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Summary

Constraint Handling Rules (CHR) is a concurrent committed choice rule based

programming language designed specifically for the implementation of incremental

constraint solvers. Over the recent years, CHR has become increasingly popular

primarily because of it’s high-level and declarative nature, allowing a large number

of problems to be concisely implemented in CHR.

The abstract CHR semantics essentially involves multi-set rewriting over a multi-

set of constraints. This computational model is highly concurrent as theoretically

rewriting steps over non-overlapping multi-sets of constraints can execute concur-

rently. Most intriguingly, this would allow for the possibility for implementations of

CHR solvers with highly parallel execution models.

Yet despite of this, to date there is little or no existing research work that inves-

tigates into a parallel execution model and implementation of CHR. Further more,

parallelism is going mainstream and we can no longer rely on super-scaling with

single processors, but must think in terms of parallel programming to scale with

symmetric multi-processors (SMP).

In this thesis, we introduce a concurrent goal-based execution model for CHR.

Following this, we introduce a parallel implementation of CHR in Haskell, based

on this concurrent goal-based execution model. We demonstrate the scalability of

this implementation with empirical results. In addition, we illustrate a non-trivial

application of our work, known as HaskellJoin, an extension of the popular high-level

concurrency abstraction Join Patterns, with CHR guards and propagation.
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Chapter 1

Introduction

1.1 Motivation

Rewriting is a powerful discipline to specify the semantics of programming languages

and to perform automated deduction. There are numerous flavors of rewriting such

as term, graph rewriting etc. Our focus here is on exhaustive, forward chaining,

multi-set constraint rewriting as found in Constraint Handling Rules (CHR) [19].

Constraint Handling Rules (CHR) is a concurrent committed choice rule based

programming language designed specifically for the implementation of incremental

constraint solvers. Over the recent years, CHR has become increasingly popular

primarily because of it’s high-level and declarative nature, allowing a large number

of problems to be concisely implemented in CHR. From typical applications of con-

straint solving, CHR has been used as a general purpose programming language in

many applications from unprecedented fields, from agent programming [56], biolog-

ical sequence analysis [4] to type inference systems [10].

The abstract CHR semantics essentially involves multi-set rewriting over a multi-

set of constraints. This computational model is highly concurrent, as theoretically

rewriting steps over non-overlapping multi-sets of constraints can execute concur-

rently. Most intriguingly, this would allow for the possibility for implementations of

1
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CHR solvers with highly parallel execution models.

Yet despite of the abstract CHR semantics’ highly concurrent property, to date

there are little or no existing research work that investigates into a concurrent1 exe-

cution model or parallel2 implementation of CHR. Existing CHR execution models

are sequential in nature and often motivated by other implementation issues orthog-

onal to concurrency or parallelism. For instance, the refined operational semantics

of CHR [11] describes a goal-based execution model for CHR programs, where con-

straints are matched to CHR rules in a fixed sequential order. The rule-priority

operational semantics of CHR [33] is similar to the former, but explicitly enforces

user-specified rule priorities on goal-based execution of constraints. Nearly all ex-

isting CHR systems implement either one of (or variants of) the above execution

models, hence can only be executed sequentially.

Further more, parallelism is going mainstream. The development trend of high-

performance micro-processor has shifted from the focus on super-scalar architectures

to multi-core architectures. This means that we can no longer rely on super-scaling

with single processors, but must think in terms of parallel programming to scale

with symmetric multi-processors (SMP). We believe that much can be gained from

deriving a parallel execution model and parallel implementation of CHR. Specifically,

existing applications written as CHR programs can possibly enjoy performance speed

ups implicitly when executed on multi-core systems, while applications that deal

with asynchronous coordination between multiple agents (threads or processes) can

be actually implemented and executed in parallel3 in CHR (See Section 2.2.3 for

examples).

Our last (but not least) motivation for our work lies in a high-level concurrency

abstraction, known as Join Calculus [18]. Join Calculus is a process calculus aimed at

providing a simple and intuitive way to coordinate concurrent processes via reaction

1Concurrency refers to the theoretical property, where CHR derivation is driven by multiple
steps of reduction that can occur in arbitrary ordering.

2Parallelism refers to physically executing CHR programs with multiple CPU cores.
3as oppose to be simulated
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rules known as Join-Patterns. Interestingly, the execution model of CHR rewriting

is very similar to that of Join-Patterns with guard conditions, for which to date no

efficient parallel implementation of it’s concurrent execution model exists. As such,

an understanding of the challenges of implementation a parallel execution model for

CHR, would be almost directly applicable to Join Patterns with guards.

These are exactly the goals of this thesis. To summarize, we have four main

goals:

• To derive a concurrent execution model that corresponds to the abstract CHR

semantics.

• To develop a parallel implementation of CHR that implements this parallel

execution model.

• To show that existing CHR applications could benefit from this parallel exe-

cution model.

• To demonstrate new concurrent applications can be suitably implemented in

our parallel implementation of CHR.

1.2 Contributions

Our main contributions are as follows:

• We derive a parallel goal-based execution model, denoted ‖ G, that corresponds

to the abstract CHR semantics. This execution model is similar to that of in

[11] in that it defines execution of CHR rewritings by the execution of CHR

constraints (goals), but differs greatly because it allows execution of concurrent

goals.

• We prove that ‖ G corresponds to the abstract CHR semantics. This is achieved

by proving a correspondence between ‖ G execution steps and the abstract

CHR semantics (denoted A) derivation steps.
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• We develop an implementation of ‖ G, known as ParallelCHR , in the func-

tional programming language Haskell. This implementation exploits lessons

learnt in [54] and utilizes various concurrency primitives in Haskell to achieve

optimal results.

• We derive a parallel execution model for Join-Patterns [14], via adaptions from

‖ G.

• We extend Join-Patterns with CHR features, specifically, we add guards and

propagation.

• We develop an implementation of Join-Patterns with guards and propagation,

known as HaskellJoin .

• We provide empirical evidence that our implementations (ParallelCHR and

HaskellJoin ) scale well with the number of executing shared-memory proces-

sors.

1.3 Outline of this Thesis

This thesis is organized as follows.

In Chapter 2, we provide a detailed background of Constraint Handling Rules.

We will introduce CHR via examples and illustrate the concurrency of CHR rewrit-

ings. This is followed by formal details of it’s syntax and abstract semantics.

In Chapter 3, we formally introduce our concurrent goal-based CHR semantics,

‖ G. Additionally, we provide a proof of it’s correspondence with the abstract CHR

semantics.

In Chapter 4, we detail our parallel CHR implementation in Haskell. Here, we

explain the various technical issues and design decisions that make this implemen-

tation non-trivial. We will also highlight our empirical results that shows that this

implementation scales with the number of executing processors.
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In Chapter 5, we introduce a non-trivial application of our work, Join-Patterns

with guards and propagation. We will first briefly introduce Join-Patterns and

motivate the case for extending with guards and propagation. Following this, we will

illustrate how we use the concurrent CHR goal-based semantics as a computational

model to implement Join-Patterns with guards and propagation.

In Chapter 6, we discuss the existing works related to ours, from other similar

approaches to parallel programming (eg. parallel production rule systems), existing

works that addresses parallelism in CHR, to existing Join-Pattern extensions that

shares similarities with ours.

Finally in Chapter 7, we conclude this thesis.



Chapter 2

Background

2.1 Chapter Overview

In this Chapter, we provide a detailed background of Constraint Handling Rules. We

will introduce CHR via examples (Section 2.2.1) and illustrate the concurrency of

CHR rewritings (Section 2.2.2). This is followed by formal details of it’s syntax and

abstract semantics (Section 2.2.4). We will also highlight an existing CHR execution

model (Section 2.2.5) known as the refined CHR operational semantics, and finally

provide brief details of our work (Section 2.3).

Readers already familiar to CHR may choose to skip Section 2.2 of this chapter.

2.2 Constraint Handling Rules

2.2.1 CHR By Examples

Constraint Handling Rules (CHR) is a concurrent committed choice rule based pro-

gramming language originally designed specifically for the implementation of in-

cremental constraint solvers. The CHR semantics essentially describes exhaustive

forward chaining rewritings over a constraint multi-set, known as the constraint

store. Rewriting steps are specified via CHR rules which replace a multi-set of con-
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straints matching the left-hand side of a rule (also known as rule head) by the rule’s

right-hand side (also known as rule body). The following is an example of a CHR

rule:

get @ Get(x ),Put(y) ⇐⇒ x = y

This CHR rule models a simple communications buffers. A Get(x ) constraint

represents a call to retrieve an item from the buffers, while Put(y) represents a call

to place an item to the buffers. The symbol get is the rule name, used to uniquely

identify a CHR rule in the CHR program. Get(x ),Put(y) is the rule head, while

x = y is the rule body. This CHR rule simply states that any matching occurrence of

Get(x ),Put(y) can be rewritten to x = y , by applying the appropriate substitutions

of x and y . A CHR program is defined by a set of CHR rules and an initial constraint

store. For instance, treating get as a singleton rule CHR program and starting from

the initial store {Get(m),Get(n),Put(1 ),Put(8 )}, we rewrite the store with the get

rule via the following rewrite steps (also referred to as derivation steps):

Step Substitution Constraint Store

{Get(m),Get(n),Put(1 ),Put(8 )}

D1a {x = m, y = 1} get {Get(n),Put(8 ),m = 1}

D2a {x = n, y = 8} get {m = 1 ,n = 8}

Derivation steps are denoted by  which maps constraint store to constraint

store. Each derivation step represents the firing of a CHR rule, and are anno-

tated by the name of the respective rule that fired. We will omit rule head an-

notations if there are no ambiguities caused. Derivation step D1a matches subset

{Get(m),Put(1 )} of the constraint store to the rule head of get via the substitution

{x = m, y = 1}. We refer to {Get(m),Put(1 )} as a rule head instance of get . Hence

it rewrites {Get(m),Put(1 )} to {m = 1}. Derivation step D2a does the same for

{Get(n),Put(8 )}. The store {m = 1 , n = 8} is known as a final store because no

rules in the CHR program can apply on it.

Note that we could have rewritten the same initial store via the following deriva-
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tion steps instead:

Step Substitution Constraint Store

{Get(m),Get(n),Put(1 ),Put(8 )}

D1b {x = m, y = 8} get {Get(n),Put(1 ),m = 8}

D2b {x = n, y = 1} get {m = 8 ,n = 1}

In this case, derivation step D1b matches the subset {Get(m),Put(8 )} instead of

{Get(m),Put(1 )}. This is followed by derivation step D2b, where the remaining

pair {Get(n),Put(1 )} is rewritten to n = 1 . As a result, a different final store

is obtained. The CHR semantics is committed-choice because both sequences of

derivation steps leading up to the distinct final stores, are valid computations ac-

cording to the semantics 1. As such, the CHR semantics is non-deterministic since

an initial CHR store and program can possibility yield multiple final stores, depend-

ing on which derivation paths were taken. Interestingly, it is such non-determinism

of the semantics which makes it a highly concurrent computational model. We will

defer details of CHR and concurrency to Section 2.2.2.

The CHR language also includes guards and propagated constraints in the rule

heads. The following shows a CHR program that utilizes such features:

gcd1 @ Gcd(n) \ Gcd(m) ⇐⇒ m ≥ n&&n > 0 | Gcd(m − n)

gcd2 @ Gcd(0 ) ⇐⇒ True

Given an initial constraint store consisting of a set of Gcd constraints (each rep-

resenting a number), this CHR program computes the greatest common divisor, by

applying Euclid’s algorithm. Rule head of gcd1 has two components, namely prop-

agated and simplified heads. Propagated heads (Gcd(n)) are to the left of the \

symbol, while simplified heads (Gcd(m)) are to the right. Semantically, for a CHR

rule to fire, propagated heads must be matched with a unique constraint in the

1Further more, the semantics does not natively specify any form of backtracking, or search
across multiple possibilities of derivations.
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store, but that constraint will not be removed from the store when the rule fires.

Guard conditions (m ≥ n&&n > 0 ) are basically boolean conditions with variables

bounded by variables in the rule head. Given a CHR rule head instance, the rule

guard under the substitution of the rule head must evaluate to true for the CHR

rule to fire. We assume that evaluation of CHR guards are based on some built-in

theory (For instance, in this example, we assume linear inequality). The following

shows a valid derivation step, followed by a non-derivation step of the gcd1 rule:

{Gcd(1 ),Gcd(3 )} gcd1 {Gcd(1 ),Gcd(3 − 1 )} {n = 1 ,m = 3}

{Gcd(0 ),Gcd(2 )} 6gcd1 {Gcd(0 ),Gcd(2 − 0 )} {n = 0 ,m = 2} and n 6≥ 0

The first rule is valid because Gcd(1 ),Gcd(3 ) matches rule heads of gcd1 , while

the rule guard instances evaluates to true. Note that Gcd(1 ) is propagated (ie. not

deleted) The second is not valid because the rule guard instance is not evaluated to

true, even if Gcd(0 ),Gcd(2 ) matches rule heads of gcd1 .

The following illustrates the derivation steps that represents the exhaustive ap-

plication of the rules gcd1 and gcd2 over an initial store of Gcd constraints. The

result is the greatest common divisor of the initial store.

Step Substitution Constraint Store

{Gcd(9 ),Gcd(6 ), Gcd(3 )}

D1 {n = 6 ,m = 9} gcd1 {Gcd(3 ),Gcd(6 ), Gcd(3 )}

D2 {n = 3 ,m = 6} gcd1 {Gcd(3 ),Gcd(3 ), Gcd(3 )}

D3 {n = 3 ,m = 3} gcd1 {Gcd(0 ),Gcd(3 ), Gcd(3 )}

D4 ∅ gcd2 {Gcd(3 ),Gcd(3 )}

D5 {n = 3 ,m = 3} gcd1 {Gcd(0 ),Gcd(3 )}

D6 ∅ gcd2 {Gcd(3 )}

Derivation step D1 illustrates the firing of an instance of rule gcd1 matching on the

constraints {Gcd(9 ),Gcd(6 )}, where Gcd(6 ) is propagated and Gcd(9 ) is simplified.
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This introduces the constraint Gcd(9 − 6 ). Note that for brevity, we omit built-in

solving (reduction) steps, thus Gcd(9 − 6 ) is treated immediately as Gcd(3 ). Note

that we cannot match the two constraints by propagating Gcd(9 ) and simplifying

Gcd(6 ) because this requires the substitution {n = 9, m = 6} which will make the

rule guard inconsistent (ie. m 6≥ n).

Derivation steps D2 and D3 similarly shows the firing of instances of the gcd1

rule, {Gcd(3 ),Gcd(6 )} and {Gcd(3 ),Gcd(3 )} respectively. In derivation step D4,

{Gcd(0 )} in the store matches the rule head of gcd2 hence rewrites to the True

constraint, which we shall omit. Finally, derivation steps D5 and D6 follows in

similar ways.

We will denote transitive derivation steps with 
∗. In other words, we can

use: {Gcd(9), Gcd(6), Gcd(3)} 
∗ {Gcd(3)} To summarize the derivation sequence

D1 −D6.

2.2.2 CHR and Concurrency

As demonstrated in Section 2.2.1, the abstract CHR semantics is non-deterministic

and highly concurrent. Rule instances can be applied concurrently as long as they do

not interfere. By interfere, we mean that they simplify (delete) distinct constraints

in a store. In other words, they do not content for the same resources by attempting

to simplify the same constraints.

Figure 2.1 illustrates this concurrency property via our earlier examples, com-

munication buffer and greatest common divisor. We indicate concurrent deriva-

tions via the symbol ‖. Given derivation steps {Gcd(m),Put(1 )} get {m = 1}

and {Gcd(n),Put(8 )} get {n = 8}, we can straightforwardly combine both deriva-

tions which leads to the final store {m = 1 , n = 8}. The gcd example shows a more

complex parallel composition: we combine the derivations {Gcd(3 ),Gcd(9 )} gcd2

{Gcd(3 ),Gcd(6 )} and {Gcd(3 ),Gcd(18 )} gcd2 {Gcd(3 ),Gcd(15 )} in a way that

they share only propagated components (ie. Gcd(3 )). The resultant parallel deriva-
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Communication channel:

get @ Get(x ),Put(y) ⇐⇒ x = y

{Get(m),Put(1 )} get {m = 1} ‖ {Get(n),Put(8 )} get {n = 8}

{Get(m),Put(1 ),Get(n),Put(8 )} 
∗ {m = 1 ,n = 8}

Greatest common divisor:

gcd1 @ Gcd(0 ) ⇐⇒ True

gcd2 @ Gcd(n)\Gcd(m) ⇐⇒ m >= n&&n > 0 | Gcd(m − n)

{Gcd(3 ),Gcd(9 )}gcd2 {Gcd(3 ),Gcd(6 )}

‖

{Gcd(3 ),Gcd(18 )}gcd2 {Gcd(3 ),Gcd(15 )}

{Gcd(3 ),Gcd(9 ),Gcd(18 )} gcd2 ,gcd2 {Gcd(3 ),Gcd(6 ),Gcd(15 )}


∗ {Gcd(3 )}

{Gcd(3 ),Gcd(9 ),Gcd(18 )} 
∗ {Gcd(3 )}

Figure 2.1: Communication channel and greatest common divisor

tion is consistent since the propagated components are not deleted.

Recall in Section 2.2.1, for the communication buffer example, we have an-

other possible final store {n = 1 ,m = 8}, that can be derived from the initial store

{Get(m),Put(1 ),Get(n),Put(8 )}. The abstract CHR semantics is non-deterministic

and can possibly yield more than one results for a particular domain. The Gcd ex-

ample on the other hand, is an example of a domain which is confluent. This means

that rewritings over overlapping constraint sets are always joinable, thus a unique

final store can be guaranteed. The communications buffer on the other hand is an

example of a non-confluent CHR program. In general, (non)confluence of a CHR

program is left to the programmer if desired. We will address issues of confluence

with more details in Chapter 3.

Our approach extends from the abstract CHR semantics [19] (formally defined

later in Section 2.2.4) which is inherently indeterministic. Rewrite rules can be

applied in any order and thus CHR enjoy a high degree of concurrency.

An important property in the CHR abstract semantics is monotonicity. Illus-
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(Concurrency)
S ⊎ S1 

∗ S ⊎ S2 S ⊎ S3 
∗ S ⊎ S4

S ⊎ S1 ⊎ S3 
∗ S ⊎ S2 ⊎ S4

Figure 2.2: Concurrency of CHR Abstract Semantics

trated in Theorem 1, monotonicity of CHR execution guarantees that derivations of

the CHR abstract semantics remain valid if we include a larger context (eg. A 
∗ B

is valid under the additional context of constraints S, hence A⊎S 
∗ B ⊎S). This

has been formally verified in [47].

Theorem 1 (Monotonicity of CHR) For any sets of CHR constraints A,B and

S, if A 
∗ B then A ⊎ S 

∗ B ⊎ S

An immediate consequence of monotonicity is that concurrent CHR executions are

sound in the sense that their effect can be reproduced using an appropriate sequential

sequence of execution steps. Thus, we can immediately derive the concurrency rule,

illustrated in Figure 2.2. This rule essentially states that CHR derivations which

affect different parts of the constraint store can be composable (ie. joined as though

that occur concurrently). In [20], the above is referred to as ”Strong Parallelism of

CHR”. However, we prefer to use the term ”concurrency” instead of ”parallelism”.

In the CHR context, concurrency means to run a CHR program (i.e. a set of CHR

rules) by using concurrent execution threads.

Our last example in Figure 2.3 is a CHR encoding of the well-known merge sort

algorithm. To sort a sequence of (distinct) elements e1, ..., em where m is a power

of 2, we apply the rules to the initial constraint store Merge(1 , e1 ), ...,Merge(1 , em)

Constraint Merge(n, e) refers to a sorted sequence of numbers at level n whose

smallest element is e. Constraint Leq(a, b) denotes that a is less than b. Rule

merge2 initiates the merging of two sorted lists and creates a new sorted list at the

next level. The actual merging is performed by rule merge1 . Sorting of sublists

belonging to different mergers can be performed simultaneously. See the example
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merge1 @ Leq(x , a) \ Leq(x , b) ⇐⇒ a < b | Leq(a, b)
merge2 @ Merge(n, a),Merge(n, b) ⇐⇒ a < b | Leq(a, b),Merge(n + 1 , a)

Shorthands: L = Leq and M = Merge

M (1 , a),M (1 , c),M (1 , e),M (1 , g)

merge2 M (2 , a),M (1 , c),M (1 , e),L(a, g)

merge2 M (2 , a),M (2 , c),L(a, g),L(c, e)

merge2 M (3 , a),L(a, g),L(c, e),L(a, c)

merge1 M (3 , a),L(a, c),L(c, g),L(c, e)

merge1 M (3 , a),L(a, c),L(c, e),L(e, g)

‖

M (1 , b),M (1 , d),M (1 , f ),M (1 , h)


∗ M (3 , b),L(b, d),L(d , f ),L(f , h)

M (3 , a),L(a, c),L(c, e),L(e, g),M (3 , b),L(b, d),L(d , f ),L(f , h)

merge2 M (4 , a),L(a, c),L(a, b),L(c, e),L(e, g),L(b, d),L(d , f ),L(f , h)

merge1 M (4 , a),L(a, b),L(b, c),L(c, e),L(e, g),L(b, d),L(d , f ),L(f , h)

merge1 M (4 , a),L(a, b),L(b, c),L(c, d),L(c, e),L(e, g),L(d , f ),L(f , h)

merge1 M (4 , a),L(a, b),L(b, c),L(c, d),L(d , e),L(e, g),L(d , f ),L(f , h)

merge1 M (4 , a),L(a, b),L(b, c),L(c, d),L(d , e),L(e, f ),L(e, g),L(f , h)

merge1 M (4 , a),L(a, b),L(b, c),L(c, d),L(d , e),L(e, f ),L(f , g),L(f , h)

merge1 M (4 , a),L(a, b),L(b, c),L(c, d),L(d , e),L(e, f ),L(f , g),L(g , h)

M (1 , a),M (1 , c),M (1 , e),M (1 , g),M (1 , b),M (1 , d),M (1 , f ),M (1 , h)


∗ M (4 , a),L(a, b),L(b, c),L(c, d),L(d , e),L(e, f ),L(f , g),L(g , h)

Figure 2.3: Merge sort

derivation in Figure 2.3 where we simultaneously sort the characters a, c, e, g and

b, d, f, h.

2.2.3 Parallel Programming in CHR

In this thesis, we will focus on promoting CHR as a high-level concurrency ab-

straction for parallel programming. In Section 2.2.2, we have demonstrated CHR

as a general programming language to solve general programming problems2. For

2This is as oppose to using CHR for constraint solving problems, it’s traditional application.
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instance, CHR solutions for greatest common divisor and communication buffers

were presented in Figure 2.1 and merge-sort in Figure 2.3. CHR implementations

of general programming problems such as the above are immediately parallel im-

plementations as well, assuming that we have an implementation of a CHR solver

which allows parallel rule execution.

The concurrent nature of the CHR semantics makes parallel programming in

CHR straight-forward and intuitive. This means that we can naturally use CHR as a

high-level concurrency abstraction which allow us to focus on programming the syn-

chronization of concurrent resources and processes, rather than on micro-managing

the concurrent accesses of shared memory. For example, consider the following

CHR rules implementing a concurrent dictionary, which concurrent lookup and set

operations can occur in parallel as long as the operated keys are non-overlapping

(theoretically, of course3):

lookup @ Entry(k1, v)\Lookup(k2, x) ⇐⇒ k1 == k2 | x = v

set @ Set(k1, v), Entry(k2, ) ⇐⇒ k1 == k2 | Entry(k2, v)

new @ NewEntry(k, v) ⇐⇒ Entry(k, v)

Constraint Entry(k , v) represents a dictionary mapping of key k to value v.

The CHR rule lookup models the action of looking up a key k2 in the dictionary,

and assigning it’s value to v. Similarly, the CHR rule set represents the action of

setting a new value v to the dictionary key k, while new creates new entries in

the dictionary. Note that constraints Lookup(k , x ), Set(k , v) and newEntry(k , v)

represents triggers to the respective actions. The following derivation illustrates

non-overlapping dictionary operations:

3In practice, we rely on the implementation of the CHR system to make this possible
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{Lookup(′a′, x1), Entry(′a′, 1)}  {x1 = 1, Entry(′a′, 1)}

||

{Lookup(′b′, x2), Entry(′b′, 2)}  {x2 = 2, Entry(′b′, 2)}

||

{Set(′c′, 10), Entry(′c′, 3)}  {Entry(′c′, 10)}

{Lookup(′a′, x1), Lookup(′b′, x2), Set(′c′, 10), Entry(′a′, 1), Entry(′b′, 2), Entry(′c′, 3)}


∗ {x1 = 1, x2 = 2, Entry(′a′, 1), Entry(′b′, 2), Entry(′c′, 10)}

Let’s consider another example, implementing the parallel programming frame-

work map-reduce in CHR:

map1 @ Map((x : xs), m, r) ⇐⇒ Work(x,m, r),Map(xs,m, r)

map2 @ Map([ ], , ) ⇐⇒ True

work @ Work(x,m, r) ⇐⇒ Reduce([m(x)], r)

reduce @ Reduce(xs1, r), Reduce(xs2, ) ⇐⇒ Reduce(r(xs1, xs2), r)

We assume that m and r are higher-order functions representing the abstract

map and reduce functions. The constraint Map(xs ,m, r) initiates the map1 rule

which maps the function m onto each element in xs. Each application of m is rep-

resented by Work(x ,m, r) and the actual application m(x) is implemented by the

rule work, producing the results Reduce(xs , r). The rule reduce models the reduce

step, combining the results in the manner specified by reduce function r4 When

CHR rewritings are exhaustively applied, the store will have a single Reduce(xs , r)

constraint where xs is the final result. Note that the concurrent CHR semantics

4For simplicity, we assume a simple setting, where the ordering of elements need not be pre-
served.
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models the parallelism of the map reduce framework: multiple Work(x ,m, r) con-

straints are free to be applied to the work rule concurrently, while non-overlapping

pairs of Reduce(xs , r) can be combined by the reduce rule concurrently.

Note that in the examples above, the CHR rules here declaratively defines the

synchronization patterns of the constraints representing concurrent processes, while

the concurrent CHR semantics abstracts away the actual details of the synchroniza-

tion. To execute such programs to scale with multi-core systems, we will require an

implementation of the CHR concurrent semantics that actually executes multiple

CHR rewritings in parallel. We will provide details of such an implementation in

Chapter 4.

2.2.4 Syntax and Abstract Semantics

Figure 2.4 reviews the essentials of the abstract CHR semantics [19]. The general

form of CHR rules contains propagated heads HP and simplified heads HS as well

as a guard tg

r @ HP\HS ⇐⇒ tg | B

In CHR terminology, a rule with simplified heads only (HP is empty) is referred to

as a simplification rule, a rule with propagated heads only (HS is empty) is referred

to as a propagation rule. The general form is referred to as a simpagation rule.

CHR rules manipulate a global constraint store which is a multi-set of constraints.

We execute CHRs by exhaustive rewriting of constraints in the store with respect

to the given CHR program (a finite set of CHR rules), via the derivations . To

avoid ambiguities, we annotate derivations of the abstract semantics with A.

Rule (Rewrite) describes application of a CHR rule r at some instance φ. We

simplify (remove from the store) the matching copies of φ(HS) and propagate (keep

in the store) the matching copies of φ(HP ). But this only happens if the instantiated

guard φ(tg) is entailed by the equations present in the store S, written Eqs(S) |=
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CHR Syntax:
Functions f ::= + |>| && | ...

Constants v ::= 1 | true | ...

Terms t ::= x | f t

Predicates p ::= Get | Put | ...

Equations e ::= t = t

CHR constraints c ::= p(t)
Constraints b ::= e | c

CHR Guards tg ::= t

CHR Heads H ::= c

CHR Body B ::= b

CHR Rule R ::= r @ H \ H ⇐⇒ tg | B

CHR Store S ::= b

CHR Program P ::= R

Abstract Semantics Rules: Store A Store

(Rewrite)

(r @ HP\HS ⇐⇒ tg | B) ∈ P such that

∃φ Eqs(S) |= φ ∧ tg φ(HP ⊎ HS) = H ′
P ⊎ H ′

S

H ′
P ⊎ H ′

S ⊎ S A H ′
P ⊎ φ(B) ⊎ S

(Concurrency)
S ⊎ S1 

∗
A S ⊎ S2 S ⊎ S3 

∗
A S ⊎ S4

S ⊎ S1 ⊎ S3 
∗
A S ⊎ S2 ⊎ S4

(Closure)
S A S′

S 
∗
A S′

S A S′ S′


∗
A S′′

S 
∗
A S′′

where Eqs(S) = {e | e ∈ S, e is an equation}

Figure 2.4: Abstract CHR semantics

φ(tg). In case of a propagation rule we need to avoid infinite re-propagation. We

refer to [1, 9] for details. Rule (Concurrency), introduced in [20], states that rules

can be applied concurrently as long as they simplify on non-overlapping parts of the

store.

Definition 1 (Non-overlapping Rule Application) Two applications of the rule

instances r @ HP\HS ⇐⇒ tg | B and r′ @ H ′
P\H

′
S ⇐⇒ t′g | B′ in store S are said

to be non-overlapping if and only if they simplify unique parts of S (ie. HS, H
′
S ⊆ S

and HS ∩H ′
S = ∅).
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The two last (Closure) rules simply specify the transitive application of CHR rules.

A final store of a given CHR program (Definition 2) is a constraint store where no

rules from the CHR program can be applied.

Definition 2 (Final Store) A store S is known as a final store, denoted FinalA(S)

if and only if no more CHR rules applies on it (ie. ¬∃S ′ such that S A S ′).

CHR programs may not necessary be terminating of course. A CHR program is said

to be terminating (with respect to the abstract CHR semantics, A) if and only if it

contains no infinite computation paths (derivation sequences).

Definition 3 (Terminating CHR Programs) A CHR program P is said to be

terminating, if and only if for any CHR store S, there exists no infinite derivation

paths from S, via the program P.

2.2.5 CHR Execution Models

The abstract CHR semantics discussed in Section 2.2.4 sufficiently describes the be-

haviour of CHR programs. However, it does not explain how CHR programs are

practically executed. As a result, existing CHR systems often implement more sys-

tematic execution models to performing CHR rewritings, while the concise behaviour

of such execution models are largely not captured by the abstract CHR semantics.

For this reason, works in [9, 11, 33] aims to fill this theoretical ’gap’ between

the abstract CHR semantics and actual execution models implemented by most

existing CHR systems. In this section, we will highlight the refined CHR operational

semantics as found in [9], since among the three works mentioned here, it is the most

general.

The refined CHR operational semantics (denoted ωr) describes a goal-based exe-

cution model of CHR rules. The idea is to treat each newly added constraint in the

global constraint store as a goal constraint. Goal constraints are simply constraints

which are waiting to be executed. When a goal is executed, it is first added to the
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get @ Get(x )1 ,Put(y)2 ⇐⇒ x = y

Transition Step Constraint Store Explanation
〈[Get(m), Put(1)] | ∅〉

(D1: Activate)  〈[Get(m)#1 : 1, Put(1)] | {Get(m)#1}〉 Add Get(m) to store.

(D2: Default)  〈[Get(m)#1 : 2, Put(1)] | {Get(m)#1}〉 Try match Get(m) on occ 2

(D3: Default)  〈[Get(m)#1 : 3, Put(1)] | {Get(m)#1}〉 Try match Get(m) on occ 3

(D4: Drop)  〈[Put(1)] | {Get(m)#1}〉 Drop Get(m) from goals.

(D5: Activate)  〈[Put(1)#2 : 1] | {Get(m)#1, Put(1)#2}〉 Add Put(1) to store.

(D6: Default)  〈[Put(1)#2 : 2] | {Get(m)#1, Put(1)#2}〉 Try match Put(1) on occ 2

(D7: Fire get)  〈[m = 1] | ∅〉 Fire get rule on Put(1)
(D8: Solve)  〈[ ] | {m = 1}〉 Add constraint m=1 to store

Figure 2.5: Example of Refined Operational Semantics, ωr

constraint store, then followed by a search routine: search for matching partner con-

straints in the store that together with the goal, forms a complete rule head match.

We will omit formal details of the refined operational semantics, but will illustrate

it’s intuition by example. Figure 2.5 illustrates ωr derivations of our communication

buffer example introduced in Section 2.2.1. Firstly, note that ωr derivations map

from CHR states to CHR states, namely tuples 〈G | S〉, where G (Goals) is a list

(sequence) of goal constraints and S (Store) is a multiset of constraints. There are

three types of goal constraints: active goal constraints (c(x̄)#n : m), numbered

goal constraints (c(x̄)#n) and new goal constraints (c(x̄)). Constraint store now

contains only numbered constraints (c(x̄)#n), which are uniquely identified by their

numbers. Also note that unlike derivations in the abstract semantics, the refined

operational semantics contain derivation steps of various transition types other than

firing (Fire) of rules (eg. Activate, Default, etc..). Finally, notice that the CHR

rule heads are annotated by a unique integer, known as occurrence numbers. These

occurrence numbers are used to identify which rule head an active goal constraint

is matching with. For presentation purpose here, we label the xth derivation step of

the sequence of derivations as Dx.

Informally, the ωr derivations work as follows: We consider the refined CHR
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semantics derivation illustrated in Figure 2.5. The store is initially empty. All con-

straints are ’new’, hence are new goal constraints. Derivation step D1 activates

the head of the list, Get(m). This replaces Get(m) with the active goal constraint

Get(m)#1 : 1 and also adds the numbered constraint Get(m)#1 . Intuitively, the

active constraint Get(m)#1 : 1 simply extends the original goal constraint with

additional book keeping information. An active goal constraint Get(m)#n : p rep-

resents a goal constraint associated with the constraint in the store (Get(m)#n) and

is to be matched with the pth rule head occurrence. Indeed Get(m) matches with

rule head occurrence 1 (ie. Get(x ), under substitution m = x), but no matching

partner constraint (ie. Put(y)) exists in the store to complete the rule match for

get. Hence for derivation step D2, we take a default transition which increments

the active constraint occurrence number by one, essentially advancing the matching

of constraint Get(m)#1 with the next rule head occurrence (ie. 2). Since Get(m)

obviously does not match with rule head occurrence 2, we take another default step

in D3. For derivation D4, we have tried matching Get(m)#1 with all rule head

occurrences and have reached an occurrence number which does not exist (ie. 3),

thus we can drop the active constraint and can move on to the next goal. Derivation

step D5 activates the next goal (ie. Put(1 )). Similar to D1, it assigns the goal a new

unique identifier and sets it’s occurrence number to 1 (hence we have Put(1 )#2 : 1 ).

Derivation D6 is another (Default) step since Put(1 ) does not match with Get(m).

Finally, in derivation D7, Put(1 )#2 matches Put(y) of the get rule, and we have

a matching partner Get(m)#1 in the store. Thus we fire the get rule instance

{Get(m)#1 ,Put(1 )#2} in the store. Note that new constraints (ie. m = 1) are

added to the goals for future execution. The final step D8 denoted Solve simply

adds the built-in constraint m = 1 to the store. When goals are empty, derivation

terminates. Correspondence results in [9] show that a reachable state with empty

goals have a constraint store which correspond to a final store derivable by the CHR

abstract semantics. Hence the refined operational semantics is sound, with respect
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to the CHR abstract semantics.

While the refined operational semantics seems to be much more complex than

the abstract CHR semantics, it provides a more concise description of how CHR

programs are executed in a systematic manner. Further more, goals are executed in

stack order (executed in left-to-right order, while new goals added to left) and rule

head occurrences are tried in a fixed sequence. For this reason, the refined opera-

tional semantics more deterministic than the abstract CHR semantics. The refined

operational semantics also exhibits better confluence results in that CHR programs

can be confluent under the refined operational semantics but not the abstract CHR

semantics. In essence, the refined operational semantics offers a theoretical model

which much more closely describes how existing CHR systems are implemented

(compared to the abstract CHR semantics).

2.3 Our Work

2.3.1 Concurrent Goal-based CHR semantics

The CHR refined operational semantics discussed in Section 2.2.5 describes an in-

herently single threaded computation model. The semantics implicitly impose the

limitation that reachable CHR states contain at most one active goal constraint,

essentially describing a computation model with exactly one thread of computation.

As such, it would seem that the concurrency exhibited by the CHR abstract seman-

tics (as discussed in Section 2.2.2) is not observable in the refined operational seman-

tics. We wish to develop a new execution model of CHR which allows concurrent

execution of multiple CHR goals. It would be tempting to directly lift concurrency

results of the CHR abstract semantics (Figure 2.2) to the refined operational seman-

tics to allow multiple active goal constraints, thus obtaining a concurrent execution

model for CHR rewriting.

Figure 2.6 shows an attempt to extend the refined operational semantics with a
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Erroneous concurrency Rule for ωr

〈G1 | S ⊎ S1〉 
∗ 〈G2 | S ⊎ S2〉

〈G3 | S ⊎ S3〉 
∗ 〈G4 | S ⊎ S4〉

〈G1 + +G3 | S ⊎ S1 ⊎ S3〉 
∗ 〈G2 + +G4 | S ⊎ S2 ⊎ S4〉

Counter Example:

get @ Get(x )1 ,Put(y)2 ⇐⇒ x = y

〈[Get(m)] | ∅〉

 〈[Get(m)#1 : 1] | {Get(m)#1}〉

 〈[Get(m)#1 : 2] | {Get(m)#1}〉

 〈[Get(m)#1 : 3] | {Get(m)#1}〉

 〈[ ] | {Get(m)#1}〉

‖

〈[Put(1)] | ∅〉

 〈[Put(1)#2 : 1] | {Put(1)#2}〉

 〈[Put(1)#2 : 2] | {Put(1)#2}〉

 〈[Put(1)#2 : 3] | {Put(1)#2}〉

 〈[ ] | {Put(1)#2}〉

〈[Get(m),Put(1 )] | ∅〉 
∗ 〈[ ] | {Get(m)#1 ,Put(1 )#2}〉

Figure 2.6: An example of inconsistency in concurrent execution

concurrency rule. This derivation rule is directly lifted from the concurrency rule

of the CHR abstract semantics (Figure 2.2). Figure 2.6 also illustrates a counter

example against this derivation rule. We consider the communication buffer example

(Section 2.2.1). The premise of this rule instance shows the concurrent execution of a

Get(m) and a Put(1 ) goal constraint. Let’s consider the derivation steps on the left

(Execution of Get(m)). Get(m) is first activated. Since we do not have a matching

Put(y) constraint in the store, we take a default derivation. Next derivation is

another default since Get(m) cannot match with rule head occurrence 2. Finally the

goal Get(m)#1 : 3 is dropped, since rule head occurrence 3 does not exist. Similarly,

derivations steps on the right (execution of Put(1 )) activates Put(1 ) and drops it

eventually without triggering any rule instances. We compose the two derivations

and find that we arrive at a non-final CHR state ({Get(m)#1 ,Put(1 )#2} is a rule

instance of get). The problem is that both derivation steps are taken in isolation and

do not observe each other’s modification (addition of new constraints Get(m)#1

and Put(1 )#2 respectively), thus both goals are dropped without triggering the
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rule instance. Dropping the goals are consistent in their respective local contexts

(constraint stores) but inconsistent in the global context, thus rule instances can be

missed.

This counter example, illustrates that deriving a concurrent CHR execution

model is a non-trivial task and is not a simple extension from the refined CHR

operational semantics. Concurrent derivation steps are not naively composable and

clearly they require some form of synchronization through the constraint store.

The first part of our work (presented in Section 3) formalizes a concurrent goal-

based CHR semantics, denoted ‖ G semantics. ‖ G is a goal-based CHR operational

semantics, similar to the refined operational semantics, but it additionally defines

concurrent derivations of CHR goal constraints on a shared constraint store. We

will detail how we deal with problems of maintaining consistency of concurrent

CHR rewritings, such as that illustrated in Figure 2.6. We also provide a proof

of correspondence to show that ‖ G is sound with respect to the CHR abstract

semantics.

2.3.2 Parallel CHR Implementation in Haskell (GHC)

Moving ahead from our formalization of the ‖ G concurrent goal-based CHR se-

mantics, the next part of our work focuses on the technical details of a practical

implementation of a parallel CHR system, based on the ‖ G semantics. As the most

computationally intensive routine of CHR goal execution is the search for matching

constraints, much can be gained by implementing a CHR system which can execute

search routines (for matching constraints) of multiple CHR goals in parallel, over

a shared constraint store. While the ‖ G semantics formally describes how CHR

goals can be executed concurrently over a shared constraint store, it provides little

details on how we can implement this in a practical and scalable manner. In other

words, the technical concerns of how to implement scalable CHR rewritings are not

observable in the formal semantics.
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r @ A(1 , x ),B(x , y),C (z ) ⇐⇒ y > z | D(x , y , z )

1 execGoal 〈G | Sn〉 A(1, x)#n {
2 lock Sn

3 ms1 = match Sn B(x, )
4 for B(x, y)#m in ms1 {
5 ms2 = match Sn C( )
6 for C(z)#p in ms2 {
7 if(y > z) {
8 deleteFromStore Sn [B(x, y)#m,C(z)#p]

9 addToGoals G [A(1, x)#n,D(x, y, z)]
10 unlock Sn

11 return true

12 }
13 }
14 }
15 unlock Sn

16 return false

17 }

Table 2.1: A coarse-grained locking implementation of concurrent CHR goal-based
rewritings

We illustrate this point by considering a straight-forward implementation of con-

current CHR goal-based rewriting. Table 2.1 shows a traditional locking approach

to implement concurrent execution of a goal constraint. Specifically, the procedure

execGoal 5 implements the execution of the goal A(x )#n in the context of the CHR

program consisting only of rule r, given the components of the current CHR state

(goals G and store Sn). We assume that we have several APIs that behaves in the

following way:

• match Sn c - Where Sn is the CHR constraint store, and c is a CHR constraint

pattern. Returns an iteration of constraints matching c.

• deleteFromStore Sn cs - Where Sn is the CHR constraint store and cs is a

list of stored constraints in Sn, deletes all stored constraints in cs from Sn.

5Note that we will use pseudo code of an imperative style language to introduce the general
ideas of implementing CHR rewritings. In Chapter 4, we will detail our actual implementation in
the functional programming language, Haskell.
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• addToGoals G cs - Where G is the goals and cs is a list of CHR constraints,

add all CHR constraints in cs into the goals G.

• lock Sn and unlock Sn - Lock or unlock constraint store Sn respectively.

The former blocks if Sn is already locked.

Line 2 locks the store Sn so that the current thread of computation has exclusive

access to the store. Line 3 creates an iteration (ms1) of constraints in the store Sn

that matches the pattern B(x, ), where the symbol represents the ’any’ pattern.

The ’For’ loop of lines 4 − 14 tries matching constraints in ms1 with the rest of

the search procedure. Similar to Line 3, Line 5 creates an iteration of constraints

matching C( ). This is followed by the inner ’For’ loop of Lines 6 − 13 which

iterates through constraints inms2. Line 7 checks the rule guard which only executes

rewriting (Lines 8−11) for constraint sets satisfying y > z. CHR rewriting is modeled

by the following: Line 8 removes the constraints B(x, y)#m and C(z)#p which

matched the simplified heads of the rule. Line 9 adds the rule body D(x, y, z) and

the propagated goal constraint A(1, x)#n into the CHR goals G as new goal(s) to

be executed later. Line 9 simply unlocks the store Sn when the rewriting procedure

is complete, while Line 10 exits the procedure with success (true). Finally, Lines

15 − 16 implements the ’failure’ case, where no rule head match is found, and the

goal constraint is dropped, during which the store Sn is unlocked and the procedure

is exited with failure (false).

This implementation uses a coarse-grained locking scheme6. This guarantees

consistency of concurrent execution of goal execution functions (like execGoal) sim-

ply by ’wrapping’ the matching and rewriting routines of goal execution between the

lock and unlock calls, allowing them to execute in an uninterrupted and uninter-

leaving manner. Yet while consistency is naively guaranteed, this implementation is

6By coarse-grained locking scheme, we refer to a simple synchronization protocol where shared
variables are accessed via a single (or minimal number of) high-level lock that possibly locks
multiple shared objects
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unlikely to scale well. This is because at most one executing thread can access the

shared store at a time, making concurrent execution multiple CHR goals effectively

sequential. Parallelism in this approach requires fine-grained locking implementa-

tion, which will require non-trivial modifications and to maintain completeness and

correctness of CHR rewriting. For instance, APIs like match, deleteFromStore and

addToGoals must be heavily modified with micro-management of fine-grained lock-

ing protocols to allow consistent interleaving concurrent executions. In Chapter 4,

we also show another approach in Software Transaction Memory (STM) which like

this, is extremely simple but will not scale well, emphasizing that there are no ’free

lunch’ in parallel programming and implementing a scalable parallel CHR system is

non-trivial.

We develop a concrete implementation of the ‖ G semantics, a parallel CHR

system in the functional language Haskell (GHC), known as ParallelCHR . Paral-

lelCHR is a library extension of Haskell that act as an interpreter for CHR programs.

It implements CHR rewritings over a shared constraint store, utilizing fine-grained

manipulation of existing concurrency primitives (eg. Software Transactional Mem-

ory and IO References). We will illustrate that our implementation of ParallelCHR is

scalable through empirical results presented in Section 4.6.

2.3.3 Join-Patterns with Guards and Propagation

The next step of our work is to identify and study a non-trivial application of parallel

CHR rewritings. For this, we focus on a promising high-level concurrency model,

known as Join-Calculus [18]. Join-Calculus is a process calculus that introduces an

expressive high-level concurrency model, aimed at providing a simple and intuitive

way to coordinate concurrent processes via reaction rules known as Join-Patterns.

We review the basic idea of Join-Patterns with a classic example to model a con-

current buffer. In Table 2.2, we introduce two events to consume (Get) and produce

(Put) buffer elements. To distinguish join process calls from standard function calls,
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event Put(Async Int)

event Get(Sync Int)

Get(x) & Put(y) = x := y

t1 = do { Put(3) t2 = do { Put(5)

; Put(4) ; x2 <- newSync

; x1 <- newSync ; Get(x2)

; Get(x1) ; v2 <- readSync x2

; v1 <- readSync x1 ; print v2 }

; print v1 }

Table 2.2: Get-Put Communication Buffer in Join-Patterns

join process start with upper-case letters, while standard function calls start with

lower-case letters. Events are stored in a global multiset, referred to as event store

(or store for short). Via the Join-Pattern Get(x) & Put(y) we look for matching

consumer/producer events. If present, the matching events are removed and the join

body x := y is executed, modeling the retrieval of a buffered item. In general, the

join body is simply a call back function executed when the matching events specified

by the Join-Pattern are present.

Events are essentially called like function calls. For instance, in Table 2.2 op-

eration t1 and t2 make calls to Get and Put. Arguments of events can either be

asynchronous (ground input values), synchronous (output variables). Synchronous

arguments, generated via the newSync primitive, serve to transmit buffer elements.

We can access the transmitted values via primitive readSync which blocks until the

variable is bound to a value. Synchronous variables are written into via :=. We

assume that print is a primitive function that prints it’s argument on the shell

terminal.

Suppose we execute the two threads executing t1 and t2 respectively. Events

are non-blocking, they will be recorded in the store and we proceed until we hit a

blocking operation. Hence, both threads potentially block once we reach their first
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readSync statement. At this point, the following events are in the store

{Get(x1), Get(x2), Put(3), Put(4), Put(5)}

The combinations Get(x1) & Put(3) and Get(x2) & Put(4) match the join pat-

tern Get(x) & Put(y), hence two join-pattern instances will be triggered and the

join bodies x1 := 3 and x2 := 4 will be executed, unblocking both readSync calls

of t1 and t2. Eventually, 3 and 4 will be printed on the shell terminal. Note there

are other combinations which lead to a different result. This is no surprise given

that concurrent join semantics is indeterministic.

What we have described so far is the basic idea of Join-Patterns. In [5], the

idea of Join-Patterns with guards is briefly discussed, proposing an extension of

Join-Patterns with guard conditions that allows more complex and convenient syn-

chronization patterns. For instance, suppose we want to implement a buffer access

function that only retrieves items less than a specified value. With guards, this can

be easily implemented by the following:

GetLess(x,v) & Put(y) | y < v = x := y

While this seems to be a simple syntactic extension, it imposes significant technical

challenge for existing Join-Pattern compilation techniques, as pointed out in [5].

For this reason, existing Join-Pattern systems [29, 5, 38] do not consider guards.

The challenge for an implementation is that we now need to search for matching

events which satisfy a guard condition, as oppose to straight-forward pairing of event

symbols. Further more, on a multi-core architecture, we wish exploit parallelism by

executing such matching routines in parallel to increase the performance (parallel

matching). Most interestingly, our work in implementing parallel CHR rewriting

(Chapter 4) can be adapted to implement the matching of Join-Pattern events with

guards, since the parallel matching routines we have developed already performs

such parallel search for matching constraints (events).
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We have introduced a novel approach to implement Join-Patterns with guards,

essentially exploiting the similarities of parallel CHR rewriting and the executing

of Join-Patterns. We have implemented this system in Haskell(GHC), utilizing our

parallel CHR matching routines highlighted in Chapter 4. We also demonstrate that

other features like propagation can be included to the Join-Pattern world almost for

free. Finally, empirical results in Section 5.5 shows the scalability of this approach

to implement Join-Patterns with guards.



Chapter 3

Concurrent Goal-Based CHR

Semantics

3.1 Chapter Overview

In this Chapter, we formally introduce our concurrent goal-based CHR semantics,

‖ G and provide a proof of it’s correspondence with the abstract CHR semantics.

Specifically, we first review the goal-based refined CHR operational semantics, which

in essence leads to highly efficient implementations but relies on a single-threaded

execution model (Section 3.2). Next, We devise a concurrent goal-based semantics

(‖ G semantics) which forms the basis for an efficient parallel CHR implementation

(Section 3.3). Section 3.4 highlights several subtle issues of the ‖ G semantics, while

Section 3.5 presents the correspondence results.

3.2 Goal-Based CHR Semantics

In this Section, we introduce the goal-based CHR semantics G, which is essentially

a generalization of the refined CHR operational semantics ωr.

Most existing CHR implementation (Eg. JCHR System [30], CHR in HAL [27]

30
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, SWI-Prolog CHR [55]) employ a more systematic CHR execution model where

rules are triggered based on a set of available goals. The idea behind a goal-based

CHR execution model is to separate the constraint store into two components: a set

of goal constraints (constraints yet to be executed) and the actual constraint store

(constraints that were executed). In the abstract semantics, transitions A maps

between CHR stores S , whereas in the goal-based semantics we find now transitions

G maps between CHR states of the form 〈G | S 〉 where G is the CHR goals and

S is the CHR store. Only goal constraints (in G) can trigger CHR rewriting by first

searching for matching constraints in the store S to build a complete match of a rule

head, then applying the rewriting specified by the CHR rule.

Below, we give a goal-based execution of the earlier communication buffer exam-

ple.

get @ Get(x ),Put(y) ⇐⇒ x = y

Step Transition Type Constraint Store

〈{Get(x1), Get(x2), Put(1), Put(2)} | {}〉

D1 (Activate) G 〈{Get(x1)#1, Get(x2), Put(1), Put(2)} | {Get(x1)#1}〉

D2 (Drop) G 〈{Get(x2), Put(1), Put(2)} | {Get(x1)#1}〉

D3 (Activate) G 〈{Get(x2)#2, Put(1), Put(2)} | {Get(x1)#1, Get(x2)#2}〉

D4 (Drop) G 〈{Put(1), Put(2)} | {Get(x1)#1, Get(x2)#2}〉

D5 (Activate) G 〈{Put(1)#3, Put(2)} | {Get(x1)#1, Get(x2)#2, Put(1)#3}〉

D6 (Fire )get G 〈{Put(2), x1 = 1} | {Get(x2)#2}〉

D7 (Activate) G 〈{Put(2)#3, x1 = 1} | {Get(x2)#2, Put(2)#3}〉

D8 (Fire )get G 〈{x1 = 1, x2 = 2} | {}〉

D9 (Solve) G 〈{x2 = 2} | {x1 = 1}〉

D10 (Solve) G 〈{} | {x1 = 1, x2 = 2}〉

We label the xth derivation step by a label Dx. Let’s walk through each of the

individual goal-based execution steps. Initially, all constraints are kept in the set
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of goals. At this point, all of the goals are inactive. Execution of goals proceeds in

two stages: (1) Activation and (2a) rule execution, or (2b) dropping of goals. In the

first stage, we activate a goal. In general, the order in which goals are activated is

arbitrary. For concreteness, we assume a left-to-right activation order.

Hence, we first activate Get(x1) in derivation step D1. Active goals carry a

unique identifier, a distinct integer number. Besides assigning numbers to active

goals, we also put them into the store. For instance, after activating Get(x1), we

have Get(x1)#1 in both the goals and the store. 1

Active goals like Get(x1)#1 are executed by trying to build a complete match for

a rule head with matching partner constraints in the store. Since there are no other

constraints in the store, we cannot match Get(x1)#1 with the get rule. Therefore

we drop Get(x1)#1 in step D2. Dropping of a goal means the goal is removed from

the set of goals but of course the (now inactive) goal is still present in the store. Step

D3 and D4 are similar but executed on goal Get(x2). Then, we activate Get(x2)

and find that Get(x2)#2 cannot build a complete match of the get rule, thus it is

dropped too.

Next, we activate Put(1) (Step D5). Constraint Put(1)#3 can match with either

Get(x1)#1 or Get(x2)#2 to form a complete instance of rule head of get. We pick

Get(x1)#1 and fire the rule get, see step D6. Step D7 and D8 perform similar

execution steps on Put(2) and the remaining stored constraint Get(x2)#2. Finally,

we add the equations x1 = 1 and x2 = 2 into the store in steps D9 and D10.

Exhaustive application of this goal-based execution strategy then leads to a state

with no goals and a final store.

What we have described so far is essentially the execution scheme employed in

all major CHR implementations. The semantics of these implementations assume a

more deterministic goal activation policy. For instance [9] assumes that CHR goals

1Numbered constraints also disambiguate multiple copies in the store but this is rather a side-
effect. The main purpose of numbering constraints is to indicate activation (only active goals are
numbered) and retain the link between active goal constraints and their stored copy (each active
goal corresponds to a stored constraint and they share the same number).
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Short hands: G = Get P = Put

〈{G(x1), G(x2), P (1), P (2)} | {}〉

(D1a Activate)
{}\{}
G 〈{G(x1)#1, G(x2), P (1), P (2)} | {G(x1)#1}〉

||

(D1b Activate)
{}\{}
G 〈{G(x1), G(x2)#2, P (1), P (2)} | {G(x2)#2}〉

〈{G(x1), G(x2), P (1), P (2)} | {}〉

(D1a || D1b)
{}\{}
||G 〈{G(x1)#1, G(x2)#2, P (1), P (2)} | {G(x1)#1, G(x2)#2}〉

(D2a Drop)
{}\{}
G 〈{G(x2)#2, P (1), P (2)} | {G(x1)#1, G(x2)#2}〉

||

(D2b Drop)
{}\{}
G 〈{G(x1)#1, P (1), P (2)} | {G(x1)#1, G(x2)#2}〉

〈{G(x1)#1, G(x2)#2, P (1), P (2)} | {G(x1)#1, G(x2)#2}〉

(D2a || D2b)
{}\{}
||G 〈{P (1), P (2)} | {G(x1)#1, G(x2)#2}〉

(D3a Activate)
{}\{}
G 〈{P (1)#3, P (2)} | {G(x1)#1, G(x2)#2, P (1)#3}〉

||

(D3b Activate)
{}\{}
G 〈{P (1), P (2)#4} | {G(x1)#1, G(x2)#2, P (2)#4}〉

〈{P (1), P (2)} | {G(x1)#1, G(x2)#2}〉

(D3a || D3b)
{}\{}
||G 〈{P (1)#3, P (2)#4} | {G(x1)#1, G(x2)#2, P (1)#3, P (2)#4}〉

(D4a Fire get)
δ1

G 〈{x1 = 1, P (2)#4} | {G(x2)#2, P (2)#4}〉

||

(D4b Fire get)
δ2

G 〈{P (1)#3, x2 = 2} | {G(x1)#1, P (1)#3}〉

where δ1 = {}\{G(x1)#1, P (1)#3} δ2 = {}\{G(x2)#2, P (1)#4}

〈{P (1)#3, P (2)#4} | {G(x1)#1, G(x2)#2, P (1)#3, P (2)#4}〉

(D4a || D4b)
δ

||G 〈{x1 = 1, x2 = 2} | {}〉

where δ = {}\{G(x1)#1, P (1)#3, G(x2)#2, P (1)#4}

(D5a Solve)
{}\{}
G 〈{x2 = 2} | {x1 = 1}〉 || (D5b Solve)

{}\{}
G 〈{x1 = 1} | {x2 = 2}〉

〈{x1 = 1, x2 = 2} | {}〉

(D5a || D5b)
{}\{}
||G 〈{} | {x1 = 1, x2 = 2}〉

Figure 3.1: Example of concurrent goal-based CHR derivation

are kept in a stack, while [31] uses a priority queue. While imposing such ordering

of goals offers better confluence results and thus allowing use of more programming

idioms and perhaps convenience, this of course comes at a cost of a strictly sequential

execution scheme.

To obtain a systematic, yet concurrent, CHR execution scheme we adapt the goal-

based CHR semantics as follows. Several active goal constraints can simultaneously

seek for partner constraints in the store to fire a rule instance. In the extreme

case, all goal constraints could be activated and executed at once. However, we

generally assume that the number of active goals are bounded by some value n,

where n represents some practical limitation of system resources (eg. number of

available processors). Interestingly, the concept of CHR goals in our concurrent

context resembles that of thread pooling in parallel programming. We will defer a
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discussion on this until Section 3.4.4.

Figure 3.1 shows a sample concurrent goal-based CHR derivation. We assume

two concurrent threads, referred to as a and b, each thread executes the standard

goal-based derivation steps. The novelty is that each goal-based derivation step
δ

G

now records its effect on the store. The effect δ represents the sets of constraints in

the store which were propagated or simplified. Goal-based derivation steps can be

executed concurrently if their effects are not in conflict.

(Goal-Concurrency)

〈G1 | HS1 ∪ HS2 ∪ S〉
δ1

||G 〈G′
1 | HS2 ∪ S〉

〈G2 | HS1 ∪ HS2 ∪ S〉
δ2

||G 〈G′
2 | HS1 ∪ S〉

δ1 = HP1\HS1 δ2 = HP2\HS2

HP1 ⊆ S HP2 ⊆ S δ = HP1 ∪ HP2\HS1 ∪ HS2

〈G1 ⊎ G2 ⊎ G | HS1 ∪ HS2 ∪ S〉

δ
||G 〈G′

1 ⊎ G′
2 ⊎ G | S〉

The (Goal-Concurrency) rule, abbreviated (‖ G), states that two goal-derivations

are not in conflict if their simplification effects are disjoint and the propagated effects

are present in the joint store. We will provide more explanations later. Let’s continue

with our example.

Each thread activates one of the two Get goals (Steps D1a and D1b). Since

both steps involve no rule application, side-effects are empty ({}\{}). Both steps

are executed concurrently denoted by the concurrent derivation step (D1a || D2a)
{}\{}
||G. Concurrent goal-based execution threads operate on a shared store and their

effects will be immediately made visible to other threads. This is important to

guarantee exhaustive rule firings.

In the second step (D2a ||D2b), both active goals are dropped because there is no

complete match for any rule head yet. Next, steps D3a and D3b activate the last two



CHAPTER 3. CONCURRENT GOAL-BASED CHR SEMANTICS 35

goal constraints, Put(1) and Put(2). Each active constraint can match with either

of the two Get constraints in the store. We assume that active constraint Put(1)#3

in step D4a matches with Get(x1)#1, while Put(2)#4 in step D4b matches with

Get(x2)#2, corresponding to the side-effects δ1 and δ2. This guarantees that steps

D4a and D4b operates on different (non-conflicting) parts of the store. Thus, we

can execute them concurrently which yields step (D4a || D4b). Their side-effects

are combined as δ. Finally, in step (D5a || D5b) we concurrently solve the two

remaining equations by adding them into the store and we are done.

The correctness of our concurrent goal-based semantics is established by showing

that all concurrent derivations can be replicated by sequential goal-based executions.

We also prove that there is a correspondence between our goal-based CHR seman-

tics with the abstract CHR semantics. This proof generalizes from [9] which shows

a correspondence between the refined CHR operational semantics and abstract se-

mantics. There are a number of subtle points we came across when developing

the concurrent variant of the goal-based semantics. We will postpone a discussion of

these issues until Section 3.4. Next, we formally introduce the details of the abstract

CHR semantics.

3.3 Concurrent Goal-Based CHR Semantics

We present the formal details of the concurrent goal-based CHR semantics. Figure

3.2 describes the necessary syntactic extensions. Because constraints in the store now

have unique identifiers, we treat the store as a set (as opposed to a multiset) and use

set union ∪. Goals are still treated as multi-sets because they can contain multiple

copies of (un-numbered) CHR constraints. Please note that we will use lower-case

identifiers for variables, upper-case identifiers for constants2 Note that we will only

2Advocates of logic constraint programming should have noticed this “abnormally”. We sin-
cerely apologize, but insist that this is for consistency with our Haskell formulation of CHR in
Chapter 4
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Notations:
⊎ Multi-set union
∪ Set union
|= Theoretic entailment
φ Substitution
a Set/List of a’s

CHR Syntax:
Functions f ::= + |>| && | ...

Constants v ::= 1 | true | ...

Terms t ::= x | f t

Predicates p ::= Get | Put | ...

Equations e ::= t = t

CHR Constraints c ::= p(t)
Constraints b ::= e | c

CHR Guards tg ::= t

CHR Heads H ::= c

CHR Body B ::= b

CHR Rule R ::= r @ H \ H ⇐⇒ tg | B

CHR Program P ::= R

Num Constraint nc ::= c#i

Goal Constraint g ::= c | e | nc

Stored Constraint sc ::= nc | e

CHR Num Store Sn ::= sc

CHR Goals G ::= g

CHR State σ ::= 〈G,Sn〉
Side Effects δ ::= Sn \ Sn

Figure 3.2: CHR Goal-based Syntax

consider CHR rules with non-empty simplification heads (i.e. no pure propagation

rules). The actual semantics is given in two parts. Figure 3.3 describes the single-

step execution part whereas Figure 3.4 introduces the concurrent execution part.

The first part is a generalization of an earlier goal-based description [9] whereas the

second (concurrent) part is novel.

We first discuss the single-step derivation steps in Figure 3.3. A derivation

step σ
δ

G σ′ maps the CHR state σ to σ′ with some side-effect δ. δ represents

the constraints that where propagated or simplified during rule application. Hence

derivation steps that do not involve rule application ((Activate) and (Drop)) contains

no side-effects (i.e. {}\{}). We will omit side-effects δ as and when it is not relevant
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(Solve)
W = WakeUp(e, Sn)

〈{e} ⊎ G | Sn〉
W\{}
G 〈W ⊎ G | {e} ∪ Sn〉

(Activate)
i is a fresh identifier

〈{c} ⊎ G | Sn〉
{}\{}
G 〈{c#i} ⊎ G | {c#i} ∪ Sn〉

(Simplify)

(r @ H ′
P\H

′
S ⇐⇒ tg | B′) ∈ P such that

∃φ Eqs(Sn) |= φ ∧ tg φ(H ′
P ) = DropIds(HP )

φ(H ′
S) = φ({c} ⊎ DropIds(HS)) δ = HP\{c#j} ∪ HS

〈{c#j} ⊎ G | {c#j} ∪ HP ∪ HS ∪ Sn〉
δ

G 〈φ(B′) ⊎ G | HS ∪ Sn〉

(Propagate)

(r @ H ′
P\H

′
S ⇐⇒ tg | B′) ∈ P such that

∃φ Eqs(Sn) |= φ ∧ tg φ(H ′
S) = DropIds(HS)

φ(H ′
P ) = φ({c} ⊎ DropIds(HP )) δ = {c#j} ∪ HP \HS

〈{c#j} ⊎ G | {c#j} ∪ HP ∪ HS ∪ Sn〉
δ

G 〈φ(B′) ⊎ {c#j} ⊎ G | {c#j} ∪ HP ∪ Sn〉

(Drop)
(Simplify) and (Propagate) does not apply on c#j in Sn

〈{c#j} ⊎ G | Sn〉
{}\{}
G 〈G | Sn〉

where Eqs(S) = {e | e ∈ S, e is an equation}
DropIds(Sn) = {c | c#i ∈ Sn} ⊎ {e | e ∈ Sn, e is an equation}
WakeUp(e, Sn) = {c#i | c#i ∈ Sn ∧ φ m.g.u. of Eqs(Sn)∧

θ m.g.u. of Eqs(Sn ∪ {e}) ∧ φ(c) 6= θ(c)}

Figure 3.3: Goal-Based CHR Semantics (Single-Step Execution
δ

G)

to our discussions. We ignore the (Solve) step for the moment. In (Activate), we

activate a goal CHR constraint by assigning it a fresh unique identifier and adding

it to the store. Rewrite rules are executed in steps (Simplify) and (Propagate). We

distinguish if the rewrite rule is executed on a simplified or propagated active (goal)

constraint c#i. For both cases, we seek for the missing partner constraints in the

store for some matching substitution φ. The auxiliary function DropIds ignores the

unique identifiers of numbered constraints. They don’t matter when finding a rule

head match. The guard tg must be entailed by the primitive (here equations) store
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constraints under the substitution φ.

In case of a simplified goal, step (Simplify), we apply the rule instance of r by

deleting all simplified matching constraints HS and adding the rule body instance

φ(B) into the goals. Since c#i is simplified, we drop c#i from the goals as it does

not exist in the store any more. In case of a propagated goal, step (Propagate), c#i

remains in the goal set as well in the store and thus can possibly fire further rules

instances. For both (Simplify) and (Propagate) derivation step, say σ
HP \HS

G σ′,

we record as side-effect the numbered constraints in the store that were propagated

(HP ) or simplified (HS) during the derivation step. We will elaborate on the purpose

of side-effects when we introduce the concurrent part of the semantics.

In step (Drop), we remove an active constraint from the set of goals, if the

constraint failed to trigger any CHR rule.

Rule (Solve) moves an equation goal e into the store and wakes up (reactivates)

any numbered constraint in the store which can possibly trigger further CHR rules

due to the presence of e. Here is a simple example to show why reactivation is

necessary.

r1 @ A(x), B(x) ⇐⇒ C(x)

〈{a = 2} | {A(a)#1, B(2)#2}〉

(Solve)
{A(2)#1}\{}

G 〈{A(2)#1} | {A(2)#1, B(2)#2, a = 2}〉

(Simp r1)
{}\{A(2)#1,B(2)#2}

G 〈{C(2)} | {a = 2}〉

...

For clarity, we normalize all constraints in the store once an equation is added.

Prior to addition of a = 2, A(a)#1, B(2)#2 cannot fire rule r1. After adding a = 2

however, we can normalize A(a)#1 to A(2)#2, which can now fire r1 with B(2)#2.

To guarantee exhaustive rule firings, we reactivate A(2)#2 by adding it back to

the set of goals. WakeUp(e, Sn) represents a conservative approximation of the to

be reactivated constraints [9]. Note we treat reactivated constraints as propagated



CHAPTER 3. CONCURRENT GOAL-BASED CHR SEMANTICS 39

(Lift)
〈G | Sn〉

δ
G 〈G′ | Sn′〉

〈G | Sn〉
δ

||G 〈G′ | Sn′〉

(Goal Concurrency)

〈G1 | HS1 ∪HS2 ∪ S〉
δ1

||G 〈G′
1 | HS2 ∪ S〉

〈G2 | HS1 ∪HS2 ∪ S〉
δ2

||G 〈G′
2 | HS1 ∪ S〉

δ1 = HP1\HS1 δ2 = HP2\HS2

HP1 ⊆ S HP2 ⊆ S δ = HP1 ∪HP2\HS1 ∪HS2

〈G1 ⊎G2 ⊎G | HS1 ∪HS2 ∪ S〉
δ

||G 〈G′
1 ⊎G

′
2 ⊎G | S〉

(Closure)
σ

δ
||G σ

′

σ 
∗
||G σ

′

σ
δ

||G σ
′ σ′


∗
||G σ

′′

σ 
∗
||G σ

′′

Figure 3.4: Goal-Based CHR Semantics (Concurrent Part
δ

||G)

constraints in the side-effects.

Figure 3.4 presents the concurrent part of the goal-based operational semantics.

In the (Lift) step, we turn a sequential goal-based derivation into a concurrent deriva-

tion. Note that side-effects are retained. Step (Goal Concurrency) joins together

two concurrent derivations operating on a shared store, if their rewriting side-effects

δ1 and δ2 are non-overlapping as defined below.

Definition 4 (Non-overlapping Rewriting Side-Effects) Two rewriting side-

effects δ1 = HP1\HS1 and δ2 = HP2\HS2 are said to be non-overlapping, if and only

if HS1 ∩ (HP2 ∪HS2) = {} and HS2 ∩ (HP1 ∪HS1) = {}

Concurrent derivations with non-overlapping side-effects essentially simplify dis-

tinct constraints in the store, as well as propagate constraints which are not sim-

plified by one another. The (Goal Concurrency) step express non-overlapping side-

effects by structurally enforcing that simplified constraints HS1 and HS2 match dis-

tinct parts of the store, while propagated constraints HP1 and HP2 are found in
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the shared part of the store S not modified by both concurrent derivations. In the

resulting concurrent derivation, the side-effects δ1 and δ2 are composed by the union

of the propagate and simplify components respectively, forming δ.

The (Closure) step, defines transitive application of the concurrent goal-based

derivation. Because side-effect labels are only necessary for the (Goal Concurrency)

step, we drop the side-effects in transitive derivations.

An immediate consequence is that we can execute k derivations concurrently by

stacking them together as long as all side-effects are mutually non-overlapping. The

following lemma summarizes this observation.

Lemma 1 (k-Concurrency) For any finite k of mutually non-overlapping concur-

rent derivations,

〈G1 | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉
HP1\HS1

||G 〈G′
1 | {} ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉

...

〈Gi | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉
HPi\HSi

||G 〈G′
i | HS1 ∪ ... ∪ {} ∪ ... ∪ HSk ∪ S〉

...

〈Gk | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉
HPk\HSk

||G 〈G′
k | HS1 ∪ ... ∪ HSi ∪ ... ∪ {} ∪ S〉

HP1 ⊆ S...HPi ⊆ S...HPk ⊆ S

δ = HP1 ∪ ... ∪ HPi ∪ ... ∪ HPk\HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk

〈G1 ⊎ ... ⊎ Gi ⊎ ... ⊎ Gk ⊎ G | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉

δ
||G 〈G′

1 ⊎ ... ⊎ G′
i ⊎ ... ⊎ G′

k ⊎ G | S〉

we can decompose this into k−1 applications of the (pair-wise) (Goal Concurrency)

derivation step.

Compared to the abstract CHR semantics, the ‖ G semantics provides us with

a more systematic parallel execution scheme for executing CHR programs. In Sec-

tion 3.4, we discuss the important insights and observations we gained from this
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formulation of parallel goal-based execution, while in Section 3.5, we will detail our

correspondence results showing that any concurrent goal-based derivation of the ‖ G

semantics can be reproduced in the abstract semantics (A semantics).

3.4 Discussions

Most of the issues we encounter are related to the problem of ensuring exhaustive

rule firings in a concurrent execution environment. These are subtle but important

characteristics of our concurrent goal-based semantics which ultimately contributes

to it’s correctness and correspondence to the abstract CHR semantics. As we shall

see in Chapter 4, these issues have also greatly influence the design decisions we

made in our concrete implementation of ‖ G. For brevity, we omit side-effects in

derivation steps in the following examples as they don’t matter.

3.4.1 Goal Storage Schemes and Concurrency

Recall that in the (Activate) rule of Figure 3.3 we specify that a goal constraint c

is immediately stored in the shared constraint store. It may seem that this decision

is made rather precariously and may even impose an non-optimal condition that

active goals are immediately made visible in the shared constraint store. Yet we

wish to highlight that immediate goal storage (as dictated by (Activate)) is crucial

for exhaustiveness of rule firing.

Let’s consider a concrete example. Suppose we would only store goals after exe-

cution (rule head matching). That is, we do not add the goals into the store during

(Activate) step, but only during the (Drop) step, as illustrated by the (Activate’)

and (Drop’) rules we shall consider instead:
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(Activate’)
i is a fresh identifier

〈{c} ⊎ G | Sn〉 G 〈{c#i} ⊎ G | Sn〉

(Drop’)
(Simplify) and (Propagate) does not apply on c#i in Sn

〈{c#i} ⊎ G | Sn〉 G 〈G | {c#i} ∪ Sn〉

Then, for the CHR program

r1 @ A(x), B(y) ⇐⇒ C(x, y)

we obtain the following derivation

〈{A(1), B(2)} | {}〉

(Activate’) 〈{A(1)} | {}〉 ||G 〈{A(1)#1} | {}〉

||

(Activate’) 〈{B(2)} | {}〉 ||G 〈{B(2)#2} | {}〉

〈{A(1), B(2)} | {}〉 ||G 〈{A(1)#1, B(2)#2} | {}〉

(Drop’) 〈{A(1)#1} | {}〉 ||G 〈{} | {A(1)#1}〉

||

(Drop’) 〈{B(2)#2} | {}〉 ||G 〈{} | {B(2)#2}〉

〈{A(1)#1, B(2)#2} | {}〉 ||G 〈{} | {A(1)#1, B(2)#2}〉

Initially both goals A(1) and B(2) are concurrently activated. Since (Activate’)

does not store goals immediately, both active goals are not visible to each other in
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the store. Hence, we wrongfully apply the (Drop’) step for both goals. However,

there is clearly a complete rule head match A(1)#1, B(2)#2.

Note that for the actual ‖ G semantics (Figure 3.3), we will most certainly take

the (Simplify) and (Drop) derivations concurrently after activating both goals A(1)

and B(2) 3, thus the rule head match A(1)#1, B(2)#2 will be triggered. While this

necessarily introduces contention between active goal constraints as a side-effect

(eg. we now have both goals A(1) and B(2) attempting to fire rule head match

A(1)#1, B(2)#2), it sufficiently guarantees exhaustive rule firing.

3.4.2 Derivations under ’Split’ Constraint Store

Notice that our definition of the (Goal Concurrency) rule (Figure 3.4) dictates that

concurrent derivations must be done under the context of the entire store. In other

words, we cannot split the store and derive concurrent derivations under small sub-

sets of the store. For convenience, we present the (Goal Concurrency) rule again as

follows:

(Goal Concurrency)

(D1) 〈G1 | HS1 ∪ HS2 ∪ S〉
δ1

||G 〈G′
1 | HS2 ∪ S〉

(D2) 〈G2 | HS1 ∪ HS2 ∪ S〉
δ2

||G 〈G′
2 | HS1 ∪ S〉

δ1 = HP1\HS1 δ2 = HP2\HS2

HP1 ⊆ S HP2 ⊆ S δ = HP1 ∪ HP2\HS1 ∪ HS2

〈G1 ⊎ G2 ⊎ G | HS1 ∪ HS2 ∪ S〉

δ
||G 〈G′

1 ⊎ G′
2 ⊎ G | S〉

Note that we have labeled the premise derivations with (D1) and (D2). By not

splitting the constraint store, we imply that concurrent derivations (D1) and (D2)

must involve the entire store context (i.e. HS1∪HS2∪S) even though each derivation

3(Simplify) and (Drop) derivations by be taken by the goals A(1)#1 and B(2)#2 respectively,
or vice versa. But both computation paths are confluent (leads to the same results). Also note
that the side-effects (δ) of the ‖ G semantics prevents both goals from concurrently firing (Simplify)
steps.
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seemingly do not involve all constraints in the store. For instance, (D1) does not

modify constraints in HS2. This is as oppose to the concurrency rule of the CHR

abstract semantics (Figure 2.2) in which derivations in the premise are evaluated

under a smaller context of the store.

We will now show that the non-splitting nature of the (Goal-Concurrency) rule

is necessary for the exhaustiveness of rule firing in the ‖ G semantics. Suppose we

allow for concurrent executions on split stores. Specifically, let’s assume the following

replacement of the (Goal Concurrency) rule:

(Goal Concurrency’)

〈G1 | HS1 ∪ S〉
δ1

||G 〈G′
1 | S〉

〈G2 | HS2 ∪ S〉
δ2

||G 〈G′
2 | S〉

δ1 = HP1\HS1 δ2 = HP2\HS2

HP1 ⊆ S HP2 ⊆ S δ = HP1 ∪ HP2\HS1 ∪ HS2

〈G1 ⊎ G2 ⊎ G | HS1 ∪ HS2 ∪ S〉

δ
||G 〈G′

1 ⊎ G′
2 ⊎ G | S〉

Note that the (Goal Concurrency’) rule attempts to mimic the concurrency rule of

the CHR abstract semantics, by allowing derivations in the premise to be taken under

a smaller context of the store. With this rule instead (as oppose to (Goal Concurrency)),

we can construct the following derivation:

r1 @ A,B ⇐⇒ C r2 @ D,E ⇐⇒ F

(Drop) 〈{A#3} | {A#3, E#2}〉 ||G 〈{} | {A#3, E#2}〉

(Drop) 〈{D#4} | {B#1,D#4}〉 ||G 〈{} | {B#1,D#4}〉

〈{A#3,D#4} | {A#3, B#1,D#4, E#2}〉 ||G 〈{} | {A#3, B#1,D#4, E#2}〉

For brevity, we omit the earlier derivations which activates and drops B#1 and

E#2 as goals. The above derivation illustrates the concurrent execution of the
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subsequent goals, A#3 and D#4. Both goals are dropped, since under their local

store context, no match to r1 or r2 can be completed. However, if we consider the

entire store {A#3, E#2, B#1, D#4}, it’s clearly that goal A#3 can execute rule r1

and goal D#4 can execute rule r2 . This definitively shows that considering the ‖ G

semantics with the (Goal Concurrency’) rule, we do not exhaustively apply CHR

rules, hence cannot derive a correspondence with the CHR abstract semantics.

We wish to highlight that the reason why (Goal Concurrency’) is incorrect, lies

in the fact that the ‖ G semantics is not monotonic in the way that the CHR abstract

semantics is monotonic, hence concurrency rule illustrated in Figure 2.2 does not

apply for ‖ G semantics. We will further discuss what this loss of classic monotonicity

means to our semantics in Section 3.4.4.

3.4.3 Single-Step Derivations in Concurrent Derivations

The issues discussed in Section 3.4.1 and 3.4.2 illustrates the fundamental causes

of non-exhaustiveness of the ‖ G semantics if it is defined otherwise. In this sec-

tion we shall discuss the similar effects that are observed, if we allow multiple

step derivations in concurrent derivation steps. For this discussion, notice that the

(Goal Concurrency) rule in Figure 3.4 restricts concurrent derivations in it’s premise

to strictly only single-step derivations. Let us assume the following (Goal Concurrency”)

rule which allows otherwise:

(Goal Concurrency”)

〈G1 | HS1 ∪ HS2 ∪ S〉
δ1


∗
||G 〈G′

1 | HS2 ∪ S〉

〈G2 | HS1 ∪ HS2 ∪ S〉
δ2


∗
||G 〈G′

2 | HS1 ∪ S〉

δ1 = HP1\HS1 δ2 = HP2\HS2

HP1 ⊆ S HP2 ⊆ S δ = HP1 ∪ HP2\HS1 ∪ HS2

〈G1 ⊎ G2 ⊎ G | HS1 ∪ HS2 ∪ S〉

δ


∗
||G 〈G′

1 ⊎ G′
2 ⊎ G | S〉
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While this modification may seem subtle and unassuming, it’s implications are not.

Note that by allowing multiple derivation steps, we potentially allow derivations to

be taken under a smaller context of the constraint store (exactly what we wish to

avoid in Section 3.4.2). To illustrate this, we consider an example:

r1 @ A,B ⇐⇒ C

(P1) 〈{A} | {}〉 ||G 〈{A#2} | {A#2}〉 ||G 〈{} | {A#2}〉

(P2) 〈{B} | {}〉 ||G 〈{B#3} | {B#3}〉 ||G 〈{} | {B#3}〉

〈{A,B} | {}〉 
∗
||G 〈{} | {A#2, B#3}〉

The sequence of derivation steps (P1) first activates A which is then dropped.

Similarly, (P2) activates B which is then dropped as well which then leads to the

stuck state 〈{} | {A#2, B#3}〉. We clearly missed to fire rule r1 . This shows

that single-step concurrent execution are essential to guarantee that newly added

constraints are visible to all concurrent active goals, hence we have exhaustive rule

firings in the goal-based semantics.

3.4.4 CHR Monotonicity and Shared Store Goal-based Ex-

ecution

It is clear that the issues discussed in Sections 3.4.1, 3.4.2 and 3.4.3 are some what

related. All of which relates to the exhaustiveness of rule firing and the each measure

taken contributes to maintaining a global or shared view of the constraint store for

all executing CHR goal constraints. In essence, the underlying reason for the need

for a shared store is that the goal-based semantics is not monotonic in its store

argument, thus derivations can only be consistent if taken under the full context of

the constraint store.

Let’s consider an example, which illustrates the non-monotonicity of the CHR
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goal-based semantics G, with respect to the constraint store.

r1 @ A,B ⇐⇒ C

Step Transition Type Constraint Store

〈{A} | {}〉

D1 (Activate) G 〈{A#1} | {A#1}〉

D2 (Drop) G 〈{} | {A#1}〉

We consider a simple derivation of the rule r1. In Step D1 we activate the goal

A, thus adding A#1 to the initially empty store. Since we cannot build a complete

match of the rule r1, we drop the goal A#1 in Step D2. If the goal-based semantics

is monotonic with respect to the constraint store, we should be able to execute this

derivation sequence under a larger context of the constraint store. Yet the following

clearly shows that this is not possible:

Step Transition Type Constraint Store

〈{A} | {B#2}〉

D1′ (Activate) G 〈{A#1} | {A#1, B#2}〉

D2′ (Drop) 6G 〈{} | {A#1, B#2}〉

Note that we have extended the store with B#2. Step D1′ is still valid but Step D2′

is clearly invalid, since the (Simplify) rule is applicable on the goal A#1, violating

the conditions of dropping the goal A#1.

This shows that the goal-based semantics is non-monotonic with respect to the

constraint store, specifically the (Drop) rule cannot always be taken under a larger

context of the store. As a result, we must take the appropriate measures discussed in

Sections 3.4.1, 3.4.2 and 3.4.3, which collectively imposes a shared store restriction

on our ‖ G semantics. While this formal complexity is a small price to pay, it’s

benefits are worthwhile as it provides a formal concise description of the behaviour

of parallel CHR goal execution over a shared constraint store.
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While the goal-based semantics G is non-monotonic with respect to the constraint

store, it is monotonic with respect to the goals. This monotonic property of the

goals offers a great degree of flexibility for concurrent execution of CHR goals. We

highlight this in the next section.

3.4.5 Lazy Matching and Asynchronous Goal Execution

When executing goals, we lazily compute only matches that contain the specific goal

and immediately apply such matches without concerning any further matches. For

instance consider the following CHR program and goal-based derivation:

r0 @ A(x), B(y) ⇐⇒ D(x, y)

〈{A(1)#4} ⊎ {A(2), A(3)} | {B(2)#1, B(3)#2, B(4)#3, A(1)#4}〉

G 〈{D(1, 2)} ⊎ {A(2), A(3)} | {B(3)#2, B(4)#3}〉

We have applied the rule instance A(1)#4, B(2)#1 independently of the existence

of the other goals (i.e. {A(2), A(3)}). In the literature, such a matching scheme is

known as a lazy matching scheme, and often implemented by variants of the LEAPS

algorithm [8].

Lazy matching in the goal-based semantics is possible only because the goal-based

semantics is monotonic with respect to the set of goals. The following illustrates
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this monotonicity property of goals:

〈{A(1)#4} | {B(2)#1, B(3)#2, B(4)#3, A(1)#4}〉

G 〈{D(1, 2)} | {B(3)#2, B(4)#3}〉

〈{A(1)#4} ⊎ {A(2), A(3)} | {B(2)#1, B(3)#2, B(4)#3, A(1)#4}〉

G 〈{D(1, 2)} ⊎ {A(2), A(3)} | {B(3)#2, B(4)#3}〉

〈G | Sn〉 G 〈G′ | Sn′〉

〈G ⊎ G′′ | Sn〉 G 〈G′ ⊎ G′′ | Sn′〉

The above property essentially states that we can execute goals G without prior

knowledge of goals G′′. Because of monotonicity, we are guaranteed that future

executions of G′′ will not invalid the executions on G.

Monotonicity of the goals also allows us to execute goals asynchronously. By

’asynchronously’, we mean that goals need not explicitly synchronize with one an-

other during their execution. For instance, consider the following:

r1 @ A(x), B(y) ⇐⇒ C(x, y)

〈{A(1)#1} | {A(1)#1, B(2)#2} ∪ {A(3)#3, B(4)#4}〉

δ1
||G 〈{C(1, 2)} | {} ∪ {A(3)#3, B(4)#4}〉

〈{A(3)#3} | {A(1)#1, B(2)#2} ∪ {A(3)#3, B(4)#4}〉

δ2
||G 〈{C(3, 4)} | {A(1)#1, B(2)#2} ∪ {}〉

δ1 = {}\{A(1)#1, B(2)#2} δ2 = {}\{A(3)#3, B(4)#4}

δ = {}\{A(1)#1, B(2)#2, A(3)#3, B(4)#4}

〈{A(1)#1} ⊎ {A(3)#3} | {A(1)#1, B(2)#2} ∪ {A(3)#3, B(4)#4}〉

δ
||G 〈{C(1, 2)} ⊎ {C(3, 4)} | {} ∪ {}〉
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r1 @ A(x) ⇐⇒ C(x)
r2 @ A(x), B(x) ⇐⇒ D(x)

Transition Types Constraint Store
〈{A(1), A(2), B(1), B(2)} | {}〉

(Activate), (Simplify r1) 
∗
||G 〈{C(1), A(2), B(1), B(2)} | {}〉

(Activate), (Drop) 
∗
||G 〈{A(2), B(1), B(2)} | {C(1)#1}〉

(Activate), (Simplify r1) 
∗
||G 〈{C(2), B(1), B(2)} | {C(1)#1}〉

(Activate), (Drop) 
∗
||G 〈{B(1), B(2)} | {C(1)#1, C(2)#2}〉

(Activate), (Drop) 
∗
||G 〈{B(2)} | {C(1)#1, C(2)#2, B(1)#3}〉

(Activate), (Drop) 
∗
||G 〈{} | {C(1)#1, C(2)#2, B(1)#3, B(2)#4}〉

Figure 3.5: Goal/Rule occurrence ordering example

The above describes the concurrent execution of goals A(1)#1 and A(3)#3. Notice

that in the derivations of the premise, we can ignore all goals which are not relevant

to the derivation. For instance, execution of A(1)#1 does not need goal A(3)#3 to

be visible, hence the goals effectively executes asynchronously. Goals do however,

implicitly ”synchronize” via the shared store. Namely, concurrent derivations must

be chosen such that rewrite side-effects involve distinct parts of the store. In Chapter

4, we will discuss efficient means of imposing such restrictions on the side-effects of

CHR goals executions in parallel.

3.4.6 Goal and Rule Occurrence Ordering

In this section, we address two issues, namely goal and rule ordering. We will

consider the example in Figure 3.5 to illustrate our points in this Section.

Goal ordering refers to the order in which goals are activated and executed. For

instance in Figure 3.5, the derivation sequence in this derivation sequence assumes

a stack ordering of the goals. This means that we always activate the left-most goal

first, and add new goals to the left of the collection as well. Note that for clarity,

we assume sequential goal execution for now (Goals are activated one at the time,

hence no concurrent goal execution). Rule occurrence ordering refers to the order in
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which rule-heads are tried by active goals. For instance, if we pick a top-to-bottom

ordering for rule-head execution, given a goal A(i)#n, we will always try to match it

with A(x) of r1 before A(x) of r2. Derivation sequence in Figure 3.5 is essentially an

example of such a top-to-bottom rule-head execution ordering, hence we will never

trigger r2 because we can alway match a goal A(i)#n to r1.

One might have noticed that for our goal-based semantics (‖ G semantics, Section

3.3) goals are specified as an unordered multiset4 and each order tries rule-heads in

an unspecified order. By not over specifying goal and rule-head ordering, our goal-

based semantics can describe a wider range of behaviours. For instance, the following

derivation sequence is still valid as:

Transition Types Constraint Store

〈{A(1), A(2), B(1), B(2)} | {}〉

(Activate), (Drop) 
∗
||G 〈{A(1), A(2), B(2)} | {B(1)#1}〉

(Activate), (Simplify r2) 
∗
||G 〈{A(2), B(2), C(1)} | {}〉

(Activate), (Drop) 
∗
||G 〈{A(2), C(1)} | {B(2)#3}〉

(Activate), (Simplify r2) 
∗
||G 〈{C(1), C(2)} | {}〉

(Activate), (Drop) 
∗
||G 〈{C(2)} | {C(1)#5}〉

(Activate), (Drop) 
∗
||G 〈{} | {C(1)#5, C(2)#6}〉

This derivation shows a sequence which stack ordering is not used nor is top-to-

bottom ordering. Note that from the constraint store {B(1)#1, A(1)#2} the activate

goal A(1)#2 is free to choose to fire r1 or r2. If a strict top-to-bottom ordering is

used, we are restricted to fire only r1. This degree of freedom is important, because

the choice of goal order or rule-head order may be determined by domain specific

reasons and should not be restricted by the underlying semantics (Section 4.4.3 and

5.3.3 explores this in an implementational point of view).

The last point we wish to highlight is that the ‖ G semantics is essentially sim-

4The traditional refined CHR operational semantics restrict this to a stack (fixed execution
order).
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ilar to the refined CHR operational semantics [9] if we impose all of the following

limitations on the ‖ G semantics:

• Goals are activated in left-to-right order and new goals are added only to the

right.

• Rule-heads are tried in top-to-bottom right-to-left ordering.

• Only exactly one goal is active at a time.

The first two restrictions are explicit restrictions of the refined CHR operational

semantics, hence their requirement are obvious. The third however is less obvious.

The problem is that even with stack goal ordering and top-to-bottom rule-head

ordering, executing goals concurrently introduces non-determinism which the refined

CHR operational semantics cannot reproduce. For instance consider the following

example:

Transition Types Constraint Store

〈{A(1), B(1), ...} | {}〉

(Activate) || (Activate) ||G 〈{A(1)#1, B(1)#2, ...} | {A(1)#1, B(1)#2}〉

(Drop) || (Simplify r2) ||G 〈{C(1), ...} | {}〉

...

We assume that we have 2 execution threads. In the first step, we execute the

two left-most goals, namely A(1)#1 and B(1)#2. In this second step, we have goal

B(1)#2 firing the CHR rule r2, while A(1)#1 is simply dropped. Note that this is

not possible if we disallow activation of multiple goals, since after executing A(1)

we must match it with r1.

As such, the ‖ G semantics is obviously more in-deterministic compared to the

refined CHR operational semantics. Section 3.5 presents our proofs that the ‖ G

semantics corresponds to the abstract CHR semantics (A semantics).
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3.4.7 Dealing with Pure Propagation

The CHR A semantics and ‖ G semantics here does not include simpagation rules

with empty simplification heads, i.e. pure propagation rules5 of the form H =⇒

tg | B. Handling pure propagtion rules for the sequential goal-execution semantics

is a well-studied problem [9, 33] and standard techniques used there (propagation

histories) varies little from how they would be used in concurrent goal execution

context. Such histories are necessary to prevent similar rule head instances to be

triggered infinitely many times. The inclusion of propagation histories to the ‖ G

semantics is straight-forward but will add little to contributions formal results. For

instance, CHR states can be extended with a propagation history P (i.e. 〈G | Sn |

P 〉). Propagation histories contains information on rules that has fired, typically

tuples consisting of a set of constraint identifiers (the constraints involved in the

multiset rewriting) and a rule label (rule involved in the multiset rewriting). The

following illustrates a simple extension to the ‖ G transition rules (Figure 3.3), to

handling pure propagation rules:

(Pure Propagate)

(r @ H ′ =⇒ tg | B′) ∈ P such that

∃φ Eqs(Sn) |= φ ∧ tg φ(H ′) = DropIds(H)

δ = {c#j} ∪ H\{} h ≡ {i | c#i ∈ H} ∪ {r}

h 6∈ P

〈{c#j} ⊎ G | {c#j} ∪ H ∪ Sn | P 〉

δ
G 〈φ(B′) ⊎ {c#j} ⊎ G | {c#j} ∪ H ∪ Sn | h ∪ P 〉

This simply includes a propagation history P which keeps track of all rule instances

that has fired. As specified by the premise of the transition rule, propagation rule

instance that has already been fired will not be applicable.

For concurrent goal execution, on top of enforcing the uniqueness of propagation

5While this may be upsetting for some advocates of Constraint Handling Rules, we insist that
it’s exclusion has little impact on the concurrent semantics and is purely for brevity and readability
of the formalism.
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rule instances, propagation histories has an additional responsibility of providing

the guarantee that concurrent goal executions rewrite over unique propagation rule

instances. Propagation histories need to be synchronized between concurrent goals,

with the additional condition that propagation histories cannot be overlapping. The

following variant of the (Goal Concurrency) transition rule, handling pure propaga-

tion between concurrent goal execution.

(Goal Concurrency’)

〈G1 | HS1 ∪ HS2 ∪ S | P 〉
δ1

||G 〈G′
1 | HS2 ∪ S | P1 ∪ P 〉

〈G2 | HS1 ∪ HS2 ∪ S | P 〉
δ2

||G 〈G′
2 | HS1 ∪ S | P2 ∪ P 〉

δ1 = HP1\HS1 δ2 = HP2\HS2

HP1 ⊆ S HP2 ⊆ S δ = HP1 ∪ HP2\HS1 ∪ HS2

P1 ∩ P2 ≡ {}

〈G1 ⊎ G2 ⊎ G | HS1 ∪ HS2 ∪ S | P 〉

δ
||G 〈G′

1 ⊎ G′
2 ⊎ G | S | P1 ∪ P2 ∪ P 〉

Essentially, we only allow concurrent goal executions which do not propagate the

same propagation rule instances (P1 ∩ P2 ≡ {}). This sufficiently guarantees that

concurrent goal executions rewrites unique instances of propagation rules.

In Section 4.8.2, we shall briefly discuss the technical challenges that will be

faced when implementing shared global histories for concurrent goal execution.

3.5 Correspondence Results

We formally verify that the concurrent goal-based semantics is in exact correspon-

dence to the abstract CHR semantics when it comes to termination and exhaustive

rule firings. Detailed proofs are given in the appendix (Chapter A). In the following

sections, we provide key lemmas and proof sketches.
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3.5.1 Formal Definitions

We first introduce some elementary definitions before stating the formal results.

The first two definitions concern the abstract CHR semantics. A store is final if

no further rules are applicable.

Definition 2 (Final Store) A store S is known as a final store, denoted FinalA(S)

if and only if no more CHR rules applies on it (i.e. ¬∃S ′ such that S A S
′).

A CHR program terminates if all derivations lead to a final store in a finite

number of states.

Definition 3 (Terminating CHR Programs) A CHR program P is said to be

terminating, if and only if for any CHR store S, there exists no infinite derivation

paths from S, via the program P.

Next, we introduce some definitions in terms of the goal-based semantics. In an

initial state, all constraints are goals and the store is empty. Final states are states

which no longer have any goals. We will prove the exhaustiveness of the goal-based

semantics by proving a correspondence between final stores in the abstract semantics

and final states of the goal-based semantics

Definition 5 (Initial and Final CHR States) An initial CHR state is a CHR

state of the form 〈G | {}〉 where G contains no numbered constraints (c#n), while

a final CHR state is of the form 〈{} | Sn〉

A state is reachable if there exists a (sequential) goal-based sequence of deriva-

tions to this state. We write 
∗
G to denote the transitive closure of G.

Definition 6 (Sequentially Reachable CHR states) For any CHR program P,

a CHR state 〈G′ | Sn′〉 is said to be sequentially reachable by P if and only if there

exists some initial CHR state 〈G | {}〉 such that 〈G | {}〉 
∗
G 〈G′ | Sn′〉.
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3.5.2 Correspondence of Derivations

We build a correspondence between the abstract semantics and the concurrent goal-

based semantics. We begin with Theorem 2, which states the correspondence of the

(sequential) goal-based semantics.

Theorem 2 (Correspondence of Sequential Derivations) For any reachable CHR

state 〈G | Sn〉, CHR state 〈G′ | Sn′〉 and CHR program P,

if 〈G | Sn〉 
∗
G 〈G′ | Sn′〉

then (NoIds(G) ⊎DropIds(Sn)) = (NoIds(G′) ⊎DropIds(Sn′)) ∨

(NoIds(G) ⊎DropIds(Sn)) 
∗
A (NoIds(G′) ⊎DropIds(Sn′))

where NoIds = {c | c ∈ G, c is a CHR constraint} ⊎ {e | e ∈ G, e is an equation}

The above result guarantees that any sequence of sequential goal-based deriva-

tions starting from a reachable CHR state either yields equivalent CHR abstract

stores (due to goal-based behaviour not captured by the abstract semantics, namely

(Solve) (Activate), (Drop)) or corresponds to a derivation in the abstract semantics

(due to rule application). A goal-based semantics state 〈G | Sn〉 is related to an

abstract semantics store by removing all numbered constraints in G and union it

with constraints in Sn without their identifiers. The theorem and its proof is a

generalization of an earlier result given in [9].

We formalize the observation that the goal context can be extended without

interfering with previous goal executions.

Lemma 2 (Monotonicity of Goals in Goal-based Semantics) For any goals

G,G′ and G′′ and CHR store Sn and Sn′, If 〈G | Sn〉 
∗
G 〈G′ | Sn′〉 then 〈G ⊎G′′ |

Sn〉 
∗
G 〈G′ ⊎G′′ | Sn′〉.

Next, we state that given any goal-based derivation with side-effects δ, we can

safely ignore any constraints (represented by S2) in the store which is not part of δ.
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Lemma 3 (Isolation of Goal-based Derivations)

If 〈G | HP ∪HS ∪ S1 ∪ S2〉
HP \HS

G 〈G′ | HP ∪ S ′
1 ∪ S2〉

then 〈G | HP ∪HS ∪ S1〉
HP \HS

G 〈G′ | HP ∪ S ′
1〉

Lemma 3 can be straight-forwardly extended to multiple derivation steps. This

is stated in Lemma 4.

Lemma 4 (Isolation of Transitive Goal-based Derivations)

If 〈G | HP ∪HS ∪ S1 ∪ S2〉 
∗
G 〈G′ | HP ∪ S ′

1 ∪ S2〉

with side-effects δ = HP\HS

then 〈G | HP ∪HS ∪ S1〉 
∗
G 〈G′ | HP ∪ S ′

1〉

The next states that any concurrent derivation starting from a reachable CHR

state can be replicated by a sequence of sequential goal-based derivations. Lemma

5 is the first step to prove the correspondence of concurrent goal-based derivations.

Lemma 5 (Sequential Reachability of Concurrent Derivation Steps) For any

sequentially reachable CHR state σ, CHR state σ′ and rewriting side-effects δ if

σ
δ

||G σ
′ then σ′ is sequentially reachable, σ 

∗
G σ

′ with side-effects δ.

Proof:(Sketch) Via Lemma 1, we can always reduce k mutually non-

overlapping concurrent derivations into several applications of the (Goal Concurrency)

step. Hence we can prove Lemma 5 by structural induction over the con-

current goal-based derivation steps (Lift) and (Goal Concurrency) where

we use Lemmas 2 and 4 to show that concurrent derivations can always

be replicated by a sequence of sequential goal-based derivations. 2

Theorem 3 (Sequential Reachability of Concurrent Derivations) For any ini-

tial CHR state σ, CHR state σ′ and CHR Program P, if σ 
∗
||G σ

′ then σ 
∗
G σ

′.
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The above be directly proven from Lemma 5 by converting each single step

concurrent derivation into a sequence of sequential derivations, and showing their

composibility.

From Theorem 2 and 3, we have the following corollary, which states the cor-

respondence between concurrent goal-based CHR derivations and abstract CHR

derivations.

Corollary 1 (Correspondence of Concurrent Derivations) For any reachable

CHR state 〈G | Sn〉, CHR state 〈G′ | Sn′〉 and CHR program P,

if 〈G | Sn〉 
∗
||G 〈G′ | Sn′〉

then (NoIds(G) ⊎DropIds(Sn)) = (NoIds(G′) ⊎DropIds(Sn′)) ∨

(NoIds(G) ⊎DropIds(Sn)) 
∗
A (NoIds(G′) ⊎DropIds(Sn′))

where NoIds = {c | c ∈ G, c is a CHR constraint} ⊎ {e | e ∈ G, e is an equation}

3.5.3 Correspondence of Exhaustiveness and Termination

We show that all derivations from a initial state to final states in the concurrent

goal-based semantics corresponds to some derivation from a store to a final store in

the abstract semantics. We first define rule head instances:

Definition 7 (Rule head instances) For any CHR state σ = 〈G, Sn〉 and CHR

program P, any (HP ∪ HS) ⊆ Sn is known as a rule head instance of σ, if and

only if ∃(r @ H ′
P\H

′
P ⇐⇒ tg | B) ∈ P,∃φ Eqs(Sn) |= φ ∧ tg and φ(H ′

P ⊎ H ′
S) =

DropIds(HP ∪HS).

Definition 8 (Active rule head instances) For any CHR state σ = 〈G, Sn〉 and

CHR program P, a rule head instance H of σ is said to be active if and only if there

exists at least one c#i ∈ G such that c#i ∈ H.
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Rule head instances (Definition 7) are basically minimal subsets of the store

which matches a rule head. Active rule head instance (Definition 8) additional have

at least one of it’s numbered constraint c#i in the goals as well. Therefore, by the

definition of the goal-based semantics, active rule head instances will eventually be

triggered by either the (Simplify) or (Propagate) derivation steps.

Lemma 6 (Rule instances in reachable states are always active) For any reach-

able CHR state 〈G | Sn〉, any rule head instance H ⊆ Sn must be active. i.e.

∃c#i ∈ H such that c#i ∈ G.

Lemma 6 shows that all rule head instances in reachable states are always active.

This means that by applying the semantics steps in any way, we must eventually

apply the rule head instances as long as all it’s constraints remain in the store.

Theorem 4 states that the exhaustiveness of a concurrent goal-based derivation

corresponds to exhaustiveness in the abstract semantics. Meaning that for every

terminating CHR program and initial CHR state 〈G, {}〉, if the exhaustive applica-

tion of concurrent goal-based derivations yields a final CHR state 〈{}, Sn〉, this state

will correspond to a valid final state with respect to the abstract CHR semantics.

Simply put, it guarantees that if the concurrent goal-based derivation terminates,

the resultant state corresponds to a final CHR abstract state.

Theorem 4 (Correspondence of Exhaustiveness) For any initial CHR state

〈G, {}〉, final CHR state 〈{}, Sn〉 and terminating CHR program P,

if 〈G | {}〉 
∗
||G 〈{} | Sn〉

then G 
∗
A DropIds(Sn) and FinalA(DropIds(Sn))

Proof:(Sketch) We prove this theorem by first using Theorem 3 which

guarantees that a concurrent goal-based derivation from an initial state

to a final state corresponds to some abstract semantics derivation. We
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next show that final states corresponds to final stores in the abstract se-

mantics. This is done by contradiction, showing that assuming otherwise

contradicts with Lemma 6. 2

To establish a property on the termination of the concurrent goal-based semantics

we state Lemma 7 and 8, which respectively establishes that there are CHR states

〈G | Sn〉 which corresponds to some final abstract CHR state cannot be applied with

(Simplify) or (Propagate) transitions, and that the cannot exist infinite concurrent

derivations consisting of only (Solve), (Activate) and (Drop) transitions.

Lemma 7 (Terminal CHR State) For any CHR State 〈G | Sn〉 and a terminat-

ing CHR program P,

if FinalA(NoIds(G) ⊎DropIds(Sn))

then there exists no proceeding concurrent derivation 〈G | Sn〉 ||G 〈G′ | Sn′〉 that

involves applications of the (Simplify) or (Propagate) derivation rules.

Lemma 8 (Finite Administrative CHR Goal-Based Derivations) For any CHR

State 〈G | Sn〉, there cannot exist any infinite concurrent derivations consisting of

only administrative derivation rules (Solve), (Activate) and (Drop).

Theorem 5 states that for every concurrent CHR derivation that corresponds to

an abstract CHR derivation which results in a final abstract state S ′, that concurrent

CHR derivation would eventually terminate in a CHR state that corresponds with

S ′. Simply put, this gives us the guarantee that concurrent goal-based derivations

that corresponds to a terminating abstract derivation, is terminating as well.

Theorem 5 (Correspondence of Termination) For any initial CHR state 〈G |

{}〉, any CHR state 〈G′ | Sn〉 and a terminating CHR program P,

if 〈G | {}〉 
∗
||G 〈G′ | Sn〉 and FinalA(NoIds(G′) ⊎DropIds(Sn))

then 〈G′ | Sn〉 
∗
||G 〈{} | Sn′′〉 and DropIds(Sn′′) = NoIds(G′) ⊎DropIds(Sn)
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Proof:(Sketch) We first use Lemma 7 to show that there can be no appli-

cations of (Simplify) or (Propagate) transitions from the state 〈G′ | Sn〉,

since we assume that 〈G′ | Sn〉 corresponds to a final state in the abstract

semantics. Next, using Lemma 8, we show that with the only permitted

CHR transitions ((Solve), (Activate) and (Drop)) we can only have finite

concurrent derivations. Finally, by defining a well-founded order based

on the number of goals in a CHR state, we show that successive CHR

states across CHR concurrent derivations are monotonically decreasing

in this ordering, and with the assumption that 〈G′ | Sn〉 corresponds to

a final state in the abstract semantics, exhaustive derivations will yield

that resultant state with empty goals, 〈{} | Sn′′〉. 2

3.5.4 Concurrent CHR Optimizations

In the sequential setting, there exist a wealth of optimizations [9, 48, 50] to speed up

the execution of CHR. Fortunately, many of these methods are still largely applicable

to our concurrent goal-based variant as we discuss in the following. For the remain-

der, we assume that each goal (thread) tries the CHR rules from top-to-bottom to

match the rule execution order assumed in [9, 48, 50].

Basic constraint indexing like lookups via hashtables are still applicable with

minor adaptations. For instance, the underlying hashtable implementation must be

thread safe. Consider the following example:

r0@A(x, y), B(x), C(y) ⇐⇒ x > y | D(x, y)

Suppose we have the active constraint A(1, 2)#n. To search for a partner constraint

of the form B(1)#m and C(2)#p, standard CHR compilation techniques would

optimize with indexing (hashtables) which allows constant time lookup for these

constraints. The use of such indexing techniques is clearly applicable in a concurrent
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goal execution setting as long as concurrent access of the indexing data structures are

handled properly. For example, we can possibly have a concurrent active constraint

A(1, 3)#q which will compete with A(1, 2)#n for a matching partner B(1)#m. As

such, hashtable implementations that facilitate such indexing must be able to be

accessed and modified concurrently.

Guard optimizations/simplifications aim at simplifying guard constraints by re-

placing guard conditions with equivalent but simplified forms. Since guards are

purely declarative, they are not influenced by concurrently executing goal threads/CHR

rules. Hence, all existing guard optimizations carry over to the concurrent setting.

The join order of a CHR rule determines the order in which partner constraints

are searched to execute a rule. The standard CHR optimization known as optimal

join-ordering and early guard scheduling [9] aims at executing goals with the most

optimal order of partner constraints lookup and guard testing. By optimal, we

refer to maximizing the use of constant time index lookup. Considering the same

CHR rule (r0) above, given the active constraint B(x), an optimal join-ordering

is to lookup for A(x, y), schedule guard x > y, then lookup for C(y). Since our

concurrent semantics does not restrict the order in which partner constraints are

matched, optimal join ordering and early guard scheduling are still applicable.

Another set of optimizations tries to minimize the search for partner constraints

by skipping definitely failing searches. Consider the following example:

r1@A⇐⇒ ...

r2@A,B ⇐⇒ ...

If the active goal A cannot fire rule (r1) then we cannot fire rule (r2) either. Hence,

after failing to fire rule (r1) we can drop goal A. Thus, we optimize away some

definitely failing search. This statement is immediately true in the sequential setting

where no other thread affects the constraint store. The situation is different in a

concurrent setting where some other thread may have added in between the missing
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constraint A. Then, even after failing to fire (r1) we could fire rule (r2). However,

we can argue that the optimization is still valid for this example. We will not violate

the important condition to execute CHR rules exhaustively because the newly added

constraint A will eventually be executed by a goal thread which then fires rule (r1).

Hence, the only concern is here that the optimization leads to indeterminism in the

execution order of CHR rules which is anyway unavoidable in a concurrent setting.

Yet there are existing optimizations which are not applicable in the concurrent

setting. For example, continuation optimizations [9, 48] are not entirely applicable.

Consider the following CHR rule:

r4@A(x), A(y) ⇐⇒ x == y | ...

Given an active constraint A(1)#n, fail continuation optimization will infer that if

we fail to fire the rule with A(1)#n matching A(x), there is no point trying to match

it with A(y) because it will most certainly fail as well, assuming that the store never

changes. In a concurrent goal execution setting, we cannot assume that the store

never changes (while trying to execute a CHR). For instance, after failing to trigger

the rule by matching A(1)#n with A(x), suppose that a new active goal A(1)#m is

added to the store concurrently. Now when we match A(1)#n to A(y) we can find

match the partner A(1)#m with A(x), hence breaking the assumptions of the fail

continuation optimization.

Late (Delayed) storage optimization [9] aims at delaying the storage of a goal

g, until the latest point of it’s execution where g is possibly a partner constraint of

another active constraint. Consider the following example:
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r1@P1 =⇒ Q

r2@P2, T1 ⇐⇒ R

r3@P3, R1 ⇐⇒ True

r4@P4 =⇒ S

r5@P5, S1 ⇐⇒ True

Note to distinguish the rule heads, we annotate each rule head with a subscript

integer (eg. Px). With late storage analysis techniques described in [9], we can

delay storage of an active constraint P until just before the execution of the body

of r4. This is because the execution of goal S (obtained from firing of r4) can

possibly trigger r5. While this is safe in the sequential goal execution scheme, it

is possible that rule matches are missing in the concurrent goal execution setting.

Consider the case where we have parallel active goals P#n and T#m. Since P#n

is only stored only when it’s execution has reached r4, the match r2 can be missed

entirely by both active parallel goals P#n and T#m. Specifically, this happens

if goal T#m is activated only after P#n has tried matching with P2 (of r2), but

completes goal execution (by trying T1 of r2, and failing to match) before goal P#n

is stored. It is not entirely surprising that this delayed storage scheme is not sound

in a concurrent execution, since the delayed storage scheme highlighted in Section

3.4.1 is after all, a conservative yet still flawed attempt at sound optimization to the

concurrent execution strategy. Hence, we conclude that we cannot safely implement

late storage in the concurrent setting.



Chapter 4

Parallel CHR Implementation

4.1 Chapter Overview

In this Chapter, we provide details of implementing a Parallel CHR system. Section

4.2 provides a quick review on existing CHR goal based implementations which de-

scribes sequential goal execution. This is followed by Section 4.3, which introduces a

straight-forward implementation. We will explain in detail why such an implementa-

tion will fail to scale well, by highlighting several issues which must be addressed by

a practical parallel CHR implementation (Section 4.4.1, 4.4.2, 4.4.2 and 4.4.3). We

will also discuss our approaches to address these issues, in the respective sections.

Next, we highlight our parallel CHR implementation in Haskell(GHC) (Section

4.5) and provide experiment results in Section 4.6. Results here provides empirical

prove and support for our observations and hypothesis.

4.2 Implementation of CHR Rewritings, A Quick

Review

In the execution of CHR goals, rule head matching is essentially the most technically

complex and computationally intensive procedure that is involved. As such, any

65
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practical implementation of goal-based CHR execution must include a highly efficient

rule-head matching routine. Recall the (simplify) derivation step of the concurrent

goal-based semantics ‖ G:

(Simplify)

(r @ H ′
P\H

′
S ⇐⇒ tg | B′) ∈ P such that

∃φ Eqs(Sn) |= φ ∧ tg φ(H ′
P ) = DropIds(HP )

φ(H ′
S) = φ({c} ⊎ DropIds(HS)) δ = HP\{c#j} ∪ HS

〈{c#j} ⊎ G | {c#j} ∪ HP ∪ HS ∪ Sn〉

δ
G 〈φ(B′) ⊎ G | HS ∪ Sn〉

This, as well as the (propagate) derivation step, models CHR rewritings in a declar-

ative manner. But operationally, it specifies little about how the actual matching as

well as searching for constraints is done. For instance, the premise of the derivation

step simply states that given the goal c#j, there must exist some constraints HS

and HP in the constraint store that matches with the rule heads for this derivation

step to be possible, but not exactly how such constraints in the store are located or

how they are selected. In this section, we will provide more details on this problem

which we will refer to as the CHR goal-based matching problem.

In this section, we review the highlights of existing CHR rewriting implementa-

tions. We will highlight the CHR goal-based matching problem in practice, followed

by a simple example on how CHR goal execution is implemented. Note that exist-

ing implementations are single-threaded, in that they assume that at most one CHR

goal can be executed at once.

4.2.1 CHR Goal-Based Rule Compilation

We highlight a compilation scheme for CHR rules which encodes CHR rules as

a list of search tasks that locates a complete rule-head match, and a set of body

constraints. This CHR compilation scheme, which we shall refer to as the CHR Goal-
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Non-linearized CHR Rule:

r1 @ A(1 , x ) \ B(x , y),C (z ) ⇐⇒ y > z | D(x , y , z )

Linearized CHR Rule:

r1 @ A(1 , x1 ) \ B(x2 , y),C (z ) ⇐⇒ y > z ∧ x1 = x2 | D(x1 , y , z )

Figure 4.1: Linearizing CHR Rules

based Rule Compilation, is comparable with those used in existing CHR systems [27].

For convenience, we assume that rule heads are linear. That is, each variable

occurs at most once in a constraint in the rule head. It is straightforward to linearize

CHR rules. For instance, Figure 4.1 shows the CHR rule r1 in it’s non-linearized

and linearized form respectively.

Figure 4.2 shows the formal description of CHR goal-based rule compilations.

For convenience, we also include the relevant fragment of the CHR syntax, shown

earlier in Figure 3.2. The idea is to compile a CHR rule, into a set of CHR goal-

based rule compilations, where each uniquely corresponds to a rule head of the

CHR rule. Each rule compilation is essentially a tuple that represents the sequence

of match tasks to be executed when a goal is matched to it’s associated rule head,

and a set of constraints which represents the rule body. A match task specifies one

of the three type of nodes, matching a goal (Goal), looking for a specific partner

constraint (Lookup) or checking a guard condition (Guard). Each Goal or Lookup

task is annotated by a rewrite type which distinguishes whether it’s goal/partner

constraint is to be simplified (S) or propagated (P ).

We illustrate this compilation scheme by example (A formal treatment to the

compilation scheme is detailed elsewhere [9, 48]). Let’s consider our running exam-

ple, rule r1 and it’s corresponding CHR goal-based rule compilations:

r1 @ A(1 , x1 ) \ B(x2 , y),C (z ) ⇐⇒ y > z ∧ x1 = x2 | D(x1 , y , z )
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CHR Syntax:

Constants v ::= 1 | true | ...
Terms t ::= x | f t
Predicates p ::= Get | Put | ...
Equations e ::= t = t
CHR Constraints c ::= p(t)
Constraints b ::= e | c
CHR Guards tg ::= t
CHR Heads H ::= c

CHR Body B ::= b
CHR Rule R ::= r @ H \ H ⇐⇒ tg | B

CHR Goal-Based Rule Compilation:

Rewrite Type rw ::= S | P
Match Task mt ::= Goal rw c | Lookup rw c | Guard tg
Match Task Sequence mts ::= mt
Rule Compilation occ ::= (mts,B)

Figure 4.2: CHR Goal-Based Rule Compilation

mts1 = [Goal P A(1 , x1 ),Lookup S B(x2 , y),Lookup S C (z ),Guard (y > z ∧ x1 = x2 )]

mts2 = [Goal S B(x2 , y),Lookup P A(1 , x1 ),Lookup S C (z ),Guard (y > z ∧ x1 = x2 )]

mts3 = [Goal S C (z ),Lookup P A(1 , x1 ),Lookup S B(x2 , y),Guard (y > z ∧ x1 = x2 )]

comp = {(mts1 , {D(x1 , y , z )}), (mts2 , {D(x1 , y , z )}), (mts3 , {D(x1 , y , z )})}

Rule r1 is compiled into three match tasks, namely mts1, mts2 and mts3, which

corresponds to rule heads A(1, x1), B(x2, y) and C(z). For instance, mts1 represents

the match tasks for executing goals that matches with the rule head A(1, x1), which

involves looking for a partner constraint B(x1, y) and then C(z) and finally checking

the guard constraints. This match task generates match trees like the one seen in

Figure 4.3. Note that all well-formed match tasks have a leading Goal task.
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4.2.2 CHR Goal-Based Lazy Matching

CHR goal-based matching is essentially a lazy matching problem. As opposed to

eagerly matching all rule head instances in a given constraint store, for each CHR

goal, we wish only to locate and execute rule head instances on demand. In essence,

this matching problem involves some form of search routine which starts from a CHR

goal and searches for matching constraints in the CHR store. This goal-based lazy

matching routine is essentially encoded by the goal-based rule compilations discussed

in the previous section. Let’s consider the CHR rule r from Figure 4.1. We model the

search space of such matching problems via match trees. The particular match tree

shown in Figure 4.3 represents the search space of the constraint matching problem

for rule r1, triggered by the execution of the goal A(1, x) (Match tasks mts1 from

Section 4.2.1). Given the Goal node A(1, x), we seek for constraints in the store

matching rule heads B(x, y) and C(z), in this particular order1. For instance, the

root (Goal) node A(1, 2)#1 has two child nodes, namely Lookup B(2, 10)#2 and

B(2, 8)#3, each representing possible matches of B(x, y) under the substitution

{2/x, 10/y} and {2/x, 8/y} respectively. Simp and Prop tokens simply indicates

if the constraint is to be simplified or propagated. Guard nodes represents the

checking of CHR rule guards. Successful leaf nodes contain the complete rule head

match which corresponds to all rule heads along the path from the root to the leaf

node. By successful, we mean that the guard constraint is satisfied. Note that a

complete specification of the matching problem for CHR rule r would include two

other match tree, each of which specifies the matching problem starting from the

each of the other two rule heads (B(x, y) and C(z)).

The match tree in Figure 4.3 specifies four possible rule head instances (also

referred to as successful matches). However, it is not possible to fire all of them

1Note we can similarly have it in the order C(z) then B(x, y), but the abstract CHR semantics
leaves this choice open. This flexibility allows us to use known CHR optimizations like optimal
join-ordering [9] which orders the CHR rule-head matching to maximize the opportunities to exploit
indexing.
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A CHR simpagation rule and Constraint Store:

r @ A(1 , x ) \ B(x , y),C (z ) ⇔ y > z | D(x , y , z )
{A(1 , 2 )#1 ,B(2 , 10 )#2 ,B(2 , 8 )#3 ,C (5 )#4 ,C (6 )#5 ,C (12 )#6}

Match tree:
Goal :
Prop

A(1, 2)#1
{2/x,10/y}�� {2/x,8/y}��

Lookup :
Simp

B(2, 10)#2
{2/x,10/y,5/z}		 {2/x,10/y,6/z} �� {2/x,10/y,12/z}�� Lookup :

Simp

B(2, 8)#3
{2/x,8/y,5/z}

 {2/x,8/y,6/z} �� {2/x,8/y,12/z}��

Lookup :
Simp

C(5)#5

{2/x,10/y,5/z} �� Lookup :
Simp

C(6)#6

{2/x,10/y,6/z} �� Lookup :
Simp

C(12)#7

{2/x,10/y,12/z} �� Lookup :
Simp

C(5)#5

{2/x,8/y,5/z} �� Lookup :
Simp

C(6)#6

{2/x,8/y,6/z} �� Lookup :
Simp

C(12)#7

{2/x,8/y,12/z} ��
Guard :
10 > 5

{2/x,10/y,5/z} �� Guard :
10 > 6

{2/x,10/y,6/z} �� Guard :
10 6> 12

Guard :
8 > 5

{2/x,8/y,5/z} �� Guard :
8 > 6

{2/x,8/y,6/z} �� Guard :
8 6> 12

Match :
A(1, 2)#1
B(2, 10)#2
C(5)#5

Match :
A(1, 2)#1
B(2, 10)#2
C(6)#6

Match :
A(1, 2)#1
B(2, 8)#3
C(5)#5

Match :
A(1, 2)#1
B(2, 8)#3
C(6)#6

M1 M2 M3 M4

Figure 4.3: Example of CHR rule, derivation and match Tree

together. This is because some of the matches are likely to contain overlapping rule

heads. Note that for rule r1, we propagate A(1, x) but simplify B(x, y) and C(z). If

we choose to use match M1, match M2 becomes invalid because M1 and M2 share

an overlapping constraint B(2, 10)#2 which will be simplified. Hence, we can either

use match M1 or M2 but not both. The CHR semantics (eg. ‖ G) of course does

not impose any restriction on the choice of which match to use. Similarly, match

M3 becomes invalid because of the shared simplified constraint C(5)#5. Hence, for

each match tree, we can only fire a set of rule head instances which has mutually

non-overlapping simplified constraints. For instance, the following illustrates the
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1 execGoal 〈G | Sn〉 A(1, x)#n {
2 ms1 = match Sn B(x, )
3 for B(x, y)#m in ms1 {
4 ms2 = match Sn C( )
5 for C(z)#p in ms2 {
6 if(y > z) {
7 deleteFromStore Sn [B(x, y)#m,C(z)#p]

8 addToGoals G [A(1, x)#n,D(x, y, z)]
9 return true

10 }
11 }
12 }
13 return false

14 }

Table 4.1: Example of basic implementation of CHR goal-based rewritings

‖ G derivations that corresponds to the applications of matches M1 and M4.

〈{A(1, 2)#1} | {A(1, 2)#1, B(2, 10)#2, B(2, 8)#3, C(5)#4, C(6)#5, C(12)#6}〉

r 〈{A(1, 2)#1,D(2, 10, 5)} | {A(1, 2)#1, B(2, 8)#3, C(6)#5}〉

r 〈{A(1, 2)#1,D(2, 10, 5),D(2, 8, 6)} | {A(1, 2)#1, C(12)#6}〉

Similarly, we can apply the alternative set of matches M2 and M3. In general,

we can apply any subsets of matches of a match tree which consist of mutually

non-overlapping rule head matches.

Figure 4.1 illustrates pseudo code which implements the execution of goals of the

formA(1, x)#n. Description of operations match, deleteFromStore and addToGoals

can be found in Section 2.3.2. Line 2 creates an iteration (ms1) of constraints in

the store Sn that matches the pattern B(x, ), where the symbol represents the

’any’ pattern. The ’For’ loop of lines 3 − 13 tries matching constraints in ms1 on

the rest of the search procedure. Similar to Line 2, Line 4 creates an iteration of

constraints matching C( ). This is following by the inner ’For’ loop of Lines 7 − 11

which iterates through constraints in ms2. Line 6 checks the rule guard which only

executes rewriting (Lines 7− 9) for constraint sets satisfying y > z. CHR rewriting

is modeled by the following: Line 7 removes the constraints B(x, y)#m and C(z)#p
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1 exec Goal:

2 while ∃ goal

3 select goal G
4 if ∃ r@ P1, ..., Pl \ S1, ..., Sm ⇐⇒ tg | C1, ..., Cn ∈ P and

5 ∃ φ such that

6 St ≡ Stc ⊎ {φ(P1), ..., φ(Pl), φ(S1), ..., φ(Sm)} and

7 |= φ(tg) and

8 either (G ≡ φ(Pi) for some i ∈ {1, ..., l}) or

9 (G ≡ φ(Sj) for some j ∈ {1, ..., m})
10 then let ψ be m.g.u. of all equations in C1, ..., Cn

11 St := Stc ⊎ { φ(P1), ..., φ(Pl), φ ◦ ψ(C1), ..., φ ◦ ψ(Cn)}

Table 4.2: Goal-based lazy match rewrite algorithm for ground CHR

which matched the simplified heads of the rule. Line 8 adds the rule body D(x, y, z)

and the propagated goal constraint A(1, x)#n 2 into the CHR goals G as new goal(s)

to be executed later. Line 9 exits the procedure with success (true). Finally, in Line

13, when no rule head match is found, the goal constraint is dropped and the pro-

cedure is exited with failure (false). Note that this procedure essentially traverses

the search space specified by match tree in Figure 4.3.

Existing implementations assumes that goal execution routines such as the one

found in Figure 4.1 are executed in strictly in isolation3, hence avoiding the issues

and woes of concurrent execution. For the rest of the Chapter, we will detail these

issues and highlight our solutions to address them.

Table 4.2 lays out the general structure of a goal-based lazy match rewrite algo-

rithm. We select a goal G which then finds its matching partners. Lines 8 and 9

ensure that the goal must be part of the left-hand side. Our formulation assumes

that the CHR rule system is ground. That is, equations on right-hand side of rules

can immediately be eliminated by applying the m.g.u. This ensures that any deriva-

tion starting from a ground constraint store (none of the constraints contains any

free variables) can only lead to another ground constraint store. In our experience,

the restriction to ground CHR is not onerous because most examples either satisfy

2Note that this necessary, as specified by the (Propagate) rule of the ‖ G semantics.
3In other words, no concurrently running instances, rewriting over the same constraint store
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this condition, or it is fairly straightforward to program unification/instantiation on

top of CHR (e.g. see our encoding of union-find in the upcoming Section 4.6).

In essence, we wish to extend this CHR execution scheme to execute multiple

copies of CHR rewritings (Table 4.2) concurrently, each copy strictly executing a

distinct goal but rewriting over the same store St shared among all computation

threads.

4.3 A Simple Concurrent Implementation via STM

In Section 2.3.2, we introduced a straight-forward implementation of goal-based

concurrent CHR rewritings via traditional locks. Here we shall illustrate another

simple implementation via Software Transactional Memory. First, we introduce the

basics of software transactional memory in Haskell GHC.

4.3.1 Software Transactional Memory in Haskell GHC

newTVar :: a -> STM (TVar a) -- Create new transactional variable

readTVar :: TVar a -> STM a -- Read a transactional variable

writeTVar :: TVar a -> a -> STM () -- Write into a transactional variable

atomically :: STM a -> IO a -- Execute STM operation atomically in IO

forkIO :: IO () -> IO ThreadId -- Execute operation in a new thread

incr :: TVar Int -> STM Int incrN :: TVar Int -> Int -> STM [Int]

incr c = do { v <- readTVar c incrN c i = mapM (\_ -> incr c) [1..i]

; writeTVar c (v+1)

; return v }

main = do { c <- atomically (newTVar 1)

; vs1 <- forkIO (incrN c 3)

; vs2 <- forkIO (incrN c 3)

; ... }

Table 4.3: Haskell GHC Software Transaction Memory Library Functions and an
example

Software Transactional Memory4 (STM) is a new and promising concurrency

4Please refer to [26] for a detailed introduction to STM in Haskell GHC.
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primitive which has gained much interesting in the recent years. STM provides con-

currency primitives to program concurrent synchronization in a composable manner.

This means that operations that modify shared state can be safely composed with

other operations that also modify shared states. Sequences of STM operations can

be atomically composed together into a single atomic transaction and the runtime

system guarantees that such transactions are executed atomically. By atomically, we

mean that their side-effects are visible all at once. Software transactional memory

uses optimistic synchronization, where shared memory operations are executed as

though conflicts never occur and only validated at the end of atomic transactions.

If validation fails, the entire operation is re-executed from the start. This approach

is known to scale extremely well when conflicting shared memory access occurs on

rare occasions. Table 4.3 highlights the basic Haskell STM library functions and an

example. newTVar, readTVar and writeTVar creates, reads and writes transactional

variables respectively. atomically executes a STM operation atomically. Shared

memory accesses in this STM are first logged in a transactional log, and the log is

only validated (checked for global consistency) at the end of the execution. If log is

valid, side effects of the operation are made visible all at once, otherwise it is rolled

back (re-executed). forkIO simply forks and execute IO operations. incr increments

an integer transaction variable. Thanks to composibility, we implement this simply

by composing readTVar and writeTVar primitive operations. incrN demonstrates

the power of composibility, showing that we can further compose incr dynamically.

In main we execute two concurrent threads running incrN. Since each incrN are

executed atomically, vs1 and vs2 are guaranteed to be contiguous.

4.3.2 Implementing Concurrent CHR Rewritings in STM

Before we proceed to the details of an STM implementation of concurrent CHR

rewriting, we introduce the following APIs that provides basic access to the shared

store and goals:
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r1 @ A(1 , x ),B(x , y),C (z ) ⇐⇒ y > z | D(x , y , z )

1 execGoalSTM 〈G | Sn〉 A(1, x)#n {
2 atomically {
3 ms1 = matchSTM Sn B(x, )
4 for B(x, y)#m in ms1 {
5 ms2 = matchSTM Sn C( )
6 for C(z)#p in ms2 {
7 if(y > z) {
8 deleteFromStoreSTM Sn [B(x, y)#m,C(z)#p]

9 addToGoalsSTM G [A(1, x)#n,D(x, y, z)]
10 return true

11 }
12 }
13 }
14 return false

15 }
16 }

Table 4.4: A straight-forward STM implementation (Example 1)

• matchSTM Sn c - Where Sn is the CHR constraint store, and c is a CHR

constraint pattern. Returns an iteration of constraints matching c.

• deleteFromStoreSTM Sn cs - Where Sn is the CHR constraint store and cs is

a list of stored constraints in Sn, deletes all stored constraints in cs from Sn.

• addToGoalsSTM G cs - Where G is the goals and cs is a list of CHR constraints,

add all CHR constraints in cs into the goals G.

Note that matchSTM, deleteFromStoreSTM and addToGoalsSTM are similar to

APIs presented in Section 2.3.2, except they operate on STM shared variables.

Table 4.4 shows a straight-forward approach, using Software Transactional Mem-

ory. execGoalSTM is the top-level function which implements the execution of goal

A(x)#n. The bulk of the code is very much similar to it’s single-threaded coun-

terpart (Table 4.1), except for the appearance of the atomically construct. This

construct allows the atomic execution of it’s nested composite STM operation. In

this example, we atomically compose the individual STM operations which finds a

complete rule match and executes rewriting, starting from a given goal A(x). This
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means that effects within the atomically block of execGoalSTM (Lines 3 − 14)

appears to occur immediately, in an un-interleaving manner.

The atomic composibility of STM operations makes it extremely simple to im-

plement operations like matchSTM, deleteFromStoreSTM and addToGoalSTM. Such

implementations can almost be directly lifted from single-threaded implementations5

without the need of worrying about race-conditions and inconsistent interleaving

concurrent executions.

Yet when we consider performance, this implementation will not scale well and

is not entirely practical. This is due to a number of reasons, most prominently,

false data dependencies, conflicts between multiset rewritings selected by concurrent

threads and lack of explicit management of resource limitations. We will discuss

these issues in detail in Section 4.4 and highlight the steps we have taken to address

these problems.

4.4 Towards Efficient Concurrent Implementations

So far we have highlighted two straight forward implementation of our parallel CHR

execution model. Specifically, Section 2.3.2 illustrates a coarse-grained locking ap-

proach, while earlier this section we highlighted a coarse-grained software trans-

actional approach. Such simple concurrent implementations of concurrent CHR

rewriting do not offer the parallelism and scalability in general. This is because

synchronization primitives (locks and transactional memory) here are used in a con-

servative but overly zealous manner which imposes ’false’ data dependencies between

concurrently executing goals. These false data dependencies come in the form of false

overlapping rule-head matches. For instance, in the coarse-grained locking approach,

we lock the entire constraint store when a goal is searching for partner constraints,

thus sequentializing all CHR execution. This problem, in the coarse-grained STM

5The only major refactoring task is converting the goals and store into shared transactional
memory data structures.
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r2 @ A(x ),B(x ),C (x ) ⇐⇒ D(x )

1 execGoalSTM 〈G | Sn〉 A(x)#n {
2 atomically {
3 ms1 = matchSTM Sn B(x)
4 for B(x)#m in ms1 {
5 ms2 = matchSTM Sn C(x)
6 for C(x)#p in ms2 {
7 deleteFromStoreSTM Sn [B(x)#m,C(x)#p]

8 addToGoalsSTM G [D(x)]
9 return true

10 }
11 }
12 return false

13 }
14 }

Table 4.5: A straight-forward STM implementation (Example 2)

implementation (details in Section 4.4.1), is much more subtle but yet undeniably

present.

Starting from the straight-forward STM implementation of concurrent CHR

rewritings highlighted in Section 4.3, we systematically identify various subtle is-

sues (apart for eliminating false data dependencies) which must be specifically ad-

dressed in order to ’unlock’ parallelism in concurrent execution of CHR rewritings.

This section documents these issues and our approach to tackle them, resulting in

our optimized implementation of Section 4.5. Results in Section 4.6 supports our

discussion here with empirical evidence.

Particularly, we investigate into the problem of parallel match selection (Sec-

tion 4.4.2), unbounded parallel execution (Section 4.4.3) and goal storage

policies (Section 4.4.4) More importantly, we will also highlight the approaches

we have taken to address these issues and to mitigate their detrimental effects on

parallelism and scalability.

4.4.1 False Overlapping Matches

When implementing concurrent CHR rewritings, it is no doubt that consistency
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r1 @ A(x), B(x), C(x) ⇐⇒ D(x)

(A) ‖ G semantics concurrent derivation:

〈{A(1)#5} | {C(1)#1, C(3)#2, B(1)#3, B(3)#4, A(1)#5, A(3)#6}〉

(D1)
δ1

||G 〈{D(1)} | {C(3)#2, B(3)#4, A(3)#6}〉

||

〈{A(3)#6} | {C(1)#1, C(3)#2, B(1)#3, B(3)#4, A(1)#5, A(3)#6}〉

(D2)
δ2

||G 〈{D(3)} | {C(1)#1, B(1)#3, A(1)#5}〉

δ1 = {}\{#1,#3,#5} δ2 = {}\{#2,#4,#6} δ = {}\{#1,#3,#5,#2,#4,#6}

〈{A(1)#5, A(3)#6} | {C(1)#1, C(3)#2, B(1)#3, B(3)#4, A(1)#5, A(3)#6}〉
δ

||G 〈{D(1),D(3)} | {}〉

(B) Parallel execution based on Table 4.5 implementation:
t1 t2
↓ ↓ Search from left-to-right −→

σ = 〈{ A(1)#5, A(3)#6 } | { C(1)#1 → C(3)#2 → B(1)#3 → B(3)#4 → A(1)#5 → A(3)#6 }〉

(C) Concurrent execution and accumulated transactional logs:

execGoalSTM σ A(1)#5 t1’s Transactional Log execGoalSTM σ A(3)#6 t2’s Transactional Log

a. Start Atomic {} ∪ Start Atomic {} ∪
b. matchSTM st B(1) {#1, #2,#3} ∪ matchSTM st B(3) {#1, #2,#3, #4} ∪
c. matchSTM st C(1) {#1} ∪ matchSTM st C(3) {#1, #2} ∪
d. deleteFromStoreSTM {#1, #3,#5} deleteFromStoreSTM {#2, #4,#6}

e. End Atomic {#1, #2,#3, #5} End Atomic {#1, #2,#3, #4,#6}

Figure 4.4: Example of false overlaps in concurrent matching

of such an implementation is one of our top priority. As such, we must exploit

the concurrency synchronization protocols offered by the programming language we

have chosen, to model the ’allowed’ concurrent behaviours of the ‖ G semantics.

Particularly, we want to use concurrency primitives like traditional locks or software

transactional memory to model the side-effects (δ) of the ‖ G semantics derivations

(σ
δ

||G σ
′). Let’s consider a simple example, as shown in Table 4.5. We consider

the following ‖ G derivation step for rule r2:

〈{A(1)#5} | {C(1)#1, C(3)#2, B(1)#3, B(3)#4, A(1)#5, A(3)#6}〉

δ1
||G 〈{D(1)} | C(3)#2, B(3)#4, A(3)#6〉

where δ1 = {}\{C(1)#1, B(1)#3, A(1)#5}

Recall that we specify each ‖ G derivation step with some side-effect δ. Side-effects
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HP\HS represents the propagated constraints (HP ) and the simplified constraints

(HS) which are involved in the derivation step. In the above instance, no constraints

are propagated, while {C(1)#1, B(1)#3, A(1)#5} are simplified in the derivation

step which fires the rule r. Hence this derivation step can only concurrently execute

with other derivation steps that do not have side-effects which include constraints

C(1)#1, B(1)#3 or A(1)#5. This restriction guarantees that we only execute non-

overlapping rule applications concurrently, and thus guaranteeing that concurrent

derivations are consistent.

Figure 4.4 illustrates a detailed example showing how side-effects δ in ‖ G deriva-

tions are captured in STM transactional logs as shared variable access while execut-

ing execGoalSTM on the goals A(1)#5 and A(3)#6, concurrently. Part (A) of the

figure illustrates the concurrent ‖ G derivation of two non-overlapping rule applica-

tions of r2. It represents our desired concurrent behaviour. Note that derivation D1

causes side-effects δ1 = {}\{#1,#3,#5} while D2 causes δ2 = {}\{#2,#4,#6}.

In short, we will we will refer to stored constraints via their unique identifiers (ie.

A(1)#5 by #5).

Part (B) states some of the assumption we make of the concurrent execution

in practice, namely we assume that we have two concurrent threads of computa-

tion t1 and t2, executing goals A(1)#5 and A(3)#6 respectively, and both threads

are attempting to complete a rule head match to CHR rule r2, via the goal execu-

tion procedure of Table 4.5. For simplicity, we assume that the search procedure

(matchSTM) searches for matches in left-to-right order, hence the shared constraint

store is just a shared linked-list6. Finally, each constraint in the store is assumed to

be stored in a unique shared transactional memory location. Hence we shall refer to

stored constraints (identifiers) also as transactional memory locations.

Part (C) of the figure illustrates the transactional logs accumulated by the con-

6It is possible that in certain special cases, with the use of hash indexing and more complex
(shared) store data structures [9], such linear searching can be avoided. But this is a reasonable
assumption for the general case.
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current executions of the two goals. For simplicity, we assume that threads t1 and

t2 executes in discrete locked steps. In step a, both threads begin executing the

atomic transactional memory procedure. In step b, both threads executes their

respective matchSTM procedures to locate a matching B(x) constraint. In a left-to-

right searching order, thread t1 accesses {C(1)#1, C(3)#2} before it finds B(1)#3

from the iterator returned by matchSTM (ms1 in the pseudo codes of Table 4.5),

while t2 accesses {C(1)#1, C(3)#2, B(1)#3} before it finds B(3)#4. In step c,

both threads executes the next matchSTM procedures to locate the final rule head

C(x), during which t1 and t2 obtains C(1)#1 and C(3)#2 after searching through

{#1} and {#1,#3} respectively. Since both t1 and t2 have each found a com-

plete match, in step d deleteFromStore routines are executed to remove the rule

heads {A(1)#5, B(1)#3, C(1)#1} and {A(3)#6, B(3)#4, C(3)#2}. In step e, both

threads completes their respective atomic transactions, hence logs are validated.

Unfortunately, we will find that the logs are overlapping, will be ruled as poten-

tially inconsistent by the STM protocol, even though the constraints actually used

(instantiation of guard variables and deleted from store) for each computation are

non-overlapping. This will result to the rolling back of either one of the executed

sequence, thus the goals will not execute in parallel.

It is clear that there is some form of disparity between the side-effects (δ) of

the ‖ G semantics and the transactional logs accumulated by the simple imple-

mentation, execGoalSTM. For instance, in Figure 4.4, derivation D1 execution goal

A(1)#5 involves side-effects (simplified constraints) {#1,#3,#5} while executing

execGoalSTM σ A(1)#5 (by t1) validates the transactional log {#1,#2,#3,#5}.

Similarly, derivation D2 involves {#2,#4,#6} while execGoalSTM σ A(3)#6 vali-

dates the logs {#1,#2,#3,#4,#6}. Note that in both cases, the transactional logs

validated are supersets of the actual side-effects of the respective ‖ G derivations.

While this means that execGoalSTM consistently models ‖ G derivations as STM log

validation sufficiently includes side-effects δ of ‖ G derivations, the logs unfortunately



CHAPTER 4. PARALLEL CHR IMPLEMENTATION 81

r2 @ A(x ),B(x ),C (x ) ⇐⇒ D(x )

1 execGoalSTM ARV 〈G | Sn〉 A(x)#n {
2 ms1 = match Sn B(x)
3 for B(x)#m in ms1 {
4 ms2 = match Sn C(x)
5 for C(x)#p in ms2 {
6 atomically {
7 if(containsSTM Sn [B(x)#m,C(x)#p]){
8 deleteFromStoreSTM Sn [B(x)#m,C(x)#p]

9 addToGoalsSTM G [D(x)]
10 return true

11 }
12 }
13 }
14 }
15 return false

16 }

Table 4.6: STM implementation with atomic rule-head verification

include more constraints than necessary to guarantee consistently, thus introducing

false CHR rewriting overlaps. In other words, the STM synchronization protocol

for this particular naive implementation, behaves like a conservative but inaccurate

approximation of the ‖ G derivation side-effects. Such false overlaps are extremely

detrimental to scalability. This is because concurrent derivations which can be con-

sistently executed in parallel are falsely ruled as executing conflicting updates to the

shared memory and hence are executed sequentially as a result. In Section 4.6, we

provide empirical results that show that a coarse grained STM implementation will

not scale well in general.

Atomic Rule-Head Verification

Upon observation of the simple approach illustrated in Table 4.4.1, we can see

that STM protocols behave like an inaccurate approximation of ‖ G side-effects

because each ’atomic’ run of execGoalSTM accumulates a transactional log that

contains more than just the constraints (memory location) of the constraints in-

volved in the rule-head instance. These are the constraints read during the traversal

of the shared store, and incidentally not all such constraints are semantically in-
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volved in the executed CHR rewriting. For instance, in the example of Figure

4.4, derivation D1 involves the rewriting of C(1)#1, B(1)#3, A(1)#5, but execut-

ing of our naive STM implementation accumulates the transactional log containing

C(1)#1, C(3)#2, B(1)#3, A(1)#5.

There are several approaches to minimize false CHR rewriting overlaps. For in-

stance, explicitly removing excess constraint(non-rule head) memory locations from

the STM transactional logs, via an extended Haskell STM library [52]. Our ap-

proach is to introduce what we refer to as atomic rule-head verification. The idea is

to ”push” the store traversal part of the CHR rule execution out of the STM atomic

transaction. This effectively excludes constraint read during the matching constraint

search routines of CHR goal execution from the accumulated STM transactional log,

but includes the rule heads of the CHR rule instance that is executed. Table 4.6

illustrates this improved goal execution procedure, execgoalSTM ARV. Lines 2 − 5

shows the new matching constraint search routine. We assume that the function

match is similar to matchSTM except it is called externally from STM transactions.

Lines 6− 12 contain the atomic rule-head verification procedure. Essentially, it ver-

ifies that all selected rule-heads (matching constraints B(x)#m,C(x)#p) are in the

shared store (via containsSTM of Line 7) and remove them while adding the body

constraints (D(x)) into the goals (Line 8 − 9).

While pseudo code of execgoalSTM ARV illustrates this improvement as a simple

change from execgoalSTM of Table 4.5, the introduction of atomic rule-head ver-

ification requires more subtle implementation effort in the underlying shared con-

current data structures to guarantee the consistency of parallel CHR rewritings.

For instance, we must now ensure that non-atomic match are consistently executed

in the presence of possible removal of constraints from concurrent executions of

deleteFromStoreSTM routines. In Section 4.5, we shall illustrate these subtleties

via a concrete example in Haskell (GHC).
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r2 @ A(x), B(y) ⇐⇒ C(x, y)

Example of non-overlapping match selection:

〈{A(1)#1} | {A(1)#1, A(2)#2, B(3)#3, B(4)#4}〉

(D1)
δ1

||G 〈{C(1, 3)} | {A(2)#2, B(4)#4}〉

||

〈{A(2)#2} | {A(1)#1, A(2)#2, B(3)#3, B(4)#4}〉

(D2)
δ2

||G 〈{C(2, 4)} | {A(1)#1, B(3)#3}〉

δ1 = {}\{#1,#3} δ2 = {}\{#2,#4} δ = {}\{#1,#3,#2,#4}

〈{A(1)#1, A(2)#2} | {A(1)#1, A(2)#2, B(3)#3, B(4)#4}〉
δ

||G 〈{C(1, 3), C(2, 4)} | {}〉

Example of overlapping match selection:
〈{A(1)#1} | {A(1)#1, A(2)#2, B(3)#3, B(4)#4}〉

(D1′)
δ
′
1

||G 〈{C(1, 3)} | {A(2)#2, B(4)#4}〉
6 ||

〈{A(2)#2} | {A(1)#1, A(2)#2, B(3)#3, B(4)#4}〉

(D2′)
δ
′
2

||G 〈{C(2, 3)} | {A(1)#1, B(4)#4}〉
δ′1 = {}\{#1, #3} δ′2 = {}\{#2, #3}

Figure 4.5: Non-overlapping and overlapping match selections

4.4.2 Parallel Match Selection

Apart from false overlaps introduced by conservative but inaccurate approximations

of the ‖ G derivation side-effects, another problem that will be faced by an implemen-

tation of ‖ G is the parallel match selection problem. To focus on this problem, let’s

assume that concurrency synchronization of our implementation accurately models

‖ G side-effects (ie. does not introduce false overlaps). Even in this ideal case, it is

possible that concurrently executing CHR goals select over-lapping matches, even

though entirely non-overlapping matches exists in a particular CHR state.

Figure 4.5 illustrates this problem with a simple example. We consider concur-

rent derivations of the CHR rule r2 starting from the CHR store {A(1)#1, A(2)#2

, B(3)#3, B(4)#4}, modeling the parallel execution of goals A(1)#1 and A(2)#2.

Derivations D1 and D2 illustrates an ideal match selection, specifically D1 models

execution of goal A(1)#1 with match A(1)#1, B(3)#3 selected, while D2 the execu-
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tion of goal A(2)#2 with match A(2)#2, B(4)#4 selected. Since side-effects δ1 and

δ2 (of D1 and D2 respectively) are non-overlapping, they can consistently execute in

parallel. Derivations D1′ and D2′ on the other hand, illustrates an unfortunate case

where overlapping matches are selected instead, specifically D1′ models execution

of A(1)#1 with match A(1)#1, B(3)#3 selected, while D2′ the execution of goal

A(2)#2 with match A(2)#2, B(3)#3 selected. Since side-effects δ′1 and δ′2 (of D1′

andD2′ respectively) are overlapping on B(3)#3, derivations D1′ andD2′ cannot be

consistently executed in parallel. In a simple STM implementation (similar to those

illustrated in Table 4.4 and Table 4.5), this would imply that when derivations D1′

and D2′ execute in parallel, either one will ultimately be doomed to failure and in-

evitably ’rolled-back’ by the STM protocol to prevent inconsistent parallel rewriting.

Derivations D1 and D2, on the other hand, can execute in parallel.

In essence, we require some form of match selection policy that enables parallel

goals to select non-overlapping constraints. An ideal match selection policy would

always pick the parallel execution of D1 and D2 over D1′ and D2′. Yet a practical

implementation of such a policy should not impose unrealistic overheads or impose

additional synchronization routines over our asynchronously running goal execution

routines.

Bag Constraint Store/Iterations

While it is clear that on the extreme end, we can impose a synchronized paral-

lel computation of a maximal set of non-overlapping rule-head matches7 in a given

shared CHR constraint store, such an approach is not suitable when we are consid-

ering an asynchronous model of parallelism. Particularly because we expect parallel

CHR goals to execute asynchronously with minimal synchronization between each

goal executions.

The approach we have chosen focuses on providing a best-effort match selection

policy that can be implemented in a manner which imposes no additional synchro-

7See related works in Section 6.3 for synchronized parallel multiset matching algorithms in
parallel production rule systems
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nization over-heads between parallel goal execution routines. It is based on the obser-

vation that overlapping matches are most likely to be selected over non-overlapping

ones if all goals search through the shared constraint store in the same arbitrary or-

der. For instance, in the example illustrated in Figure 4.5, derivations D1′ and D2′

will most certainly be chosen for execution by goals A(1)#1 and A(2)#2 if all goals

try constraints in the given left-to-right texture order (specifically, all goals will try

B(3)#3 before B(4)#4). This does not exploit the fact that the shared CHR store

is a multi-set (as opposed to an ordered list) and a search can be conducted consis-

tently by iterating through constraints in the store in any order. Our approach is to

use bag data structures 8 to represent the iterations of the constraint store, which

ensures that goals executed in parallel search through the shared constraint store

(multiset) each in a unique order (i.e. observing constraints in a unique order), hence

increasing the chances that goals pick unique constraints and locate non-overlapping

matches. In the simplest form, we implement the shared bag constraint store with

a circular linked-list that has multiple entry heads9. Each goal execution thread is

issue a unique entry head, in which it begins all it’s search routines. Therefore, each

goal thread will observe stored constraints in it’s unique sequence.

Figure 4.6 illustrates an example of parallel goal execution with an underlying

bag store implementation. For simplicity, we assume that the shared constraint store

is a single circular linked-list. In this example, A(1)#1 is executed by goal thread T1,

while A(2)#2 by goal thread T2. As indicated, goal threads T1 and T2 are assigned

unique entry points to the store and will search for partner constraints in a clock-wise

direction. Given this particular instance, T1 will try the partner constraint B(3)#3,

while T2 will try B(4)#4, and hence trigger non-overlapping rule head instances

A(1)#1, B(3)#3 and A(2)#2, B(4)#4 without needless synchronization.

It is of course, possible on the contrary, to find an arbitrary contrived example

8Unordered collection of elements(constraints in our context) that may have duplicates
9Note that more practical implementations will include top-level indexing data structures.

Hence iterators of the shared store created during parallel goal executions are bag data struc-
tures (multi-headed circular linked-lists) instead.
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r2 @ A(x), B(y) ⇐⇒ C(x, y)

Parallel goal derivation, from Figure 4.5:

T1 T2

↓ ↓
〈{ A(1)#1, A(2)#2 } | {A(1)#1, A(2)#2, B(3)#3, B(4)#4}〉

δ
||G 〈{ C(1, 3), C(2, 4) } | {}〉

Bag representation of constraint store:

T1’s entry�� B(3)#3 %%LLLLLLLLLL T2’s entry��
A(1)#1

99rrrrrrrrrr
A(2)#2yyrrrrrrrrrr

B(4)#4

eeLLLLLLLLLL
Figure 4.6: Example of a ’bag’ store and match selection

which shows how a bag constraint store would not enable the selection of non-

overlapping matches. Our experimental results in Section 4.6 shows that in general,

the bag constraint store help in performance and scalability of asynchronous parallel

goal execution.

4.4.3 Unbounded Parallel Execution

We define unbounded parallel goal execution as the parallel execution strategy which

does not bound the number of goals executing in parallel by some finite integer n,

but is only bounded by the number of CHR goals in a particular CHR state. While

it may seems most nature to implement a parallel CHR system that aggressively

executes in parallel all CHR goals in a given CHR state, it is not entirely practical

to do so in general, especially when underlying system resources (processor cores,

memory, etc..) are limited.

Unbounded execution of goals will almost certainly introduce unnecessary con-

flicts, as parallel goals are more likely to compete for similar/overlapping rule head
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r3 @ A(x), B(y), C(z) ⇐⇒ D(x, y, z)

〈{A(1)#1} ⊎ G | {A(1)#1, B(2)#2, C(3)#3} ⊎ S〉

(D1)
δ1

||G 〈{D(1, 2, 3)} ⊎ G | S〉
6 ||

〈{B(2)#2} ⊎ G | {A(1)#1, B(2)#2, C(3)#3} ⊎ S〉

(D2)
δ2

||G 〈{D(1, 2, 3)} ⊎ G | S〉
6 ||

〈{C(3)#3} ⊎ G | {A(1)#1, B(2)#2, C(3)#3} ⊎ S〉

(D2)
δ3

||G 〈{D(1, 2, 3)} ⊎ G | S〉

δ1 = δ2 = δ3 = {}\{#1, #2, #3}

Figure 4.7: Example of contention for rule-head instances

instances. Figure 4.7 illustrates a simple example of this upper bound. Derivations

D1, D2 and D3 represent three parallel CHR goal executions (A(1)#1, B(2)#2 and

C(3)#3 respectively) attempting to match and rewrite the same rule-head instance.

Note that in spite of any arbitrary interleaving of execution of the three goals, it

is almost certain that at most one of the goal execution can successfully execute,

while the other two cannot and must be dropped via the (Drop) derivation rule in

a subsequent derivation10.

In essence, executing too many goals in parallel causes technical problems in

practice. Not only will a system’s limited memory be contended for by more goal

executions, the larger number of concurrent goal executions will likely invoke more

synchronization routines between conflicting goal executions. Considering an STM

implementation, contentions between two goal threads will result to the ’rolling

back’ of either one (due to in-validate STM transactions caused by inconsistent

side-effects) and thus contributing to wasted computations. In a realistic scenario,

we have limited resources (CPU cores, memory, etc...) and by execution goals ag-

gressively, we will possibly swarm the limited system resources with higher number

of such wasted computations and this will have detrimental effects on scalability

10we can possibly execute other goals in G in parallel as well, but Figure 4.7 illustrates that we
can at most executed m + 1 goals in parallel (of the m + 3 goals available in the example), where
m is the number of goals in G
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and performance. In such instances, executing any one of the goals of Figure 4.7

(A(1)#1, B(2)#2 or C(3)#3) to trigger the rule instance A(1)#1, B(2)#2, C(3)#3

may actually perform better than executing all three goals in parallel.

In general, if all goal constraints are immediately activated and executed in

parallel, an n-headed rule-instance will be executed by one successful computation

and up to n−1 unsuccessful computations. As such, it almost seems more efficient to

execute only as much goal as we have physical CPU cores to process them, otherwise

we risk introducing more conflicts.

Scheduling and Thread Pools

The solution to this problem is a well known concept in parallel programming,

scheduling. In our context, CHR goals are the jobs to be scheduled to be executed

by a thread pool, consisting of a bounded number n of execution threads (where n

is normally the number of CPU cores available).

While most modern programming languages already have thread pooling libraries

or built-in schedulers11, which provides an abstraction for programmers to write

multi-threaded programs without being aware of the number of physical system

cores, implementing parallel goal executions on such thread pooling libraries naively

may not be optimal. One particular interesting observation which we identified is

that active goals threads executing CHR goals should not be preempted(interrupted)

by concurrent goal threads competing for system resources. To illustrate this, we

consider the example in Figure 4.7, suppose we have three threads executing the goals

A(1)#1, B(2)#2 and C(3)#3 respectively but only one physical CPU core to run

the three threads of computation. If preemptive scheduling is used, we can possibly

waste time context switching between redundant alternatives to the same rule-head

match A(1)#1, B(2)#2, C(3)#3. On the other hand, a non-preemptive scheduler

would focus on a single goal execution and find the rule-head match more efficiently.

Specifically, we will fully execute A(1)#1 and move on to the ’administrative’ clean

11Eg. Haskell (GHC) and Scala both provides light-weight threads and thread pooling
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up of B(2)#2 and C(3)#3 ((Drop) rule derivations, because B(2)#2 and D(3)#3

are deleted by execution of A(1)#1).

For our implementation in Haskell GHC, we throttle the number CHR goal

threads available for goal execution. In other words, we ensure that the number

of active CHR goals never exceed the number of CPU cores (processors) available.

This means that given a CHR state with m goals waiting to be activated, we execute

at most n (where n < m) of them at a time by n CHR goal execution threads, each

mapped to a physical CPU core. In this case, a goal thread executing a specific ac-

tive goal will less likely (or even never) be preempted by another goal thread, since

we have as many active goal threads as we have physical CPU cores. In Section 4.6,

we will examine this further and provide experiment results to support this.

Goal Ordering

Thread pooling and scheduling of CHR goals introduces a tightly associated issue

which must occasionally be addressed. Our experiment results in Section 4.6 also

show that the performance of parallel goal-execution in certain domains, can be

highly sensitive to the order in which goals are scheduled, as well as sensitive to

the type of goals scheduled in parallel. For example, recall the merge sort example

introduced earlier in Figure 2.3.

merge1 @ Leq(x, a)\Leq(x, b) ⇐⇒ a < b | Leq(a, b)

merge2 @ Merge(n, a),Merge(n, b) ⇐⇒ a < b | Leq(a, b),Merge(n + 1, a)

In the merge sort problem, the order in which Leq and Merge constraints are

scheduled greatly affects performance. We wish to always exhaustively schedule and

execute merge1 rule instances, before introducing new Leq constraints via merge2 .

This is because it is more efficient to execute the binary tests a < b immediately,

rather than introducing more Leq constraints first12. Hence, it seems optimal to

stack Leq goal constraints and queue Merge goal constraints, so Leq goals are

12Introducing more Leq constraints will make the lookup procedures for Leq constraints more
computationally intensive, hence more inefficient.
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exhaustively executed, while Merge goals are executed only when there are no Leq

goals.

Another orthogonal observation is that scheduling Leq constraints in parallel

would less likely introduce conflicts when compared with scheduling Merge con-

straints in parallel, since in merge1 we only simplify one constraint (Leq(x, b)) as

oppose to two (Merge(n, a) and Merge(n, b)) in merge2 . Stacking Leq and queuing

Merge goal constraints will also make it more likely that Leq goals executed in par-

allel, since parallel goal threads will choose Leq constraints over Merge constraints.

In general, the optimal selection and execution ordering is a domain specific

problem13. In our implementation, we provide program annotations that allows the

user to specify whether each type of goals are to be stacked or queued for execution.

In other words, the user is allowed to specify a boolean value tagged to each rule-

body constraint, indicating whether the new goal constraint is to be stacked or

queued in the CHR goals. The default value is ’stacked’ (with respect to the refined

CHR operational semantics). We like to note that inferring optimal goal ordering

annotations is an extremely interesting topic of discussion, but we will leave that

for future works.

4.4.4 Goal Storage Policies

In the sequential goal execution context, delaying goal storage to the latest point of

execution is most certainly an optimization (specifically, late storage optimization

from Section 3.5.4). Delaying goal storage reduces the size of a constraint store to

the minimal, optimizing in both space and time efficiency.

In general, the storage of constraints is a burden to performance, as excessive

storage increases memory usage and time complexity of constraint lookup procedure.

Yet in the context of concurrent goal execution, eager storage (storing early) of goals

13As the saying goes, “Different strokes for different folks.” Different scheduling strategies work
better or worst for different domains (CHR programs). Some problems even exhibit little perfor-
mance change when different scheduling strategies are used.
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may not entirely be bad for performance. There are cases where eager storage has

an advantage over late storage. We explain this point via the following contrived

example, which consist of 2 rules:

r2 @ A(x), B(x) ⇐⇒ ...

r3 @ C(0) ⇐⇒ D(1), A(1), ..., D(n), A(n)

Suppose the initial store is {B(1), ..., B(n), C(0)}, we assume there are n+1 threads,

n threads executing goals B(1),...,B(n) and one thread executing C(0). To improve

performance, we should be allowed to specify that A constraints are stored eagerly

after firing of rule r3 , thus allowing threads 1,...,n to fire rule r2 in parallel. There is

no need to store D constraints immediately, hence we can retain the original storage

scheme for D constraints. Similar to goal orderings, the choice between whether to

eagerly or lazily store goals is domain specific and in worst case, should be left to

be decided by the programmer (via annotations of body constraints).

4.5 Parallel CHR System in Haskell GHC

In this section, we dive down into the details of implementing a concrete parallel CHR

system, known as ParallelCHR , that implements the ‖ G semantics in a scalable

manner. Our choice of programming language is Haskell, a lazy functional program-

ming language. In particular, we use the Glasgow Haskell Compiler [23] because of

its good support for shared memory, multi-core architectures. Haskell also provides

high-level abstraction facilities (polymorphic types higher-order functions etc) and

its clean separation between pure and impure computations invaluable in the devel-

opment of our system. In principle, our system can of course be re-implemented in

other main-stream languages such as C and Java. Our implementation in Haskell

GHC is available for download at http : //code.google.com/p/parallel− chr/.
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4.5.1 Implementation Overview

We take a high-level look at finding matches in parallel and atomic rule execution.

In our implementation, a thread pool consisting of several light-weight Haskell GHC

threads are used to execute CHR goals in a shared collection of goals. Goal execution

threads like these executes CHR rewriting asynchronously by searching the shared

store for matching partner constraints (to complete rule head instances), deleting

the simplified constraints of the rule head instance and finally adding body con-

straints into the collection of goals. The challenge we face in this parallel execution

problem is that the partners found by asynchronous threads running in parallel be

overlapping (share similar simplified heads). As defined in the ‖ G semantics (Defini-

tion 4), parallel goal execution must rewrite over non-overlapping rule-heads. Here,

we briefly introduce two approaches which uses different concurrency primitives to

implement this non-overlapping parallel rule-head matching routine.

Fine-grained Lock-based parallel matching: This approach is a standard

refinement of the coarse-grained locking approach (highlighted in Table 2.1). Rather

than guarding the shared store with a single global lock, we restrict the access of each

constraint in the shared store with a unique dedicated lock. The parallel matching

task at hand now includes incrementally acquire locks of partner constraints. How-

ever, we must be careful to avoid deadlocks. For example, suppose that thread

1 and 2 seek partners A and B to fire any of the rules A,B,C ⇐⇒ rhs1 and

A,B,D ⇐⇒ rhs2. We assume that C is thread 1’s goal constraint and D is the

goal constraint of thread 2. Suppose that thread 1 first encounters A and locks this

constraint. By chance, thread 2 finds B and imposes his lock on B. But then none

of the two threads can proceed because thread 1 waits for thread 2 to release the

lock imposed on B and thread 2 waits for the release of the locked constraint A.

The scenario illustrated above is a classic (deadlock) problem when program-

ming with locks. The recently popular becoming concept of Software Transactional

Memory (STM) is meant to avoid such issues. Instead of using locks directly, the
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programmer declares that certain program regions are executed atomically. The idea

is that atomic program regions are executed optimistically. That is, any read/write

operations performed by the program are recorded locally and will only be made

visible at the end of the program. Before making the changes visible, the underlying

STM protocol will check for read/write conflicts with other atomically executed pro-

gram regions. If there are conflicts, the STM protocol will then (usually randomly)

commit one of the atomic regions and rollback the other conflicting regions. Com-

mitting means that the programs updates become globally visible. Rollback means

that we restart the program. The upshot is that the optimistic form of program

execution by STM avoids the typical form of deadlocks caused by locks. In our

setting, we can protect critical regions via STM as follows.

STM-based parallel matching means that we perform the search for partner

constraints and their removal from the store atomically. For the above example,

where both threads attempt to remove constraints A and B as well as their specific

goal constraints we find that only one of the threads will commit whereas the other

has to rollback, i.e. restart the search for partners.

The downside of STM is that unnecessary rollbacks can happen due to the conser-

vative conflict resolution strategy. Here is an example to explain this point. Suppose

that thread 1 seeks partner A and thread 2 seeks partner B. There is clearly no

conflict. However, during the search for A, thread 1 reads B as well. This can

happen in case we perform a linear search and no constraint indexing is possible or

the hash-table has many conflicts. Suppose that thread 2 commits first and removes

B from the store. The problem is that thread 1 is forced to rollback because there

is a read/write conflict. The read constraint B is not present anymore. STM does

not know that this constraint is irrelevant for thread 1 and therefore conservatively

forces thread 1 to rollback.

We have experimented with a pure STM-based implementation of atomic search

for partners and rule execution. The implementation is simple but unnecessary roll-
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backs happen frequently which in our experience results in some severe performance

penalties, for reasons stated in Section 4.4.1. We provide concrete evidence in the

upcoming Section 4.6. In our current implementation, we use a hybrid STM-

based scheme which uses both Software Transactional Memory and traditional

shared memory access techniques. The search for matching partner constraints

is performed ”outside” STM (to avoid unnecessary rollbacks), this means that ac-

cessing constraint memory locations at this stage does not invoke STM concurrency

synchronization protocols. Once a set of constraints forming a complete match

is found, we perform an atomic STM procedure which atomically checks that all

the constraints are still available, and logically deletes the simplified constraints14.

This essentially implements atomic rule-head verification (as described in Section

4.4.1) which guarantees the atomic deletion (logical) of rule-head instances. Logi-

cally deleted constraints will eventually be physically delinked from the constraint

store, either immediately after the atomic rule-head verification step or by an amor-

tized delete procedure, both of which can be implemented with relative ease with

traditional concurrency primitives (e.g. compare-and-swap, locks, etc...).

4.5.2 Data Representation and Sub-routines

We briefly discuss our data representation of the constraint handling rules language

in Haskell, illustrated by Figure 4.8. Abstract Data Type shows the Haskell data

type representation of CHR language elements, like constraints, substitution, store

etc. Rule Occurrence Data Types represent the goal-based compilation of CHR

rules, detailed in Section 4.2.1. Essentially, a CHR Program is a list of CHR rule

compilations. A rule compilation Comp is a tuple, which consist of a list of match

tasks (MatchTask) and a list of constraints (Cons). Note that we will represent sets

with lists. Note that for presentation, we shall focus entirely on CHR matching and

14By logically delete, we mean that the constraint is not physically removed from the data
structure, but simply marked as deleted
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Abstract Data Types

Integer Value: Int Boolean Value: Bool

List of a’s: [a] Substitution: Subst

CHR Constraint: Cons Rule Guard: Guard

CHR Store: Store CHR Goals: Goals

Rule Occurrence Data Types

Head Type: data Head = Simp | Prop

Match Task: data MatchTask = LpHead Head Cons | SchdGrd Guard

Rule Compilation: type Comp = ([MatchTask],[Cons])

CHR Program: type Prog = [Comp]

Figure 4.8: Interfaces of CHR data types

rewriting of CHR constraints. Hence we will not include builtin constraints in our

CHR language here. We defer a treatment of builtin constraints till Section 4.8.1.

The following provide brief descriptions of the basic CHR Solver Sub-routines.

These sub-routines represents basic interfaces to the underlying shared store and

goal data structures, as well as substitution framework.

• isAlive :: Cons -> Bool

Given CHR constraint c, returns true if and only if c is still stored.

• match :: Subst -> Cons -> Cons -> IO (Maybe Subst)

Given a substitution and two CHR constraints c and c’, returns resultant

substitution of matching c with c’, if they match. Otherwise return nothing.

• consApply :: Subst -> [Cons] -> [Cons]

Given a substitution and a list of CHR constraints, apply the substitution on

each constraint of the list and return the results.

• grdApply :: Subst -> Guard -> Bool

Given a substitution and a guard condition, apply the substitution on the

guard and return true iff guard condition is satisfiable.
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• emptySub :: Subst

Returns the empty substitution.

• addToStore :: Store -> Cons -> IO Cons

Given a CHR store st and a CHR constraint c, add c into st. Returns

the stored constraint c containing additional book-keeping information (store

back-pointers, etc..).

• getCandidates :: Store -> Cons -> IO [Cons]

Given a CHR Store st and a CHR constraint c, return a list of constraints

from the st that matches c.

• getGoal :: Goals -> IO (Maybe Cons)

Given CHR goals, returns the next goal if one exists, otherwise returns nothing.

• addGoals :: Goals -> [Cons] -> IO ()

Given CHR goals gs and a list of CHR constraints cs, add cs into gs.

• notRepeat :: [(Head,Cons)] -> Cons -> Bool

Given a list of matching heads, and a constraint c returns true if c is not

already found in the list of heads.

• isStored :: Store -> Cons -> STM Bool

Given a CHR store st and a constraint c, returns true if and only if c is stored

in st.

• logicalDeleteFromStore :: Store -> Cons -> STM ()

Given a CHR store and a constraint in the store, logically mark the specified

constraint as deleted from the store.

• delinkFromStore :: Store -> Cons -> IO ()

Given a CHR store and a constraint in the store, physically delink the con-

straint from the store.
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1 goalBasedThread :: Goals -> Store -> Prog -> IO ()

2 goalBasedThread gs st prog =

3 rewriteLoop

4 where

5 rewriteLoop = do

6 { mb <- getGoal gs

7 ; case mb of

8 Just g -> do { a <- addToStore st g

9 ; executeGoal a prog

10 ; rewriteLoop }
11 Nothing -> return () }
12 executeGoal a (occ:occs) = do

13 { matchGoal gs st a occ

14 ; if isAlive a then executeGoal a occs

15 else return () }
16 executeGoal [] = return ()

Table 4.7: Top-level CHR Goal Execution Routine

• atomically :: STM a -> IO a

Given a STM operation, execute it atomically in the IO monad.

Next, Section 4.5.3 and 4.5.4 will introduce the main high-level goal execution

routine which uses these sub-routines.

4.5.3 Implementing Parallel CHR Goal Execution

We introduce our parallel CHR implementation from a top-down approach, start-

ing from the function goalBasedThread, as shown in Table 4.7. The parallel CHR

solver comprises of multiple copies of this function, executed asynchronously in par-

allel by multiple threads of computation. Each execution essentially implements the

execution of a CHR goal. For now, we focus on execution of CHR goals only, and

defer a treatment for builtin constraints till Section 4.8.1.

This function is given the references to the shared goals gs and store st, and

the CHR program prog. Goals are exhaustively executed via the rewritingLoop

procedure, which terminates only when the goals are empty (line 11). As specified

by the (Activate) rule of the ‖ G semantics (Figure 3.3 of Section 3.3), goals are

added to the store only when they are executed (line 8). Procedure executeGoal
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1 matchGoal :: Goals -> Store -> Cons -> Occ -> IO ()

2 matchGoal goals store g (mtasks,body) = do

3 { let (LpHead hd c):rest = mtasks

4 ; mb <- match emptySub c g

5 ; case mb of

6 Just subst -> do { execMatch [(hd,g)] subst rest ; return () }
7 Nothing -> return () }
8 where

9 execMatch hds subst ((SchdGrd guard):mts) =

10 if grdApply subst guard then execMatch hds subst mts

11 else return False

12 execMatch hds subst ((LpHead hd c):mts) =

13 let execMatchCandidates (nc:ncs) =

14 if (notRepeat hds nc) && (isAlive nc)

15 then do { mb <- match subst c nc

16 ; case mb of

17 Just subst’ -> do

18 { succ <- execMatch ((h,nc):hds) subst’ mts

19 ; if not succ then execMatchCandidates ncs

20 else return False }
21 Nothing -> execMatchCandidates ncs }
22 else execMatchCandidates ncs

23 execMatchCandidates [ ] = return False

24 in do { cans <- getCandidates store c

25 ; execMatchCandidate cans }
26 execMatch hds subst [ ] = do

27 { succ <- atomically (verifyRuleHeads store hds)

28 ; if succ then do { let simpHds = filter (\(h, ) -> h == Simp) hds

29 ; mapM (\( ,g) -> delinkFromStore store g) simpHds)

30 ; addGoals goals (consApply subst body)

31 ; let (h, ) = first hds

32 ; return (h == Simp) }
33 else return False }

Table 4.8: Implementation of Goal Matching

attempts to match the active goal g with each of the occurrence compilations (via

the matchGoal operation at line 13, whose definition is deferred till later). Procedure

executeGoal stops when the goal is no longer alive (line 15) or all occurrence have

been tried (line 16), both of which are cases which lead to the application of the

(Drop) rule of the ‖ G semantics.

Procedure matchGoal in Table 4.8 implements the main parallel matching algo-

rithm which searches for matching constraints of the active goal constraint. This

search is specified by the match tasks of CHR goal-based rule compilations, de-
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scribed earlier in Section 4.2.1. We assume that the first match task is the lookup of

the active goal pattern (line 3)15. In line 4 the active goal is then matched with the

head pattern (from the lookup task)16. If the active goal successfully matches the

head pattern (line 6) we call execMatch. If matching fails, we abort the procedure

(line 7).

Procedure execMatch essentially implements the search traversal through CHR

match trees (Section 4.2.2). It checks for the remaining match tasks, which can be

either looking up a partner constraint, or checking a guard condition. It controls

the branching of the search by returning True if the search is to terminate at the

current branch, or False if the search is to proceed. Lines 9 − 11 implements the

scheduling of a guard constraint grd. We proceed on with the rest of the match

tasks if the guard evaluates to true. Lines 12 − 25 on the other hand, implements

the lookup of a partner constraint, as specified by the matchtask LpHead hd c. We

first collect all possible candidates cans matching c from the store (line 24)17. Then,

we call exec match candidate (line 25) which tries to find a complete match for the

entire rule head by iterating over the set of candidates. Note that we only iterate

through as many candidate as required (lines 19−20) for exhaustiveness of the goal

execution (details in Section 4.5.7).

In case we find a complete match (line 26), we fire the rule. Note that this step can

happen in parallel with multiple goal executions, hence to guarantee consistency, we

must atomically verify and commit this match via verifyRuleHeads (line 27). This

procedure checks that all heads are still alive and logically marks all the simplified

heads as deleted. All these operation are done in one atomic transactional step. That

is, if any of the intermediate steps fails the entire transaction fails with no visible side

effect (We defer details on how atomic rule-head verification is implemented with

15This is because CHR rules have at least one head, hence this constraint lookup task must exist.
16Note that with known pre-compilation analysis, this matching of active goal and head pattern

can be avoided. Such optimizations are covered in [9] and will not be discussed here.
17Note that this procedure can be implemented ’lazily’, or with iterators representing a collection

of all candidate matching constraints and hence only retrieved on demand.
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1 verifyRuleHeads :: Store -> [(Head,Cons)] -> STM Bool

2 verifyRuleHeads store hds = do

3 { bs <- mapM (\( ,g) -> isStored store g) hds

4 ; if and bs

5 then do { let simpHds = filter (\(h, ) -> h == Simp) hds

6 ; mapM (\( ,g) -> logicalDeleteFromStore store g) simpHds

7 ; return True }
8 else return False }

Table 4.9: Implementation of Atomic Rule-Head Verification

STM in Haskell till Section 4.5.4). Follow a successful run of verifyRuleHeads (line

28 − 32), we will physically delink all the simplified constraints (line 29) and add

the body constraints of the rule instance into the goals (line 30). If the executed

goal is a simplified head, we end the search by return True (since the goal currently

executed will be deleted from the store), otherwise we proceed to the next candidate

(line 32). In a failed run of verifyRuleHeads (line 33), we return False to indicate

that the goal execution should try another partner constraint.

Note that the delinking of simplified constraints (line 29) are done in a seemingly

unsafe (“unatomic”) sequence of IO operations. Yet it is safe to do so, thanks to the

fact that the constraints to be delinked at line 29 are the same constraints marked

as deleted by verifyRuleHeads in line 27. Hence we have the guarantee that no

two concurrent goal executions will attempt to delink the same constraints.

4.5.4 Implementing Atomic Rule-Head Verification

We detail the atomic rule-head verification (highlighted in Section 4.4.1) implemen-

tation via Software Transactional Memory in Haskell (GHC).

Table 4.9 illustrates the implementation of atomic rule-head verification with

STM in Haskell GHC. The STM operation verifyRuleHeads works as follows:

Given the shared store and a set of matching constraints (presumably the com-

plete rule-head instance), we check that all the constraints are still in the store and

not deleted by any other parallel goal execution routines (line 3). If so (line 5 − 7)

we delete (from the store) all the constraints that are matched as simplified heads
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and return true. Otherwise (line 8) we return false. Note that since this STM oper-

ation is guaranteed to execute atomically, a successful run (resulting to the return

of True) indicates that we were able to independently observe the presence of all

constraints involved in the store and delete the simplified constraint. Most impor-

tantly, constraints involved in this STM validation process corresponds directly to

the constraints that form the rule head instance, thus we will not introduce any false

overlaps (Section 4.4.1).

4.5.5 Logical Deletes and Physical Delink

Recall that we have chosen to use logical deletes during atomic rule-head verifica-

tion, while the physical delinking of constraints from the store data structure is only

executed in subsequent non-atomic steps (Sections 4.5.3 and 4.5.4). This approach

is beneficial in two ways. Firstly, we can implement atomic rule-head verification

with smaller STM transactions. This is because multiset logical deletes can be

straight-forwardly implemented as the toggling of boolean flags stored in STM trans-

actional variables. Hence, logically deleting n constraints is essentially just writing

into n boolean variables. Logical deletes are much cheaper operations, compared

to implementing physical removal of constraints (from the store) which involves

delinking of nodes from a list data structure (implemented on STM). As such, our

atomic rule-head verification can be implemented with smaller STM transactions

which most certainly incur less conflicts from STM roll backs.

Besides reducing the number of STM roll backs, we can now implement other list

operations (list traversal, delinking of list nodes) via lighter weight concurrency

primitives. In our works on comparing Haskell concurrency primitives [54], we

have demonstrated with empirical evidence that a concurrent list data structure

implemented via traditional compare-and-swap operations is much more efficient

than one implemented via STM. Yet, STM provides the most elegant solution to
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atomic multiset operations18. Our multiset logical delete via STM and physical

delink via compare-and-swap implementation essentially adopts the best of both

worlds (or rather, concurrency primitives) and provides the alternative with least

concurrency synchronization overheads.

4.5.6 Back Jumping in Atomic Rule-Head Verification

Consider the following example:

A(x ),B(x , y),C (y , z ),D(z ) ⇐⇒ E (x , y , z )

Suppose while executing the goal A(1)#n we have found the rule-head instance

[A(1)#n,B(1, 2)#m,C(2, 3)#p,D(3)#q] in that specific sequence and now attempts

to rule atomic rule-head verification on the four constraints. Further suppose that

the verification procedure failed because the constraint B(1, 2)#m) has already been

deleted by some other executing thread. Our implementation of atomic rule-head

verification in Table 4.9 will return False suggesting that one of the constraint

has been deleted, but without more information other than the boolean flag, our

goal execution procedure in Table 4.8 has to explore other alternate branches of the

match tree, iterating through possible alternative candidates of D(z), C(y, z), before

reaching B(x, y) lookup node, where the verification had failed.

To avoid such pointless traversals of the match tree, we can implement a well

known optimization technique for backtracking search algorithms, known as back-

jumping. By keeping track of exactly which constraint has failed the atomic rule-

head verification, we can precisely backtrack our search to the “highest” point of

the match-tree which is possibly still valid and resume the search from that point.

Table 4.10 illustrates the atomic rule-head verification function verifyRuleHeads

with backjumping indicator. verifyRuleHeadsBackJump is similar to that of in Ta-

18as oppose to traditional locks or compare-and-swap synchronization variables, which are prone
to errors and other overheads incurred by complex synchronization acrobatics.
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1 verifyRuleHeadsBackJump :: Store -> [(Head,Cons)] -> STM Int

2 verifyRuleHeadsBackJump store hds = do

3 { bs <- mapM (\( ,g) -> isStored store g) hds

4 ; if and bs

5 then do { let simpHds = filter (\(h, ) -> h == Simp) hds

6 ; mapM (\( ,g) -> logicalDeleteFromStore store g) simpHds

7 ; return 0 }
8 else let Just j index = elemIndex False bs

9 in return (j index + 1) }

Table 4.10: Atomic Rule-Head Verification with Backjumping Indicator

ble 4.9, but instead returns an integer. If verification is successful, 0 is returned (line

7). Otherwise, it returns the 1-index of the left-most constraint which has failed the

verification19

Table 4.11 illustrates the modified matchGoalBackJump operation that utilizes

the backjumping indexes provided by verifyRuleHeadsBackJump. Note that the

most important change is in lines 19 − 20, where new candidates are tried only if

the jump index i returned by the previous branch (line 18) is equal to 1. Other-

wise, we simply return the index decrement by one (line 20). Successful run of the

verifyRuleHeadsBackJump indicated by index i == 0 (line 28) results to the same

delinking of simplified constraint (line 29) and adding of body constraints into the

goals (line 30). If goal is a simplified constraint (line 32), we return the number

of the rule heads (effective “backjumping out” of the goal execution), otherwise we

procedure on with the search through the match tree.

4.5.7 Implementation and ‖ G Semantics

In this section, we informally discuss the correspondence of our parallel CHR system

in Haskell GHC, and the ‖ G semantics. Our implementation implements the CHR

‖ G semantics in that given the shared goals gs (initially containing goals cs), shared

store st (initially empty) and CHR program compilation prog (of CHR program

P), when multiple concurrent execution of the goalBasedThread gs st prog goal

19Since new rule-heads are appended to the end of our rule-heads hds, left-most constraint which
has failed represents the “highest” point of the match tree which has failed the verification.
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1 matchGoalBackJump :: Goals -> Store -> Cons -> Occ -> IO ()

2 matchGoalBackJump goals store g (mtasks,body) = do

3 { let (LpHead hd c):rest = mtasks

4 ; mb <- match emptySub c g

5 ; case mb of

6 Just subst -> do { execMatch [(hd,g)] subst rest ; return () }
7 Nothing -> return () }
8 where

9 execMatch hds subst ((SchdGrd guard):mts) =

10 if grdApply subst guard then execMatch hds subst mts

11 else return 1

12 execMatch hds subst ((LpHead hd c):mts) =

13 let execMatchCandidates (nc:ncs) =

14 if (notRepeat hds nc) && (isAlive nc)

15 then do { mb <- match subst c nc

16 ; case mb of

17 Just subst’ -> do

18 { i <- execMatch ((h,nc):hds) subst’ mts

19 ; if i == 1 then execMatchCandidates ncs

20 else return (i-1) }
21 Nothing -> execMatchCandidates ncs }
22 else execMatchCandidates ncs

23 execMatchCandidates [ ] = return 1

24 in do { cans <- getCandidates store c

25 ; execMatchCandidate cans }
26 execMatch hds subst [ ] = do

27 { i <- atomically (verifyRuleHeadsBackJump store hds)

28 ; if i==0 then do { let simpHds = filter (\(h, ) -> h == Simp) hds

29 ; mapM (\( ,g) -> delinkFromStore store g) simpHds)

30 ; addGoals goals (consApply subst body)

31 ; let (h, ) = first hds

32 ; return (if h == Simp then (length hds) + 1 else 1) }
33 else return i }

Table 4.11: Goal Matching with Back-Jumping

execution routine terminates20, shared goals gs will be empty and shared store st will

contain constraints cs′ such that for the CHR program P, 〈cs | {}〉 ||G 〈{} | cs′〉.

To summarize, each ‖ G transition rule (Figure 3.3) corresponds to our imple-

mentation in the following manner:

• (Solve): Addressed in Section 4.8.1. An equation constraint e is not physically

stored in the constraint st as suggested in the ‖ G semantics, but imposes

it’s side-effects on the builtin theory when e is executed by the routine solve

20This also includes the termination of all goal reactivation threads (Section 4.8.1)
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(Table 4.12). The set of constraints WakeUp(e, st) awaken (reactivated) by

the (Solve) transition is replicated in our implementation by the execution of

reactivateWhenGround by reactivation threads spawned specifically for this

purpose (add the affected constraint back into the goals).

• (Activate): This transition immediately corresponds to the execution of addToStore,

line 8 of goalBasedThread in Table 4.7.

• (Simplify): This transition corresponds to an execution of executeGoal a

prog (line 9, Table 4.7) which results to the deletion of active goal constraint

a (line 29, Table 4.8). This means that the active constraint a is one of the

simplified constraint of the successful rule-head match. The CHR rewriting

(removal of simplified constraints and adding of body to the goals) is eventu-

ally completed by the execution of lines 28−32 of Table 4.8. Atomic rule head

verification (line 27, Table 4.8) guarantees that concurrent goal execution se-

lects mutually exclusive simplified constraints, hence rewrites non-overlapping

rule instances. This is exactly specified by the merging of side-effects δ in the

‖ G semantics (Figure 3.4).

• (Propagate): Very much similar to the above (Simplify), except execution of

executeGoal a prog results in a successful rule-head match where a matches

a propagated constraint.

• (Drop): This transition models the removal of a goal constraint after it has

exhaustively searched the store for matching partner constraints and has not

been simplified. It corresponds to the end of an execution of executeGoal

a prog which does not end with the simplification of the active constraint

a. Essentially, all complete execution of executeGoal a prog corresponds to

a either a sequence (empty allowed) of (Propagate) transitions followed by a

(Drop) transition, or a sequence (empty allowed) or (Propagate) transitions

followed by a (Simplify) transition.
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Our parallel CHR implementation faithfully implements the concurrent CHR

goal-based semantics, in that every execution on a termination CHR program corre-

sponds to a valid ‖ G concurrent derivation. But because of practical limitations of

hardware, it is likely that our implementation cannot replicate all possible executions

modeled by the semantics. For instance consider the following derivation:

r @ A(x), B(x) ⇐⇒ C(x)

〈A(1)#n1, .., A(j)#nj | A(1)#n1, B(1)#m1, .., A(j)#nj , B(j)#mj〉

||G 〈C(1), .., C(j) | {}〉

This derivation specifies the concurrent derivation of j pairs of A and B constraints.

Suppose that j is a significantly huge number, say 10, 000, we will require ten thou-

sand physical CPU cores to execute all ten thousand goals in parallel and faithfully

implement what is specified by this derivation.

In essence, what this means is that our parallel CHR implementation is a sound

and faithfully implementation of the concurrent CHR goal-based semantics, but it

is nonetheless inevitably incomplete as it is likely not able to achieve all theoretical

concurrent derivations in practice, due to the bounds of hardware limitations.

4.6 Experimental Results

In this section, we present the experiments we have conducted on our parallel CHR

system and the empirical results we have collected. We focus on eight distinct CHR

programs, which represents a diverse spread of CHR rules with varying characteris-

tics. Note that these programs were chosen because they represent the most common

examples of CHR used in general-purpose programming throughout the literature

(Eg. Gcd, mergesort, prime, fibonacci and unionfind, found in [9, 20, 19]), while

also representing excellent examples of parallel programming in practice (Eg. block-

world, dining philosophers). The following highlights each of these CHR programs,
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and the experiment parameters we have used:

• Merge Sort:

merge1 @ Leq(x , a) \ Leq(x , b) ⇐⇒ a < b | Leq(a, b)

merge2 @ Merge(n, a),Merge(n, b) ⇐⇒ a < b | Leq(a, b),Merge(n + 1 , a)

CHR implementation of Merge sort. CHR goal threads essentially compare

different pairs of integers in parallel. We optimize with a specific goal ordering

scheme (stack Leq goals and queue Merge goals) which minimizes the number

of comparisons between Leq constraints and the number of conflicts between

goal executions (see Section 4.4.3 for details). For our experiment, we run

merge sort on a collection of 1024 integers.

• Gcd:

gcd1 @ Gcd(n) \ Gcd(m) ⇐⇒ m ≥ n&&n > 0 | Gcd(m − n)

gcd2 @ Gcd(0 ) ⇐⇒ True

CHR implementation of greatest common divisor Euclid’s algorithm. We

optimize by queuing Gcd goals. For our experiments, we find the greatest

common divisor of 1000 integers. Finding the Gcds of distinct pairs of integers

can be executed in parallel.

• Parallelized Union Find:

union @ Union(a, b),Fresh(x ) ⇐⇒ Fresh(x + 2 ),Find(a, x ),Find(b, x + 1 ),Link(x , x + 1 )

findNode @ Edge(a, b) \ Find(a, x ) ⇐⇒ Find(b, x )

findRoot @ Root(a) \ Find(a, x ) ⇐⇒ Found(a, x )

found @ Edge(a, b) \ Found(a, x ) ⇐⇒ Found(b, x )

linkeq @ Link(x , y),Found(a, x ),Found(a, y) ⇐⇒ True

link @ Link(x , y),Found(a, x ),Found(b, y),Root(a),Root(b) ⇐⇒ Edge(b, a),Root(a)
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Adapted from [20], Union find is basically a data structure which main-

tains the union relationship among disjoint sets. Sets are represented by trees

(Edge(x , y)) in which root notes (Root(x )) are the representatives of the sets.

The union operation between two sets of a and b (Union(a, b)) is executed

by finding the representatives x and y of the sets a and b (Find(a, x ) and

Find(b, y)), and then linking them together (Link(x , y)). The union rule

initiates the union operation. The constraint Fresh(x ) introduces ”fresh vari-

ables” since our current prototype only supports ground CHR rules/stores.

Rule findNode traverses edges until we reach the root in rule foundRoot . Rule

found re-executes a find if the tree structure has changed. This is necessary

since union find operations can be executed in parallel. Rule linkeq removes

redundant link operations and rule link performs the actual linking of two

distinct trees. In experiments, we test an instance of parallelized union find,

where 300 union operations are issued in parallel to unite 301 disjoint sets

(binary trees) of depth 5.

• Blockworld:

grab @ Grab(r , x ),Empty(r),Clear(x ),On(x , y) ⇐⇒ Hold(r , x ),Clear(y)

puton @ PutOn(r , y),Hold(r , x ),Clear(y) ⇐⇒ Empty(r),Clear(x ),On(x , y)

A simple simulation of robot arms re-arranging stacks of blocks. Grab(r , x )

specifies that robot r grabs block x , only if r is empty and block x is clear on

top and on y (On(x , y)). The result is that robot r will be holding block x

(Hold(r , x )) and block x is no longer on block y , thus y is clear. PutOn(r , y)

specifies that robot r places a block on block y , if r is holding some block

x and y is clear. In our experiments, we simulate 8 agents each moving a

unique stack of 1000 blocks. Robots can be executed in parallel as long as

their actions do not interfere.
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• Dining Philosophers:

grabforks @ Think(c, 0 , x , y),Fork(x ),Fork(y) ⇐⇒ Eat(c, 20 , x , y)

thinking @ Think(c,n, x , y) ⇐⇒ n > 0 | Think(c,n − 1 , x , y)

putforks1 @ Eat(0 , 0 , x , y) ⇐⇒ Fork(x ),Fork(y)

putforks2 @ Eat(c, 0 , x , y) ⇐⇒ Fork(x ),Fork(y),Think(c − 1 , 20 , x , y)

eating @ Eat(c,n, x , y) ⇐⇒ Eat(c,n − 1 , x , y)

The classic dining philosopher problem, simulating a group of philosophers

thinking and eating on a round table, and sharing a fork with each of her

neighbors. In our implementation, Forks are represented by the constraints

Fork(x ) where x is a unique fork identifier. A thinking and eating philosopher

is represented by the constraints Think(c, n, x , y) and Eat(c, n, x , y) where x

and y are the fork identifiers, c represents the number of eat/think cycles left

and n a counter that simulates the delay of thinking/eating process. Rules

thinking and easting delay thinking and eating. If there any think/eat cycles

left, we return both forks and issue a new thinking process. See rule putforks2 .

Otherwise, we only return both forks. See rule putforks1 . In our experiments,

we simulated the dining philosopher problem with 150 philosophers, each eat-

ing and thinking for 50 cycles with a delay of 20 steps.

• Prime:

prime1 @ Candidate(1 ) ⇐⇒ True

prime2 @ Candidate(x ) ⇐⇒ x > 1 | Prime(x ),Candidate(x − 1 )

prime3 @ Prime(y) \ Prime(x ) ⇐⇒ x mod y == 0 | True

A CHR program that computes the first n prime numbers. In our experiments,

we find the first 1500 prime numbers. Parallelism comes in the form of parallel

comparison of distinct pairs of candidate numbers.
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• Fibonacci:

fibo1 @ FindFibo(0 ) ⇐⇒ Fibo(1 )

fibo2 @ FindFibo(1 ) ⇐⇒ Fibo(1 )

fibo3 @ FindFibo(x ) ⇐⇒ FindFibo(x − 1 ),FindFibo(x − 2 )

fibo4 @ Fibo(x ),Fibo(y) ⇐⇒ Fibo(x + y)

A CHR program that computes the value of the nth Fibonacci number. We

find the 25th Fibonacci number. Parallelism is present when evaluating differ-

ent parts of the Fibonacci tree.

• Turing Machine:

delta left @ Delta(qs, ts, qs ′, ts ′,LEFT ) \ CurrState(i , qs),TapePos(i , ts)

⇐⇒ CurrState(i − 1 , qs ′),TapePos(i , ts ′)

delta right @ Delta(qs, ts, qs ′, ts ′,RIGHT ) \ CurrState(i , qs),TapePos(i , ts)

⇐⇒ CurrState(i + 1 , qs ′),TapePos(i , ts ′)

A simple formulation of the classic Turing machine in CHR (Originally found

in [51]). In our implementation, delta left and delta right define the state

transitions of the Turing machine. The constraint Delta(qs , ts , qs ′, ts ′, dir)

specifies the state transition mapping (qs , ts) 7→ (qs ′, ts ′, dir) where qs , qs ′ are

state symbol and ts , ts ′ are tape symbols and dir is the direction which the

tape is moved. CurrState(i , qs) states that the current state of the machine is

qs at tape position i . TapePos(i , ts) states that tape position i has the symbol

ts . In our experiments, we tested a Turing machine instance which determines

if a tape (string of 0’s and 1’s) of length 200 is of the form {0 n1 n | n > 1}.

The Turing machine simulator is inherently single thread (rules cannot fire in

parallel), as it involves state transitions of a single state machine. This serves

to investigate the effects of parallel rewriting applied to a single threaded

problem.
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Our experiments are conducted to find empirical evidence that our parallel CHR

implementation is scalable and practical. By scalable and practical, we mean that

performance scales (improves) with the number of active processor threads added to

execute the parallel CHR multiset rewritings invoked by the parallel CHR solver. To

do so in a systematic way, we investigate into the effects of optimizations targeted at

improving parallel goal execution and show that each are crucial in ’unlocking’ true

parallelism in the implementation of the concurrent goal-based CHR semantics. We

observe the performance of the eight CHR programs with each optimization versus

a default alternative. To summarized, we focus on the following concurrency specific

optimizations:

• Throttled/Bounded Thread Pools (Section 4.4.3): Aimed to reduce num-

ber of conflicting parallel executions and to prevent limited system resources

from being swarmed by redundant concurrent goal executions. The alternative

to this is to rely entirely on GHC’s thread pooling system, hence we spawn a

lightweight GHC thread to execute each new active goal.

• Atomic Rule-Head Verification (Section 4.4.1): Aimed to reduce the num-

ber of false-overlaps during parallel goal executions. The alternative to this

is a simple STM implementation that does not use atomic rule-head verifica-

tion (This implementation executes each goal as a single STM operation, see

Section 4.3).

• Bag Constraint Store and Store Iterators (Section 4.4.2): Aimed to

reduce number of overlapping matches selected by parallel goals, by making

each goal thread observe stored constraints in a unique order. The alternative

to this are basic list constraint stores and list store iterators.

• Domain Specific Goal Ordering (Section 4.4.3): Aimed to optimally sched-

ule goals for execution. As detailed in Section 4.4.3, goal-ordering in our imple-

mentation come in the form of user-annotations tagged to each CHR rule-body
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constraint, indicating whether the newly added goal is to be stacked or queued

in the CHR goals. Goal ordering is specifically customized for each CHR pro-

gram and only crucial for some examples, specifically Gcd and Mergesort. The

alternative to this is the basic stack ordering of goals, which is the traditional

ordering used by most CHR implementations.

On top of the concurrency optimizations mentioned here, our implementation

also includes existing CHR optimizations which are still applicable to the concurrent

context. Specifically, our implementation includes constraint indexing (hashing),

optimal join ordering and early guard scheduling.

Our experiments are conducted on an Intel Core i7-920 processor21 with 6 GB

of memory running 64-bit Windows XP and Haskell GHC 6.10.1. For each ex-

periment, we measure the relative performance of executing with 1, 2, 4, 8 and

unbounded goal thread(s) against a base non-concurrent implementation in Haskell.

Final results shown are the medians of 20 runs of the same experiment. This non-

concurrent implementation serves as a benchmark for our concurrent implementation

and is free from the overheads of concurrent execution (e.g. invoking STM runtime

synchronization, atomic rule-head verification, etc..).

4.6.1 Results with Optimal Configuration

Figure 4.9 illustrates the experimental results conducted with our parallel CHR

system in optimal configuration. In other words, atomic rule-head verification,

Bag constraint store and iterators, throttled goal thread pool and domain

specific goal ordering22 concurrent optimizations are enabled. Measurements are

based on the percentage time against execution time of the basic non-concurrent

implementation (we will refer to this execution time as the base execution time).

21An Intel Core i7-920 processor is essentially a quad core processor, but is equipped with Hyper-
threading technology that effectively allows it to run 8 concurrent threads of computation.

22Where applicable. Namely, Merge sort and Gcd
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Figure 4.9: Experimental results, with optimal configuration (on 8 threaded Intel
processor)

There are several important observations. Firstly, executing our parallel imple-

mentation with 1 goal thread is inferior (at all examples) compared to the non-

concurrent implementation for obvious reasons (overheads of concurrent execution

are introduced, with no benefits of concurrent goal execution being exploited). Exe-

cutions with 2, 4 and 8 goal threads scale well against base execution time in general,

with exception of the Turing Machine example. This is expected as the Turing ma-

chine example is inherently single-threaded. Interestingly, we still obtain improve-

ments from parallel execution of administrative procedures (for example dropping

of goals, due to failed matching). Relative drop in performance (between 2 and

4/8 goal threads) indicates a upper bound of parallelism of such “administrative”

procedures.

One interesting result that our experiment uncovered is the presence of super-

linear speed-up for certain examples, like Gcd. The reasons for this is often very

subtle and domain specific. Figure 4.10 illustrates why we get super-linear speed-up

for the Gcd example. For presentation purpose, we annotate each constraint with

a unique identifier and each derivation with the rule name parameterized by the

constraints that fired it and the number of times it fired. For instance g2 (x , y) × t
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Gcd Example:

gcd1 @ Gcd(0) ⇐⇒ True

gcd2 @ Gcd(n)\Gcd(m) ⇐⇒ m >= n&&n > 0 | Gcd(m − n)

Derivation A: Single Threaded (Shorthands: G = Gcd, g1 = gcd1 and g2 = gcd2)

{G(30)1 , G(2)2 , G(45)3 , G(15)4}
g2(2,1)×15 {G(0)1 , G(2)2 , G(45)3 , G(15)4}

g1(1)×1 {G(2)1 , G(45)2 , G(15)3}

g2(1,2)×22 {G(2)1 , G(1)2 , G(15)3}

g2(2,1)×2 {G(0)1 , G(1)2 , G(15)3}

g1(1)×1 {G(1)1 , G(15)2}

g2(1,2)×15 {G(1)1 , G(0)2}

g1(2)×1 {G(1)1}

Total Number of Sequential Derivations: 57 Steps

Derivation B: 2 Distinct Parallel Derivation
(Expected Results)

{G(30)1 , G(2)2}

g2(2,1)×15

{G(0)1 , G(2)2}

g1(1)×1

{G(2)1}

‖

{G(45)3 , G(15)4}

g2(4,3)×3

{G(0)3 , G(15)4}

g1(3)×1

{G(15)3}

{G(2)1 , G(15)2}

g2(1,2)×7 {G(2)1 , G(1)2}

g2(2,1)×2 {G(0)1 , G(1)2}

g1(1)×1 G(1)1

Total Number of Sequential Derivations: 26 Steps
(≈ linear speed-up)

Derivation C: 2 Overlapping Parallel Derivations
(Actual Results)

{G(30)1 , G(2)2 , G(45)3 , G(15)4}
(g2(2,1)‖g2(4,3)) × 1 {G(28)1 , G(2)2 , G(30)3 , G(15)4}

(g2(1,3)‖g2(2,4)) × 1 {G(28)1 , G(2)2 , G(2)3 , G(13)4}

(g2(4,1)‖g2(2,3)) × 1 {G(15)1 , G(2)2 , G(0)3 , G(13)4}

(g2(4,1)‖g1(3)) × 1 {G(2)1 , G(2)2 , G(13)3}

g2(1,2)×1 {G(0)1 , G(2)2 , G(13)3}

g1(1)×1 {G(2)1 , G(13)2}

g2(1,2)×6 {G(2)1 , G(1)2}

g2(2,1)×2 {G(0)1 , G(1)2}

g1(1)×1 {G(1)1}

Total Number of Sequential Derivations: 15 Steps
(super-linear speed-up)

Figure 4.10: Why Super-Linear Speed-up in Gcd

denotes that rule g2 fired on constraints x and y for t number of times. We examine

derivations of the Gcd example from the initial store {Gcd(30 ),Gcd(2 ),Gcd(45 ),

Gcd(15 )} Derivation A shows the single threaded case where we get a total of 57

derivation steps to reach the final store. Derivation B shows the parallel derivation of

2 threads which yield the expected results (linear speed-up of 26 sequential derivation

steps). This assumes an unlikely scenario where derivations between 2 pairs of Gcd

constraints do not overlap (i.e. interfere with each other). Derivation C shows the

actual result which yields super-linear speed-up. Derivations overlap, that is, there

can be rule firings across parallel derivations. 23 This allows Gcd constraints of higher

values to be matched together, cutting down tediously long derivations initiated by

Gcd constraints of lower values (which is typical in the single threaded case). By

queuing Gcd goals (domain specific goal ordering), we encourage derivations similar

to Derivation C to be chosen over other possibilities, since goals are processed in a

23Of course, this behavior is also possible in a sequential execution scheme where we interleave
the execution of goal constraints, thus, effectively simulating the parallel execution scheme.
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Figure 4.11: Experimental results, with atomic rule-head verification disabled

breadth first manner (See results in Section 4.6.4 for confirmation of this point).

The final important insight lies in the right most data set of each CHR example.

”Unbounded” refers to the performance of the parallel CHR system when we do not

bound the number of CHR goal threads. This means that we spawn as many Haskell

GHC lightweight threads as there are goal constraints, hence representing the aban-

donment of the bounded goal thread pool concurrency optimization. Results

here show definitively that unbounded thread pooling (Section 4.4.3) is harmful to

parallel CHR goal execution, with all CHR examples in this configuration performing

sub-optimally.

4.6.2 Disabling Atomic Rule Head Verification

Figure 4.11 illustrates the experiment results conducted with atomic rule-head

verification disabled. The alternative implementation we use here is similar to the

simple implementation described in Section 4.3 and has the potential to introduce

many false-overlaps (illustrated in Section 4.4.1) in concurrent goal execution. In

general, results here shows that multi-threaded goal execution performs worse than

a single threaded execution or even the basic non-concurrent implementation. This



CHAPTER 4. PARALLEL CHR IMPLEMENTATION 116

Figure 4.12: Experimental results with and without constraint indexing (atomic
rule-head verification disabled)

essentially highlights the importance of minimizing false overlaps in concurrent goal

execution, via atomic rule-head verification, or other fine-grained micro management

of lower level concurrency primitives.

Dining Philosophers and Turing Machine examples demonstrate slight speed ups

over base execution time, showing that there are domains which are more toler-

ant to the absence of fine-grained synchronization (introduced by atomic rule-head

verification). It is not surprising, since Dining philosophers and Turing machine

are examples in which CHR rule head matching heavily relies on constraint in-

dexing. For instance, looking at the dining philosopher’s problem, the active goal

Think(c, 0, a, b)#n can seek for partners Fork(a)#m and Fork(b)#p via specifying

indexed lookups for arguments a and b in the Fork constraint store (as oppose to

a linear iteration of all Fork constraint, until a and b are found). This reduces the

number of shared memory reads and thus reducing number of false overlaps, even

without the presence of streamlined synchronization introduced by atomic rule-head

verification.

To further support this argument, we investigate further by repeating the ex-

periments, this time with constraint indexing also disabled. Figure 4.12 shows the
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Figure 4.13: Experimental results with and without bag constraint store

highlights of this follow up experiment (we omit the examples which present in-

significant or no difference from results in Figure 4.11). In this experiment, we

see that Unionfind, Dining philosophers and Turing machine demonstrate terrible

performance when constraint indexing is disabled. Since these examples heavily

rely on constraint indexing, using linear lookups instead forces goal executions to

iterate through many more shared memory locations in the constraint store, thus

increasing number of failed concurrent execution due to false overlaps. This explains

why results (no ARV and no Indexing) worsens with more goal threads executing in

parallel.

4.6.3 Disabling Bag Constraint Store

Figure 4.13 illustrates experiment results conducted without the use of bag con-

straint stores and iterators versus our optimal results from Section 4.6.1. Here,

we highlight only the Gcd, Prime and Fibonacci examples as all others show little

significant changes in scalability and performance. Without bag constraint store and

iterators, Gcd and Fibonacci performs worse when more goal threads are executed

in parallel. Even though Prime demonstrate better performance with more goal
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threads, it’s scalability with more threads is still less impressive than our optimal

results.

These results are not entirely surprising, since Gcd, Fibonacci and Prime are

indeed CHR problems where CHR goals likely share overlapping sets of potential

candidates for partner constraints. For instance, consider the Fibonacci rule fibo4 :

fibo4 @ Fibo(x ),Fibo(y) ⇐⇒ Fibo(x + y)

An active goal Fibo(x1)#n is free to match with any Fibo constraint (variable y

of rule head Fibo(y) is unbounded), as such if all parallel goals iterate through

potential candidate Fibo constraints in the same order, they will frequently select

overlapping constraints. Hence, more computation time is wasted for synchroniz-

ing between parallel goal threads (STM roll back and continue search for another

available partner). As the experiment results in this section show, such unnecessary

synchronization procedures are avoided in our optimal configuration by the use of

bag constraint stores and iterators. The Gcd example CHR rule gcd1 and the Prime

example rule prime3 also shares this similarly with the Fibonacci example rule fibo4 .

4.6.4 Disabling Domain Specific Goal Ordering

Figure 4.14 illustrates our experiment results without the domain specific goal or-

dering optimization. In our examples, only Mergesort and Gcd examples specifies a

goal ordering24, hence disabling goal ordering will only affect these two examples.

The results show that without goal ordering, Mergesort without goal ordering

does not scale with increasing goal threads. This supports our arguments in Section

4.4.3, confirming that the optimal goal ordering reduces number of conflicting con-

current goal executions and number of Leq comparisons. Gcd without goal ordering

still performs decently, but without the super linear speed up it experiences with

24For Mergesort, Leq goals are stacked, Merge goals are queued. For Gcd, goals are queued.
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Figure 4.14: Experimental results, with domain specific goal ordering disabled

goal ordering.

4.7 External Benchmarks

We have benchmarked our prototype parallel CHR implementation against a state-

of-the-art CHR implementation, SWI Prolog CHR [55] as well as against hand-coded

programs in Haskell and it’s concurrency primitives. Our parallel CHR implemen-

tation when running on one core is 8 to 9 times slower than both SWI Prolog CHR

and hand-coded Haskell programs. Running with 8 cores, our implementation is still

2 times slower.

Even though these results seem unmotivating to our course, we like to point out

that these relative poor performance is not due to the overheads of a parallel imple-

mentation, but more likely other factors. For instance, our prototype implementa-

tion still lacks many CHR optimizations orthogonal to parallelism, many of which

are available in SWI Prolog CHR. Further more, to avoid the hassles of maintaining

a full-fletched CHR compiler, our parallel CHR implementation is implemented as

a library based domain specific language (DSL), this has one disadvantage: execu-

tion time of programs also includes compile time elements (for instance, generating
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optimal match ordering for each CHR rule instance, etc..). Yet, the over-heads of

parallelism (concurrency synchoronization overheads) only accounts for 10 − 20%

(see Figure 4.9) additional execution time.

While these results do show that our prototype implementation is still far from

industrial strength, our main empirical results (Section 4.6.1) have shown our imple-

mentation’s scalability of execution with number of processor cores, which is aligned

to current technological improvement trends of multicore architectures, something

not present in existing implementations. Using CHR as a declarative high-level

concurrency abstraction allows the programmer to implicitly write scalable parallel

applications, without the hassle of hand-coding complex concurrency synchroniza-

tion routines. Yet this will not be without performance over-heads, hence one of our

future works will be to reduce such over-heads to a more reasonable level where par-

allel multiset rewrite in CHR can provide programmers with high-level concurrency

abstractions in the same way modern general purpose programming languages pro-

vide programmers high-level programming constructs that are more intuitive than

turing machine operations.

4.8 Extensions

In this section, we consider two extensions to our current implementation.

4.8.1 Dealing with Ungrounded Constraints: Reactivation

with STM

Our implementation of goal execution illustrated in Table 4.7 and 4.8 does not ac-

count for equation constraints and goal reactivation. Recall that in the ‖ G semantics



CHAPTER 4. PARALLEL CHR IMPLEMENTATION 121

of Figure 3.3 (Section 3.3) we have the (Solve) transition rule:

(Solve)
W = WakeUp(e, Sn)

〈{e} ⊎ G | Sn〉
W\{}
G 〈W ⊎ G | {e} ∪ Sn〉

where Eqs(S) = {e | e ∈ S, e is an equation}

WakeUp(e, Sn) = {c#i | c#i ∈ Sn ∧ φ m.g.u. of Eqs(Sn)∧

θ m.g.u. of Eqs(Sn ∪ {e}) ∧ φ(c) 6= θ(c)}

Simply put, when an equation constraint e (in general, a builtin constraint) is intro-

duced to the store, we have to reactivate (return to the goals, for future execution)

certain constraints represented by the set WakeUp(e, Sn). This is because by in-

troducing equation e, we possibly ground certain variables held by ungrounded con-

straints in store Sn. Thus, such constraints can possibly trigger new rule-instances

and must be re-executed to maintain exhaustiveness of CHR rule execution. For

example, consider the following CHR rule:

r1@A(1) ⇐⇒ B(1)

r2@B(x) ⇐⇒ x = 1

Suppose we have two goals A(a)#m,B(a)#n for some term variable a. Suppose we

execute A(a)#m, but it cannot trigger rule r1 because it does not match A(1), hence

we drop it. But after executing B(a)#n, we have a = 1, which grounds A(a)#m to

A(1)#m. Hence we need to reactivate all constraints containing the term variable

a.

The type of builtin constraints available depends on builtin theory which the

CHR language is built on top of (eg. linear inequality, herbrand, etc..). For our

implementation, we assume a simple builtin store consisting of only equations of the

form x = v, where x is a term variable and v a value25.

25Note we do not attempt to deal with full-blown parallel unification and hence we do not include
equations of the form x1 = x2
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Term Variable: TVar (Maybe String)

Equation: EqCons (TVar (Maybe String)) String

Figure 4.15: Term Variables via STM Transactional Variables

1 solve :: EqCons -> STM Bool

2 solve (EqCons x v) = do

3 { mb <- readTVar x

4 ; case mb of

5 Just v’ -> return (v==v’)

6 Nothing -> do { writeTVar x (Just v)

7 ; return True }
8 }

Table 4.12: Implementation of Builtin Equations

We represent term variables with STM transactional variables. Figure 4.15 shows

our representation of term variables x and equations x = v in Haskell. Term vari-

ables are essentially represented by STM transactional memory variables (TVar)

storing values of type Maybe String. An unassigned variable simply contains a

Nothing, while a variable grounded to the value v contains a Just v. An equation

is represented by the data type EqCons x v where x is a term variable, and v a

value. For simplicity, we assume that values are strings. Table 4.12 illustrates the

implementation of a simple equation solver. An equation EqCons x v is solved by

reading the value of x (line 3) checking if it is grounded (lines 5) or if it is not (lines

6 − 7). For grounded x, we simply return True if it’s value is equal to v (line 5),

otherwise we return False indicating a builtin error. For a non-ground x, we write

the value v into term variable x and return True. The solve routine is executed on

each equation in the body of a rule instance successfully matched during CHR goal

matching and execution (line 28 − 32 of matchGoal from Table 4.8).

Implementing term variables with STM transactional variables offers us an ele-

gant and unique way of handling constraint reactivation. Essentially, for each goal

constraint g with at least one non-ground term variable, we retrieve the set of all

it’s non-ground term variables xs right before executing g. After executing g, if g
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1 reactivateWhenGround :: [TVar (Maybe String)] -> Cons -> Goals -> IO ()

2 reactivateWhenGround xs g gs = do

3 { atomically (do { vs <- mapM readTVar xs

4 ; let ground vs = filter (\ v -> Nothing == v) vs

5 ; if (length ground vs) > 0 then return ()

6 else retry })
7 ; addGoals gs [g] }

Table 4.13: Goal reactivation thread routine

is not deleted from the store, we spawn a light-weight thread which has the sole

purpose of “sleeping” until g’s set of ungrounded variables is no longer xs, but a

subset of it26. We stress the importance of “capturing” ungrounded variables xs

strictly before goal execution of g, otherwise we may possibly miss rule instances.

This is because xs represents a conservative snap-shot of the term variables of g at

the time of goal execution, and thus the goal g should be reactivated if xs changes.

Figure 4.13 illustrates the reactivation routine to be executed by goal reactivation

threads. We assume each thread runs the routine on a unique ungrounded goal con-

straint g, and is given the ungrounded term variables of g right before goal execution

(xs) and the pointer to the shared goals gs. Lines 3 − 6 essentially implements the

sleeping procedure, which completes if any term variable in xs has been grounded

(line 5), otherwise the entire STM operation is retried (line 6). This effectively blocks

the computation until a term variable in xs is grounded, during which, the goal g

will be added to gs (line 7). Note that retry is a Haskell GHC STM library function

which is implemented not by busy-wait polling, but will schedule re-execution of the

STM operation only when variables it has read before are modified.

Our current implementation does not support ungrounded constraint, even though

the solution documented here can be straight-forwardly integrated. This is because

in our experience, CHR programs that utilizes ungrounded constraints can be rewrit-

ten to a form which only uses grounded constraints (see parallel union find in Sec-

tion 4.6 for an example). While this restriction does not hinder the expressiveness

26Note Haskell uses light-weight threads, which are highly suitable for such non-computational
intensive synchronization tasks (unlike, CHR goal execution). If light-weight threads are not avail-
able, we can always use thread pooling techniques similar to that illustrated in Section 4.4.3
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of programming in Constraint Handling Rules, it is of course not without other

practical implications. For instance, without unground constraints, we must specify

variable assignments explicitly by means of user-defined constraints (since such fea-

tures are not built-in in the CHR implementation) making programming in CHR a

slightly more tedious experience. This will also most certainly introduce additional

rule-heads to the user-defined CHR rules, thus incurring more rule-head matching

overheads.

4.8.2 Dealing with Pure Propagation: Concurrent Dictio-

naries

Section 3.4.7 considered the semantic refinements necessary to deal with pure prop-

agation. Here we discuss the implementation efforts necessary. Recall that we need

to guarantee that concurrent goals rewrite unique propagation rule instances. This

means that the propagation history must be a shared data structure whose changes

must be globally visible to all concurrent threads. The most suitable data structure

for this application is a concurrent dictionary. Propagation rule instances (simply

represented by a list of constraint identifiers and rule identifiers) are kept as keys of

the dictionary, which provides us with the testing interfaces to prone whether a rule

instance has been previous fired by some execution thread.

While the data structure required is quite obvious, what is more subtle and in-

teresting is the nature of the history check that needs to be conducted during rule

execution. Because the act of commit to a rule instance must be atomic (Atomic

rule head verification, see Section 4.5.4), checking and extending the shared prop-

agation history must be done as part of this atomic procedure. In the case of our

implementation, this means that we must implement the shared history as a STM

data structure.

Table 4.14 illustrates a variant of atomic rule head verification that integrates
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1 historyContains :: History -> [(Head,Cons)] -> STM Bool

2

3 addToHistory :: History -> [(Head,Cons)] -> STM ()

4

5 verifyRuleHeadsProp :: Store -> History -> [(Head,Cons)] -> STM Bool

6 verifyRuleHeadsProp store hist hds = do

7 { bs <- mapM (\( ,g) -> isStored store g) hds

8 ; if and bs

9 then do { let simpHds = filter (\(h, ) -> h == Simp) hds

10 ; if length simpHds > 0

11 then mapM (\( ,g) -> logicalDeleteFromStore store g) simpHds

12 else do { hasFired <- historyContains hist hds

13 ; if hasFired

14 then return False

15 else do { addToHistory hist hds

16 ; return True }
17 }
18 ; return True }
19 else return False }

Table 4.14: Atomic rule head verification with propagation history

propagation history handling27. We assume that the abstract datatype History is

the shared propagation history, with two interfaces: historyContains hist hds re-

turns true if and only if the rule head instance hds has been fired, while addToHistory

hist hds adds rule head instance hds to the history hist. We check if the simpli-

fied heads are empty (line 10). If not we proceed with the standard logical delete

of simplification heads, otherwise we check if the current rule instance has already

been fired (line 12). We will only add the rule instance to the history if and only if

the rule instance has not been fired (lines 15 − 16).

Note that having the a single global shared history built on transactional memory

for all propagation rules of a CHR program is most likely to have significant impact

on performance. This is because we essentially have to synchronize all triggering

of propagation rules on that single shared data structure. A simple optimization

is to have one propagation history for each propagation rule of the program. As

such, we will only interleave instances of the same propagation rule. This means

27Note that for simplicity, we extend from the basic verifyRuleHeads rather than
verifyRuleHeadsBackJump from Table 4.10. Both extensions are orthogonal and can be inte-
grated together.
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that concurrent execution of non-overlapping propagation rule-instances of distinct

propagation rules can execute in parallel.



Chapter 5

Join-Patterns with Guards and

Propagation

5.1 Chapter Overview

In this Chapter, we introduce a non-trivial application of parallel CHR rewrit-

ing, namely formalizing and implementing a goal-based execution model for Join-

Patterns with guards and propagation, based on our earlier introduced ‖ G seman-

tics. Section 5.2 provides a quick review on Join-Calculus and Join-Patterns, and

highlights the similarities with CHR rewritings. This is followed by Section 5.3,

which introduces guard and propagation extensions to Join-Patterns. Section 5.4

formally introduce the Join-Pattern goal-based semantics. Finally, Section 5.5 con-

cludes with highlights of our implementation and experimental results on a multi-

core system.

5.2 Join-Calculus and Constraint Handling Rules

Constraint Handling Rules is a concurrent committed-choice constraint logic pro-

gramming language to describe rewritings among multi-sets of constraints. Join-

127
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Calculus [18], on the other hand, is a process calculus designed to provide expressive

concurrency abstractions in the form of multi-headed reaction rules (known as Join-

Patterns). Rule triggering depends on the simultaneous consumption of messages 1

matching each of the rule heads. It is clear that Join-Calculus semantics share a lot in

common with the CHR multiset rewriting, yet surprisingly, CHR and Join-Calculus

have been studied so far in complete isolation. We believe that a comparison be-

tween both calculi is long overdue and should enable a fruitful exchange of ideas and

results.

In this Section, we provide a quick review of the Join-Calculus language (Section

5.2.1) as well as the highlights of the standard Join-Pattern compilation schemes used

by existing Join-Pattern implementation. Following this, we introduce a simple CHR

goal-based compilation scheme adapted for the triggering of Join-Patterns (Section

5.2.3).

5.2.1 Join-Calculus, A Quick Review

There are numerous calculi and concurrent programming models to support con-

current programming. A particular fruitful and promising model appears to be the

join calculus [17] which provides the basis for the concurrency abstractions found in

numerous existing implementations (eg. JoCaml [7], Polyphonic C# [5], Join Java

[59]). In join calculus, concurrency is expressed via sets of multi-headed reduction

rules known as Join-Patterns. As demonstrated in Section 2.3.3, Join-Patterns are

declarative in nature and easy to understand, providing high-level coordination of

concurrent processes without the need of explicit micro-management of concurrency

primitives.

Figure 5.1 shows the essential core Join-Calculus language. Processes (or events)

are typically modeled as unique names p each with a fixed number of term argu-

ments. A collection of concurrently running processes (denoted M) is represented by

1Messages can be received from multiple shared channels, from various concurrent computa-
tional entities (program threads, remote procedure calls, etc..)
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Primitives:

Process(Event) Name p Variable x

Constant Value v List of a’s a

Join-Calculus Expressions:

Term t ::= x | v

Process P ::= p (̄t)
Concurrent Processes M ::= P | M , M

Join-Pattern J ::= P | J|J

Join-Body B ::= P | B|B

Reaction Rule D ::= J � B

Figure 5.1: Join-Calculus Core Language

processes composed together with a binary operator “,”. This collection is treated

as an unordered set of processes. For instance, the following illustrates a collection

of concurrent processes, representing the state of the printer spooler, denoted S:

S = Ready(P1 ),Ready(p2 ), Job(J1 ), Job(J2 ), Job(J3 )

A printer p which is available for printing will call the process Ready(p), while

a print job j is submitted to the spooler via calling the process Job(j). To stay

true to the notation used in this thesis, we shall use standard Haskell2 notation

to represent variables and constants: Uppercase references for constant names and

lowercase references for variables/function names. Hence the above illustrates a

state consisting of two available printers and three outstanding print jobs. A print

job j is to be matched with any available printer p, during which printing can be

initiated by sending j to p (Send(p, j)). This behavior is captured by the reaction

rule D, defined as follows:

D = Ready(p) | Job(j ) � Send(p, j )

A reaction rule (J �B) has two parts. We refer to the left-hand side J as the Join-

Pattern and to the right-hand side B as the Join-Body (in our simplified setting

2Yes, we love Haskell that much.
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rule processes). The Join-Pattern J specifies that processes matching Join-Patterns

J can be consumed and replaced by rule processes B. Note that we will sometimes

refer to the reaction rules as Join-Patterns as well if there is no ambiguity doing so.

The Chemical Abstract Machine (CHAM) [6] provides the semantic foundations

for the Calculus. A set of reaction rules can be applied to a collection of concurrent

processes. This is defined by two forms of transition steps, namely structural steps

(R ⊢ M) ⇋ (R ⊢ M ′) and reduction steps (R ⊢ M) −→ (R ⊢ M ′) where

R is the set of reaction rules and M , M ′ are collections of concurrent processes.

This exploits the analogy that concurrent processes are a “chemical soup” of atoms

and molecules, while reaction rules define chemical reactions in this chemical soup.

Structural steps heat/cool atoms to and from molecules (switching to-and-from ’,’

and ’|’), while reduction steps apply reaction rules to the matching molecules. The

following shows a possible sequence of structural/reduction steps which results from

applying the printer spooler rule D on the spooler state S:

D = Ready(p) | Job(j ) � Send(p, j )

({D} ⊢ Ready(P1 ),Ready(P2 ), Job(J1 ), Job(J2 ), Job(J3 ))

⇋ ({D} ⊢ Ready(P2 ), Job(J2 ), Job(J3 ),Ready(P1 ) | Job(J1 ))

−→ ({D} ⊢ Ready(P2 ), Job(J2 ), Job(J3 ),Send(P1 , J1 ))

⇋ ({D} ⊢ Job(J3 ),Send(P1 , J1 ),Ready(P2 ) | Job(J2 ))

−→ ({D} ⊢ Job(J3 ),Send(P1 , J1 ),Send(P2 , J2 ))

When concurrent processes J ′ matches a reaction rule J � B (ie. J ′ = θ(J) for

some substitution θ) causing the rule to be applied, we say that J ′ has triggered

the Join-Patterns J . Note the inherent non-determinism in matching processes with

Join-Patterns: any pair of Ready(p) and Job(j) can be arbitrarily chosen by a

structural step and matched with the Join-Patterns.

There is an obvious similarity between the CHR semantics and Join-Calculus

semantics. Transitions of the chemical abstract machine essentially describes rewrit-
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ings among multisets of processes, the same way the abstract CHR semantics (Chap-

ter 3) describe rewritings among multisets of constraints via CHR simplification

rules. Let’s consider the same rewritings of our print spooler example (earlier in the

CHAM rewritings), this time in abstract CHR derivations:

r @ Ready(p), Job(j) ⇐⇒ Send(p, j)

{Ready(P1), Ready(P2), Job(J1), Job(J2), Job(J3)}

A {Send(P1, J1), Ready(P2), Job(J2), Job(J3)}

A {Send(P1, J1), Send(P2, J2), Job(J3)}

In the following Sections, we will introduce a concrete Join-Pattern language ex-

tension and review the standard compilation scheme of Join-Patterns and show that

a similar compilation scheme can be derived from the CHR goal-based semantics.

5.2.2 Programming with Join-Patterns

We consider a simple Join-Pattern extension to Haskell GHC. For now, we will

defer details of the actual underlying implementation, but focus on introducing the

language. This will provide more concrete examples on how Join-Patterns are used

in practical programming.

For clarity, we repeat our example from Chapter 2. Table 5.1 illustrates a sim-

ple shared communication buffer implemented our Join-Pattern extension3. Join-

Patterns are introduced via the event keyword. we introduce two events to consume

(Get) and produce (Put) buffer elements. Via the Join-Pattern Get(x) & Put(y)

we look for matching consumer/producer events. If present, the matching events

are removed and the join body is executed. This expression x := y simply assigns

variable x the value of y, modeling the retrieval of a buffered item. In general, the

3We present our language will slightly sugared syntax for simplicity. In our actual implementa-
tion, we implementation our Join-Pattern extension as a combinator library extension
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event Put(Async Int)

event Get(Sync Int)

Get(x) & Put(y) = x := y

t1 = do { Put(3) t2 = do { Put(5)

; Put(4) ; x2 <- newSync

; x1 <- newSync ; Get(x2)

; Get(x1) ; v2 <- readSync x2

; v1 <- readSync x1 ; print v2 }

; print v1 }

main = do { forkIO t1

; forkIO t2

; -- sleep and wait for t1 and t2

; ... }

Table 5.1: Get-Put Communication Buffer in Join-Patterns

join body is simply a call back function executed when the matching events specified

by the Join-Pattern are present.

Events are essentially called like function calls. For instance, in Table 2.2 op-

eration t1 and t2 make calls to Get and Put. Arguments of events can either be

asynchronous (ground input values), synchronous (output variables). Synchronous

arguments, generated via the newSync primitive, serve to transmit buffer elements.

We can access the transmitted values via primitive readSync which blocks until the

variable is bound to a value. Synchronous variables are written into via :=. We

assume that print is a primitive function that prints it’s argument on the shell

terminal.

Suppose we execute the two threads executing t1 and t2 respectively. Events

are non-blocking, they will be recorded in the store and we proceed until we hit a

blocking operation. Hence, both threads potentially block once we reach their first

readSync statement. main represents the top level function that runs the operations

t1 and t2 concurrently. It basically calls forkIO tx which forks off a light-weight

Haskell thread that executes the given operation. We summarize the important
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library functions of this language extension,

• forkIO op - Given IO operation op, forks off a light-weight Haskell thread that

executes op. This is a Haskell GHC library function.

• newSync - Returns a new synchronization variable, which is empty (i.e. unas-

signed).

• readSync x - Attempts to retrieve the value assigned to x. If x is unassigned,

this operation blocks until x is assigned a value by another thread.

• x := y - Assigns x the value of y. This operation assumes that y is assigned

a value.

5.2.3 Join-Pattern Compilation and Execution Schemes

We start off by reviewing the standard Join-Pattern compilation and execution

schemes, used by existing Join-Pattern implementations. Following this, we in-

troduce our CHR goal-based compilation scheme for Join-Pattern execution by ex-

ample.

Standard Join-Pattern Compilation Scheme

Existing implementations compile Join Patterns into state machines that main-

tain the matching states of the Join-Patterns [13]. This compilation involves con-

structing n message channels (which are typically queues) and a finite state machine

(automaton) for each set of Join-Patterns, such as the one in Figure 5.2. These mes-

sage queues, together with the finite state machine keeps track of the matching

status of the Join-Patterns. Each message channel is assigned to one of the process

name (P , Q or R), represents the collection of calls to this process by concurrent

computation threads. Hence, a call to a process is analogous to the arrival of a new

message in the corresponding message channel.
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P(x) & Q(y) = a(x,y) -- j1

P(s) & R(t,w) = b(s,t,w) -- j2
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Figure 5.2: A Matching Status Automaton with two Join-Patterns

Figure 5.2 shows an example of a Join-Calculus expression consisting of two

reaction rules, as well as it’s corresponding matching status automaton that is con-

structed. We label the first reaction rule as j1 and the other as j2. j1 has the

Join-Pattern P (x)&Q(y) and the join body a(x, y), while j2 has P (s)&R(t, w) and

b(s, t, w). We assume that function calls a and b reduces to sequences of primitive

operations that may consist of other Join-Pattern process calls (eg. P , Q or R).

States of the finite state machine are labeled by a sequence of n bits, one assigned

to each message queue stating whether it is empty (0) or non-empty (N). Let’s

assume that the order is P , Q then R. This automaton is updated every time a new

process is call (ie, a new message has arrived) or when a Join-Pattern is successfully

matched.

Each edge labeled with a transition label, which is either of the form m − j

stating that arrival of message m has triggered Join-Pattern j (and hence consumed

m together with other messages involved in the join), or just m which states that

arrival of message m has triggered nothing and therefore is just queued. If there are

more than one alternative transitions between two states of the automaton, we will
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P(x) & Q(y) = a(x,y) -- j1

P(s) & R(t,w) = b(s,t,w) -- j2

< 1 > < 2 > < 3 > < 4 > < 5 > < 6 >

P : [ ] P : [ ] P : [ ] P : [ ] P : [ ] P : [ ]

Q : [ ] Q : [15] Q : [15] Q : [15, 3] Q : [3] Q : [3]

R : [ ] R : [ ] R : [(1, 2)] R : [(1, 2)] R : [(1, 2)] R : [ ]

000
Q(15) // 0N0

R(1,2) // 0NN
Q(3) // 0NN

P (8) // 0NN
P (6) // 0N0

j1 P (8), Q(15) j2 P (6), R(1, 2)

Figure 5.3: Example of Join-Pattern Triggering with Finite State Machine

represent them as a single edge with the set of alternative transitions. Since the Join-

Patterns considered do not have guard conditions, messages channels are normally

implemented with shared queue data structures, and messages are consumed in a

first-in-first-out manner.

Figure 5.3 illustrates an example of the triggering of Join-Patterns from Figure

5.2. We illustrate a scenario when join processes (messages) are received in the

sequence Q(15), R(1, 2), Q(3), P (8), P (6)4. Iterations < 1 > to < 6 > represents

the arrival of the respective join processes. For each iteration < x >, we show the

queue and state of the finite state machine generated for the Join-Patterns. Initially,

the queues are all empty and we are at state 000 (< 1 >). Iterations < 2 > and

< 3 > represents the arrival of messages Q(15) and R(1, 2) respectively, transiting

to the states 0N0 then 0NN , as specified by the finite state machine. In < 4 >, a

Q(15) arrives, but we remain in the state 0NN even though the queue has two Q

4In theory, join processes can be called concurrently, but for the purpose of this example, we
consider this specific sequence.
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messages. Finally in < 5 >, we see a P (8) message and we trigger the Join-Pattern

j1 (as specified by state machine transition P − j1) and remove the messages P (8)

and Q(15). This is followed by < 6 > another message P (6) and hence the triggering

of the Join-Pattern j2 via messages P (6) and R(1, 2).

Note that in iteration < 5 >, we could have selected P−j2 instead of P−j1, thus

triggering Join-Pattern j2 on P (8) and R(1, 2) instead. Both alternatives are valid,

but in actually implementations, a Join-Pattern compiler will arbitrarily choose one.

CHR Goal-Based Compilation Scheme for Join-Patterns

We present an alternative compilation scheme for Join-Patterns, which essen-

tially compiles Join-Pattern into CHR rules. There are of course, fundamental dif-

ferences between the execution of CHR rules and that of Join-Pattern reaction rules

(asynchronous rule body execution), but here we focus on how we can compile the

triggering of Join-Patterns with CHR rewritings.

Rather than compiling Join-Pattern reaction rules into message queues and a

finite state machine, we compile Join-Patterns into a set of CHR rules and a CHR

shared store. We consider the example in Figure 5.2. Join Patterns of j1 and j2

can basically be represented by the following CHR simplification rules:

r1 @ P(x ),Q(y) ⇐⇒ ExecA(x , y)

r2 @ P(s),R(t ,w) ⇐⇒ ExecB(s, t ,w)

where r1 corresponds to j1 and r2 to j2. Constraints ExecA(x, y) and ExecB(s, t, w)

symbolically represent the execution of processes A(x, y) and B(s, t, w)5. Derivations

of these CHR rules essentially represents the triggering of the reaction rules j1 and

j2. In this approach, execution of CHR goals essentially maps to the execution of

Join-Pattern processes. For instance, considering the example in Figure 5.3, where

join processes arrive in the sequence Q(15), R(1, 2), Q(3), P (8), P (6), we have the

5For now, we shall treat our CHR rewritings as symbolic representations of Join-Pattern trigger-
ing, while later in Section 5.3 and 5.4 we will formally define a goal-based Join-Pattern semantics
for a Join-Pattern extension in the language Haskell.
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following CHR derivations:

Iteration CHR Transitions Message Store

< 1 > 〈{Q(15), R(1, 2), Q(3), P (8), P (6)} | {}〉

< 2 > (Activate), (Drop) 
∗
G 〈{R(1, 2), Q(3), P (8), P (6)} | {Q(15)#1}〉

< 3 > (Activate), (Drop) 
∗
G 〈{Q(3), P (8), P (6)} | {Q(15)#1, R(1, 2)#2}〉

< 4 > (Activate), (Drop) 
∗
G 〈{P (8), P (6)} | {Q(15)#1, R(1, 2)#2, Q(3)#3}〉

< 5 > (Activate), (Simplify r1) 
∗
G 〈{P (6), ExecA(8, 15)} | {R(1, 2)#2, Q(3)#3}〉

< 6 > (Activate), (Simplify r2) 
∗
G 〈{ExecA(8, 15), ExecB(6, 1, 2)} | {Q(3)#3}〉

For this example, we illustrate sequential goal execution in left-to-right sequence,

but note that CHR goals (join processes) are concurrent and can execute in any

arbitrary ordering. In this compilation, iterations < x > are represented by a series

of CHR goal-based semantics transitions. The CHR constraint store represents the

set of messages that awaits to be matched to Join-Patterns. As such, we will refer to

it as the message store from now. For instance, iteration < 2 > is represented by the

activation of goal Q(15), followed by the dropping of the same goal (since no CHR

rules can be fired). In the standard Join-Pattern compilation, this is equivalent

to the transition 000
Q
→ 0N0 in the finite state machine and the adding of 5 to

the Q message queue. The triggering of a Join-Pattern (< 5 > and < 6 >) is

represented by the activation of a goal, followed by the firing of a CHR rule instance,

specifically P (8), Q(15) ⇐⇒ ExecA(8, 15) in iteration < 5 > and P (6), R(1, 2) ⇐⇒

ExecB(6, 1, 2) in iteration < 6 >. When compared to the standard Join-Pattern

compilation, these correspond in the following manner:
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CHR Goal-Based Compilation Standard Join-Pattern Compilation

〈{P (8), P (6)} | {Q(15)#1, R(1, 2)#2, Q(3)#3}〉


∗
G 〈{P (6), ExecA(8, 15)} | {R(1, 2)#2, Q(3)#3}〉

State transition 0NN
P−j1
→ 0NN

Remove 15 from Q queue

Remove 8 from P queue

〈{P (6), ExecA(8, 15)} | {R(1, 2)#2, Q(3)#3}〉


∗
G 〈{ExecA(8, 15), ExecB(6, 1, 2)} | {Q(3)#3}〉

State transition 0NN
P−j2
→ 0N0

Remove (1, 2) from R queue

Remove 6 from P queue

We wish to point out that triggering Join-Patterns with CHR rewritings would

obviously seem a little “over-kill”, incurring unnecessary overheads (compared to the

highly efficient state-machine compilation highlighted earlier). In the next section

(Section 5.2.4), we will demonstrate the advantages and new possibilities ushered in

by this alternative compilation.

5.2.4 ‖ G Semantics and Join-Patterns

Our CHR goal-based compilation scheme for Join-Patterns offers more than just an

alternative compilation scheme for Join-Patterns, but also provides us with a parallel

execution model for Join-Pattern triggering. Standard Join-Pattern compilation into

a finite state machine has one fundamental limitation: it is essentially a single lock

shared resource. Each join process call (eg. P , Q or R) must essentially attempt

to acquire exclusive access to the finite state machine representing the Join-Pattern

and invoke the state transition before releasing access rights for the next process.

This basically means that all processes involved in the same set of Join-Patterns will

ultimately synchronize on the same shared resource (the finite state machine).

Our concurrent CHR goal-based semantics (‖ G semantics from Chapter 3) essen-

tially provides the necessary formalism to execute such triggering in parallel, hence
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multiple processes attempting to trigger Join-Patterns can compute their matching

state in parallel.

Yet we must be realistic and evaluate the benefits of parallelized Join-Pattern

triggering. Recall that in the standard Join-Pattern compilation scheme, we compile

Join-Patterns into n message queues, where n is the number of unique Join-Pattern

processes. State-of-the-art Join-Pattern implementations [13, 5] employ highly effi-

cient bit masking techniques to implement Join-Pattern triggering mechanisms. In

this technique, the runtime system simply keeps track of n bits each associated to

a process type, which is 0 if the queue of that process is empty, and 1 otherwise.

The task of triggering a Join-Pattern is simply to apply a bit-wise boolean opera-

tion. For instance, considering the example in Figure 5.2, Join-Pattern of j1 will

be represented by the bits 001 (A 0 bit indicates that it’s associated queue must

be not empty, hence P and Q must not be empty to trigger j1), while j2 by 010.

Hence, given a state 110 (P and Q queues are not empty), to test if we can trig-

ger j1 we simply do a disjunction between j1’s bits and the current state’s, i.e.

110 ∨ 001 ≡ 111 ≡ True. Approaches in [59] even attempt introduce hardware

support in the execution of Join-Pattern triggers via hardware logical gates, hence

making it a highly efficient operation. As such the triggering of Join-Pattern in stan-

dard compilation, is an inherently sequential but highly efficient task. This raises

questions on the effectiveness of parallelizing an already highly efficient task6

While this probably means that little parallelism and performance benefits can

be gained from compiling Join-Patterns into CHR rules, we will show in the following

section when this approach will be beneficial.

6Simply put, by Amdahl’s Law [2], ”Overall system speed is governed by the slowest compo-
nent”. Hence, parallelizing Join-Pattern triggering which probably accounts for a minute fraction
of runtime is as good as blasting microorganisms on the moon (if any exists) with nuclear weapons.
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P(x) & Q(y) when (x > y || x == y) = a(x,y) -- j3

P(s) & R(s,w) = a(s,s,w) -- j4

Figure 5.4: Example of Join-Patterns With Guards

5.3 Join-Patterns with Guards and Propagation

Let’s consider an extension to the Join-Pattern language, known as Join-Patterns

with guards. Now, Join-Patterns are not only a join between a multiset of processes,

each Join-Pattern may optionally specify a boolean expression which determines if

the arguments of a given set of join processes are acceptable to trigger the reaction

rule.

Figure 5.4 illustrates an extension of our example from Figure 5.2, using Join-

Patterns with guards to specify more complex synchronization patterns. Each Join-

Pattern now has an optional when clause which specifies a guard expression. j3 is

similar to j1 (from Figure 5.2) except it will only react to processes P (x), Q(y) such

that x > y || x = y, where || is logical disjunction. j4 is similar to j2 except it

only reacts to processes P (s1) and R(s2, w), such that s1 = s2
7. Considering the

arrival of join process calls (messages) in the order Q(15), R(1, 2), Q(3), P (8), P (6),

we notice that P (8) and Q(15) no longer can trigger any Join-Pattern, as the guard

condition for j3 cannot be satisfied by these two process (8 6> 15), hence we must

search for another suitable Q process (if any). In this case, we have P (6), Q(3) that

can trigger j3. Similarly, P (6), R(1, 2) cannot trigger j4 (6 6= 1) nor can we trigger

j3 with P (6), Q(15) (6 6> 15), thus P (6) will not trigger any Join-Patterns in this

example.

7Note in Figure 5.4, we illustrate j4 with a non-linear pattern (variable s appears twice in the
Join-Pattern). This is equivalent to P(s) & R(t,w) when (s == t) = B(s,t,w)
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5.3.1 Parallel Matching and The Goal-Based Semantics

Implementing the triggering of Join-Patterns with Guards require a search procedure

to iterate through all available messages and find a matching set of messages that

triggers a Join-Pattern. This is oppose to triggering standard Join-Patterns, where

no search is required (we only test if message queues are empty). Join-Patterns

with guards can be straight-forwardly implemented by compiling Join-Patterns into

CHR rules. The CHR goal-based execution model provides the exact search proce-

dure required to locate matching sets of join processes which satisfy a given guard

condition. For instance, compiling the Join-Patterns with guards j3 and j4 in Figure

5.4, we have the following CHR rules:

r3 @ P(x ),Q(y) ⇐⇒ x > y || x == y | ExecA(x , y)

r4 @ P(s),R(s,w) ⇐⇒ ExecB(s, s,w)

CHR Transitions Message Store

〈{Q(15), R(1, 2), Q(3), P (8), P (6)} | {}〉

(Activate), (Drop) 
∗
G 〈{R(1, 2), Q(3), P (8), P (6)} | {Q(15)#1}〉

(Activate), (Drop) 
∗
G 〈{Q(3), P (8), P (6)} | {Q(15)#1, R(1, 2)#2}〉

(Activate), (Drop) 
∗
G 〈{P (8), P (6)} | {Q(15)#1, R(1, 2)#2, Q(3)#3}〉

(Activate), (Simplify r1) 
∗
G 〈{P (6), ExecA(8, 3)} | {Q(15)#1, R(1, 2)#2}〉

(Activate), (Drop) 
∗
G 〈{ExecA(8, 3)} | {Q(15)#1, R(1, 2)#2, P (6)#4}〉

Guards of the Join-Patterns are compiled directly into the guards of the CHR

rule. CHR derivations (as shown above) also models the exact behaviour which

we expect from the Join-Patterns. When each process is call (activated, in CHR

lingo), it searches the message store for matching partners to trigger either r3 or

r4. If no matches can be found, we conclude the execution of the process with not

Join-Pattern triggered (Drop), otherwise we execute the rewriting specified by the

triggering of the Join-Pattern (Simplify).

With CHR style matching and search for matching processes as a crucial compo-
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nent of Join-Pattern execution, the need for parallel matching now becomes apparent

and perhaps highly critical. The cost of triggering of Join-Pattern with guards is

much higher compared to triggering standard Join-Patterns, hence we cannot af-

ford to have such concurrent procedures be sequentially executed one after another.

Our works on the concurrent CHR goal-based semantics (Chapter 3) and parallel

CHR implementation (Chapter 4) essentially highlights the necessary ingredients to

implement a scalable parallel implementation of Join-Patterns with guards.

CHR goal-based lazy matching (Section 3.4.5) is a highly suitable model for

computing the triggering of Join-Pattern with guards. This is because each pro-

cess (CHR goal) essentially will strictly compute only it’s own rule-head matches8

asynchronously (without directly synchronizing with other processes), and proceeds

immediately. In essence, this is the ideal execution strategy for executing Join-

Pattern processes.

The standard Join-Patterns compilation scheme is heavily tailored made for trig-

gering standard Join-Patterns (simple message queues and bit-wise testing opera-

tions). While this makes it highly optimized for triggering standard Join-Patterns, it

cannot natively handle the compilation of Join-Patterns with guards, unless serious

modifications are implemented. Existing work in [49, 36, 5] addresses implementa-

tion of Join-Patterns with guards to a limited capacity, but do not address parallel

matching and optimized compilations in general.

1 event Item(Async Key,Async Data)

2 event Set(Async Key,Async Data)

3 event Get(Async Key,Sync Data)

4

5 Item(k1,x) & Set(k2,y)

6 when k1 == k2 = Item(k,y)

7 Item(k1,x) & Get(k2,y)

8 when k1 == k2 = do { y:= x

9 ; Item(k1,x) }

Table 5.2: Concurrent Dictionary in Join-Patterns with Guards

8By this, we mean it only searches for the rule-head matches that it is part of.
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Let’s consider another example. Table 5.2 illustrates an implementation of a

concurrent dictionary in Join-Patterns with Guards. Item(k,x) represents an item

x mapped by key k. Via the first Join-Pattern, Set(k,y) essentially replaces an item

x mapped to key k (Item(k,x)) with y (Item(k,y)). Get(k,y) simply retrieves the

value mapped to key k in the dictionary, or blocks until one is available. Note that

the guards conditions k1 == k2 critically provides the join of the keys between the

processes.

It may be tempting to try to implement Join-Patterns with guards, by “pushing”

the guard expression into the body of the Join-Pattern. For instance, the following

attempts to do this:

Item(k1,x) & Set(k2,y) = if k1 == k2

then Item(k,y)

else do { Item(k1,x)

; Set(k2,y) }

Item(k1,x) & Get(k2,y) = if k1 == k2

then do { y:= x

; Item(k1,x) }

else do { Item(k1,x)

; Get(k2,y) }

Specifically, we attempt to implement the concurrent dictionary via standard

Join-Patterns. The guard condition k1 == k2 is pushed into the respective join

bodies as if-statements. Note that if the guard conditions fail, we simply “return”

the join processes as though we have never triggered the Join-Pattern. There are

several problems to this approach. Firstly, we possibly test, re-execute and re-add

the same processes over and over again. Since processes are likely to be added

into queues, there is no way we can observe if each Get process have attempted to

match all Item processes. This execution model is essentially a busy-wait model of

concurrency and is highly inefficient because it simply waste away CPU computation
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time on meaningless queuing and dequeuing of processes. On the other hand, the

concurrent CHR semantics provides the systematic lazy goal-based search for such

multi-headed patterns which avoids such busy-wait cycles and can be executed in

parallel.

5.3.2 Join-Patterns with Propagation

Let’s take a second look at Table 5.2, the second Join-Pattern removes the item,

reads its content, and then “puts” the item back into the dictionary by call the

same process Item(k1,x). This can be inefficient simply because we have removed

Item(k1,x) when we trigger the Join-Pattern and later in the body re-inserted it

into the message store. Notice that if we haven’t removed the Item(k1,x) when

we triggered the Join-Pattern, we would have avoid the overheads of the delete and

insert operations from and into the message store. This motivates the introduction

of CHR style propagation (Section 2.2.4) into Join-Patterns as well.

Item(k1,x) & Set(k2,y) when k1 == k2 = Item(k,y)

Item(k1,x) \ Get(k2,y) when k1 == k2 = y:= x

Table 5.3: Concurrent Dictionary in Join-Patterns with Guards and Propagation

Table 5.3 reformulates the concurrent dictionary in Join-Patterns with Guards

and Propagation. Borrowing from CHR syntax, processes before the \will be prop-

agated (i.e. not removed from the message store) while processes after will be

simplified (i.e. removed from the message store) as usual.

Propagation also promotes better parallelism behaviour. For instance, consider

two threads running Get(k,y1) and Get(k,y2) in parallel attempting to match

Item(k,x). Since Item(k,x) is propagated on the second Join-Pattern, we can

practically trigger the two instances of the Join-Pattern in parallel (Item(k,x)

Get(k,v1) and Item(k,x) \Get(k,v2)).
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5.3.3 More Programming Examples

We present several more examples which exploits Join-Patterns with guards and

propagation.

Join Patterns as Bounded Atomic Transactions We demonstrate how with

Join-Patterns, we can model bounded atomic transactions. Transactions are bounded

because the number of elements in a Join-Pattern is fixed at compile-time.

A typical task in concurrent programming is to guarantee the atomic execution

of certain programs parts. Let’s consider our concurrent dictionary example from

Table 5.3 again. Suppose that we want to guarantee an atomic swap between two

dictionary mappings k1 and k2.

1 -- repeated definitions

2 Item(k,x) & Set(k,y) = Item(k,y)

3 Item(k,x) Get(k,y) = y:= x

4

5 -- failed atomic transfer attempt

6 swap k1 k2 = do { y1 <- newSync

7 ; Get(k1,y1)

8 ; v1 <- readSync y1

9 ; y2 <- newSync

10 ; Get(k2,y2)

11 ; v2 <- readSync y2

12 ; Set(k1,v2)

13 ; Set(k2,v1) }
14

15 -- atomic transfer via join patterns

16 event Swap(Async Int, Async Int, Async Int)

17 Item(k1,v1) & Item(k2,v2) & Swap(k1,k2) = do

18 { Item(k1,v2)

19 ; Item(k2,v1) }

Table 5.4: Atomic swap in concurrent dictionary

Table 5.4 shows a naive implementation which does not guarantee that the swap

happens atomically. The problem is that in between the join process calls in the body

of swap, the values retrieved from keys could have been updated by other concur-
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rently running processes before either Set(k1,v2) or Set(k2,v1) can be executed.

The problem is that join bodies are not executed atomically (as though a single

instantaneous operation), hence the correctness of the swap cannot be guaranteed.

Table 5.4 also illustrates the solution in Join-Patterns with guards: we declare a

new Swap join process and a new Join-Pattern that pairs a Swap(k1,k2) with two

matching Item join processes. The underlying CHR rewriting semantics guaran-

tees that join processes Swap(k1,k2), Item(k1,v1) and Item(k2,v2) are consumed

atomically, so even if the join body is not executed atomically, both key mappings

k1 and k2 are exclusively acquired by the swap join process.

1 event Think(Async Philo,Async Fork,Async Fork,Sync Bool)

2 event Fork(Async Fork)

3

4 Think(p,l,r,o) & Fork(l) & Fork(r) = (o := True)

5

6 philosopher p l r = do

7 { o <- newSync

8 ; Think(p,l,r,o)

9 ; threadDelay 100

10 ; v <- readSync o

11 ; Fork(l)

12 ; Fork(r)

13 ; philosopher p l r }

Table 5.5: Dining Philosophers

Similarly, we encode dining philosophers. See Table 5.5. Synchronous argument

o has a single purpose, in line 10, it is read simply to block the philosopher until

she/he has acquired her/his allocated forks. To avoid deadlocks, each philosopher

must atomically grab one fork to its left and one fork to its right. This property is

guaranteed by the Join-Pattern.

N-Way Synchronization Another typical programming pattern is n-way syn-

chronization. Several parties wait for each others arrival and then exchanges some

data. We can models this via n-headed Join-Patterns which contain a mix of asyn-
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chronous and synchronous arguments. For concreteness, let’s consider the Gossiping

girls example, where this feature is highly useful.

A number of girls initially know one distinct secret each. Each girl has access to

a phone which can be used to call another girl to share their secrets. Each time two

girls talk to each other they always exchange all secrets with each other (thus after

the phone call they both know all secrets they knew together before the phone call).

The girls can communicate only in pairs (no conference calls) but it is possible that

different pairs of girls talk concurrently.

1 -- two-girl calls

2 event GirlCall(Async GirlId,Async Secret,Sync Secret)

3

4 GirlCall(g1,s1,o1) & GirlCall(g2,s2,o2)

5 when notSubsets s1 s2 = do { let s = union s1 s2

6 ; o1 := s

7 ; o2 := s }
8

9 girl id curSecret = do

10 { s <- newSync

11 ; GirlCall(id,curSecret,s)

12 ; newSecret <- readSync s

13 ; girl id newSecret }
14

15 -- multi-girl calls

16 GirlCall(g1,s1,o1) \ GirlCall(g2,s2,o2)

17 when sALL SECRETS == s1 && notSubset s1 s2 = (o2 := s1)

18

19 GirlCall(g1,s1,o1) & GirlCall(g2,s2,o2)

20 when not (sALL SECRETS == s1) &&

21 not (sALL SECRETS == s2) &&

22 (notSubset s1 s2) = do { let s = union s1 s2

23 ; o1 := s

24 ; o2 := s }

Table 5.6: Gossiping Girls

The top part of Table 5.6 gives a solution where only two girls can call each

other. For brevity, we omit the (obvious) definitions of some primitive functions (For

instance, boolean check notSubset and set operation union). The guard notSubset
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s1 s2 holds iff s1 or s2 is not a subset of the other. Thus, each call leads to the

exchange of a new secret which guarantees that we eventually reach a state where

all girls know all secrets.

Let’s make the example more interesting by allowing girls who know all secrets

(checked via the guard sALL SECRETS == s1) to have simultaneous calls with girls

who don’t know all secrets yet. This ’multi-girl call’ variation makes use of propa-

gation. Girls who know all secrets are propagated and thus can be shared among

other girls who don’t know all secrets yet. The second Join-Pattern is copied from

above but we impose the stronger condition that both parties don’t know all secrets

yet.

Top to Bottom Join-Pattern Execution Order Our implementation always

tries Join-Patterns in top to bottom order as specified in the program text. Figure

1 event Get(Sync (Maybe Int))

2 event Put(Async Int)

3

4 Get(x) & Put(y) = (x := (Just y)) -- j1

5 Get(x) = (x := Nothing) -- j2

Table 5.7: Concurrent Optional Get

5.7 illustrates an example which is only possible if we match Get join process calls to

the Join-Patterns in top-to-bottom order. Basically, Join-Pattern j1 will be matched

if a Put(y) exists, during which we return just the value stored in the Put. We will

only match a Get join process call to j2 if no Put(y) calls are in the message store,

during which we return Nothing. Note that if we allow join process calls to match

Join-Patterns in any arbitrary order, we might have Get calls returning Nothing

even if there exist Put messages9.

We consider another example. The programmer can also exploit this execution

strategy to make a stack concurrent. Commonly, a stack is a strictly sequential data

9As a note, our ‖ G semantics (Chapter 3) allows such arbitrary ordered rule matching, but our
implementation picks strictly top-to-bottom ordering
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structure. Each Pop or Push accesses the top of the stack, so in case of concurrent

accesses we expect that they will be serialized. However, we argue that concurrent

pop and push operations can immediately consume each other without having to go

via the stack.

1 event Pop(Sync Int)

2 event Push(Async Int)

3 event Stack(Async [Int])

4

5 Push(x) & Stack(xs) = Stack(x:xs)

6 Pop(y) & Stack(x:xs) = do { y:= x

7 ; Stack(xs) }
8

9 Push(x) & Pop(y) = (y:= x)

Table 5.8: Concurrent Stack

Table 5.8 shows an encoding of this idea in our system. The first two Join-

Patterns are the standard pop and push operations. In cases where contention is

high, we can include the third Join-Pattern that applies if a push can be matched

against a pop. Thus, we can execute pops and pushes concurrently. Execute the

Join-Patterns in top-down order ensures that the actual stack operations are always

tried before our concurrent Push(x) & Pop(y) Join-Pattern is attempted. Our ex-

periments in Section 5.5 show that the concurrent stack version scales better with

the number of processor cores.

More on propagation in Join Patterns We consider another example which

demonstrate the usefulness of propagation in Join-Patterns. While propagated join

patterns promote better concurrency behaviour, because they can be shared among

concurrently executing threads, propagation can also be used to model exhaustive

processing of events.

Suppose we have multiple requests from clients which submit (asynchronous)

their requests via join processes (events). We process these requests via some back-

ground jobs, that is, asynchronous events. Table 5.9 gives a possible encoding using
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1 event Apply()

2 event Request(Async Client Id)

3

4 -- variant 1

5 Apply() Request(cid) = do { ...

6 -- eg send client data

7 -- to the server }
8

9 -- variant 2

10 Apply() & Request(cid) = do { ...

11 ; Apply() }
12

13 Apply() = return ()

Table 5.9: Iteration via Propagation

join patterns with propagation (variant 1). The propagated event Apply() in the

first join pattern guarantees that we exhaustively process requests. We could of

course avoid propagation (see variant 2). However, the propagation variant is more

efficient than first simplifying (removing) the call followed by invocation of the same

call again.

We can even invoke multiple Apply() calls to concurrently process requests. The

atomic rewriting semantics of join patterns guarantees that each request can only

be processed once.

To terminate processing in case there are no more requests (instead of suspend-

ing), we can exploit the top to bottom execution order of join patterns in our imple-

mentation. Under top to bottom execution, the second Join-Pattern will be matched

and triggered once we run out of requests.

5.4 A Goal-Based Execution Model for Join-Patterns

5.4.1 Overview of Goal-Based Execution

We consider the issue of how to execute Join-Patterns with guards and propagation

efficiently. The idea is to treat join processes calls as goals to be executed the same
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way as CHR goals are executed in the CHR ‖ G semantics (Chapter 3), only we will

be matching active join processes to Join-Patterns and looking for partner processes

in the message store. The high-level level structure of the execution algorithm is as

follows:

For each active join processes call j, we match j to each Join-Pattern, h1 & ...

& hp \hm & ... & hn when g = body. After which, for each Join-Pattern head

hi that j matches with, we perform the following steps:

1. Search (in the message store) for matching copies of the remaining Join-Pattern

heads, i.e. h1,...,hp,hm,...,hn − hi.

2. If the guard g holds under the matching substitution:

(a) Atomically check all h1,...,hp,hm,...,hn are in the message store, and

delete from the message store the simplified heads (hm,...,hn).

(b) Execute Join-Pattern body body under the matching substitution. If

active process j is not deleted, proceed with the next step, otherwise we

are done.

3. Otherwise, we try the next match Join-Pattern head match hi, or try to match

j with heads of another Join-Pattern. If all are tried, we are done.

This is essentially the same as the execution strategy we have detailed in Section

3.2. Our guards are assumed to be side-effect free. Hence, the guard check can be

performed outside the atomically statement.

5.4.2 Goal Execution Example

We illustrate in detail goal-based execution of Join-Patterns via an example. In

particular, we focus on the interplay between join process call (goal) and program

execution. For brevity, we assume that the search for matching elements of a Join-
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1 Item(k,x) & Set(k,y) = Item(k,y) -- j1

2 Item(k,x) \ Get(k,y) = y:= x -- j2

3

4 main = do Item(k,1)

5 forkIO (do Set(k,2)

6 x <- newSync

7 Get(k,x)

8 v1 <- readSync x)

9 forkIO (do Set(k,3)

10 y <- newSync

11 Get(k,y)

12 v2 <- readSync y)

Table 5.10: Goal Execution Example

Pattern happens instantaneously10. Figure 5.5 shows the individual execution steps

of the concurrent dictionary, shown again in Table 5.10. We will refer to goal threads

as the computation threads that execute join process goal matching, while program

threads as the computation threads that execute actual program codes, which in-

cludes the Join-Pattern bodies. Program and goal threads run concurrently. We

consider a specific interleaving execution. On the left we show the evolution of the

message store. The solid arrows refer to program threads whereas the dotted arrows

refer to goal threads. Goals are written in italics to distinguish them from program

text.

Execution of main proceeds as follows:

1. Execution of Item(k,1) activates the goal Item(k , 1 ). This goal thread im-

mediately terminates with no effect because there are no partners yet to fire a

Join-Pattern.

2. Next, we spawn off two program threads. Execution of their first statement

yields two goal threads Set(k , 2 ) and Set(k , 3 ). Goal Set(k , 2 ) in combination

with partner Item(k,1) triggers the Join-Pattern j1. The program thread

resulting from execution of the body is labeled with the events which triggered

10In practice, multiset matching is a computationally intensive operation and would obviously
not be instantaneous.
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1. {Item(k,1)} Item(k , 1 ) Item(k,1)oo �� &&MMMMMMMMMM
2. {Item(k,1),Set(k,2),Set(k,3)} Set(k, 2)

Item(k,1)&Set(k,2)�� Set(k,2)oo

��

Set(k,3) //
��

Set(k, 3)

3. {Set(k,3)} Item(k,2)

��4. {Set(k,3),Get(k,y)} Get(k,y) //

��

Get(k, y)

5. {Item(k,2),Set(k,3),Get(k,y)} Item(k , 2 )

Item(k,2)&Set(k,3)��
6. {Item(k,3),Get(k,y)} Item(k,3)��
7. {Item(k,3),Get(k,y)} Item(k , 3 )

Item(k,3)\Get(k,y)��
8. {Item(k,3)} y:=3 v2=3

9. {Item(k,3),Get(k,x)} Get(k, x)

Item(k,3)\Get(k,x)�� Get(k,x)oo ��
10. {Item(k,3)} x:=3 v1=3

Figure 5.5: Goal and Program Execution Steps

the join pattern. Here, Item(k,1)&Set(k,3). Goal Set(k , 3 ) terminates with

no effect.

3. We show an intermediate execution step. Goal Set(k , 2 ) has been removed

from the store because of the second step. Execution of Item(k,2) yields a

new goal thread Item(k , 2 ). This thread will only become active in step 5.

4. The second program thread advances. We omit newSync for brevity. The goal

thread Get(k , y) immediately terminates because of missing partners.

5. The goal thread Item(k , 2 ) that resulted from the execution of the Join-Pattern

body in step 2 becomes active. The partner Set(k,3) is selected which leads

to the firing of Join-Pattern j1.
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m ::= proc(v) Event
p, s ::= proc(x) Pattern
e ::= () | proc(v) | proc(x) Expressions

| e; e | fork (e)
φ ::= [x1 7→ v1, ..., xk 7→ vk] Substitution
g ::= True | False | x > y | ... Boolean guard
jp ::= p1&...&pk\s1&...&sl Join pattern
jd ::= jp when g = e Join definition
P ::= {e1, ..., en} Program threads
G ::= {m1, ...,mk} Goal threads
S ::= {m1, ...,mk} Store

Figure 5.6: Syntax and Notations

6. Execution of the right-hand side yields the goal thread Item(k , 3 ).

7. This goal then unblocks the second program thread by triggering Join-Pattern

j2. After firing, the goal thread Item(k , 2 ) is still active because it belongs

to a propagated join pattern part. However, no further partner are available.

Hence, the goal terminates with no effect.

8. Execution of the right-hand side y:=3 unblocks v2 <- readSync y.

9. The first program thread reaches Get(k,x). The goal thread Get(k , x ) fires

the second join pattern.

10. We show the effect of the unblocked v1<-readSync x after execution of x:=3.

5.4.3 Join-Pattern Goal-Based Semantics

Figure 5.6 shows the syntax and notations we shall be using. In Figure 5.7, we

formalize the goal-based execution scheme for a join pattern language extended

with guards and propagation. Pure propagation is not supported (i.e. all Join-

Patterns must have an least one simplified head). For brevity, we ignore synchronous

arguments and only consider a simple expression language with events, sequencing

and forking of new program threads. We assume that () terminates an expression.
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(Simp)

p1&...&pk\s1&...&sl when g = e m ∈ G G ′ = G − {m}

φ(p1), ..., φ(pk), φ(s1), ..., φ(sl) ∈ S φ(g) is true and φ(si) = m

for some i ∈ {1, ..., l} and some substitution φ

P ′ = P ⊎ {φ(e)} S ′ = S − {φ(s1), ..., φ(sl)}

(P ,G,S) → (P ′,G ′,S ′)

(Prop)

p1&...&pk\s1&...&sl when g = e m ∈ G

φ(p1), ..., φ(pk), φ(s1), ..., φ(sl) ∈ S φ(g) is true and φ(pi) = m

for some i ∈ {1, ..., k} and some substitution φ

P ′ = P ⊎ {φ(e)} S ′ = S − {φ(s1), ..., φ(sl)}

(P ,G,S) → (P ′,G,S ′)

(Drop)
G = G ′ ⊎ {m}

(P ,G,S) → (P ,G ′,S)

(Evt)
P = P ′ ⊎ {proc(v); e} G ′ = G ⊎ {proc(v)} S ′ = S ⊎ {proc(v)}

(P ,G,S) → (P ′ ⊎ {e},G ′,S ′)

(Fork)
P = P ′ ⊎ {fork (e1); e2} P ′′ = P ′ ⊎ {e1, e2}

(P ,G,S) → (P ′′,G,S)

(Unit)
P = P ′ ⊎ {()}

(P ,G,S) → (P ′,G,S)

Figure 5.7: Goal-Based Operational Semantics

We describe the meaning of programs in terms of a small-step semantics among

configurations (P,G,S) where P denotes the set of program threads, G denotes the

set of goal threads and S denotes the set of stored events. Our sets are multisets

and we write ∈ to denote member-ship test, ⊎ to denote multiset union and − to

denote multiset difference.

Evaluation of an expression e starts in the initial configuration ({e}, {}, {}).

Reduction rules simulate an interleaved execution of program and goal threads.

They are applied in top to bottom order.

Rules (Simp) and (Prop) cover application of a join definition based on a given

goal. For both cases, simplified events in a join pattern are removed from the store
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and the join body becomes a new program thread. The difference is that in rule

(Simp) the goal is simplified, i.e. the goal is removed from G. Rule (Prop) propagates

the goal, i.e. the goal store remains unchanged. Propagated goals can lead to further

join definition execution. Hence, they are not removed.

In case goal m could not trigger any join pattern, we drop the goal (thread).

See rule (Drop) which only applies if rules (Prop) or (Simp) are not applicable.

Exhaustive firings of join patterns when dropping goals is still guaranteed. If a

complete match with the join pattern exists, the (previously) missing partners will

act as goals and trigger the join pattern.

The (implementation) advantage of dropping goals is that we won’t waste (sys-

tem) resources. For example, consider the stack example from an earlier section. We

assume that a large number of concurrent Pop operations, and no other operation

such as Push, tries to access the stack. Hence, the following join definition is only

relevant.

Pop(y) & Stack(x:xs) = do { y:= x

; stack(xs) }

Each Pop operation becomes initially a goal (active event) and each goal runs

in its own thread and tries to fire the join pattern Pop(y) & Stack(x:xs). But

only one Pop goal at a time can access the stack. Hence, many goals will fail to fire

the above join pattern. Instead of wastefully retrying (leading possibly to another

failure), we simply drop each failed Pop goal. Once the right-hand side of the above

join definition is executed the Stack call becomes active (i.e. acts as a goal) and

then can select its partner among the ’failed’ Pops in the store.

Rules (Evt), (Fork) and (Unit) describe single-step execution of a random pro-

gram thread. In each single step, we perform one of the following. An (asynchronous)

event is stored and a new goal is generated (Evt). A new program thread is forked

(Fork). A program thread is terminated (Unit).
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5.4.4 Implementation Issues

We examine some issues of our Join-Patterns with guards and propagation imple-

mentation.

Asynchronous and Synchronous Join Process Arguments Join Processes

with only asynchronous arguments are non-blocking. After execution of the event

(join process), evaluation continues as normal. Technically, calls with synchronous

arguments are also non-blocking. However, we can impose a blocking mechanism by

waiting until the synchronous argument is bound.

For example, consider a variant of the earlier example from Table 5.1. The

commented out parts will be considered later.

event put(Async Int)

event get(Sync Int)

put(x) & get(y) = y:= x

-- y:= 2 -- L1

prog = do { put(3)

; y <- newSync

; get(y)

; v <- readSync y

-- v2 <- readSync y -- L2

; return v }

We implement synchronized variables via Haskell’s STM variables. We basically use

them as a one-place buffer which can either be full or empty. Function readSync

creates an empty buffer which can be filled via the statement := (assignment).

Function readSync blocks until the buffer is full.
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Our current (library-based) implementation, does not impose any restriction on

the use of := and readSync. This possible leads to ’bogus’ code. Suppose we

uncomment location L2. The read at location L2 will be blocked forever unless

we also uncomment location L1. The fact that we use a synchronization variable

twice is a questionable feature. We could reject such ’bogus’ uses by imposing some

(type) conditions. For instance, we could guarantee the ’one-time’ reading and

writing from/to a synchronization variable via a linear type system. Enforcing such

conditions is left for future work.

Out of Order Join Pattern Execution Join patterns are tried in top to bottom

order as specified by the program text. But it is possible that join patterns are

executed out of order in case of contention among concurrent threads. Consider a

variant of an earlier example, the concurrent dictionary.

Item(k,x) & Set(k,y) = Item(k,y) -- (Set)

Set(k,y) = Item(k,y) -- (Default)

The last (default) pattern is only meant to be applied in case there is no item of key

k in the store yet. We start in the initial configuration

({} , { Set(k,1),Set(k,2) }, { Item(k,3),Set(k,1),Set(k,2) })

The program thread is empty and there are two goal threads Set(k,1) and Set(k,2).

Here is a possible reduction sequence where we underline each goal.

({}, {Set(k,1),Set(k,2)}, {Item(k,3),Set(k,1),Set(k,2)})

→Simp ({Item(k,1)}, {Set(k,2)}, {Set(k,2)})

→Simp ({Item(k,1),Item(k,2)}, {}, {})

→2∗Evt ({}, {Item(k,1),Item(k,2)}, {Item(k,1),Item(k,2)})

Goal Set(k,1) executes rule (Simp) on the first join pattern. The program resulting

thread Item(k,1) will be activated as a goal only later. Therefore, goal Set(k,2)
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executes the last join pattern which yields another program thread Item(k,2). Fi-

nally, both program threads yield new goal threads.

This result is somewhat unexpected. The programmer most likely expected the

the following reduction.

({}, {Set(k,1),Set(k,2)}, {Item(k,3),Set(k,1),Set(k,2)})

→Simp ({Item(k,2)}, {Set(k,1)}, {Set(k,1)})

→Call ({}, {Set(k,1),Item(k,2)}, {Set(k,1),Item(k,2)})

→Simp ({Item(k,1)}, {Item(k,2)}, {})

→Call ({}, {Item(k,2),Item(k,1)}, {Item(k,1)})

Execution of goal Set(k,2) is immediately followed by the activation of the resulting

program thread which then yields goal Item(k,2) (which is also stored). Then,

goal Set(k,1) fires the first join pattern. We omit the symmetric case where goal

Set(k,1) executes before Set(k,2).

We believe the out of order execution of join patterns in case of contention is

acceptable. To guarantee a strict top to bottom order execution of join pattern

(i.e. ruling out the first reduction sequence) some significant implementation (syn-

chronization) effort is required. For example, would need to arbitrarily delay goal

execution, or execute the left-hand side and right-hand side of a join pattern defini-

tion atomically. Both choices are not acceptable in our opinion.

5.5 Experiment Results: Join-Patterns with Guards

We conducted experiments of our parallel join implementation with a range of exam-

ples which uses Join-Pattern with guards and/or propagation. These set of exam-

ples represent a collection of common parallel programming problems widely found

in the literature of parallel programming, each of which involves various forms of

synchronization between parallel operations that as a whole are governed certain
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Main Scalability Test

Propagation and Scalability

Figure 5.8: Experiment Results

rules specified in the form of Join-Patterns. Experiments are ran on a quad-core

Intel Xeon 1.86 GHz with 1GB memory, we were using Glasgow Haskell Compiler

(GHC) 6.10.1 . Results shown are the relative performance of running 2-4 cores

against running on a single core, and are averaged over several test runs. We briefly

describe each join program in this benchmark, while details and implementations

can be found at http://code.haskell.org/parallel-join
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• UnionFind Adopted from [20]. Parallelize union find implementations a con-

current data structure which maintains union relationship among disjoint sets.

In experiments, we test an instance where 8 parallel union operations attempts

to unite 9 disjoint sets of size 200.

• BaggerProblem The bagger problem simulates a packing problem where

n bags are packed with objects of three sizes and larger objects cannot be

stacked on smaller ones. In experiments, we test an instance where 1000 items

of various sizes are packed into 40 bags.

• StackConc/StackSeq Two Implementation of a stack with our join patterns.

StackConc is shown in Table 5.8, while StackSeq is a variant with the last join

pattern removed In experiments, we test an instance of 500 parallel push and

pop operations.

• GossipGirls Shown in Table 5.6, the gossiping girls problem simulates con-

current processes (girls) communicating and exchanging information, until all

girls have the full set of information. In experiments, we test an instance where

50 girls start with mutable disjoint sets of secrets to tell.

• SantaXn Adopted from [57], the Santa Claus problem is an exercise of con-

currency, where Santa must synchronize with either 3 of 10 elves to discuss toy

designs, or all 9 reindeers to deliver toys, with reindeers having higher priority.

In experiments, we test an instance where Santa must make 80 deliveries or

toy discussions (SantaX1). We also investigated a variant where we have 5

Santa Claus’ (SantaX5).

• PotatoShackXn A simulation of a fast-food restaurant serving fries or baked

potatoes. The problem consist of concurrent processes, running either cus-

tomer, cook or kitchen helper routines which must communicate and synchro-

nize with each other. In experiments, we test an instance where 24 customers
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are served by 1 cook and 1 kitchen helper (PotatoShackX1). We also investi-

gated a variant where we have 5 cooks and 5 helpers (PotatoShackX5).

• MusicalChairs A simulation of the game of musical chairs. The game starts

with n + 1 players and n chairs and continues until only one player is left. In

experiments, we test an instance where n is 30.

Figure 5.8 show our main experimental results. Main Scalability Tests il-

lustrates the relative speed up in performances, and the scalability of each pro-

gram up to 4 processors. As shown, the test programs experience consistent speed

up in performance as we increase number of processors. In some cases (SantaX5,

PotatoShackX5), we see significant super-linear speed ups. Experiments SantaX1

and PotatoShackX1 show that super-linear speed ups are largely attributed to

running ’output’ processes in parallel (processes that produces the actual outputs

measured, eg. Santa Claus and the cooks). In these experiments (SantaX1 and

PotatoShackX1) we only have one such ’output’ process, thus we see a significant

drop in such super-linear speed up behavior.

Discussed in Section 5.4.4, StackConc shows high scalability as we allow pairing

of parallel push and pop operations. For StackSeq, since we disallow this (remove

the last join pattern of Table 5.8), all push and pop operations must synchronize on

a single ’Stack’ event, hence we do not get much speed up.

We also investigated on the empirical repercussions of not using propagation

where possible. In Propagation & Scalability, we see the programs Union Find,

Musical Chairs and Potato Shack along with 3 respective variants which do not

use propagation (No-Prop). These three examples are chosen because they heavily

relied on propagated patterns. As seen in the results, the no propagation variants

scale worst in general, and for the case of Musical Chairs, propagation is critical for

scalability.
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To summarize, our experiments show that programs implemented in our join

pattern implementation scale relatively well and propagation is a useful feature for

parallel programming.



Chapter 6

Related Works

6.1 Existing CHR Operational Semantics and Op-

timizations

While the abstract CHR semantics [19] formally defines the behaviour of the CHR

language, existing implementations are derived from refined operational semantics

[9, 48, 33] which provide more precise formalism of CHR rule execution strategies.

The refined CHR operational semantics [9] describes the compilation and execution

of CHR programs in terms of the execution of CHR goal constraints which trigger

rule instances. Our concurrent CHR operational semantics (Section 3.3) essentially

generalizes from this approach, extending it’s semantics to allow concurrent execu-

tion of CHR goals. [33] introduces Constraint Handling Rules with user-definable

rule priorities (CHRrp) and presents a CHR goal-based operational semantics which

provides user specified control over the ordering of CHR goal execution. In [58], the

authors explored an extension of the CHR semantics with negated rule-heads. This

allows the user to specify in CHR rule-heads negated constraints, which triggers

rule firing in the absence of the specified constraints (from the store). Recent works

in [12] revisits the formal definitions CHR state equivalence and provides a more

simplified formulation of the CHR operational semantics.

164
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Optimized compilation and analysis of CHR programs have been well studied

over the years. [9, 27, 48] highlights a range of standard optimizations and analysis

techniques for CHR goal-based compilations, from constraint indexing, late storage

to optimal join-ordering. In Section 3.5.4, we have identified the optimizations which

are still applicable in the parallel execution context.

Our work presented here complements our earlier works on the parallel CHR

execution on a shared memory multi-core architecture [34, 53]. Prior to our previous

work, there has been no research into the implementation of parallel execution of

CHR rewritings. Studies in [21] specifically investigated into parallelizing the Union-

Find problem in CHR via confluence analysis, while we provide empirical evidence

here (Section 4.6) that proves that the parallelized formulation of Union find in CHR

scales with multicore execution.

6.2 From Sequential Execution to Concurrent Ex-

ecution

Works in [44, 43] introduces an extension to Haskell GHC in the form of a primitive

unreadTVar that allows the programmer to explicitly remove memory locations from

STM transactional logs. Similar to atomic rule-head verification in our context, the

motivation of providing this new primitive is to allow programmers to “trim” STM

transactions and to remove false data dependencies in a general way. As such,

this proposed extension of Haskell GHC can provide the basis for an alternative

implementation of our parallel CHR system. Experiment results in [44], includes

scalability analysis of our concurrent CHR implementation and provides third party

confirmation of the scalability of our approach.

Our works in [54] compares the performance of Haskell GHC’s various concur-

rency primitives (MVar, STM and compare-and-swap IORef). It has provided the

empirical evidence that helped us conclude that using a mix between compare-and-



CHAPTER 6. RELATED WORKS 166

Parallel Matching (Match)��
Parallel Conflict Resolution (CR)��
Parallel Rule Application (Act)

jj
Figure 6.1: Parallel Production Rule Execution Cycles

swap IORef for list traversal and physical delinking, while STM for multi-set logical

deletes provides a highly competitive implementation of CHR multi-set rewriting.

6.3 Parallel Production Rule Systems

Parallel execution models of forward chaining production rule based languages (eg.

OPS5 [16]) have been widely studied in the context of production rule systems. A

production rule system is defined by a set of multi-headed production rules (analo-

gous to CHR rules) and a set of assertions (analogous to the CHR store). Production

rule systems are richer than the CHR language, consisting of user definable execu-

tion strategies and negated rule heads. This makes parallelizing production rule

execution extremely difficult, because rule application is not monotonic (rules may

not be applied in a larger context). As such, many previous works in parallel produc-

tion rule systems focuses on efficient means of maintaining correctness of parallel

rule execution (eg. data dependency analysis [28], sequential to parallel program

transformation [22]), with respect to such user specified execution strategies. These

works can be classified under two approaches, namely synchronous and asynchronous

parallel production systems.

For synchronous parallel production systems (eg. UMPOPS [24]), multiple pro-

cessors/threads run in parallel. They are synchronized by execution cycles of the

production systems. Figure 6.1 illustrates the production cycle of a typical produc-
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tion rule system, consisting of three execution phases. In the (Match) phase, all

rule matches are computed. Conflict resolution (CR) involves filtering out matches

that do not conform to the user specified rule execution strategy, while (Act) ap-

plies the rule matches that remains (known as the eligible set) after the (CR) phase.

By synchronizing parallel rule execution in production cycles, a larger class of user

specified execution strategies can be supported since execution is staged.

Matching in synchronous production rule systems often use some variant of the

RETE network [15]. RETE is a incremental matching algorithm where matching is

done eagerly (data driven) in that each newly added assertion (constraint in CHR

context) triggers computation of all it’s possible matches to rule heads. Figure 6.2

illustrates a RETE network (acyclic graph), described in CHR context. Root node is

the entrance where new constraints are added. Intermediate nodes with single output

edges are known as alpha nodes. Intermediate nodes with two output edges are beta

nodes, representing joins between alpha nodes. Each alpha node is associated with

a set of constraint matching it’s pattern, while a beta node is associated with a set

of partial/complete matches. Parallel implementation of RETE [37] allows distinct

parts of the network to be computed in parallel.

The most distinct characteristic of RETE is that partial matches are computed

and stored. This and the eager nature of RETE matching is suitable for produc-

tion rule systems as assertions (constraints) are propagated (not deleted) by default.

Hence computing all matches rarely result to redundancy. Traditional CHR systems

do not advocate this eager matching scheme because doing so results to many redun-

dancies, due to overlapping simplified matching heads. Eager matching algorithms

is also proved in [8] to have a larger asymtoptic worst-case space complexity than

lazy matching algorithms.

In [40], the matching algorithm TREAT is proposed. TREAT is similar to RETE,

except it does not store partial matches. TREAT performs better than RETE if the

overhead of maintaining and storing partial matches outweighs that of re-computing
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r1 @ A(x)\B(x), C(y) ⇐⇒ D(x, y) {A(1), A(2), B(1), B(2), C(3)}
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M1 = {A(1), A(2)} M2 = {B(1), B(2)} M3 = {C(3)}
M4 = {{A(1), B(1)}, {A(2), B(2)}}
M5 = {{A(1), B(1), C(3)}, {A(2), B(2), C(3)}}

Figure 6.2: Example of a RETE network, in CHR context

partial matches.

Asynchronous parallel production rule systems (eg. Swarm [22], CREL [41])

introduces parallel rule execution via asynchronously running processor/threads.

In such systems, rules can fire asynchronously (not synchronized by production

cycles), hence enforcing execution strategies is more difficult and limited. Similar to

implementations of goal based CHR semantics rule matching is such systems often

use a variant of the LEAPS [8] lazy matching algorithm.

Staging executions in synchronous parallel production rule systems allows for

flexibility in imposing execution strategies, but at a cost. In [42], synchronous

execution of UMPOPS production rule system is shown to be less efficient than

asynchronous execution. Hence it is clear that synchronous systems will only be

necessary if we wish to impose some form of execution strategies on top of the

abstract CHR semantics (eg. rule-priority, refined operational semantics). We are



CHAPTER 6. RELATED WORKS 169

interested in concurrent CHR semantics on the abstract CHR semantics. It’s non-

determinism and monotonicity property provides us with the flexibility to avoid

executing threads in strict staging cycles. Thus our approach is very similar to

asynchronous parallel production rule systems.

6.4 Join Pattern Guard Extensions

Join-calculus have been widely studied in various context. There are a number of

existing implementations of join-pattern language extensions based on mainstream

programming languages. In [5], the authors briefly mentioned a prototype extension

of Polyphonic C# with guarded join-patterns. This approach does not scale well

as it uses a simple and naively way of triggering guarded join-patterns: sequential

and exhaustive combinatorial search for all possible join-pattern matchings. Library

extensions that introduces join-patterns have also been studied. [46] introduces

join-patterns to C#, while [49] to Haskell, both by means of library extensions.

Library extensions are extremely versatile and convinent for prototyping (no external

compiler needed), but are normally not as efficient as highly optimized language

extensions. Mentioned in [49], this join-pattern library extension to Haskell supports

a limited class of guarded join-patterns: localized guard constraints on a single join-

pattern head (message). Unfortunately, this is highly restrictive and does not allow

selectivity of combinations between join pattern heads (messages).

Other extensions of join-patterns have been explored in [35, 36, 36, 25]. [35,

36] introduces an extension of join-patterns (in JoCaml) with ML style pattern

matching, via a source (join-patterns with pattern matching) to source (basic join-

pattern) compilation scheme. Even though not mentioned in the paper, we believe

that the compilation scheme described, supports a limited class of guarded join-

patterns similar to [49], but also does not address efficient compilation of guarded

join-patterns in general. [25] extends the language Scala with join-patterns via
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extensible pattern matching facilities of Scala, while also attempting to integrate

Erlang style actor programming into join-patterns.



Chapter 7

Conclusion And Future Works

7.1 Conclusion

Constraint Handling Rules (CHR) is a concurrent committed choice rule based pro-

gramming language. It’s semantics essentially involves multi-set rewriting over a

multi-set of constraints. This computational model is highly concurrent as theo-

retically rewriting steps over non-overlapping multi-sets of constraints can execute

concurrently.

In this thesis, we study the parallel execution of Constraint Handling Rules

(CHR). Our work here can be classified into three main areas:

Concurrent Goal-based Semantics We introduced a concurrent goal based se-

mantics (‖ G semantics) for Constraint Handling Rules (CHR) (Chapter 3). This

concurrent semantics describes concurrent execution of CHR goals and the execution

of CHR rewritings in parallel. Specifically, we make the following contributions:

• We formally define the concurrent CHR goal-based semantics (Section 3.3).

• We identify the main issues which makes the formalism of the ‖ G semantics

non-trivial (Section 3.4).
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• We provide a formal correspondence results between the ‖ G semantics and

the abstract CHR semantics (Section 3.5, A.1 and A.2)

Parallel Implementation of CHR Rewriting The ‖ G semantics provides the

semantic foundation of our parallel CHR system (Chapter 4). Empirical results

show that this implementation executes CHR multiset rewritings in parallel and

scales with the number of CPU cores executing the parallel solver. Specifically, our

contributions are as follows:

• We identify the main challenges (Section 4.4) to implement a parallel CHR

rewrite system, which is practical and can exploit multicore architecture.

• We implement a parallel CHR system in Haskell GHC, based on our ‖ G se-

mantics (Section 4.5).

• We provide in-depth experiment results (Section 4.6) to show that our parallel

CHR system scales and that our listed optimizations for parallelism are crucial

for scalability.

Join-Pattern with Guards and Propagation We introduce a unique execution

model for Join-Patterns with Guards, based on our parallel CHR execution model.

This provides a possible solution to the known problem of efficient execution of Join-

Patterns with Guards. This represents a non-trivial application of our concurrent

CHR goal-based semantics. Specifically, our contributions here are as follows:

• We introduce and motivate Join-Patterns with guards and propagation by

means of an array of examples. (Section 5.3)

• We formally specify our concurrent goal-based execution model for Join-Pattern

with Guards and propagation (Section 5.4)

• We implemented a prototype system in Haskell GHC and provide basic exper-

iment results to illustrate the scalability of this approach (Section 5.5).
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7.2 Future Works

There are several directions of future works which we wish to pursue. Similarly, we

will list these works in the following three areas of study:

Concurrent Goal-based Semantics In [32], more explicit execution control

strategies are explored for sequential goal-based CHR execution. For instance, Con-

straint Handling Rules with user definable priorities were studied and the authors

provided strong motivation for that extension in the CHR language. Our works

in parallel goal execution (Section 4.4.3) also encounters the need for such execu-

tion control strategies, thus it will be beneficial to investigate how this work can be

adapted for the parallel CHR goal execution context.

In our works here, we make no attempt to define the correspondence with the

refined CHR operational semantics [9], which describes sequential CHR goal-based

execution. An interesting future work is to explore the possibility (and feasibility) of

defining a parallel CHR execution model that has a correspondence with the refined

CHR operational semantics. The main challenge of this work will be to identify the

restrictions we need on concurrent goal-based execution and identify the conditions

where concurrent goals are free to execute asynchronously.

Parallel Implementation of CHR Rewriting Works in [44] introduces a new

primitive operation in the Haskell STM library, allowing the programmer to explic-

itly “trim” transactional logs of STM transactions. This can provide the basis of an

alternative implementation to our current parallel CHR system, which uses atomic

rule-head verification (Section 4.5.4), with the latter highly likely to be a simpler

implementation. Empirical results will be another focus of this future works, to

support scalability analysis of this approach.

While results in Section 4.7 do show that our prototype implementation is still

far from industrial strength, using CHR as a declarative high-level concurrency ab-
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straction allows the programmer to implicitly write scalable parallel applications,

without the hassle of hand-coding complex concurrency synchronization routines.

Yet this will not be without performance over-heads, hence one of our future works

will be to reduce such over-heads to a more reasonable level where parallel multiset

rewrite in CHR can provide programmers with high-level concurrency abstractions

and still function competitively against handcoded parallel programs.

Works in [39] investigates into the theoretical scalability of the preflow-push al-

gorithm implemented in CHR, while [20] does the same for the union find algorithm.

An interesting course of future work will be to correlate such theoretical works with

practical findings of our parallel CHR implementation. Such studies could possibly

yield interesting insights on the behaviour of parallel programs implemented in CHR

and aid us in improving the performance or usability of future implementations.

Our studies here are so far confined to the domain of symmetric shared memory

processor (SMP) frameworks. A natural extension to our work will be to explore

parallel CHR rewritings in the area of distributed programming. This will involve

exploring new related issues of parallelism, which is not visible (or inconsequential)

in shared memory architectures. For instance, when dealing with shared memory,

we can practically assume that all execution threads have access to all constraints

in the constraint store (a global view). In a distributed framework, CHR goal

execution threads can be distributed through out a network consisting of multiple

computation nodes and need not be homogeneous1. Similarly, we may have to

account for the possibility of having the constraint store distributed between different

computation nodes as well. The introduces a new problem which is to identify an

optimal goal/store constraint distribution that maximize data proximity (relevant

constraints are kept local to goal execution threads that match them frequently)

and minimize data migration (stored constraints are transfered between nodes less

frequently). Future works in this direction will likely to be related to distributed

1Meaning that goal execution threads in different nodes may be tasked to executed different
matching routines. For instance, match distinct rule occurrences
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rule-base systems [45] and distributed constraint solving [3].

Join-Patterns with Guards and Propagation Our work to introduce CHR

parallel multiset rewritings into Join-Patterns is still relatively preliminary. In fu-

ture, we intend to provide formal correspondence results between our concurrent

goal-based Join-Pattern execution model, and Join-Calculus. Our current imple-

mentation of Join-Patterns with Guards and Propagation is still a prototype and

more implementation work (e.g.. introducing CHR optimizations, refining the lan-

guage design) is still required.

One interesting direction of exploration is to investigate if a composite compila-

tion scheme can be derived. In other words, we compile Join-Patterns with guards

and propagation into CHR goal-based occurrences, while standard Join-Patterns

are compiled with the standard compilation techniques. Issues like termination or

exhaustiveness of join process execution must be re-addressed in such a composite

compilation scheme.
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[12] H. Betz F. Raiser and T. Frühwirth. Equivalence of chr states revisited. CHR
’09: Proc. 6th Workshop on Constraint Handling Rules, Pasadena, California,
pages 33–48, 2009.

[13] F. Le Fessant and L. Maranget. Compiling join-patterns. In HLCL ’98: High-
Level Concurrent Languages, volume 16(3) of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, Sept. 1998., 1998.

[14] Fabrice Le Fessant and Luc Maranget. Compiling join-patterns. Electr. Notes
Theor. Comput. Sci., 16(3), 1998.

[15] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artif. Intell., 19(1):17–37, 1982.

[16] Charles Forgy and John P. McDermott. Ops, a domain-independent production
system language. In IJCAI, pages 933–939, 1977.

[17] C. Fournet and G. Gonthier. The join calculus: A language for distributed
mobile programming. In Applied Semantics, International Summer School,
APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures,
pages 268–332. Springer-Verlag, 2002.

[18] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-calculus.
In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 372–385, New York, NY, USA,
1996. ACM.
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Appendix A

Proofs

In this section, we provide the proofs of the Lemmas and Theorems discussed in
this paper. Because many of our proofs rely on inductive steps on the derivations,
we define k-step derivations to facilitate the proof mechanisms. Figure A.1 shows

k-step derivations of the sequential goal-based derivations
δ

G and the concurrent

goal-based derivations
δ

||G.

A.1 Proof of Correspondence of Derivations

Theorem 2 (Correspondence of Sequential Derivations) For any reachable
CHR state 〈G | Sn〉, CHR state 〈G′ | Sn′〉 and CHR Program P,

if 〈G | Sn〉 
∗
G 〈G′ | Sn′〉

then (NoIds(G) ⊎DropIds(Sn)) = (NoIds(G′) ⊎DropIds(Sn′)) ∨
(NoIds(G) ⊎DropIds(Sn)) 

∗
A (NoIds(G′) ⊎DropIds(Sn′))

where NoIds = {c | c ∈ G, c is a CHR constraint} ⊎ {e | e ∈ G, e is an equation}

Proof: We prove that for all finite n and reachable states 〈G | Sn〉, 〈G′ |
Sn′〉, 〈G | Sn〉 

n
G 〈G′ | Sn′〉 either yields equivalent abstract stores or

corresponds to some abstract semantics derivation. We prove by induc-
tion on the derivation steps n. Showing that goal-based derivation of
any finite n steps satisfying one of the following conditions:

• (C1) (NoIds(G) ⊎DropIds(Sn)) = (NoIds(G′) ⊎DropIds(Sn′))

• (C2) (NoIds(G)⊎DropIds(Sn)) 
∗
A (NoIds(G′)⊎DropIds(Sn′))

We have the following axioms, by definition of the functions NoIds and
DropIds, for any goals G or store Sn:

• (a1) For any equation e, NoIds({e} ⊎G) = {e} ⊎NoIds(G)

• (a2) For any equation e, DropIds({e}∪Sn) = {e}⊎DropIds(Sn)

• (a3) For any numbered constraint c#i, NoIds({c#i}⊎G) = NoIds(G)
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Sequential Goal-based Semantics k-closure

(k-Step) σ 
0
G σ

σ
δ

G σ
′ σ′


k
G σ

′′

σ 
k+1
G σ′′

Concurrent Goal-based Semantics k-closure

(k-Step) σ 
0
||G σ

σ
δ

||G σ
′ σ′


k
||G σ

′′

σ 
k+1
||G σ′′

Figure A.1: k-closure derivation steps

• (a4) For any numbered constraint c#i, DropIds({c#i} ∪ Sn) =
{c} ⊎DropIds(Sn)

• (a5) For any CHR constraint c, NoIds({c}⊎G) = {c}⊎NoIds(G)

• (a6) For any store Sn′, DropIds(Sn ∪ Sn′) = DropIds(Sn) ⊎
DropIds(Sn′)

(a1) and (a2) are so because NoIds and DropIds have no effect on
equations. (a3) is true because NoIds is defined to drop numbered con-
straints. (a4) is true because DropIds is defined to remove identifier
components of numbered constraints. We have (a5) because NoIds has
no effect on CHR constraints. By definition of DropIds, (a6) is true.

Base case: We consider 〈G | Sn〉 
0
G 〈G′ | Sn′〉. By definition of 

0
G,

we have G = G′ and Sn = Sn′. Hence (NoIds(G) ⊎ DropIds(Sn)) =
(NoIds(G′) ⊎DropIds(Sn′)) and we are done.

Inductive case: We assume that the theorem is true for some finite
k > 0, hence 〈G | Sn〉 

k
G 〈G′ | Sn′〉 have some correspondence with the

abstract semantics.

We now prove that by extending these k derivations with another step, we

preserve correspondence, namely 〈G | Sn〉 
k
G 〈G′ | Sn′〉

δ
G 〈G′′ | Sn′′〉

has a correspondence with the abstract semantics. We prove this by
considering all possible form of derivation step, step k + 1 can take:

• (Solve) k + 1 step is of the form 〈{e} ⊎ G′′′ | Sn′〉
δ

G 〈W ⊎ G′′′ |
{e} ∪ Sn′〉 such that for some G′′′ and W

G′ = {e} ⊎G′′′, G′′ = W ⊎G′′′ and Sn′′ = {e} ∪ Sn′ (asolve)

where e is an equation, W = WakeUp(e, Sn) contains only goals
of the form c#i. This is because (Solve) only wakes up stored
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numbered constraints. Hence,

NoIds(G′′) ⊎ DropIds(Sn′′)
= NoIds(W ⊎ G′′′) ⊎ DropIds({e} ∪ Sn′) (asolve)
= NoIds(G′′′) ⊎ DropIds({e} ∪ Sn′) (a3)
= NoIds(G′′′) ⊎ {e} ⊎ DropIds(Sn′) (a2)
= NoIds({e} ⊎ G′′′) ⊎ DropIds(Sn′) (a1)
= NoIds(G′) ⊎ DropIds(Sn′) (asolve)

Hence we can conclude that evaluated store of derivation step k+1
is equivalent to abstract store of evaluated store of step k, therefore
satisfying condition (C1).

• (Activate) k+1 step is of the form 〈{c}⊎G′′′ | Sn′〉
δ

G 〈{c#i}⊎G′′′ |
{c#i} ∪ Sn′〉 such that for some G′′′

G′ = {c} ⊎G′′′, G′′ = {c#i} ⊎G′′′ and Sn′′ = {c#i} ∪ Sn′ (aact)

Hence,

NoIds(G′′) ⊎ DropIds(Sn′′)
= NoIds({c#i} ⊎ G′′′) ⊎ DropIds({c#i} ∪ Sn′) (aact)
= NoIds(G′′′) ⊎ DropIds({c#i} ∪ Sn′) (a3)
= NoIds(G′′′) ⊎ {c} ⊎ DropIds(Sn′) (a4)
= NoIds({c} ⊎ G′′′) ⊎ DropIds(Sn′) (a5)
= NoIds(G′) ⊎ DropIds(Sn′) (aact)

Hence we can conclude that evaluated store of derivation step k+1
is equivalent to abstract store of evaluated store of step k, therefore
satisfying condition (C1).

• (Simplify) k + 1 step is of the form 〈{c#i} ⊎ G′′′ | HP ∪ {c#i} ∪

HS ∪ Sn′′′〉
δ

G 〈B ⊎G′′′ | HP ∪ Sn′′′〉 for some HP ,HS and B such
that for some G′′′ and Sn′′′

Sn′ = HP ∪ {c#i} ∪HS ∪ Sn′′′, Sn′′ = HP ∪ Sn′′′,
G′ = {c#i} ⊎G′′′ and G′′ = B ⊎G′′′ (a1simp)

and there exists a CHR rule r @ H ′
P\H

′
S ⇐⇒ tg | B′ such that

exists φ where

DropIds({c#i} ∪HS) = φ(H ′
S) DropIds(HP ) = φ(H ′

P )
Eq(Sn′′′) |= φ ∧ tg B = φ(B′) (a2simp)

Hence,

NoId(G′) ⊎ DropIds(Sn′)
= NoIds({c#i} ⊎ G′′′) ⊎ DropIds(HP ∪ {c#i} ∪ HS ∪ Sn′′′) (a1simp)
= NoIds(G′′′) ⊎ DropIds(HP ∪ {c#i} ∪ HS ∪ Sn′′′) (a3)
= NoIds(G′′′) ⊎ DropIds(HP ) ⊎ DropIds({c#i} ∪ HS) ⊎ DropIds(Sn′′′) (a6)
= NoIds(G′′′) ⊎ φ(H ′

P ) ⊎ φ(H ′
S) ⊎ DropIds(Sn′′′) (a2simp)
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By definition of the abstract semantics and a2simp, we know that
we have the rule application φ(H ′

P ) ∪ φ(H ′
S) A φ(B′) Therefore,

by monotonicity of CHR rewriting (Theorem 1)

NoId(G′) ⊎ DropIds(Sn′)
= NoIds(G′′′) ⊎ φ(H ′

P ) ⊎ φ(H ′
S) ⊎ DropIds(Sn′′′)

A NoIds(G′′′) ⊎ φ(B′) ⊎ DropIds(Sn′′′) (Theorem 1)
= NoIds(φ(B′) ⊎ G′′′) ⊎ DropIds(Sn′′′) (a1), (a3)
= NoIds(G′′) ⊎ DropIds(Sn′′) (a1simp)

Hence we haveNoId(G)⊎DropIds(Sn) 
∗
A NoId(G′)⊎DropIds(Sn′) A

NoIds(G′′)⊎DropIds(Sn′′), such that the k+1 goal-based deriva-
tion step satisfy condition (C2).

• (Propagate) k + 1 step is of the form 〈{c#i} ⊎G′′′ | HP ∪ {c#i} ∪

HS ∪ Sn′′′〉
δ

G 〈B ⊎ {c#i} ⊎ G′′′ | HP ∪ {c#i} ∪ Sn′′′〉 for some
HP ,HS and B such that for some G′′′ and Sn′′′

Sn′ = HP ∪ {c#i} ∪HS ∪ Sn′′′, Sn′′ = HP ∪ {c#i} ∪ Sn′′′,
G′ = {c#i} ⊎G′′′ and G′′ = B ⊎ {c#i} ⊎G′′′ (a1prop)

and there exists a CHR rule r @ H ′
P\H

′
S ⇐⇒ tg | B′ such that

exists φ where

DropIds(HS) = φ(H ′
S) DropIds({c#i} ∪HP ) = φ(H ′

P )
Eq(Sn′′′) |= φ ∧ tg B = φ(B′) (a2prop)

Hence,

NoId(G′) ⊎ DropIds(Sn′)
= NoIds({c#i} ⊎ G′′′) ⊎ DropIds(HP ∪ {c#i} ∪ HS ∪ Sn′′′) (a1prop)
= NoIds(G′′′) ⊎ DropIds(HP ∪ {c#i} ∪ HS ∪ Sn′′′) (a3)
= NoIds(G′′′) ⊎ DropIds({c#i} ∪ HP ) ⊎ DropIds(HS) ⊎ DropIds(Sn′′′) (a6)
= NoIds(G′′′) ⊎ φ(H ′

P ) ⊎ φ(H ′
S) ⊎ DropIds(Sn′′′) (a2prop)

By definition of the abstract semantics and a2simp, we know that
we have the rule application φ(H ′

P ) ∪ φ(H ′
S) A φ(B′) Therefore,

by monotonicity of CHR rewriting (Theorem 1)

NoId(G′) ⊎ DropIds(Sn′)
= NoIds(G′′′) ⊎ φ(H ′

P ) ⊎ φ(H ′
S) ⊎ DropIds(Sn′′′)

A NoIds(G′′′) ⊎ φ(B′) ⊎ DropIds(Sn′′′) (Theorem 1)
= NoIds(φ(B′) ⊎ G′′′) ⊎ DropIds(Sn′′′) (a1), (a5)
= NoIds(φ(B′) ⊎ {c#i} ⊎ G′′′) ⊎ DropIds(Sn′′′) (a3)
= NoIds(G′′) ⊎ DropIds(Sn′′) (a1prop)

Hence we haveNoId(G)⊎DropIds(Sn) 
∗
A NoId(G′)⊎DropIds(Sn′) A

NoIds(G′′)⊎DropIds(Sn′′), such that the k+1 goal-based deriva-
tion step satisfy condition (C2).

• (Drop) k+ 1 step is of the form 〈{c#i}⊎G′′ | Sn′〉
δ

G 〈{G′′ | Sn′〉
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such that for some G′′′

G′′ = {c#i} ⊎G′ and Sn′ = Sn′′ (adrop)

Hence,

NoIds(G′′) ⊎DropIds(Sn′′) = NoIds({c#i} ⊎G′) ⊎DropIds(Sn′) (adrop)
= NoIds(G′) ⊎DropIds(Sn′) (a3)

Hence we can conclude that evaluated store of derivation step k+1
is equivalent to abstract store of evaluated store of step k, therefore
satisfying condition (C1).

Considering all forms of k + 1 derivation steps, (Solve), (Activate) and
(Drop) satisfies condition bf(C1), while (Simplify) and (Propagate) sat-
isfy condition (C2). Hence we can conclude that Theorem 2 holds. 2

Lemma 1 (k-Concurrency) For any finite k of mutually non-overlapping con-
current derivations,

〈G1 | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉
HP1\HS1

||G 〈G′
1 | {} ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉

...

〈Gi | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉
HPi\HSi

||G 〈G′
i | HS1 ∪ ... ∪ {} ∪ ... ∪ HSk ∪ S〉

...

〈Gk | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉
HPk\HSk

||G 〈G′
k | HS1 ∪ ... ∪ HSi ∪ ... ∪ {} ∪ S〉

HP1 ⊆ S...HPi ⊆ S...HPk ⊆ S

δ = HP1 ∪ ... ∪ HPi ∪ ... ∪ HPk\HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk

〈G1 ⊎ ... ⊎ Gi ⊎ ... ⊎ Gk ⊎ G | HS1 ∪ ... ∪ HSi ∪ ... ∪ HSk ∪ S〉
δ

||G 〈G′
1 ⊎ ... ⊎ G′

i ⊎ ... ⊎ G′
k ⊎ G | S〉

we can decompose this into k−1 applications of the (pair-wise) (Goal Concurrency)
derivation step.

Proof: We prove the soundness of k-concurrency by showing that k
mutually non-overlapping concurrent derivation can be decomposed into
k−1 applications of the (Goal Concurrency) step. We prove by induction
on the number of concurrent derivations k.

Base case: k = 2. 2-concurrency immediately corresponds to the
(Goal Concurrency) rule, hence it is true by definition.

Inductive case: We assume that for j > 2 and j < k, we can de-
compose j mutually non-overlapping concurrent derivations. into j − 1
applications of the (Goal Concurrency) step. We now consider j+1 mu-
tually non-overlapping concurrent derivations. Because all derivations
are non-overlapping, we can compose any two derivations amongst these
j + 1 into a single concurrent step via the (Goal Concurrency) rule. We
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pick any two concurrent derivations, say the jth and (j+1)th (Note that
by symmetry, this choice is arbitrary):

〈Gj | HS1 ∪ ... ∪ HSj ∪ HSj+1 ∪ S〉
HPj\HSj

||G 〈G′
j | HS1 ∪ ... ∪ {} ∪ HSj+1 ∪ S〉

〈Gj+1 | HS1 ∪ ... ∪ HSj ∪ HSj+1 ∪ S〉
HPj+1\HSj+1

||G 〈G′
j+1 | HS1 ∪ ... ∪ HSj ∪ {} ∪ S〉

HPj ⊆ S HPj+1 ⊆ S

By applying the above two non-overlapping derivations with an instance
of the (Goal Concurrency) rule, we have:

〈Gj′ | HS1 ∪ ... ∪ HSj′ ∪ S〉
HPj′\HSj′

||G 〈G′
j′ | HS1 ∪ ... ∪ {} ∪ S〉

where Gj′ = Gj ⊎ Gj+1 G′
j′ = G′

j ⊎ G′
j+1

HSj′ = HSj ∪ HSj+1 HPj′ = HPj ∪ HPj+1

Hence we have reduced j+1 non-overlapping concurrent derivations into
j non-overlapping concurrent derivations by combining via the (Goal Concurrency)
derivation step.

〈G1 | HS1 ∪ ... ∪ HSj′ ∪ S〉
HP1\HS1

||G 〈G′
1 | {} ∪ ... ∪ HSj′ ∪ S〉

...

〈Gj′ | HS1 ∪ ... ∪ HSj′ ∪ S〉
HPj′\HSj′

||G 〈G′
j′ | HS1 ∪ ... ∪ {} ∪ S〉

HP1 ⊆ S...HPj′ ⊆ S

δ = HP1 ∪ ... ∪ HPj′\HS1 ∪ ... ∪ HSj′

〈G1 ⊎ ... ⊎ Gj′ ⊎ G | HS1 ∪ ... ∪ HSj′ ∪ S〉
δ

||G 〈G′
1 ⊎ ... ⊎ G′

j′ ⊎ G | S〉

Hence, by our original assumption, the above is decomposable into j−1
applications of the (Goal Concurrency) step. This implies that j + 1
concurrent derivations are decomposable into j (Goal Concurrency) step.
2

Lemma 2 (Monotonicity of Goals in Goal-based Semantics) For any goals
G,G′ and G′′ and CHR store Sn and Sn′, if 〈G | Sn〉 

∗
G 〈G′ | Sn′〉 then 〈G ⊎G′′ |

Sn〉 
∗
G 〈G′ ⊎G′′ | Sn′〉

Proof: We need to prove that for any finite k, if 〈G | Sn〉 
k
G 〈G′ | Sn′〉

we can always extend the goals with any G′′ such that 〈G⊎G′′ | Sn〉 
k
G

〈G′ ⊎G′′ | Sn′〉.

We prove this by induction on the number of derivation steps k, showing
that for any finite i ≤ k, goals are monotonic.

Base case: We consider 〈G | Sn〉 
0
G 〈G′ | Sn′〉. By definition of


0
G, we have G = G′ and Sn = Sn′. Hence we immediately have

〈G ⊎G′′ | Sn〉 
0
G 〈G′ ⊎G′′ | Sn′〉
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Inductive case: We assume that the lemma is true for some finite i > 0,
hence 〈G | Sn〉 

i
G 〈G′ | Sn′〉 is monotonic with respect to the goals.

We now prove that by extending these i derivations with another step,
we still preserve monotonicity of the goals. Namely, if 〈G | Sn〉 

i
G

〈{g} ⊎ Gi | Sni〉
δ

G 〈Gi+1 | Sni+1〉 then 〈G ⊎ G′′ | Sn〉 
i
G 〈Gi ⊎ G

′′ |

Sni〉
δ

G 〈Gi+1 ⊎ G
′′ | Sni+1〉 We prove this by considering all possible

form of derivation step, step i+ 1th can take:

• (Solve) Consider i + 1th derivation step of the form 〈{e} ⊎ Gi |
Sni〉 G 〈W ⊎ G | {e} ∪ Sni〉 for some equation e and W =
WakeUp(e, Sni).

By definition, the (Solve) step only make reference to e and Sni,
hence we can extend Gi with anyG′′ without affecting the derivation
step, ie.

〈{e} ⊎Gi ⊎G
′′ | Sni〉 G 〈W ⊎Gi ⊎G

′′ | {e} ∪ Sni〉

Hence, given our assumption that the first i derivations are mono-
tonic with respect to the goals, extending with a i+1th (Solve) step
preserves monotonicity of the goals.

• (Activate) Consider i + 1th derivation step of the form 〈{c} ⊎ Gi |
Sni〉 G 〈{c#j} ⊎ Gi | {c#j} ∪ Sni〉 for some CHR constraint c,
goals Gi and store Sni.

By definition, the (Activate) step only make reference to goal c,
hence we can extend Gi with anyG′′ without affecting the derivation
step, ie.

〈{c} ⊎Gi ⊎G
′′ | Sni〉 G 〈{c#j} ⊎Gi ⊎G

′′ | {c#j} ∪ Sni〉

Hence, given our assumption that the first i derivations are mono-
tonic with respect to the goals, extending with a i+ 1th (Activate)
step preserves monotonicity of the goals.

• (Simplify) Consider i+1th derivation step of the form 〈{c#j}⊎Gi |
{c#j} ⊎ HS ∪ Sni〉 G 〈B ⊎ Gi | Sni〉 for some CHR constraints
HS and body constraints B.

By definition, the (Simplify) step only make reference to goal c#j,
and HS of the store, hence we can extend Gi with any G′′ without
affecting the derivation step, ie.

〈{c#j} ⊎Gi ⊎G
′′ | {c#j} ∪HS ∪ Sni〉 G 〈B ⊎Gi ⊎G

′′ | Sni〉

Hence, given our assumption that the first i derivations are mono-
tonic with respect to the goals, extending with a i+ 1th (Simplify)
step preserves monotonicity of the goals.

• (Propagate) Consider i+1th derivation step of the form 〈{c#j}⊎Gi |
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HS ∪ Sni〉 G 〈B ⊎ {c#j} ⊎ Gi | Sni〉 for some CHR constraints
HS and body constraints B.

By definition, the (Propagate) step only make reference to goal c#j,
and HS of the store, hence we can extend Gi with any G′′ without
affecting the derivation step, ie.

〈{c#j} ⊎Gi ⊎G
′′ | HS ∪ Sni〉 G 〈B ⊎ {c#j} ⊎Gi ⊎G

′′ | Sni〉

Hence, given our assumption that the first i derivations are mono-
tonic with respect to the goals, extending with a i+1th (Propagate)
step preserves monotonicity of the goals.

• (Drop) Consider i + 1th derivation step of the form 〈{c#j} ⊎ Gi |
Sni〉 G 〈Gi | Sni〉 for some numbered constraint c#j.

By definition, the (Drop) step only make reference to goal c#j,
while it’s premise depend on Sni, hence we can extend goals Gi

with any G′′ without affecting the derivation step, ie.

〈{c#j} ⊎Gi ⊎G
′′ | Sni〉 G 〈Gi ⊎G

′′ | Sni〉

Hence, given our assumption that the first i derivations are mono-
tonic with respect to the goals, extending with a i+1th (Drop) step
preserves monotonicity of the goals.

Hence, with our assumption of monotonicity of goals for i steps, the goals
are still monotonic for i + 1 steps regardless of the form of the i + 1th

derivation step. 2

Lemma 3 (Isolation of Goal-based Derivations) If 〈G | HP ∪ HS ∪ S1 ∪

S2〉
HP \HS

G 〈G′ | HP ∪ S ′
1 ∪ S2〉 then 〈G | HP ∪HS ∪ S1〉

HP \HS

G 〈G′ | HP ∪ S ′
1〉

Proof: We need to show that for any goal-based derivation, we can omit
any constraint of the store which is not a side-effect of the derivation.
To prove this, we consider all possible forms of goal-based derivations:

• (Solve) Consider derivation of the form

〈{e} ⊎G |W ∪ {} ∪ S1 ∪ S2〉
W\{}
G 〈W ⊎G | W ∪ {} ∪ {e} ∪ S1 ∪ S2〉

Since wake up side-effect is captured in W , we can drop S2 without
affecting the derivation. Hence we also have:

〈{e} ⊎G | W ∪ {} ∪ S1〉
W\{}
G 〈W ⊎G |W ∪ {} ∪ {e} ∪ S1〉

• (Activate) Consider derivation of the form

〈{c} ⊎G | {} ∪ {} ∪ S1 ∪ S2〉
{}\{}
G 〈{c#i} ⊎G | {} ∪ {} ∪ {c#i} ∪ S1 ∪ S2〉
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Since (Activate) simply introduces a new constraint c#i into the
store, we can drop S2 without affecting the derivation. Hence we
also have:

〈{c} ⊎G | {} ∪ {} ∪ S1〉
{}\{}
G 〈{c#i} ⊎G | {} ∪ {} ∪ {c#i} ∪ S1〉

• (Simplify) Consider derivation of the form

〈{c#i} ⊎G | HP ∪HS ∪ S1 ∪ S2〉
HP \HS

G 〈B ⊎G | HP ∪ S1 ∪ S2〉

Since S2 is not part of the side-effects of this derivation, we can
drop S2 without affecting the derivation. Hence we also have:

〈{c#i} ⊎G | HP ∪HS ∪ S1〉
HP \HS

G 〈B ⊎G | HP ∪ S1〉

• (Propagate) Consider derivation of the form

〈{c#i} ⊎G | HP ∪HS ∪ S1 ∪ S2〉
HP \HS

G 〈B ⊎ {c#i} ⊎G | HP ∪ S1 ∪ S2〉

Since S2 is not part of the side-effects of this derivation, we can
drop S2 without affecting the derivation. Hence we also have:

〈{c#i} ⊎G | HP ∪HS ∪ S1〉
HP \HS

G 〈B ⊎ {c#i} ⊎G | HP ∪ S1〉

• (Drop) Consider derivation of the form

〈{c#i} ⊎G | {} ∪ {} ∪ S1 ∪ S2〉
{}\{}
G 〈G | {} ∪ {} ∪ S1 ∪ S2〉

(Drop) simply removes the goal c#i when no instances of (Simplify)
or (Propagate) can apply on it. Note that it’s premise references
to the entire store, so removing S2 may seems unsafe. But since
removing constraints from the store will not cause c#i to be appli-
cable to any instances of (Simplify) or (Propagate), hence we also
have:

〈{c} ⊎G | {} ∪ {} ∪ S1〉
{}\{}
G 〈G | {} ∪ {} ∪ S1〉

2

Lemma 4 (Isolation of Transitive Goal-based Derivations) If 〈G | HP ∪
HS ∪ S1 ∪ S2〉 

∗
G 〈G′ | HP ∪ S ′

1 ∪ S2〉 with side-effects δ = HP\HS, then 〈G |
HP ∪HS ∪ S1〉 

∗
G 〈G′ | HP ∪ S ′

1〉

Proof: We need to prove that for all k, 〈G | HP ∪HS ∪S1∪S2〉
k

G 〈G′ |
HP ∪ S ′

1 ∪ S2〉 with side-effects δ = HP\HS we can always safely omit
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affected potions of the store from the derivation. We prove by induction
on i ≤ k.

Base case: i = 1. Consider, 〈G | HP ∪ HS ∪ S1 ∪ S2〉 
1
G 〈G′ |

HP ∪ S ′
1 ∪ S2〉. This corresponds to the premise in Lemma 3, hence we

can safely omit S2 from the derivation.

Inductive case: i > 1. we assume that for any 〈G | HPi ∪ HSi ∪
S1i ∪ S2i〉 

i
G 〈G′ | HPi ∪ S ′

1i ∪ S2i〉 with side-effects δi = HPi\HSi,
we can safely omit S2i from the derivation. Let’s consider a j = i + 1
derivation step from here, which contains side-effects δj = HPj\HSj non-
overlapping with δi. Hence HPj and HSj must be in S2i (ie. S2i =
HPj ∪HSj ∪ S1j ∪ S2j).

〈G | HPi ∪HSi ∪ S1i ∪HPj ∪HSj ∪ S1j ∪ S2j〉


i
G 〈G′ | HP ∪ S ′

1i ∪HPj ∪HSj ∪ S1j ∪ S2j〉
δj

G 〈G′′ | HP ∪ S ′
1i ∪HPj ∪ S

′
1j ∪ S2j〉

Hence consider the following substitutions:

HP = HPi ∪HPj HS = HSi ∪HSj

S1 = S1i ∪ S1j S ′
1 = S ′

1i ∪ S
′
1j

δ = HP\HS

we have 〈G | HP ∪HS∪S1∪S2j〉 
i+1
G 〈G | HP ∪S

′
1∪S2j〉 with side-effects

δ such that no constraints in S2j is in δ. Hence we can safely omit S2j

from the derivation and we have isolation for i+1 derivations as well. 2

Lemma 5 (Sequential Reachability of Concurrent Derivation Steps) For
any sequentially reachable CHR state σ, CHR state σ′ and rewriting side-effects δ

if σ
δ

||G σ
′ then σ′ is sequentially reachable, σ 

∗
G σ

′ with side-effects δ.

Proof: From the k-concurrency Lemma (Lemma 1) we showed that
any finite k mutually non-overlapping concurrent goal-based derivations
can be replicated by nested application of the (Goal Concurrency) step.
Hence, to prove sequential reachability of concurrent derivations, we
only need to consider the derivation steps (Lift) and (Goal Concurrency)
which sufficiently covers the concurrent behaviour of any k concurrent
derivations.

We prove by structural induction of the concurrent goal-based semantics
derivation steps (Lift) and (Goal Concurrency).

• (Lift) is the base case. Application of (Lift) simply lifts a goal-

based derivation σ
δ

G σ
′ into a concurrent goal-based derivation

σ
δ

||G σ
′. Thus states σ′ derived from the (Lift) step is immediately

sequentially reachable since σ
δ

G σ
′ implies σ 

∗
G σ

′.
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• (Goal Concurrency)

(D1) 〈G1 | HS1 ∪ HS2 ∪ S〉
δ1

||G 〈G′
1 | {} ∪ HS2 ∪ S〉

(D2) 〈G2 | HS1 ∪ HS2 ∪ S〉
δ2

||G 〈G′
2 | HS1 ∪ {} ∪ S〉

δ1 = HP1\HS1 δ2 = HP2\HS2

HP1 ⊆ S HP2 ⊆ S δ = HP1 ∪ HP2\HS1 ∪ HS2

〈G1 ⊎ G2 ⊎ G | HS1 ∪ HS2 ∪ S〉

(C)
δ

||G 〈G′
1 ⊎ G′

2 ⊎ G | S〉

we assume that (D1) and (D2) are sequentially reachable. This
means that we have the following:

〈G1 | HS1 ∪HS2 ∪ S〉 
∗
G 〈G′

1 | {} ∪HS2 ∪ S〉
with side-effects δ1 = HP1\HS1 such that HP1 ⊆ S (aD1)

〈G2 | HS1 ∪HS2 ∪ S〉 
∗
G 〈G′

2 | HS1 ∪ {} ∪ S〉
with side-effects δ2 = HP2\HS2 such that HP2 ⊆ S (aD2)

Since both derivations are by definition non-overlapping in side-
effects, we can show that (C) is sequentially reachable, using mono-
tonicity of goals (Lemma 2) and isolation of derivations (Lemma 3):

〈G1 ⊎G2 ⊎G | HS1 ∪HS2 ∪ S〉


∗
G 〈G′

1 ⊎G2 ⊎G | HS2 ∪ S〉 (Lemma2, aD1)


∗
G 〈G′

1 ⊎G
′
2 ⊎G | S〉 (Lemma2,Lemma4, aD2)

Hence, the above sequential goal-based derivation shows that (Goal Concurrency)
derivation step is sequentially reachable with side-effect δ.

2

Theorem 3 (Sequential Reachability of Concurrent Derivations) For any
initial CHR state σ, CHR state σ′ and CHR Program P, if σ 

∗
||G σ

′ then σ 
∗
G σ

′.

Proof: We prove that for all finite k number of concurrent derivation
steps σ 

k
||G σ′, we can find a corresponding sequential derivation se-

quence σ 
∗
G σ

′.

Base case: k = 1. We consider σ 
1
||G σ′. From Lemma 5, we can

conclude that we have σ 
∗
G σ

′ as well.

Inductive case: k > 1. We consider σ 
k
||G σ′, assuming that it

is sequentially reachable, hence we also have σ 
∗
G σ′. We consider

extending this derivation with the k + 1th step σ′
||G σ

′′. By Lemma
5, we can conclude that the k + 1th concurrent derivation is sequential
reachable, hence σ′


∗
G σ′′. Hence we have σ 

∗
G σ′


∗
G σ′′ showing

that σ 
k+1
||G σ′′ is sequentially reachable. 2
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A.2 Proof of Correspondence of Termination and

Exhaustiveness

Lemma 6 (Rule instances in reachable states are always active) For any
reachable CHR state 〈G | Sn〉, any rule head instance H ⊆ Sn must be active. ie.
∃c#i ∈ H such that c#i ∈ G.

Proof: We will prove this for the sequential goal-based semantics. Since
Theorem 3 states all concurrent derivation is sequentially reachable, this
Lemma immediately applies to the concurrent goal-based semantics as
well.

We prove that for all finite k derivations from any initial CHR state
〈G | {}〉, ie. 〈G | {}〉 

k
G 〈G′ | Sn′〉, all rule head instances H ⊆ Sn′

has at least one c#i ∈ H such that c#i ∈ G. We prove by induction on
i < k that states reachable by i derivations from an initial stage have
the above property.

Base case: i = 0. Hence 〈G | {}〉 
0
G 〈G′ | Sn′〉. By definition, G = G′

and Sn′ = {}. Since Sn′ is empty, the base case immediately satisfies
the Lemma.

Inductive case: i > 0. We assume that for any 〈G | {}〉 
i
G 〈G′ | Sn′〉,

all rule head instances H ⊆ Sn′ is active, hence have at least one c#i ∈ H
such that c#i ∈ G′. We extend this derivation with an i+1th step, hence

〈G | {}〉 
i
G 〈G′ | Sn′〉

δ
G 〈G′′ | Sn′′〉. We now prove that all rule head

instances in Sn′′ are active. We consider all possible forms of this i+1th

derivation step. We omit side-effects.

• (Solve) i+1 derivation step is of the form 〈{e}⊎G′′′ | Sn′〉 G 〈W ⊎
G′′′ | {e} ∪ Sn′〉 for some goals G′′′ and W = WakeUp(e, Sn′). Our
assumption provides that all rule head instances in Sn′ are active.
Introducing e into the store will possibly introduce new rule head
instances. This is because for some CHR rule (r @ HP\HS ⇐⇒ tg |
B) ∈ P since we may have a new φ such that Eqs({e}∪Sn′) |= φ∧tg
and φ(HP ∪HS) ∈ Sn′. This means that there is at least one c#i
in φ(HP ∪ HS) which is further grounded by e. Thankfully, by
definition of W = WakeUp(e, Sn′), we have c#i ∈ W . Hence new
rule head instances will become active because of introduction of
W to the goals.

• (Activate) i+ 1 derivation step is of the form 〈{c} ⊎G′′′ | Sn′〉 G

〈{c#i} ⊎G′′′ | {c#i} ∪ Sn′〉. Our assumption provides that all rule
head instances in Sn′ are active. By adding c#i to the store, we
can possibly introduce new rule head instances {c#i}∪H such that
H ∈ Sn′. Since c#i is also retained as a goal, such new rule head
instances are active as well.

• (Simplify) i+1 derivation step is of the form 〈{c#i}⊎G′′′ | {c#i}∪
HS∪Sn

′〉 G 〈B⊎G′′′ | Sn′〉. Our assumption provides that all rule
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head instances in Sn′ are active. c#i has applied a rule instance,
removing c#i and some HS from the store. Since c#i is no longer in
the store, we can safely remove c#i from the goals. Removing HS

from the store will only (possibly) remove other rule head instance
from the store. Hence rule head instances in Sn′ still remain active.

• (Propagate) i + 1 derivation step is of the form 〈{c#i} ⊎ G′′′ |
{c#i} ∪ HS ∪ Sn′〉 G 〈B ⊎ {c#i} ⊎ G′′′ | {c#i} ∪ Sn′〉. Our
assumption provides that all rule head instances in Sn′ are active.
c#i has applied a rule instance, removing some HS from the store.
Since c#i is still in the store, we cannot safely remove c#i from
the goals, thus it is retained. Removing HS from the store will only
(possibly) remove other rule head instance from the store. Hence
rule head instances in Sn′, including those that contains c#i, still
remain active.

• (Drop) i+ 1 derivation step is of the form 〈{c#i} ⊎G′′′ | Sn′〉 G

〈G′′′ | Sn′〉. Our assumption provides that all rule head instances
in Sn′ are active. Premise of the (Drop) step demands that no
(Simplify) and (Propagate) steps apply on c#i. This means that
c#i is not part of any rule head instances in Sn′. Hence we can
safely remove c#i from the goals without risking to deactivate any
rule instances.

Hence (Solve) and (Activate) guarantees that new rule head instances
become active, (Drop) safely removes a goal without deactivating any
rule head instances and (Simplify) and (Propagate) only removes con-
straint from the store. In all cases, existing rule head instances remain
active while new rule head instances become active, thus we have proved
the lemma. 2

Theorem 4 (Correspondence of Exhaustiveness) For any initial CHR state
〈G, {}〉, final CHR state 〈{}, Sn〉 and terminating CHR program P,

if 〈G | {}〉 
∗
||G 〈{} | Sn〉

then G 
∗
A DropIds(Sn) and FinalA(DropIds(Sn))

Proof: We prove that for any concurrent derivation 〈G | {}〉 
∗
||G 〈{} |

Sn〉, we have a corresponding abstract derivation G 
∗
A DropIds(Sn).

Theorem 3 states that we can replicate the above concurrent derivation,
with a sequential derivation. Hence we have 〈G | {}〉 

∗
G 〈{} | Sn〉.

By instantiating Theorem 2, we immediately have G 
∗
A DropIds(Sn)

from this sequential goal-based derivation.

Next we show that DropIds(Sn) is a final store (FinalA(DropIds(Sn)))
with respect to some CHR program P. We prove by contradiction: Sup-
pose DropIds(Sn) is not a final store, hence 〈{} | Sn〉 has at least one
rule head instance H of P in Sn which is not active, since the goals
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are empty. However, this contradicts with Lemma 6, which states that
all reachable states have only active rule instances. Since 〈{} | Sn〉 is
sequentially reachable, it must be the case that Sn has no rule head
instances of P. Therefore DropIds(Sn) must be a final store. 2

Lemma 7 (Terminal CHR State) For any CHR State 〈G | Sn〉 and a termi-
nating CHR program P,

if FinalA(NoIds(G) ⊎DropIds(Sn))
then there exists no proceeding concurrent derivation 〈G | Sn〉 ||G 〈G′ | Sn′〉 that

involves applications of the (Simplify) or (Propagate) derivation rules.

Proof: We prove by contradiction: Suppose that we have some pro-
ceeding concurrent derivation 〈G | Sn〉 ||G 〈G′ | Sn′〉 which involves
an application of at least one (Simplify) or (Propagate) derivation. By

Theorem 3, we have 〈G | Sn〉
δ

G 〈G′ | Sn′〉. Specifically, there must

exist some CHR derivation 〈G′′ | Sn′′〉
δ′

G 〈G′′′ | Sn′′′〉 which is a
(Simplify) or (Propagate) transition such that

〈G | Sn〉 
∗
G 〈G′′ | Sn′′〉

δ′

G 〈G′′′ | Sn′′′〉 
∗
G 〈G′ | Sn′〉

Yet by Theorem 2, there is a corresponding abstract derivation,

(NoIds(G) ⊎DropIds(Sn)) 
∗
A (NoIds(G′′′) ⊎DropIds(Sn′′′))

which involves the application of a (Simplify) or (Propagate) rule. This
contradicts with the assumption that NoIds(G)⊎DropIds(Sn) is a final
state (ie. we have ¬FinalA(NoIds(G)⊎DropIds(Sn))). Hence we can-
not have any proceeding concurrent derivations 〈G | Sn〉 ||G 〈G′ | Sn′〉
which involves an application of at least one (Simplify) or (Propagate)
derivation. 2

Lemma 8 (Finite Administrative CHR Goal-Based Derivations) For any
CHR State 〈G | Sn〉, there cannot exist any infinite concurrent derivations consisting
of only administrative derivation rules (Solve), (Activate) and (Drop).

Proof: We prove by first constructing a well-founded total order of CHR
states across concurrent goal-based derivations consisting only of admin-
istrative transitions (ie. (Solve), (Activate) and (Drop) transitions), and
then showing that this ordering monotonically decreases across successive
CHR states of well-formed derivations until a minimal value is reached.
We define goal ranks over CHR states 〈G | Sn〉, GoalRank as follows:

GoalRank(〈G | Sn〉) = (m,n, p)
where m is the number of equations in G

n is the number of CHR constraints in G
p is the number of numbered CHR constraints in G
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Essentially, goal ranks keep track of the number of each type of goal
constraints in a CHR state. As such, the minimal value (bottom, ⊥)
is (0, 0, 0) We define a total well-founded order over goal ranking tuples
(m,n, p) as follows:

(m1, n1, p1) ≻ (m2, n2, p2)
if and only if

(m1 > m2) ∨ (m1 = m2 ∧ n1 > n2) ∨ (m1 = m2 ∧ n1 = n2 ∧ p1 > p2)

Given a goal-based derivation of any length k, δ 
k
G δ′ that consists

of only the administrative transitions, we prove that GoalRank(δ) ≻
GoalRank(δ′), hence the derivation is finite and terminating as it will
eventually (and ultimately) reach the bottom value (0, 0, 0). We prove
by structural induction over the (Solve), (Activate), (Drop) transitions,
assuming that derivations of length i < k have the above property, ie.
for i < k

if δ 
i
G δ

′ then GoalRank(δ) ≻ GoalRank(δ′)

we now need to prove inductively that if δ 
i
G δ

′
G δ

′′ then we must
have GoalRank(δ) ≻ GoalRank(δ′′). We consider all possible admin-
istrative transitions for δ′ G δ

′′, where GoalRank(δ′) = (m,n, p) and
GoalRank(δ′′) = (m′, n′, p′):

• (Solve): i + 1 derivation step is of the form 〈{e} ⊎ G′′′ | Sn′〉 G

〈W ⊎G′′′ | {e}∪Sn′〉 for some goals G′′′ and W = WakeUp(e, Sn′).
Since equation e is removed from the goals, hence we have m′ =
m − 1. By definition of Wakeup, W is a finite set of numbered
CHR constraints, hence p′ = p + len(W ). No CHR constraints
are affected, hence n′ = n. As such we have GoalRank(δ′′) =
(m − 1, n, p + len(W )). Since (m,n, p) ≻ (m − 1, n, p + len(W )),
therefore we have GoalRank(δ′) ≻ GoalRank(δ′′).

• (Activate): (Activate) i+1 derivation step is of the form 〈{c}⊎G′′′ |
Sn′〉 G 〈{c#i} ⊎ G′′′ | {c#i} ∪ Sn′〉. Since a CHR constraint c
is traded for a numbered CHR constraint c#i, we have n′ = n− 1
and p′ = p + 1. No equations are affected, hence m′ = m. As
such we have GoalRank(δ′′) = (m,n − 1, p + 1) Since (m,n, p) ≻
(m,n−1, p+1), therefore we have GoalRank(δ′) ≻ GoalRank(δ′′).

• (Drop) i+ 1 derivation step is of the form 〈{c#i} ⊎G′′′ | Sn′〉 G

〈G′′′ | Sn′〉. Since numbered CHR constraint c#i is removed, hence
we have p′ = p − 1 No equations or CHR constraints are affected,
hence m = m′ and n′ = n. As such we have, GoalRank(δ′′) =
(m,n, p − 1). Since (m,n, p) ≻ (m,n, p − 1), therefore we have
GoalRank(δ′) ≻ GoalRank(δ′′).

We have shown in all structural cases thatGoalRank(δ′) ≻ GoalRank(δ′′).
Combining with our assumption, we haveGoalRank(δ) ≻ GoalRank(δ′) ≻
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GoalRank(δ′′). This means that CHR states are monotonically decreas-
ing in goal ranks. Since ≻ is a well-founded total order with a minimal
value (0, 0, 0), we have proven that all goal-based derivations δ 

∗
G δ′

consisting of only (Solve), (Activate) and (Drop) administrative transi-
tions are finite. (P1)

Suppose that we have a concurrent derivation δ 
∗
||G δ′ consisting of

only administrative transitions that is infinitely long. By Theorem 3, all
concurrent derivations δ 

∗
||G δ

′ have at least one corresponding sequen-
tial goal-based derivation δ 

∗
G δ′. This would mean that sequential

goal-based derivation δ 
∗
G δ

′ could be infinitely long as well. Yet, that
would contradict with (P1). Therefore it must be the case that all con-
current derivation δ 

∗
||G δ

′ consisting of only administrative transitions
are finite.

2

Theorem 5 (Correspondence of Termination) For any initial CHR state 〈G |
{}〉, any CHR state 〈G′ | Sn〉 and a terminating CHR program P,

if 〈G | {}〉 
∗
||G 〈G′ | Sn〉 and FinalA(NoIds(G′) ⊎DropIds(Sn))

then 〈G′ | Sn〉 
∗
||G 〈{} | Sn′′〉 and DropIds(Sn′′) = NoIds(G′) ⊎DropIds(Sn)

Proof: We first show that from 〈G′ | Sn〉, there must be a finite sequence
of concurrent derivations that leads to the terminal CHR State 〈{} |
Sn′′〉. Lemma 7 states that given FinalA(NoIds(G′) ⊎ DropIds(Sn))
any valid concurrent derivation 〈G′ | Sn〉 

∗
||G 〈G′′ | Sn′′〉 − (D) must

not involve any applications of (Simplify) or (Propagate) transition rules.
Hence (D) must only consist of administrative transitions (Solve), (Activate)
and (Drop). From Lemma 8, we have that 〈G′ | Sn〉 

∗
||G 〈G′′ | Sn′′〉

must be finite and terminating.

We now show that this terminal state 〈G′′ | Sn′′〉 is such that G′′ =
{} and that 〈{} | Sn〉 corresponds to the final CHR abstract state
NoIds(G′) ⊎ DropIds(Sn). In other words, GoalRanks(〈G′′ | Sn′′〉) =
(0, 0, 0)1 For any CHR state 〈G′ | Sn〉 such that GoalRanks(〈G′ |
Sn〉) = (m,n, p), we can apply m number of (Solve) transitions 〈G′ |
Sn〉 

∗
||G 〈G′

2 | Sn2〉 where GoalRanks(〈G′
2 | Sn2〉) = (0, m′, p). From

here, we can apply m′ number of (Activate) transitions 〈G′
2 | Sn2〉 

∗
||G

〈G′
3 | Sn3〉 where GoalRanks(〈G′

2 | Sn2〉) = (0, 0, p′). Since we have
FinalA(NoIds(G′) ⊎DropIds(Sn)), no (Simplify) or (Propagate) tran-
sition can apply for 〈G′ | Sn〉 or any successor states, hence we can
exhaustively apply (Drop) transitions 〈G′

2 | Sn2〉 
∗
||G 〈{} | Sn′′〉 and

naturely GoalRanks(〈{} | Sn′′〉) = (0, 0, 0).

By Corollary 1, 〈G | {}〉 
∗
||G 〈G′ | Sn〉 

∗
||G 〈{} | Sn′′〉 means we

have NoIds(G) 
∗
A NoIds(G′) ⊎ DropIds(Sn) 

∗
A DropIds(Sn′′).

1See proof in Lemma 8 for detailed description and definition of GoalRanks.
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Since FinalA(NoIds(G′) ⊎ DropIds(Sn)), no abstract semantics tran-
sition can apply from NoIds(G′) ⊎ DropIds(Sn), hence we must have
DropIds(Sn′′) = NoIds(G′) ⊎DropIds(Sn). 2


