
Large Scale Music Information Retrieval by Semantic Tags

Zhao Zhendong (HT080193Y)

Under Guidance of Dr. Wang Ye

A Graduate Research Paper Submitted
for the Degree of Master of Science
Department of Computer Science
National University of Singapore

July, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48636331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Model-driven and Data-driven methods are two widely adopted paradigms in Query by De-

scription (QBD) music search engines. Model-driven methods attempt to learn the mapping

between low-level features and high-level music semantic meaningful tags, the performance of

which are generally affected by the well-known semantic gap. On the other hand, Data-driven

approaches rely on the large amount of noisy social tags annotated by users. In this thesis, we

focus on how to design a novel Model-driven method and combine two approaches to improve

the performance of music search engines. With the increasing number of digital tracks appear

on the Internet, our system is also designed for large-scaledeployment, on the order of millions

of objects. For processing large-scale music data sets, we design parallel algorithms based on

the MapReduce framework to perform large-scale music content and social tag analysis, train

a model, and compute tag similarity. We evaluate our methodson CAL-500 and a large-scale

data set (N = 77, 448 songs) generated by crawling Youtube and Last.fm. Our results indicate

that our proposed method is both effective for generating relevant tags and efficient at scalable

processing. Besides, we also have implemented a web-based prototype music retrieval system

as a demonstration.

i

Acknowledgments

I thank my supervisor Dr. Wang Ye for his inspiring and constructive guidance since I started

my study in School of Computing.

ii

Dedication

To my parents.

iii

Contents

Abstract i

Acknowledgement ii

Dedication iii

Contents iv

List of Publications vii

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 What We Have Done . 2

1.3 Contributions .3

1.4 Organization of the Thesis 4

2 Existing Work 5

2.1 Model-Driven Method .5

2.1.1 What to be used for representing music items? 6

2.1.2 How to learn the mapping between music items and music semantic

meanings? . 7

iv

2.2 Data-driven Method .. 9

2.3 Existed Works in Image Community 9

3 Model-driven Methods 12

3.1 Framework . 13

3.2 Features . 15

3.2.1 Audio Codebook . 15

3.2.2 Social Tags . 17

3.3 Modeling Techniques Investigated 18

3.3.1 Proposed Method 1 – Correspondence Latent Dirichlet Allocation (Corr-

LDA) . 18

3.3.2 Proposed Method 2 – Tag-level One-against-all BinaryClassifier with

Simple Segmentation (TOB-SS) . 23

3.3.3 Codeword Bernoulli Average (CBA) 25

3.3.4 Supervised Multi-class Labelling (SML) 26

3.4 Experiments . 27

3.4.1 Evaluation Method . 27

3.4.2 Evaluation . 27

3.5 Results & Analysis .29

3.5.1 Corr-LDA Method . 29

3.5.2 TOB-SS Method . 31

3.5.3 Computational Cost . 32

4 Combined Method - Method 3 34

4.1 Large-scale Music Tag Recommendation with Explicit Multiple Attributes . . . 34

4.2 System Architecture .. . 36

4.2.1 Framework . 37

4.2.2 Explicit Multiple Attributes 39

4.2.3 Parallel Multiple Attributes Concept Detector (PMCD) 39

v

4.2.4 Parallel Occurrence Co-Occurrence

(POCO) . 44

4.2.5 Online Tag Recommendation . 47

4.3 Materials and Methods .. 47

4.3.1 Data Sets . 47

4.3.2 Evaluation Criteria .49

4.3.3 Experiments . 51

4.3.4 Computing . 53

4.4 Results . 53

4.4.1 Tag Recommendation Effectiveness 53

4.4.2 Tag Recommendation Efficiency .. 56

5 Query-by-Description Music Information Retrieval(QBD-MIR) Prototype 60

5.1 QBD-MIR Framework . 60

5.1.1 QBD-MIR Demo System . 60

6 Conclusion 62

Bibliography 64

Appendix 70

.1 Corr-LDA Variational Inference 70

.1.1 Lower Bound of log likelihood .70

.1.2 Computation Formulation . 72

.1.3 Variational Multinomial Updates 72

.2 Corr-LDA Parameter estimation 73

.2.1 Parameterπif . 74

.2.2 Parameterβiw . 74

.3 QBD Music Retrieval Prototype .. . 74

vi

List of Publications

Large-scale Music Tag Recommendation with Explicit Multiple Attributes.

Zhendong Zhao, Xi Xin, QiaoLiang Xiang, Andy Sarroff, Zhonghua Li and Ye Wang

ACM Multimedia (ACM MM) 2010 (Full paper, coming soon).

vii

List of Figures

3.1 Basic Framework of an Music Text Retrieval System 14

3.2 Two different methods of fusing multiple data sources for annotation model

learning . 14

3.3 Graphical LDA Models, plate notation indicates that a random variable is repeated 19

3.4 Graphical CBA Model . 25

3.5 SML Model . 25

3.6 Results for Corr-LDA model without social tags (a-b) andwith (d) 29

3.7 Comparison of the various annotation models. Corr-LDA has initialα = 2 and

Corr-LDA (social) has initialα = 3. Both used 125 topics. 30

3.8 MAP vs. Training Time Curve .. 33

4.1 Flowchart of the system architecture. The left figure shows offline processing.

In offline processing, the music content and social tags of input songs are used

to build CEMA and SEMA. The right figure shows online processing. In online

processing, an input song is given, and itK-Nearest Neighbor songs along

each attribute are retrieved according to music content similarity. Then, the

corresponding attribute tags of all neighbors are collected and ranked to form a

final list of recommended tags. .. 37

4.2 MapReduce Framework. Each input partition sends a(key, value) pair to the

mappers. An arbitrary number of intermediate(key, value) pairs are emitted

by the mappers, sorted by the barrier, and received by the reducers. 38

viii

4.3 K variable versus recommendation effectiveness for the CAL-500 data set

(N = 12). 55

4.4 N variable versus recommendation effectiveness for the CAL-500 data set

(K = 15). 56

4.5 K variable versus recommendation effectiveness for the WebCrawl data set

(N = 8). 57

4.6 N variable versus recommendation effectiveness for the CAL-500 data set

(K = 15). 58

4.7 System efficiency measurements. The left plot shows the number of mappers

required, as a function of the number of input samples, for the “Normal” and

“Random” methods of concept detection with MapReduce. The middle graph

shows differences in computing time, as more mappers are used with two dif-

ferent implementations of a parallel occurrence co-occurrence algorithm. The

right graph shows reduced mapper output per mapper for the POCO-AIM al-

gorithm. 59

5.1 The homepage of QBD-MIR system .. 60

5.2 The top 10 retrieval video list 61

ix

List of Tables

2.1 Summary of the related works .. . 8

3.1 The results . 31

3.2 Comparison Between Different Models 32

4.1 Data sets used for training and testing. 48

4.2 The Explicit Multiple Attributes and elements in the HandTag data set. The

number of songs represented by each attribute are shown in parentheses. 49

4.3 Comparison between tag recommendation procedures on the CAL-500 data set. 54

4.4 Comparison between tag recommendation procedures on the WebCrawl data set. 55

1 Top 3 results for query “sad” for SML and Corr-LDA(social) models 75

x

Chapter 1

Introduction

1.1 Motivation

The way of accessing music has been changed rapidly over the past decades. As almost all

of the music items will be accessible online in the foreseeable future, the development of

advanced Music Information Retrieval (MIR) techniques areclearly needed. Many kinds of

music information retrieval techniques are being studied for this purpose of helping people to

find their favorite songs. The ideal system should allow intuitive search and require a minimal

amount of human interaction. Two distinct approaches to search large music collection coex-

ist in literatures: 1) Query-by-example (QBE) such as Query-by-Hamming; 2) Query-by-text

(metadata and semantic meaningfull description), hence ithas two sub-categories: Query-by-

metadata(QBM) and Query-by-Description(QBD).

QBD is challenging due to the well-known semantic gap between a human being and a com-

puter, making it extremely difficult to find the exact resultsthat satisfy the user. For instance,

users may describe a song using the words “happy Beatles guitar”. However, it is difficult for

the computer to interpret music in this way. Current state-of-the-art media retrieval systems

1

(e.g. music web portals, Youtube.com, etc), allow users themselves to describe the media items

by their own tags. Subsequently, users in the systems can retrieve the media items via key-

word matching with these tags. With this form of collaborative tagging, each music item have

tags providing a wealth of semantic information related to it. By September of 2008, users on

Last.fm (music social network system) has annotated 3.8 million items over 50 million times

using a vocabulary of 1.2 million unique free-text tags. Dueto the social tags containing rich

semantic information, plenty of works have explored the usefulness of social tags on informa-

tion retrieval [1–3].

However, social tagging invokes two problems that makes it hard to be incorporated for

information retrieval. First, social tags are error-proneas the tags can be annotated by any user

using any word. Second, there is the long tail theory – most oftags have been annotated to a

few popular objects. Therefore, the tags appear useless as it is often easier to retrieve popular

items via other means (also known as sparsity problem).

Currently, many works focus on the sparsity problem of social tags using automatic annota-

tion techniques. By employing such techniques, tags can be applied to the items that are similar

to the annotated items. The challenges these are multi-fold, such as whether amodel-driven

method or adata-drivenapproach is more suitable to address this problem. Model-driven

means that one attempts to build a model relating query wordswith audio data and noisy so-

cial tags. Data-driven on the other hand seeks to relate noisy social tags with query words. In

this thesis, we focus on how to design a novel Model-driven method and combine these two

approaches to improve the performance of music search engines.

1.2 What We Have Done

To address social tagging problems, in this thesis, we will propose three novel methods.

2

1. We proposed two Model-driven methods (Method 1 and 2) to improve the performance

of automatic annotation, all them will be introduced in Chapter 3.

2. We also proposed one scheme combined method (Method 3) to address large-scale tag

recommendation issue, it will be introduced in Chapter 4.

1.3 Contributions

Our main contributions are summarized as follows:

1. We modify the Corr-LDA model as Method 1 that is from a family of models that have

been used in text and image retrieval for the music retrievaltask.

2. The proposed Method 2 – TOB-SS performs very well;

3. We propose an alternative data fusion method that combines social tags mined from the

web with audio features and manual annotations.

4. We compare our method with other existing probabilistic modeling methods in the liter-

ature and show that our method outperforms the current state-of-the-art methods.

5. We also evaluate the performance of diverse music low-level features, include Mixture

Gaussian Model (GMM) and Codebook techniques.

6. To the best of our knowledge, the Method 3 is the first work toconsider Explicit Multiple

Attributes based on content similarity and tag semantic similarity for automatic music

domain tag recommendation.

7. We present a parallel framework in Method 3 for offline music content and tag similarity

analysis including parallel algorithms for audio low-level feature extractor, music con-

cept detector, and tag occurrence co-occurrence calculator. This framework is shown to

outperform the current state of the art in effectiveness andefficiency.

8. We have implemented a prototype search engine for Query-by-description to demonstrate

a novel way for music exploration.

3

1.4 Organization of the Thesis

From what has been discussed above, several challenges are invoked in this domain. This thesis

will address such challenges in the following chapters: a comprehensive survey of the existing

literatures will be presented in Chapter 2, two proposed Model-driven methods will be intro-

duced in Chapter 3 and one combined method will be presented in Chapter 4. A prototype QBD

system for demonstrating the idea of search engine will be shown in Chapter 5. In Chapter

6, we will draw a conclusion of whole thesis. The details of mathematic proof on proposed

Method 1 will be listed in Chapter 6.

4

Chapter 2

Existing Work

Query-by-text, in particular Query-by-description(QBD)is popular in academic society. Sev-

eral years ago, because the number of songs is pretty small, thus can be managed by human

being. As long as increasing number of music is avaliable online, to manually annotate the

music pieces is extremely difficult. As discussed above, we have known that the key of QBD

system is to compute the score matrix of each song given by thequery. There distinct methods

in the literature aim to address this problem.

1. Model-driven Method

2. Data-driven Method

3. Combined Method

2.1 Model-Driven Method

In Model-Driven method, the relationship between semanticmeaningful words(e.g. social tags

and annotation) and music low-level features will be learntby adopting some powerful machine

5

learning algorithms, such as GMM model and SVM, which contains the following important

issues:

1. What to be used for representing music items?

2. How to map the music items to semantic space?

2.1.1 What to be used for representing music items?

Pandora1 employs professional or musicians to annotate the aspects of music items, such as the

genre, instrument, etc. However, this approach is labor intensive and slow. With the increasing

amount of music appearing every month, it is almost impossible to annotate all the music items

in time. Fortunately, with the popular of Web 2.0, people aregetting more and more interested

in tagging web resources including music pieces for furthersearch in social networks system.

Thus the Internet becomes an important source for collecting tags of music items:

Web pages - With the advancement of search techniques, some search engine such as Google

can return more relevant documents when issued with a user query, which can be used to

represent a music item. Peter Knees et al. [4] use the terms from content of top 100 Web pages

returned by Google for representing music items.

Blogs - With the popular of Blogs, some web users write some music review on their Blogs,

which makes them another resource for representing music items. Malcolm Slaney et al. [5]

collected a few Blog pages to represent the related songs.2

Social Tags - With the rising of music social networks, such as Last.fm and Youtube, users

tend to use a few short words to annotate music items. Therefore, a music item can be repre-

sented with those tags associated with it. By September 2008, over 50 million free-text tags of

1http://www.pandora.com
2http://hypem.com

6

which 1.2 million tags are unique have been used for annotating 3.8 million items [6].

2.1.2 How to learn the mapping between music items and music semantic

meanings?

The semantic gap generally affects the domain of multimediasearch and researchers have been

trying to find out effective ways to bridge the semantic gap. Consequently, we need to construct

a semantic space and learn a mapping between the low-level feature space and the semantic

space.

Construction of the semantic space

The semantic space is a set of terms, which has different semantic meanings. All the research

works have constructed a semantic space to represent the music items. The only difference

is that how to choose the words as the basis of semantic space.The semantic space can be

constructed manually, which can be very useful but cannot beextended easily. Bingjun et

al. [7] construct such space with limited dimensions, such as genre, mood, instrument, etc.

Therefore, automatically constructing a music semantic space is very attractive by using the

online web resources such as Web documents [4,8], Blogs, social tags [3] and so on. However,

it contains more noise than manually constructed semantic space, which calls for more efficient

algorithms to construct such space from the raw document and/or social tags.

Representing the music items by using constructed semanticspace

Machine learning methods such as graphic model and classification-based methods are widely

employed to learn the mapping. Blei et al. proposed a generative model to modeling the

annotation data [9], which is further extended to learn the mapping between tags and media

7

items such as images and songs. In [10,11], Muswords, similar to bag-of-word in text domain,

was created by content analysis of songs. They also constructed a bag-of-word of tags, and

Probability Latent Semantic Analysis(PLSA) was used to model the relationship between music

content and tags. In [12], the authors constructed a tag graph based on TF-IDF similarity of

tags. The semantic similarity between music items can be obtained by computing the joint

probability distribution of content-based and tag-based similarity. Carnario et al. [13] proposed

a novel method –supervised multi-class labeling(SML) to learn the mapping function between

images and tags. Douglas et al. [8,14] applied the method used in [13] to represent music items

by a predefined tag vocabulary.

The work presented in [3] is an example of classification-based methods, a bank of classi-

fiers (Filterboost) are trained to predict tags for music items. The mapping between low-level

features and semantic items (e.g. tags) can be determined byusing SVM classifiers [7, 15] to

map the low-level features into different categories in semantic space.

Slaney et al. used a different approach to learn the mapping.They tried to learn a metric for

measuring the semantic similarity between two songs. The forms and parameters of a metric

are adjusted so that two semantic close songs get high value of similarity [5].

Paper Index Learning Methods Semantic Space Application
[3] Filterboost Top tag from last.fm Automatic tagging
[12] MRF All tags from dataset Classification

[10,11] PLSA Social tags Retrieval
[8,14] SML Social tags, web pages Retrieval
[7,15] SVM Predefined categories Retrieval

[4] PLSA Terms from related Web pages Retrieval

Table 2.1: Summary of the related works

8

2.2 Data-driven Method

As an emergent feature in Web 2.0, social tags, is allowed by many websites to markup and

describe the web items (Web pages, images or songs). Such social tags, in some senses,

has tremendous semantic meaning. For instance, Youtube accepts customers to upload video

clips and advocates them to attach relevant meaningful descriptions (social tags). Data-driven

method assume that as long as increasing number of human being attach a certain item with

similar tags, the tags could be correct to describe the item.Such kind of knowledge from plenty

of folks, also be known as folksonomy, directly contributesto many commercial system, such

as Youtube, Flicker and Last.fm. The retrieval engines in such commercial product directly

index the tags using maturely text retrieval techniques. Itis valuable to highlight that such

method does not involve any content-based techniques, it could be efficient enough and easy

to be deputed as a stable system to handle millions even billions of images or songs. Unfortu-

nately, such method only performs well when the items in suchsystem has large mount of tags,

in turn with few tags, the performance of it is pretty poor.

2.3 Existed Works in Image Community

In order to improve the quality of online tagging, there has been extensive work dedicated to au-

tomatically annotating images [16–19] and songs [3,20–22]. Normally, these approaches learn

a model using objects labeled by their most popular tags accompanied by the objects’ low-level

features. The model can then be used to predict tags for unlabeled items. Although these model-

driven methods have obtained encouraging results, their performance limits their applicability

to real-world scenarios. Alternatively, Search-Based Image Annotation (SBIA) [23, 24], in

which the surrounding text of an image is mined, has shown encouraging results for automatic

image tag generation. Such data-driven approaches are faster and more scalable than model-

driven approaches, thus finding higher suitability to real-world applications. Both the model-

9

driven and data-driven methods are susceptible, however, to similar problems as social tagging.

They may generate irrelevant tags, or they may not exhibit diversity of attribute representation.

Tag recommendation for images, in which tags are automatically recommended to users

when they are browsing, uploading an image, or already attaching a tag to an unlabeled image,

is growing in popularity. The user chooses the most relevanttags from an automatically recom-

mended list of tags. In this way, computer recommendation and manual filtering are combined

with the aim of annotating images by more meaningful tags. Sigurbjörnssonet al. proposed

such a tag recommendation approach based on tag co-occurrence [25]. Although their approach

mines a large-scale collection of social tags, Sigurbjörnssonet al.do not take into account image

content analysis, choosing to rely solely on the text-basedtags. Several others [26,27] combine

both co-occurrence and image content analysis. In this thesis, we propose a method (Method

3) that considers both content and tag co-occurrence for themusic domain, while improving

upon diversity of attribute representation and refining computational performance.

Chenet al.[28] pre-define and train a concept detector to predict concept probabilities given

a new image. In their work, 62 photo tags are hand-selected from Flickr and designated as

concepts. After prediction, a vector of probabilities on all 62 concepts is generated and the top-

n are chosen by ranking as the most relevant. For each of then concepts, their system retrieves

the top-p groups in Flickr (executed as a simple group search in Flickr’s interface). The most

popular tags from each of thep groups is subsequently propagated as the recommended tags

for the image.

There are several key differences between [28]’s approach and our method 3. First, we

enforce Explicit Multiple Attributes, which guarantees that our recommended tags will be dis-

tributed across several song attributes. Additionally, wedesign a parallel multi-class classifi-

cation system for efficiently training a set of concept detectors on a large number of concepts

across the Explicit Multiple Attributes. Whereas [28] directly uses the topn concepts to re-

trieve relevant groups and tags, we first utilize a concept vector to find similar music items.

10

Then we use the items’ entire collection of tags in conjunction with a unique tag distance met-

ric and a predefined attribute space. The nearest tags are aggregated across similar music items

as a a single tag recommendation list. Thus, where others do not consider attribute diversity,

multi-class classification, tag distance, and parallel computing for scalability, we do.

11

Chapter 3

Model-driven Methods

In this chapter, we mainly focus on Model-driven method, andthere are two fundamental prob-

lems we have to face are:

1. What kind of music representation (low-level content features) is more suitable for such

task ?

2. What kind of model is more suitable for music automatic annotation task ?

We propose employing a novel method to improve the performance of previous work as well

as evaluating diverse low-level features on such model. We plan to investigate theproblem 1

that discussed above, to evaluate what kind of music representation is more suitable for music

automatic annotation under the discriminative model, suchas SVM classifier. To this end,

we study diverse state-of-the-art probabilistic models, such as: SML [20], CBA [21], and we

propose employing a revised Corr-LDA [9], Corr-LDA for short, and Tag-level One-against-all

Binary approach, named TOB-SS, to improve the performance of previous work. Our main

contributions in this chapter are as follows:

1. We modify the Corr-LDA model that is from a family of modelsthat have been used in

12

text and image retrieval for the music retrieval task.

2. The proposed method 2 – TOB-SS outperforms all the state-of-the-art methods on CAL500

dataset;

3. We propose an alternative data fusion method that combines social tags mined from the

web with audio features and manual annotations.

4. We compare our method with other existing probabilistic modeling methods in the liter-

ature and show that our method outperforms the current state-of-the-art methods.

5. We have implemented a prototype search engine for Query-by-description to demonstrate

a novel way for music exploration.

6. We also evaluate the performance of diverse music low-level features, include Mixture

Gaussian Model (GMM) and Codebook techniques.

In this chapter, Section 3.1 presents our music retrieval framework, and Section 3.2 explains

our features used. Section 3.3 present the modified Corr-LDAmodel as well as the other models

we explore. Section 3.4 illustrates our evaluation measures, experiment results, analysis, and

introduces our prototype system.

3.1 Framework

In this section we present an overview of the music retrievalsystem. Figure 3.1 illustrates the

framework of this system. Users search music by typing keyword queries1 such as “classical

music piano” to obtain a ranked list of songs. This ranking iscomputed from the scores of each

song given the keyword, and is in turn computed from an annotation model.

Initially, the system is presented with a labeled data set that consists of manually annotated

songs (audio data). First,feature extractionis performed on the audio data to extract low level

1We assume the keyword queries is from a fixed vocabulary of annotations provided.

13

A t ti

Labelled Set

Training
Annotations

Feature

Extraction

And

Audio Data

Annotation

Model
Audio

Codebook

Clustering

Social Tags

Inference
Unlabelled Set

Figure 3.1: Basic Framework of an Music Text Retrieval System

Annotation Model

Ensemble

Method

Ensemble

Method

Social Tag

Model

Social Tag

Model

Audio Data

Model

Audio Data

Model

S i l T A t ti Audio DataSocial Tags Annotation Audio Data

(a) Model level

Annotation

Model

Annotation

Model

Social Tags
Audio

Codewords

Annotation Audio Data

Combined Codewords

Annotation Audio Data

(b) Data level

Figure 3.2: Two different methods of fusing multiple data sources for annotation model learning

audio features. Then, a codebook is created viaclustering. Each song is now represented by

a bag of codewords. Next, an annotation model istrained using the new representation and

annotations. Finally, the remainder of the unlabeled (without annotations) songs are annotated

via inferencewith the model. New songs can be introduced to the system by representing them

as a bag of codewords using the codebook and annotating them using the model. For retrieval,

scores for each song given a keyword is computed using the annotation model and the top

results presented to the user.

For this preliminary work, we further investigate the fusion of multiple sources of informa-

tion such as “social tags” that are obtained from a real-world collaborative tagging web site.

This is a source of additional information to the framework and is marked with a dotted box

14

in Figure 3.1. There are two ways in which social tags can be incorporated into the annotation

model. First is the model level fusion method illustrates inFigure 3.2(a). A separate model

is built for audio-annotation and for social-annotation. Then an ensemble method is used to

combine the models. This was explored in [8]. Second, is the data level fusion method where

the social tags are directly used to augment the song representation. The social tags are treated

as new codewords and the same method is used to train the annotation model. We take the sec-

ond approach in this report using the Correspondence LDA model [9] as we believe ensemble

methods introduce too many additional parameters with added complexity to the model.

3.2 Features

The music data we use is the publicly available data set, Computer Audition Lab 500 (CAL500)

[29]. It consists of a set of 500 “Western popular” songs from500 unique artists. Each music

track has been manually annotated by at least three people. These annotations construct a

vocabulary of 174 “musically-relevant” semantic words.

3.2.1 Audio Codebook

In this chapter, we use Mel-Frequency Cepstral Coefficient (MFCC) as the music audio low-

level feature. Each song is represented as a bag-of-feature-vectors [29]: a set of feature vectors

that are calculated by analyzing a short-time segment of theaudio signal. In particular, the audio

is represented with a series of Delta-MFCC feature vectors.A time series of MFCC vectors

is extracted by sliding a half-overlapping, short-time window (23 msec) over the songs digital

audio file. A Delta-MFCC vector is calculated by appending the first and second instantaneous

derivatives of each MFCC to the vector of MFCCs. The CAL500 data set provides MFCCs

from three time windows, a total of 10,000 39-dimension feature vectors per song. Such huge

number of features is tedious for training a model as there may be up to 5 million audio samples

15

for 500 songs. Hence codebook methods are required.

To create a codebook representation of MFCC data, we performclustering on all MFCC

feature vectors. We use standard K-means clustering with 500 clusters. Each cluster is a code-

word in the codebook. Then, we represent the audio data of each song as a bag of codewords.

Specifically, each song has 500 audio codeword features. Thevalues of these features is the

count of MFCCs of the song that belongs to the codeword (cluster). This is similar to the

codebook approach in [21].

Gaussian Mixture Model (GMM)

Gaussian Mixture Model is very popular in multimedia clustering and classification. We em-

ploy this method to cluster the samples of each song. GMM model is relatively similar to

K-means, the most different point here is that rather than perform clustering on whole data set,

GMM just performs clustering on samples of one song. In this chapter, we set the number of

cluster to 8.

Simple Segmentation (SS)

Another intuitive approach of dimension reduction is basedon the direct segmentation of the

music clip. Each music clip can be divided intoK sub-clips, and the feature of each sub-clip

can be represented as the mean and the standard deviation of the MFCC features within it.

The number of segments in each music is closely associated with the representation accuracy.

Therefore, different K values are studied and compared in our work.

16

3.2.2 Social Tags

In this section, we describe how to extract meaningful representations from social tags. For

each pair of a songs and a tagt, we derive a relevance scorer(s, t) evaluating the relevance

of the song and the tag. However the song-tag relevance scores resulting from social tags are

considered sparse since the strength of association between songs and tags is unknown due to

the nature of social context.

We can summarize each song with an annotation vector over a vocabulary of tags. Each

element of this vector indicates the relevant strength of association between the song and a tag.

The annotation vector is generally sparse in that most songsare annotated with only a few tags.

A song-tag pair can be missing because either the song and thetag don’t match or the tag is

relevant but nobody has ever annotated the song with it.

As a music discovery web site, Last.fm, allows users to add tags to tracks, artists, albums,

etc. via a text box in their various audio player interfaces.By September of 2008, the 20 million

monthly users had annotated 3.8 million items over 50 million times by using a vocabulary of

1.2 million unique free-text tags.

For each songs in the CAL500 corpus, we collect two lists of social tags fromLast.fm by

using the API provided. One list relates the song to a set of tags where each tag has a tag score

ranging from 0 to 100. The score is computed by integrating the number and diversity of users

who have annotated the song with the tags, which is the trade secret of Last.fm. The other list

associates the artist with tags and aggregates the tag scorefor all the songs by that artist. We

gather the top 100 tags for each song and each artist, and combine the scores of the song-tag

pairs and the artist-tag pairs to generate a final scorer(s, t) for each song-tag pair. That is, the

relevance scorer(s, t) for songs and tagt is the sum of the same tag scores on the artist list

and song list. For instance, if the song-tag pair< as long as you love me, pop> has a score

of 60 and the artist-tag pair< backstreet boys, pop> has a score of 35, the final relevance

17

scorer(as long as you love me, pop) is 95. Social tag data for each song is represented by a

set of song-tags with their relevance score. For the CAL500 corpus this results in a song-tag

vocabulary size of slightly more than 16,000.

3.3 Modeling Techniques Investigated

In this section, we briefly review the main models of interestas well as two other models

for comparison. All four kinds of models are probabilistic in that they encode a joint prob-

ability distribution over the annotation terms (words), and the audio features (codewords).

From there, the probabilities of a each word given the codewords of a particular song, i.e.

P (word|codewords), is used as the score to rank retrieval results for a given query word.

3.3.1 Proposed Method 1 – Correspondence Latent Dirichlet Allocation

(Corr-LDA)

Latent Dirichlet Allocation (LDA) is a generative model originally used to model text docu-

ments [30] and is illustrated in Figure 3.3(a). Briefly, eachof theD documents in the corpus

has a distribution over topics,θ, drawn from a Dirichlet distribution parameterized byα2. For

each word,w, in the document, a particular topic,y, is first drawn fromθ. The particular topic

is one of theK possible topics represented byβ variables that are distributions over words.

Then, the word is drawn from the particularβ. The key point is that every word can come from

a different topic and every document has a different mix of topics given byθ. The Dirichlet

distribution serves as a smooth (continuous) distributionsuch that a particular point sampled

from it will give the parameters of a multinomial distribution – in this case the distribution over

2For simplicity we use the sameα for all Dirichlet parameters of aK dimension distribution instead of indi-
vidualα1, ..., αK . This means that a higher value ofα concentrates the probability mass more at the centre of the
K topics.

18

topics,θ. As there are multiple levels of latent variables that are conditional on other latent

variables, this is an example of a Hierarchical Bayesian Network (HBN).

D
M

K

wy� ��

(a) Latent Dirichlet Allocation

D

N

K

z�

�

� �r

wy

M

(b) Correspondence Latent Dirichlet Allocation

symbol definition
D Number of documents
M Number of words
M ′ Number of unique words
K Number of topics
N Number of codewords
N ′ Number of unique codewords
α Dirichlet distribution forθ
θ Distribution over topics
y Particular word topic (LDA) /

Codeword identifier (Corr-LDA)
w Particular word
β Word topic
z Particular codeword topic
r Particular codeword
π Codeword topic
R codeword vocabulary size
W word vocabulary size

(c) Legend of symbols

Figure 3.3: Graphical LDA Models, plate notation indicatesthat a random variable is repeated

The Corr-LDA model is an extension of LDA that is used to modelannotated data. These

are text annotations associated with some other elements ina mixed document. It has been pri-

marily used in the image retrieval domain where the other elements are image regions [9,31]3.

However, we observe that the model may be more generally applied to codewords instead of

just image regions. These codewords can be our audio codewords from the clustered codebook,

or summaries of any other types of data that have accompanying annotations, such as web sites,

essays, videos, etc. This generalization allows us to treatsocial tags from collaborative tagging

web sites as additional codewords of a particular song naturally leading to the data level fusion

shown in Figure 3.2(b)4. The counts of the social tag codewords are represented by the rele-

vance score (Section 3.2.2). More formally, Corr-LDA is shown in Figure 3.3(b) and has the

following generative process foreachdocument in the corpusD:

3The version of Corr-LDA we use is in-between the presented version in [9] and the supervised version in [31].
The main difference is that we do not have a class variable unlike in [31] but we use a Multinomial distribution
over codewords instead of the Gaussian distribution over image regions in [9].

4We have assumed the audio codewords and social tags to be independent given the latent variables.

19

1. Sample a distribution of codeword topics from a Dirichletdistribution,θ ∼ Dirichlet(α)

2. For each codeword,rn, n ∈ [1, N], in document:

(a) Sample a particular codeword topic (zn ∈ [1, K]), zn|θ ∼Multinomial(θ)

(b) Sample a particular codeword,rn|zn ∼Multinomial(πzn)

3. For each word (annotation),wm, m ∈ [1,M], in document:

(a) Sample a particular codeword identifier (ym ∈ [1, K]), ym ∼ Uniform(N)

(b) Sample a particular wordwm|zym ∼ Multinomial(βzym
)

Steps 1 and 2 of the generative process is exactly LDA if we rename the codeword as words.

The extension for annotations is in Step 3. For each annotation the codeword identifierym is

conditional on the number of codewords as shown in Figure 3.3(b) with an arrow fromN to y.

This means that we pick a word topic that corresponds to one ofthe codewords present in the

document before proceeding to sample from the topic to get the word. The more a codeword

appears in a document, the more we are likely to pick a word topic associated with it due to the

Uniform distribution used in Step 3(a). This is the link between the codewords and annotations.

In other words, the values for variableszn andym are indexes to Multinomial distributions for

codewords (π) and words (β). Learning these distributions and the value ofα that controls

the distribution that documents come from is the objective of training the annotation model.

As π andβ are Multinomial distributions we writeπi,rn to bep(rn|zn = i, π) andβi,wm
to be

p(wm|ym = n, zn = i, β).

The joint probability distribution given the parameters ofa single document encoded by the

Corr-LDA model is,

p(r,w, θ, z,y|Θ) = p(θ|α)

(

N
∏

n=1

p(zn|θ)p(rn|zn, π)

)(

M
∏

m=1

p(ym|N)p(wm|ym, z, β)

)

(3.1)

where bold font indicates the sets of variables in the document andΘ = {α, π, β} are param-

eters of the model. The joint probability distribution of the whole corpus is the product of the

20

per document distribution of all documents. The first posterior distribution of interest that can

be used as a score for a word for each song isp(w|r,Θ). The second is the posterior probability

of a document,p(w, r|Θ), that is essential for estimating the parameters of the model and to

computep(w|r,Θ). However computing the second value is intractable due to the coupling

between the integration overθ, and summation over variablesπ andβ during marginalization.

Hence approximate inference methods must be used.

We use the same approximate inference method used in [9, 31],namely, Variational Infer-

ence. This method uses a simpler distribution,

q(θ, z,y|γ, φ, λ) = q(θ|γ)

(

N
∏

n=1

q(zn|φn)

)(

M
∏

m=1

q(ym|λm)

)

, (3.2)

whereγ, φ, λ are free variational parameters to be estimated, to approximate the posterior dis-

tribution of the latent variables, i.e.p(θ, z,y|r,w,Θ). From here, the lower bound of the log

likelihood of a document is given by,

log p(w, r|Θ) ≥ Eq[log p(θ, r,w, z,y|Θ)]− Eq[log q(θ, z,y|γ, φ, λ)] (3.3)

= L(γ, φ, λ; Θ) (3.4)

Section .1.1 presents the detailed components of Equation 3.4 and Section .1.2 shows an equiv-

alent simplification that is used in actual computation. Maximizing Equation 3.4 is equivalent to

minimizing the Kullback-Leibler (KL) divergence betweenq(θ, z,y|γ, φ, λ)andp(θ, z,y|r,w,Θ).

Hence by directly optimizing Equation 3.4, we can obtain thelower bound log likelihood as an

approximation to the true likelihood.

For optimizing theL of one document, we use standard numeric gradient ascent on the

parametersγ, φ, λ to give the update equations:

φni ∝ πi,rn exp

((

Ψ(γi)−Ψ(
K
∑

j=1

γj)

)

+
M
∑

m=1

λmn log βi,wm

)

(3.5)

21

γi = αi +

N
∑

n=1

φni (3.6)

λmn ∝ exp(

K
∑

i=1

φni log βi,wm
) (3.7)

wheren ∈ [1, N], i ∈ [1, K], m ∈ [1,M]. These updates are iterated untilL converges or the

maximum specified number of iterations is reached. The full derivation of the gradient is given

in Section .1.3.

To learn the parameters,Θ, of the Corr-LDA model, Variational Expectation Maximisation

(VEM) algorithm can be used. This is the same as the standard EM algorithm but with vari-

ational inference for the inference step. VEM is achieved byiterating the two steps below

until the lower bound log likelihood of the entire corpus converges or the maximum number of

iterations has been reached.

E-Step For each document, perform Variational Inference untilL converges, i.e. we optimize

the set of{γd, φd, λd} for one document. The lower bound log likelihood for the corpus

is the sum of each document’sL value.

M-Step Maximize the model parameters,Θ = {α, π, β} to get the Maximum Likelihood

Estimate (MLE)

1. α is maximised using the Newton-Raphson method described in [30].

2. Setπif ∝
∑D

d=1

∑Nd

n=1 1[rn = f]φdni

3. Setβiw ∝
∑D

d=1

∑M

m=1 1[wm = w]
∑

n φdniλdmn

Where1[a = b] returns 1 ifa = b and 0 otherwise.

The details of the gradient updates in the M-Step is given in Section .2. Note that in the

actual implementation, in the E-Step, we accumulate the sufficient statistics after variational

inference is performed for each document. This is the accumulation of πif andβiw updates

shown. Consequently, in the M-Step we only calculate theα update and normalizeπ andβ.

22

Hence we only iterate throughD once per VEM iteration. The time complexity of the VEM is

O(a · (b ·DKN ′M ′+K(R+W))) where:a is the maximum number of EM iterations,b is the

maximum number of variational inference iterations,N ′ is the number of unique codewords

in a document,M ′ is the number of unique words in a document,R is the number of unique

codewords in the corpus, andW is the number of unique words in the corpus. The derivation

of theb ·DKN ′M ′ term is due to the dominance of Equation 13 in Section .1.2 andbeing able

to multiply the appropriate probabilities for each unique codeword/word by their occurrences

in all given equations ofL. TheK(R + W) term is the normalizing of the topic variables,π

andβ, using the sufficient statistics. The space complexity isO(K(R+W)) due to storing the

Multinomial distribution parameters for the topic variables.

Finally, our posterior probability of interest that represents the score of each query word for

each song is approximated by,

p(w|r) ≈

N
∑

n=1

K
∑

i=1

q(zn = i|φn)p(w|zn = i, β) (3.8)

=
N
∑

n=1

K
∑

i=1

φniβiw (3.9)

This score is used to annotate the unlabeled songs in the dataset for ranking during retrieval.

3.3.2 Proposed Method 2 – Tag-level One-against-all BinaryClassifier

with Simple Segmentation (TOB-SS)

An intuitive idea is to convert this problem to multi-class problem, we divided the multi-

label problem into multiple classes (tags) binary classification problem, named Tag-level One-

against-allBinaryapproach, TOB for short. By using TOB, we can estimate the probability to

determine how good the songs can be annotated by each tag based on previous trained SVM

model on this tag. After that, we can get a probability matrix, whose row denotes songs and

23

column means tags.

The differences between TOB approach and Audio SVM method [22] are following. Firstly,

we use the different low-level features, which has been discussed in section 3.2.1. Secondly,

although both methods use SVM as its own classifier, TOB is Tag-level One-against-allbinary

classifier which is differ from Audio SVM’s multi-class classifier.

In this section, we are proposing a novel method TOB-SS, which combining of TOB and

Simple Segmentation scheme due to that it is simple and easily be extended to a parallel algo-

rithm, which is s crucial component in large-scale real world QBR-MIR system. The process

could be divided into 3 steps:

1. For each song, we extract the short-time window MFCCs samples, then 10,000 MFCCs

samples could be extracted out. By using Simple Segmentation Scheme, we then obtain

N samples for each samples;

2. For each tag, we collect samples of all related songs and then set the label of these

samples to +1 as well as set the irrelated samples to -1. Half songs then used as training

set and the remain part used as testing set;

3. After training and testing process, we obtain the probability of this tag over all songs,

then we repeat the process on each tag and can obtain the probability matrix.

Firstly, we investigate this model on diverse music representation. After we obtain the best

combination, we compare such combination with state-of-the-art model, in particular, the CBA

model [21], SML model [20] and Audio SVM [22].

24

3.3.3 Codeword Bernoulli Average (CBA)

Codeword Bernoulli Average (CBA) is an simple probabilistic model to predict what words

(annotations) will apply to a song and what songs are characterized by a word. CBA models

the conditional probability of a word,w ,appearing in a song,j, conditioned on the empirical

distributionnj of codewords extracted from that song.

K W

K

yjwzjwnjk �kw

J

Figure 3.4: Graphical CBA Model

……

…

Word LevelS L l Word LevelSong Level

Figure 3.5: SML Model

CBA (Figure 3.4) assumes a collection of binary random variablesy, with yjw ∈ {0, 1}

determining whether word,w, applies to songj. A value foryjw is chosen from a Bernoulli

distribution with parameterβkw:

p(yjw = 1|zjw,β) = βzjww (3.10)

p(yjw = 0|zjw,β) = 1− βzjww (3.11)

wherezjw is a codeword selected with probability proportional to thenumber of times,njk,

that the codeword appears in songj’s feature data.

We fit CBA with Maximum Likelihood Estimation (MLE) and our goal is to estimate a

set of values for our Bernoulli parametersβ that will maximizep(y|n,β) of the observed

wordsy conditioned on the codeword countsn and the parameterβ. We use the Expectation-

Maximization (EM) approach because analytical MLEs forβ are not available due to the latent

variablesz. In the expectation step, we compute the posterior of the latent variablesz given

25

the current estimates for the parametersβ:

hjwk = p(zjw = k|n,y,β) =
p(yjw|zjw = k,β)p(zjw = k|n)

p(yjw|n, β)
=

njkβkw
∑K

i=1
njiβiw

if yjw = 1

njk(1−βkw)
∑K

i=1
nji(1−βiw)

if yjw = 0

(3.12)

In the maximization step, we find maximum likelihood estimates ofβ given the expected pos-

terior sufficient statistics:

βkw ← E[yjw|zjw = k,h] =

∑

j p(zjw = k|h)yjw
∑

j p(zjw = k|h)
=

∑

j hjwkyjw
∑

j hjwk

(3.13)

Iterating between the two steps until the likelihood converge or satisfy a user threshold, we

find a set of values forβ under which the training data become more likely. Next, we can use

them to infer the probability that a word,w, applies to a previously unseen songj based on the

countsnj of codewords for that song:

p(yjw = 1|nj, β) =
1

Nj

∑

k

njkβkw (3.14)

3.3.4 Supervised Multi-class Labelling (SML)

The other approach is to use probabilistic models such as a Gaussian Mixture Model (GMM)

for each word (annotation) based on music low-level features. This is based on a class of

Supervised Multi-class Labeling (SML) models [20]. However, this method also learns many

models (one for each word) that have to be combined using a variety of ensemble methods.

Hence it can be viewed as being more similar to methods that use discriminative models. Figure

3.5 depicts the SML model as a Hierarchical Gaussian MixtureModel that has two steps: 1)

song level GMM; 2) word level GMM. For each word, the SML modellearns the probability

of each song given a wordP (song|word). Under a uniform word prior assumption [20], the

score matrix that consists of the probabilities ofP (word|song) is used for retrieval.

26

3.4 Experiments

Our primary model of interest is the Corr-LDA model. As such,we conduct the most exper-

iments on it. The Corr-LDA model was implemented in C++ basedoff the freely available

C code for the LDA model. The SML and CBA models were implemented in Matlab. All

models were run using ten-fold cross validation – the data set was partitioned into ten parts and

each part is used as the unlabeled data set with the other nineparts as the labeled data. The

output for each model is a probability distribution over allthe annotation terms for each song.

This probability matrix is then used as a ranking score for computing the evaluation measures

mentioned in the previous section. In all, we have evaluatedsome 540 Corr-LDA models with

different parameter settings and with social tags. We did not compare the time performance

of the various methods due to incompatible platforms. On average Corr-LDA without social

tags mostly requires a few minutes when used with 500 codewords. However with the addi-

tional 16,000 social tags, Corr-LDA may require a few hours.Last, we implement a simple

web-based prototype music retrieval system to demonstratethe results.

3.4.1 Evaluation Method

3.4.2 Evaluation

We evaluated our models performance on an annotation task and a retrieval task using the

CAL500 data set. We compare our results on these tasks with two sets of published results on

this corpus: those obtained by Turnbullet al.. using mixture hierarchies estimation to learn the

parameters to a set of mixture-of-Gaussians models [20], and CBA model [21]. In the 2008

MIREX audio tag classification task, the approach in [20] wasranked either first or second

according to all metrics measuring annotation or retrievalperformance and the CBA model just

27

won the Best paper Award of ISMIR 20095.

Annotation Task

To evaluate our systems annotation performance, we computed the average per-word precision,

recall, and F-score. Per-word recall is defined as the average fraction of songs actually labeled

w that our model annotates with label w. Per-word precision is defined as the average fraction

of songs that our model annotates with label w that are actually labeled w. F-score is the

harmonic mean of precision and recall, and is one metric of overall annotation performance.

Following [20], when our model does not annotate any songs with a label w we set the precision

for that word to be the empirical probability that a word in the dataset is labeled w. This is the

expected per-word precision for w if we annotate all songs randomly. If no songs in a test set

are labeled w, then per-word precision and recall for w are undefined, so we ignore these words

in our evaluation.

Retrieval Task

To evaluate our system retrieval performance, for each wordw we ranked each songj in the

test set by the score (probability) provided by the different models. We evaluated the mean

average precision (MAP). MAP is defined as the average of the precisions at each possible

level of recall. As in the annotation task, if no songs in a test set are labeledw then MAP is

undefined for that label, and we exclude it from our evaluation for that fold of cross-validation.

5http://ismir2009.ismir.net

28

3.5 Results & Analysis

3.5.1 Corr-LDA Method

0.24

0.245

0.25

0.255

P
re

c
is

io
n

0.23

0.235

0.24

0.245

0.25

0.255

50 75 100 125 150 175 200 225 250

P
re

c
is

io
n

Num Topics (K)

1 2 3

(a) Precision vs. Number of Topics for varying initial
α values

0.31

0.315

0.32

0.325

R
e
c

a
ll

0.295

0.3

0.305

0.31

0.315

0.32

0.325

50 75 100 125 150 175 200 225 250

R
e
c

a
ll

Num Topics (K)

1 2 3

(b) Recall vs. Number of Topics for varying initialα
values

0.365

0.37

0.375

0.38

0.385

M
A

P

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

50 75 100 125 150 175 200 225 250

M
A

P

Num Topics (K)

1 2 3

(c) MAP vs. Number of Topics for varying initialα
values

0.33

0.35

0.37

0.39

0.41

0.43

0.45

c
o

re
 (

a
lp

h
a
 =

 3
.0

)

precision recall MAP

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

50 75 100 125 150 175 200 225 250

S
c

o
re

 (
a

lp
h

a
 =

 3
.0

)

Num Topics (k)

precision recall MAP

(d) Scores vs. Number of Topics using social tags &
initial α = 3.0

Figure 3.6: Results for Corr-LDA model without social tags (a-b) and with (d)

Figure 3.6(a-c) depicts the results for the Corr-LDA model under different parameter set-

tings. We vary the number of latent topics (i.e.K) and the initial Dirichlet parameterα for

values 1, 2, and 3. For the Precision and MAP measures (Figure3.6(a,c)), Corr-LDA is af-

fected by the number of topics. Across all initialα settings, the scores for both Precision and

MAP peaks at 125 topics. This shows that both measures are sensitive to the number of topics

and Corr-LDA’s performance will decrease if there are too few or too many topics. Recall (Fig-

ure 3.6(b)), on the other hand, steadily increases until 125topics and any further increase in the

number of topics has mixed results depending on the value of the initialα. For all three mea-

29

MAP

Precision

Recall

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

MAP

Precision

Recall

Score

Corr-LDA Corr-LDA (social) SML CBA random

Figure 3.7: Comparison of the various annotation models. Corr-LDA has initial α = 2 and
Corr-LDA (social) has initialα = 3. Both used 125 topics.

sures, the parameter setting of initialα = 3 performs marginally better. Furthermore, although

there is variation between the plots ofα, most are slight and less than 2% different. This shows

that Corr-LDA is not highly sensitive toα parameter settings – something we expect asα is

learnt during training.

Figure 3.6(d) illustrates the plot for Precision, Recall, and MAP for the Corr-LDA model

with social tags included as part of the data level fusion method. All three measures have

improved over basic Corr-LDA. Similarly, their scores peakwhen 125 topics are used. This

may mean that the effect of the number of topics is similar even if the codewords vocabulary

size is greatly increased. The benefits of the social tags over plain Corr-LDA is seen in Figure

3.7 that compares the two variants of Corr-LDA with SML, CBA,and a random model that

annotates songs randomly. Here we observe that incorporating social tags improves Corr-LDA

by 5.35%, 2.78% and 7.40% for MAP, Precision, and Recall respectively. Furthermore, plain

Corr-LDA performs better than CBA that uses a simpler probabilistic model. This shows that

there is potential in the Corr-LDA model especially if approximate inference can be improved.

Conversely, the SML model is better than the plain Corr-LDA model. This may mean that

the assumption that audio codewords are independent given the words is valid. However, the

Corr-LDA model with combined social tags out-performs the SML model. The results confirm

that fusing multiple sources of information at the data level is an effective method to improve

performance for music retrieval with Corr-LDA.

30

We did not evaluate the SML model with combined social tags inthis report. However, the

SML model requires storage of the probability of the codeword given word. This results in a

storage requirement of the size of the codeword vocabulary multiplied by the size of the word

vocabulary. Corr-LDA instead requires the space of the number of topic multiplied by the sum

of the vocabulary sizes – a much smaller representation due to the use of latent topics.

3.5.2 TOB-SS Method

Evaluation on Diverse Music Representations

At the beginning of experiment, we first investigate the combination of three totally different

representation of music and TOB-SS algorithm. Table 3.1 shows that with TOB model, almost

all the Simple Segmentation Scheme (with different N) outperform other representations, in

particular GMM and Codebook. In this table, we also can see that the training time will soar if

we increase theN of each songs. The rational behind this is that the size of training samples

depends onN .

Obviously, the TOB model obtains the best result whileN being set to 12. Our goal of this

combination is to find the tradeoff betweenN and MAP.

Accu. Prec. Recall F-measure MAP Train. Feat. Extraction
Time(s) Time (s)

GMM 87.11 0.228 0.101 0.140 0.491 1200.26 > 24 hours
Codebook 87.48 0.283 0.097 0.144 0.339 147.57 > 24 hours
N = 1 87.17 0.224 0.101 0.139 0.335 30.80 1095.28
N = 4 88.29 0.435 0.112 0.178 0.682 346.33 1083.19
N = 8 89.15 0.673 0.14 0.232 0.777 1096.78 1102.2
N = 12 89.65 0.674 0.185 0.29 0.801 2340.52 1083.92
N = 16 89.9 0.672 0.221 0.332 0.787 4474.91 1089.96

Table 3.1: The results

31

Evaluation on Different Models

So far, we have known that the combination, say TOB-SS, can obtain the highest performance.

In this section, we will combine this method with other state-of-the-art models. We have re-

implemented two state-of-the-art models: SML [20] and CBA [21], the former is the best

performing system in MIREX 2008 and the latter one is the bestpaper of ISMIR 2009. We

also compare this model with one work, which just posted on ACM Multimedia 2009 last

month [22]. Since we do not have enough time to re-implement their method (Audio SVM and

Affinity SVM), we just directly fetch the results from their paper. As shown in Table 3.2, our

proposed algorithm outperform all of them except Affinity SVM in F-measure. Because the

paper does not provide Precision, Recall and MAP, we cannot compare this with their model.

Since MAP is differ from F-measure, we cannot estimate whether the model also enjoy better

MAP. One thing for sure, the Affinity SVM is Two-Step algorithm framework, its first step is

Audio SVM whose F-measure is little bit lower than TOB-SS model has, we can easily replace

the first step with our model in the near future.

Prec. Recall F-measure MAP Training Time
CBA 0.275 0.16 0.202 0.385 > 24 hours
SML 0.284 0.162 0.206 0.409 > 48 hours

TOB-SS (N=16) 0.672 0.221 0.332 0.787 1.2 hours
Affinity SVM 0.498

Table 3.2: Comparison Between Different Models

3.5.3 Computational Cost

In this section, we will study the effect on the parameterN in SS. Firgure 3.8 shows the re-

lationship between MAP, Training Time andN . The training time soars while increasingN .

However, at same time, the MAP seems converged afterN = 8. The figure illustrates that

N = 8 can be the best choice.

32

1 2 4 6 8 10 12 14 16
0

1

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

The Number of Samples in Each Song

0

5000

T
ra

in
in

g
T

im
e

(s
ec

on
d)

Training Time

MAP

Figure 3.8: MAP vs. Training Time Curve

33

Chapter 4

Combined Method - Method 3

The previous chapter, we introduced the Model Driven methods. Along with the soaring of

mount of data, especially the case using data crawling from Internet, the model based methods

are extremely difficult to handle the issue with large scale data, both from the computation and

accuracy aspects.

In this chapter, we will combine the Model Driven method and Data Driven method to

address the large scale data. Content of this chapter is mainly based on our ACM Multimedia

2010 regular paper listed inList of Publications.

4.1 Large-scale Music Tag Recommendation with Explicit

Multiple Attributes

In just over a decade, online music distribution services have proliferated, giving music a ubiq-

uitous presence on the Internet. As the availability of online music continues to expand, it

becomes imperative to have effective methods that allow humans to satisfactorily explore a

34

large-scale space of mixed content. This is a significant challenge, as there is no predefined

universal organization of online multimedia content and because of the well-known seman-

tic gap between human beings and computers, in which computers cannot interpret human

meaning with high accuracy. For example, a human may search for a song with the primary

keywords, “happy,” “Beatles,” and “guitar.” A human intuitively understands that ‘happy” is

a common human emotion, “Beatles” is a popular rock band fromthe 1960’s, and “guitar” is

a 6-stringed instrument. Yet it is difficult to computationally interpret these words with high

semantic accuracy.

Social tagging has gained recent popularity for labeling photos, songs and video clips. In-

ternet users leverage tags found on social websites such as Flickr, Last.fm, and Youtube to help

bridge the semantic gap. Because tags are usually generatedby humans, they may be semanti-

cally robust for describing multimedia items and thereforehelpful for discovering new content.

However, because they are often generated without constraint, tags can also exhibit significant

redundancy, irrelevancy, and noise.

In order to address the deficiencies of socially collaborative tagging, computer based tag

recommendation has recently emerged as a significant research topic. Current recommendation

systems rely on term frequency metrics to calculate tag importance. However, some attributes

of online content are tagged less frequently, leading to attribute sparsity. For instance, music

encompasses a high-dimensional space of perceived dimensions, including attributes such as

vocalness, genre, and instrumentation. Yet many of these are relatively underrepresented by

social tagging. For example, the four most popular tags associated with the musician Kenny

G on Last.fm are “saxophone,” “smooth jazz,” “instrumentaljazz,” and “easy listening,” which

areInstrumentand multipleGenreattributes. Thus, three out of the four most popular Kenny

G attributes are related to genre. According to [3],Genretags represent 68% of all tags found

on Last.fm. Most of the remaining attributes are related toLocation(12%),Mood & Opinion

(9%), andInstrument(4%).

35

Because attribute representation is so highly skewed, the term frequency metric which most

recommendation systems use may ignore important but less frequently tagged attributes, such

as era, vocalness, and mood. In this chapter, we build upon the current image domain tag

recommendation frameworks by considering Explicit Multiple Attributes and apply them to

the music domain. The result is a recommendation system which enforces attribute diversity

for music discovery, ensuring higher semantic clarity.

There were several novel challenges undertaken in our work.First, we constructed a set of

music-domain Explicit Multiple Attributes. Second, scalable content analysis and tag similarity

analysis algorithms for addressing millions of song-tag pairs were considered. Last, a fast tag

recommendation engine was designed to provide efficient andeffective online service. Our

main contributions are summarized as follows:

1. To the best of our knowledge, ours is the first work to consider Explicit Multiple At-

tributes based on content similarity and tag semantic similarity for automatic music do-

main tag recommendation.

2. We present a parallel framework for offline music content and tag similarity analysis in-

cluding parallel algorithms for audio low-level feature extractor, music concept detector,

and tag occurrence co-occurrence calculator. This framework is shown to outperform the

current state of the art in effectiveness and efficiency.

The structure of this chapter is as follows. In Section 4.2 wepresent the system architecture.

We perform several evaluations of our system using two data sets in Section 4.3 and discuss

our results in Section 4.4.

36

Parallel Occurrence Co-
Occurrence (POCO)

Social Tags based Explicit
Multiple Attributes (SEMA)

Parallel Feature Extraction

Parallel Multiple Attributes
Concept Detection (PMCD)

Content based Explicit
Multiple Attributes (CEMA)

Music Content Song ID Social Tags
Song

Feature
Extraction

Concept
Detection

CEMA

Data Set
SEMA

Data Set
CEMA

Tag
Recommendations

Tag Rankings
Along Each Attr.

K-NN Along
Each Attr.

Figure 4.1: Flowchart of the system architecture. The left figure shows offline processing. In
offline processing, the music content and social tags of input songs are used to build CEMA and
SEMA. The right figure shows online processing. In online processing, an input song is given,
and itK-Nearest Neighbor songs along each attribute are retrievedaccording to music content
similarity. Then, the corresponding attribute tags of all neighbors are collected and ranked to
form a final list of recommended tags.

4.2 System Architecture

Our system architecture, which is designed for scalability, is graphically depicted in Figure

4.1. We use a framework built on MapReduce to handle parallelprocesses. The system is

functionally divided into two parts: offline processing andonline processing, and comprised

of two modules, Content based Explicit Multiple Attributes(CEMA) and Social tags based

Explicit Multiple Attributes (SEMA). The CEMA and SEMA modules consequently maintain

indexed lists of Multiple Attribute Fuzzy Music Semantic Vectors (MA-FMSVs) and Multi-

ple Attribute Tag Distance Vectors (MA-TDVs). During offline processing, a large database

of songs is analyzed. For each song, MA-FMSVs and MA-TDVs aregenerated by the Par-

allel Multiple Attributes Concept Detector (PMCD) and Parallel Occurrence Co-Occurrence

(POCO) algorithms respectively. During online processing, the system quickly recommends

attribute-diverse tags for a user presented song. The song’s MA-FMSV is predicted by the

Concept Detector and consequently used to index into CEMA and find its nearest neighbors.

The nearest neighbors are in turn indexed into SEMA, resulting in a rank-sorted list of tags for

each attribute. Each of the architectural components are discussed in detail below.

37

4.2.1 Framework

As the volume of multimedia data to be processed is potentially huge, multimedia information

retrieval systems need to efficiently handle large-scale data-intensive computations. Therefore,

the scalability of these systems is a major concern. Our framework attends to this issue directly.

A practical solution for addressing scalability is to distribute computations across multiple

machines [32]. With traditional parallel programming models such as the Message Passing

Interface, developers maintain the burden of explicitly managing concurrency. Thus, signif-

icant energy must be devoted to managing system-level details. In contrast, the MapReduce

programming paradigm presents an attractive alternative [33]. MapReduce is based on the

simple observation that many tasks share the same basic structure. With MapReduce, compu-

tation is applied over a large number of nodes to generate partial results and then the results

are aggregated in some fashion [32]. MapReduce provides an abstraction for programmer de-

fined “mappers”(k1, v1) → [(k2, v2)] and “reducers”(k2, [v2]) → [v3], and keeps most of the

system-level details hidden, such as scheduling, coordination, and fault tolerance. As shown

in Figure 4.2, the “mappers” receive every(key, value) pair from the input partition and emit

an arbitrary number of intermediate(key, value) pairs. A barrier then shuffles and sorts the

intermediate pairs. “Reducers” are applied to all pairs with the same key to emit an output

(key, value) pair.

Input Input Input

Reduce Reduce Reduce

Output Output Output

Barrier: Group Values by Key

Map Map Map Map

Figure 4.2: MapReduce Framework. Each input partition sends a (key, value) pair to the
mappers. An arbitrary number of intermediate(key, value) pairs are emitted by the mappers,
sorted by the barrier, and received by the reducers.

38

In our work, we use Hadoop1 for back-end parallel processing, which is an open-source

implementation of MapReduce. In Hadoop, a mapper is a JAVA class that contains three func-

tions: setup, map, and cleanup. The setup function is calledonce when a mapper is started, the

map function is called several times for each input key-value pair, and the cleanup function is

called once when a mapper is going to be destroyed.

4.2.2 Explicit Multiple Attributes

Our work uses Explicit Multiple Attributes to enforce controlled attribute diversity for music

content analysis and social tag recommendation, respectively. At the outset, we define a con-

strained set ofA attributes and 2 attribute spaces. Each attribute in an attribute space may

hold any number of elements, as long as more than one. We give both the CEMA and SEMA

modules their own Explicit Multiple Attribute space with the sameA attributes. However, their

attribute spaces may differ in the elements they contain. The CEMA attribute space is used

to to define the Multiple Attribute Fuzzy Music Semantic Vectors (discussed below). That is,

every input song to the system will be classified by its representation within the CEMA At-

tribute space. The SEMA attribute space is used as an anchor point for the corpus of social

tags. Since the global social tag space is noisy and containsmany redundant and irrelevant

terms, the elements in the SEMA attribute space are used as centroids to the entire tag corpus.

As will be discussed below, any tag in the corpus is describedin terms of its distances to the

SEMA attribute space. These distances are stored in Multiple Attribute Tag Distance Vectors.

By predefining these two attribute spaces, we can ensure attribute diversity and semantic clarity

for tag recommendations.

1http://hadoop.apache.org/

39

4.2.3 Parallel Multiple Attributes Concept Detector (PMCD)

The Parallel Multiple Attributes Concept Detector (PMCD) is responsible for predicting the

MA-FMSVs in offline and online processing. First, we train iton a database of labeled songs.

Afterwards, we can use it to predict (offline) the MA-FMSVs ofadditional songs, giving us

great flexibility for expanding the system’s song tag representation without any additional

training. Finally, the Concept Detector is used during online processing for recommending

tags. Below, we discuss MA-FMSVs, the input to the Concept Detector (which is a vector of

low-level music features), and the training process.

Multiple Attribute Fuzzy Music Semantic Vectors (MA-FMSVs)

For music content analysis, each song is represented by a Multiple Attribute Fuzzy Music Se-

mantic Vector (MA-FMSV) which indicates, for each attribute, which element the song belongs

to. FMSVs were proposed by [7] for use on music similarity measures, and are easily computed

by a SVM classifier. The FMSV for one piece of song is a probability vector, in which each

dimension denotes how similar to a certain aspect of music. For instance, the number of dimen-

sion in vector is 4(Pop, Jazz, Classical, Blues), the vectorfor a song represents the probability

belongs to Pop, Jazz, Classical or Blues. For convenience, we concatenate the FMSV elements

from each attribute to form a single vector, the MA-FMSV. Every song in our system is repre-

sented by its MA-FMSV. We first use a set of songs described by their low-level audio features

and manually labeled with their MA-FMSVs for training the Concept Detector. Afterwards,

any unlabeled song can be automatically assigned its MA-FSVby the Concept Detector.

MA-FMSVs are easily indexed using Locality Sensitive Hashing (LSH) [34]. As evaluated

in [7], FMSV representations and LSH techniques acceleratethe searching process among a

large-scale data set (≈ 0.5 seconds on a data set with 3000 samples and≈ 1.7 seconds on

a data set with 1 million samples). With LSH, we are able to efficiently find theK-Nearest

40

Neighbors of a predicted MA-FMSV. This is significant to saving time in our online processing

for tag recommendation.

Low-level Music Feature Extraction

Low-level feature extraction is performed on all songs. Because the individual song feature ex-

tractions are independent of each other, it is easy for us to leverage the MapReduce framework

and design a parallel algorithm for feature extraction. In this case, we only use the MapReduce

mappers (Figure 4.2). Each song is stored in the cluster as a single line and is fed into a map-

per. In the mapper, we use Marsyas [35]2 to extract low-level audio features, such asSpectral

Centroid, Rolloff, Flux,andMel-Frequency Cepstral Coefficients (MFCCs)for each short time

frame. Finally, the averages and standard deviations across frames are used to summarize each

song, resulting in a 64-dimensional feature space.

Training

Our concept detector uses a multi-class SVM predictor. Because our system does not set any

constraints on the size of the number of elements in the CEMA attribute space, parallel process-

ing is critical to ensuring scalability. Yet, it is difficultto design a SVM classifier with parallel

processing. If using the MapReduce framework, one can allocate a mapper and a reducer for

each iteration in the training stage [36]. However, the process can become cumbersome with

large iteration sizes, so we seek an alternative algorithm for parallel computing.

A multi-class SVM classifier is usually decomposed into a setof independent binary SVM

classifiers. Using this approach, we can take advantage of the MapReduce framework. There

are several methods for decomposing a multi-class SVM classifier into multiple binary classi-

fiers. We use the “one-versus-one,” method because it performed the best on our data set during

2http://marsyas.info

41

informal evaluations. In “one-versus-one” binary classification, a set of classifiers is built for

every pair of classes and the class that is selected by the most classifiers is voted as best.

In our work, we use a novel algorithm, which couples the Pegasos SVM solver [37], which

is a very fast linear SVM solver, with a “Random Emitter” approach to Multi-Class SVM

with MapReduce, as opposed to a “Normal Emitter” approach. In a “Normal Emitter” mode,

the mapper acts as an emit controller. Each sample is emittedNC − 1 times with a different

classifier, whereNC is the number of classes in the data set. The two class labels (one-versus-

one) are emitted as the key of the mappers’ output. After sorting, all the samples with same

key are sunk into the same reducer. Each sample in a reducer has a “+1” or “−1” label, where

“+1” denotes that it belongs to the first class, and “−1” that it belongs to the other. The reducer

then calls the Pegasos SVM solver to train a model for this category pair and dumps the model

as the reducer’s output.

The Pegasos implementation of binary SVM classification selects at random only a subset

of samples to train a model, and the size of the subset is a function of the maximum iteration

size specified by the user. Because of this, it is unnecessaryfor the mapper to emit all samples.

A more sophisticated method of using MapReduce is “Random Emitter” (Algorithm 1), which

randomly outputs samples and limits the size of the output toguarantee the number of samples

is larger but not too much larger than the binary classifier’sneeds. Intuitively, the “Random

Emitter” acts as the “Random Sampling” process within Pegasos. Note that “Random Emitter”

is more efficient only when the size of the training data set islarger than the maximum iteration

size of the binary SVM classifiers. The appropriate threshold can be calculated using this

equation:

P+ = P− = α×
NC × I

2×N
(4.1)

whereP+ is the threshold of emitting the sample as “+1,” P− is the threshold of emitting the

sample as “−1,” I is the maximum iteration size of the binary SVM classifier,NC denotes the

total number of classes,N represents the size of data set (the number of samples), andα > 1

42

is a scalar to guarantee the number of emitted samples is larger than maximum iteration.

Algorithm 1 Random Emitter
Procedure: RandomEmitter

Input: S, NC , I andN
Output: Sample string
1: Initialize P+ andP− by Equation 4.1
2: Get labelLabel of inputS (Sample string)
3: for all i < Label do
4: Get random variabler ∈ [0, 1]
5: if r < P− then
6: Keys =i + “−” + Label

7: Values = “−1” + sample value
8: end if
9: end for

10: for all j > Label and j < NC do
11: Get random variabler ∈ [0, 1]
12: if r < P+ then
13: Keys =Label + “−” + j

14: Values = “+1” + sample value
15: end if
16: end for
17: for all Key ∈ Keys do
18: Emit (Key, Value)
19: end for

Intuitively, if the number of training samples in the data set is larger than number of samples

that the binary SVM classifier requires, then “Random Emitter” should be performed to limit

the mappers’ output. The expected output can be computed using the following equations:

IE = IE+ + IE− (4.2)

IE+ =
N

NC

× P+, IE− =
N

NC

× P− (4.3)

whereIE is the expected number of output samples,IE+ denotes the number of output samples

with a “+1” label, IE− denotes the number of output samples with a “−1” label, andP+

represents the fraction of the number of emitted positive samples over the number of input

43

samples in a particular category. Consequently, we may easily infer the value ofP+:

IE = 2×
N

NC

× P+ (4.4)

P+ =
NC × IE

2×N
(4.5)

Obviously, if r ∼ U(0, 1) (as described in Algorithm 1), then the size of the generated

numbers in the range of0 ∼ P+ should be equal to the amount of samples that the Pegasos

binary SVM training procedure needs. To guarantee the size of emitted samples is larger than

required, a scalarα is used in Equation 4.1.

4.2.4 Parallel Occurrence Co-Occurrence

(POCO)

The number of unique tags increases as more songs are collected, making it more challenging

and time consuming to compute the co-occurrences between all tags. To tackle the scalability

issue, a Parallel Occurrence Co-Occurrence (POCO) algorithm is proposed to generate the Mul-

tiple Attribute Tag Distance Vectors (MA-TDVs), which enable the online tag recommender to

quickly retrieve appropriate attribute-diverse tags fromthe entire corpus of tags. Below, we

describe MA-TDVs in more detail, including the tag distancemetric used, and our POCO al-

gorithms.

Multiple Attribute Tag Distance Vectors

(MA-TDVs)

Multiple Attribute Tag Distance Vectors (MA-TDVs) are designed so that we can relate any

tag in a tag corpus to a simplified diverse attribute space. Specifically, the vectors describe a

song’s tag distances between its socially ascribed tags andthe SEMA attribute space chosen at

44

the outset of system implementation.

As there is no existing social web site which ascribes the distance between music tags, we

must define our own tag distance metric for building our MA-TDVs. We use Google’s word

distance metric [38] for measuring tag distance:

d(ti, tj) =
max(log f(ti), log f(tj))− log f(ti, tj)

logN −min(log f(ti), log f(tj))
(4.6)

wheref(ti) andf(tj) are the counts of songs containing tagti andtj (occurrence), andf(ti, tj)

represents the number of songs having bothti andtj (co-occurrence).N stands for the total

number of songs in the corpus.

The TDV for each tag is then calculated as the distance between itself and each of the terms

in the SEMA attribute space. The terms in the SEMA attribute space act as a “codebook” for

the music social tags space, and any social tag can be represented using a distance vector and

the codebook. In this way, the TDVs of all music attributes can be calculated. For convenience,

we concatenate the TDVs from each attribute to form the MA-TDV.

Design of a Scalable POCO algorithm: POCO-AIM

Efficient parallel word co-occurrence algorithms have beenpresented by [39], in which two

methods using the MapReduce framework, “Stripes” and “Pairs,” are evaluated. For our sys-

tem, we begin by modifying the “Stripes” algorithm, which has been shown to be more efficient

than “Pairs” if all words can be loaded into memory. In our case, the “words” are song tags,

and we are calculating occurrence and co-occurrence between the terms in the SEMA attribute

space and the tags associated with each song. Because tag occurrence is needed in our im-

plementation for measuring tag distance (Equation 4.6), wemust adapt the algorithm to also

calculate word occurrence. Because only the distances between social tags and the terms in

the SEMA attribute space are required in our work, we can reduce the space requirement of a

45

tag co-occurrence matrix fromO(N2
T) to O(NT ×m), whereNT is the number of tags in the

corpus andm is the number of terms in the SEMA attribute space.

In the modified “Stripes” mapper function, a key is one term inthe SEMA attribute space.

Its output is an associate array, which contains all tags notin the attribute space and their co-

occurrences with the key. The mapper function thus generates a large number of intermediate

results. We observe that a more sophisticated method is to aggregate the results in the mapper,

rather than using a combiner or emitting them line by line [40]. We introduce this conserva-

tional upgrade into the algorithm’s design and name the new method as POCO Aggregating in

Mapper (POCO-AIM). Its implementation is given in Algorithm 2.

Algorithm 2 POCO-AIM
Class:Mapper(Key, Tags ∈ Song)

Input: < Key, Tags ∈ Song >

Output: < tag,H >

Procedure: setup()
1: INITIALIZE(H)
2: Load SEMA attribute set SA

Procedure: map(Key, Tags)
3: I = Tags

⋂

SA // Intersection of Tags and SA sets
4: D = (Tags− SA) // Difference of Tags and SA sets
5: for all t1∈ I do
6: for all t2∈ D do
7: H{t1}{t2} ++
8: end for
9: end forProcedure: cleanup()

10: for all t ∈ H do
11: EMIT(tag,H(tag))
12: end for
Procedure: Reduce(tag, [H1,H2,H3, ...])

Input: < tag, [H1,H2,H3, ...] >
Output: < tag,H >

1: INITIALIZE(H)
2: for all h ∈ [H1,H2,H3, ...] do
3: MERGE(h,H)
4: end for
5: EMIT(tag,H)

In the setup function, the tags in the SEMA attribute space are loaded, and an associate array

H is initialized. The input to the map function is the song ID and an array of its tags. In the map

46

function, the tags are processed and then classified into twogroups. The first groupI contains

all the tags that occur in the SEMA attribute space, and the second groupD contains the rest

of the tags. Then, the co-occurrence between tags inI andD are computed and the associate

arrayH is updated. Finally, in the cleanup function, the keys stored in H and their values are

emitted. Compared with the modified “Stripes” method, the number of intermediate results and

time taken to shuffle them is greatly reduced, leading to lessoverall computational time.

4.2.5 Online Tag Recommendation

In offline processing, our system constructs the CEMA MA-FMSVs and the SEMA MA-TDVs

for all songs. In online processing, given a song without anytags, the system recommends

the most appropriate tags within each attribute. Upon receiving an untagged song from a user,

the online system extracts its audio low-level features. Then the online process predicts its

MA-FMSV. The system looks for theK nearest songs by using the LSH index. In turn, the

MA-TDVs are collected from theK nearest songs. The recommender sums and ranks theK

MA-TDVs along each attribute to find the TopN most relevant tags. The values forK can and

N can be changed as parameters.

It is informative to take a closer look at tag ranking time, since the worst-case complexity

of sorting isO(n logn). In our system, online tag ranking happens in two stages. In the first

stage,n denotes them elements in the SEMA attribute space. In the second stage,n is the total

number of social tags inK-Nearest Neighbors that have been retrieved. Therefore, tag ranking

time is expected to be much smaller than retrieval time.

47

4.3 Materials and Methods

We evaluated the quality of our system in several experiments using multiple data sets and

evaluation criteria. In this section, we describe materials and methods for the experiments.

4.3.1 Data Sets

We gathered several data sets, summarized in Table 4.1, to train the concept detector and test

the effectiveness of the tag recommendation system.

Name Classes (Attr.) Size (Train / Test) Feat.
CAL-500 174 (6) 500 64
WebCrawl 20 (4) 77,448 64
HandTag 20 (4) 17,000 64

Table 4.1: Data sets used for training and testing.

CAL-500

CAL-500 [29] is a smaller-scale database that has been made publicly available for tag annota-

tion and recommendation tasks. It includes a 39-dimensional feature set based upon differential

MFCCs and has been used as a benchmark data set for several recent automatic tagging tasks,

such as [3, 20, 21]. It consists of 500 songs and 174 classes distributed across 6 attributes:

Mood, Genre, Instrument, Song, Usage,andVocal. All tags were manually generated under

controlled experimental conditions and are therefore believed to be of high quality.

WebCrawl

Our system is designed to efficiently operate on large-scalemusic data sets. Therefore, we

needed an appropriately large data set to evaluate for testing. We generated WebCrawl by

48

crawling488, 407 music items with metadata (e.g.title, album name, and artist) and social tags

from Last.fm. We then used the title and artists’ names to search for and download more than

200,000 songs from Youtube. After collecting all music items, we removed misspelled and

stop words from the social tags using Wordnet [41]3 and filtered out any songs without tags.

We were left with 77,448 songs.

HandCrawl

The HandCrawl data set is another high quality manually tagged data set that has recently been

used in [15]. The 17,000 songs were selected as the most popular in Last.fm’s data base using

its track popularity API. The tracks and metadata were retrieved by crawling YouTube. Socially

tagged ground truth data was collected in controlled experimental conditions and cross checked

by amateur musicians with reference to Last.fm. The ground truth data was associated with 4

attributes and 20 associated elements, as shown in Table 4.2.

Genre Mood Vocalness Instrument
(14,713) (597) (2,131) (1,588)

Classical Jazz Pleasure Male Brass
Country Rock Joyful Female WoodWinds
Electronic Pop Sad Mixed Strings
HipHop Metal Angry NonVocal Percussion

Table 4.2: The Explicit Multiple Attributes and elements inthe HandTag data set. The number
of songs represented by each attribute are shown in parentheses.

4.3.2 Evaluation Criteria

Our system is designed to recommend attribute-diverse and relevant tags given an input song.

Additionally, we have proposed several methods for increasing computational efficiency when

processing large-scale data spaces. In this subsection we set forth the main criteria by which

we experimentally evaluated the system.

3http://wordnet.princeton.edu/

49

Precision and Accuracy

To evaluate our system’s recommendation effectiveness, wefollow the examples set in [20] and

compute the average per-tag precision, recall, andF1 score. Per-tag precision is the percentage

of songs that our model recommends with tagt that are actually labeled witht in the song’s

ground truth tag vector. Recall is the percentage of songs labeled witht in the ground truth

vector for which our model also recommends tagt. TheF1 score is the harmonic mean of

precision and recall, and is a good metric for overall recommendation performance.

For each song, the tag recommenders provide a ranked list in order of predicted relevancy. In

order to evaluate the quality of the recommender’s ranking system for suggesting relative tags,

we use Mean Average Precision (MAP@n), defined as the average of the precisions at each

possible level of recall, wheren is the recall depth (n is also termed the TopN value). Therefore,

MAP@n summarizes effectiveness of precision, recall, and ranking in a single metric. Again

following [20], if our system doesn’t recommend a tagt that is in the ground truth vector, then

per-tag precision and recall fort are undefined, and we ignore these words in our evaluations.

Diversity

Our system aims to enforce attribute diversity in its tag recommendations. To quantify the

diversity of a set of recommended tags, we define Diversity@n, which computes the proportion

of attributes automatically generated in the topn tags:

Diversity@n ≡

∑n

i A(ti)

NA

(4.7)

whereNA is the total number of attributes,A is a vector and elements∈ {0, 1}. A(ti) denotes

which attributesti is a member of.

50

Computational Scalability

We have proposed several methods for improving the efficiency of parallel processes for large-

scale tag recommendation. The main criteria that we investigate in our evaluations are compu-

tational time and data throughput.

4.3.3 Experiments

We executed two experiments designed to evaluate the two basic contributions of our work.

The first evaluates effectiveness of tag recommendations onvarying sized data sets. The second

investigates the computational efficiency of the system architecture.

Tag Recommendation Effectiveness

We conducted two independent evaluations of tag recommendation effectiveness using two

datasets: CAL-500 and WebCrawl. The CAL-500 data set is a popular benchmark for tag

recommendation tasks. Thus, we are able to evaluate our workagainst others’. Hoffmanet

al.nicely summarized recent tag recommendation algorithms along with their own in [21]. We

borrow their review and compare those results against several other implementations. In par-

ticular, we report evaluations on tag recommendation for seven methods, including our own:

1. MixHier: Based on a Gaussian Mixture of Models, uses the features included with CAL-

500 [20].

2. Autotag: An AdaBoost based system using additional training data and features, along

with those included with CAL-500 [3].

3. CBA: CodewordBernoulli Average is a probabilistic model based on using a codebook

of sizeK [21]. For purposes of comparison, we chose to only report results withK =

51

500. Uses the standard feature set in CAL-500.

4. MD: A SVM method without tag propagation and ranking. Thisis similar toModel-

Driven methods with limited labels.

5. SB: Similar to theSearch-Based Image Annotation [23,24], a method that uses low-level

features, rather than MA-FMSVs to find theK-NN songs.

6. FMSV: A method that usesFuzzyMusicSemanticVectors, but doesn’t consider Explicit

Multiple Attributes [7].

7. MA-FMSV: Our system—tag recommendation withMultiple Attribute Explicit Fuzzy

MusicSemanticVectors.

We note that we excluded results by Nesset al. [22] for two reasons: First, they do not use

the full tag space available in CAL-500. Second, our conceptdetector is similar to the first stage

of their two-stage framework; it can easily be extended to include the second stage. Procedures

4–7 were directly implemented by us. We used the feature extraction space discussed in this

chapter, rather than CAL-500’s feature set. Training and testing was done on the same data set,

using 2-fold cross validation. For procedures 5–7, parametersK andN were set at 15 and 12,

respectively.

For our second evaluation, we trained our system on the HandTag data set and tested on the

WebCrawl data set. This evaluation was designed to test the system on a data space of much

larger scale than the CAL-500 experiments. As such, we only report tag recommendation

performance using procedures 4–7 above. For procedures 5–7, parametersK andN were set

at 15 and 8, respectively.

In addition to the above evaluations, we also study the impact of K in K-NN andN in TopN

on the recommendation effectiveness of procedures 5–7.

52

Tag Recommendation Efficiency

We test the efficiency of our our system at two points: the PMCDalgorithm, and the POCO-

AIM algorithm. We evaluate the improvement of POCO-AIM’s computational efficiency over a

modified “Stripes” implementation, comparing the size of the mappers’ intermediate output and

the computing times. We used the Last.fm data set, as its sizeis considered to be appropriately

large to model real-world tasks.

4.3.4 Computing

Our system runs on a cluster of 77 nodes (1 master, 76 slaves) comprising 22 TB storage

capacity. A server is used as the master node, which has 2 X 4 core CPU (2.5 GHz) and 32GB

memory. 28 machines with 2 core CPU (SUN V20Z, 2.18 GHz) and 2GB memory serve as

slave nodes. The remaining 48 slave nodes come from 6 servers, and each server is divided into

8 virtual machines. Each server has 2nd Intel Quad Core E5506Xeon CPU (2.13GHz, 4M

Cache, 4.86 GT/s GPI) and 32GB memory. The expandable natureof the system guarantees

that it can be easily extended to handle millions or even billions of songs.

4.4 Results

4.4.1 Tag Recommendation Effectiveness

CAL-500

Table 4.3 compares the results of evaluating multiple procedures on the CAL-500 data set. As

reported in [20], the top two rows show the upper bound and a random baseline, respectively.

53

The SVM-based methods (MD, SB, FMSV, & MA-FMSV) performed better than any of the

others; this has also been supported by [22]. The best recallandF1 score results were obtained

by the simplistic model-driven (MD) method, while precision was similarly high for MD and

FMSV methods. Our system performed approximately 85% better than the next highest method

(FMSV) in enforcing attribute diversity. Additionally, MA-FMSV was the best system for

appropriately ranking its recommendations.

Method Prec. Recall F1 Score MAP Diver.
UpperBnd 0.712 0.375 0.491 1 1
Random 0.144 0.064 0.089 - -

MixHier 0.265 0.158 0.198 - -
Autotag 0.312 0.153 0.205 - -

CBA 0.286 0.162 0.207 - -
MD 0.606 0.212 0.314 0.511 0.272
SB 0.412 0.082 0.137 0.644 0.524

FMSV 0.637 0.121 0.203 0.7204 0.539
MA-FMSV 0.588 0.206 0.307 0.739 0.997

Table 4.3: Comparison between tag recommendation procedures on the CAL-500 data set.

We wanted to evaluate the effect of theK parameter for nearest neighbors on recommender

effectiveness. In theory, by using nearest neighbors, a system should be able to recommend a

richer set of tags. As opposed to the SB method, the FMSV methods consider music content

in their nearest neighbor search, while MA-FMSV enforces attribute diversity. We therefore

tested the relationship between number of neighbors and theeffectiveness of the three rec-

ommendation systems. Figure 4.3 illustrates that FMSV exhibited the best precision over all

values forK. All three SVM methods were quite sensitive to theK value, gaining considerable

performance asK increased. This is understandable, as the data set’s tag space was a relatively

clean one. Therefore, increasing the number of nearest neighbors will increase the number of

high quality tags aggregated in SEMA, thereby reducing informational signal to noise ratio.

The recall,F1 score (not shown), and MAP measurements were less sensitiveto K value for

all three methods, yet MA-FMSV performed better across the board (except for MAP when

K > 55). K did not have a significant effect on Diversity measurements.

54

5 25 45 65 85105

0.4

0.6

0.8
Preci s i on

K -NN

%

5 25 45 65 85105

Reca l l

K -NN
5 25 45 65 85105

MAP

K -NN

MA-FMSV

FMSV

SB

Figure 4.3:K variable versus recommendation effectiveness for the CAL-500 data set (N =
12).

Figure 4.4 illustrates the effect of parameterN for tag recommendation MAP and Diversity.

All methods suffer in MAP performance asN is increased. The two non attribute-diverse meth-

ods, SB and FMSV, show considerable gain in Diversity performance whenN is increased.

However, they are only able to achieve approximately 65% of the performance that MA-FMSV

does. Therefore, MA-FMSV can recommend a highly attribute-diverse set of tag while main-

taining relatively good MAP performance.

WebCrawl

When presented with a much larger-scale training and testing data set, all SVM methods per-

form noticeably worse. This underscores the necessity of evaluating tag recommendation sys-

tems on data sets that realistically approximate real-world scenarios. Table 4.4 shows that the

pure model-driven method no longer obtains the best resultsin a large-scale data set such as

WebCrawl. Therefore, we suggest that MD’s optimal performance on a small, clean data set

55

6 12 18 24
0.4

0.5

0.6

0.7

0.8

0.9

1

MAP

N

%

6 12 18 24
N

Di ver s i ty

MA-FMSV

FMSV

SB

Figure 4.4:N variable versus recommendation effectiveness for the CAL-500 data set (K =
15).

does not generalize to larger data sets. Despite overall decreased performance, the MA-FMSV

outperforms all other SVM methods (except on recall).

Method Prec. Recall F1 Score MAP Diver.
MD 0.133 0.388 0.198 0.218 0.723
SB 0.164 0.456 0.242 0.336 0.678

FMSV 0.166 0.458 0.244 0.335 0.680
MA-FMSV 0.210 0.417 0.279 0.362 0.958

Table 4.4: Comparison between tag recommendation procedures on the WebCrawl data set.

Again, we examine the impact of the tunable parametersK andN on the effectiveness of

SVM systems, but with a large-scale data set. In Figure 4.5, FMSV and SB obtain nearly

exactly the same results and a slight increase in performance over increasingK. MA-FMSV

shows better performance across allK, except for the recall measurement whenK < 25.

With regard to TopN values and the WebCrawl data set, we find trends similar to Figure 4.4

in Figure 4.6. In this case, however, at a high enoughN value, all SVM methods perform at

near unitary Diversity. Yet, Figure 4.4 shows that cost in MAP performance may be avoided if

56

5 25 45 65 85105

0.2

0.4

Preci s i on

K -NN

%

5 25 45 65 85105

Reca l l

K -NN
5 25 45 65 85105

MAP

K -NN

MA-FMSV

FMSV

SB

Figure 4.5:K variable versus recommendation effectiveness for the WebCrawl data set (N =
8).

MA-FMSV is used for tag recommendation.

4.4.2 Tag Recommendation Efficiency

PMCD

In our system, the Pegasos based PMCD algorithm was modified with a “Random Emitter”

method to reduce MapReduce payload when given a large numberof input samples. In order

to check that our decomposed and modified version of Pegasos performs correctly, we tested it

on a generic multi-class problem set of 1,000,000 samples and 20 classes. In all cases, PMCD

performed similarly to or better than LibSVM. We are therefore confident that our modifications

do not come with loss in classifier accuracy.

To show the efficiency of the revised “Random Emitter” methodover standard methods, we

plot the number of samples output from the mapper as a function of sample size input. The left

57

6 12 18 24
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MAP

N

%

6 12 18 24
N

Di ver s i ty

MA-FMSV

FMSV

SB

Figure 4.6:N variable versus recommendation effectiveness for the CAL-500 data set (K =
15).

graph in Figure 4.7 shows that the “Normal Emitter” and “Random Emitter” have exactly the

same number of emitted samples when the size of data set is small. However, as the size of data

set increases, the “Random Emitter” pre-samples the data and limits the output. In this case, if

we setC = 20 andT = 100, 000, then the total required sample size isC×(C−1)
2

∗ T . As can be

seen, when the size of the dataset is larger than the number ofsamples required by Pegasos, the

“Random Emitter” limits the system’s output, while the output of a “Normal Emitter” increases

linearly.

POCO-AIM

In our work, we have proposed the POCO-AIM algorithm for calculating the occurrence and

co-occurrence between social tags and elements in SEMA. In doing so, we first modified the

“Stripes” method proposed by Linet al. [39] by adding functionality for counting term oc-

currence. We have designated the modified algorithm as POCO-Revised Stripes (POCO-RS).

58

5 6 7 8
6

7

8

9

10

Samp l es In (10n)

#
S

a
m

p
le

s
O

u
t
p

u
t

F
r
o
m

M
a
p

p
e
r
s

(
1
0

n
)

Normal Random

15 20 30 40 50
8

10

12

14

16

18

20

22

Mapp er s

C
o
m

p
u

t
in

g
T

im
e

(
S

e
c
.)

15 20 30 40 50
60

80

100

120

140

160

180

200

220

Mapp er s

M
a
p

p
e
r

O
u

t
p

u
t

(
M

B
)

POCO-AIM POCO-RS

Figure 4.7: System efficiency measurements. The left plot shows the number of mappers re-
quired, as a function of the number of input samples, for the “Normal” and “Random” methods
of concept detection with MapReduce. The middle graph showsdifferences in computing
time, as more mappers are used with two different implementations of a parallel occurrence
co-occurrence algorithm. The right graph shows reduced mapper output per mapper for the
POCO-AIM algorithm.

Then, we introduced additional modifications for improvingthe computational efficiency of

POCO-RS as POCO-AIM.

In order to model real-world computational requirements, we crawled much of the Last.fm

data set, which has 8,338,431 unsorted tags over 440,407 songs to test the computational ef-

ficiency of our parallel processing algorithm, POCO-AIM. Inthe middle graph of Figure 4.7,

we show that the running time of POCO-AIM decreases as the number of mappers increases

by a significant amount until the system’s memory resource are depleted (when the number

of mappers exceeds 40). As can be seen, POCO-AIM requires approximately 33% of the

computational time that POCO-RS does when 40 mappers are in use. Therefore, POCO-AIM

outperforms the modified “Stripes” as long as the vocabularyof all tags in use is small enough

to be stored directly in memory. The corpus of tags used to describe music is relatively small

compared to that of text, image and video, so POCO-AIM is an appropriate method for tag

59

recommendation. POCO-AIM accomplishes computational efficiency by aggregating results

in the mapper, therefore reducing the number of intermediate results emitted from all mappers.

The right side of Figure 4.7 shows that the size of the intermediate results emitted from all the

mappers in POCO-AIM is much less (approximately 50% when thenumber of mappers = 40)

compared to the modified “Stripes” algorithm.

60

Chapter 5

Query-by-Description Music Information

Retrieval(QBD-MIR) Prototype

5.1 QBD-MIR Framework

5.1.1 QBD-MIR Demo System

Figure 5.1: The homepage of QBD-MIR system

61

Figure 5.1 is the home page of our toy QBD-MIR system, the bottom table in this figure

indicates that which kind of tags (description) are supported currently. The tags here are certain

descriptions on music content not the Meta data, it means that all the commercial systems are

difficult to explore music in this way. By typing a tag in the search form, the system will return

a set of relevant songs regarding to the tag. One thing valuable to be noticed is that the query

process could be very fast due to it just needs to rank the relevant scores and fetches the top

10 songs. Figure 5.2 demonstrates whether the retrieved top10 songs are truly related to such

query or not. The first column is a list of music video clips fetched from Youtube, and the

second column is theSongs namesand tags from ground truth data set, which annotated by

three persons separately. In this figure, the correct tags have been highlighted.

Figure 5.2: The top 10 retrieval video list

62

Chapter 6

Conclusion

In conclusion, we have proposed three methods to address social tagging issues: sparsity and

noise.

We have investigated the use of various probabilistic models for text-based QBD retrieval

of music. In particular, we have focused on applying our modification of the Corr-LDA

model(Method 1), previously used in image retrieval, to a new domain. Also, we presented

an alternative method for fusing multiple information sources. This data level fusion involves

clustering to obtain an codeword representation of raw audio features and combining them with

social tags mined from the WWW. Our experiment results indicate that Corr-LDA is competi-

tive in the music retrieval domain when compared against other existing probabilistic models.

Furthermore, our method of data level fusion results in the best performance. Last, we have

implemented a prototype retrieval system that retrieves music based on text-based query. More-

over, a novel approach called TOB-SS(Method 2) is also proposed to improve the performance

of previous models. The experimental results have demonstrated that our approach outperforms

other methods on the benchmark data set. Another contribution in this project is that we set up

a real system to help people explore the music in a new way, where users can find music by

semantic meaningful description.

63

Futhermore, we also have presented a framework for large-scale music tag recommendation

with Explicit Multiple Attributes(Method 3). The system guarantees that recommended tags

will be attribute-diverse. Additionally, we have detailedparallel music content analysis, con-

cept detection and parallel social tags mining algorithms based on the MapReduce framework

to support large-scale offline processing and fast online tag recommendation in each pre-defined

attribute.

Our experiments have shown that our system’s tag recommendation is more effective than

many existing recommenders and at least as effective as other SVM-based methods. In all

cases, recommended tags are more attribute-diverse and therecommender’s ranking system

has been shown to be more effective. Additionally, we have proven that our tag recommender

is scalable to very large data sets and real world scenarios.Due the generality of our proposed

framework and three parallel algorithms, we believe that itmay be used in other multimedia

content analysis and tag recommendation tasks, as well.

Our future tasks include evaluating the performance of our framework using mismatched and

larger sized CEMA and SEMA attribute spaces. We also aim to compare our POCO method

with purely co-occurrence based schemes. During testing, we found that speedup was not as

optimal as desired when we approached the limits of our computational resources. We therefore

plan to investigate how speedup may be further optimized. Finally, we are working to design

a human-friendly interface for our recommendation system so that we may distribute it to the

public domain.

64

Bibliography

[1] M. Mandel and D. P. Ellis. Labrosa’s audio music similarity and classification submis-

sions. InProc. ISMIR 2007 - Mirex (2007), 2007.

[2] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas.Multilabel classification of music

into emotions. InProc. 9th International Conference on Music Information Retrieval

(ISMIR 2008), Philadelphia, PA, USA, 2008, 2008.

[3] Thierry Bertin-Mahieux, Douglas Eck, François Maillet, and Paul Lamere. Autotagger: A

model for predicting social tags from acoustic features on large music databases.Journal

of New Music Research, 37(2):115–135, 2008.

[4] Peter Knees, Tim Pohle, Markus Schedl, and Gerhard Widmer. A music search engine

built upon audio-based and web-based similarity measures.In SIGIR ’07: Proceedings

of the 30th annual international ACM SIGIR conference on Research and development in

information retrieval, pages 447–454, New York, NY, USA, 2007. ACM.

[5] M. Slaney, K. Weinberger, and W. White. Learning a metricfor music similarity. In

ISMIR, pages 313–318, 2008.

[6] Paul Lamere. Social tagging and music information retrieval. Journal of New Music

Research, 37(2):101–114, 2008.

[7] Bingjun Zhang, Jialie Shen, Qiaoliang Xiang, and Ye Wang. Compositemap: a novel

framework for music similarity measure. InSIGIR ’09: Proceedings of the 32nd inter-

65

national ACM SIGIR conference on Research and development in information retrieval,

pages 403–410, New York, NY, USA, 2009. ACM.

[8] Douglas R. Turnbull, Luke Barrington, Gert Lanckriet, and Mehrdad Yazdani. Combining

audio content and social context for semantic music discovery. In SIGIR ’09: Proceed-

ings of the 32nd international ACM SIGIR conference on Research and development in

information retrieval, pages 387–394, New York, NY, USA, 2009. ACM.

[9] David M. Blei and Michael I. Jordan. Modeling annotated data. InSIGIR ’03: Proceed-

ings of the 26th annual international ACM SIGIR conference on Research and develop-

ment in informaion retrieval, pages 127–134, New York, NY, USA, 2003. ACM.

[10] M. Levy and M. Sandler. Music information retrieval using social tags and audio.Multi-

media, IEEE Transactions on, 11(3):383–395, 2009.

[11] Mark Levy and Mark Sandler. Learning latent semantic models for music from social

tags.Journal of New Music Research, 37(2):137–150, 2008.

[12] Ling Chen, Phillip Wright, and Wolfgang Nejdl. Improving music genre classification

using collaborative tagging data. InWSDM ’09: Proceedings of the Second ACM Inter-

national Conference on Web Search and Data Mining, pages 84–93, New York, NY, USA,

2009. ACM.

[13] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos. Supervised learning of

semantic classes for image annotation and retrieval.IEEE Trans Pattern Anal Mach Intell,

29(3):394–410, March 2007.

[14] Luke Barrington, Douglas Turnbull, David Torres, and Gert Lanckriet. Semantic similar-

ity for music retrieval. InProceedings of the International Symposium on Music Informa-

tion Retrieval, 2007.

[15] Bingjun Zhang, Qiaoliang Xiang, Huanhuan Lu, Jialie Shen, and Ye Wang. Compre-

hensive query-dependent fusion using regression-on-folksonomies: a case study of mul-

66

timodal music search. InMM ’09: Proceedings of the seventeen ACM international

conference on Multimedia, pages 213–222, New York, NY, USA, 2009. ACM.

[16] Jia Li and James Z. Wang. Real-time computerized annotation of pictures. InMULTIME-

DIA ’06: Proceedings of the 14th annual ACM international conference on Multimedia,

pages 911–920, New York, NY, USA, 2006. ACM.

[17] Rui Shi, Chin-Hui Lee, and Tat-Seng Chua. Enhancing image annotation by integrating

concept ontology and text-based bayesian learning model. In MULTIMEDIA ’07: Pro-

ceedings of the 15th international conference on Multimedia, pages 341–344, New York,

NY, USA, 2007. ACM.

[18] G. Sychay, E. Chang, and K. Goh. Effective image annotation via active learning. In2002

IEEE International Conference on Multimedia and Expo, 2002. ICME’02. Proceedings,

volume 1, 2002.

[19] Florent Monay and Daniel Gatica-Perez. On image auto-annotation with latent space

models. InMULTIMEDIA ’03: Proceedings of the eleventh ACM international confer-

ence on Multimedia, pages 275–278, New York, NY, USA, 2003. ACM.

[20] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic annotation and retrieval

of music and sound effects.Audio, Speech, and Language Processing, IEEE Transactions

on, 16(2):467–476, 2008.

[21] Matthew Hoffman, David Blei, and Perry Cook. Easy as cba: A simple probabilistic

model for tagging music. InProc. International Symposium on Music Information Re-

trieval, 2009.

[22] Steven R. Ness, Anthony Theocharis, George Tzanetakis, and Luis Gustavo Martins. Im-

proving automatic music tag annotation using stacked generalization of probabilistic svm

outputs. InMM ’09: Proceedings of the seventeen ACM international conference on

Multimedia, pages 705–708, New York, NY, USA, 2009. ACM.

67

[23] Xin J. Wang, Lei Zhang, Xirong Li, and Wei Y. Ma. Annotating images by mining im-

age search results.IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(11):1919–1932, 2008.

[24] Changhu Wang, Lei Zhang, and Hong-Jiang Zhang. Learning to reduce the semantic

gap in web image retrieval and annotation. InSIGIR ’08: Proceedings of the 31st an-

nual international ACM SIGIR conference on Research and development in information

retrieval, pages 355–362, New York, NY, USA, 2008. ACM.

[25] Börkur Sigurbjörnsson and Roelof van Zwol. Flickr tag recommendation based on collec-

tive knowledge. InWWW ’08: Proceeding of the 17th international conference onWorld

Wide Web, pages 327–336, New York, NY, USA, 2008. ACM.

[26] Lei Wu, Linjun Yang, Nenghai Yu, and Xian S. Hua. Learning to tag. InWWW ’09:

Proceedings of the 18th international conference on World wide web, pages 361–370,

New York, NY, USA, 2009. ACM.

[27] Dong Liu, Xian-Sheng Hua, Linjun Yang, Meng Wang, and Hong-Jiang Zhang. Tag

ranking. InWWW ’09: Proceedings of the 18th international conference on World wide

web, pages 351–360, New York, NY, USA, 2009. ACM.

[28] Hong-Ming Chen, Ming-Hsiu Chang, Ping-Chieh Chang, Ming-Chun Tien, Winston H.

Hsu, and Ja-Ling Wu. Sheepdog: group and tag recommendationfor flickr photos by

automatic search-based learning. InMM ’08: Proceeding of the 16th ACM international

conference on Multimedia, pages 737–740, New York, NY, USA, 2008. ACM.

[29] Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet. Towards musical

query-by-semantic-description using the cal500 data set.In SIGIR ’07: Proceedings of

the 30th annual international ACM SIGIR conference on Research and development in

information retrieval, pages 439–446, New York, NY, USA, 2007. ACM.

[30] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.J. Mach.

Learn. Res., 3:993–1022, 2003.

68

[31] Chong Wang, David Blei, and Li F. Fei. Simultaneous image classification and annotation.

In Proceedings of CVPR, 2009.

[32] Jimmy Lin. Brute force and indexed approaches to pairwise document similarity compar-

isons with mapreduce. InSIGIR ’09: Proceedings of the 32nd international ACM SIGIR

conference on Research and development in information retrieval, pages 155–162, New

York, NY, USA, 2009. ACM.

[33] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. InUsenix SDI, pages 137–150, 2004.

[34] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neigh-

bor in high dimensions.Communications of the ACM, 51(1):117–122, 2008.

[35] George Tzanetakis and Perry Cook. Marsyas: a frameworkfor audio analysis.Org.

Sound, 4(3):169–175, 1999.

[36] Gary Bradski, Cheng-Tao Chu, Andrew Ng, Kunle Olukotun, Sang Kyun Kim, Yi-An

Lin, and YuanYuan Yu. Map-reduce for machine learning on multicore. InNIPS, 12/2006

2006.

[37] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro.Pegasos: Primal estimated sub-

gradient solver for svm. InICML ’07: Proceedings of the 24th international conference

on Machine learning, pages 807–814, New York, NY, USA, 2007. ACM.

[38] Rudi L. Cilibrasi and Paul M. B. Vitanyi. The google similarity distance.IEEE Trans. on

Knowl. and Data Eng., 19(3):370–383, 2007.

[39] Jimmy Lin. Scalable language processing algorithms for the masses: a case study in

computing word co-occurrence matrices with MapReduce. InEMNLP ’08: Proceedings

of the Conference on Empirical Methods in Natural Language Processing, pages 419–

428, Morristown, NJ, USA, 2008. Association for Computational Linguistics.

69

[40] Richard McCreadie, Craig Mcdonald, and Iadh Ounis. Comparing distributed indexing:

To mapreduce or not? InProceedings of the 7th Workshop on Large-Scale Distributed

Systems for Information Retrieval (LSDS-IR’09) at SIGIR 2009, July 2009.

[41] Christiane Fellbaum, editor.WordNet: an electronic lexical database. MIT Press, 1998.

70

Appendix

.1 Corr-LDA Variational Inference

This section presents the details of the components ofL(γ, φ, λ) (Equation 3.4), used in Vari-

ational Inference (Method 1 - Corr-LDA). Where obvious, theparameters of functions are

omitted, e.g.Θ = {α, π, β} fromL(γ, φ, λ) andγ, φ, λ from q(θ, z,y).

.1.1 Lower Bound of log likelihood

L(γ, φ, λ) = Eq[log p(θ, r,w, z,y)]− Eq[log q(θ, z,y)] (1)

= Eq[log p(θ|α)] + Eq[log p(z|θ)] + Eq[log p(r|z, π)] +

Eq[log p(y|N)] + Eq[log p(w|y, z, β)]−

Eq[log q(θ)]− Eq[log q(z)]− Eq[log q(y)] (2)

Eq[log p(θ|α)] = log Γ(
K
∑

j=1

αj)−
K
∑

i=1

log Γ(αi) +
K
∑

i=1

(αi − 1)

(

Ψ(γi)−Ψ(
K
∑

j=1

γj)

)

(3)

71

Eq[log p(z|θ)] =

N
∑

n=1

K
∑

i=1

φni

(

Ψ(γi)−Ψ(

K
∑

j=1

γj)

)

(4)

Eq[log p(r|z, π)] =

N
∑

n=1

K
∑

i=1

φni log πirn (5)

Eq[log p(y|N)] =
N
∑

n=1

M
∑

m=1

λmn log
1

N
= log

1

N

N
∑

n=1

M
∑

m=1

λmn (6)

Eq[log p(w|y, z, β)] =

N
∑

n=1

K
∑

i=1

φni

M
∑

m=1

λmn log βiwm
(7)

Eq[log q(θ)] = log Γ(

K
∑

j=1

γj)−

K
∑

i=1

log Γ(γi) +

K
∑

i=1

(γi − 1)

(

Ψ(γi)−Ψ(

K
∑

j=1

γj)

)

(8)

Eq[log q(z)] =
N
∑

n=1

K
∑

i=1

φni logφni (9)

Eq[log q(y)] =
N
∑

n=1

M
∑

m=1

λmn log λmn (10)

72

.1.2 Computation Formulation

For computation whenαi is same for alli:

L(γ, φ, λ) = log Γ(

K
∑

j=1

αj)−

K
∑

i=1

log Γ(αi)− log Γ(

K
∑

j=1

γj) (non-K dependent terms) (11)

+

K
∑

i=1

log γi +

Ψ(γi)−Ψ(

K
∑

j=1

γj)

 (αi − γi)

 (12)

+

N
∑

n=1

K
∑

i=1

φni

Ψ(γi)−Ψ(

K
∑

j=1

γj)

+ log πirn − log φni +

M
∑

m=1

λmn log βiwm

(13)

−
N
∑

n=1

M
∑

m=1

λmn log(Nλmn) (14)

.1.3 Variational Multinomial Updates

Parameterφni

L[φn] =
K
∑

i=1

φni

((

Ψ(γi)−Ψ(
K
∑

j=1

γj)

)

+ log πi,rn +
M
∑

m=1

λmn log βi,wm
− log φni

)

+λn(
K
∑

j=1

φni − 1)

∂L

∂φni

=

(

Ψ(γi)−Ψ(

K
∑

j=1

γj)

)

+ log πi,rn +

M
∑

m=1

λmn log βi,wm
− log φni − 1 + λ

= 0

φni ∝ πi,rn exp

((

Ψ(γi)−Ψ(

K
∑

j=1

γj)

)

+

M
∑

m=1

λmn log βi,wm

)

(15)

Term−Ψ(
∑K

j=1 γj) can be ignored as it cancels out after normalisation.

73

Parameterγi

γi = αi +
N
∑

n=1

φni (16)

Newγt+1 can be updated using oldγt andφt using:

γ0
i ← αi (17)

γt+1
i ← γt

i +

N
∑

n=1

(φt+1
ni − φt

ni) (18)

Parameterλmn

L[λmn] =

K
∑

i=1

φniλmn log βi,wm
− λmn log λmn + log

1

N
λmn

∂L

∂λmn

=

K
∑

i=1

φni log βi,wm
− (log λmn + 1) + log

1

N

= 0

λmn ∝ exp(
K
∑

i=1

φni log βi,wm
) (19)

.2 Corr-LDA Parameter estimation

In this section we derive the gradient ascent updates in the maximisation step of the Variational

Expectation Maximisation algorithm. A corpusD is represented by a bag of codewords and

annotations (words), i.e.

D = {(rd, wd)}
D
d=1

74

.2.1 Parameterπif

L =
D
∑

d=1

logP (rd, wd|π, β)

L[π1:k](D) =

D
∑

d=1

Nd
∑

n=1

K
∑

i=1

φdni log πi,rn +

K
∑

i=1

µi(

Vr
∑

f=1

πif − 1)

∂L[π1:k]

∂πif

=

D
∑

d=1

Nd
∑

n=1

K
∑

i=1

φdni

πi,rn

+

K
∑

i=1

µi

Vr
∑

f=1

1

=
D
∑

d=1

Nd
∑

n=1

K
∑

i=1

φdni

πi,rn

+
K
∑

i=1

µi

(Vr + 1)Vr

2

= 0

πif ∝

D
∑

d=1

Nd
∑

n=1

1[rn = f]φdni (20)

.2.2 Parameterβiw

L[β1:K](D) =

M
∑

m=1

N
∑

n=1

K
∑

i=1

λmnφin log βi,wm
+

K
∑

i=1

νi(

Vw
∑

w=1

βiw − 1)

∂L[β1:K]

∂βiw

=

M
∑

m=1

N
∑

n=1

K
∑

i=1

λmnφin log βi,wm
+

K
∑

i=1

νi
(Vw + 1)Vw

2
= 0

βiw ∝
D
∑

d=1

M
∑

m=1

1[wm = w]
∑

n

φdniλdmn (21)

.3 QBD Music Retrieval Prototype

Here are the example query and sample screenshots of the prototype.

75

SML Corr-LDA (social)

Song:Crosby Nash BBC – Guinnevere
Original Annotations: NOT Angry/Aggressive,
NOT Arousing/Awakening, NOT Bizarre/Weird,
Calming/Soothing, NOT Cheerful/Festive, NOT Ex-
citing/Thrilling, NOT Happy, back/Mellow, NOT
Light/Playful, NOT Loving/Romantic, Pleasant/Com-
fortable, NOT Powerful/Strong, Tender/Soft, Bluegrass,
Folk, Acoustic Guitar, Backing vocals, Male Lead Vo-
cals, NOT Catchy/Memorable, NOT Changing Energy
Level, NOT Fast Tempo, NOT Heavy Beat, NOT High
Energy, Quality, NOT Recommend, Recorded, Texture
Acoustic, NOT Very Danceable, Folk

Song:Evanescence – My Immortal
Original Annotations: NOT Angry/Aggressive, NOT
Bizarre/Weird, NOT Carefree/Lighthearted, NOT
Cheerful/Festive, Emotional/Passionate, NOT Happy,
NOT Light/Playful, Loving/Romantic,
Pleasant/Comfortable, NOT Positive/Optimistic,Sad,
Tender/Soft, Touching/Loving, Soft Rock, Female Lead
Vocals, Piano, NOT Changing Energy Level, NOT Fast
Tempo, NOT Heavy Beat, NOT High Energy, NOT
Positive Feelings, Quality, Recorded, Texture Acoustic,
NOT Very Danceable, Emotional

Song:Miles Davis – Blue in Green
Original Annotations: NOT Angry/Aggressive, NOT
Bizarre/Weird, Calming/Soothing, NOT Carefree/Light-
hearted, back/Mellow, NOT Light/Playful,Sad, Ten-
der/Soft, Touching/Loving, Cool Jazz, Jazz, Piano,
Catchy/Memorable, NOT Fast Tempo, NOT Heavy Beat,
NOT High Energy, Like, Quality, Texture Acoustic, Go-
ing to sleep, Romancing, Jazz

Song:Fiona Apple – Love Ridden
Original Annotations: NOT Angry/Aggressive,
NOT Arousing/Awakening, NOT Bizarre/Weird,
Calming/Soothing, NOT Carefree/Lighthearted, NOT
Cheerful/Festive, Emotional/Passionate, NOT Excit-
ing/Thrilling, NOT Happy, NOT Light/Playful, Lov-
ing/Romantic, Pleasant/Comfortable, Powerful/Strong,
Sad, Tender/Soft, Touching/Loving, Alternative Folk,
Singer/Songwriter, Soul, Folk, Female Lead Vocals, Pi-
ano, String Ensemble, Catchy/Memorable, NOT Heavy
Beat, Like, NOT Positive Feelings, Quality, Recorded,
Texture Acoustic, Romancing, Emotional, Female Lead
Vocals Solo

Song:Sheryl Crow – I Shall Believe
Original Annotations: NOT Angry/Aggressive,
NOT Arousing/Awakening, NOT Bizarre/Weird,
Calming/Soothing, NOT Carefree/Lighthearted, NOT
Cheerful/Festive, Emotional/Passionate, NOT Excit-
ing/Thrilling, NOT Light/Playful, Pleasant/Comfortable,
Powerful/Strong, Tender/Soft, Country, Backing vocals,
Bass, Female Lead Vocals, Synthesizer, Tambourine,
Catchy/Memorable, NOT Changing Energy Level, NOT
Fast Tempo, NOT Heavy Beat, NOT High Energy,
Positive Feelings, Quality, Recorded, Texture Acoustic,
Tonality, Breathy, Emotional, Vocal Harmonies

Song:The Carpenters – Rainy Days and Mondays
Original Annotations: NOT Angry/Aggressive, NOT
Arousing/Awakening, NOT Bizarre/Weird, Calming/-
Soothing, NOT Cheerful/Festive, Emotional/Passionate,
NOT Exciting/Thrilling, NOT Happy, NOT Light/Play-
ful, NOT Positive/Optimistic,Sad, Tender/Soft, Touch-
ing/Loving, Blues, Folk, Backing vocals, Female Lead
Vocals, Harmonica, Piano, Saxophone, String Ensemble,
NOT Fast Tempo, NOT Heavy Beat, NOT High Energy,
Quality, Recorded, Texture Acoustic, Texture Electric,
Intensely Listening, Emotional, Saxophone Solo

Table 1: Top 3 results for query “sad” for SML and Corr-LDA(social) models

76

