euclidean distance minimization is used for fingerprint 

matching. The accuracy of the location estimate will be highly dependent in the 

granularity of the TOA grid. The granularity of the grid can be increased for better 

accuracy at the expense of database size, thus increasing the computational time of the 

estimation algorithm.  

It should be noted that the fundamental reason for opting for a fingerprinting 

based positioning scheme, was to achieve better positioning accuracy in NLoS 

conditions. It is not simply another option to be used instead of TOA estimation for 

LoS conditions, as was the case with most of these approaches mentioned above. This 

implies that making an assumption that the received fingerprint may contain 

information about the DP is not prudent. Therefore the location based fingerprint 
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utilized should be selected, such that it contains location specific information even for 

NLoS cases where the DP is absent. In addition, similar to the parameter based 

estimation techniques, the RSS or TOA vector based schemes rely on multiple APs, 

for generation of a fingerprint. Also it is known that the DP-TOA and RSS values are 

not reliable parameters in their raw form for localization in indoor environments with 

severe multi-path conditions.  

In [46] a novel approach utilizing the spatial power spectrum of the received 

signal was used to form the fingerprint. The receiver was equipped with a circular 

antenna with beam forming capability, so that the direction of its main beam can be 

steered towards any desired angle. The antenna beam was rotated 360 degrees around 

the field of view to construct the spatial power spectrum. The spatial power spectrum 

obtained, even with a single transmitter, had a unique shape for each grid point, thus 

making it a more location information rich fingerprint as compared to previous 

methods. Thus comparable positioning accuracy can be obtained even with the use of 

one or two APs. Other methods mentioned before in this section, were shown to yield 

large positioning errors, when the number of APs are reduced. This is due to the lack 

of location rich information contained in a fingerprint generated using just RSS or 

TOA values for a single AP measurement. The added benefit offered by this work 

was that, for the first time, an actual image was used as the location signature. Thus 

image matching techniques such as EMD can be utilized for the fingerprint matching 

phase. EMD was introduced in [47] as a distance metric with applications in content-

based image retrieval. The ability of this metric to match perceptual similarity better 

than others, makes it an attractive method for localization applications. EMD 

measures the minimum cost that must be incurred, to transform one signature to 

another, as the basis of its matching technique. This work allowed us for the first time 
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to entertain the possibility of using the pseudo-spectrums generated in our work, as 

possible inputs for location-based fingerprinting schemes. The detailed noiseless 

multi-path profiles generated using super resolution techniques (discovered in this 

research work) provide the best means of identifying a given grid point uniquely, 

based even on a single AP measurement. Hence the resultant pseudo-spectrums 

generated in this thesis, can be reasonably assumed to contain the location rich 

information much needed for a robust location-based fingerprinting technique for 

indoor localization. 

Various other systems have been proposed by researchers, which utilize the 

location dependant information of fingerprints for localization in a variety of ways. 

Linguistic location dependant variables are formed based on signal strength 

measurements; to implement a two-stage fuzzy logic based fingerprinting system in 

[39]. In [48] a MLP network with one hidden layer is used for a neural network based 

positioning system. 

The MLP network mentioned above is trained to produce 2D/3D co-ordinates 

based on signal strength dependant inputs. There it was observed the k-nearest 

neighbour based methods achieve results similar to the results of the neural network 

based method. We feel that the absence of location rich information, which takes into 

account the complex dependencies between signals and position in the input 

signature, is the reason for this observation. Only RSS values from a few APs were 

used as the inputs in this method. Therefore our pseudo-spectrum output, which 

contains detailed multi-path profile information of the environment, as seen from the 

receiver, is an ideal input candidate for this neural network-based system. The 

location rich information present in this signature may allow the neural to capture the 

complex dependencies between signals and position more effectively. Even for the 
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fuzzy logic-based systems, the more location rich information input variables capture, 

the more accurate the system will be.  The reasoning behind this is similar to the 

principle used in robotics for environment recognition [49]. The more information the 

signature contains, the more unique and location dependant it becomes. Thus, what is 

presented here as the resultant pseudo-spectrum output of our super resolution 

algorithm, can actually be thought of as the ultimate location information rich 

fingerprint for radio map construction, under non-LOS conditions. Now we shall 

present the basic types of location-based fingerprinting algorithms that use pattern 

reorganization for localization. 

 

2.2.1 Probabilistic Method 

This method considers the presence of ′-′ possible location candidates. Its 

decision rule is defined by: 

�ℎ++01 �H I* � ��� | ��  >  � j�� | �k    (2.17) 

for ∀ !  where I ≠ !; 
and, 

-  is the size of fingerprints stored in database during off-line phase; 
�� ∀  R 1 , - S are the possible location candidates; 
� is the observed signal strength vector; 
� ��� | ��  is the probability US is in location �� given observation vector was �; 
� ��H� is the probability of UE being in location ��. 
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Now using Baye’s rule, the decision rule can be restructured as below, if the 

probability of the UE on each grid point is identical. 

Choose L£ if, � �� | �� �  >  � j� | ��k     (2.18) 

where, 

� �� | �� � is the probability signal vector � is received given that UE is at ��. 
Assuming each location candidate to be Gaussian, the mean and standard deviation of 

each candidate can be calculated. If each of the AP measurements is independent, the 

overall likelihood of each candidate can be obtained by multiplying the likelihoods for 

each AP measurement value for that particular candidate. Localization based on 

probabilistic methods for wireless networks have been discussed in detail in [50]. 

Further, the accuracy of grid based fingerprinting schemes are limited by the 

granularity of the grid. Therefore a weighting approach can be utilized for position 

estimation, which in turn enables us to obtain a location result between grid points. 

This can be done by weighting the likelihood of each candidate with its coordinate. 

��¥ , �¥� =  ∑ ��¦ | O��. ��H�� �Om , �Om�     (2.19) 

 

2.2.2 kNN Weighted Averaging Methods 

In this approach the N-D Euclidean distance from the observation vector to the 

fingerprints on the database are first calculated. Then the k closest neighbours are 

chosen, and the final position is obtained by averaging them in signal space directly, 

or by weighting them based on Euclidean distance and averaging them. Even for a 

method that uses something other than N-D Euclidean distance as the matching 

parameter, still the parameter defined can be used to determine the k-closest 
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neighbours and the weighting can be done in a similar manner. The parameter ‘k’ 

should be decided based on the situation, as it is a key tuning parameter for the 

system. This method has its advantages based on the assumption that ‘k’ neighbours 

cannot be all deviated from the general vicinity of the actual UE position. In addition 

it also removes the grid granularity constraint on performance to some extent, but 

introduces ‘k’ as an additional parameter that determines system performance. In our 

case as actual details of the environment are included in the location based fingerprint 

this increases the chances of the fingerprint to match perceptual similarity. This 

ability implies that the resultant pseudo-spectrum outputs of our super resolution 

algorithms can utilize interpolative techniques such as kNN weighted averaging 

method more effectively to enhance performance. 

 

2.2.3 Neural Network based Methods 

As mentioned previously, neural network based methods have being proposed 

for localization based on fingerprints [48]. The location-based fingerprint, and the 

coordinates of the grid points, is the inputs and targets during the off-line training 

phase of the neural network. MLP network with one hidden layer is used, and the 

weights are obtained at the training phase. Input signature is first multiplied by the 

input layer weight matrix and bias is added if chosen. After passing through the 

hidden layer transfer function, the output is multiplied by the trained hidden layer 

weight matrix and a bias is added. The output of the MLP network as specified will be 

the estimated coordinates of the UE. The neural network strives to capture the 

complex dependencies between the coordinate and the signature, during the training 

phase, so that all the location information of the signature can be effectively used for 
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positioning. This underlines the importance of choosing a location information rich 

signature that can feed much location dependant information to the neural network for 

accurate positioning. 

 

2.2.4 SVM Methods 

Support Vector Machine is a new technique for data classification and 

regression with a lot of promise. It is a great tool for machine learning, as well as 

statistical analysis, hence it suits for classification and regression applications, making 

it ideal for localization based on fingerprints. SVM has already been used in wide 

variety of applications in science, engineering and medicine [51, 52]. The theoretical 

background on SVM can be found on [53, 54]. These techniques have also been used 

in location based fingerprinting [55, 56]. 

 

2.2.5 SMP Methods 

This method is used for location-based fingerprinting systems that utilize 

multiple APs. In the online phase it creates a candidate pool for each of the APs 

independently. Considering a case where there exists � APs, an M-vertex polygon is 

created by one candidate from each of the AP pools. The M-vertex polygon with the 

minimum perimeter is assumed to contain the UE, thus the coordinate of the shortest 

M-vertex perimeter is then averaged to obtain the location of the UE. This method has 

been used for localization [57]. 
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2.3 Proximity Algorithms  
 

These algorithms provide symbolic positioning information using a dense grid 

of APs with known locations. In this method when an AP detects the UE, we assume 

that the UE is now in the general vicinity of that particular AP. If more than one AP 

detects the UE it is assumed that the UE is attached to the AP with the strongest 

signal. This method is extremely simple to implement and can only be used to provide 

a general idea about the UE location. Systems which use Cell-ID or RFID for 

localization are examples of this method. They can only provide information such as 

which room or cell a user is in.  

 

2.4 Technologies used for Indoor Localization 
 

Now we discuss some of the popular technologies used for indoor localization 

systems in research as well as commercial sector. 

 

2.4.1 GPS based methods 

GPS and its differential modification, DGPS [58] are some of the most 

successful and popular outdoor positioning systems. However, limitation of satellite 

vehicle signal reception in heavily urbanize areas, due to high rise buildings and poor 

coverage of GPS satellite signal for indoor environments, decreases its accuracy and 

limits its performance. In addition, the GPS system which was designed mainly for 

outdoor environments, with clear LoS between satellite and receiver, does not operate 
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well under the severe multi-path conditions and Non-LoS conditions prevailing in 

indoor and underground environments.  

In both research and commercial sectors, for indoor location estimation, a 

wide array of solutions based on GPS technology has been explored in the last decade 

or so. One of the solutions proposed is the weak signal GPS receiver. The integration 

time of the GPS receiver is increased so that the weak GPS signal with a low SNR can 

be acquired [59]. This comes at the cost of very slow acquisition times (due to the 

extensive search) or the need of aiding data such as rough position, which have to be 

provided by other networks. For instance, a wireless handset is used to collect 

location information from both the GPS constellation and a wireless mobile network 

in certain assisted GPS applications. These measurements are then combined at the 

location server to provide a positioning solution. 

Pseudolites (Pseudo-satellites) work like real GPS satellites using a distinct 

Gold code to make them appear unique within the environment in which it is used. 

For the GPS receiver the pseudolite appears as yet another GPS satellite. However, 

the hardware associated with such a system is expensive. In addition, exact time 

synchronization of the different pseudolites is paramount. Such systems have been 

popular for aircraft landing systems, as they provide the added increase in Horizontal-

DOP required for a rapidly converging solution, which is essential for such 

applications. However for indoor applications, as pointed out previously, the added 

complexity in design and the higher costs, limits its commercial viability.  

Further, the use of a GPS repeater that transmits a repeated GPS signal in its 

own disjointed time slot [60, 61] after acquiring the original signal from a roof 

antenna has been proposed (see Figure 2.8). The GPS position obtained from each 

repeater is the same as long as they are all connected to the same roof antenna. 
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Therefore, the clock bias with respect to each repeater is calculated, and, as the 

repeater positions are pre-determined, the position of the UE relative to the roof 

antenna can be obtained. This combined with the initially obtained roof antenna 

location yield the position of the UE. In [22] an alternate repeater based system that 

uses a translated carrier frequency on the 2.4 GHz ISM band was suggested. 

 

 
Figure 2.8 Indoor Positioning using GPS Repeaters 

 

 

Even for these techniques the underlying position determination technology is 

GPS, a technology that relies on conventional time of arrival (TOA) estimation 

techniques, designed with channel conditions prevailing in outdoor environments in 

mind. Thus, they may also be error prone in the presence of severe multi-path 

conditions prevailing in indoor environments. Therefore research interest for Non-

GPS based positioning systems has grown significantly. 
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2.4.2 RFID Methods 

RFID methods store and retrieve data through electromagnetic transmission to 

an RF compatible unit [62]. RFID system has several basic components, which 

include a number of RFID readers, RFID tags, and the communication facility 

between them. The RFID reader is able to read the data emitted from RFID tags. 

RFID readers and tags use a defined RF and protocol, to transmit and receive data. 

RFID tags can be either passive or active. 

Passive RFID tags acts as a passive element that reflects the signal transmitted 

to them from a reader, and adds information by modulating the reflected signal. They 

are much lighter, smaller in size, less expensive than the active tags and operate 

without a battery. They make use of LF, HF, UHF and microwave frequencies. The 

active tags are effectively transceivers that can transmit their own ID and other 

additional data to an interrogation unit from the RFID network. They use both UHF 

and microwave frequencies. The active RFID has much longer range, hence being 

suitable for tracking high unit value products moving in a harsh assembly processes. 

The SpotON [63] RFID technology, a well known technology, uses radio signal 

strength for 3-D location sensing. SpotON tags use signal strength to estimate inter-

tag distances: exploit density of tags and correlation of multiple signals to improve 

accuracy. Location sensing is done by homogenous sensor nodes, in an Ad Hoc 

manner, without a central control. Another RFID location sensing system, 

LANDMARC [64], uses extra fixed location reference tags to help location tuning, 

thereby increasing accuracy without additional readers. 
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2.4.3 Cellular based Methods 

Many systems have used cellular mobile networks to obtain location of 

outdoor clients. Accuracy of methods using Cell-ID or enhanced observed time 

difference are generally low ranging, in the range of 50-200m depending on the cell 

size. The accuracy of this method in general is much higher in dense urban areas as 

opposed to rural areas [65]. 

Indoor positioning using a cellular mobile is possible if several base stations 

cover the building in question, or a signal from a single base station with strong RSS 

is received by mobile users. In [66], a GSM based indoor localization system is 

presented with the use of wide signal strength fingerprints. The method uses readings 

from multiple GSM cells, and readings of additional GSM channels, which are strong 

enough to be detected, yet too weak for communication. The system uses signal 

strength fingerprints, and the kNN technique to achieve media accuracy within a floor 

of about 2.5 m. These same techniques can be applicable to IS-95 CDMA and 3-G 

mobile networks. 

 

2.4.4 UWB Solutions 

UWB systems send ultra-short pulses less than 1ns in duration with a low duty 

cycle (typically 1:1000), thus translating in to an UWB in the frequency domain. 

UWB signals are transmitted for a much shorter duration than those in other 

conventional systems. The UWB tags consume less power, and can operate in a 

broader spectrum. UWB can be used in close proximity to other systems with low 

interference, due to differences in signal types and the spectrum used. The UWB 

signal passes easily through walls and, clothing, however, liquid and metallic material 
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cause interference.  As mentioned before it is widely accepted in the research 

community that TOA based UWB systems are the most accurate [7] parametric based 

system for use in LoS environments. Thus, UWB is a popular choice especially for 

time delay estimation techniques in indoor environments. 

 

2.4.5 WLAN (IEEE 802.11) Systems 

With a typical gross bit rate of up to 108 Mbps, and range of 50-100 m, IEEE 

802.11 is currently the dominant wireless protocol standard. The midrange WLAN 

operating in 2.4 GHz ISM band, has become very popular in hotspots and enterprise 

locations in recent years. Therefore, it has become appealing for indoor localization 

researchers to use the existing WLAN infrastructure with the addition of an additional 

location server.  

The properties of the standard WLAN protocol were utilized to negate the 

effect of the processing delay in a RTOF based systems in [1]. The fact that the AP 

transmits its own delay in acknowledging a probe request enables the client to remove 

the processing time from the measured RTOF value.  

The fact that the RSS parameter is included in the WLAN protocol, makes 

RSS based localization a convenient choice for localization in WLANs. For example 

in [44], the in-building WLAN based user system adopts a closest neighbour in signal 

space technique, similar to the kNN approach. The RSS values obtained in the off-line 

phase were used to construct a radio map to acquire position estimates. In addition 

they also introduced a propagation modelling approach that utilizes a wall and floor 

attenuation factor based model, rather than an outdoor fading model to improve 

accuracy to about 2-3 m. 



   53 

Systems proposed in [67, 68] use probabilistic methods, proposed previously, 

for localization. The location candidate with the highest likelihood is chosen.  

Increasing the number of samples at each grid point is shown to improve accuracy. 

This is because an increase in the number of samples used, results in an increases in 

the reliability of the mean and standard deviation estimates of the Gaussian 

distributions estimated at each grid point. Further, a grid based Bayesian localization 

method for a small region, and a probabilistic approach, was used to estimate device 

location for WLAN networks proposed in [69, 70] respectively.  

In [71], a neural network based approach was proposed for localization in 

WLAN networks. They had adopted an MLP architecture, with a one-step secant 

training method. With only five samples of RSS values in each grid point, they were 

able to achieve an average distance error of 3m. Authors of [72] compared the neural 

network based approaches, with probabilistic, and nearest neighbor approaches, to 

determine that the neural networks give 1 m error 72% of the time. 

 

2.5 Application Scenarios 
 

Indoor positioning applications are wide ranging; spanning from security and 

defence, to commercial, entertainment, exploration, underground mining, search and 

rescue operations, all the way to location based file sharing. The development of 

context-aware networks has increased the importance of localization technology; such 

networks utilize user location information and the content information surrounding 

the user, for numerous applications.  

In the field of security, indoor positioning systems can provide vital 

information by tracking personal and/or important cargo/devices in airports, where 
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GPS is incapable of meeting such requirements. Assistance can be offered to the 

visually impaired, through location and context-aware networks, for object 

identification, indoor navigation (obstacle detection) and for carrying out other certain 

tasks while indoors.  

The underground mining industry stands to gain a great deal from Non-GPS 

positioning applications as well; the underground positioning problem is analogous to 

the indoor problem in many ways. Mines may run for many kilometres underground, 

making access to various locations both time consuming, and complicated (see Figure 

2.9). The importance of localization within a mine is of significant importance, and 

relates to both people and as well as machines. Out of many potential uses of 

positioning tracking mobile vehicle movements of haul trucks, determining precise 

location of individuals (e.g., during surveying) and machinery such as drill bits, 

shovel buckets, and bulldozer blades are a few that are essential to this industry [73]. 

In addition, for search and rescue operations carried out in mines in case of 

emergencies, accurate and efficient tracking of rescue personal, estimation of the 

possible locations of victims, and the suggestion of possible pathways through the 

tunnels for rescuers to expedite the search and rescue operation, are of paramount 

importance.  
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Figure 2.9 Underground Mine (image taken from [73]) 

 

Another application would be, coupling an individual’s file access on a 

wireless network with his/her current location on the premises, thus restricting access 

to sensitive material, by providing access only while the person is within a high 

security area. For example, if an individual enters a certain institute, upon entry, the 

user is classified as a standard visitor and given access only to general introductory 

documentation relating to the institute. Now, if he/she enters a specific division or 

laboratory area, he/she is given access to documents relating to that specific section or 

lab technology. Further, the institute may only allow access to certain confidential 

files, if the user is located in specific areas within the institute. These areas may only 

be accessible to high clearance persons. 

Asset management is another area that will benefit from location aware 

technology. It will enable tracking of digital devices within a cooperate structure. For 

example, it enables the system to ascertain whether certain devices have been moved 

within the premises. This technology will also be useful for locating medical devices 

in a hospital. RFID technology is used for detection of products stored in a 
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warehouse, for inventory management. All of these can be done successfully through 

careful integration of asset databases with positioning systems. 

Fire fighters and police personnel can be aided by indoor positioning 

applications in search and rescue missions. More importantly, in cases where one 

needs to keep track of his/her own piers or subordinates, for effective execution of 

safe recovery manoeuvres similar to the requirements in underground mining rescue 

operations.  

Indoor positioning has a significant place in the digital home as well. For 

example, a location aware laptop can determine the existence of communicable digital 

devices in the home.  A location aware tag can be used to track a child’s location at all 

times in a populated indoor arena.  

Underwater mining and exploration can also benefit from SONAR-ID systems 

based on a principle similar to an effective indoor positioning application. 

Location-based advertisements can ensure buyers to selectively receive 

promotional advertisements and information, by strategically placing messaging near 

where buyer behavior can be most effectively influenced. For instance, a user will 

receive coupons only when he/she enters a shopping mall or receive promotional tour 

offers only when close to a travel agency.  

On the other hand, location based social networking will further enhance, 

internet based social networking such as Facebook, Friendster, Hi5, MySpace, Orkut, 

etc. by allowing users additional information about user location to enhance the 

networking experience. Location-based security systems essentially allow additional 

protection through both user/password and location information. For example, a 

malicious user who had successfully hacked the system’s password will not be 

granted access to the system through location information acquired about the position 
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of the legitimate users of the premises or the system. If the legitimate users of the 

premises or system are detected to be out of the range of a pre-defined area for entry 

allowance the hacker will be denied access. Also, indoor tracking of people and assets 

are particularly useful for lost-and-found applications e.g., finding cars in a large 

parking lot. Location based hand-offs for wireless indoor networks and location based 

routing for ad hoc networks are some other possible application scenarios.  

Aforementioned example applications, offered by location awareness, will 

enable ubiquitous and context aware network services, which necessitates the location 

of the wireless device, to be accurately estimated under any environment. One of the 

key challenges in order to realize these applications in GPS denied environments, 

with high location accuracy, is the efficiency and preciseness of localization under 

both LoS and NLoS scenarios. 
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Chapter 3   

 

Theoretical Background 
 

The analysis of the theoretical foundations of the four super resolution 

algorithms introduced in this research work, namely the TD-MUSIC, the FD-MUSIC, 

the FD-EV and the TD-EV algorithms are stated below. The MUSIC super resolution 

algorithm as described earlier in this thesis has two main variants, TD-MUSIC and 

FD-MUSIC, for TOA estimation applications, with the fundamental difference 

between them being the domain of operation. In addition, the FD-EV method in 

which the denominator of the objective function is de-weighted by the corresponding 

Eigen values is also introduced. The de-weighing, though primarily suggested to 

eliminate the spurious nature of the pseudo-spectrum, was found to have other 

positive implication for an indoor positioning framework. While FD-MUSIC is 

analogous in its basic structure to the MUSIC algorithm in spectral estimation, the 

TD-MUSIC is in fact a new innovation with its own unique characteristics and added 

versatility. Finally the TD-EV method is introduced, which has inherited the best of 

both worlds. It has the versatility of the TD-MUSIC algorithm and the special 

attributes of the FD-EV method. This chapter details the theoretical foundations of all 

four of these techniques, whose behaviours and attributes will be analyzed further in 

later chapters. Then a mathematical model for the use of the ESPRIT algorithm for 

time delay estimation is introduced. Finally, a procedural analysis on the practical 

limitations, possible remedies for these limitations, and a summary of diversity 

techniques available for practical indoor positioning systems is presented. 
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3.1 Indoor Channel Model 
 

The multi-path indoor channel model for the presence of ′�′ dominant multi-
paths: 

ℎ�-� =  ∑ §�¨�- − 
������ ,    (3.1)  

*+, - = 1 → �, 
where  

§� is the path gain for the f"# signal path, 

� is the path gain for the f"# signal path. 
Consider the ª"# realization for the received signal under multi-path and AWGN 

conditions: 

 

�«�-� = ∑ §�« 0�- − 
�� +  ¬«�-����� ,   
(3.2) 

*+, - = 1, . . , �. 
It is assumed that path delays in adjacent snapshots (realizations) or diversity 

branches remain unchanged.  

¬«�-�  is the -"# white Gaussian noise sample of the ª"# realization. 
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3.2 TD-MUSIC Algorithm 
 

Equation (3.2) can be represented in matrix form for a time domain sample 

window of length N as: 

 

­« = �®¯ +  °¯,      (3.3) 

where 

­« =  R�«�1� … �«���S±×�r ,      

®« =  ²§�« … §�« ³�×�r ,       

°« =  R¬«�1� … ¬«���S±×�r ,      

and 

� =  R0�- − 
�� … 0�- − 
��S±×� ,  

where the time domain generalized signal vector is defined as: 

¦�N − ´��µ×J = R0�1 − 
H� … 0�� − 
H�Sr .  (3.4) 

As can be noticed the signal vector ¦�N − ´��µ×J is a time shifted version of 
the original transmitted signal with the time shift corresponding to the time delay 

variable.  

Then the auto correlation matrix �@@  in the time domain is formulated for the 
received signal ��-�. 
Let, ¦H = ¦�N − ´��,,,, 
and if the auto correlation matrix is defined as below from (3.3): 
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�@@ = ·²­«­«¸³ = � · ²®«®«¸³ �r +  ·²°«°«¸³,  
as ·²®«°«¸³ = ·²°«®«¸³ = 0. 
this can be rewritten as: 

�@@ = �¹�K +  º»� ¼µ×µ,      (3.5) 

where  ·²°«°«¸³ =  º»� ¼ and · ²®«®«¸³ = ¹, 

where E[.] is the expectation operator. 

Matrix ¹ is of rank � and positive definite and symmetric and theoretically of 

Toeplitz form. The surface plot of such an ACM is depicted below in Figure 3.1. Thus 

for � ≥ �: 
¹ = ∑ ¾H¿H¿Hr = ∑ ¾H¿H¿Hr�H��±H��      (3.6) 

�@@ =  ∑ ¾H¿H¿Hr�H�� + ∑ º»� ¿H¿Hr±H��      (3.7) 

�@@ = ∑ �¾H + º»� ��H�� ¿H¿Hr + ∑ º»�±H��À� ¿H¿Hr =  ∑ ÁH¿H¿Hr ,±H��  (3.8) 

 

Figure 3.1 Surface Plot of �@@ 
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where ÁH *+, I = 1: � are the principle Eigen values of the auto correlation matrix. 
Therefore from (3.8) the Eigen values of �@@ will be such that, theoretically  Á� >
Á� … Á� > Á��� = ⋯ = Á± = º»�  . A simulated Eigen value spread of �@@ for 10 
dominant signal paths is plotted below in Figure 3.2. 

 

Figure 3.2 Eigen value spread for 10 significant signal paths 

 

 

Next, Eigen decomposition is performed on the auto correlation matrix. Now 

the � Principle Eigen vectors will correspond to the signal subspace, where as the 

Eigen vectors corresponding to the smallest � − � Eigen values span the noise 

subspace. Hence,  

signal subspace ∶ �Ä = R¿� … ¿�S   ;  
noise subspace : �± = R¿�À� … ¿±S .   

j�@@ − º»� ¼k¿H = Å = �¹�K¿� ,     (3.9) 

for I = � + 1 ∶ �. Therefore as ¹ is positive definite, noise subspace spanned by �± 
is orthogonal to signal subspace spanned by �, 
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�K¿� = Å       (3.10)  

for I = � + 1 ∶  �.   The estimated dimension of the signal subspace (estimated by 
analysing the magnitude spread of the Eigen values of the ACM matrix)  is used for 

subspace separation based on the magnitudes of the Eigen value spread. The 

orthogonality between the generalized signal vector, or the ‘steering vector’ ¦�N − ´�, 
and the noise subspace �± , is used to evaluate the objective function: 

Æ]Ç�ÈÉÊËÌ�
� = �¦�N�´�¸�Í�Í̧¦�N�´�.     (3.11) 

The peaks of the ‘Pseudo-Spectrum’ generated by evaluation of (3.11) 

correspond to the time delays of each multi-path. Correct estimation of signal 

subspace dimension is paramount for the MUSIC algorithms, as will be shown later in 

the behavioural analysis of Chapter 4. However in most practical systems, as there is a 

certain degree of colour in the noise, signal subspace dimension identification by 

Eigen value magnitudes is not always as reliable. 

It should also be noted that the steering vector running through arbitrary path 

delay values is assumed to be a replica of the transmitted signal that was originally 

sent, hence implying that the algorithm assumes no distortions in the signal shape 

took place. This however does not hold due to the fact that shape deformations in the 

signal take place due to the band limited nature of the channel and spectral leakages in 

the subspace separation phase.  

For the proper implementation of the TD-MUSIC algorithm, for impulse radio 

UWB system or any other pulse delay estimation based system, the time domain 

window or the data matrix length should be selected such that: 

�Î  ≤ �» − �Ï       (3.12)  

where, 
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�Î  is the delay spread, 
�» is the window length, 
and 

�Ï is the pulse width. 
When the steering vector is shifted above the upper bound specified by (3.12) 

the delayed pulse of the steering vector gets clipped, as shown in Figure 3.3 As it is 

clipped further, the numerator of objective function defined in (3.11) tends to 

approach zero. In turn this produces a pseudo-spectrum that exponentially rises to 

infinity, as depicted in Figure 3.4. Even though, the peaks that correspond to the 

multi-paths are produced in the correct locations by the TD-MUSIC algorithm, for the 

delay values above the upper bound specified by (3.12), the magnitude of the pseudo-

spectrum rapidly raises to infinity, thereby making the local peaks generated below 

the upper bound negligible. Therefore, the window length should be selected 

according to the condition specified in (3.12). Cyclic wraparound for the steering 

vector is not possible as it creates a false sense of periodicity, while giving rise to 

initial ambiguity problems, similar to the ones present in GPS systems. In addition to 

the ambiguity it creates, this causes the pseudo-spectrum shape to be deformed. 
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Figure 3.3 Over-shifting of the TD-MUSIC steering vector 

 

 

 

 

Figure 3.4 Pseudo-Spectrums of TD-MUSIC and FD-MUSIC algorithms when 

steering vector for TD-MUSIC algorithm is shifted over the upper bound 
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3.3 FD-MUSIC Algorithm 
 

By considering the Fourier transform of (3.2) as the data vector, we can write: 

Ð«�*� =  ∑ §�« {�*�1� �xyÑÒ���� + ¬�*�,    (3.13) 

  *+, * =   *� �+ *�.  
Which when presented in matrix form is: 

Ó¯ = �Ô  ®« + Õ« ,       (3.14) 

where, 

Ó« =  RÐ«�*�� … Ð«�*��S�×�r ,      

®« =  ²§�« … §�« ³�×�r ,       

Õ« =  RÖ«�*�� … Ö«�*��S�×�r ,      

and 

�Ô =  R0�
�� … 0�
��S�×� ,  

where the frequency domain generalized signal vector or steering vector is defined as: 

¦�´��××J = R{�*��1� �xy9Ñm … {�*��1� �xyØÑmSr .  
Now similar to the TD-MUSIC algorithm case, constructing the autocorrelation 

matrix and then separating the noise and signal subspaces, an objective function can 

be defined so that a pseudo-spectrum can be evaluated as, 

�ÙÙ = ·²Ó«Ó«¸³ = �Ô  ¹ �Ô r +  �ºÚ� ¼,    (3.15) 

and 

ÆÛÇ�ÈÉÊËÌ�
� =  ���´��Ü�ÍÝ �ÍÝÜ��´��  .     (3.16) 
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3.4 FD-EV Algorithm 
 

In view of reducing the spurious nature of the pseudo-spectrum, Eigen value 

de-weighting was suggested in [74] for the standard MUSIC algorithm. Thus by de-

weighting the objective function of the FD-MUSIC algorithm, we obtain the FD-EV 

method, whose objective function is defined below: 

ÆÛÇ�Þß�
� =  ���´��4�∑ � àáâãäp ¿åæãç¿åæãç4ÍØèéê9 ���´�� .  (3.17) 

Here ¿åæ�ç and ÁÛÇ�ë are the noise Eigen vectors and corresponding Eigen values of 
the auto correlation matrix evaluated in the frequency domain. As can clearly be seen, 

the steering vector of the FD-EV method is ��´��, same as the steering vector for the 
FD-MUSIC algorithm. When this method was introduced for time delay estimation in 

indoor positioning system we were able to identify an additional benefit of the Eigen 

value de-weighting. For the first time it was observed that for certain bandwidth and 

SNR conditions, the Eigen value de-weighting of the FD-EV method enabled signal 

peaks submerged beneath the noise floor for the MUSIC algorithms to resurface. This 

discovery will be presented more comprehensively in Section 4.3 of this thesis. This 

feature, adds a new dimension to the importance of frequency domain Eigen value de-

weighting, when generating the pseudo-spectrum for the FD-EV method in indoor 

positioning applications. 

 

3.5 TD-EV Algorithm 
 

The capability of the Eigen-value de-weighting process in the FD-EV method 

to resurface submerged signal peaks below the noise floor for a constrained 
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environment, and the versatile nature of the TD-MUSIC algorithm to operate under 

low SNR conditions and bandwidth limited environments, resulted in the creation of 

this new algorithm. It strives to combine the positive attributes of both algorithms 

mentioned above, to present itself as the ultimate super resolution technique. The 

objective function for this method is evaluated as below in the time domain: 

Æ]Ç�Þß�
� = �¦�N�´�K�∑ � àìâãäp ¿Mæãç¿MæãçKÍØèéê9 �¦�N�´� . (3.18) 

Here ¿Mæ�ç and Á]Ç�ë are the noise Eigen vectors and corresponding Eigen values of 
the auto correlation matrix evaluated in the time domain. The steering vector is of the 

same form as the TD-MUSIC algorithm. The detailed analysis and results of the TD-

EV method’s ability to combine the best of both worlds is presented later in Section 

5.5. 

3.6 ESPRIT as a Tool for Time Delay Estimation 
 

In [75, 76], the ESPRIT algorithm was introduced as an alternative method to 

the MUSIC super resolution algorithm, in the direction of arrival estimation problems 

for array-based systems. The primary virtue of this algorithm is that it does not rely on 

a peak detection process for parameter estimation. The downside is, that it can only be 

used in an impulsive response case or if the signal spectrum is flat in the frequency 

sampling region. In addition, it isn’t as accurate an estimation tool as the MUSIC 

algorithms, and cannot generate the visual output that is required for a delay profile 

based fingerprint.  

In this work, a mathematical model of a versatile form of the ESPRIT 

algorithm was suggested as a possible alternative for TOA estimation. This was done 

by making sure that the data vectors, í and Ð, were constructed by using odd and 
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even frequency samples from the impulse response spectra, thus making sure none of 

the data samples used for í were reused for Ð.  By defining the data vectors as such, 
we were able to replicate the array displacement shift effect of the standard ESPRIT 

algorithm in a TOA estimation framework for indoor positioning systems when 

constructing the í and Ð, data vectors. This is proven below by showing that the 
equations thus are of the same form as the standard ESPRIT formulation. This 

confirms that the method suggested below is in the same spirit as the original ESPRIT 

algorithm, with the displacement between the two identical sub-array systems equated 

to a frequency shift in our method. Consider the channel impulse response as: 

ℎ��� =  ∑ /�¨�� − 
��îï�����      (3.19) 

where  /� =  |§�|1 ðØ . The Fourier transform of ℎ��� is,  
ñ�*� =  ∑ /�1� �xyÑØîï����� .    (3.20) 

Let the received signal spectrum be denoted as,          

 í � *[ +  - Δ* � = � �-�,        

and let us consider the total number of sample points � in the received signal 
spectrum to be even. Let us now define the data vectors: 

5 =  R��1� ��3� … ��� − 1�Sò:×�r ,   (3.21)  

and 

Ó =  R��2� ��4� … ����Sò:×�r .    (3.22) 

Thus, the ª"# realization of the data vector 5 can be written as, 

 5¯ = ó. ô¯ + Õ¯õQQ      (3.23) 
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where 

ó =  > 1� �x�yöÀ7y�Ñ÷1� �x�yöÀB7y�Ñ÷
⋯… 1� �x�yöÀ7y�Ñòøã91� �x�yöÀB7y�Ñòøã9⋮ ⋱ ⋮1� �xjyöÀû��7ykÑö ⋯ 1� �xjyöÀû��7ykÑòøã9

D
ò:×îï

,   

 ô =  R/� /� … /îïã9Sîø×�r ,      

and 

ÕõQQ =  R¬�1� ¬�3� … ¬�� − 1�Sò:×�r .     

Similarly as above data vector Ó can be expressed as, 

 Ó¯ = ó. ü. ô¯ + Õ¯ýþý�     (3.24) 

where 

ü =  �1� �x7yÑö ⋯ 0⋮ ⋱ ⋮0 ⋯ 1� �x7yÑòïã9�îø×îø
,      

and 

Õýþý� =  R¬�1� ¬�3� … ¬�� − 1�Sò:×�r .     

Thus, the two correlation matrices are of the form: 

��Ù = · �5«Ó«Ü� = ó �ü� ó�,       

and  

��� = · �5«5«Ü� = ó � ó� +  º»� ¼       

where � = ·Rô¯ô¯4S.  
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As the matrices ��� and ��Ù as well as the equations (3.23) and (3.24) are of 
the same form as the formulations in [75, 76] for the standard ESPRIT algorithm, thus 

the time delay parameters can be obtained using any of the techniques used for DOA 

estimation in the standard ESPRIT algorithm. To meet this end a total least squares 

(TLS) approach can be used as suggested in [75]. TLS-ESPRIT approach for 

obtaining DOA parameters can be used by constructing  	 =  ²5    Ð³r . This can be 
considered as an alternate solution, to the MUSIC algorithm, when peak detection is 

deemed too complex for a parameter estimation based positioning system for a LoS 

environment. 

 

3.7 Procedural Analysis 
 

This section aims to provide a detailed analysis of the practical issues that may 

arise, when utilizing these super resolution techniques introduced in this thesis, for 

indoor positioning systems. In the practical implementation of the MUSIC super 

resolution algorithm there are several issues worth consideration. The construction of 

the auto correlation matrix with a limited data sample is one of them. Due to the 

difficulties in the acquisition of multiple snapshots in practise, researchers have 

suggested segmentation of the data sequence to achieve a similar effect. However, if 

we are to utilize multiple realizations, the diversity techniques that can utilized to 

meet the requisite are of interest. 
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3.7.1 Auto Correlation Matrix 

Earlier in the theoretical analysis we obtained the auto-correlation matrix 

under the assumption that multiple realizations of the data vectors are available. Thus 

the auto correlation will be obtained as: 

�@@ = ·²­«­«Ü³ =  �

   ∑ ­«­«Ü
«��    (3.27) 

where � is the number of snapshots available. Although if only one snapshot of data 
of length � was available, then the sequence is divided into Ö consecutive data 

segments of length �. Then the auto correlation matrix is obtained as: 
�@@ = �Ú   ∑ ­�ª�Ú«�� ­ 4�ª�    (3.28)  

where Ö =  � –  � +  1 and ­�ª� =  R���� ��� + 1� … ��� + � − 1�Sr. An 

ACM obtained via (3.28) is called FCM in popular terminology.  

For the super-resolution TOA estimation techniques, the data vector is 

obtained by sampling the received channel frequency response uniformly over a given 

frequency band. In order to avoid aliasing in the time domain, similar to the time-

domain Nyquist sampling theorem, the frequency-domain sampling interval �*, 
should satisfy this condition: 

1 �*p  ≥  

��,     (3.29) 

where �

�� =  maxH�
H�� is the maximum delay of the measured multipath radio 
propagation channel. 

The measurement data is assumed to be stationary. Thus, the correlation 

matrix of the data is Hermitian (conjugate symmetric) and Toeplitz (equal elements 

along all diagonals). However, the estimate of the correlation matrix, based on the 

actual measurement data of small finite length, is may not be Toeplitz depending on 
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the estimator used. The estimate of the correlation matrix can be further improved by 

constructing the FBCM: 

�@@�� =  �� ��@@ + ��@@∗ ��    (3.30)  

Where superscript * denotes conjugate and J is the �� × ��exchange matrix. It is 
easily seen that �@@�� is persymmetric; i.e. ��@@��� =  �@@��∗

 and its elements are 

conjugate symmetric about both diagonals. The same technique is widely used in 

spectral estimation with the name covariance method [77], and in linear least-square 

signal estimation, where it is called forward–backward linear predication [77].  

 

3.7.2. Diversity Techniques 

Frequency, space and time diversity techniques are used in wireless 

communication systems to improve performance. Diversity techniques make use of 

the random nature of the radio propagation channel by finding and combining 

uncorrelated signal paths to optimize performance criteria. All diversity techniques 

used for wireless communication systems can be used for TOA estimation systems as 

well, but due to the complex nature of the indoor channel these techniques offer no 

remedies for problems such as UDP conditions, which are frequent in indoor 

environments. 

The TOA estimates obtained independently from each branch can be optimally 

combined using a standard combining algorithm such as the equal gain algorithm: 


̂� = �

 ∑ 
̂��H�
H��       (3.31) 

This is the simplest approach. Weights can also be assigned to each branch to improve 

results. Rather than combining time delay estimates the data vectors can be combined 
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prior to the autocorrelation matrix formulation, to reduce the computational load of 

the previous method, where Eigen decomposition has to take place � times.  
If we ignore the complexity of the hostile behavior of the indoor channel, and 

the fact that the models developed for indoor channel characteristics for 

communication applications are not useful for indoor geolocation, use of diversity 

techniques may appear promising. In fact, the lack of understanding in the 

complexities prevalent in indoor environments for localization, as opposed to 

communication applications has been the main source of failure for precise indoor 

localization systems over the past decade or so. In principle, when the direct path is 

shadowed, none of the traditional diversity techniques are effective for precise indoor 

geolocation. For instance, consider the traditional frequency diversity technique used 

in frequency selective multipath fading on indoor channels for wireless 

communications. In telecommunications the basic principle is to send several streams 

of lower-rate data over multiple narrowband subchannels rather than transmitting all 

the information using one wideband channel. If one of the subchannels is hit by 

frequency selective fading, we can still use other subchannels to achieve reliable 

communications. If the same principle is applied to an indoor positioning system hit 

by UDP conditions, assuming the possibility to use multiple TOA estimates obtained 

from several subchannels to reduce the range error due to NLoS conditions, rather 

than using the single TOA estimate of a wideband channel. However, in the absence 

of a direct path, when the TOA estimate in one channel is not reliable, it is also 

unreliable for other subchannels too. Therefore, frequency diversity techniques are not 

capable of providing significant improvements to the performance in UDP conditions. 

Similarly time diversity cannot achieve the desired performance improvement either, 

due to the fact that UDP conditions last for comparably large durations of time, thus it 
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is unlikely that any of the multiple time diversity branches will find themselves 

outside the UDP time span. Finally spatial diversity, which makes use of multiple 

antennas for a single node is hardly a feasible solution for a commercial indoor 

positioning system, with its added cost and hardware complexity [78]. Therefore 

utilizing the information obtained from the pseudo-spectrum output of our super 

resolution techniques to construct a location based fingerprint is a much more reliable 

and simpler method to work around the UDP problem. Even much simpler basic 

fingerprinting approaches have proven to perform well under NLoS conditions. 
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Chapter 4   

 

Behavioural Analysis of the 

Super Resolution Algorithms 
 

The behavioural analysis of the TD-MUSIC, FD-MUSIC and FD-EV 

algorithms were compared and studied under various conditions, in our research work 

as the first step. In order to evade ambiguity in TOA estimation, the maximum delay 

was initially assumed to be less than the overall time period of the signal. The 

standard Gaussian signal template and a channel model of several multi-paths, in 

additions to the direct path, were used to study the performance under severe multi-

path conditions prevailing in most practical indoor environments. The path separation 

as well as relative gain levels of these multi-paths was varied according to the 

attributes that were tested. In this analysis, key parameters such as the number of the 

signal subspace dimension, bandwidth, SNR, steering vector pulse spread etc. were 

varied from hostile to friendly conditions for proper analysis. The behavioural 

analysis was conducted using matlab simulations. The critical parameter values used 

are specified along with the results in the relevant sections. In most cases, to isolate 

the effect of one key parameter on the algorithm performance, the other parameters 

were kept at favourable conditions. Thereafter, to examine the overall versatility of 

each algorithm, the environment was made extremely hostile by varying multiple 

parameters towards adverse conditions.  Therefore the analysis simulates extremely 

hostile conditions at times to properly identify the versatile nature of the super 

resolution algorithms in concern. 
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4.1 Normalized Pseudo-Spectrum 
 

The analysis relies on the use of ‘Pseudo-Spectrums’ as the final output; the 

placement of the local peaks as well as the ‘actual shape’ of the pseudo-spectrum is 

put under scrutiny.  This enables even minute changes in shape of the pseudo-

spectrum to be captured under changes in certain variables. In practical applications, 

even when the theoretical peaks are placed correctly, due to the pseudo-spectrum 

shape not being ‘pronounced enough at the local peaks’, obtaining the local maxima 

in a peak detection process maybe tedious and error prone. In addition, the resultant 

pseudo-spectrums generated, are to be explored as possible location based fingerprints 

for radio map construction. This places even more importance on the ‘shape’ of the 

pseudo-spectrum, than if we were to utilize it as a mere time delay estimation tool. 

Normalization was done as defined below in equation (4.1), for comparative analysis 

among the algorithms. By defining the normalization as given below, it is ensured that 

no shape deformation takes place due to normalization. 

Æ±����
� = Û�Ñ�

��∀ � ��Ñ� .    (4.1) 

 

4.2 Behavior of TD-MUSIC algorithm under 

steering vector variations 
 

It was noticed in our behavioural analysis for the TD-MUSIC algorithm, when 

the steering vector pulse width (or in our case pulse spread) was varied, that some of 

the pseudo-spectrums generated, actually outperformed the original TD-MUSIC 

algorithm under certain conditions. The steering vector for the original TD-MUSIC 

algorithm was defined as: 
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 0�- − 
H�±×� = R0�1 − 
H� … 0�� − 
H�Sr   
in (3.4) and that was used to generate the pseudo-spectrum for the objective function 

defined in (3.11).  It should be noted that the steering vector is simply a delayed 

version of the original transmitted signal in the time domain. Therefore theoretically 

the TD-MUSIC algorithm assumes that the data vector extracted from the received 

signal contains an undistorted linear combination of the original transmitted signal 

coupled with noise. Thus the unmodified steering vector does not account for signal 

distortions that may have occurred to the transmitted signal during propagation, due to 

the band limited nature of a practical indoor channel. In addition, it also assumes that, 

at the subspace separation stage in the TD-MUSIC algorithm, there is no leakages to 

and from the signal to noise subspaces. However, in practise the ‘spectral leakage’ 

exists, coupled with the signal distortions due to band limited channels. This in turn 

causes the modified versions of the TD-MUSIC algorithm to perform better than the 

original TD-MUSIC algorithm at certain conditions. 

For this analysis, we generated pseudo-spectrums for modified versions of the 

TD-MUSIC algorithm by varying the pulse spread of an idealized Gaussian steering 

vector as: 

� �-� =  t. 1�� ��±?�p �:
     (4.2) 

where t and � are constants used to set amplitude and magnitude spread of the 
transmitted signal, and � is the variable used to modify the steering vector pulse 
spread. From hereafter in this report, if the denominator constant of the Gaussian 

function is modified by a value of ′�±��′, the resultant TD-MUSIC algorithm will be 

called the ′�±��u1�I/-� +* �ℎ1 ou − ��{�� /��+,I�ℎf′. A set of such modified 
steering vectors are depicted in Figure 4.1. 
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Figure 4.1 Set of Gaussian steering vectors with pulse spread varied 

 

It was observed, that under certain conditions the deviants of the TD-MUSIC 

algorithm actually outperformed the original TD-MUSIC algorithm. Further analysis 

made aware that for a given bandwidth, there existed, only one optimum deviant, 

which generated the best pseudo-spectrum. Other parameters such as SNR, or the 

signal subspace dimensions, only increased or decreased the relative shape 

deformations among the deviants, while the optimum deviant remained unchanged as 

long as the bandwidth remained constant. The optimum deviant is the version of the 

TD-MUSIC algorithm which best replicates the impulsive multi-path profile of the 

indoor channel most effectively. We have to account for both accurate resolution of 

multi-paths as well as the pronounced and peaky nature of the pseudo-spectrum peaks 

at the local peaks.  

The effective channels bandwidth above the noise floor was varied from 10 

GHz to 2.25 GHz to determine the optimum deviant, for the TD-MUSIC algorithm 

for each bandwidth condition. As the transmitted signal is received undistorted at 10 

GHz, this determined the upper bound; and below 2.25 GHz due to rather severe 
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shape deformations it was difficult to identify the optimum deviant, therefore it served 

as the lower bound. It should be highlighted that the actual ultimate performer for 

each bandwidth is of trivial importance, as this fact would vary according to the signal 

template, the channel bandwidth or various other environmental conditions. What we 

hope to highlight is not the identification of the optimum deviant, but, the existence of 

optimum deviants other than the original TD-MUSIC algorithm, which we believe is 

of practical significance for indoor positioning systems. 

In this analysis, it was observed that for higher bandwidth, the negative 

deviants emerged as the ultimate performer. As for lower bandwidths the optimum 

performer gradually tended to zero and for very low bandwidths the positive deviants 

emerged as the ultimate performer. In addition, there was always a symmetric 

distribution of pseudo-spectrums centred on the ultimate performer for relatively 

higher bandwidths. Figure 4.2 and 4.3 shows the pseudo-spectrum spread for the TD-

MUSIC deviants ranging from �−4 →  0�, for a channel bandwidth of 7.5 GHz, 
where the SNR was maintained at a sound level of around 10 dB and the signal 

subspace dimensions were correctly estimated. It should be further stated that the 

SNR value as well as signal subspace dimensions did not have an effect on the 

optimum deviant which produces the best pseudo-spectrum output, in terms of both 

peak placement as well as pronounced and peaky nature of the local peaks, remained 

the �−3� deviant of the TD-MUSIC algorithm from bandwidth of 10 GHz to 5 GHz. 

Figure 4.2 shows the actual pseudo-spectrums prior to normalization presented here to 

highlight the rather drastic shape deformation in terms of the sheer magnitude 

fluctuations at the peak, which is attenuated when the pseudo-spectrums are 

normalized. Figure 4.3, post-normalization serves as a better means for relative 

comparisons among the deviants. It draws our attention to the fact that the 
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neighbouring deviants symmetrically deteriorate in shape around the ultimate 

performer, the �−3� deviant of the TD-MUSIC algorithm. For example the next best 

deviants are clearly the �−4� and �−1�, which are the closest neighbours to the 
optimum deviant. In addition Figure 4.3 zooms in on the first two dominant signal 

paths for better clarity in the comparative analysis. 

 

 

Figure 4.2 The Pseudo-spectrum spread for TD-MUSIC algorithm with the steering 

vector pulse spread varied at 7.5 GHz bandwidth and SNR = 10 dB 
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Figure 4.3 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 7.5 GHz bandwidth and SNR = 10 dB 

 

Figure 4.4 demonstrates a transition of the optimum deviant from the �−3� 
deviant to the �−2� deviant, at an effective channel bandwidth of 5 GHz. At 3 GHz, it 

is seen that the optimum deviant is in fact the original TD-MUSIC algorithm (see 

Figure 4.5). Further decrease of bandwidth results in the optimum deviant zero 

crossing, towards the positive side. As depicted in Figure 4.6, at 2.5 GHz bandwidth, 

the optimum deviant is the �+1� deviant of the TD-MUSIC algorithm. For lower 

bandwidths, although the optimum deviant is a positive deviant, the actual ultimate 

performer becomes harder to determine, as almost all pseudo-spectrum have a certain 

degree of distortion making it harder to clearly identify an undisputable ultimate 

performer. It should be further stressed that at lower bandwidths, as illustrated in 

Figure 4.6, the negative deviants and the original TD-MUSIC algorithms in addition 

to having inferior performance to the positive deviants, also generate a non-existent 

signal peak at 0.5 ns, when the actual dominant signal peaks are placed at 0.2 and 0.8 

ns. Though the placement of such unwanted peaks may differ from channel to 

channel, it should be noted that such erroneous pseudo-spectrums with false 



   84 

information cause large range errors in location based fingerprinting schemes, as they 

create the false impression of a non-existent reflector in the environment.  

 

 

Figure 4.4 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 5 GHz bandwidth and SNR = 10 dB 

 

 

 

Figure 4.5 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 3 GHz bandwidth and SNR = 10 dB 
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Figure 4.6 The normalized pseudo-spectrum spread for TD-MUSIC algorithm with 

the steering vector pulse spread varied at 2.5 GHz bandwidth and SNR = 10 dB 

 

 

The variation of optimum deviants for certain bandwidths in terms of the 

algorithms ability to accurately resolve multi-paths effectively and generate 

pronounced and peaky local peaks is summarized in Table 4.1. The actual information 

as to which variant of the TD-MUSIC algorithm is the optimum deviant at a certain 

bandwidth is of little practical importance, as the optimum deviant varies according to 

different indoor channel conditions. What needs to be identified here is the existence 

of an optimum deviant, different to the original TD-MUSIC algorithm at certain 

channel bandwidths, as was observed through our analysis. 
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Table 4.1 TD-MUSIC Pseudo Spectrum Behaviour for varied steering vector pulse 

spread 
 

Bandwidth /(GHz) Optimum Deviant 

7.5 (-3) 

5 (-3) and ( -2) 

4 (-2) 

3.5 (-1) 

3 Original 

2.5 (+1) 

2.25 (+1) and (+2) 

 

 

It can be interpreted that the optimum deviant is the performance maxima and 

other deviants deteriorate in performance symmetrically around it, for a given channel 

bandwidth. As the channel bandwidth decreases from 10 GHz to 2.25 GHz, the 

optimum deviant varies from (-3) to (+2). At lower bandwidths, when the positive 

deviants outperform the rest, it was also noticed that the original TD-MUSIC 

algorithm and other deviants may generate non-existant peaks at incorrect locations, 

leading to errornous conclusions. These observations are the result of what we termed 

the “Spectral Leakage phenomena of the TD-MUSIC algorithm at the subspace 

separation stage”.  

The TD-MUSIC algorithm will account  for the leaked noise in the sub-space 

seperation phase as a part of the signal. In addition, the signal suffers a certain level of 

distortion due to the bandlimited conditions of the channel. Therefore the ‘signal 

vector’  the algorithm assumes, was actually sent,  becomes a more deviated version 

of the actual signal vector that was in fact sent. Therefore the best pseudo-spectrum is 
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generated for the steering vector, which best replicates the assumed deviated version 

of the transmitted signal vector, from the algorithm’s point of view. We have termed 

this behaviour as the “Spectral Leakage effect on the TD-MUSIC algorithm at the 

subspace seperation phase”. This causes the deviants of the TD-MUSIC algorithm to 

outperform the original TD-MUSIC algorithm at certain conditions. 

When the FD-MUSIC algorithm was subjected to the same steering vector 

pulse width variations, it did not exhibit a spectral leakage phenomenon prominently, 

as it’s time domain counterpart. Even though the relative shape deformation of the 

�+/−� deviants may vary, but the optimum deviant the original FD-MUSIC algorithm 

remains unchanged. 

The bandwidth versatility of the TD-MUSIC algorithm will be explained in 

more detail in the next chapter. In Figure 4.7 illustrates, how the bandwidth 

versatility, the spectrum leakage phenomenon and signal distortions can actually be 

used to our advantage. If properly identified, the optimum deviant relevant to the 

prevailing channel conditions, then as can be observed in Figure 4.7, at low 

bandwidth conditions, where both the frequency domain methods fail to provide 

reliable pseudo-spectrums, the positive deviants of the TD-MUSIC algorithm, not 

only outperform the FD-MUSIC and FD-EV methods, but also the original TD-

MUSIC algorithm, to emerge as the ultimate performer. This in turn demonstrates 

how the spectral leakage effect, coupled with the versatility of the TD-MUSIC 

algorithm, can be used to our advantage under low bandwidth conditions for indoor 

positioning systems. 
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Figure 4.7 Comparison of super resolution techniques with the (+1) deviant of the 

TD-MUSIC algorithm for low bandwidth conditions (=2 GHz) 

 

 

4.2.1 Performance of Finer Super Resolution Techniques 

The finer super resolution techniques were devised by having the steering 

vector shifted at fractions of the sample time, when the objective functions were 

evaluated. For the Finer TD-MUSIC algorithm in Figure 4.8, the system sample time 

was set to 0.02 ns. This was done to verify whether any additional information can be 

obtained by decreasing the step size of the steering vector variations along the delay 

axis below the sample time of the received signal. Then the Finer TD-MUSIC 

algorithm was evaluated, by taking the product of the noise subspace with the delayed 

version of the transmitted signal in the denominator polynomial of the objective 

function at delay samples of 0.002 ns. In this example, for the Finer FD-MUSIC 

algorithm, we simply needed to vary the delay variable present in the steering vector, 

at sub-sample intervals of 0.01 ns. As can be noticed from Figure 4.8, the higher 

resolution of the delay parameter variation at the objective function evaluation, does 

not improve upon the performance of the original MUSIC algorithm. The pseudo-
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spectrums generated are nearly identical in shape. From this outcome, it can be 

concluded that the highest possible resolution in the pseudo-spectrum with respect to 

the delay axis is already obtained by the original MUSIC algorithms, and cannot be 

improved further by Finer MUSIC algorithms. 

 

 
Figure 4.8 Comparison of standard FD-MUSIC and TD-MUSIC algorithms with 

Finer TD-MUSIC and FD-MUSIC algorithms with subsamples 

 

 

4.3 Impact of erroneous estimation of the signal 

subspace dimension 
 

The number of multi-path components ′�′ is a critical parameter in TOA 
estimation using super resolution techniques. Theoretically  ′�′ is obtained via the 
ACM. The Eigen decomposition of �@@ , defined in 3.5 in the time domain, or 3.15 in 
the frequency domain, yield a spread of  ′�′ Eigen values, where  ′�′ is the data 
vector length. From these, theoretically the smallest ′� − �′  Eigen values are all 
equal to º»� , the noise power spectral density. The larger ′�′ Eigen values correspond 
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to the number of signal multipath components, thus enabling us to separate the signal 

Eigen vectors from the noise Eigen vectors, based on relative magnitudes of the 

corresponding Eigen values. In practice, when a limited number of data samples are 

available, and the noise has a certain degree of colour, the noise Eigen values tend to 

all be different, making it difficult to obtain ′�′ easily using the prior approach. 
Especially in indoor environments, due to the existence of multiple reflectors of 

various materials, multi-paths will be found in large numbers, and they tend to have a 

widely distributed magnitude spread. Coupled together with the degree of colour in 

the noise, this makes the boundary between noise and signal Eigen values even more 

ambiguous. Figure 3.2 illustrates the smooth transition from the signal to noise Eigen 

values in terms of magnitude. These scenarios altogether increase the likelihood of an 

error occurring in the estimation of the subspace dimensions. In addition, over 

estimation of the signal subspace dimension causes unwanted non-existent signal 

peaks to occur in the pseudo-spectrum. This leads to erroneous conclusions in the 

positioning system. Further, the existence of relatively low amplitude multi-paths 

coupled with colour in the noise, all leads to the under estimation of the signal 

subspace dimension.  

Therefore researchers have looked for alternative methods to determine ′�′  with 
better accuracy. For example, the Rissanen minimum descriptive length criteria 

specified in [79] is one such a method. The minimum descriptive length criterion for 

estimation of ′� ′is given by, 
�u���� =  − log  ∏ àm9 òãØpòã9mèØ9òãØ ∑ àmòã9mèØ "

Ú�î��� + �� ��2� − ���+��,  (4.2) 

where ÁH � 0 ≤ I ≤ � − 1�  are the Eigen vales of the auto correlation matrix in 
descending order. The value of ′� ′ is determined by the value  � ∈ R0, � − 1S, which 
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minimizes the minimum descriptive length. This can be computationally extensive 

and moreover does not guarantee 100% accuracy, mainly due to the unique conditions 

prevalent in indoor environments as described above.  

The Eigen value de-weighting of the FD-EV method, as explained in the 

previous chapter, was introduced in [74] to reduce the spurious nature of the spectrum 

in spectral estimation applications. In this work, it was discovered for the first time 

that the Eigen value de-weighting enabled the FD-EV method to resolve all multi-

paths properly, even if the signal subspace dimension was underestimated.   

The Figures 4.9 to 4.11 illustrate the variations of the normalized pseudo-

spectrums of the TD-MUSIC, FD-MUSIC and FD-EV methods when the signal 

subspace dimensions are varied from zero to five, when the actual number of 

dominant signal paths is five. Figures 4.9 and 4.10 demonstrate the inability of the 

MUSIC algorithms to properly identify and resolve the underestimated signal peaks. 

The bandwidth was kept above 5 GHz, and the SNR level was maintained above 5 dB 

to enable proper isolation of variations occurring merely due to the signal subspace 

dimension variations. It should be noted that the FD-EV method fails to produce a 

reliable pseudo-spectrum under low bandwidth and SNR conditions. A detailed 

analysis of versatility of these techniques under low bandwidth and SNR conditions 

will be conducted in the next chapter. As expected, only the FD-EV method’s pseudo-

spectrum was not affected considerably by the signal subspace dimension 

fluctuations. Another interesting feature to note was the capability of FD-EV to 

resolve multi-paths to a reasonable degree of accuracy, even without subspace 

separation. Multi-path resolution in pseudo-spectrum generation is a two-step process. 

First the algorithm needs to identify the existence of the correct number of signal 
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peaks, then, it needs to place the said peaks, at correct locations along the time delay 

axis. 

 

 
Figure 4.9 Variation of normalized pseudo-spectrums for TD-MUSIC algorithm when 

signal subspace dimensions are varied from 0 to 5 for sound bandwidth (above 5 

GHz) and SNR (above 5 dB) conditions 
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Figure 4.10 Variation of normalized pseudo-spectrums for FD-MUSIC algorithm 

when signal subspace dimensions are varied from 0 to 5 for sound bandwidth (above 

5 GHz) and SNR (above 5 dB) conditions 

 

 

 
Figure 4.11 Variation of normalized pseudo-spectrums for FD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for sound bandwidth (above 5 

GHz) and SNR (above 5 dB) conditions 

 

 

With the lowering of the SNR and bandwidth, the accuracy of the peak 

locations declined. As illustrated through Figures 4.12 to 4.14, when the bandwidth 

was lowered to around 2 GHz and SNR was set to 1 dB, due to the high versatility of 
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the TD-MUSIC algorithm, it was observed that TD-MUSIC was the only algorithm 

that did not forego a substantial shape deformation. The FD-EV algorithm fared the 

worst, as it has the lowest versatility under low bandwidth and SNR conditions. In 

spite of the FD-EV method’s ability to resolve underestimated signal peaks, the 

relatively hostile environment simulated in Figure 4.13 rendered the FD-EV method 

unreliable for low SNR and bandwidth conditions. The MUSIC algorithms despite 

holding its shape, proved unreliable under these conditions due to their inability to 

resolve underestimated signal peaks. Thus, focus needed to be diverted to the 

development of an algorithm that can withstand both adverse bandwidth and SNR 

conditions, while still being able to resolve underestimated signal peaks. This led us 

to the development of the TD-EV method, which will be covered in more detail in the 

next chapter. 

 

 
Figure 4.12 Variation of normalized pseudo-spectrums for TD-MUSIC algorithm 

when signal subspace dimensions are varied from 0 to 5 for low bandwidth (2 GHz) 

and SNR (1 dB) conditions 
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Figure 4.13 Variation of normalized pseudo-spectrums for FD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for low bandwidth (2 GHz) and 

SNR (1 dB) conditions 

 

 

 
Figure 4.14 Variation of normalized pseudo-spectrums for FD-MUSIC algorithm 

when signal subspace dimensions are varied from 0 to 5 for low bandwidth (2 GHz) 

and SNR (1 dB) conditions 

 

 

For scenarios where the signal subspace dimension was overestimated from 5 

to 100 (for same channel conditions), the FD-EV method displayed a shape and peak 

magnitude fluctuation (see Figure 4.15). It can further be noticed that this fluctuation 
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is similar to the random variations displayed by the FD-EV method in Figure 4.11, 

where signal subspace dimension was underestimated.  The claim that the Eigen value 

de-weighting renders the FD-EV method unable to coherently respond to signal 

subspace dimension variations is therefore further reinforced here. 

 
Figure 4.15 Variation of normalized pseudo-spectrums for FD-EV algorithm when 

signal subspace dimensions are varied from 5 to 100 for sound bandwidth (above 

5GHz) and SNR (above 5dB) conditions 

 

 

Figure 4.16 best summarizes the conclusions of this section, as it highlights 

the inability of both the MUSIC algorithms to resolve all five dominant multi-paths 

present, when the signal subspace dimension is underestimated to be two. As can be 

observed, a less pronounced signal peak emerges between 0.2 ns and 0.4 ns, in 

addition to the more pronounced peak around the 1.4 ns mark, with no semblance of 

the other three peaks which were underestimated. The same behavior can be observed 

for other cases of underestimated scenarios as verified earlier. The FD-EV method 

however, not only resolves the five signal paths, but also places them accurately at the 

correct locations. The resolution of all signal peaks is of utmost importance for both 

LoS as and NLoS conditions. The correct estimation of the DP-TOA parameter 
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suffers due to the existence of unresolved signal peaks for TOA based systems in LoS 

environments. As for location based fingerprinting techniques utilized for NLoS 

environments, every underestimated signal peak is simply a missing piece of 

information about the details of the environment, as seen by the user at a calibration 

point, in a given localization system. The lack of information in the pseudo-spectrum, 

translates to lack of reliability in its application, as a unique identifier in a location 

based fingerprinting system. Thus correct resolution of all signal paths is of 

paramount importance for proper localization irrespective of the underlying 

positioning system used in the final stage. All these points highlight the importance of 

this brand new property that we have identified in the FD-EV method through this 

research work. 

In summary, we can conclude that due to the Eigen value de-weighting in the 

FD-EV method under sound bandwidth and SNR conditions, the ‘submerged local 

peaks of the MUSIC pseudo-spectrum, corresponding to the underestimated signal 

paths resurfaced above the noise floor’. 

 
Figure 4.16 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is underestimated as 2 (For sound BW and SNR conditions) 
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Chapter 5   

 

Versatility of Time Domain 

Techniques and the capability 

of the TD-EV Algorithm 
 

The super resolution techniques introduced in our research work have shown 

tremendous versatility under a variety of strenuous conditions with each emerging as 

the leader in different scenarios. The extensive behavioral analysis conducted, has 

offered  valuable insights into the capabilities of the super resolution algorithms, to 

yield satisfactory results in the most hostile radio environments, as well as the 

limitations of each technique under varied circumstances. This chapter presents the 

results of the comparative analysis conducted on these techniques. 

Our focus was on constructing versatile super resolution algorithms capable of 

handling the most adverse conditions prevailing in indoor environments (Low SNR; 

limited bandwidth; erroneous estimation of signal subspace dimensions). It was 

identified that the TD-MUSIC algorithm had superior bandwidth versatility, 

resolution capability and noise immunity when compared to its frequency domain 

counterparts. In the previous chapter we also presented the FD-EV method’s ability to 

resurface underestimated signal peaks submerged beneath the noise floor. However, it 

was discovered that the FD-EV method, unlike the TD-MUSIC algorithm, did not 

have high noise immunity and bandwidth versatility.  

The strengths of TD-MUSIC and FD-EV methods lead to the development of 

the TD-EV method, which inherited the best of both worlds. It has the bandwidth 
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versatility and the noise immunity of the TD-MUSIC algorithm, and the FD-EV 

method’s ability to resurface the underestimated signal peaks submerged beneath the 

noise floor, even under the most hostile channel conditions. The TD-EV method only 

suffers a slight but affordable decrease in resolution, while inheriting all the positive 

attributes of the TD-MUSIC and FD-EV algorithms. It is shown later that the TD-EV 

method produces the only informative pseudo-spectrum output under certain hostile 

radio conditions. The TD-EV method being successful where all other methods fail is 

a testament to its versatility and extreme usefulness. 

First, we analyzed the resolution capability of all four super resolution 

techniques through path separation and low magnitude paths. Then, the noise 

performance and bandwidth versatility were tested. Finally the TD-EV method’s 

ability to combine the positive attributes of both TD-MUSIC and FD-EV methods’ 

was verified. 

 

5.1 Resolution capability analyzed through path 

separation 
 

A key criterion to be considered when determining the performance of any 

multi-path resolution technique is its path resolvability. The severe multi-path 

conditions prevailing in indoor environments exemplify the significance of having 

superior path resolution capabilities. The presence of clutter at close proximity, 

indoors, results in extremely closely spaced adjacent multi-paths, that arrive in 

clusters. Proper separation of these closely spaced multi-paths is essential for accurate 

positioning. 
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There can be many approaches to determine which algorithm has the best 

resolution capability. Our approach is to identify which method continues to 

accurately resolve all multi-paths correctly, when the path separation between two 

multi-paths is gradually decreased. In this study, to ensure other variables do not 

come into play, the effective bandwidth above the noise floor, as well as the SNR 

itself, were kept at friendly levels. It was also assumed that the signal subspace 

dimensions were accurately estimated.  

An effective multi-path resolution comprises of two key steps. First, the 

algorithm should be able to identify the existence of two separate signal paths. This is 

ensured when there is evidence of two separately identifiable peaks present in the 

resultant pseudo-spectrum. Second, for the process to be deemed complete, the peaks 

must be placed at the correct locations corresponding to the relevant time delays of 

the paths in concern. This is a fundamental criterion in resolution because, as stated 

earlier the ‘peak shift’ that takes place due to adjacent paths causes an estimation error 

for low resolution algorithms, and is one of the underlying reasons for opting for a 

super resolution technique in the first place.  

For our analysis, the path separation between peak two and three was varied 

from the usual 0.4 ns to 0.2 ns. Figure 5.1 gives the outcome of the control experiment 

in which the multi-path separation is maintained at the 0.4 ns interval. Here all four 

techniques are able to resolve all paths accurately. The SNR level was maintained at 

10 dB, while the effective channel bandwidth above the noise floor was kept at a 

sound level and the signal subspace dimension were correctly estimated. As 

mentioned earlier it should be observed in Figure 5.1, how all four local peaks are 

resolved and placed at the correct locations on the delay axis by all the four methods. 
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Figure 5.1 Comparison of normalized pseudo-spectrums for path separation of 0.4 ns 

at sound bandwidth conditions with SNR = 10 dB 

 

 

As the path separation is lowered down to 0.3 ns it becomes apparent that the 

time domain techniques have an edge, when it comes to path resolvability. Figure 5.2 

demonstrates how the FD-EV method is unable to resolve the two closely spaced 

multi-paths at even 0.3 ns separation. It is unable to properly identify the existence of 

two distinguished signal paths, and place one unresolved peak in between the two 

actual delay points at 0.6 and 0.9 ns. The FD-MUSIC algorithm, which fares slightly 

better, is able to identify the existence of two separate signal paths at a 0.3 ns interval 

and resolve them. Yet the FD-MUSIC method is unable to place the resolved local 

peaks at the correct locations on the resultant pseudo-spectrum. Thereby proving the 

superior resolution capability of the time domain methods to resolve, and accurately 

place, the local peaks at the correct locations. Figure 5.3 illustrates how the resolution 

capability of the FD-MUSIC and FD-EV methods further deteriorate at the same path 

separation when the SNR is lowered to 5 dB. Unable to resolve the 2
nd
 and 3

rd
 signal 
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paths, both methods lump the two signal paths together as one, to generate a non-

existent local peak erroneously between 0.6 and 0.9ns. 

 

 

Figure 5.2 Comparison of normalized pseudo-spectrums for path separation of 0.3 ns 

at sound bandwidth conditions with SNR = 10 dB 

 

 

 

Figure 5.3 Comparison of normalized pseudo-spectrums for path separation of 0.3 ns 

at sound bandwidth conditions with SNR = 5 dB 
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Figure 5.4 however demonstrates that the TD-MUSIC algorithm is still the 

ultimate performer when it comes to resolution of closely spaced multi-paths as path 

separation is further decreased to 0.2 ns. The frequency domain methods are unable to 

resolve the two signal paths, while the TD-EV method though able to resolve the two 

paths, suffers a slight peak placement error. Hence it can be assumed that the path 

resolution capability of the TD-MUSIC algorithm is inherited by the TD-EV method 

with a slight but affordable decrease in resolution. The fact that even at this point, the 

TD-MUSIC method is not only able to identify, but also place the peaks at the correct 

locations, while the frequency domain methods cannot even detect two paths, speaks 

volumes about its resolution capability. The ability of the TD-EV and TD-MUSIC 

algorithms to resolve closely placed multi-paths makes them the prime candidates for 

generation of ‘location information rich fingerprints’ when used in Non-LOS 

conditions. As more closely spaced multi-paths are resolved, the pseudo spectrum is 

enabled to provide more information about the surrounding environment to the 

location based fingerprinting system. 
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Figure 5.4 Comparison of normalized pseudo-spectrums for path separation of 0.2 ns 

at sound bandwidth conditions with SNR = 5 dB 

 

 

5.2 Resolution capability for low gain paths 
 

The ability of any super resolution technique to resolve low magnitude multi-

paths is of the same importance as its ability to resolve closely spaced multi-paths. 

The inability to detect even a relatively low amplitude multi-path is essentially loss of 

information, when it comes to location based fingerprinting in NLoS environments. In 

addition, the ability to detect low amplitude signal paths increases the chance for 

better positioning accuracy in time delay estimation techniques as well. 

In this study the relative magnitude of the 3
rd
 dominant signal path was 

lowered compared to the other multi-paths, to test each methods capability to detect 

and accurately resolve the attenuated multi-path. Other conditions such as SNR, and 

effective channel bandwidth were kept at a friendly level to properly isolate this 

behavior. Figure 5.5 depicts each algorithm’s low gain path resolution capability, 

when the 3
rd
 dominant signal path has an average relative gain lower than 2 dB, 
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compared to the other dominant multi-paths. The circled region illustrates how the 

FD-MUSIC and FD-EV methods are barely able to detect the existence of the 

attenuated multi-path, while the TD-MUSIC and TD-EV methods have no problems 

detecting and resolving the attenuated signal path in question. As the relative 

magnitude is lowered by another 1 dB, as depicted in Figure 5.6, the frequency 

domain methods are completely oblivious to the existence of the low gain path (the 

pseudo-spectrum of the frequency domain methods are visibly flat in the encircled 

region), while the time domain methods continue to display their superior resolution 

capability. The analysis yet again demonstrates how the greater resolution capability 

of the TD-MUSIC algorithm is inherited by the TD-EV method.  

 

 

Figure 5.5 Comparison of normalized pseudo-spectrums for case where 3rd path is 

lower than 2 dB in relative gain compared to other dominant multi-paths 
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Figure 5.6 Comparison of normalized pseudo-spectrums for case where 3rd path is 

lower than 3 dB in relative gain compared to other dominant multi-paths 

 

 

5.3 Relative noise immunity of the super 

resolution techniques 
 

The noise immunity of a super resolution technique is measured by the impact 

that low SNR conditions have on the ‘shape’ of the pseudo-spectrum, and by the 

algorithm’s ability to resolve all multi-paths, under such conditions. Noise immunity 

becomes the underlying criterion for selection, if we were to use less expensive 

signaling techniques, such as ultra sound or audible sound for positioning 

applications. For example as stated in [30], broadband, as well as narrowband, 

ultrasound positioning systems, display poor performance under ultrasonic noise, 

which occur due to people’s everyday actions, as they employ simple correlator based 

techniques for time of flight estimation for LoS conditions.  

On the other hand, even for UWB based systems, the signal processing tool’s 

noise separation capability is essential for generating an accurate multi path profile of 

the transmitter to receiver channel. The noise maybe the result of interfering dynamic 
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scatterers present at the real-time application stage that were absent during the 

calibration stage of a location based fingerprinting positioning system. The accurate 

multi-path profile in turn can be used as the most accurate means of obtaining a 

‘location information rich fingerprint’ for localization on a radio map for NLoS 

scenarios. Figure 5.7 serves as the control experiment where the SNR level is 

maintained at 10 dB. Throughout the analysis the signal subspace dimensions are 

accurately estimated, and effective bandwidth is kept at a sound level for proper 

isolation of behavior under SNR fluctuations.  

 

 

Figure 5.7 Comparison of normalized pseudo-spectrums for SNR = 10 dB 

 

 

By comparison of Figure 5.7 with 5.8, the relatively higher rise of the noise 

floor in the FD-MUSIC and FD-EV methods compared to their time domain 

counterparts becomes clearly apparent for a SNR drop from 10 dB to 0 dB. Careful 

inspection of Figure 5.8 reveals that the barely resolved local peaks of the frequency 

domain methods are placed at incorrect locations due to the accentuated rise of the 
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noise floor.  The relative rise in the noise floor shifts the local peaks to incorrect 

locations, while making the local peaks less pronounced. Alternatively, due to the 

relatively low rise of the noise floor in the time domain methods, the pseudo-spectrum 

shape around local peaks remain pronounced and peaky around the local maxima, 

enabling convenient and accurate peak detection for time delay estimation systems.  

Now the SNR is lowered further to -5 dB in Figure 5.9. The extreme rise in the 

noise floor now engulfs most of the local peaks of the FD-MUSIC and FD-EV 

methods, leaving only two resolved peaks in the generated pseudo-spectrum. This 

clearly proves the superior noise immunity of the TD-MUSIC and TD-EV methods, 

which are still able to resolve all five multi-paths accurately, while maintaining 

almost negligible shape deformation in the resultant pseudo-spectrums. Both methods 

provide a location information rich multi path profile under low SNR conditions. 

Thus it may be inferred from these observations that the noise immunity of the TD-

MUSIC algorithm is also present in the TD-EV method. These factors combined 

make the TD-MUSIC and TD-EV methods, prime candidates for high noise – low 

cost systems and NLoS location based finger printing applications.  
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Figure 5.8 Comparison of normalized pseudo-spectrums for SNR = 0 dB 

 

 

 

 

Figure 5.9 Comparison of normalized pseudo-spectrums for SNR = -5 dB 
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5.4 Bandwidth versatility of super resolution 

techniques 
 

The bandwidth versatility of each algorithm was tested by varying effective 

channel bandwidth above noise floor from 10 GHz to 1.5 GHz. It is important to 

understand the impact of signal distortion due to band limited channels. Figures 5.10 

to 5.13 contain the results of this analysis; the shape deformation of the respective 

pseudo-spectrums when the bandwidth is varied.  

The FD-MUSIC algorithm is only able to accurately resolve the multi-paths 

above an effective bandwidth of 3 GHz. Even then it places some of the local peaks 

incorrectly along the delay axis as shown in Figure 5.10. The FD-EV method fares the 

worst when bandwidth is lowered, as it is unable to resolve the multipaths correctly 

for bandwidths below 5 GHz, resulting in a greater degree of shape deformation at 3 

GHz bandwidth when compared to the FD-MUSIC algorithm. This phenomenon is 

illustrated in Figure 5.11. Both these methods convey no useful information about the 

channel multi-path profile for bandwidths below 2.25 GHz.  
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Figure 5.10 Variation of normalized pseudo-spectrums for FD-MUSIC algorithm 

under bandwidth change 

 

 

 

Figure 5.11 Variation of normalized pseudo-spectrums for FD-EV algorithm under 

bandwidth change 

 

As visible from Figure 5.12, the TD-MUSIC algorithm under goes hardly any 

shape deformation above 2 GHz; and is able to resolve all five paths and estimate 

time delays accurately even under bandwidths below 2 GHz. This clearly illustrates 

the bandwidth versatility of the TD-MUSIC algorithm. Comparative examination of 
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Figures 5.12 and 5.13, verify that TD-EV and TD-MUSIC methods have nearly 

identical bandwidth versatility. Both of these algorithms show little if there is any 

shape deformation when the bandwidth is reduced. The pseudo-spectrum’s shape 

remained nearly identical for bandwidth variations from 10 GHz to 2.25 GHz. 

The local peaks become less and less pronounced for the frequency domain 

methods as bandwidth is lowered. The time domain methods tend to hold shape with 

as little deformation as possible. Thus it is evident that the TD-EV method has 

inherited the bandwidth versatility of the TD-MUSIC algorithm when the signal 

subspace dimension is correctly estimated. 

 

 

Figure 5.12 Variation of normalized pseudo-spectrums for TD-MUSIC algorithm 

under bandwidth change 
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Figure 5.13 Variation of normalized pseudo-spectrums for TD-EV algorithm under 

bandwidth change 

 

 

5.5 The best of both worlds from the TD-EV 

algorithm 
 

The impact of erroneous estimation of signal subspace dimensions for the 

MUSIC algorithms and FD-EV method were analyzed in Section 4.3. The number of 

signal subspace vectors was varied from 0 to 5, for the case where the actual signal 

subspace dimension was 5, to study the effects for the underestimated scenario. Hence 

it was discovered that for sound bandwidth and SNR conditions, only the FD-EV 

method was able to resolve all 5 multi-paths. It was therefore concluded that the 

Eigen value de-weighting of the FD-EV method, enabled the underestimated signal 

peaks, submerged beneath the noise floor, for the MUSIC algorithm pseudo-

spectrums’ to resurface. Because the FD-EV method does not have the versatility of 

the TD-MUSIC algorithm, as verified in this chapter under hostile radio channel 

conditions, the FD-EV method fails to provide any useful information about the 

multi-path profile through its pseudo-spectrum. Therefore, we explored the possibility 
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of developing an algorithm that strives to combine the positive attributes of both these 

methods, resulting in the introduction of the TD-EV method. 

In Figure 5.14, the TD-EV method undergoes the same analysis as its three 

counterparts. This was done to study its capabilities when the signal subspace 

dimension is underestimated. Here the bandwidth (around 10 GHz) and SNR (around 

10 dB) are kept at a sound level. This enables us to verify whether the TD-EV 

method, through its de-weighting in the time domain, is able to replicate the 

resurfacing capability of the FD-EV method under similar conditions (see Figure 

4.11). As can be observed from Figure 5.14, the TD-EV method hardly suffers any 

shape deformation when the signal subspace dimension is reduced. In fact the TD-EV 

algorithm does not even display the random fluctuations of the local peak magnitudes 

that were observed in the FD-EV method when the signal subspace dimension was 

varied (see Figure 4.15). This leads us to believe that the Eigen value de-weighting 

process of the TD-EV method enables the underestimated local peaks, submerged 

beneath the noise floor, for the MUSIC algorithm pseudo-spectrums’ to resurface,  

similar to the FD-EV method, for good bandwidth and SNR conditions. 

Now the bandwidth and SNR were lowered, as in our previous analysis in 

Section 4.3, to observe the versatility of the resurfacing capability. However, unlike 

the FD-EV method, the TD-EV method hardly underwent any shape deformation due 

to the higher bandwidth versatility and noise immunity. This behaviour is illustrated 

in Figure 5.15, when the effective channel bandwidth was lowered to 2 GHz and for 

an SNR of only 1 dB. The TD-EV method as demonstrated here was still able to 

accurately resolve all five multi-paths even for cases where the signal subspace 

dimension was underestimated.  
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Figure 5.14 Variation of normalized pseudo-spectrums for TD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for sound bandwidth (above 5 

GHz) and SNR (above 5 dB) conditions 

 

 

 

 
Figure 5.15 Variation of normalized pseudo-spectrums for TD-EV algorithm when 

signal subspace dimensions are varied from 0 to 5 for low bandwidth (2 GHz) and 

SNR (1 dB) conditions 
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As verified above and in previous sections of this chapter, the bandwidth 

versatility, higher resolution capability, and the noise immunity of the TD-MUSIC 

algorithm are inherited by the newly introduced TD-EV method. Furthermore, the 

FD-EV method’s ability to resurface submerged local peaks when the signal subspace 

dimension is erroneously underestimated (under sound bandwidth and SNR 

conditions), can also be replicated by the TD-EV method. These observations are 

summarized in the Figure 5.16 for the case where the signal subspace dimensions are 

underestimated as two. The two EV methods are the only two methods having the 

ability to resolve all signal paths properly. 

 

 
Figure 5.16 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is under estimated as 2. (For sound BW and SNR conditions) 

 

 

For the case in Figure 5.17 the signal subspace dimensions are correctly 

estimated, but the effective channel bandwidth and SNR are lowered. This is the 

flipside of the previous case where the subspace dimensions were erroneously 

estimated, while the SNR and bandwidth remained at friendly levels. As expected, it 



   117 

is clear that only the two time domain methods that are able to correctly resolve all 

five paths and place the local peaks at the correct locations.  

 

 
Figure 5.17 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is correctly estimated (For low BW and SNR conditions) 

 

 

These results confirm that both the resurfacing capability of the FD-EV 

method, and the versatility and noise immunity of the TD-MUSIC method, is 

inherited by the TD-EV method. So far we have only seen the TD-EV method 

replicating these positive attributes under the same conditions the original algorithms 

displayed them. What remains to be examined is whether the TD-EV method can 

effectively combine the best of both worlds. In other words, “can it resolve all multi-

paths properly when the signal subspace dimension is erroneously underestimated 

under hostile radio conditions where there is low SNR and low bandwidth?” As 

shown in Figure 5.18, the TD-EV method is able to resolve all five dominant multi-

paths under low SNR and low bandwidth conditions when the signal subspace 

dimension is underestimated. As evident from Figure 5.18, the only method that 

produces a properly resolved pseudo-spectrum under these hostile channel conditions 
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is the TD-EV method. All other methods fail to provide any valuable information 

what-so-ever. The FD-EV and FD-MUSIC methods fail due to their comparably 

lower noise immunity and bandwidth versatility. The TD-MUSIC algorithm fails due 

to its inability to resurface underestimated signal peaks submerged beneath the noise 

floor. The TD-EV algorithm therefore not only has the versatility and noise immunity 

of the TD-MUSIC algorithm, but is also able to combine this attribute with the 

resurfacing capability it inherited from the FD-EV method, while facing low 

bandwidth and SNR conditions. The TD-EV method therefore is able to combine the 

best of both worlds effectively and accurately to improve performance of indoor 

positioning systems in hostile radio environments. 

 

 
Figure 5.18 Comparison of normalized pseudo-spectrums when the number of signal 

subspace vectors is underestimated as 2 (For low BW and SNR conditions) 
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Chapter 6   

 

Conclusions and Future Work 

 

6.1 Conclusions 
 

The hostile nature of indoor environments and the rapid growth of commercial 

indoor positioning systems have placed a significant emphasis on developing robust 

localization techniques. The presence of severe multi-path conditions and the frequent 

occurrence of NLoS conditions within indoor channels motivated us to develop signal 

processing algorithms, which can provide reliable information, for accurate 

localization in both LoS and NLoS conditions.  Hence, our work focused on 

introducing super resolution techniques with a dual purpose: 

I. Capability to accurately provide time delay estimates under LOS 

conditions with severe multi-path conditions and low SNR levels. 

II. Ability to use the resultant pseudo-spectrums generated as location 

information rich fingerprints that can be utilized for localization under 

NLOS conditions by location fingerprinting based systems. 

The subspace separation based MUSIC algorithms were identified as the 

prime candidate owing to their proven high resolution and noise immunity when 

compared to other standard time delay estimation techniques. Previous research 

works, only focused on mapping the MUSIC algorithm’s fundamentals to a TOA 

estimation framework, while operating completely in the frequency domain. The 

applications tested were only limited for operation under LoS conditions. The analysis 
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focused on appreciating the resolution enhancement compared to the correlation based 

and inverse fast Fourier transform based methods.  

Due to the limitations mentioned above, our research work focused on the 

development of new variants to the standard FD-MUSIC algorithm, such as the TD-

MUSIC algorithm which can be utilized for positioning systems in both LoS and 

NLoS conditions. Then an in-depth behavioural analysis was conducted on both these 

methods as well as for the FD-EV method. This enabled proper identification of 

relative strengths and weaknesses of these super resolution techniques.  The superior 

resolution capability of these techniques helped us to recognize them as ideal 

candidates for use in TOA based systems, under severe multipath conditions, as 

present in indoor environments with LoS conditions. These attributes, results in the 

presence of location rich information in the resultant pseudo-spectrum outputs 

generated from our algorithms. This in turn makes these pseudo-spectrums; ideal 

candidates to be used as fingerprints, for a location based fingerprinting system, in 

indoor environments with NLoS conditions.  In addition, a time delay estimation 

model of the ESPRIT algorithm was introduced, for systems that wish to forego the 

computational burdens of peak detection or image matching at the expense of 

accuracy. 

The ‘spectral leakage phenomena’ of the TD-MUSIC algorithm was 

indentified and presented for the first time. Under steering vector pulse spread 

variations, an ‘optimum deviant’ was identified for a given bandwidth, signal template 

and channel conditions.  Under varying channel bandwidth conditions, the TD-

MUSIC algorithm emerged as the most versatile technique. Further deviants of the 

TD-MUSIC algorithm were discovered to outperform the original TD-MUSIC 

algorithm under low bandwidth conditions. Thus, through proper identification of the 



   121 

optimum deviant for a given channel condition, it was shown for band limited 

conditions, the spectral leakage phenomena can actually be used to our advantage.  

Through an extensive behavioural analysis of the FD-EV method, we were 

able to identify for the first time that Eigen value de-weighting process in the FD-EV 

method, resulted in the resurfacing of the under estimated signal peaks, which were 

otherwise submerged beneath the noise floor for MUSIC algorithms. This behaviour 

only became apparent under friendly channel bandwidth and SNR conditions, as a 

result of the low versatility of the FD-EV method. 

Resolution capability of the super resolution algorithms was tested for both 

closely spaced multi-paths and relatively low gain paths. In both cases TD-MUSIC 

algorithms emerged as the ultimate performer. It was demonstrated how the frequency 

domain methods failed under low SNR conditions, to resolve all paths properly, due 

to the relative rise in the noise floor. The TD-MUSIC algorithm however managed to 

resolve all paths accurately and efficiently, thereby verifying its superior noise 

immunity. Under variations of effective channel bandwidth, the TD-MUSIC 

algorithm yet again confirmed its versatility as it underwent the least amount of shape 

deformation under band limited conditions.  

The observed behaviour provided the motivation to develop an algorithm that 

can combine the best of both worlds. The newly introduced TD-EV method therefore 

strived to combine the bandwidth versatility, noise immunity and superior resolution 

capability of the TD-MUSIC algorithm, with the resurfacing capability of the FD-EV 

method. The observations in Chapter 5 established that the newly introduced TD-EV 

method was able to emulate the path resolvability, bandwidth versatility, and noise 

immunity, present in the TD-MUSIC algorithm, when the signal subspace dimension 

was correctly estimated. The TD-EV method could also resurface the local peaks 
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submerged beneath the noise floor through its Eigen-value de-weighting process, in a 

manner similar to FD-EV method, under high SNR and bandwidth conditions. 

Finally we examined whether the TD-EV method could effectively combine 

all the positive attributes it inherited from the TD-MUSIC and FD-EV methods to 

outshine as the ultimate performer under the most hostile channel conditions. It was 

observed that the TD-EV method is the only method to resolve all multi-paths 

accurately, and provide a location information rich pseudo-spectrum, under low SNR 

and bandwidth conditions, when the value of signal subspace dimension is 

erroneously underestimated. Under these conditions all other methods provide no 

useful information.  

These versatile algorithms introduced in our research, provide the means for 

accurate geolocation in the most hostile indoor radio environment. 

 

6.2 Future Work 
 

The following are possible avenues that can be explored as future work with 

respect to the research work presented in this thesis.  

The super resolution techniques introduced here can be used as the signal 

processing tools for indoor localization systems with context aware applications. The 

versatility of these tools can be utilized for accurate identification of the user’s 

mobility limitations. This enables the system to determine the extent of context 

specific information that needs to be transmitted. 

As the work here introduces versatile signal processing techniques that can 

provide accurate information independent of the signalling platform, the strengths and 

limitations can be tested for specific signalling applications. For example, the 
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performance enhancement in terms of positioning accuracy can be verified for an ultra 

sonic system, under severe multipath and noise conditions, when super resolution 

techniques are used as opposed to standard correlation based methods.  

The possible implication of site-specific errors for location based 

fingerprinting systems can be analyzed. This entails matching our resultant pseudo-

spectrums with the appropriate fingerprinting scheme, according to site-specific 

details such as density, and the nature of clutter. 

The impact of multiple users, at close proximity, can be studied in terms of 

both signal interference as well as dynamic clutter. The possibility of considering 

dynamic clutter and multi-user signal interference as forms of coloured noise that can 

be separated at the subspace separation stage can be explored.  

On work relating to implementation of the final stage of the positioning 

system that is the navigation solution, combining versus swapping techniques can be 

explored in the presence of both LoS and NLoS conditions. Combining techniques 

would strive to combine the information of both the parametric estimation system, as 

well as the location based fingerprinting system. Whereas swapping systems, will 

attempt to identify the current condition (whether LoS or NLoS), and select the 

system appropriately.  

In addition, for indoor and underground environments, the possibility of 

utilizing repeater based systems with super resolution techniques can be studied. 

Especially due to the long, narrow and bendy nature of underground tunnels, repeaters 

would serve as an essential tool to maintain LoS conditions. The effects of repeaters 

as a performance enhancement tool on a location based fingerprinting system are also 

worth exploration, for comparative purposes. 
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The proper placement of the APs can be explored for further positioning 

accuracy enhancements in super resolution based systems. The AP placement can be 

adjusted according to the site, to provide better diversity in the location based 

fingerprint. The greater the diversity of the fingerprints, the more location rich 

information it contains. Further, the DOP parameters can also be improved by proper 

AP placement. 

On work relating to non-localization applications, these techniques can be 

explored, for identification of the existence of a particular impulsive signal class in a 

noisy environment. Rather than attempting to find the delay of a known output, the 

steering vector can be altered to identify the existence of the signal class set in 

concern. The applications for this would be wide ranging. 
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