
 
 

 

SUPERCORE AND STRONG NASH EQUILIBRIUM 

 

 

 

 

ZILONG ZHANG 

(B. ECON.), PKU 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF MASTER OF SOCIAL 

SCIENCES IN ECONOMICS 

 

 

DEPARTMENT OF ECONOMICS 

NATIONAL UNIVERSITY OF SINGAPORE 

 

2010 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48635976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i 
 

Acknowledgement 

 

First and foremost I offer my sincere gratitude to my supervisor, Prof. Xiao Luo, who 

has supported me throughout my thesis with his patience and knowledge. Without his 

encouragement and instruction, this thesis would not have been created and finalized. 

One simply could not wish for a better supervisor.  

I am also heartily thankful to Prof. Yi-Chun Chen, Dr. Yongchao Zhang, and Prof. 

Jingfeng Lu. They offered me many invaluable suggestions during the writing of this 

thesis.   

Lastly, I offer my regards and blessings to all of those who supported me in any 

respect.  

 

 

  

 

 

 

 

 

 

 

 



ii 
 

Table of Contents 

Summary …………….……………………………………………………………….iii 

List of Tables & Figures…………….………………………………………………...iv 

1. Introduction …………………………………………………………………...……1 

2. Preliminaries …...……….…………………………………………………………..3 

3. The Abstract System (S, ) …...……….………………………………………...…8

4. The Supercore for (S, ) and SNE...………….…………………………………...10

5. Proofs ………………………………………………………………………..……14 

   5.1 Proof of Proposition 1…………………………………...…………………...15 

   5.2 Proof of Proposition 2………………………………………………………..17 

6. Concluding Remarks …………….……………...…………………………...……18 

References …………….………………………………………………………..……19 

 

 

 

 

 

 

 

 

 

 



iii 
 

Summary 

This paper studies the relation between Roth's (1976) notion of "supercore" and 

Aumann's (1959) notion of "strong Nash equilibrium" in normal-form games. Inarra 

et al. (2007) studied the relation between the supercore and Nash equilibrium; in 

particular, they offered a procedure to find the supercore in normal-form games. This 

paper extends Inarra et al.'s procedure to complex social interactions. This paper 

shows that the supercore under social interactions coincides with the set of strong 

Nash equilibria in the final game defined in the procedure. This study provides a 

valuable and useful insight into the equilibrium strategic behavior.  
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1 Introduction

The concept of supercore introduced by Roth (1976) is an interesting solution

concept in game theory. It is identi�ed as the intersection of subsolutions in the

context of abstract games. Subsolution is a generalization of �solution� which

is interpreted by von Neumann and Morgenstern (1953) as a self-reinforcing

standard of behavior. Subsolution characterizes the set of solutions as internally

stable and self-protecting. Roth (1976) argued that once a subsolution is gener-

ally accepted by the players, it creates expectations reinforcing the notion that

only the outcomes in subsolution are considered �sound�.

Inarra et al. (2007) studied the relationship between Nash equilibrium and

supercore. Speci�cally, they de�ned a procedure to identify the supercore. They

showed that the supercore coincides with the set of Nash equilibria of the �nal

game de�ned in the procedure.

However, the concept of Nash equilibrium is based on the idea of stabil-

ity against any unilateral deviation (Nash 1951). Aumann (1959) proposed the

notion of strong Nash equilibrium (SNE) ensuring a more restrictive stability,

which is immune to any coalitional deviation. A SNE is de�ned as a strategy

pro�le for which no subset of players has a joint deviation that strictly bene�ts

all of them. Thus, a SNE is a Nash equilibrium and is weakly Pareto ef�cient
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among the Nash equilibria.

In order to look into the relationship between strong Nash equilibrium and

supercore, this paper extends Inarra et al.'s procedure to complex social inter-

actions, re�nes the binary relation de�ned by Kalai and Schmeidler (1977), and

shows that the supercore under the new binary relation coincides with the set of

strong Nash equilibria in the �nal game de�ned in the procedure.1

The remainder of the paper is organized as follows. Section 2 provides the

preliminaries. Section 3 establishes an abstract system relative to a normal form

game with a newly de�ned binary relation. Section 4 presents the procedure

characterizing the relationship between SNE and supercore. Section 5 is dedi-

cated to a formal proof of the validity of the procedure. Concluding remarks are

presented in Section 6.

1Greenberg (1990) considered different binary relations that associate normal form games
with abstract systems, including the one discussed in this paper.
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2 Preliminaries

In this section, we introduce the notation and de�nitions used in this paper.

According to von Neumann and Morgenstern (1953), (X;�) is an abstract

system where X is a set of outcomes and � is the binary preference relation

de�ned on X . For two outcomes x; y 2 X , we interpret x � y as �x dominates

y.� Given an outcome x 2 X , its dominion (the set of outcomes dominated by

x) is de�ned as:

D(x) = fy 2 X : x � yg:

For a non-empty subset A � X ,2 its dominion is de�ned as:

D(A) =
[
x2A

D(x);

i.e., the set of outcomes dominated by some outcome of A. Let

U(A) = X �D(A)

denote the set of outcomes undominated by any outcome of A.

A subset A � X is the core (Gillies 1959) for (X;�) if A = U(X).

We call a subset A � X a vN & M stable set (von Neumann and Morgen-

2All the inclusions used in this paper are weak.
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stern 1953) of (X;�), if A = U(A). That is, a vN & M stable set is de�ned as

a subset A � X that satis�es:

1. [internal stability] A � U(A), i.e., no element in A dominates another

element in A, and

2. [external stability] U(A) � A, i.e., every element not in A is dominated

by some element in A.

von Neumann and Morgenstern (1953) interpreted a vN & M stable set as a

�standard of behavior� in a society, which describes �how things are in actual

social organizations.�

A subsolution (Roth 1976) of (X;�) is a subset A of X such that

1. A � U(A), and

2. A = U2(A), where U2(A) = U(U(A)).

Let P(A) = U(A)�A. Given a subsolution A, the setX is partitioned into

three sets: A, D(A) and P(A) (see Figure 1). Note that if A is a vN &M stable

set then A is a subsolution with P(A) = �.

Given A � U(A), we can prove that U2(A) = A , P(A) � D(P(A)).
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The reason is as follows (see Inarra et al. 2009):

U(U(A)) = U(A [ P(A))

= X �D(A [ P(A))

= A [ P(A)�D(P(A))

= A, P(A) � D(P(A)) and A
\
D(P(A)) = �.

Such a property of subsolution can be interpreted by Roth (1976):

Every point in U(A) � A is dominated by some other point in

the same set, and the entire set thus `overrules' itself leaving only

the set A as `sound'.

Figure 1: Partition of X
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Supercore (Roth 1976) is identi�ed as the most signi�cant subsolution, i.e.

a supercore of (X;�) is a subset S of X such that

S =
\

A is a subsolution

A:

Observe that: (1) Every vN & M stable set includes the core, (2) Every vN

& M stable set is a subsolution, and (3) The supercore includes the core.

A (�nite) normal form game �N is a triple

< N; fSigi2N ; fuigi2N >;

where N = f1; :::; ng is a �nite set of players, Si is the �nite set of strategies

for player i and ui : S = �i2NSi �! R is player i's payoff function.

An N -tuple of strategies, s 2 S, is a Nash equilibrium (Nash 1951) for

�N if there do not exist i 2 N and s0i 2 Si such that ui(s
0
i; s�i) > ui(s).
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Example 1 (supercore for 3-person prisoner's dilemma)

Table 1: 3-person prisoner's dilemma
C D C D

C 1, 1, 1 -1, 3, -1 -1, -1, 3 -2, 2, 2
D 3,-1,-1 2, 2, -2 2, -2, 2 0, 0, 0

C D

Inarra et al. (2007) studied this game in individual situation and solved its

supercore: � = f(D;D;D); (D;C;C); (C;C;D); (C;D;C)g. Observe that it

is formed by the unique Nash equilibrium (D;D;D) and the strategy pro�les

that any 2 players choose C. Particularly, Inarra et al. proved that the supercore

for the n-person prisoner's dilemma is the unique vN&M stable set of its associ-

ated system. We can verify, in this 3-person prisoner's dilemma, that� = U(�).
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3 The abstract system (S; .)

In this section we de�ne a new binary relation . on an abstract system relative to

a normal form game by re�ning the conventional relation which only accounts

for individual pro�table deviations.3

De�nition 1 The abstract system (S; .) associated to the normal-form game

< N; fSigi2N ; fuigi2N > is de�ned as follows:

1. S = �i2NSi;

2. The binary relation . on S is de�ned as: for s0 ,s 2 S, s0 . s iff 9T � N

s.t. ui(s
0
) > ui(s) 8i 2 T , where s

0
= (s

0
T ; s�T ) and s

0
T 2 ST =�i2TSi.

Different from Inarra et al.'s (2007) system, the binary relation de�ned in the

present paper is based on coalitional deviations. In this case, Nash equilibrium

is no longer considered stable as there may exist opportunities for coalitional

deviations that strictly bene�t all the members within the coalition. As an ex-

ample, consider the following game:

3See Kalai and Schmeidler (1977); adopted by Inarra et al. (2007).
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Example 2

Table 2: A two-person game
L R

U 2,2 0,0
D 0,0 1,1

The Nash equilibria in this game are (U;L) and (D;R). But notice that

(D;R) can be improved upon by both players jointly agreeing to play (U;L).

This led Aumann (1959) to propose the idea of �strong Nash equilibrium�:

An N -tuple of strategies, s 2 SN , is a strong Nash equilibrium (SNE) for

�N if there do not exist T � N and s0T 2 ST such that ui(s
0
T ; s�T ) > ui(s) for

all i 2 T . The unique strong Nash equilibrium in the above game is (U;L).

Observe that: since no strong Nash equilibrium is dominated by any strategy

pro�le, the set of strong Nash equilibria coincides with the core, i.e., SNE(�N) =

U(S).
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4 The supercore for (S; .) and SNE

In this section, we give an example to illustrate the procedure of deriving the

supercore for (S; .) de�ned in Section 3. Then we offer the formal procedure

for normal form game.

Example 3 Consider the following game �N0 in Table 3.

Table 3: Game �N0 at stage 0
b1 b2 b3 b4

a1 6,5 6,4 1,3 2,2
a2 3,7 5,6 6,2 1,3
a3 6,4 3,3 5,5 6,0
a4 5,3 2,4 7,2 0,6

At stage 0, we �nd out the set of strong Nash equilibria of �N0 . Obviously,

(a1; b1) is the unique Nash equilibrium for this game, and it is also the unique

strong Nash equilibrium. Therefore,

S�0 = SNE(�
N
0 ) = f(a1; b1)g:

Then we replace the payoffs to the pro�les that are dominated by SNE

pro�les, with the corresponding players' lowest payoffs in the game (�N0 ) at

stage 0 � payoffs (0; 0). In particular, we identify the strategic pro�les domi-

nated by S�0 :
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(a1; b2); (a1; b3); (a1; b4); (a2; b1); (a4; b1); (a3; b2); (a4; b2); (a2; b4):

Replace the payoffs from them by (0; 0) and obtain a new game �N1 (see

Table 4).

Table 4: Game �N1 at stage 1
b1 b2 b3 b4

a1 6,5 0,0 0,0 0,0
a2 0,0 5,6 6,2 0,0
a3 6,4 0,0 5,5 6,0
a4 0,0 0,0 7,2 0,6

At stage 1, we carry on a similar procedure conducted in stage 0. First, we

�nd the set of SNE pro�les for �N1 . In order to do so, we �rstly identify the set

of Nash equilibria, which is f(a1; b1); (a2; b2)g. As the two NE pro�les do not

dominate each other in a coalitional situation, they are both SNE pro�les. Thus,

S�1 = f(a1; b1); (a2; b2)g:

Second, replace the payoffs to the pro�les that are dominated by SNE

with the lowest ones in �N0 . As the pro�les dominated by S�0 are all dominated

at stage 1 and already replaced, we only need to replace the payoffs to the newly
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dominated pro�le, which is (a2; b3). Then we obtain �N2 and proceed to the next

stage (see Table 5):

Table 5: Game �N2 at stage 2
b1 b2 b3 b4

a1 6,5 0,0 0,0 0,0
a2 0,0 5,6 0,0 0,0
a3 6,4 0,0 5,5 6,0
a4 0,0 0,0 7,2 0,6

At stage 2, we �nd that the set of strong Nash equilibria for �N2 is f(a1; b1); (a2; b2)g,

which coincides with that for the previous game �N1 , i.e.

S�2 = S
�
1 :

This is the condition on which the procedure stops. Thus, we claim that

the supercore for the original game is f(a1; b1); (a2; b2)g, that is,

Supercore(�N0 ) = f(a1; b1); (a2; b2)g:

To sum up, by repeatedly conducting the ��nding and replacing� process,

the procedure generates a sequence of games f�N` g such that the supercore for

the original game coincides with the set of SNE pro�les in the �nal game (note

that the original game is a �nite game, so the procedure is �nite). Let S�` denote
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the set of strong Nash equilibria of �N` . To formalize the procedure, we present

the following de�nition:

De�nition 2 We de�ne a sequence of games f�N` gk`=0 and a sequence of systems

f(S; .`)gk`=0 as follows:

1. �N0 = �N and (S; .0) is the system associated to �N0 .

2. For ` � 1, �N` =< N; fSigi2N ; fu`igi2N >, with

u`i(s) =

8>><>>:
vi(�

N); if s 2 D`�1(S�`�1)

u`�1i (s); otherwise
;

where vi(�N) = minfui(s) : s 2 Sg and D`�1(S�`�1) is the set of outcomes

dominated by some outcome in S�`�1 in (S; .`�1). De�ne (S; .`) as the system

associated to �N` .

We are now in a position to present our main results in this paper.

Proposition 1 If S�k = S�k�1, then S�k is the supercore for (S; .0).

Proposition 2 The set of strong Nash equilibria is a subset of supercore for

(S; .0).
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5 Proofs

In order to prove Proposition 1 and 2, we need to introduce the following 2

lemmas.

Lemma 1 4A � B implies U(B) � U(A).

Proof. A � B yields D(A) � D(B); taking complement of D(A) and D(B),

we have U(A) � U(B).

Lemma 2 D`(S�` ) = D0(S�` ), 8 ` � 0.

Proof. ((=): At stage `, �rst notice that players' payoffs to the strategy pro�les

in S�` have never been replaced since stage 0; the payoffs to a strategy pro�le

in D0(S�` ), on the other hand, either remain the same or have been replaced

with the lowest payoffs. In either case, it is .`-dominated by S�` . Therefore,

t 2 D0(S�` ) implies t 2 D`(S�` ).

(=)): We show this by contradiction. Given a strategy pro�le t0 2 D`(S�` ).

Suppose that t0 is not .0-dominated by any outcome in S�` , then according to

the procedure, no replacement will happen to the payoffs to t0 from stage 0 to

stage `, because each set of SNE pro�les before stage ` (inclusive) are subsets

of S�` . Consequently, at stage `, t
0 is still undominated by any pro�le in S�` ,

4This lemma was �rst introduced by Roth (1976).
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contradicting the condition t0 2 D`(S�` ). Therefore, t
0 2 D0(S�` ) follows from

t
0 2 D`(S�` ).

5.1 Proof of Proposition 1

To show that the de�ned procedure can always generate the supercore, it suf�ces

to prove that the following two conditions hold:

(i) S�k is a subsolution for (S; .0). That is, S�k � U0(S�k) and S�k = U20 (S�k); 5

(ii) Any other subsolution A for (S; .0) contains S�k .

Proof of condition (i). In the �nal game of the sequence, �Nk , every player i's

payoff can be written as

uki (s) =

8>><>>:
vi(�

N); if s 2 D0(S�k)

u0i (s); otherwise
(1)

We �rst prove S�k � U0(S�k). As S�k is the set of strong Nash equilibria for

the �nal game, all the strategies in S�k do not dominate each other in a coalitional

situation, hence, S� � Uk(S�k). Moreover, the payoffs to any strategy pro�le in

S�k have never been replaced ever since stage 0, thus we have S�k � U0(S�k).

Next we prove S�k = U0(U0(S�k)), which is equivalent to showing thatP0(S�k) �

D0(P0(S�k)). We show it by contradiction. Suppose there is a strategy pro�le

5U0(S�k) is the set of outcomes undominated by any outcome in S�k in (S; .0):
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s
0 2 P0(S�k) s.t. s

0
=2 D0(P0(S�k)). By Lemma 2, we have Uk(S�k) = U0(S�k),

thus Uk(S�k)=S�k = U0(S�k)=S�k , i.e. Pk(S�k) = P0(S�k). Hence, s
0 2 Pk(S�k).

In game �Nk , s
0 is a non-SNE strategy pro�le and is not dominated by any

strong Nash equilibrium, implying that s0 is .k-dominated by some strategy

pro�le(s) outside of S�k . The entire set of strategy pro�les can be divided into

three partitions: S�k , Dk(S�k) and Pk(S�k) (i.e. Uk(S�k)=S�k). Thus the strategy

pro�les that can possibly .k-dominate s
0 are in either Dk(S�k) or Pk(S�k). It is

impossible to �nd one inDk(S�k), because byDk(S�k) = D0(S�k) (Lemma 2) and

equation (1), we conclude that the payoffs to all strategy pro�les in Dk(S�k) are

replaced with the lowest payoffs, leaving no strategy pro�le that can possibly

.k-dominate s
0 , hence s0 2 Uk(Dk(S�k)). Therefore, the only possible situa-

tion is s0 2 Dk(Pk(S�k)), i.e. s
0 2 Dk(P0(S�k)). It is straightforward that,

uki (s
00
) = u0i (s

00
) 8s00 2 P0(S�k). This means that the payoffs for the strategy

pro�les in P0(S�k) (including s
0) are never replaced. Following this argument,

s
0 2 Dk(P0(S�k)) implies s

0 2 D0(P0(S�k)), which contradicts the assumption

s
0
=2 D0(P0(S�k)). Therefore, P0(S�k) � D0(P0(S�k)).

Proof of condition (ii). We proceed by induction. Given any subsolution A of

the abstract system (S; .0), note that S�0 � A since the set of strong Nash equi-

libria of �N0 is contained in any subsolution of the associated system. Suppose

S�`�1 � A, we next show that S�` � A. Because S�`�1 � S�` , it suf�ces to show
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that r 2 A, for any r 2 S�` =S�`�1.

We claim that r 2 U0(U0(S�`�1)). Notice that r 2 S�` =S�`�1, it is a strong

Nash equilibrium of �N` , but not one for �N`�1. By the construction of �N` , r

can only be .`�1-dominated by some strategy in D`�1(S�`�1). That is, r can

never be .`�1-dominated by any strategy in U`�1(S�`�1). Notice that in �N`�1, the

payoffs to any strategy pro�le in U`�1(S�`�1) remain the same as in �N0 , thus r

can never be .0-dominated by any strategy in U`�1(S�`�1). Hence r cannot be .0-

dominated by U0(S�`�1), i.e., r 2 U0(U0(S�`�1)), because U0(S�`�1) = U`�1(S�`�1)

(by Lemma 2).

Finally, S�`�1 � A implies that U0(U0(S�`�1)) � U0(U0(A)) (by applying

Lemma1). By the de�nition of subsolution, U0(U0(A)) = A; thus r 2 A follows

from r 2 U0(U0(S�`�1)).

5.2 Proof of Proposition 2

The proof is straightforward. The procedure of deriving the supercore implies

that SNE(�N) � S�0 � S�k . And in Proposition 1 we have shown that S�k is the

supercore of �N . Therefore, SNE(�N0 ) �Supercore(�N0 ). �
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6 Concluding remarks

This paper extends Inarra et al.'s procedure to complex social interactions. By

integrating coalitional deviations and re�ning the binary relation on an abstract

system, we explore the relation between strong Nash equilibrium and supercore

in normal form games. We show that the supercore under social interactions

coincides with the set of strong Nash equilibria in the �nal game de�ned in the

procedure. In the original game strong Nash equilibria lie in the supercore.

Inarra et al. (2009) advanced their study by investigating the relationship

between supercore and Nash equilibrium in the mixed extension of normal-form

game. It is interesting to study the relationship between supercore and strong

Nash equilibrium in the mixed extension of normal-form game.
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