
FEATURE-BASED PRODUCT MODELING IN A COLLABORATIVE

ENVIRONMENT

YANG LEI

(B.ENG., Xi’an Jiao Tong University, P.R. China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2010

Abstract

Name: YANG Lei

Degree: Doctor of Philosophy

Dept: Mechanical Engineering

Thesis Tile: Feature-based Product Modeling in a Collaborative
Environment

Abstract:

A replicated collaborative feature modeling system has been explored in this study,

where a team of designers work together creating prismatic product models or

designing displacement features on freeform surfaces. Two modeling functions are

enhanced in this work, namely a history-independent modeling approach used for

regular feature modeling and a surface blending approach used for displacement

feature modeling. In addition, a granular locking mechanism has been explored for

scheduling the concurrent design operations at the server. In this modeling system,

users can perform design operations on a product model concurrently, e.g., create and

modify regular-shaped features, designing some intricate features on freeform surfaces,

and the server coordinates the concurrent operations and synchronizes the product

information. This modeling platform provides a valuable paradigm for designers

working together on a complex product model, which is strongly needed in current

product development.

Keywords: boundary evaluation; collaborative; feature; granular locking; product

modeling; surface blending

Acknowledge

 i

Pursuing a PhD is really an enduring and dedicated task, and it cannot be finished

without the support, guidance, and encouragement from many people.

First of all, I would like to express my great gratitude to my supervisors: Professor

Andrew Nee Yeh Ching and Associate Professor Ong Soh Khim. Without their

guidance and patience, I cannot finish this PhD work in the past four years. I always

remember the beginning days when I first came to NUS. At that time, my English was

poor and I did not have much sense of PhD research. Their patience and inclusiveness

encouraged me to learn and progress. I did have had much stress during my PhD study,

but it is the stress that has propelled me to learn more and finish the research work on

time.

I would also thank the most important people in my life: my families. They always

show great encouragement and support for my study in Singapore, and they always

prove that I have a safe port to dock if I really feel tired.

I am grateful to the research students and researchers in our lab: Lou Ping, Shen Yan,

Li Jun, Niu Sihong, et al. Thanks for their encouragement and discussion of my

research project. They shared many ideas and their encouragement released my mind

when I felt helpless.

At last, I would like to thank many friends in NUS: Li Erqiang, Wang Shouhua, Zhang

Bao, Lin Yingshuai, Liu Gang, et al. They are kind-hearted and excellent in both

academic and daily life aspects. We played together and talked freely, which brought

much fun to our monotonous study life.

Table of Content

 ii

Table of Contents

Acknowledgements………………………………………………………………....i

Table of Contents…………………………………………………………………...ii

Summary……………………………………………………………………….......vii

List of Tables……………………………………………………………………….ix

List of Figures…………………………………………………………………….…x

1 Introduction……………………………………………………………………....1

1.1 Feature-based Design………………………………………………………..….2

1.2 Collaborative Computer-aided Design……………………………………….…5

1.3 Motivations and Research Objectives…………………………………………..7

1.4 Outline of Thesis………………………………………………………………..9

2 Literature Review………………………………………………………………….11

2.1 Feature Modeling Technology…………………………………………….……..11

2.1.1 Feature Modeling in Product Development………………………….……..12

2.1.1.1 Feature Specification………………………………………….…...…12

2.1.1.2 Feature Models in Product Development……………………….…....14

2.1.1.3 Multiple-View Feature Models………………………………….…...17

2.1.2 Feature-based Design System………………………………………….…..19

2.1.2.1 Problems in Feature-based Design…………………………….…….19

2.1.2.2 Naming and Matching of Topological Entities……………….….….23

2.1.2.3 Boundary Evaluation in Feature-based Design………………….…..24

2.1.3 Freeform Feature Modeling…………………………………………….…28

Table of Content

 iii

2.1.3.1 Introduction of Freeform Feature Modeling……………………….28

2.1.3.2 Specification of Freeform Features……………………………...…30

2.1.3.3 Displacement Features in Product Design………………………....32

2.2 Collaborative Computer-aided Design……………………………………..…36

2.2.1 Computer Supported Collaborative Design………………………….….37

2.2.2 Collaborative Feature Modeling………………………………………...41

2.2.2.1 Coordination Mechanisms………………………………………...43

2.2.2.2 Product Information Synchronization………………………….…46

3 A History-Independent Modeling Approach……………………………….…49

3.1 Introduction………………………………………………………………….49

3.2 Feature-based Design………………………………………………..………50

3.3 Feature Intersecting Relationship……………………………………………52

3.4 Proposed Feature Modeling Approach…………………………………...….54

3.4.1 ‘Add feature’ Operation………………………………………………..54

3.4.2 ‘Remove feature’ Operation……………………………………………56

3.4.3 ‘Modify feature’ Operation…………………………………………….63

3.5 Computational Complexity Analysis and Performance Measurement………64

3.5.1 Setup used for measurement…..………………………………………..65

3.5.2 ‘Add feature’ Operation …………………………………………….….66

3.5.3 ‘Remove feature’ Operation…………………………………………....68

3.5.4 ‘Modify feature’ Operation……………………………………………..72

3.5.5 Analysis and comparison of the performance measurement…………...73

3.6 Case Study……………………………………………………………….…..74

3.7 Summary…………………………………………………………………….76

Table of Content

 iv

4 Coordination in Collaborative Feature Modeling…………………………….79

4.1 Introduction………………………………………………………………….79

4.2 Granular Locking Mechanism………………………………………………80

4.2.1 Feature Dependency Relationship……………………………………..80

4.2.2 Concurrency Control…………………………………………………..81

4.2.2.1 Modify a Feature…………………………………………….…..83

4.2.2.2 Create a Feature……………………………………………….…84

4.2.3 Correctness analysis of the proposed approach…..……………………85

4.3 Potential Conflict Resolution………………………………………………..86

4.3.1 Identify Attached Face…………………………………………………88

4.3.2 Identify Reference Edge…………………………………………….…92

4.3.3 Operation Validity………………………………………………….….94

4.4 Case Study………………………………………………………………......95

4.5 Summary………………………………………………………………..…...97

5 Freeform Feature Modeling……………………………………………..…..99

5.1 Introduction…………………………………………………………..……99

5.2 Specification of Volumetric Freeform Features……………………...……100

5.2.1 3D Constraint Solving………………………………………………..100

5.2.2 Geometric Constraint in Volumetric Freeform Features……………..101

5.2.3 3D Profile Curve Generation…………………………………………104

5.3 Displacement Feature Modeling………………………………………...…105

5.3.1 Boundary Curve Specification………………………………………..106

5.3.2 The Proposed Surface Blending Approach…………………………...108

5.3.2.1 Algorithm Overview…………………………………..…….….108

Table of Content

 v

5.3.2.2 Surface Blending………………………………………………...111

5.3.2.3 Comparison with other works …………………………………..114

5.3.3 Self-Intersection Issue………………………………………………....118

5.3.3.1 Eliminate Self-Intersection in Domain Space…………………...118

5.3.3.2 Offset the Parameter Curve Directly…………………………….122

5.3.4 Examples………………………………………………………………124

5.3.5 Summary………………………………………………………………129

5.4 Displacement Feature Modeling in a Collaborative Environment……….…130

5.5 Summary………………………………………………………………...….132

6 Implementation Environment and Case Studies………………………….….133

6.1 Implementation Works………………………………………………….….133

6.1.1 Open CASCADE Technology…………………………………….…..133

6.1.2 Implementation Methods for History-Independent Modeling……..….136

6.1.3 Maple used in Displacement Feature Modeling…………………...….138

6.2 Case Studies……………………………………………………………..….139

6.2.1 First Case…………………………………………………………..…..141

6.2.2 Second Case……………………………………………………….…..142

6.3 Summary………………………………………………………………...…143

7 Conclusions and Future Work…………………………………………...….144

7.1 Conclusions and Contributions……………………………………………144

7.1.1 Collaborative Feature Modeling Framework………………………...144

7.1.2 Proposition of a History-Independent Modeling Approach………….145

7.1.3 Enhancement of the Granular Locking Mechanism for Replicated
Collaborative Feature Modeling……………………………………...146

Table of Content

 vi

7.1.4 Proposition of a Surface Blending Approach for Creating Displacement

Features in Freeform Surfaces…………………………………………146

7.2 Future Works and Suggestions……………………………………………...148

7.2.1 Development of History-Independent Modeling………………….…...148

7.2.2 Exploration in Freeform Feature Modeling……………………………148

7.2.2.1 Evaluation of a 3D Curve lying on a Freeform Surfaces……..….148

7.2.2.2 Surface Blending in Displacement Feature Modeling…………...149

References………………………………………………………………………..151

Publications arising from this Thesis…………………………………………….159

Appendices……………………………………………………………………….160

Appendix A Programming of the Performance Measurement using Proposed
Modeling Approach………………………………………………161

Appendix A.1 Primitive Features……………………………………………161

Appendix A.2 Measurement of Best Behavior Model………………………162

Appendix A.3 Measurement of Worst Behavior Model…………………..…164

Appendix B Implementation of Example#2 in Chapter 5.3.4………………….170

Appendix B.1 Calculation in Maple………………………………………….170

Appendix B.2 Surface Construction in VC++……………………………….175

Summary

 vii

Summary

Computer-aided product modeling has been a research topic since its advent in product

development. Many modeling techniques have been employed in the past few decades,

e.g., feature-based design, freeform surface modeling, collaborative feature modeling,

etc. However, exploring and enhancing the modeling functions remains as a research

topic for improving design quality and shortening development time, especially for

concurrent and collaborative product design. In this study, a replicated collaborative

feature modeling framework has been proposed and validated, in which the designers

can work together creating a prismatic model and designing displacement features on

freeform surfaces.

At the client sides, each user is provided with the full-fledged modeling functions, in

which two modeling functions have been enhanced in this work. Firstly, a history-

independent modeling approach has been proposed and validated for overcoming the

problems and shortcomings in current history-based modeling. In this approach, when

a feature is modified, it is first removed from the product model by updating its

intersecting features, and it is then re-added with the newly specified parameters.

Hence, the creation step of the feature being modified is changed, and the problems

caused by the static ‘feature creation order’ can be solved. The complexity analysis

and performance measurement of the proposed boundary evaluation algorithm for

three representative models show that its computational complexity is better than

history-based modeling. Secondly, to avoid the high polynomial degree of the tangent

field curve obtained symbolically, an approximation for the Cubic Hermite Interpolant

has been proposed and validated. The boundary curve of the displacement feature is

Summary

 viii

first offset in the tangent field with a user-specified tolerance, and it is then knot-

refined to be compatible with the offset curve for surface blending. The local self-

intersection problem in the offset curve is eliminated in the parametric space by

approximately mapping the offset vectors in the respective tangent planes to the

parameter space of the base surface. The examples studied using the proposed

algorithm show that the boundary curve of the displacement feature can be specified

flexibly by the users, and the normal deviation along the boundary curve is even

smaller than the offset tolerance.

At the server side, a granular locking mechanism is employed for scheduling the

concurrent design operations and resolving potential operation conflicts. The design

operations are grouped according to feature dependency relationships, so more than

one ‘modify operation’ can be executed concurrently as long as their dependency

scopes are mutually exclusive. The potential conflicts of design operations caused by

feature interactions have been resolved using a naming and matching mechanism,

through which the correspondence of the modified topological entities would be

achieved correctly.

List of Tables

 ix

List of Tables

Table 3.1 Intersecting list #1………………………………………………………....55

Table 3.2 Intersecting list #2………………………………………………………....59

Table 3.3 Trends of boundary evaluations for representative models……………….74

Table 4.1 Parallel operations…………………………………………………………96

Table 5.1 Comparison between exact curve and approximated curve………………107

Table 5.2 Comparison between proposed method and Elsas’s method…………..…129

List of Figures

 x

List of Figures

Fig. 1.1 System framework……………………………………………………….....9

Fig. 2.1 Schema of feature-based parametric modeling……………………………20

Fig. 2.2 Reference entity problem in history-based modeling……………………...21

Fig. 2.3 Model evaluation problem in history-based modeling…………………….21

Fig. 2.4 CAMI-ANC 101 test part………………………………………………….22

Fig. 2.5 Boundary evaluation process………………………………………………25

Fig. 2.6 Two improved modeling approaches……………………………………....27

Fig. 2.7 Displacement feature modeling……………………………………………33

Fig. 2.8 Overlapping features……………………………………………………….44

Fig. 2.9 Feature interaction…………………………………………….……………46

Fig. 3.1 Feature attaching process…………………………………………………..51

Fig. 3.2 ‘No original feature face’ case…..…………………………………………52

Fig. 3.3 Boundary face alteration…………………………………………………...53

Fig. 3.4 Graph of altering faces………………………………………………….….54

Fig. 3.5 ‘Add feature’ operation#1……………………………………………….…55

Fig. 3.6 ‘Remove feature’ operation#1……………………………………………..57

Fig. 3.7 ‘Remove feature’ operation#2……………………………………………..58

Fig. 3.8 ‘Add feature’ operation#2……………………………………………….....59

Fig. 3.9 ‘Remove feature’ operation#3……………………………………………..61

Fig. 3.10 ‘Modify feature’ operation……………………………………………….63

Fig. 3.11 Representative models for (a) best case, (b) average case, (c) worst case

behavior………………………………………………………………….65

Fig. 3.12 Measurement of boundary evaluation time for adding a feature using

SolidWorks (left column) and using the proposed modeling method (right
column)…………………………………………………………………...68

List of Figures

 xi

Fig. 3.13 Measurements of boundary evaluation times for removing and modifying a
feature using SolidWorks (left column) and using the proposed modeling
method ………………………………………………………………...….69

Fig. 3.14 Case study………………………………………………………………...76

Fig. 4.1 Feature relationships……………………………………………………….81

Fig. 4.2 Causal conflict……………………………………………………………..86

Fig. 4.3 Potential operation conflicts……………………………………………….87

Fig. 4.4 Reference entity in feature operation………………………………………88

Fig. 4.5 Attaching face alteration…………………………………………………...89

Fig. 4.6 Naming scheme…………………………………………………………….90

Fig. 4.7 Boundary face alteration tracking………………………………………….91

Fig. 4.8 Topological edges alteration……………………………………………….93

Fig. 4.9 Edge naming……………………………………………………………….94

Fig. 4.10 Model validation………………………………………………………….95

Fig. 4.11 Case model……………………………………………………………….96

Fig. 4.12 An extreme case………………………………………………………….97

Fig. 5.1 A three-dimensional object and its constraint graph……………………..101

Fig. 5.2 2D sketch and the swept shape…………………………………………...102

Fig. 5.3 Placement of definition points……………………………………………104

Fig. 5.4 Exact curve and approximated curve…………………………………….106

Fig. 5.5 t isocurve and the relevant curves……………………………………….109

Fig. 5.6 Cause-effect relation in the proposed algorithm…………………………110

Fig. 5.7 Example#1 of offset curve and blending surface………………………...113

Fig. 5.8 Example#2 of offset curve and blending surface………………………...114

Fig. 5.9 The offset boundary curve using Elsas’s method (1998) does not interpolate

the sample points on the tangent planes…………………………………116

Fig. 5.10 Normal deviation across the boundary curve in Example#2…………....117

List of Figures

 xii

Fig. 5.11 Local self-intersection…………………………………………………..118

Fig. 5.12 Offset vector and its formulation on tangent plane……………………..119

Fig. 5.13 Equivalent offset vector in parameter space……………………………120

Fig. 5.14 Self-intersection elimination in domain space………………………….121

Fig. 5.15 Mapping between offset vectors on the tangent plane and parameter space

.………………………………………………………………………….121

Fig. 5.16 Blending surface after removal of self-intersection………………….....122

Fig. 5.17 Offset domain curve directly……………………………………………123

Fig. 5.18 Blending surface by offsetting the domain curve directly……………....124

Fig. 5.19 Surface blending of a boundary curve#1………………………………..125

Fig. 5.20 Normal deviation for the example in Figure 5.19……………….………126

Fig. 5.21 Surface blending of a boundary curve#2…………………….………….127

Fig. 5.22 Normal deviation for the example in Figure 5.21……………….………127

Fig. 5.23 Displacement features in a practical part………………….…………….128

Fig. 5.24 Create displacement features using the proposed approach and Elsas’s

method………………………………………………………..………….128

Fig. 5.25 Write texts on parts using the proposed approach……….……………...129

Fig. 5.26 Relationships of boundary curves…………………………….………....130

Fig. 6.1 Visualization of a solid box shape………………………………………..134

Fig. 6.2 Average behavior model……………………………………………….....137

Fig. 6.3 Proposed ‘remove feature’ operation………………………………….….138

Fig. 6.4 Intersection face portion of the Rib……………………………………….138

Fig. 6.5 (a) Freeform feature and 2.5D feature, (b) support part and sheet panel part

……………………………………………………………….….….….140

Fig. 6.6 Remote server…………………………………………………….……….141

Fig. 6.7 Design context…………………………………………………….……....141

List of Figures

 xiii

Fig. 6.8 Case model#1………………………………………………………….…142

Fig. 6.9 Case model#2……………………………………………………….……143

Fig. A.1 Best behavior model……………………………………………………..160

Fig. A.2 Intersection face portion of the 32nd Hole in best model………………..161

Fig. A.3 Worst behavior model………………………………….………….….….161

Fig. A.4 Intersection face portions of the second vertical Hole in worst model......161

Chapter 1 Introduction

1

Chapter 1 Introduction

Product modeling is a process of defining a computer-aided design (CAD) model or its

explicit representation that satisfies the functional requirements expected by the users

(Shen et al., 2001). According to the designed CAD model, the machining process is

generated and executed on computer numerical controlled (CNC) machines to produce

the required workpiece. In the beginning era of computer-aided design, geometric

modeling was developed to facilitate designers to create and manipulate the CAD

models, which can be represented as graphical models, solid models and surface

models (Shah and Mäntylä, 1995). However, geometric modeling has some

deficiencies, such as the lack of design intent, tedious modeling procedure, etc. In

order to overcome the limitations of geometric modeling, some semantic and high-

level entities are required to represent the CAD models. With this consideration,

feature modeling has emerged as a promising solution, where product modeling is a

process of combining certain specific features into a stock model; thus feature

modeling provides a high-level and efficient modeling environment (Roller, 1989;

Shah, 1991). Furthermore, engineering specifications attached to the features enable

seamless connection between different domains in the product development cycle,

which has the benefit of reducing lead-time and improving product quality.

Nevertheless, the majority of the current feature-based design systems are history-

based modeling, which has some weaknesses and shortcomings. In addition, freeform

features, which are popularly used in aesthetic design and engineering product design,

are not supported in current feature-based design systems. The shortcomings and

limitations of current feature-based design need to be addressed in order to employ it

effectively in product development.

Chapter 1 Introduction

2

Besides the development of high-level modeling environments, outsourcing has

become a significant trend in the current global manufacturing market, especially for

large firms, such as Boeing, Ford, Kodak, etc. Under this scenario, product design has

been shifted from standalone to collaborative activities (Li et al., 2004; Wang and Nee,

2008). As such, adopting feature-based design in a collaborative environment has

become a topic of research. In collaborative computer-aided design, a team of experts

work together on product design (Ding et al., 2009; El-Tayeh et al., 2008), so a

coordination mechanism is strongly needed for scheduling the concurrent design

activities and managing the operation conflicts.

The subsequent sections provide an overview of feature-based design and collaborative

computer-aided design. A more detailed discussion of the reported research works in

the relevant areas will be presented in Chapter 2.

1.1 Feature-based Design

The feature-based modeling technique has been widely used in both commercial and

academic computer-aided X (CAX) systems; it provides an effective approach for

improving design efficiency and assisting product model translation across different

domains. In feature-based design, the product model is created by combining certain

specific features, each of which is defined as a parametric shape associated with

certain functional information and constraints (Bidarra and Bronsvoort, 2000; Sheu

and Lin, 1993; Wang and Nnaji, 2006). From the CAD models, manufacturing features

are recognized (Lee and Kim, 1998; Li et al., 2001; Rahmani and Arezoo, 2006) for

automating the machining process on CNC machines. Furthermore, by combining

feature-based design and feature recognition (Duan et al., 1993; Laakko and Mäntylä,

Chapter 1 Introduction

3

1991; Martino et al., 1994), the design flaws in a CAD model can be investigated

immediately, such that the design quality can be guaranteed. Analogously, other

downstream application processes can extract a specific feature model from a CAD

model, so the geometric reasoning in the specific domains can be automated. The

feature models extracted in different domains can be converted from one to another

(Bronsvoort and Noort, 2004; Hoffmann and Joan-Arinyo, 2000; Subramani and

Gurumoorthy, 2004), such that the CAD system can be integrated seamlessly with the

subsequent applications, e.g., manufacturability analysis, process planning, etc.

Although feature-based design has been widely used in product development, it still

has some weaknesses and shortcomings that are only partly resolved in the literature

(Bidarra and Bronsvoort, 2000), e.g., the feature model is usually a macro that is only

supported in the design interface, and lacks the persistent maintenance of feature

validities, etc. More importantly, the majority of the current feature-based design

systems is history-based, where all the ‘feature creation operations’ are stored in the

model history and they are static. After each modification, the model history is

sequentially re-executed to update the resulting boundary representation (B-rep). This

evaluation mechanism causes some problems, e.g., the evaluated model does not

correspond to its specification, the operation can only refer to the boundary entities

created by the previous operations, high computation cost, etc. For solving the

problems caused by the static ‘feature creation order’, a cellular representation and

modeling scheme was reported by Bidarra and Bronsvoort (2000), where the non-

associative set operations (union and difference) were replaced by a non-regular union

operation. For overcoming the high-computation cost, two methods have been devised

and developed, namely, storing all the intermediate B-rep models at each history step,

Chapter 1 Introduction

4

and storing only the deltas between the history steps (Bidarra et al., 2005). However,

these proposed approaches cannot solve the problems in current history-based feature

modeling effectively.

In addition, current feature-based design does not support freeform surface modeling,

which is increasingly needed in aesthetic design and product design. As reported by

Cavendish and Marin (1992), embedding a number of displacement features into a

base surface is popular in industrial product design and modeling. By using the feature

modeling technique, the freeform surface can be created and modified intuitively, since

some intuitive and user-friendly parameters can be associated with the underlying

mathematical model (Nyirenda and Bronsvoort, 2009; Pernot et al., 2008; van den

Berg et al., 2002). Under this consideration, displacement feature modeling has been

explored in the literature (van Elsas and Vergeest, 1998), and it has two important

modeling steps, namely, specification of a boundary curve on the base surface and

surface blending of two non-interacting surfaces. In surface blending, the Cubic

Hermite Interpolant is usually adopted for achieving the tangent plane smoothness

across the boundary curve (Elber, 2005; van Elsas and Vergeest, 1998). Whereas, in

this situation, the polynomial degree of the tangent field curve obtained symbolically is

considerably higher, and the degree of reduction of a freeform curve is a non-trivial

task. As a result, an effective surface blending approach is needed for achieving the

smoothness across the boundary curve.

In summary, the feature modeling technique has many advantages in product design

and manufacture, and it has been a topic of research effort in the past few decades.

However, the weaknesses and limitations in current feature-based design remain as an

Chapter 1 Introduction

5

obstacle hindering its effective application. Hence, further research effort is still

necessary for improving the usability of feature-based design in product development.

1.2 Collaborative Computer-aided Design

Global manufacturing market and competition have been driving companies to deploy

new ‘product development' paradigms for improving product quality and shortening

lead-time. Under this situation, it is well realized that the paradigm of product

development is moving towards engaging and coordinating different application

domains, which forms a collaborative and distributed development environment based

on the distributed software modules and information technology, e.g., CORBA, Java

RMI, Agent, and COM etc.

In collaborative design, groups of experts work together on product design (Ding et al.,

2009; El-Tayeh et al., 2008; Rosenman and Wang, 1999), so as to identify and resolve

design problems at an earlier stage of the product life-cycle. The collaboration was

categorized into three types by Li and Qiu (2006), namely, visualization-based

collaboration for conceptual design and product review, cooperative creation and

manipulation (co-design) for detailed design, and concurrent engineering integrating

the design and the related manufacturing processes. The co-design system has two

widely used architectures, namely, centralized system where the main modeling

functions are located at the server side, and replicated system where each designer is

provided with the full-fledged modeling capabilities. In this study, only the replicated

system is focused to explore a platform for collaborative feature modeling.

In a co-design environment, a part model is co-created and co-manipulated by a team

of designers so as to improve design quality and design efficiency. In this situation, a

Chapter 1 Introduction

6

coordination mechanism for scheduling the collaborative design activities and

managing operation conflicts is crucial (Li et al., 2008b), since a team of designers

intends to create and manipulate the part model at the same time. In the literature, the

locking mechanism is usually adopted as the coordination scheme, either a total

locking mechanism (Bidarra et al. 2002; Li et al. 2004; Li et al. 2007) or a granular

locking mechanism (Chan and Ng 2002; Li et al. 2008b). By the total locking

mechanism, only the designer who holds the control baton can edit the design model,

but other co-designers only observe or comment on the design operation and receive

the updated model information. By the granular locking mechanism, the locking

granularity is finer that the design model is divided into several portions, thus more

than one designer can edit different portions at the same time. However, there are some

limitations of the currently reported locking mechanisms. By the total locking

mechanism, since the control baton is permitted to one designer at one time, the design

model is edited by the designers in a sequential order. This is not a productive

collaboration mechanism, although the collaboration can be manifested such that all

designers can review and discuss a design operation together before its execution

(Shen et al. 2006). By the granular locking mechanism, since performing the design

operations concurrently may cause operation conflicts and model inconsistency, the

definition of the locking granularity and the potential conflict resolution is critical. As

a result, the coordination mechanism needs more research effort for employing it

effectively in a co-modeling environment.

In summary, distributed and collaborative design has been popularly investigated and

employed in product development for improving design quality and shortening product

time-to-market. However, the challenges and problems would need to be further

Chapter 1 Introduction

7

considered and addressed for establishing an integrated and collaborative environment,

especially an effective coordination mechanism for scheduling the concurrent design

activities. As a result, collaborative computer-aided design remains as an open research

area, and it needs further investigation.

1.3 Motivations and Research Objectives

Research gaps for the current study of product modeling in a collaborative

environment are summarized below:

• History-based feature modeling has some shortcomings due to the static ‘feature

creation order’, such as generating undesirable product model, restricting reference

entities, high computation cost, etc.

• In collaborative feature modeling, some issues need to be addressed for employing

granular locking mechanism, such as maintaining exclusive ‘feature creation order’

and resolving operation conflicts.

• Currently, there are few studies on adapting freeform feature modeling in a

collaborative design environment.

The overall aim of this study is to provide a design platform for creating product

models collaboratively and concurrently, with either regular prismatic models or

displacement features on a freeform surface. The investigated system is basically for

replicated collaborative feature modeling, as shown in Fig. 1.1. At the client sides,

each designer is provided with the full-fledged modeling functions for both regular

features and freeform surface features, and the server coordinates the design activities

and synchronizes the product information. The specific objectives of this research are:

1) Aim I: Propose a history-independent modeling approach to overcome the

shortcomings in current feature-based modeling, in which the creation sequence of

Chapter 1 Introduction

8

the features can be changed after each ‘modify operation’. The proposed modeling

approach may provide insights into the boundary evaluation in feature-based

modeling. However, it should be noted that the structure of a feature-based system

is very complex, and the entire structure is not the central point of this study. The

focus here is the modeling procedure of its boundary evaluation.

2) Aim II: Improve the granular locking mechanism for replicated collaborative

feature modeling, in which the operation conflicts are resolved using a naming and

matching mechanism. The proposed conflict resolution mechanism should be a

valuable supplement for the granular locking mechanism. It should be noted that

the proposed locking mechanism is only used in replicated co-design system, and

for prismatic product modeling.

3) Aim III: Propose a freeform feature modeling approach for creating displacement

features on freeform surfaces, and adapt this modeling approach in a collaborative

environment. More specifically, a surface blending approach for generating the

transition surface in displacement features with tangential smoothness across the

boundary curve was investigated. The smoothness across the boundaries can be

specified intuitively by setting the radius parameters, and the shape of the transition

surface can be controlled by setting its control points. This work may shed light on

creating displacement features in an efficient and intuitive process. There are many

issues involved in freeform feature modeling, such as 3D curve mapping, boundary

curve specification, degree reduction of freeform curves, etc., which are only

discussed briefly in this work. The focus here is the surface blending for the

transition surface.

Chapter 1 Introduction

9

1.4 Outline of Thesis

The remaining sections of this thesis are organized as follows:

In Chapter 2, the reported works in feature-based design and collaborative computer-

aided design are surveyed and discussed. More specifically, the relevant works within

the research objectives are investigated and discussed in detail, namely, boundary

evaluation in feature-based design, coordination mechanism in collaborative feature

modeling, and displacement feature modeling.

In Chapter 3, a history-independent modeling approach is presented. The weaknesses

and shortcomings in the current feature-based design systems are overcome. The

working principle and the advantage of the proposed modeling approach are presented,

and the computational complexity is investigated and compared.

Product information
sharing

Design Context
• Visualization
• Manipulation

Feature Model
• Prismatic feature
• Freeform feature

Client B

Modeling Kernel
• Boundary evaluation
• Surface modeling

Geometric Model
• B-rep model
• Freeform model

Design Context
• Visualization
• Manipulation

Feature Model
• Prismatic feature
• Freeform feature

Client A

Modeling Kernel
• Boundary evaluation
• Surface modeling

Geometric Model
• B-rep model
• Freeform model

Aim III
Aim I

Session Management
• User information
• Coordination of design

activities

Aim II

Server

Remote Interface Remote Interface Remote Interface

Internet

Fig. 1.1 System framework

Chapter 1 Introduction

10

In Chapter 4, a granular locking mechanism for replicated collaborative feature

modeling is presented. The resolution of operation conflicts and the consistency

maintenance of ‘feature creation order’ are elaborated.

In Chapter 5, freeform feature modeling and its adaption in a collaborative

environment are presented. The two issues in displacement feature modeling, namely,

specification of feature boundary and surface blending, are elaborated in detail. For its

application in a collaborative environment, the coordination and product information

sharing are discussed briefly.

In Chapter 6, the implementation tools and methods used in this study are presented, in

which the software modules and the programming environment are discussed. The

structure of the proposed collaborative design system is shown, and the two types of

product models that can be used in this modeling system are presented.

Finally, Chapter 7 concludes this thesis, in which the contributions of this research

work and the suggestions for future work are presented.

Chapter 2 Literature Review

11

Chapter 2 Literature Review

This chapter presents a survey of the literature pertinent to the studies on feature-based

design and collaborative computer-aided design. Firstly, the feature modeling

technique used in product design and modeling is investigated. The studies on regular

feature modeling that is used for the design of prismatic parts are reviewed and

discussed, and the corresponding feature-based design system is investigated. In

addition, the studies on freeform feature modeling and modification are surveyed, and

the applications of freeform features and its modeling procedure are presented.

Secondly, the pertinent studies on collaborative computer-aided design are investigated,

where the coordination mechanism used for scheduling the concurrent design activities

and the synchronization mechanism used for product information sharing are reviewed

in detail.

2.1 Feature Modeling Technology

The feature modeling technique has been popularly used in product development,

including product design, manufacturability analysis, process planning, etc. In addition,

freeform feature modeling is proposed for creating and manipulating freeform shapes

intuitively, which are widely used in aesthetic and engineering design. In this

subsection, the applications of feature modeling in product development are reviewed,

including design-by-feature, feature reorganization, and multiple-view feature

modeling. It is followed by the investigation of current feature-based design system, in

which two issues are highlighted, namely, problems caused by the history-based

modeling procedure, and the persistent naming problem. Finally, the applications of

freeform feature modeling and the relevant studies are reviewed. Specifically, the

Chapter 2 Literature Review

12

modeling procedure and the relevant issues of displacement feature modeling are

highlighted.

2.1.1 Feature Modeling in Product Development

In this subsection, the studies on feature specification, feature modeling in product

development, and multiple-view feature modeling are reviewed for an in-depth

understanding of the feature modeling technique.

2.1.1.1 Feature Specification

A feature can be formalized in two approaches, namely, procedural formalism in

which a feature is defined in terms of rules and procedures, and declarative formalism

in which a feature is defined in terms of sets of constraints. The general specification

of a feature involves the following information:

1) Geometry definition of the feature shape: each feature shape is a specific part of the

resulting geometric model. Its geometric representation can be described using four

structures (Shah, 1991), namely, augmented graphs, algebraic (syntactic), delta

volumes, and constraint-based B-rep, all of which specify the spatial relationships

of the geometric entities that constitute the feature.

2) Validity condition: it is the functional requirements of a feature, which may be

violated due to feature intersections. As suggested by Bidarra and Bronsvoort

(2000), feature validity can be represented as the topological constraints on the

feature faces, which need to be maintained during the design process.

3) Annotation: it is the deposited information on the feature entities, such as tolerance,

machining condition, etc. It does not change the feature shape and the validity, and

can be updated automatically along with the topological modifications, as reported

by Hoffman and Joan-Arinyo (1998a, 2000).

Chapter 2 Literature Review

13

Keeping the three aspects in consideration, a few feature definition and representation

approaches have been reported in the literature. Duan et al. (1993) reported a

procedural approach, in which a feature is defined as a parametric-shape unit,

consisting of a geometric description, attributes, and application-oriented mapping

methods for design and manufacturing purposes. Laakko and Mäntylä (1993) reported

a feature definition frame, which contains topology-definition, geometry-definition,

auxiliary-geometry entities, geometric constraints, rules and attributes. A form feature

representation was reported by Sheu and Lin (1993), in which each feature is basically

a solid primitive associated with certain measured entities, dimensions, locations and

constraints. In the above approaches, each feature is simply defined as a solid shape

using the common techniques, e.g., primitive instancing, sweeping, etc., and the solid

shape is associated with certain high-level information and constraints. This approach

provides an effective way to create and manipulate the part model by performing

operations on the solid primitives. However, the feature model is only a macro

supported in the design interface, and the underlying geometric model is not

represented in terms of features. In addition, constraints associated with the solid

primitives are not maintained during the design process, which may be violated due to

feature interactions. In order to overcome this weakness, Bidarra and Bronsvoort (2000)

reported a declarative feature modeling approach, in which each feature consists of a

feature shape, validity conditions, and the user interface. The feature shape is defined

by setting certain spatial constraints on the constitutive geometric entities, the

parameter and validity conditions are also defined as constraints. This approach is

useful in that the validity conditions of the feature model are maintained during the

design process, since all the constraints are checked after each modeling operation.

Chapter 2 Literature Review

14

In addition, since the predefined features are limited and domain dependent, Hoffmann

and Joan-Arinyo (1998b) suggested an approach for creating user-defined features

(UDF) from standard features. A UDF feature is a parametric shape consisting of a set

of standard features, a set of constraints, a set of attributes, and a user interface. This

approach is significant in that the specific features can be defined dynamically, since a

universal set of features is almost impossible to be set up.

2.1.1.2 Feature Models in Product Development

Generally, a feature model can be created in two ways, namely, design-by-feature and

feature recognition. In design-by-feature, the designers use a set of predefined features

for constructing a product model by a sequence of feature attachment operations. The

feature model is usually represented as a graph structure, which comprises of the

features and the relationships between features. As in the Feature Dependency Graph

(FDG) reported by Sheu and Lin (1993), it consists of the specific form features and

the feature-position operator (FPO). The FPO represents the relative positioning

relationship between two features, through which all the features can be combined

quite easily together. A similar FDG was reported by Bidarra and Bronsvoort (2000)

for representing the feature model, which contains all the feature instances and their

interacting constraints. In design-by-feature, a feature model can be created easily,

which is from the design perspective. However, the feature models used in design and

manufacturing are defined and perceived in two different perspectives, thus

manufacturing features need to be recognized from a designed CAD model during

feature-based machining. In feature recognition, the machining process of the part

model is recognized, and is represented as a set of specific features, which can be used

for process planning later. As suggested by Shah (1991, 1995), feature recognition

compares geometric entities with predefined generic features to identify instances that

Chapter 2 Literature Review

15

match the predefined ones, which can be boundary-based and volume-based. The

boundary-based method finds sets of faces that satisfy a set of conditions for each

feature, including rule-based, graph-based, syntactic methods, whilst the volume-based

method operates directly on constructive solid models, such as CSG trees.

Studies in feature recognition have been reported in the literature. Lee and Kim (1998)

proposed an incremental feature recognition approach from a feature-design model. It

can convert various design features, including depression features, transition features,

and protrusion features, into machining features incrementally. The proposed

mechanism takes three steps: firstly, the interacting volumes of an incrementally added

design feature and the previous extracted machining features are checked; secondly,

the added design feature and the interacting volumes are handled for the conversion

into machining features using feature information, nominal geometry, and feature

interaction; and lastly, the feasibility of the extracting machining features is analyzed.

Likewise, Li et al. (2001) proposed a mechanism to extract manufacturing features

from a design-by-feature model. There are three steps in this recognition mechanism.

Firstly, the design feature tree is converted to an intermediate manufacturing feature

tree (MFT). The essential point in this step is to identify the interacting relationships

between a design feature and the manufacturing features in an incrementally evolved

intermediate MFT. Secondly, the features in the MFT are converted into several

alternative interpretations based on three consecutive operations, namely, combination,

decomposition, and (tool approach direction) TAD-led operations. Thirdly, a single

interpolation of features in the MFT is selected for a specific workshop environment,

which has the lowest machining cost. In the above two approaches, the critical point is

to handle the interacting volumes of a newly added design feature and the extracted

Chapter 2 Literature Review

16

machining features. The incremental recognition approach is highly significant in that

the manufacturing implications of design actions can be fed back instantly, so the

design quality is guaranteed. Rahmani and Arezoo (2006) presented a hybrid graph-

based and hint-based technique to extract interacting features automatically from solid

models. The hint-based approach is used to find traces left by the motion of a milling

cutter in the part boundary. The feature hints, which are simple graphs carrying

information about a feature’s base and side faces, are extracted from the decomposed

graph of an Attributed Adjacency Graph (AAG) for a part. After that, a complete

feature volume is generated using three geometric completion algorithms, namely,

Base-Completion, Profile-Completion and 3D-volume generation algorithms. This

approach is noteworthy in that the available approaches can be combined so as to

handle the drawbacks in existing recognition systems.

Combining design-by-feature and feature recognition is an effective solution for

improving design quality, since the manufacturability of the part model can be checked

immediately. Several modeling systems have been reported in this realm. Laakko and

Mäntylä (1993) reported a hybrid framework of feature-based design and feature

recognition. In their design environment, designers can manipulate interactively either

the solid model or the feature model of the part, which provides much freedom for the

users. Martino et al. (1994) developed a modeling system integrating design-by-feature

with automatic feature recognition. An intermediate model is devised as the bridge

between geometric models and context-based feature models. The hybrid framework

connects product design and manufacturing seamlessly, thus the design quality is

improved and the development time is shortened.

Chapter 2 Literature Review

17

2.1.1.3 Multiple-View Feature Models

In the downstream application processes, the product model is reviewed and analyzed

from different perspectives. Hence, a feature model used in the specific application

needs to be extracted from the designed CAD model. In order to connect the feature

models in different domains, multiple-view feature modeling has been carried out in

the literature. Two types of feature conversion mechanisms have been proposed in

multiple-view feature modeling, namely, one-way and multiple-way conversion. In

one-way conversion, product shape can only be modified in the design view, and the

modifications in other views are extracted from the evaluated B-rep model. In

multiple-way conversion, product shape can be modified in any feature view, and

product modifications can be propagated across multiple views automatically.

Hoffmann and Joan-Arinyo (2000) presented a master model for maintaining

consistency across multiple-view feature models. The master model is a single

repository that contains all the relevant product databases. Each modification of one

feature model is transmitted to the master model, and then other feature models are

updated based on the updated master model. This approach is novel in that the product

shape can be modified in other views using constraint reconciliation rather than in the

design view only. Jha and Gurumoorthy (2000) presented an algorithm to propagate

feature modification automatically across different domains. The input of this

algorithm is all the feature interpretations of a part, and the feature modification is

restricted to feature geometry only. This algorithm is on the basis that the history/log

of the feature extraction process has been obtained and used as the input. The

limitation of this algorithm is that the modification is restricted to feature geometry

only, which is not useful in many applications. This mechanism was extended by

Subramani and Gurumoorthy (2004), which handles various feature modifications like

Chapter 2 Literature Review

18

feature deletion, feature creation, transformation and parameter changes. There are two

steps here, in the first step, the feature volumes in the target feature model are updated

to account for the modifications in the edit-view, which are determined by the

interaction between the feature volumes in the target-view and the edit-feature volume;

in the second step, the updated feature volumes in the target-view are recognized to

identify new features in the target feature model. Bronsvoort and Noort (2004)

extended the multiple-view feature modeling to support four product development

phases, namely conceptual design, assembly design, part detail design, and assembly

design. In this approach, the feature models extraction and consistency maintenance

are based on an intermediate cellular model. This approach has made a valuable

contribution to multiple-view feature modeling, since it extends the feature models into

conceptual design and assembly design.

In summary, feature modeling has been widely used in product design and

manufacturing. A feature contains a parametric shape and the associated attributes that

are used in downstream application processes, thus a feature model contains more

information than a geometric model in that its geometric reasoning in specific

applications can be automated. Through combining design-by-feature and feature

recognition, the manufacturing implications of design actions can be fed back instantly

so that design quality can be improved. Furthermore, multiple-view feature models in

different domains can be connected and synchronized seamlessly for obtaining a

concurrent working environment. The applications of feature modeling reviewed in

this subsection provide a substantial understanding of feature-based design, and paves

the way for the subsequent literature review in this Chapter.

Chapter 2 Literature Review

19

2.1.2 Feature-based Design System

The majority of current design systems is feature-based modeling, which includes a

model history and an evaluated geometric model. Feature-based design provides an

attractive and high-level modeling environment, in which a part model is generated by

combining some specific feature shapes. In this subsection, the system components in

feature-based design are investigated and discussed. Specifically, the persistent naming

problem and the boundary evaluation mechanism in current feature-based design are

investigated.

2.1.2.1 Problems in Feature-based Design

The schema of current feature-based parametric modeling system is depicted in Fig.

2.1. In such a CAD system, a product model is represented in two separate layers,

namely the parametric definition and the geometry description. The parametric

definition is created based on predefined features, and is usually represented as a

feature dependency graph that includes all the specified features and their dependency

constraints. The resulting geometrical model is generated through evaluating the

parametric definition using the boundary representation approach (B-rep). During the

design process, the topological entities of the intermediate B-rep model are usually

referred to in the new feature operations for attaching or positioning purposes, which

are achieved through a naming scheme. During the re-evaluation of the model, the

referred topological entities in the old B-rep model need to be mapped to the

topological entities in the new B-rep model, which is achieved through a matching

mechanism. Hence, a naming and matching scheme is usually used in feature-based

modeling to assign an identifier to the referred topological entities, and map the

identifier to the topological entities in the new B-rep model.

Chapter 2 Literature Review

20

The majority of current feature-based modeling systems is history-based, where all the

‘feature creation operations’ are stored in the model history. After each modification,

the model history is sequentially re-executed to update the resulting B-rep model.

During re-evaluation, a ‘modify operation’ is executed on the basis of the intermediate

B-rep model that is generated by evaluating the previous operations in the model

history. This evaluation mechanism causes some problems that have been reported by

Bidarra and Bronsvoort (2000). The first problem is the reference entity problem,

where a feature operation can only refer to the topological entities generated by the

previous operations. As shown in Fig. 2.2, two features BHole and Rib are

sequentially attached to an initial Stock . If a designer wants to modify and re-position

the BHole relative to the Rib at a distance D , the positioning constraint cannot be

defined since the Rib is created later than the BHole . The second problem is the

model evaluation problem where the resulting B-rep model cannot be evaluated

according to the designer’s specification. As shown in Fig. 2.3, the designer can obtain

the intended THole in (b) when the depth of the THole is equal to or larger than the

height of the Stock , but he cannot modify the THole as the specification in (d) if the

extruded Block is created later than the THole . From the designer’s point of view, the

modified THole would intersect with the Block . However, during the re-evaluation of

the THole modification, the intermediate B-rep model at this step does not contain the

Parametric Definition

Boundary
Evaluator

Boundary
Representation

Naming and
Matching Scheme

Referred
topological

entities

Fig. 2.1 Schema of the feature-based parametric model

Chapter 2 Literature Review

21

Block , so the THole only intersects with the Stock even the depth of the THole has

been increased. As a consequence, the evaluated B-rep model is (e) which is not the

intended model. In history-based modeling, the designer performs the ‘modify

operation’ based on the current B-rep model, but the evaluation of the modified feature

is on the basis of the intermediate B-rep model at its creation step. The difference

between the current B-rep model and the intermediate B-rep model causes the above

problems.

Fig. 2.3 Model evaluation problem in history-based modeling

Fig. 2.2 Reference entity problem in history-based modeling

Chapter 2 Literature Review

22

High computation cost is another shortcoming in history-based modeling. After each

modification, the entire model history needs to be re-executed, where the computation

cost is proportional to the number of the features in the model history (Bidarra and

Bronsvoort, 2000). This problem can be illustrated by the ANC 101 test part (Shah and

Mäntylä, 1995) shown in Fig. 2.4, where (a) shows the resulting B-rep model, (b)

shows the directed acyclic graph (DAG) of the design features, and (c) shows the

model history. When the feature Pad is modified, the operations from step1 to step10

are re-executed to update the resulting B-rep model.

In addition, the persistent naming problem is also a topic of research effort. When a

topological entity is referred to by an operation, a unique identifier is attached to the

referred topological entity for retrieving it later. However, in the re-evaluation of the

feature model, the referred topological entity may be modified or deleted, so the

(b) Directed Acyclic Graph (DAG)

(a) B-rep model

(c) Model History

10

base stock 1

block

block-wedge

boss

pad

double C-bore

blind hole

C-hole

pockets

R-hole

2

3

4

5

6

7

8

9

base

block

block-wedge

boss

pad

C-bore C-hole

B-hole

R-hole pockets

Fig. 2.4 CAMI-ANC 101 test part (Shah and Mäntylä, 1995)

Chapter 2 Literature Review

23

identifier cannot be used to retrieve the correct topological entity, which has been a

problem in feature-based design for years. In the subsequent two subsections, the

persistent naming problem and the history-based modeling mechanism are reviewed in

details.

2.1.2.2 Naming and Matching of Topological Entities

During the design process, the boundary entities of the intermediate B-rep model such

as faces, edges, and vertices are usually referred to by the new design operations for

the following purposes:

• As the operational object of a feature, i.e., the topological edge of a chamfer

operation.

• As the attached object of a feature, i.e., the datum plane of the sketch of a sweeping

feature.

• As the dimensional object of a feature, i.e., the positioning edge of a feature.

However, the referred topological entities may be modified during later modeling

operations due to the interacting relationships between features. This phenomenon will

result in some problems, e.g., generating undesired shapes, loss of reference entity, etc.

during the re-evaluation process, which is termed the persistent naming problem.

Many research studies have been reported in the naming and matching mechanism. A

survey of the major solutions of the persistent naming problem has been reported by

Marcheix and Pierra (2002). The boundary entities of each feature can be named

unambiguously using the feature’s generating mode, and the interacting entities need

to be discriminated by some topological and geometric information. In the work

reported by Capoyleas et al. (1996), the boundary entities were named by the feature’s

Chapter 2 Literature Review

24

generating mode, and the ambiguities were removed by the topological context and the

orientations of the entities. The matching of the entities was realized through a local

comparison of the respective topological neighborhoods (Chan and Hoffmann, 1995).

In the work reported by Wu et al. (2001), the boundary faces of the feature shape were

named according to the feature’s generating mode and their locations in the feature.

The ambiguities of the interacting entities are removed by their parametric values on

the adjacent faces. The limitation of this naming algorithm is that the arrangement of

subdivided faces seems to be very sensitive to geometric and topological variations. A

semantic naming scheme was reported by Wang and Nnaji (2005), where all the

topological entities were named using the construct relations of the feature shape

surfaces. All the surfaces are named and recorded persistently by a naming server, and

the gradient information of the intersection curves is used to remove the ambiguities

caused by non-linear surfaces. This approach provides an effective way to name and

match the topological entities, since the gradient information can discriminate all the

interacting entities clearly. For the matching approaches, the reported works can be

classified into local matching method and global matching method. In the global

approach, the matching is carried out by the comparison and mapping of two sets of

entities, which are the entities resulting from the initial model and the entities from the

re-evaluated model. In the local approach, only the entities referred to in the initial

model is compared with the set of entities resulting from the re-evaluated model.

2.1.2.3 Boundary Evaluation in Feature-based Design

Boundary evaluation is a key process in feature-based design, and its working principle

has been well addressed in literature (Keyser et al., 2004; Requicha and Voelcker,

1985). The evaluation process consists of two working stages: at the first stage, the

Chapter 2 Literature Review

25

boundary faces of the B-rep models are intersected pairwisely, partitioning them into

separate sub-faces according to the intersection curves; at the second stage, the

partitioned faces are identified and selectively stitched to the resulting B-rep model. As

shown in Fig. 2.5, the cylindrical shape of a eThroughHol is subtracted from the

Block , where the top face 3f is attached to face1f and the bottom face5f is attached

to face 2f . At the first stage, the intersecting faces 3
*

1 ff I and 5
*

2 ff I are computed

to generate the partitioned faces1.1f , 1.2f . At the second stage, the top face1f and the

bottom face 2f are replaced by 1.1f and 1.2f respectively, and the new face 4f of the

eThroughHol is stitched to the new resulting B-rep model.

In order to save the computation cost in the boundary evaluation in feature-based

design, two methods have been devised and developed, namely, storing all the

intermediate B-rep models at each history step, and storing only the deltas between the

history steps (Bidarra et al., 2005). If the intermediate B-rep models at each step are

stored, it requires a large amount of storage space. As shown in Fig. 2.6, when a

feature is modified, e.g., the feature at step5, the modeling evaluator will go back to

step5 and re-execute the model history based on the intermediate B-rep model stored at

step4. In this case, all the intermediate B-rep models at each step would need to be

Fig. 2.5 Boundary evaluation process

Chapter 2 Literature Review

26

stored during the design. If the deltas are stored, it typically requires less storage space,

but the computation cost for rolling back from the current B-rep model to the stage

based on which the model history is re-executed is high. As shown in Fig. 2.6, the

delta at each history step is smaller than the corresponding intermediate B-rep model.

The former approach is currently being used in most of the feature-based design

systems, in which only the history steps later than the edited feature node need to be

re-executed after each modification. As shown in Fig. 2.6, since the intermediate B-rep

model at step4 is stored, only the operations from step5 to step10 are re-executed when

the feature Pad is modified. However, as observed from the DAG of the design

features in Fig. 2.4, the features created later than Pad are irrelevant to the Pad

modification. Consequently, the improved modeling approach is still not a desirable

solution for the re-evaluation of the model. The computation complexity of this

improved approach has been analyzed and reported by Bidarra et al. (2005), where the

computation cost was analyzed using three representative models for the ‘add feature’,

‘remove feature’ and ‘modify feature’ operations. For the ‘add feature’ operation, the

computation time includes three aspects, namely, identifying the intersecting boundary

faces, Boolean operation of the intersecting faces, and updating the resulting B-rep

model. For the ‘remove feature’ operation and the ‘modify feature’ operation, the main

computation time is the time associated with re-adding the feature shapes that are

created later than the feature being removed or modified.

The problems caused by the static chronological ‘feature creation order’ was solved

using a cellular representation and modeling scheme reported by Bidarra and

Bronsvoort (2000), where the non-associative set operations (union and difference)

were replaced by a non-regular union operation. The proposed union operation makes

Chapter 2 Literature Review

27

the ‘feature creation order’ irrelevant to the resulting cellular model. Thus, the

computation cost for the ‘remove feature’ operation and the ‘modify feature’ operation

is solely dependent on the number of the features being modified and their overlapping

features. However, due to the complexity of the cellular model required for a complex

model, this approach is not scalable in practice (Hoffman and Joan-Arinyo, 1998a).

Based on the above reviews in section 2.1.2, it can be seen that current feature-based

design has several weaknesses and shortcomings, e.g., persistent naming problem, high

Storing Deltas Storing Intermediate Models

Step1

Step2

Step3

Step5

Step6

Step7

Step8

Step4

Hole-Base 1

Block

Block-Wedge

Boss

Pad

Double C-Bore

Blind-Hole

C-Hole

2

3

4

5

6

7

8

Fig. 2.6 Two improved modeling approaches

Chapter 2 Literature Review

28

computation cost, etc. The main shortcomings are caused by the history-based

modeling procedure, which needs much research effort. If the ‘feature creation

operation’ in the model history can be adjusted dynamically during the design, many

of the above problems would be solved. As such, in this work, the boundary evaluation

mechanism is investigated and addressed.

2.1.3 Freeform Feature Modeling

The success of a new product depends not only on high quality and short development

time, but also on its attractive and pleasing appearance. Hence, freeform surface

modeling is popularly used in aesthetic and engineering product design, in which the

freeform surfaces are described using Bézier, B-spline and Non-Uniform Rational B-

Spline (NURBS) curves and surfaces (Piegl and Tiller, 1997). Current Feature

modeling can be adapted into freeform surface modeling for facilitating users to

manipulate freeform surfaces intuitively, which is termed freeform feature modeling.

In this section, freeform feature modeling is first introduced. Secondly, the definition

and specification of freeform features are reviewed. Thirdly, the applications of

displacement features in product design are investigated and discussed.

2.1.3.1 Introduction of Freeform Feature Modeling

The definition and modification of freeform surfaces require a deep knowledge and

great skill in the manipulation of the underlying mathematical models (van den Berg et

al., 2002), e.g., the control points, knot vectors, etc. As a result, many high-level

manipulation tools and methods have been proposed, e.g., a mechanical-based

deformation technique (Leon and Trompette, 1995; Pernot et al., 2005), a dynamic

NURBS (Qin and Terzopoulos, 1996), a surface representation model (Zhang et al.,

2004), a deformable freeform feature template (Song et al., 2004), and a feature shape

Chapter 2 Literature Review

29

transposition approach (Langerak, 2008). Concurrently, some researchers have

attempted to adapt the feature concepts in freeform surface modeling (Pernot et al.,

2008; van den Berg et al., 2002), termed freeform feature modeling. This freeform

feature modeling technique defines generic freeform shapes in combination with

intuitive and user-friendly parameters, e.g., performing standard modeling operations

and setting high-level constraints on certain geometric elements (3D points, curves)

(Nyirenda and Bronsvoort, 2008, 2009; van den Berg et al., 2003), connecting certain

Bézier surface patches and associate them with high-level parameters (Vosniakos,

1999), specifying the set of all possible parametric configuration of a shape

configuration (Langerak, 2008, 2009); thus the freeform surfaces can be created and

modified by specifying certain intuitive parameters.

In freeform surface modeling, usually a structural surface is given, and some

operations are performed on the base surface, e.g., adding surface patches, and

deforming or removing the surface regions. Hence, the freeform surface features are

related to these operations, and some classification schemes from this point of view

have been reported. In the work reported by Fontana et al. (1999), the freeform

features in aesthetic design are classified into two categories according to the different

phases of the design activity, namely, structural features and detail features. The

structural feature is used for defining the surfaces constituting the product, and the

detail feature is used for modifying the local regions of the structural surfaces,

including deformation features and elimination features. The deformation features can

be further classified according to the topological and morphological properties of the

deformed regions, including border, channel, internal, extrusion, and intrusion features.

The elimination features are classified according to the smoothness and topological

Chapter 2 Literature Review

30

properties of the removed regions, including sharp, finished cuts, inlet, hole, and gap

features. A similar taxonomy was reported by Nyirenda and Bronsvoot (2005), where

the freeform features are grouped according to the geometric characteristics, including

deform, cut, and transition features, and are grouped according to the topology of

features, including border, channel and internal features. In the work reported by Sunil

and Pande (2008), the features on a freeform sheet metal part are identified by studying

the commonly used operations in sheet metal parts production. The freeform features

are classified into face-based, edge-based, and transitive features. Face-based features

lie on a face, edge-based features lie on the periphery of the part, and transitive

features lie between faces. The above categories indicate that freeform features are

related to the operations that modify the local regions of a base surface, and freeform

feature modeling is basically to encapsulate the relevant operations in a high-level user

interface.

2.1.3.2 Specification of Freeform Features

From the geometry point of view, freeform features can be classified into freeform

surface features and volumetric freeform features. As the specification of a regular

feature, a freeform feature would comprise of a generic shape description, the

parameterization of the shape, and the validity conditions. The shape can be described

as a construction procedure (procedural approach), or described as some geometric

constraints on certain geometric entities (declarative approach). The difference from

regular features is that the boundary of the freeform features is described in terms of

freeform curves and surfaces. The parameterization of a freeform shape is not as

simple as a regular shape, in which certain user-friendly parameters should be mapped

to the underlying geometric representation directly.

Chapter 2 Literature Review

31

In the work reported by Vosniakos (1999), the boundary of a freeform feature is

determined by examining the various components within a product family. Each

freeform surface feature is composed of several 44× Bezier surface patches that are

connected through some geometric constraints. The high-level parameters are assigned

to the feature shape, which perform directly on the control points of the constituent

surface patches. In this approach, when a constituent surface patch is modified, other

surface patches most probably would need to be modified as well, and this poses a big

drawback. In the work reported by Nyirenda (2006), the generic shape of a freeform

surface feature is defined by some Freeform Feature Definition Points (FFDPs) that are

points in 3D space. The geometric curve can be determined easily by interpolating a

set of FFDP. Analogously, the shape of a freeform surface feature can be determined

by interpolating the geometric curves using the standard interpolation algorithms, e.g.,

lofting, skinning, etc. High-level parameters are assigned to the locations of the key

FFDPs, thus all the remaining FFDPs can be positioned by input parameters and

deductive parameters. This approach fails to address the question of combining the

freeform features together to form a part model.

A feature specification approach for volumetric freeform shapes was reported by van

den Berg et al. (2003). The profile and trajectory of a sweeping shape are both

geometric curves that are determined by interpolating certain FFDPs, from which a

volumetric freeform shape is generated by using the standard sweeping operation. For

positioning the FFDPs, a network of geometric constraints, including distance

constraints and angle constraints, are defined and solved. The geometric constraints

can be related by algebraic constraints for defining certain high-level parameters. In

volumetric freeform features, since the boundary surfaces are non-planar, feature

Chapter 2 Literature Review

32

attachment operations are not as straightforward as that in regular-shaped feature

attachments. In the recent work reported by van den Berg and Bronsvoort (2007), an

attachment approach for freeform extrusion features was presented. In this approach,

the initial feature shape that is not seamlessly connected to the attach face is extended,

thus the extended feature shape can intersect with the attach face completely. In

another work reported by van den Berg et al. (2004), the freeform shape is created by

wrapping certain cross-sections defined by 3D points. Since the cross-sections have

enough degrees of freeform, the general cross-section can be deformed to intersecting

with the target surface. However, this approach is not plausible since the cross-section

generated by interpolating 3D points does not lie on the attach surface seamlessly.

From the above studies, it indicates that the definition procedure of a freeform feature

is similar to that of a regular feature: firstly create a generic shape; secondly associate

certain intuitive parameters and constraints with the generic shape. However,

attachment operations here are quite complicated since the boundary surface is not

planar any more. In addition, specifying freeform features based on certain 3D points

violates the essence of freeform modeling, since the freeform shape cannot be

modified flexibly in this case. In this work, the specification and taxonomy of freeform

features are not the key points. The focus here is the displacement feature modeling,

which is reviewed in the following subsection.

2.1.3.3 Displacement Features in Product Design

Displacement feature is a type of freeform surface feature that deforms a region of the

base surface. Embedding a number of displacement features into a base surface is quite

common in industrial parts, e.g., automobile inner panel, airplane, refrigerator, etc.

Chapter 2 Literature Review

33

(Cavendish and Marin, 1992, 1995). For displacement features, a modified region of a

given surface is displaced towards the exterior or interior of this surface, after which it

is blended with the unmodified surface region (Nyirenda et al., 2005). The modeling

procedure generally includes three steps. Firstly, the modified region is defined by

setting a boundary curve on the base surface. Secondly, the surface region inside the

boundary curve is trimmed and displaced towards the exterior or interior of the base

surface. Lastly, a blending surface is generated for connecting the displaced surface

region and the un-modified region, as illustrated in Fig. 2.7.

Some studies have been conducted in this modeling procedure. In the work reported by

Cavendish and Marin (1992), the boundary curve on the base surface and the boundary

curve of the modified surface region are designed in the plan view drawing, and the

blending formula is the interpolation of the implicitly given surfaces. In the work

reported by van Elsas and Vergeest (1998), the boundary curve on the base surface is

(c)

(a) (b)

Fig. 2.7 Displacement feature modeling: (a) boundary curve; (b)
displaced modified region; (c) blending surface

Chapter 2 Literature Review

34

sketched by the designer and the transition surface is generated using the Cubic

Hermite Interpolant, in which the tangential continuity (1G) is approximated.

For a displacement feature, the boundary curve is basically a 3D curve lying on the

base surface. In this circumstance, the 3D curve is represented explicitly and the

representation is control-point based. In general, the 3D curve is first represented as a

curve in the parametric domain of the base surface. Next, it is evaluated in the base

surface as a space curve. The exact curve on a freeform surface in the control-point

based representation can be computed using several approaches, e.g., point sampling

and interpolation, power basis conversion, direct Taylor expansion, and polar forms

(Renner and Weiβ, 2004). However, the degree of the exact curve is high, which could

result in computationally demanding evaluation and may introduce numerical

instability. Approximations are used to overcome this problem, where a lower degree

curve is approximated within the user-specified tolerance (Renner and Weiβ, 2004;

Yang et al., 2004). In this work, the boundary curve on the base surface is an exact

curve rather than an approximated curve, which ensures that the continuity across the

boundary is at least positional continuity (0G).

Surface blending is used for replacing sharp edges with smooth surfaces, or creating

smooth surfaces between a pair of non-intersecting surfaces. A survey on parametric

blending methods has been reported by Vida et al. (1994). Whited and Rossignac

(2009) recently reported a brief survey on the blending methods, and proposed a set-

theoretic formulation for variable-radius blending, in which a “bounding” solid is used

to control the radius of the rolling ball locally. In order to achieve the tangent plane

continuity, the Cubic Hermite Interpolant has been adopted for surface blending (Elber,

1997; Elber, 2005; Kim and Sprynski et al., 2008; van Elsas and Vergeest, 1998). In

Chapter 2 Literature Review

35

the Cubic Hermite Interpolant, the interpolating surface is basically a 3×n Bézier

surface patch, where n is the degree of the boundary curve. The critical issue is the

selection of the tangent curves that guarantee the tangential continuity across the

boundary curves. Five methods were introduced by Kim and Elber (1997) for

determining the tangent curves symbolically. However, the polynomial degree of the

tangent curve can be as high as 3)12(−nm , where m is the degree of the base surface

in u and v directions. In order to obtain a surface with a low degree, the degree of the

tangent curve should be reduced. Since the reduction in the degree of the tangent curve

is a non-trivial task, determining the tangent curves directly is not a desirable solution.

To avoid determining the tangent curve symbolically, van Elsas and Vergeest (1998)

proposed an approximation method, where a set of points are sampled on the

parameter curve uniformly, and the tangent vectors at the sample points are used to

position the two interior rows of control points in the blending surface. However, this

approximation method does not ensure that the tangent vector of the t isocurve in the

blending surface would lie on the tangent plane of the base surface, which means that

the tangent plane continuity cannot be achieved. In this work, the tangent curve is

obtained by interpolating the sample points that are on the respective tangent planes of

the base surface. Hence, this ensures that the blending surface patch contacts the base

surface tangentially.

From the above reviews in section 2.1.3, it can be seen that current freeform feature

specification is not reasonable to some extent. Freeform features should be created and

manipulated intuitively by the users. More importantly, the modeling flexibility should

not be restricted. In this work, the displacement feature modeling is studied, in which

Chapter 2 Literature Review

36

the generation of the boundary curve and the surface blending approach would need

more research effort.

2.2 Collaborative Computer-aided Design

Product design and manufacture has been shifted to a collaborative activity, where a

group of designers from several departments or companies work together to develop a

complex product. In this situation, a collaborative framework is strongly needed for

integrating and coordinating the designers from different domains. Much research has

been actively conducted in this field to develop new approaches and systems

supporting collaborative design activities. The collaboration was categorized into three

types by Li and Qiu (2006), namely, visualization-based collaboration for conceptual

design and product review, cooperative creation and manipulation (co-design) for

detailed design, and concurrent engineering integrating the design and the related

manufacturing processes.

In visualization-based collaboration, all modeling functions and native 3D models, e.g.

B-rep models, reside in the server. This collaborative mechanism only supports

visualization, annotation and inspection of the product model at the macro-view. It is

suitable for the on-line team to take on design discussion, product review, design

remarks and conceptual design. The transmitted product model in such a collaborative

environment is usually represented as a meshed model, which is small-sized over a B-

rep model and can be used for visualization and some analysis applications directly.

However, normally, the meshed model does not contain all the product information

and design intent, so the designers cannot interrogate and manipulate it as a native 3D

model.

Chapter 2 Literature Review

37

The other two collaboration systems are presented in the following sections. Firstly,

concurrent engineering which is also termed Computer Supported Collaborative

Design (Shen et al., 2008) is investigated. Secondly, the studies in the co-design

environment are reviewed, including the coordination of design operations and product

information synchronization.

2.2.1 Computer Supported Collaborative Design

Computer Supported Collaborative Design (CSCD) is one of the concepts to re-

organize the design process with objectives for better product quality, shorter lead-time,

more competitive costing and higher customer satisfaction (Shen et al., 2008). In

CSCD, the multidisciplinary design teams, including conceptual design, detailed

design, manufacture, testing, simulation, etc., are integrated and coordinated in product

development. Hence, the design conflicts can be identified in the early phase of

product life-cycle, and the lead-time can be shortened. Since the design teams in

CSCD may be geographically distributed in an enterprise or across several enterprises,

the application modules used in the development process need to be integrated as a

distributed and collaborative system using the new IT and communication approaches,

e.g., Agent Technology, Web Services, etc.

In CSCD, the integration between computer-supported applications requires product

information exchange within the integrated environment. Two solutions have been

proposed to provide a compatible product model, namely, a neutral file-based model or

a central master model involving all relevant product data.

Chapter 2 Literature Review

38

International Standard for the Exchange of Product Data (STEP) offers the desired

neutral specifications for product models with its open and extensible structures. STEP

data files can be read directly by STEP processors, applications or through STEP

access interfaces. As the distributed system architecture proposed by Zhou and Nagi

(2002), STEP was used for information modeling and mapping for a virtual enterprise.

However, STEP has some drawbacks that hinder its applications in current distributed

systems. Firstly, the interface between applications is static thus the entire product

model needs to be re-transmitted once some changes are made on the original model.

Secondly, it is still shape-based centric that provides insufficient product information,

where design intent, namely, parameters, features, and constraints, cannot be

exchanged based on current STEP. In order to exchange parametric models, some

approaches and standards have been proposed, such as Enabling next generation, Part

108, Part 55, and solid model construction history, etc. (Mun et al., 2003).

For the integrated system using a central product model, all the relevant product

information and data processing are deposited in a central repository so that specific

applications can access and manipulate the specific data subset. Hoffman and Joan-

Arinyo (1998b) proposed a product master model for coordinating the CAD system

with the downstream application processes. The master model is a repository that

maintains the integrity and consistency of the deposited information on the geometry

data. In the master model, the CAD system deposits the net shape, and other domain-

specific applications can retrieve the shape elements and can deposit processed

information on the net shape. When a specific shape element is changed by a client, a

change protocol is used to inform the other clients of the shape change. The

mechanism for maintaining the consistency between the distributed product views was

elaborated and extended in their later work (Hoffman and Joan-Arinyo, 2000). Martino

Chapter 2 Literature Review

39

et al. (1998) reported an integrated feature-based modeling approach for the

integration between the design process and the downstream engineering processes,

which provides a homogeneous, multiple view feature-based representation of the

product model. A certain application can extract specific feature-based model from the

central model, and request for modifications. In order to avoid conflicts, the designer is

the only user allowed to modify the product model and propagate the model change.

In addition to a natural product model, the essence of the distributed and collaborative

system is that the engineering tools are encapsulated as web-enabled services, thus

they can be delivered, discovered, integrated, and interoperated dynamically. Three

main technologies have been developed to distribute and integrate the manufacturing

resources, namely, Web technology, Agent technology and Web Services. In Web-

based collaborative design, engineering tools are encapsulated as Web-enabled

modules, thus the designers at the client sides can share information and invoke the

engineering tools across the Internet. In Agent-based collaborative design, engineering

tools are encapsulated as agents that have the capabilities of being autonomous,

coordinative, communicative, intelligent, etc., thus the specific agent-based

engineering tools can be integrated as a collaborative environment. Similarly, in Web

Services systems, engineering tools are encapsulated as Web Services, thus they can be

delivered, discovered, and integrated dynamically through the ubiquitous Internet

system. In addition, the combination of Agent Technology and Web Services can also

be used for developing collaborative engineering systems.

Many studies have been reported in the exploration of integrated systems using the

above technologies. A design service marketplace was developed by Abrahamson et al.

Chapter 2 Literature Review

40

(2000), in which organizations can publish, subscribe, and manage the solution

services. A component-based framework for advanced CAD/CAM applications using

the component technology was developed by Liu (2000). The interface component

encapsulates the feature data and provides a set of interface functions for the access

and manipulation of the internal data, which decouples the developments of specific

applications. An open system was developed by Gerhard et al. (2001) to provide

solutions for rapid integration of design and manufacturing modules. The explicit

interface and explicit access methods of the Event-based mechanism guarantee the de-

coupling of application development and implementation. Li et al. (2004b) reported an

Internet-enabled collaborative and concurrent engineering design system based on Java

Servelet, integrating three functional modules, namely, co-design, web-based

visualization, and manufacturing analysis. In this system, an event-based mechanism is

proposed to maintain asynchronous communication among the three modules. An

agent-based collaborative design environment was developed by Hao et al. (2006). The

actual engineering software tools are encapsulated as problem-solving agents (PA). A

design work is defined as a job agent, which contains the workflow of the requested

PAs. When a job agent is executed, the involved PAs interact and communicate

automatically using the XML based message. In the work reported by Kuk et al.

(2008), each of the engineering software is wrapped and offered as a service via Web

Services, and is consumed and invoked by a process/analysis agent. Web Services are

used for integrating world-wide distributed resources, and agents are used for the

cooperation and coordination mechanisms for the engineering activities.

From the above reviews, it can be seen that computer-supported collaborative design

has been a topic of research effort in the past few years. The integration of different

Chapter 2 Literature Review

41

applications is realized using the new middleware modules and intelligent information

technologies. The product information transferred across the integrated environment is

represented as a neutral file-based model, or the information is stored and managed in

a central master model. However, since the application services need to be integrated

dynamically, current middleware technologies sill need much research effort. In

addition, STEP needs to be extended to include more high-level product information.

2.2.2 Collaborative Feature Modeling

The co-design system is usually termed collaborative feature modeling, where a group

of designers manipulate the product model concurrently. Two types of architecture for

co-modeling system are usually adopted:

• communication server + modeling client

• modeling server + manipulation client

In the first architecture, each designer is provided with the whole modeling capabilities

and a communication interface. The server coordinates the design session through

receiving and broadcasting action events. In the work reported by Chan and Ng (2002),

each client holds the whole modeling functions and a copy of the central model. Once

a primitive object is edited by one designer, the design event, consisting of design

action and design object, is forwarded to the server, and is then broadcast to other co-

designers by the server. Li et al. (2007) proposed a mechanism to integrate

heterogeneous CAD systems. An add-on for the translation between specific modeling

operations and neutral modeling commands is embedded into specific CAD systems.

Hence, the modeling operations performed by one designer can be broadcast to other

designers via the server. The limitation of the first architecture is that the user module

contains all the modeling functions, so it is not flexible to be distributed across the

Chapter 2 Literature Review

42

Internet. In the second architecture, most of the modeling work is performed at the

server, whilst each user has limited capabilities to visualize and manipulate a

simplified product model, for instance, the framework for web-based feature modeling

(Bidarra et al., 2002), the client/server framework enabling a dispersed team to

accomplish a feature-based design task collaboratively (Li et al., 2004a). The user

module in this architecture can be distributed flexibly across the Internet. However, the

designed model needs to be transmitted back and forth in this case, which raises many

problems due to limited bandwidth.

In addition to the collaborative part design, co-modeling is also reported in assembly

design, where each designer works on a specific part and the compatibility between

different parts is maintained by the server. Shyamsundar and Gadh (2001) reported a

geometric representation, termed AREP, for real-time collaborative assembly design.

AREP consists of several assembly units (AUs), each of which comprises of interface

assembly features and virtual design space (VDES). As such, each designer can focus

on a specific VDES, and the compatibility is guaranteed by the Interface Assembly

Features (IAF) in the VDES. The weakness of this approach is that VDES must be

produced before the detailed design, which is difficulty for some products. Chen et al.

(2004) reported an Internet-enabled real-time collaborative assembly modeling system,

in which the product was represented as a client/supplier hierarchy. In the work

reported by Kim et al. (2004), an assembly design (AsD) formalism and the associated

AsD tools were developed, which can capture the joining relations and spatial

relationships in assembly design. The AsD formalism specifies the assembly

symbolically and the AsD engine generates the assembly model, so each designer only

sends an AsD model rather the entire geometric model. The above three studies

Chapter 2 Literature Review

43

indicate that the crucial issues in collaborative assembly design are dividing the

product model into different parts and maintaining the compatibility between them.

In brief, co-modeling can be used in the detailed design of a part model or the

assembly design. In this thesis, only the co-modeling of a part model is focused, where

two issues should be addressed for employing it effectively. Firstly, a coordination

mechanism is required for managing the concurrent design operations. Secondly, since

the designers may be geographically dispersed in different locations, the modeling

system becomes a distributed and collaborative environment. In this situation, the

synchronization of the product model across the clients is a challenging issue.

2.2.2.1 Coordination Mechanism

Since an effective coordination mechanism is crucial for scheduling the collaborative

design activity and resolving operation conflicts (Bidarra et al., 2002; Li and Qiu,

2006), exploring coordination mechanisms has been a research topic. In the literature,

the locking mechanism, either total-locking mechanism or granular-locking

mechanism, has been proposed to schedule the concurrent modelling operations, and

some optimistic mechanisms used in group-editor systems have also been reported. In

this subsection, the coordination methods reported in the previous works are discussed

and the specific gaps that will be fulfilled in this research work are identified.

Some optimistic mechanisms, in which the object being edited is not locked, have been

employed in the collaborative systems for coordinating the concurrent operations. The

concurrent operations in the group-editor system can be classified into causality

relation and compatible relation (Xue et al., 2001; Imine 2008). The causality

operations cannot be executed concurrently since they have to be executed in the same

Chapter 2 Literature Review

44

order, but the compatible operations can be executed concurrently at different users’

sites by using the operation transformation (OT) mechanism. Under these

circumstances, users can perform the operations at the same time, after which the

operations are classified and executed concurrently. Unfortunately, the classification

mechanism is very complex in collaborative feature modelling as the modelling

operations are difficult to be classified separately compared to that in group-editor

systems. Jing et al. (2008) reported a no-locking mechanism for collaborative feature

modelling. Each designer can perform a design operation locally, and then send the

operations to the remote co-designers. A topological entity correspondence mechanism

was proposed to resolve the operation conflicts. The reference entities of an operation

are identified by a naming mechanism, and the lost operation entities of an operation

are restored by rolling back and re-executing local operations. However, this no-

locking mechanism is questionable in two aspects. Firstly, it assumes that there is no

manipulation conflict, which means each designer edits different features at one time.

This assumption does not hold in a distributed environment without any locking

mechanisms. Secondly, it does not maintain the consistency of the feature creation

orders at different design sites, and it assumes that the operations can be re-sorted and

re-executed freely, which is not reasonable in current history-based feature modelling,

as shown in Fig. 2.8. If the Slot creation precedes the Boss creation, the resulting

model is Fig. 2.8(b), but the reverse execution order generates the model Fig. 2.8(c).

Fig. 2.8 Overlapping features

Chapter 2 Literature Review

45

In view of the problems of optimistic mechanism, the locking mechanism is usually

employed in collaborative feature modelling. By means of the total-locking mechanism,

the entire product model is locked by the system and the control permission is

dispensed to the designers in a sequential order by a coordinator. Bidarra et al. (2002)

employed a ‘traffic light’ mechanism for coordinating simultaneous design operations.

The design operations are queued at the client’s side, and only one designer is

permitted to submit his operation to the modelling server based on the status of his

‘traffic light’. A control baton based mechanism has been adopted by some researchers

for scheduling the collaborative design activity (Li et al., 2004; Li et al., 2007; Shen et

al., 2006). At one time, only the designer who holds the control baton can edit the

product model, while other designers only observe and receive the updated model

information. The major drawback of the total-locking mechanism is that only one

designer is permitted to edit the product model at any one time, thus the modelling is

inefficient.

In order to overcome the shortcomings of the total-locking mechanism, granular-

locking mechanism has been proposed and adopted in some reported works. In the

work reported by Chan and Ng (2002), the shared product model was represented as a

CSG tree, thus a node or a sub-tree of the CSG model can be taken as the locking

granularity. This approach provides an important insight in that the product model can

be divided into several independent portions. In this case, the designers do not need to

obtain the full control of the working model; instead, they can work on different

portions and then synchronize their modified portions. As such, several designers can

edit and manipulate the product model at the same time, which provides an effective

way for collaborative feature modelling. Li et al. (2008a, 2008b) employed a fine

Chapter 2 Literature Review

46

granular-locking mechanism for feature models, where a feature model was divided

into several scopes based on feature dependency relationships. The exclusive scope of

a feature includes all its descendant features, all the ancestral features of the

descendant features, and the feature itself. If the two features are not included in the

exclusive scope of one another, they can be edited concurrently. However, this work

has failed to address the issue of maintaining the exclusive feature creation order, and

it did not consider the potential conflicts between design operations, as the problem

shown in Fig. 2.9. Due to the position change of feature cirSlot , the reference edge 1e

of feature Rib diminishes and the Rib operation cannot proceed correctly.

Based on the above review of optimistic mechanism and locking mechanism, it can be

seen that the granular-locking mechanism is suitable for collaborative feature

modelling. However, the reported works failed to address the following two issues:

maintaining exclusive feature creation order and resolving operation conflicts. As a

result, further research work on the granular-locking mechanism is imperative in

collaborative feature modeling.

2.2.2.2 Product Information Synchronization

In the distributed and collaborative design environment, the critical problem is the

dilemma between the large product model and the limited network bandwidth. This

Fig. 2.9 Feature interaction

Chapter 2 Literature Review

47

problem also occurs in visualization-based collaborative design, where the meshed

model is still very large to be transmitted over the Internet. In order to transmit the

meshed model progressively, some simplification and refinement mechanisms have

been proposed, e.g., 3D streaming. For streaming solid models, a cellular-based

approach was developed by Lee et al. (2004) to generate progressive solid model

(PSM). A feature-based solid model is represented as a PSM, consisting of a much

coarser solid model together with a sequence of progressive features that are

represented as a subset of feature cell faces. In each model sharing, the initial coarser

model is transmitted first, and the progressive features are transmitted incrementally.

However, in the progressive transition, the entire meshed model has to be transmitted

repeatedly if changes are made on the original model. An innovative approach was

proposed by Wu and Sarma (2004) to reduce transmitted mesh number rather than

compressing it if changes are made on the meshed model. In this approach, the

boundary representation space of a product model (B-rep K) is regarded as a finite set

of cells, so changing a B-rep shape is equivalent to update a subset of cells of K. Based

on this concept, the changed faces and meshed change model can be identified, and are

further transmitted and merged with the old meshed model.

In the co-modeling system, the updated geometric model needs to be synchronized

frequently across the co-designers. Transmitting the entire geometric model after each

operation is infeasible in such a design context, so some research works have been

carried out to transmit only the changed part of a model. Lee et al. (2001) developed a

shape abstracting mechanism to provide each user an Attributed Abstracted B-rep

(AAB) model that represents the central model on the server. The server transmits

updated faces incrementally to the designers, and this reduces the network load

Chapter 2 Literature Review

48

compared to transmitting the entire B-rep model. Li et al. (2004) proposed a

distributed feature manipulation mechanism to reduce transmitted data size. Each time

when a feature is edited, the server can filter the varied features and varied faces based

on the feature interaction graph and broadcast varied information to the other designers.

Through transmitting the varied faces instead of the entire CAD model, waiting time at

the client side is shortened.

From the literature in collaborative computer-aided design, it shows that collaborative

design has been commonly used in current product development, including

visualization-based, co-modeling and concurrent engineering. In order to apply

collaborative design effectively, much research work is required to address the issues

involved in this system, e.g., dynamic integration of different application processes,

coordination of design activities, and product sharing across the Internet. Specifically,

for collaborative feature modeling, the two issues, namely concurrency control and

model synchronization, remain as a topic of research effort.

In this chapter, the relevant studies in feature-based design and collaborative

computer-aided design are surveyed and discussed. The literature review provides a

substantial understanding of the problems in the relevant fields and the research issues

addressed in this thesis.

Chapter 3 History-Independent Modeling

49

Chapter 3 A History-Independent Modeling Approach

3.1 Introduction

The problems in current feature-based design have been investigated and discussed in

the review section 2.1.2, they are due to the fact that the ‘feature creation order’ in the

model history is static. In current feature-based design, the modification and evaluation

of a feature in the model history depends strongly on the features created before the

feature being edited, but does not depend on the features created later. This working

principle contradicts with the operation performance from the user’s perspective, since

the users always perform operations on the current B-rep model including all the

features in the model history, and not the intermediate B-rep model which includes

only the features created earlier. Hence, if the operation performance from the user’s

perspective is consistent with the working principle of the modeling system, the

problems in current feature-based design may be solved properly. A probable solution

is as follows: firstly, single out the feature being edited and update the remaining

features; secondly, re-attach the feature selected previously to the updated B-rep model.

As such, the ‘feature creation order’ in the model history is changed, so the related

problems can be resolved. The critical point is to update the remaining features such

that the contribution to the B-rep model from the feature being edited is cleared. This

update operation has the same effect with the ‘remove feature’ operation, but the

working procedure is quite different. In the ‘remove feature’ operation, the B-rep

model is updated by sequentially re-evaluating all the remaining features. In this

devised procedure, only the intersecting features of the feature being edited are

checked and re-evaluated, thus the computation time can be saved.

Chapter 3 History-Independent Modeling

50

In this Chapter, the devised modeling operation, termed history-independent modeling

approach, is elaborated and validated. Firstly, the working principle of creating a

feature model is presented. Secondly, the feature intersecting relationship in a designed

feature model is investigated. Thirdly, the working procedure of the proposed

modeling approach is elaborated, including ‘add feature’ operation, ‘remove feature’

operation and ‘modify feature’ operation. Fourthly, the computational complexity of

current feature-based modeling and that of the proposed modeling are analyzed, and

the computation times are measured. Finally, the proposed approach is validated using

a case study.

3.2 Feature-based Design

From the geometric perspective, feature-based modeling is a sequence of attachment

operations of certain specific feature shapes, where the feature shape iFS is combined

with the intermediate part model iPM through a regularized Boolean operation iBO ,

as denoted in Eq. (3.1). The feature shape and the part model are usually represented as

B-rep models, which consist of the topological entities and the underlying geometric

entities. There are two types of Boolean operations, namely, union and difference

operations. In the difference operation, the feature faces of the subtractive feature iFS

intersect with the boundary faces of the part model iPM , and the intersected faces and

the new feature faces are selectively stitched to the resulting part model 1+iPM .

1+=>< iiii PMPMBOFS (3.1)

As illustrated in Fig. 3.1(b), a cirPocket is subtracted from the initial Stock , the new

feature faces 32 , ff and the intersected face 1.1f are merged into the resulting part

model. In the union operation, the feature faces of the additive feature iFS intersect

Chapter 3 History-Independent Modeling

51

with the boundary faces of the part model iPM , and the intersected faces and the new

feature faces are selectively stitched to the resulting part model 1+iPM . As illustrated

in Fig. 3.1(c), a Boss is added on the bottom face of the cirPocket , the new feature

faces 54 , ff and the intersected face 1.3f are merged to the resulting part model. In a

‘transition feature’ operation, such as the chamfer and the fillet operations, the

transition features can be converted into the additive or subtractive features. Thus, the

execution process of the ‘transition feature’ operation is the same, where the new

feature faces and the intersected faces are computed and selectively stitched to the

resulting part model. As illustrated in Fig. 3.1(d), a Chamfer is basically a subtractive

feature, which generates a chamfer face 6f and modifies the incident faces.

It can be concluded that the feature attaching processes, which are the union,

difference, and transition operations, are basically to update the boundary faces of the

part model if the boundary representation approach is employed. In the resulting part

model, all the boundary faces originate from the faces of the features, and there is no

Fig. 3.1 Feature attaching process

Chapter 3 History-Independent Modeling

52

boundary face that has no original feature face, which has been observed by Wu et al.

(2001). As shown in Fig. 3.2, a feature Boss is first added to the top face of the initial

Stock , and then a cirPocket is subtracted from the Stock . In SolidWorks, the

resulting B-rep model is (b), where the face f of the model (c) is not on the model

boundary since f has no original feature face.

3.3 Feature Intersecting Relationship

When a new feature F is created, the boundary faces of the intermediate B-rep model

are modified due to the intersections with the faces of F , which are selectively

trimmed and stitched to the resulting B-rep model. During the subsequent operations,

the faces of F that are present on the model boundary may be further trimmed, split,

merged or deleted due to the merging of the later features. As shown in Fig. 3.3, firstly

an initial Stock is created, next a rectSlot is subtracted from theStock , and lastly

another rectSlot is subtracted. During the merging of the first rectSlot , feature faces

)2,4.2(f ,)2,5.2(f ,)2,6.2(f are stitched to the model boundary, boundary face)1,1.1(f is split,

)1,2.1(f and)1,3.1(f are trimmed. During the merging of the second rectSlot , feature

Fig. 3.2 ‘No original feature face’ case: the Boss is floating on
the model since f has no original feature face

Chapter 3 History-Independent Modeling

53

faces)3,2.3(f ,)3,3.3(f are stitched to the model boundary, 2f and)2,4.2(f are split,)2,6.2(f

and)3,6.3(f are merged,)1,4.1(f is trimmed.

This alteration process can be illustrated with a hFaceIdGrap , as shown in Fig. 3.4.

Each face of a feature can be assigned a unique name in terms of the feature’s

generating mode and its location in the feature shape (Capoyleas 1996; Wu et al., 2001;

Wang and Nnaji, 2005). Combining with theFeatureId , all the feature faces in the

design model are named persistently, termed as the invariant name (IN). In the

hFaceIdGrap , each face is assigned aFaceId , in which the first item is the IN of the

face and the second item is the StepId of this operation, as denoted in Eq. (3.2). In

case that a face is split, the sub-faces can be discriminated in terms of the bounding

feature faces and the geometric information of the intersection edges (Cripac, 1997;

Wang and Nnaji, 2005), denoted in Eq. (3.3).

),()(stepIdINfFaceId = (3.2)

)),(,()(stepIdcesboundingFaINsINfFaceId = (3.3)

_

_

Fig. 3.3 Boundary face alteration

Chapter 3 History-Independent Modeling

54

It can be seen that the faces of a feature that are present on the model boundary are not

static, but are changed according to the model modifications. In this work, one can see

faces originating from a feature present on the model boundary constituting the

boundary contribution (BC) of this feature. All theBCs of the design features in a

model constitute the boundary faces of the resulting B-rep model. During the design

process, the BC of a feature is changed due to the intersecting relationships with other

features, which are termed the intersecting features of this feature. As a result,

modifying a feature in a product model is basically to alter its BC and theBCs of its

intersecting features, so that the resulting B-rep model can be updated.

3.4 Proposed Feature Modeling Approach

3.4.1 ‘Add feature’ Operation

When a new feature is attached to the product model, the feature constraints are first

specified and solved, e.g., attach constraint, position constraint and dimension

Fig. 3.4 Graph of altering faces

1,1.1f

1,3.1f 2,3.1f

2),5.2,5.1,3.1,2.1(,1.1f

2),4.2,4.1,3.1,2.1(,1.1f

1,2.1f 2,2.1f

1,5.1f

1,6.1f

2,6.2f

3,6.3f

3,6.2f

2,4.2f

3),2.3,2.2,4.1,2.1(,1.1f

3),3.3,4.2,4.1,3.1(,1.1f

1,4.1f
3,4.1f

2,5.2f

3,2.3f

3,3.3f

3),2.3,6.2,2.1,1.1(,4.2f

3),3.3,6.2,3.1,1.1(,4.2f

Chapter 3 History-Independent Modeling

55

constraint. Next, the feature shape is generated and combined with the current BRep

model. In boundary evaluation, the intersecting faces in the current BRep model are

identified and processed using Boolean operations first, after which the partitioned

sub-faces and the new feature faces are selectively stitched to the resulting BRep

model. In this research work, when a feature has been evaluated, there is an

intersecting list recording to its intersecting features, and storing the intersection face

portions between the intersecting faces and the feature faces, as shown in Eq. (3.4).

)]();([:)(FortionInterFacePFreInterFeatuFList = (3.4)

As shown in Fig. 3.5, the product model is developed by combining four features,

5432 ,,, FFFF to the initial feature 1F . During the development process, the intersecting

features are recorded, and the intersection face portions are stored, as in Table 3.1.

Table 3.1 Intersecting list #1

Intersecting List 1F 2F 3F 4F 5F

Intersecting features 2F , 5F 1F , 3F , 5F 2F , 4F , 5F 3F 1F , 2F , 3F

Intersection face
portions

 2)1,1.1(*Ff ∩ 3)2,1.2(*Ff ∩ 4)3,1.3(*Ff ∩ 5)2,1.1(*Ff ∩ ,

5)3,2.2(*Ff ∩

+

+
+

+

Fig. 3.5 ‘Add feature’ operation#1

Chapter 3 History-Independent Modeling

56

3.4.2 ‘Remove feature’ Operation

In the ‘remove feature’ operation, when a featureF is removed, there are three major

steps for updating the model boundary. Firstly, the boundary faces originating from

F are removed from the model boundary. The boundary faces originating from F can

be classified as follows: a) originating from F and being present on the model

boundary as a topological face; b) being on the model boundary but is only a portion of

a topological face, which is the merged face from faces originating from different

features. The first type of faces can be removed directly, and the second type of faces

should be updated by subtracting the face portions that belong toF . Next, the

intersection face portions stored at the F creation step are merged to the model

boundary, in which the impacts caused by the later intersecting features are considered.

Lastly, theBCs of the intersecting features which are created later than F are updated

by removing the impact from the removal of F . As shown in Algorithm #3.1, FBf is

the face defining the boundary of F ; ortionInterFacePf is the intersection face portions

between intersecting faces and FBf when F is being added;Ff is the present boundary

face originating from both F ; mergedf is the present boundary face that is merged from

FBf and the face belong to other features; reBInterFeatuf is the face defining the

intersecting feature InterF .

 Algorithm #3.1:
)(Fremove {

update (BC of FBf) { remove Ff ;

update mergedf by)*(FBmerged ff − ;}

update (BC of ortionInterFacePf) {

if)(! InterF : stitch ortionInterFacePf ;

else : yselectivel stitch)*(reBInterFeatuortionInterFaceP ff ∩ ;}

update (BC of InterF) {

yselectivel rGlueOrClea reBInterFeatuf(>< BO)FBf ;}

}

Chapter 3 History-Independent Modeling

57

As shown in Fig. 3.6, feature 5F in Fig. 3.5 has been removed from the current BRep

model. Firstly, the boundary faces)5,4.5()5,3.5()5,2.5()5,1.5(,,, ffff originating from 5F are

removed from the model boundary. Next, the intersection face portions ba ff , are

merged to the resulting BRep model, which are the stored face portions 5)2,1.1(*Ff ∩

and 5)3,2.2(*Ff ∩ .

When a feature F is removed, the features attached to F are usually removed as well.

As shown in Fig. 3.7, when feature 3F is removed, its attached feature 4F needs to be

removed as well. It is supposed the feature 5F has not been combined, and the removal

operations of 3F are as follows. Firstly, the boundary faces)4,1.3()3,5.3(, ff originating

from 3F and the boundary faces)4,2.4()4,1.4(, ff originating from 4F are removed from

the model boundary directly. Then, the merged boundary faces)3,4.2()3,3.2()3,2.2(,, fff are

Fig. 3.6 ‘Remove feature’ operation#1

Remove relevant faces

>< Merge

>< BO

Intersection Face Portions

Chapter 3 History-Independent Modeling

58

processed using the Boolean operations with the feature faces defining3F , and the

merged boundary faces)3,4.2()3,3.2()3,2.2(,, fff are replaced by the partitioned faces

cba fff ,, . Next, the stored intersection face portiondf are merged to the model

boundary.

For the examples in Figure 3.6 and Figure 3.7, the intersection face portions stored at

the feature creation step can be merged to the model boundary directly. However,

when the feature being removed has intersecting features that are created later, theBCs

of the stored faces should be updated by considering the impact from the intersecting

features. As shown in Fig. 3.8, the product model is developed by sequentially

Remove relevant faces

>< BO

>< BO

Intersection Face Portions

Fig. 3.7 ‘Remove feature’ operation#2

>< Update

Chapter 3 History-Independent Modeling

59

combining three features 432 ,, FFF to the initial feature 1F , and the intersecting list is

summarized in Table 3.2. 2F has three intersecting features, namely, 1F that is created

before 2F , and 3F , 4F that are created later than 2F .

Table 3.2 Intersecting list #2

Intersecting List 1F 2F 3F 4F

Intersecting features 2F , 4F 1F , 3F , 4F 2F , 4F 1F , 2F , 3F

Intersection face
portions

2)1,1.1(*Ff ∩
,

2)1,2.1(*Ff ∩
,

2)1,3.1(*Ff ∩

2)2,1.2(*Ff ∩

4)1,4.1(*Ff ∩ , 4)1,5.1(*Ff ∩ ,

4*Ffa ∩ , 4*Ffb ∩ ,

4)2,2.2(*Ff ∩ ,

4)2,3.2(*Ff ∩ , 4)3,1.3(*Ff ∩ ,

4)3,2.3(*Ff ∩ , 4)3,3.3(*Ff ∩

When 2F is removed from the product model, its attached feature 3F is removed as

well, and the removal operations are shown in Fig. 3.9. At the first step, the boundary

faces originating from 3F are)3,5.3()3,4.3()4,3.3()4,2.3(,,,,, ffffff dc , and the boundary faces

originating from 2F are)4,3.2()4,2.2()3,1.2(,, fff , and they are removed from the model

boundary. After removing the faces of 3F , face ef is disconnected from the remaining

model, so it is removed as well. Since 3F is attached to 2F , its intersection face portion

2)2,1.2(*Ff ∩ will not be merged to the model boundary. Hence, at the second step, only

Fig. 3.8 ‘Add feature’ operation#2

- +

-

Chapter 3 History-Independent Modeling

60

the intersection face portions stored at the creation step of 2F , which are ihg fff ,, , are

to be merged to the model boundary. Since 4F is created later than 2F and it is

intersecting with 2F , the intersection face portions stored at the 2F creation step may

be modified by 4F . In this case, if need to be further updated by 4F , which is

processed using the Boolean operations with the feature faces defining 4F . After that,

the resulting sub-faces and the stored ‘intersection face portions’ are selectively

stitched to the model boundary, which are 2.1., ,, iihg ffff . At the third step, the BC of

the intersecting feature 4F is updated, where the Boolean operations between the

feature faces defining 4F and 32, FF are computed. The resulting partitioned faces

from the operation with 3F are ef and ff , and the partitioned faces from the operation

with 2F are jf and kf . The partitioned sub-faces need to be selectively stitched to or

subtracted from the model boundary according to the validity of the resulting BRep

model, or the users can be given the opportunity to decide how to process the

partitioned sub-faces. In this case, kf is stitched the resulting model boundary.

Chapter 3 History-Independent Modeling

61

Intersection face portions

>< BO

Fig. 3.9 ‘Remove feature’ operation#3

Remove faces Remove faces Step1

Step2-b

>< Merge

Step3-a

>< BO

Step3-b

>< Update

Step2-a

>< BO

Chapter 3 History-Independent Modeling

62

During the ‘remove feature’ operation, the sub-faces are removed selectively from or

merged to the model boundary. The sub-faces originating from the feature being

removed should be removed, and the intersection face portions should be merged into

the final BRep model, as presented in Figures 3.6-3.7. However, if the feature being

removed has an intersecting feature that is created later, the partitioned faces portionf ,

which are generated from the Boolean operations on the intersection face portions and

the intersecting features, should be classified with respect to the intersecting feature to

determine whether they are on the model boundary, namely Interportion InFf ,

InterportionOnFf , InterportionOutFf . InterportionOutFf is merged to the final BRep model,

Interportion InFf is discarded, and InterportionOnFf is determined based on its ‘nature’

defined in the specification of InterF . The ‘nature’ of a feature face expresses whether it

is on the model boundary or not, which is also used in the cellular model

representation (Bidarra et al., 2005). As the if in dStep −2 of Fig. 3.9, the partitioned

faces 3.2.1. ,, iii fff are classified with respect to 4F . 2.1. , ii ff are merged to the final

model boundary since they are out of 4F . 3.if is discarded since it is on 4F and the

‘nature’ of the feature face indicates it is not on the boundary. For updating the BCs

of the intersecting features, the sub-faces from the intersecting features are classified

by their ‘nature’ or are classified by the decisions from the users, and in both cases the

final BRep model should be maintained valid and consistent. As in bStep −3 in Fig.

3.9, ff and jf are discarded since their ‘nature’ in 4F indicates they are not on the

boundary, and ef and kf are merged into the final BRep model since their ‘nature’ in

4F is on the boundary. In this case, the boundary edges of ef are not consistent with

the intermediate model, and hence kf is merged to obtain the final BRep model.

Chapter 3 History-Independent Modeling

63

3.4.3 ‘Modify feature’ Operation

The ‘modify feature’ operation is similar to the ‘remove feature’ operation. When a

feature is modified, the features attached to it are usually modified as well. For the

‘modify operation’, there are two major steps. Firstly, the modified feature and its

attached features are removed from the current product model. Next, the modified

feature and its attached features are re-added to the product model with newly

modified parameters.

Modified to

>⋅< addre

Remove faces

>< merge

>< BO

Fig. 3.10 ‘Modify feature’ operation

Chapter 3 History-Independent Modeling

64

The ‘removal operations’ and the ‘re-added operations’ have been presented in Section

3.4.2 and Section 3.4.1 respectively. As shown in Fig. 3.10, when the feature Boss is

modified to become a Block , the Boss and its attached feature, which is the feature

BlindHole , are removed from the current product model first. Next, the modified

Block and BlindHole are re-added to the updated product model as the new features.

3.5 Computational Complexity Analysis and Performance Measurement

Three classes of feature models were introduced by Bidarra et al. (2005), namely, the

best, average, worst case behaviors for analyzing the computational complexity. For

the model with the best case behavior, all design features are disjoint. As shown in Fig.

3.11(a), the model consists of aBlock with one row of 100 non-intersecting

eThroughHol shapes. For the model with the average case behavior, each of its m

features has a small average number i of intersections with other features, i being

independent of m . As shown in Fig. 3.11(b), the model consists of a Block with a row

of 33 feature groups, each of which have three intersecting features inserted

sequentially: first Rib , then Slot , and finally eThroughHol . Each eThroughHol

intersects one face of Rib , two faces of Slot , as well as one face of the Block . For the

model with the worst case behavior, each of its m features intersects (once) i other

features, and i is smaller than m . The worst model is modified a bit in this work. As

shown in Fig. 3.11(c), the model consists of a Block with 20 similar eThroughHol ,

which are added in a criss-cross manner. The diameter of the set of holes in one

direction is slightly smaller than the diameter of the set of holes in the other direction.

Only the computation for the set of holes with the smaller diameter is measured.

Chapter 3 History-Independent Modeling

65

3.5.1 Setup used for measurement

The boundary evaluation for the three representative models in the pure history-based

modeling is measured using the commercial software SolidWorks 2006 SP0.0.

SolidWorks uses a so-called swp file for recording all the user actions, which serves

as the script file. The swp file can be executed in another modeling session, during

which the same commands are executed automatically and the identical resulting BRep

model is generated. In order to measure the evaluation time, the time-stamp commands

are embedded into the swp file so that the start time and the finish time of a modeling

command are recorded, as shown in the text box below. On the other hand, the

boundary evaluation for the three representative models using the proposed methods

are measured based on Open CASCADE. All the performance measurements are

carried out in the Windows XP environment on a computer with Intel Duo CPU

2.0GHz and 2G of RAM.

(b) (a) (c)

Fig. 3.11 Representative models for (a) best case, (b) average case, (c)
worst case behavior (Bidarra et al., 2005)

boolstatus = Part.Extension.SelectByID2("Top Plane", "PLANE", 0, 0, 0, False, 0, Nothing, 0)
Part.InsertSketch2 True
 QueryPerformanceFrequency curFreq
 QueryPerformanceCounter curStart
boolstatus = Part.Extension.SelectByID2("Sketch1", "SKETCH", 0, 0, 0, False, 0, Nothing, 0)
Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, 0.01, 0.01, False, False, False,
False, 0.01745329251994, 0.01745329251994, False, False, False, False, 1, 1, 1, 0, 0, False
Part.SelectionManager.EnableContourSelection = 0
 QueryPerformanceCounter curEnd
 dblResult(X) = (curEnd - curStart) / curFreq * 1000

Chapter 3 History-Independent Modeling

66

It is a complex procedure to measure the exact modeling times for the boundary

evaluation in SolidWorks since the working algorithms in SolidWorks cannot be

accessed and modified easily. Although the swp file can record the modeling

commands, it is difficult to determine that the measured time is the exact boundary

evaluation time. In addition, the specific modeling algorithms in Open CASCADE are

very different from that in SolidWorks, and the CPU timers are not accurate. As a

result, it is not meaningful to compare the absolute computation times measured in

these two modeling software, and the measured times with those reported works in the

literature. In this work, all the modeling times are normalized to make them

comparable, in which only the trends of the computation times with respect to the

number of features are analyzed.

In the ‘add feature’ operation, the boundary evaluation is measured to find the

relationship between the computation time and the number of features added. It is

assumed that there are 1−n features in the model, and the number n feature is being

added to the model. In the ‘remove feature’ operation and the ‘modify feature’

operation, the boundary evaluation is measured to find the relationship between the

computation time and the sequence position of the feature being edited. It is assumed

that there are m features in the model, and the number k feature is being removed or

modified.

3.5.2 ’Add feature’ operation

The computational complexity and the performance measurements for the boundary

evaluation in history-based modeling have been reported by Bidarra et al. (2005). For

the ‘add feature’ operation, the computation time is proportional to the number of

boundary faces and the number of intersections per feature. From the charts on the left

Chapter 3 History-Independent Modeling

67

column in Fig. 3.12, for the best case and the average case behavior models, the

computation times increase linearly with increasing number of features; for the worst

case, the computation time increases in quadratic order with increasing number of

features.

In the proposed modeling approach, the ‘add feature’ operation is similar to the

history-based modeling approach. Thus, the computational complexity of the proposed

approach is similar to the history-based approach. Bidarra et al. (2005) have explained

that the computation time for the ‘add feature’ operation is composed of

opelupdop nnntttt ×+×+×=++= γβα intmodint , where intt represents the time required

for the identification of the intn intersecting faces from the model boundary that has a

total number of elnmod faces, opt represents the time required for processing these

intersecting faces intn using Boolean operations, updt presents the time required for

updating the BRep model with the processed faces opn , and α , β and γ are positive

factors. For the ‘add feature’ operation, the evaluation times of the three representative

models are shown in the charts on the right column in Fig. 3.12. For the case of the

best behavior model, the computation time increases with increasing number of

features in a nearly quadratic order. For the case of the average behavior model, the

computation time increases linearly with the number of features. For the case of the

worst behavior model, the computation time increases in a cubic order with increasing

number of features. It is observed that the computational complexity for the best

behavior model and the worst behavior model is one order higher as compared with

that in SolidWorks. This is because the number of topological edges in the intersecting

faces increases proportionally with increasing number of features, and hence the

Chapter 3 History-Independent Modeling

68

positive factor β becomes larger linearly, which represents the time for performing

Boolean operations on the intersecting faces and the new feature faces. The increasing

β is due to the specific modeling algorithms in Open CASCADE, and one should

adapt the curves of computation times when it is compared with that in SolidWorks

and that in other reported works.

Best model AddTime

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

The number of features (n)

ti
m

e
(m

s)

Best model AddTime

0

50

100

150

200

250

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

The number of features (n)

ti
m

e
(m

s)

(a) best case
Average model AddTime

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

The number of features (n)

ti
m

e
(m

s)

Average model AddTime

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

The number of features (n)

ti
m

e
(m

s)

(b) average case

Worst model AddTime

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The number of features (n)

ti
m

e
(m

s)

Worst Model AddTime

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
The number of features (n)

ti
m

e
(m

s)

(c) worst case

3.5.3 ’Remove feature’ operation

For the ‘remove feature’ operations in the pure history-based modeling approach, the

computation time is dependent on the sequence position of the feature being removed

in the model history. For the charts (solid curves) in the left column in Fig. 3.13, for

the best behavior model and the average behavior model, the computation times for

Fig. 3.12 Measurement of boundary evaluation time for adding a feature using
SolidWorks (left column) and using the proposed modeling method (right column)

Chapter 3 History-Independent Modeling

69

removing a feature decrease in quadratic order when its sequence position in the model

history increases; for the worst behavior model, the computation time for removing a

feature decreases in cubic order when its sequence position in the model history

increases.

Best model ModifyTime & RemoveTime

0

200

400

600

800

1000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Sequence position of features (k)

ti
m

e
(m

s)

Poly. (Modify Time) Poly. (Remove Time)

Best Model ModifyTime & RemoveTime

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Sequence position of features (k)

ti
m

e
(m

s)

Linear (Modify time) Linear (Remove time)
(a) best case

Average Model ModifyTime & RemoveTime

0

400

800

1200

1600

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sequence position of features (k)

ti
m

e
(m

s)

Poly. (Modify time) Poly. (Remove time)

Average Model ModifyTime & RemoveTime

-50

50

150

250

350

450

550

650

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sequence position of features (k)

ti
m

e
(m

s)

Linear(Modify time) Linear(Remove time)
(b) average case

Wrost model ModifyTime & RemoveTime

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sequence position of features (k)

ti
m

e
(m

s)

Poly. (Modify time) Poly. (Remove time)

Worst Model ModifyTime & RemoveTime

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sequence posit ion of features (k)

ti
m

e
(m

s)

Linear(Modity time) Linear(Remove time)
(c) worst case

In the proposed boundary evaluation, removing a feature F from a model made up of

m features is accomplished through a selective sequence of operations, including

performing the deletion, executing a Boolean operation, and merging of the boundary

Fig. 3.13 Measurements of boundary evaluation times for removing and modifying
a feature using SolidWorks (left column) and using the proposed modeling method

(right column)

Chapter 3 History-Independent Modeling

70

faces, as explained in Section 3.4.2. Since the ‘remove feature’ operation is

accomplished in three steps, the required computation time can be decomposed into

intFeaStoredFacerem tttt ++= , where remt represents the time associated with the removal of

the boundary faces originating from F , including removing the relevant topological

faces and subtracting the face portions from the relevant merged faces. StoredFacet

represents the time required for processing the faces stored at the F creation step,

namely updating and merging the intersection face portions, and intFeat represents the

time required for updating the BCs of the intersecting features InterF .

One can legitimately assume that:

• The boundary face Ff originating from F is deleted from the model boundary

directly, and the boundary face mergedf is updated by removing the face portions

that belong toF . Thus the time remt is dependent on the number of Ff ()(Ffn) and

the number of mergedf ()(mergedfn).

• The intersection face portion ortionInterFacePf is updated in two ways: one is to stitch

the face portions directly, and the other is to selectively stitch the resulting sub-

faces of the Boolean operation on ortionInterFacePf and reBInterFeatuf (reBInterFeatuf are the

faces defining the intersecting feature InterF) to the model boundary. Thus, the time

StoredFacet is related to the number of the stored face portions: face portions

intersecting with reBInterFeatuf ()(AStoredFacefn) and face portions without intersecting

with reBInterFeatuf ()(BStoredFacefn).

• For theBC of the intersecting featureInterF , the partitioned faces, which are

generated by performing FBreBInterFeatu fBOf >< , are selectively stitched to or

Chapter 3 History-Independent Modeling

71

subtracted from the model boundary. Thus, the time intFeat is proportional to the

number of the faces that in reBInterFeatuf and intersects withF ,)(IntFFacefn .

The operation behaviors can be expressed by some positive factors, so the former

equation can be written as

)()(2)(1)(2)(1 ''''' IntFFacefBStoredFacefAStoredFacefmergedfFf nnnnnt ×+×+×+×+×= γββαα .

The computation equations can be analyzed using the representative models in Fig.

3.11 as follows.

Best case. As the model shown in Fig. 3.11 (a), when removing the kth hole (h), there

is only one boundary face ()(Ffn = 1) originating from h and two stored faces

()(AStoredFacefn = 2). Since h has no intersecting feature that is created later, the time

intFeat is zero. The equation representing the required computation time can then be

written as 11 '2' βα ×+=bt . From the charts (solid curve) in the right column in Fig.

3.13(a), the computation time for the removal operation remains almost constant as the

sequence position of features increases.

Average case. As the model shown in Fig. 3.11(b), when removing the kth Rib , there

are five boundary faces ()(Ffn = 3 and)(mergedfn = 2) originating from Rib and one

intersecting face ()(BStoredFacefn = 1). The intersecting feature created later than Rib is a

eThroughHol . By performing the Boolean operation between eThroughHol andRib ,

there is only one face in the eThroughHol intersecting with Rib ()(IntFFacefn = 1). The

equation representing the required computation time can then be written as

'''2'3 221 γβαα ++×+×=at . From the charts (solid curve) in the right column in Fig.

Chapter 3 History-Independent Modeling

72

3.13(b), the removal operation of any Rib in the model with the average case behavior

has almost constant evaluation time.

Worst case. Assume the kth smaller hole (h) is removed from the model shown in Fig.

3.11(c), there are 21 boundary faces ()(Ffn = 21) originating from h and the number of

the intersection face portions is kn AStoredFacef 22)(+= . For the intersecting features

created later than h , the number of the faces that intersect withh is kn IntFFacef −= 20)(.

The equation representing the required computation time can be written as

)'20'2'21()''2(')20(')22('21 11111 γβαγβγβα +++−=×−+×++×= kkktw .

Since 1'β represents the time for performing merging operations of face portions, while

'γ represents the time for performing Boolean operations on the faces in the

intersecting hole. Hence, ''2 1 γβ − is reasonably assumed to be a negative factor, and wt

decrease linearly with the sequence position k . As the charts (solid curve) in the right

column in Fig. 3.13(c), the computation time has a decreasing linear relation with the

sequence position of the hole being removed.

3.5.4 ‘Modify feature’ operation

For the ‘modify feature’ operations in the pure history-based modeling, the

computation time is dependent on the sequence position of the feature being modified

in the model history. From the charts (dashed curves) in the left column in Fig. 3.13,

for the best behavior model and the average behavior model, the computation times for

modifying a feature decrease in quadratic order with increasing feature sequence

position in the model history; for the worst behavior model, the computation time for

modifying a feature decreases in cubic order with increasing feature sequence position

in the model history

Chapter 3 History-Independent Modeling

73

In the proposed boundary evaluation, modifying a feature F is accomplished by

identifying the features affected by the ‘modify operation’ (F and its attached features),

which are removed from the model and re-added with new parameters, as presented in

Section 3.4.3. Therefore, the total computation time for a ‘modify feature’ operation is

the sum of the ‘remove operation’ and the ‘re-add operation’. In the measurement, it is

assumed that the topology of the model is not changed after the ‘modify operation’.

Since re-adding the feature being modified to the BRep model is similar to adding a

new feature to the model, it has the same computation time for any feature being

modified. Consequently, the trend of the computation time of the ‘modify feature’

operation is identical to that of the ‘remove feature’ operation. From the charts (dashed

curves) in the right column in Fig. 3.13, for the case of the best behavior model and

average behavior model, the computation time for modifying each hole or rib keeps

almost constant with increasing feature sequence position; for the case of the worst

behavior model, the time for the modify operation has a decreasing linear relation with

the sequence position of the hole being modified.

3.5.5 Analysis and comparison of the performance measurement

Due to the inaccuracy of the computer CPU timers and the different modeling

algorithms used, it is not significant to compare the absolute computation times of the

boundary evaluation in SolidWorks with that of the proposed modeling method. In

addition, in this work, the computation time for performing Boolean operations

increases linearly with increasing the number of topological edges in the processed

faces. Hence, compared with other modeling solutions, the trend of the computation

times in this proposed approach is one order higher in the ’add feature’ operations for

the best case and the worst case behavior models, as shown in the charts on the right

columns of Fig. 3.12(a) and (c).

Chapter 3 History-Independent Modeling

74

In the comparison here, the Boolean operations on the intersecting faces are reasonably

assumed to be constant regardless of the topological complexity of the intersecting

faces, which are similar to the case in SolidWorks and the approach reported by

Bidarra et al. (2005). Hence, the computation curves of the ‘add feature’ operations in

Fig. 3.12(a) and (c) are decreased one order of complexity. The trends of the boundary

evaluation times for the representative models measured using SolidWorks, the

proposed approach, and Bidarra’s approach are summarized in Table 3.3.

Table 3.3 Trends of boundary evaluations for representative models

Best case Average case Worst case

Operatio
n

Propose
d

approac
h

Bidarra’
s

approac
h

SolidWork
s

Propose
d

approac
h

Bidarra’
s

approac
h

SolidWork
s

Proposed
approach

Bidarra’s
approach

SolidWork
s

Add
feature

Linear ↑ Linear ↑ Linear ↑ Linear ↑ Linear ↑ Linear ↑
Quadrati

c ↑
Quadrati

c ↑
Quadratic

↑
Remove
feature

Constant Constant
Quadratic

↓
Constant Constant

Quadratic
↓

Linear ↓ Constant Cubic ↓

Modify
feature

Constant Constant
Quadratic

↓
Constant Constant

Quadratic
↓

Linear ↓ Constant Cubic ↓

3.6 Case Study

In the proposed approach, each feature has an intersecting list recording its intersecting

features and storing its intersection face portions when it is evaluated. The intersecting

features are identified when a feature is added to the intermediate BRep model, and

hence it does not require any additional computation cost. For the issue of storage

space, only the intersection face portions at each feature creation step are stored, and

this needs less storage space than the two approaches in Fig. 2.6. However, the

proposed approach requires a more mature database management algorithm. The

intersecting list needs to be updated instantly, and the alteration process of the feature

faces needs to be maintained during the design session. Compared to the approach

reported by Bidarra et al. (2005), the proposed approach requires more computation

time since it does not store all the sub-faces of each feature but only stores the

intersection face portions. On the other hand, the database management cost in the

Chapter 3 History-Independent Modeling

75

proposed approach is much less than Bidarra’s approach. In Bidarra’s work, all the

cell faces and the relevant information are managed, while in this work only the

alteration process of the feature face is maintained.

A proof-of-concept prototype system for the proposed modeling approach has been

established based on the Open CASCADE. Fig. 3.14 shows a case study model, in

which the height of the feature Rib is increased. The proposed feature modification

approach is employed on this case model to study the proposed modeling approach:

firstly the boundary faces originating from the Rib are removed, secondly the

intersection face portion of Rib is merged to the model boundary, and thirdly the new

Rib is re-added to the update BRep model. The computation time for processing the

relevant operation performance is 125ms. In history-based modeling, since the Rib is

created before the cirSlot , the increase of its height would cause the overlapping with

the cirSlot . In this case study, the height of the Rib can be increased and the shape of

the Rib is not changed by the cirSlot , which corresponds to the designer’s

specification.

Chapter 3 History-Independent Modeling

76

3.7 Summary

A new history-independent modeling approach has been proposed in this paper, where

the feature creation order in the model history can be changed. In this work, to modify

a feature is basically to modify the boundary contribution of this feature and the

intersecting features, so that the resulting BRep model is updated to reflect this

modification. The intersection face portions of a feature being added to the product

model are stored at the creation step, and the intersecting features that are created later

in the model history are recorded. When a feature is removed, firstly the boundary

>< BO

>< merge

>< add

Fig. 3.14 Case study

Chapter 3 History-Independent Modeling

77

faces originating from this feature are removed, secondly the intersection face portions

stored at its creation step are merged to the model boundary, and lastly the boundary

contributions of its intersecting features are modified. When a feature is modified, it is

first removed from the product model and then re-added with the new specifications.

Hence, the creation step of the feature being modified is changed, and the problems

caused by the static feature creation order are solved. The complexity analysis and

performance of the proposed boundary evaluation for three representative models have

been analyzed and measured. For case of the best behavior model, the computation

time for removing or modifying a hole is almost constant. For the case of the average

behavior model, the computation for removing or modifying each rib has almost

constant evaluation time. For the case of the worst behavior model, the computation

for removing or modifying a hole decreases linearly with the sequence position of the

hole in the model history. The case study in a proof-of-concept prototype system

demonstrates the feasibility of the history-independent modeling approach.

We recall the problems introduced in history-based modeling as that presented in Fig.

2.2 and Fig. 2.3, which attributes to the follows: the boundary evaluation of the feature

being modified is on the basis of the intermediate BRep model in the design history,

but the designers modify the feature on the basis of the current BRep model. The

proposed modeling solution addressed this problem by changing the order of feature

creation operations, which is then consistent with design actions. As shown in Fig. 2.2,

when BHole is modified and re-positioned, it is removed from the model and then re-

added as a new feature to the updated model. Hence, the feature Rib can be referred

for positioning, since the Rib is stored before theBHole in the new model history. As

shown in Fig. 2.3, the THole will intersect with theBlock , since the THole is

Chapter 3 History-Independent Modeling

78

evaluated as a new feature and theBlock is checked for face intersections during the

boundary re-evaluation of THole .

There are three points in this work that should be highlighted. Firstly, in the ‘remove

feature’ operation, the boundary faces originating from the feature being removed

should be identified and removed from the model boundary. Since the feature faces

may be trimmed or merged, it is crucial to maintain the alteration process of feature

faces, as that presented in Fig. 3.4. In this case, the naming and retrieval of the altering

faces must be effective. Once the altered faces that originate from the feature being

removed can be identified effectively, the ‘remove feature’ operation will work

smoothly. Secondly, compared to the approach reported by Bidarra et al. (2005), the

proposed approach requires more computation time in the feature removal and modify

operations, but it requires less implementation work for database management. Thirdly,

one unresolved issue in the current work is position referencing between features. In

this work, when a feature is being removed or modified, only the boundary evaluation

is concerned. In real modeling applications, the designers should re-position the child

features if their parent feature has been removed or modified. As a result, the function

for re-position of child features will be explored in future work, such as providing the

designers with several optional topological entities.

Chapter 4 Coordination Mechanism

79

Chapter 4 Coordination in Replicated Collaborative Feature
Modeling

4.1 Introduction

The coordination mechanism for scheduling the collaborative design activities has

been a topic of significant research effort. Reported studies, namely, total-locking

mechanism and granular locking mechanism, have been presented in the review

Section 2.2.2.1. The reviews show that the granular locking mechanisms have some

limitations. Although the designers can edit different parts of a feature model at the

same time, there are some conflicts due to feature interactions. Besides, in order to

maintain consistency of the replicated design models, the order of execution of the

‘feature create operations’ must be kept consistent at the client sides.

In this Chapter, a fine granular locking mechanism is presented for a replicated

collaboration system. The locking granularity is defined according to feature

relationships, and the potential operation conflicts are resolved using a naming and

matching mechanism. In the proposed approach, a design model can be divided into

several feature portions, thus a parallel working paradigm can be achieved. The

‘feature create operation’ is processed differently from the ‘feature modify operation’

so as to maintain consistency of the order of the features created. The limitation of this

approach is that the effectiveness depends on the parent-child relations of the features.

The proposed coordination approach has been validated in a proof-of-concept

prototype system developed based on Java and Open CASCADE. The remaining

content of this Chapter is organized as follows. Firstly, the proposed granular locking

mechanism is presented. Secondly, the methods of conflict resolution are elaborated.

Thirdly, the proposed granular locking mechanism is validated using a case study.

Chapter 4 Coordination Mechanism

80

4.2 Granular Locking Mechanism

In feature-based design, a product model is basically a combination of a group of

specific features. In this case, the basic elements in the product model are feature

shapes rather than geometric elements, e.g., curves, surfaces, so the design activity is

more efficient than that in geometric modeling. In addition, since the features in a

product model have parent-child relations in their parametric definition, the

manipulation of a feature usually affects its direct ancestral and direct descendent

features. Consequently, in this work, features in a model are grouped to define the

locking granularity, and hence the design operations that are performed on the features

are classified accordingly.

4.2.1 Feature Dependency Relationship

If a feature 1F is attached, positioned or constrained relative to the boundary entities of

another feature2F , then 1F depends on 2F , 2F is the direct ancestor of 1F , and 1F is the

direct descendant of 2F . The dependency scope (DS) of a featureF is denoted in Eq.

(4.1). If the DSs of two features being edited do not share any common feature, the

DSs are mutually exclusive and the two operations are unrelated operations, which

can be executed concurrently at different client sites. Otherwise, if the DSs of the two

features being edited overlap, then the two operations are dependent operations, and

should not be executed concurrently. As shown in Fig. 4.1, the Rib is attached and

positioned to the initial Stock , and the BlindSlot is attached and positioned to Step .

Hence,)(RibDS and)(BlindSlotDS are mutually exclusive, and the operations on

Rib and BlindSlot are unrelated operations that can be executed concurrently at

different sites.

U U)()()(FendantDirectDescFstorDirectAnceFFDS = (4.1)

Chapter 4 Coordination Mechanism

81

4.2.2 Concurrency Control

Ordering events occurred in a distributed environment according to their occurrence

time is not a new problem, and the general solution reported by Lamport (1978) is

adapted in this work. The events occurred at one site has an exact sequence according

to the occurrence time. However, in a distributed environment, it becomes a challenge

to identify the sequence of the events. In order to determine the sequence of the events

in a distributed system, partial ordering and total ordering relations have been

introduced. The partial ordering relation, denoted by “ → ”, satisfies the following

conditions:

1. If a and b are events at the same site, and a comes before b , then ba → .

2. If a is the sending message at one site, and b is the receiving of the same message

at another site, then ba → .

3. If ba → and cb → , then ca → .

However, according to partial ordering, concurrent events cannot be ordered. For

instance, a is the sending message at one site, and b is the event at another site that

occurs just before receiving the message a . It is difficult to determine which event

comes first in terms of the exact occurrence time, and they are termed concurrent

BlindSlot

Stock

Step Rib

Fig. 4.1 Feature relationships

Chapter 4 Coordination Mechanism

82

events, denoted by ba // . In this case, the total ordering relation is introduced, denoted

by “⇒ ”, satisfying the following conditions. Each design site has an identity number

)1(NiSi ≤≤ that corresponds to its entrance order to the design session, and iS has a

higher priority than jS if ji < , denoted as ji SS p .

1. If ba → , then ba ⇒ .

2. If
ji SS ba // and ji SS p , then

ji SS ba ⇒ .

The adapted concurrency control approach employed in this research can be briefly

described as follows: when a designer wants to execute a ‘modify operation’ or a

‘create operation’ of a feature, this operation can only be performed until the locking

of the DS of the feature being edited is permitted by all the other designers. At any

time, more than one ‘modify operation’ can be processed concurrently as long as

theDSs of the features being modified are mutually exclusive, but only one ‘create

operation’ is processed.

In this work, a working session is used for the management of the collaborative design

tasks (Li and Qiu, 2006), in which all the client sites are connected to form a

distributed and collaborative working environment. Several reasonable assumptions

were made to simplify the system introduced in this work: firstly, the number of client

sites is fixed and each client is aware of the existence of the rest; secondly, the

communication between clients is reliable; thirdly, it is assumed that there is no sudden

crash of a client site and no exiting of a client without notice. In the design system,

each client site has an integer object replyCount , which counts all the replies of an

operation request, and an integer object MS indicating the current state of the local

geometric model. Since the sequence of the ‘feature create operations’ at each site is

Chapter 4 Coordination Mechanism

83

maintained to be identical, MS only records the number of features. On the design

model, each feature has a unique identity featureId and a requestQ that records all

the locking requests.

4.2.2.1 Modify a Feature. When a designer wants to modify a feature F , the request

for locking)(FDS and the ‘modify information’ MFInf are sent to all the other

designers, denoted in Eq. (4.2). If any feature in)(FDS is being locked by another

designer, the sending of the ‘modify operation’ request is deferred until all the features

in)(FDS are released. At any remote site jS , after receiving the)(MFRT , the

system at site jS uses algorithm#1 to determine the action needed for the modification

request received.

Algorithm#1:

If ())())((TRUESContainFDSrequestQ j ==>−

{)(ji SSif p { reply yimmediatel ; update requestQ ;}

 else deferred Until))())(((FALSESContainFDSrequestQ j ==>− }

else { reply yimmediatel ;update requestQ ;}

After receiving all the replies of the)(MFRT from the other designers, the ‘modify

operation’ is first executed at site iS , after which it is executed at all the other sites to

update the replicated design models. The designer/system at any remote site jS sends

a message to the designer/system at site iS after the execution of the modification.

Chapter 4 Coordination Mechanism

84

After receiving all the messages on the successful execution, the requestQ of the

)(FDS is updated at all the designer sites.

><
iSi MSMFInfFDSSMFRT ,),(,)((4.2)

4.2.2.2 Create a Feature. Since the ‘feature creation order’ at every site must be kept

consistent, only one designer is permitted to create a new feature F at any time. If a

designer has been sent a ‘feature create operation’ request, he will have to wait for this

request to be performed first, and therefore his creation request is deferred. Otherwise,

a creation request)(CFRT is sent to all the other designers for review and permission,

and this includes the locking request of the reference features)(FDS and the ‘feature

information’ CFInf , denoted in Eq. (4.3). The ‘feature create operation’ can only be

executed after receiving the permission from the other designers. Since the ‘feature

create operation’ needs to lock certain reference features, the sending of the ‘feature

create operation’ request is deferred until all the reference features are released.

><
iSi MSCFInfFDSSCFRT ,),(,)((4.3)

At any remote site jS , after receiving the)(CFRT , the request is processed according

to the following steps and illustrated in algorithm#2.

1. The features being requested are locked by the local designer.)(CFRT is deferred

if ij SS p , otherwise it is replied immediately.

2. The features being requested are not locked by the local designer, but a creation

request has been sent out by the local designer just before receiving)(CFRT . If

the two ‘feature create operations’ are conflicting, these two designers will discuss

to decide the execution order of the two operations. Otherwise,)(CFRT is

deferred if ij SS p and is replied immediately if ji SS p .

Chapter 4 Coordination Mechanism

85

Algorithm#2:

If ())())((TRUESContainFDSrequestQ j ==>−

{ if)(ji SS p { reply yimmediatel ;update requestQ ;}

 else deferred Until))())(((FALSESContainFDSrequestQ j ==>− }

else { if)(onflictoperationC siondiscussSes ;

 else { if)(ji SS p { reply yimmediatel ; update requestQ ;}

else deferred Until)1(=+
jSMS ; }}

After receiving all the replies of the)(CFRT , the ‘feature create operation’ is first

executed at site iS , and then it is executed at all the other sites for updating the

replicated design models. The designer/system at any remote site jS replies a message

to the designer/system at site iS after the execution of the ‘feature create operation’.

After receiving all the replies of the successful execution, the requestQ of the)(FDS

and the MS are updated at all the design sites.

4.2.3 Correctness analysis of the proposed approach

 In a distributed collaborative design environment, MSs at the client sites may be

different due to the different transmission times (Li et al. 2008b). As shown in Fig. 4.2,

the ‘modify operation’ of the cirSlot comes before the ‘feature create operation’ of the

cirSlot at 3Site , which is considered a causal conflict. In this case, the ‘modify

operation’ of cirSlot is performed when cirSlot has not been created, so the causal

relation is violated here. In the proposed concurrency approach, the designer needs to

send a message to the original operation initiator after the successful execution of an

operation so as to avoid the causal conflict. As shown in Fig. 4.2, before sending the

modification request cirSlot at 2Site , the)(cirSlotDS must be released. As long as

the ‘feature create operation’ of the cirSlot has not been executed at 3Site , the

)(cirSlotDS will not be released. In addition, a deadlock is a tricky problem in the

Chapter 4 Coordination Mechanism

86

locking scheme, as presented by Li et al. (2008b). In this work, the locking granularity

is the DS of a feature, which can only be held by one designer at any time. Thus, it is

impossible for one designer to hold the DS of a feature and wait for another. Hence,

the system is deadlock free.

4.3 Resolution of Potential Operation Conflict

The proposed granular locking mechanism provides a parallel working paradigm, but

there are also some potential operation conflicts due to feature interactions. Before any

feature F is edited,)(FDS needs to be permitted by the other designers. However,

due to feature interactions, the features outside of)(FDS may be interacted by the

features in)(FDS . As shown in Fig. 4.3, due to the change of position parameter a ,

cirSlot and rectSlot become interacting.)(cirSlotDS includes the initial Stock and

cirSlot , and)(RibDS includes feature rectSlot and Rib . Since)(cirSlotDS and

)(RibDS are mutually exclusive, cirSlot andRib can be modified by two designers

concurrently. Assume that cirSlot is modified at site iS , and Rib is modified or

created at site jS . Since Rib is constrained to edge 1e for its height and is attached to

face 1f , the changes of 1e and 1f affect the execution of Rib operation. As shown in

Fig. 4.3, due to the interaction between cirSlot and rectSlot , edge 1e coincides with

Site1

Site2

Site3

Create Slot

Create Slot

Modify Slot

Modify Slot

Create Slot

Fig. 4.2 Causal conflict

Chapter 4 Coordination Mechanism

87

edge 2e in (b) and diminishes in (c), and face 1f is trimmed in (d). All the topological

changes should be resolved in order to execute the operations correctly.

In a feature operation, the feature is attached, positioned and constrained to some

topological entities of the design model, which are termed the reference entities and

denoted in Eq. (4.4). As shown in Fig. 4.4(b), a Boss is attached to the top facef of a

Block , and positioned to the edges 1e and 2e . The reference entities are used to set the

location and dimension of the feature. Hence, as long as the reference entities are

identified on the design model or some alternative entities can be used to constrain the

feature, the operation can be executed correctly. For an entity-based operation, e.g.,

blending an edge, the execution of the operation needs to identify the ‘target entities’

as denoted in Eq. (4.5). In Fig. 4.4(c), the edge 3e is chamfered and thus the entities of

Fig. 4.3 Potential operation conflicts

Chapter 4 Coordination Mechanism

88

the operation target need to be identified on the design model. As a consequence, in

order to resolve the potential operation conflicts, the reference topological entities

must be identified on the design model correctly.

},,{)(ntitiesreferenceEetersshapeParamfeatureIdFO = (4.4)

},,{)(ntitiesoperationEparametersfeatureIdFO = (4.5)

4.3.1 Identify Attached Face

In replicated collaborative design, the attached face in an operation performed at one

design site may be modified by another operation performed at another site, i.e., the

face could have been trimmed, split or merged. As shown in Fig. 4.5(a-b), a Rib is

created at 1Site , which is attached to the top face 1f of the Stock . At the same time,

since)(BlindSlotDS is the Step , the BlindSlot can be modified at 2Site , as shown in

Fig. 4.5(c-e). In this case, when the Rib ‘feature create operation’ is broadcast and

executed at 2Site , the face that it is attached to needs to be identified. The steps are as

follows.

Fig. 4.4 Reference entity in feature operation

Chapter 4 Coordination Mechanism

89

• When an attached face is trimmed, it is replaced by the trimmed face. As shown in

Fig. 4.5(c), although the face 1f is trimmed, the updated 1f can be used to locate

the Rib to the original surface.

• When an attached face is split, each sub-face can be used as the attached face. As

shown in Fig. 4.5(d), the face 1f is split into 1.1f and 2.1f , either of them can be

used to locate the Rib on the same surface.

• When an attached face is merged, it is replaced by the merged face. As shown in

Fig. 4.5(e), the BlindSlot is modified to be an extrudedBlock , the merged face 1f

can be used to locate the Rib from the original intended surface.

Fig. 4.5 Attaching face alteration

Chapter 4 Coordination Mechanism

90

In feature-based design, each feature face can be assigned a unique name in terms of

the feature’s generating mode and its location in the feature shape (Capoyleas 1996;

Wu et al. 2001; Wang and Nnaji 2005). As shown in Fig. 4.6, the profile-based feature

shape has the profile entities >< 4321 ,,, eeee and the sweeping path L , both of which

are recorded persistently during the design process. Hence, the side faces of the swept

feature shape can be unambiguously named by the profile entities and the sweeping

path, and the start face and the end face are named by their specific locations in the

feature shape. Combining with the FeatureId , all the feature faces on the design

model are named persistently, termed the invariant name (IN). During the design

process, the faces may be trimmed, split or merged.

In order to identify the modified attached faces, the alterations of the boundary faces

on the design model are tracked through a hFaceIdGrap . In the hFaceIdGrap , each

face is assigned aFaceId , in which the first item is the IN of face and the second item

is the StepId of this operation, as denoted in Eq. (4.6). When a face is split, the sub-

faces can be discriminated in terms of the bounding feature faces and the geometric

information of the intersection edges (Cripac 1997; Wang and Nnaji 2005), denoted in

Eq. (4.7). Hence, the alternation of the boundary faces can be tracked through

Fig. 4.6 Naming scheme

Chapter 4 Coordination Mechanism

91

the hFaceIdGrap , as shown in Fig. 4.7, which shows the face alterations of the model

in Fig. 4.5(d).

),()(stepIdINfFaceId = (4.6)

2,1.1f
1,1.1f

1,3.1f 2,3.1f

3),4.3,6.2,6.1,4.1(,1.1f

3),3.3,6.2,6.1,3.1(,1.1f

1,2.1f 2,2.1f

1,4.1f
2,4.1f

1,6.1f 3,6.1f

2,5.2f

3,5.3f

3,5.2f

2,6.2f

3),3.3,5.2,3.1,1.1(,6.2f

3),4.3,5.2,4.1,1.1,(6.2f

Fig. 4.7 Boundary face alteration tracking

Chapter 4 Coordination Mechanism

92

)),(,()(stepIdcesboundingFaINsINfFaceId = (4.7)

))(),(),(()(eGIfINsfINseN boundadj= (4.8)

))()],(),([)],(),(([)(43211 aGIfINfINfINfINeN = ,

))()],(),([)],(),(([)(43212 bGIfINfINfINfINeN = (4.9)

4.3.2 Identify Reference Edge

The reference edges in an operation performed at one site may be modified by the

operation performed at another site, i.e., the edges could have been deleted, split,

trimmed or merged. As shown in Fig. 4.8(a-c), a cirSlot and a recSlot have been

attached to the initial Stock , and a new feature Rib is attached to the recSlot at 1Site ,

where the topological edge e is used as the reference edge. At the same time, since

)(RibDS and)(cirSlotDS are mutually exclusive, the cirSlot can be modified

at 2Site . Due to the interaction between cirSlot and recSlot , the edge e is changed.

As shown in Fig. 4.8, edge e is deleted in Fig. 4.8(d) due to the position change of

cirSlot . Edge e is split in Fig. 4.8(e) and trimmed in Fig. 4.8(f) due to the orientation

change of the cirSlot . Edge e is merged in Fig. 4.8(g) due to the change in cirSlot . In

this case, when the Rib operation is broadcast to 2Site , the reference edge e needs to

be identified on the local design model. The reference edge can be named uniquely by

its adjacent feature faces, the bounding feature faces and the geometric information

GI of the edge itself (Wang and Nnaji 2005), as denoted in Eq. (4.8). As shown in Fig.

4.9, the two intersection edges 1e and 2e can be named and differentiated using Eq.

(4.9). Since the feature faces are named uniquely and stored persistently, their

intersection edge can be identified or re-constructed on the design model. As shown in

Fig. 4.8(d-g), as long as the Stock and the recSlot are on the design model, the

intersection edge of the face 1f and the face 2f can be re-constructed in Fig. 4.8(d)

Chapter 4 Coordination Mechanism

93

and identified in Fig. 4.8(e, f, g). Hence, the Rib operation can be executed correctly.

Likewise, the reference vertex can be named and identified in the same way.

Fig. 4.8 Topological edges

Chapter 4 Coordination Mechanism

94

4.3.3 Operation Validity

Although the attached face in an operation can be identified on the modified design

model, the validity of the design model needs to be re-evaluated in some cases. As

shown in Fig. 4.10(a), a design model has three features, namely, cirSlot , rectSlot

and Step .)(cirSlotDS is rectSlot , cirSlot is modified at 1Site , and at the same time

a new feature Rib is attached to the initial Stock at 2Site , as shown in Fig. 4.10(b, c).

However, due to the interaction between the modified cirSlot and the new feature Rib ,

the design model becomes invalid when the concurrent operations are synchronized.

As shown in Fig. 4.10(d), the top of cirSlot is blocked byRib . This is a shortcoming

of current feature-based modeling where the validities of the design features cannot be

maintained during the design process (Bidarra and Bronsvoort, 2000). In replicated

collaborative design, this problem is more critical. Since the two conflicting operations

are performed by two designers, they need to discuss with one another to resolve this

problem. In the proposed concurrency approach, after the execution of an operation,

the designer needs to send a message to the operation initiator. If the two concurrent

operations are conflicting and causing the design model to be invalid, a success

message of the execution will not be sent; instead, they will resolve this problem

collaboratively.

Fig. 4.9 Edge naming

Chapter 4 Coordination Mechanism

95

4.4 Case Study

A proof-of-concept prototype system for the proposed concurrency control approach

has been developed based on JDK 1.6 and the Open CASCADE. Fig. 4.11 shows the

graphical user interface, and a case study with the directed acyclic graph (DAG) of the

design features. According to the concurrency control approach, the case study model

can be divided into independent portions. At most, four ‘modify feature’ operations

and one ‘create feature’ operation can be processed concurrently, as shown in Table

4.1. Since the dependency relationship is basically a parent-child relation, the

effectiveness of the concurrency control is restricted by the parent-child relations of

the features on a design model. If the design features have more generations, more

feature portions can be divided and edited concurrently by using this coordination

approach. The extreme case is when all the design features are attached to the initial

Fig. 4.10 Model validation

Chapter 4 Coordination Mechanism

96

stock, as shown in Fig. 4.12. In this case, only one designer is permitted to edit the

design model at any time, and this concurrency control approach becomes a total-

locking mechanism.

Table 4.1 Parallel operations
Edited

feature
2holesS − holeB − rib 2pocket New feature

DS
2holesS − ,

slot

2block ,

holeB −

stock ,block ,

rib

1pocket ,

2pocket
4pocket

stock

chamfer

rib

pocket1 S-holes2

slot block pocket4

pocket3

pocket2 block2

B-hole

S-holes1

Fig. 4.11 Case model

Chapter 4 Coordination Mechanism

97

4.5 Summary

In this Chapter, a granular locking mechanism has been proposed as the coordination

mechanism for replicated collaborative feature modeling. The dependency scope of a

feature, which includes its direct ancestral features, direct descendant features and the

feature itself, is employed as the locking granularity. At any time, more than one

‘modify operation’ can be executed concurrently as long as their dependency scopes

are mutually exclusive. However, only one ‘create operation’ is permitted so as to

maintain the consistency of the ‘feature creation order’. The potential conflicts of

design operations caused by feature interactions are resolved using a naming and

stock

chamfer1

pocket1

boss

slot1
pocket2

hole

chamfer2

slot2

Fig. 4.12 An extreme case

Chapter 4 Coordination Mechanism

98

matching mechanism, through which the correspondence of the modified topological

entities can be achieved correctly. The modified attached faces are identified using

a hFaceIdGrap and the modified reference edges are identified through their adjacent

feature faces. The limitation of the proposed approach is that the concurrency

effectiveness depends strongly on the parent-child relations of the features on a design

model. If the design features have more generations, more feature portions can be

divided. When all the features are attached or constrained to the initial stock, they have

only one direct ancestor, so they are within only one dependency scope. Hence, all the

features need to be locked together each time, and the proposed coordination approach

degrades to be the total-locking mechanism.

Chapter 5 Freeform Feature Modeling

99

Chapter 5 Freeform Feature Modeling

5.1 Introduction

The success of a new product does not only depend on its quality and short

development time, but also rely on its attractive and pleasing appearance. Under this

consideration, freeform feature modeling has been proposed to facilitate users to create

and manipulate freeform surfaces, which are commonly described in Bézier, B-spline

and Non-Uniform Rational B-Spline (NURBS) formats. As presented in the review

Section 2.1.3, current freeform feature modeling has some problems and weaknesses,

which require further research effort. Firstly, the specification of freeform features is

not straightforward as in regular feature modeling. Since the essence of freeform

feature modeling is to create and represent a design model using freeform solutions,

restricting a freeform feature to a geometric shape may contradict this essence.

Secondly, since the boundary of freeform models is not planar, the boundary surface of

a freeform feature may not contact the attach modify surface seamlessly, and the

attachment operation of a freeform feature to a base model becomes a challenge.

Thirdly, the smoothness across the boundary curve of two freeform surfaces becomes a

crucial issue in freeform feature modeling. In product design, a tangential or even

higher smoothness across the boundary curve is usually needed, and this issue has

attracted many research studies.

In this Chapter, some issues in freeform feature modeling will be discussed.

Specifically, in the first section, the specification of volumetric freeform features is

presented and discussed, which may be used for creating simple models in conceptual

design; in the second section, a surface blending approach used in displacement feature

Chapter 5 Freeform Feature Modeling

100

modeling is elaborated; in the third section, the displacement feature modeling is fit

into a collaborative design environment, in which the coordination and synchronization

mechanisms are discussed briefly.

5.2 Specification of Volumetric Freeform Features

5.2.1 3D Constraint Solving

Approaches to constraint solving in 3D space have been reported in the literature, in

which a graph-based approach is an effective approach (Du and Hwang, 1995; Durand

and Hoffmann, 2000). In the graph-based approach, the constraint problem is

constructed as a graph, in which the nodes represent the geometric entities and an edge

between two nodes represent a constraint between the two geometric entities. The

geometric entities considered are points and planes, and the constraints allowed are

distance between two points, distance between a point and a plane, and angle between

two planes. A point is represented by its Cartesian coordinates,),,(: zyx pppp , and a

plane is represented by the direction cosines of the unit normal and the signed distance

from the origin,),,,(: dnnnP zyx , where 1222 =++ zyx nnn . There are two general phases

for the graph-based approach, namely constraint graph analysis and geometry

construction. In the first phase, the characteristic of the constraint graph is analyzed

and the constraints in the graph are decomposed into clusters of geometric entities that

are placed with respect to one another. In the second phase, all the clusters are

combined using a recursive technique, resulting in a valid placement for all the

geometric entities. Placing a new entity requires that it is constrained by the three

already known entities, since each geometric entity has three degrees of freeform.

Hence, in the construction of a cluster, a set of three pairwise constrained nodes is

necessary, and a new entity is added to the cluster if it is incident to three nodes

Chapter 5 Freeform Feature Modeling

101

already in the cluster. However, there may eventually be unused constraints in the

remaining initial graph, yet no new cluster can be started. In this case, any remaining

constraint and its two incident nodes would form a degenerate cluster.

The above construction process is illustrated in Fig. 5.1, where the problem is to place

the six vertices of the 3D object shown on the left. The lengths of the edges between

the vertices are the constraints. In the first analysis phase, the first cluster is

constructed using nodes r , s , and t , and its edges are labeled 1. The second cluster is

constructed using nodes u , v , and w , and its edges are labeled 2. The remaining

constraints cannot be added to the constructed clusters, so they generate degenerate

clusters, labeled 3, 4, and 5. In the second construction phase, all the clusters are

merged. This constraint problem is under-constrained, so it needs another three

distance constraints, which are),(ut ,),(vt , and),(us to make the configuration rigid,

resulting in a octahedron.

5.2.2 Geometric Constraint in Volumetric Freeform Features

In the geometry description of a regular feature, a cross-section is usually swept along

a trajectory to create the feature shape. The cross-section is a 2D sketch comprising of

geometric entities and constraints. The geometric entities can be points and lines, and

the constraints allowed are distance between two points, distance between a point and

Fig. 5.1 A three-dimensional object and its constraint graph
(Du and Hwang, 1995)

Chapter 5 Freeform Feature Modeling

102

a line, and angle between two lines. As shown in Fig. 5.2, the geometric entities, four

points 4321 ,,, pppp and four lines 4321 ,,, llll , can be configured by certain constraints,

namely, 54321 ,,,, ddddd and angle constraints ba, , shown on the left. When the

geometric entities are placed and configured, the generated 2D sketch can be swept

along a path (in red color) to create a feature shape, as shown on the right in Fig. 5.2.

Likewise, the shapes of volumetric freeform features can also be described with the

sweeping operation. In the geometry description, an enclosed 3D profile curve is swept

along a 3D trajectory curve, and the two ends of the swept surface are enclosed by the

two cap faces. The 3D curves used are generated by interpolating some definition

points (DPs), which are points in 3D space represented by their Cartesian coordinates,

),,(: zyx pppp . The difference from regular features is that the 3D curve needs to be

fitted to the attach surface in the model seamlessly, thus the feature attachment

operation can be performed correctly. The main task is to place the DPs and generate

the interpolating 3D curve on the attach surface seamlessly, after which the feature

shape can be generated by some standard sweeping operations.

Since each geometric point has three degrees of freeform, a new DP can be positioned

uniquely in 3D space by constraining it to three already known geometric entities. In

the placement operations of DPs, the generic positions of the three initial entities

Fig. 5.2 2D sketch and the swept shape

Chapter 5 Freeform Feature Modeling

103

depend on the geometric information determined by user input. In this work, there are

four initial geometric entities, namely one point and three plane, which constitute the

local coordinate system for the feature shape. The initial point (IP) is the local origin,

and the three initial planes (IPs) are the local coordinate planes, YZXY , , and XZ plane.

At the beginning of feature instantiation, the IP is placed on the attach surface and the

z coordinate axis is parallel to the normal vector of the attach surface at the IP point.

Through this initial placement, the IP and the IPs can be positioned using the

geometric information determined by user input. After that, the DPs can be positioned

by solving the constraints between themselves and the initial entities. Since the DPs of

the 3D curve need to be placed on the attach surface, only two distance constraints are

defined between the DPs and the local YZXZ , plane, and the other degree of freeform

is determined by the attach surface. The constraint specification is as follows: firstly,

since the distance between a point),,(:1 zyx pppp and a plane),,,(: 22 dnnnP zyx is

12d : 12221 ddnp +=• , the distance between a DP p and the local XZ plane is

1d : 1dpy = , and the distance between a DP p and the local YZ plane is 2d : 2dpx = ;

secondly, since the two distance constraints of a DP can determine two planes, 1dpy =

and 2dpx = , the DP will locate on the intersection line l of the two planes. In this case,

the DP is positioned at the intersection point of the line l and the attach surface.

Through the above constraint specification, all the DPs are configured and placed on

the attach surface seamlessly. The procedure of the placement operations of DPs is

illustrated in Fig. 5.3, where an extruded feature face is created.

Chapter 5 Freeform Feature Modeling

104

5.2.3 3D Profile Curve Generation

As presented in previous section, the 3D curve of a sweeping freeform feature can be

generated by interpolating the DPs that are placed on the attach surface. However, the

interpolating curve may be not lying completely on the attach surface if standard

interpolation operations are performed directly on the DPs, thus the boundary of the

swept freeform surface is not seamlessly matched with the attach surface. The

desirable 3D curve should be a B-spline curve in control points representation and

lying completely on the attach surface, which can be used as a trimming curve. The

trimming curve on a freeform surface is usually first computed in the parametric

domain of the surface, and then represented in space form as the mapping of the

domain curve on the surface (Renner and Weiβ, 2004; Yang et al., 2008). In this

research, the parametric values of a DP can be computed by using inverse

parameterization techniques, and a corresponding point in the parametric domain is

found, termed Domain Definition Point (DDP). Hence, all the corresponding DDPs of

the DPs can be computed, and a domain curve is generated by interpolating the DDPs,

(a) Attach surface (b) Local Coordinate

(e) Fitting 3D Curve

(c) Placing a DP

(d) Placement of DPs (f) Extruded Surface

Fig. 5.3 Placement of definition points

Chapter 5 Freeform Feature Modeling

105

termed domain sketch. The domain sketch is then mapped to the attach surface as the

boundary curve of a freeform feature. In such an approach, it ensures that the boundary

lies on the attach surface seamlessly, thus the contact between the swept surface and

the attach surface has no gap at all.

In Summary, a volumetric freeform feature can be defined using a cross-section 3D

curve and a trajectory 3D curve, which are obtained by interpolating certain 3D points.

Once the 3D points are positioned in 3D space using constraint solving, a volumetric

freeform surface can be generated using standard sweeping techniques. Since the

cross-section needs to lie on the attach surface seamlessly, a parametric curve can be

first interpolated in the domain space, which is then evaluated in the attach surface. In

this way, the generated freeform shape is attached to the base surface seamlessly.

However, the swept freeform shapes can only be used in certain conceptual designs for

initial review of the product model. It is due to the fact that the feature shape here is

restricted by certain 3D points and the standard sweeping operations, and is due to the

fact that the generated freeform surface is not described using the commonly used

representations, e.g., Bézier, B-spline, NURBS.

5.3 Displacement Feature Modeling

Displacement feature is a type of freeform surface features that is commonly used in

industrial parts. As presented in the review Section 2.1.3.3, there are three major steps

in displacement feature modeling: firstly, the boundary curve is specified on the base

surface; secondly, the modified surface region is trimmed and displaced towards the

exterior or interior of the base surface; thirdly, the transition surface is generated by a

surface blending approach. The two crucial issues in the modeling procedure are

Chapter 5 Freeform Feature Modeling

106

discussed in this section, namely, the specification of the boundary curve and the

surface blending approach.

5.3.1 Boundary Curve Specification

In this work, the boundary curve in a displacement feature is an exact curve lying on

the base surface to ensure that the continuity across the boundary is at least 0G .

Alternatively, the approximation algorithm reported by Yang et al. (2008) may be used

to generate a boundary curve lying on the base surface seamlessly. Firstly, the domain

curve of the boundary curve is approximated by a polyline, and the base surface is

divided into Bézier surface patches. Secondly, the approximated polyline is projected

to the Bezier surfaces to generate certain Bézier curves. In this approximation, the

Hausdorff diatance between the approximated 3D curve and the exact 3D curve, and

the tangent discrepancy between any pair of adjacent 3D Bézier curves are both under

the user-specified tolerance. As in Fig. 5.4, (a) shows a B-spline domain curve; (b)

(b)

(d)

(a)

(c)

Exact Curve

Approximate Curve

Fig. 5.4 Exact curve and approximated curve

Chapter 5 Freeform Feature Modeling

107

shows the mapped 3D curve of the exact domain curve computed using the modeling

algorithms in Open CASCADE; (c) shows the approximated polyline of the domain

curve; (d) shows the mapped 3D curve of the polyline. Table 5.1 gives the comparison

between the mapped 3D curve of the exact domain curve and that of the polyline.

Table 5.1 Comparison between exact curve and approximated curve

 Tolerance Degrees
Number of

control points
Number of
segments

Continuity

Exact curve - 7 50 8 G1

Approximated 1.0×10-2/5° 3 376 125 5°-G1

The shortcomings of this approximation algorithm are as follows. Firstly, although the

mapped space curve lies completely on the base surface, its degree,)(vu dd + where

ud and vd are the surface degrees, cannot be decreased as specified by users. Secondly,

there are too many segments of the mapped space curve, which may make the surface

blending complicated if it is used in this work. Thirdly, the adjacent Bézier curves on

the base surface have normal discrepancy, which will remain in the blending surface.

In addition to the shortcomings of this algorithm itself, the mapping algorithms

provided in OCC is basically an approximation technique, which samples the domain

curve and interpolates the sample points using a continuous B-spline curve. That is

why the degrees of the exact mapped curves and the approximated 3D curve in Fig. 5.4

are not (3+3)*3 and (3+3)*1, but 7 and 3 respectively.

In this work, the boundary curve is generated using Maple, which generates an exact

3D curve lying on the base surface. The generated 3D curve using Maple is not

represented in Bézier representation, but in the power basis representation, which can

be converted to Bézier using an available algorithm, which will be elaborated in

Chapter 6.

Chapter 5 Freeform Feature Modeling

108

5.3.2 The Proposed Surface Blending Approach

5.3.2.1 Algorithm Overview. A Bézier curve is defined by

∑
=

=
p

i
ipi tBt

0
,)()(PC

where iP are the control points, and piB , are the p th-degree Bézier basis functions.

A Bézier surface in the 3D space is defined by

∑∑
= =

=
n

i
jimj

m

j
ni vBuBvu

0
,,

0
,)()(),(PS

where ji,P are the control points, and)(, uB ni and)(, vB mj are the n th-degree and m th-

degree Bézier basis functions, respectively.

The Cubic Hermite Interpolant is denoted in Eq. (5.1),

)()()()()()()()(),(211110201100 tvhtvhtvhtvhvt TTCCS +++= (5.1)

where 1C and 2C are the boundary curves and 1T and 2T are the tangent fields along

the boundary curves.

In this work, the Cubic Hermite Interpolant is approximated for surface blending, so

the blending surface is a 3×n Bézier surface),(vtS , where n is the degree of the

boundary curve)(1 tC . In order to ensure that the blending surface is tangential to the

base surface, the connection between the t isocurve of the blending surface and the

base surface can be interrogated. If the t isocurve is tangential to the base surface, it

assures that the blending surface has the tangential smoothness with the base surface.

The t isocurve of the blending surface can be obtained as follows:

Chapter 5 Freeform Feature Modeling

109

For fixed 0tt = ,

∑∑ ∑ ∑∑
== = ==

====
m

j
jmj

n

i

m

j

n

i
jinimjjimj

m

j
ni tvBtBvBvBtBvtv

0
0,

0 0 0
,0,,,,

0
0,0)()())()(()()(),()(QPPSC

0t

 (5.2)

where ∑
=

=
n

i
jinij tBt

0
,0,0)()(PQ , is a Bézier curve lying on the blending surface.

This indicates that the t isocurve of the blending surface is a Bézier curve)(v

0tC , in

which the control points are)(0tjQ (3...0=j), and)(v
0tC is attached to the base

surface at point)(01 tC , as shown in Fig. 5.5. If the tangent vector of the t isocurve

)(v
0tC at point)(01 tC is on the tangent plane of the base surface at point)(01 tC ,

)(v
0tC is tangential to the base surface at point)(01 tC . Hence, one can now

interrogate the tangent vector of the t isocurve)(v
0tC at point)(01 tC , which is given

in Eq. (5.3), where 3=m and)(00 tQ ,)(01 tQ are the first two control points of)(v
0tC .

))()(()0(0001 ttm QQC
0t −=′ ,))()(()1(010 ttm mm −−=′ QQC

0t
 (5.3)

From Eq. (5.2), it can be obtained that

∑
=

=
n

i
ini tBt

0
0,0,00)()(PQ , ∑

=

=
n

i
ini tBt

0
1,0,01)()(PQ ,

Fig. 5.5 t isocurve and the relevant curves

)(
0

vtC
)(01 tQ

)()(0100 tt CQ =

)(1 tC

)(02 tQ

)(03 tQ

)(T1 t

)(C2 t

planeTangent

Chapter 5 Freeform Feature Modeling

110

where 0,iP and 1,iP are the first two column control points of the blending surface. 0,iP

is also the control point of the boundary curve)(1 tC , which ensures that the blending

surface is attached to the base surface seamlessly along the boundary curve.

From above, in order to achieve the tangential connection between)(v
0tC and the base

surface, the control point)(01 tQ needs to be assigned on the tangent plane of the base

surface at point)(01 tC . Stated differently, for fixed 0tt = , the point on the Bézier

curve ∑
=

=
n

i
ini tBt

0
1,,1)()(PQ should be on the corresponding tangent plane. The cause-

effect relation in the proposed algorithm is illustrated in Fig. 5.6.

Consequently, a Bézier curve)(1 tQ that is in the tangent field of the boundary curve

needs to be obtained. To achieve this goal, the main task in this research is to offset the

boundary curve on the tangent planes for a certain distance to obtain the control points

1,iP , which are used as the control points of the blending surface. The offset curve,

Tangential connection between blending surface and base surface

Tangential connection between t isocurve)(v
0tC and base surface

)(01 tQ is on the tangent plane of base surface at point)(01 tC

Bézier curve ∑
=

=
n

i
ini tBt

0
1,,1)()(PQ is in the tangent field of boundary curve

Represents “requires”; Represents “lead to”.

Fig. 5.6 Cause-effect relation in the proposed algorithm

Chapter 5 Freeform Feature Modeling

111

which is the Bézier curve ∑
=

=
n

i
ini tBt

0
1,,1)()(PQ , ensures that the point)(01 tQ is on the

corresponding tangent plane, and hence the t isocurve)(v
0tC is tangential to the base

surface. For offsetting the boundary curve, a number of points is first sampled and

offset on the corresponding tangent planes. Next, these offset sample points are

interpolated as a B-spline curve. The main algorithm flow is described as follows.

1. Sample points on the boundary curve and determine the offset direction vectors at

these sample points.

2. Translate the sample points along the offset vectors obtained and interpolate the

offset points as a B-spline curve.

3. Knots refine the boundary curve and the offset curve for surface blending.

For constructing the entire blending surface, the modified surface region is displaced

towards the interior or exterior of the base surface. Hence, the boundary curve)(1 tC is

also displaced, which forms the other boundary curve)(2 tC of the blending surface.

Analogous to the offset of)(1 tC ,)(2 tC is offset on the tangent planes of the displaced

surface region to obtain a Bézier curve ∑
=

=
n

i
ini tBt

0
2,,2)()(PQ , which ensures that the

point)(02 tQ is on the corresponding tangent plane. Finally, all the four column

control points of the blending surface),(vtS are obtained to generate the transition

geometry.

5.3.2.2 Surface Blending. Points sampling is based on the bounds on the second

derivatives. For parametric curves, the number of sample points for equally spaced

parameters on [0, 1] is computed as follows (Piegl and Tiller, 1999):

Chapter 5 Freeform Feature Modeling

112

8
)

1
(

M
n pow

ε
=

where
otherwise

ionapproximatlinear

34.0

5.0

=pow . M is the bound on the second derivative of

the offset curve and ε is a user-defined tolerance.

For a Bézier curve,)1(2 +p can be sampled for computing the second derivatives at

these points, where p is the degree of the Bézier curve, and the magnitude of the

maximum of these derivatives is used for M (Piegl and Tiller, 1999). A default

number 1+= pn is introduced by Piegl and Tiller (1999) to ensure that a small curve

segment can be sampled properly when the tolerance is large. The offset direction

vector at the sample point is determined by

)))(),((
)(

()(tvtu
dt

td
t n

C
T ×±= ,

where
dt

td)(C
 is the tangent vector of boundary curve)(tC , and))(),((tvtun is the

normal vector in the surface for each point along)(tC . For each sample point ip in the

boundary curve, the line iiqp is parallel to the respective offset vector, where iq is the

offset sample point. Hence, the parameter values at iq should correspond to the

parameters at ip , which are set as

)0(
1

ni
n

i
ui <≤

−
= ,

where n is the sampling number. Once the parameterization of the offset sample

points has been set properly, a number of interpolation schemes can be used to

interpolate the offset sample points to a B-spline curve (Farouki and Sverrisson, 1996).

In this work, one can simply use the interpolation functions provided in Open

Chapter 5 Freeform Feature Modeling

113

CASCADE (2009). This algorithm interpolates a B-spline curve passing through an

array of points, where the parameters of each of the points can be given.

As shown in Fig. 5.7(a) a quadratic Bézier parameter curve is evaluated in a cubic and

quadratic Bézier surface, resulting in a 10th-degree Bézier curve lying on the surface.

In Fig. 5.7(b-c), the offset curves with two different tolerances are shown. Since the

boundary curve is simple, the interpolating curve of the offset points is basically a

Bézier curve. Hence, the control points of the boundary curve and that of the offset

curve are used for interpolating the blending surface, as shown in Fig. 5.7(d).

In Fig. 5.8, a 4th-degree Bézier curve is evaluated in a cubic and quadratic Bézier

surface, resulting in a 20th-degree Bézier curve lying on the surface. In Fig. 5.8(b-c),

the offset curves with two different tolerances are shown. Since the boundary curve is

(a)

(c) (d)

(b)

Fig. 5.7 Example#1 of offset curve and blending surface: (a) curve
lying on surface; (b) offset curve with 410−=ε ; (c) offset curve

with 510−=ε ; (d) blending surface with 510−=ε .

Chapter 5 Freeform Feature Modeling

114

more complex, the interpolating curve of the offset points is a B-spline curve with

three interior knots. Analogously, the offset curve of the displaced boundary curve is a

B-spline curve with one interior knot. To generate the blending surface, the boundary

curves and the offset curves are converted to the same degree and in the common knot

vector. Finally, the compatible B-spline curve has four interior knots, and the B-spline

curves are converted into five Bézier curve segments. The control points of the Bézier

segments are used to generate the blending surface, as shown in Fig. 5.8(d), which

contains five constitutive Bézier surface patches.

5.3.2.3 Comparison with other works

In Section 5.3.2.3, it is known that the points on the Bézier curve ∑
=

=
n

i
ini tBt

0
1,,1)()(PQ ,

not the control points 1,iP , should be on the corresponding tangent planes. However, in

(a) (b)

(c) (d)

Fig. 5.8 Example#2 of offset curve and blending surface: (a) curve lying
on surface; (b) offset curve with 410−=ε ; (c) offset curve with 510−=ε ;

(d) blending surface with 410−=ε .

Chapter 5 Freeform Feature Modeling

115

the work reported by van Elsas’s method (1998), the control points of the boundary

curve are translated along the vectors on the tangent planes, and it does not guarantee

that the offset curve)(1 tQ is on the tangent planes. It is true that Bézier curves are

invariant under the usual transformations, such as rotations, translations, and scaling,

which means one applies the transformation to the curve by applying it to the control

polygon (Piegl and Tiller, 1997). However, for this property of affine invariance, the

transformation vectors must be the same for the entire control polygon.

In the work of van Elsas, the translation vectors of each control point of the boundary

curve are different, and hence translating the control points along the tangent planes

cannot guarantee that the corresponding Bézier curve is on the tangent planes. As a

result, the work of van Elsas has the weakness that it may not be able to find the

tangent field curve of the boundary curve by translating its control points. However,

his approach can be used when accuracy is not strictly needed, such as for certain

conceptual illustrations. As shown in Fig. 5.9(a), the sample points are those used in

Fig. 5.7(c), which are on the tangent planes, and the Bézier curve is generated by

offsetting the control points of the boundary curve. It can be seen that the curve

obtained using van Elsas’s method interpolates almost all the sample points. However,

it is not a reliable approach when the boundary curve and the base surface become

more complex. As shown in Fig. 5.9(b), the Bézier curve does not interpolate all the

sample points used in Fig. 5.8(b), and has a discrepancy, which means the tangential

smoothness has not been achieved here. It is difficult to identify the difference between

this study and the work of van Elsas from the visualization of the blending surface

viewpoint, but it can be manifested by the normal deviation along the boundary curve,

as shown in Fig. 5.10. The normal vectors along the boundary curve are computed on

Chapter 5 Freeform Feature Modeling

116

the base surface and on the blending surface respectively, which are compared to

obtain the normal deviation. In the model in this case study, the normal deviation using

the proposed method is much smaller, and the difference to that using van Elsas’s

method is as large as three orders of magnitudes. It should be noted that the offset

tolerance here is 410−=ε . Consequently, for certain conceptual design cases, the

boundary curve can be offset simply by offsetting its control points, as in van Elsas’s

method. However, for a complex boundary curve and surfaces which require higher

accuracy, which is quite common in practice, the proposed method is much better for

achieving tangential smoothness.

(a) Normal Deviation

0

0.5

1

1.5

2

2.5

3

3.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Sample points (n)

N
o

rm
al

 d
ev

ia
ti

o
n

 (
1.

0E
-5

 r
ad

)

Normal deviation of sampled points Trendline of normal deviation

(a) (b)
Fig. 5.9 The offset boundary curve using Elsas’s method (1998) does not
interpolate the sample points on the tangent planes: (a) example#1; (b)

example#2

Chapter 5 Freeform Feature Modeling

117

(b) Normal Deviation

0

1

2

3

4

5

6

7

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415 438 461 484

Sample points (n)

N
o

rm
al

 d
ev

ia
ti

o
n

 (
1.

0E
-2

 r
ad

)

Normal deviation of sampled points Trendline of normal deviation

Fig. 5.10 Normal deviation across the boundary curve in Example#2 (a) using the
proposed method with 410−=ε ; and (b) using van Elsas’s method

In addition, in surface approximation, there is a general trade-off between accuracy

and the compactness of the resulting surface. In the work of van Elsas, the control

points of the boundary curve are offset directly, and hence the offset curve is

compatible with the boundary curve. As the examples in Fig. 5.7 and Fig. 5.8, the

boundary curve is a Bézier curve, and the offset curve is also a Bézier curve with the

same degree, In this case, the resulting blending surface only has one Bézier surface

patch. However, in the present work, the offset curve is generated by interpolating the

sampled points, which is usually a B-spline curve having more than one interior knot.

When the interpolated B-spline curve is converted into Bézier curves, the B-spline

curve is split into more than one curve segments. In order for surface blending, the

boundary curve needs to be transformed to be compatible with the offset curve, and it

is also split into the same number of curve segments by the interior knots. As the

example in Fig. 5.8, when the offset curve and the boundary curve are converted into

the same degree and in the common knot vector, the corresponding curves are split into

five curve segments, and hence the resulting blending surface has five Bézier patches.

As a result, the proposed method can generate more accurate tangential smoothness

Chapter 5 Freeform Feature Modeling

118

across the boundary curve, but it usually generates more surface patches than van

Elsas’s method.

5.3.3 Self-Intersection Issue

5.3.3.1 Eliminate Self-Intersection in Domain Space.

Since the boundary curve is offset in the tangent field, the self-intersection issue needs

to be addressed. As shown in Fig. 5.11, a 4th-degree Bézier curve is evaluated in a

cubic and quadratic Bézier surface, resulting in a 20th-degree Bézier curve lying on the

surface, and self-intersection arises when the sample points are offset on the tangent

planes. Self-intersection in offset curves and surfaces is a popular research topic, and

some related studies have been reported (Pekerman et al., 2008; Seong et al., 2006).

There are two types of self-intersection in the offset curves, namely local and global

self-intersection. When the offset distance is larger than the local curvature radius in

the original curve, local self-intersection arises. Global self-intersection occurs when

two different points in the curve are offset to the same location. In this study, only the

local self-intersection will be considered and addressed, as illustrated in Fig. 5.11.

Current research in offset curves and self-intersection detection is mainly focused on

(a) (b)

Fig. 5.11 Local self-intersection: (a) curve lying on surface; (b) local self-
intersection

Chapter 5 Freeform Feature Modeling

119

planar curves, but this research addresses offset curves in the 3D space. Since the

offset of planar curves has been quite well addressed, in this research, self-intersection

in the offset boundary curve is transformed to the parameter space of the base surface,

which is inspired by the work reported by Flöry and Hofer (2008). In the work by

Flöry and Hofer, the curve fitting on the manifolds is carried out as the curve fitting in

the parameter space of the manifolds.

When a point ip in a surface S is offset on the corresponding tangent plane
iST , the

offset direction vector is denoted as)(ipV . As it is known, the tangent plane
iST is as

the union of tangent vectors to surface S at the point ip (Rovenski, 2000). On the

tangent plane, each tangent vector to surface S can be formulated as the linear

combination of the two tangents along iso-parametric curves, uS and vS , which are

the vectors calculated using the first partial derivative of S with respect to u and v .

Hence, the offset vector)(ipV can be reformulated as

)()()(iviui vu pSpSpV ∗∆+∗∆= , as illustrated in Fig. 5.12.

)(iu pS

)(iv pS

)(iuu pS∗∆

)(ipV
)(ivv pS∗∆

)(iv pS

)(iu pS

S

ip

iST

S

ip

ip

Fig. 5.12 Offset vector and its formulation on tangent plane

Chapter 5 Freeform Feature Modeling

120

In order to address the self-intersection as in planar curves, one needs to map the offset

vectors to a medium plane. Since the offset vector)(ipV implies the change of ip on

the tangent plane with respect to the changes of the parameters u and v , one can

approximately map)(ipV to the changes of parameters in the parameter space of S.

Although ip is not moved in the base surface, u∆ and v∆ in the parameter space can

represent the move direction of ip approximately. Hence, the equivalent offset vector

in the parameter space is formulated as vupr vuDi ∆+∆=)(, as shown in Fig. 5.13,

where vu× is the parameter space of S and Dip is the parameter point of ip . Once

self-intersection occurs, the equivalent vector)(Dipr of the original offset vector

)(ipV is obtained for offsetting the corresponding parameter points. In the parameter

space, where the parameter curve is a planar curve, the self-intersection in the offset

polygon can be detected and eliminated efficiently using available algorithms (Hansen

and Arbab, 1992; Park and Shin, 2002). As shown in Fig. 5.14, the local self-

intersection in the offset polygon is detected and eliminated.

uo

)Dir(p

v∆

u∆

v

Dip

)Dir(p

Fig. 5.13 Equivalent offset vector in parameter space

Dip

Chapter 5 Freeform Feature Modeling

121

Once the self-intersection in the offset parameter curve has been eliminated, the

remaining offset parameter points {Djp }, mj ,...,1= , where m is the number of the

remaining offset parameter points, are interpolated as a B-spline curve. Since the

relative fair parameterization of the given curves is important for the smoothness of the

blending surface (Cohen et al., 1997), the parameter values ju of Djp are set using the

centripetal method described next.

Let ∑
=

−−=
m

j
jDDjd

2
)1(pp , then 01 =u , 1=mu ,

d
uu

jDDj

jj

)1(

1

−
−

−
+=

pp

1,...,2 −= mj .

)(iuu pS∗∆

)(ipV
)(ivv pS∗∆

)Dir(p

v∆

u∆

3D 2D

Dip

Fig. 5.15 Mapping between offset vectors on the tangent plane
and parameter space

(a) (b)

Fig. 5.14 Self-intersection elimination in parameter space: (a) self-
intersection; (b) eliminate self-intersection

Chapter 5 Freeform Feature Modeling

122

In order to offset the original sample points { }iP , 1,...,0 −= ni on the tangent planes, it

is necessary to obtain n equivalent offset vectors in the parameter space. Hence, the

interpolating parameter curve is re-sampled with n points, and the offset parameter

vector is formulated as)0('')(' nivuDi <≤∆+∆= vupr , where 'u∆ and 'v∆ are the

new changes of u and v . Since the offset vectors in the parameter space and that in

the tangent planes can be transformed from one another, as shown in Fig. 15, the offset

vector)(' ipV in the corresponding tangent plane
kST can be reformulated as

)(')(')(' iviui vu pSpSpV ∆+∆= . The original sample points ip in the boundary curve

are offset using the newly obtained direction vectors)(' ipV for surface blending, as

shown in Fig. 5.16. Although)(' ipV is different from)(ipV , the sample points in the

boundary curve are still offset on the corresponding tangent planes, and hence the

tangential smoothness is achieved. In this case, the new offset vector)(' ipV is not in

the normal of the boundary curve any more, and the offset distances are not constant

for all the sample points.

5.3.3.2 Offset the Parameter Curve Directly.

If there is no self-intersection in the offset boundary curve, the offset vector)(ipV is

normal to the boundary curve and the offset distance for all the sample points is

(b) (a)

Fig. 5.16 Blending surface after removal of self-intersection:
(a) offset boundary curve; (b) blending surface

Chapter 5 Freeform Feature Modeling

123

constant. Hence, the roundness along the boundary curve is constant. However, once

the offset vector)(ipV is replaced by)(' ipV , the sample points are not offset in the

normal direction of the boundary curve, and the roundness along the boundary curve is

not constant any longer. In practice, if it is necessary to keep the constant roundness

along the boundary curve, the offset distance needs to be set carefully so that self-

intersection does not occur. If the roundness radius along the boundary curve can be a

variable, the offset vector)(ipV can be obtained by offsetting the parameter curve

directly. In this case, the parameter curve is offset in the parameter space directly, and

the self-intersection is detected and eliminated if needed. The offset vector in the

parameter space can be mapped to the corresponding tangent planes, which has been

illustrated in Fig. 5.15. As shown in Fig. 5.17, the parameter curve is offset to its

normal direction by 02.0=d with a tolerance of 510−=ε . The offset vectors are

obtained in the parameter space, and mapped to the corresponding tangent planes.

Thus, the offset curve in the tangent planes and the blending surface can be obtained,

as shown in Fig. 5.18. Offsetting the parameter curve has the same effect with the

method presented in Section 5.3.3.1, and it has lower computational cost. Hence, if the

constant roundness is not a must and the boundary curve has small local curvature

radius, which may probably cause self-intersection, offsetting the parameter curve

directly is a better choice.

Fig. 5.17 Offset domain curve directly

Chapter 5 Freeform Feature Modeling

124

5.3.4 Examples

In the proposed method, the blending surface is composed of certain Bézier patches,

and hence the boundary curve of the displacement feature should be a Bézier curve or

convertible to Bézier curves. Once the boundary curve is obtained in Bézier form, the

tangent filed curve can be generated by interpolating the sampled points that are on the

tangent planes of the base surface, and hence the blending surface patch can be

constructed. The number of the sampled points depends on the complexity of the

boundary curve, e.g. higher second derivative, and user-defined tolerance of the

tangent field curve. As a result, the proposed method can be used for any boundary

curve that is in Bézier form, and the computation time depends on the complexity of

the boundary curve and user-defined tolerance of the tangent field curve. The surface

blending algorithm presented in this section is validated using several examples. All of

the examples have been implemented on an Intel(R) Pentium(R) D CPU 2.80GHz, 2G

Memory, Microsoft Windows XP, Microsoft Visual C++ 6.0, and Open CASCADE.

In the first example, a B-spline curve in the parameter space is obtained by

interpolating six points {(0.25, 0.375), (0.75, 0.375), (0.8125, 0.5), (0.75, 0.625), (0.25,

0.625), (0.1875, 0.5)}. The interpolating parameter curve is split into six Bézier curves,

(b) (a)

Fig. 5.18 Blending surface by offsetting the parameter curve directly: (a)
offset boundary curve; (b) blending surface

Chapter 5 Freeform Feature Modeling

125

and evaluated in a cubic ×quadratic Bézier surface using 3×4 control points, as shown

in Fig. 5.19(a).

The control points of the Bézier surface are given below.

=
=
=
=

T

T

T

T

)0,0,9(

)2,0,6(

)2,0,3(

)0,0,0(

30

20

10

00

P

P

P

P

,

=
=
=
=

T

T

T

T

)2,3,9(

)4,3,6(

)4,3,3(

)2,3,0(

31

21

11

01

P

P

P

P

, and

=
=
=
=

T

T

T

T

)0,6,9(

)2,6,6(

)2,6,3(

)0,6,0(

32

22

12

02

P

P

P

P

.

The Bézier curves lying on the surface are offset by 2.0=d with a tolerance of

510−=ε , and displaced towards the exterior of the surface by 5.0=h , as shown in Fig.

5.19(b). The blending surface is computed using the proposed algorithm, and shown in

Fig. 5.19(c-d). Analogously, a depression displacement feature can be generated if the

modified region is displaced towards the interior of the surface. To investigate the

normal deviation across the boundary curve, 1500 points, which are equally spaced on

(a) (b)

(c) (d)

Fig. 5.19 Surface blending of a boundary curve#1: (a) boundary curve lying
on the surface; (b) boundary curve, offset boundary curve and displaced

curve; (c) blending surface; (d) displacement feature

Chapter 5 Freeform Feature Modeling

126

[0, 1], are sampled on each Bézier segment. The normal vectors at these sample points

are determined in the given surface and in the blending surface respectively, and the

normal vector deviation is calculated and averaged, as shown in Fig. 5.20.

Normal Deviation

0

5

10

15

20

25

30

1 91 181 271 361 451 541 631 721 811 901 991 1081 1171 1261 1351 1441

Sample points (n)

N
o

rm
al

 d
ev

ia
ti

o
n

 (
1.

0E
-5

 r
ad

)

Normal deviation of sample points Trendline of normal deviation

Fig. 5.20 Normal deviation across the boundary curve for the example in Figure 5.19

In the second example, a B-spline curve in the parameter space is obtained by

interpolating eight points {(0.5, 0.7), (0.44, 0.67), (0.35, 0.55), (0.45, 0.33), (0.5, 0.36),

(0.55, 0.33), (0.65, 0.55), (0.56, 0.67)}. The interpolating parameter curve is split into

eight Bézier curves and evaluated in the given surface in example#1, as shown in Fig.

5.21(a). The Bézier curves lying on the surface are offset by 3.0=d with a tolerance of

510−=ε , and displaced towards the exterior of the surface by 5.0=h , as shown in Fig.

5.21(b). When the displaced curve is offset, self-intersection problem arises, which are

eliminated using the approach proposed in this research. The blending surface is

computed using the proposed algorithm, as shown in Fig. 5.21(c-d). The normal vector

deviation of 1000 sample points on each Bézier segment are calculated and averaged,

as shown in Fig. 5.22.

Chapter 5 Freeform Feature Modeling

127

Normal Deviation

0

2

4

6

8

10

12

14

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961

Sample points (n)

N
o

rm
al

 d
ev

ia
ti

o
n

 (
1.

0E
-5

 r
ad

)

Normal deviation of sample points Trendline of normal deviation

Fig. 5.22 Normal deviation across the boundary curve for the example in Figure 5.21

(d)

(a)
(b)

(c)
Fig. 5.21 Surface blending of a boundary curve#2: (a) boundary curve

lying on the surface; (b) boundary curve, offset boundary curve,
displaced curve and offset displaced curve; (c) blending surface; (d)

displacement feature.

Chapter 5 Freeform Feature Modeling

128

Fig. 5.23 Displacement features in a practical part

Displacement features, as shown in Fig 5.23, are commonly used in many practical

products. In this study, one of the depression features is respectively generated using

the proposed surface blending approach and Elsas’s method, as shown in Fig. 5.24. It

is impossible to observe the difference between the two methods from the visualization

of the depression feature, so the normal deviation along the boundary curve, the

number of the blending surface patches, and the computation time are summarized in

Table 5.2. It should be noted that the user-specified tolerance of the tangent field curve

is 410−=ε . In addition to displacement feature modeling, writing text on the parts can

also be accomplished using this proposed approach. As shown in Fig. 5.25, the

designers set the boundary of the required letter “LEI”, and then the corresponding 3D

letter can be generated by setting the parameters, in which the tangential smoothness

across the boundary curves is maintained.

Using proposed method Using Elsas’s method

Fig. 5.24 Create displacement features using the proposed approach and Elsas’s
method

Chapter 5 Freeform Feature Modeling

129

Table 5.2 Comparison between proposed method and Elsas’s method

Average normal
deviation along
boundary curve

Blending surface
patches

Computation time

Elsas’s method 2.2*1.0E-3 8 125ms

Proposed method

3.8*1.0E-5 (user-
defined tolerance of
tangent field curve is

410−=ε)

16 282ms

5.3.5 Summary

A surface blending approach for displacement feature modeling in freeform surfaces is

presented in this work. To avoid the high polynomial degree of the tangent field curve

obtained symbolically, an approximation for the Cubic Hermite Interpolant is proposed.

It is found that the Bézier curve using the interior row of the control points in the

blending surface should be in the tangent field. As a result, the boundary curve of the

displacement feature is offset in the tangent field with a user-specified tolerance to

obtain the interior control points of the blending surface. The local self-intersection

problem in the offset curve can be transformed approximately and eliminated in the

parameter space of the base surface. The proposed algorithm is validated with four

examples, in which the boundary curve of the displacement feature can be specified

flexibly by the users. The normal vectors along the boundary curve are determined in

the blending surface and the base surface respectively, and this shows that the normal

deviation is even smaller than the offset tolerance. Since the offset tolerance can be set

Fig. 5.25 Write texts on parts using the proposed approach

Chapter 5 Freeform Feature Modeling

130

by the users for specific cases, the 1G smoothness can be achieved with different user

specified tolerance.

5.4 Displacement Feature Modeling in a Collaborative Environment

Collaborative feature modeling is a paradigm for the co-design of a product model, in

which the scheduling of design activities and the product information sharing are the

two crucial issues, as presented in the review Section 2.2.2. Since a team of designers

co-create the design model, a granular-locking mechanism is proper for scheduling the

concurrent design activities. In this section, the combination of displacement feature

modeling with the collaborative feature modeling will be discussed, in which the co-

ordination and model information sharing will be addressed.

In displacement features, the feature shape is mainly determined by its boundary curve

lying on the base surface. As a result, in a collaborative environment, the feature shape

can be designed collaboratively by reviewing the boundary curve among the designers,

after which the modified surface region is trimmed and the transition surface is

generated. In addition, normally, several displacement features are embedded into a

base surface for creating a functional part. The relationships between the boundary

curves on a base surface can be categorized as interacting and non-interacting

C1

C2
C3 C4

Fig. 5.26 Relationships of boundary curves

Chapter 5 Freeform Feature Modeling

131

relationships. The interacting relationships between a boundary curve that is defined

on the base surface and a boundary curve already in the base surface include

overlapping and nesting. As shown in Fig. 5.26, curves 1C and 3C are overlapping

relationship, curves 2C and 3C are nesting relationship, and curves 4C and 3C are non-

interacting relationship. Generally, the non-interacting boundary curves can be defined

concurrently by designers, since their transition surfaces are normally non-interacting

either. However, when the boundary of a feature nests in or overlaps with another

boundary curve, the two boundaries can only be modified by one user at any time.

Based on the above classification, a granular locking mechanism can be used for

scheduling the concurrent design activities in displacement feature modeling, as the

mechanism presented in Chapter 4. The locking granularity can be a single feature that

has no interacting boundary curve, or it can be a group of features whose boundary

curves are interacting. As shown in Fig. 5.26, two groups of features are identified,

namely, curves 1C 2C 3C are in one group and 4C is in another. A designer can only

modify a displacement feature after receiving the permission from other designers. As

such, designers can work on different features at the same time, and the design

efficiency can be improved.

The change information of the design model needs to be synchronized, thus the

replicated design models are maintained consistently. In this work, at the client sides,

each user has the full-fledged modeling functions, thus only the modeling operation

needs to be synchronized for updating product change. However, since a boundary

curve defined by one user does not need to be defined and computed by other users

again, the boundary curve is also transmitted each time for product information sharing.

Chapter 5 Freeform Feature Modeling

132

A boundary curve is basically a B-spline curve or several Bézier curve segments, so it

does not pose much communication load. When a boundary curve is reviewed and

finalized by certain designers, it is broadcast to all sites together with the parameters

for surface blending to update the designed model.

5.5 Summary

Freeform feature modeling has been discussed in this Chapter. Firstly, a simple

volumetric freeform feature is created by standard sweeping operations, in which the

profile 3D curve and the trajectory 3D curve are defined by interpolating certain 3D

points. Secondly, the surface blending in displacement feature modeling is

approximated to avoid the higher polynomial degree in the transition surface. In this

approximation, the boundary curve is first offset in the tangent field, and then it is

knot-refined to be compatible with the offset curve for surface blending. Thirdly,

displacement feature modeling in a collaborative design environment is briefly

discussed, where displacement features can be grouped according to the relationships

of their boundary curves.

Chapter 6 Implementation Work

133

Chapter 6 Implementation Environment and Case Studies

The implementation methods and tools used in this study are described in this chapter.

Firstly, the working environments for the case studies presented in previous chapters

will be elaborated in details. Secondly, the proposed mechanisms are combined in the

replicated collaborative feature modeling, where the modeling system is validated

using two examples.

6.1 Implementation Studies

6.1.1 Open CASCADE Technology

Open CASCADE Technology (OCC) is a powerful open source C++ library,

consisting of the classes and solutions in the areas of surface and solid modeling, 3D

and 2D visualization, data exchange, etc. Modeling functions are used for constructing

an object comprising of geometry and topology, and visualization functions are used to

display and manipulate the designed object. As shown in Class#1, a solid box is being

constructed by sweeping a sketch face along a vector, which is displayed in Fig. 6.1.

Analogously, a freeform object, e.g., a Bézier surface, can be constructed and

displayed, as described in Class#2. In OCC, all the modeling functions and data

structure are carried out using C++, so it becomes more complicated when combining

OCC with Java. In order to connect OCC and Java, Java Native Interface (JNI) can be

used to provide the Interface functions. As coded in Class#3, the functions in Java can

be defined as native functions, which are actually executed using the loaded DLL

module. This DLL module is a library containing the modeling functions written in

C++, as coded in Class#4. Once a native function in Java is called, the corresponding

arguments and objects are transferred to the functions in the DLL module, which then

returns back the calculated results to the Java Function.

Chapter 6 Implementation Work

134

Class#1
{
 //***********definition of the corner points in the sketch***************//
 gp_Pnt point1(0,0,0);
 gp_Pnt point2(1,0,0);
 gp_Pnt point3(1,1,0);
 gp_Pnt point4(0,1,0);
 //***********definition of the four edges in the sketch*****************//
 TopoDS_Edge edge1 = BRepBuilderAPI_MakeEdge(point1, point2);
 TopoDS_Edge edge2 = BRepBuilderAPI_MakeEdge(point2, point3);
 TopoDS_Edge edge3 = BRepBuilderAPI_MakeEdge(point3, point4);
 TopoDS_Edge edge4 = BRepBuilderAPI_MakeEdge(point4, point1);
 //**************the sketch of the solid box******** *****************//

TopoDS_Wire sketch = BRepBuilderAPI_MakeWire(edge1, edge2, edge3,
edge4);

 TopoDS_Face sketchFace = BRepBuilderAPI_MakeFace(sketch);
 //************** sweeping solid box**************** **************//

 gp_Vec vec(0, 0, 1.5);
 TopoDS_Shape box = BRepPrimAPI_MakePrism(sketchFace, vec);
 //**************visualization of the solid box***** *****************//
 Handle(AIS_Shape) ais_shape = new AIS_Shape(box);
 myAISContext->SetColor(ais_shape,Quantity_NOC_PINK);
 myAISContext->SetMaterial(ais_shape,Graphic3d_NOM_PLASTIC);
 myAISContext->SetDisplayMode(ais_shape,1);
 myAISContext->Display(ais_shape);
}

Class#2
{
 //***************control points of the Bézier surf ace*****************//
 TColgp_Array2OfPnt Poles(0, 3, 0, 2);
 Poles.SetValue(0, 0, gp_Pnt(0,0,0));
 Poles.SetValue(1, 0, gp_Pnt(3,0,2));
 Poles.SetValue(2, 0, gp_Pnt(6,0,2));
 Poles.SetValue(3, 0, gp_Pnt(9,0,0));

Fig. 6.1 Visualization of a solid box shape

Chapter 6 Implementation Work

135

 Poles.SetValue(0, 1, gp_Pnt(0,3,2));
 Poles.SetValue(1, 1, gp_Pnt(3,3,4));
 Poles.SetValue(2, 1, gp_Pnt(6,3,4));
 Poles.SetValue(3, 1, gp_Pnt(9,3,2));
 Poles.SetValue(0, 2, gp_Pnt(0,6,0));
 Poles.SetValue(1, 2, gp_Pnt(3,6,2));
 Poles.SetValue(2, 2, gp_Pnt(6,6,2));
 Poles.SetValue(3, 2, gp_Pnt(9,6,0));
 //*******************geometry of the Bézier surfac e*****************//
 Handle(Geom_BezierSurface) mySurf = new Geom_BezierSurface(Poles);
 //*******************topology of the Bézier surfac e*****************//
 TopoDS_Face Face = BRepBuilderAPI_MakeFace(mySurf);
 //*******************visualization of the Bézier s urface**************//
 Handle(AIS_Shape) ais_shape = new AIS_Shape(Face);
 myAISContext->SetColor(ais_shape,Quantity_NOC_GRAY);
 myAISContext->SetMaterial(ais_shape,Graphic3d_NOM_PLASTIC);
 myAISContext->SetDisplayMode(ais_shape,1);
 myAISContext->Display(ais_shape);
}

Class#3
public class MakeSegment
{
 static

{
 System.loadLibrary("geometryJni"); //the DLL module//
 }
 public GC_MakeSegment(gp_Pnt P1, gp_Pnt P2)

{
 GC_MakeSegment_0(P1, P2);

}
//****************native function****************** **********//

 public final native void GC_MakeSegment_0(gp_Pnt P1, gp_Pnt P2);
}

Class#4
JNIEXPORT void JNICALL Java_geometryJni_GC_1MakeSegment_GC_1M
 akeSegment_10 (JNIEnv *env, jobject theobj, jobject P1, jobject P2)
{
 //********P1 and P2 are the 3D points transferred from Java function******//
 gp_Pnt* the_point1 = (gp_Pnt*) jcas_GetHandle(env,P1);
 gp_Pnt* the_point2 = (gp_Pnt*) jcas_GetHandle(env,P2);
 GC_MakeSegment* theret = new GC_MakeSegment(*the_point1,
*the_point2);
 //********returns back the Segment constructed using OCC functions******//
 jcas_SetHandle(env, theobj, theret);
}

Chapter 6 Implementation Work

136

6.1.2 Implementation Methods for History-Independent Modeling

The performance measurement of the proposed history-independent modeling, which

has been presented in Chapter 3, was conducted using OCC and VC++. In this section,

only the average behavior model, introduced in Fig. 3.11(b), will be studied to measure

the performance of the proposed modeling approach, and the performance

measurements of the other two representative models are presented in Appendix A.

This average behavior model consists of a Block with a row of 33 feature groups, each

of which have three intersecting features inserted sequentially: first Rib , then Slot ,

and finally eThroughHol , as described in Class#5 and displayed in Fig. 6.2. The

‘remove operation’ of a Rib is described in Class#6 and is displayed in Fig. 6.3, in

which there are three steps, namely, removing the boundary faces originating the Rib ,

merging the intersection face portions stored at this step, and updating the boundary

faces of the intersecting features created later than Rib . The intersection face portion

of the Rib , as shown in Fig. 6.4, is identified and stored during its ‘add operation’.

Class#5
{

TopoDS_Shape result, rib, slot, hole;
 TopoDS_Shape block= Block(0,0,0,665,20,20);
 result = block

clock_t start, finish;
 for(int i=0;i<33;i++)
 {
 rib = Rib(10+i*20,0,20,20,10,5,30);
 slot = Block(5+i*20,0,0,10,20,5);
 hole = Hole1(15+i*20,10,0,3,25);
 BRepAlgoAPI_Fuse fuse(result, rib);
 BRepAlgoAPI_Cut cut(fuse.Shape(),slot);
 start=clock();
 BRepAlgoAPI_Cut cut1(cut.Shape(),hole);
 result = cut1.Shape();
 finish= clock();
 //*****************measure the modeling time******* *********//
 double time =double(finish-start)/CLOCKS_PER_SEC;

myAverageModel = result;
}

}

Chapter 6 Implementation Work

137

Class#6
{
 BRepBuilderAPI_Sewing sewing;
 int j=20; //suppose the 20th Rib is being removed//
 TopoDS_Shape result = averageModel; //load the designed average model//

 rib = Rib(10+j*20,0,20,20,10,5,30);
 hole = Hole1(15+j*20,10,0,3,25);
 //**********find the face originating from the rib being removed******//
 int n=0;
 BRepAlgoAPI_Common common(result,rib);
 Handle(TopTools_HArray1OfShape) myArrayRemoveFace;

TopTools_ListOfShape listOfShape;
 for(TopExp_Explorer exp(result, TopAbs_FACE);exp.More();exp.Next())
 {
 listOfShape = common.Modified(exp.Current());
 if (listOfShape.Extent())
 myArrayRemoveFace->SetValue(n++,exp.Current());
 }
 //*******end of find the face originating from the rib being removed****//

 TopoDS_Shape interFace;
 BRep_Builder bb;
 CString tempCS = "averagecase/H"+"j+1"+"Int.brep";
 BRepTools::Read(interFace,path,bb); //load the stored ‘intersection face
portion’ //
 BRepTools_ReShape reShape;
 start = clock();
 //**********remove the face originating from rib*** ****************//
 for(int i=0;i<5;i++)
 reShape.Remove(myArrayRemoveFace->Value(i));
 result = reShape.Apply(result);
 //***********end of remove the face originating from rib*************//
 sewing.Add(result);
 //************update the intersection face portion*******************//

sewing.Add(interFace);
 sewing.Perform();
 result = sewing.SewedShape();
 //***************end of update the intersecting fac e*****************//

Fig. 6.2 Average behavior model

Chapter 6 Implementation Work

138

 //***************update the face of the intersectin g feature***********//
 BRepAlgoAPI_Common common1(rib,hole);
 result = BRepAlgoAPI_Cut(result,common1.Shape());
 //***************end of update the face of the inte rsecting feature******//
 finish = clock();
 //***************measure the modeling time******** **************//
 double time =double(finish-start)/CLOCKS_PER_SEC;
}

6.1.3 Maple used in Displacement Feature Modeling

Maple is a computer algebra system, and it has extensive support for numeric

computations to a precision which can be set arbitrarily, as well as symbolic

computation and visualization. In this study, Maple is used for the numeric and

Fig. 6.4 Intersection face portion of the Rib

Fig. 6.3 Proposed ‘remove feature’ operation

Chapter 6 Implementation Work

139

symbolic computations in the modeling of freeform curves and surfaces, such as

evaluating a 2D parametric curve in a 3D surface, calculating the derivatives of curves

and surfaces, etc. Since B-spline basis functions cannot be represented directly in

Maple, the B-spline curve used in this work is converted into Bézier segments to

enable the symbolic calculation. For the evaluation of a 2D parametric curve, the

obtained result is a 3D space curve in polynomial representation, which can be

converted to a Bézier curve using the available algorithm. As described in

Algorithm#1, K is the matrix for the change of basis from the power basis to the

Bernstein basis, A are the coefficients of the original polynomial, and C are the

control points of the Bézier curve. Once the sample points and offset points are

obtained in Maple, they are interpolated as B-spline curves in VC++ for surface

blending.

Algorithm#1

6.2 Case Studies

In current product design and aesthetic design, both regular-shaped features and

freeform features are commonly used. In this section, two types of product models are

used to validate the proposed modeling system. In the first case model, a freeform

feature has the similar representation as a regular 2.5D feature, comprising a top

surface, a bottom surface, and the transition surface. However, the transition surface

Chapter 6 Implementation Work

140

and bottom surface of the freeform feature are described in freeform representation,

including a single or multiple patches (Sundararajan and Wright, 2004), but the bottom

surface of the regular 2.5D feature is a planar surface. As shown in Fig. 6.5(a), the

2.5D pocket has a planar bottom surface, but the transition surface of the freeform

feature comprises multiple freeform surface patches. In the second case study model,

the product comprises two parts, namely the support part and the sheet panel, as shown

in Fig. 6.5(b). The support part is normally composed of regular features, whilst the

sheet panel is a freeform surface including depression and protrusion surface regions.

A proof-of-concept prototype system of the proposed modeling approach has been

established. The server manages a design session, containing some Java Socket, HTTP

and Java RMI services, as shown in Fig. 6.6. Through the socket services, designers

can download the needed modeling kernel from server. The HTTP and RMI services

enable designers to obtain the exported remote functions on server and communicate

with the server through design events. The design events in this work include design

operations, e.g., ‘create feature’ operation and ‘modify feature’ operation, and

communication message. On the client sides, the design context contains the feature

model, including the features and feature relationships, and the resulting geometric

(a) (b)

Fig. 6.5 (a) Freeform feature and 2.5D feature, (b) support part and sheet
panel part

Chapter 6 Implementation Work

141

model. The viewing, manipulation and modeling functions are implemented based on

OCC, and as shown in Fig. 6.7.

6.2.1 First Case Study

Two designers A and B are working on a product model concurrently, as shown in Fig.

6.8. Designer A intends to add two pins on the bottom surface of thepocket , and sends

a ‘create feature’ operation event to the server, described as

>< 9),1,30,10,10,10#(),(,)(facefeaturepocketSCFRT A .

Fig. 6.6 Remote server

Fig. 6.7 Design context

Chapter 6 Implementation Work

142

The specification of the feature operation includes its identity 10#feature , the

parameters)30,10,10(, and the reference entity 1face . Meanwhile, designer B intends

to add a freeform pocket in the top surface of thestock , described as

>< 9),2,,10#(),(,)(facesignfreeformDefeaturestockSCFRT B .

Once the server receives and broadcasts the two operation events, designer B finds that

the operation performed by designer A should be executed first due to his lower

priority. As a result, in the resulting model, the pins defined by A have the

identity 10#feature , and the freeform feature defined by B has the identity 11#feature .

6.2.2 Second Case Study

In the second case study, a team of designers work on a product model including a

support part and a sheet panel, as shown in Fig. 6.9. In this case, the design team can

be divided into two working groups. One group works on the support part, and the

other focuses on the sheet panel. This modeling paradigm is similar to assembly design,

stock

chamfer

Free2
pocket Free1

holes

slot

block

holes

step

Fig. 6.8 Case model#1

Chapter 6 Implementation Work

143

and the interface between the support part and the sheet panel is predefined and

constrained. As such, the concurrent operations on the support part can be managed

using the locking mechanism presented in Chapter 4, and the operations on the sheet

panel are managed using the mechanism presented in Section 5.4.

6.3 Summary

The implementation tools and the programming works used in this study are presented

in this chapter. A proof-of-concept system used for validating the proposed modeling

approach has been established based on Java, VC++ and OCC. Two types of models

that can be used in the proposed collaborative platform are introduced, namely the

model including regular 2.5D features and freeform features, and the model

comprising of a support part and a sheet panel.

Fig. 6.9 Case model#2

Chapter 7 Conclusions and Future Work

144

Chapter 7 Conclusions and Future Work

7.1 Conclusions and Contributions

The primary objective of this research is to develop a set of methodologies to provide a

productive and effective collaborative environment for product modeling, in which a

team of designers work together on creating a regular prismatic model or designing

displacement features on freeform surfaces. The investigated and explored works

include: a history-independent modeling approach for overcoming the flaws of the

boundary evaluation in history-based modeling, a granular locking mechanism for

providing a parallel working process, and a collaborative environment for creating

displacement features on freeform surfaces.

7.1.1 Collaborative Feature Modeling Framework

The proposed design framework is a replicated collaborative feature modeling system.

On the client sides, two modeling functions were enhanced, namely, a history-

independent modeling approach for prismatic models and a surface blending approach

for displacement feature modeling. On the server side, a granular locking mechanism

was explored for scheduling the concurrent design operations, and the product

information can be synchronized by broadcasting the modeling operations across the

designers.

This modeling platform provides a valuable paradigm for designers working together

on a complex product model, which is strongly needed in current product development.

In this case, a group of designers work on different portions of a part model, so as to

achieve the design task concurrently. Meanwhile, the engineers in different domains

Chapter 7 Conclusions and Future Work

145

can cooperate on the definition of a feature shape before its execution, which ensures

that the design model satisfies more constraints than stand-alone modeling. As

presented in Chapter 6, a complex product model, including both regular features and

freeform features, can be accomplished collaboratively in this proposed system.

7.1.2 Proposition of a History-Independent Modeling Approach

This study explored the history-independent modeling for overcoming the

shortcomings of the traditional history-based modeling, as presented in Chapter 3. The

‘remove feature’ operation is accomplished in three steps: firstly, the boundary faces

originating from the feature being edited are removed; secondly, the boundary

contribution of its intersection face portion is updated; lastly, the boundary

contribution of its intersecting features is updated. Since the creation step of the feature

being modified is changed after each modification, the problems caused by the static

‘feature creation order’ can be solved. It is found that the computational complexity of

the boundary evaluation using the proposed approach is better than that in history-

based modeling. This is because all the features are re-evaluated sequentially in

history-based modeling, but only the intersecting features of the feature being edited

are re-evaluated in this work. The simulation results for three representative models

show that more computation time is needed compared to the work reported by Bidarra

et al. (2005), which is due to that not all partitioned faces are stored in this work. This

approach takes a major step towards ‘history-independent modeling’, in which the

feature model is always evaluated according to designer’s specifications and the

computation efficiency is improved. All the topological entities of the current B-rep

model can be referred to constrain the feature being modified, and the re-evaluation is

on the basis of the current status of the boundary faces. As such, the feature being

Chapter 7 Conclusions and Future Work

146

modified can be specified and evaluated accurately according to the desirable

intentions. The modeling mechanism used in current feature-based modeling may be

replaced by the proposed mechanism so as to solve the problems encountered in

practical works.

7.1.3 Enhancement of the Granular Locking Mechanism for Replicated
Collaborative Feature Modeling

In this study, the granular locking mechanism was enhanced so as to address two

issues, namely, maintaining the exclusive ‘feature creation order’, solving the potential

operation conflicts, as presented in Chapter 4. It is found that the potential conflicts of

design operations caused by feature interactions can be resolved by the correspondence

of the modified topological entities, in which the modified topological faces are

tracked using a hFaceIdGrap and the modified topological edges are identified using

their adjacent faces. As such, all the operations may be executed correctly and the

consistency of the replicated models would be maintained. Compared to the works

reported by Li et al. (2008) and Jing et al. (2009), this work has the advantage in that

the operation conflicts are resolved by the system automatically and the replicated

models are synchronized consistently. Hence, this work extends the previous works on

using the granular locking mechanism in collaborative feature modeling. In this work,

the designers can perform operations at the same time, and the concurrent operations

are coordinated and executed by the modeling server.

7.1.4 Proposition of a Surface Blending Approach for Creating Displacement
Features in Freeform Surfaces

The freeform feature modeling implemented in a collaborative design environment has

been explored in this work. Specifically, the modeling procedure of displacement

Chapter 7 Conclusions and Future Work

147

features was discussed, including the specification of the boundary curve and the

surface blending. As presented in Chapter 5, a surface blending approach for

approximating the Cubic Hermite Interpolant was proposed and validated. It is found

that the tangential smoothness across the boundary curve can be achieved by offsetting

the boundary curve in its tangent field, and then constructing the transition surface

using the control points of the curves obtained. As such, the blending surface has a

lower polynomial degree than that obtained using standard Cubic Hermite Interpolant,

in which the tangent field curves are computed symbolically. It is because the

polynomial degree of the offset curve depends solely on the interpolating algorithm,

which can provide much lower-degree B-spline curves. In symbolic computation,

however, the tangent curve of a boundary curve of n degree can be as high

as 3)12(−nm , where m is the degree of the base surface in u and v directions. In

addition, the proposed blending approach can achieve tangential smoothness for a

more complex boundary curve, which is quite useful in practice, compared to the

works reported by van Elsas and Vergeest (1998). The investigation of the normal

deviation along the boundary curve indicates that the normal deviation is even smaller

than the offset tolerance. This shows the proposed approximation approach has good

accuracy, and it provides a valuable approach for surface blending in practice.

In this proposed approach, users can offset the boundary curve with different

tolerances for specific applications, which should provide flexibility for displacement

feature modeling. In conceptual design, the accuracy of the smoothness may be not

critical, so designers can offset the boundary curve with a large tolerance, which would

not affect the visual effect of the designed model. In detailed design, a smaller

tolerance can be used for offsetting the boundary curve, which generates a blending

Chapter 7 Conclusions and Future Work

148

surface that has better smoothness across the boundary curve and has lower

polynomial degree. In addition, the approximation approach may be extended for

achieving higher smoothness across the boundary curve.

7.2 Future Works and Suggestions

7.2.1 Development of History-Independent Modeling

Being an exploratory and preliminary study, the proposed history-independent

modeling approach needs more research efforts in several issues, such as the naming

and matching of topological entities, database management, position referencing of

features, and the design of a graphical user interface, etc. The boundary faces are

stored and retrieved frequently in this work, but the management of the boundary faces

has not been explored. The naming and matching mechanism used in this work is

adapted from the reported works (Capoyleas et al., 1996; Cripac, 1997; Wu et al., 2001;

Wang and Nnaji, 2005), and it is not implemented. Furthermore, the matching of

boundary entities are lacking, as the correspondence of the reference faces and edges

presented in Chapter 4. An intelligent mechanism for the correspondence of boundary

entities is very useful in the modeling fields, such as solving the persistent naming

problem, compatible exchange of two models represented in different design systems,

etc. Consequently, the naming and matching mechanism would need more research

efforts in future, both in algorithm and in implementation.

7.2.2 Exploration in Freeform Feature Modeling

7.2.2.1 Evaluation of a 3D Curve lying on a Freeform Surface

The boundary curve of the displacement features was calculated symbolically using

Maple in this work, which has a higher degree as presented in Section 5.3.1. The

Chapter 7 Conclusions and Future Work

149

approximation algorithm proposed by Yang et al. (2008) decreases the polynomial

degree, but it generates many curve segments, which makes surface blending very

complicated. As a result, a good alternative algorithm is needed for generating a

boundary curve with a lower degree. As it is known, the degree of a 3D curve lying on

a base surface depends on both the degree of its parameter curve and the degree of the

base surface. In order to reduce the degree of the parameter curve, Yang et al. (2008)

used a polyline to approximate the parameter curve, which results in many line

segments in the evaluated 3D curve. Since the degree of the parameter curve cannot be

reduced lower than a polyline, the algorithms from this angle would not produce a

desirable solution. Hence, the boundary curve should be approximated during its

evaluation on the freeform surface, as presented by Renner and Weiβ (2004). The key

point is to provide an algorithm that can be used with different user-specified

tolerances.

7.2.2.2 Surface Blending in Displacement Feature Modeling

In this work, an approximation approach was proposed for surface blending, and it can

achieve the tangential smoothness across the boundary curve. The boundary curve

needs to be offset in the tangent field, which is an offset issue of a 3D space curve.

Offset curve in 3D space is useful in practice, but, currently, the offset curve is mainly

addressed in the 2D domain, as the studies reported in the literature (Pekerman et al.,

2008; Seong et al., 2006). As a result, an effective algorithm for offsetting a 3D curve

is needed in future work. Specifically, the self-intersection issue in the offset curve

should be addressed as well, since both local and global self-intersections are common

in offset curves.

Chapter 7 Conclusions and Future Work

150

The surface blending approach used in this work only achieves 1G smoothness across

the boundary curve, which is not sufficient in practice. The nG smoothness may be

required in current surface modeling. Consequently, a more effective algorithm is

needed in future work for achieving the nG smoothness. The expected algorithm may

be an approximation as the approach presented in this work, but the key point is that

the algorithm should be implemented with different user-specified tolerances. Once a

more useful surface blending has been implemented, the surface modeling of a

freeform model could become intuitive and effective.

Reference

151

References:

Abrahamson, S., D. Wallace, N. Senin and P. Sferro. Integrated design in a service
marketplace. Computer-Aided Design, 32, pp.97-107. 2000.

Bidarra, R., K. Jan De Kraker and W. F. Bronsvoort. Representation and management
of feature information in a cellular model. Computer-Aided Design, 30(4), pp.301-313.
1998.

Bidarra, R. and W.F. Bronsvoort. Semantic feature modelling. Computer-Aided
Design, 32, pp.201-225. 2000.

Bidarra, R., E. van den Berg and W.F. Bronsvoort. A Collaborative Feature Modeling
System. Journal of Computing and Information Science in Engineering, 2, pp.192-198.
2002.

Bronsvoort, W. F. and A. Noort. Multiple-view feature modelling for integral product
development. Computer-Aided Design, 36, pp.929-946. 2004.

Bidarra, R., J. Madeira, W.J. Neels and W.F. Bronsvoort. Efficiency of boundary
evaluation for a cellular model. Computer-Aided Design, 37, pp.1266-1284. 2005

Cavendish, J.C. and S.P. Marin. A procedural feature-based approach for designing
functional surfaces. In Proc. Topics in Surface Modeling, H. Hagen (ed), Geometric
Design Publications, Philadelphia, 1992, pp.145-168.

Cavendish, J.C. Applications-Integrating feature-based surface design with freeform
deformation, Computer-Aided Design, 27, pp.703-711. 1995.

Chen, X.P. and C.M. Hoffmann. On editability of feature-based design. Computer-
Aided Design, 27(12), pp.905-914. 1995.

Capoyleas, V., X.P. Chen and C.M. Hoffmann. Generic naming in generative,
constraint-based design. Computer-Aided Design, 28(1), pp.17-26. 1996.

Cripac, J. A mechanism for persistently naming topological entities in history-based
parametric solid models. Computer-Aided Design, 29(2), pp.113-122. 1997.

Cohen, S., G. Elber and R. Bar-Yehuda. Matching of freeform curves. Computer-
Aided Design, 29, pp.369-378. 1997.

Chan, S.C.F. and V.T.Y. Ng. Real-Time Collaborative Solid Shape Design (RCSSD)
on the Internet. Concurrent Engineering, 10(3), pp.229-238. 2002.

Chen, L., Z.J. Song and L. Feng. Internet-enabled real-time collaborative assembly
modeling via an e-Assembly system: status and promise. Computer-Aided Design, 36,
pp.835-847. 2004.

de Carmo, M. Differential geometry of curves and surfaces. Prentice-Hall. 1976.

Reference

152

Duan, W., J. Zhou and K. Lai. FSMT: a feature solid-modeling tool for feature-based
design and manufacture. Computer-Aided Design, 25(1), pp.29-38. 1993.

Du, D.Z. and F. Hwang (ed). Computing in Euclidean Geometry. pp.266-298,
Singapore: World Scientific. 1995.

Durand, C. and C.M. Hoffmann. A systematic framework for solving geometric
constraints analytically. Journal of Symbolic Computation, 30, pp.493-519. 2000.

Ding, L., D. Davies and C.A. McMahon. The integration of lightweight representation
and annotation for collaborative design representation. Research in Engineering
Design, 19, pp.223-238. 2009.

Elber, G. Generalized filleting and blending operations toward functional and
decorative applications. Graphical Models, 67, pp.189-203. 2005.

El-Tayeh, A., N. Gil and J. Freeman. A methodology to evaluate the usability of digital
socialization in “virtual” engineering design. Research in Engineering Design, 19,
pp.29-45. 2008.

Farouki, R.A.M.T., R. Sverrisson. Approximation of rolling-ball blends for free-form
parametric surfaces. Computer-Aided Design, 28 pp.871-878. 1996.

Fontana, M., F. Giannini and M. Meirana. A free form feature taxonomy. In Proc.
Eurographics’99, P. Brunet and R. Scopigno (Eds), 18(3), 1999.

Flöry, S. and M. Hofer. Constrained curve fitting on manifolds. Computer-Aided
Design, 40, pp.25-34. 2008.

Gerhard, J.F., D. Rosen, J.K. Allen and F. Mistree. A Distributed Product Realization
Environment for Design and Manufacturing. Journal of Computing and Information
Science in Engineering, 1, pp.235-244. 2001.

Hansen, A. and F. Arbab. An algorithm for generating NC tool paths for arbitrarily
shaped pockets with islands. ACM Trans. Graph, 11, pp.52-182. 1992.

Hoffman, C.M. and R. Joan-Arinyo. CAD and the product master model. Computer-
Aided Design, 30(11), pp.905-918. 1998a.

Hoffman, C. M. and R. Joan-Arinyo. On user-defined features. Computer-Aided
Design, 30(5), pp.321-332. 1998b.

Hoffman, C. M. and R. Joan-Arinyo. Distributed maintenance of multiple product
views. Computer-Aided Design, 32, pp.421-431. 2000.

Hao, Q., W.M. Shen, Z. Zhang, S.W. Park and J.K. Lee. Agent-based collaborative
product design engineering: An industrial case study. Computers in Industry, 57,
pp.26-38. 2006.

Reference

153

Imine, A. Flexible concurrency control for real-time collaborative editors. In Proc. of
the 28th International conference on distributed computing systems workshops. 2008.

Jha, K. and B. Gurumoorthy. Automatic propagation of feature modification across
domains. Computer-Aided Design, 32, pp.691-706. 2000.

Jing, S.X., F.Z. He, S.H. Han, X.T. Cai and H.J. Liu. A method for topological entity
correspondence in a replicated collaborative CAD system. Computers in Industry, 60,
pp.467-475. 2009.

Kim, K. and G. Elber. A symbolic approach to freeform parametric surface blends.
The Journal of Visualization and Computer Animation, 8, pp.69-80. 1997.

Kim, K.Y., Y. Wang, O.S. Muogboh and B.O. Nnaji. Design formalism for
collaborative assembly design. Computer-Aided Design, 36, pp.849-871. 2004.

Keyser, J., T. Culver, M. Foskey, S. Krishnan and D. Manocha. ESOLID-a system for
exact boundary evaluation. Computer-Aided Design, 36, pp.175-193. 2004.

Kuk, S.H., H.S. Kim, J.K. Lee, S.H. Han and S.W. Park. An e-Engineering Framework
based on service-oriented architecture and agent technologies. Computers in Industry,
59, pp.923-935. 2008.

Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7), pp.558-565. 1978.

Laakko, T. and M. Mäntylä. Feature modeling by incremental feature recognition.
Computer-Aided Design, 25(8), pp.479-492. 1993.

Leon, J.C. and P. Trompette. A new approach towards free-form surfaces control.
Computer Aided Geometric Design, 12, pp.395-416. 1995.

Lee, J.Y. and K. Kim. A feature-based approach to extracting machining features.
Computer-Aided Design, 30(13), pp.1019-1035. 1998.

Lee, J.Y., H. Kim and K. Kim. A Web-Enabled Approach to Feature-Based Modeling
in a Distributed and Collaborative Design Environment. Concurrent Engineering, 9(1),
pp.74-87. 2001.

Liu, X.D. CFACA: component framework for feature-based design and process
planning. Computer-Aided Design, 32, pp.397-408. 2000.

Li, W.D., S.K. Ong and A.Y.C. Nee. Recognizing manufacturing features from a
design-by-feature model. Computer-Aided Design, 34, pp.849-868. 2001.

Lee, J.Y., J.H. Lee, H. Kim and H.S. Kim. A cellular topology-based approach to
generating progressive solid models from feature-centric models. Computer-Aided
Design, 36, pp.217-229. 2004.

Reference

154

Li, W.D., S.K. Ong, J.Y.H. Fuh, Y.S. Wong, Y.Q. Lu and A.Y.C. Nee. Feature-based
design in a distributed and collaborative environment. Computer-Aided Design, 36,
pp.775-797. 2004a.

Li, W.D., J.Y.H. Fuh and Y.S. Wong. An Internet-enabled integrated system for co-
design and concurrent engineering. Computers in Industry, 55, pp.87-103. 2004b.

Li, W.D. and Z.M. Qiu. State-of-the-art technologies and methodologies for
collaborative product development systems. International Journal of Production
Research, 44(13), pp.2525-2559. 2006.

Li, M., S. Gao and C.C.L. Wang. Real-Time Collaborative Design With
Heterogeneous CAD Systems Based on Neutral Modeling Commands. Journal of
Computing and Information Science in Engineering, 7(2), pp.113-125. 2007.

Li, M., J.Y.H. Fuh, Y.F. Zhang and S.M. Gao. Adaptive granular concurrency control
for replicated collaborative feature modeling. In Proc. of the 12th International
Conference on Computer Supported Cooperative Work in Design, Xi’an, China, 1,
pp.116-122. 2008a.

Li, M., S.M. Gao, J.Y.H. Fuh and Y.F. Zhang. Replicated concurrency control for
collaborative feature modeling: A fine granular approach. Computers in Industry, 59,
pp.873-881. 2008b.

Langerak, T.R. Freeform feature recognition and manipulation to support shape design,
PhD. thesis, Delft University of Technology. 2008.

Langerak, T.R., J.S.M. Vergeest. A Dual Environment for 3D Modeling With User-
Defined Freeform Features. J. Comput. Inf. Sci. Eng. 9, 024503(3 pp.). 2009.

Martino, T.D., B. Falcidieno, F. Giannini, S. Hassinger and J. Ovtcharova. Feature-
based modeling by integrating design and recognition approaches. Computer-Aided
Design, 26(8), pp.446-453. 1994.

Martino, T.D., B. Falcidieno and S. Habinger. Design and engineering process
integration through a multiple view intermediate modeler in a distributed object-
oriented system environment. Computer-Aided Design, 30(6), pp.437-452. 1998.

Marcheix, D. and G. Pierra. A Survey of the Persistent Naming Problem. In Proc. The
7th ACM Symposium on Solid Modeling and Application, SM’02, June 17-21 2002,
Saarbrucken, Germany. pp.13-22.

Mun, D.W., S.H. Han, J.W. Kim and Y.C. Oh. A set of standard modeling commands
for the history-based parametric approach. Computer-Aided Design, 35, pp.1171-1179.
2003.

Nyirenda, P.J., W.F. Bronsvoot, T.R. Langerak, Y. Song and J.S.M. Vergeest. A
Generic Taxonomy for Defining Freeform Feature Classes. Computer-Aided Design
and Applications, 2, pp.497-506. 2005.

Reference

155

Nyirenda, P.J., M. Mulbagal and W.F. Bronsvoort. Definition of Freeform Surface
Feature Classes. Computer-Aided Design & Applications, 3(5), pp.665-674. 2006.

Nyirenda, P.J. and W.F. Bronsvoort. Numeric and curve parameters for freeform
surface feature models. Computers-Aided Design, 40, pp.839-851. 2008.

Nyirenda, P.J. and W.F. Bronsvoort. A framework for extendable freeform surface
feature modeling. Computers in Industry, 60, pp.35-67. 2009.

Open CADCADETM 3D Modeling Kernel, Open CADCADE Inc. Available:
www.opencascade.com [Last accessed: 9 December 2009].

Piegl, L.A. and W. Tiller. The NURBS Book, second edition. Springer, Berlin. 1997.

Piegl, L.A. and W. Tiller. Computing offsets of NURBS curves and surfaces.
Computer- Aided Design, 31, pp.147-156. 1999.

Park, S.C. and H. Shin. Polygonal chain intersection. Computers & Graphics, 26,
pp.341-350. 2002.

Pernot, J.P., S. Guillet, J.-C. Leon, B. Falcidieno and F. Giannini. Shape tuning in fully
free-form deformation features. Journal of Computing and Information Science in
Engineering. 5, pp.95-103. 2005.

Pernot, J.P., B. Falcidieno, F. Giannini and J.C. Leon. Incorporating free-form features
in aesthetic and engineering product design: State-of-the-art report. Computers in
Industry, 59, pp.626-637. 2008.

Pekerman, D., G. Elber and M.S. Kim. Self-intersection detection and elimination in
freeform curves and surfaces. Computer-Aided Design, 40, pp.150-159. 2008.

Qin, H. and D. Terzopoulos. D-NURBS: A physics-based Framework for Geometric
Design, IEEE Transactions on Visualization and Computer Graphics, 2, pp.85-96.
1996.

Qiu, Z.M., Y.S. Wong, J.Y.H. Fuh, Y.P. Chen, Z.D. Zhou, W.D. Li and Y.Q. Lu.
Geometric model simplification for distributed CAD. Computer-Aided Design, 36,
pp.809-819. 2004.

Requicha, A.A.G. and H.B. Voelcker. Boolean operations in solid modelling:
boundary evaluation and merging algorithms. In Proc. the IEEE, January 1985. pp.30-
44.

Roller, D. Design by Features: An Approach to High Level Shape Manipulations.
Computers in Industry, 12, pp.185-191. 1989.

Rosenman, M. and F.J. Wang. ADOM: A component agent-based design-oriented
model for collaborative design. Research in Engineering Design, 11, pp.193-205. 1999.

Rovenski, V. Geometry of Curves and Surfaces with Maple. Birkhäuser Boston, 2000.

Reference

156

Rahmani, K. and B. Arezoo. Boundary analysis and geometric completion for
recognition of interacting machining features. Computer-Aided Design, 38, pp.845-
856. 2006.

Renner, G. and V. Weiβ. Exact and approximate computation of B-spline. Computer-
Aided Design, 36, pp.351-362. 2004.

Shah, J.J. Assessment of features technology. Computer-Aided Design, 23(5), pp.331-
343. 1991.

Sheu, L.C., and J.T. Lin. Representation scheme for defining and operating form
features. Computer-Aided Design, 25(6), pp.333-347. 1993.

Shah, J.J. and M. Mäntylä. Parametric and Feature-Based CAD/CAM: Concepts,
Techniques, and Applications. Wiley. 1995.

Shen, W.M., D.H. Norrie, J.-P. Barthes. Multi-agent systems for concurrent intelligent
design and manufacturing. Taylor & Francis. 2001.

Shyamsundar, N. and R. Gadh. Internet-based collaborative product design with
assembly features and virtual design spaces. Computer-Aided Design, 33, pp.637-651.
2001.

Song, Y., J.S.M. Vergeest and W.F. Bronsvoort. Fitting and manipulating freeform
shapes using templates. In Proc. The International Conference on Shape Modeling and
Applications, June 7-9, 2004, Palazzo Ducale, Genova, Italy. pp. 86-94.

Sundararajan, V. and P.K. Wright. Volumetric feature recognition for machining
components with freeform surfaces. Computer-Aided Design, 36, pp.11-25. 2004.

Subramani, S. and B. Gurumoorthy. Maintaining associativity between form feature
models. Computer-Aided Design, 37, pp.1319-1334. 2004.

Shen, Y., S.K. Ong and A.Y.C. Nee. A framework for multiple-view product
representation using Augmented Reality. In Proc. of the 2006 International Conference
on Cyberworlds (CW’06), 2006, Switzerland. pp.157-162.

Seong, J.K., G. Elber and M.S. Kim. Trimming local and global self-intersections in
offset curves/surfaces using distance maps. Computer-Aided Design, 38, pp.183-193.
2006.

Sunil, V.B. and S.S. Pande. Automatic recognition of features from freeform surface
CAD models. Computer-Aided Design, 40, pp.502-517. 2008.

Sprynski, N., N. Szafran, B. Lacolle and L. Biard. Surface reconstruction via geodesic
interpolation. Computer-Aided Design, 40, pp.480-492. 2008.

Shen, W.M., Q. Hao and W.D. Li. Computer supported collaborative design:
retrospective and perspective. Computers in Industry, 59, pp.855-862. 2008.

Reference

157

Vida, J., R.R. Martin and T. Varady. A survey of blending methods that use parametric
surfaces. Computer-Aided Design, 26, pp.341-365. 1994.

van Elsas, P.A. and J.S.M. Vergeest. Displacement feature modelling for conceptual
design. Computer-Aided Design, 30, pp.19-27. 1998.

Vosniakos, G. Investigation of Feature-Based Shape Modelling for mechanical Parts
with Free Form Surfaces. International Journal of Advanced Manufacturing
Technology, 15, pp.188-199. 1999.

van Den Berg, E. Web-based collaborative modeling with SPIFF. Ph.D Thesis, Delft
University of Technology. 2000.

van den Berg, E., W.F. Bronsvoort and J.S.M. Vergeest. Freeform feature modelling:
concepts and prospects. Computers in Industry, 49, pp.217-233. 2002.

van den Berg, E., H.A. van der Meiden and W.F. Bronsvoort. Specification of
Freeform Features. In Proc. Solid Modeling 03, Eighth ACM Symposium on Solid
Modeling and Applications, 16-20 June 2003, Seattle, USA, Elber G, and Shapiro V
(eds), ACM Press, New York. pp.56-64.

van den Berg, E., R. Bidarra and W.F. Bronsvoort. Construction of freeform feature
models with attachments. In Proc. DETC2004, ASME Design Engineering Technical
Conferences, 28 September-2 October, 2004, Salt Lake City, Utah, USA. pp.1-10.

van den Berg, E. and W.F. Bronsvoort. Parameterized, constraint-based wrapping of
freeform shapes. Computers & Graphics, 31, pp. 89-99. 2007.

Wu, J.J., T.B. Zhang, X.F. Zhang and J. Zhou. A face based mechanism for naming,
recording and retrieving topological entities. Computer-Aided Design, 33(10), pp.687-
698. 2001.

Wu, D. and R. Sarma. The incremental editing of faceted models in an integrated
design environment. Computer-Aided Design, 36, pp.821-833. 2004.

Wang, Y. and B.O. Nnaji. Geometry-based semantic ID for persistent and
interoperable reference in feature-based parametric modeling. Computer-Aided Design,
37(10), pp.1081-1093. 2005.

Wang, Y. and B.O. Nnaji. Document-Driven Design for Distributed CAD Services in
Service-Oriented Architecture. Journal of Computing and Information Science in
Engineering, 6, pp.127-138. 2006.

Wang, L.H. and A.Y.C. Nee. Collaborative design and planning for digital
manufacturing. Springer. 2008.

Whited, B. and J. Rossignac. Relative blending. Computer-Aided Design, 41, pp.456-
462.
2009.

Reference

158

Xue, D., H. Takeda and T. Kiriyama. An Intelligent Integrated Interactive CAD – A
Preliminary Report. In Proc. Intelligent Computer Aided Design, D.C. Brown, M.
Waldron and H. Yoshikawa (eds), North-Holland, 1992. pp.163-187.

Xiao, A., H.J. Choi, R. Kulkarni, J.K. Allen, D. Rosen and F. Mistree. A Web-based
Distributed Product Realization Environment. In Proc. ASME 2001 Design
Engineering Technical Conference and Computers and Information in Engineering
Conference, September 9-12 2001, Pittsburgh, PA, pp.1-13.

Xue, L.Y., K. Zhang and C.Z. Sun. An integrated post-locking, multi-versioning, and
transformation scheme for consistency maintenance in real-time group editors. In Proc.
of the 5th international symposium on Autonomous Decentralized Systems, 26-28
March, 2001. pp.57-64.

Yang, Y.J., S. Cao, J.H. Yong, H. Zhang, J.C. Paul, J.G. Sun and H.J. Gu.
Approximate computation of curves on B-spline surfaces. Computer-Aided Design, 40,
pp.223-234. 2004.

Zhou, L.Y. and R. Nagi. Design of Distributed Information Systems for Agile
Manufacturing Virtual Enterprises Using CORBA and STEP Standards. Journal of
Manufacturing Systems, 21(1), pp.14-31. 2002.

Zhang, J.M., K.W. Chan and I. Gibson. Constrained deformation of freeform surfaces
using surface features for interactive design. International Journal of Advanced
Manufacturing Technology, 22, pp.54-67. 2003.

Zhou, X.H., Y.J. Qiu, G.R. Hua, H.F. Wang and X.Y. Ruan. A feasible approach to the
integration of CAD and CAPP. Computer-Aided Design, 39, pp.324-338. 2007.

Publication arising from this thesis

159

1. L. Yang, S.K. Ong, A.Y.C. Nee, A Surface Blending Approach for Displacement

Features on Freeform Surfaces, Computer-Aided Design, 43(2011), 57-66.

2. L. Yang, S.K. Ong, A.Y.C. Nee, Coordination for Replicated Collaborative Feature

Modeling, International Journal on Interactive Design and Manufacturing, 2010,

4(3), 191-200.

3. L. Yang, S.K. Ong, A.Y.C. Nee, A History-Independent Modeling Approach for

Feature-based Design, Computer-Aided Design, in third round review.

4. B.X. Li, L. Yang, S.K. Ong and A.Y.C. Nee, 2009, Towards ontology-based

information extraction in distributed manufacturing systems, 4th International

Conference on Advanced Research in Virtual and Rapid Prototyping (VR@P), 6-

10 October 2009, Polytechnic Institute of Lerria, Leiria, Portugal, 483-488.

Appendices

 160

Appendix A Programming of the Performance Measurement using
the Proposed Modeling Approach

The performance measurement programming of the proposed modeling approach is

presented in this appendix. For the best behavior model, it is a Block containing 100

non-intersecting Holes, as shown in Fig. A.1. The intersection face portions of each

Hole is stored at its creation step, as the intersection face portions of the No. 32 Hole

shown in Fig. A.2. For the worst behavior model, it is a Block containing 20 horizontal

Holes and 20 vertical Holes, where the horizontal Hole is larger than the vertical Hole,

as shown in Fig. A.3. In Fig. A.4, the intersection face portions of the second vertical

Hole are shown. The programming works presented in this appendix are as follows: in

A.1, two primitive features are constructed, namely, Block and Hole; in A.2, the ‘add

feature’ operation and ‘remove feature’ operation of the best behavior model are

presented; in A.3, the two operations of the worst behavior model are presented.

Fig. A.1 The best behavior model

Appendices

 161

A.1 Primitive Features

/***************two primitive features: Block and H ole*****************/
TopoDS_Shape CModelingDoc::Block(Standard_Real x, Standard_Real y,
Standard_Real z, Standard_Real length, Standard_Real width, Standard_Real height)
{

gp_Pnt point1(x,y,z);
gp_Pnt point2(x, y+width, z);
gp_Pnt point3(length+x, y+width, z);
gp_Pnt point4(length+x, y, z);
TopoDS_Edge edge1 = BRepBuilderAPI_MakeEdge(point1, point2);

Fig. A.2 Intersection face portions of the 32nd Hole in the best model

Fig. A.3 The worst behavior model

Fig. A.4 Intersection face portions of the second vertical Hole in the worst model

Appendices

 162

TopoDS_Edge edge2 = BRepBuilderAPI_MakeEdge(point2, point3);
TopoDS_Edge edge3 = BRepBuilderAPI_MakeEdge(point3, point4);
TopoDS_Edge edge4 = BRepBuilderAPI_MakeEdge(point4, point1);
TopoDS_Wire sketch = BRepBuilderAPI_MakeWire(edge1, edge2, edge3,
edge4);
TopoDS_Face start = BRepBuilderAPI_MakeFace(sketch);
gp_Vec vec(0, 0, height);
TopoDS_Shape shape = BRepPrimAPI_MakePrism(start, vec);
return shape;

}

TopoDS_Shape CModelingDoc::Hole(Standard_Real x, Standard_Real y,
Standard_Real z, Standard_Real radius, Standard_Real depth)
{

gp_Pnt origin(x, y, z);
gp_Dir dir(0, 0, 1);
gp_Ax2 asix(origin, dir);
gp_Circ circle(asix, radius);
TopoDS_Edge cirEdge = BRepBuilderAPI_MakeEdge(circle);
TopoDS_Wire cirWire = BRepBuilderAPI_MakeWire(cirEdge);
TopoDS_Face cirFace = BRepBuilderAPI_MakeFace(cirWire);
gp_Vec vec(0, 0, depth);
TopoDS_Shape shape = BRepPrimAPI_MakePrism(cirFace, vec);
return shape;

}
/*******************end of constructing the primiti ve features*************/

A.2 Measurement of Best Behavior Model

/*******************measurement of the best behavio r model*************/
/***********removing the 33rd hole in the model**** **********************/
void CModelingDoc::OnMeasureBest()
{
 TopTools_ListOfShape listOfShape;
 BRepTools_ReShape reShape;
 TopoDS_Shape removeFace, myBestModel, result,tempShape;
 clock_t start, finish;
 TopoDS_Shape stock = Block(0,0,0,1505,20,20);
 int n=0,m=0, i = 32;
 CString temp,temp1;

Handle(TopTools_HArray1OfShape) myTemp = new
TopTools_HArray1OfShape(0,3);

 ofstream output;
 output.open("C:\\Documents and Settings\\g0501018\\Desktop\\sxlyyl\\

 Myproject\\bestTimeAdd33.txt");
 result = stock;
 for (m=0;m<i;m++)
 {

Appendices

 163

 TopoDS_Shape hole = Hole(10+15*m,10,0,5,20);
 result = BRepAlgoAPI_Cut(result, hole);
 }

TopoDS_Shape hole;
 for(int j=0;j<100;j++)/*measure 100 times to get the average value*/
 {
 hole = Hole(10+15*i,10,0,5,20);
 start=clock();
 result = BRepAlgoAPI_Cut(result, hole);
 finish = clock();
 double time =double(finish-start)/CLOCKS_PER_SEC;
 output<<time<<endl;
 }
 /********find and store the intersection face portions*****************/
 TopExp_Explorer exp(hole, TopAbs_FACE);
 m=0;
 while(exp.More())
 {
 temp.Format("%d",j);
 temp1.Format("%d", ++m);

CString path = "C:\\Documents and
Settings\\Administrator\\Desktop\\Temp\\bestcase\\H"+temp+"Int"+tem
p1+".brep";

 char* path1 = new char[path.GetLength()+1];
 strcpy(path1,(const char*)path.GetBuffer(0));
 BRepTools::Write(exp.Current(), path1);
 delete path1;
 path.ReleaseBuffer();
 exp.Next();
 }
 /********end of find and store the intersection face port*************/
 /********for remove and modify operation********* ***************/
 for(int n=95;n<100;n++)/**********remove the Nth hole******/
 {
 temp.Format("%d",n);
 Standard_CString path = "bestcase/bestmodel.brep";
 BRep_Builder bb;
 BRepTools::Read(myBestModel,path,bb);
 TopExp_Explorer exp2(myBestModel, TopAbs_SHELL);
 TopoDS_Shell modelShell=TopoDS::Shell(exp2.Current());
 /*find the face originating from the hole being removed*/
 TopoDS_Shape hole = Hole(10+15*n,10,0,5,20);

TopoDS_Shell holeShell =
BRepTools::OuterShell(TopoDS::Solid(hole));

 BRepAlgoAPI_Common common(holeShell, modelShell);
 TopExp_Explorer exp1(modelShell, TopAbs_FACE);
 while(exp1.More())
 {
 listOfShape = common.Modified(exp1.Current());
 if(listOfShape.Extent())

Appendices

 164

 {
 removeFace = exp1.Current();
 }
 exp1.Next();
 }
 /*end of find the face originating from the hole being removed*/
 TopoDS_Shape interFace1,interFace2;
 CString tempStr1 = CString("bestcase/H")+temp+CString("Int2.brep");
 CString tempStr2 = CString("bestcase/H")+temp+CString("Int3.brep");
 char* path1 = new char[tempStr1.GetLength()+1];
 strcpy(path1,(const char*)tempStr2.GetBuffer(0));
 char* path2 = new char[tempStr2.GetLength()+1];
 strcpy(path2,(const char*)tempStr1.GetBuffer(0));
 BRepTools::Read(interFace1,path1,bb);
 BRepTools::Read(interFace2,path2,bb);
 delete path1;
 tempStr1.ReleaseBuffer();
 delete path2;
 tempStr2.ReleaseBuffer();
 /*************measuring time******************/
 ofstream output;
 output.open("C:\\Documents and Settings\\g0501018\\Desktop\\sxlyyl\\

Myproject\\bestTimeRemove"+temp+".txt");
 BRepBuilderAPI_Sewing sewing;
 for(int j=0;j<100;j++)/*measure the evaluation time for 100 times*/
 {
 start=clock();
 reShape.Remove(removeFace);
 sewing.Add(interFace1);
 sewing.Add(interFace2);
 sewing.Perform();
 myBestModel= sewing.SewedShape();
 finish = clock();
 double time =double(finish-start)/CLOCKS_PER_SEC;
 output<<time<<endl;
 } /*end of measure 100 times*/
 }
 /***********end of remove and modify operation**** ************/
}
/*********************end of measure the best behav ior model***************/

A.3 Measurement of Worst Behavior Model

/*******************measurement of the worst behavi or model**************/
void CModelingDoc::OnMeasureWorst()
{
 clock_t start, finish;
 ofstream output;

Appendices

 165

 output.open("C:\\Documents and Settings\\g0501018\\Desktop\\sxlyyl\\
Myproject\\worstTimeRemove10.txt");

 TopTools_ListOfShape listOfShape,listOfShape1,listOfShape2;
 BRepTools_ReShape reShape;
 BRep_Builder bb;

Handle(TopTools_HArray1OfShape) myTemp = new
TopTools_HArray1OfShape(0,3);

Handle(TopTools_HArray1OfShape) myHoleH = new
TopTools_HArray1OfShape(0,20);

Handle(TopTools_HArray1OfShape) myHoleV = new
TopTools_HArray1OfShape(0,20);

Handle(TopTools_HArray1OfShape) myIntFace = new
TopTools_HArray1OfShape(0,100);

 TopoDS_Shape stock = Block(0,0,0,410,410,20);
 TopoDS_Shape result,tempShape,hole;
 result = stock;
 TopoDS_Shell modelShell;
 int n=0,m=0,k,i;
 for(i=0;i<20;i++)
 {
 tempShape = Hole(0,15+20*i,10,5,410);
 myHoleH->SetValue(i,tempShape);
 tempShape = Hole2(15+20*i,0,10,4.5,410);
 myHoleV->SetValue(i,tempShape);
 }
 i=9; /*add the 9th horizontal and vertical hole***********/
 /*************add the horizontal hole************* *****/
 tempShape = myHoleH->Value(i);

for(TopExp_Explorer exp1(tempShape, TopAbs_FACE); exp1.More();
exp1.Next()) { myTemp->SetValue(m++,exp1.Current()); }

 BRepAlgoAPI_Cut cut1(result,tempShape);
 for(TopExp_Explorer exp(result, TopAbs_FACE);exp.More();exp.Next())
 {
 listOfShape = cut1.Modified(exp.Current());
 if(listOfShape.Extent())/*find and store the intersecting faces*/
 {
 myArrayTempFace->SetValue(n++,exp.Current());
 }
 }
 for(k=0;k<n;k++)/*remove intersecting faces in the model*/
 {
 reShape.Remove(myArrayTempFace->Value(k));
 myIntFace->SetValue(k,BRepAlgoAPI_Cut(myArrayTempFace->

Value(k),tempShape));
 }
 result= reShape.Apply(result);

BRepBuilderAPI_Sewing sewing;
 sewing.Add(result);
 for(k=0;k<n;k++)/*add the updated intersecting faces to the model*/
 {

Appendices

 166

 sewing.Add(myIntFace->Value(k));
 }
 if (i==0)/*add the new faces in the new feature to the model*/
 sewing.Add(myTemp->Value(0));
 else
 {
 TopoDS_Shape tempS2 = myTemp->Value(0);
 for(k=0;k<i;k++)
 {
 tempS2 = BRepAlgoAPI_Cut (tempS2,myHoleV->Value(k));
 }
 sewing.Add(tempS2);
 }

sewing.Perform();
 m=0;
 n=0;
 /**********for add vertical hole***************/
 result = sewing.SewedShape();
 tempShape = myHoleV->Value(i);

for(TopExp_Explorer
exp2(tempShape,TopAbs_FACE);exp2.More();exp2.Next())

 myTemp->SetValue(m++,exp2.Current());
 start = clock();
 BRepAlgoAPI_Cut cut2(result,tempShape);
 CString temp;
 for(TopExp_Explorer exp3(result, TopAbs_FACE);exp3.More();exp3.Next())
 {
 listOfShape = cut2.Modified(exp3.Current());
 temp.Format("%d",n+1);

CString tempCS =
CString("worstcase/H4")+CString("Int")+temp+".brep";

 char* path = new char[tempCS.GetLength()+1];
 strcpy(path,(const char*)tempCS.GetBuffer(0));
 if (listOfShape.Extent())/*find and store the intersecting faces*/
 {
 myArrayTempFace->SetValue(n++,exp3.Current());

 BRepTools::Write(BRepAlgoAPI_Common(exp3.Current(),tem
pShape),path);

 }
 delete path;
 tempCS.ReleaseBuffer();
 }
 for(k=0;k<n;k++)
 {

reShape.Remove(myArrayTempFace->Value(k));/*remove inter face*/
myIntFace->SetValue(k,BRepAlgoAPI_Cut(myArrayTempFace-

>Value(k),tempShape));
 }

result= reShape.Apply(result);
 BRepBuilderAPI_Sewing sewing2;

Appendices

 167

 sewing2.Add(result);
 for(k=0;k<n;k++)
 {
 sewing2.Add(myIntFace->Value(k));/*add the update inter face*/
 }

if (i==0) /*add the face from the vertical hole being added*/
sewing2.Add(BRepAlgoAPI_Cut(myTemp->Value(0),myHoleH->Value(0)));

 else /*add the face from the vertical hole being added*/
 {
 TopoDS_Shape tempS2 = myTemp->Value(0);
 int a=0;
 for(k=0;k<i+1;k++)
 {

for(TopExp_Explorer exp(myHoleH->Value(k),
TopAbs_FACE); exp.More();exp.Next())

 myTemp->SetValue(a++,exp.Current());

 BRepAlgoAPI_Fuse fuse (tempS2,myTemp->Value(0));
 TopTools_ListOfShape listShape;
 listShape = fuse.Modified(tempS2);

sewing2.Add(listShape.First());
 tempS2 = listShape.Last();
 a=0;
 }
 sewing2.Add(tempS2);
 }
 sewing2.Perform();
 result = sewing2.SewedShape();
 finish = clock();
 double time =double(finish-start)/CLOCKS_PER_SEC;
 output<<time<<endl;
/**********************end of add operation******** ***************/

/*******************begin of remove operation****** ***************/

i=19;//remove the 19th vertical hole
int count=0;
for(int j=0;j<10;j++)//measure 10 times to get the average value//
{

 BRepBuilderAPI_Sewing sewing;
 n=0;
 Standard_CString path1 = "worstcase/model.brep";
 BRepTools::Read(result,path1, bb);
 tempShape = myHoleV->Value(i);

for(TopExp_Explorer exp1(tempShape, TopAbs_FACE);
exp1.More();exp1.Next())

 myTemp->SetValue(m++,exp1.Current());
 m=0;
 //finding the faces originating from the hole being removed//
 BRepAlgoAPI_Common common(tempShape,result);

Appendices

 168

for(TopExp_Explorer exp(result,TopAbs_FAC);exp.More();exp.Next())
 {
 count++;
 listOfShape = common.Modified(exp.Current());

 if (listOfShape.Extent())
 {
 myArrayTempFace->SetValue(n++,exp.Current());
 }
 }
 //end of finding the faces originating from the hole being removed//
 CString temp,temp1;
 TopoDS_Shape tempIntface;

 for(k=1;k<i+4;k++)
 {
 temp.Format("%d",k);
 temp1.Format("%d",i+1);

CString tempCS =
CString("worstcase/NewH")+temp1+CString("Int")+temp+".bre
p";

 char* path = new char[tempCS.GetLength()+1];
 strcpy(path,(const char*)tempCS.GetBuffer(0));
 BRepTools::Read(tempIntface,path, bb);
 myArrayRemoveFace->SetValue(k,tempIntface);
 delete path;
 temp.ReleaseBuffer();
 }
 //retrieve the intersection face portions stored at the step//
 start = clock();
 //removing face originating from the hole being removed
 for(k=1;k<n;k++)
 {
 reShape.Remove(myArrayTempFace->Value(k));
 }
 reShape.Remove(myArrayTempFace->Value(0));
 result= reShape.Apply(result);

 sewing.Add(result);
 //end of removing face originating from the hole being removed
 //merge the intersection face portions
 for(k=1;k<i+4;k++)
 {
 sewing.Add(myArrayRemoveFace->Value(k));
 }
 //end of merge the intersection face portions
 //update the intersecting feature
 for(k=i+1;k<20;k++)
 {

Appendices

 169

BRepAlgoAPI_Common
common(BRepTools::OuterShell(TopoDS::Solid(myHoleH-
>Value(k))),tempShape);

 sewing.Add(common.Shape());
 }
 //end of update the intersecting feature
 sewing.Perform();
 result = sewing.SewedShape();
 finish = clock();
 double time =double(finish-start)/CLOCKS_PER_SEC;
 output<<time<<endl;
 //display the result
 }
 myWorstModel = result;
/**********************end of remove operation***** **********************/
}

Appendices

 170

Appendix B Implementation of Example#2 in Chapter 5.3.4

The implementation of the proposed surface blending is conducted using Maple and

VC++. In Maple, as presented in B.1, the derivative vectors of the base surface and the

derivative vectors of the boundary curve are computed to determine the offset vectors,

which are used to offset the sample points in the boundary curve. In VC++, as

presented in B.2, the offset ‘sample points’ obtained in Maple are interpolated as a B-

spine curve, and the four types of curves, namely boundary curve, offset ‘boundary

curve’, displaced curve, offset ‘displaced curve’, are transformed to be compatible for

surface blending. For eliminating self-intersection in the offset curve, the intersection

is removed in the offset polygon first. Next, the remaining offset points in the offset

polygon are re-interpolated as a B-spline curve, which is then re-sampled using the

original sampling number.

B.1 Calculation in Maple

/**************Construction of the base surface**** ******************/
p00 := [0, 0, 0]; p10 := [3, 0, 2]; p20 := [6, 0, 2]; p30 := [9, 0, 0]; p01 := [0, 3, 2];
p11 := [3, 3, 4]; p21 := [6, 3, 4]; p31 := [9, 3, 2]; p02 := [0, 6, 0]; p12 := [3, 6, 2];
p22 := [6, 6, 2]; p32 := [9, 6, 0];
P2 := [p00, p10, p20, p30, p01, p11, p21, p31, p02, p12, p22, p32];

s := plot3d([surf(u, v)[1], surf(u, v)[2], surf(u, v)[3]], u = 0 .. 1, v = 0 .. 1);
/***************end of construction of the base surface***************/
/******the 8 Bezier segments of the feature boundary in the parametric domain****/
P1 := [[.5, .69999999999999996], [.47884017662539796, .69339121717578978],
[.45889469798551014, .68228130340680704],
[.43999999999999995, .66999999999999993]];#arc1
[#arc2-#arc8 are omitted]
/**********determine the 3D space curve of the Bezier segments**********/

Appendices

 171

plots[display](m1, s, axes = boxed);

/***********determine the control points of the 3D boundary curve**********/
X1 := [4.5, 4.461912318, 4.424136896, 4.386670499, 4.349509891, 4.312651837,
4.276093102, 4.239830451, 4.203860647, 4.168180456, 4.132786643, 4.097675971,
4.062845207, 4.028291114, 3.994010456, 3.96]; Y1 := [4.2, 4.192069461,
4.183367299, 4.173937424, 4.163823743, 4.153070166, 4.141720601, 4.129818957,
4.117409142, 4.104535066, 4.091240637, 4.077569764, 4.063566355, 4.049274318,
4.034737564, 4.02]; Z1 := [2.34, 2.34211481, 2.344190147, 2.346215692,
2.348180833, 2.350074779, 2.35188668, 2.353605729, 2.355221255, 2.356722815,
2.358100265, 2.359343835, 2.360444185, 2.361392459, 2.362180322, 2.3628];

#segment 1
[#segment 2 - #segment 8 omitted]
/****displace the boundary curve towards the exterior of the base surface********/
for d to 16 do CP1[d] := Vector[row]([X1[d], Y1[d], Z1[d]+.5]) end do; #segment1

plots[display](M1, DisM1, DisM2, DisM3, DisM4, DisM5, DisM6, DisM7, DisM8, s);

Appendices

 172

/***************determine the offset vector of the boundary curve*******/
s := [surf(u, v)[1], surf(u, v)[2], surf(u, v)[3]]; Su := diff(s, u); Sv := diff(s, v); Susub :=
eval(subs(u = bez1(t)[1], v = bez1(t)[2], Su)); Svsub := eval(subs(u = bez1(t)[1], v =
bez1(t)[2], Sv)); nt := linalg[crossprod](Susub, Svsub);

BouC := [c1(t)[1], c1(t)[2], c1(t)[3]]; Ct := diff(BouC, t); TT := linalg[crossprod](Ct,
nt); Ctt := diff(Ct, t); Cttt := diff(Ctt, t); b := linalg[crossprod](Ct, Ctt); B := [b[1], b[2],
b[3]]/linalg[norm]([b[1], b[2], b[3]], 2);
/*******determine the sampling number of the offset curve**************/
k := linalg[norm]([b[1], b[2], b[3]], 2)/linalg[norm](Ct, 2)^3; k1 := linalg[norm](Ct,
2)^2*linalg[dotprod](linalg[crossprod](Ct, Cttt), B); k2 := 3*(linalg[dotprod](Ct,
Ctt))(linalg[dotprod](linalg[crossprod](Ct, Ctt), B)); kk := (k1-k2)/linalg[norm](Ct,
2)^5;
CC := (1-.3*k)*Ctt-.3*kk*Ct; for d from 0 to 31 do linalg[norm](evalm(subs(t =
(1/31)*d, CC)), 2) end do;
/*************the offset vector of the sample points********************/
for d from 0 to 15 do V1[d+1] := Vector[row]([subs(t = (1/15)*d, TT[1]), subs(t =
(1/15)*d, TT[2]), subs(t = (1/15)*d, TT[3])]); V1[d+1] :=
V1[d+1]/linalg[norm](V1[d+1], 2) end do; #segment 1
/******************offset the sample points******** ******************/
for d from 0 to 15 do CP12[d+1] := evalm(subs(t = (1/15)*d, BouC)-.3*V1[d+1]) end
do;
CP11[1] := Vector[row](3, {(1) = 4.563197514, (2) = 3.916634287, (3) =
2.415564190}); CP11[2] := Vector[row](3, {(1) = 4.530640228, (2) = 3.909487693, (3)
= 2.417221598}); CP11[3] := Vector[row](3, {(1) = 4.498114933, (2) = 3.901698707,
(3) = 2.418838533}); CP11[4] := Vector[row](3, {(1) = 4.465616906, (2) =
3.893289079, (3) = 2.420408060}); CP11[5] := Vector[row](3, {(1) = 4.433142511, (2)
= 3.884281157, (3) = 2.421922930}); CP11[6] := Vector[row](3, {(1) = 4.400689032,
(2) = 3.874697942, (3) = 2.423375632}); CP11[7] := Vector[row](3, {(1) =
4.368254513, (2) = 3.864563128, (3) = 2.424758433}); CP11[8] := Vector[row](3, {(1)
= 4.335837603, (2) = 3.853901119, (3) = 2.426063436}); CP11[9] := Vector[row](3,
{(1) = 4.303437422, (2) = 3.842737038, (3) = 2.427282621}); CP11[10] :=
Vector[row](3, {(1) = 4.271053391, (2) = 3.831096712,(3) = 2.428407888});
CP11[11] := Vector[row](3, {(1) = 4.238685128, (2) = 3.819006652,(3) =
2.429431105}); CP11[12] := Vector[row](3, {(1) = 4.206332320, (2) =
3.806494048,(3) = 2.430344148}); CP11[13] := Vector[row](3, {(1) = 4.173994610,
(2) = 3.793586709,(3) = 2.431138937}); CP11[14] := Vector[row](3, {(1) =

Appendices

 173

4.141671498, (2) = 3.780313057,(3) = 2.431807478}); CP11[15] := Vector[row](3,
{(1) = 4.109362243, (2) = 3.766702071,(3) = 2.432341878}); CP11[16] :=
Vector[row](3, {(1) = 4.077065779, (2) = 3.752783263,(3) = 2.432734389});
OFF1 := plots[pointplot3d]([seq(CP11[i], i = 1 .. 16)], color = blue);
plots[display](M1, M2, M3, M4, M5, M6, M7, M8, OFF2, OFF1, OFF3, OFF4, OFF5,
OFF6, OFF7, OFF8, s);

/*********end of offset the sample points********** **********/
/**********offset the displaced curve************** ******/
OffDisC := [DisC1(t)[1], DisC1(t)[2], DisC1(t)[3]];
for d from 0 to 15 do OffDisCP1[d+1] := evalm(subs(t = (1/15)*d,
OffDisC)+.3*V1[d+1]) end do; OFFDis1 := plots[pointplot3d]([seq(OffDisCP1[i], i =
1 .. 16)], color = blue); plots[display](M1, DisM1, OFFDis1);
/****************remove intersection of curve4 **** *****/
for d from 0 to 28 do Up[d+1] := subs(t = (1/28)*d, Susub); Vp[d+1] := subs(t =
(1/28)*d, Svsub); UpM[d+1] := linalg[norm](Up[d+1], 2); VpM[d+1] :=
linalg[norm](Vp[d+1], 2); UUp[d+1] := Up[d+1]/UpM[d+1]; UVp[d+1] :=
Vp[d+1]/VpM[d+1] end do;
/************determine the offset vector in the derivative direction*********/
for d to 29 do VecU[d] := linalg[dotprod](.3*V4[d], UUp[d]); VecV[d] :=
linalg[dotprod](.3*V4[d], UVp[d]) end do;
/**************determine the offset vector in the d omain space********/
for d to 29 do DU[d] := VecU[d]/UpM[d]; DV[d] := VecV[d]/VpM[d] end do;
/*******************offset the domain curve4******* ******/
for d from 0 to 28 do DP4[d+1] := [subs(t = (1/28)*d, bez1(t)[1]), subs(t = (1/28)*d,
bez1(t)[2])]+[DU[d+1], DV[d+1]] end do;
/*****do the same for curve5, and remove the intersection [omitted] **********/
/*get the remaining offset points in curve4 and curve5*/
DP[1] := [.4620217182, .2847979055]; DP[2] := [.4645870586, .2863146607];
DP[3] := [.4670388800, .2878676247]; DP[4] := [.4693866810, .2894413983];
DP[5] := [.4716388264, .2910226484]; DP[6] := [.4738024697, .2925995814];
DP[7] := [.4758835416, .2941615274]; DP[8] := [.4778867749, .2956986262];
DP[9] := [.4798157482, .2972015966]; DP[10] := [.4816729335, .2986615760];
DP[11] := [.4834597399, .3000700196]; DP[12] := [.4851765511, .3014186504];
DP[13] := [.4868227519, .3026994553]; DP[14] := [.4883967479, .3039047230];
DP[15] := [.4898959780, .3050271266]; DP[16] := [.4913169238, .3060598491];
DP[17] := [.4926551245, .3069967616]; DP[18] := [.4939052052, .3078326512];
DP[19] := [.4950609314, .3085635114]; DP[20] := [.4961153090, .3091868913];
DP[21] := [.4970607523, .3097023036]; DP[22] := [.4978893475, .3101116801];
DP[23] := [.4985932465, .3104198438]; DP[24] := [.4991652247, .3106349481];

Appendices

 174

DP[25] := [.4995994290, .3107688016]; DP[26] := [.4998923250, .3108369598];
DP[27] := [.5000084867, .3108359610]; DP[28] := [.5003065830, .3107651677];
DP[29] := [.5007468457, .3106274381]; DP[30] := [.5013255051, .3104073036];
DP[31] := [.5020365187, .3100930982]; DP[32] := [.5028725197, .3096768408];
DP[33] := [.5038255634, .3091538936]; DP[34] := [.5048876777, .3085225090];
DP[35] := [.5060512519, .3077833494]; DP[36] := [.5073092952, .3069390283];
DP[37] := [.5086555995, .3059937002]; DP[38] := [.5100848356, .3049527111];
DP[39] := [.5115926061, .3038223106]; DP[40] := [.5131754719, .3026094246];
DP[41] := [.5148309661, .3013214823]; DP[42] := [.5165576045, .2999662921];
DP[43] := [.5183548988, .2985519643]; DP[44] := [.5202233768, .2970868783];
DP[45] := [.5221646106, .2955796925]; DP[46] := [.5241812565, .2940394026];
DP[47] := [.5262770983, .2924754527]; DP[48] := [.5284570963, .2908979090];
DP[49] := [.5307274273, .2893177059]; DP[50] := [.5330955057, .2877469821];
DP[51] := [.5355699607, .2861995195]; DP[52] := [.5381605398, .2846912994];
/**************determine the parameter values for interpolation********/
for d to 51 do Vpp[d] := Vector[row](DP[d+1]-DP[d]) end do; for d to 51 do
VppM[d] := linalg[norm](Vpp[d], 2) end do; chord := 0.; for d to 51 do chord :=
chord+VppM[d] end do; uu[1] := 0; uu[52] := 1; for d from 2 to 51 do uu[d] := uu[d-
1]+VppM[d-1]/chord end do; for d to 52 do uu[d] end do;
/************get the newly sample ‘domain points’ after removing intersection****/
DUV := [[.4620217182, .2847979055], [.4634512709, .2856289951],
[.4648653398, .286485992], [.4662647032, .287366857],
[.4676501144, .2882695198], [.4690223923, .2891919916],
[.4703824416, .2901323885], [.4717312155, .2910888874],
[.4730697081, .2920597099], [.4743989695, .2930431305],
[.475720095, .2940374503], [.4770342286, .295040988], [.478342573, .2960520604],
[.4796463896, .2970689626], [.480947011, .2980899468],
[.4822458588, .2991131863], [.4835444557, .3001367437],
[.4848444504, .3011585257], [.4861476543, .3021762127],
[.4874560834, .3031871737], [.4887720174, .3041883471],
[.4900980857, .3051760587], [.4914373945, .3061457398],
[.4927937196, .307091469], [.4941718212, .3080051574],
[.4955779972, .3088749907], [.4970212127, .3096816905],
[.4985158317, .3103878381], [.5000948058, .3108231197]];
/**************get the newly offset vector in domai n space************/
for d to 29 do RemVec[d] := [DUV[d][1], DUV[d][2]]+[-subs(t = (d-1)*1/28,
bez1(t)[1]), -subs(t = (d-1)*1/28, bez1(t)[2])] end do;
/**************get the offset displace in derivativ e direction in base surface***/

for d to 29 do ZU[d] := RemVec[d][1]*Up[d]; ZV[d] := RemVec[d][2]*Vp[d];
ZVec[d] := ZU[d]+ZV[d] end do;
/**************determine the newly offset points SP*************/
for d to 29 do PP1[d] := subs(t = (d-1)*1/28, BouC)+ZU[d]; PP2[d] := subs(t = (d-
1)*1/28, BouC)+ZV[d]; PP3[d] := subs(t = (d-1)*1/28, BouC); PP4[d] :=
Vector[row]([subs(t = (d-1)*1/28, nt[1]), subs(t = (d-1)*1/28, nt[2]), subs(t = (d-
1)*1/28, nt[3])]) end do;
for d to 29 do solve({(x-PP1[d][1])*UUp[d][1]+(y-PP1[d][2])*UUp[d][2]+(z-
PP1[d][3])*UUp[d][3] = 0, (x-PP2[d][1])*UVp[d][1]+(y-PP2[d][2])*UVp[d][2]+(z-
PP2[d][3])*UVp[d][3] = 0, (x-PP3[d][1])*PP4[d][1]+(y-PP3[d][2])*PP4[d][2]+(z-
PP3[d][3])*PP4[d][3] = 0}, {z, x, y}) end do;

Appendices

 175

SP41[1] := [4.162299935, 1.707173383, 2.815045962]; SP41[2] := [4.175017126,
1.712262649, 2.817148559]; SP41[3] := [4.187597415, 1.717507035, 2.819277655];
SP41[4] := [4.200047111, 1.722893701, 2.821428307]; SP41[5] := [4.212372356,
1.728409659, 2.823595529]; SP41[6] := [4.224579964, 1.734042451, 2.825774463];
SP41[7] := [4.236677596, 1.739780281, 2.827960375]; SP41[8] := [4.248673425,
1.745611768, 2.830148571]; SP41[9] := [4.260576071, 1.751525838, 2.832334349];
SP41[10] := [4.272394741, 1.757511781, 2.834512980]; SP41[11] := [4.284139123,
1.763559092, 2.836679684]; SP41[12] := [4.295819413, 1.769657419, 2.838829584];
SP41[13] := [4.307446409, 1.775796441, 2.840957704]; SP41[14] := [4.319031500,
1.781965748, 2.843058928]; SP41[15] := [4.330586781, 1.788154722, 2.845127987];
SP41[16] := [4.342125193, 1.794352300, 2.847159436]; SP41[17] := [4.353660652,
1.800546802, 2.849147607]; SP41[18] := [4.365208234, 1.806725647, 2.851086612];
SP41[19] := [4.376784537, 1.812874926, 2.852970262]; SP41[20] := [4.388408015,
1.818978892, 2.854791993]; SP41[21] := [4.400099538, 1.825019254, 2.856544775];
SP41[22] := [4.411883136, 1.830974065, 2.858220925]; SP41[23] := [4.423787161,
1.836816042, 2.859811815]; SP41[24] := [4.435845994, 1.842509823, 2.861307376];
SP41[25] := [4.448102887, 1.848007075, 2.862695184]; SP41[26] := [4.460614914,
1.853237159, 2.863958699]; SP41[27] := [4.473463131, 1.858084716, 2.865072971];
SP41[28] := [4.486777078, 1.862325654, 2.865992473]; SP41[29] := [4.500853252,
1.864938718, 2.866521894];
OFF41 := plots[pointplot3d]([seq(SP41[i], i = 1 .. 29)], color = blue):
plots[display](M4,M5,DisM1, DisM2, DisM3, DisM4, DisM5, DisM6, DisM7,
DisM8,OFF41,OFF51, s);

B.2 Surface Construction in VC++

void CMapleBlendingDoc::OnMapleDemo1()
{
 /***************base surf, same control points as in B.1***************/
 TColgp_Array2OfPnt Poles(0, 3, 0, 2);
 Handle(Geom_BezierSurface) mySurf = new Geom_BezierSurface(Poles);
 TopoDS_Face Face = BRepBuilderAPI_MakeFace(mySurf);
 /*******************end of base surf************** *****************/
 /********************domain curve***************** ***************/

Handle(TColgp_HArray1OfPnt2d) DIntpoints = new
TColgp_HArray1OfPnt2d(1,8);

 DIntpoints->SetValue(1, gp_Pnt2d(0.5, 0.7));
 DIntpoints->SetValue(2, gp_Pnt2d(0.44, 0.67));
 DIntpoints->SetValue(3, gp_Pnt2d(0.35, 0.55));

Appendices

 176

 DIntpoints->SetValue(4, gp_Pnt2d(0.45, 0.33));
 DIntpoints->SetValue(5, gp_Pnt2d(0.5, 0.36));
 DIntpoints->SetValue(6, gp_Pnt2d(0.55, 0.33));
 DIntpoints->SetValue(7, gp_Pnt2d(0.65, 0.55));
 DIntpoints->SetValue(8, gp_Pnt2d(0.56, 0.67));
 Geom2dAPI_Interpolate DInttoBSpline(DIntpoints,1,1.0e-3);
 DInttoBSpline.Perform();
 Handle(Geom2d_BSplineCurve) DIntBspCur = DInttoBSpline.Curve();
 int NbPo = DIntBspCur->NbPoles();
 gp_Pnt2d poles[9];
 for(int i=0;i<9;i++)
 poles[i] = DIntBspCur->Pole(i+1);
 /*************end of domain curve***************** ******/
 /************convert to bspline curve of domain bezier curve********/
 Geom2dConvert_BSplineCurveToBezierCurve toBezCur(DIntBspCur);
 int NbArc = toBezCur.NbArcs();/*8 arcs*/
 Handle(Geom2d_BezierCurve) bezCur = toBezCur.Arc(1);/*do same f other

arcs*/
 gp_Pnt2d bezPoles[4];
 for(i=0;i< bezCur->NbPoles();i++)
 bezPoles[i] = bezCur->Pole(i+1);
 /*********end of domain curve convert************* ********/
 /********input the domain curve in Maple to get 3D curve***********/
 /*************boundary curve 1******************** ****/
 TColgp_Array1OfPnt cPoles1(1,16);
 double Xpoles1[16] = {4.5, 4.461912318, 4.424136896, 4.386670499,

4.349509891, 4.312651837, 4.276093102, 4.239830451, 4.203860647,
4.168180456, 4.132786643, 4.097675971, 4.062845207, 4.028291114,
3.994010456, 3.96};

 double Ypoles1[16] = {4.2, 4.192069461, 4.183367299, 4.173937424,
4.163823743, 4.153070166, 4.141720601, 4.129818957, 4.117409142,
4.104535066, 4.091240637, 4.077569764, 4.063566355, 4.049274318,
4.034737564, 4.02};

 double Zpoles1[16] = {2.34, 2.34211481, 2.344190147, 2.346215692,
2.348180833, 2.350074779, 2.35188668, 2.353605729, 2.355221255,
2.356722815, 2.358100265, 2.359343835, 2.360444185, 2.361392459,
2.362180322, 2.3628};

 for(i=0;i<16;i++)
 cPoles1.SetValue(i+1,gp_Pnt(Xpoles1[i],Ypoles1[i],Zpoles1[i]));
 Handle(Geom_BezierCurve) bezCur1 = new Geom_BezierCurve(cPoles1);
 /******************convert bezCur1 to Bspline curv e*********/
 TColStd_Array1OfReal knot(1,2);
 knot.SetValue(1,0);
 knot.SetValue(2,1);
 TColStd_Array1OfInteger multiplicity(1,2);
 multiplicity.SetValue(1,16);
 multiplicity.SetValue(2,16);

Handle(Geom_BSplineCurve) firstBspCur1 = new
Geom_BSplineCurve(cPoles1,knot,multiplicity,15);

[do the same program for boundary curve2-curve8]

Appendices

 177

/*******get the offset points of the boundary curve from Maple********/
 /*********offset curve1, d=0.3, 1.0e-5************ **********/
 TColgp_Array1OfPnt OFFpoints1(1,16);
 OFFpoints1.SetValue(1, gp_Pnt(4.563197514,3.916634287,2.415564190));
 OFFpoints1.SetValue(2, gp_Pnt(4.530640228,3.909487693,2.417221598));
 OFFpoints1.SetValue(3, gp_Pnt(4.498114933,3.901698707,2.418838533));
 OFFpoints1.SetValue(4, gp_Pnt(4.465616906,3.893289079,2.420408060));
 OFFpoints1.SetValue(5, gp_Pnt(4.433142511,3.884281157,2.421922930));
 OFFpoints1.SetValue(6, gp_Pnt(4.400689032,3.874697942,2.423375632));
 OFFpoints1.SetValue(7, gp_Pnt(4.368254513,3.864563128,2.424758433));
 OFFpoints1.SetValue(8, gp_Pnt(4.335837603,3.853901119,2.426063436));
 OFFpoints1.SetValue(9, gp_Pnt(4.303437422,3.842737038,2.427282621));
 OFFpoints1.SetValue(10, gp_Pnt(4.271053391,3.831096712,2.428407888));
 OFFpoints1.SetValue(11, gp_Pnt(4.238685128,3.819006652,2.429431105));
 OFFpoints1.SetValue(12, gp_Pnt(4.206332320,3.806494048,2.430344148));
 OFFpoints1.SetValue(13, gp_Pnt(4.173994610,3.793586709,2.431138937));
 OFFpoints1.SetValue(14, gp_Pnt(4.141671498,3.780313057,2.431807478));
 OFFpoints1.SetValue(15, gp_Pnt(4.109362243,3.766702071,2.432341878));
 OFFpoints1.SetValue(16, gp_Pnt(4.077065779,3.752783263,2.432734389));
 /***************interpolate the offset points to B spline*********/
 TColStd_Array1OfReal parameter1(1,16);
 for(i=1;i<17;i++)
 {
 double para = (i-1)/15.0;
 parameter1.SetValue(i, para);
 }
 GeomAPI_PointsToBSpline OFFtoBSpline1(OFFpoints1,parameter1);
 Handle(Geom_BSplineCurve) offBspCur1 = OFFtoBSpline1.Curve();
 [do the same program for boundary curve2-curve8]
 /***************displace the boundary curve******* ****************/
 /**************displace curve 1******************* **************/
 TColgp_Array1OfPnt DiscPoles1(1,16);
 for(i=0;i<16;i++)

 DiscPoles1.SetValue(i+1,gp_Pnt(Xpoles1[i],Ypoles1[i],Zpoles1[i]+0.5));
 Handle(Geom_BezierCurve) DisbezCur1 = new

Geom_BezierCurve(DiscPoles1);
Handle(Geom_BSplineCurve) DisBspCur1 = new

Geom_BSplineCurve(DiscPoles1,knot,multiplicity,15);
 [do the same program for boundary curve2-curve8]
 /***************end of displace boundary curve**** *******************/
 /************************offset displace curve**** ************/
 /***********get the offset points of displaced curve from Maple***/
 /************offset displace curve1, d=0.3, 1.0e-5******************/
 TColgp_Array1OfPnt DisOFFpoints1(1,16);
 DisOFFpoints1.SetValue(1, gp_Pnt(4.436802486,4.483365713,2.764435810));
 DisOFFpoints1.SetValue(2, gp_Pnt(4.393474980,4.473942887,2.766968382));
 DisOFFpoints1.SetValue(3, gp_Pnt(4.350693135,4.463793125,2.769450857));
 DisOFFpoints1.SetValue(4, gp_Pnt(4.308456434,4.452965713,2.771873044));
 DisOFFpoints1.SetValue(5, gp_Pnt(4.266763289,4.441509337,2.774224898));

Appendices

 178

 DisOFFpoints1.SetValue(6, gp_Pnt(4.225611176,4.429472028,2.776496576));
 DisOFFpoints1.SetValue(7, gp_Pnt(4.184996817,4.416901128,2.778678489));
 DisOFFpoints1.SetValue(8, gp_Pnt(4.144916323,4.403843267,2.780761338));
 DisOFFpoints1.SetValue(9, gp_Pnt(4.105365360,4.390344360,2.782736159));
 DisOFFpoints1.SetValue(10, gp_Pnt(4.066339257,4.376449614,2.784594348));
 DisOFFpoints1.SetValue(11, gp_Pnt(4.027833162,4.362203544,2.786327701));
 DisOFFpoints1.SetValue(12, gp_Pnt(3.989842158,4.347650008,2.787928432));
 DisOFFpoints1.SetValue(13, gp_Pnt(3.952361366,4.332832219,2.789389207));
 DisOFFpoints1.SetValue(14, gp_Pnt(3.915386054,4.317792797,2.790703164));
 DisOFFpoints1.SetValue(15, gp_Pnt(3.878911729,4.302573795,2.791863920));
 DisOFFpoints1.SetValue(16, gp_Pnt(3.842934221,4.287216737,2.792865611));
 /***************interpolate offset points to Bspline**************/
 TColStd_Array1OfReal Disparameter1(1,16);
 for(i=1;i<17;i++)
 {
 double para = (i-1)/15.0;
 Disparameter1.SetValue(i, para);
 }
 GeomAPI_PointsToBSpline DisOFFtoBSpline1(DisOFFpoints1,Disparameter1);
 Handle(Geom_BSplineCurve) DisoffBspCur1 = DisOFFtoBSpline1.Curve();
 [do the same program for boundary curve2-curve8]
 /***************end of offset displaced curve***** ************/
 /******************compatible the four types of cu rves*************/
 /*************compatible curve 7****************** **************/
 /*get the knot vector*/
 offBspCur7->IncreaseDegree(15);
 int nb = offBspCur7->NbKnots();
 TColStd_Array1OfInteger KnotMul(1,nb);
 offBspCur7->Multiplicities(KnotMul);
 int nMul=0;
 for (i=1;i<=nb;i++)
 {
 nMul+= KnotMul.Value(i);
 }
 TColStd_Array1OfReal KnotSeq(1,nMul);
 offBspCur7->KnotSequence(KnotSeq);
 double KV[32];
 for(i=0;i<32;i++)
 {
 KV[i]=KnotSeq.Value(i+1);
 }
 DisoffBspCur7->IncreaseDegree(15);
 int Disnb = DisoffBspCur7->NbKnots();
 TColStd_Array1OfInteger DisKnotMul(1,Disnb);
 DisoffBspCur7->Multiplicities(DisKnotMul);
 int DisnMul=0;
 for (i=1;i<=Disnb;i++)
 {
 DisnMul+= DisKnotMul.Value(i);
 }

Appendices

 179

 TColStd_Array1OfReal DisKnotSeq(1,DisnMul);
 DisoffBspCur7->KnotSequence(DisKnotSeq);
 double DisKV[32];
 for(i=0;i<32;i++)
 {
 DisKV[i]=KnotSeq.Value(i+1);
 }
 /************end of get the knoe vector*********** ***********/
 [do the same job for other curves]
 /*get the bezier curve Bez111, first ‘1’ means first boundary curve, second ‘1’

means first curve of the four types of curves (boundary curve, offset, displaced,
offset displaced), third ‘1’ means first Bezier curve of the boundary curve*/

 offBspCur1->IncreaseDegree(15);
 DisoffBspCur1->IncreaseDegree(15);
 GeomConvert_BSplineCurveToBezierCurve toBezier11(offBspCur1);
 int Nbarc11 = toBezier11.NbArcs ();
 Handle(Geom_BezierCurve) Bez111 = toBezier11.Arc(1);
 GeomConvert_BSplineCurveToBezierCurve toBezier13(DisoffBspCur1);
 int Nbarc13 = toBezier13.NbArcs ();
 Handle(Geom_BezierCurve) Bez131 = toBezier13.Arc(1);
 /*********end of get the bezier curve of the compatible curve***********/
 /******************surf construction************** ***************/
 TColgp_Array1OfPnt Bez111poles(1,16),Bez131poles(1,16);
 Bez111->Poles(Bez111poles);
 Bez131->Poles(Bez131poles);
 TColgp_Array2OfPnt PatchPoles1(0, 15, 0, 3);
 for(i=0;i<16;i++)
 {
 PatchPoles1.SetValue(i, 0, cPoles1.Value(i+1));
 PatchPoles1.SetValue(i, 1, Bez111poles.Value(i+1));
 PatchPoles1.SetValue(i, 2, Bez131poles.Value(i+1));
 PatchPoles1.SetValue(i, 3, DiscPoles1.Value(i+1));
 }

Handle(Geom_BezierSurface) mySurfPatch1 = new
Geom_BezierSurface(PatchPoles1);

 /*end of compatible boundary curve 1************** ***************/
 [do the same job for boundary curve2-8:compatible curves and surface

construction]
 /****************displace feature construction**** ****************/
 /*displace the modify region*/
 int index = 0;
 BRepFeat_SplitShape splitter(Face);

TopoDS_Edge myMappedEdge = BRepBuilderAPI_MakeEdge(DIntBspCur,
mySurf);

 BRepLib::BuildCurve3d(myMappedEdge);
 splitter.Add(myMappedEdge, Face);
 splitter.Build();
 TopTools_ListIteratorOfListOfShape iter(splitter.Modified(Face));

 Handle(TopTools_HArray1OfShape) m_Face = new
TopTools_HArray1OfShape(0,1);

Appendices

 180

 for(;iter.More();iter.Next())
 {
 m_Face->SetValue(index,iter.Value());
 index++;
 }
 gp_Trsf transformation;
 transformation.SetTranslation(gp_Vec(0., 0., 0.5));
 TopoDS_Shape m_TrsfSrfRegion = m_Face->Value(1);
 m_TrsfSrfRegion.Location(TopLoc_Location(transformation));
 Handle(AIS_Shape) ais_shape1 = new AIS_Shape(m_Face->Value(0));
 Handle(AIS_Shape) ais_shape2 = new AIS_Shape(m_TrsfSrfRegion);
 /*************end of displace the modify region*** ***********/
 /********remove the self-intersection in curve4 and curve5********/
 /*******get the offset points in domain space from Maple********/

Handle(TColgp_HArray1OfPnt2d) DRemIntpoints = new
TColgp_HArray1OfPnt2d(1,52);

 DRemIntpoints->SetValue(1, gp_Pnt2d(.4620217182, .2847979055));
 DRemIntpoints->SetValue(2, gp_Pnt2d(.4645870586, .2863146607));
 DRemIntpoints->SetValue(3, gp_Pnt2d(.4670388800, .2878676247));
 DRemIntpoints->SetValue(4, gp_Pnt2d(.4693866810, .2894413983));
 DRemIntpoints->SetValue(5, gp_Pnt2d(.4716388264, .2910226484));
 DRemIntpoints->SetValue(6, gp_Pnt2d(.4738024697, .2925995814));
 DRemIntpoints->SetValue(7, gp_Pnt2d(.4758835416, .2941615274));
 DRemIntpoints->SetValue(8, gp_Pnt2d(.4778867749, .2956986262));
 DRemIntpoints->SetValue(9, gp_Pnt2d(.4798157482, .2972015966));
 DRemIntpoints->SetValue(10, gp_Pnt2d(.4816729335, .2986615760));
 DRemIntpoints->SetValue(11, gp_Pnt2d(.4834597399, .3000700196));
 DRemIntpoints->SetValue(12, gp_Pnt2d(.4851765511, .3014186504));
 DRemIntpoints->SetValue(13, gp_Pnt2d(.4868227519, .3026994553));
 DRemIntpoints->SetValue(14, gp_Pnt2d(.4883967479, .3039047230));
 DRemIntpoints->SetValue(15, gp_Pnt2d(.4898959780, .3050271266));
 DRemIntpoints->SetValue(16, gp_Pnt2d(.4913169238, .3060598491));
 DRemIntpoints->SetValue(17, gp_Pnt2d(.4926551245, .3069967616));
 DRemIntpoints->SetValue(18, gp_Pnt2d(.4939052052, .3078326512));
 DRemIntpoints->SetValue(19, gp_Pnt2d(.4950609314, .3085635114));
 DRemIntpoints->SetValue(20, gp_Pnt2d(.4961153090, .3091868913));
 DRemIntpoints->SetValue(21, gp_Pnt2d(.4970607523, .3097023036));
 DRemIntpoints->SetValue(22, gp_Pnt2d(.4978893475, .3101116801));
 DRemIntpoints->SetValue(23, gp_Pnt2d(.4985932465, .3104198438));
 DRemIntpoints->SetValue(24, gp_Pnt2d(.4991652247, .3106349481));
 DRemIntpoints->SetValue(25, gp_Pnt2d(.4995994290, .3107688016));
 DRemIntpoints->SetValue(26, gp_Pnt2d(.4998923250, .3108369598));
 DRemIntpoints->SetValue(27, gp_Pnt2d(.5000084867, .3108359610));
 DRemIntpoints->SetValue(28, gp_Pnt2d(.5003065830, .3107651677));
 DRemIntpoints->SetValue(29, gp_Pnt2d(.5007468457, .3106274381));
 DRemIntpoints->SetValue(30, gp_Pnt2d(.5013255051, .3104073036));
 DRemIntpoints->SetValue(31, gp_Pnt2d(.5020365187, .3100930982));
 DRemIntpoints->SetValue(32, gp_Pnt2d(.5028725197, .3096768408));
 DRemIntpoints->SetValue(33, gp_Pnt2d(.5038255634, .3091538936));
 DRemIntpoints->SetValue(34, gp_Pnt2d(.5048876777, .3085225090));

Appendices

 181

 DRemIntpoints->SetValue(35, gp_Pnt2d(.5060512519, .3077833494));
 DRemIntpoints->SetValue(36, gp_Pnt2d(.5073092952, .3069390283));
 DRemIntpoints->SetValue(37, gp_Pnt2d(.5086555995, .3059937002));
 DRemIntpoints->SetValue(38, gp_Pnt2d(.5100848356, .3049527111));
 DRemIntpoints->SetValue(39, gp_Pnt2d(.5115926061, .3038223106));
 DRemIntpoints->SetValue(40, gp_Pnt2d(.5131754719, .3026094246));
 DRemIntpoints->SetValue(41, gp_Pnt2d(.5148309661, .3013214823));
 DRemIntpoints->SetValue(42, gp_Pnt2d(.5165576045, .2999662921));
 DRemIntpoints->SetValue(43, gp_Pnt2d(.5183548988, .2985519643));
 DRemIntpoints->SetValue(44, gp_Pnt2d(.5202233768, .2970868783));
 DRemIntpoints->SetValue(45, gp_Pnt2d(.5221646106, .2955796925));
 DRemIntpoints->SetValue(46, gp_Pnt2d(.5241812565, .2940394026));
 DRemIntpoints->SetValue(47, gp_Pnt2d(.5262770983, .2924754527));
 DRemIntpoints->SetValue(48, gp_Pnt2d(.5284570963, .2908979090));
 DRemIntpoints->SetValue(49, gp_Pnt2d(.5307274273, .2893177059));
 DRemIntpoints->SetValue(50, gp_Pnt2d(.5330955057, .2877469821));
 DRemIntpoints->SetValue(51, gp_Pnt2d(.5355699607, .2861995195));
 DRemIntpoints->SetValue(52, gp_Pnt2d(.5381605398, .2846912994));
 /************interpolate the remaining domain offset points***********/
 /*set the respective parameters, determined from Maple*/
 Handle(TColStd_HArray1OfReal) projPara = new

TColStd_HArray1OfReal(1,52);
double chord[52] =
{0,0.03218506726,0.06352856506,0.09405353285,0.1237722992,0.1526865502
,0.1807875868,0.2080567566,0.2344660186,0.2599785925,0.2845496780,0.308
1272480,0.3306528981,0.3520627906,0.3722887194,0.3912593092,0.40890145
64,0.4251420084,0.4399097926,0.4531380306,0.4647671978,0.4747483395,0.4
830468132,0.4896463705,0.4945533971,0.4978010960,0.4990556514,0.502364
5343,0.5073464611,0.5140327260,0.5224278030,0.5325136152,0.5442538447,
0.5575980408,0.5724853960,0.5888480711,0.6066140527,0.6257095645,0.646
0610914,0.6675970601,0.6902492575,0.7139540491,0.7386534355,0.76429599
13,0.7908377206,0.8182428569,0.8464845679,0.8755456087,0.9054188640,0.9
361077588,0.9676264833,1};

 Geom2dAPI_Interpolate DRemInttoBSpline(DRemIntpoints,projPara,0,1.0e-5);
 DRemInttoBSpline.Perform();
 Handle(Geom2d_BSplineCurve) DRemIntBspCur = DRemInttoBSpline.Curve();
 /***********resample the domain curve using original sampling number***/
 gp_Pnt2d DSamplePnt[57];
 double Dpara=0;
 double f = DRemIntBspCur->FirstParameter();
 double l = DRemIntBspCur->LastParameter();
 for(i=0;i<57;i++)
 {
 Dpara = (l-f)*i/56.0;
 DRemIntBspCur->D0(Dpara,DSamplePnt[i]);
 }
}

