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Abstract

Model-driven and Data-driven methods are two widely addgaradigms in Query by De-
scription (QBD) music search engines. Model-driven meshailempt to learn the mapping
between low-level features and high-level music semangiammgful tags, the performance of
which are generally affected by the well-known semantic gap the other hand, Data-driven
approaches rely on the large amount of noisy social tagstataibby users. In this thesis, we
focus on how to design a novel Model-driven method and coebm approaches to improve
the performance of music search engines. With the incrgasimber of digital tracks appear
on the Internet, our system is also designed for large-sisgdyment, on the order of millions
of objects. For processing large-scale music data setsesigrdparallel algorithms based on
the MapReduce framework to perform large-scale music ob@ted social tag analysis, train
a model, and compute tag similarity. We evaluate our metloadSAL-500 and a large-scale
data set{V = 77, 448 songs) generated by crawling Youtube and Last.fm. Ourtesudicate
that our proposed method is both effective for generatifeyamt tags and efficient at scalable
processing. Besides, we also have implemented a web-besdype music retrieval system

as a demonstration.
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Chapter 1

Introduction

1.1 Motivation

The way of accessing music has been changed rapidly overagtedpcades. As almost all
of the music items will be accessible online in the foreseeéiture, the development of
advanced Music Information Retrieval (MIR) techniques eearly needed. Many kinds of
music information retrieval techniques are being studgdtis purpose of helping people to
find their favorite songs. The ideal system should allowitive search and require a minimal
amount of human interaction. Two distinct approaches tockearge music collection coex-
ist in literatures: 1) Query-by-example (QBE) such as QumrnHamming; 2) Query-by-text
(metadata and semantic meaningfull description), henlcasittwo sub-categories: Query-by-

metadata(QBM) and Query-by-Description(QBD).

QBD is challenging due to the well-known semantic gap betnelBuman being and a com-
puter, making it extremely difficult to find the exact resulat satisfy the user. For instance,
users may describe a song using the words “happy Beatles'guitowever, it is difficult for

the computer to interpret music in this way. Current stdtdre-art media retrieval systems



(e.g. music web portals, Youtube.com, etc), allow usemnti®dves to describe the media items
by their own tags. Subsequently, users in the systems caeveethe media items via key-
word matching with these tags. With this form of collabaratiagging, each music item have
tags providing a wealth of semantic information related.t®y September of 2008, users on
Last.fm (music social network system) has annotated 3.Bomiitems over 50 million times
using a vocabulary of 1.2 million unique free-text tags. Do¢he social tags containing rich
semantic information, plenty of works have explored thfulsess of social tags on informa-

tion retrieval [1-3].

However, social tagging invokes two problems that makesuitltio be incorporated for
information retrieval. First, social tags are error-prasdahe tags can be annotated by any user
using any word. Second, there is the long tail theory — mosagé have been annotated to a
few popular objects. Therefore, the tags appear uselesssasfien easier to retrieve popular

items via other means (also known as sparsity problem).

Currently, many works focus on the sparsity problem of ddaigs using automatic annota-
tion techniques. By employing such techniques, tags capblésal to the items that are similar
to the annotated items. The challenges these are multi$ailch as whether model-driven
method or adata-drivenapproach is more suitable to address this problem. Modetr
means that one attempts to build a model relating query weitthsaudio data and noisy so-
cial tags. Data-driven on the other hand seeks to relatg sosal tags with query words. In
this thesis, we focus on how to design a novel Model-drivethiod and combine these two

approaches to improve the performance of music searchengin

1.2 What We Have Done

To address social tagging problems, in this thesis, we walppse three novel methods.



1. We proposed two Model-driven methods (Method 1 and 2) fwrave the performance

of automatic annotation, all them will be introduced in Cleay3.

2. We also proposed one scheme combined method (Method 8ftess large-scale tag

recommendation issue, it will be introduced in Chapter 4.

1.3 Contributions

Our main contributions are summarized as follows:

1. We modify the Corr-LDA model as Method 1 that is from a fanof models that have
been used in text and image retrieval for the music retrieasi.

2. The proposed Method 2 — TOB-SS performs very well;

3. We propose an alternative data fusion method that corslsiogal tags mined from the
web with audio features and manual annotations.

4. We compare our method with other existing probabilistadeling methods in the liter-
ature and show that our method outperforms the currentstatee-art methods.

5. We also evaluate the performance of diverse music loetli@atures, include Mixture
Gaussian Model (GMM) and Codebook techniques.

6. To the best of our knowledge, the Method 3 is the first workoiasider Explicit Multiple
Attributes based on content similarity and tag semantiglarity for automatic music
domain tag recommendation.

7. We present a parallel framework in Method 3 for offline nouintent and tag similarity
analysis including parallel algorithms for audio low-leteature extractor, music con-
cept detector, and tag occurrence co-occurrence calculetics framework is shown to
outperform the current state of the art in effectivenessadiiciency.

8. We have implemented a prototype search engine for Quedebcription to demonstrate

a novel way for music exploration.



1.4 Organization of the Thesis

From what has been discussed above, several challengesaked in this domain. This thesis
will address such challenges in the following chapters: rap@hensive survey of the existing
literatures will be presented in Chapter 2, two proposed &ltoldiven methods will be intro-
duced in Chapter 3 and one combined method will be presemtélapter 4. A prototype QBD
system for demonstrating the idea of search engine will lngvehin Chapter 5. In Chapter
6, we will draw a conclusion of whole thesis. The details ottlmeanatic proof on proposed

Method 1 will be listed in Chapter 6.



Chapter 2

Existing Work

Query-by-text, in particular Query-by-description(QBiB)popular in academic society. Sev-
eral years ago, because the number of songs is pretty smadlcan be managed by human
being. As long as increasing number of music is avaliablemento manually annotate the
music pieces is extremely difficult. As discussed above, axetknown that the key of QBD

system is to compute the score matrix of each song given bgubry. There distinct methods

in the literature aim to address this problem.

1. Model-driven Method
2. Data-driven Method

3. Combined Method

2.1 Model-Driven Method

In Model-Driven method, the relationship between semanganingful words(e.g. social tags

and annotation) and music low-level features will be leayrdopting some powerful machine

5



learning algorithms, such as GMM model and SVM, which corgdhe following important

issues:

1. What to be used for representing music items?

2. How to map the music items to semantic space?

2.1.1 What to be used for representing music items?

Pandora employs professional or musicians to annotate the aspietssic items, such as the
genre, instrument, etc. However, this approach is labensive and slow. With the increasing
amount of music appearing every month, it is almost impdss$dannotate all the music items
in time. Fortunately, with the popular of Web 2.0, peoplegeting more and more interested
in tagging web resources including music pieces for furiearch in social networks system.

Thus the Internet becomes an important source for coligtéigs of music items:

Web pages - With the advancement of search techniques, sareh®ngine such as Google
can return more relevant documents when issued with a usgy,gwhich can be used to
represent a music item. Peter Knees et al. [4] use the teomsdontent of top 100 Web pages

returned by Google for representing music items.

Blogs - With the popular of Blogs, some web users write somsianeview on their Blogs,
which makes them another resource for representing mesitsit Malcolm Slaney et al. [5]

collected a few Blog pages to represent the related séngs.

Social Tags - With the rising of music social networks, sustiast.fm and Youtube, users
tend to use a few short words to annotate music items. Thesedamusic item can be repre-

sented with those tags associated with it. By September, 20@8 50 million free-text tags of

Ihttp://www.pandora.com
2http://hypem.com



which 1.2 million tags are unique have been used for anmgt&ti8 million items [6].

2.1.2 Howto learn the mapping between music items and musiesantic

meanings?

The semantic gap generally affects the domain of multimseigch and researchers have been
trying to find out effective ways to bridge the semantic gapn§&quently, we need to construct
a semantic space and learn a mapping between the low-lateréespace and the semantic

space.

Construction of the semantic space

The semantic space is a set of terms, which has differentrgenmeanings. All the research
works have constructed a semantic space to represent the nemss. The only difference

is that how to choose the words as the basis of semantic sgdesemantic space can be
constructed manually, which can be very useful but cannogxtended easily. Bingjun et
al. [7] construct such space with limited dimensions, suglg@nre, mood, instrument, etc.
Therefore, automatically constructing a music semantacsps very attractive by using the
online web resources such as Web documents [4, 8], Blogs| $ags [3] and so on. However,
it contains more noise than manually constructed semagpdices which calls for more efficient

algorithms to construct such space from the raw documeribasdcial tags.

Representing the music items by using constructed semantspace

Machine learning methods such as graphic model and clag®ificbased methods are widely
employed to learn the mapping. Blei et al. proposed a gawmeratodel to modeling the

annotation data [9], which is further extended to learn tlaping between tags and media



items such as images and songs. In [10, 11], Muswords, sitoilzag-of-word in text domain,
was created by content analysis of songs. They also cotstracbag-of-word of tags, and
Probability Latent Semantic Analy$il. SA) was used to model the relationship between music
content and tags. In [12], the authors constructed a taghgraped on TF-IDF similarity of
tags. The semantic similarity between music items can bairmdd by computing the joint
probability distribution of content-based and tag-basedlarity. Carnario et al. [13] proposed

a novel method supervised multi-class labelif@ML) to learn the mapping function between
images and tags. Douglas et al. [8,14] applied the methatlinsil 3] to represent music items

by a predefined tag vocabulary.

The work presented in [3] is an example of classificatioredasethods, a bank of classi-
fiers (Filterboost) are trained to predict tags for musimge The mapping between low-level
features and semantic items (e.g. tags) can be determinasliy SVM classifiers [7, 15] to

map the low-level features into different categories in @efic space.

Slaney et al. used a different approach to learn the mappimgy tried to learn a metric for
measuring the semantic similarity between two songs. Thedand parameters of a metric

are adjusted so that two semantic close songs get high vatumitarity [5].

Paper IndeX Learning Methods Semantic Space Application

[3] Filterboost Top tag from last.fm Automatic tagging

[12] MRF All tags from dataset Classification
[10,11] PLSA Social tags Retrieval
[8,14] SML Social tags, web pages Retrieval
[7,15] SVM Predefined categories Retrieval

[4] PLSA Terms from related Web pages  Retrieval

Table 2.1: Summary of the related works




2.2 Data-driven Method

As an emergent feature in Web 2.0, social tags, is allowed &yymvebsites to markup and
describe the web items (Web pages, images or songs). Sud@l &s, in some senses,
has tremendous semantic meaning. For instance, Youtuleptaooustomers to upload video
clips and advocates them to attach relevant meaningfuligésas (social tags). Data-driven
method assume that as long as increasing number of humag dgaich a certain item with
similar tags, the tags could be correct to describe the igmh kind of knowledge from plenty
of folks, also be known as folksonomy, directly contribut@snany commercial system, such
as Youtube, Flicker and Last.fm. The retrieval engines ichstommercial product directly
index the tags using maturely text retrieval techniquess italuable to highlight that such
method does not involve any content-based techniquesuitidie efficient enough and easy
to be deputed as a stable system to handle millions evearsibf images or songs. Unfortu-
nately, such method only performs well when the items in system has large mount of tags,

in turn with few tags, the performance of it is pretty poor.

2.3 Existed Works in Image Community

In order to improve the quality of online tagging, there hasmextensive work dedicated to au-
tomatically annotating images [16—19] and songs [3, 20-28rmally, these approaches learn
a model using objects labeled by their most popular tagsmapaaied by the objects’ low-level
features. The model can then be used to predict tags forelelhiiems. Although these model-
driven methods have obtained encouraging results, thewnpeance limits their applicability
to real-world scenarios. Alternatively, Search-BaseddenAannotation (SBIA) [23, 24], in
which the surrounding text of an image is mined, has shownuaging results for automatic
image tag generation. Such data-driven approaches aez éaxl more scalable than model-

driven approaches, thus finding higher suitability to neaHd applications. Both the model-



driven and data-driven methods are susceptible, howevsinilar problems as social tagging.

They may generate irrelevant tags, or they may not exhibérdity of attribute representation.

Tag recommendation for images, in which tags are autonigtieecommended to users
when they are browsing, uploading an image, or alreadylatig@ tag to an unlabeled image,
is growing in popularity. The user chooses the most reletegys from an automatically recom-
mended list of tags. In this way, computer recommendatiahnaanual filtering are combined
with the aim of annotating images by more meaningful taggu®jornssoret al. proposed
such a tag recommendation approach based on tag co-oami[B&). Although their approach
mines a large-scale collection of social tags, Sigurlgsomet al.do not take into account image
content analysis, choosing to rely solely on the text-bésgsl Several others [26,27] combine
both co-occurrence and image content analysis. In thissthee propose a method (Method
3) that considers both content and tag co-occurrence fomtli@c domain, while improving

upon diversity of attribute representation and refining patational performance.

Chenet al.[28] pre-define and train a concept detector to predict qoimquebabilities given
a new image. In their work, 62 photo tags are hand-selected fflickr and designated as
concepts. After prediction, a vector of probabilities drb&l concepts is generated and the top-
n are chosen by ranking as the most relevant. For each of th@cepts, their system retrieves
the topp groups in Flickr (executed as a simple group search in Féickterface). The most
popular tags from each of thegroups is subsequently propagated as the recommended tags

for the image.

There are several key differences between [28]'s approadhoar method 3. First, we
enforce Explicit Multiple Attributes, which guaranteestiour recommended tags will be dis-
tributed across several song attributes. Additionally,design a parallel multi-class classifi-
cation system for efficiently training a set of concept d&tecon a large number of concepts
across the Explicit Multiple Attributes. Whereas [28] ditlg uses the tom concepts to re-

trieve relevant groups and tags, we first utilize a conceptoreo find similar music items.

10



Then we use the items’ entire collection of tags in conjwrttvith a unique tag distance met-
ric and a predefined attribute space. The nearest tags aegaggd across similar music items
as a a single tag recommendation list. Thus, where other®dcomsider attribute diversity,

multi-class classification, tag distance, and parallelgotimg for scalability, we do.

11



Chapter 3

Model-driven Methods

In this chapter, we mainly focus on Model-driven method, trede are two fundamental prob-

lems we have to face are:

1. What kind of music representation (low-level contentdeas) is more suitable for such

task ?

2. What kind of model is more suitable for music automaticctation task ?

We propose employing a novel method to improve the perfoomanprevious work as well
as evaluating diverse low-level features on such model. Mfe {o investigate theroblem 1
that discussed above, to evaluate what kind of music reptasen is more suitable for music
automatic annotation under the discriminative model, saslSVM classifier. To this end,
we study diverse state-of-the-art probabilistic modalshsas: SML [20], CBA [21], and we
propose employing a revised Corr-LDA [9], Corr-LDA for shand Tag-level One-against-all
Binary approach, named TOB-SS, to improve the performafgeevious work. Our main

contributions in this chapter are as follows:

1. We modify the Corr-LDA model that is from a family of modelsat have been used in

12



text and image retrieval for the music retrieval task.

2. The proposed method 2 — TOB-SS outperforms all the sfatteeeart methods on CAL500

dataset;

3. We propose an alternative data fusion method that corslsiogal tags mined from the

web with audio features and manual annotations.

4. We compare our method with other existing probabilistadeling methods in the liter-

ature and show that our method outperforms the currentstatee-art methods.

5. We have implemented a prototype search engine for Quedebcription to demonstrate

a novel way for music exploration.

6. We also evaluate the performance of diverse music loett@atures, include Mixture

Gaussian Model (GMM) and Codebook techniques.

In this chapter, Section 3.1 presents our music retrieaahéwork, and Section 3.2 explains
our features used. Section 3.3 present the modified Corriidéel as well as the other models
we explore. Section 3.4 illustrates our evaluation measumeperiment results, analysis, and

introduces our prototype system.

3.1 Framework

In this section we present an overview of the music retrisyatem. Figure 3.1 illustrates the
framework of this system. Users search music by typing kegivgoierie$ such as “classical
music piano” to obtain a ranked list of songs. This rankingpisiputed from the scores of each

song given the keyword, and is in turn computed from an arniootanodel.

Initially, the system is presented with a labeled data sst¢bnsists of manually annotated

songs (audio data). Firdeature extractions performed on the audio data to extract low level

We assume the keyword queries is from a fixed vocabulary daftations provided.

13
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Figure 3.2: Two different methods of fusing multiple datases for annotation model learning

audio features. Then, a codebook is createdcluatering Each song is now represented by
a bag of codewords. Next, an annotation moddftamed using the new representation and
annotations. Finally, the remainder of the unlabeled (@uthannotations) songs are annotated
via inferencewith the model. New songs can be introduced to the systemgrgsenting them
as a bag of codewords using the codebook and annotating thiegnthe model. For retrieval,
scores for each song given a keyword is computed using thetation model and the top

results presented to the user.

For this preliminary work, we further investigate the fusiaf multiple sources of informa-
tion such as “social tags” that are obtained from a real-evodllaborative tagging web site.

This is a source of additional information to the framewonkl & marked with a dotted box
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in Figure 3.1. There are two ways in which social tags can berporated into the annotation
model. First is the model level fusion method illustrates-igure 3.2(a). A separate model
is built for audio-annotation and for social-annotatiorhe an ensemble method is used to
combine the models. This was explored in [8]. Second, is #ta kkvel fusion method where
the social tags are directly used to augment the song repegsa. The social tags are treated
as new codewords and the same method is used to train theationohodel. We take the sec-
ond approach in this report using the Correspondence LDAet|8¢las we believe ensemble

methods introduce too many additional parameters with@dddeplexity to the model.

3.2 Features

The music data we use is the publicly available data set, @tengudition Lab 500 (CAL500)
[29]. It consists of a set of 500 “Western popular” songs ffia®d unique artists. Each music
track has been manually annotated by at least three peopieseTannotations construct a

vocabulary of 174 “musically-relevant” semantic words.

3.2.1 Audio Codebook

In this chapter, we use Mel-Frequency Cepstral CoefficistiGC) as the music audio low-
level feature. Each song is represented as a bag-of-feataters [29]: a set of feature vectors
that are calculated by analyzing a short-time segment @udée signal. In particular, the audio
is represented with a series of Delta-MFCC feature vectArime series of MFCC vectors
is extracted by sliding a half-overlapping, short-time dow (23 msec) over the songs digital
audio file. A Delta-MFCC vector is calculated by appendingfirst and second instantaneous
derivatives of each MFCC to the vector of MFCCs. The CAL50€ad=et provides MFCCs
from three time windows, a total of 10,000 39-dimensiondeatectors per song. Such huge

number of features is tedious for training a model as therebwaip to 5 million audio samples

15



for 500 songs. Hence codebook methods are required.

To create a codebook representation of MFCC data, we perttrstering on all MFCC
feature vectors. We use standard K-means clustering wiltck&ters. Each cluster is a code-
word in the codebook. Then, we represent the audio data bf ®aty as a bag of codewords.
Specifically, each song has 500 audio codeword features.valnes of these features is the
count of MFCCs of the song that belongs to the codeword (@iustThis is similar to the

codebook approach in [21].

Gaussian Mixture Model (GMM)

Gaussian Mixture Model is very popular in multimedia clustg and classification. We em-
ploy this method to cluster the samples of each song. GMM Inisdelatively similar to

K-means, the most different point here is that rather thafopa clustering on whole data set,
GMM just performs clustering on samples of one song. In thegpter, we set the number of

cluster to 8.

Simple Segmentation (SS)

Another intuitive approach of dimension reduction is bagedhe direct segmentation of the
music clip. Each music clip can be divided inkd sub-clips, and the feature of each sub-clip
can be represented as the mean and the standard deviatiba BFRCC features within it.

The number of segments in each music is closely associatbdive representation accuracy.

Therefore, different K values are studied and compared imauk.
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3.2.2 Social Tags

In this section, we describe how to extract meaningful regméations from social tags. For
each pair of a song and a tag, we derive a relevance scorés, t) evaluating the relevance
of the song and the tag. However the song-tag relevancessmselting from social tags are
considered sparse since the strength of association heseegs and tags is unknown due to

the nature of social context.

We can summarize each song with an annotation vector ovecabutary of tags. Each
element of this vector indicates the relevant strength ebeiation between the song and a tag.
The annotation vector is generally sparse in that most sarggannotated with only a few tags.
A song-tag pair can be missing because either the song andgldon’t match or the tag is

relevant but nobody has ever annotated the song with it.

As a music discovery web site, Last.fm, allows users to agd ta tracks, artists, albums,
etc. via a text box in their various audio player interfad&g September of 2008, the 20 million
monthly users had annotated 3.8 million items over 50 nmltimes by using a vocabulary of

1.2 million unique free-text tags.

For each song in the CAL500 corpus, we collect two lists of social tags froast.fm by
using the API provided. One list relates the song to a setgs teéhere each tag has a tag score
ranging from 0 to 100. The score is computed by integratiegitimber and diversity of users
who have annotated the song with the tags, which is the trectetsof Last.fm. The other list
associates the artist with tags and aggregates the tagfsc@kthe songs by that artist. We
gather the top 100 tags for each song and each artist, androemhie scores of the song-tag
pairs and the artist-tag pairs to generate a final scorg) for each song-tag pair. That is, the
relevance score(s, t) for songs and tagt is the sum of the same tag scores on the artist list
and song list. For instance, if the song-tag paias long as you love me, pap has a score

of 60 and the artist-tag pak: backstreet boys, pop- has a score of 35, the final relevance

17



scorer(as long as you love me, ppfs 95. Social tag data for each song is represented by a
set of song-tags with their relevance score. For the CALT0Qs this results in a song-tag

vocabulary size of slightly more than 16,000.

3.3 Modeling Techniques Investigated

In this section, we briefly review the main models of interastwell as two other models
for comparison. All four kinds of models are probabilisticthat they encode a joint prob-
ability distribution over the annotation terms (words)dahe audio features (codewords).
From there, the probabilities of a each word given the coddsvof a particular song, i.e.

P(word|codewords), is used as the score to rank retrieval results for a giveryquerd.

3.3.1 Proposed Method 1 — Correspondence Latent Dirichlet Wocation
(Corr-LDA)

Latent Dirichlet Allocation (LDA) is a generative model gmally used to model text docu-
ments [30] and is illustrated in Figure 3.3(a). Briefly, eaéthe D documents in the corpus
has a distribution over topic8, drawn from a Dirichlet distribution parameterized d&$: For
each wordyw, in the document, a particular topig, is first drawn fronf. The particular topic
is one of theK possible topics represented Byvariables that are distributions over words.
Then, the word is drawn from the particular The key point is that every word can come from
a different topic and every document has a different mix pide given byd. The Dirichlet
distribution serves as a smooth (continuous) distribusioch that a particular point sampled

from it will give the parameters of a multinomial distriboi — in this case the distribution over

2For simplicity we use the samefor all Dirichlet parameters of & dimension distribution instead of indi-
vidual aq, ..., ax. This means that a higher value@ftoncentrates the probability mass more at the centre of the
K topics.

18



topics,d. As there are multiple levels of latent variables that anedétional on other latent
variables, this is an example of a Hierarchical Bayesiamidgt (HBN).

symbol | definition

D Number of documents
M Number of words
M’ Number of unique words
K Number of topics
@@@@: @ N Number of codewords
u N’ Number of unique codewords
D K Q@ Dirichlet distribution foré
(a) Latent Dirichlet Allocation 4 Distribution over topics

y Particular word topic (LDA) /
Codeword identifier (Corr-LDA)
Particular word

w
@*@@@‘ @ 5[ Word topic
N, z Particular codeword topic
r Particular codeword
@_@‘ @ T Codeword topic
R codeword vocabulary size
M W word vocabulary size
D K
(b) Correspondence Latent Dirichlet Allocation (c) Legend of symbols

Figure 3.3: Graphical LDA Models, plate notation indicatiest a random variable is repeated

The Corr-LDA model is an extension of LDA that is used to maal@hotated data. These
are text annotations associated with some other elemeatsiired document. It has been pri-
marily used in the image retrieval domain where the othenelgs are image regions [9, 31]
However, we observe that the model may be more generallyempfa codewords instead of
justimage regions. These codewords can be our audio cods\rom the clustered codebook,
or summaries of any other types of data that have accompgaypimotations, such as web sites,
essays, videos, etc. This generalization allows us to $iaal tags from collaborative tagging
web sites as additional codewords of a particular song alyueading to the data level fusion
shown in Figure 3.2(8) The counts of the social tag codewords are representedelneki-
vance score (Section 3.2.2). More formally, Corr-LDA iswhan Figure 3.3(b) and has the

following generative process feachdocument in the corpub:

3The version of Corr-LDA we use is in-between the presentesio® in [9] and the supervised version in [31].
The main difference is that we do not have a class variabli&euir [31] but we use a Multinomial distribution
over codewords instead of the Gaussian distribution ovagaregions in [9].

4We have assumed the audio codewords and social tags to emdknt given the latent variables.
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1. Sample a distribution of codeword topics from a Diricldistribution,0 ~ Dirichlet(«)

2. For each codeword,,, n € [1, N], in document:
(a) Sample a particular codeword topig, € [1, K]), 2,|0 ~ Multinomial(6)
(b) Sample a particular codeword,|z, ~ Multinomial(r,, )

3. For each word (annotation),,,, m € [1, M], in document:
(a) Sample a particular codeword identifigr, (€ [1, K1), Yy, ~ Uniform(N)

(b) Sample a particular word,, |z, ~ Multinomial(f.,, )

Steps 1 and 2 of the generative process is exactly LDA if wamenthe codeword as words.
The extension for annotations is in Step 3. For each anoat#te codeword identifiey,, is
conditional on the number of codewords as shown in Figur@B\8ith an arrow fromV to y.
This means that we pick a word topic that corresponds to oleeofodewords present in the
document before proceeding to sample from the topic to gettrd. The more a codeword
appears in a document, the more we are likely to pick a wond tgsociated with it due to the
Uniform distribution used in Step 3(a). This is the link beem the codewords and annotations.
In other words, the values for variablesandy,,, are indexes to Multinomial distributions for
codewords £) and words (). Learning these distributions and the valuenothat controls
the distribution that documents come from is the objectiiveaning the annotation model.

As 7 andf are Multinomial distributions we write; ,., to bep(r,|z, = 4, 7) and, ,,, to be

p(wm‘ym =MN,zn = i, 6)

The joint probability distribution given the parametersaadingle document encoded by the

Corr-LDA model is,

p(r,w,0,2,y|0) = p(f|a) (Hp 2n|0)p(10| 20, T ) (H p(ym|N)p(wm|ym,z,B)) (3.1)

where bold font indicates the sets of variables in the docuraed® = {«, 7, 5} are param-

eters of the model. The joint probability distribution o&ttwvhole corpus is the product of the
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per document distribution of all documents. The first pastatistribution of interest that can
be used as a score for a word for each songusr, ©). The second is the posterior probability
of a documentp(w, r|©), that is essential for estimating the parameters of the frantkto
computep(w|r, ©). However computing the second value is intractable dueeéactupling
between the integration ovér and summation over variablesand 5 during marginalization.

Hence approximate inference methods must be used.

We use the same approximate inference method used in [1&diely, Variational Infer-

ence. This method uses a simpler distribution,

90,2, y|7v, 6, ) = q(0]y) (H Q(zn|¢n)> (H Q(?/m|/\m)> : (3.2)

where~, ¢, A are free variational parameters to be estimated, to appairithe posterior dis-
tribution of the latent variables, i.ex(0, z, y|r, w, ©). From here, the lower bound of the log

likelihood of a document is given by,

logp(w,r|©) > E,llogp(0,r,w,z,y|O)] —E,[logq(0,2z,y|v, d, \)] (3.3)

= L(7,6,)0) (3.4)

Section .1.1 presents the detailed components of Equadcem®@ Section .1.2 shows an equiv-
alent simplification that is used in actual computation. Mazing Equation 3.4 is equivalent to
minimizing the Kullback-Leibler (KL) divergence betweef®, z, y |y, ¢, A) andp(0, z, y|r, w, O).
Hence by directly optimizing Equation 3.4, we can obtainltveer bound log likelihood as an

approximation to the true likelihood.

For optimizing theL of one document, we use standard numeric gradient ascerteon t

parameters, ¢, A to give the update equations:

K M
(bm' X 7Ti,rn exp <<\I[<fyz) - W(Z 7])) + Z )\mn lOg B@',wm> (35)
j=1 m=1
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N
n=1 Amn O eXp(Z Pnilog Biw,)  (3.7)

=1
wheren € [1, N],i € [1, K],m € [1, M]. These updates are iterated urtitonverges or the
maximum specified number of iterations is reached. The &rildtion of the gradient is given

in Section .1.3.

To learn the parameter®, of the Corr-LDA model, Variational Expectation Maximigat
(VEM) algorithm can be used. This is the same as the standdrdlgorithm but with vari-
ational inference for the inference step. VEM is achievedtésating the two steps below
until the lower bound log likelihood of the entire corpus eerges or the maximum number of

iterations has been reached.

E-Step For each document, perform Variational Inference ufitdonverges, i.e. we optimize
the set of{~,, ¢a4, \¢} for one document. The lower bound log likelihood for the emp

is the sum of each document’svalue.

M-Step Maximize the model parameter®, = {«a,r, 5} to get the Maximum Likelihood

Estimate (MLE)

1. « is maximised using the Newton-Raphson method describefDin [
2. Setm-f X ZdDzl ZnNil 1[Tn = f]d)dm

D M
3. Setﬁiw X Zdzl Zmzl 1[wm - w] Zn ¢dni)\dmn

Wherel|a = b] returns 1 ifa = b and 0 otherwise.

The details of the gradient updates in the M-Step is givendatiBn .2. Note that in the
actual implementation, in the E-Step, we accumulate thicgarit statistics after variational
inference is performed for each document. This is the actation of 7,y and 3;,, updates

shown. Consequently, in the M-Step we only calculatecthgpdate and normalize and 3.
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Hence we only iterate through once per VEM iteration. The time complexity of the VEM is
O(a-(b- DKN'M'+ K(R~+W))) where:a is the maximum number of EM iteratiorisis the
maximum number of variational inference iterations, is the number of unique codewords
in a document)’ is the number of unique words in a documefitis the number of unique
codewords in the corpus, antl is the number of unique words in the corpus. The derivation
of theb- DK N’ M’ term is due to the dominance of Equation 13 in Section .1.2baimth able

to multiply the appropriate probabilities for each unigqweleword/word by their occurrences
in all given equations of.. The K'(R + W) term is the normalizing of the topic variables,
andg, using the sufficient statistics. The space complexity (& (R + 1)) due to storing the

Multinomial distribution parameters for the topic variebl

Finally, our posterior probability of interest that repeats the score of each query word for

each song is approximated by,

plwlr) =~ ZZq n = ildn)p(wlz, =i, 8) (3.8)

n=1 i=1

n=1 i=1

This score is used to annotate the unlabeled songs in theeldiar ranking during retrieval.

3.3.2 Proposed Method 2 — Tag-level One-against-all BinarZlassifier

with Simple Segmentation (TOB-SS)

An intuitive idea is to convert this problem to multi-classoblem, we divided the multi-
label problem into multiple classes (tags) binary clasaiitn problem, named Tag-level One-
against-alBinary approach, TOB for short. By using TOB, we can estimate théaidity to
determine how good the songs can be annotated by each tadydageevious trained SVM

model on this tag. After that, we can get a probability matwkose row denotes songs and
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column means tags.

The differences between TOB approach and Audio SVM methdd following. Firstly,
we use the different low-level features, which has beenudsed in section 3.2.1. Secondly,
although both methods use SVM as its own classifier, TOB isl@agl One-against-abbinary

classifier which is differ from Audio SVM’s multi-class clsifier.

In this section, we are proposing a novel method TOB-SS, wvbambining of TOB and
Simple Segmentation scheme due to that it is simple andydasixtended to a parallel algo-
rithm, which is s crucial component in large-scale real @@BR-MIR system. The process

could be divided into 3 steps:

1. For each song, we extract the short-time window MFCCs &snfhen 10,000 MFCCs
samples could be extracted out. By using Simple Segment8tbeme, we then obtain

N samples for each samples;

2. For each tag, we collect samples of all related songs el ¢kt the label of these
samples to +1 as well as set the irrelated samples to -1. bliadfssthen used as training

set and the remain part used as testing set;

3. After training and testing process, we obtain the prdiigwf this tag over all songs,

then we repeat the process on each tag and can obtain thditglmaatrix.
Firstly, we investigate this model on diverse music repnesgteon. After we obtain the best

combination, we compare such combination with state-efett model, in particular, the CBA

model [21], SML model [20] and Audio SVM [22].
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3.3.3 Codeword Bernoulli Average (CBA)

Codeword Bernoulli Average (CBA) is an simple probabitistnodel to predict what words
(annotations) will apply to a song and what songs are cheniaet by a word. CBA models
the conditional probability of a wordy ,appearing in a song, conditioned on the empirical

distributionn; of codewords extracted from that song.

Njk Zjw Yjw @

J K Song Level ' Word Level

Figure 3.4: Graphical CBA Model Figure 3.5: SML Model

CBA (Figure 3.4) assumes a collection of binary random \desy, with y,, € {0,1}
determining whether wordy, applies to song. A value fory;,, is chosen from a Bernoulli

distribution with parametes;.,, :

p<ij - 1‘ij7ﬁ> - szww (310)

p<ij = O‘ijaﬁ) =1- szww (311)

wherez;,, is a codeword selected with probability proportional to thenber of timesn,y,

that the codeword appears in sgjigfeature data.

We fit CBA with Maximum Likelihood Estimation (MLE) and our gbis to estimate a
set of values for our Bernoulli parametg8sthat will maximizep(y|n, 3) of the observed
wordsy conditioned on the codeword countsand the paramete#. We use the Expectation-
Maximization (EM) approach because analytical MLEs@aare not available due to the latent

variablesz. In the expectation step, we compute the posterior of tlentatariables: given
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the current estimates for the parameif@rs

U2 Bkw 1
wlzie =k B0z = kin) 55 g T =1
hjwk — p(ij — k|n,y,ﬁ) — p(yj | ] B)p( yi | ) — 22:1 ]LBLIU (312)
p(Yjw|m,s B) ne(=Brw)
_ gk PRw) o if Yiw = 0
K nji(1-Biw) Jw

In the maximization step, we find maximum likelihood estiesabf3 given the expected pos-

terior sufficient statistics:

225 P(zjw = Klh)Yjw 225 MjurYju
Zj p(zjw = klh) Zj Rjuk

ﬁkw — E[ij|zjw = ]i], h] = (313)

Iterating between the two steps until the likelihood cogeeor satisfy a user threshold, we
find a set of values fo8 under which the training data become more likely. Next, we use
them to infer the probability that a word,, applies to a previously unseen sgnigased on the

countsn; of codewords for that song:

1
P(Yjw =14, B) = > B (3.14)
7k

3.3.4 Supervised Multi-class Labelling (SML)

The other approach is to use probabilistic models such asuadizan Mixture Model (GMM)

for each word (annotation) based on music low-level featur€his is based on a class of
Supervised Multi-class Labeling (SML) models [20]. Howeuhis method also learns many
models (one for each word) that have to be combined usingiatyaf ensemble methods.
Hence it can be viewed as being more similar to methods tleadigsriminative models. Figure
3.5 depicts the SML model as a Hierarchical Gaussian Mixioelel that has two steps: 1)
song level GMM,; 2) word level GMM. For each word, the SML moterns the probability

of each song given a worB(song|word). Under a uniform word prior assumption [20], the

score matrix that consists of the probabilitiesrti{fword|song) is used for retrieval.
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3.4 Experiments

Our primary model of interest is the Corr-LDA model. As suale conduct the most exper-
iments on it. The Corr-LDA model was implemented in C++ bas#dhe freely available
C code for the LDA model. The SML and CBA models were impleradrin Matlab. All
models were run using ten-fold cross validation — the datevas partitioned into ten parts and
each part is used as the unlabeled data set with the othepart®as the labeled data. The
output for each model is a probability distribution overtak annotation terms for each song.
This probability matrix is then used as a ranking score fengoting the evaluation measures
mentioned in the previous section. In all, we have evalustede 540 Corr-LDA models with
different parameter settings and with social tags. We didcompare the time performance
of the various methods due to incompatible platforms. Omagyes Corr-LDA without social
tags mostly requires a few minutes when used with 500 codisvddowever with the addi-
tional 16,000 social tags, Corr-LDA may require a few hourast, we implement a simple

web-based prototype music retrieval system to demonstratesults.

3.4.1 Evaluation Method

3.4.2 Evaluation

We evaluated our models performance on an annotation tathka amtrieval task using the
CAL500 data set. We compare our results on these tasks witlsés of published results on
this corpus: those obtained by Turnbeilal.. using mixture hierarchies estimation to learn the
parameters to a set of mixture-of-Gaussians models [20],GBA model [21]. In the 2008
MIREX audio tag classification task, the approach in [20] weasked either first or second

according to all metrics measuring annotation or retripeaformance and the CBA model just
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won the Best paper Award of ISMIR 2009

Annotation Task

To evaluate our systems annotation performance, we comhthegeaverage per-word precision,
recall, and F-score. Per-word recall is defined as the agdragtion of songs actually labeled
w that our model annotates with label w. Per-word precissotefined as the average fraction
of songs that our model annotates with label w that are dgtledeled w. F-score is the
harmonic mean of precision and recall, and is one metric efalzannotation performance.
Following [20], when our model does not annotate any songsavdiabel w we set the precision
for that word to be the empirical probability that a word i tthataset is labeled w. This is the
expected per-word precision for w if we annotate all songsloaly. If no songs in a test set
are labeled w, then per-word precision and recall for w agetined, so we ignore these words

in our evaluation.

Retrieval Task

To evaluate our system retrieval performance, for each wovek ranked each songin the
test set by the score (probability) provided by the diffénerodels. We evaluated the mean
average precision (MAP). MAP is defined as the average of theigions at each possible
level of recall. As in the annotation task, if no songs in d set are labeled then MAP is

undefined for that label, and we exclude it from our evalusfor that fold of cross-validation.

Shttp://ismir2009.ismir.net
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3.5 Results & Analysis

3.5.1 Corr-LDA Method
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Figure 3.6: Results for Corr-LDA model without social tagsh) and with (d)

Figure 3.6(a-c) depicts the results for the Corr-LDA moduatier different parameter set-

tings. We vary the number of latent topics (i.&) and the initial Dirichlet parameter for

values 1, 2, and 3. For the Precision and MAP measures (FRj6(a,c)), Corr-LDA is af-

fected by the number of topics. Across all initialsettings, the scores for both Precision and

MAP peaks at 125 topics. This shows that both measures aséigerno the number of topics

and Corr-LDA's performance will decrease if there are tow && too many topics. Recall (Fig-

ure 3.6(b)), on the other hand, steadily increases untitd@iss and any further increase in the

number of topics has mixed results depending on the valueeoiitial . For all three mea-
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Figure 3.7: Comparison of the various annotation modelsir-CDA has initial « = 2 and
Corr-LDA (social) has initiakk = 3. Both used 125 topics.

sures, the parameter setting of initial= 3 performs marginally better. Furthermore, although
there is variation between the plotsgfmost are slight and less than 2% different. This shows
that Corr-LDA is not highly sensitive ta: parameter settings — something we expect as

learnt during training.

Figure 3.6(d) illustrates the plot for Precision, RecatidaMAP for the Corr-LDA model
with social tags included as part of the data level fusionhoét All three measures have
improved over basic Corr-LDA. Similarly, their scores peslten 125 topics are used. This
may mean that the effect of the number of topics is similaneféhe codewords vocabulary
size is greatly increased. The benefits of the social tagspaim Corr-LDA is seen in Figure
3.7 that compares the two variants of Corr-LDA with SML, CB#d a random model that
annotates songs randomly. Here we observe that incorpgrsdicial tags improves Corr-LDA
by 5.35%, 2.78% and 7.40% for MAP, Precision, and Recallgethgely. Furthermore, plain
Corr-LDA performs better than CBA that uses a simpler prdistic model. This shows that
there is potential in the Corr-LDA model especially if apxiroate inference can be improved.
Conversely, the SML model is better than the plain Corr-LDAd®l. This may mean that
the assumption that audio codewords are independent dieewdrds is valid. However, the
Corr-LDA model with combined social tags out-performs tiLSnodel. The results confirm
that fusing multiple sources of information at the data lév@an effective method to improve

performance for music retrieval with Corr-LDA.
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We did not evaluate the SML model with combined social taghigreport. However, the
SML model requires storage of the probability of the codehgiven word. This results in a
storage requirement of the size of the codeword vocabulalfiptied by the size of the word
vocabulary. Corr-LDA instead requires the space of the rermobtopic multiplied by the sum

of the vocabulary sizes — a much smaller representationadtetuse of latent topics.

3.5.2 TOB-SS Method

Evaluation on Diverse Music Representations

At the beginning of experiment, we first investigate the coraton of three totally different
representation of music and TOB-SS algorithm. Table 3.Wshbat with TOB model, almost
all the Simple Segmentation Scheme (with different N) otftpen other representations, in
particular GMM and Codebook. In this table, we also can satthe training time will soar if
we increase théV of each songs. The rational behind this is that the size ofitgg samples

depends omV.

Obviously, the TOB model obtains the best result wiNldeing set to 12. Our goal of this

combination is to find the tradeoff betwedhand MAP.

Accu. | Prec.| Recall| F-measurg MAP | Train. | Feat. Extraction
Time(s) Time (s)
GMM 87.11| 0.228| 0.101 0.140 | 0.491| 1200.26| > 24 hours
Codebook| 87.48| 0.283| 0.097 0.144 0.339| 147.57 > 24 hours
N=1 87.17| 0.224| 0.101 0.139 0.335| 30.80 1095.28
N =4 88.29| 0.435| 0.112 0.178 0.682| 346.33 1083.19
N =28 89.15| 0.673| 0.14 0.232 0.777| 1096.78 1102.2

N =12 | 89.65| 0.674| 0.185 0.29 0.801| 2340.52 1083.92

N =16 89.9 | 0.672| 0.221 0.332 0.787| 4474.91 1089.96

Table 3.1: The results
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Evaluation on Different Models

So far, we have known that the combination, say TOB-SS, ctairothe highest performance.
In this section, we will combine this method with other state¢he-art models. We have re-
implemented two state-of-the-art models: SML [20] and CEA][ the former is the best
performing system in MIREX 2008 and the latter one is the pagier of ISMIR 2009. We
also compare this model with one work, which just posted orMARultimedia 2009 last
month [22]. Since we do not have enough time to re-implentezit method (Audio SVM and
Affinity SVM), we just directly fetch the results from theiaper. As shown in Table 3.2, our
proposed algorithm outperform all of them except Affinity I\ih F-measure. Because the
paper does not provide Precision, Recall and MAP, we carorapare this with their model.
Since MAP is differ from F-measure, we cannot estimate wdrettine model also enjoy better
MAP. One thing for sure, the Affinity SVM is Two-Step algonithframework, its first step is
Audio SVM whose F-measure is little bit lower than TOB-SS mldths, we can easily replace

the first step with our model in the near future.

Prec. | Recall| F-measure MAP | Training Time
CBA 0.275| 0.16 0.202 | 0.385| > 24 hours
SML 0.284| 0.162 0.206 | 0.409| > 48 hours
TOB-SS (N=16)| 0.672| 0.221 0.332 | 0.787| 1.2 hours
Affinity SVM 0.498

Table 3.2: Comparison Between Different Models

3.5.3 Computational Cost

In this section, we will study the effect on the parametein SS. Firgure 3.8 shows the re-
lationship between MAP, Training Time ard. The training time soars while increasing
However, at same time, the MAP seems converged after 8. The figure illustrates that

N = 8 can be the best choice.

32



1 T T T T T
- Training Time|
- -MAP
L
~ | 0 eeemmmmm -
o .-
< " E
c .
S ‘ 3
] e
) . 2
1] . @
a e - £
o . . =
S .
=)

g7 £

4 c
<4 g
c =
I
o
= -

| I I | 1 1 1
1 2 4 6 0 10 12 14 16

Figure 3.8:

The Number of Samples in Each Song

MAP vs. Training Time Curve

33



Chapter 4

Combined Method - Method 3

The previous chapter, we introduced the Model Driven methodlong with the soaring of
mount of data, especially the case using data crawling fraermet, the model based methods
are extremely difficult to handle the issue with large scal@adboth from the computation and

accuracy aspects.

In this chapter, we will combine the Model Driven method anat@®Driven method to
address the large scale data. Content of this chapter idyrmsed on our ACM Multimedia

2010 regular paper listed Irst of Publications.

4.1 Large-scale Music Tag Recommendation with Explicit

Multiple Attributes

In just over a decade, online music distribution servicegpaoliferated, giving music a ubig-
uitous presence on the Internet. As the availability of malmusic continues to expand, it

becomes imperative to have effective methods that allowamano satisfactorily explore a
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large-scale space of mixed content. This is a significanflexige, as there is no predefined
universal organization of online multimedia content andawuse of the well-known seman-
tic gap between human beings and computers, in which comgpo#anot interpret human
meaning with high accuracy. For example, a human may search $ong with the primary
keywords, “happy,” “Beatles,” and “guitar.” A human intwi¢ly understands that ‘happy” is
a common human emotion, “Beatles” is a popular rock band fteen1960’s, and “guitar” is
a 6-stringed instrument. Yet it is difficult to computatitiganterpret these words with high

semantic accuracy.

Social tagging has gained recent popularity for labelingtps, songs and video clips. In-
ternet users leverage tags found on social websites sudltlas East.fm, and Youtube to help
bridge the semantic gap. Because tags are usually genésateanans, they may be semanti-
cally robust for describing multimedia items and theretoegoful for discovering new content.
However, because they are often generated without consttags can also exhibit significant

redundancy, irrelevancy, and noise.

In order to address the deficiencies of socially collabeeatagging, computer based tag
recommendation has recently emerged as a significant obsiegnic. Current recommendation
systems rely on term frequency metrics to calculate tag rtapoe. However, some attributes
of online content are tagged less frequently, leading tibate sparsity. For instance, music
encompasses a high-dimensional space of perceived diomsnsncluding attributes such as
vocalness, genre, and instrumentation. Yet many of theseetatively underrepresented by
social tagging. For example, the four most popular tagscatsnl with the musician Kenny

G on Last.fm are “saxophone,” “smooth jazz,” “instrumendalz,” and “easy listening,” which
arelnstrumentand multipleGenreattributes. Thus, three out of the four most popular Kenny
G attributes are related to genre. According to {3gnretags represent 68% of all tags found
on Last.fm. Most of the remaining attributes are relateddoation(12%), Mood & Opinion

(9%), andinstrument(4%).
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Because attribute representation is so highly skewedetinefrequency metric which most
recommendation systems use may ignore important but legadntly tagged attributes, such
as era, vocalness, and mood. In this chapter, we build upgruhrent image domain tag
recommendation frameworks by considering Explicit Mu#igttributes and apply them to
the music domain. The result is a recommendation systemwdméorces attribute diversity

for music discovery, ensuring higher semantic clarity.

There were several novel challenges undertaken in our wearkt, we constructed a set of
music-domain Explicit Multiple Attributes. Second, sdatacontent analysis and tag similarity
analysis algorithms for addressing millions of song-tagspaere considered. Last, a fast tag
recommendation engine was designed to provide efficienteffiedtive online service. Our

main contributions are summarized as follows:

1. To the best of our knowledge, ours is the first work to cosskexplicit Multiple At-
tributes based on content similarity and tag semantic antylfor automatic music do-

main tag recommendation.

2. We present a parallel framework for offline music contertt &ag similarity analysis in-
cluding parallel algorithms for audio low-level featureractor, music concept detector,
and tag occurrence co-occurrence calculator. This frameisshown to outperform the

current state of the art in effectiveness and efficiency.
The structure of this chapter is as follows. In Section 4.2vesent the system architecture.

We perform several evaluations of our system using two detis Section 4.3 and discuss

our results in Section 4.4.
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Multiple Attributes (CEMA Recommendations \ Along Each Attr. Each Attr.

Figure 4.1: Flowchart of the system architecture. The lgfire shows offline processing. In
offline processing, the music content and social tags oftispugs are used to build CEMA and
SEMA. The right figure shows online processing. In onlinecessing, an input song is given,
and it K-Nearest Neighbor songs along each attribute are retri@eearding to music content
similarity. Then, the corresponding attribute tags of a&lighbors are collected and ranked to
form a final list of recommended tags.

4.2 System Architecture

Our system architecture, which is designed for scalabilgtygraphically depicted in Figure
4.1. We use a framework built on MapReduce to handle parpitetesses. The system is
functionally divided into two parts: offline processing aoidine processing, and comprised
of two modules, Content based Explicit Multiple Attribut6SEMA) and Social tags based
Explicit Multiple Attributes (SEMA). The CEMA and SEMA modies consequently maintain
indexed lists of Multiple Attribute Fuzzy Music Semanticcters (MA-FMSVs) and Multi-
ple Attribute Tag Distance Vectors (MA-TDVs). During offérprocessing, a large database
of songs is analyzed. For each song, MA-FMSVs and MA-TDVsgaeerated by the Par-
allel Multiple Attributes Concept Detector (PMCD) and RislaOccurrence Co-Occurrence
(POCO) algorithms respectively. During online processihg system quickly recommends
attribute-diverse tags for a user presented song. The sdMy-FMSV is predicted by the
Concept Detector and consequently used to index into CEMAfiawl its nearest neighbors.
The nearest neighbors are in turn indexed into SEMA, rexyiti a rank-sorted list of tags for

each attribute. Each of the architectural components araigsed in detail below.
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4.2.1 Framework

As the volume of multimedia data to be processed is poténhalge, multimedia information
retrieval systems need to efficiently handle large-scaia-oensive computations. Therefore,

the scalability of these systems is a major concern. Ourdveork attends to this issue directly.

A practical solution for addressing scalability is to distite computations across multiple
machines [32]. With traditional parallel programming misdguch as the Message Passing
Interface, developers maintain the burden of explicitlynaging concurrency. Thus, signif-
icant energy must be devoted to managing system-levellsletai contrast, the MapReduce
programming paradigm presents an attractive alterna8@¢ [MapReduce is based on the
simple observation that many tasks share the same basitusguWith MapReduce, compu-
tation is applied over a large number of nodes to generatepegsults and then the results
are aggregated in some fashion [32]. MapReduce providebstraation for programmer de-
fined “mappers™ ki, v1) — [(k2,v9)] and “reducersk,, [vs]) — [vs], and keeps most of the
system-level details hidden, such as scheduling, coaidmaand fault tolerance. As shown
in Figure 4.2, the “mappers” receive evetey, value) pair from the input partition and emit
an arbitrary number of intermediatéey, value) pairs. A barrier then shuffles and sorts the
intermediate pairs. “Reducers” are applied to all pairdite same key to emit an output

(key, value) pair.

Map Map

Barrier: Group Values by Key

( Reduce ) ( Reduce ) ( Reduce )
( Output ) ( Output ) ( Output )

Figure 4.2: MapReduce Framework. Each input partition sem(key, value) pair to the
mappers. An arbitrary number of intermediétey, value) pairs are emitted by the mappers,
sorted by the barrier, and received by the reducers.
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In our work, we use Hadodgfor back-end parallel processing, which is an open-source
implementation of MapReduce. In Hadoop, a mapper is a JAd&scthat contains three func-
tions: setup, map, and cleanup. The setup function is calted when a mapper is started, the
map function is called several times for each input key-@gdair, and the cleanup function is

called once when a mapper is going to be destroyed.

4.2.2 Explicit Multiple Attributes

Our work uses Explicit Multiple Attributes to enforce caoited attribute diversity for music
content analysis and social tag recommendation, respéctift the outset, we define a con-
strained set ofd attributes and 2 attribute spaces. Each attribute in aibatitr space may
hold any number of elements, as long as more than one. We gitetie CEMA and SEMA
modules their own Explicit Multiple Attribute space withetlsameA attributes. However, their
attribute spaces may differ in the elements they contaire CBEMA attribute space is used
to to define the Multiple Attribute Fuzzy Music Semantic \dast (discussed below). That is,
every input song to the system will be classified by its regméstion within the CEMA At-
tribute space. The SEMA attribute space is used as an anotrfpr the corpus of social
tags. Since the global social tag space is noisy and contaamy redundant and irrelevant
terms, the elements in the SEMA attribute space are usech&®itks to the entire tag corpus.
As will be discussed below, any tag in the corpus is describeédrms of its distances to the
SEMA attribute space. These distances are stored in Mellftribute Tag Distance Vectors.
By predefining these two attribute spaces, we can ensuiledttdiversity and semantic clarity

for tag recommendations.

'htt p: / / hadoop. apache. or g/
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4.2.3 Parallel Multiple Attributes Concept Detector (PMCD)

The Parallel Multiple Attributes Concept Detector (PMCB)responsible for predicting the
MA-FMSVs in offline and online processing. First, we traiit a database of labeled songs.
Afterwards, we can use it to predict (offline) the MA-FMSVsauditional songs, giving us
great flexibility for expanding the system’s song tag repngation without any additional
training. Finally, the Concept Detector is used during malprocessing for recommending
tags. Below, we discuss MA-FMSVs, the input to the Concepelter (which is a vector of

low-level music features), and the training process.

Multiple Attribute Fuzzy Music Semantic Vectors (MA-FMSVs)

For music content analysis, each song is represented by @pMuAttribute Fuzzy Music Se-
mantic Vector (MA-FMSV) which indicates, for each attribptvhich element the song belongs
to. FMSVs were proposed by [7] for use on music similarity sweas, and are easily computed
by a SVM classifier. The FMSV for one piece of song is a proligbiector, in which each
dimension denotes how similar to a certain aspect of musicinStance, the number of dimen-
sion in vector is 4(Pop, Jazz, Classical, Blues), the vdoras song represents the probability
belongs to Pop, Jazz, Classical or Blues. For conveniereepncatenate the FMSV elements
from each attribute to form a single vector, the MA-FMSV. Bygsong in our system is repre-
sented by its MA-FMSV. We first use a set of songs describetidiy low-level audio features
and manually labeled with their MA-FMSVs for training the i@ept Detector. Afterwards,

any unlabeled song can be automatically assigned its MABS¥e Concept Detector.

MA-FMSVs are easily indexed using Locality Sensitive Hagh{LSH) [34]. As evaluated
in [7], FMSV representations and LSH techniques acceldhaesearching process among a
large-scale data sets(0.5 seconds on a data set with 3000 samples=arid7 seconds on

a data set with 1 million samples). With LSH, we are able tccedfitly find the K-Nearest
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Neighbors of a predicted MA-FMSV. This is significant to saytime in our online processing

for tag recommendation.

Low-level Music Feature Extraction

Low-level feature extraction is performed on all songs. &ese the individual song feature ex-
tractions are independent of each other, it is easy for usverdge the MapReduce framework
and design a parallel algorithm for feature extractionhis tase, we only use the MapReduce
mappers (Figure 4.2). Each song is stored in the cluster mg $ine and is fed into a map-
per. In the mapper, we use Marsyas [36] extract low-level audio features, suchSsectral
Centroid, Rolloff, FluxandMel-Frequency Cepstral Coefficients (MFCG@s) each short time
frame. Finally, the averages and standard deviations sirasies are used to summarize each

song, resulting in a 64-dimensional feature space.

Training

Our concept detector uses a multi-class SVM predictor. Besaur system does not set any
constraints on the size of the number of elements in the CEftidvate space, parallel process-
ing is critical to ensuring scalability. Yet, it is difficuid design a SVM classifier with parallel

processing. If using the MapReduce framework, one canatkoa mapper and a reducer for
each iteration in the training stage [36]. However, the pssccan become cumbersome with

large iteration sizes, so we seek an alternative algorithmpdrallel computing.

A multi-class SVM classifier is usually decomposed into acs@éhdependent binary SVM
classifiers. Using this approach, we can take advantageediidtpReduce framework. There
are several methods for decomposing a multi-class SVMitissto multiple binary classi-

fiers. We use the “one-versus-one,” method because it peebthe best on our data set during

’http:// marsyas.info
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informal evaluations. In “one-versus-one” binary classifion, a set of classifiers is built for

every pair of classes and the class that is selected by thiealassifiers is voted as best.

In our work, we use a novel algorithm, which couples the Peg&/M solver [37], which
is a very fast linear SVM solver, with a “Random Emitter” apach to Multi-Class SVM
with MapReduce, as opposed to a “Normal Emitter” approanha INormal Emitter” mode,
the mapper acts as an emit controller. Each sample is emiited 1 times with a different
classifier, whereV. is the number of classes in the data set. The two class lalresersus-
one) are emitted as the key of the mappers’ output. Afteirgprall the samples with same
key are sunk into the same reducer. Each sample in a redusarhd” or “ —1” label, where
“+1” denotes that it belongs to the first class, anrd * that it belongs to the other. The reducer
then calls the Pegasos SVM solver to train a model for thisgmaly pair and dumps the model

as the reducer’s output.

The Pegasos implementation of binary SVM classificatioactelat random only a subset
of samples to train a model, and the size of the subset is aidmnaf the maximum iteration
size specified by the user. Because of this, it is unnecefsaitye mapper to emit all samples.
A more sophisticated method of using MapReduce is “Randontt&rh(Algorithm 1), which
randomly outputs samples and limits the size of the outpgtitrantee the number of samples
is larger but not too much larger than the binary classifie€sds. Intuitively, the “Random
Emitter” acts as the “Random Sampling” process within Pegallote that “Random Emitter”
is more efficient only when the size of the training data sktriger than the maximum iteration
size of the binary SVM classifiers. The appropriate thresdluain be calculated using this

equation:
NC x I
2x N

P, =P =ax (4.1)

where P, is the threshold of emitting the sample asl}” P_ is the threshold of emitting the
sample as“1,” I is the maximum iteration size of the binary SVM classifi€f; denotes the

total number of classeg$y represents the size of data set (the number of samples)y and
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is a scalar to guarantee the number of emitted samples & ldrgn maximum iteration.

Algorithm 1 Random Emitter
Procedure: RandomEmitter
Input: S, N¢, I and N
Output: Sample string
. Initialize P, and P_ by Equation 4.1
. Get labelLabel of input S (Sample string)
: forall ¢« < Label do
Get random variable € [0, 1]
if »< P_ then
Keys =i +“—" + Label
Values = “-1" + sample value
end if
: end for
: forall j > Label and j < N¢c do
Get random variable € [0, 1]
if » < Py then
Keys =Label +“—"+ j
Values = “+-1" + sample value
end if
: end for
: forall Key € Keys do
Emit (Key, Value)
: end for

coNITRONRE

PR R R R R R R R
©O NPTk ®®NREO

Intuitively, if the number of training samples in the dataisearger than number of samples
that the binary SVM classifier requires, then “Random Enfis@ould be performed to limit

the mappers’ output. The expected output can be computed tie following equations:

Igp =1Ipy + 1p- (4.2)
N N
IE+:N—C><P+, IE_:N—CXP_ (43)

wherel is the expected number of output samples, denotes the number of output samples
with a “+1” label, I5_ denotes the number of output samples with-al™ label, and P,

represents the fraction of the number of emitted positiveas over the number of input
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samples in a particular category. Consequently, we mayyeagr the value ofP, :

N
[EZQXN—CXP+ (44)
NCXIE
Pl=—- 4.5
= O N (4.5)

Obviously, if r ~ U(0,1) (as described in Algorithm 1), then the size of the generated
numbers in the range of ~ P, should be equal to the amount of samples that the Pegasos
binary SVM training procedure needs. To guarantee the gizendted samples is larger than

required, a scalax is used in Equation 4.1.

4.2.4 Parallel Occurrence Co-Occurrence

(POCO)

The number of unique tags increases as more songs are ed|letaking it more challenging
and time consuming to compute the co-occurrences betwetagal To tackle the scalability
issue, a Parallel Occurrence Co-Occurrence (POCO) dhgorg proposed to generate the Mul-
tiple Attribute Tag Distance Vectors (MA-TDVS), which eri@albhe online tag recommender to
quickly retrieve appropriate attribute-diverse tags frihra entire corpus of tags. Below, we
describe MA-TDVs in more detail, including the tag distameetric used, and our POCO al-

gorithms.

Multiple Attribute Tag Distance Vectors
(MA-TDVSs)

Multiple Attribute Tag Distance Vectors (MA-TDVs) are dgsed so that we can relate any
tag in a tag corpus to a simplified diverse attribute spaceci8pally, the vectors describe a

song’s tag distances between its socially ascribed tagth@f®@EMA attribute space chosen at
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the outset of system implementation.

As there is no existing social web site which ascribes theadee between music tags, we
must define our own tag distance metric for building our MAVID We use Google’s word

distance metric [38] for measuring tag distance:

7 log N — min(log f(t;), log f(t;))

(4.6)

wheref(t;) and f(¢,) are the counts of songs containing tagnd¢; (occurrence), and(t;, ¢;)
represents the number of songs having bptind¢; (co-occurrence).N stands for the total

number of songs in the corpus.

The TDV for each tag is then calculated as the distance betwsslf and each of the terms
in the SEMA attribute space. The terms in the SEMA attribyiece act as a “codebook” for
the music social tags space, and any social tag can be ref@dsesing a distance vector and
the codebook. In this way, the TDVs of all music attributes ba calculated. For convenience,

we concatenate the TDVs from each attribute to form the MAATD

Design of a Scalable POCO algorithm: POCO-AIM

Efficient parallel word co-occurrence algorithms have bpessented by [39], in which two

methods using the MapReduce framework, “Stripes” and $amre evaluated. For our sys-
tem, we begin by modifying the “Stripes” algorithm, whichshtzeen shown to be more efficient
than “Pairs” if all words can be loaded into memory. In oureg;abe “words” are song tags,
and we are calculating occurrence and co-occurrence bettheg¢erms in the SEMA attribute

space and the tags associated with each song. Because tagence is needed in our im-
plementation for measuring tag distance (Equation 4.6)muset adapt the algorithm to also
calculate word occurrence. Because only the distancesebeatwocial tags and the terms in

the SEMA attribute space are required in our work, we cancedioe space requirement of a
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tag co-occurrence matrix fro@(N2) to O(Ny x m), whereNy is the number of tags in the

corpus andn is the number of terms in the SEMA attribute space.

In the modified “Stripes” mapper function, a key is one ternthie SEMA attribute space.
Its output is an associate array, which contains all tagsmitbte attribute space and their co-
occurrences with the key. The mapper function thus gereeealarge number of intermediate
results. We observe that a more sophisticated method igjregate the results in the mapper,
rather than using a combiner or emitting them line by lingl[A®e introduce this conserva-
tional upgrade into the algorithm’s design and name the nethad as POCO Aggregating in

Mapper (POCO-AIM). Its implementation is given in Algomth2.

Algorithm 2 POCO-AIM
Class: Mapper(Key, Tags € Song)

Input: < Key,Tags € Song >
Output: < tag, H >
Procedure: setup()

1: INITIALIZE(H)

2: Load SEMA attribute set SA

Procedure: map(Key, T'ags)
: I =Tags()SAIlIntersection of Tags and SA sets
: D = (Tags — SA) Il Difference of Tags and SA sets
: forall t1e1do
for all t2 € D do

H{t1}{t2} ++

end for
: end forProcedure: cleanup()
10: forall t € H do
11: EMIT(tag,H(tag))
12: end for
Procedure: Reduce(tag, [H1, Ha, Hs, ...])
Input: < tag, [Hl,HQ,Hg,...] >
Output: < tag, H >
- INITIALIZE(H)
: forall h € [Hy, Hy, Hs,...] dO
MERGE(h,H)
. end for
: EMIT(tag,H )

ah wN R

In the setup function, the tags in the SEMA attribute spaedaaded, and an associate array

H is initialized. The input to the map function is the song IRIam array of its tags. In the map
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function, the tags are processed and then classified intgtewgps. The first group contains
all the tags that occur in the SEMA attribute space, and thersegroupD contains the rest
of the tags. Then, the co-occurrence between tagsaind D are computed and the associate
array H is updated. Finally, in the cleanup function, the keys stone// and their values are
emitted. Compared with the modified “Stripes” method, thenbar of intermediate results and

time taken to shuffle them is greatly reduced, leading todessall computational time.

4.2.5 Online Tag Recommendation

In offline processing, our system constructs the CEMA MA-Ri8&nd the SEMA MA-TDVs
for all songs. In online processing, given a song without &gs, the system recommends
the most appropriate tags within each attribute. Upon vatgian untagged song from a user,
the online system extracts its audio low-level featureserirthe online process predicts its
MA-FMSV. The system looks for thé& nearest songs by using the LSH index. In turn, the
MA-TDVs are collected from thé{ nearest songs. The recommender sums and ranks the
MA-TDVs along each attribute to find the Tépmost relevant tags. The values flércan and

N can be changed as parameters.

It is informative to take a closer look at tag ranking timeyca the worst-case complexity
of sorting isO(nlogn). In our system, online tag ranking happens in two stageshdrfitst
stagey denotes then elements in the SEMA attribute space. In the second staigdhe total
number of social tags i -Nearest Neighbors that have been retrieved. Therefaeatiking

time is expected to be much smaller than retrieval time.
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4.3 Materials and Methods

We evaluated the quality of our system in several experimmasing multiple data sets and

evaluation criteria. In this section, we describe matsr@ad methods for the experiments.

4.3.1 Data Sets

We gathered several data sets, summarized in Table 4.hinctle concept detector and test

the effectiveness of the tag recommendation system.

| Name | Classes (Attr.) | Size (Train / Test) | Feat. |

CAL-500 174 (6) 500 64
WebCrawl 20 (4) 77,448 64
HandTag 20 (4) 17,000 64

Table 4.1: Data sets used for training and testing.

CAL-500

CAL-500 [29] is a smaller-scale database that has been madiely available for tag annota-
tion and recommendation tasks. Itincludes a 39-dimentieature set based upon differential
MFCCs and has been used as a benchmark data set for severdlaatomatic tagging tasks,
such as [3, 20, 21]. It consists of 500 songs and 174 classashdied across 6 attributes:
Mood, Genre, Instrument, Song, UsagedVocal. All tags were manually generated under

controlled experimental conditions and are thereforesleli to be of high quality.

WebCrawl

Our system is designed to efficiently operate on large-staisic data sets. Therefore, we

needed an appropriately large data set to evaluate fongestiVe generated WebCrawl by
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crawling488, 407 music items with metadat& gtitle, album name, and artist) and social tags
from Last.fm. We then used the title and artists’ names tocef@r and download more than
200,000 songs from Youtube. After collecting all music isgrme removed misspelled and
stop words from the social tags using Wordnet [2&hd filtered out any songs without tags.

We were left with 77,448 songs.

HandCrawl

The HandCrawl data set is another high quality manuallyedgtata set that has recently been
used in [15]. The 17,000 songs were selected as the mostgrapulast.fm’s data base using
its track popularity API. The tracks and metadata wereee#d by crawling YouTube. Socially
tagged ground truth data was collected in controlled erpemial conditions and cross checked
by amateur musicians with reference to Last.fm. The groumth data was associated with 4

attributes and 20 associated elements, as shown in Table 4.2

Genre Mood | Vocalness| Instrument
(14,713) (597) (2,131) (1,588)
Classical Jazz Pleasurg Male Brass
Country Rock| Joyful Female | WoodWinds
Electronic Pop Sad Mixed Strings
HipHop Metal| Angry | NonVocal | Percussion

Table 4.2: The Explicit Multiple Attributes and elementglire HandTag data set. The number
of songs represented by each attribute are shown in passsthe

4.3.2 Evaluation Criteria

Our system is designed to recommend attribute-diverseeladant tags given an input song.
Additionally, we have proposed several methods for inangasomputational efficiency when
processing large-scale data spaces. In this subsectioptvierth the main criteria by which

we experimentally evaluated the system.

Shtt p: // wor dnet . pri ncet on. edu/
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Precision and Accuracy

To evaluate our system’s recommendation effectivenesihoe the examples set in [20] and
compute the average per-tag precision, recall, @nscore. Per-tag precision is the percentage
of songs that our model recommends with tafat are actually labeled within the song’s
ground truth tag vector. Recall is the percentage of sortgsdd witht¢ in the ground truth
vector for which our model also recommends tagThe F score is the harmonic mean of

precision and recall, and is a good metric for overall recemdation performance.

For each song, the tag recommenders provide a ranked lisién of predicted relevancy. In
order to evaluate the quality of the recommender’s rankysgesn for suggesting relative tags,
we use Mean Average Precision (MAR), defined as the average of the precisions at each
possible level of recall, whereis the recall depthr{is also termed the Tap value). Therefore,
MAP@n summarizes effectiveness of precision, recall, and rankira single metric. Again
following [20], if our system doesn’t recommend a tattpat is in the ground truth vector, then

per-tag precision and recall folare undefined, and we ignore these words in our evaluations.

Diversity

Our system aims to enforce attribute diversity in its tagoremendations. To quantify the
diversity of a set of recommended tags, we define Diveesitywhich computes the proportion

of attributes automatically generated in the tofags:

Diversityan = M 4.7)
Ny

where N, is the total number of attributesl, is a vector and elements {0, 1}. A(¢;) denotes

which attributeg; is a member of.
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Computational Scalability

We have proposed several methods for improving the effigiehparallel processes for large-
scale tag recommendation. The main criteria that we inyat&iin our evaluations are compu-

tational time and data throughput.

4.3.3 Experiments

We executed two experiments designed to evaluate the two bastributions of our work.
The first evaluates effectiveness of tag recommendatiomamying sized data sets. The second

investigates the computational efficiency of the systerhitecture.

Tag Recommendation Effectiveness

We conducted two independent evaluations of tag recomntiendeffectiveness using two
datasets: CAL-500 and WebCrawl. The CAL-500 data set is allpopenchmark for tag
recommendation tasks. Thus, we are able to evaluate our agaiast others’. Hoffmaet
al.nicely summarized recent tag recommendation algorithorsgawith their own in [21]. We
borrow their review and compare those results against aegtrer implementations. In par-

ticular, we report evaluations on tag recommendation feesenethods, including our own:

1. MixHier: Based on a Gaussian Mixture of Models, uses thaufes included with CAL-

500 [20].

2. Autotag: An AdaBoost based system using additionalitngidata and features, along

with those included with CAL-500 [3].

3. CBA: CodewordBernoulli Average is a probabilistic model based on using a codebook

of size K [21]. For purposes of comparison, we chose to only repotltesvith K =
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500. Uses the standard feature set in CAL-500.

4. MD: A SVM method without tag propagation and ranking. Tisisimilar to Model-

Driven methods with limited labels.

5. SB: Similar to thesearchBased Image Annotation [23,24], a method that uses low-level

features, rather than MA-FMSVs to find tiA&NN songs.

6. FMSV: A method that usdsuzzyMusicSemanticVectors, but doesn’t consider Explicit
Multiple Attributes [7].

7. MA-FMSV: Our system—tag recommendation witultiple Attribute Explicit Fuzzy

Music SemanticVectors.

We note that we excluded results by Nessl.[22] for two reasons: First, they do not use
the full tag space available in CAL-500. Second, our condef#ctor is similar to the first stage
of their two-stage framework; it can easily be extended ¢ttuite the second stage. Procedures
4-7 were directly implemented by us. We used the featur@aetkdn space discussed in this
chapter, rather than CAL-500’s feature set. Training astirtg was done on the same data set,
using 2-fold cross validation. For procedures 5-7, paramméf and N were set at 15 and 12,

respectively.

For our second evaluation, we trained our system on the Handata set and tested on the
WebCrawl data set. This evaluation was designed to testy§tera on a data space of much
larger scale than the CAL-500 experiments. As such, we ogypnt tag recommendation
performance using procedures 4—7 above. For procedureparametersd and N were set

at 15 and 8, respectively.

In addition to the above evaluations, we also study the itngfak’ in £-NN andN in TopN

on the recommendation effectiveness of procedures 5-7.
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Tag Recommendation Efficiency

We test the efficiency of our our system at two points: the PM&@gdrithm, and the POCO-
AIM algorithm. We evaluate the improvement of POCO-AlIM’sxaputational efficiency over a
modified “Stripes” implementation, comparing the size efthappers’ intermediate output and
the computing times. We used the Last.fm data set, as itssstomsidered to be appropriately

large to model real-world tasks.

4.3.4 Computing

Our system runs on a cluster of 77 nodes (1 master, 76 slave®)rising 22 TB storage
capacity. A server is used as the master node, which has 2 ¥e4dfeU (2.5 GHz) and 32GB
memory. 28 machines with 2 core CPU (SUN V20Z, 2.18 GHz) an8 2é&mory serve as
slave nodes. The remaining 48 slave nodes come from 6 sgaveleach server is divided into
8 virtual machines. Each server has 2nd Intel Quad Core EX806 CPU ( 2.13GHz, 4M
Cache, 4.86 GT/s GPI) and 32GB memory. The expandable nattine system guarantees

that it can be easily extended to handle millions or eveiobidl of songs.

4.4 Results

4.4.1 Tag Recommendation Effectiveness

CAL-500

Table 4.3 compares the results of evaluating multiple ptoces on the CAL-500 data set. As

reported in [20], the top two rows show the upper bound andchdam baseline, respectively.
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The SVM-based methods (MD, SB, FMSV, & MA-FMSV) performedtbethan any of the
others; this has also been supported by [22]. The best l@uadll; score results were obtained
by the simplistic model-driven (MD) method, while precisiowas similarly high for MD and
FMSV methods. Our system performed approximately 85% bitéa the next highest method
(FMSV) in enforcing attribute diversity. Additionally, MAMSV was the best system for

appropriately ranking its recommendations.

| Method | Prec. | Recall | F; Score| MAP | Diver. |

UpperBnd || 0.712| 0.375| 0.491 1 1
Random || 0.144| 0.064 | 0.089 - -
MixHier 0.265| 0.158 | 0.198 - -
Autotag 0.312| 0.153| 0.205 - -

CBA 0.286| 0.162 | 0.207 - -
MD 0.606| 0.212| 0.314 | 0.511 | 0.272
SB 0.412| 0.082 | 0.137 | 0.644 | 0.524
FMSV 0.637| 0.121| 0.203 | 0.7204| 0.539
MA-FMSV | 0.588| 0.206 | 0.307 | 0.739 | 0.997

Table 4.3: Comparison between tag recommendation proesdurthe CAL-500 data set.

We wanted to evaluate the effect of theparameter for nearest neighbors on recommender
effectiveness. In theory, by using nearest neighbors, @syshould be able to recommend a
richer set of tags. As opposed to the SB method, the FMSV rdstbonsider music content
in their nearest neighbor search, while MA-FMSV enforceshaite diversity. We therefore
tested the relationship between number of neighbors aneéfteetiveness of the three rec-
ommendation systems. Figure 4.3 illustrates that FMSVletdd the best precision over all
values forK. All three SVM methods were quite sensitive to thievalue, gaining considerable
performance a& increased. This is understandable, as the data set’s tag gfa@ a relatively
clean one. Therefore, increasing the number of neareshineig will increase the number of
high quality tags aggregated in SEMA, thereby reducingrmgttional signal to noise ratio.
The recall,F; score (not shown), and MAP measurements were less sertsitivevalue for
all three methods, yet MA-FMSV performed better across thardh (except for MAP when

K > 55). K did not have a significant effect on Diversity measurements.
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Figure 4.3: K variable versus recommendation effectiveness for the G80-data set{ =
12).

Figure 4.4 illustrates the effect of paramedéfor tag recommendation MAP and Diversity.
All methods suffer in MAP performance aSis increased. The two non attribute-diverse meth-
ods, SB and FMSV, show considerable gain in Diversity pemgmice whenV is increased.
However, they are only able to achieve approximately 65%@pierformance that MA-FMSV
does. Therefore, MA-FMSYV can recommend a highly attrilmiteerse set of tag while main-

taining relatively good MAP performance.

WebCrawl

When presented with a much larger-scale training and tgsita set, all SVM methods per-

form noticeably worse. This underscores the necessityalfiating tag recommendation sys-
tems on data sets that realistically approximate realdvecenarios. Table 4.4 shows that the
pure model-driven method no longer obtains the best resulidarge-scale data set such as

WebCrawl. Therefore, we suggest that MD’s optimal perfarogaon a small, clean data set
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Figure 4.4: N variable versus recommendation effectiveness for the 680-data set =
15).

does not generalize to larger data sets. Despite overakased performance, the MA-FMSV

outperforms all other SVM methods (except on recall).

| Method | Prec. | Recall | F; Score| MAP | Diver. |
MD 0.133| 0.388 0.198 | 0.218]| 0.723
SB 0.164| 0.456 0.242 | 0.336| 0.678
FMSV 0.166| 0.458 0.244 | 0.335| 0.680
MA-FMSV | 0.210| 0.417 0.279 | 0.362| 0.958

Table 4.4: Comparison between tag recommendation proesdurthe WebCrawl! data set.

Again, we examine the impact of the tunable paramekéi@nd N on the effectiveness of
SVM systems, but with a large-scale data set. In Figure MBSV and SB obtain nearly
exactly the same results and a slight increase in perforenaver increasing<. MA-FMSV

shows better performance across/gllexcept for the recall measurement whi€én< 25.

With regard to TopV values and the WebCrawl data set, we find trends similar torgig.4
in Figure 4.6. In this case, however, at a high enobghlialue, all SVM methods perform at

near unitary Diversity. Yet, Figure 4.4 shows that cost in Rperformance may be avoided if
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MA-FMSV is used for tag recommendation.

4.4.2 Tag Recommendation Efficiency

PMCD

In our system, the Pegasos based PMCD algorithm was modiftadawRandom Emitter”
method to reduce MapReduce payload when given a large nuohiogsut samples. In order
to check that our decomposed and modified version of Pegasfusips correctly, we tested it
on a generic multi-class problem set of 1,000,000 sampleéf@rclasses. In all cases, PMCD
performed similarly to or better than LibSVM. We are therefoonfident that our modifications

do not come with loss in classifier accuracy.

To show the efficiency of the revised “Random Emitter” metbwdr standard methods, we

plot the number of samples output from the mapper as a fumofisample size input. The left
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graph in Figure 4.7 shows that the “Normal Emitter” and “RamdEmitter” have exactly the
same number of emitted samples when the size of data setlis Bimaever, as the size of data
set increases, the “Random Emitter” pre-samples the daltéiraits the output. In this case, if
we setC' = 20 and7" = 100, 000, then the total required sample sizeQié(g;l) xT. As can be
seen, when the size of the dataset is larger than the numbangdles required by Pegasos, the
“Random Emitter” limits the system'’s output, while the outtpf a “Normal Emitter” increases

linearly.

POCO-AIM

In our work, we have proposed the POCO-AIM algorithm for oédting the occurrence and
co-occurrence between social tags and elements in SEMAoihgdso, we first modified the
“Stripes” method proposed by Liet al. [39] by adding functionality for counting term oc-

currence. We have designated the modified algorithm as PR&/@sed Stripes (POCO-RS).
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Figure 4.7: System efficiency measurements. The left plotvstthe number of mappers re-
quired, as a function of the number of input samples, for therfnal” and “Random” methods

of concept detection with MapReduce. The middle graph shdiffsrences in computing

time, as more mappers are used with two different implentiems of a parallel occurrence
co-occurrence algorithm. The right graph shows reducedoeraputput per mapper for the
POCO-AIM algorithm.

Then, we introduced additional modifications for improvihg computational efficiency of

POCO-RS as POCO-AIM.

In order to model real-world computational requirements,arawled much of the Last.fm
data set, which has 8,338,431 unsorted tags over 440,4@& sonest the computational ef-
ficiency of our parallel processing algorithm, POCO-AIM.the middle graph of Figure 4.7,
we show that the running time of POCO-AIM decreases as theébeuwf mappers increases
by a significant amount until the system’s memory resoureedapleted (when the number
of mappers exceeds 40). As can be seen, POCO-AIM requiraeapately 33% of the
computational time that POCO-RS does when 40 mappers aseinTinerefore, POCO-AIM
outperforms the modified “Stripes” as long as the vocabutéall tags in use is small enough
to be stored directly in memory. The corpus of tags used tordesmusic is relatively small

compared to that of text, image and video, so POCO-AIM is gir@piate method for tag
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recommendation. POCO-AIM accomplishes computationatieffcy by aggregating results
in the mapper, therefore reducing the number of intermedegults emitted from all mappers.
The right side of Figure 4.7 shows that the size of the inteliate results emitted from all the
mappers in POCO-AIM is much less (approximately 50% whemtiraber of mappers = 40)

compared to the modified “Stripes” algorithm.
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Chapter 5

Query-by-Description Music Information

Retrieval(QBD-MIR) Prototype

5.1 QBD-MIR Framework

5.1.1 QBD-MIR Demo System

{ ' v ol
- .
k s Uy

= £ &
i. FF l EV‘ 4 4
&1 Wi . \

Bues

Figure 5.1: The homepage of QBD-MIR system
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Figure 5.1 is the home page of our toy QBD-MIR system, thedoottable in this figure
indicates that which kind of tags (description) are supgmbdurrently. The tags here are certain
descriptions on music content not the Meta data, it mearisathne commercial systems are
difficult to explore music in this way. By typing a tag in theaseh form, the system will return
a set of relevant songs regarding to the tag. One thing vidualbe noticed is that the query
process could be very fast due to it just needs to rank thearelescores and fetches the top
10 songs. Figure 5.2 demonstrates whether the retrievetitepngs are truly related to such
query or not. The first column is a list of music video clipscfetd from Youtube, and the
second column is th8ongs nameandtags from ground truth data setvhich annotated by

three persons separately. In this figure, the correct tagseen highlighted.

Retrieved List

Figure 5.2: The top 10 retrieval video list
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Chapter 6

Conclusion

In conclusion, we have proposed three methods to address tgging issues: sparsity and

noise.

We have investigated the use of various probabilistic n®ttal text-based QBD retrieval
of music. In particular, we have focused on applying our rhcalion of the Corr-LDA
model(Method 1), previously used in image retrieval, to & m®main. Also, we presented
an alternative method for fusing multiple information smes. This data level fusion involves
clustering to obtain an codeword representation of rawaigditures and combining them with
social tags mined from the WWW. Our experiment results iai¢hat Corr-LDA is competi-
tive in the music retrieval domain when compared againsragiisting probabilistic models.
Furthermore, our method of data level fusion results in tbst performance. Last, we have
implemented a prototype retrieval system that retrievesicrhased on text-based query. More-
over, a novel approach called TOB-SS(Method 2) is also megdo improve the performance
of previous models. The experimental results have dematestthat our approach outperforms
other methods on the benchmark data set. Another conwibirtithis project is that we set up
a real system to help people explore the music in a new waytesngers can find music by

semantic meaningful description.
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Futhermore, we also have presented a framework for largle-stusic tag recommendation
with Explicit Multiple Attributes(Method 3). The system grantees that recommended tags
will be attribute-diverse. Additionally, we have detailpdrallel music content analysis, con-
cept detection and parallel social tags mining algorithasel on the MapReduce framework
to support large-scale offline processing and fast onligedeommendation in each pre-defined

attribute.

Our experiments have shown that our system’s tag recomrtiends. more effective than
many existing recommenders and at least as effective as §ie-based methods. In all
cases, recommended tags are more attribute-diverse anddbmmender’s ranking system
has been shown to be more effective. Additionally, we hawegm that our tag recommender
is scalable to very large data sets and real world scend@ios the generality of our proposed
framework and three parallel algorithms, we believe thataty be used in other multimedia

content analysis and tag recommendation tasks, as well.

Our future tasks include evaluating the performance of @méwork using mismatched and
larger sized CEMA and SEMA attribute spaces. We also aim topawe our POCO method
with purely co-occurrence based schemes. During testiegiownd that speedup was not as
optimal as desired when we approached the limits of our coatipnal resources. We therefore
plan to investigate how speedup may be further optimizedalli we are working to design
a human-friendly interface for our recommendation systerthat we may distribute it to the

public domain.
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Appendix

.1 Corr-LDA Variational Inference

This section presents the details of the componentdof ¢, \) (Equation 3.4), used in Vari-
ational Inference (Method 1 - Corr-LDA). Where obvious, tmerameters of functions are

omitted, e.g© = {«, m, B} from L(v, ¢, \) and~y, ¢, A from q(0, z,y).

.1.1 Lower Bound of log likelihood

L(v,0,A) = Eyllogp(0,r,w,z,y)] —Eqllogq(0,2,y)] 1)
= Eyflogp(0]a)] + Ey[log p(z|0)] + Ey[log p(r|z, 7)] +
E,[logp(y|N)] + E,[log p(wy, z, 8)] —

E,[log q(0)] — Eq[log q(z)] — Eqyflog q(y)] (2)

E,flogp(fla)] = logI'(}_ ay) - Z log I(e;) + ) (a; = 1) (‘1’(%) V(Y %)) @)

j=1 i=1 j=1
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E,y[logp(wly, z, 5)]

Eqlogq(0)] = log F(Z ) —

E,[log ¢(z

E,[log q(y

Zlog C(v) + Z(% -1) <‘I’(7 ) —

PP (‘If(%) ~(y %)) 4)
= Z Z Oni log Ty (5)

N M 1 1 N M
DD Amlog 5 =log D" A 6)

ZZ% Z A 108 Bius, 7)

n=1 i=1

‘I’(Z w)) (8)

i=1

M=

-

n=1 1

1

N M
= D > Aunlog Ann (10)

n=1m=1
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1.2 Computation Formulation

For computation when; is same for alk:

K
L(y,0,\) = logT Za] — ) logT(a;) —log T(D ;) (non-K dependent terms) (11)
— P

(log% + (\If ) Z% ) ) (12)

M
( ( Z ) ) +108 Tir,, — 108 $ni + 3 Amn log Bm(;l?

+

Mw

N
Il
—

n
] =
Mw

m=1

3
I
—
.
Il
—

HMZ
ﬁM:

.1.3 Variational Multinomial Updates

Parameter ¢,,;

K K M
‘C[@J = Z (Z)m <<\I[<fyz> - W(Z 7])) + log Wi,rn + Z )\mn log Bi,wm - log (Z)nz)
i=1 j=1

m=1

oL

K M
- <\Il(72) - \II(Z 7])) + log T + Z )\mn log Bi,wm - log gbm -1+ A

m=1

K M
Gni O iy, XD ((wm) -v() %)) + > A log ﬁi,wm> (15)
j=1 m=1

Term —\I!(E]K:l ~;) can be ignored as it cancels out after normalisation.
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Parameter ;

N
Vi = Q; + Z Pni (16)
n=1
New~!*! can be updated using otd and¢’ using:
W oy (a7)

N
R ) I (CAER (18)
n=1

Parameter \,,,,

K
1
‘C[Amn} - E ¢m>\mn log Bi,wm - )\mn log )\mn + log N)\mn
=1

8£—i¢-16-—1>\ 1) + log —
D 2 O 08 Biwn — (10g A + 1) + 08 %
= 0
K
A o< exp(D 6ni108 Biw,) (19)
i=1

.2 Corr-LDA Parameter estimation

In this section we derive the gradient ascent updates in theémisation step of the Variational
Expectation Maximisation algorithm. A corpus is represented by a bag of codewords and

annotations (words), i.e.

D = {(ra,wa) }i
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2.1 Parametermr; s

E[ﬁ;k}(D) = Zzszdmlogﬁzrn‘FZMZ Zﬂ-lf_l

a‘c[ﬂ'l:k’} — i % i ¢dnz i i
aﬂ-if d=1 n=1 i=1 Tirn i=1 f=
D N, K K
- Pani (V;"
o33 3 Y
d=1 n=1 =1 o =1
=0
D Ny
mif o< ; 3 [0 = fbans (20)
2.2 Parameterg,,
M N K K Vo
LD = > 3 Nunbinlog Biw, + ui(z Biw — 1)
m=1n=1 i=1 i=1 _
or M N K K
% - ZZZAmn¢znlogﬁzwm+Z 2 =0
m;l n]\;l i=1
ﬁiw X Z Z 1[wm - U}] Z deni)\dmn (21)

a
Il
—
i
—_

.3 QBD Music Retrieval Prototype

Here are the example query and sample screenshots of tlodympet
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SML

Corr-LDA (social)

Song: Crosby Nash BBC — Guinnevere
Original Annotations: NOT Angry/Aggressive,
NOT  Arousing/Awakening,
Calming/Soothing, NOT Cheerful/Festive, NOT E
citing/Thrilling, NOT Happy,
Light/Playful, NOT Loving/Romantic, Pleasant/Cor
fortable, NOT Powerful/Strong, Tender/Soft, Bluegra
Folk, Acoustic Guitar, Backing vocals, Male Lead M
cals, NOT Catchy/Memorable, NOT Changing Enel
Level, NOT Fast Tempo, NOT Heavy Beat, NOT Hig
Energy, Quality, NOT Recommend, Recorded, Text
Acoustic, NOT Very Danceable, Folk

NOT Bizarre/Weird

back/Mellow, NOT|

Song: Evanescence — My Immortal

Original Annotations: NOT Angry/Aggressive, NOT
, Bizarre/Weird, NOT Carefree/Lighthearted, NOT
x-Cheerful/Festive, Emotional/Passionate, NOT Happy,

NOT Light/Playful, Loving/Romantic,
n-Pleasant/Comfortable, NOT Positive/Optimis&ad,
s§.ender/Soft, Touching/Loving, Soft Rock, Female Lead
p\/ocals, Piano, NOT Changing Energy Level, NOT Fast
gyempo, NOT Heavy Beat, NOT High Energy, NOT
jHPositive Feelings, Quality, Recorded, Texture Acoustic,
uteOT Very Danceable, Emotional

Song: Miles Davis — Blue in Green
Original Annotations: NOT Angry/Aggressive, NOT|
Bizarre/Weird, Calming/Soothing, NOT Carefree/Lig}
hearted, back/Mellow, NOT Light/PlayfulSad, Ten-
der/Soft, Touching/Loving, Cool Jazz, Jazz, Pia
Catchy/Memorable, NOT Fast Tempo, NOT Heavy Be
NOT High Energy, Like, Quality, Texture Acoustic, G(
ing to sleep, Romancing, Jazz

Song: Fiona Apple — Love Ridden

Original Annotations: NOT Angry/Aggressive,
1tNOT  Arousing/Awakening, NOT  Bizarre/Weird,
Calming/Soothing, NOT Carefree/Lighthearted, NOT
n&;heerful/Festive, Emotional/Passionate, NOT EXxcit-
aing/Thrilling, NOT Happy, NOT Light/Playful, Lov-
n-ing/Romantic, Pleasant/Comfortable, Powerful/Strong,
Sad Tender/Soft, Touching/Loving, Alternative Folk,
Singer/Songwriter, Soul, Folk, Female Lead Vocals, Pi-
ano, String Ensemble, Catchy/Memorable, NOT Heavy
Beat, Like, NOT Positive Feelings, Quality, Recorded,
Texture Acoustic, Romancing, Emotional, Female Lead
Vocals Solo

Song: Sheryl Crow — | Shall Believe

Original Annotations: NOT Angry/Aggressive,
NOT  Arousing/Awakening, NOT Bizarre/Weirg
Calming/Soothing, NOT Carefree/Lighthearted, N(
Cheerful/Festive, Emotional/Passionate, NOT Ex
ing/Thrilling, NOT Light/Playful, Pleasant/Comfortahls
Powerful/Strong, Tender/Soft, Country, Backing voca
Bass, Female Lead Vocals, Synthesizer, Tamboul
Catchy/Memorable, NOT Changing Energy Level, N(
Fast Tempo, NOT Heavy Beat, NOT High Energ
Positive Feelings, Quality, Recorded, Texture Acous

Song: The Carpenters — Rainy Days and Mondays
Original Annotations: NOT Angry/Aggressive, NOT

, Arousing/Awakening, NOT Bizarre/Weird, Calming/-
DBoothing, NOT Cheerful/Festive, Emotional/Passionate,
ciINOT Exciting/Thrilling, NOT Happy, NOT Light/Play-

e ful, NOT Positive/Optimistic,Sad, Tender/Soft, Touch-
Isng/Loving, Blues, Folk, Backing vocals, Female Lead
indgcals, Harmonica, Piano, Saxophone, String Ensemble,
DNOT Fast Tempo, NOT Heavy Beat, NOT High Energy,
)yQuality, Recorded, Texture Acoustic, Texture Electric,
titntensely Listening, Emotional, Saxophone Solo

Tonality, Breathy, Emotional, Vocal Harmonies

Table 1: Top 3 results for query “sad” for SML and Corr-LDA¢sa) models
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