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SUMMARY 
 
Hibiscus latent Singapore virus (HLSV) is a new member of the Tobamovirus family. 

The HLSV genome contains a unique poly(A) tract in its 3΄-UTR which is absent in 

other Tobamoviruses. The virion is composed of a monomeric coat protein (CP) of 18 

kDa. We have determined the HLSV structure at 3.5 Å by X-ray fiber diffraction with 

R factor of 0.096.  The structure of HLSV CP resembles that of other Tobamoviruses, 

with a few unique differences. In other Tobamoviruse structure, CP sequence at 

position 122 contains a conserved Arg residue, while the HLSV and SHMV contain 

His residue. Also, His122 is followed by another positively charged amino acid 

residue Lys which is uncharged residue in other Tobamoviruses. There is a kink 

observed for the first time in the LR helix of HLSV due to the presence of the unique 

His122, which produces a bend in the helix in the non-Pro non-Gly bends. Also, the 

adjacent Lys123 may destabilize the helix by positive charge repulsion, making the 

kink more pronounced. In the HLSV structure, we are able to see Lys123 stabilizing 

the phosphate 1, hence balancing the protein-nucleic acid interactions. Another 

residue Arg92 from the Subunit -17 is believed to be involved in stabilizing the 

remaining phosphate 2 and phosphate 3. Arg122 is believed to regulate the guanine 1 

recognition during assembly for all other existing structures of the Tobamovirus. 

Uniquely, His122 at this position showed a very strong salt bridge with the 

neighboring Asp88 from subunit -1, hence significantly stabilizing the loop adjacent 

to RR helix. The carboxyl-carboxylate interactions that drive viral disassembly are 

also seem to be different in HLSV. The nucleotide recognition mechanism for virus 

assembly is similar between HLSV and RMV but different from that of TMV and 

CGMMV.  



xiv 
 

By solving the structure of HLSV by X-ray fiber diffraction, we will be able to 

have a better understanding of the structural differences between HLSV and other 

Tobamoviruses. This research may also enhance our knowledge of virus structure at 

atomic details. By knowing the atomic details of this novel virus, we may be able to 

use it in future as a vector to express pathogenic epitopes (to develop vaccine) and to 

express economically important proteins.   
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CHAPTER 1. X-RAY FIBER DIFFRACTION TECHNIQUES 

 

1.1 INTRODUCTION 

Many biological molecules that are polymeric in nature are long, structurally 

helical and have a natural tendency to form fibers. This prevents the growth of single 

crystals from these polymeric fibers and even if crystals are grown, the molecular 

interactions in the crystals hardly represent any biologically significant interactions in 

the fibers. Conventional X-ray crystallography is therefore of very less use to fibrous 

biomolecules. These macromolecular helical aggregates are too large to be studied by 

nuclear magnetic resonance. Fiber diffraction (FD), however, is a powerful method 

for determining three dimensional (3-D) structural details of fibrous polymers. This 

technique has been used to study a wide variety of biopolymers, ranging from simple 

polypeptides, polynucleotides, and polysaccharides to very complex filamentous 

viruses and cytoskeletal filaments. 

Fiber samples lack true 3-D crystalline structure. The key difference between 

fibers and crystals is that in fibers, structural aggregates, although parallel to each 

other, are randomly oriented (disordered) about the fiber axis. Consequently the 

diffraction pattern is cylindrically averaged. The cylindrical averaging is the defining 

property of the FD samples. The combination of cylindrical averaging and inherent 

disorder makes structural analysis of the fibrous filaments difficult. Hence, FD is not 

an appropriate method for studying molecules that do not naturally form filaments. 

Proteins that are fibrous in nature are important structural component of biological 

systems such as skin, bone, hair and tendons cannot be crystallized by the protein X-

ray crystallographic technique. These samples are suitable for study by the method of 
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FD. One of the most active areas of research is the study of the relationship between 

structure and mechanical properties in spider dragline silk, using FD technique in 

conjunction with electron microscopy, spectroscopy and molecular biology methods 

(Grubb & Ji, 1999; Winkler et al., 1999). Studies of collagen fibers have been focused 

on its mechanical properties, in correlation to alignment pattern of fibrils with its 

different stages of development and stress (James et al., 1998; Purslow et al., 1998). 

Amyloid fibrils and other related fibrous aggregates have also been studied using the 

FD method (Inouye et al., 1998; Kirschner et al, 1998; Malinchik et al., 1998; Sunde 

et al., 1997). They are associated with various pathological conditions, including 

prion infections and Alzheimer’s disease. They are formed when soluble proteins mis-

fold to form insoluble cross-β structures. As a result of disorder in the fibrils, these 

insoluble proteins are often analyzed by using the FD technique. The relevance of 

these fibrils to medicine and fundamental questions of protein folding make it an 

interesting for research. 

The experimental set-up for FD includes orientated fiber packed in a very thin 

quartz capillary tube and placed perpendicular to a collimated X-ray beam. A FD 

pattern is recorded on film. Fibers show helical symmetry rather than the 3-D 

symmetry assumed by crystals. The diffraction data recorded on film appears as layer 

lines as opposed to spots produced by a protein crystal. This difference in the FD 

pattern is due to the repeating nature of the polymer helix at a distance inversely 

proportional to the filament repeat distance. By analyzing the diffraction pattern from 

orientated fibers, one can find out the helical symmetry of the sample and may solve 

the structure. The following section discusses the theory of FD and its applications in 

research, focused mainly on filamentous viruses. 
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1.2 THEORY OF FIBER DIFFRACTION 

1.2.1  Diffraction by a helical structure 

Filamentous viruses, when exposed to X-rays, give rise to non-crystalline FD 

patterns. Therefore we discuss the theory of non-crystalline FD. However, much of 

the theory given here also applies to crystalline fibers, (Chandrasekaran & Stubbs, 

2001). In general, intensity at any point in a diffraction pattern is given by  

I = FF* = |F|2      (1) 

where F is a structure factor (a complex number with amplitude and a phase). F is a 

function in 3-D reciprocal space, and is the Fourier transform (FT) of electron density 

(ρ, a function in real space) of the diffracting object (Rhodes, 2000). Equation (1) 

applies equally to FD and crystallographic diffraction patterns. 

Helical molecules are described in cylindrical coordinates because of 

cylindrical symmetry. The coordinates are denoted as (r, φ, z) in real space and (R, ψ, 

Z) in reciprocal space. The z axis is the helix axis where the structure repeats exactly 

in a distance c (repeat distance) along this axis. The repeat contains u subunits in t 

turns of the helix. Diffraction from a helically symmetric molecule occurs only on 

layer lines, when Z = l/c, where l is layer line. On the equator, Z = l = 0. The line 

perpendicular to the equator and passing through the centers of all layer lines in the 

diffraction pattern is called the meridian. The distance from the meridian is denoted as 

R whereas Z is denoted as the distance from the equator. It was shown (Cochran and 

Crick, 1952) that the structure factor is given as, 

 

        Fሺܴ, ߰, ܼሻ ൌ ∑ .௝ ∑ ሻexp  ݆ݎܴߨሺ2݊ܬ݆݂ ቂi ቄ݊ ቀ߰  ൅
గ
ଶ
ቁ –  ݆݊߮  ൅ cቅቃ௡/݆ݖ݈ߨ2    (2) 

where rj, φj and zj denote real space coordinates of atom j in the subunit and fj is the 
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atomic scattering factor of that atom. Jn is the Bessel function of the first kind of 

order n. The value of n is restricted to satisfy the selection rule 

l = tn + um 

where t is number of turns in one repeat distance; u represents the number of subunits 

in one repeat distance; n and m are integers. The number of significant terms 

contributing to the structure factor is limited, since Jn(x) is generally negligible for x 

less than about n-2. Cylindrical averaging can be taken into account by re-writing 

equation (2) in terms of Fourier-Bessel structure factors G (Klug et al., 1958), where 

                              G݊, ݈ሺܴሻ  ൌ ∑  ሻexp iሺെ݆݊߮ ݆ݎܴߨሺ2݊ܬ݆݂ ൅ ሻ       ௝ܿ/݆ݖ݈ߨ2    (3) 
 
Gn,l(R) is independent of ψ. Then 
 
                                Fሺܴ,߰, ܼሻ   ൌ ∑  ௡ G݊, ݈ሺܴሻ expሾi ቄ݊ ቀ߰  ൅

గ
ଶ
ቁቃ      (4)                          

 
and it can be shown (Franklin and Klug 1955; Waser, 1955) that 
 
,ሺܴ ܫ                         ݈ሻ ൌ ܨܨ ൌכ ∑   G݊, ݈ሺܴሻܩ כ ݈݊ ሺܴሻ ൌ ∑. |G݈݊ሺܴሻ|2   (5)                          
 
   The number of significant terms in the summation is limited, e.g. in the 

diffraction pattern of Tobacco mosaic virus (TMV), the largest number of terms 

contributing to any intensity at a resolution of 3 Å is eight. Near the meridian, a single 

G term makes up the whole intensity. Equation (5) may be compared to the 

corresponding crystallographic equation (1). In crystallography, the diffracted 

intensity is the square of the amplitude of a single structure factor, whereas in FD the 

diffracted intensity is the sum of the squares of the Fourier-Bessel structure factors. 

The summation occurs because of the cylindrical averaging of the diffraction pattern, 

and may be thought of as the superimposition of the diffracted intensities. The 

electron density in a non-crystalline fiber may be calculated by means of a Fourier-

Bessel synthesis, an analogue of Fourier synthesis used in crystallography and 

crystalline FD. The electron density at a point r, φ, z is  
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,ݎሺߩ                         ߮, ሻݖ  ൌ ሺ1/cሻ ∑ .௝ ∑ g݊, ݈ሺݎሻexpሾiሺെ݆݊߮  ൅ ሻሿ௡ܿ/݆ݖ݈ߨ2     ሺ6) 

where    
                                 g݊, ݈ሺݎሻ ൌ ׬ .ஶ

బ
G݊, ݈ሺܴሻ݊ܬሺ2݆ݎܴߨ ሻ2(7)     ܴ݀ ܴߨ 

               
 

The inner part of the equator in FD is derived from a single G term, G0,0, 

whose phase is either 0 or 180°; that is, G0,0 simply has a positive or negative sign. If 

the signs are known, or can be estimated, this part of the equator can be transformed 

to obtain a radial density distribution. 

 

1.2.2  Nature of fiber diffraction 

Fundamental structural aggregates of a fibrous sample are regarded as 

filaments, and complete diffraction from specimen as fiber. Fibers are collection of 

nearly parallel filaments, which are randomly oriented about the fiber axis. These 

structural aggregates might be individual virions in a fiber or an oriented solution, 

individual molecules of DNA or some other chain molecule. Diffraction from a fiber 

sample is confined to layer lines, because of the repeating nature of the filament helix 

at spacing inversely proportional to the repeat distance c. The layer lines are 

continuous and correspond to the cylindrical average of the FT of a single molecule. 

In a FD experiment, individual helical fibers are not perfectly aligned and not parallel 

to the fiber axis. This deviation from parallelism is called disorientation and it causes 

reflections from the fibers to spread into arcs. The layer lines in reciprocal space are 

perpendicular to the fiber axis in real space. The layer line that passes through the 

origin in reciprocal space is called the equator or zero layer line. The direction normal 

to the equator is called the meridian. The pitch of a helix is the width of one complete 

turn, measured parallel to the helical axis. The number of helical turns that marks a 

unique repeating section of the sample is known as helix repeat and the corresponding 
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distance is called repeat distance (c). In TMV, the pitch height is 23 Å with 49 

subunits in three turns (u=49; t=3). So, the repeat distance c, is 69 Å. For a helical 

sample, the layer line separation is proportional to the reciprocal of the pitch of the 

helix. However, the pitch of a helix may not be simply the reciprocal of the layer line 

separation since there might be two or more helical turns in one repeat distance. 

Furthermore, two other parameters, fiber specimen tilt and twist must be accurately 

determined for proper data reduction. The specimen tilt is defined as the deviation of 

the fiber axis from an absolute normal to the X-ray beam and the twist is the deviation 

of the fiber axis from the plane of the detector, Fig. 1.1 (Kendall et al., 2007). 

Fiber diffraction data contain less information than the equivalent from protein 

crystals. Firstly, cylindrical averaging reduces the information content of diffraction. 

The amount of information lost depends on the size and symmetry of filaments and 

also on the resolution of the diffraction data. Cylindrical averaging affects high 

resolution data that are away from the axis of rotation much more than that close to 

the axis. In fact, for highly symmetrical helical filaments, the data near the axis of 

rotation are cylindrically symmetric, and no data loss occurs due to cylindrical 

averaging. For filaments of high symmetry viruses, e.g. TMV, cylindrical averaging 

reduces the effective number of observable diffraction data at 3 Å resolution by a 

factor of about 2.5, while for Pf1, the corresponding factor is only 1.7 (Makowski, 

1982). There is no significant data loss for TMV at 15 Å and for Pf1 at 7 Å resolution. 

Secondly, the resolution of the diffraction pattern is limited by disorientation of the 

fiber sample. In practice, the filaments are not perfectly parallel and the mean 

deviation of the filament axis from the fiber sample axis is typically 1 or 2°, even for a 

well oriented fiber. As result, the layer lines fan out (overlap), running into each other 

at high resolution. The severity of this effect obviously depends on the distance 
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between the layer lines, but in general, useful FD patterns hardly extend beyond 3 Å 

resolution. Nevertheless, there are still sufficient data to solve structures. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 1.1. Tilt and twist of a sample. In the upper panel, the sample 
is viewed from the X-ray (solid circle) source. The misalignment of the 
fiber axis, represented as a helical tube, is called tilt. In the lower 
panel, in a view perpendicular to the upper panel, the twist is the 
misalignment of the fiber axis.  
 

1.2.3 Crystalline and non crystalline fiber 

Fibers in general are classified as crystalline and non-crystalline, and in some 

cases intermediate between the two. In non-crystalline fibers, filaments are 

approximately parallel to each other, but their positions and orientations are 

uncorrelated. Diffraction patters from these fibers are limited to layer lines at spacings 

inversely proportional to the filament repeat distance, but are otherwise continuous 

and represent the cylindrical average of the diffraction pattern of a single filament. 

Most filamentous plant viruses are non-crystalline in nature. The crystalline fiber 

filaments form fully ordered microcrystals, usually of a very elongated form, and each 

fiber consists of many such crystals randomly oriented about the fiber axis. In 
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diffraction patterns from the crystalline fibers, the layer lines are sampled to from 

separate reflection and the diffraction pattern represents the cylindrical average of the 

diffraction pattern from a single crystal. The A form of DNA is crystalline fiber in 

nature whereas the B form is non-crystalline fiber. Many filamentous bacteriophage 

fibers are intermediate because these fibers are usually made by drying (McDonald et 

al., 2008). The diffraction pattern from this type of fiber shows individual reflections 

at the center (low resolution) of the equator, but continuous data on all other layer 

lines. 

 

1.3 STRUCTURE DETERMINATION USING FIBER DIFFRACTION 

  It is evident from Eqs. 5-7 that in order to determine electron density, the 

observed intensities in a diffraction pattern must be separated into their component G 

terms, and the phase of each G term must also be determined. Equivalently, the real 

imaginary parts of each G term, contributing to each point in the diffraction pattern 

must be determined. This is the FD equivalent of the phase problem in 

crystallography, determining the phase for each F. In studies of filamentous viruses, 

several different methods have been used for this determination. 

 

1.3.1  Multidimensional isomorphous replacement (MDIR) 

This method is an extension of the protein crystallographic method of 

isomorphous replacement (IR) (Namba & Stubbs 1985; Namba & Stubbs, 1987a; 

Stubbs & Diamond, 1975). If a heavy atom (i.e. an atom for which fj is significantly 

greater than the other atoms in a structure) can be introduced into the molecule 

without significantly perturbing the rest of the structure, the diffraction pattern from 

the resulting derivative can be used together with the original (native) diffraction 
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pattern to determine the phase of each intensity. Typically, heavy metal atoms such as 

mercury, platinum and uranium are used. If G = A + iB, then, Eq. 5 can be re-written 

as 

 ܫ                                                 ൌ ∑ .ே
௞ୀଵ  ሾ2݇ܣ  ൅  ሿ      (8) 2݇ܤ 

omitting the arguments (R, l) for clarity and denoting the number of significant G 

terms contributing to the intensity as N. Each Ak and Bk can be considered to be a 

component of a 2N-dimensional vector. If a derivative of the diffracting filament 

contains a heavy atom that contributes ak + ibk to the kth G term at (R, l), the diffracted 

intensity from the derivative fiber will be 

 ܫ            ൌ ∑ .ே
௞ୀଵ  ሾሺ݇ܣ  ൅  ܽ݇ሻ2  ൅ ሺ݇ܤ ൅ ܾ݇ሻ2ሿ         ሺ9ሻ 

     If the position of the heavy atom is known, ak and ibk can be calculated using 

equation (3). The heavy atom positions can be determined by search methods and 

refined by least-squares methods (Namba & Stubbs 1985; Stubbs & Diamond, 1975). 

The cylindrically averaged Patterson function is complicated and the Patterson 

methods that are used to locate heavy atoms in crystallography are not very useful in 

FD (McGillavry & Bruins, 1948; Stubbs, 1987). Clearly, given sufficient derivatives, 

each one giving an equation like equation (9), it is possible to solve the set of 

equations (8) and (9) for all of the An and Bn. At least twice as many heavy atom 

derivatives as there are G terms are required (e.g. for resolving 2 G terms, 4 

derivatives are necessary). The errors in equations (9) can be minimized by using 

equation (8) as a constraint (Stubbs & Diamond, 1975). Alternatively, a least-squares 

procedure has been used to minimize the errors in equations (8) and (9) (Namba & 

Stubbs, 1985). Heavy atom derivatives can be difficult to make, particularly in the 

numbers required for MDIR. A method analogous to protein crystallographic single 

isomorphous replacement (SIR) has been developed for use in FD (Wang, 1985; 
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Namba & Stubbs, 1987a). It was used to determine the structure of Cucumber green 

mottle mosaic virus (CGMMV) at 5 Å resolution (Lobert & Stubbs, 1990). In this 

method, the magnitudes of the G terms contributing to a given intensity are either 

estimated from a model of a related structure (sometimes called the ‘proportional 

amplitude’ method) or they are assumed to be equal (Wang & Stubbs, 1994). The 

equal-amplitude assumption is preferable, as it avoids model bias. The phases are then 

determined by conventional crystallographic IR or by SIR.  

Electron density maps of CGMMV, determined using the equal-amplitude 

assumption, were as good as maps determined using amplitudes based on the related 

TMV structure, even at 4.5 Å resolution (Lobert & Stubbs, 1990; Wang & Stubbs, 

1994). But at higher resolutions the equal-amplitude assumption may not always be 

sufficient to obtain a fully interpretable map (Namba & Stubbs 1987a   and 1987b). 

An additional source of information is in the positions of the layer lines in the 

diffraction pattern. The layer line spacing is determined by the size of the helical 

repeat, and when the repeat is approximate (fractional value), the G terms in each 

layer line do not fall at exactly the same values of Z (where Z is the distance from the 

equator in the reciprocal space), and the layer lines are said to be split (Tollin et al., 

1968). Layer lines have a finite thickness and the disorientation in the diffracting 

specimen increases this thickness, so the splitting is seen only as a small shift in the 

apparent position of the line. The magnitude and direction of the shift depend on the 

relative magnitudes of the contributing G terms. The shifts can be measured for each 

heavy atom derivative and used in the equation (Makowski, 1978), 

                                      Θܫ  ൌ ∑ .ே
௞ୀଵ   Σ݇ߠݍሾሺ݇ܣ  ൅  ܽ݇ሻ2  ൅ ሺ݇ܤ  ൅  ܾ݇ሻ2  (10)  

where Θ is the shift observed in the layer line position, measured as an angular 

displacement about the centre of the diffraction pattern, θk is the calculated shift for 
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the kth G term and q is the ratio of the magnitude of splitting in the derivative to the 

magnitude of splitting in the native filament (Stubbs & Makowski, 1982). An 

equation like (10) can be obtained from the native (with ak = bk = 0) and from each 

derivative that is oriented sufficiently well to determine accurately. Equation (10) is 

independent of equation (9) and can be combined with them to determine the values 

of Ak and Bk. This method was particularly important in determining the structure of 

TMV for which several extremely well oriented derivatives were available (Namba & 

Stubbs, 1986). 

 

1.3.2  Molecular replacement  

The molecular replacement (MR) method is also used in fiber structure 

determination when a structure closely related to the structure under investigation is 

already known. A known structure can be used to estimate the phases and relative 

magnitudes of the G terms. These phases and relative magnitudes can be applied to 

the observed data and electron density maps can be calculated. A new model is built, 

based on the generated electron density by several cycles of refinement until the 

structure converges. This approach must be used with caution because the data is 

cylindrically averaged due to which fewer data are available, and the phase solution is 

consequently more dependent on the initial model. The map may therefore tend to 

resemble the initial model regardless of the true differences in the structure. This was 

a problem in earlier structure determinations. Improved methods of refinement, 

particularly molecular dynamics (MD) refinement have greatly reduced the problem 

of model bias (Wang & Stubbs, 1993). For example, the structure of the U2 strain of 

TMV could not at first be determined by MR from the TMV structure, even though 

these two virus structures are very similar. With the development of MD refinement, 
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the U2 model was finally solved satisfactorily (Pattanayek & Stubbs, 1992). With MD 

refinement, the structure of the much difficult Ribgrass mosaic virus (RMV) 

determined by MR from TMV (Wang et al., 1997) as initial model. Also the structure 

of the bacteriophage Pf3, determined from the Pf1as a initial model were refined 

(Welsh et al., 1998). The use of a limited number of heavy atom derivatives in this 

way may be a useful corrective measurement against excessive bias toward a model 

structure in molecular replacement. 

 

1.4  REFINEMENT OF FIBER STRUCTURES 

Two methods of restrained refinement have been used in FD studies of 

filamentous viruses, namely, restrained least squares (RLS) and MD. The RLS 

method was adapted from the protein crystallographic refinement method 

(Hendrickson, 1985; Stubbs et al., 1986). RLS has been effectively used for 

refinement of plant virus (Namba et al., 1989) structures. A closely related Jack-Levitt 

refinement has been used to refine bacteriophage structures (Jack & Levitt, 1978). 

The radius of convergence of these methods is limited and successful refinement 

depends on the accuracy of the starting model. The MD is the major choice of refining 

fiber structures. The most useful application of this method has been simulated 

annealing (SA), in which the structure is heated to a temperature of 3000-4000 K and 

then potential energy is minimized as the structure is cooled in small decrements. At 

higher temperatures, energy barriers between the starting model and the structures of 

the lower potential can be overcome. In this way the radius of convergence of the 

refinement is increased. Simulated annealing has been used to refine both 

bacteriphages and filamentous viruses (Gonzalez, 1995; Wang et al., 1997; Wang & 

Stubbs 1994; Welsh et al., 1998). 
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1.5  DIFFERENCE FOURIER AND OMIT MAP IN FIBER DIFFRACTION 

Difference Fourier syntheses have been widely used in both protein and small-

molecule crystallography to determine structures. It is also used in FD (Mandelkow et 

al., 1981). This use has been limited by the difficulties peculiar to FD which arise 

from the cylindrical averaging of FD patterns. Difference Fourier maps calculated 

from FD data, by direct analogy with crystallographic difference maps, tend to have 

high noise levels and found to be biased toward the known or model structure.  

The crystallographic reflection has two components, one real and one 

imaginary. But the FD layer lines may have more Bessel terms as we move to higher 

resolution shell. The problem of FD is multidimensional unlike the two dimensional 

problem of crystallography. The number of significant Bessel terms (N) contributing 

to the diffraction intensity depends on the symmetry and dimensions of the diffracting 

particle and on the values of (R, l) (see Eq. 5). In FD, e.g. TMV,   10 Å resolution data 

can contribute to 1 Bessel term, but 2.9 Å data can contribute to 8 Bessel terms.  

In crystallography the difference map is generally 2Fo – Fc. The fiber 

equivalent of 2Fo-Fc is 6Go – 5Gc (Namba & Stubbs, 1987b). Although the difference 

maps described is satisfactory for most applications, it is sometimes desirable to 

minimize any possible bias towards a model structure. In recent years, omit maps 

have become popular as a means to eliminate model bias. Omit maps are calculated 

from observed structure factor amplitudes and calculated phases, but for phase 

calculation, the part of the structure under investigation is omitted. A series of map 

sections of the unit-cell can be systematically omitted (Artymiuk & Blake, 1981). 

Alternatively, parts of the model structure can be omitted e.g. at a time three amino 

acid residues can be omitted (Furey et al., 1986). A similar approach was taken in a 

FD study where electron density corresponding to amino acid side chains suspected of 
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changing conformation between two different forms of TMV protein were omitted 

(Mandelkow et al., 1981). In some cases omitted density may return or included 

density may disappear. In other cases, however, the noise level may be too high to 

allow unambiguous interpretations to be made. The size of the omitted structure has 

considerable bearing on the interpretability of omit maps. This is particularly true 

with FD data because the ratio of model observations to diffracted data observations 

is much higher than in crystallography. For very small omissions, such as a single side 

chain we may obtain satisfactory results but with larger omissions there is a 

significant loss of interpretability. It therefore appears that while omit maps can be of 

value to FD in answering questions about small regions of a molecule, they are not 

suitable for systematic examination of complete structures. 

 

1.6 FIBER DIFFRACTION IN MACROMOLECULAR STRUCTURE 

DETERMINATION 

Since the development of the theory of FD (Cochran et al., 1952a), it has been 

widely used for structure determination of helical aggregate forming biomolecules, 

notably synthetic polypeptides (Cochran & Crick, 1952b), deoxyribonucleic acid 

(Wilkins et al., 1953), TMV (Namba et al., 1989) and collagen (Cohen & Bear, 1953; 

Cowan et al., 1953). 

 

1.6.1 Filamentous plant viruses 

 Filamentous plant viruses make up almost half of the plant virus genera. The 

Potyvirus genus alone has been described as including almost a third of known plant 

viruses (Riechmann et al., 1992) and is responsible for more than half viral crop 

damage in the world. A single Potexvirus, Potato virus X (PVX) destroys world 
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potato crop by 20% (White et al., 1994). Filamentous plant viruses can be grouped 

broadly into rigid (rod-shaped) and flexible viruses. The International Committee on 

Taxonomy of Viruses currently recognizes 8 genera of rigid filamentous plant viruses 

(type member, TMV) and 17 flexible species (type member, PVX) (Regenmortel et 

al., 2000). All existing filamentous plant viruses are RNA viruses that contain a single 

type of Coat protein (CP) encapsidating a single-stranded RNA molecule in a helical 

array. In some genera, the genome is divided among two or more RNA molecules in 

which the virus consists of multiple particles, typically of different lengths e.g. 

Tobacco rattle virus (TRV), a member of the Tobravirus, is a bipartite virus having 

particles of two lengths encapsidating the two RNA molecules that make up the TRV 

genome. Some filamentous plant virus genera are morphologically similar to each 

other at the electron microscopic level but most exhibit large differences in both 

morphology and chemical structure. A better argument has been presented that most 

filamentous plant viruses fall into one of two groups the rigid rods or the flexible 

filaments (Dolja et al., 1991).  

 Filamentous virus studies and the development of FD methods have always 

been synergistic. TMV and other Tobamoviruses have served as models for FD data 

processing. It also helps in method development including the method of angular 

deconvolution and phase determination (Makowski, 1978; Namba & Stubbs, 1985). 

Isomorphous replacement (IR) was used earlier to obtain radial density distributions 

of TMV (Caspar, 1956; Franklin, 1956). Later IR was developed to solve the multi-

dimensional phase problem in structure determination by FD (Stubbs & Diamond, 

1975). Other techniques developed on TMV included layer line splitting (Franklin & 

Klug, 1955). Methods of structure refinement and evaluation were also developed 

using TMV. RLS (Stubbs et al., 1986), MD refinement (Wang & Stubbs, 1993), using 
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the likelihood function as a target (Mu & Makowski, 2000) difference Fourier 

analysis (Namba & Stubbs, 1987b) and FD R factors (Millane, 1989; Stubbs, 1989) 

are part of improvement in FD structural study. The filamentous bacteriophage Pf1 

has been important in FD method development. Angular deconvolution was first time 

applied to Pf1 structure (Makowski, 1978). Pf1 has also been important in the 

development of MD refinement (Gonzalez et al., 1995).  

 Other filamentous bacteriophages served as model systems for the 

development of background subtraction methods (Ivanova & Makowski, 1998; 

Marvin et al., 1987). Techniques for making oriented sols by shearing were originally 

developed for TMV (Bernal & Fankuchen, 1941; Gregory & Holmes, 1965). The use 

of magnetic fields for orienting FD specimens was first time applied using Pf1 

(Torbet, 1987; Torbet & Maret, 1979). Magnetic orientation is now widely used in FD 

(Stubbs, 1999; Torbet, 1987).The combination of these two techniques with 

centrifugation (Ivanova & Makowski, 1998) showed exceptional promise for a 

number of FD systems including filamentous viruses (Oda et al., 1998; Stubbs et al., 

2000; Yamashita et al., 1998b). 

 

1.6.2 Tobamovirus structure determination by fiber diffraction 

TMV, a rod shaped virus of the genus Tobamovirus, was the first virus to be 

discovered and subjected to structural studies using X-ray FD.  

Powder diffraction patterns from unoriented virus solutions had been obtained earlier 

(Wyckoff & Corey, 1936). Later it was shown  that TMV can form highly oriented 

sols where rod shaped particles are oriented to within about 1° of each other (Bawden 

et al., 1936; Bernal & Fankuchen, 1941). These oriented sols yielded high quality FD 

patterns with virions aligned about their long axes. Also FD patterns from flexible 
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virus PVX was obtained although those patterns did not exhibit such a high degree of 

orientation (Tollin et al., 1980; Wilson & Tollin, 1969). The characteristic spacing of 

the layer lines in the TMV diffraction pattern and the higher intensity of every third 

layer line showed that the virion structure was periodically repeating every 69 Å and 

with an approximate repeat at every 23 Å. It was recognized that the pattern was 

typical of diffraction from a helical structure and 69 Å repeating unit of TMV must 

contain 3n + 1 subunits in three turns of the helix, with n being an integer. It was 

shown for TMV that n = 16. i.e. 49 subunits in three turns (Franklin & Holmes, 1958). 

Using heavy atoms and IR, the equatorial diffraction patterns with and without heavy 

atom were compared for the radial density distribution. The center of the virion was 

hollow, along the virus axis, with a central hole of about radius of 20 Å and RNA was 

located about 40 Å from the viral axis. The method was later used for FD (Stubbs & 

Diamond, 1975) and used to determine the TMV structure (Holmes et al., 1975; 

Namba et al., 1989). 

 

1.6.3  Other filamentous virus structure by fiber diffraction  

The filamentous bacteriophages have been classified on the basis of structure 

into two classes, I and II (Marvin, 1998; Marvin et al., 1974a; Marvin et al., 1974b). 

They are morphologically similar at the electron microscopic level and are members 

of the Inovirus genus (family Inoviridae) (Regenmortel et al., 2000). 

 A major development in their structure determination was the use of strong 

magnetic fields to induce the bacteriophage particles to orient parallel to each other 

(Torbet and Maret, 1979). This technique allows the production of exceptionally high-

quality diffraction patterns. IR method was of little use in filamentous bacteriophage 

studies because most heavy atom compounds induced structural changes in the 
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virions. However, the simple α-helical structure of the CP (Marvin et al., 1974b) 

allows models to be built and refined against diffraction data. In this way, the 

structure of Pf1 was determined at 7 Å resolution (Makowski et al., 1980). The 

structures of several filamentous bacteriophages from both structural classes were 

determined later at resolutions as high as 3.0 Å (Welsh et al., 2000). The Potexviruses 

(type member, PVX) are flexible filamentous viruses about 5000 Å in length and 130 

Å in diameter (Richardson et al., 1981; Tollin et al., 1980; White et al., 1994). The 

earliest FD studies of PVX showed that the diffraction patterns of virion have a 

periodicity of about 33Å (Bernal & Fankuchen, 1941). The FD patterns from 

Potexviruses have been interpreted and the symmetry of these viruses are found to be 

considerably more variable than rigid Tobamoviruses (Tollin et al., 1980). Recently 

oriented sols of PVX and Papaya mosaic virus have been obtained using techniques 

combining magnetic fields with centrifugal forces (Yamashita et al., 1988a).  

Potexviruses respond well to magnetic orientation in combination with centrifugation 

developed by Namba’s group. Tobraviruses are rigid rod shaped bipartite viruses 

having particles of various lengths encapsidating two RNA molecules (MacFarlane, 

1999; Mathis & Linthorst, 1994). Both types of particle have same CP with 230 Å 

diameters. On the basis of sequence comparisons with TMV, a model for the CP 

structure of Tobraviruses has been proposed (Goulden et al., 1992).  

Diffraction studies have been described for oriented sols of TRV (Finch, 1965) 

and Pepper ringspot virus formerly known as the Campinas strain of TRV (Tollin & 

Wilson, 1971). Fiber diffraction study of a Hordeivirus, called Barley stripe mosaic 

virus (BSMV) has been reported (Finch, 1965). BSMV is a rigid rod 1250 Å in length 

and about 200 Å in diameter. In summary, structural study of a number of filamentous 

viruses (plant viruses and bacteriophages) is possible.  However, crystallization of 
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filamentous viruses by common approaches for viral structure determination using 

protein crystallography is very difficult. In very rare cases, isolated CP can be 

crystallized. The TMV CP has been crystallized and its structure was determined at 

2.8 Å resolution (Bloomer et al., 1978) and later at 2.4 Å (Bhyravbhatla et al., 1998). 

But the natural tendency of CP subunits is to form helical aggregates rather than 

crystals and attempts to crystallize the CP of other filamentous viruses have failed. In 

rare cases where crystals have been grown, protein–protein interactions in the crystal 

do not correspond to biologically significant interactions. In addition, protein-nucleic 

acid interactions are absent altogether (Bhyravbhatla et al., 1998). Thus, structural 

studies of filamentous viruses very much rely on the FD method. 
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CHAPTER 2. HIBISCUS LATENT SINGAPORE VIRUS 

 

2.1  INTRODUCTION 

Viruses can infect animals, plants and bacteria. Since first discovery of TMV 

(Beijerinck, 1898), many viruses have been discovered. Viruses are nucleoprotein 

complexes with their genetic material as DNA or RNA. The genetic material of a 

virus is protected by CP structure. Major category viruses are of two shapes, 

filamentous and icosahedral types. Plant viruses enter the host cells by damage of the 

host tissue. The cell to cell movement is regulated by movement protein (MP) 

whereas the long distance movement is regulated by CP.  

Using various molecular biology methods, it is now possible to explore the 

genome organization and expression strategies of different viruses elaborately. This in 

turn help us to develop and design methods to combat crop losses resulting from viral 

epidemics in agricultural fields and their exploitation as vectors for expressing 

therapeutic proteins (Hamamoto et al., 1993; Wu et al., 2003). Tobamoviruses are 

rod-shaped with an approximate length of 3000 Å and a diameter of 180 Å. Its 

genome is positive-sense single-stranded RNA packed in a capsid of about 2100 CP 

subunits. This typical packaging forms a right handed helical virion with 49 CP 

subunits in three helical turns. Among Tobamoviruses, TMV is the most widely 

studied virus and it remains to be useful tools for understanding the fundamental 

processes of viral infection, replication and movement. Tobamovirus genus consists of 

several species, which can be classified into 2 major sub-groups based on their origin 

of assembly sequence (OAS). The OAS for the subgroup I and subgroup II located in 

the MP and CP, respectively. The complete genome sequences of the
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various Tobamoviruses have been reported (Alonso et al., 1991; Chng et al., 1996; 

Goelet et al., 1982; Hamamoto et al., 1993; Heinze et al., 2006; Ikeda et al., 1993; 

Lartey et al., 1995; Meshi et al., 1981; Min et al., 2009;  Rhie et al., 2007; Silver et 

al., 1996; Solis & Garcia-Arenal, 1990; Song et al., 2006; Srinivasan et al., 2002; Tan 

et al., 2000; Ugaki et al., 1991; Yoon et al., 2001; Yoon et al., 2002; Zhang et al., 

2008). 

 

2.2  HIBISCUS LATENT SINGAPORE VIRUS (HLSV) 

Hibiscus latent Singapore virus (HLSV) is a newly discovered member of 

subgroup II Tobamovirus. It is a positive sense RNA virus comprising 6,474 nt 

(Genbank Accession No. NC 008310; Srinivasan et al., 2005). The helix has a repeat 

of 70.5 Å (helix pitch 23.5 Å), which is close to the 70.8 Å of CGMMV (Wang & 

Stubbs, 1994). Two other viruses of subgroup II are Cucumber green mottle mosaic 

virus (CGMMV) and Sun-hemp mosaic virus (SHMV). HLSV differs from CGMMV 

and SHMV in containing a 77-96 poly(A) tract at the 3΄ untranslated region (UTR). 

The following sections give a preview of HLSV characterization. 

 

2.2.1  General characterization of HLSV 

The single molecule genome of HLSV is packed with 2,100 CP molecules (3 

nucleotides per CP). The virus is 180 Å in diameter and the CP molecules are 

arranged helically to give a rigid rod shape. HLSV also makes two sub-genomic RNA 

for MP and CP (Srinivasan et al., 2002). HLSV induces chlorotic local lesions in C. 

quinoa and systemic infection in Nicotiana benthamiana (Srinivasan et al., 2002). 

HLSV host range is relatively limited as compared to TMV. HLSV forms particles of 

two length sizes, i.e. 34 nm and 307 nm during its life cycle of infection in plants 
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(Srinivasan et al., 2002). The longer particle packs the full length RNA genome 

HLSV. The shorter particles may contain its CP sub-genomic RNA, as reported for 

SHMV (Higgins et al., 1976). 

 

2.2.2  HLSV gene structure, regulation and proteins function 

           The HLSV genome contains 5΄ UTR, methyl transferase-helicase (128 kDa), 

RNA dependent RNA polymerase (RdRp, 186 kDa), movement protein (MP, 30 

kDa), coat protein (CP, 18 kDa) and a 3΄ UTR (Fig. 2.1). The 5΄ UTR contains 58 

nucleotides and is predicted to form a stem-loop structure. The (CAA)n repeat 

sequence of  5΄ UTR is quite similar to the TMV 5΄ UTR (CAA)n repeat sequence 

and it act as a translational enhancer (Gallie et al., 1987a and 1987b). The 3΄ UTR 

poly(A) tract of 77-96 nt is followed by a t-RNA like structure. During Tobamovirus 

replication in plants, RdRp, MP and CP play an important role of virus replication, 

cell to cell movement and long distance movement, respectively (Asurmendi et al., 

2004; Fujiki et al., 2006; Yamaji et al., 2006).  

  

 

 

 

 
 
 Figure 2.1. Genome organization of HLSV. Boxes represent coding 
regions for methyl transferase-helicase (128 kDa), RdRp (186 kDa), 
MP (30 kDa) and CP (18 kDa) protein with their amino acid lengths 
indicated. Dashed vertical line indicates amber stop codon for the 
RdRp. Asterisk in CP region indicates location of predicted OAS. 
Untranslated regions at the 5′and 3′ ends are represented by horizontal 
lines. Poly(A) tract is represented by solid box. Length of 3′ UTR is 
variable due to the variable length of poly(A) tract. 
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2.3  PREVIOUS STUDIES ON TOBAMOVIRUS STRUCTURES 

Several Tobamovirus structures have been reported. The structure of TMV 

(Holmes et al., 1975; Namba et al., 1989), CGMMV (Wang & Stubbs, 1994), RMV 

(Wang et al., 1997) and U2 strain of TMV (Pattanayek & Stubbs, 1992) have already 

been solved by X-ray FD. Surprisingly, the TMV CP structure was solved at 2.4 Å 

resolution by X-ray crystallography method (Bhyravbhatla et al., 1998). But for other 

Tobamovirus structures X-ray crsyatllography approach was not successful. All other 

Tobamovirus structures are determined by X-ray FD. 

 

2.3.1  Infection and stability of native virus capsid 

For Tobamoviruses, it has been shown that negatively charged amino acid 

residues in the CP from different molecules are juxtaposed at subunit interfaces, at the 

low (proximal to virus axis) and high radius regions (distal to virus axis). This creates 

an electrostatic potential that is believed to drive disassembly and thus initiate the 

early stages of viral infection (Caspar, 1963; Lu et al., 1996; Namba et al., 1989). The 

carboxyl-carboxylate pair in the low radius region and phosphate-carboxylate pair 

also appear to bind calcium (Ca2+). Electrostatic interactions have been recognized to 

be an important factor in the disassembly of helical and spherical plant viruses 

(Bancroft, 1970; Caspar, 1963). On the basis of titrations of isolated TMV CP under 

various conditions, anomalously titrating amino acids was suggested to exist in 

subunit interfaces (Shalaby & Lauffer, 1977). It was also shown that TMV has two 

sites which compete for calcium and protons ions (Gallagher & Lauffer, 1983a; 

Gallagher & Lauffer, 1983b). Ca2+ ion binding gives structural stability to many 

icosahedral viruses (Butler et al., 1977; Olson et al., 1983; Wada et al., 2008). 
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 Structural details of TMV provide some interesting facts regarding molecular 

basis of assembly in Tobamoviruses. A general description of the assembly process of 

TMV has been described (Butler et al., 1977; Lebeurier et al., 1977). The OAS of the 

RNA binds to the 20 S aggregate of the CP and elongation of the viral rod proceeds 

by addition of the 20 S aggregates (Zimmern, 1977). For TMV, during infection, it is 

believed that low concentration of Ca2+ and high pH (relative to extracellular 

conditions) of the cell could considerably destabilize the close approach of the 

negative charges in the viral subunit interfaces as described earlier (Namba et al., 

1989). However, these conditions are not sufficient for complete disassembly of virus 

under in vitro conditions. It was shown that with pretreatment of TMV at pH 8.0 

particles could be dissociated under in vitro conditions by a preparation containing 

ribosomes (Wilson, 1984). This phenomenon, called co-translational disassembly, 

was later observed also for in vivo conditions (Wilson, 1984). This mechanism 

protects viral genome under unusual alkaline conditions.  

In summary, the whole infection mechanism is described as; when virion 

enters into a plant cell, owing to low concentration of intracellular calcium (Ca2+) and 

high pH (relative to the extracellular environment), protons and Ca2+ ions are removed 

from carboxyl-carboxylate pairs and phosphate-carboxylate positions. This allows 

electrostatic repulsive forces (from negative charges of the protein residues) to 

destabilize the intact virus and hence, disassembly. It has been proposed that protein-

nucleic acid interactions involving first 69 nucleotides of 5΄ UTR are weaker than the 

rest of the genome because of the presence of relatively less guanine bases (Douglas 

& Young, 1998). So, CP subunits forming about 1.5 turns of the virus helix at the 5΄ 

UTR are lost easily. The first start codon is thus exposed and ribosomes bind and 

move toward the 3΄ end during translation, competing with the CP and stripping the 
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rest of the genome, thereby beginning a new cycle of viral replication (Namba et al., 

1989). 

 

2.3.2 Evolutionary insights from virus structures 

Three major forces that drive evolution of viruses are mutation, recombination 

and reassortment. The discovery of the GDD-sequence motif in a wide range of viral 

polymerases shows that viruses have genes that are related (Argos, 1988; Kamer & 

Argos, 1984). Koonin & Dolja (1993) and Zanotto and his team (1996) proposed that 

Tobamoviruses share their RNA polymerase genes with other species of a large group 

of viruses called the `α-like' virus group (Goldbach & De, 1994).  

Tobamovirus CPs are also related in sequence and structure to those of other 

viruses with rod-shaped and filamentous virions. The 3-D architecture of a typical 

CPs of Tobamovirus consists of a bundle of four α-helices which is also a structural 

fold observed in several other proteins, and shows evidence of having arisen by 

duplication of a two-helix protein (McLachlan et al., 1980). In Tobamoviruses, 

protein-nucleic acid interactions are more conserved than protein-protein interactions. 

Firstly, among the 25 residues that are conserved in the Tobamovirus sequences, 11 

are directly involved in RNA binding (Altschuh et al., 1987; Namba et al., 1989). 

Secondly, because evolutionary pressures would resist viable mutations in the nucleic 

acid binding site, mutations in other parts of the structure can be compensated for by 

complementary mutations in spatially nearby residues. 

 Another phenomenon, called Caspar carboxylates interaction, is an important 

feature of many viruses in disassembly process and is evolutionarily migrating among 

virus species (Wang et al., 1998; Caspar, 1963; Bancroft, 1970). It is seen as 

interactions between the side chains of specific amino acid residues of the CPs. 
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Carboxyl-carboxylate interactions are not conserved during evolution (Namba et al., 

1989; Wang & Stubbs 1994; Wang et al., 1997). The complex and variable nature of 

protein-protein and protein-nucleic interactions in Tobamoviruses provides 

information about the relationship between structure and function. Carboxylate 

interactions allow structural features of inter-subunit interactions to be conserved, 

even while amino acid sequences are changing. This feature allows virus to change 

structure but retain function, is evolutionarily important and advantageous. Such 

evolutionary flexibility helps virus in evading host defensive responses. For example, 

host factors in tobacco are known to recognize the surface of the viral CP in many 

Tobamoviruses that triggers a hypersensitive response. This response is characterized 

by the death of cells close to the original site of viral infection thus preventing the 

virus to spread systemically and the rest of the plant is protected (Culver et al., 1994). 

 

2.3.3  Coat protein interaction with genomic RNA 

Of several interactions that stabilize a Tobamovirus virion, protein-nucleic 

acid interactions are very important. The entire genomic RNA of is encapsidated by 

CP through non base specific protein-nucleic acid interactions. Such interactions are 

non-directional, ionic and van der Waals forces. There are 4 α-helices in each CP, two 

radial and two slewed ( Left Slewed, Right Slewed, Left Radial, Right Radial) 

(Champness et al., 1976).  

In TMV, nonspecific base binding is achieved by interactions between the 

base surface and left radial α-helix (Namba et al., 1989). Electrostatic interactions are 

considered complementary between electrostatic surfaces of the protein and the 

nucleic acid. The top surface of the helical array of the CP subunits creates a 

positively charged groove to accommodate the negatively charged phosphate groups 
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of RNA. TMV CP recognizes RNA with very high selectivity, efficiently 

encapsidating only its own or closely related RNA (Hirth & Richards, 1981; Meshi et 

al., 1983; Meshi et al., 1981). It was proposed that TMV assembly is initiated by a 

specific RNA sequence that includes AAGAAG as part of a sequence (XXG)6 

(Zimmern, 1977). It was proposed that this part of the genome has a highly base-

paired secondary structure. In TMV and U2 strain, RNA recognition is achieved by a 

specific hydrogen bonding interaction between Arg122 and a guanine1 (Pattanayek & 

Stubbs, 1992; Namba et al., 1989). Arg122 is conserved in most Tobamoviruses. In 

CGMMV, guanine1 specificity is achieved by hydrogen bonding with Gln36 and this 

may be a characteristic of a subgroup II Tobamovirus (Wang & Stubbs, 1994).  In 

TMV CP subunits, there is an electrostatic repulsion prevalent between Asp116 and 

phosphate2. There was electron density evidence for Ca2+ ions binding in this region 

shown (Namba et al., 1989). In general protein-nucleic acid interactions in a virus 

structure demonstrates an important principle that virus structure must achieve a 

metastable balance. All protein-nucleic acid interactions in viruses are required for 

assembly and dis-assembly in response to changes in their environment (Caspar, 

1963; Bancroft, 1970).  

 

2.3.4 Maturation processes of Tobamoviruses 

Structural studies of CP are advantageous in understanding the self-assembly 

of a virus in terms of protein-protein and protein-nucleic acid interactions. These 

interactions are responsible for nucleation and subsequent growth of the virus. TMV 

CP is one of the first fibrous protein assemblies that was successfully crystallized, as a 

dimer of bilayer disks or also called a four layer aggregate having 68 subunits (each 

layer having 17 subunits) (Bloomer et al., 1978). This assembly shown a 
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sedimentation coefficient of 28 S (Bhyravbhatla et al., 1998) and the structure helped 

in understanding the self-assembly of TMV.  

Since then, it was proposed that bilayer disk plays a key role through an initial 

RNA recognition reaction at a specific OAS, which then induces a structural 

switching from the cylindrical disk to helical subunit packing array (Bloomer & 

Butler, 1986; Butler & Durham, 1977; Hirth & Richards, 1981; Okada, 1986; Stubbs, 

1984). A major role for the bilayer disk in the growth of TMV assembly has been 

proposed (Bloomer & Butler, 1986), but this point has been controversial for some 

time (Hirth & Richards, 1981; Okada, 1986; Schuster et al., 1980). Central to this 

controversy has been the assumption that the bilayer disk structure, which is seen in 

crystals as a dimer, also exists in solution and can undergo a direct structural change, 

resulting in helical packing of subunits. It has been shown that axial inter-subunit 

contacts in the bilayer disk are totally different from those in the helix (Champness et 

al., 1976). At pH 7.0, the CP exists as a mixture of 4 S and 20 S sedimentation 

aggregates. The CP species with a sedimentation coefficient of 20 S has been shown 

to be involved in formation of large helical protein aggregate (Durham et al., 1971; 

Schuster et al., 1979) as well as in the nucleation of viral assembly under in vitro 

experiments (Shire et al., 1979). The 20 S aggregate is present in low ionic strength 

solutions, either in equilibrium with 4 S aggregate at pH 7.0 or as metastable 

aggregate at pH 6.5 (Durham et al., 1971; Butler & Klug, 1971).  

The 20 S aggregate from the crystallized four-layer aggregate, was further 

examined (Raghavendra et al., 1985) by circular dichorism technique. This study 

revealed that the aggregation assembly observed in the crystal differs from the 

structure present in the 20 S boundary in solution. As aggregates larger than 34 

subunits cannot be formed in the closed cylindrical disk, the authors concluded that 
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two structures are not the same and that the four-layer aggregate is only one of the 

many self-assembling aggregates and not the nucleating aggregate of the virus. 

 

2.4  RATIONALE AND OBJECTIVES  

During virion assembly, Tobamovirus CP recognizes a repeating GXX 

sequence, which is located in the OAS of a viral RNA (Zimmern, 1977, Meshi et al., 

1981, Meshi et al., 1983, Takamstusu et al., 1983). The guanine1 recognition during 

viral assembly is proposed for TMV, CGMMV and RMV (Namba et al., 1989, Wang 

and Stubbs, 1994, Wang et al., 1997). Arg122 is conserved in all Tobamoviruses 

except for HLSV and SHMV and it is believed to be involved in guanine1 hydrogen 

bond formation during virion assembly of TMV and U2 (Namba et al., 1989, 

Pattanayek and Stubbs, 1992). However, in HLSV and SHMV, the corresponding 

residue (Arg122) is replaced by histidine. Although histidine is a good hydrogen 

donor, it is unlikely to form a hydrogen bond with a base, since it does not have the 

flexible extended side chain to reach the base (Wang and Stubbs, 1994). Nevertheless, 

guanine specificity is believed to be required in SHMV (Meshi et al., 1981). What is 

the role of His122 and why is it not conserved as Arg122 during evolution in SHMV 

and HLSV? The recognition of the guanine1 in CGMMV and RMV is also believed 

to be dictated by Arg122 of the CP similar to TMV (Wang et al., 1997). If Arg122 is 

changed to His122, how do HLSV and SHMV CP recognize guanine1?  

While carboxyl-carboxylate interactions in Tobamoviruses are the main 

driving force for virus disassembly (Wang et al., 1998), they are not conserved during 

the Tobamovirus evolution (Wang et al., 1997; Wang and Stubbs, 1994; Namba et al., 

1989). Does this mean that these interactions in HLSV would be different from other 

Tobamoviruses?  
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 HLSV was chosen for this study is because this virus is a novel Tobamovirus. 

We wanted to compare its structure with Tobamoviruses and also to attempt higher 

resolution for its structure. 

By solving the structure of HLSV by X-ray FD, we will be able to have a 

better understanding of the differences between HLSV and other Tobamoviruses. This 

research may also enhance our knowledge of virus structure at atomic details. By 

knowing the atomic details of this novel virus we may able to use it in future as a 

vector to express pathogenic epitopes (to develop vaccine) and express economically 

important proteins.   
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CHAPTER 3. MATERIALS AND METHODS 

 

3.1 MOLECULAR BIOLOGY 

3.1.1 Cloning the HLSV c-DNA 

The pBluescript II KS(+) vector (Stratagene) was used to clone the HLSV full 

length cDNA of 6474 bp (Cao Shishu, PhD. thesis, Natl. Univ. Singapore, 2007). The 

bacterial strain Escherichia coli DH5α was used for plasmid propagation.  

 

3.1.2  In vitro transcript preparation 

The pHLSV construct was linearized with XhoI and cleaned up using the 

Qiaquick gel extraction column following manufacturer’s protocol (Qiagen). The 

mMessage mMachine kit (Ambion) was used for generating capped in vitro 

transcripts. The reaction mixture was as follows: 10 μl of 2x NTP/CAP, 2 μl of 10x 

reaction buffer, 1 μg linearized DNA template, 1μl GTP, 2 μl enzyme mix (T7 

polymerase) and nuclease free water to make the reaction volume to 20 μl. The 

mixture was incubated at 37 °C for 2 h. The transcript was checked on 1.2% agarose 

gel. The transcript was cleaned using the manufacturer’s protocol. 

 

3.2  VIRUS PROPAGATION AND PURIFICATION 

3.2.1  Plant inoculation 

The full length c-DNA clone of HLSV (see section 3.1.2), linearized with xhoI 

at the 3' end was transcribed using mMessage mMachine® (Ambion). 10 μg of the 

transcribed RNA was mixed with 50 μl of nuclease free water and inoculated 

mechanically onto Nicotiana benthamiana leaves using carborundum. Later on,
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HLSV-infected leaves were used as inoculums for re-inoculation to fresh plants. 

Mechanical inoculation using carborundum was carried out by grinding the infected 

leaves in 0.1 M borate buffer (pH 7.0), with a mortar and a pestle. Nicotiana 

benthamiana seeds were grown in plant growth room under 16 h light and 8 h dark at 

25 °C. Newly germinated seedlings were transplanted into new pots and grown in a 

plant incubator for three weeks under the same environmental conditions. Plant 

inoculation was performed mechanically as described above. Subsequently, the 

inoculated leaves were rinsed with sterile water to remove buffer from the leaf 

surface. The infected plant was then transferred to a plant growth room and incubated 

for 4 weeks for virus multiplication. The propagation of virus from plant infection to 

final virus purification took two months. 

 

3.2.2  Crude extraction of HLSV 

HLSV infected Nicotiana benthamiana leaves were harvested and stored at      

-80 °C. Frozen infected leaves were homogenized using a blender in 3 volumes (w/v) 

of extraction ice cold buffer (0.1 M borate buffer, pH 7.0). Homogenization was 

carried out 3 times for 30 sec and between every cycle 1 min interval was given to 

avoid over heating. The homogenate was centrifuged at 7,000 x g for 30 min in a 

JA14 rotor (Beckman Coulter) at 4 °C. The supernatant was clarified with an equal 

volume of n-butanol/chloroform (1:1) and again centrifuged at 7,000 x g for 30 min. 

The supernatant was filtered using Whatman paper. The filtered supernatant was 

transferred into 94 ml polyallomer thin tubes (resistant to organic chemicals) and 

centrifuged at 22,000 x g for 2.5 h in a 45Ti rotor (in a Beckman Coulter L-100 xp 

ultracentrifuge) to pellet the virus. The pellet was resuspended overnight in 0.1 M 

borate buffer (pH 7.0) containing 5 mM EDTA. 
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3.2.3  Cesium chloride density gradient centrifugation 

The crude virus preparation showed nucleic acid and other contamination from 

the plant tissue. To overcome this we used cesium chloride density gradient 

centrifugation. We Prepared 30% (w/v) CsCl solution in milli Q water with 5 mM 

EDTA, pH 7.0, to prevent virus aggregation. The crude virus sample was layered on 

the top of the solution in 30 ml ultra-clear centrifuge tube (with 3 mg virus per tube). 

The sample was centrifuged at 40,000 x g for 16 h at 20 °C in a 70.1Ti rotor (in a 

Beckman Coulter L-100 xp ultracentrifuge). The virus band was collected with a 

Pasteur pipette under fluorescent light. The collected virus, containing CsCl, was 

diluted 10 times using 0.1 M borate buffer containing 5 mM EDTA and transferred to 

75 ml polycarbonate tubes and centrifuged at 22,000 x g for 2.5 h at 4 °C in a 45Ti 

rotor. The white clean virus pellet was resuspended in 20 mM borate buffer 

containing 5 mM EDTA overnight at 4 °C. The yield and quality of the virus was 

tested spectrophotometrically for A260/280, using an extinction coefficient of 3.3. 

 

3.2.4  Slow speed centrifugation to purify 300 nm long HLSV virion 

To partially remove the 34 nm short particles from the long particles of 307 

nm, low speed centrifugation was carried out. Initial attempts to separate the two 

particles at 8,000 x g for 18 h at 4 °C failed as it led to pelleting both virus particles at 

the bottom of the tube. In later attempts, the centrifugation speed was reduced to 

6,000 x g for 18 h at 4 °C. The pellet was resuspended in 20 mM borate buffer (pH 

7.0) containing 5 mM EDTA and the supernatant was re-centrifuged at 22,000 x g at 4 

°C for 2.5 h to see the remaining visible pellet. A very small pellet was seen at the 

bottom of the tube. The pellet was resuspended in 20 mM borate buffer (pH 7.0). Both 

the pellet and supernatant were analyzed by electron microscopy. 
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3.2.5  Sephacryl 1000 gel filtration  

In the next attempt, the Sephacryl S-1000 superfine (GE healthcare) size 

exclusion chromatography was carried out to separate the two particles. We loaded 30 

mg CsCl purified HLSV at each FPLC run, with a flow rate of 0.2 ml/min. The virus 

was eluted from the column starting from 60th to 110th fractions. Three types of 

sample pooling were carried out: 60-74, 75-85 and 86-110. The three samples 

separately pooled and were again subjected to ultracentrifugation at 22,000 x g for 2.5 

h at 4 °C to pellet the virus. The transparent virus pellet was resuspended in 20 mM 

borate buffer (pH 7.0) containing 5 mM EDTA overnight at 4 °C. The samples were 

stored at 4 °C for oriented sol preparation for X-ray FD study. Electron micrograms 

were taken on carbon coated copper grid with 2% uranyl acetate. For practical reason 

we use the peak fraction 75-85 ml pooled fraction for obtaining best sols as it 

consisted of longer particles only. 

 

3.3  CHARACTERIZATION OF PURIFIED HLSV VIRION  

3.3.1  Virus purity and concentration 

The purity of the purified HLSV sample was detected first by measuring the 

A260/280. The purified virus was diluted 100 times and the absorbance was recorded at 

Beckmann UV spectrophotometer. 

 

3.3.2  Transmission electron microscope (TEM) 

Copper grids (400-mesh) were prepared by covering them with formvar film a 

carbon layer was coated using a carbon evaporator. Purified virus was negatively 

stained with 1 μl of 10 mg/ml bacitracin (to prevent the positive staining of the highly 
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pure HLSV) and 1 μl 2.0% urine acetate and examined in a Jeol JEM-2010 TEM 

operated at 100 kV with magnification of 30,000. 

 

3.3.3   Western blot 

Virus purity was also checked on SDS-PAGE (Sodium dodecyl sulphate-

polyacrylamide gel electrophoresis). 12 % SDS-polyacrylamide separating gel, with 

5% stacking gel, was prepared. The samples were treated with 5 μl of 6x loading 

buffer and boiled at 100 °C for 5 min. Electrophoresis was run at 100 V for 2.5 h. The 

gel was stained by the Coomassie dye. In addition, Western blot analysis was 

performed with a HLSV polyclonal antibody (primary antibody) and an anti-rabbit 

antibody (secondary antibody), following the standard procedures. 

 

3.4 ORIENTED SOL PREPARATION 

For FD studies, the most effective specimen should be in a thick gel-like form, 

known as sol. The sol was prepared in a 0.5 mm quartz capillary tube using previous 

method (Gregory & Holmes, 1965). A virus pellet was exchanged to a suitable buffer 

(5 mM EDTA, pH 7.0) and the concentration was kept at 30 mg/ml. The resuspended 

virus was centrifuged at 10,000 x g for 16 h at 4 °C in a 1.5 ml microfuge tube. The 

supernatant was pipetted out and the surface of the pellet was dried with the corner of 

a tissue paper. The virus pellet was mounted in thin 0.7 mm quartz capillary (Charles 

Supper) that was washed with 1 M HCl, reverse osmosis (RO) water and 5 mM 

EDTA, each for four times. During sol preparation, the wide mouth of the capillary 

was first connected with tubing (1/8”, Nalgene). The thin sealed end was broken with 

a capillary cutter and the broken end was dipped into the virus pellet and the virus was 

drawn to a distance of 3 cm by withdrawing air by mouth through the PVC tube. The 
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virus column was pipetted back and forth several times gently for giving better 

orientation to the virus. Three μl 1 M KCl, which would increase the fluidity of the 

sample in the capillary, was used. The column of virus was drawn to the end of the 

capillary and the end was washed by alternate siphoning and blowing. This process 

was continued until the end of the capillary was completely clean. The capillary was 

cut at the broad end side also. The quality of the oriented sol was tested using a 

polarization microscope before sealing it. Well oriented sols show complete 

extinction (Yamashita et al., 1998a) in a polarizing microscope. Both ends were 

sealed using an oxygen flame torch. The sealed capillary, with the oriented sol, was 

kept upright in plasticine (Nalgene). 

 

3.5 FIBER STRUCTURE DETERMINATION 

3.5.1 Data collection  

Unlike X-ray crystallography, in FD, two to five frames of data are enough for 

structure determination. Furthermore, importance of humidity in fiber sample 

preparation and significance of the chambers in controlling humidity have been 

demonstrated for filamentous plant viruses, yeast prions and Potyviruses (Hull, 2001; 

Wickner et al., 2007; Lo´pez-Moya & Garci´a, 1999). The oriented sols, in which the 

protein was obviously fully hydrated, gave rise to the strong meridional diffracted 

intensity at 4.7 Å resolution, characteristic of amyloid structures, but without 

diffracted intensity on the equator (McDonald et al., 2008). 

 

3.5.2 Data processing 

 In X-ray crystallography, diffraction by a crystal produces reflections with 

designated lattice indices. The intensity of a reflection is related to all the atoms, 
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through FT. However, FD produces layer lines with intensity continuum. The 

intensity distribution function in FD is not related in a simple manner to the 

distribution of particle orientations. In addition, there are several factors that 

contribute to inaccuracies of intensity. Even for a well oriented sol specimen, there 

remains some degree of disorientation (Namba et al., 1989; Yamashita et al., 1998). 

There are other factors that give background to FD data which include X-ray 

scattering from the air, sample holder and nature of the solvent. With higher 

diffraction angle for a fiber specimen, the overlap of lines is very prominent and 

hence the intensity of a particular layer line contains data from neighbor layer lines. In 

FD, the data that are recorded on a detector represent real space data and must be 

converted to reciprocal space data. We used WCEN for data processing (Bian et al., 

2006). In data reduction, any point on any layer line can be denoted by a vector with 

radius ‘r’ and angle ‘θ’ with respect to a reference horizontal axis, Fig. 3.1. 

 

 

 

 

 

 

 

 
 
 
Figure. 3.1. Fiber diffraction data representation by WCEN. A 
point on any layer line can be represented by a radius of length ‘r’, 
positioned at angle ‘θ’ with respect to a horizontal axis. 
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The resolution d (in Å) at any point on the detector in a diffraction experimental setup 

is given by the equation, 

                                                   d= λ/2 sin[1/2 tan-1y/D]    (11) 

Where λ is the wavelength of X-rays (in Å), y is the distance of the point of interest 

from the center of the detector (in mm) and D is the distance between the specimen 

and detector (in mm). In WCEN, the maximum number of radius is 1200 and the 

raster value (or pixel size) for the ADSC Q315 detector is set as 0.1026 mm. Thus, in 

WCEN, the maximum value for y is given by, 

    y = 1200 x 0.1026 = 123.12 mm   (12) 

In the above equation (12), if y = 123.12 mm, λ = 0.9002 Å and D = 252.8 mm, then 

the maximum resolution (d) for an experiment will be 2.0 Å. It is worth noting here 

that even though the maximum y for an ADSC Q315 detector, according to the 

manufacturer, is 3072 pixel x 51 μm per pixel = 156.672 mm, WCEN takes only upto 

an effective maximum of 123.12 mm. Thus the raster value of WCEN is pre-set to 

match a maximum resolution of 2.0 Å and correlated to the specimen to detector 

distance of 252.8 mm. 

When WCEN reads a diffraction frame, the entire diffraction image is first 

augmented into 4 equivalent quadrants. Depending on a user’s choice, the 4 quadrants 

are first averaged or only one quadrant (by default the first quadrant, right and up) is 

taken. Also, the program is designed in a way that the effective detector half width 

(from the center to the edge) is divided into 1200 radii and each radius sweeps across 

the detector quadrant area from 0 to 90°. This means, the 1st quadrant area will be 

marked by 91 x 1200 data points. Thus the output of WCEN is a matrix of 91 x 1200 

data points and all inter layer line points should have a theoretical intensity of 0. By 

the rule of inverse proportion, for our experimental setup, the relationship between a 
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radius number N and its corresponding resolution of diffraction is given by the 

equation 

    Resolution = (1200 / N) x 2.0    (13) 

The above equation (13) stems from the fact that the width between two adjacent radii 

is conveniently expressed as 0.001 Å-1 in the reciprocal space. This helps in the 

calculation of the resolution for any radius. For example, the resolution of radius 800 

can be calculated as: 

= (1200/800) x 2 = 3 Å 

 The output of WCEN was corrected for angular convolution, a process known 

as deconvolution. The angular deconvolution method estimates the intensity from 

partially oriented specimens to the highest possible resolution. At higher diffraction 

angle noise will be large, compared to the intensity distribution at low resolution 

limits. The major problem in structural studies of oriented non-crystalline specimen is 

the insufficient number of data due to the cylindrical averaging of the intensities. The 

angular deconvolution of data allows collection of maximum amount of information 

from a given diffraction pattern. It defines the limiting resolution to which accurate 

intensity information can be obtained. We used the program RAD (Makoswski, 1978) 

for deconvolution. The output of RAD is further formatted by the program CORR 

(Makoswski, 1978), which presents FD data in the format layer line number, 

minimum radius, maximum radius (theoretically in the range 0 to the maximum 

radius allowed for the resolution of the data, Eq. 13) for structure determination and 

refinement. 

 

3.5.3 Layer line splitting 
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Following earlier discussion in section 1.2.1, fiber particles are naturally 

disoriented. Due to this anomaly layer lines normally overlap with each other. So, 

each layer line may be associated with more than one Bessel term (section 1.5) and 

unlike the crystallographic counterpart, a phase is multidimensional in FD (section 

1.3.1). The intensity at any point on a layer line is made of Fourier-Bessel structure 

factors. To solve a structure, contributions from each Bessel term must be determined 

precisely. Splitting of the layer line simply means a Bessel function does not exactly 

fall at the same distance from the equator (Franklin & Klug, 1955). This is generally 

the case as the repeat distance in one repeat (the number of helical turns) is not 

exactly repeated along a fiber specimen (Stubbs & Makowski, 1982). The degree of 

layer line splitting can be determined from exact axial repeat. In practice, due to 

disorientation of the particles in the specimen, splitting is not directly observed but the 

effect of layer line splitting causes shifts in the apparent position of the layer line 

which depend on the relative magnitude of the contributing Bessel terms. Nonetheless 

the splitting is very informative and can be a source of information about phase. This 

can be used to separate the contributions from the Bessel function which are 

superimposed on layer lines. It has been shown that shifts in layer line positions can 

be measured by angular deconvolution which can determine the contributions from 

two Bessel function terms that are superimposed on a layer line (Makowski, 1978). 

 

3.6 HLSV STRUCTURE DETERMINATION 

The structure of HLSV was solved using the molecular replacement (MR) 

method.  Several frames (from different well oriented sols) of diffraction data at 0, 8 

and 12° tilt of the specimen were collected. HLSV fiber sample diffracted X-rays to 

2.8 Å. The diffraction data were processed using WCEN. Even though we could 
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extract data up to the 25th layer line (2.8 Å resolution), the effective data that could be 

used for refinement was limited to 3.5 Å (upto the 20th layer line). At shells higher 

than this resolution, layer lines smear/overlap heavily. Near meridian reflections were 

used for refining the tilt angle whereas other parameters were refined using well 

defined reflections, distributed throughout the diffraction image. The data were 

transformed to the polar reciprocal space with angular transformation and further 

were deconvoluted using RADFN which determines intensity along layer lines 

(Makowski, 1978). The input parameters for running RADFN are: specimen to 

detector distance (D) = 252.812 mm; helical repeat distance (C) = 70.51 Å; sigma G 

(SIGG), the disorientation limit = 1.3°; error limit (ELIMIT) = 1; maximum number 

of radii processed (NR) = 900; first radius to be processed (from the beam stop, IR1) 

= 50; background type (NBKGD) = 1; the switch value to rotate the pattern by 90 

degree (IFV) = 0; number of allowed bad points for a radius (NULB) = 0; reciprocal 

space or film space (IFREC) = 0; detector resolution (the raster value, as defined by 

WCEN) (DR) = 0.1026. The output of RADFN was further formatted by CORR for 

structure determination and refinement. 

A HLSV model was built based on the CGMMV structure (PDB code: 1cgm), 

but, the R-factor did not improve below 18.4%. The R factor in FD is inherently lower 

than that of protein X-ray crystallography because of the cylindrical averaging of 

diffracted intensities (Stubbs, 1989). Usually, the R-factor for a well refined FD 

structure will be in the range of 9.5%. The HLSV structure was finally determined at 

3.5 Å using TMV as a model (PDB code: 2tmv). A trinucleotide (GAA) for RNA was 

used as discussed previously (Namba et al., 1989; Pattanayek & Stubbs, 1992) for 

other Tobamovirus structures. To model CP inter-subunit interactions, the coordinates 

of 6 neighboring subunits (+1, +16, +17, -1, -16, -17) around the helical axis from the 
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reference subunit (labeled ‘0’ and named as the central subunit hereafter) calculated. 

These subunit interactions represent and correspond to all interactions in the virion. 

The blmax (Bessel function limit) value was set at 5. The initial model was refined by 

energy minimization (minimize) without any FD effective energy. The idealized 

model was subjected to repeated cycles of molecular dynamics simulated annealing 

(SA) refinement from an initial temperature of 3000 K to a final temperature of 300 K 

using the diffraction data between 10.0 and 3.5 Å resolution. The molecular dynamics 

refinement was followed by temperature factor refinement (B refinement). The model 

was adjusted using the recommended 6Gobs – 5Gcalc maps (Wang & Stubbs, 1994; 

Namba et al., 1989). The 6Gobs – 5Gcalc maps are the FD equivalent of the Fobs-Fcalc 

maps used in protein crystallography. The larger coefficients are due to cylindrical 

averaging of the FD intensity and depend on the size and symmetry of the structure 

and resolution of the data (Namba & Stubbs, 1987b). The structure was refined by 

NIH-XPLOR (Schwieters et al, 2003). The model was fit to the map with the O 

(Jones et al., 1991) and COOT (Emsley & Cowtan, 2004) programs. The refinement 

process was repeated until the R-factor dropped to about 0.096.  

The quality and geometry of the final model was analyzed using PROCHECK 

(Laskowski et al., 1993). Also, omit maps (again, 6Gobs – 5Gcalc maps) were calculated  

by omitting five residues at a time (in order to prevent model bias). The 

Ramachandran plot, shows some disallowed geometry, due to the low data resolution. 

All molecular diagrams were prepared with Pymol (DeLano, 2002). The coordinates 

for the six surrounding were built using a program written by Swaminathan for 

measuring protein-protein and protein-RNA interaction distances. We used the 

HELANAL program to compare the LR helix geometry of the Tobamoviruses (Bansal 

et al., 2000). Structure-based sequence alignment was made with the ESPript server 
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(http://espript.ibcp.fr/ESPript/ESPript/) and r.m.s.d. calculations were made with 

Superpose (http://wishart.biology.ualberta.ca/SuperPose/). 
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CHAPTER 4. RESULTS AND DISCUSSION 

 

4.1 SAMPLE PREPARATION    

4.1.1 Crude extraction of HLSV from plant tissue 

Adequate amount of the HLSV virus was propagated by infecting healthy N. 

benthamiana plants with the full length c-DNA clone of HLSV in pBluescript KS II 

(+), linearized with xhoI at the 3′ end and transcribed using mMessage mMachine. 

HLSV was initially purified with the n-butanol/chloroform mixture. A260/280 of this 

crude HLSV was 1.38 to 1.6, as opposed to that of 1.19 for TMV. This is attributed to 

contamination by nucleic acids which could have come from the plant. We adopted 

additional purification steps to eliminate contamination and to obtain more 

homogeneous samples. 

 

4.1.2 Purification using cesium chloride density gradient centrifugation  

The virus was purified by the cesium chloride method. The purified virus 

formed a clear white band under yellow light (Fig. 4.1A). We could also see nucleic 

acids and other plant contamination as a higher band. Electron microscopy confirmed 

that the purified HLSV was of long intact particles (Fig. 4.1B). We also verified its 

purity by 12% SDS-PAGE and western blotting using an anti-HLSV antibody (Fig. 

4.1C, D).  

 

4.1.3 Slow speed centrifugation to purify the long virions 

The crude HLSV preparation and the cesium chloride purified preparation 

contained two particles, the 307 nm long virus and 34 nm long shorter particles. For 

proper orientation of particles in sol, it is necessary to remove the short particles. 
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             (A)                                              (B) 

                               

 

  

 

 

 

    

                   

                                                 

             (C)             (D) 

             

 

 

 

 

 

 

Figure 4.1. Cesium chloride density gradient centrifugation 
purification and Western blot analysis of purified HLSV. (A) 
Crude HLSV layered on top of 30% (w/v) CsCl solution and 
centrifuged at 40,000 x g for 16 h at 20 °C in a 70.1Ti rotor. HLSV 
virions (arrow) formed a white visible band. (B) CsCl purified HLSV 
particles were negatively stained with 2% uranyl acetate and viewed in 
a Jeol JEM-2010. (C) 12% SDS-PAGE and (D) Western blot analysis 
of the CsCl purified HLSV using an anti-HLSV antibody, showing a 
band of 18 kDa in lane 2. Lane M and 1 are a protein molecular weight 
marker and a negative control. 
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High homogeneity in fibrous samples is known to give better orientation.  As a first 

step, we slow speed centrifugation was chosen to separate the two particles. 

Theoretically, at very low centrifugation speed, due to the difference in size and 

molecular weight of the two particles, the longer particle will pellet down faster and 

the smaller particle will remain in the supernatant. A clear small pellet was visible at 

the bottom of the centrifuge tube at the end of centrifugation. The samples from both 

the pellet and supernatant were analyzed by TEM (Fig. 4.2A, B, respectively). The 

pellet appeared to be of intact and long particles. However, we were also able to 

detect a significant amount of the longer and shorter virus particles in the supernatant 

which did not pellet out from the total 30 mg of virus. If we the centrifugation speed 

was increased, even the small particles would be pelleted out. Hence, separation of the 

two particles was not possible by this method. Owing to the low yield and intensive 

time requirement, gel filtration after the CsCl purification step was used. 

 

    (A)                (B)  

 
Figure 4.2. TEM view of the HLSV after slow centrifugation. (A) 
Pellet fraction and (B) supernatant fraction at 6,000 x g for 18 h at 4 
°C. The virus was negative stained on a carbon coated grid with 2% 
uranyl acetate.  
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4.1.4 Sephacryl 1000 gel filtration chromatography      

In the next attempt, gel filtration chromatography was run to remove the short  

HLSV particles. The virus was eluted from the S1000 column as an asymmetrical 

peak (Fig. 4.3A). The fractions (75-85 ml) that contained intact particles under TEM 

(Fig. 4.3B) were pooled and later used for the oriented sol of HLSV. 
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Figure 4.3. HLSV purification by Sephacryl 1000 gel filtration 
chromatography. (A) The chromatogram of HLSV purification 
showing an asymmetric peak (B) TEM of gel filtration purified virus, 
pooled from fractions 75-85 ml. 30 mg virus was loaded to the column 
and purified at a flow rate of 0.2 ml/min. 
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 4.1.5 Sol preparation  

The gel filtration purified HLSV was used to make oriented sol. The HLSV 

sol was prepared in a 0.7 quartz capillary (Fig. 4.4A). The quality of the prepared sol 

was examined by looking the sols under a polarization microscope. We observed that 

as the time pass the sols reorient themselves to give complete extinction under the 

polarization microscope (Fig. 4.4B).  

(A) 

 

 

 

 

 

 

(B)          (i)            (ii)                     (iii) 

 

 

 

 

 

 

 

 
 
Figure 4.4. HLSV sol preparation and visualization under 
polarization microscope. (A) HLSV oriented sol in 0.7 mm quartz 
capillary tubes fixed on plasticine and (B) i, ii and iii visualization of 
the oriented sol on the day of preparation, 5 days and 10 days of 
preparation, respectively. The well oriented sol showed complete 
extinction. The images are shown under different magnification. 
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4.2 DATA COLLECTION AND STRUCTURE DETERMINATION 

4.2.1 Fiber diffraction data collection 

The HLSV X-rays fiber diffract to 2.8 Å at the 14 BM-C beam line, Advance 

Photon Source, Argonne National Laboratory, USA (Fig. 4.5). The data collection 

statistics are given in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

 
Figure 4.5. X-ray fiber diffraction frame of HLSV oriented sol. 
Fiber diffraction pattern from oriented sol of native Hibiscus latent 
Singapore virus. Even though the resolution limit along the meridian is 
2.8 Å, the effective equatorial resolution is only 3.5 Å. The meridian 
and equator are shown in the diagram. 
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Table 4.1 Data collection, processing, structure determination and refinement 
statistics. 
 
Synchrotron       APS (USA) 
Beamline (BioCARS)      14 BM-C 
Detector       ADSC Q315 
Raster        0.1026 
X-ray Wavelength (Å)     0.9002 
Exposure time  (sec)      200  
Specimen to detector distance (mm)     252.812 
Resolution range (Å)      10-3.5 
Completeness (%)      99 
R         0.096 
Protein atoms       1308 
RNA atoms       65 
Temperature factors (Å2): 

Main chain atoms      27.63 
Side chain atoms      25.19 

 
Ramachandran plot (%):  

Residues in most favoured regions [A,B,L]              50.3 
Residues in additional allowed regions [a,b,l,p]  35.4 
Residues in generously allowed regions [~a,~b,~l,~p]   10.9 
Residues in disallowed regions    3.4 

 

4.2.2 Structure determination 

 The structure of HLSV was determined by X-ray fiber diffraction at 3.5 Å 

resolution. The refined HLSV model contains 163 amino acids (Fig. 4.6), with a 

theoretical pI of 4.84 and a molecular weight of 18 kDa) and 3 RNA nucleotides (Fig. 

4.7A). The final R factor 0.096 is comparable to that of TMV, CGMMV and RMV 

structures (Namba et al., 1989; Wang & Stubbs, 1994; Wang et al., 1997). There are 

some geometrical disorders in the final model, owing to the low resolution of the data 

(Fig. 4.7B). The CP structure is a 4 helical bundle fold. The helices are named LS (left 

slewed), RS (right slewed), LR (left radial) and RR (right radial) (Champness et al., 

1976). In addition, HLSV contains two short helices at the N- and C-termini, Leu10 to  

Gly15 and Thr142 to Ser148, respectively. 
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Figure 4.6. CP sequence alignment of HLSV, TMV, CGMMV, 
RMV and SHMV. The coat protein of HLSV aligns with TMV, 
RMV, CGMMV and SHMV with a sequence identity of 43%, 44%, 
46% and 48%, respectively. Apart from the four core helices (red), 
there are two short helices (green) at the N- (Leu10-Gly15) and C- 
(Thr142-Ser148) termini. Fully conserved residues are shaded in blue 
and a single amino acid difference is shown in yellow. The secondary 
structure ranges are based on the HLSV structure. 
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(A)                                                              (B) 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7. HLSV CP structure. (A) The ribbon diagram of the 
central (0th) subunit of the HLSV coat protein (CP), shown in blue. 
Based on the earlier convention of Tobamovirus structure publications, 
the first methionine is omitted and numbering starts from the second 
residue (Pro1-Thr162). The α-helices are labeled as left and right 
slewed (LS, RS) and left and right radial (LR, RR), a nomenclature 
introduced by Champness et al., 1976 and the corresponding amino 
acids number are marked. The 3 RNA nucleotides, GAA, are 
represented as red sticks. The black circle represents the location of the 
viral axis, which is perpendicular to the plane of the paper. (B) The 
Ramachandran plot of the HLSV CP structure. The residues that 
occupy the generously allowed and disallowed regions are labeled. The 
overall statistics is comparable to that of structures at 3.5 Å resolution. 

 

4.2.3 HLSV CP contains a kink in the LR α-helix 

The CP structure of HLSV is compared to that of TMV, CGMMV and RMV,   

(Fig. 4.8). The structure of HLSV CP is similar to that of TMV, CGMMV and RMV, 

with some noticeable differences. 
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(A)       (B) 

 
 
(C) 
 
 
 
 
 
 
 
 
 
 

Figure 4.8. Comparison of Tobamovirus CP structures. The ribbon 
diagrams of (A) TMV (raspberry), (B) CGMMV (magenta) and (C) 
RMV (yellow) CPs. The RNA is shown as sticks in the corresponding 
color. Note the longest LR α-helix (Thr112 to Leu133) is nearly 
straight in TMV, CGMMV and RMV, whereas it has a kink in HLSV 
(Fig. 4.9).                                                           

 

The longest helix, LR, is slightly bent in TMV, CGMMV and RMV, but the 

bending is more pronounced in HLSV, presumably owing to the presence of His122 

(Fig. 4.9). In most protein-nucleic acid structures, an interacting helix shows a bend at 

the interaction site (Sreekanth et al., 2008). An α-helix may be distorted for several 

reasons such as the occurrence of a proline (Barlow et al., 1988; Love et al., 1971; 

Richards and Kundrot, 1980), solvent induced distortions (Blundell et al., 1983) and  

peptide bond distortions (Chakrabarti et al., 1986; MacArthur and Thornton, 1996).       
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                                  (i)         (ii)        (iii)          (iv) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Comparison of the LR helix of Tobamoviruses. (i) HLSV 
(blue) (ii) TMV (raspberry) (iii) CGMMV (magenta) (iv) RMV 
(yellow). The bend in the HLSV LR helix is seen in the region Val119 
to His122. This nonproline and nonglycine region of α-helix has a 
tendency for bending or kink. The kink (46.1°) in HLSV is indicated 
by an arrow. A straight helical axis is drawn to highlight the level of 
helical bend. The N terminus and His122 are labeled. His122 is shown 
as stick diagram. 

  
 
Due to these distortions, they often become non-linear (Richard and Kundrot, 1980). 

Most of the α-helices in globular proteins are in fact curved (Barlow et al., 1988; 

Bernstein et al., 1977). The C-O…N-H distance is sensitive to the inclination of the 

peptide units with respect to the helix axis (Kumar and Bansal, 1996).  In the case of 

kinked helices, the correlation is strong and at least two hydrogen bonds are broken at 

or near the site of the kink, which is clearly identified by large bending angles. This 

finding can be utilized to identify bends and kinks in helices, especially when non-

proline or non-glycine residues, like His, Trp, Ile and Ala, are located in the region of 

a kink (Kumar and Bansal, 1996; Kumar and Bansal, 1998). In fact, the largest kink in 

a helix (local bending angle 54.4°) is observed in residues Thr60, His61, Trp62, and 
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Ala63 in the Thr44-Asp74 helix of the fertilization protein lysin (PDB code ILIS) 

(Shaw et al., 1993).  

Using the helix analysis program HELANAL (Bansal et al., 2000), 

comparisons of the LR helix geometry of HLSV with that of TMV, CGMMV and 

RMV were obtained. The non-proline, non-glycine zone (residues 117ATVAIH122) of 

the HLSV LR helix produces a kink. The maximum bending was found between 

residues Ala120 and Lys123, with a bending angle of 46.1° at His122 (Table 4.2). 

Lys123 may produce positive charge-charge repulsion with His122, destabilizing the 

helix further and making the kink more pronounced. The average LR helix bending 

angle between successive local helix axes for TMV, CGMMV and RMV is between 

13.6 and 16.1° (Table 4.3). The location of maximum bending for these viruses is 

mostly localized at the ends of the helix but for HLSV, it is located in the middle of 

the helix. 
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Table 4.2. Properties of the LR helix of Tobamoviruses 
 
 
 
PDB Helix  n h Aver Max.  Radius rmsC rmsL r2  
code start-     BA BA 
 end 
 
3PDM Q112- Q133 3.60 1.54 25.3 46.1 35 0.49 0.97 0.86  
Std. Dev.  0.32 0.40 12.1  
Geometry: K (at H122) 
 
2tmv T111-G135 3.62 1.51 16.1 24.8 39 0.99 0.60 0.93  
Std. Dev.   0.25 0.2 4.9  
Geometry: K (at V130) 
 
1cgm A110-G135 3.77 1.54 15.7 36.4 46 0.55 1.38 0.63  
Std. Dev.   0.37 0.4 7.0  
Geometry: K (at G135) 
 
1rmv T111-N134 3.69 1.54 13.6 23.3 50 0.35 1.09 0.58  
Std. Dev.   0.27 0.2 6.0 
Geometry:  K (at A117) 
 
 
n: The average number of residues per turn. 
h: Average height per turn (Å). 
Aver. BA: Average Bending Angle between successive local helix axes (°). 
Max. BA: Maximum Bending Angle between succesive local helix axes (°).  
Radius: Radius of least squares circle fitted to the local helix origins (Å). 
rmsC: Root Mean Square Deviation for least squares circle fitted to the local helix 
origins (Å). 
rmsL: Root Mean Square Deviation for least squares line fitted to the local helix 
origins (Å). 
r2: Square of linear correlation coefficient for least squares line fitted to the local helix 
origins. 
Geometry: Overall geometry of the helix, Linear (L), Curved (C), Kinked (K)  
Std. Dev.: Standard Deviations of the average parameters for the helix. 
Note: The Kink of the helix is mainly decided by the bending angle. If the bending 

angle is >20° it is regarded as kink in the helix. In case the bending is <20° the 
helix geometry is decided by the ratio of rmsL/rmsC i.e. if r2 is >1 it is considered 
curved; if r2 is ≥0.8 it is considered linear; if r2 is ≤0.5 helix is curved; for r2 
between 0.5-0.8 no geometry is assigned.  

 

 



                                                                                       Chapter 4. Results & discussion 
 
                                                                

57 
 

Superimposition of HLSV with TMV, CGMMV and RMV gives root mean 

square deviations (RMSD) of 1.51 (154 Cα atoms), 3.77 (159 Cα atoms), and 3.16 Å 

(155 Cα atoms), respectively (Fig. 4.10). There is also a marked difference at the C-

terminus. The C-terminus (residues 155-162) of the HLSV CP forms a loop and 

points towards the helices, mainly because of the presence of Pro155. This differs 

from other Tobamoviruses. This region is flexible, as indicated by high temperature 

factors, and makes considerably less contact with the rest of the molecule. 

(A) 
 
 
 
 
 
 
 
 

 
(B) 
 
 
 
 
 
 
  
 
 
 
(C) 
 
 
 
 
 

Figure 4.10. Superimposition of the HLSV CP (blue) with that of 
other Tobamoviruses (A) TMV (raspberry) (B) CGMMV (magenta) 
and (C) RMV (yellow).The RMSD values are 1.51, 3.77 and 3.16 Å 
for TMV (for 154 Cα atoms), CGMMV (159 Cα atoms) and RMV 
(155 Cα atoms), respectively.  
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4.2.4 Nucleic acid structure  

The nucleotide triplet GAA, which is used as a representation of the entire 

genome for Tobamovirus structures (Namba et al., 1989), is also modeled in HLSV. 

The conformation of HLSV RNA is largely similar to that of TMV, CGMMV and 

RMV (Fig. 4.11), with a slight rearrangement of the bases. Specifically, guanine1 and 

adenine2 are in the anti conformation whereas adenine3 is in syn conformation. The 

ribose rings of guanine1 and adenine3 adopt the C3'-endo and C2'-exo conformations, 

respectively, while the adenine2 ribose is in the C4'-exo conformation.  

(A)      (B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C) 
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Figure 4.11. Superimposition of the HLSV RNA (red) with that in 
(A) TMV (raspberry) (B) CGMMV (magenta) and (C) RMV (yellow). 
Nucleotides 1 (guanine) and 2 (adenine) are in the anti- conformation 
whereas nucleotide 3 (adenine) is in the syn- conformation. Note that 
the ribose rings of nucleotides 1 and 3 adopt the C3'-endo and C2'-exo 
conformations, respectively while nucleotide 2 is in the C4'-exo 
conformation. 
 

4.2.5 Protein-protein interaction 

 Six protein monomers, subunits +1, +16, +17, -1, -16, -17 around the helical 

axis, interact with a reference protein monomer (labeled ‘0’ or named as ‘central 

subunit’ hereafter) as well as among themselves (Fig. 4.12). This arrangement is 

repeated throughout the virion axis and represents the intermolecular interactions that 

occur throughout the entire virus structure. The lateral inter-subunit contacts in HLSV 

are different from those in other Tobamovirus structures. The lateral interface between 

the central subunit and subunit 1 of TMV contains two ion pairs, Arg113-Asp115 and 

Arg122-Asp88 (Namba et al., 1989). These two salt bridges are present in RMV also 

(Wang et al., 1997). However, in CGMMV, the Arg113-Asp115 ion pair is present 

but the Arg122-Asp88 salt bridge is not formed even though these residues are 

conserved. In addition, CGMMV has an Arg77-Glu130 lateral inter-subunit ion pair, 

which is not present in TMV (Wang and Stubbs, 1994). In HLSV CP, residues 

Arg113, Asp115 and Asp88 were conserved. The HLSV CP did not form any salt 

bridge between Arg113 and Asp115, whereas the His122-Asp88 salt bridge is 

confirmed with a distance of 2.8 Å from subunit -1 (Fig. 4.13). Another strong salt 

bridge Arg31-Glu81 (of subunit -1), was also formed in HLSV and the measured 

distance was 2.3 Å. 
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(A)      (B) 

 
 

Figure 4.12. Pictorial representation of a partial HLSV virion. (A) 
The coat protein (CP) molecules form a right handed helical 
arrangement. The rod-shaped virus has a length of 3000 Å and a 
diameter of 180 Å. About 2,150 protein molecules pack a genome of 
about 6,474 RNA nucleotides. The helix has a repeat distance of 70.51 
Å and 49 CP subunits in three turns. The virion is stabilized by 
intersubunit interactions between the central molecule (marked 0) and 
other subunits marked as +1, +16, +17, -1, -16, -17. The other subunits 
also interact among themselves. This figure is reproduced with the 
additional details from: Klug, A and Caspar, DLD. (1961). The 
structure of small viruses. Advances in Virus Research, 7, 225-325, 
with permission from Elsevier B.V. (B) Arrangement of the interacting 
HLSV subunits, following the scheme of panel A. The relative subunit 
positions are marked. The RNA is omitted for clarity. The subunits +1 
and -1 are shown in cyan, subunits +16 and -16 in orange and subunits 
+17 and -17 in green. 
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Figure 4.13. HLSV protein-protein (CP) interaction. Hydrogen 
bonding between His123 and Asp88 (of subunit -1) stabilizes the loop 
adjacent to RR helix and gives significant stability to the interaction 
CP at the lateral interface. The N-termini of the subunits are labeled. 
Asp88 and His122 are shown as sticks. Subunits 0 and -1 are colored 
blue and cyan, respectively. 
 

Axial interactions of CP subunits are not the same among TMV, CGMMV and 

RMV (Namba et al., 1989; Wang and Stubbs, 1994; Wang et al., 1997). In TMV, 

there are two ion pairs in the axial interface between the central subunit and its 

neighboring subunit 17 along the virion helix: Glu50-Arg134 and Glu95-Arg112 

(Namba et al., 1989). CGMMV also has two axial intersubunit ion pairs: Arg122-

Asp42 and Lys134-Asp57 from subunit 17 (Wang and Stubbs, 1994). The Arg122-

Asp42 contact is also present in RMV (Wang et al., 1997; Wang and Stubbs, 1994). 

In HLSV, Glu95 is conserved but amino acid residue at position 112 is a glutamine,  

as in RMV. The Glu50-Arg134 ion pair of TMV is not found in HLSV. Instead, the 

two axial salt bridges are Arg45-Asp126 and Asp116-Arg92 from subunit +17 and -

17, respectively. Apart from salt bridge formation, Arg 92 is involved in protein-RNA 

interaction in HLSV to stabilize the virus particle. 
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 Carboxyl-carboxylate interactions form the main driving force for virus 

disassembly in TMV, CGMMV and RMV (Wang et al., 1998; Caspar, 1963). In 

TMV, there are two carboxyl-carboxylate pairs: high radius, involving axial Glu50-

Asp77 (subunit 16) and low radius, involving lateral inter-subunit interactions 

Glu95/Glu97/Asp109-Glu106 (subunit 1). The influence of carboxylates in viral 

disassembly has been well studied in TMV (Culver et al., 1995; Lu et al., 1996). In 

addition, in HLSV, intersubunit carboxyl-carboxylate interactions are also observed 

(Figs. 4.14, 4.15 and Table 4.3). 

 

 

 

 

 

 

 

 

 

Figure 4.14.  Stereo view of HLSV axial intersubunit carboxyl-
carboxylate interactions at high radius region. Glu46 with Asp126 
(of subunit +17 at 5.1 Å), Glu46 with Glu81 (of subunit +16 at 6.3 Å), 
and Glu81 with Glu46 and Asp126. Also, some important salt bridges 
are: Arg45 with Glu46 (4.0 Å) and Asp42 (3.1 Å); Arg41 with Asp42 
(at 4.0 Å) which stabilizes the RS helix. The salt bridges are shown in 
green dashed lines whereas carboxyl-carboxylate interactions are 
shown in red dashed lines. 
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Figure 4.15.  Stereo diagram of HLSV carboxyl-carboxylate 
interactions at the low radius loop region. Glu99 with Glu97 (of 
subunit -1 at 2.7 Å), Glu106 with Glu95 (of subunit -1 at 4.7 Å), 
Glu106 with Glu98 (of subunit -17 at 6.0 Å) and Glu98 with Glu106 
(of subunit -16 at 7.5 Å). The carbonyl-carboxylate interactions are 
shown in red dashed lines. 

 
 
Table 4.3. Carboxyl-carboxylate interactions (< 8.0 Å) in 
Tobamoviruses. The subunit number is given in superscripts. For 
interactions involving 3 residues, distances are not provided.  

 
 
Virus  High radius    Low radius  

Interactions (Å)   interactions (Å) 
 

HLSV  Glu46-Asp126+17-Glu81+16  Glu99-Glu97-1 (2.7) 
Glu46-Asp126+17 (5.1)  Glu106-Glu95-1-Glu98-1Glu98-16 
Glu46-Glu81+16 (6.3)   Glu106-Glu95-1 (4.7) 

Glu106-Glu98-17(6.0)  
Glu106-Glu98-16 (7.5) 

TMV  Glu50-Asp7716 (4.0)   Glu95-Glu1061 (5.0) 
CGMMV Glu46-Glu13017-Asp12617  Glu95-Asp981-Glu106* 

Glu46-Asp12617 (3.0)   Glu46-Glu13017 (7.2) 
RMV  Glu19-Glu14316 (6.0)    Glu97-Glu98-Glu99-Glu95-  
                                                                                    Glu106*  
 
*the interacting subunit number is not provided 
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4.2.6 Protein-nucleic acid interaction 

The OAS of HLSV is predicted to be located in the CP ORF (Srinivasan et al., 

2002; Srinivasan et al., 2005). It contains GAA repeats, similar to TMV, CGMMV 

and RMV. The hydrogen bonding interactions between the nucleotide bases and CP at 

the OAS in HLSV assembly are different from those in TMV and CGMMV, but 

identical to those in RMV. In CGMMV, guanine1 forms a hydrogen bond with 

Arg113. Wang and Stubbs (1994) argue that any base at this position would make a 

hydrogen bond with Arg113 and particularly, a guanine at this position would make 

an additional hydrogen bond with the side chain oxygen of Gln36. However, in 

HLSV, Arg113 does not form any hydrogen bond. Instead, there is a hydrogen bond 

between guanine1 and Asp115, which is also observed in RMV (Wang et al., 1997). 

This interaction has been proposed to contribute to nucleotide base specificity. In 

TMV, Arg122 plays an important role in selection and stabilization of guanine1 

during virus assembly (Namba et al., 1989). The same was also proposed for 

CGMMV and RMV (Wang et al., 1997). In HLSV, the residue corresponding to 

Arg122 is His122 and its adjacent residue Lys123 stabilizes the phosphate of 

guanine1 (Fig. 4.16). In CGMMV, the charges on the RNA phosphate groups are 

neutralized by the interactions with neighboring side chains: Arg41 forms a hydrogen 

bond with phosphate1, Lys112 and Asn91 form hydrogen bonds with phosphate2 and 

the charge on phosphate3 is partly stabilized by the dipole of the RS helix (with the 

NH groups of Gln38 and Ala39, both well placed to form hydrogen bonds with the 

phosphate oxygen atoms) (Wang and Stubbs, 1994). In HLSV, the charges on 

phosphate2 and phosphate3 are neutralized by Arg92 from the axial position at 

neighboring subunit -17, which is positioned at a distance of 3.8 Å and 3.7 Å, 

respectively (Fig. 4.17). Furthermore, Thr37 of subunit -16 makes a hydrogen bond 



                                                                                       Chapter 4. Results & discussion 
 
                                                                

65

with N6 of base2 (with a distance of 2.8 Å). In HLSV, His122 does not have any 

influence over stabilization and recognition of guanine1 interactions. The phosphate-

carboxylate interaction of TMV, CGMMV and RMV (Namba et al., 1989; Wang and 

Stubbs, 1994; Wang et al., 1997) is also observed in HLSV. In HLSV, phosphate2 is 

2.9 Å away from the carboxylate group of Asp116 (this residue is conserved among 

all Tobamoviruses) (Fig. 4.18). In TMV, this region is shown as a potential calcium 

binding site (Namba et al., 1989).  

 

 

 

 

 

 

Figure 4.16.  Electron density map of HLSV CP-nucleic acid 
intreraction. Stereo views of the 6Gobs – 5Gcalc electron density maps 
showing the Lys123-phosphate1 interaction. 
 

The electron density map (of HLSV CP-nucleic acid) does not show any 

significant electron density in the vicinity of the Asp116 carboxylate and phosphate 

groups, since our preparation of virus sols contained EDTA. As a result, EDTA could 

have sequestered all Ca+2 ions. The nucleotide bases of HLSV are flat against the LR 

helix, similar to TMV, CGMMV and RMV, but with a little shift in their positions. 

Their faces form hydrophobic interactions with some of the side chain methyl groups.  

Thr118 is at a distance of 2.8 Å from guanine1 (within the same subunit) and 

stabilizes it by its methyl group hydrophobic interaction whereas Ala39 and Thr37 are 

at a distance of 2.8 Å each, respectively, from neighboring subunit -16 and stabilize 

base2. Guanine1 is stabilized by Val119 within same subunit (at a distance 2.6 Å), 
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while base3 is stabilized by Ala86, Thr89, and Ala117 at 3.9, 4 and 5 Å within the 

same subunit. The summary of all important CP-RNA interaction are given in Fig. 

4.19. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 4.17. HLSV CP-RNA interaction. Arg92 (of subunit -17) 
makes contacts with phosphate2 (P2) and phosphate3 (P3). Lys123 
makes an intramolecular hydrogen bond with phosphate1 (P1). The N-
termini of subunits 0 and -17 are labeled. The RNA and Arg92 are 
shown as sticks and also labeled. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.18. Electron density map showing phosphate-carboxylate 
interactions in the HLSV CP. Asp116-phosphate2 interactions are 
shown as sticks. The electron density is contoured at the 1σ level. The 
colors of protein and RNA are blue and red, respectively. 
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Figure 4.19. Summary of CP-RNA interactions of HLSV 
(Schematic diagram). The RNA bases are named B1, B2 and B3 
whereas the ribose sugars and phosphates are labeled as R1, R2, R3 
and P1, P2, P3, respectively. The interacting residues and subunits are 
also labeled. Subunits are not labeled for intra-subunit interactions. The 
charge-charge interactions are shown as   

 

4.3  DISCUSSION 

4.3.1 Protein-RNA interactions 

 There are several unique features in the protein-RNA interaction in HLSV. 

Firstly, Arg90 which is conserved among all Tobamoviruses is replaced by a lysine. 

In TMV, three arginines (Arg41, Arg90 and Arg92) in the CP interact with viral RNA 

and provide stability (Namba et al., 1989), while in CGMMV, such stability is 

maintained by Arg41, Lys112 and Arg122 (Wang and Stubbs, 1994). In a protein disk 

study, where RNA is absent, Arg92 is disordered (Champness et al., 1976; Jardetzky 

et al., 1978) but is ordered in an intact virus (Stubbs et al., 1977). In HLSV, the 

protein-RNA interactions are stabilized by Ag92 and Lys123. Secondly, Thr37 forms 

a hydrogen bond with N6 of base2 (of subunit -16). Thirdly, the location of the 

         
. 
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interaction of Lys123 with phosphate1 is unique, as the corresponding residue in other 

viruses is uncharged.  

Phosphate-carboxylate interactions are common among all Tobamoviruses. In 

TMV, this location is believed to be involved in binding of Ca2+ ions. The interaction 

among phosphate, carboxylate and Ca2+ ions with TMV is presumed to play an 

important role in its assembly and disassembly (Namba et al., 1989). Electron density 

of calcium was not observed in the X-ray FD map of HLSV, most likely owing to the 

use of EDTA in virus purification. 

 Tobamoviruses recognize viral RNA by means of a repeating GXX sequence 

in a loop at the OAS (Zimmern, 1977; Meshi et al., 1981; Meshi et al., 1983; 

Takamstsu et al., 1983). This was demonstrated in vitro with the CGMMV CP and 

TMV RNA. In both TMV and U2, RNA guanine1 is assumed to be recognized by a 

hydrogen bonding interaction with Arg122 (Namba et al., 1989; Pattanayek and 

Stubbs, 1992). In TMV CP, Asp115 forms a hydrogen bond with N2 of the guanine1, 

contributing further to base recognition specificity (Namba et al., 1989). In CGMMV 

CP, Arg122 is involved in phosphate group stabilization and its base specificity is 

achieved by hydrogen bonding between Gln36 and N2 of guanine. In contrast, HLSV 

follows RMV CP in its hydrogen with guanine1 (Wang et al., 1997). Electron density 

for Asp115 and guanine1 shows that they are in close proximity, suggesting 

nucleotide selection specificity during virus assembly. 

 

4.3.2 HLSV CP protein-protein interaction 

Protein-protein interactions have been extensively studied in the Tobamovirus  

genus. A salient feature of Tobamoviruses is the carboxyl-carboxylate interaction. The 

HLSV CP architecture is well conserved through evolution. The assembly and 



                                                                                       Chapter 4. Results & discussion 
 
                                                                

69 
 

disassembly of Tobamoviruses are believed to be controlled by electrostatic 

interactions between the negatively charged carboxyl-carboxylate groups, mainly 

between subunits (Caspar, 1963; Bancroft, 1970). TMV has been shown to bind 

calcium ions (Loring et al., 1962; Gallagher and Lauffer, 1983a; Gallagher and 

Lauffer, 1983b) and its carboxylate groups are characteristic calcium-binding sites 

(Einspahr and Bugg, 1984).  After comparing the structure of HLSV with those of 

TMV, CGMMV, RMV and ORSV, it is observed that the process of such interactions 

is dynamic (Table 4.2). The axial interaction of CGMMV is contributed from subunit 

17, whereas for the other 3 Tobamoviruses, the interaction is from subunit 16. The 

potential high radius axial carboxyl-carboxylate groups in HLSV are Glu46 (central 

subunit), Asp126 (subunit +17) and Glu81 (subunit +16). The Glu46-Asp126 

carboxyl-carboxylate pair is also conserved in CGMMV (Wang and Stubbs, 1994), 

but in HLSV, it is further strengthened by Glu81 from the subunit +16. The HLSV 

low radius carboxylates cluster in the loop region, between Glu99-Glu97 and Glu106-

Glu95 (subunit -1). In addition, Glu98 from subunits -16 and -17 interacts with central 

subunit (Fig. 4.20 and Table 4.3). Hence, the low radius carboxyl-carboxylate 

interactions of HLSV are more complex, like those of RMV (Wang et al., 1997; 

Wang et al., 1998). 
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Figure 4.20. Surface density diagram of low radius carboxyl-
carboxylate interactions of HLSV coat protein (CP). HLSV CP 
shows carboxyl-carboxylate interactions between the central and 
subunits -1, -16 and -17, as in Fig. 4.12. The red and blue colors 
represent a charge distribution of -55.5 and +55.5 KT/e, respectively. 

 

4.3.3 Other structural features of HLSV 

In the CGMMV CP, its residue 87 is a threonine and it contributes to the 

shortening of the RR α-helix significantly. In HLSV, Thr87 breaks the corresponding 

helix. Its Thr75 further shortens the RR helix, which is the shortest when compared to 

the TMV, CGMMV and RMV structures. In addition, the kink in the LR helix of 

HLSV is increased by His122. This is a major structural difference.  

Understanding the recognition of GAA by the CP is very important to 

appreciate RNA specificity and virus assembly. Asp115 and Arg122 form guanine 

specific hydrogen bonds in TMV and U2, but not in CGMMV (Namba et al., 1989; 

Pattanayek & Stubbs, 1992). The structural basis of RNA guanine1 recognition is less 

obvious in CGMMV (Wang and Stubbs, 1994) and RMV. Arg122 is believed to be 

the key player in base recognition during virus assembly both in CGMMV and RMV 

(Wang et al., 1997). The considerable flexibility of the arginine side chain would 
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easily allow it to extend during assembly process (Wang and Stubbs 1994). This 

otherwise conserved Arg122 in Tobamoviruses is changed to His122 in HLSV and 

SHMV. The presence of two consecutive positively charged amino acids at this 

position is unique to HLSV. His122 is involved in a salt bridge and Lys123 is 

involved in a base independent phosphate interaction. In TMV and CGMMV, 

guanine1 selection during assembly is achieved by hydrogen bonding with viral CP 

Arg122 and Gln36, respectively (Namba et al., 1989; Wang and Stubbs, 1994). 

However, guanine1 selection in HLSV is achieved by Asp115, as in RMV (Wang et 

al., 1997). More studies should be undertaken to understand the importance of 

guanine1 recognition and viral assembly. 

The four residues at positions 25, 62, 90 and 129 are conserved in all other 

Tobamoviruses, except for HLSV (Fig. 4.6). Glu25 in the HLSV CP makes an 

intramolecular salt bridge with Lys29 and stabilizes the RS α-helix. Also, Tyr62 

functions only as a hydrophobic residue and fails to execute its second role as a 

charge stabilizer, as it is not a part of any helix and no charge residues are seen in its 

vicinity. Lys90 and Ile128 replace Arg and Leu in other Tobamoviruses, respectively. 

Lys90 is at a distance of 5.9 Å from guanine1 and probably it could be one of the 

hydrogen bonding candidates during viral assembly before attaining a fixed 

conformation in a virion, similar to the proposed method for Arg122 in CGMMV and 

RMV (Wang et al., 1997). This is only a speculation and needs validation with 

mutational experiments. Ile128 is part of the LR helix and it is likely to assume the 

same role of Leu128 in other viruses. 

 In conclusion, the kink at the LR helix of HLSV is a unique feature among 

Tobamoviruses. Tobamovirus protein-nucleic acid base specificity interaction during 

virus assembly is proposed to be achieved by viral CP Arg122 residue (Namba et al., 
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1989; Wang et al., 1997). This position is occupied by a histidine in HLSV which is 

not close to any of the RNA bases. However, it interacts with Asp88 of the 

neighboring lateral subunit 1 and stabilizes the less ordered loop through a salt bridge. 

Furthermore, Lys123 in HLSV is close to phosphate1, suggesting its possible 

involvement with base recognition. However, the exact nature and mechanism of 

RNA recognition by Tobamoviruses are yet to be determined. 

 The intersubunit carboxyl-carboxylate interactions of HLSV partially 

resemble those of CGMMV, but remain distinct from other Tobamoviruses. The 

carboxyl-carboxylate interactions include involvement of both subunit +16 and +17 in 

HLSV. This is another difference observed, as the high radius interactions are usually 

confined to the axial subunit, either 16 or 17 in other Tobamoviruses. This unique 

axial contribution shows more intermolecular carboxyl-carboxylate interactions 

occurring in the HLSV CP. The low radius inter-subunit interactions in other 

Tobamoviruses are confined only to the lateral inter-subunit direction but in HLSV 

they extend in both lateral and axial directions. 

 

4.4  FUTURE DIRECTIONS 

Viruses are nucleoprotein complexes. Due to their small size and rapid 

replication rate, they are very useful in biotechnological applications. A virus CP has 

the capacity to pack other molecules, apart from nucleic acids, so that it could be 

exploited as a potential drug packaging protein nano cage. (Douglas & Young, 1998; 

Ren et al., 2006). These viruses like particles (VLPs) can be used as a novel delivery 

platform for drugs, for example Doxorubicin, an anti-cancer drug (Ren et al., 2007).  

Gallie and his team are able to pack multiply dispersed copies of RNA 

containing the OAS to form pseudovirus like particles (Gallie et al., 1987a). In an in 
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vitro study, a short OAS, located in the MP gene, was shown to nucleate 

encapsidation of the 6395 nucleotide long genome by the TMV CP (Butler, 1984; 

Lomonossoff & Wilson, 1985). Agrobacterium tumefaciens was used to incorporate 

the TMV OAS and was found to assemble into a stable 'pseudovirus' like particle in 

vivo during systemic infection by TMV (as a helper). These results may further be 

extended for packaging foreign genes into a virus. As a route to protect, accumulate 

and recover a specific mRNA in vivo, in transgenic plant cells, this new method may 

be useful in developmental and plant molecular biology (Sleat et al., 1988; Sleat et al., 

1986).  

To control the mosquito Aedes, trypsin-modulating oostatic factor was 

expressed successfully on the virion of TMV as a potential larvicide (Borovsky et al., 

2006). Similar approach can be adopted with our structural details of the HLSV and 

may be used as a biocontrol in future. TMV has also been used in the development of 

vaccines. The Canine oral papillomavirus L2 protein, displayed on the surface of the 

TMV CP along with streptavidin, was found to be more immunogenic than uncoupled 

antigen when tested in mice (Sleat et al., 1986). TMV was also used to display protein 

A, which was densely packed as nanoparticles (>2,100 copies per viral particle) on its 

virion. This can be a new approach as an immunoadsorbent to purify monoclonal 

antibodies (mAb) with less cost (Werner et al., 2006). With the structural details of 

HLSV we can also adopt similar approach and carry out more experiments to see its 

suitability as an immunoadsorbent. Furthermore, a new TMV based vector has been 

used to produce systemically an angiotensin-I converting enzyme inhibitor in 

transgenic tobacco and tomato (Hamamoto et al., 1993).  In another study two 

epitopes of the foot and mouth disease virus are successfully expressed by a TMV 

based vector (Wu et al., 2003). This study can be useful in developing vaccines 
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against many pathogenic viruses and bacteria. The full length clone of CGMMV was 

used to express Hepatitis B surface antigen (Ooi et al., 2006). The study showed 

threefold increase in the level of anti HBsAg immunoglobulin, suggesting the possible 

application of new chimeric virus as an effective Hepatitis B vaccine. HLSV can also 

be exploited in similar studies. 

We believe that with the current structure of HLSV, we can do more functional 

studies to better understand the virus structure function relation. We can ask some 

basic questions like for example what will happen to virus if the we mutate the 

His122 of the CP? Will the kink still exist if we mutant His122? What kind of amino 

acid substitution will increase the degree of the bent? Will the virus LR helix remain 

structurally the same? Will the virus be as infective as the wild type? Can the 

knowledge be used in designing nano-molecule for anti-cancer drug delivery? 
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