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Summary

The past few years have witnessed a surge of data in the form of streams such

as network traffics, stock updates and monitoring information from sensor de-

vices. The fast, time-varying and unbounded nature of data streams, however,

challenges the traditional database management paradigm which is intended

for store-based data only. The new Data Stream Management System (DSMS)

has been proposed by the database community to tackle new issues arising from

processing persistent queries running over these continuous data. One can say

that a DSMS query is a DBMS query extended in time domain. This implies

that both input and output of a DSMS query are better to be modeled as func-

tions of time rather than static values or sets. This observation leads us to

study DSMS with the emphasis on time, the critical aspect that distinguishes

traditional query processing from stream query processing.

In the first piece of work, we study time issues on stream input. As data is

only accessible in sequential manner in stream processing, the input sequence

hence becomes crucial. Most stream data are naturally sorted according to

the time when they are generated. Such a temporal order, however, is often

scrambled for various reasons as the data are transmitted over the network. A

scrambled tuple order poses a significant challenge on memory management for

stateful operations (such as join) as these operations require a huge amount of

memory space to buffer the received input in order to absorb the impact due

to tuple disorder. Traditionally, memory management for these operations is

query-driven: a query has to explicitly define a window for each (potentially

unbounded) input to bound the size of the buffer allocated for that stream.
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However, output produced this way may not be desirable (if the window size

is not part of the intended query semantic) due to the volatile input charac-

teristics. We propose a new data-driven memory management scheme which

explores the intrinsic properties of stream input to intelligently allocate buffer

space. Results show that our new scheme not only improves the query result

accuracy but also significantly reduces the memory overhead.

Time also plays an important role in stream output. Data stream applica-

tions often involve time-critical tasks such as disaster early warning, network

intrusion detection and online financial analysis. These applications impose

very strict requirements on the timeliness of output delivery. Experience shows

that the traditional operator-based stream scheduling strategies may not al-

ways be sufficient to fulfill such real-time requirements. In the second piece

of work, we focus on tuple-based stream scheduling that features fine-grained

resource control to meet these timing requirements. By drawing an analogy

between tuple scheduling and job scheduling, we propose several effective re-

source allocation strategies inspired by the classic job scheduling problem. We

also compare the pros and cons of each strategy and discuss their applicability

under different scenarios.

The last piece of work is devoted to a case study of data stream applications.

We built a scientific sensor data processing engine with the aim to integrate

data streams collected from heterogeneous sensor stations and offer a unified

data platform to query, analyze and visualize sensor information to facilitate

scientific research and data exploration. Time issues discussed in the previous

works are revisited in the context scientific data stream processing to appreciate

their significance in better understanding stream processing characteristics and,
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consequently, how they can be leveraged to improve system performance in

practice.

To summarize, we use time as the key to approaching several important

issues in DSMS. Both the experiments and the case study show that our pro-

posed algorithms and strategies are effective in boosting the performance of

data stream processing.
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1
Introduction

The past few years have witnessed a surge of data in the form of streams. Com-

pared to traditional finite set-based data, streaming data offers a more natural

way to model continuous processes in the physical world (such as temperature

variation) as well as long running human activities (such as currency exchange

trading) in daily life. The fast, time-varying and unbounded nature of data

streams, however, challenges the traditional database management paradigm

which is intended for store-based data only. For this, a new database man-

agement system, called Data Stream Management System (DSMS), has been

proposed and developed by the database community in recent years with the

aim to more efficiently handle queries running over continuous streams. Com-

pared to traditional Database Management System (DBMS), DSMS mainly

differs in the following ways:

1. Queries in DSMS are typically running continuously as new data is flowing

in while queries in DBMS are snapshot queries. This also implies query
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Figure 1.1: DBMS processing paradigm Vs. DSMS processing paradigm

execution in DSMS is data-driven, as opposed to being query-driven in

DBMS.

2. In most DSMSs, data is only accessible in a sequential manner while in

DBMS both sequential and random access are possible.

3. A query evaluation scheme for stream processing must be dynamic and

adaptive to the ever changing input characteristics, which are unpre-

dictable in nature. In contrast, a query evaluation plan in DBMS only

deals with processing data with static attributes.

In short, the difference between a query in DBMS and that in DSMS is

as follows: A DSMS query can be viewed as a DBMS query extended in time

domain. Such an extension implies that both input and output of a stream

query become functions of time rather than static values or sets. Figure 1.1

gives a graphical illustration of such a difference.

In view of this, our approach to the design of DSMS concentrates on vari-

ous issues surrounding time, the critical aspect that distinguishes DSMS query

2



1.1. TIME IN DATA STREAM SYSTEMS

processing from DBMS query processing. As we shall see later, many new

challenges that emerge in DSMS relate to the notion of time in one way or

another.

1.1 Time in Data Stream Systems

The notion of time can be found in almost all important components of data

stream processing. These include:

• Input

Different from DBMS which only manages data sets, a DSMS mainly

manages data sequences (in addition to data sets). The key distinction

between data set and data sequence is that the latter can be ordered. And

for the majority of the data sequences seen in stream applications, the

ordering key is time. Typically, streaming data is either timestamped or

attached with some type of temporal ordering (e.g. sequence number or

epoch). Such information is crucial as the results of many stream queries

depend on it. For example, in an environmental monitoring application,

a temperature reading generated by a sensor at time t could entail some-

thing very different from the same reading reported with another times-

tamp value. Note that temporal ordering can be defined in various ways

depending on the user specifications and application scenarios. Two pop-

ular approaches are: 1) ordered by when they are generated by the data

source 2) ordered by when they enter the DSMS. In most cases, sequences

produced according to these two approaches are not identical, especially

for distributed applications where data transmission delay is substantial.

3



1.1. TIME IN DATA STREAM SYSTEMS

• Query

One significant difference between a conventional DBMS query and a

DSMS query is that a DSMS query usually includes a window clause for

each stream input involved. For example:

SELECT AVG(T.temp_val) FROM TEMPERATURE[Range 60 minute] AS T

The above query computes the latest hourly average temperature from

the “TEMPERATURE” stream. As the input stream is potentially un-

bounded, a window clause is essential to define a finite subset of the input

where the current query result is computed. The most common type of

window is the sliding window, which shifts along the time line. A window

definition consists of two components: a reference point in time and a

window size. By default, the reference point is “now”, which means the

window ends at the current time. The window length could be measured

in terms of the maximum predetermined number of tuples (called count-

based window) or a fixed time period (called time-based window). The

example above belongs to the latter. The clause in the square bracket

defines a time window of 60 minutes. It means the average value is com-

puted only using tuples received in the recent 60 minutes.

• Output

The continuous query (CQ) processing paradigm of DSMS particularly

suits real-time data applications where computed output streams out as

new input continuously flows in. Examples of such applications include

on-line stock analysis and network intrusion detection, etc. Owing to

4



1.2. TIME RELATED ISSUES IN STREAM PROCESSING

the real-time nature, these applications usually have a very stringent re-

quirement on the timeliness of output delivery. Consider on-line stock

analysis as an example. Because the query results depend on the current

stock price, they have to be produced almost instantaneously to diminish

the impact due to stock price fluctuation. In many stream systems, out-

put latency is considered the most important type of Quality-of-Service

(QoS).

1.2 Time Related Issues in Stream Processing

Similar to traditional data management, strategies or techniques proposed for

DSMS mostly focus on either both or one of the following objectives: 1) to

reduce various costs or overheads associated with data processing 2) to improve

key performance metrics (such as throughput or output latency). However,

compared to DBMS, to achieve the above goals in DSMS becomes much more

difficult owing to the highly dynamic and unpredictable nature of streaming

data and the demanding requirements specific to stream applications. This

thesis covers two important aspects pertaining to data stream processing, one

for each of the above-mentioned objectives. Unsurprisingly, the notion of time

plays a central role in both topics.

1.2.1 Memory overhead

Efficient memory management has always been an important concern in data

management. But in DSMS, the issue becomes more pronounced due to its

unique data access pattern. By default, stream data is only accessible in a

5



1.2. TIME RELATED ISSUES IN STREAM PROCESSING

sequential manner. This means if an operation involves random access or any-

thing more than a single scan of the input, then all the data have to be buffered

in the main memory before they become irrelevant to the query results. Given

that the size of stream input can be very huge or even unbounded, such a

processing pattern poses a significant challenge on efficient memory usage. Ex-

isting window-based query offers a straightforward way to constrain memory

overhead. However, this is not always a good option. We will discuss in Chap-

ter 3 how to exploit the time information attached to the input tuples in order

to better utilize limited memory space.

1.2.2 Output timeliness

As mentioned, for stream applications that perform time-critical tasks, the out-

put quality does not only depend on the answer accuracy. More importantly,

it depends on how timely the output is generated. Hence, output latency be-

comes one of the main Quality of Service (QoS) metrics in DSMS. Different

from DBMS where the query response time simply corresponds to the query

evaluation time, the output delay perceived by users in DSMS is also influ-

enced by the time of input availability. Developing a query execution scheme

that ensures the timeliness of output delivery can be very challenging since it

involves various factors: query complexity, query priority, coordination among

inputs (for multi-input query only), and system utility, etc. In Chapter 4, we

analyze the issue and present scheduling strategies that aim to optimize the

responsiveness of output in a multi-query data stream environment.
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1.3 Contributions

The main contribution of this thesis lies in the in-depth analysis of time-related

issues in stream processing. The objectives are to minimize data process-

ing overhead and to improve key performance metrics for stream applications

through a better understanding of how time plays a role in DSMS. The study

of time in stream input inspires us to develop a new stream join strategy that

minimizes memory overhead. The study of time in stream output leads us to

discover several novel stream scheduling algorithms for improved QoS perfor-

mance. We also implemented a scientific sensor data processing system as a

case study for these issues in a real life scenario.

1.3.1 Data-driven Memory Management for Stream Join

As mentioned, memory overhead has always been a critical issue in stream pro-

cessing. This is particularly true for queries involving stateful operators such as

join. Traditionally, the memory requirement for a stream join is query-driven:

a query has to explicitly define a window for each (potentially unbounded) in-

put to bound the size of the buffer allocated for that stream. However, output

produced this way may not be desirable (if the window size is not part of the in-

tended query semantic) due to the volatile input characteristics. Moreover, the

query-driven approach often leads to extremely inefficient memory utilization.

Our proposed solution well addresses this issue. Specifically,

• We introduce the concept of data-driven memory management and con-

tend that, whenever possible, memory allocation for stream join is better

7
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off being data-driven than being query-driven.

• Following the concept of data-driven memory management, we propose

a new stream join processing paradigm, called Window-Oblivious Join

(WO-Join), which is able to dynamically adjust the memory buffer size

based on the current input data characteristics.

• Extensive experimental study suggests that WO-Join significantly out-

performs traditional windowed join in terms of both output quality and

memory-efficiency.

The details about data-driven memory management is presented in Chapter

3. A primary version of this work was published in [100]. And later an extended

version appeared in [101].

1.3.2 Tuple-based Data Stream Scheduling

In this piece of work, we study the problem of on-time delivery of stream out-

put, a topic which has been largely overlooked before. It was believed that the

traditional operator-based scheduling techniques are sufficient to address issues

arising from the real-time requirements of output generation in DSMS. Unfortu-

nately, this is not always the case. For time-critical applications whose success

depends on the prompt delivery of each output result, a tuple-level resource con-

trol is mandatory. That explains why good operator-based resource allocation

strategies that significantly improve system related performance metrics (e.g.

average processing cost or total memory overhead) may not do well in terms

of user-oriented metrics, such as timeliness of output delivery as well as other

8
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QoS measures. Compared to operator-based scheduling, tuple-based scheduling

is a less studied but more challenging topic. The main difficulty comes from

the fact that the number of stream tuples are enormous. Hence, fine-grained

tuple-level resource control is almost impossible due to the prohibitive over-

head associated. Our approach towards tuple-based scheduling is unique: By

drawing an analogy between tuples and jobs (as in real-time job scheduling),

we translate a tuple scheduling problem to a job scheduling problem. Such a

new vision allows us to find some very good scheduling strategies that could

not have been discovered otherwise. Contributions of this work include:

• Identification of Tuple-Based Scheduling (TBS) as an important class of

stream scheduling,

• An in-depth analysis of how TBS problem can be transformed into a job

scheduling problem,

• Presentation of two general approaches to data stream scheduling, namely

greedy strategy and deadline-aware strategy. Within each approach, two

algorithms are proposed with the aim to improve the overall performance

from a job scheduling perspective,

• Extensive experimental studies that identify factors that could influence

the effectiveness of scheduling strategies and compare the performance of

our proposed scheduling solutions.

Part of this work was published in [102] while the remainder was reported

in [99]. Chapter 4 merges these two portions and provides a complete descrip-

tion about our tuple-based stream scheduling strategies.
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1.3.3 Scientific Sensor Data Management: A Case Study

The surge of interest in data stream processing in recent years is largely driven

by the fast-growing Wireless Sensor Network (WSN) applications that have a

profound impact on our life. We have seen different kinds of sensor networks

being deployed for a wide range of purposes: environmental monitoring, traffic

control, military surveillance, manufacturing quality control, to name a few.

It is forecasted that the number of wireless sensor network nodes will reach

approximately 120 million units in 2010, with the overall shipment value arriv-

ing at about US $15.0 billion [1]. The last technical contribution of this thesis

features a scientific sensor data management system as a case study for data

stream processing. The system is built with the aim to integrate data streams

collected from heterogeneous sensor stations and offer a unified data platform

to query, analyze and visualize sensor information to facilitate scientific re-

search and data exploration. Time issues discussed in Chapter 3 and 4 will also

be recapitulated in the context scientific data stream processing to appreci-

ate their significance in better understanding stream processing characteristics

and, consequently, how they can be leveraged to improve system performance

in practice. This work is presented in Chapter 5, which is a revised version

of [103].

1.4 Thesis Outline

The rest of the thesis is organized as follows:

1. Chapter 2 surveys related work, which covers various aspects of data
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stream processing including general-purpose stream prototype systems,

the state-of-the-art query processing techniques for important stream op-

erations (window-based operation, stream join, etc.) and adaptive query

processing, etc. Work on sequence database will also be reviewed.

2. Chapter 3 proposes a novel memory management strategy based on the

notion of time associated with each stream input.

3. Chapter 4 discusses time issues related to output production. Several

scheduling strategies that aim to improve the output timeliness are pro-

posed.

4. Chapter 5 presents a scientific sensor data management system as a case

study to discuss how streaming data is queried and processed in a real

situation. It first describes the general framework of the system, and then

revisits the time issues addressed in the previous chapters in the context

of scientific sensor data processing.

5. Chapter 6 concludes the thesis with a summary of contributions and pro-

vides directions for future work.
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2
Literature Review

This chapter surveys existing research work that is relevant to this thesis. Work

that is related to a specific topic of this thesis will be discussed separately in

the respective chapters.

2.1 Stream Query Processing Overview

Stream query processing (or continuous query processing) has been widely stud-

ied over the past few years by many research groups. Interest in this area has

generated plenty of academic and industrial projects. Some of them are general-

purposed systems while others are designed specifically for certain applications.

The STREAM system [6] is a general-purpose Data Stream Management

System that aims to handle multiple continuous, high-volume, and time-varying

streams in additional to managing traditional stored relations. A concrete

declarative query language called Continuous Query Language (CQL) [8] was

developed to support complicated query semantics such as sliding window ag-
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gregation or relation-to-stream operation. The focus of this project includes

query approximation [9, 68] and dynamic query execution [13, 14]. The Tele-

graphCQ [10, 26, 67] project shares some common data management issues

with STREAM. However, it emphasizes adaptive query engine for efficient pro-

cessing in volatile and unpredictable environments. Aurora [3, 17] is another

well known project, which is targeted exclusively towards stream monitoring

applications. Aurora adopts a workflow-style specification of queries. As one

of its features, all resource management decisions such as scheduling [25] and

load shedding [88, 89] within Aurora are based on the well-defined QoS speci-

fications.

On the industrial side, the Gigascope project [32] offers a solution for mon-

itoring high speed network streaming data. Similar to STREAM, Gigascope

has a well-defined stream query language with SQL-like syntax. One distinc-

tive feature of Gigascope is that it breaks a query into smaller pieces so as to

push query operations down as far as possible. Simple operations such as filter

can even be performed at hardware level. Such strategy greatly reduces the sys-

tem workload, hence leading to enhanced capability. More recently, Franklin et

al. [38] developed a new system called Truviso that aims to seamlessly integrate

continuous query processing into a full-function database system to meet the

needs of new emerging data stream applications.

Other stream related projects that are peculiar to certain application do-

mains include NiagaraCQ [27] for efficient processing of streaming XML data,

StatStream [106] for monitoring financial statistics over many streams and

Tribeca [87] for managing Internet traffic, etc.
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2.2 Important Data Stream Operations

2.2.1 Sliding Window Operation

The introduction of windowed operation makes it possible for blocking opera-

tors such as sort and aggregation to be evaluated over unbounded stream data.

Essentially, a windowed operator breaks a stream into possibly overlapping sub-

sets of data and computes results over each. The fact that the notion of win-

dowed operation itself provides opportunities for query optimization has been

widely recognized in many literatures. A number of techniques are proposed to

improve query efficiency by exploiting the window definition and construction.

In [62], the authors classified various types of windows based on the window

semantics and proposed a Window-ID (WID) approach for query evaluation.

The idea is to identify each window extent by a Window-ID and create many-

to-many relationships between window extents and input tuples involved. So

whenever a new tuple arrives, the affected window extents can be easily identi-

fied and the corresponding output will be generated automatically. The advan-

tage of this approach is that for some operations (such as aggregation) input

tuples just need to be scanned once. They are not required to be buffered (since

tuples are processed on the fly as they arrive), which leads to less memory con-

sumption. Another interesting technique is to divide overlapping windows into

several disjoint sub-windows [106] or ”panes” [61]. Queries are evaluated over

these small windows first and then merged together to produce the final output.

The advantage of this approach is to avoid duplicate calculations when window

extents overlap among each other. Similar idea is adopted on parallel side, two
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partitioning strategies are proposed in [51] for scalable execution of expensive

stream queries: window split (WS) and window distribute (WD). The window

split approach is essentially the same as the sub-window idea. The only differ-

ence is that now these sub-windows are sent to different nodes for processing.

The window distribute turns out to be even simpler, where input partitioning

occurs just at the logical window level. However, both approaches incur signifi-

cant overheads. They are only viable for processing expensive scientific queries.

The authors in [44] took a unique view of sliding window by studying not only

the window semantics defined over the input streams but also the query update

patterns as a result of such windowed operations. They studied all commonly

used query operators and classified them according to when and how the re-

sult tuples are expired as a window slides forward. Based on this observation,

they proposed the notion of update-pattern-aware modeling for efficient query

processing. Building index on sliding window is also considered in recent work.

[42] proposes two types of indices optimized specifically for main-memory slid-

ing windows: one for answering set-valued queries which offers a list of attribute

values and their counts; the other for answering attribute-valued queries which

provides direct access to tuples. Overhead is a concern here since indices have

to be updated while new data flow in.

Improving query efficiency through approximation is another topic of in-

terest. [34] shows how to maintain simple statistics over sliding window and

formalizes the space requirement as a function of the length of sliding win-

dow and accuracy parameter. In [12], two algorithms are presented namely

“chain-sample” and “priority-sample” for sampling input tuples over constant-

size windows and variable-size windows respectively. And [45] makes use of
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histograms to support incremental maintenance of statistics over a sliding win-

dow. Besides, load shedding [33, 39] is also a commonly adopted approach

when input data becomes overwhelming. However, if sliding window itself is

regarded as an approximation for the entire streaming data, then all the above

approaches become ”approximating the approximation”. Hence, it is sometimes

difficult to quantify the accuracy of the results produced by these methods.

2.2.2 Stream Join

Streaming algorithms for join evaluation is another relevant research area. The

first of such algorithms is Symmetric Hash Join [98], which was originally de-

signed to allow high degree of pipelining in parallel database systems. XJoin

[92] extends Symmetric Hash Join to use less memory by allowing parts of the

hash table to be moved to secondary storage. A similar idea also appears in

Ripple Join operator [46, 48]. A variation of Symmetric Hash Join was pro-

posed in [93] with the emphasis on processing priority tuples. Viglas et al. [95]

developed a multi-way version of XJoin called MJoin. XJoin consists of a tree

of two-way joins, which maintains a join subresult for each intermediate two-

way join in the plan. While in an MJoin, each relation R has a separate query

plan, or pipeline, describing how updates to R are processed. New tuples in R

are joined with the other n−1 relations in some order, generating new tuples in

the n-way join result. Therefore, an MJoin need not maintain any intermediate

join subresults. However, experiments in [95] also show that MJoin does not

scale well with the increase of the number of join inputs. This suggests that

MJoin also needs a query plan tree just like XJoin for optimal performance.
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The adaptive join ordering problem for stream data was studied in [13]. The

Adaptive Greedy (or A-Greedy) algorithm proposed in this paper dynamically

changes the join sequence among the input streams during run-time so that

operators with higher selectivity will always be performed earlier. This has

been shown to be an effective approach to reducing join processing cost.

Stream join over sliding window has also been extensively studied. Hammad

et al. [47] identified various window join scenarios over multiple streams in

terms of where the window semantics are defined. For example, a window join

over multiple streams could be a chain of pairs of two-way join, or a single

join predicate involving multiple streams, etc. This paper introduced a class

of join algorithms, each for a different join scenario. Particulary, the paper

highlights that unsynchronized input data streams (due to network delay or

variation in data arrival rate) could potentially cause inaccurate answers as

arrived tuples may get expired before they can completely join with delayed

tuples. This issue has a similar flavor to Referential-Integrity Constraints as

in [15] and has been honored in our proposed optimization model as well. [43]

studied several algorithms for sliding window multi-join processing including

multi-way incremental nested loop joins (NLJs) and multi-way incremental hash

joins. Join ordering heuristics were also proposed. The aim is to minimize the

processing cost. Rate-based query optimization is addressed in [94] and [55].

[94] suggested a rate-based estimation approach to optimize the query plan for

stream data as opposed to the cardinality-based approach for stored data. Two

heuristics, namely Local Rate Maximization and Local Time Minimization, were

proposed to choose the plan with the highest output rate. [55] studied joining

streams with different arrival rates. It derived the cost model of performing
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window join over streams using both Hash Join (HJ) and Nested Loop Join

(NLJ). The experiments indicated that when the probed data rate is low, HJ

outperforms NLJ in terms of CPU-efficiency; and the other way around when

the probed data rate is high. Therefore, a hybrid of HJ and NLJ approach

may be the best choice. Tran et al. [90] proposed an optimization technique

for windowed join in conjunction with aggregation. By transforming the query

plan so that aggregation is performed before join, a considerable performance

improvement can be achieved.

2.3 Adaptive Query Processing

Although dynamic query plan re-optimization has been well studied for static

databases (e.g. [31, 50, 54]), these approaches are not capable of handling

streaming data either because the statistics required for optimization are only

available in set-oriented data or because the query plan cannot evolve and adapt

to changes in stream characteristics for a long run.

The work in [24] suggests utilizing the pause-drain-resume paradigm for

dynamic plan migration. However, this strategy does not explicitly explain how

to handle the case where queries contain stateful operators such as window join

with intermediate results. Zhu et al. [105] addressed this issue and proposed an

online plan migration strategy for continuous queries with stateful operators.

The strategy minimizes the plan migration costs by reusing the states that have

been computed in the obsolete plan.

The novel Eddies architecture [10, 35, 67] enables very fine-grained adaptiv-

ity by eliminating query plans entirely, instead routing each tuple adaptively
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across the operators that need to process it. Eddy’s always adapting solution

makes it suitable for a highly dynamic environment. However, such flexibility

comes with the price of significant per-tuple based processing overheads.

2.4 Sequence Database

We lastly look at related work on sequence database. In some sense, se-

quence database system can be seen as the predecessor of DSMS. Seshadri

et al. [79, 80, 81] formally defined an algebra and a declarative query language

for querying ordered relations. They also addressed several important issues

concerning the design of a sequence database system. These provide important

theoretical foundation for DSMS. However, their work mainly targets one-time,

non-continuous sequence data processing. In contrast, a DSMS is expected to

process sequence data that are continuous, unbounded and time-varying. Im-

portant issues such as query processing efficiency and memory management

hence have to be reconsidered.
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3
Data-driven Memory Management for

Stream Join

Stream query processing is usually memory intensive owing to the fact that most

data streams have huge volume and unpredictable data characteristics. Hence,

efficient memory utilization has always been an important topic in data stream

research. In this work, we focus on a new memory management scheme which

leverages timestamp information to considerably reduce the memory overheads.

The chapter is organized as follows. We give an introduction in Section 3.1. In

Section 3.2, we formulate the problem and identify factors that impact memory

consumptions for stream join. Sections 3.3 and 3.4 present the memory cost

model at operator level and query level respectively. We extend our techniques

to processing queries under memory-constrained scenarios in Section 3.5. Sec-

tion 3.6 reports the experiment results. Related work is discussed in Section 3.7.

Finally, Section 3.8 concludes the chapter.
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3.1 Introduction

The emerging data stream applications (such as network intrusion detection,

traffic monitoring, and online analysis of financial tickers) often involve process-

ing sheer volume of online data in a time responsive manner. Computations

as such are highly memory-intensive, especially for operations that need to

maintain run-time states (join, aggregation, etc.). Hence, queries with these

operations typically need one or more window clauses, which effectively dic-

tate the amount of run-time buffer required during the query execution. We

call this query-driven memory management scheme. While such mechanism

works well in many situations, there are scenarios where output quality can be

severely impaired as the desired answers may be missing from the result set.

For example, an input tuple may have already been purged from the memory

before it completely joins with tuples from other streams due to the inflexible

state buffer size fixed by the query window1. More results may be obtained

if the state buffer size can adapt according to the input characteristics. To

make this more concrete, consider a location tracking application (based on

localization techniques such as the one presented in [16]) in a wireless sensor

network environment. The location of an object (a transmitter) can be inferred

by synthesizing the Signal Strength (SS) measured at the surrounding sensors.

In such applications, each sensor produces a series of data tuples with uniform

schema (epoch, x, y, z, val), (where epoch refers to the time when the signal is

recorded, x, y and z correspond to the physical coordinates of the sensor, and

1We recognize that there are applications whereby the specified window is an important
part of the query semantics, i.e. the user does not intend to obtain the entire set of the join
results, but only certain fraction of them. For example, the user may be only interested in
the results generated from the tuples received in the recent 5 minutes. In this chapter, we do
not focus on this type of query.

22



3.1. INTRODUCTION

val is the SS measured). A typical query for tracking an object looks like the

following:

SELECT * FROM Sensor1 S1, Sensor2 S2,

Sensor3 S3, Sensor4 S4

WHERE S1.epoch = S2.epoch

AND S2.epoch = S3.epoch

AND S3.epoch = S4.epoch

In this query, data packets from four sensors are routed to the central loca-

tion to be joined together before the target location can be predicted. Owing to

the unreliable communication channel, which results in a highly dynamic net-

work topology as well as the availability of multiple paths from the source to

the centralized location, tuples may experience different transmission delays and

therefore arrive at the central location in an arbitrary order (i.e., tuples are not

ordered according to their epoch values). Now, as the traditional Window-Join

(W-Join) [55] only joins tuples that are within a pre-defined window boundary,

it implicitly assumes that all latency and out-of-order effects are absorbed by

the window specified by the user. However, this may not hold since users typ-

ically have no clue about the underlying input characteristics or the network

topology. As a result, query accuracy may drop significantly when packets en-

counter severe transmission delay or a high degree of order scrambling. The

only way to obtain consistent quality results is to define “sufficiently large”

query windows, which inevitably leads to extravagant memory overheads that

many systems cannot afford. The dilemma of choosing the appropriate window

size shows that the W-Join approach is too rigid and therefore not suitable for

such applications.
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To address the issue, we contend that, whenever possible, memory alloca-

tion for stream join should be data-driven instead of query-driven. We there-

fore propose a new memory management scheme, called Window-Oblivious Join

(WO-Join), which dynamically determines the state buffer size according to the

current data input. WO-Join characterizes a query’s memory requirements as

a function of two types of delays: namely intra-stream delay and inter-stream

delay. When these two delays are bounded, complete join results are com-

putable using finite memory space. WO-Join guarantees complete join results

when these two parameters are known apriori. If such information is not avail-

able beforehand, WO-Join can monitor the two parameters during runtime and

allocate the buffer size accordingly to ensure high quality results, even un-

der memory-constrained scenario. Our experimental study demonstrates that

WO-Join significantly outperforms W-Join in terms of both output quality and

memory-efficiency in many situations.

3.2 Preliminaries

3.2.1 Problem Statement

We consider WO-Join over a set of infinite streams S with equality join predi-

cate. The WO-Join may include one or more MJoin [95] operators. Within an

operator, one buffer is maintained for each input stream. The buffer serves as

a sliding window for the stream so that input data are inserted and removed in

a FIFO manner. The size of each buffer is adjusted dynamically to ensure the

join is performed in a memory-efficient way. In this chapter, we first consider
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the basic memory management issues presented at operator level. Then we

extend our discussion to query level.

To summarize, the problem studied in this chapter is as follows: Given

a multi-way equijoin query without explicit window semantic, produce high

quality results in a memory-efficient manner. The quality of the results is

measured by the output accuracy defined as follows:

output accuracy =
# of join tuples actually produced

# of join tuples that can be produced

�� ��3.1

Note that when the streams are completely unordered, there is no way to pro-

duce high quality join results since the memory evaluation costs for that are

unbounded. Here, we focus on applications where join results are bounded-

memory computable. Back to our previous sensor network example, although

data packets may experience time-varying delays, such delays are bounded as

we know sooner or later packets will be delivered to the destination. Since

the delays are bounded, tuple ordering on the join key (“epoch”) should be in

the long run monotonically increasing. This opens the possibility to produce

complete (or near-complete) results with limited memory space. In fact, the

core issue we address is to relate the memory evaluation costs with the stream

characteristics. As can be seen later, this issue is not as straightforward as it

may look. We start the discussion by introducing two main sources of memory

overheads for stream join, namely the intra-stream delay and the inter-stream

delay.

25



3.2. PRELIMINARIES

Notation Meaning
S The whole set of input streams
Si ith input stream
si A tuple in stream Si
si.A Join key on which stream ordering is defined
ki Scrambling Factor of stream Si
ri Data rate of stream Si
PI(si) Physical Index of tuple si
V I(si) Virtual Index of tuple si
V Imin(si)/V Imax(si) Minimum/Maximum value from the set V I(si)
LSi↪→Sj

(t) Lag from Si to Sj at time t
MSi↪→Sj

(t) Memory space to buffer Si tuples w.r.t. stream Sj at time t
Mul(Si) Multiplicity of stream Si
DSFA→B Dependent Scrambling Factor from column A to column B

Table 3.1: Important notations used in this chapter

3.2.2 Intra-stream Delay

Intra-stream delay causes tuples’ order to be scrambled within a stream (the

tuple ordering issue). To facilitate our study, we first define what is a totally

ordered stream, then quantify a partially ordered stream by a parameter called

Scrambling Factor (SF ). For ease of exposition, assume each tuple in the

stream has an index, called Physical Index (or PI), which corresponds to the

arrival position of that tuple in the stream. For example, the PI of the first

arrived tuple from a stream is 1. The PI of the next arrived tuple is 2 and so

on. A tuple si’s PI value is given by the function PI(si). Important notations

used throughout this chapter are listed in Table 3.1.

A totally ordered stream is thus defined as follows:

Definition 3.2.1 A totally ordered stream Si must fulfill the following condi-
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tion for any pair of tuples si and s′i from Si:

If PI(si) < PI(s′i), then si.A < s′i.A

A partially ordered stream with scrambling factor k is defined as follows:

Definition 3.2.2 A partially ordered stream Si, with Scrambling Factor k,

must fulfill the following condition for any pair of tuples si and s′i from Si:

If si.A ≤ s′i.A, then PI(si)− k ≤ PI(s′i)

where k is the minimum integer that satisfies the inequality.

Notably, our notion of totally ordered stream defines a strictly ordered se-

quence, i.e. no duplicates are allowed. If tuples with the same attribute value

exist in the stream, such stream is only considered partially ordered even though

it is in non-descending order2. The reason is that, as we shall see later, from

memory management point of view tuples with duplicate values do affect mem-

ory requirements as if they are unordered. Therefore, we do not distinguish

between tuples that are out of order and tuples with duplicate values in our

definition.

Clearly, according to Definition 3.2.2, a lower k implies a stricter ordered

sequence while a higher k implies a more scrambled sequence. For the rest of

the chapter, we use the value of SF (or k) to measure the degree of out-of-order

for a given partially ordered stream.

2Without loss of generality, we only consider ascending or non-descending order. A stream
with descending or non-ascending order can be handled similarly.
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3.2.3 Inter-stream Delay

Inter-stream delay occurs when streams are not synchronized. Roughly speak-

ing, the inter-stream delay is defined as the arrival time difference between the

matching tuples from different inputs. Intuitively, such delay directly impacts

the memory consumption: Longer inter-stream delay implies larger memory

overheads. However, to judge whether streams are synchronized or to quantify

the delay between unsynchronized streams is not trivial, especially when input

streams are not totally ordered. In this section, we first discuss how to quan-

tify the inter-stream delay between totally ordered streams, then extend the

concept to partially ordered streams.

To ease the presentation, we make the following definition, which will be

used throughout the chapter.

Definition 3.2.3 Given a tuple si ∈ Si, a tuple sj ∈ Sj whose join key is equal

to max{s′j.A|s′j.A ≤ si.A, s
′
j ∈ Sj} is called si’s next-of-kin tuple from Sj.

3.2.3.1. Totally Ordered Streams

To begin with, let us consider delays between totally ordered streams. From

the memory requirement perspective, we use Lag to quantify such delay. Lag

measures the number of tuples from one stream that the system has to buffer

as they may potentially join with tuples that have not arrived from the other

stream.

Definition 3.2.4 Let si and sj be the latest arrived tuples from totally ordered

streams Si and Sj at time τ , then the lag from Si to Sj, denoted by LSi↪→Sj
(τ),
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is quantified as:

LSi↪→Sj
(τ) = PI(si)− PI(s′i)

�� ��3.2

where s′i is sj’s next-of-kin tuple from Si.

The intuition is that the arrival of sj can evict tuples in the Si buffer whose

join keys are less than sj’s next-of-kin tuple. So only PI(si)−PI(s′i) number of

tuples need to be retained in the Si buffer (remember there are no tuples with

duplicate values here since streams are totally ordered). Note that LSi↪→Sj
(τ)

can be negative. This occurs when s′i comes after si in Si.

Another way of understanding this equation is we can treat s′i as sj’s “cor-

respondence tuple” in stream Si. Therefore the Lag between the streams can

be measured by the distance between si and s′i.

Si is said to be synchronized with Sj at time τ if

0 ≤ LSi↪→Sj
(τ) ≤ 1

�� ��3.3

Furthermore, if LSi↪→Sj
(τ) > 1, we say that, at time τ , Si runs ahead of Sj or

Si leads Sj. Si is called the “leading” stream and Sj is called the “lagging”

stream.

It is evident that, if two totally ordered streams are always synchronized

between each other, the buffer space required for both streams are nominal.

The arrival of a new tuple from one stream can immediately evict the last

arrived tuple from the other stream.

3.2.3.2. Partially Ordered Streams

Comparatively, synchronization between partially ordered streams is much
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harder to define. This is because when the next-of-kin tuples arrive at different

time, it is difficult to tell whether the time difference is due to delay between

the streams or due to scrambled tuple order within the stream. To better

understand the synchronization issue in this case, we first need to introduce

the notion of Virtual Index (VI):

Definition 3.2.5 The virtual index of a tuple si ∈ Si, denoted by V I(si), is

the set of PI(si) when stream Si is sorted in non-descending order.

It is important to note that, different from PI(si) which returns a unique in-

dex value, V I(si) returns a set of consecutive indices. This is because attributes

with duplicate values take up multiple positions in the sequence. It is valid to

map a tuple’s virtual index to any one of these positions. We denote |V I(si)|

to be the size or cardinality of the set V I(si). And let V Imin(si) and V Imax(si)

be the minimum and maximum value from the set V I(si). For a stream Si

whose join key is duplicate-free, V Imin(si) = V Imax(si) and |V I(si)| = 1. An

important relationship between a tuple’s V I and its PI is summarized below:

Theorem 3.2.1 For a partially ordered stream Si with SF = k, we have the

followings:

PI(si)− V Imin(si) ≤ k
�� ��3.4a

and

V Imax(si)− PI(si) ≤ k
�
 �	3.4b

Proof of Theorem 3.2.1 The theorem can be easily proved by contradiction.

For Inequality 3.4a, assume PI(si)−V Imin(si) > k for some tuple si. According

to the definition of virtual index, there are exactly (V Imin(si)− 1) numbers of
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tuples whose join key values are less than that of si. Since PI(si) > V Imin(si)+

k, there are at least (V Imin(si) + k) numbers of tuples whose PIs are less than

PI(si). That means there are at least (V Imin(si) +k)− (V Imin(si)−1) = k+ 1

numbers of tuples whose values are greater than or equal to the value of si

and whose PIs are less than PI(si). Let t denotes one of these tuples, we

have PI(t) < PI(si). Also according to Definition 3.2.2, PI(si) − k ≤ PI(t).

Therefore, the value of PI(t) can only be an integer in the interval [PI(si) −

k, PI(si)). And there are exactly k numbers of such integers within the interval.

However, there are at least (k+ 1) numbers of such t. That means at least one

of these tuples has PI less than PI(si)− k. This contradicts with the premise

that stream S is partially ordered with SF = k. Inequality 3.4b can be proved

analogously. �

Now we are ready to derive the function to compute LSi↪→Sj
(τ). Here, the

Lag measures the number of buffered tuples from Si caused solely due to the

delay between the streams, while the memory overheads owing to intra-stream

delay are excluded.

Definition 3.2.6 Let si and sj be the latest arrived tuples from Si and Sj

respectively at time τ , and s′j be a tuple from Sj such that PI(sj) ∈ V I(s′j) and

s′i be s′j’s next-of-kin tuple from Si. Then,

LSi↪→Sj
(τ) = PI(si)− V Imax(s′i)

�� ��3.5

The definition of synchronization for partially ordered streams is the same as

that of totally ordered streams mentioned earlier (Equation 3.3).
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The intuition here is we first find out the tuple s′j that would have appeared

at sj’s position if the stream is ordered, and then we “map” s′j to its “corre-

spondence tuple” in Si as done in the discussion for totally ordered streams.

As an example, Figure 3.1 shows a snapshot of two data streams arriving at the

system. The timeline on the left indicates the tuple arrival time. The values

inside 〈〉, [] and {} correspond to the join key, PI and VI of the tuple, respec-

tively. For example, at t = t5, tuple 〈66〉 ∈ S1 arrives, with PI(〈66〉) = p + 2

and V I(〈66〉) = p + 4, where p is the PI of the first arrived S1 tuple shown

in the figure. Now consider at t = t5, the last tuple arrived from S1 and S2

are s1 = 〈66〉 and s2 = 〈65〉, respectively. And the tuple s′2 = 〈63〉 is the one

that satisfies the condition PI(s2) ∈ V I(s′2). Then we find out s′2’s next-of-kin

tuple from S1 to be s′1 = 〈63〉 (the tuple arrived either at t1 or at t4). Since

PI(s1) = p+2 and V Imax(s
′
1) = p+2, we get LS1↪→S2(t5) = 0 (Definition 3.2.6).

Hence the two streams are synchronized at time t = t5. Analogously, we can

derive that LS1↪→S2(t10) = 3, with s1 = 〈67〉, s2 = 〈68〉, s′2 = 〈65〉 and s′1 = 〈64〉.

3.3 Memory Cost Model

An accurate memory cost model is crucial for WO-Join. It is not only im-

portant during query processing to ensure proper memory allocation, but also

useful on other aspects such as performing the disk-buffer scheduling to handle

severely unsynchronized streams, dynamically distributing memory among dif-

ferent queries, or implementing admission control to avoid memory congestion.

As an example, we will demonstrate in Section 3.5 how to use the cost model

for disk-buffer scheduling. In this section, We first show how to derive such a
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Tuples from S1
(SF=3)

Tuples from S2
(SF=2)Timeline

t = t1

…… …
<63> [p] {p+1,p+2}

<62> [q] {q}

… …
t

<65> [q+1] {q+2}

<63> [p+1] {p+1,p+2}

<66> [p+2] {p+4}

<68> [q+2] {q+3,q+4}

<62> [p+3] {p}

<64> [p+4] {p+3}

<63> [q+3] {q+1}

<68> [q+4] {q+3,q+4}

<67> [p+6] {p+5}

t = t2
t = t3
t = t4
t = t5
t = t6
t = t7
t = t8
t = t9
t = t10

t = t11

t = t12

<68> [p+5] {p+6}

…

Figure 3.1: Example of synchronized streams

memory cost model for any given stream join operation.

The emergence of MJoin [95] allows multiple inputs to be joined in one step.

Compared to traditional binary join, MJoin leverages the memory efficiency by

eliminating the intermediate join results. Therefore, we choose to base our

memory cost model on MJoin. Binary join can be viewed as a special case of

MJoin with two inputs.

As mentioned before, the memory cost model characterizes the memory

requirements based on two factors: scrambled tuple ordering (SF ) and delay

among streams (Lag). Given these two parameters, the model should be able to

evaluate the memory costs for generating the complete join results in the worst

case scenario. In what follows, we consider the impact of the tuple ordering
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Tuples from Si
(SF=ki)

Tuples from Sj
(SF=kj)..

si

t

Two streams are
synchronized at
this point (t=   )

…

ki

.....
…

.
…

…
.

kj

τ'

PI(s'i)=VImax(si) PI(s'j)=VImin(sj)

τ

τ'
s'i s'j

sj

…
…

.

si and sj are the
potential matching
tuples to be
considered in this
worst case scenario.

Figure 3.2: Buffer requirements for Si to join with synchronized streams (the
worst case scenario)

alone by first assuming streams are all synchronized (i.e. Lag = 0 or 1). Then

we extend it to the unsynchronized stream scenario.

3.3.1 Joining Synchronized Streams

Given two streams Si and Sj, let sj be the latest tuple from Sj at time τ ,

and s′j be a tuple such that PI(s′j) ∈ V I(sj). Suppose the two streams are

synchronized at time τ ′ when tuple s′j arrived at the system, then the number

of tuples from Si that should be retained in the buffer at time τ , denoted by

MSi↪→Sj
(τ), in order to guarantee the complete join results with Sj is given as

follows:

MSi↪→Sj
(τ) = ki + ri ·

kj
rj

�� ��3.6

where ri and rj are the data rates of stream Si and Sj, respectively. We illustrate

the intuition by the example given in Figure 3.2. The two streams Si and Sj
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are synchronized at time τ ′ when s′j arrives. Let s′i denote the latest tuple

from Si at time τ ′ and si be sj’s next-of-kin tuple from Si. We can guarantee

that tuples arrived ki tuples earlier than s′i have join key values less than si.A.

Therefore, we only need to buffer the last ki tuples from Si that arrived earlier

than τ ′. Furthermore, we also have to buffer tuples from Si that arrive during

the interval [τ ′, τ ]. The upper bound of this buffer is ri · kj

rj
as the number of

tuples that arrive from Sj during this period is at most kj (Theorem 3.2.1).

3.3.2 Joining Unsynchronized Streams

Now consider the memory overheads to join unsynchronized streams. For two

streams Si and Sj, let the latest arrived tuple from Sj at time τ be sj, and s′j

be a tuple such that PI(s′j) ∈ V I(sj). Suppose the Lag from Si to Sj at time

τ ′ when tuple s′j arrives at the system is LSi↪→Sj
(τ ′). Then the number of tuples

from Si that should be kept in the buffer at time τ , denoted by MSi↪→Sj
(τ), is:

MSi↪→Sj
(τ) = max{1, ki + ri ·

kj
rj

+ LSi↪→Sj
(τ ′)}

�� ��3.7

The intuition of the above equation is illustrated in Figure 3.3(a) and Fig-

ure 3.3(b). Figure 3.3(a) shows the scenario where Si leads Sj by LSi↪→Sj
(τ ′)

at time τ ′. Imagine that if we “remove” the last LSi↪→Sj
(τ ′) tuples from Si

arrived before τ ′, the situation is identical to the synchronized stream sce-

nario illustrated in section 3.3.1: The amount of Si tuples that should be re-

tained in the buffer is ki + ri · kj

rj
. However, since now we need to additionally

buffer LSi↪→Sj
(τ ′) tuples due to the stream lag, the actual buffer size becomes

ki + ri · kj

rj
+ LSi↪→Sj

(τ ′).
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Tuples from Si
(SF=ki)
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(a) Si leads Sj

Tuples from Si
(SF=ki)

Tuples from Sj
(SF=kj)..

si

t

…

ki

..............
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(b) Si lags Sj

Figure 3.3: Buffer requirements for Si to join with unsynchronized stream (the
worst case scenarios)
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Next, let us consider the scenario where Si lags Sj shown in Figure 3.3(b).

Same as before, the number of tuples from Si that should be buffered for Sj is

ki + ri · kj

rj
+ LSi↪→Sj

(τ ′). Interestingly, since now LSi↪→Sj
(τ ′) < 0, this implies

the lag between Si and Sj helps reduce the memory overheads incurred at Si.

Actually, |LSi↪→Sj
(τ ′)| can be so large that the entire equation turns negative.

Physically, it means stream Si runs far behind Sj such that tuples from Si can

immediately join with all matching tuples from Sj (if such matching tuples

exist) when they arrive. In this case, the size of the buffer needed at Si (for

matching tuples from Sj) is minimal. So we set it to 1.

The discussions so far focus on binary join. However, it is straightforward

to generalize it to multi-way join scenario. For example, consider the memory

requirements to buffer Si in a three way join Si on Sj on Sk. We can calculate

the memory requirements between Si and each of the other input streams (i.e.,

MSi↪→Sj
(τ) and MSi↪→Sk

(τ)). The maximum value will be the actual buffer size

required for Si. Formally, the memory space needed for Si in an MJoin operator

with n input streams is:

MSi
(τ) = max

∀j∈n,j 6=i
MSi↪→Sj

(τ)
�� ��3.8

3.4 Issues at Query Level

Section 3.3 analyzes the memory evaluation costs for a single join operator.

For a query plan that consists of multiple join operators, the total costs can

be evaluated by repeatedly applying the above memory cost model for each

operator appeared in the query plan tree. This means besides the input streams,
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S1.A=S2.A

S1

S3

S2

S4.A=S3.A

SELECT * FROM S1, S2, S3

                 WHERE S1.A=S2.A

                 AND S2.A=S3.A

S4

J1

J2

Figure 3.4: Example of pipelined join on the same
attribute

S1.A=S2.A

S1

S3

S2

S4.B=S3.B

SELECT * FROM S1, S2, S3

                 WHERE S1.A=S2.A

                 AND S2.B=S3.B

S4

J1

J2

Figure 3.5: Example of pipelined join on different
attributes

the system also needs to know the data characteristics of the intermediate result

streams since they are essential for the cost estimation of the next join operator

downstream in the query plan. Take the query in Figure 3.4 as an example.

To estimate the memory consumption of operator J2, one has to know the

data characteristics of S4, such as SF and data rates. We show that these

parameters can be derived from the inputs of its upstream operator (i.e. J1’s

in this example) in the plan.

Before we move on to derive the intermediate stream characteristics, it is

important to first distinguish between two types of join queries since they have

significant implications on how stream characteristics should be estimated. Fig-

ures 3.4 and 3.5 give the examples of these two types of queries. Notice in
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Figure 3.4, the downstream operator J2 shares the same join attribute as its

upstream operator J1. In Figure 3.5, on the other hand, the downstream opera-

tor J2 uses a different join attribute3 from its upstream operator J1. We explain

how streams characteristics are estimated under the two different scenarios in

the following sections.

3.4.1 Pipelined Join on the Same Attribute

When the upstream and downstream operators share the same join attribute,

we would like to know how the stream ordering (w.r.t. that join attribute)

and data rate evolve after input streams are joined together. The following

theorem addresses this problem by giving the upper bound of the output stream

characteristics based on the characteristics of its contributing input streams.

Theorem 3.4.1 For an MJoin operator with n input streams, the data rate

and SF of its output stream, denoted by ro and ko, respectively, are bounded as

follows:

ro ≤
n∑
i=1

ri

n∏
j=1
j 6=i

Mul(Sj)
�� ��3.9

ko ≤
n∑
i=1

ki

n∏
j=1
j 6=i

Mul(Sj)
�� ��3.10

where ki is the SF of stream Si and Mul(Sj) is the multiplicity of stream Sj.

Here, a stream’s Multiplicity refers to the maximum size of the tuples with

duplicate values. In another words, Mul(Sj) = max{|V I(sj)| | for all sj ∈ Sj}.
3The data type of the second join attribute can be timestamp or any other (partially)

ordered sequence.
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If a stream’s join attribute value is duplicate-free, the Multiplicity is 1. It

is important to note the stream’s SF is always greater than or equal to its

Multiplicity, since tuples with duplicate values affect the stream’s SF according

to Definition 3.2.2.

Proof of Theorem 3.4.1 We first prove Inequality 3.9. The output data rate

is maximal when tuples from each input stream join maximal number of tuples

from all other streams. Given the streams’ multiplicities, we can know that

a tuple from Si can join with no more than
∏n

j=1
j 6=i

Mul(Sj) number of tuples

from other input streams. Given Si’s data rate ri, the maximum number of

outputs produced due to arrival tuples from Si is ri
∏n

j=1
j 6=i

Mul(Sj) per unit

time. In the worst case scenario, for a short period of time, it is possible that

outputs produced due to arrival tuples from different streams do not overlap.

In this case, the total output rate is therefore the summation of output rate

generated due to tuple arrivals from each individual input stream. Hence,

ro ≤
∑n

i=1 ri
∏n

j=1
j 6=i

Mul(Sj).

We continue to prove Inequality 3.10. Let us consider binary join first, say

Si on Sj. Given two pairs of matching tuples si/sj and s′i/s
′
j, where si matches

sj, s
′
i matches s′j and si ≤ s′i. To consider the scenario where the output SF

is maximum, let the pair s′i/s
′
j join as early as possible and the other pair join

as late as possible. Due to the ordered constraints on Si and Sj, s
′
i can arrive

at most ki places before si, and s′j can be at most sj places before sj. For

each tuple that is between s′i and si, it could maximally join with Mul(Sj)

number of tuples from Sj. Similarly, for each tuple that is between s′j and sj, it

could maximally join with Mul(Si) number of tuples from Si. If all these join

results are produced after s′i joins with s′j and before si joins with sj. Then,
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the maximum value of ko will be the distance between the s′i/s
′
j pair and si/sj

pair in the output stream, which is ki ×Mul(Sj) + kj ×Mul(Si). Generalize

the above, we get for an MJoin operator with n input streams, the SF of the

output stream, ko is bounded by
∑n

i=1 ki
∏n

j=1
j 6=i

Mul(Sj). �

Compared to SF or data rate, inter-stream delay between the intermediate

result stream and other input streams is much easier to quantify since it is

simply determined by the “bottle-neck” stream, i.e. the most “lagging” input

among all contributing streams. For example, if in Figure 3.4, S1 is the lagging

stream between S1 and S2, then it is sufficient to determine the Lag between

S4 and S3 by just measuring the Lag between S1 and S3 using the techniques

introduced in Section 3.2.3. (This is based on the premise that the processing

delay of operator J1 is negligible compared to the amount of Lag between input

streams, which is the case most of the time; otherwise processing delay incurred

on J1 should be taken into account when measuring the Lag)

3.4.2 Pipelined Join on Different Attributes

For this type of query, data rate of intermediate stream can be estimated the

same way as introduced in Section 3.4.1 because the value is not influenced by

the change of the join attribute on the next operation. For inter-stream delay,

the approach mentioned in the previous section can be applied as well except

that now Lag is measured with reference to the new attribute which participates

in the next join operation. Hence, the main issue here is to determine the

new intra-stream delay (SF ) of the intermediate stream. Since the next join is

preformed on an attribute different than the one used in the previous operation,
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the tuple ordering has to be correspondingly redefined on the new join key. For

the example in Figure 3.5, the ordering for stream S2 is first defined on attribute

S2.A. However, after J1 is performed, the ordering w.r.t. attribute S2.A is no

longer relevant. Instead, we are now interested in the ordering scrambling factor

w.r.t. attribute S2.B. As we shall see, to find out the SF on one attribute after

join is performed on another attribute is not trivial. We show how this can be

achieved below.

3.4.2.1. Dependent Scrambling Factor

The problem described above can be rephrased as follows: Given a stream

which has two partially ordered columns, if the tuple sequence has been altered

such that the SF defined on one attribute is changed to a new value, say k′, how

would the SF defined on the other attribute be affected? Intuitively, to answer

this question we have to establish certain correlation about the orderings of

these two columns. We therefore introduce the notion of Dependent Scrambling

Factor (or DSF ) here. The definition is given below:

Definition 3.4.1 Given a stream with two partially ordered columns A and B,

the Dependent Scrambling Factor from column A to column B, denoted

by DSFA→B, is the SF on column B when the stream is sorted on column A.

Basically, DSFA→B measures the degree of order-scrambling on column B

with ordered column A as the reference sequence. Here, we use DSF to char-

acterize the ordering correlation between two columns. Although such charac-

terization may not completely capture the relationship between two (partially)

ordered sequence, it suffices for our purpose. Generally speaking, a smaller

DSFA→B implies a stronger tuple order dependency from column A to B while
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a larger DSFA→B implies a weaker order dependency between the two columns.

It is important to note that DSF is a property that describes some inherent

relationship between two columns of the same stream. Hence, its value is not

influenced by the change of the actual tuple sequence.

3.4.2.2. SF Derivation

With the notion of DSF , we can proceed to derive the SF of one column

when the SF defined on the other column is known. The theorem below gives

the details:

Theorem 3.4.2 For a stream with two partially ordered columns A and B, if

the SF on column A is kA and the Dependent Scrambling Factor from A to B

is DSFA→B, then the SF on column B, denoted by kB, is bounded as follows:

kB ≤ 2 · kA +DSFA→B
�� ��3.11

Proof of Theorem 3.4.2 Let si and sj be any two tuples in such a stream with

si.B ≥ sj.B. Also let V IA(si) denote the Virtual Index of tuple si when order-

ing is defined on column A. According to Definition 3.4.1 and Definition 3.2.2,

we have

V IAmax(sj)−DSFA→B ≤ V IAmin(si)
�� ��3.12

Now given stream SF on column A is kA, to consider the worst case scenario

where ordering defined on column B is maximally scrambled, tuple si should

be positioned as early as possible (i.e. minimize PI(si)) and sj should be

positioned as late as possible (i.e. maximize PI(sj)) in the stream (recall
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si.B ≥ sj.B). According to Inequality 3.4b in Theorem 3.2.1, we have

PI(si) ≥ V IAmax(si)− kA
�� ��3.13

The minimum value of PI(si) is obtained when 1) the equality in Equation 3.13

holds and 2) V IAmax(si) obtains its minimum value, which is V IAmin(si). This

happens when there is no tuples with duplicate value as si.A on column A.

Therefore, the minimum possible value for PI(si) is

PI(si) = V IAmin(si)− kA
�� ��3.14

Similarly, according to Inequality 3.4a in Theorem 3.2.1

PI(sj) ≤ V IAmin(sj) + kA
�� ��3.15

The maximum value of PI(si) is obtained when 1) the equality in Equation 3.15

holds and 2) V IAmin(sj) = V IAmax(sj) in this particular scenario. Therefore, the

maximum possible value for PI(sj) is

PI(sj) = V IAmax(sj) + kA
�� ��3.16

Substituting both 3.14 and 3.16 into 3.12, we obtain

PI(sj)− PI(si) ≤ 2 · kA +DSFA→B
�� ��3.17

This proves the SF defined over attribute B is bounded by 2 ·kA+DSFA→B. �

44



3.5. MEMORY-CONSTRAINED WO-JOIN

As a side note, Theorem 3.4.2 in some way can be regarded as the general-

ization of Theorem 3.4.1 for the SF derivation part because in pipelined join on

the same attribute the DSF can be defined as from a column to itself. However,

such generalization comes with a price. If we use Theorem 3.4.2 to estimate

the SF of the intermediate stream in Figure 3.4, we get a looser upper bound

value than that using Theorem 3.4.1. However, this does not mean that the

bound given by Theorem 3.4.2 is not tight enough. As shown in the proof, the

resultant SF value could be much larger in the worst case.

Finally, let us look back at the original problem of pipelined join on a

different join attribute. Still take the query in Figure 3.5 as the example. Now

we can first derive the SF w.r.t. column A for the intermediate stream S4

according to Inequality 3.10 in Theorem 3.4.1. Then as long as the DSF from

column S2.A to S2.B is defined, SF w.r.t. column B for stream S4 can be

obtained directly using Theorem 3.4.2.

3.5 Memory-Constrained WO-Join

The complete memory characterization discussed in Sections 3.3 and 3.4 enables

a query processor to accurately evaluate the real-time memory cost for each join

operation so that proper buffer space can be allocated in a dynamic fashion.

However, because stream inputs are highly volatile, the required buffer size may

vary significantly over time. For example, a data-burst of one input stream

can cause a large amount of inter-stream delay, leading to excessive memory

overhead in a short time. When this occurs, the required buffer space may

easily exceed the physical memory available. Motivated by the observation
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that memory overheads are mainly attributed to two factors, scrambled tuple

ordering and lag among streams, we propose two techniques (and additionally

one hybrid approach) to prevent the system from memory overrun while keeping

the output quality. Each technique targets one of the two contributing factors

to minimize its impact on memory overhead.

3.5.1 Memory-Sort First Strategy

The Memory-Sort First (MSF) strategy aims to tackle the problem of scrambled

tuple ordering. The idea is straightforward: the system performs an in-memory

sort on all input streams first before the join. After the sorting, the SF value

is reduced to the stream’s multiplicity, which is the minimal possible SF value

for a given stream. Hence, for an MJoin operator, the space needed to buffer

tuples from Si is reduced from

ki + max
∀j∈n,j 6=i

{ri · kj/rj + LSi↪→Sj
(t)}

to Mul(Si) + max
∀j∈n,j 6=i

{ri ·Mul(Sj)/rj + LSi↪→Sj
(t)}

However, sorting input tuples itself costs extra buffer as well: an in-memory

sort on a stream with SF = k requires extra space to buffer the k most recent

tuples. As we shall see later in the experiments, such memory cost may be

substantial especially when the query plan only involves a single join opera-

tor. Nevertheless, the benefit of MSF becomes apparent when the query plan

consists of pipelined join operations. Another good side-effect is that output

produced using MSF is also ordered. This may be crucial for applications that

46



3.5. MEMORY-CONSTRAINED WO-JOIN

are sensitive to the data order. Although MSF reduces memory overheads, it in-

troduces significant latency in producing the results because an input tuple has

to wait until k number of its succeeding tuples have arrived before participating

in the join operation.

3.5.2 Disk-Buffer First Strategy

The Disk-Buffer First (DBF) strategy deals with streams that are not synchro-

nized. The intuition is when a stream Si runs far ahead of stream Sj, recently

arrived Si tuples will not immediately contribute to any join results since the

matching tuples from Sj have not arrived yet. To save memory, new tuples from

Si can be flushed onto the disk first and then retrieved later when their join

counterparts from Sj are about to arrive. Essentially, the DBF strategy reduces

the memory overheads by minimizing the Lag among input streams. The strat-

egy works as follows: Every time a new tuple from the “lagging” stream (say

Sj) arrives, it triggers the query engine to read tuples of the “leading” stream

(say Si) from the disk such that both LSi↪→Sj
(t) and LSj ↪→Si

(t) are 0 or close

to 0. In actual implementation, the system reads slightly more tuples of the

“leading” stream from the disk in advance such that LSi↪→Sj
(t) > C, where C is

some predefined runtime parameter. The purpose of doing this is to minimize

the possibility that the join to be blocked due to the I/O operations on Si when

Sj’s data rate is higher than the I/O speed. It is important to note that DBF

is only beneficial when inter-stream delays are significant. If the Lag is so small

that the arrival time difference among matching tuples is less than the time

for 1 disk read plus 1 disk write, then the “leading” stream will eventually run
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behind the “lagging” stream after the I/O operation. In our implementation,

DBF strategy is only triggered when the Lag is no less than 3 times of the disk

I/O time. According to the cost model, with the DBF strategy, the memory

needed to buffer a stream Si can be decreased from

ki + max
∀j∈n,j 6=i

{ri · kj/rj + LSi↪→Sj
(t)}

to ki + C + max
∀j∈n,j 6=i

{ri · kj/rj}

However, similar to MSF, DBF also introduces extra output latency because of

the disk I/O operations.

3.5.3 Hybrid Approach

The MSF and DBF strategies are two complementary approaches. They can

be combined to achieve even better memory reduction. The hybrid approach

first sorts the recently arrived tuples in the main memory, then flushes the

“leading” stream tuples onto the disk. According to the cost model, the buffer

space required by using the hybrid strategy can be decreased from

ki + max
∀j∈n,j 6=i

{ri · kj/rj + LSi↪→Sj
(t)}

to Mul(Si) + C + max
∀j∈n,j 6=i

{ri ·Mul(Sj)/rj}

Interestingly, our experiment results show that the memory reduction achieved

using the hybrid approach is even larger than the sum of the memory reduc-

tions using MSF and DBF individually. The main reason is as follows: In
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hybrid approach, Lag is measured only after streams are sorted. While in

DBF approach, Lag is measured when there are intra-stream delays presented.

For the latter case, the Lag value has to be estimated in a conservative way

(i.e. a smaller value) so that disk-buffered tuples from the “leading” stream

would be retrieved earlier from the disk to cater for the order scrambling of

the counterpart streams. This of course leads to extra memory overheads. On

the contrary, in the hybrid approach, tuples from the “leading” stream do not

have to be retrieved from the disk earlier because without intra-stream delay

the system knows exactly when join counterparts from the other streams arrive.

In short, the hybrid approach can achieve super reduction in terms of mem-

ory consumption because the DBF strategy over a completely sorted stream

performs better than using the same strategy over a partially ordered input.

However, the output latency using Hybrid also suffers the most. Therefore,

this strategy is suitable for the situation where memory space is extremely

limited while a relatively larger output latency is tolerable.

3.6 Experimental Study

We developed a WO-Join prototype system using Sun JDK 5.0. The system

consists of two components: the query executor, and the memory manager. The

query executer is similar to the main memory version of the MJoin operator

[95], except that the buffer size for each stream is dynamically determined by

the memory manager. The memory manager updates the stream characteristics

such as data rate, SF , DSF and Lag upon the arrival of a tuple (which could

be a batch of individual tuples in a batch processing mode) if these parameters
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S1 S2 S3

S8S7

S1 S2 S3

S4 S5 S6

Query 1 Query 2

J1 J2
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S1.A=S2.A=S3.A

S1.A=S2.A=S3.A S4.A=S5.A=S6.A

S7.A=S8.A

S1 S2 S3

S8S7

S4 S5 S6

Query 3

J1 J2

J3

S1.A=S2.A=S3.A S4.B=S5.B=S6.B

S7.C=S8.C

Figure 3.6: Example queries used in this chapter

are not known apriori, and determines the buffer size for the input streams.

The prototype system can be easily integrated with a query planner or a query

optimizer. Essentially, it takes the query plan graph generated by the planner

as the input and then executes the query plan accordingly with the memory

management scheme proposed in this chapter.

We ran the experiments on three test queries as shown in Figure 3.6. Query

1 is used to validate our cost model and the memory efficiency of WO-Join,

while Query 2 and Query 3 are for evaluating the WO-Join performance over

two types of pipelined joins introduced in Section 3.4. A data generator was

implemented to produce streams with customizable SF , DSF , multiplicity, Lag

and data bursts. By default, streams are generated according to Poisson process

with mean inter-arrival time equal to 20ms. The SF of each stream ranges from

0 to 500. For Query 3, the value of DSF between related columns is set between

0 and 300. The multiplicity of each stream is 2 unless otherwise specified. The

size of each tuple is 24 bytes. The experiments were conducted on an IBM x255

server running Linux with four Intel Xeon MP 3.00GHz/400MHz processors and

18G DDR main memory. All experiments were repeated thirty times and the

average values were reported. We also varied the above parameters and found
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that our conclusions are not sensitive to their values.

Notably, other than the query executor, the memory manager also intro-

duces memory overheads to the system since estimating the stream character-

istics, such as the SF , requires maintaining stream states. Here we adopt an

idea similar to k-Mon [15], which integrates the monitoring mechanism into the

query executor to avoid duplicating stream states. Therefore, its overhead is

almost negligible.

3.6.1 Experimental Evaluation

Memory Cost Model Validation The first experiment aims to validate

our memory cost model. We start by running Query 1 and report the maximum

buffer size for each input stream predicted by the cost model with and without

apriori knowledge about the data characteristics. To compare, for each output

tuple produced, we backtrack and find out the minimum buffer size required to

produce that tuple, and report the maximum values recorded in each second.

We call this value the optimal buffer space required to generate the complete

join results. At t = 10s, we suppress S2’s data rate to 1/8 of its initial value to

simulate congestion at its source’s side. The problem lasts for 30 seconds and

then is restored. Similarly, to simulate data bursts, we increase S3’s data rate

by 8 times at t = 80s and hold it for 10 seconds before restoring its initial rate.

Figure 3.7 depicts the buffer consumption for the three streams over a period

of time. It is clear that the curves for the predicted buffer consumption closely

follow the one for the optimal buffer consumption. As we can see, during the

period when S2’s source is congested, the buffer spaces for S1 and S3 increase
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Figure 3.7: Buffer space for streams in Query 1.
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significantly. This is due to the sharp increase of the Lag from S1 to S2 and

from S3 to S2. For the same reason, when there is a data burst on S3 at t = 80,

the buffer space for S3 increases substantially. In either case, the predicted

buffer consumption (either based on apriori knowledge or based on parameters

monitored during runtime) adapts well with respect to the input variations.

In terms of output quality, when the input parameters (i.e. data rate, SF ,

multiplicity and Lag) are known apriori, the system generates 100% join results.

This validates our memory cost model which guarantees complete results given

the accurate parameter settings. On the other hand, when the input charac-

teristics are not known beforehand, they will be monitored during runtime by

the memory manager for predicting the buffer size. In this case, we obtain an

output accuracy of 99.6%. Only minor result tuples are missed even when there

is a major change in some of the input parameters which the memory manager

does not catch up with instantly. Nevertheless, we can see from Figure 3.7 that

the curve for the predicted buffer size based on monitored parameters almost

coincides with the one based on apriori input knowledge except for some minor

variations. For clarity, only the curve based on monitored parameters will be

plotted for the subsequent experiments since it reflects a more realistic scenario.

The output accuracy achieved based on monitored parameters is between 99.2%

and 99.6% throughout all our experiments.

Next, we perform the similar experiments on Query 2 and Query 3, respec-

tively. We would like to see whether the non-leaf operator (i.e., J3 in both

queries) adapts well using WO-Join. Similar to the previous experiment, we

suppress J1’s output rate which causes S7 to run behind S8. Changes in the

buffer consumption for S7 and S8 are shown in Figures 3.8 and 3.9 for Query 2
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Figure 3.8: Buffer for S7 (Query 2)
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Figure 3.9: Buffer for S8 (Query 2)

and in Figures 3.10 and 3.11 for Query 3. We observe that this time the margin

between the estimated value and the optimal value is much wider compared to

the case for Query 1. This is because, for a non-leaf operator, the SF and

data rate of the input streams are predicted based on the upper bounds of the

statistics of the raw input streams (recall Theorem 3.4.1 and 3.4.2). However,

this does not mean the system over-estimates the buffer consumption because

the actual buffer required may still hit the predicted value in the worst case.
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Figure 3.10: Buffer for S7 (Query 3)
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Figure 3.11: Buffer for S8 (Query 3)

Memory Overhead Comparison Our next experiment compares the aver-

age memory consumption between WO-Join and the traditional W-Join. The

experiments on W-Join were conducted as follows: we first set the window size

(or the buffer size) on par with the amount of buffer consumed by WO-Join.

We achieve an output accuracy less than 40% for all three test queries. Then

we slowly increase the window size until it is barely large enough to produce

the equivalent output quality as WO-Join (i.e., between 99.2% and 99.6% ac-
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Figure 3.12: WO-Join vs W-Join

curacy). The required memory consumptions are shown in Figure 3.12. As

expected, since W-Join fixes the window size throughout the query execution,

the required buffer size has to be much larger than WO-Join in order to achieve

the same level of output quality.
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Figure 3.13: Memory reduction strategies

Memory Constrained WO-Join The next experiment evaluates the mem-

ory reduction strategies proposed in Section 3.5 using Query 1. Figure 3.13

compares the buffer consumption for S3 using these strategies (the observa-
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Figure 3.14: Average memory consumption

tions of the buffer spaces for other streams are similar). As shown, the memory

reduction achieved by MSF is insignificant. This is mainly because MSF re-

quires additional buffer space for pre-sorting tuples, which almost offsets the

savings brought by the ordered sequence. On the other hand, the DBF ap-

proach is more effective in this case. This can be attributed to DBF’s ability to

“re-synchronize” the streams without much memory overhead. We can see from

the figure the buffer size under DBF is always below a certain value regardless

of the amount of Lag among streams, which is determined by other factors such

as SF and data rate. It is not surprising that the hybrid approach yields the

best memory reduction. As explained in Section 3.5.3, its performance can be

even better than the sum of the memory reduction brought by MSF and DBF

strategies individually. Since tuples are ordered and synchronized when they

are joined, the buffer required at each stream is indeed minimized. Actually,

the major memory cost for the hybird approach comes from the buffer for tuple

pre-sorting required by MSF.

Figure 3.14 depicts the average memory consumptions of Queries 1, 2 and 3
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under various strategies. Obviously, Hybrid achieves the lowest memory over-

head. The interesting observation here is that in Query 1, DBF consumes less

memory than MSF, while in both Queries 2 and 3, the reverse is true. There

are two reasons. First, for Queries 2 and 3, tuple pre-sorting of MSF is only

required at the leaf join operator. Hence, with pipelined join operators, the

memory overhead for sorting input streams becomes less significant. Second,

the DBF approach suffers from the rough estimation of the upper bound of SF

and data rates for intermediate result streams. Therefore, the memory cost is

still quite high even though the Lag among streams has been minimized.
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Figure 3.15: Output latencies

Output Latency Lastly, Figure 3.15 compares the average output latencies

among W-Join, the normal WO-Join and various WO-Join memory reduction

strategies. The latency is measured by the difference between the output time

of a result tuple and the arrival time of its last contributing input tuple. We

can see that the latency of WO-Join is almost as low as the W-Join approach.

This means the computation overhead incurred by WO-Join is negligible. The

latency of DBF is about 50% higher than the plain WO-Join due to the I/O
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operations involved. The most stunning fact is that the latency of MSF and

Hybrid is two orders of magnitude higher than that of WO-Join. The reason

is, in MSF or Hybrid, tuples cannot be used to join with other streams upon

arrival. Instead, they are stored in the sorting buffer first. The delay introduced

by the sorting is much higher than the one caused by the join itself. Therefore,

MSF and Hybrid suffer from severe output latencies in this case.

3.7 Related Work

While a plethora of cost-efficient algorithms have been proposed for stream

query processing, such as [13, 43, 94], works on memory-efficient processing

are relatively fewer. Arasu et al. [7] classifies a broad range of queries into

two classes: those can be evaluated with bounded memory and those cannot.

Cammert et al. [23] proposes an adaptive memory management approach for

W-Join. Optimizing memory consumption has also been studied by Babcock

et al. [11]. Different from ours, they approach the issue from the operator

scheduling perspective. Also, various stream properties such as the ordered

constraint [15] and slack [3] are identified in the literature. Some of the ideas

are similar to our notion of SF . However, they are applied in the context of

W-Join solely for the purpose of minimizing memory overheads. We view these

stream properties from a different angle. That is, since they (intra/inter-stream

delay, etc.) are the crucial factors that contribute to the memory consumption,

we may build a memory cost model based on these factors so that stream join

can be evaluated in a window-oblivious fashion and high quality results are

attainable even in a memory-constrained situation. To the best of our knowl-
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edge, this chapter is the first one that proposes the idea of data-driven memory

management. Punctuation [37, 91] or heartbeat [53, 85] offers an alternative

solution to join stream data without explicit window semantic. However, their

work makes different assumptions from ours which relies on the data sources to

generate punctuation messages at an appropriate rate. Our proposed strategy

does not impose such a requirement.

Works on memory-constrained stream join usually focus on certain metric

(such as “Max-Subset” or some other criteria) [5, 33, 60, 86, 104] to obtain a

statistically optimal solution. Different from these approaches, our proposed

memory-constrained join strategies (MSF and DBF) are based on the under-

standing of the memory consumption patterns to produce complete or near-

complete query answers given the input statistics. The disk-based approach for

joining stream data is used in [64, 92, 95]. Unlike these techniques, the DBF

strategy aims to minimize the Lag among streams and therefore tuples stored in

the disk would not match tuples from other streams that are currently buffered

in the memory. This means in DBF, the join is less likely to be blocked due to

disk I/Os – an important difference from other disk-based join strategies.

3.8 Summary

One important contribution of this chapter is that it answers a fundamental

question in stream join processing, that is, exactly how much memory is needed

to perform a complete join among multiple (totally or partially ordered) data

streams. Based on our study, we contend that a data-driven memory manage-

ment strategy should be used in place of the traditional query-driven scheme for
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many stream join applications whenever feasible. In data-driven memory man-

agement, query users are oblivious to the window semantic. The system can

dynamically adjust the state buffer size in order to produce quality join results.

We studied the memory consumption patterns and identified that intra-stream

delay and inter-stream delay are the two main causes for excessive memory uti-

lizations. Based on these observations, we derived the memory cost model and

proposed different memory overhead reduction strategies. Our experimental

study has demonstrated the effectiveness of our proposed techniques.
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4
Tuple-based Data Stream Scheduling

Live information carried by streaming data is often meaningful only when it has

been processed and consumed within a certain short time frame, which makes

real-time scheduling crucial for stream query processing. This chapter discusses

several interesting stream scheduling strategies. we first give the introduction

and motivate the problem in Section 4.1 and 4.2. Next in Sections 4.3 and 4.4,

we formally define the problem and transform it into a job scheduling issue.

Section 4.5 discusses the applicability of data stream scheduling in general.

Sections 4.6 and 4.7 introduce our novel scheduling strategies inspired by the

job scheduling model. Section 4.8 considers minimizing scheduling overhead

through tuple batching. Experimental evaluation of the proposed strategies and

the related discussion are given in Sections 4.9 and 4.10. Finally, Section 4.11

concludes the chapter.
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OBS TBS
problem size related to # operators related to # input tuples
parameters operator-related operator-related

parameters only parameters and tuple values
optimization system-oriented mainly user-oriented

goal metric metric

Table 4.1: Comparison between OBS and TBS

4.1 Introduction

Typical applications of Data Stream Management System (DSMS) often in-

volve time-critical tasks such as disaster early-warning, network monitoring,

and on-line financial analysis. In these applications, timeliness of output deliv-

ery is extremely crucial, which sometimes marks the difference between success

and failure. Owing to the volatile input characteristics and the ever-changing

query environment, to efficiently allocate resources so that the output can be

consistently delivered in a timely manner has always been a challenging task.

Existing literature on this issue usually considers it as just another Operator-

Based Scheduling (OBS) problem, which is believed to have been well addressed

over the past few years. An OBS problem can be briefly described as follows:

Given a query graph, intelligently schedule query operators such that certain

objective is achieved. However, on-time delivery of output tuples requires re-

source allocation control at tuple level, which an operator-based scheduling is

unable to offer. This calls for Tuple-Based Scheduling (TBS) to be implemented

in place. A TBS problem is the following: Given a query graph, intelligently

schedule input tuples such that certain objective is achieved.

OBS and TBS are two fundamentally different types of scheduling problems
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though they may seem similar at the first look. In OBS, the question to ask

is “which operator to execute next?”. In TBS, however, the question is about

“which tuple to process next?”. Their difference also lies in the basis where

the scheduling decision is reached. For OBS, the decision is solely based on

the properties of the involved query operators, such as execution cost, mem-

ory overhead, and selectivity. For TBS, the decision not only depends on the

operators’ properties, but also on the content of each input tuple. As in data

stream applications the number of input tuples is much larger than the number

of query operators (for unbounded data stream, the former is infinity), TBS

has a much larger problem size and hence is often harder to solve than the

corresponding OBS. The main differences between the two are summarized in

Table 4.1.

It is worth noting that the majority of data stream scheduling techniques

proposed by the database community so far belong to OBS. Take the Chain

algorithm [11] as an example. Its goal is to minimize the total number of tuples

buffered in the memory, which is a system-oriented metric. Also, the algorithm,

at each scheduling time, chooses an operator for execution from all those with

a non-empty input queue by their potential capabilities of reducing the number

of tuples. The size of the optimization problem is the number of the operators.

However, there are a number of scenarios in real-time stream applications

that can only be addressed using TBS. For example, in an environmental mon-

itoring system that offers disaster early-warning service through the analysis

of multiple ecological measures, it is important to ensure the output from the

analysis queries is produced in time to avoid critical alert message being de-

layed. This requires scheduling decision to be made based on individual tuple’s
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content (e.g. timestamp). Since OBS does not take tuple’s value into account,

it is not applicable here. Generally, OBS can only solve scheduling problems

related to optimizing system-oriented metrics, such as execution cost or total

memory overhead. For problems on optimizing query- or user-oriented metrics,

they can only be addressed by TBS. A typical example of a user-oriented metric

is QoS which, in the context of data stream applications, is often defined as

the maximal tolerable delay between input generation 1 and the corresponding

output production.

The work described in this chapter can be viewed as our initial effort towards

tuple-based real-time data stream scheduling. We use QoS (in terms of output

latency) as the performance metric for our case study. For each input tuple,

we define a validity time window within which the tuple is deemed fresh and

meaningful. An output tuple is said to be delivered on time only if all its

contributing input remains fresh by the time it is produced. Given that each

input tuple is attached with a timestamp indicating when it is generated, the

expiry time of an input tuple can be determined by adding the input timestamp

with the validity period. The ultimate goal is to efficiently schedule tuples

for different query operations so as to produce as many valid output tuples as

possible before the input tuples get expired. Although we choose output latency

as the performance metric, scheduling strategies discussed in this chapter can

be easily extended to other TBS problems.

While a plethora of work on OBS can be found in the literatures [11, 52, 82],

there is a dearth of real TBS strategies being proposed. The only TBS strategy

1Input generation refers to the time when the input is generated at the data source.
Readers should not confuse it with input arrival time which denotes the time when the input
arrives at the system input queue.
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we are aware of is the one proposed by Carney et al. in the Aurora project [25].

However, they only offered a heuristic without much in-depth analysis. In this

work, we systematically study this issue from a different angle. By making

an analogy between tuple-based scheduling and classic job scheduling, we are

inspired to discover a set of novel techniques that bring new insights to the

issue. Particularly, we point out that the Aurora approach belongs to one

type of greedy strategies, which only covers part of the solution space. With a

comprehensive understanding of the issue, our proposed new algorithms offer

higher scheduling accuracy and better responsiveness to input load variation.

Important contributions of this work include:

1. Identification of TBS as an important class of stream scheduling problems,

2. An in-depth analysis of how a TBS problem can be transformed into a

job scheduling problem,

3. Presentation of two general approaches to data stream scheduling, namely

greedy strategy and deadline-aware strategy. Within each approach, two

algorithms are proposed with the aim to improve the overall performance

from a job scheduling perspective,

4. Experimental studies that identify factors influencing the effectiveness of

scheduling strategies and compare the performance of the various solu-

tions.
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Join

Trader B’s target deals table

Figure 4.1: Example query in foreign exchange trading

4.2 Motivation and Challenges

4.2.1 Motivating Example

Consider the following scenario in foreign exchange (Forex) trading. People

doing business in global markets (such as the global commodity markets) often

involve speculation on Forex rate movements when they want to purchase goods

traded in different currencies. To minimize the risk due to currency fluctuation,

they choose to trigger the trade only when the Forex rates become favorable.

What they do is to issue a continuous query to check the real-time Forex rates

and clinch the deals as soon as the latest rate meets certain criteria (e.g. falling

below a moving average). There are a lot of such traders in the market and

Figure 4.1 shows an example where the Forex stream is shared by queries from

two traders. Each trader has a list of potential deals (in various currencies)

he plans to make. These deal information is stored in his own target deals

table. Upon receiving a tuple from the Forex ticker, the query processor first
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updates the relevant statistics (such as moving average) in response to the new

received input. If the new rate meets the selection criteria (e.g. the rate falls

below the 3-hour running average), the tuple will be passed down to join with

the target deals tables to populate deals that should take place immediately.

Imagine there are hundreds of such traders, each with hundreds of similar deals

to make. To ensure queries’ prompt responses to maintain a high overall QoS is

not easy. Actual trading queries can be much more complex than what is shown

in this example and may impose very stringent timing requirements. This is

because market data fluctuates rapidly. Real-time Forex information typically

expires in a few seconds. To ensure deals are sealed successfully at the desired

rate, query results have to be produced while the current rate remains valid.

Any delay during query processing that leads to the expiration of the current

rate may directly amount to a huge loss.

4.2.2 Challenges

This is a typical scenario where an efficient TBS strategy is desired to ensure

the timeliness of output delivery. Given the input generation time and its

validity period, one can tell by when all the queries that involve processing this

input should be computed. To design a query engine that allocates resource

on a per-tuple basis, however, faces two main challenges: The first comes from

the inherent complexity of the queries. Each continuous query may consist

of various types of operators (unary, binary or even N-nary operators). In

addition, operators may be shared among different queries to avoid redundant

work. Because of these, when we model the entire query plan as a graph with
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each operator being a node and each input/output stream being an edge in the

graph, the size of the search space for an optimal execution sequence becomes

exponential. Consequently, the benefit brought by a scheduled execution plan

may not justify the cost of computing it. The second challenge comes from the

data input, whose implication is twofold. Firstly, enormous amount of data

input prohibits fine-grained control over resource allocation at individual tuple

level. Secondly, the uncertainties about input characteristics such as data rates

and arrival patterns place the scheduling issue in a highly volatile environment.

These uncertainties inevitably influence the scheduling performance. A good

scheduler hence has to be robust enough to cope with such a dynamic setting.

4.3 Preliminaries

4.3.1 Metric Definition

As mentioned before, we adopt the notion of QoS to evaluate the performance

of an execution strategy. At application level, an output tuple is considered

valuable only if it is produced before any of its contributing input gets expired.

Formally, this can be modeled by the utility function below:

Definition 4.3.1 Given a query Q, let tγ denote the time when an output

tuple γ is produced. And let T γi and Lγi be the timestamp and the validity period

respectively for some input tuple i that contributes to the output tuple γ. Then

the utility function for tuple γ is:
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Uγ =


1 if tγ ≤ min{T γi + Lγi | for all input tuples

that contribute to γ}

0 otherwise

�� ��4.1

Accordingly, the query level utility can be evaluated by taking the normal-

ized aggregation of the tuple level utility:

∑n
γ=1 Uγ

n
, n is the total number of output tuples

�� ��4.2

In a multi-query environment, we seek to achieve high output quality across

all the participating queries. Each query qi is assumed to be associated with a

weight wi to indicate its importance. A higher wi implies a higher value of qi.

Now, the utility function U over all the queries is the weighted sum of those

individual queries. That is:

U =
m∑
j=1

wj
∑nj

γ=1 Uγ

nj

�� ��4.3

where m is the number of participating queries.

For unbounded input streams, the function above should be defined within

an observation period. Then the parameter n in the equation refers to the total

number of output tuples produced in the recent observation period (say last 5

hours). Note the length of the period does not affect our algorithm. It should

be meaningful to the application. For example, if its length is 5 hours, then

our algorithm is optimizing the objective function defined on the last 5 hours.
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Figure 4.2: A query graph example

4.3.2 System Model

Similar to existing work on stream processing, we model the entire Continuous

Query (CQ) plan as a set of Directed Acyclic Graphs (DAG). Vertices with

only outgoing edges represent input streams and those with only incoming

edges represent output streams. Other vertices are query operators. Edges

connecting vertices are tuple queues that link the adjacent operators. Data

flows are indicated by arrows. For example, Figure 4.2 shows a query graph

with two input streams (I1, I2) and five output streams (O1, O2, ..., O5). Each

output stream corresponds to exactly one registered query in the system (O1

is the output for query Q1, and O2 for query Q2 ... so on and so forth). Also

there are nine query operators (op1, op2, ..., op9) in this plan. Some operators

are dedicated to a single query (such as op3 for query Q1) while others are

shared among several queries (such as op6 for query Q3 and Q4). We will use
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this query graph as a running example throughout the chapter.

In this problem setting, we assume complete and ordered query results are

desired. For each input stream, tuple arrivals are ordered by their timestamps.

Each query operator can only process tuples from its input queue in a First-

Come First-Served (FCFS) manner so that the tuple order is preserved through-

out the query execution.

We also assume each input stream has a predefined validity period. This,

plus the tuple creation time (indicated by the timestamp), determines when

an input tuple expires. The validity period is a constant, whose value depends

on the nature of the data source. For example, tuples from stock tickers may

have a short validity period of a few seconds only while data pertaining to

temperature readings could usually have a longer lifespan.

4.3.3 Problem Statement

The problem we try to solve can be formalized as follows: Given the query

operator graph, continuously allocate a time slot for some operator to process a

tuple presented at its input queue such that the objective function U , defined in

Equation 4.3, is maximized.

4.3.4 Related Work on Data Stream Scheduling

The topic of data stream scheduling has been studied with different objectives.

For example, the Chain algorithm [11] schedules query operators in a way such

that runtime memory overhead is minimized. In Urhan’s rate-based schedul-

ing [93], the objective is to maximize the output rate at the early stage of query
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execution. There are also scheduling algorithms proposed for optimizing query

response time [52] or its variant metric (such as slowdown in [82]). Note these

objectives are all related to system-oriented metrics. Hence, appropriate OBS

strategies as proposed in those papers would be sufficient to tackle the prob-

lems. The Eddies project [10] is an exception in the sense that it offers highly

adaptive query optimization by reordering query operators on a tuple-by-tuple

basis. Clearly, this is not an OBS approach. However it is not a TBS either

because at each scheduling point, the question to ask is still “which operator

to execute next” (or more precisely, “which operator queue should the tuple be

put into next”), not “which tuple to process next”. Also, their ultimate goal

is to improve the throughput, yet another system-oriented metric. In contrast,

we adopt a QoS-oriented view, which brings in the user requirements as an-

other dimension of the issue. Such a slight difference, however, renders totally

different problem settings.

Probably the most relevant work to ours is the data stream scheduler pro-

posed for the Aurora project [25]. Although they model the problem in a

different way, both works essentially deal with the same issue. However, the

way we view and approach the problem distinguishes our work from theirs. In

our previous work [102], we have attempted to address the issue from a job

scheduling perspective. But it only offered a heuristic that works well under

an optimistic assumption. In this chapter, we reexamine the problem and sys-

tematically discuss TBS solutions from a broader scope. In fact, the Aurora

scheduling can be seen as a primitive type of greedy strategy among all the

scheduling strategies discussed in this chapter. Greater details on this can be

found in Section 4.6.1.
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4.4 From Stream Scheduling to Job Scheduling

Our first step to approach the issue is to translate a stream scheduling problem

into a job scheduling model. Such translation offers a new angle of vision and

allows us to analyze the problem from a new perspective.

In a typical single machine job scheduling problem, people look for a plan

that allocates each job the appropriate time slot for execution so that the

objective function is optimized. Each participating job Ji is associated with a

75



4.4. FROM STREAM SCHEDULING TO JOB SCHEDULING

processing cost ci, a deadline di and a profit ui. If Ji can be completed in time,

i.e. the completion time ti ≤ di, the profit ui will be credited; otherwise, the

job is considered late and no profit will be earned.

Analogously, in continuous query processing, we can treat the work done by

a query operator in response to the arrival of a new input tuple as a job. Take

the query graph in Figure 4.2 as an example. The arrival of a tuple p ∈ I1,

will eventually trigger eight jobs to be created in the system. Each corresponds

to one involved operator. To focus on the essence, we replot the query graph

by removing vertices corresponding to input and output streams since they do

not participate in query processing. Hence we are left with a pure query plan

tree as shown in Figure 4.3. The eight jobs are denoted as J1
p to J8

p , where Jxp

corresponds to the job performed by operator opx due to the arrival of input

p. Similarly, for input stream I2 the arrival of a tuple q will trigger four jobs to

be created for op6, op7, op8 and op9, respectively, as shown in Figure 4.4.

4.4.1 Job Cost, Due Date and Utility

In a job scheduling model, each job is characterized by its cost, due date (or

deadline) and utility (or profit). In our case, the cost of each job is the product

of two parameters: the (average) unit processing cost and the cardinality of the

input size. Unit processing cost is the time taken for the operator to process one

tuple from its input queue. Cardinality of the input size is determined by the

multiplicity (or selectivity) of all the upstream operators along the path from

the input stream node to the current operator. For the example in Figure 4.3,

Let m1 and m5 denote the multiplicity of op1 and op5 respectively. Then the
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input cardinality for op6 is simply m1 ·m5. If c6 is the unit processing cost for

op6, the job cost of J6
p would be m1 ·m5 · c6.

Unlike the traditional job scheduling problem, not all jobs can be assigned

explicit due dates here. Firstly, it is important to distinguish two types of

jobs in this context: Leaf-Job (L-Job) and NonLeaf-Job (NL-Job). L-Job refers

to jobs associated with leaf operators that produce the final query answers.

Examples of L-Jobs are J3
p and J8

p in Figure 4.3. Intuitively, for L-Job, its

deadline coincides with the time at which the corresponding query output is

due to be produced. As mentioned, this due date can be computed by finding

the minimal expiry date among all the inputs that contribute to the output

tuple. For example, if the timestamp of the input p is 100 and the validity

period for stream I1 is 20, the deadline for J3
p would be 120 (which is the expiry

date of p since p is the only contributing input for Q3).

NL-Job refers to jobs performed by non-leaf operators. The output of an

NL-Job becomes the input of some other NL-Job or L-Job in a query plan. J1
p

and J6
p in Figure 4.3 are examples of NL-Jobs. Unfortunately, often there is no

single definite due date for an NL-Job because its due date is defined on each

output tuple which does not directly relate to the completion time of NL-Jobs.

We will return to the topic of determining an NL-Job’s deadline as we discuss

deadline-aware stream scheduling in Section 4.7.

Finally, let us examine a job’s utility. Again, computing the utility of an

L-Job is straightforward, it essentially corresponds to the profit credited to the

duly completed output tuple. For NL-Jobs, there is no utility associated with

them since completing an NL-Job does not directly contribute to the overall

profit. However, the value of performing an NL-Job is implied by the precedence
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constraints between L-Jobs and NL-Jobs as specified in the query graph.

4.4.2 Related Work on Job Scheduling

Before delving into the details of the proposed scheduling strategies, let us first

briefly review the existing job scheduling techniques that have been explored

in the literature. There are various types of job scheduling problems depending

on the different objectives and problem constraints. Among them, Minimizing

weighted number of late jobs is the most relevant type to ours. Essentially,

maximizing the total weighted job utility defined in Equation 4.3 is equivalent

to minimizing the weighted number of late jobs. Karp [56] proved that the

weighted number of late jobs problem in general, denoted as 1||
∑
wjUj, is NP-

hard. But it is solvable in pseudopolynomial time [58]. Sahni [77] and Gens

et al. [40] also proposed the Fully Polynomial-time Approximation Schemes

(FPTAS) for the same problem. Moore [72] showed if all the jobs have equal

weights, the optimal solution for the original problem can be obtained in poly-

nomial time. A polynomial algorithm is also available if the processing time

and the job weight can all be oppositely ordered [57]. In the more recent

work [18, 75], solutions and heuristics were proposed to solve the same class of

problem with the condition that job release time is not equal. Moreover, Gi-

van et al. [41] offered an interesting scheduling policy that has the guarantee of

achieving no more weighted loss than the corresponding Earliest-Deadline-First

(EDF) strategy for any input pattern.

However, data stream scheduling is more complicated than the above classic

job scheduling problems because it involves additional constraints and practical
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concerns. For example, the above strategies assume jobs are independent. But

in our case, jobs are dependent as downstream L-Jobs cannot be started until

all their upstream NL-Jobs have been completed. That is why a DAG graph is

needed to capture the precedence constraints among jobs. And it can be shown

that such a problem, denoted as 1|graph|
∑
wjUj, is generally intractable.

4.5 Applicability of Data Stream Scheduling

Before delving into the details of various scheduling strategies, let us first con-

sider the applicability of data stream scheduling algorithms, an issue which has

been largely ignored by the previous work. The question is whether scheduling

strategies are always beneficial or they only work for certain scenarios. Con-

sider the inevitable overhead associated with each scheduling strategy, it would

be pointless if such an algorithm cannot ensure a significant improvement in

terms of overall system utility. We notice that there are situations where a

query’s QoS is beyond the scheduler’s control. In this work, we would like to

exclude those scenarios and focus on queries on which scheduling algorithms

would have a definite positive impact. Such type of queries can be categorized

as the following: Each operator in the query graph has to be a causal system,

with Predictable Output Delivery (POD). It means upon receiving the input

and computing resource, the operator is expected to produce the output, with

predictable processing delay. The formal definition is given below.

Definition 4.5.1 Consider an arbitrary query operator, denoted by O. Let

j be any one of O’s input tuples and let k be any one of its output tuples

which j contributes to. Given that CPU is allocated to operator O to process j
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immediately after j’s arrival at O’s input queue, O is said to be a POD operator

if k is guaranteed to be produced in L time units, where L is a constant.

Intuitively, for unary operator, L is equivalent to the operator processing

cost, which is often known or can be easily estimated. For binary or N-nary

operator, L embraces both operator processing cost and delay due to inco-

ordination among matching tuples from different inputs. The latter can be

bounded or unbounded. For example, without any assumption such delay in

join operation is unbounded since the output will be indefinitely delayed as it

is never known when matching tuples from the counterpart input will arrive.

Fortunately, we find for many applications such bound often exists by analyzing

the application scenario or system characteristics (e.g. through heartbeat [85]

or punctuation [91]). Therefore, we see a majority of operations in data stream

applications can be safely classified as POD operations. Scheduling strategies

discussed in this chapter will focus on POD operations only.

4.6 Greedy Strategies

We first consider using greedy algorithms to approach the stream scheduling

issue. Greedy-based strategies have been widely employed in job scheduling

as well as various resource allocation schemes. In this section, we first give

an overview of a basic greedy implementation in the context of data stream

scheduling. Then we refine the solution by proposing a new algorithm for

achieving the optimal result.
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4.6.1 Basic Strategy

The idea of a greedy strategy is simple: Given that each job has a defined

profit and cost, one can compute the profit density (i.e. profit-to-cost ratio)

and schedule jobs according to the non-ascending order of their profit density

values. In addition, because our problem deals with real-time data streams, we

need an online mechanism to facilitate job preemption. That is, whenever a

new job is generated with higher profit-to-cost ratio than the current running

job, the scheduler should immediately put the running job in suspension and

pick the new job for execution.

A simple realization of such a mechanism can be done through an interrupt

handler as sketched in Algorithm 1. When a tuple arrives at some operator’s in-

put queue, we say a new job has been substantiated. The job, which corresponds

to the work of processing this tuple by that operator, triggers the NewJob in-

terrupt. The NewJob interrupt handler first computes the profit density of the

new job (or new jobs if the interrupt is triggered by multiple simultaneously

substantiated jobs) through the function CompDensity(). Then it preempts the

current executing job if any of the new jobs is found more profitable.
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Algorithm 1 Greedy Strategy

Handler NewJob:

1: Let J denote the set of jobs that triggers the interrupt;

2: CompDensity(J); /* Compute the profit density for each of the job in J */

3: Insert jobs in J into a priority queue H. H is sorted in non-ascending order

of profit density. Ties are broken by choosing the job with an earlier due

date.

4: if the profit density of the first element in H is greater than the current

running job’s profit density then

5: Preempt the current job and execute the first job in H;

6: end if

For example, in Figure 4.2, assume all the operators’ input queues are empty

initially. Now the arrival of a new input from I1 causes one job to be created

corresponding to the work done by operator op1. When this job is done, the

output tuple is fed into the input queues of both op2 and op5. This causes two

jobs to be substantiated simultaneously corresponding to the work to be done

by these two operators respectively. Such process continues as data are pro-

cessed in a pipelined manner. Along the way the NewJob interrupt is triggered

whenever new jobs emerge. It ensures the executor is always processing the job

with the highest profit density in the system.

4.6.1.1. The Aurora Scheduler

We use the Aurora Scheduler [25] to illustrate how the greedy strategy is

implemented in practice. It is one of the very few tuple-based stream sched-

ulers we are aware of that aim to promote the timeliness of output delivery.
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Although Aurora uses another way to model the problem and has a more so-

phisticated scheduling policy, the underlying principle is no different (i.e. a

greedy approach). The notion of “gradient” in Aurora is essentially the profit

density in our job scheduling model.

The key component of such a greedy-based scheduler is the valuation of jobs’

profits (implemented by the CompDensity() function). Because all NL-Jobs

in a job tree do not have explicit profit values, evaluating the profit density

for these NL-Jobs becomes knotty. In Aurora, the scheduler simply values the

profits of executing a non-leaf operation to be the sum of the profit of all its

downstream leaf operations. Clearly, this is a very rough estimation.

Another important issue concerning the implementation of the basic strat-

egy is the overhead of deploying such a NewJob interrupt handler. The interrupt

needs to be triggered for each new tuple present at an operator’s queue. This

is obviously infeasible due to the huge input volume and the considerable cost

associated with each invocation of the interrupt handler. Aurora approaches

this issue through tuple batching. Tuple batching effectively reduces the total

number of interrupts though to a certain extent the scheduling performance

may be impaired.

4.6.2 Improving Scheduling Accuracy

As mentioned, the performance of a greedy-based scheduler heavily relies on the

function that evaluates jobs’ profits. Due to the complex dependency relation-

ships among jobs, precise evaluation of jobs’ profits becomes difficult. Hence,

existing implementation prioritizes jobs according to their estimated profit val-
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ues. However, such approximation may seriously jeopardize the scheduling

accuracy. In this section, we explore a new strategy which, on top of the

perplexing job dependency constraints, accurately selects the most profitable

execution plan, leading to the optimal scheduling result.

4.6.2.1. Job Tree for Scheduling

Now let us take a closer look at the jobs to be scheduled. Consider the query

in Figure 4.2 as an example. As mentioned, the arrival of a tuple from I1 will

eventually trigger eight jobs to be generated though many of these jobs have not

been substantiated at the time when the input arrives due to job dependencies.

Nevertheless, we can model these jobs as a tree-structured graph, which we call

Input Job Tree (IJT), to capture such dependencies as precedence constraints.

Each node in an IJT corresponds to the job of performing a particular query

operation for the new input. An IJT structure essentially resembles a subset

of the original query graph (refer to Section 4.4 on translating from query tree

to job tree). It can be derived by abstracting from the original query graph all

the subtrees rooted at the operators that directly consume the new input. For

example, Figures 4.3 and 4.4 can also be seen as the IJTs generated due to the

arrival of the input from I1 and I2 respectively. It is important to note that

all these jobs have the same deadline (since they are generated as a result of

the same input). Hence, for each IJT, we can rephrase our problem as follows:

Given the available processor time (i.e. the time from now to the time when

the arrived input gets expired), schedule the new jobs such that the total profit

(utility) is maximized.

Within an IJT, L-Jobs’ profits are defined as usual, which are equivalent to
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c(Di) processing time of node Di

p(Di) profit of node Di

ρ(Di) profit density of node Di, ρ(Di) = p(Di)/c(Di)
Par(Di) parent node of node Di

Chd(Di) the set of child nodes of node Di

DesL(Di) the set of leaf nodes descendent to node Di

Table 4.2: Important notations used in the algorithm

the profits earned by delivering the corresponding query output on time. For

NL-Jobs, we do not attempt to estimate their profits. All of the NL-Jobs in

an IJT entail zero profit. This means their account is completely implied by

the job precedence constraints. The cost of a job in an IJT is defined as the

processing delay of the corresponding operation in the original query graph.

For POD operation, the value is L (refer to Definition 4.5.1). For non-POD

operation, the value is set to the average processing delay of the corresponding

operation.

Different from the basic strategy which only schedules substantiated jobs,

our improved strategy takes the entire IJT for consideration. Since the initial

IJT has included all the jobs eventually triggered by the same input, the new

interrupt handler hence only needs to be invoked when there is new input enter-

ing the query system (as opposed to one interrupt for each job substantiation

in the basic strategy).

4.6.2.2. OptProfit Algorithm

In what follows, we present an improved greedy strategy (Algorithm 2),

which employs a new algorithm called OptProfit to find the optimal execution

sequence for a given IJT. Important notations used in this section are listed in
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Table 4.2. Other symbol conventions include the followings: A capital letter

without any super- or sub-script usually refers to a set or list. A capital letter

with a super- or sub-script refers to an element in a set or list.

Unlike the basic strategy which schedules jobs on per query operation basis,

the OptProfit algorithm uses per fragment based scheduling. Here, a fragment

refers to a set of connected vertices with at least one of the vertices being a

leaf node of the job tree. A fragment, denoted by F , can be identified by the

root node of the fragment and all the leaf node(s) it includes. For example, in

Figure 4.3, the fragment that includes {J1
p , J

2
p , J

3
p} can be written as FJ

1
p

{J3
p}

. As

another example, the fragment FJ
1
p

{J4
p ,J

7
p}

refers to {J1
p , J

2
p , J

4
p , J

5
p , J

6
p , J

7
p}. Frag-

ment based scheduling has several advantages. Firstly, by merging several jobs

(operations) into one fragment, we are able to assign a definite profit value for

that fragment while in the basic strategy we are unable to do so for non-leaf

operations. Secondly, as it turns out, a fragment based OptProfit strategy re-

duces the complex tree-structured precedence constraints to linear precedence

constraints. Such simplification enables clairvoyant planning by scheduling non-

substantiated jobs without violating the precedence constraints. Lastly, In frag-

ment based scheduling, multiple operations are treated as a single scheduling

unit. This effectively reduces the computation overhead.

For the same reason as in the Aurora strategy, tuples are considered in

batches in OptProfit. It means the scheduler runs for a train of input tuples.

Correspondingly, each job now refers to the work of processing a batch of input

(as opposed to a single tuple). Two important parameters in OptProfit are job

graph G and total available processing time C. Initially G is the IJT, which

consists of the jobs triggered by the arriving input. Each job is modeled as a
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node in G. There are two types of such nodes: profit node and non-profit node.

A profit node in G corresponds to a job associated with a positive profit and a

non-profit node otherwise. According to our system model, all L-Jobs are profit

nodes. C is the total available processing time for the current scheduling round,

it is essentially the time left until the first tuple in the batch gets expired.

The main idea of the OptProfit strategy (Algorithm 3) is as follows: If the

current best node (i.e. the one with the highest profit density) happens to be a

root node, it can be safely scheduled first because a root node does not depend

on any other job node. Otherwise, the situation becomes quite complicated

because there is no obvious choice for the node to be scheduled first that would

eventually produce the optimal solution. For this reason, OptProfit adopts

fragment based scheduling. Each fragment is carefully formed by iteratively

applying the NodeMerge() function (refer to Algorithm 4) that merges a node

with its parent. When two nodes merge, it means in the final schedule the

two corresponding jobs will be executed one immediately after the other (i.e.

the child job is executed immediately after the parent job). This node merge

process continues until some root node finally gets merged, which completes

a fragment. The obtained fragment is guaranteed to have the highest profit

density among all the possible fragments that can be found from the current

job graph.
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Algorithm 2 Improved Greedy Strategy

Handler NewInput:

1: Let J denote the set of the jobs triggered by the arriving input, including

both substantiated and not yet substantiated jobs;

2: U=OptProfit(J);

3: Insert the fragments in U into a priority queue H. H is sorted in non-

ascending order of profit density. Ties are broken by choosing the one with

an earlier due date.

4: if the profit density of the first element in H is greater than the current

running fragment’s profit density then

5: Preempt the current running fragment and execute the first fragment in

H;

6: end if
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Algorithm 3 OptProfit(J)

1: Let G be the IJT constructed from J ;

2: Let C be the available processing time. It is the time left until the first

tuple in the input batch gets expired;

3: Let U be the computed schedule, which consists of a sequence of fragments.

Initially, U := ∅;

4: Let P denote the total profit of U , i.e. p(U). Initially, P := 0;

5: Let D be the set of profit nodes in G sorted in non-ascending order of profit

density;

6: repeat

7: Dk := NodeMerge();

8: if Dk is not null then

9: /* Dk exactly subsumes the next best fragment */

10: P := P + p(Dk);

11: c(U) := c(U) + c(Dk);

12: D := D\{Dk}; /* remove Dk from D */

13: G := G\{Dk}; /* remove Dk from G. If Chd(Dk) 6= ∅, then each of

its child node becomes a root node after Dk is removed from G */

14: Enqueue Dk (as a fragment) into U ;

15: end if

16: until (c(U) ≥ C) ∨ (D is ∅);

17: if c(U) > C then

18: Only include a fraction of the last scheduled batch such that c(U) == C;

19: end if

20: return U ;
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Algorithm 4 NodeMerge()

1: curρ := 0; /* curρ records the current best profit density */

2: Dcand := null; /* candidate node to be merged */

3: for i = 1 to |D| /* |D| denotes the size of D */ do

4: if ρ(Di) ≤ curρ then

5: break; /* no longer need to check the rest Di */

6: else if Di is a root node then

7: if ρ(Di) > curρ then

8: curρ := ρ(Di);

9: Dcand := Di;

10: end if

11: else if (p(Di) + p(Par(Di)))/(c(Di) + c(Par(Di))) > curρ then

12: curρ := (p(Di) + p(Par(Di)))/(c(Di) + c(Par(Di)))

13: Dcand := Di;

14: end if

15: end for

16: if Dcand is a root node then

17: return Dcand;

18: else

19: /* Dcand needs to be merged with its parent */

20: UpdateGraph(Dcand);

21: return null;

22: end if
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Algorithm 5 UpdateGraph(Dcand)

1: Let Dp
cand := Par(Dcand);

2: Update G as follows:

(1) Merge Dcand and Dp
cand into one node (denoted by Dmg). Dmg embeds

the job execution sequence Dp
cand followed by Dcand;

(2) For all nodes that are previously the children of Dp
cand (except

Dcand), reassign their parent node to Dmg; i.e. ∀Dj ∈ Chd(Dp
cand), Dj 6=

Dcand, Par(Dj) := Dmg;

3: Update D as follows:

(1) D := D\{Dcand};

(2) if Dp
cand is a profit node, then D := D\{Dp

cand}; endif

(3) Insert Dmg into D;

To ensure optimality, node merge only occurs on the pair of nodes that

will have the highest combined profit density. To find such a pair, jobs in D

need to be checked one by one with their new profit density value after being

merged with its parent. Such checking can terminate when the current best

profit density value is found to be greater than or equal to that of any of the

remaining jobs in D that have not been checked (lines 4-5 of Algorithm 4).

After the merge operation, the job graph G and the priority queue D should

be updated accordingly (Algorithm 5).

4.6.2.3. Proof of the Optimality of the OptProfit strategy

We show in this section that the OptProfit algorithm produces the optimal

job execution sequence.

First, we need to prove the following corollary:
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Corollary 1 All job execution sequences imposed by node merge operations

appear in at least one of the optimal schedule plans (if there exists multiple

optimal plans).

Proof: Let Dcand and Dp
cand denote the pair of the child and parent node

to be merged by the NodeMerge() function. And let Dmg denote the merged

node, which embeds the execution sequence that Dcand is executed right after

Dp
cand. The corollary says there exists an optimal plan in which Dcand is also

executed right after Dp
cand. We can prove this by contradiction. Now assume

the optimal execution sequence consists of .., Dp
cand, .., Dx, .., Dcand, .. where

Dx represents either one or several nodes between Dp
cand and Dcand.

Case 1: ρ(Dx) < ρ(Dmg)

Because lines 3-15 of Algorithm 4 ensure that ρ(Dmg) has the maximum

profit density value among any pair of nodes between a node in D and its

parent, hence Dx should be scheduled after Dcand unless Dcand depends on Dx

(i.e. Dx is an ancestor of Dcand). However, according to our system model, each

node in a job graph can have at most one parent. Given Dp
cand is the parent

of Dcand, Dx has to be an ancestor of Dp
cand as well. But this is not possible

because in the optimal plan Dp
cand is executed before Dx.

Case 2: ρ(Dx) > ρ(Dmg)

Similarly, this implies that Dx depends on Dp
cand (i.e. Dp

cand is an ancestor of

Dx) because otherwiseDx should be executed beforeDp
cand, which will produce a

better plan. Let Dy denote the node who is the child of Dp
cand and an ancestor of

Dx (Dy and Dx could be the same node). Because of the precedence constraint,

Dy should be between Dp
cand and Dx in the optimal plan. Now consider the
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merged node Dxy which includes all the nodes along the path from Dy to Dx.

If ρ(Dxy) < ρ(Dcand), then a plan with Dcand before Dxy produces higher profit.

On the other hand, if ρ(Dxy) ≥ ρ(Dcand), then it contradicts with the code that

ensures Dp
cand merged with Dcand produces the largest profit density. So the

only possibility left is Dy and Dcand are the same node. However, this is also

impossible because it violates the precedence constraint as in the optimal plan

Dx is executed before Dcand.

Case 3: ρ(Dx) = ρ(Dmg)

This is possible. However, this does not conflict with the premise because

we can remove Dcand and insert it right before Dx. In this case, the total

overall profit is unaffected. Notice that by moving Dcand forward in the schedule

here, we do not need to worry about precedence constraint because Dcand only

depends on Dp
cand which is still before Dcand.

Cases 1, 2 and 3 complete the proof for Corollary 1. �

We next prove the optimality of the OptProfit strategy.

Theorem 4.6.1 Given the amount of processing time, the OptProfit algorithm

produces the optimal job schedule that maximizes the overall profit.

Proof: We briefly sketch the proof. The basic idea is by induction on the

number of job nodes. Clearly the algorithm is correct when the job graph con-

sists of one job only. When there are n jobs in the job graph, each node merge

operation reduces one node in the graph. We have proved in Corollary 1 that

each node merge guarantees the execution sequence subsumed by the composite

node appears in the optimal plan. And the node merge operations are indepen-

dent among each other. Eventually, when there are no more node merge occurs,
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Figure 4.5: Illustration of the OptProfit algorithm

the problem becomes a knap-sack problem, where each fragment corresponds to

an item to be put in the knap-sack. Because we assume each input corresponds

to a train of tuples instead of one (and the train size is significantly larger than

one). We can take a fraction of the tuples in the last fragment scheduled in the

execution plan, just like the fractional knap-sack problem to get the optimal

value. �

4.6.2.4. Illustrative Example

Let’s take the query graph in Figure 4.3 as an example to illustrate how the

OptProfit algorithm works. For simplicity, assume the multiplicities of all the

query operators are 1. Now a batch of input tuples p triggers a set of jobs to

be created. The IJT is depicted in part I of Figure 4.5. On the right of each
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job node, a x
y

means the corresponding job costs y units of time and produces

x units of profit upon completion in time. Because currently the node with the

highest profit density (i.e. J8
p ) is not a root node, NodeMerge begins. After

the 1st iteration, J2
p and J4

p are selected to be merged (part II of Figure 4.5).

This implies an execution sequence of J2
p immediately followed by J4

p appears

in the optimal schedule. The profit (cost) of the merged node is the sum of

the profits (costs) of all its contribution nodes. Parts III and IV of Figure 4.5

show how the job graph evolves after the 2nd and 3rd iteration of NodeMerge.

At this point, we can see that J1
p , J

2
p , J

4
p are merged into one composite node,

which is also a root node. In the next iteration of NodeMerge, it is found that

this composite node has the highest profit density. (The other composite node

(J6
p , J

8
p ) has less profit density after it is merged with node J5

p .) Hence, the node

(J1
p , J

2
p , J

4
p ), which represents the fragment FJ

1
p

{J4
p}

, is selected into the schedule

for execution. The algorithm then continues to run on the rest of the job graph.

As can be seen from Parts VI and VII, the composite node (J5
p , J

6
p , J

8
p ), i.e. FJ

5
p

J8
p

,

is the second fragment selected into the schedule. OptProfit terminates when

either the job graph G becomes empty or the total available CPU has been

exhausted. For example, if the input batch size is 60 and the batch expires

in 420 units of time. Then the optimal schedule computed by OptProfit is to

first execute the jobs in the sequence of J1
p , J

2
p , J

4
p till the depletion of the input

tuples. This consumes 60× 3 = 180 units of time. Then it schedules J5
p , J

6
p , J

8

for half of the input tuples (i.e. 30 tuples), which consumes the remaining 240

units of time.
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4.7 Deadline-Aware Strategies

The greedy strategy looks fine at first glance. However, the experiment shows

that it does not often perform satisfactorily. One important reason for this is

that the logic behind the greedy strategy, which solely concentrates on maxi-

mizing job profits, itself is flawed. Such a strategy lacks a mechanism to enforce

the commitment of output generation by its deadline. As stream scheduling

deals with live data that generate and expire dynamically, ideally a good sched-

uler should monitor the lifespan of each input so as to ensure the corresponding

results are produced in a timely manner.

The real-time system community has offered abundant tactics that focus

on in-time job completion. The representative strategies are Earliest-Deadline-

First (EDF) and Least-Laxity-First (LLF). However, these algorithms go to

the other extreme in that jobs are prioritized solely according to deadlines

(without considering jobs’ profits at all). It turns out that EDF and LLF

guarantee optimality when the system is underloaded, but perform fairly poorly

under overload situations [66]. Unfortunately, online applications including

data stream processing are prone to (intermittent) overloading.

In short, what we need is an online scheduler which considers the subtle

interplay between job profit and deadline2. By online scheduler, it implies the

scheduler has no prior knowledge about the jobs (i.e. job’s profit, processing

cost and due date are not known until the job is present at the input queue). In

addition, the produced schedule has to observe certain precedence constraints

2The Aurora scheduler does consider both job profit density and deadline. However,
deadlines are only used to break ties when multiple jobs have the same profit density. Con-
sequently, the impact of deadline on job execution sequence is almost negligible.
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due to various job dependencies. The ultimate goal is to maximize the total

profits of the jobs completed in time, in both underload and overload situations.

Needless to say, this is a very challenging task. In fact, it has been shown

that no online algorithm exists that guarantees the optimal performance under

overload situation. The discouraging result was proved by Baruah et al. [20].

They showed that the best competitive factor any on-line algorithm can achieve,

as compared to the optimal clairvoyant scheduler, is no more than 1/(1+
√
k)2,

where k is the ratio between the highest and the lowest profit density of the

jobs in the system. Therefore, in practice people turn to good heuristics that

can work well under a given application scenario.

4.7.1 Deadline-Dominant Strategy

Our new Deadline-Dominant (DD) strategy aims to promote the awareness of

job deadline in conjunction with profit density. It augments the basic EDF/LLF

by introducing job profit density as an important dimension for consideration.

One issue concerning deadline-aware stream scheduling is to determine the due

dates for NL-Jobs in an IJT. As an NL-Job may be shared by multiple down-

stream L-Jobs, it has correspondingly multiple due dates, each for one of its

L-Jobs. Here, we define an NL-Job’s due date to be the one that ensures all its

L-Jobs can be completed in time if the NL-Job is committed by that deadline.

The main idea of the DD strategy is as follows: While more urgent tasks

are always given a higher priority to execute in the first instance, jobs with sig-

nificantly higher influence on the overall profit reserve the privilege to preempt

other jobs in the future. The strategy can be realized through two interrupt
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handlers as sketched in Algorithms 6 and 7. The first NewJob interrupt handler

(Algorithm 6) is similar to the LLF strategy in that a job with the least (pos-

itive) laxity time has the highest priority. The second handler (Algorithm 7)

is triggered when some job in the ready queue is going to expire if it is not

executed immediately. We call it the LastDitch interrupt. The LastDitch inter-

rupt essentially gives jobs with significantly higher weights another chance for

execution. The parameter u (line 3) sets the threshold that determines when

a job’s profit density is large enough to preempt the current executing job.

Obviously, u must be a value greater than 1. To find an optimal u value is a

complicated issue which depends on a few factors (distribution of jobs’ profit

densities, system workload, etc). We will revisit the issue of how to pick up a

good u value through our empirical study in Section 4.9.2.

Note the DD strategy also requires evaluating jobs’ profit density values

(line 2 of Algorithm 6). The greedy strategies described in the previous section

offer two alternative ways to compute profit density: 1) using an approximation

method similar to the Aurora’s approach and 2) using OptProfit algorithm.

Both can be seamlessly integrated into the DD strategy. Algorithm 6 actually

shows an interrupt handler which integrates the Aurora’s approach to compute

profit density. If the OptProfit is adopted instead, the algorithm will be similar

but with the following differences: firstly, the NewJob interrupt will be replaced

by NewInput interrupt; secondly, per job scheduling will be changed to per

fragment scheduling.
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Algorithm 6 The NewJob Handler for DD Strategy

Handler DD NewJob:

1: Let J denote the set of jobs that triggers the interrupt;

2: CompJob(J); /* Compute the deadline laxity and the profit density for

each of the job in J */

3: Remove jobs with negative laxity values from J ;

4: Insert jobs in J into a priority queue H. H is sorted in non-descending

order of laxity value. Ties are broken by choosing the job with higher

profit density;

5: if the laxity of the first element in H is less than the current running job’s

laxity then

6: Preempt the current job and run the first job in H;

7: end if

Algorithm 7 The LastDitch Handler (for both DD and PD)

Handler LastDitch:

1: Update the profit density of the current executing job (fragment) s. i.e. its

profit over the remaining execution time;

2: Let t denote the job (fragment) that triggers the interrupt;

3: if ρ(t) > u · ρ(s) then

4: Preempt s and insert it back to the priority queue H;

5: Execute t;

6: else

7: Discard t;

8: end if
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4.7.2 Profit-Dominant Strategy

In DD strategy, jobs are prioritized according to laxity first. And when some

jobs with significantly higher values are about to expire, they are given a second

chance to be considered for execution. A dual approach would be to prioritize

jobs according to profit density first. If some jobs with less profit density are

about to expire, they may also preempt jobs with higher profit density values.

We call it a Profit-Dominant (PD) strategy. Similar to DD strategy, a PD

strategy can also be implemented through a NewJob interrupt (or a NewInput

interrupt if using OptProfit to evaluate job profit density) and a LastDitch

interrupt (refer to Algorithm 8 and Algorithm 7). The key difference is that

now in the handler LastDitch, the threshold u is less than 1 since the preempting

job bears less profit density.

Algorithm 8 The NewJob Handler for PD Strategy

Handler PD NewJob:

1: Let J denote the set of jobs that triggers the interrupt;

2: CompJob(J); /* Compute the deadline laxity and profit density for each

of the job in J */

3: Remove jobs with negative laxity values from J ;

4: Insert jobs in J into a priority queue H. H is sorted in non-ascending order

of profit density. Ties are broken by choosing the job with less laxity;

5: if the profit density of the first element in H is more than the current

running job’s profit density then

6: Preempt the current job and run the first job in H;

7: end if
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4.8 Intelligent Tuple Batching

Scheduling strategies bring considerable overhead to a stream scheduler. This

makes tuple batching absolutely necessary. By grouping tuples together as

a single scheduling unit, the overhead can be substantially reduced. Tuple

batching has been implemented in the Aurora scheduler. But there is not much

discussion on how batches are constructed in their work.

By default, when an operator is scheduled, naturally all the tuples that are

pending in the input queue form a batch. This is, however, not necessarily a

good way of constructing batches. We argue that tuple batching strategy needs

to be carefully designed as our experimental study shows that the scheduling

results to a certain extent depend on tuple batches. For example, if tuple

batch size is too small, there will be too many reschedulings and context switch

overhead. On the other hand, if batch size is too large, scheduling accuracy

may drop because tuples of the same batch may have very different expiry

dates. Given the dynamic nature of data input, to statically determine batching

size is deemed inappropriate. Hence we propose a dynamic criterion to group

tuples: Sequential tuples from the same input may form a single batch if 1) the

timestamp difference between the head tuple and the tail tuple in the batch

does not exceed αµ, where µ is the average laxity of the jobs currently in the

system and α is a runtime coefficient and 2) the timestamp difference of any

two consecutive tuples is no more than βτ , where τ is the average inter-arrival

time of the corresponding input stream and β is a runtime coefficient. Both µ

and τ can be obtained by a statistical manager in a stream processing system.

Criterion 1 essentially constrains the length of the batch. The reference metric
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is the average laxity of the jobs currently in the system. The intuition here is

job’s laxity should be positively related to the length of the delay that input

tuples can tolerate. Criterion 2 essentially determines the point that can mark

the end of a batch.

4.9 Experimental Evaluation

4.9.1 Experimental Setup

We evaluate and compare six scheduling algorithms (Basic, OptProfit, Ba-

sic+DD, OptProfit+DD, Basic+PD, OptProfit+PD) discussed in this chap-

ter using our DSMS prototype system. The Basic strategy is a naive greedy

strategy discussed in Section 4.6.1. It works in a very similar way as the Au-

rora scheduler. The OptProfit (Section 4.6.2) is an improved greedy strat-

egy. Basic+DD and OptProfit+DD are two Deadline-Dominant strategies

(Section 4.7.1) integrated with Basic and OptProfit, respectively, for evalu-

ating jobs’ profit densities. Similarly, Basic+PD and OptProfit+PD are two

Profit-Dominant strategies (Section 4.7.2) integrated with Basic and OptProfit,

respectively. Besides, we also implemented a round-robin scheduler as a base-

line. The DSMS prototype system mainly consists of three components: query

engine, statistics manager and query scheduler. The query engine is able to pro-

cess queries involving selection, projection, join and aggregation. The statistics

manager monitors information such as the unit processing cost of each operator

and selectivity as well as the current QoS of each registered query, and reports

them to the scheduler, which then makes scheduling decisions based on the
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information.

The queries used in the experiments are generated randomly. The number

of queries ranges from 20 to 28, and the number of operators is between 32 and

48. The query tree is generated in a bottom up fashion. Given the number of

queries, the same number of leaf operations are generated first, one for each

query. Then, a few operators are assigned to be the parents of these leaf

operators. The fan-out of each parent operator is generated according to the

normal distribution with mean equal to the average fan-out of the query tree.

The type of each operator is also assigned randomly as one of the followings:

select, project, join and aggregate. Each query is also given a weight factor (an

integer between 1 and 10).

We use both real and synthetic data for our experiments. The real data set is

a trace named “LBL-PKT” [74], collected from the Internet Traffic Archive [2].

It contains an hour’s worth of all wide-area traffic between the Lawrence Berke-

ley Laboratory and the rest of the world. We split it into four parts as our

input streams. The real data set is used for the experiments in Sections 4.9.2.1,

4.9.2.2 and 4.9.2.3. In Section 4.9.2.4, a synthetic data set is used because we

need input streams with customizable properties. The synthetic data is pro-

duced according to the b-model [96], an easy and efficient way to simulate web

and network traces with bursty and self-similar property [59]. For each input

stream, we also assign a validity period which indicates when tuples get expired.

The validity period essentially sets the maximum tolerable delay of producing

a qualified output. The value is chosen randomly from 4s to 8s.

All the experiments were conducted on a 64-bit machine with an Intel Xeon

2.66GHz CPU and 8G RAM.
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4.9.2 Performance Study

We use QoS score (computed using Equation 4.3 in Section 4.3.1) to evaluate

the performance of the scheduling strategies. When all the output tuples are

delivered in time, the score will be a perfect 100%. The round-robin scheduler

is used as our benchmark strategy in some of the experiments.
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4.9.2.1. Coefficient u

Before evaluating the performance of the various scheduling strategies, we

first need to configure the coefficient u which is needed by all the deadline-

aware strategies in the LastDitch interrupt (refer to Algorithm 7). Recall that

u sets the threshold which determines how much a job’s profit density is large

enough to preempt the executing job. As mentioned before, the appropriate

u value for DD strategy should be greater than 1 while for PD strategy the

value should be less than 1. Figures 4.6 and 4.7 show the QoS score of the

DD and PD strategies, respectively, as u changes. We can see that for both

Basic+DD and OptProfit+DD, the QoS is the highest when u is around 1.3.

While for PD strategies, the u value should be set to around 0.65. Because the

threshold value is affected by several factors such as query weight distribution

and system workload, the optimal choice of u differs from one query to another.

Though it may be hard to determine the optimal u for a given scenario, it is

nevertheless not difficult to obtain a quasi-optimal result. In this case, for DD

any value between 1.2 and 3, and for PD any value between 0.6 and 0.9 should

be considered good choices. We will set u to 1.3 for DD and to 0.65 for PD for

the rest of our experiments.

4.9.2.2. Tuple Batching

In Section 4.8, we introduced our intelligent batching technique for minimiz-

ing scheduling overhead while keeping the scheduling accuracy at a satisfactory

level. We verify the effectiveness of the technique by comparing it against three

other strategies: “no batching”, “fixed length batching” and “fixed interval

batching”. “No batching” means the scheduling is performed purely at tuple
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Figure 4.8: Tuple batching

level. In other words, each tuple triggers an interrupt. In “fixed length batch-

ing”, all batches have the same number of tuples. The batch length is set to be

the average batch size when intelligent batching is used. “Fixed interval batch-

ing” is similar to “fixed length batching” except that now instead of fixing the

batch length, we fix the batch interval. That is, the NewJob (or NewInput)

interrupt is triggered for every fixed interval. Both “fixed length batching”

and “fixed interval batching” can be seen as static batching strategies. The

results reported in Figure 4.8 clearly tell us two things. First, tuple batching

is essential. Although “No batching” achieves absolute tuple-level scheduling,

the overhead is simply too high to be viable. Secondly, our proposed intelli-

gent batching clearly outperforms the static batching techniques. Note that

a consistent improvement of 5% or more in QoS score should be considered

significant. In financial industry, for example, a 5% increase in QoS may di-

rectly amount to 5% more clients or profits. The run time coefficients α and

β required by the intelligent strategy is set at 0.9 and 4, respectively, in the
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Figure 4.9: Operator sharing

experiment. Similar results can still be obtained if we vary these parameters

by no more than 30%. The above observation is also applied to Basic and its

related strategies (Basic+DD and Basic+PD).

4.9.2.3. Query Influence

Operator sharing For large scale multi-query data stream systems, op-

erations are often shared among queries to minimize the total costs by avoiding

redundant work. This results in tree structured query plan which greatly in-

creases the scheduling complexity. In this experiment, we would like to see how

each strategy performs in a multi-query environment with complicated opera-

tor sharings. We use the ratio between the number of queries and the number

of operators to measure the degree of operator sharing. Figure 4.9 shows Opt-

Profit and its related strategies consistently outperform other strategies. This

is especially true when the degree of operator sharing is high. It indicates that

the OptProfit strategy offers better scalability with respect to the complexity

of a query graph.
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Query weight Query weight can influence scheduling accuracy, too. We

use variance to measure the degree of variation among jobs’ weight. Figure 4.10

shows that DD strategies are particularly sensitive to the query weight distribu-

tion. When the job weight variance is low, they perform fairly poorly. However,

as the variance increases, the QoS scores of DD strategies quickly pick up. This

is interesting as it suggests that DD strategies are more useful when query

weights are more heterogeneous.

4.9.2.4. Input Influence

Ideally, a good scheduling strategy should work well regardless of the input

conditions. In this section, we evaluate the performance of the scheduling

algorithms with different input workload and data characteristics.

Input load We first conduct the stress test by slowly increasing the input

data rates and see how each scheduler responds to it. Figure 4.11 shows that the

OptProfit schedulers generally perform better. Compared to other schedulers,

they achieve graceful degradation as the system approaches overload. This is
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mainly attributed to the fact that OptProfit algorithms adopt NewInput inter-

rupt handling which incurs relatively fewer number of reschedulings compared

to NewJob interrupt handling used by Basic and its related strategies. Fewer

reschedulings amount to less overhead, which can be crucial for systems with

heavy workload.
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Figure 4.12: Response to tuple urgency

Tuple urgency Instead of increasing input data rates, we stress the
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system by introducing extra delay on input tuples. The delay can be seen as

a simulation of input transmission latency from the data source to the query

engine. An increase in delay results in a decrement in jobs’ average laxity. We

observe that deadline-aware strategies are advantageous in this scenario. When

more jobs are about to expire, the LastDitch interrupt effectively saves many

of them (particularly those with higher weight) from being late. This explains

why these approaches do not degrade as much as the others when tuple urgency

increases (refer to Figure 4.12).
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Figure 4.13: Response to bias

Data pattern It is known that network data, as well as other forms of

data stream traffic, often exhibits burstiness and self-similarity. Therefore, it is

important to study how the schedulers respond to such data pattern. We use the

b-model [96] to simulate self-similar traces. The idea is quite straightforward.

It first divides the total trace generation time into two equal intervals. The

first interval will contain either b or (1 − b) portion of all tuples, determined

randomly. The parameter b is called the bias. The rest of the tuples go to the

second interval. Then, each interval is further divided into two subintervals,
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and each subinterval receives either b or (1 − b) portion of the tuples in that

interval. This process repeats until the interval is reduced to the unit time

interval of the given resolution. The value of b ranges from 0.5 to 1. When

b = 0.5, the trace generated will be evenly distributed over time. As b increases,

the trace becomes burstier; in other words, the timestamps of the input tuples

tend to be more clustered. It has been shown that the burstiness of real network

traffic data can be reproduced using the b-model with b between 0.6 and 0.8.

Figure 4.13 reports the QoS scores of the various strategies as b moves from 0.5

to 0.9. To our surprise, most of the strategies favor bursty input. Their QoS

scores increase when b becomes larger. A second thought suggests two reasons

for this. First, the average batch size increases as the input becomes burstier.

Given the same number of total input tuples, an increased batch size means

less frequent reschedulings, and consequently less overhead associated with each

strategy. Secondly, a larger batch size means a scheduler can look further as it

obtains more information about the future workload; this reduces the chance

of scheduling a suboptimal plan or the probability of job preemption in the

near future. Although all the algorithms improve as input becomes burstier,

the OptProfit+PD strategy appears to be the best choice.

4.10 Strategies in Retrospect

From a real-time system perspective, a desirable scheduling strategy should

offer high scheduling accuracy with low computation overhead. In this section

we use this criterion to review the algorithms discussed in this chapter.

As online algorithms, their overall scheduling accuracy can be roughly as-
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sessed by two factors: 1) the optimality of the schedule generated at each

scheduling point and 2) the responsiveness with respect to job expiry. We have

shown that, given a set of jobs with precedence constraints, the OptProfit al-

gorithm generates an optimal plan which maximizes the total profits. That is

why OptProfit and its related strategies (OptProfit+DD and OptProfit+PD)

generally produce better QoS scores in most of our experiments. In contrast,

the plans generated by Basic and its related strategies are suboptimal. In terms

of the responsiveness to job expiry, pure greedy approaches (i.e. Basic and Opt-

Profit) perform poorly because their scheduling decisions are based on the job

profit density only. Deadline-aware approaches (including both DD and PD),

on the other hand, tend to strike a good balance between profit density and job

deadline. In particular, the experiments suggest that PD strategies are often

the best option, especially when it is used in conjunction with the OptProfit

algorithm for evaluating jobs’ profit density.

The scheduling overhead can be quantified approximately as the produc-

tion of two parameters: 1) the unit scheduling cost and 2) the frequency of

rescheduling. The unit scheduling cost refers to the cost of running the schedul-

ing algorithm which triggers at each scheduling point. It is a function of the

algorithm’s complexity. The frequency of rescheduling refers to the number of

occasions where the scheduler needs to be re-invoked to update the job execu-

tion plan. The Basic strategy has a relatively low unit scheduling cost since

it uses an approximation method to schedule jobs which runs in O(n× log n).

Comparatively, the more complicated OptProfit algorithm runs in O(n2). In

terms of the frequency of rescheduling, the OptProfit strategy should be much

lower because rescheduling is only required at NewInput interrupt (compared
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to the rescheduling at each NewJob interrupt in the Basic strategy). Both

deadline-aware strategies are expected to incur high frequency of reschedul-

ing as well because they have one additional type of interrupt to handle, the

LastDitch interrupt.

4.11 Summary

In this chapter we advocate tuple-based data stream scheduling from a real-

time system perspective. By translating stream scheduling to job scheduling,

we discovered optimization opportunities that would have not been found oth-

erwise. Particularly, we found the existing greedy based approach only covers

part of the solution space for our problem and hence proposed several new

strategies. Experimental study shows that our new proposed algorithms are

generally superior to the traditional approach though it may be difficult to find

a clear winner strategy which outperforms the others in all situations. One

possible future direction is to study the possibility of using a hybrid scheduling

strategy which embraces various scheduling policies we studied. The hybrid

strategy is expected to intelligently change its policy according to the query

environment (query type, system load, input characteristic, etc.) to achieve

the best possible result.
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5
Scientific Sensor Data Management: A

Case Study

One important force that drives the development of data stream research is the

fast-growing Wireless Sensor Network (WSN) applications that have a profound

impact on our lives. For example, now we are able to forecast some of the

life-threatening natural hazards through real-time environmental monitoring

powered by the state-of-the-art wireless sensor network technologies. In this

chapter, we take a scientific sensor data application as a case study to explore

data management issues in WSN. The chapter can be logically divided into two

parts. The first part (Sections 5.1 to 5.9) is a self-contained description of an

integrated data processing engine we developed specifically for scientific sensor

data management. The second part (Section 5.10 and 5.11) discusses how the

stream processing techniques introduced in the previous chapters can benefit

such an application.
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5.1 Background

Environmental monitoring data collected from wireless sensors typically need to

be further processed before being utilized for scientific research. This is because

raw sensor data are noisy and incomplete, and hence need to be cleaned. More

importantly, there is a mismatch between what scientists desire from the data

and what raw sensor data can offer.

Unlike traditional DBMS where users ask for information that can be di-

rectly looked up from the database tables, scientific queries are more analytical.

The raw input data have to be interpreted with mathematical or geostatistical

models provided by the users before they can be used for query computation.

We refer to such a step as “data preparation”. Note that such data preparation

is not a one time job. It is required to be adapted based on the requirements

of the user queries. Also, scientists often try to interpret data with different

models to see how the query output would react. The traditional Clean-Store-

Query paradigm hence cannot be applied here. It is desirable that the data

preparation step can be inserted during the query phase.

As there is a lack of a general framework to embrace all the necessary data

processing, scientists often use diverse customized codes and various tools for

different processing tasks. As such, the whole processing procedure is usually

conducted in a number of separate steps. As we will see later, such an ap-

proach cannot exploit the opportunities of optimization across multiple steps

and hence often leads to inefficient scientific query processing. Furthermore,

the lack of a generic processing framework also prohibits the application of

generic optimization techniques. Only ad-hoc optimizations written by cus-

116



5.1. BACKGROUND

tomized codes are possible. Finally, scientific data processing often involves

visualization products, and progressive visualization is a desirable feature for

many science applications. However, the multi-step processing approach limits

the extent of progressive computation and visualization that can be exploited.

For these reasons, we propose an integrated and easy-to-use data process-

ing system for environmental scientists to alleviate their burden of sensor data

manipulation. Our work is inspired by the success of the relational DBMS tech-

nology which provides an integrated and efficient business data management

platform by offering a data model and a generic query processing and opti-

mization framework. Hence, in the system we built, called HyperGrid, we also

include a data model, a query processing framework as well as several generic

optimization techniques.

Our context for studying scientific data processing is the SensorScope project

[19], which features a wireless sensor network that produces spatial and tempo-

ral measures for ecological and environmental monitoring. The system consists

of multiple solar-powered sensing stations that measure key environmental data

such as air temperature, humidity, solar radiation, and wind speed and direc-

tion. These sensing stations periodically sample their sensors and transmit the

readings through wireless channels to the central server. Scientists can then re-

trieve the data through the central server in real time. Because these data are

still in the rudimentary form, a series of transformations has to be performed

before they are ready for scientific research.

The HyperGrid system is designed and tailored to such scientific applica-

tions. It offers an integrated environment for managing scientific sensor data.

The logical abstraction provided by HyperGrid significantly saves users’ ef-
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forts from handling low level data operations such as array manipulations and

coordinates transformations. Furthermore, we show that such an integrated

framework offers abundant opportunities for query optimization. In fact, we

have implemented several optimization techniques in HyperGrid and their ef-

fectiveness has been verified in our experimental study.

5.2 Related Work

One important characteristic of environmental monitoring data is that they

can be uniquely identified by the spatial and temporal attributes correspond-

ing to where and when they are measured. Conventionally, array [78] is chosen

as the basic data model to store scientific measurement data with temporal

and spatial properties being the array dimensions. Structural regularity and

concise representation make array-based model suitable for managing data in-

volving complex computations. The database community has proposed quite

a few data models and languages to support array-based data management.

AQL [63] is a calculus-based language for supporting low level array operations.

Similarly, AML [69] also proposes a few operations for array manipulations.

These operations, including those proposed in [21, 22] focus on aspects such

as index patterns or sub-sampling of the array elements. Although these op-

erations are important in image processing applications, they are not so useful

for managing scientific environmental data. There are also grid-based models

proposed [49, 73]. However, as can be seen later, they are also not applicable to

the application discussed in this chapter. The feature of the work in [49] is an

algebra of manipulating irregular grids, while [73] focuses on indexing technique
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for grid data. Moreover, although most of the scientific data, particularly mon-

itoring data collected from sensors, carries important spatio-temporal identity,

to the best of our knowledge, none of the existing array-based techniques takes

that into account during operations. In MauveDB [36], the author proposed a

model-based view approach to manage measurement data. While our notion of

perspective (which will be introduced later) shares the same flavor as the view

in MauveDB, the two are in fact quite different. MauveDB focuses more on

view maintenance issue to provide a consistent view to the user. Our approach,

on the other hand, focuses primarily on query processing and using perspectives

to implement and optimize scientific operations.

Scientific queries are often analytical. Hence, they typically involve data

grouping or aggregation. Literatures on multi-dimensional OLAP, such as [4,

30, 65], have offered abundant techniques to speed up the performance for

these queries. In general, these techniques are difficult to be applied in our

context. The reason is OLAP optimization techniques usually rely on the fact

that the attributes for grouping by are known or at least deterministic before

the query is issued. However, in our case, scientists can freely organize the

data in the continuous spatio-temporal domain to form a query. Moreover,

external physical model may be introduced to interpret or reorganize the data.

These make the optimizer difficult to perform any pre-computation to improve

the query response time. Data used in aggregation can also be modeled as

volume [28, 29, 97], where spatial and temporal dimensions are treated indeed as

continuum. The related techniques may be useful as a supplementary approach

to support arbitrary grid granularity for HyperGrid in our future work.
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Figure 5.1: Work flow of Example 5.3.1

5.3 Motivating examples

Before embarking on the details of the system, we first give motivating examples

which describe two representative queries issued by scientists and explain why

processing these queries are poorly supported by the existing techniques. The

first one illustrates a routine query which computes some statistical information

about the dataset. The second example depicts a scenario where information

is queried for the purpose of data exploration.

5.3.1 Scenario One

Consider the following query that a scientist typically issues:

Example 5.3.1 Return the average ambient temperature over the period from

2007-10-01 00:00 to 2007-10-04 00:00 for the region [45◦52′1′′N, 45◦52′23′′N]

in latitude and [7◦10′37′′E, 7◦10′59′′E] in longitude on a 1′′× 1′′grid.

What the scientist has available is raw temperature readings collected from

sensors. Before the data can be used to answer the query, they need to go
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through several preprocessing steps. Firstly, the original dataset needs to be

cleaned. Corrupted points are removed or replaced. Secondly, because sensor

data are not available at all the locations specified in the query, the original

data need to be interpolated over the geographical space. However, in order to

do this, data values have to be first aligned on all dimensions except for those

involved in the interpolation. In this example, data need to be aligned over

the time dimension before being interpolated on the spatial dimensions (which

means the set of data points involved in the same interpolation computation

must either have the same temporal value or fall into the same interval). Meth-

ods to align the data include to randomly pick one representative data reading

(i.e. sampling) for each aligned interval or to take an aggregation over the

aligned interval. Once this is done, the spatial interpolation can be performed

with the granularity 1′′× 1′′for each aligned time slice. Only at this stage is the

curated dataset ready to answer the query, which is a simple average aggrega-

tion over time from 2007-10-01 00:00 to 2007-10-04 00:00 for the region between

[45◦52′1′′N, 45◦52′23′′N] and [7◦10′37′′E, 7◦10′59′′E]. A flowchart describing the

steps of producing the output is given in Figure 5.1.

It is interesting to note that most of the efforts are actually spent on prepar-

ing the data rather than answering the query. This is indeed quite common

in scientific data processing. In fact a complete query specification should also

include details on how the data are prepared because scientists can have various

ways to preprocess the data and their choice of procedure directly influences

the query results. There is, however, no standard formula on how the data

should be prepared towards a given type of query. Parameters such as the size

of the interval in data alignment are determined by knowledge experts and are
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subject to change. Unfortunately, relational DBMS cannot directly support

many data preparation operations with configurable parameters. Although ar-

ray database is able to achieve this, the separation between array elements and

their spatio-temporal context makes the process tedious, especially when oper-

ations involve external models. Take interpolation as an example. Kriging as

a popular geostatistical technique is often used for interpolation. It requires a

variogram model to describe the degree of spatial dependence for a given re-

gion. Because the spatial coordinates of the data points in an array database

cannot be directly obtained, such spatial dependence hence requires extra ef-

fort to derive by stitching the data points with the variogram model. Other

operations involving external physical models also face the similar problem. In

short, a pure array-based implementation is deemed inadequate for supporting

such scientific queries.

5.3.2 Scenario Two

The second example demonstrates a scenario that occurs frequently during data

exploration. In this case, scientists want to study the factors that impact the

solar radiation for some region. They hypothesize that the rainfall rate may

be the major influencing factor, which can be negatively correlated to the solar

radiation value. They want to verify their hypothesis through the following

query:

Example 5.3.2 Compute the hourly average rainfall rate and hourly average

solar radiation over the period τ at some point A. Display the results by plotting

a diagram for each type of the measurement.
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To focus on the essence, we omit the details of the time and the location

in this query. The query itself is not much different from the previous exam-

ple except now the result needs to be displayed for visualization. In a data

exploration scenario like this, scientists often do not need an accurate quantifi-

cation as the answer. Instead, they prefer the results to be plotted so that they

can see intuitively whether the outputs are as expected in general. A similar

scenario also emerges when scientists want to study a new physical model. In

that case, a bunch of similar queries, differed only by the values of the model

parameters under investigation, are executed. Scientists want to gain a quick

understanding of how these parameters influence the behavior of the model. To

achieve this, the processing engine must facilitate results to be generated in a

progressive way to cater for the interactive visual exploration. We will return

to this topic when optimization techniques are discussed in Section 5.7.

5.4 Data Model

As mentioned, spatial and temporal attributes are important components of

scientific data. First, they are used to identify each data reading. More impor-

tantly, they can be treated as the intrinsic properties of the associated measure-

ments, through which scientists can reason about the meaning of the measured

data as well as the physical phenomena implied by them. However, if a pure ar-

ray model is used to represent scientific data, the spatio-temporal associations

with the measurements are lost. This could severely hinder efficient scientific

sensor data manipulation. To this end, we extend the logical array data model

and propose a new HyperGrid data model. Scientists have been using grid
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to model and organize their data. Experience shows that grids work well for

typical applications, provided input can readily fit onto the grid points. Data

abstracted from grids can be ordered, filtered or aggregated according to the

given criteria without much difficulty. Our proposed HyperGrid model is based

on a grid structure which can accommodate both rudimental sensor readings

and high level data abstraction within the same framework.

Essentially, a HyperGrid can be seen as a collection of overlay grid structures

built on top of a scientific dataset. Each overlay grid1 is called a perspective2.

All perspectives in a HyperGrid are derived from a single base perspective, which

is a special perspective that links raw data readings with a grid construct. The

base perspective, or simply base, has a predetermined data structure which

sets the coordinates and dimensions of the HyperGrid in a multidimensional

space. The grid granularity of a base is fixed in line with the resolutions of the

measuring devices for the corresponding spatial or temporal dimensions. This

implies any generated spatio-temporal coordinates can be precisely captured in

base, ensuring lossless mappings from sensor readings to the corresponding grid

points.

On top of the base, a set of perspectives can be defined by the user or inferred

by the system to reflect the user’s views over the data. These perspectives

typically have a coarser grid granularity than the base. There is no limit on

the number of perspectives in a given HyperGrid. Users can create as many

1Unfortunately, the term “grid” may also denote “grid computing” in computer science.
This is not what we mean here. A “grid” in our context refers to a data structure (similar
to “mesh”) for managing scientific dataset.

2A perspective in some ways is analogous to a view in traditional DBMS. However, we
deliberately use a different term here to distinguish it from a database view because the role
a perspective plays in HyperGrid is fundamentally different from the role a view plays in a
DBMS.
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perspectives as they want for their purposes.

The traditional grid structure only models objects in spatial domain. In

HyperGrid, each perspective also includes time as an additional dimension in the

grid space. From a data model point of view, temporal dimension is treated no

differently from a spatial dimension. However, scientific queries over temporal

space are more involved in query semantics especially for aggregations. We will

discuss these issues later in detail.

Like the traditional grid, each perspective is composed of two parts: a grid

topology and data values associated with it. The topology refers to the layout

of a grid. Essentially it defines how data are grouped along each spatial and

temporal dimension. The grid consists of cells that are regularly placed accord-

ing to the topology definition. Each cell can be seen as an abstract object that

represents certain spatial and temporal span. It is important to note each cell

is identified by the spatial and temporal coordinate of its “lower-left” corner

(imagine cell as a rectangular or an orthotope in a multi-dimensional space),

rather than their relative position index as in the array-based model. This is a

significant distinction between array and perspective. The coordinate not only

uniquely identifies each cell within a perspective, but more importantly, it asso-

ciates cells among different perspectives through their spatio-temporal context.

As we shall see, this can play a very important role in scientific computations.

A perspective is only instantiated when the grid topology is bound with

data. However, in what follows, we abuse the notation Pi to denote both

a perspective and its grid topology when there is no ambiguity. Hence, the

data value associated with a cell e ∈ Pi can be represented by Pi[e]. There

are various types of data values depending on different dimension aggregations
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they entail. As an example, data values for hourly average temperatures at a

given point in a geographical space is a 1-D aggregation because it only takes

aggregation on one dimension (i.e. the time dimension). Intuitively, data values

associated with an n-dimensional perspective can be from 0-D aggregation up

to n-D aggregation. The only exception is base, whose associated data must

be 0-D as it only stores data samples directly from the measuring devices. Our

current implementation allows each perspective to associate one type of data

value only. This makes transformations among perspectives neat and easy to

manipulate.

5.5 Operations

Following the approach of DBMS, we also try to propose a generic data pro-

cessing framework so that scientists could easily compose their routine data

processing tasks and, as will be seen later, some generic optimization tech-

niques could be applied to boost the processing performance. However, unlike

the operations in traditional DBMS, processing scientific data requires high de-

gree of customizability. This is actually one major reason why DBMS is not

prevalent in scientific applications. Therefore, we endeavor to design generic

but customizable operators, with which scientists could fill in their customized

functions to form the specific operator they need. By doing this, we can keep

the benefits of having a generic processing framework while providing the nec-

essary customizability.

HyperGrid adopts a transformation based framework; scientific data pro-

cessing is modeled as transformations among different perspectives. Hence, the
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essence of HyperGrid is a sound and flexible perspective construction so that

common data operations can be natively supported. In this section, we first de-

scribe the details of building a perspective, followed by an example to illustrate

how common operations are supported by such a construct.

5.5.1 Perspective Construction

The construction of a new perspective (called target perspective) Pt typically

requires one3 reference perspective (called source perspective) Ps from which

the new perspective is derived. To be clear, we will use subscripts t and s

to distinguish target and source perspectives respectively. Cells in target and

source perspectives are correspondingly referred to as target cells and source

cells in the rest of the chapter. Occasionally, the target and source perspectives

are also called child and parent perspectives, respectively, when the context

deems appropriate.

At the very outset, the base is used as the reference to create the first target

perspective. In addition to Ps, constructing a Pt may optionally require three

pieces of information: a topological definition Tt, a data function Dt and an

input selection function It (i.e. Pt = 〈Ps, Tt, Dt, It〉).

As mentioned before, a topological definition Tt gives the internal layout of

a grid. It determines the size and dimension of the cells within a perspective.

Depending on the type of the associated data values, a grid layout can have

different meanings. For example, when the associated data is a 0-D aggregation,

the layout simply sets the grid granularity. On the other hand, when the

3The only exception is perspective that implements Merge operation, in which case mul-
tiple source perspectives are required.
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associated data is a k-D aggregation (k > 0), the layout also serves as part

of the query semantic that instructs how data are grouped and aggregated.

Notably, a cell in a perspective inherits the characteristics of a traditional grid

cell which captures the structural regularity. However, the former embodies

a broader definition than the latter. A cell in a perspective is generalized as

a logical computation unit, which may not be visualized as a single block or

orthotope in a multidimensional space. For example, a cell can refer to a set

of unconnected blocks or orthotopes that collectively form a logical unit. Also,

neighboring cells need not be disjoint or adjacent as in traditional grid. They

are allowed to overlap or contain space between them (as in Example 5.9.1).

We will see how this generalized notion of cell benefits query construction,

especially for aggregation queries, later in Section 5.5.3.

Data function Dt is another important component for perspective construc-

tion. It implements a scientific operation by dictating how data are transformed

from Ps to Pt. The input of Dt are values associated with a set of source cells.

The output of Dt is the computed result for some target cell et. Various forms

of data functions for popular scientific operations are also discussed in detail in

Section 5.5.3.

The construction of a new perspective involves both topological transforma-

tion and data transformation. These are two closely related processes. Topology

conversion from Ts to Tt is implicitly performed through the output to input

mapping of the data function Dt. Notice the output of Dt corresponds to the

value of a cell confining to the topology Tt. However, the input of Dt is from

cells confining to the topology Ts. Although it is not always the case, for some

operations an explicit user-defined input selection function It is needed to in-
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struct how cells under Ts should be selected to compute a target cell under the

topology Tt. The function It takes one target cell et ∈ Pt as input and returns

as output the set of source cells {es|es ∈ Ps} that will contribute to computing

the value for the cell et.

As a final note, when a query is formulated as a series of perspective transfor-

mations, the last perspective in the series, called surface perspective (or simply

surface), defines the final query results. In addition to the parameters above, a

surface has one more optional parameter called clipping window, which defines

a scope in the spatial and temporal domains where only data points within the

defined window are returned.

5.5.2 Relationship Between Perspectives

Input selection function ensures data computation is carried out on the correct

data set. However, such function is often not necessary for constructing a new

perspective as long as the defined data transformation is Location Consistent

as defined below:

Definition 5.5.1 Let V (e) denote the scope of a cell e defined in the spatio-

temporal domain. And let It be the input selection function for some data

function Dt. The corresponding data transformation is said to be Location

Consistent (LC) if the following Location Equivalent condition holds:

V (et) =
⋃

es∈It(et)

V (es),
�� ��5.1

All other transformations that violate the Location Equivalent condition are
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Target Perspective Parameter Default value or rule

Source Perspective Ps the base
Topology Definition Tt Ts

Data Function Dt n.a. (compulsory parameter)
Input Selection Function It LC rule

Table 5.1: Default settings for perspective parameters

Operator Perspective # Topology Def. Data Func. Input Selection Func.

Convert One Default User defined Default (LC )
Merge Multiple Default User defined Default (LC )

Interpolate One New definition User defined User defined (LA)
Aggregate One New definition User defined Default (LC )

Table 5.2: Characteristics of perspectives for different operators

categorized as Location Across (LA) transformations.

The input selection function can be omitted for LC transformation be-

cause a target cell and its contributing source cells can be automatically paired

through their Space-Time Identity. Hence, user-defined input selection is only

required for perspective computed from LA transformations. Fortunately, as we

shall see later, most of the operations belong to LC transformations. Hence, by

exploring the important “location equivalent” relationship among perspectives,

operations can be defined in a more concise way. Moreover, the query executor

can also take advantage of the LC property to optimize the query execution,

as will be discussed in Section 5.7.2.

5.5.3 Operators

HyperGrid provides users great freedom to create their own data operations

through customized perspectives. We have described in the previous section
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that the definition of a perspective Pt is a quadruple 〈Ps, Tt, Dt, It〉. As exam-

ples, we show in this section how popular operations (convert, merge, interpo-

late and aggregate) in scientific sensor data processing can be readily supported

by this construct. Although four parameters need to be supplied for the stan-

dard definition, in practice some of the parameters (such as It as described in

the previous section) can be omitted by taking their default actions. Table 5.1

lists the default settings when the corresponding parameter is not specified. Ta-

ble 5.2 summarizes the characteristics of the perspectives implementing these

popular operations.

5.5.3.1. Convert

The convert operation converts data points in Ps to other values in Pt. The

operation can be used in different ways for different purposes. One simple usage

is to scale up or scale down values in the grid dataset by introducing a scaling

factor in the data transformation rule. As another example, in data preparation

phase, Convert can serve as a filter to clean corrupted sensor readings. This is

achieved by converting erroneous data in Ps to “NULL” or some default values

for the corresponding grid cell in Pt. A perspective that implements convert

duplicates the topology of the source perspective (i.e. the default setting) since

convert does not involve any structural change of the grid. Hence, other than

Ps, the data function Dt is the only parameter to be specified, which can be

formulated as follows:

Definition 5.5.2 Given Ts = Tt, let C denote the conversion function. The
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transformation rule Dt is:

Dt(e) = C(Ps[e]), ∀e ∈ Pt
�� ��5.2

In the above definition, both Ps and Pt refer to the topologies instead of

the entire perspectives. Because source and target perspectives share the same

topology (Ts = Tt), for each grid cell e in the target perspective grid, we can find

a corresponding data value associated with that cell in the source perspective.

5.5.3.2. Merge

Merge is the only operator which takes multiple perspectives as input. It

is often used for producing a model that integrates multiple types of measure-

ments, each represented by one source perspective. The operator enforces all

source perspectives to have the identical topology and produces one target per-

spective with the same topology. Similar to Convert, the data transformation

rule Dt is the only parameter to be customized, which can be defined as follows:

Definition 5.5.3 Given N is the number of source perspectives (N > 1), and

Tt = Tsi
,∀i ∈ N . Let d(e) denote the set of data values from {Psi

[e]| i ∈ N}.

The transformation function for Merge is:

Dt(e) = Γ(d(e)),∀e ∈ Pt
�� ��5.3

where Γ is a user defined function that merges the corresponding cells from each

of the source perspectives.

5.5.3.3. Interpolate
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In managing scientific data, especially environmental data, interpolation is

such a popular yet expensive operation that deserves particular attention. As

input are measurement readings, which are samples taken from continuously

running physical processes (such as solar radiation and wind speed), without

temporal interpolation it is very difficult to answer queries that ask for data at

some point in time when no measurements were taken. Analogously, meteoro-

logic phenomena monitored by WSN usually come with the “coverage-holes”

problem owing to the sparsity of the network or nodes failure. In the Sen-

sorScope project, to set up a sufficient number of sensing stations in order to

provide exhaustive coverage over a monitored region is infeasible due to pro-

hibitive deployment costs. Hence, scientists also resort to spatial interpolation

to generate a comprehensive data map for research and analysis.

Interpolation is a typical example of LA transformation. A perspective that

implements interpolation defines its own grid layout Tt and data transformation

rule Dt. Tt generates a set of new grid cells whose associated data values are

to be interpolated. Computation for the interpolated points are defined by

Dt, which comprises two steps. In the first step, a customized input selection

function It is used to select candidate grid cells from Ps that will contribute

to the computation for the grid cell in Pt. This is followed by applying a

computation function to data values associated with the candidate cells to

produce the interpolated result for the target cell in Pt.

Definition 5.5.4 Let It denote the input selection function for interpolation

and C denote the corresponding computation function. The transformation
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rule for Interpolation is:

Dt(et) = C(et,Φ, {Ps[es]| es ∈ It(et)}), ∀et ∈ Pt
�� ��5.4

where Φ is a statistical model based on which the interpolated value is calculated.

5.5.3.4. Aggregate

Scientific data processing involves extensive aggregation operations for two

reasons. Firstly, aggregation is used to compress sheer volume of data gen-

erated by the measuring devices to a manageable level. Secondly, scientific

observations or assertions are typically supported by statistically significant

data computed by certain aggregation functions rather than individual data

readings.

Here we focus on aggregations with “group-by” clause on temporal or spa-

tial attributes only since a predominant number of queries belong to this type.

The HyperGrid model natively supports spatio-temporal data aggregation be-

cause n-D data in a perspective essentially represents the n-D volume of the

corresponding spatio-temporal span defined by its associated grid cell. This

implies that for an aggregation perspective, the target topology Tt constitutes

an important part of the aggregation semantic. Notably, each grid cell is an

abstracted spatio-temporal notion, which may not be necessarily visualized as a

single block or orthotope as in the traditional grid. This generalizes the concept

of grid cell and gives user great flexibility to construct the “group-by” criteria.

For example, user may want to know the breakdown by each hour the average

temperature for a given region for the past 30 days, e.g., the average tempera-

ture of the past 30 days between 00 : 00 and 00 : 59, between 01 : 00 and 01 : 59,

134



5.5. OPERATIONS

etc. Such queries are difficult to model by traditional grid constructs since each

grid cell in the result set refers to 30 segregated spatio-temporal blocks which

are evenly spaced by 24 hours in the time domain. A HyperGrid model allows

multiple physically segregated blocks to form a single logical cell because in

HyperGrid each cell is characterized by its spatial and temporal features, not

just by a single cell boundary specification.

Like interpolation, the data transformation for an aggregation perspective

is also a two-step approach. However, for the input selection step, user defined

function is no longer required since aggregation belongs to LC data transfor-

mation. For the computation step, it simply applies an aggregation algebra

(SUM, AVG etc.) to the candidate cells that transforms the k-D data in Ps

to (k + m)-D data in the corresponding cell in Tt, where m is the number of

dimensions whose associated values are aggregated.

Definition 5.5.5 Let ILE(et) denote the function that returns the set of source

cells that collectively define the location equivalent scope as that of et in the

spatio-temporal domain. And let C be the function that implements the aggre-

gation algebra. Then the data function Dt can be formulated as:

Dt(et) = C({Ps[es]| es ∈ ILE(et)}),∀et ∈ Pt
�� ��5.5

5.5.3.5. Other operations

The perspective construction is a generalized notion which captures the

transformation-based operations over grid data. In fact, the model is flexible

enough to express more sophisticated operations other than the standard op-

erations described above. Essentially, any grid-based operations that can be
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Figure 5.2: Illustration of the query execution in Example 5.3.1

characterized as topological change, data change, or both are supported by the

construct.

5.5.4 Illustrative Example

With reference to our previous motivating example 5.3.1, given the above defini-

tions, we can organize the required operations into a query tree, which consists

of a series of data transformations from the base all the way to the surface (i.e.,
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the output) as shown on the left of Figure 5.2. Each box in the graph represents

a perspective that implements one scientific operation. Arrows pointing from

source perspective to target perspective represent the data flow. Inside each

box, there are three parameters separated by comma. They represent, from

left to right, topology definition, data function and input selection function.

If a default is taken, the parameter is replaced by a “*” in the corresponding

position. A graphical illustration of the query execution is shown on the right

of Figure 5.2.

5.6 Query Execution Strategies

There are two basic execution strategies: “top-down” and “bottom-up”. The

“top-down” strategy initiates the computation at the base perspective. The

executor follows the data flow and materializes each of the perspectives one by

one along the query tree. As an example, for the query plan in Figure 5.2, the

executor first materializes the child perspective of the base (i.e. the Convert

perspective), and then uses the obtained results as the source to compute the

next level perspective and so on, until the surface is reached. However, a big

drawback of this strategy is that the “top-down” computation leads to blocking

execution; no output will be produced until the final surface perspective starts

being materialized.

On the contrary, in “bottom-up” strategy, the computation begins at the

surface and carries out upward in a pipelined manner: For each target cell

in the surface, the contributing source cells in its parent perspective need to

be computed first. Then, for each of these source cells, it in turn has to call
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the cells in its parent perspective to get itself computed. This continues until

the base is reached with the actual values getting returned. The whole process

essentially resembles the iterator model [76] in traditional DBMS. Different from

“top-down” approach, “bottom-up” strategy does not require any intermediate

perspective to be materialized and it produces results in a progressive way

(like online query processing). This is desirable because it allows scientists to

terminate the processing prematurely if they are dissatisfied with the partially

produced answer.

However, “bottom-up” strategy is not a very efficient approach (which will

be explained in Section 5.7.2). Therefore, what HyperGrid actually adopts is

a hybrid strategy which combines the “bottom-up” with the “top-down”. We

call it hybrid-k, which means for a query plan with N perspectives, the top k

perspectives in the query tree are computed first in the “top-down” manner

while the lower (N−k) perspectives are then computed using the “bottom-up”

method. In fact, the pure “top-down” and “bottom-up” approach can be seen

as the special cases of the hybrid-k strategy, where the “top-down” corresponds

to hybrid-N and the “bottom-up” corresponds to hybrid-0, respectively. In

Section 5.7.2, we will explain in detail why hybrid-k strategy is superior and

how to determine the optimal k value for a given query plan.

5.7 Optimization Techniques

As scientific queries usually take as input an enormous amount of data and pro-

cess them with expensive user-defined functions, how efficiently these queries

can be executed becomes a critical issue. In this section we explore oppor-
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tunities to optimize scientific query executions under the generic HyperGrid

model.

5.7.1 Preprocessing and Query Rewrite

By preprocessing the original query plan, a series of perspective transformations

can be rewritten in a succinct fashion. The goal of query rewrite is to produce a

more economic plan that leads to reduced runtime costs without compromising

the output quality. One effective approach is to coalesce adjacent perspectives

in a query plan. The benefit of perspective coalescence is evident. Firstly, with

fewer perspectives, the number of function invocations is reduced. Because the

number of function invocations for each perspective computation is proportional

to the number of cells in that perspective, minimizing the total number of

perspectives leads to considerable savings in terms of function call overheads.

Secondly, the amount of buffered intermediate results is also reduced with fewer

number of perspectives. Scientific computations may generate intermediate

data that are too huge to be buffered in the memory. Hence, the reduction of

intermediate results may directly amount to the reduction in disk I/O.

Of course, it is not always possible to coalese any pair of adjacent per-

spectives in a query plan. At least one of the perspectives has to be coalesce-

amenable in order to ensure query results are not compromised therefrom. A

perspective is said to be coalesce-amenable if it uses default topology defini-

tion and LC transformation. For example, any perspective that implements

the convert is coalesce-amenable. A coalesce-amenable perspective is free to

choose to combine either with its parent perspective or with its child per-
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spective. The coalescence process involves two steps: 1) map the topology

of the parent perspective to the topology of its child; 2) merge data transfor-

mation functions through function composition. For example, given a coalesce-

amenable perspective Pk = 〈Pj, ”default”, Dk, ”default”〉 and its parent per-

spective Pj = 〈Pi, Tj, Dj, Ij〉, they can be combined to form a new perspective

Pm = 〈Pi, Tj, Dm, Ij〉, where Dm = Dj ◦Dk (◦ denotes function composition).

Similarly, if Pl = 〈Pk, Tl, Dl, Tl〉 is the child perspective of Pk, it is also possible

to coalesce Pk with Pl to produce Pn = 〈Pj, Tl, Dn, Il〉, where Dn = Dk ◦Dl. If

the resultant perspective is still coalesce-amenable, it can continue to coalesce

with its adjacent perspective. A query rewriter scans through a query plan

and performs perspective coalescence until there is no more coalesce-amenable

perspective existing in the plan or the plan is left with only one perspective.

For the query in Example 5.3.1, the query rewriter will coalesce the convert

and align operators after the preprocessing.

5.7.2 Optimizing Query Execution

Section 5.6 has introduced two basic query execution strategies. The “bottom-

up” approach is generally preferred over the “top-down” approach because the

former allows query results to be produced in a progressive way. However, in

practice, we find the “bottom-up” strategy may not be very efficient for two

reasons. Firstly, it may lead to significant redundant computations. Secondly, a

“bottom-up” execution may involve some “dull” computations which are useless

to the query result. We explain these two issues and propose optimization

techniques to tackle them in the following two subsections.
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5.7.2.1. Iterator with buffering

The first problem with the “bottom-up” strategy is redundant computa-

tions. When a target cell in the child perspective requests the value for some

cell in the parent perspective, the system would not know whether the same

value has been computed before because nothing is saved or materialized in

a “bottom-up” execution. Every data request will be computed from scratch

following the iterator model. However, we show in this section that deliberate

buffering strategy and intelligent choice of order in producing the cells of the

surface perspective can effectively minimize such redundant computations.

Before delving into the details of the optimization techniques, let us first

look at a strategy alternative to the basic iterator model. We attach a buffer for

each intermediate perspective in the query tree. During the iteration, when-

ever a NextCell() function (analogous to the Next() function in an iterator)

is returned, the results are stored in the attached buffer of the corresponding

perspective. If, at a later time, the value of the same cell is requested again,

the system can obtain the result directly from the buffer without recursively

invoking the next level NextCell() function for the second time. Obviously, the

buffering strategy avoids expensive redundant computations and hence reduces

the query latency provided there are sufficient memory space to hold the in-

termediate results. Therefore, the crux of this approach is an efficient buffer

strategy with low memory overheads and high hit ratio.

When a query only involves LC transformations, such buffer strategy is

relatively easy to design, thanks to the topological regularity and cell’s spatio-

temporal identity that effectively correlate the perspectives in a query tree4.

4It is worth noting that this buffer strategy is only meaningful when cells in the output
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The spatio-temporal identity allows the system to identify cells in ancestor

perspectives that contribute to the target cells to be computed. The topological

regularity makes it possible to produce ordered output with respect to any

spatial or temporal dimensions.

To ease exposition, we define what we call Candidates Window (CW) here.

A CW defines a dynamic subspace of a perspective where cells subsumed by

this space may potentially contribute to the future output. Notably, if all trans-

formations are location consistent (LC), then perspectives along the query path

will all share the same CW. In the beginning when the computation has not

started, the CW is essentially the clipping window (refer to Section 5.5.1) de-

fined in the surface and buffers attached to each intermediate perspective are

empty. The buffers begin to be filled with intermediate results when the com-

putation starts. For CW, it starts to shrink as more output cells have been

generated. Eventually, the size of CW reduces to zero when computation com-

pletes. Because buffers attached to each perspective only need to cache results

for cells contained in the current CW, the buffer manager regularly expires

cells in the buffer whose location (identified by its spatio-temporal coordinate)

has fallen out of the latest CW. This strikes a dynamic balance such that the

buffer size remains stable. Obviously, the space efficiency of the above buffering

scheme depends on how fast CW shrinks with respect to the growing interme-

diate results during runtime, which in turn is determined by the order of the

output sequence. For example, if output cells are generated in time ascending

perspective are overlapping. Otherwise, no buffer is needed because intermediate results will
not be shared among output cells that are disjoint. A query executor can easily determine
whether cells in the output perspective overlap and decide the necessity of enabling the buffer
strategy.
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order, then CW will shrink steadily along time dimension from the lower end

of the clipping window to the higher end during the query execution. Notice-

ably, buffer management using CW ensures optimized hit ratio because data

discarded by the buffer is guaranteed not to be requested again by the sub-

sequent computations. Also fine-grained buffer control is possible to improve

space efficiency by taking multiple space-time dimensions as the sorting keys.

In that case, the choice of dimension as the primary sorting key has the largest

impact the total buffer size needed for the query execution.

When a query plan includes perspectives with LA transformations, however,

optimal hit ratio can hardly be guaranteed for buffers corresponding to perspec-

tives ascendant to the LA transformation perspective. That is because an LA

transformation runs user-defined input selection function, which can choose any

cells from its source perspective. This renders CW -based buffer strategy use-

less because the location equivalent property no longer holds. Nevertheless, we

observe that most user-defined input selection criteria are not completely arbi-

trary. In fact, almost all of them exhibit certain locality property. This inspires

us to use a lookahead heuristic to replace the CW -based buffer strategy for LA

transformations. The idea is to run the input selection function in advance of

the actual data computation for the target cells. By looking ahead the set of

source cells that will be used to compute the next few target cells, the buffer

manager can make intelligent decisions by only caching the results for the top

k most referenced source cells (provided their results have already been com-

puted previously). Owing to locality property, target cells in the vicinity are

likely to share a big portion of source cells. This makes the lookahead approach

practically effective in many cases.
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5.7.2.2. The hybrid-k strategy

We also find the “bottom-up” strategy could sometimes involve “dull” com-

putations which are useless to the query result. The reason for this has to do

with the underlying structure for data storage. When a defined perspective

contains a lot of holes (i.e. when the valid data point density of a perspective is

low), for space efficiency the system will choose sparse array to represent that

perspective, instead of an ordinary array. Note that an important character-

istic of a typical HyperGrid query is that the density of valid data points of

perspectives along a query path is often in non-decreasing order from the base

to the surface. (Particularly, if a query involves interpolation, all descendent

perspectives will have data point density of 100% since there will be no holes

in the perspective after interpolating the space.) Hence, a typical scenario is

that the system switches from sparse array implementation to ordinary array

implementation for some perspective along the query path and continues to use

ordinary array up to the surface.

Now consider the “bottom-up” strategy which iterates the computation from

the surface to some perspective with very low data point density. It is very

likely that the requested cell is a hole, which does not associate a valid data.

However, under the “bottom-up” strategy the system would not know this,

and the iteration therefore continues until the base is reached. As a result,

some NULL values are returned and resources are wasted on computing some-

thing with NULL as input. In comparison, the “top-down” approach does not

have this problem. This is because in “top-down” execution, perspectives are

materialized as a whole one by one from the base downward. Computing

a new perspective from a materialized sparse array only involves computa-
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tions on those valid data points. One concern here, however, is that by using

“top-down”, it violates our initial requirement of generating the results in a

progressive way since “top-down” execution is a blocking process. Therefore,

the hybrid-k strategy comes into the picture. Because perspectives near the top

of a query tree can have very low data point density (typically less than 0.05),

materializing them may not sacrifice much in terms of query responsiveness.

The objective here is to strike a balance between “top-down” and “bottom-up”

strategy (i.e. to find an optimal k value) so that the query’s average response

time is minimized (the metric we use to measure user’s satisfaction). We first

formally define the average response time for a given query as follows:

Definition 5.7.1 Let R(e) denote the latency from the time when computation

for a query’s surface perspective starts to the time when one of its output cell

e is produced, the average response time for that query is defined as:

∑
R(e)

nsf
,∀e ∈ Psf

�� ��5.6

where Psf denotes the surface perspective and nsf is the total number of output

cells in Psf

In the “bottom-up” strategy, we have the following recurrence relationship:

 R(e1) = r(e1)

R(em) = R(em−1) + r(em)
∀em ∈ Psf ,m > 1

�� ��5.7

where r(em) is the latency from the request to compute the cell em is generated

at the surface until the result is returned. Intuitively, r(em) =
∑N

i=1 ri(em)
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where ri(em) is the time taken to compute em at perspective i and N is the

total number of perspectives. Assume the buffering strategy described in the

previous section is enabled. Also for simplicity, assume ri(em) to be equal for all

em ∈ Psf (say, it is µi). Then the average response time using the “bottom-up”

strategy can be estimated as:

(nsf + 1)
∑N

i=1 µi
2

, N is the total number of perspectives
�� ��5.8

On the other hand, if we choose to compute the first top k perspectives from

the base in a “top-down” manner and the rest N − k perspectives still using

the “bottom-up” approach, we obtain the following average response time:

k∑
j=1

ρjnjµj +
(nsf + 1)

∑N
i=k+1 µi

2

�� ��5.9

Given ρu ≤ ρv, 1 ≤ u < v ≤ N

In the above equation, ρj is the data point density of perspective j. It is a

value between 0 and 1. nj is the total number of cells in perspective j. As can

be seen, whether a perspective should be computed “top-down” or “bottom-

up” really depends on the value ρ. That is the density of the array for the

corresponding perspective. Using equation 5.9, the optimizer can determine

the optimal k value so that the average response time is minimized.

5.7.3 Optimization for Visualization

The previous sections introduce several optimization techniques to reduce the

query execution costs or average response time. However, these are not the
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only goals for an optimizer. Scientific research often involves tasks such as

to discover unusual trend or pattern from a dataset or to collect evidence for

supporting new hypotheses, etc. For these purposes, scientists need to filter

useful information from numerous test cases by running a large number of

exploratory queries or ”what-if” queries. A pure cost-based optimizer is deemed

inappropriate for such scenario especially under interactive mode where user is

sitting in front of the monitor waiting for the results to be visualized. This is

because in cost-based optimization, output cells have to be produced in an order

by space or time dimension. This leads to results generated in a raster manner.

A big disadvantage of this is user will not be able to get a rough idea of how the

results look like until the majority of the cells have been computed. Probably

the following comment well describes what is actually desired for a visualization

output: “Overview first, zoom and filter, then details on demand” [83]. In our

case, an overview means to provide the insight instead of the the accurate

answer for each output cell. This implies the computation should prioritize

“interesting” regions in the surface perspective that would help reveal global

trend or unusual patterns etc. The definition of “interesting” here is context-

dependent. But often, it refers to portions in the result set where data values

have greater variations. An ideal executor should focus on these portions and

progressively refine the answers if the user continues to be interested.

While a plethora of optimization techniques have been proposed for sci-

entific visualization (see [84] for an excellent overview on the state-of-the-art

techniques), we choose to propose a simple but effective algorithm for our ap-

plication. The purpose is to show HyperGrid can facilitate efficient scientific

visualization. More sophisticated visualization techniques may be included in
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Algorithm 9 A directed random walk algorithm for visualization
Notations:
Pi: vector representation of the location of cell i
vi: value of cell i
s: default stride for one step of walk

1: Randomly select a cell P1 with s distance away from the starting cell P0.
2: i := 1
3: loop
4: if IsComputed(Pi) == false then
5: vi := ComputeCell(Pi)
6: else
7: vi := OutputBuffer(Pi) /* directly retrieve the results from output

buffer without recomputing */
8: end if
9: if f(vi, vi−1) > threshold then

10: U := Normalize(Pi−1 − Pi) /* unit vector with direction from cell i
to cell (i− 1) */

11: else
12: U := Normalize(Pi − Pi−1)
13: end if
14: Pi+1 := Pi + Rand(0, 1) × s × RandGauss(U, g(vi − vi−1)) /* random

walk */
15: if num of computed cells ≥ c· total num of cells then
16: break
17: end if
18: i := i+ 1
19: end loop
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the future when need arises. The algorithm we proposed, called directed ran-

dom walk, is summarized as follows: The executor first randomly selects k cells

that are uniformly distributed in the surface perspective. Then starting from

each of the k cells, a directed random walk is performed to pick the next cell to

compute. The details are sketched in Algorithm 9. Whenever a step is taken, a

new cell (Pi) is selected and its value (vi) gets computed (lines 4-7). The value

(vi), together with the value of the cell where the random step is taken from

(i.e. vi−1), is fed into a function to evaluate the interestingness of the region. If

the returned value is greater than the threshold (line 9), it means more cells be-

tween the two (Pi−1 and Pi) need to be visited. The direction of the next step of

the random walk is therefore set to have a mean U facing towards the previous

cell (line 10). Otherwise, the mean direction will be a reversed one (line 12).

The actual direction for the next step is determined by function RandGauss()

which returns a random unit vector following Gaussian distribution with mean

U and variance a function of the difference between vi and vi−1 (line 14). The

query executor runs k random walks in an interleaving fashion and terminates

when user interrupts or a certain percentage (typically less than 50%) of the

total output cells have been produced (lines 15-16). At this stage, the users

should already have a very good overview of the query results. If the execution

has not been terminated, it means a complete and accurate result is needed.

In that case, the executor reverts to the strategy described in Section 5.7.2 to

compute the remaining output cells.
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5.8 Experimental Setup

In this section we describe our prototype system as well as the query and dataset

used to experimentally evaluate the HyperGrid model.

5.8.1 Implementation

As an application specifically designed for processing scientific environmen-

tal data, we choose to build the system using Mathematica [70], rather than a

general-purpose programming tool such as C or Java. There are three main rea-

sons for this choice: Firstly, Mathematica, as an excellent tool for mathematical

computations, has the built-in capability to optimize numerical computations,

which makes it particularly suitable for processing computationally intensive

scientific operations. With Mathematica, we can save efforts from finding the

best algorithms for solving particular mathematical problems and focus on the

query processing aspect of the system. Secondly, an important feature of Math-

ematica, which general-purpose programming tools do not provide directly, is

the powerful support for symbolic computation. It allows physical models to be

manipulated precisely throughout the computation. Finally, we choose Math-

ematica because it is the tool many scientists often use and hence are already

familiar with. So it would be easier for them to maintain and extend the system

when necessary in the future.

The system consists of three main components: a query engine, an optimizer

and a user interface. The query engine is the core of the system. It executes

a query plan according to the given execution strategy. For each operation

in the plan, the engine compiles the topology and data specifications given
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in the source and target perspectives, and performs the data transformations

accordingly when the operation is invoked. The optimizer does a few things:

rewrites the query, computes the optimal execution strategy, interacts with the

engine to implement the buffering strategy and schedules the output sequence

as discussed in Section 5.7. Lastly, a user interface is provided to allow user to

specify perspectives, including customized user-defined data and input selection

functions. So far, all user-defined functions need to be written in mathematica

code. However, with MathLink [71], a generalized application interface provided

by Mathematica, we do not see big obstacles to incorporate the current system

with user-defined functions in C, Java or other languages.

To evaluate the performance of the HyperGrid system, we also implemented

a pure array-based approach using Mathematica for comparison. The array-

based approach represents the traditional way in which scientific data is pro-

cessed to answer a query. There is no integrated query engine which automates

the step-by-step data transformations to reach the final answer. Instead, the

program offers functions to perform each individual data transformation oper-

ation, such as convert, merge and interpolate. Hence, user needs to manually

organize the query plan tree. In addition, because an array-based approach

only performs computations between arrays without the spatial and temporal

context, an external function is required to translate the spatio-temporal points

to the corresponding array representation for each data transformation as well

as any physical model involved.
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Query ID Query Description
Q1 as Illustrated in Example 5.3.1
Q2 Same as Q1 except the measurement type changes

from “ambient temperature” to “watermark”
Q3 Same as Q1 except the clipping window along

the time dimension is increased by 100%
Q4 Same as Q1 except the clipping window along latitude and

longitude dimensions are increased by (
√

2− 1) respectively
Q5 as Illustrated in Example 5.9.1

Table 5.3: Query set description

5.8.2 Dataset

The data we use for our experiments were collected from a SensorScope network

which was deployed at the Grand-St-Bernard pass in Western Alps at 2400 m in

September and October 2007 to monitor the ecological condition of the region.

There are totally nine types of meteorologic measurements, namely ambient

temperature, surface temperature, humidity, solar radiation, soil moisture, wa-

termark, rain meter, wind speed and direction. Each type of measurements

consists of over 588, 000 data points. And each data point can be identified by

the time and the location where it was measured.

5.8.3 Query Set

We use two categories of queries for our experiments. The first category con-

sists of the query in Example 5.3.1 and its variants (details are described in

Table 5.3). They represent routine queries which scientists use frequently to

compute statistical information about the data. Typical steps of routine queries

include data cleaning (through convert), alignment (through aggregate), inter-

152



5.9. PERFORMANCE EVALUATION

polation (through interpolate) as well as other query-specific operations. The

second category simulates the scenario where user wants to explore the data

through visualization. We use the query in Example 5.3.2 for our experiment.

5.9 Performance Evaluation

The performance evaluation has two objectives. Firstly, we would like to as-

sess the usability of HyperGrid as a tool to manage scientific environmental

data, and compare it against the traditional array-based method. Secondly, we

want to evaluate the effectiveness of our proposed optimization strategies in

improving the users’ experience when they use the system.

All the experiments were conducted on a 2.33 GHz Intel dual core machine

with 4 GBs of memory running windows XP.
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Figure 5.3: HyperGrid (HG) Vs. Array (AR)

5.9.1 Routine Query Execution

Figure 5.3 reports the overall runtime performance of the native HyperGrid (us-

ing “bottom-up” strategy without any optimization) implementation and the
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array-based implementation for four different routine queries. Q2, Q3 and Q4

are variants of Q1 that vary the workload by either changing the measurement

type or the spatio-temporal scope of the surface. In all the cases, the queries go

through four data transformations (convert, align, interpolate and aggregate).

From the figure, it is evident that interpolate always takes up the majority of

the run time. This is because interpolation often comes with expensive user-

defined data and input selection functions. In our experiments, we adopt the

kriging model for interpolation. It uses an adapted k-nearest neighbor (k-NN)

algorithm as the input selection function and a variogram model to estimate the

degree of dependence between data points. Typically, some 15 to 22 neighbors

are selected and used in the variogram for each target cell to be interpolated.

Comparatively, other operations use either the built-in data functions or user-

defined functions with much lower complexity, hence they consume significantly

less CPU.

5.9.2 HyperGrid vs. Array-based Implementation

The plot corresponding to array-based implementation (referred as “AR”) in

Figure 5.3 assumes the ideal scenario that human efforts for writing external

functions (for each data transformations in the query plan) to translate spa-

tial and temporal coordinates to the array elements are assumed to be zero.

However, in practice this is often a tedious and time-consuming task, which

cannot be quantified and reflected in the figure. Even with this unrealistic

assumption (by ignoring all hidden costs incurred in array-based processing),

HyperGrid (referred as “HG”) only takes slightly longer time (less than 8%)
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than array-based implementation for all the test cases. This indicates that the

HyperGrid model indeed incurs little overheads to the system. More impor-

tantly, by unifying all operations in a standard way and automating the entire

query process, HyperGrid can explore optimization opportunities and further

boost the runtime performance as illustrated in the next few sections.
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Figure 5.4: Effect of query rewrite

5.9.3 Query Rewrite

Figure 5.4 compares the runtime performance between HyperGrid query plans

with and without query rewrite. We can see for all the test queries, the convert

and the align perspectives are coalesced after the rewrite. And the rewritten

plan (denoted by “HGRW”) clearly runs faster than the original one for all

the cases. However, the improvement is not very impressive. This is because

the execution cost to compute the convert and the align perspectives does not

constitute a significant portion of the total cost. If we break down the total

runtime cost, for example Q1, we can see that the time taken to compute

convert and the align in total is dropped from 341 sec to 245 sec. The saving

is actually quite substantial.
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5.9.4 Buffering Strategy

Next, we evaluate the performance of the buffering strategy proposed in Sec-

tion 5.7.2. The left part of Figure 5.5 depicts the runtime comparison between

HyperGrid with buffering and two other approaches (native HyperGrid and

array-based approach) for query Q1. It shows the buffered HyperGrid strategy

does not improve the total runtime cost. This is expected because in Q1, all

cells in the surface do not overlap in the spatio-temporal domain. It means

the buffering strategy proposed in Section 5.7.2 would not be beneficial here

because no previously computed results are reused. In order to evaluate the

proposed buffer strategy for the case where output cells are overlapping in the

spatio-temporal domain. We consider a new query variant as follows:

Example 5.9.1 Return the ambient temperature averaged over 15-minute in-

terval for the period from 2007-10-01 00:00 to 2007-10-04 00:00 and for the

region [45◦52′1′′N, 45◦52′23′′N] in latitude and [7◦10′37′′E, 7◦10′59′′E] in lon-

gitude on a 1′′ × 1′′ grid. The result should be updated every 5 minutes.
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The fundamental difference between Q1 and the above query (Q5) is that

Q5 averages the data points over 15-minute interval instead of the entire three

days. And a new result is generated for every 5-minute advancement along

the time dimension. The output of Q5 essentially corresponds to results from

a sliding window over time dimension with window size of “15-minute” and

sliding step of “5-minute”. This means each pair of the adjacent cells in the

surface overlaps by “10-minute” on the temporal space. Experimental results

of running Q5 is shown on the right of Figure 5.5. As expected, buffered

HyperGrid strategy achieves significant runtime reduction this time owing to

the effective buffer strategy that avoids doing the redundant computations. On

the other hand, the native HyperGrid approach and the array-based method

require much more time to process the query due to their inability to recognize

and reuse previously computed intermediate results.
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Figure 5.7: Optimizing execution strategy (average response time)

5.9.5 Optimizing Execution Strategy

Figures 5.6 and 5.7 depict the performance of all possible execution strategies

for Q1 in terms of total runtime cost and average response time respectively.

No other optimization technique, such as query rewrite, is enabled for this test

case. So there will be 4 perspectives in the query plan and hence 5 possible

execution strategies (from hybrid-0 to hybrid-4). Hybrid-0 is essentially the

“bottom-up” strategy and hybrid-4 is the “top-down” strategy. In terms of the

total runtime cost (Figure 5.6), hybrid-0 gives the worst performance due to

the two reasons explained in section 5.7.2. The total run time gets reduced as

more perspectives are computed in a “top-down” manner. It is no surprise that

hybrid-4 gives the shortest total runtime. However, in terms of the average

response time (which we think is the critical metric), hybrid-4 performs the

worst. This is because no output cells are produced until the last perspective

(i.e. the surface) starts to be computed. We can see from the figure that based

on the cost model given in Section 5.7.2, the optimizer successfully finds the

optimal execution strategy (in this case, hybrid-2) for the given query.
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5.9.6 Visualization Optimization

Lastly, we evaluate the optimization strategy for visualization proposed in Sec-

tion 5.7.3. We use the scenario in Example 5.3.2 for this experiment. Basically

the user needs to visualize the output of the hourly average rainfall rate together

with the hourly average solar radiation values to discover whether the two are

correlated. Figure 5.8 shows the results produced by the directed random walk

approach which only computes 15% of the total output cells. The remaining

85% of the cells in the figure are obtained by applying a simple smoothing

function. For comparison, the actual accurate output (with 100% output cells

computed from the dataset) is shown in Figure 5.9. In both figures, the graph

on the top indicates the hourly average rainfall rate for a period of 28 days

(from Sep 20 to Oct 17 as indicated in the horizontal axis). Hour of a day

is indicated in the vertical axis. The graph below is the corresponding solar
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radiation values during this period. As we can see, three rainfall events (E1,

E2, E3) are identified from the rainfall rate graph. Each event is highlighted

by a pair of white vertical bars that run across both graphs. In the solar ra-

diation graph (either the one in Figure 5.8 or Figure 5.9), we can see that the

values during the period of the rainfall events (especially E1 and E3) are lower

(darker color) than other days for the same hour. This hints that rainfall and

solar radiation are very likely to be correlated for this region. By comparing

Figure 5.8 and Figure 5.9, we can see that most of the trends or patterns ex-

hibited in Figure 5.9 can also be found in Figure 5.8. This clearly indicates

that the directed random walk algorithm does a very good job in simulating

the actual results by processing only a small fraction (15% in this example) of

the output cells. Figure 5.10 reports the runtime costs for generating the two

figures. For both the rainfall and solar radiation datasets, the time required by

the directed random walk algorithm to simulate the results is less than 1/5 of

the time needed by the cost-based optimization algorithm to compute the full

results. This shows the directed random walk algorithm can greatly improve

the data exploration efficiency in many instances.
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5.10 Data-driven Memory Management for Hyper-

Grid

5.10.1 Implementing Dynamic Base Perspectives

In the above experiments, we assume queries only access historical data which

are stored as local files. That means all the inputs required to build the base

perspective are already available before the queries are issued. This is, however,

not applicable to continuous queries where the input involves real-time streams.

In that case, the base becomes a dynamic data structure which updates as new

sensor input flows in.

Note when dealing with real-time streams, many scientific queries impose a

strict temporal requirement on the update pattern of the base. More specifically,

a base perspective often needs to be updated in a monotonically increasing

manner on time dimension. As an example, consider a query which monitors

temperature variation by comparing the latest temperature value with the one

previously reported and alerts if their difference is greater than ∆. The input

sequence received by the query processor is crucial to the correctness of the

query result. In this case, each involved perspective including the base has to

be updated in an order determined by the inputs’ timestamp values.

Typically, a perspective comprises data from multiple sources. For exam-

ple, for a query which continuously updates the latest average temperature for

a given region R, the inputs involved to build the base perspective embrace

measurements from all the sensor stations deployed in that region with each
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Figure 5.11: Illustration of a dynamic base perspective

station being an independent stream generator. To combine multiple real-time

streams to build a base perspective requires an implicit synchronization proce-

dure which joins data from different streams on their timestamp values. This

is a necessary step to ensure the base’s update follows temporal monotonicity.

Figure 5.11 elaborates this in more details. The figure shows a graphical il-

lustration of a dynamic base perspective. In the given scenario the region R

includes seven input streams (S1 to S7). Each stream aperiodically transmits

the latest sensor reading to the central server where the base is built. Due to

transmission delay and unreliable communication channels, data may not be or-
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dered according to their timestamp values and there may be lags among inputs

from different streams. The synchronization procedure essentially organizes the

scrambled data by sorting them in order and joining them together. Each joined

result forms a time-slice of the data map for the region R. Figure 5.11 shows

four such time-slices (t0 to t3). Each contains several data readings with the

same timestamp values. A base perspective is updated slice by slice along the

time axis. In our example, time-slice t0 is appended to the base first, followed

by time-slice t1, then t2 and so on.

5.10.2 Using Data-driven Memory Management

The data-driven memory management scheme discussed in Chapter 3 can be

very useful here for building dynamic base perspectives with monotonic tempo-

ral update. By exploring properties such as intra-stream delay and inter-stream

delay, the processor is able to perform the data synchronization with much less

memory overhead. To verify the effectiveness of data-driven memory manage-

ment in the context of a HyperGrid system, we set up the following experiment:

We use the same input data set as described in Section 5.8.2. But this time,

instead of directly consumed by the HyperGrid processor, the inputs are sent

to a stream generator, which reproduces the sensor data as streams with cus-

tomized Scrambling Factor (SF ) and Lag. The value of SF for each stream

is between 0 and 200 and the Lags among the streams are between 0 min and

10 min. We compare the memory consumption of producing the dynamic base

with and without using our data-driven memory management strategy. When

the data-driven memory management strategy is not used, a fixed window is
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Input Data Scrambling Average Memory Saving

SF = 0; Lag = 0 0%
SF between 0 and 200; Lag = 0 46%

SF = 0; Lag between 0 min and 120 min 12%
SF between 0 and 200; Lag between 0 min and 10 min 61%

Table 5.4: Average memory saving with the data-driven memory management
scheme

employed for each input to buffer the stream tuples. The window size is set to

be just large enough to ensure similar output quality as the data-driven memory

management strategy can be produced. Table 5.4 summarizes the results. The

table lists on average how many percentages of memory space can be saved

by using the data-driven strategy. Evidently, the savings are substantial for

disordered or unsynchronized streams.

5.11 Multi-Query Scheduling in HyperGrid

In Section 5.7.2, we discussed several alternative ways to execute a query in Hy-

perGrid (“top-down”, “bottom-up” and “hybrid-k”) and compared their differ-

ences. This is in fact an intra-query scheduling issue. When there are multiple

queries running concurrently in the system, the issue of inter-query scheduling

deserves equal attention. Running scientific queries can be very costly. Hence

a smart choice of execution among different queries is crucial when the work-

load is heavy. This is especially true for applications where prompt delivery of

output are vital for some queries.

In Chapter 4, we introduced several multi-query scheduling strategies for

data stream applications. Some of them can be readily employed in Hyper-
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Grid as well. Compared to general data stream scheduling, some noticeable

differences in HyperGrid scheduling are as follows. First, the reevaluation of a

continuous query in HyperGrid is triggered by an update of the base perspec-

tive. While in general stream scheduling, query evaluation is triggered by a

new arriving tuple. This implies that in order to apply our previously proposed

job scheduling strategies in HyperGrid, the job triggering event should be the

presence of a new time-slice in the base perspective instead of the arrival of a

new input tuple. Second, scientific queries may not impose hard deadlines on

output delivery. Instead, they require results to be delivered as soon as possi-

ble. This means deadline-aware strategies are less appropriate here since their

scheduling decisions are heavily influenced by the deadline values.

Hence, in the following experiment we focus on greedy scheduling strate-

gies (specifically, the basic strategy and the OptProfit strategy discussed in

Section 4.6) that prioritize queries mainly by their importance and are less

sensitive to deadlines. We use the same experimental set up described in Sec-

tion 5.10.2 for the input data preparation. The queries used in the experiments

are generated randomly. Each query contains two to four perspective trans-

formations. Depending on the type of usage, the queries are classified into

three categories: alert query, user query and archiving query. Alert queries

refer to monitoring queries that alert when unusual patterns or phenomena are

detected from the input. They are the most time-critical queries and hence

have the highest priority. Each alert query is given a weighting factor of 10.

User queries are those created by scientists for data exploration or assertion

verification purposes. They have medium priority with weights between 2 and

5. Archiving queries are created for archiving purpose. They are the lowest
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priority queries with a weight of 1 each only. All the queries are computed

from the same base perspective. Further sharing of perspectives among queries

are possible if they involve same intermediate operations. Figure 5.12 shows an

example query graph used in the experiment.
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Figure 5.12: An example of multi-query graph

Because there are no specific deadlines specified for the input or queries, any

input that is not scheduled in the first instance will not be discarded. Instead,

the input will be buffered until being scheduled at a later time. An interesting

characteristic to take note here is that all the operations (i.e. perspective trans-

formations) in HyperGrid are idempotent. It means if you feed a HyperGrid
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query with the same input twice, the result is not additive. It would be just the

same as you feed the input once. This is because the surface perspective (i.e.

the output) of a query at time t is only relevant to the content of the input that

is available at t, regardless how many times the query has been executed before.

For this reason, an input that has not been processed by a query only causes

the query’s output temporarily outdated. As long as the query is rescheduled

in the future, the results will be correct or up-to-date at that time, no matter

whether that input has been processed or not. Because of these, the previous

QoS score function used in Chapter 4 is not applicable here. A better metric

to evaluate the quality of a HyperGrid query would be how frequent its surface

perspective is updated. Hence the new score function is designed as follows:

When there is a new time-slice available at the base, all the queries that need

to be updated have the potential to receive a token, say T . The token value

is proportional to query’s weight. If the query is reevaluated in response to

the new time-slice, the token will be credited. Otherwise, the potential token

is saved. But its value is depreciated, determined by a decaying factor λ. So

when the next update of the base occurs, queries that have not been updated

previously have the potential to receive a token worth T + λT , so on and so

forth. In the experiment, the value of λ is set at 0.9.

Figure 5.13 reports the average update frequency of our experimental queries

using different scheduling strategies. We can see that OptProfit strategy pro-

duces higher update frequency for alert queries and lower update frequency for

user and archiving queries. Although Basic strategy exhibits the same trend,

the contrast among the three types of queries is not as big as OptProfit. While

for Round-robin strategy, the update frequencies of the three types of queries
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Figure 5.13: Comparison of update frequency

are almost same. So the question is which strategy performs better. The answer

is to multiply each query’s update frequency with its corresponding weight and

add them together. Figure 5.14 plots the result. We can see that OptProfit

has the highest total weighted update frequency. It means the strategy has the

best resource distribution among different types of queries which leads to the

maximal total utility.
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5.12 Summary

We have presented the framework of HyperGrid in this chapter. One objective

of this work is to demonstrate that scientific data management can benefit

from database technology that enables the integration of scientific workflows,

which was largely segregated traditionally. With a uniform data model and

database-style processing paradigm, scientific computations can be carried out

in a more systematic way. An integrated architecture also reveals opportunities

for query optimization. In the second part of the chapter, we discussed how

memory management scheme and stream scheduling strategies discussed in the

previous chapters can be applied in the context of a HyperGrid environment.

It shows these schemes or strategies are practically useful for real data stream

applications.
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6
Conclusions

Living in the information age with huge amount of data being generated, pro-

cessed and stored every day, we are relying more than ever on database technol-

ogy to help us efficiently manage various types of information. The emerging

demand for processing data in the form of streams, however, challenges the tra-

ditional database processing paradigm. Compared to store based data which

are static and predictable, the mass, rapid and unpredictable nature of stream-

ing data calls for more advanced techniques for processing queries efficiently.

In this thesis, we attempt to explore the issue from an interesting perspective.

By focusing on time, the key aspect that distinguishes stream query processing

from traditional query processing, we propose several data management tech-

niques that help boost the performance of a stream query processor. Summary

of our contributions is given below.
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6.1 Summary of Contributions

In the first piece of work, we focus on the memory management issue in data

stream processing. Traditionally, the memory requirement for a stream join

is query-driven. We find that such a query-driven approach not only leads to

extravagant memory overheads but also produces unsatisfactory query answers.

Hence, we introduce the concept of data-driven memory management and con-

tend that, whenever possible, memory allocation for stream join should be data-

driven instead of query-driven. Following this, we propose a new stream join

processing scheme, called Window-Oblivious Join (WO-Join), which exploits

the inherent notion of time associated with input tuple so that a system can

dynamically adjust the memory buffer size to minimize unnecessary memory

overheads. Our experiments suggest that WO-Join significantly outperforms

traditional windowed join in terms of both output quality and memory effi-

ciency.

In many data stream applications, overwhelming streaming input could eas-

ily overload the query processor. When this occurs, the system should intelli-

gently allocate the limited resource among queries of different urgency and im-

portance so that the total QoS of the system can be maximized. In the second

piece of work, we focus on real-time query scheduling techniques for achieving

the goal. We point out that the traditional operator-based scheduling strate-

gies are insufficient to address issues arising from the real-time requirements of

output generation in DSMS. What is needed is a fine-grained resource control

scheme that works at the tuple level. Inspired by the classic job scheduling

algorithms, we propose several tuple-based stream scheduling strategies. These
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strategies open a new avenue for addressing stream scheduling issues. And the

effectiveness of these strategies is verified under different workloads and query

settings.

In addition to theoretical studies, we also emphasize practical implementa-

tions related to data stream applications. In the last piece of work, we develop

a data processing platform for a scientific sensor data application. The main

challenge is how to integrate data streams collected from heterogeneous sensor

stations and offer a unified data platform to query, analyze and visualize sen-

sor information to facilitate scientific research. We also discuss how to apply

the data-driven memory management scheme and stream scheduling strategies

covered by our previous works in the context of scientific sensor data process-

ing. This not only helps us understand these techniques better but also justifies

their usefulness in practical applications.

6.2 Future Work

Other than what have been studied in this thesis, we believe there are a lot

more other time-related data stream issues to be explored. The followings are

some of the promising directions for future work.

• Uncertain data. Streaming data are often incomplete or contain uncer-

tain information. When the time information associated with stream’s

input involves uncertainties, a direct application of the memory manage-

ment scheme or the scheduling strategies will encounter difficulties. Un-

certain data may be modeled in different ways such as using probabilistic

information or range values. Efforts can be made to extend the techniques
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discussed in this thesis to support streams with various uncertain time

information.

• Data lineage. Time information also plays an important role in data

lineage. For example, in scientific domains, researchers may need the

chronological relationships of the contributing inputs in order to under-

stand query results better. Unlike some other types of provenance infor-

mation which may be derived directly through inversion by tracing the

query graph backward, a chronological history of how data are evolved is

not recoverable unless it is explicitly recorded. This is because temporal

information requires tuple-level granularity. As far as we know, there is

no good annotation scheme proposed for recording the chronology of data

at tuple tuple. It would be interesting to explore innovative techniques

that would achieve this in an efficient way.

• Distributed stream processing. Distributed query processing consti-

tutes an important part of data stream research. This is mainly for two

reasons. First, many input streams are physically distributed. Shipping

all the data to a central processor may be too costly. Second, a good dis-

tributed processing paradigm improves system’s scalability, which is quite

important since large scale data stream processing is becoming increas-

ingly popular. Time issues in distributed stream processing is a broad

topic with a lot of interesting problems to study. For example, given

that the input of a continuous query is distributed to multiple nodes for

processing, one topic is to ensure the final result, which combines the sub-

result from each node, still observes certain temporal order as if the input
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is processed by a single server in a FIFO manner. This can be difficult

to achieve for stateful operations such as join and aggregate. Distributed

query scheduling is also an interesting topic. When stream queries impose

stringent requirements on the timeliness of output delivery, to design an

efficient distributed query scheduler can be very challenging, considering

the unpredictable communication delay and the synchronization issues

among the working nodes.
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