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Abstract: 

A replicated collaborative feature modeling system has been explored in this study, 

where a team of designers work together creating prismatic product models or 

designing displacement features on freeform surfaces. Two modeling functions are 

enhanced in this work, namely a history-independent modeling approach used for 

regular feature modeling and a surface blending approach used for displacement 

feature modeling. In addition, a granular locking mechanism has been explored for 

scheduling the concurrent design operations at the server. In this modeling system, 

users can perform design operations on a product model concurrently, e.g., create and 

modify regular-shaped features, designing some intricate features on freeform surfaces, 

and the server coordinates the concurrent operations and synchronizes the product 

information. This modeling platform provides a valuable paradigm for designers 

working together on a complex product model, which is strongly needed in current 

product development. 
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Summary 

 

Computer-aided product modeling has been a research topic since its advent in product 

development. Many modeling techniques have been employed in the past few decades, 

e.g., feature-based design, freeform surface modeling, collaborative feature modeling, 

etc. However, exploring and enhancing the modeling functions remains as a research 

topic for improving design quality and shortening development time, especially for 

concurrent and collaborative product design. In this study, a replicated collaborative 

feature modeling framework has been proposed and validated, in which the designers 

can work together creating a prismatic model and designing displacement features on 

freeform surfaces. 

 

At the client sides, each user is provided with the full-fledged modeling functions, in 

which two modeling functions have been enhanced in this work. Firstly, a history-

independent modeling approach has been proposed and validated for overcoming the 

problems and shortcomings in current history-based modeling. In this approach, when 

a feature is modified, it is first removed from the product model by updating its 

intersecting features, and it is then re-added with the newly specified parameters. 

Hence, the creation step of the feature being modified is changed, and the problems 

caused by the static ‘feature creation order’ can be solved. The complexity analysis 

and performance measurement of the proposed boundary evaluation algorithm for 

three representative models show that its computational complexity is better than 

history-based modeling. Secondly, to avoid the high polynomial degree of the tangent 

field curve obtained symbolically, an approximation for the Cubic Hermite Interpolant 

has been proposed and validated. The boundary curve of the displacement feature is 
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first offset in the tangent field with a user-specified tolerance, and it is then knot-

refined to be compatible with the offset curve for surface blending. The local self-

intersection problem in the offset curve is eliminated in the parametric space by 

approximately mapping the offset vectors in the respective tangent planes to the 

parameter space of the base surface. The examples studied using the proposed 

algorithm show that the boundary curve of the displacement feature can be specified 

flexibly by the users, and the normal deviation along the boundary curve is even 

smaller than the offset tolerance.  

 

At the server side, a granular locking mechanism is employed for scheduling the 

concurrent design operations and resolving potential operation conflicts. The design 

operations are grouped according to feature dependency relationships, so more than 

one ‘modify operation’ can be executed concurrently as long as their dependency 

scopes are mutually exclusive. The potential conflicts of design operations caused by 

feature interactions have been resolved using a naming and matching mechanism, 

through which the correspondence of the modified topological entities would be 

achieved correctly.  
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Chapter 1 Introduction 

 

Product modeling is a process of defining a computer-aided design (CAD) model or its 

explicit representation that satisfies the functional requirements expected by the users 

(Shen et al., 2001). According to the designed CAD model, the machining process is 

generated and executed on computer numerical controlled (CNC) machines to produce 

the required workpiece. In the beginning era of computer-aided design, geometric 

modeling was developed to facilitate designers to create and manipulate the CAD 

models, which can be represented as graphical models, solid models and surface 

models (Shah and Mäntylä, 1995). However, geometric modeling has some 

deficiencies, such as the lack of design intent, tedious modeling procedure, etc. In 

order to overcome the limitations of geometric modeling, some semantic and high-

level entities are required to represent the CAD models. With this consideration, 

feature modeling has emerged as a promising solution, where product modeling is a 

process of combining certain specific features into a stock model; thus feature 

modeling provides a high-level and efficient modeling environment (Roller, 1989; 

Shah, 1991). Furthermore, engineering specifications attached to the features enable 

seamless connection between different domains in the product development cycle, 

which has the benefit of reducing lead-time and improving product quality. 

Nevertheless, the majority of the current feature-based design systems are history-

based modeling, which has some weaknesses and shortcomings. In addition, freeform 

features, which are popularly used in aesthetic design and engineering product design, 

are not supported in current feature-based design systems. The shortcomings and 

limitations of current feature-based design need to be addressed in order to employ it 

effectively in product development.  
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Besides the development of high-level modeling environments, outsourcing has 

become a significant trend in the current global manufacturing market, especially for 

large firms, such as Boeing, Ford, Kodak, etc. Under this scenario, product design has 

been shifted from standalone to collaborative activities (Li et al., 2004; Wang and Nee, 

2008). As such, adopting feature-based design in a collaborative environment has 

become a topic of research. In collaborative computer-aided design, a team of experts 

work together on product design (Ding et al., 2009; El-Tayeh et al., 2008), so a 

coordination mechanism is strongly needed for scheduling the concurrent design 

activities and managing the operation conflicts.  

 

The subsequent sections provide an overview of feature-based design and collaborative 

computer-aided design. A more detailed discussion of the reported research works in 

the relevant areas will be presented in Chapter 2.  

 

1.1 Feature-based Design  

The feature-based modeling technique has been widely used in both commercial and 

academic computer-aided X (CAX) systems; it provides an effective approach for 

improving design efficiency and assisting product model translation across different 

domains. In feature-based design, the product model is created by combining certain 

specific features, each of which is defined as a parametric shape associated with 

certain functional information and constraints (Bidarra and Bronsvoort, 2000; Sheu 

and Lin, 1993; Wang and Nnaji, 2006). From the CAD models, manufacturing features 

are recognized (Lee and Kim, 1998; Li et al., 2001; Rahmani and Arezoo, 2006) for 

automating the machining process on CNC machines. Furthermore, by combining 

feature-based design and feature recognition (Duan et al., 1993; Laakko and Mäntylä, 
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1991; Martino et al., 1994), the design flaws in a CAD model can be investigated 

immediately, such that the design quality can be guaranteed. Analogously, other 

downstream application processes can extract a specific feature model from a CAD 

model, so the geometric reasoning in the specific domains can be automated. The 

feature models extracted in different domains can be converted from one to another 

(Bronsvoort and Noort, 2004; Hoffmann and Joan-Arinyo, 2000; Subramani and 

Gurumoorthy, 2004), such that the CAD system can be integrated seamlessly with the 

subsequent applications, e.g., manufacturability analysis, process planning, etc.  

 

Although feature-based design has been widely used in product development, it still 

has some weaknesses and shortcomings that are only partly resolved in the literature 

(Bidarra and Bronsvoort, 2000), e.g., the feature model is usually a macro that is only 

supported in the design interface, and lacks the persistent maintenance of feature 

validities, etc. More importantly, the majority of the current feature-based design 

systems is history-based, where all the ‘feature creation operations’ are stored in the 

model history and they are static. After each modification, the model history is 

sequentially re-executed to update the resulting boundary representation (B-rep). This 

evaluation mechanism causes some problems, e.g., the evaluated model does not 

correspond to its specification, the operation can only refer to the boundary entities 

created by the previous operations, high computation cost, etc. For solving the 

problems caused by the static ‘feature creation order’, a cellular representation and 

modeling scheme was reported by Bidarra and Bronsvoort (2000), where the non-

associative set operations (union and difference) were replaced by a non-regular union 

operation. For overcoming the high-computation cost, two methods have been devised 

and developed, namely, storing all the intermediate B-rep models at each history step, 
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and storing only the deltas between the history steps (Bidarra et al., 2005). However, 

these proposed approaches cannot solve the problems in current history-based feature 

modeling effectively.  

 

In addition, current feature-based design does not support freeform surface modeling, 

which is increasingly needed in aesthetic design and product design. As reported by 

Cavendish and Marin (1992), embedding a number of displacement features into a 

base surface is popular in industrial product design and modeling. By using the feature 

modeling technique, the freeform surface can be created and modified intuitively, since 

some intuitive and user-friendly parameters can be associated with the underlying 

mathematical model (Nyirenda and Bronsvoort, 2009; Pernot et al., 2008; van den 

Berg et al., 2002). Under this consideration, displacement feature modeling has been 

explored in the literature (van Elsas and Vergeest, 1998), and it has two important 

modeling steps, namely, specification of a boundary curve on the base surface and 

surface blending of two non-interacting surfaces. In surface blending, the Cubic 

Hermite Interpolant is usually adopted for achieving the tangent plane smoothness 

across the boundary curve (Elber, 2005; van Elsas and Vergeest, 1998). Whereas, in 

this situation, the polynomial degree of the tangent field curve obtained symbolically is 

considerably higher, and the degree of reduction of a freeform curve is a non-trivial 

task. As a result, an effective surface blending approach is needed for achieving the 

smoothness across the boundary curve.  

 

In summary, the feature modeling technique has many advantages in product design 

and manufacture, and it has been a topic of research effort in the past few decades. 

However, the weaknesses and limitations in current feature-based design remain as an 
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obstacle hindering its effective application. Hence, further research effort is still 

necessary for improving the usability of feature-based design in product development. 

 

1.2 Collaborative Computer-aided Design 

Global manufacturing market and competition have been driving companies to deploy 

new ‘product development' paradigms for improving product quality and shortening 

lead-time. Under this situation, it is well realized that the paradigm of product 

development is moving towards engaging and coordinating different application 

domains, which forms a collaborative and distributed development environment based 

on the distributed software modules and information technology, e.g., CORBA, Java 

RMI, Agent, and COM etc.  

 

In collaborative design, groups of experts work together on product design (Ding et al., 

2009; El-Tayeh et al., 2008; Rosenman and Wang, 1999), so as to identify and resolve 

design problems at an earlier stage of the product life-cycle. The collaboration was 

categorized into three types by Li and Qiu (2006), namely, visualization-based 

collaboration for conceptual design and product review, cooperative creation and 

manipulation (co-design) for detailed design, and concurrent engineering integrating 

the design and the related manufacturing processes. The co-design system has two 

widely used architectures, namely, centralized system where the main modeling 

functions are located at the server side, and replicated system where each designer is 

provided with the full-fledged modeling capabilities. In this study, only the replicated 

system is focused to explore a platform for collaborative feature modeling. 

 

In a co-design environment, a part model is co-created and co-manipulated by a team 

of designers so as to improve design quality and design efficiency. In this situation, a 
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coordination mechanism for scheduling the collaborative design activities and 

managing operation conflicts is crucial (Li et al., 2008b), since a team of designers 

intends to create and manipulate the part model at the same time. In the literature, the 

locking mechanism is usually adopted as the coordination scheme, either a total 

locking mechanism (Bidarra et al. 2002; Li et al. 2004; Li et al. 2007) or a granular 

locking mechanism (Chan and Ng 2002; Li et al. 2008b). By the total locking 

mechanism, only the designer who holds the control baton can edit the design model, 

but other co-designers only observe or comment on the design operation and receive 

the updated model information. By the granular locking mechanism, the locking 

granularity is finer that the design model is divided into several portions, thus more 

than one designer can edit different portions at the same time. However, there are some 

limitations of the currently reported locking mechanisms. By the total locking 

mechanism, since the control baton is permitted to one designer at one time, the design 

model is edited by the designers in a sequential order. This is not a productive 

collaboration mechanism, although the collaboration can be manifested such that all 

designers can review and discuss a design operation together before its execution 

(Shen et al. 2006). By the granular locking mechanism, since performing the design 

operations concurrently may cause operation conflicts and model inconsistency, the 

definition of the locking granularity and the potential conflict resolution is critical. As 

a result, the coordination mechanism needs more research effort for employing it 

effectively in a co-modeling environment.  

 

In summary, distributed and collaborative design has been popularly investigated and 

employed in product development for improving design quality and shortening product 

time-to-market. However, the challenges and problems would need to be further 
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considered and addressed for establishing an integrated and collaborative environment, 

especially an effective coordination mechanism for scheduling the concurrent design 

activities. As a result, collaborative computer-aided design remains as an open research 

area, and it needs further investigation. 

 
1.3 Motivations and Research Objectives 

Research gaps for the current study of product modeling in a collaborative 

environment are summarized below: 

• History-based feature modeling has some shortcomings due to the static ‘feature 

creation order’, such as generating undesirable product model, restricting reference 

entities, high computation cost, etc. 

• In collaborative feature modeling, some issues need to be addressed for employing 

granular locking mechanism, such as maintaining exclusive ‘feature creation order’ 

and resolving operation conflicts. 

• Currently, there are few studies on adapting freeform feature modeling in a 

collaborative design environment.  

The overall aim of this study is to provide a design platform for creating product 

models collaboratively and concurrently, with either regular prismatic models or 

displacement features on a freeform surface. The investigated system is basically for 

replicated collaborative feature modeling, as shown in Fig. 1.1. At the client sides, 

each designer is provided with the full-fledged modeling functions for both regular 

features and freeform surface features, and the server coordinates the design activities 

and synchronizes the product information. The specific objectives of this research are: 

1) Aim I: Propose a history-independent modeling approach to overcome the 

shortcomings in current feature-based modeling, in which the creation sequence of 
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the features can be changed after each ‘modify operation’. The proposed modeling 

approach may provide insights into the boundary evaluation in feature-based 

modeling. However, it should be noted that the structure of a feature-based system 

is very complex, and the entire structure is not the central point of this study. The 

focus here is the modeling procedure of its boundary evaluation.  

2) Aim II: Improve the granular locking mechanism for replicated collaborative 

feature modeling, in which the operation conflicts are resolved using a naming and 

matching mechanism. The proposed conflict resolution mechanism should be a 

valuable supplement for the granular locking mechanism. It should be noted that 

the proposed locking mechanism is only used in replicated co-design system, and 

for prismatic product modeling. 

3) Aim III: Propose a freeform feature modeling approach for creating displacement 

features on freeform surfaces, and adapt this modeling approach in a collaborative 

environment. More specifically, a surface blending approach for generating the 

transition surface in displacement features with tangential smoothness across the 

boundary curve was investigated. The smoothness across the boundaries can be 

specified intuitively by setting the radius parameters, and the shape of the transition 

surface can be controlled by setting its control points. This work may shed light on 

creating displacement features in an efficient and intuitive process. There are many 

issues involved in freeform feature modeling, such as 3D curve mapping, boundary 

curve specification, degree reduction of freeform curves, etc., which are only 

discussed briefly in this work. The focus here is the surface blending for the 

transition surface.   
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1.4 Outline of Thesis 

The remaining sections of this thesis are organized as follows: 

In Chapter 2, the reported works in feature-based design and collaborative computer-

aided design are surveyed and discussed. More specifically, the relevant works within 

the research objectives are investigated and discussed in detail, namely, boundary 

evaluation in feature-based design, coordination mechanism in collaborative feature 

modeling, and displacement feature modeling.  

 

In Chapter 3, a history-independent modeling approach is presented. The weaknesses 

and shortcomings in the current feature-based design systems are overcome. The 

working principle and the advantage of the proposed modeling approach are presented, 

and the computational complexity is investigated and compared. 

 

Product information 
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• Visualization 
• Manipulation 
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• Freeform feature 

Client B 

Modeling Kernel 
• Boundary evaluation 
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Fig. 1.1 System framework 
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In Chapter 4, a granular locking mechanism for replicated collaborative feature 

modeling is presented. The resolution of operation conflicts and the consistency 

maintenance of ‘feature creation order’ are elaborated. 

 

In Chapter 5, freeform feature modeling and its adaption in a collaborative 

environment are presented. The two issues in displacement feature modeling, namely, 

specification of feature boundary and surface blending, are elaborated in detail. For its 

application in a collaborative environment, the coordination and product information 

sharing are discussed briefly. 

 

In Chapter 6, the implementation tools and methods used in this study are presented, in 

which the software modules and the programming environment are discussed. The 

structure of the proposed collaborative design system is shown, and the two types of 

product models that can be used in this modeling system are presented. 

 

Finally, Chapter 7 concludes this thesis, in which the contributions of this research 

work and the suggestions for future work are presented. 
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Chapter 2 Literature Review 

 

This chapter presents a survey of the literature pertinent to the studies on feature-based 

design and collaborative computer-aided design. Firstly, the feature modeling 

technique used in product design and modeling is investigated. The studies on regular 

feature modeling that is used for the design of prismatic parts are reviewed and 

discussed, and the corresponding feature-based design system is investigated. In 

addition, the studies on freeform feature modeling and modification are surveyed, and 

the applications of freeform features and its modeling procedure are presented. 

Secondly, the pertinent studies on collaborative computer-aided design are investigated, 

where the coordination mechanism used for scheduling the concurrent design activities 

and the synchronization mechanism used for product information sharing are reviewed 

in detail.  

 

2.1 Feature Modeling Technology 

The feature modeling technique has been popularly used in product development, 

including product design, manufacturability analysis, process planning, etc. In addition, 

freeform feature modeling is proposed for creating and manipulating freeform shapes 

intuitively, which are widely used in aesthetic and engineering design. In this 

subsection, the applications of feature modeling in product development are reviewed, 

including design-by-feature, feature reorganization, and multiple-view feature 

modeling. It is followed by the investigation of current feature-based design system, in 

which two issues are highlighted, namely, problems caused by the history-based 

modeling procedure, and the persistent naming problem. Finally, the applications of 

freeform feature modeling and the relevant studies are reviewed. Specifically, the 



Chapter 2 Literature Review 

 
 

12 

modeling procedure and the relevant issues of displacement feature modeling are 

highlighted. 

 

2.1.1 Feature Modeling in Product Development 

In this subsection, the studies on feature specification, feature modeling in product 

development, and multiple-view feature modeling are reviewed for an in-depth 

understanding of the feature modeling technique. 

  

2.1.1.1 Feature Specification  

A feature can be formalized in two approaches, namely, procedural formalism in 

which a feature is defined in terms of rules and procedures, and declarative formalism 

in which a feature is defined in terms of sets of constraints. The general specification 

of a feature involves the following information: 

1) Geometry definition of the feature shape: each feature shape is a specific part of the 

resulting geometric model. Its geometric representation can be described using four 

structures (Shah, 1991), namely, augmented graphs, algebraic (syntactic), delta 

volumes, and constraint-based B-rep, all of which specify the spatial relationships 

of the geometric entities that constitute the feature.  

2) Validity condition: it is the functional requirements of a feature, which may be 

violated due to feature intersections. As suggested by Bidarra and Bronsvoort 

(2000), feature validity can be represented as the topological constraints on the 

feature faces, which need to be maintained during the design process.  

3) Annotation: it is the deposited information on the feature entities, such as tolerance, 

machining condition, etc. It does not change the feature shape and the validity, and 

can be updated automatically along with the topological modifications, as reported 

by Hoffman and Joan-Arinyo (1998a, 2000). 
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Keeping the three aspects in consideration, a few feature definition and representation 

approaches have been reported in the literature. Duan et al. (1993) reported a 

procedural approach, in which a feature is defined as a parametric-shape unit, 

consisting of a geometric description, attributes, and application-oriented mapping 

methods for design and manufacturing purposes. Laakko and Mäntylä (1993) reported 

a feature definition frame, which contains topology-definition, geometry-definition, 

auxiliary-geometry entities, geometric constraints, rules and attributes. A form feature 

representation was reported by Sheu and Lin (1993), in which each feature is basically 

a solid primitive associated with certain measured entities, dimensions, locations and 

constraints. In the above approaches, each feature is simply defined as a solid shape 

using the common techniques, e.g., primitive instancing, sweeping, etc., and the solid 

shape is associated with certain high-level information and constraints. This approach 

provides an effective way to create and manipulate the part model by performing 

operations on the solid primitives. However, the feature model is only a macro 

supported in the design interface, and the underlying geometric model is not 

represented in terms of features. In addition, constraints associated with the solid 

primitives are not maintained during the design process, which may be violated due to 

feature interactions. In order to overcome this weakness, Bidarra and Bronsvoort (2000) 

reported a declarative feature modeling approach, in which each feature consists of a 

feature shape, validity conditions, and the user interface. The feature shape is defined 

by setting certain spatial constraints on the constitutive geometric entities, the 

parameter and validity conditions are also defined as constraints. This approach is 

useful in that the validity conditions of the feature model are maintained during the 

design process, since all the constraints are checked after each modeling operation.   
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In addition, since the predefined features are limited and domain dependent, Hoffmann 

and Joan-Arinyo (1998b) suggested an approach for creating user-defined features 

(UDF) from standard features. A UDF feature is a parametric shape consisting of a set 

of standard features, a set of constraints, a set of attributes, and a user interface. This 

approach is significant in that the specific features can be defined dynamically, since a 

universal set of features is almost impossible to be set up.  

 

2.1.1.2 Feature Models  in Product Development 

Generally, a feature model can be created in two ways, namely, design-by-feature and 

feature recognition. In design-by-feature, the designers use a set of predefined features 

for constructing a product model by a sequence of feature attachment operations. The 

feature model is usually represented as a graph structure, which comprises of the 

features and the relationships between features. As in the Feature Dependency Graph 

(FDG) reported by Sheu and Lin (1993), it consists of the specific form features and 

the feature-position operator (FPO). The FPO represents the relative positioning 

relationship between two features, through which all the features can be combined 

quite easily together. A similar FDG was reported by Bidarra and Bronsvoort (2000) 

for representing the feature model, which contains all the feature instances and their 

interacting constraints. In design-by-feature, a feature model can be created easily, 

which is from the design perspective. However, the feature models used in design and 

manufacturing are defined and perceived in two different perspectives, thus 

manufacturing features need to be recognized from a designed CAD model during 

feature-based machining. In feature recognition, the machining process of the part 

model is recognized, and is represented as a set of specific features, which can be used 

for process planning later. As suggested by Shah (1991, 1995), feature recognition 

compares geometric entities with predefined generic features to identify instances that 
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match the predefined ones, which can be boundary-based and volume-based. The 

boundary-based method finds sets of faces that satisfy a set of conditions for each 

feature, including rule-based, graph-based, syntactic methods, whilst the volume-based 

method operates directly on constructive solid models, such as CSG trees. 

  

Studies in feature recognition have been reported in the literature. Lee and Kim (1998) 

proposed an incremental feature recognition approach from a feature-design model. It 

can convert various design features, including depression features, transition features, 

and protrusion features, into machining features incrementally. The proposed 

mechanism takes three steps: firstly, the interacting volumes of an incrementally added 

design feature and the previous extracted machining features are checked; secondly, 

the added design feature and the interacting volumes are handled for the conversion 

into machining features using feature information, nominal geometry, and feature 

interaction; and lastly, the feasibility of the extracting machining features is analyzed. 

Likewise, Li et al. (2001) proposed a mechanism to extract manufacturing features 

from a design-by-feature model. There are three steps in this recognition mechanism. 

Firstly, the design feature tree is converted to an intermediate manufacturing feature 

tree (MFT). The essential point in this step is to identify the interacting relationships 

between a design feature and the manufacturing features in an incrementally evolved 

intermediate MFT. Secondly, the features in the MFT are converted into several 

alternative interpretations based on three consecutive operations, namely, combination, 

decomposition, and (tool approach direction) TAD-led operations. Thirdly, a single 

interpolation of features in the MFT is selected for a specific workshop environment, 

which has the lowest machining cost. In the above two approaches, the critical point is 

to handle the interacting volumes of a newly added design feature and the extracted 



Chapter 2 Literature Review 

 
 

16 

machining features. The incremental recognition approach is highly significant in that 

the manufacturing implications of design actions can be fed back instantly, so the 

design quality is guaranteed. Rahmani and Arezoo (2006) presented a hybrid graph-

based and hint-based technique to extract interacting features automatically from solid 

models. The hint-based approach is used to find traces left by the motion of a milling 

cutter in the part boundary. The feature hints, which are simple graphs carrying 

information about a feature’s base and side faces, are extracted from the decomposed 

graph of an Attributed Adjacency Graph (AAG) for a part. After that, a complete 

feature volume is generated using three geometric completion algorithms, namely, 

Base-Completion, Profile-Completion and 3D-volume generation algorithms. This 

approach is noteworthy in that the available approaches can be combined so as to 

handle the drawbacks in existing recognition systems. 

 

Combining design-by-feature and feature recognition is an effective solution for 

improving design quality, since the manufacturability of the part model can be checked 

immediately. Several modeling systems have been reported in this realm. Laakko and 

Mäntylä (1993) reported a hybrid framework of feature-based design and feature 

recognition. In their design environment, designers can manipulate interactively either 

the solid model or the feature model of the part, which provides much freedom for the 

users. Martino et al. (1994) developed a modeling system integrating design-by-feature 

with automatic feature recognition. An intermediate model is devised as the bridge 

between geometric models and context-based feature models. The hybrid framework 

connects product design and manufacturing seamlessly, thus the design quality is 

improved and the development time is shortened. 
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2.1.1.3 Multiple-View Feature Models  

In the downstream application processes, the product model is reviewed and analyzed 

from different perspectives. Hence, a feature model used in the specific application 

needs to be extracted from the designed CAD model. In order to connect the feature 

models in different domains, multiple-view feature modeling has been carried out in 

the literature. Two types of feature conversion mechanisms have been proposed in 

multiple-view feature modeling, namely, one-way and multiple-way conversion. In 

one-way conversion, product shape can only be modified in the design view, and the 

modifications in other views are extracted from the evaluated B-rep model. In 

multiple-way conversion, product shape can be modified in any feature view, and 

product modifications can be propagated across multiple views automatically. 

Hoffmann and Joan-Arinyo (2000) presented a master model for maintaining 

consistency across multiple-view feature models. The master model is a single 

repository that contains all the relevant product databases. Each modification of one 

feature model is transmitted to the master model, and then other feature models are 

updated based on the updated master model. This approach is novel in that the product 

shape can be modified in other views using constraint reconciliation rather than in the 

design view only. Jha and Gurumoorthy (2000) presented an algorithm to propagate 

feature modification automatically across different domains. The input of this 

algorithm is all the feature interpretations of a part, and the feature modification is 

restricted to feature geometry only. This algorithm is on the basis that the history/log 

of the feature extraction process has been obtained and used as the input. The 

limitation of this algorithm is that the modification is restricted to feature geometry 

only, which is not useful in many applications. This mechanism was extended by 

Subramani and Gurumoorthy (2004), which handles various feature modifications like 
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feature deletion, feature creation, transformation and parameter changes. There are two 

steps here, in the first step, the feature volumes in the target feature model are updated 

to account for the modifications in the edit-view, which are determined by the 

interaction between the feature volumes in the target-view and the edit-feature volume; 

in the second step, the updated feature volumes in the target-view are recognized to 

identify new features in the target feature model. Bronsvoort and Noort (2004) 

extended the multiple-view feature modeling to support four product development 

phases, namely conceptual design, assembly design, part detail design, and assembly 

design. In this approach, the feature models extraction and consistency maintenance 

are based on an intermediate cellular model. This approach has made a valuable 

contribution to multiple-view feature modeling, since it extends the feature models into 

conceptual design and assembly design.  

 

In summary, feature modeling has been widely used in product design and 

manufacturing. A feature contains a parametric shape and the associated attributes that 

are used in downstream application processes, thus a feature model contains more 

information than a geometric model in that its geometric reasoning in specific 

applications can be automated. Through combining design-by-feature and feature 

recognition, the manufacturing implications of design actions can be fed back instantly 

so that design quality can be improved. Furthermore, multiple-view feature models in 

different domains can be connected and synchronized seamlessly for obtaining a 

concurrent working environment. The applications of feature modeling reviewed in 

this subsection provide a substantial understanding of feature-based design, and paves 

the way for the subsequent literature review in this Chapter. 
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2.1.2 Feature-based Design System 

The majority of current design systems is feature-based modeling, which includes a 

model history and an evaluated geometric model. Feature-based design provides an 

attractive and high-level modeling environment, in which a part model is generated by 

combining some specific feature shapes. In this subsection, the system components in 

feature-based design are investigated and discussed. Specifically, the persistent naming 

problem and the boundary evaluation mechanism in current feature-based design are 

investigated. 

 

2.1.2.1 Problems in Feature-based Design 

The schema of current feature-based parametric modeling system is depicted in Fig. 

2.1. In such a CAD system, a product model is represented in two separate layers, 

namely the parametric definition and the geometry description. The parametric 

definition is created based on predefined features, and is usually represented as a 

feature dependency graph that includes all the specified features and their dependency 

constraints. The resulting geometrical model is generated through evaluating the 

parametric definition using the boundary representation approach (B-rep). During the 

design process, the topological entities of the intermediate B-rep model are usually 

referred to in the new feature operations for attaching or positioning purposes, which 

are achieved through a naming scheme. During the re-evaluation of the model, the 

referred topological entities in the old B-rep model need to be mapped to the 

topological entities in the new B-rep model, which is achieved through a matching 

mechanism. Hence, a naming and matching scheme is usually used in feature-based 

modeling to assign an identifier to the referred topological entities, and map the 

identifier to the topological entities in the new B-rep model.  
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The majority of current feature-based modeling systems is history-based, where all the 

‘feature creation operations’ are stored in the model history. After each modification, 

the model history is sequentially re-executed to update the resulting B-rep model. 

During re-evaluation, a ‘modify operation’ is executed on the basis of the intermediate 

B-rep model that is generated by evaluating the previous operations in the model 

history. This evaluation mechanism causes some problems that have been reported by 

Bidarra and Bronsvoort (2000). The first problem is the reference entity problem, 

where a feature operation can only refer to the topological entities generated by the 

previous operations. As shown in Fig. 2.2, two features BHole  and Rib  are 

sequentially attached to an initial Stock . If a designer wants to modify and re-position 

the BHole  relative to the Rib  at a distance D , the positioning constraint cannot be 

defined since the Rib  is created later than the BHole . The second problem is the 

model evaluation problem where the resulting B-rep model cannot be evaluated 

according to the designer’s specification. As shown in Fig. 2.3, the designer can obtain 

the intended THole  in (b) when the depth of the THole  is equal to or larger than the 

height of the Stock , but he cannot modify the THole  as the specification in (d) if the 

extruded Block  is created later than the THole . From the designer’s point of view, the 

modified THole  would intersect with the Block . However, during the re-evaluation of 

the THole  modification, the intermediate B-rep model at this step does not contain the 

Parametric Definition 

Boundary 
Evaluator 

Boundary 
Representation 
 

Naming and 
Matching Scheme 

Referred 
topological 

entities 

Fig. 2.1 Schema of the feature-based parametric model 
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Block , so the THole  only intersects with the Stock  even the depth of the THole  has 

been increased. As a consequence, the evaluated B-rep model is (e) which is not the 

intended model. In history-based modeling, the designer performs the ‘modify 

operation’ based on the current B-rep model, but the evaluation of the modified feature 

is on the basis of the intermediate B-rep model at its creation step. The difference 

between the current B-rep model and the intermediate B-rep model causes the above 

problems.   

 
 

 

 
 
 

Fig. 2.3 Model evaluation problem in history-based modeling 
 

Fig. 2.2 Reference entity problem in history-based modeling 
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High computation cost is another shortcoming in history-based modeling. After each 

modification, the entire model history needs to be re-executed, where the computation 

cost is proportional to the number of the features in the model history (Bidarra and 

Bronsvoort, 2000). This problem can be illustrated by the ANC 101 test part (Shah and 

Mäntylä, 1995) shown in Fig. 2.4, where (a) shows the resulting B-rep model, (b) 

shows the directed acyclic graph (DAG) of the design features, and (c) shows the 

model history. When the feature Pad  is modified, the operations from step1 to step10 

are re-executed to update the resulting B-rep model.  

 
 
In addition, the persistent naming problem is also a topic of research effort. When a 

topological entity is referred to by an operation, a unique identifier is attached to the 

referred topological entity for retrieving it later. However, in the re-evaluation of the 

feature model, the referred topological entity may be modified or deleted, so the 

(b) Directed Acyclic Graph (DAG) 
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(c) Model History 
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Fig. 2.4 CAMI-ANC 101 test part (Shah and Mäntylä, 1995) 
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identifier cannot be used to retrieve the correct topological entity, which has been a 

problem in feature-based design for years. In the subsequent two subsections, the 

persistent naming problem and the history-based modeling mechanism are reviewed in 

details. 

 
 

2.1.2.2 Naming and Matching of Topological Entities  

During the design process, the boundary entities of the intermediate B-rep model such 

as faces, edges, and vertices are usually referred to by the new design operations for 

the following purposes:  

• As the operational object of a feature, i.e., the topological edge of a chamfer 

operation. 

• As the attached object of a feature, i.e., the datum plane of the sketch of a sweeping 

feature. 

• As the dimensional object of a feature, i.e., the positioning edge of a feature. 

However, the referred topological entities may be modified during later modeling 

operations due to the interacting relationships between features. This phenomenon will 

result in some problems, e.g., generating undesired shapes, loss of reference entity, etc. 

during the re-evaluation process, which is termed the persistent naming problem. 

 

Many research studies have been reported in the naming and matching mechanism. A 

survey of the major solutions of the persistent naming problem has been reported by 

Marcheix and Pierra (2002). The boundary entities of each feature can be named 

unambiguously using the feature’s generating mode, and the interacting entities need 

to be discriminated by some topological and geometric information. In the work 

reported by Capoyleas et al. (1996), the boundary entities were named by the feature’s 
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generating mode, and the ambiguities were removed by the topological context and the 

orientations of the entities. The matching of the entities was realized through a local 

comparison of the respective topological neighborhoods (Chan and Hoffmann, 1995). 

In the work reported by Wu et al. (2001), the boundary faces of the feature shape were 

named according to the feature’s generating mode and their locations in the feature. 

The ambiguities of the interacting entities are removed by their parametric values on 

the adjacent faces. The limitation of this naming algorithm is that the arrangement of 

subdivided faces seems to be very sensitive to geometric and topological variations. A 

semantic naming scheme was reported by Wang and Nnaji (2005), where all the 

topological entities were named using the construct relations of the feature shape 

surfaces. All the surfaces are named and recorded persistently by a naming server, and 

the gradient information of the intersection curves is used to remove the ambiguities 

caused by non-linear surfaces. This approach provides an effective way to name and 

match the topological entities, since the gradient information can discriminate all the 

interacting entities clearly. For the matching approaches, the reported works can be 

classified into local matching method and global matching method. In the global 

approach, the matching is carried out by the comparison and mapping of two sets of 

entities, which are the entities resulting from the initial model and the entities from the 

re-evaluated model. In the local approach, only the entities referred to in the initial 

model is compared with the set of entities resulting from the re-evaluated model. 

 
 

2.1.2.3 Boundary Evaluation in Feature-based Design  

Boundary evaluation is a key process in feature-based design, and its working principle 

has been well addressed in literature (Keyser et al., 2004; Requicha and Voelcker, 

1985). The evaluation process consists of two working stages: at the first stage, the 
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boundary faces of the B-rep models are intersected pairwisely, partitioning them into 

separate sub-faces according to the intersection curves; at the second stage, the 

partitioned faces are identified and selectively stitched to the resulting B-rep model. As 

shown in Fig. 2.5, the cylindrical shape of a eThroughHol  is subtracted from the 

Block , where the top face 3f  is attached to face1f  and the bottom face5f  is attached 

to face 2f . At the first stage, the intersecting faces 3
*

1 ff I  and 5
*

2 ff I are computed 

to generate the partitioned faces1.1f , 1.2f . At the second stage, the top face1f and the 

bottom face 2f are replaced by 1.1f and 1.2f  respectively, and the new face 4f  of the 

eThroughHol  is stitched to the new resulting B-rep model.  

 
 

In order to save the computation cost in the boundary evaluation in feature-based 

design, two methods have been devised and developed, namely, storing all the 

intermediate B-rep models at each history step, and storing only the deltas between the 

history steps (Bidarra et al., 2005). If the intermediate B-rep models at each step are 

stored, it requires a large amount of storage space. As shown in Fig. 2.6, when a 

feature is modified, e.g., the feature at step5, the modeling evaluator will go back to 

step5 and re-execute the model history based on the intermediate B-rep model stored at 

step4. In this case, all the intermediate B-rep models at each step would need to be 

Fig. 2.5 Boundary evaluation process 
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stored during the design. If the deltas are stored, it typically requires less storage space, 

but the computation cost for rolling back from the current B-rep model to the stage 

based on which the model history is re-executed is high. As shown in Fig. 2.6, the 

delta at each history step is smaller than the corresponding intermediate B-rep model. 

The former approach is currently being used in most of the feature-based design 

systems, in which only the history steps later than the edited feature node need to be 

re-executed after each modification. As shown in Fig. 2.6, since the intermediate B-rep 

model at step4 is stored, only the operations from step5 to step10 are re-executed when 

the feature Pad  is modified. However, as observed from the DAG of the design 

features in Fig. 2.4, the features created later than Pad  are irrelevant to the Pad  

modification. Consequently, the improved modeling approach is still not a desirable 

solution for the re-evaluation of the model. The computation complexity of this 

improved approach has been analyzed and reported by Bidarra et al. (2005), where the 

computation cost was analyzed using three representative models for the ‘add feature’, 

‘remove feature’ and ‘modify feature’ operations. For the ‘add feature’ operation, the 

computation time includes three aspects, namely, identifying the intersecting boundary 

faces, Boolean operation of the intersecting faces, and updating the resulting B-rep 

model. For the ‘remove feature’ operation and the ‘modify feature’ operation, the main 

computation time is the time associated with re-adding the feature shapes that are 

created later than the feature being removed or modified.  

 

The problems caused by the static chronological ‘feature creation order’ was solved 

using a cellular representation and modeling scheme reported by Bidarra and 

Bronsvoort (2000), where the non-associative set operations (union and difference) 

were replaced by a non-regular union operation. The proposed union operation makes 
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the ‘feature creation order’ irrelevant to the resulting cellular model. Thus, the 

computation cost for the ‘remove feature’ operation and the ‘modify feature’ operation 

is solely dependent on the number of the features being modified and their overlapping 

features. However, due to the complexity of the cellular model required for a complex 

model, this approach is not scalable in practice (Hoffman and Joan-Arinyo, 1998a).  

 
 

 
Based on the above reviews in section 2.1.2, it can be seen that current feature-based 

design has several weaknesses and shortcomings, e.g., persistent naming problem, high 
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computation cost, etc. The main shortcomings are caused by the history-based 

modeling procedure, which needs much research effort. If the ‘feature creation 

operation’ in the model history can be adjusted dynamically during the design, many 

of the above problems would be solved. As such, in this work, the boundary evaluation 

mechanism is investigated and addressed.  

 
2.1.3 Freeform Feature Modeling 

The success of a new product depends not only on high quality and short development 

time, but also on its attractive and pleasing appearance. Hence, freeform surface 

modeling is popularly used in aesthetic and engineering product design, in which the 

freeform surfaces are described using Bézier, B-spline and Non-Uniform Rational B-

Spline (NURBS) curves and surfaces (Piegl and Tiller, 1997). Current Feature 

modeling can be adapted into freeform surface modeling for facilitating users to 

manipulate freeform surfaces intuitively, which is termed freeform feature modeling. 

In this section, freeform feature modeling is first introduced. Secondly, the definition 

and specification of freeform features are reviewed. Thirdly, the applications of 

displacement features in product design are investigated and discussed. 

 

2.1.3.1 Introduction of Freeform Feature Modeling  

The definition and modification of freeform surfaces require a deep knowledge and 

great skill in the manipulation of the underlying mathematical models (van den Berg et 

al., 2002), e.g., the control points, knot vectors, etc. As a result, many high-level 

manipulation tools and methods have been proposed, e.g., a mechanical-based 

deformation technique (Leon and Trompette, 1995; Pernot et al., 2005), a dynamic 

NURBS (Qin and Terzopoulos, 1996), a surface representation model (Zhang et al., 

2004), a deformable freeform feature template (Song et al., 2004), and a feature shape 
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transposition approach (Langerak, 2008). Concurrently, some researchers have 

attempted to adapt the feature concepts in freeform surface modeling (Pernot et al., 

2008; van den Berg et al., 2002), termed freeform feature modeling. This freeform 

feature modeling technique defines generic freeform shapes in combination with 

intuitive and user-friendly parameters, e.g., performing standard modeling operations 

and setting high-level constraints on certain geometric elements (3D points, curves) 

(Nyirenda and Bronsvoort, 2008, 2009; van den Berg et al., 2003), connecting certain 

Bézier surface patches and associate them with high-level parameters (Vosniakos, 

1999), specifying the set of all possible parametric configuration of a shape 

configuration (Langerak, 2008, 2009); thus the freeform surfaces can be created and 

modified by specifying certain intuitive parameters. 

 

In freeform surface modeling, usually a structural surface is given, and some 

operations are performed on the base surface, e.g., adding surface patches, and 

deforming or removing the surface regions. Hence, the freeform surface features are 

related to these operations, and some classification schemes from this point of view 

have been reported. In the work reported by Fontana et al. (1999), the freeform 

features in aesthetic design are classified into two categories according to the different 

phases of the design activity, namely, structural features and detail features. The 

structural feature is used for defining the surfaces constituting the product, and the 

detail feature is used for modifying the local regions of the structural surfaces, 

including deformation features and elimination features. The deformation features can 

be further classified according to the topological and morphological properties of the 

deformed regions, including border, channel, internal, extrusion, and intrusion features. 

The elimination features are classified according to the smoothness and topological 
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properties of the removed regions, including sharp, finished cuts, inlet, hole, and gap 

features. A similar taxonomy was reported by Nyirenda and Bronsvoot (2005), where 

the freeform features are grouped according to the geometric characteristics, including 

deform, cut, and transition features, and are grouped according to the topology of 

features, including border, channel and internal features. In the work reported by Sunil 

and Pande (2008), the features on a freeform sheet metal part are identified by studying 

the commonly used operations in sheet metal parts production. The freeform features 

are classified into face-based, edge-based, and transitive features. Face-based features 

lie on a face, edge-based features lie on the periphery of the part, and transitive 

features lie between faces. The above categories indicate that freeform features are 

related to the operations that modify the local regions of a base surface, and freeform 

feature modeling is basically to encapsulate the relevant operations in a high-level user 

interface. 

 

2.1.3.2 Specification of Freeform Features 

From the geometry point of view, freeform features can be classified into freeform 

surface features and volumetric freeform features. As the specification of a regular 

feature, a freeform feature would comprise of a generic shape description, the 

parameterization of the shape, and the validity conditions. The shape can be described 

as a construction procedure (procedural approach), or described as some geometric 

constraints on certain geometric entities (declarative approach). The difference from 

regular features is that the boundary of the freeform features is described in terms of 

freeform curves and surfaces. The parameterization of a freeform shape is not as 

simple as a regular shape, in which certain user-friendly parameters should be mapped 

to the underlying geometric representation directly.  
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In the work reported by Vosniakos (1999), the boundary of a freeform feature is 

determined by examining the various components within a product family. Each 

freeform surface feature is composed of several 44×  Bezier surface patches that are 

connected through some geometric constraints. The high-level parameters are assigned 

to the feature shape, which perform directly on the control points of the constituent 

surface patches. In this approach, when a constituent surface patch is modified, other 

surface patches most probably would need to be modified as well, and this poses a big 

drawback. In the work reported by Nyirenda (2006), the generic shape of a freeform 

surface feature is defined by some Freeform Feature Definition Points (FFDPs) that are 

points in 3D space. The geometric curve can be determined easily by interpolating a 

set of FFDP. Analogously, the shape of a freeform surface feature can be determined 

by interpolating the geometric curves using the standard interpolation algorithms, e.g., 

lofting, skinning, etc. High-level parameters are assigned to the locations of the key 

FFDPs, thus all the remaining FFDPs can be positioned by input parameters and 

deductive parameters. This approach fails to address the question of combining the 

freeform features together to form a part model.  

 

A feature specification approach for volumetric freeform shapes was reported by van 

den Berg et al. (2003). The profile and trajectory of a sweeping shape are both 

geometric curves that are determined by interpolating certain FFDPs, from which a 

volumetric freeform shape is generated by using the standard sweeping operation. For 

positioning the FFDPs, a network of geometric constraints, including distance 

constraints and angle constraints, are defined and solved. The geometric constraints 

can be related by algebraic constraints for defining certain high-level parameters. In 

volumetric freeform features, since the boundary surfaces are non-planar, feature 
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attachment operations are not as straightforward as that in regular-shaped feature 

attachments. In the recent work reported by van den Berg and Bronsvoort (2007), an 

attachment approach for freeform extrusion features was presented. In this approach, 

the initial feature shape that is not seamlessly connected to the attach face is extended, 

thus the extended feature shape can intersect with the attach face completely. In 

another work reported by van den Berg et al. (2004), the freeform shape is created by 

wrapping certain cross-sections defined by 3D points. Since the cross-sections have 

enough degrees of freeform, the general cross-section can be deformed to intersecting 

with the target surface. However, this approach is not plausible since the cross-section 

generated by interpolating 3D points does not lie on the attach surface seamlessly. 

 

From the above studies, it indicates that the definition procedure of a freeform feature 

is similar to that of a regular feature: firstly create a generic shape; secondly associate 

certain intuitive parameters and constraints with the generic shape. However, 

attachment operations here are quite complicated since the boundary surface is not 

planar any more. In addition, specifying freeform features based on certain 3D points 

violates the essence of freeform modeling, since the freeform shape cannot be 

modified flexibly in this case. In this work, the specification and taxonomy of freeform 

features are not the key points. The focus here is the displacement feature modeling, 

which is reviewed in the following subsection. 

 

2.1.3.3 Displacement Features in Product Design  

Displacement feature is a type of freeform surface feature that deforms a region of the 

base surface. Embedding a number of displacement features into a base surface is quite 

common in industrial parts, e.g., automobile inner panel, airplane, refrigerator, etc. 
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(Cavendish and Marin, 1992, 1995). For displacement features, a modified region of a 

given surface is displaced towards the exterior or interior of this surface, after which it 

is blended with the unmodified surface region (Nyirenda et al., 2005). The modeling 

procedure generally includes three steps. Firstly, the modified region is defined by 

setting a boundary curve on the base surface. Secondly, the surface region inside the 

boundary curve is trimmed and displaced towards the exterior or interior of the base 

surface. Lastly, a blending surface is generated for connecting the displaced surface 

region and the un-modified region, as illustrated in Fig. 2.7. 

 
 
Some studies have been conducted in this modeling procedure. In the work reported by 

Cavendish and Marin (1992), the boundary curve on the base surface and the boundary 

curve of the modified surface region are designed in the plan view drawing, and the 

blending formula is the interpolation of the implicitly given surfaces. In the work 

reported by van Elsas and Vergeest (1998), the boundary curve on the base surface is 

(c) 

(a) (b) 

Fig. 2.7 Displacement feature modeling: (a) boundary curve; (b) 
displaced modified region; (c) blending surface 
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sketched by the designer and the transition surface is generated using the Cubic 

Hermite Interpolant, in which the tangential continuity ( 1G ) is approximated. 

 
For a displacement feature, the boundary curve is basically a 3D curve lying on the 

base surface.  In this circumstance, the 3D curve is represented explicitly and the 

representation is control-point based. In general, the 3D curve is first represented as a 

curve in the parametric domain of the base surface. Next, it is evaluated in the base 

surface as a space curve. The exact curve on a freeform surface in the control-point 

based representation can be computed using several approaches, e.g., point sampling 

and interpolation, power basis conversion, direct Taylor expansion, and polar forms 

(Renner and Weiβ, 2004). However, the degree of the exact curve is high, which could 

result in computationally demanding evaluation and may introduce numerical 

instability. Approximations are used to overcome this problem, where a lower degree 

curve is approximated within the user-specified tolerance (Renner and Weiβ, 2004; 

Yang et al., 2004). In this work, the boundary curve on the base surface is an exact 

curve rather than an approximated curve, which ensures that the continuity across the 

boundary is at least positional continuity (0G ).  

 

Surface blending is used for replacing sharp edges with smooth surfaces, or creating 

smooth surfaces between a pair of non-intersecting surfaces. A survey on parametric 

blending methods has been reported by Vida et al. (1994). Whited and Rossignac 

(2009) recently reported a brief survey on the blending methods, and proposed a set-

theoretic formulation for variable-radius blending, in which a “bounding” solid is used 

to control the radius of the rolling ball locally. In order to achieve the tangent plane 

continuity, the Cubic Hermite Interpolant has been adopted for surface blending (Elber, 

1997; Elber, 2005; Kim and Sprynski et al., 2008; van Elsas and Vergeest, 1998). In 
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the Cubic Hermite Interpolant, the interpolating surface is basically a 3×n  Bézier 

surface patch, where n  is the degree of the boundary curve. The critical issue is the 

selection of the tangent curves that guarantee the tangential continuity across the 

boundary curves. Five methods were introduced by Kim and Elber (1997) for 

determining the tangent curves symbolically. However, the polynomial degree of the 

tangent curve can be as high as 3)12( −nm , where m  is the degree of the base surface 

in u and v  directions. In order to obtain a surface with a low degree, the degree of the 

tangent curve should be reduced. Since the reduction in the degree of the tangent curve 

is a non-trivial task, determining the tangent curves directly is not a desirable solution. 

To avoid determining the tangent curve symbolically, van Elsas and Vergeest (1998) 

proposed an approximation method, where a set of points are sampled on the 

parameter curve uniformly, and the tangent vectors at the sample points are used to 

position the two interior rows of control points in the blending surface. However, this 

approximation method does not ensure that the tangent vector of the t  isocurve in the 

blending surface would lie on the tangent plane of the base surface, which means that 

the tangent plane continuity cannot be achieved. In this work, the tangent curve is 

obtained by interpolating the sample points that are on the respective tangent planes of 

the base surface. Hence, this ensures that the blending surface patch contacts the base 

surface tangentially. 

 

From the above reviews in section 2.1.3, it can be seen that current freeform feature 

specification is not reasonable to some extent. Freeform features should be created and 

manipulated intuitively by the users. More importantly, the modeling flexibility should 

not be restricted. In this work, the displacement feature modeling is studied, in which 



Chapter 2 Literature Review 

 
 

36 

the generation of the boundary curve and the surface blending approach would need 

more research effort. 

 

2.2 Collaborative Computer-aided Design 

Product design and manufacture has been shifted to a collaborative activity, where a 

group of designers from several departments or companies work together to develop a 

complex product. In this situation, a collaborative framework is strongly needed for 

integrating and coordinating the designers from different domains. Much research has 

been actively conducted in this field to develop new approaches and systems 

supporting collaborative design activities. The collaboration was categorized into three 

types by Li and Qiu (2006), namely, visualization-based collaboration for conceptual 

design and product review, cooperative creation and manipulation (co-design) for 

detailed design, and concurrent engineering integrating the design and the related 

manufacturing processes.  

 

In visualization-based collaboration, all modeling functions and native 3D models, e.g. 

B-rep models, reside in the server. This collaborative mechanism only supports 

visualization, annotation and inspection of the product model at the macro-view. It is 

suitable for the on-line team to take on design discussion, product review, design 

remarks and conceptual design. The transmitted product model in such a collaborative 

environment is usually represented as a meshed model, which is small-sized over a B-

rep model and can be used for visualization and some analysis applications directly. 

However, normally, the meshed model does not contain all the product information 

and design intent, so the designers cannot interrogate and manipulate it as a native 3D 

model.  
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The other two collaboration systems are presented in the following sections. Firstly, 

concurrent engineering which is also termed Computer Supported Collaborative 

Design (Shen et al., 2008) is investigated. Secondly, the studies in the co-design 

environment are reviewed, including the coordination of design operations and product 

information synchronization.  

 

2.2.1 Computer Supported Collaborative Design 

Computer Supported Collaborative Design (CSCD) is one of the concepts to re-

organize the design process with objectives for better product quality, shorter lead-time, 

more competitive costing and higher customer satisfaction (Shen et al., 2008). In 

CSCD, the multidisciplinary design teams, including conceptual design, detailed 

design, manufacture, testing, simulation, etc., are integrated and coordinated in product 

development. Hence, the design conflicts can be identified in the early phase of 

product life-cycle, and the lead-time can be shortened. Since the design teams in 

CSCD may be geographically distributed in an enterprise or across several enterprises, 

the application modules used in the development process need to be integrated as a 

distributed and collaborative system using the new IT and communication approaches, 

e.g., Agent Technology, Web Services, etc.  

 

In CSCD, the integration between computer-supported applications requires product 

information exchange within the integrated environment. Two solutions have been 

proposed to provide a compatible product model, namely, a neutral file-based model or 

a central master model involving all relevant product data. 
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International Standard for the Exchange of Product Data (STEP) offers the desired 

neutral specifications for product models with its open and extensible structures. STEP 

data files can be read directly by STEP processors, applications or through STEP 

access interfaces. As the distributed system architecture proposed by Zhou and Nagi 

(2002), STEP was used for information modeling and mapping for a virtual enterprise. 

However, STEP has some drawbacks that hinder its applications in current distributed 

systems. Firstly, the interface between applications is static thus the entire product 

model needs to be re-transmitted once some changes are made on the original model. 

Secondly, it is still shape-based centric that provides insufficient product information, 

where design intent, namely, parameters, features, and constraints, cannot be 

exchanged based on current STEP. In order to exchange parametric models, some 

approaches and standards have been proposed, such as Enabling next generation, Part 

108, Part 55, and solid model construction history, etc. (Mun et al., 2003).  

 

For the integrated system using a central product model, all the relevant product 

information and data processing are deposited in a central repository so that specific 

applications can access and manipulate the specific data subset. Hoffman and Joan-

Arinyo (1998b) proposed a product master model for coordinating the CAD system 

with the downstream application processes. The master model is a repository that 

maintains the integrity and consistency of the deposited information on the geometry 

data. In the master model, the CAD system deposits the net shape, and other domain-

specific applications can retrieve the shape elements and can deposit processed 

information on the net shape. When a specific shape element is changed by a client, a 

change protocol is used to inform the other clients of the shape change. The 

mechanism for maintaining the consistency between the distributed product views was 

elaborated and extended in their later work (Hoffman and Joan-Arinyo, 2000). Martino 
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et al. (1998) reported an integrated feature-based modeling approach for the 

integration between the design process and the downstream engineering processes, 

which provides a homogeneous, multiple view feature-based representation of the 

product model. A certain application can extract specific feature-based model from the 

central model, and request for modifications. In order to avoid conflicts, the designer is 

the only user allowed to modify the product model and propagate the model change.  

 

In addition to a natural product model, the essence of the distributed and collaborative 

system is that the engineering tools are encapsulated as web-enabled services, thus 

they can be delivered, discovered, integrated, and interoperated dynamically. Three 

main technologies have been developed to distribute and integrate the manufacturing 

resources, namely, Web technology, Agent technology and Web Services. In Web-

based collaborative design, engineering tools are encapsulated as Web-enabled 

modules, thus the designers at the client sides can share information and invoke the 

engineering tools across the Internet. In Agent-based collaborative design, engineering 

tools are encapsulated as agents that have the capabilities of being autonomous, 

coordinative, communicative, intelligent, etc., thus the specific agent-based 

engineering tools can be integrated as a collaborative environment. Similarly, in Web 

Services systems, engineering tools are encapsulated as Web Services, thus they can be 

delivered, discovered, and integrated dynamically through the ubiquitous Internet 

system. In addition, the combination of Agent Technology and Web Services can also 

be used for developing collaborative engineering systems.  

 

Many studies have been reported in the exploration of integrated systems using the 

above technologies. A design service marketplace was developed by Abrahamson et al. 
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(2000), in which organizations can publish, subscribe, and manage the solution 

services. A component-based framework for advanced CAD/CAM applications using 

the component technology was developed by Liu (2000). The interface component 

encapsulates the feature data and provides a set of interface functions for the access 

and manipulation of the internal data, which decouples the developments of specific 

applications. An open system was developed by Gerhard et al. (2001) to provide 

solutions for rapid integration of design and manufacturing modules. The explicit 

interface and explicit access methods of the Event-based mechanism guarantee the de-

coupling of application development and implementation. Li et al. (2004b) reported an 

Internet-enabled collaborative and concurrent engineering design system based on Java 

Servelet, integrating three functional modules, namely, co-design, web-based 

visualization, and manufacturing analysis. In this system, an event-based mechanism is 

proposed to maintain asynchronous communication among the three modules. An 

agent-based collaborative design environment was developed by Hao et al. (2006). The 

actual engineering software tools are encapsulated as problem-solving agents (PA). A 

design work is defined as a job agent, which contains the workflow of the requested 

PAs. When a job agent is executed, the involved PAs interact and communicate 

automatically using the XML based message. In the work reported by Kuk et al. 

(2008), each of the engineering software is wrapped and offered as a service via Web 

Services, and is consumed and invoked by a process/analysis agent. Web Services are 

used for integrating world-wide distributed resources, and agents are used for the 

cooperation and coordination mechanisms for the engineering activities.  

 

From the above reviews, it can be seen that computer-supported collaborative design 

has been a topic of research effort in the past few years. The integration of different 
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applications is realized using the new middleware modules and intelligent information 

technologies. The product information transferred across the integrated environment is 

represented as a neutral file-based model, or the information is stored and managed in 

a central master model. However, since the application services need to be integrated 

dynamically, current middleware technologies sill need much research effort. In 

addition, STEP needs to be extended to include more high-level product information. 

 

2.2.2 Collaborative Feature Modeling 

The co-design system is usually termed collaborative feature modeling, where a group 

of designers manipulate the product model concurrently. Two types of architecture for 

co-modeling system are usually adopted: 

• communication server + modeling client 

• modeling server + manipulation client 

In the first architecture, each designer is provided with the whole modeling capabilities 

and a communication interface. The server coordinates the design session through 

receiving and broadcasting action events. In the work reported by Chan and Ng (2002), 

each client holds the whole modeling functions and a copy of the central model. Once 

a primitive object is edited by one designer, the design event, consisting of design 

action and design object, is forwarded to the server, and is then broadcast to other co-

designers by the server. Li et al. (2007) proposed a mechanism to integrate 

heterogeneous CAD systems. An add-on for the translation between specific modeling 

operations and neutral modeling commands is embedded into specific CAD systems. 

Hence, the modeling operations performed by one designer can be broadcast to other 

designers via the server. The limitation of the first architecture is that the user module 

contains all the modeling functions, so it is not flexible to be distributed across the 
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Internet. In the second architecture, most of the modeling work is performed at the 

server, whilst each user has limited capabilities to visualize and manipulate a 

simplified product model, for instance, the framework for web-based feature modeling 

(Bidarra et al., 2002), the client/server framework enabling a dispersed team to 

accomplish a feature-based design task collaboratively (Li et al., 2004a). The user 

module in this architecture can be distributed flexibly across the Internet. However, the 

designed model needs to be transmitted back and forth in this case, which raises many 

problems due to limited bandwidth. 

 

In addition to the collaborative part design, co-modeling is also reported in assembly 

design, where each designer works on a specific part and the compatibility between 

different parts is maintained by the server. Shyamsundar and Gadh (2001) reported a 

geometric representation, termed AREP, for real-time collaborative assembly design. 

AREP consists of several assembly units (AUs), each of which comprises of interface 

assembly features and virtual design space (VDES). As such, each designer can focus 

on a specific VDES, and the compatibility is guaranteed by the Interface Assembly 

Features (IAF) in the VDES. The weakness of this approach is that VDES must be 

produced before the detailed design, which is difficulty for some products. Chen et al. 

(2004) reported an Internet-enabled real-time collaborative assembly modeling system, 

in which the product was represented as a client/supplier hierarchy. In the work 

reported by Kim et al. (2004), an assembly design (AsD) formalism and the associated 

AsD tools were developed, which can capture the joining relations and spatial 

relationships in assembly design. The AsD formalism specifies the assembly 

symbolically and the AsD engine generates the assembly model, so each designer only 

sends an AsD model rather the entire geometric model. The above three studies 
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indicate that the crucial issues in collaborative assembly design are dividing the 

product model into different parts and maintaining the compatibility between them. 

 

In brief, co-modeling can be used in the detailed design of a part model or the 

assembly design. In this thesis, only the co-modeling of a part model is focused, where 

two issues should be addressed for employing it effectively. Firstly, a coordination 

mechanism is required for managing the concurrent design operations. Secondly, since 

the designers may be geographically dispersed in different locations, the modeling 

system becomes a distributed and collaborative environment. In this situation, the 

synchronization of the product model across the clients is a challenging issue. 

 
2.2.2.1 Coordination Mechanism  

Since an effective coordination mechanism is crucial for scheduling the collaborative 

design activity and resolving operation conflicts (Bidarra et al., 2002; Li and Qiu, 

2006), exploring coordination mechanisms has been a research topic. In the literature, 

the locking mechanism, either total-locking mechanism or granular-locking 

mechanism, has been proposed to schedule the concurrent modelling operations, and 

some optimistic mechanisms used in group-editor systems have also been reported. In 

this subsection, the coordination methods reported in the previous works are discussed 

and the specific gaps that will be fulfilled in this research work are identified. 

 

Some optimistic mechanisms, in which the object being edited is not locked, have been 

employed in the collaborative systems for coordinating the concurrent operations. The 

concurrent operations in the group-editor system can be classified into causality 

relation and compatible relation (Xue et al., 2001; Imine 2008). The causality 

operations cannot be executed concurrently since they have to be executed in the same 
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order, but the compatible operations can be executed concurrently at different users’ 

sites by using the operation transformation (OT) mechanism. Under these 

circumstances, users can perform the operations at the same time, after which the 

operations are classified and executed concurrently. Unfortunately, the classification 

mechanism is very complex in collaborative feature modelling as the modelling 

operations are difficult to be classified separately compared to that in group-editor 

systems. Jing et al. (2008) reported a no-locking mechanism for collaborative feature 

modelling. Each designer can perform a design operation locally, and then send the 

operations to the remote co-designers. A topological entity correspondence mechanism 

was proposed to resolve the operation conflicts. The reference entities of an operation 

are identified by a naming mechanism, and the lost operation entities of an operation 

are restored by rolling back and re-executing local operations. However, this no-

locking mechanism is questionable in two aspects. Firstly, it assumes that there is no 

manipulation conflict, which means each designer edits different features at one time. 

This assumption does not hold in a distributed environment without any locking 

mechanisms. Secondly, it does not maintain the consistency of the feature creation 

orders at different design sites, and it assumes that the operations can be re-sorted and 

re-executed freely, which is not reasonable in current history-based feature modelling, 

as shown in Fig. 2.8. If the Slot  creation precedes the Boss  creation, the resulting 

model is Fig. 2.8(b), but the reverse execution order generates the model Fig. 2.8(c). 

 
 

Fig. 2.8 Overlapping features 
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In view of the problems of optimistic mechanism, the locking mechanism is usually 

employed in collaborative feature modelling. By means of the total-locking mechanism, 

the entire product model is locked by the system and the control permission is 

dispensed to the designers in a sequential order by a coordinator. Bidarra et al. (2002) 

employed a ‘traffic light’ mechanism for coordinating simultaneous design operations. 

The design operations are queued at the client’s side, and only one designer is 

permitted to submit his operation to the modelling server based on the status of his 

‘traffic light’. A control baton based mechanism has been adopted by some researchers 

for scheduling the collaborative design activity (Li et al., 2004; Li et al., 2007; Shen et 

al., 2006). At one time, only the designer who holds the control baton can edit the 

product model, while other designers only observe and receive the updated model 

information. The major drawback of the total-locking mechanism is that only one 

designer is permitted to edit the product model at any one time, thus the modelling is 

inefficient. 

 

In order to overcome the shortcomings of the total-locking mechanism, granular-

locking mechanism has been proposed and adopted in some reported works. In the 

work reported by Chan and Ng (2002), the shared product model was represented as a 

CSG tree, thus a node or a sub-tree of the CSG model can be taken as the locking 

granularity. This approach provides an important insight in that the product model can 

be divided into several independent portions. In this case, the designers do not need to 

obtain the full control of the working model; instead, they can work on different 

portions and then synchronize their modified portions. As such, several designers can 

edit and manipulate the product model at the same time, which provides an effective 

way for collaborative feature modelling. Li et al. (2008a, 2008b) employed a fine 
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granular-locking mechanism for feature models, where a feature model was divided 

into several scopes based on feature dependency relationships. The exclusive scope of 

a feature includes all its descendant features, all the ancestral features of the 

descendant features, and the feature itself. If the two features are not included in the 

exclusive scope of one another, they can be edited concurrently. However, this work 

has failed to address the issue of maintaining the exclusive feature creation order, and 

it did not consider the potential conflicts between design operations, as the problem 

shown in Fig. 2.9. Due to the position change of feature cirSlot , the reference edge 1e  

of feature Rib  diminishes and the Rib  operation cannot proceed correctly. 

 
 

Based on the above review of optimistic mechanism and locking mechanism, it can be 

seen that the granular-locking mechanism is suitable for collaborative feature 

modelling. However, the reported works failed to address the following two issues: 

maintaining exclusive feature creation order and resolving operation conflicts. As a 

result, further research work on the granular-locking mechanism is imperative in 

collaborative feature modeling. 

 

2.2.2.2 Product Information Synchronization  

In the distributed and collaborative design environment, the critical problem is the 

dilemma between the large product model and the limited network bandwidth. This 

Fig. 2.9 Feature interaction 
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problem also occurs in visualization-based collaborative design, where the meshed 

model is still very large to be transmitted over the Internet. In order to transmit the 

meshed model progressively, some simplification and refinement mechanisms have 

been proposed, e.g., 3D streaming. For streaming solid models, a cellular-based 

approach was developed by Lee et al. (2004) to generate progressive solid model 

(PSM). A feature-based solid model is represented as a PSM, consisting of a much 

coarser solid model together with a sequence of progressive features that are 

represented as a subset of feature cell faces. In each model sharing, the initial coarser 

model is transmitted first, and the progressive features are transmitted incrementally. 

However, in the progressive transition, the entire meshed model has to be transmitted 

repeatedly if changes are made on the original model. An innovative approach was 

proposed by Wu and Sarma (2004) to reduce transmitted mesh number rather than 

compressing it if changes are made on the meshed model. In this approach, the 

boundary representation space of a product model (B-rep K) is regarded as a finite set 

of cells, so changing a B-rep shape is equivalent to update a subset of cells of K. Based 

on this concept, the changed faces and meshed change model can be identified, and are 

further transmitted and merged with the old meshed model. 

 

In the co-modeling system, the updated geometric model needs to be synchronized 

frequently across the co-designers. Transmitting the entire geometric model after each 

operation is infeasible in such a design context, so some research works have been 

carried out to transmit only the changed part of a model. Lee et al. (2001) developed a 

shape abstracting mechanism to provide each user an Attributed Abstracted B-rep 

(AAB) model that represents the central model on the server. The server transmits 

updated faces incrementally to the designers, and this reduces the network load 
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compared to transmitting the entire B-rep model. Li et al. (2004) proposed a 

distributed feature manipulation mechanism to reduce transmitted data size. Each time 

when a feature is edited, the server can filter the varied features and varied faces based 

on the feature interaction graph and broadcast varied information to the other designers. 

Through transmitting the varied faces instead of the entire CAD model, waiting time at 

the client side is shortened.  

 

From the literature in collaborative computer-aided design, it shows that collaborative 

design has been commonly used in current product development, including 

visualization-based, co-modeling and concurrent engineering. In order to apply 

collaborative design effectively, much research work is required to address the issues 

involved in this system, e.g., dynamic integration of different application processes, 

coordination of design activities, and product sharing across the Internet. Specifically, 

for collaborative feature modeling, the two issues, namely concurrency control and 

model synchronization, remain as a topic of research effort.  

 

In this chapter, the relevant studies in feature-based design and collaborative 

computer-aided design are surveyed and discussed. The literature review provides a 

substantial understanding of the problems in the relevant fields and the research issues 

addressed in this thesis. 
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Chapter 3 A History-Independent Modeling Approach 

 

3.1 Introduction 

The problems in current feature-based design have been investigated and discussed in 

the review section 2.1.2, they are due to the fact that the ‘feature creation order’ in the 

model history is static. In current feature-based design, the modification and evaluation 

of a feature in the model history depends strongly on the features created before the 

feature being edited, but does not depend on the features created later. This working 

principle contradicts with the operation performance from the user’s perspective, since 

the users always perform operations on the current B-rep model including all the 

features in the model history, and not the intermediate B-rep model which includes 

only the features created earlier. Hence, if the operation performance from the user’s 

perspective is consistent with the working principle of the modeling system, the 

problems in current feature-based design may be solved properly. A probable solution 

is as follows: firstly, single out the feature being edited and update the remaining 

features; secondly, re-attach the feature selected previously to the updated B-rep model. 

As such, the ‘feature creation order’ in the model history is changed, so the related 

problems can be resolved. The critical point is to update the remaining features such 

that the contribution to the B-rep model from the feature being edited is cleared. This 

update operation has the same effect with the ‘remove feature’ operation, but the 

working procedure is quite different. In the ‘remove feature’ operation, the B-rep 

model is updated by sequentially re-evaluating all the remaining features. In this 

devised procedure, only the intersecting features of the feature being edited are 

checked and re-evaluated, thus the computation time can be saved. 
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In this Chapter, the devised modeling operation, termed history-independent modeling 

approach, is elaborated and validated. Firstly, the working principle of creating a 

feature model is presented. Secondly, the feature intersecting relationship in a designed 

feature model is investigated. Thirdly, the working procedure of the proposed 

modeling approach is elaborated, including ‘add feature’ operation, ‘remove feature’ 

operation and ‘modify feature’ operation. Fourthly, the computational complexity of 

current feature-based modeling and that of the proposed modeling are analyzed, and 

the computation times are measured. Finally, the proposed approach is validated using 

a case study. 

  

3.2 Feature-based Design  

From the geometric perspective, feature-based modeling is a sequence of attachment 

operations of certain specific feature shapes, where the feature shape iFS  is combined 

with the intermediate part model iPM  through a regularized Boolean operation iBO , 

as denoted in Eq. (3.1). The feature shape and the part model are usually represented as 

B-rep models, which consist of the topological entities and the underlying geometric 

entities. There are two types of Boolean operations, namely, union and difference 

operations. In the difference operation, the feature faces of the subtractive feature iFS  

intersect with the boundary faces of the part model iPM , and the intersected faces and 

the new feature faces are selectively stitched to the resulting part model 1+iPM .  

1+=>< iiii PMPMBOFS                       (3.1) 

 
As illustrated in Fig. 3.1(b), a cirPocket  is subtracted from the initial Stock , the new 

feature faces 32 , ff  and the intersected face 1.1f  are merged into the resulting part 

model. In the union operation, the feature faces of the additive feature iFS  intersect 
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with the boundary faces of the part model iPM , and the intersected faces and the new 

feature faces are selectively stitched to the resulting part model 1+iPM . As illustrated 

in Fig. 3.1(c), a Boss  is added on the bottom face of the cirPocket , the new feature 

faces 54 , ff  and the intersected face 1.3f  are merged to the resulting part model. In a 

‘transition feature’ operation, such as the chamfer and the fillet operations, the 

transition features can be converted into the additive or subtractive features. Thus, the 

execution process of the ‘transition feature’ operation is the same, where the new 

feature faces and the intersected faces are computed and selectively stitched to the 

resulting part model. As illustrated in Fig. 3.1(d), a Chamfer  is basically a subtractive 

feature, which generates a chamfer face 6f  and modifies the incident faces.  

 
 

It can be concluded that the feature attaching processes, which are the union, 

difference, and transition operations, are basically to update the boundary faces of the 

part model if the boundary representation approach is employed. In the resulting part 

model, all the boundary faces originate from the faces of the features, and there is no 

Fig. 3.1 Feature attaching process 



Chapter 3 History-Independent Modeling 

 
 

52 

boundary face that has no original feature face, which has been observed by Wu et al. 

(2001). As shown in Fig. 3.2, a feature Boss  is first added to the top face of the initial 

Stock , and then a cirPocket  is subtracted from the Stock . In SolidWorks, the 

resulting B-rep model is (b), where the face f  of the model (c) is not on the model 

boundary since f  has no original feature face. 

 
 
3.3 Feature Intersecting Relationship 

When a new feature F  is created, the boundary faces of the intermediate B-rep model 

are modified due to the intersections with the faces of F , which are selectively 

trimmed and stitched to the resulting B-rep model. During the subsequent operations, 

the faces of F  that are present on the model boundary may be further trimmed, split, 

merged or deleted due to the merging of the later features. As shown in Fig. 3.3, firstly 

an initial Stock  is created, next a rectSlot is subtracted from theStock , and lastly 

another rectSlot  is subtracted. During the merging of the first rectSlot , feature faces 

)2,4.2(f , )2,5.2(f , )2,6.2(f  are stitched to the model boundary, boundary face )1,1.1(f  is split, 

)1,2.1(f  and )1,3.1(f  are trimmed. During the merging of the second rectSlot , feature 

Fig. 3.2 ‘No original feature face’ case: the Boss is floating on 
the model since f  has no original feature face 
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faces )3,2.3(f , )3,3.3(f  are stitched to the model boundary, 2f  and )2,4.2(f are split, )2,6.2(f  

and )3,6.3(f  are merged, )1,4.1(f  is trimmed. 

 

 

This alteration process can be illustrated with a hFaceIdGrap , as shown in Fig. 3.4. 

Each face of a feature can be assigned a unique name in terms of the feature’s 

generating mode and its location in the feature shape (Capoyleas 1996; Wu et al., 2001; 

Wang and Nnaji, 2005). Combining with theFeatureId , all the feature faces in the 

design model are named persistently, termed as the invariant name (IN ). In the 

hFaceIdGrap , each face is assigned aFaceId , in which the first item is the IN  of the 

face and the second item is the StepId  of this operation, as denoted in Eq. (3.2). In 

case that a face is split, the sub-faces can be discriminated in terms of the bounding 

feature faces and the geometric information of the intersection edges (Cripac, 1997; 

Wang and Nnaji, 2005), denoted in Eq. (3.3).  

),()( stepIdINfFaceId =      (3.2) 
 

)),(,()( stepIdcesboundingFaINsINfFaceId =   (3.3) 

_ 

_ 

Fig. 3.3 Boundary face alteration 
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It can be seen that the faces of a feature that are present on the model boundary are not 

static, but are changed according to the model modifications. In this work, one can see 

faces originating from a feature present on the model boundary constituting the 

boundary contribution (BC ) of this feature. All theBCs  of the design features in a 

model constitute the boundary faces of the resulting B-rep model. During the design 

process, the BC  of a feature is changed due to the intersecting relationships with other 

features, which are termed the intersecting features of this feature. As a result, 

modifying a feature in a product model is basically to alter its BC  and theBCs  of its 

intersecting features, so that the resulting B-rep model can be updated.  

 
3.4 Proposed Feature Modeling Approach 

3.4.1 ‘Add feature’ Operation 

When a new feature is attached to the product model, the feature constraints are first 

specified and solved, e.g., attach constraint, position constraint and dimension 

Fig. 3.4 Graph of altering faces 

1,1.1f
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2),5.2,5.1,3.1,2.1(,1.1f
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3,6.2f

2,4.2f
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3),3.3,4.2,4.1,3.1(,1.1f
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constraint. Next, the feature shape is generated and combined with the current BRep 

model. In boundary evaluation, the intersecting faces in the current BRep model are 

identified and processed using Boolean operations first, after which the partitioned 

sub-faces and the new feature faces are selectively stitched to the resulting BRep 

model. In this research work, when a feature has been evaluated, there is an 

intersecting list recording to its intersecting features, and storing the intersection face 

portions between the intersecting faces and the feature faces, as shown in Eq. (3.4).  

)]();([:)( FortionInterFacePFreInterFeatuFList =    (3.4) 

As shown in Fig. 3.5, the product model is developed by combining four features, 

5432 ,,, FFFF  to the initial feature 1F . During the development process, the intersecting 

features are recorded, and the intersection face portions are stored, as in Table 3.1.  

Table 3.1 Intersecting list #1 

Intersecting List 1F  2F  3F  4F  5F  

Intersecting features  2F , 5F  1F , 3F , 5F  2F , 4F , 5F  3F  1F , 2F , 3F  

Intersection face 
portions  

 2)1,1.1( *Ff ∩  3)2,1.2( *Ff ∩  4)3,1.3( *Ff ∩  5)2,1.1( *Ff ∩ , 

5)3,2.2( *Ff ∩  

+

+
+

+

Fig. 3.5 ‘Add feature’ operation#1 
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3.4.2 ‘Remove feature’ Operation 

In the ‘remove feature’ operation, when a featureF is removed, there are three major 

steps for updating the model boundary. Firstly, the boundary faces originating from 

F are removed from the model boundary. The boundary faces originating from F  can 

be classified as follows: a) originating from F  and being present on the model 

boundary as a topological face; b) being on the model boundary but is only a portion of 

a topological face, which is the merged face from faces originating from different 

features. The first type of faces can be removed directly, and the second type of faces 

should be updated by subtracting the face portions that belong toF . Next, the 

intersection face portions stored at the F creation step are merged to the model 

boundary, in which the impacts caused by the later intersecting features are considered. 

Lastly, theBCs of the intersecting features which are created later than F are updated 

by removing the impact from the removal of F . As shown in Algorithm #3.1, FBf is 

the face defining the boundary of F ; ortionInterFacePf  is the intersection face portions 

between intersecting faces and FBf  when F is being added;Ff  is the present boundary 

face originating from both F ; mergedf  is the present boundary face that is merged from 

FBf  and the face belong to other features; reBInterFeatuf  is the face defining the 

intersecting feature InterF . 

  Algorithm #3.1: 
)(Fremove { 

update ( BC of FBf ) { remove Ff ; 

update mergedf by )*( FBmerged ff − ;}  

update ( BC of ortionInterFacePf ) { 

if )(! InterF : stitch ortionInterFacePf ;  

else : yselectivel stitch )*( reBInterFeatuortionInterFaceP ff ∩ ;} 

update ( BC of InterF ) { 

yselectivel rGlueOrClea reBInterFeatuf( >< BO )FBf ;} 

} 
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As shown in Fig. 3.6, feature 5F  in Fig. 3.5 has been removed from the current BRep 

model. Firstly, the boundary faces )5,4.5()5,3.5()5,2.5()5,1.5( ,,, ffff  originating from 5F  are 

removed from the model boundary. Next, the intersection face portions ba ff ,  are 

merged to the resulting BRep model, which are the stored face portions 5)2,1.1( *Ff ∩  

and 5)3,2.2( *Ff ∩ . 

 
 
When a feature F is removed, the features attached to F are usually removed as well. 

As shown in Fig. 3.7, when feature 3F  is removed, its attached feature 4F  needs to be 

removed as well. It is supposed the feature 5F  has not been combined, and the removal 

operations of 3F  are as follows. Firstly, the boundary faces )4,1.3()3,5.3( , ff  originating 

from 3F  and the boundary faces )4,2.4()4,1.4( , ff  originating from 4F  are removed from 

the model boundary directly. Then, the merged boundary faces )3,4.2()3,3.2()3,2.2( ,, fff  are 

Fig. 3.6 ‘Remove feature’ operation#1  
 

Remove relevant faces 

>< Merge

>< BO

Intersection Face Portions 
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processed using the Boolean operations with the feature faces defining3F , and the 

merged boundary faces )3,4.2()3,3.2()3,2.2( ,, fff  are replaced by the partitioned faces 

cba fff ,, . Next, the stored intersection face portiondf  are merged to the model 

boundary. 

 
 
For the examples in Figure 3.6 and Figure 3.7, the intersection face portions stored at 

the feature creation step can be merged to the model boundary directly. However, 

when the feature being removed has intersecting features that are created later, theBCs  

of the stored faces should be updated by considering the impact from the intersecting 

features. As shown in Fig. 3.8, the product model is developed by sequentially 

Remove relevant faces 

>< BO

>< BO

Intersection Face Portions 

Fig. 3.7 ‘Remove feature’ operation#2 

>< Update
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combining three features 432 ,, FFF  to the initial feature 1F , and the intersecting list is 

summarized in Table 3.2. 2F  has three intersecting features, namely, 1F  that is created 

before 2F , and 3F , 4F  that are created later than 2F . 

 
Table 3.2 Intersecting list #2 

Intersecting List 1F  2F  3F  4F  

Intersecting features 2F , 4F  1F , 3F , 4F  2F , 4F  1F , 2F , 3F  

Intersection face 
portions 

 

2)1,1.1( *Ff ∩
,

2)1,2.1( *Ff ∩
,

2)1,3.1( *Ff ∩
 

2)2,1.2( *Ff ∩
 

4)1,4.1( *Ff ∩ , 4)1,5.1( *Ff ∩ ,

4*Ffa ∩ , 4*Ffb ∩ ,

4)2,2.2( *Ff ∩ , 

4)2,3.2( *Ff ∩ , 4)3,1.3( *Ff ∩ ,

4)3,2.3( *Ff ∩ , 4)3,3.3( *Ff ∩  

 
 

When 2F  is removed from the product model, its attached feature 3F  is removed as 

well, and the removal operations are shown in Fig. 3.9. At the first step, the boundary 

faces originating from 3F  are )3,5.3()3,4.3()4,3.3()4,2.3( ,,,,, ffffff dc , and the boundary faces 

originating from 2F  are )4,3.2()4,2.2()3,1.2( ,, fff , and they are removed from the model 

boundary. After removing the faces of 3F , face ef  is disconnected from the remaining 

model, so it is removed as well. Since 3F  is attached to 2F , its intersection face portion 

2)2,1.2( *Ff ∩  will not be merged to the model boundary. Hence, at the second step, only 

Fig. 3.8 ‘Add feature’ operation#2 

- +

- 
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the intersection face portions stored at the creation step of 2F , which are ihg fff ,, , are 

to be merged to the model boundary. Since 4F  is created later than 2F  and it is 

intersecting with 2F , the intersection face portions stored at the 2F  creation step may 

be modified by 4F . In this case, if  need to be further updated by 4F , which is 

processed using the Boolean operations with the feature faces defining 4F . After that, 

the resulting sub-faces and the stored ‘intersection face portions’ are selectively 

stitched to the model boundary, which are 2.1., ,, iihg ffff . At the third step, the BC  of 

the intersecting feature 4F is updated, where the Boolean operations between the 

feature faces defining 4F  and 32, FF  are computed. The resulting partitioned faces 

from the operation with 3F  are ef  and ff , and the partitioned faces from the operation 

with 2F  are jf  and kf . The partitioned sub-faces need to be selectively stitched to or 

subtracted from the model boundary according to the validity of the resulting BRep 

model, or the users can be given the opportunity to decide how to process the 

partitioned sub-faces. In this case, kf  is stitched the resulting model boundary.   
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Intersection face portions 

>< BO

Fig. 3.9 ‘Remove feature’ operation#3 
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During the ‘remove feature’ operation, the sub-faces are removed selectively from or 

merged to the model boundary. The sub-faces originating from the feature being 

removed should be removed, and the intersection face portions should be merged into 

the final BRep model, as presented in Figures 3.6-3.7. However, if the feature being 

removed has an intersecting feature that is created later, the partitioned faces portionf , 

which are generated from the Boolean operations on the intersection face portions and 

the intersecting features, should be classified with respect to the intersecting feature to 

determine whether they are on the model boundary, namely Interportion InFf , 

InterportionOnFf , InterportionOutFf . InterportionOutFf  is merged to the final BRep model, 

Interportion InFf  is discarded, and InterportionOnFf is determined based on its ‘nature’ 

defined in the specification of InterF . The ‘nature’ of a feature face expresses whether it 

is on the model boundary or not, which is also used in the cellular model 

representation (Bidarra et al., 2005). As the if  in dStep −2  of Fig. 3.9, the partitioned 

faces 3.2.1. ,, iii fff are classified with respect to 4F . 2.1. , ii ff  are merged to the final 

model boundary since they are out of 4F . 3.if  is discarded since it is on 4F  and the 

‘nature’ of the feature face indicates it is not on the boundary. For updating the BCs  

of the intersecting features, the sub-faces from the intersecting features are classified 

by their ‘nature’ or are classified by the decisions from the users, and in both cases the 

final BRep model should be maintained valid and consistent. As in bStep −3  in Fig. 

3.9, ff  and jf  are discarded since their ‘nature’ in 4F  indicates they are not on the 

boundary, and ef  and kf  are merged into the final BRep model since their ‘nature’ in 

4F  is on the boundary. In this case, the boundary edges of ef  are not consistent with 

the intermediate model, and hence kf  is merged to obtain the final BRep model. 
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3.4.3 ‘Modify feature’ Operation 

The ‘modify feature’ operation is similar to the ‘remove feature’ operation. When a 

feature is modified, the features attached to it are usually modified as well. For the 

‘modify operation’, there are two major steps. Firstly, the modified feature and its 

attached features are removed from the current product model. Next, the modified 

feature and its attached features are re-added to the product model with newly 

modified parameters.  

 

Modified to 

>⋅< addre

Remove faces 

>< merge

>< BO

Fig. 3.10 ‘Modify feature’ operation 
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The ‘removal operations’ and the ‘re-added operations’ have been presented in Section 

3.4.2 and Section 3.4.1 respectively. As shown in Fig. 3.10, when the feature Boss  is 

modified to become a Block , the Boss  and its attached feature, which is the feature 

BlindHole , are removed from the current product model first. Next, the modified 

Block  and BlindHole  are re-added to the updated product model as the new features.  

 
 

3.5 Computational Complexity Analysis and Performance Measurement 

Three classes of feature models were introduced by Bidarra et al. (2005), namely, the 

best, average, worst case behaviors for analyzing the computational complexity. For 

the model with the best case behavior, all design features are disjoint. As shown in Fig. 

3.11(a), the model consists of aBlock with one row of 100 non-intersecting 

eThroughHol  shapes. For the model with the average case behavior, each of its m  

features has a small average number i  of intersections with other features, i  being 

independent of m . As shown in Fig. 3.11(b), the model consists of a Block  with a row 

of 33 feature groups, each of which have three intersecting features inserted 

sequentially: first Rib , then Slot , and finally eThroughHol . Each eThroughHol  

intersects one face of Rib , two faces of Slot , as well as one face of the Block . For the 

model with the worst case behavior, each of its m  features intersects (once) i  other 

features, and i  is smaller than m . The worst model is modified a bit in this work. As 

shown in Fig. 3.11(c), the model consists of a Block  with 20 similar eThroughHol , 

which are added in a criss-cross manner. The diameter of the set of holes in one 

direction is slightly smaller than the diameter of the set of holes in the other direction. 

Only the computation for the set of holes with the smaller diameter is measured. 
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3.5.1 Setup used for measurement 

The boundary evaluation for the three representative models in the pure history-based 

modeling is measured using the commercial software SolidWorks 2006 SP0.0. 

SolidWorks uses a so-called swp  file for recording all the user actions, which serves 

as the script file. The swp  file can be executed in another modeling session, during 

which the same commands are executed automatically and the identical resulting BRep 

model is generated. In order to measure the evaluation time, the time-stamp commands 

are embedded into the swp  file so that the start time and the finish time of a modeling 

command are recorded, as shown in the text box below. On the other hand, the 

boundary evaluation for the three representative models using the proposed methods 

are measured based on Open CASCADE. All the performance measurements are 

carried out in the Windows XP environment on a computer with Intel Duo CPU 

2.0GHz and 2G of RAM.  

 

 

 

 

 

 

 

 

(b) (a) (c) 

Fig. 3.11 Representative models for (a) best case, (b) average case, (c) 
worst case behavior (Bidarra et al., 2005) 

boolstatus = Part.Extension.SelectByID2("Top Plane", "PLANE", 0, 0, 0, False, 0, Nothing, 0) 
Part.InsertSketch2 True 
            QueryPerformanceFrequency curFreq 
            QueryPerformanceCounter curStart 
boolstatus = Part.Extension.SelectByID2("Sketch1", "SKETCH", 0, 0, 0, False, 0, Nothing, 0) 
Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, 0.01, 0.01, False, False, False, 
False, 0.01745329251994, 0.01745329251994, False, False, False, False, 1, 1, 1, 0, 0, False 
Part.SelectionManager.EnableContourSelection = 0 
            QueryPerformanceCounter curEnd 
            dblResult(X) = (curEnd - curStart) / curFreq * 1000 
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It is a complex procedure to measure the exact modeling times for the boundary 

evaluation in SolidWorks since the working algorithms in SolidWorks cannot be 

accessed and modified easily. Although the swp  file can record the modeling 

commands, it is difficult to determine that the measured time is the exact boundary 

evaluation time. In addition, the specific modeling algorithms in Open CASCADE are 

very different from that in SolidWorks, and the CPU timers are not accurate. As a 

result, it is not meaningful to compare the absolute computation times measured in 

these two modeling software, and the measured times with those reported works in the 

literature. In this work, all the modeling times are normalized to make them 

comparable, in which only the trends of the computation times with respect to the 

number of features are analyzed. 

 

In the ‘add feature’ operation, the boundary evaluation is measured to find the 

relationship between the computation time and the number of features added. It is 

assumed that there are 1−n  features in the model, and the number n  feature is being 

added to the model. In the ‘remove feature’ operation and the ‘modify feature’ 

operation, the boundary evaluation is measured to find the relationship between the 

computation time and the sequence position of the feature being edited. It is assumed 

that there are m  features in the model, and the number k  feature is being removed or 

modified.  

 

3.5.2 ’Add feature’ operation 

The computational complexity and the performance measurements for the boundary 

evaluation in history-based modeling have been reported by Bidarra et al. (2005). For 

the ‘add feature’ operation, the computation time is proportional to the number of 

boundary faces and the number of intersections per feature. From the charts on the left 
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column in Fig. 3.12, for the best case and the average case behavior models, the 

computation times increase linearly with increasing number of features; for the worst 

case, the computation time increases in quadratic order with increasing number of 

features. 

 

In the proposed modeling approach, the ‘add feature’ operation is similar to the 

history-based modeling approach. Thus, the computational complexity of the proposed 

approach is similar to the history-based approach. Bidarra et al. (2005) have explained 

that the computation time for the ‘add feature’ operation is composed of 

opelupdop nnntttt ×+×+×=++= γβα intmodint , where intt  represents the time required 

for the identification of the intn  intersecting faces from the model boundary that has a 

total number of elnmod  faces, opt  represents the time required for processing these 

intersecting faces intn  using Boolean operations, updt  presents the time required for 

updating the BRep model with the processed faces opn , and α , β  and γ  are positive 

factors. For the ‘add feature’ operation, the evaluation times of the three representative 

models are shown in the charts on the right column in Fig. 3.12. For the case of the 

best behavior model, the computation time increases with increasing number of 

features in a nearly quadratic order. For the case of the average behavior model, the 

computation time increases linearly with the number of features. For the case of the 

worst behavior model, the computation time increases in a cubic order with increasing 

number of features. It is observed that the computational complexity for the best 

behavior model and the worst behavior model is one order higher as compared with 

that in SolidWorks. This is because the number of topological edges in the intersecting 

faces increases proportionally with increasing number of features, and hence the 
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positive factor β  becomes larger linearly, which represents the time for performing 

Boolean operations on the intersecting faces and the new feature faces. The increasing 

β  is due to the specific modeling algorithms in Open CASCADE, and one should 

adapt the curves of computation times when it is compared with that in SolidWorks 

and that in other reported works. 
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3.5.3 ’Remove feature’ operation 

For the ‘remove feature’ operations in the pure history-based modeling approach, the 

computation time is dependent on the sequence position of the feature being removed 

in the model history. For the charts (solid curves) in the left column in Fig. 3.13, for 

the best behavior model and the average behavior model, the computation times for 

Fig. 3.12 Measurement of boundary evaluation time for adding a feature using 
SolidWorks (left column) and using the proposed modeling method (right column) 
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removing a feature decrease in quadratic order when its sequence position in the model 

history increases; for the worst behavior model, the computation time for removing a 

feature decreases in cubic order when its sequence position in the model history 

increases. 

Best model ModifyTime & RemoveTime

0

200

400

600

800

1000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Sequence position of features (k)

ti
m

e 
(m

s)

Poly. (Modify Time) Poly. (Remove Time)

Best Model ModifyTime & RemoveTime

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Sequence position of features (k)

ti
m

e 
(m

s)

Linear (Modify time) Linear (Remove time)  
(a) best case 

  

Average Model ModifyTime & RemoveTime

0

400

800

1200

1600

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sequence position of features (k)

ti
m

e 
(m

s)

Poly. (Modify time) Poly. (Remove time)

Average Model ModifyTime & RemoveTime

-50

50

150

250

350

450

550

650

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sequence position of features (k)

ti
m

e 
(m

s)

Linear(Modify time) Linear(Remove time)   
(b) average case 

    

Wrost model ModifyTime & RemoveTime

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sequence position of features (k)

ti
m

e 
(m

s)

Poly. (Modify time) Poly. (Remove time)

Worst Model ModifyTime & RemoveTime

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sequence posit ion of features (k)

ti
m

e 
(m

s)

Linear(Modity time) Linear(Remove time)  
(c) worst case 

 
 

 

In the proposed boundary evaluation, removing a feature F  from a model made up of 

m  features is accomplished through a selective sequence of operations, including 

performing the deletion, executing a Boolean operation, and merging of the boundary 

Fig. 3.13 Measurements of boundary evaluation times for removing and modifying 
a feature using SolidWorks (left column) and using the proposed modeling method 

(right column) 
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faces, as explained in Section 3.4.2. Since the ‘remove feature’ operation is 

accomplished in three steps, the required computation time can be decomposed into 

intFeaStoredFacerem tttt ++= , where remt  represents the time associated with the removal of 

the boundary faces originating from F , including removing the relevant topological 

faces and subtracting the face portions from the relevant merged faces. StoredFacet  

represents the time required for processing the faces stored at the F  creation step, 

namely updating and merging the intersection face portions, and intFeat  represents the 

time required for updating the BCs  of the intersecting features InterF . 

One can legitimately assume that: 

• The boundary face Ff  originating from F  is deleted from the model boundary 

directly, and the boundary face mergedf  is updated by removing the face portions 

that belong toF . Thus the time remt  is dependent on the number of Ff  ( )(Ffn ) and 

the number of mergedf ( )(mergedfn ). 

• The intersection face portion ortionInterFacePf  is updated in two ways: one is to stitch 

the face portions directly, and the other is to selectively stitch the resulting sub-

faces of the Boolean operation on ortionInterFacePf  and reBInterFeatuf  ( reBInterFeatuf  are the 

faces defining the intersecting feature InterF ) to the model boundary. Thus, the time 

StoredFacet  is related to the number of the stored face portions: face portions 

intersecting with reBInterFeatuf ( )( AStoredFacefn ) and face portions without intersecting 

with reBInterFeatuf ( )( BStoredFacefn ). 

• For theBC of the intersecting featureInterF , the partitioned faces, which are 

generated by performing FBreBInterFeatu fBOf >< , are selectively stitched to or 
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subtracted from the model boundary. Thus, the time intFeat  is proportional to the 

number of the faces that in reBInterFeatuf  and intersects withF , )( IntFFacefn . 

 

The operation behaviors can be expressed by some positive factors, so the former 

equation can be written as 

 )()(2)(1)(2)(1 ''''' IntFFacefBStoredFacefAStoredFacefmergedfFf nnnnnt ×+×+×+×+×= γββαα . 

The computation equations can be analyzed using the representative models in Fig. 

3.11 as follows. 

 

Best case. As the model shown in Fig. 3.11 (a), when removing the kth  hole (h ), there 

is only one boundary face ( )(Ffn = 1) originating from h  and two stored faces 

( )( AStoredFacefn = 2). Since h  has no intersecting feature that is created later, the time 

intFeat  is zero. The equation representing the required computation time can then be 

written as 11 '2' βα ×+=bt . From the charts (solid curve) in the right column in Fig. 

3.13(a), the computation time for the removal operation remains almost constant as the 

sequence position of features increases.  

 

Average case. As the model shown in Fig. 3.11(b), when removing the kth  Rib , there 

are five boundary faces ( )(Ffn = 3 and )(mergedfn = 2) originating from Rib  and one 

intersecting face ( )( BStoredFacefn = 1). The intersecting feature created later than Rib  is a 

eThroughHol . By performing the Boolean operation between eThroughHol andRib , 

there is only one face in the eThroughHol  intersecting with Rib  ( )( IntFFacefn = 1). The 

equation representing the required computation time can then be written as 

'''2'3 221 γβαα ++×+×=at . From the charts (solid curve) in the right column in Fig. 
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3.13(b), the removal operation of any Rib  in the model with the average case behavior 

has almost constant evaluation time.  

 

Worst case. Assume the kth  smaller hole (h ) is removed from the model shown in Fig. 

3.11(c), there are 21 boundary faces ()(Ffn = 21) originating from h  and the number of 

the intersection face portions is kn AStoredFacef 22)( += . For the intersecting features 

created later than h , the number of the faces that intersect withh is kn IntFFacef −= 20)( . 

The equation representing the required computation time can be written as 

)'20'2'21()''2(')20(')22('21 11111 γβαγβγβα +++−=×−+×++×= kkktw . 

Since 1'β represents the time for performing merging operations of face portions, while 

'γ  represents the time for performing Boolean operations on the faces in the 

intersecting hole. Hence, ''2 1 γβ − is reasonably assumed to be a negative factor, and wt  

decrease linearly with the sequence position k . As the charts (solid curve) in the right 

column in Fig. 3.13(c), the computation time has a decreasing linear relation with the 

sequence position of the hole being removed.  

 

3.5.4 ‘Modify feature’ operation 

For the ‘modify feature’ operations in the pure history-based modeling, the 

computation time is dependent on the sequence position of the feature being modified 

in the model history. From the charts (dashed curves) in the left column in Fig. 3.13, 

for the best behavior model and the average behavior model, the computation times for 

modifying a feature decrease in quadratic order with increasing feature sequence 

position in the model history; for the worst behavior model, the computation time for 

modifying a feature decreases in cubic order with increasing feature sequence position 

in the model history 
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In the proposed boundary evaluation, modifying a feature F  is accomplished by 

identifying the features affected by the ‘modify operation’ (F and its attached features), 

which are removed from the model and re-added with new parameters, as presented in 

Section 3.4.3. Therefore, the total computation time for a ‘modify feature’ operation is 

the sum of the ‘remove operation’ and the ‘re-add operation’. In the measurement, it is 

assumed that the topology of the model is not changed after the ‘modify operation’. 

Since re-adding the feature being modified to the BRep model is similar to adding a 

new feature to the model, it has the same computation time for any feature being 

modified. Consequently, the trend of the computation time of the ‘modify feature’ 

operation is identical to that of the ‘remove feature’ operation. From the charts (dashed 

curves) in the right column in Fig. 3.13, for the case of the best behavior model and 

average behavior model, the computation time for modifying each hole or rib keeps 

almost constant with increasing feature sequence position; for the case of the worst 

behavior model, the time for the modify operation has a decreasing linear relation with 

the sequence position of the hole being modified.  

 

3.5.5 Analysis and comparison of the performance measurement 

Due to the inaccuracy of the computer CPU timers and the different modeling 

algorithms used, it is not significant to compare the absolute computation times of the 

boundary evaluation in SolidWorks with that of the proposed modeling method. In 

addition, in this work, the computation time for performing Boolean operations 

increases linearly with increasing the number of topological edges in the processed 

faces. Hence, compared with other modeling solutions, the trend of the computation 

times in this proposed approach is one order higher in the ’add feature’ operations for 

the best case and the worst case behavior models, as shown in the charts on the right 

columns of Fig. 3.12(a) and (c). 
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In the comparison here, the Boolean operations on the intersecting faces are reasonably 

assumed to be constant regardless of the topological complexity of the intersecting 

faces, which are similar to the case in SolidWorks and the approach reported by 

Bidarra et al. (2005). Hence, the computation curves of the ‘add feature’ operations in 

Fig. 3.12(a) and (c) are decreased one order of complexity. The trends of the boundary 

evaluation times for the representative models measured using SolidWorks, the 

proposed approach, and Bidarra’s approach are summarized in Table 3.3.  

Table 3.3 Trends of boundary evaluations for representative models 

Best case Average case Worst case 

Operatio
n 

Propose
d 

approac
h 

Bidarra’
s 

approac
h 

SolidWork
s 

Propose
d 

approac
h 

Bidarra’
s 

approac
h 

SolidWork
s 

Proposed 
approach 

Bidarra’s 
approach 

SolidWork
s 

Add 
feature 

Linear ↑ Linear ↑ Linear ↑ Linear ↑ Linear ↑ Linear ↑ 
Quadrati

c ↑ 
Quadrati

c ↑ 
Quadratic 

↑ 
Remove 
feature 

Constant Constant 
Quadratic 

↓  
Constant Constant 

Quadratic 
↓ 

Linear ↓ Constant Cubic ↓ 

Modify 
feature 

Constant Constant 
Quadratic 

↓ 
Constant Constant 

Quadratic 
↓ 

Linear ↓ Constant Cubic ↓ 

 

3.6 Case Study 

In the proposed approach, each feature has an intersecting list recording its intersecting 

features and storing its intersection face portions when it is evaluated. The intersecting 

features are identified when a feature is added to the intermediate BRep model, and 

hence it does not require any additional computation cost. For the issue of storage 

space, only the intersection face portions at each feature creation step are stored, and 

this needs less storage space than the two approaches in Fig. 2.6. However, the 

proposed approach requires a more mature database management algorithm. The 

intersecting list needs to be updated instantly, and the alteration process of the feature 

faces needs to be maintained during the design session. Compared to the approach 

reported by Bidarra et al. (2005), the proposed approach requires more computation 

time since it does not store all the sub-faces of each feature but only stores the 

intersection face portions. On the other hand, the database management cost in the 
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proposed approach is much less than Bidarra’s approach. In Bidarra’s work, all the 

cell  faces and the relevant information are managed, while in this work only the 

alteration process of the feature face is maintained.  

 

A proof-of-concept prototype system for the proposed modeling approach has been 

established based on the Open CASCADE. Fig. 3.14 shows a case study model, in 

which the height of the feature Rib  is increased. The proposed feature modification 

approach is employed on this case model to study the proposed modeling approach: 

firstly the boundary faces originating from the Rib  are removed, secondly the 

intersection face portion of Rib  is merged to the model boundary, and thirdly the new 

Rib  is re-added to the update BRep model. The computation time for processing the 

relevant operation performance is 125ms. In history-based modeling, since the Rib  is 

created before the cirSlot , the increase of its height would cause the overlapping with 

the cirSlot . In this case study, the height of the Rib  can be increased and the shape of 

the Rib  is not changed by the cirSlot , which corresponds to the designer’s 

specification.  
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3.7 Summary 

A new history-independent modeling approach has been proposed in this paper, where 

the feature creation order in the model history can be changed. In this work, to modify 

a feature is basically to modify the boundary contribution of this feature and the 

intersecting features, so that the resulting BRep model is updated to reflect this 

modification. The intersection face portions of a feature being added to the product 

model are stored at the creation step, and the intersecting features that are created later 

in the model history are recorded. When a feature is removed, firstly the boundary 

>< BO

>< merge

>< add

Fig. 3.14 Case study 
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faces originating from this feature are removed, secondly the intersection face portions 

stored at its creation step are merged to the model boundary, and lastly the boundary 

contributions of its intersecting features are modified. When a feature is modified, it is 

first removed from the product model and then re-added with the new specifications. 

Hence, the creation step of the feature being modified is changed, and the problems 

caused by the static feature creation order are solved. The complexity analysis and 

performance of the proposed boundary evaluation for three representative models have 

been analyzed and measured. For case of the best behavior model, the computation 

time for removing or modifying a hole is almost constant. For the case of the average 

behavior model, the computation for removing or modifying each rib has almost 

constant evaluation time. For the case of the worst behavior model, the computation 

for removing or modifying a hole decreases linearly with the sequence position of the 

hole in the model history. The case study in a proof-of-concept prototype system 

demonstrates the feasibility of the history-independent modeling approach.  

 

We recall the problems introduced in history-based modeling as that presented in Fig. 

2.2 and Fig. 2.3, which attributes to the follows: the boundary evaluation of the feature 

being modified is on the basis of the intermediate BRep model in the design history, 

but the designers modify the feature on the basis of the current BRep model. The 

proposed modeling solution addressed this problem by changing the order of feature 

creation operations, which is then consistent with design actions. As shown in Fig. 2.2, 

when BHole  is modified and re-positioned, it is removed from the model and then re-

added as a new feature to the updated model. Hence, the feature Rib  can be referred 

for positioning, since the Rib  is stored before theBHole  in the new model history. As 

shown in Fig. 2.3, the THole  will intersect with theBlock , since the THole  is 
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evaluated as a new feature and theBlock  is checked for face intersections during the 

boundary re-evaluation of THole . 

 

There are three points in this work that should be highlighted. Firstly, in the ‘remove 

feature’ operation, the boundary faces originating from the feature being removed 

should be identified and removed from the model boundary. Since the feature faces 

may be trimmed or merged, it is crucial to maintain the alteration process of feature 

faces, as that presented in Fig. 3.4. In this case, the naming and retrieval of the altering 

faces must be effective. Once the altered faces that originate from the feature being 

removed can be identified effectively, the ‘remove feature’ operation will work 

smoothly. Secondly, compared to the approach reported by Bidarra et al. (2005), the 

proposed approach requires more computation time in the feature removal and modify 

operations, but it requires less implementation work for database management. Thirdly, 

one unresolved issue in the current work is position referencing between features. In 

this work, when a feature is being removed or modified, only the boundary evaluation 

is concerned. In real modeling applications, the designers should re-position the child 

features if their parent feature has been removed or modified. As a result, the function 

for re-position of child features will be explored in future work, such as providing the 

designers with several optional topological entities. 
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Chapter 4 Coordination in Replicated Collaborative Feature 
Modeling 
 

4.1 Introduction 

The coordination mechanism for scheduling the collaborative design activities has 

been a topic of significant research effort. Reported studies, namely, total-locking 

mechanism and granular locking mechanism, have been presented in the review 

Section 2.2.2.1. The reviews show that the granular locking mechanisms have some 

limitations. Although the designers can edit different parts of a feature model at the 

same time, there are some conflicts due to feature interactions. Besides, in order to 

maintain consistency of the replicated design models, the order of execution of the 

‘feature create operations’ must be kept consistent at the client sides.  

 

In this Chapter, a fine granular locking mechanism is presented for a replicated 

collaboration system. The locking granularity is defined according to feature 

relationships, and the potential operation conflicts are resolved using a naming and 

matching mechanism. In the proposed approach, a design model can be divided into 

several feature portions, thus a parallel working paradigm can be achieved. The 

‘feature create operation’ is processed differently from the ‘feature modify operation’ 

so as to maintain consistency of the order of the features created. The limitation of this 

approach is that the effectiveness depends on the parent-child relations of the features. 

The proposed coordination approach has been validated in a proof-of-concept 

prototype system developed based on Java and Open CASCADE. The remaining 

content of this Chapter is organized as follows. Firstly, the proposed granular locking 

mechanism is presented. Secondly, the methods of conflict resolution are elaborated. 

Thirdly, the proposed granular locking mechanism is validated using a case study.  
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4.2 Granular Locking Mechanism  

In feature-based design, a product model is basically a combination of a group of 

specific features. In this case, the basic elements in the product model are feature 

shapes rather than geometric elements, e.g., curves, surfaces, so the design activity is 

more efficient than that in geometric modeling. In addition, since the features in a 

product model have parent-child relations in their parametric definition, the 

manipulation of a feature usually affects its direct ancestral and direct descendent 

features. Consequently, in this work, features in a model are grouped to define the 

locking granularity, and hence the design operations that are performed on the features 

are classified accordingly.  

 

4.2.1 Feature Dependency Relationship 

If a feature 1F  is attached, positioned or constrained relative to the boundary entities of 

another feature2F , then 1F  depends on 2F , 2F is the direct ancestor of 1F , and 1F  is the 

direct descendant of 2F . The dependency scope (DS ) of a featureF  is denoted in Eq. 

(4.1). If the DSs of two features being edited do not share any common feature, the 

DSs  are mutually exclusive and the two operations are unrelated operations, which 

can be executed concurrently at different client sites. Otherwise, if the DSs of the two 

features being edited overlap, then the two operations are dependent operations, and 

should not be executed concurrently. As shown in Fig. 4.1, the Rib  is attached and 

positioned to the initial Stock , and the BlindSlot  is attached and positioned to Step . 

Hence, )(RibDS  and )(BlindSlotDS  are mutually exclusive, and the operations on 

Rib  and BlindSlot  are unrelated operations that can be executed concurrently at 

different sites. 

U U )()()( FendantDirectDescFstorDirectAnceFFDS =           (4.1) 
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4.2.2 Concurrency Control 

Ordering events occurred in a distributed environment according to their occurrence 

time is not a new problem, and the general solution reported by Lamport (1978) is 

adapted in this work. The events occurred at one site has an exact sequence according 

to the occurrence time. However, in a distributed environment, it becomes a challenge 

to identify the sequence of the events. In order to determine the sequence of the events 

in a distributed system, partial ordering and total ordering relations have been 

introduced. The partial ordering relation, denoted by “ → ”, satisfies the following 

conditions: 

1. If a  and b  are events at the same site, and a  comes before b , then ba → . 

2. If a  is the sending message at one site, and b  is the receiving of the same message 

at another site, then ba → . 

3. If ba →  and cb → , then ca → . 

 

However, according to partial ordering, concurrent events cannot be ordered. For 

instance, a  is the sending message at one site, and b  is the event at another site that 

occurs just before receiving the message a . It is difficult to determine which event 

comes first in terms of the exact occurrence time, and they are termed concurrent 

BlindSlot 

Stock 

Step Rib 

Fig. 4.1 Feature relationships 
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events, denoted by ba // . In this case, the total ordering relation is introduced, denoted 

by “⇒ ”, satisfying the following conditions. Each design site has an identity number 

)1( NiSi ≤≤  that corresponds to its entrance order to the design session, and iS  has a 

higher priority than jS  if ji < , denoted as ji SS p . 

1. If ba → , then ba ⇒ . 

2. If 
ji SS ba //  and ji SS p , then 

ji SS ba ⇒ .  

 

The adapted concurrency control approach employed in this research can be briefly 

described as follows: when a designer wants to execute a ‘modify operation’ or a 

‘create operation’ of a feature, this operation can only be performed until the locking 

of the DS  of the feature being edited is permitted by all the other designers. At any 

time, more than one ‘modify operation’ can be processed concurrently as long as 

theDSs  of the features being modified are mutually exclusive, but only one ‘create 

operation’ is processed.  

 

In this work, a working session is used for the management of the collaborative design 

tasks (Li and Qiu, 2006), in which all the client sites are connected to form a 

distributed and collaborative working environment. Several reasonable assumptions 

were made to simplify the system introduced in this work: firstly, the number of client 

sites is fixed and each client is aware of the existence of the rest; secondly, the 

communication between clients is reliable; thirdly, it is assumed that there is no sudden 

crash of a client site and no exiting of a client without notice. In the design system, 

each client site has an integer object replyCount , which counts all the replies of an 

operation request, and an integer object MS indicating the current state of the local 

geometric model. Since the sequence of the ‘feature create operations’ at each site is 
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maintained to be identical, MS  only records the number of features. On the design 

model, each feature has a unique identity featureId  and a requestQ  that records all 

the locking requests.  

 

4.2.2.1 Modify a Feature. When a designer wants to modify a feature F , the request 

for locking )(FDS  and the ‘modify information’ MFInf  are sent to all the other 

designers, denoted in Eq. (4.2). If any feature in )(FDS  is being locked by another 

designer, the sending of the ‘modify operation’ request is deferred until all the features 

in )(FDS  are released. At any remote site jS , after receiving the )(MFRT , the 

system at site jS  uses algorithm#1 to determine the action needed for the modification 

request received.  

 

Algorithm#1: 

If ( ))())(( TRUESContainFDSrequestQ j ==>−  

{ )( ji SSif p { reply yimmediatel ; update requestQ ;} 

            else deferred Until ))())((( FALSESContainFDSrequestQ j ==>− } 

else { reply yimmediatel ;update requestQ ;} 

 

After receiving all the replies of the )(MFRT  from the other designers, the ‘modify 

operation’ is first executed at site iS , after which it is executed at all the other sites to 

update the replicated design models. The designer/system at any remote site jS  sends 

a message to the designer/system at site iS  after the execution of the modification. 
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After receiving all the messages on the successful execution, the requestQ  of the 

)(FDS  is updated at all the designer sites. 

><
iSi MSMFInfFDSSMFRT ,),(,)(    (4.2) 

 

4.2.2.2 Create a Feature. Since the ‘feature creation order’ at every site must be kept 

consistent, only one designer is permitted to create a new feature F at any time. If a 

designer has been sent a ‘feature create operation’ request, he will have to wait for this 

request to be performed first, and therefore his creation request is deferred. Otherwise, 

a creation request )(CFRT  is sent to all the other designers for review and permission, 

and this includes the locking request of the reference features )(FDS  and the ‘feature 

information’ CFInf , denoted in Eq. (4.3). The ‘feature create operation’ can only be 

executed after receiving the permission from the other designers. Since the ‘feature 

create operation’ needs to lock certain reference features, the sending of the ‘feature 

create operation’ request is deferred until all the reference features are released. 

><
iSi MSCFInfFDSSCFRT ,),(,)(     (4.3) 

 
At any remote site jS , after receiving the )(CFRT , the request is processed according 

to the following steps and illustrated in algorithm#2. 

1. The features being requested are locked by the local designer. )(CFRT is deferred 

if ij SS p , otherwise it is replied immediately. 

2. The features being requested are not locked by the local designer, but a creation 

request has been sent out by the local designer just before receiving )(CFRT . If 

the two ‘feature create operations’ are conflicting, these two designers will discuss 

to decide the execution order of the two operations. Otherwise, )(CFRT  is 

deferred if ij SS p  and is replied immediately if ji SS p . 
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Algorithm#2: 
 
If ( ))())(( TRUESContainFDSrequestQ j ==>−  

{ if )( ji SS p  { reply yimmediatel ;update requestQ ;} 

            else deferred Until ))())((( FALSESContainFDSrequestQ j ==>− } 

else { if )( onflictoperationC siondiscussSes ; 

 else { if )( ji SS p  { reply yimmediatel ; update requestQ ;} 

else deferred Until )1( =+
jSMS ; }} 

 
After receiving all the replies of the )(CFRT , the ‘feature create operation’ is first 

executed at site iS , and then it is executed at all the other sites for updating the 

replicated design models. The designer/system at any remote site jS  replies a message 

to the designer/system at site iS  after the execution of the ‘feature create operation’. 

After receiving all the replies of the successful execution, the requestQ  of the )(FDS  

and the MS  are updated at all the design sites.  

 

4.2.3 Correctness analysis of the proposed approach 

 In a distributed collaborative design environment, MSs  at the client sites may be 

different due to the different transmission times (Li et al. 2008b). As shown in Fig. 4.2, 

the ‘modify operation’ of the cirSlot  comes before the ‘feature create operation’ of the 

cirSlot  at 3Site , which is considered a causal conflict. In this case, the ‘modify 

operation’ of cirSlot  is performed when cirSlot  has not been created, so the causal 

relation is violated here. In the proposed concurrency approach, the designer needs to 

send a message to the original operation initiator after the successful execution of an 

operation so as to avoid the causal conflict. As shown in Fig. 4.2, before sending the 

modification request cirSlot  at 2Site , the )(cirSlotDS  must be released. As long as 

the ‘feature create operation’ of the cirSlot  has not been executed at 3Site , the 

)(cirSlotDS  will not be released. In addition, a deadlock is a tricky problem in the 
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locking scheme, as presented by Li et al. (2008b). In this work, the locking granularity 

is the DS  of a feature, which can only be held by one designer at any time. Thus, it is 

impossible for one designer to hold the DS  of a feature and wait for another. Hence, 

the system is deadlock free. 

 
 
4.3 Resolution of Potential Operation Conflict  

The proposed granular locking mechanism provides a parallel working paradigm, but 

there are also some potential operation conflicts due to feature interactions. Before any 

feature F is edited, )(FDS  needs to be permitted by the other designers. However, 

due to feature interactions, the features outside of )(FDS  may be interacted by the 

features in )(FDS . As shown in Fig. 4.3, due to the change of position parameter a , 

cirSlot  and rectSlot become interacting. )(cirSlotDS  includes the initial Stock and 

cirSlot , and )(RibDS  includes feature rectSlot  and Rib . Since )(cirSlotDS and 

)(RibDS are mutually exclusive, cirSlot andRib can be modified by two designers 

concurrently. Assume that cirSlot  is modified at site iS , and Rib  is modified or 

created at site jS . Since Rib  is constrained to edge 1e  for its height and is attached to 

face 1f , the changes of 1e and 1f  affect the execution of Rib  operation. As shown in 

Fig. 4.3, due to the interaction between cirSlot  and rectSlot , edge 1e  coincides with 

Site1 

Site2 

Site3 

Create Slot 

Create Slot 

Modify Slot 

Modify Slot 

Create Slot 

Fig. 4.2 Causal conflict 
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edge 2e  in (b) and diminishes in (c), and face 1f  is trimmed in (d). All the topological 

changes should be resolved in order to execute the operations correctly. 

 
 
In a feature operation, the feature is attached, positioned and constrained to some 

topological entities of the design model, which are termed the reference entities and 

denoted in Eq. (4.4). As shown in Fig. 4.4(b), a Boss  is attached to the top facef of a 

Block , and positioned to the edges 1e  and 2e . The reference entities are used to set the 

location and dimension of the feature. Hence, as long as the reference entities are 

identified on the design model or some alternative entities can be used to constrain the 

feature, the operation can be executed correctly. For an entity-based operation, e.g., 

blending an edge, the execution of the operation needs to identify the ‘target entities’ 

as denoted in Eq. (4.5). In Fig. 4.4(c), the edge 3e  is chamfered and thus the entities of 

Fig. 4.3 Potential operation conflicts 
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the operation target need to be identified on the design model. As a consequence, in 

order to resolve the potential operation conflicts, the reference topological entities 

must be identified on the design model correctly. 

},,{)( ntitiesreferenceEetersshapeParamfeatureIdFO =           (4.4) 
 

},,{)( ntitiesoperationEparametersfeatureIdFO =           (4.5) 
 
 

 
 
4.3.1 Identify Attached Face 

In replicated collaborative design, the attached face in an operation performed at one 

design site may be modified by another operation performed at another site, i.e., the 

face could have been trimmed, split or merged. As shown in Fig. 4.5(a-b), a Rib  is 

created at 1Site , which is attached to the top face 1f  of the Stock . At the same time, 

since )(BlindSlotDS  is the Step , the BlindSlot  can be modified at 2Site , as shown in 

Fig. 4.5(c-e). In this case, when the Rib  ‘feature create operation’ is broadcast and 

executed at 2Site , the face that it is attached to needs to be identified. The steps are as 

follows. 

Fig. 4.4 Reference entity in feature operation 
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• When an attached face is trimmed, it is replaced by the trimmed face. As shown in 

Fig. 4.5(c), although the face 1f  is trimmed, the updated 1f can be used to locate 

the Rib  to the original surface. 

• When an attached face is split, each sub-face can be used as the attached face. As 

shown in Fig. 4.5(d), the face 1f  is split into 1.1f  and 2.1f , either of them can be 

used to locate the Rib  on the same surface. 

• When an attached face is merged, it is replaced by the merged face. As shown in 

Fig. 4.5(e), the BlindSlot  is modified to be an extrudedBlock , the merged face 1f  

can be used to locate the Rib  from the original intended surface. 

 
 

Fig. 4.5 Attaching face alteration 
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In feature-based design, each feature face can be assigned a unique name in terms of 

the feature’s generating mode and its location in the feature shape (Capoyleas 1996; 

Wu et al. 2001; Wang and Nnaji 2005). As shown in Fig. 4.6, the profile-based feature 

shape has the profile entities >< 4321 ,,, eeee  and the sweeping path L , both of which 

are recorded persistently during the design process. Hence, the side faces of the swept 

feature shape can be unambiguously named by the profile entities and the sweeping 

path, and the start face and the end face are named by their specific locations in the 

feature shape. Combining with the FeatureId , all the feature faces on the design 

model are named persistently, termed the invariant name (IN ). During the design 

process, the faces may be trimmed, split or merged. 

 
 
In order to identify the modified attached faces, the alterations of the boundary faces 

on the design model are tracked through a hFaceIdGrap . In the hFaceIdGrap , each 

face is assigned aFaceId , in which the first item is the IN  of face and the second item 

is the StepId  of this operation, as denoted in Eq. (4.6). When a face is split, the sub-

faces can be discriminated in terms of the bounding feature faces and the geometric 

information of the intersection edges (Cripac 1997; Wang and Nnaji 2005), denoted in 

Eq. (4.7). Hence, the alternation of the boundary faces can be tracked through 

Fig. 4.6 Naming scheme 
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the hFaceIdGrap , as shown in Fig. 4.7, which shows the face alterations of the model 

in Fig. 4.5(d). 

 
 

),()( stepIdINfFaceId =       (4.6) 

2,1.1f
1,1.1f

1,3.1f 2,3.1f

3),4.3,6.2,6.1,4.1(,1.1f

3),3.3,6.2,6.1,3.1(,1.1f

1,2.1f 2,2.1f

1,4.1f
2,4.1f

1,6.1f 3,6.1f

2,5.2f

3,5.3f

3,5.2f

2,6.2f

3),3.3,5.2,3.1,1.1(,6.2f

3),4.3,5.2,4.1,1.1,(6.2f

Fig. 4.7 Boundary face alteration tracking 
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)),(,()( stepIdcesboundingFaINsINfFaceId =    (4.7) 

 
))(),(),(()( eGIfINsfINseN boundadj=      (4.8)  

 
))()],(),([)],(),(([)( 43211 aGIfINfINfINfINeN = ,

))()],(),([)],(),(([)( 43212 bGIfINfINfINfINeN =     (4.9)  

 
 

4.3.2 Identify Reference Edge 

The reference edges in an operation performed at one site may be modified by the 

operation performed at another site, i.e., the edges could have been deleted, split, 

trimmed or merged. As shown in Fig. 4.8(a-c), a cirSlot  and a recSlot  have been 

attached to the initial Stock , and a new feature Rib  is attached to the recSlot  at 1Site , 

where the topological edge e  is used as the reference edge. At the same time, since 

)(RibDS  and )(cirSlotDS  are mutually exclusive, the cirSlot  can be modified 

at 2Site . Due to the interaction between cirSlot  and recSlot , the edge e  is changed. 

As shown in Fig. 4.8, edge e  is deleted in Fig. 4.8(d) due to the position change of 

cirSlot . Edge e  is split in Fig. 4.8(e) and trimmed in Fig. 4.8(f) due to the orientation 

change of the cirSlot . Edge e  is merged in Fig. 4.8(g) due to the change in cirSlot . In 

this case, when the Rib  operation is broadcast to 2Site , the reference edge e  needs to 

be identified on the local design model. The reference edge can be named uniquely by 

its adjacent feature faces, the bounding feature faces and the geometric information 

GI  of the edge itself (Wang and Nnaji 2005), as denoted in Eq. (4.8). As shown in Fig. 

4.9, the two intersection edges 1e  and 2e  can be named and differentiated using Eq. 

(4.9). Since the feature faces are named uniquely and stored persistently, their 

intersection edge can be identified or re-constructed on the design model. As shown in 

Fig. 4.8(d-g), as long as the Stock  and the recSlot  are on the design model, the 

intersection edge of the face 1f  and the face 2f  can be re-constructed in Fig. 4.8(d) 
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and identified in Fig. 4.8(e, f, g). Hence, the Rib  operation can be executed correctly. 

Likewise, the reference vertex can be named and identified in the same way. 

                 

 
 

Fig. 4.8 Topological edges 
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4.3.3 Operation Validity 

Although the attached face in an operation can be identified on the modified design 

model, the validity of the design model needs to be re-evaluated in some cases. As 

shown in Fig. 4.10(a), a design model has three features, namely, cirSlot , rectSlot  

and Step . )(cirSlotDS  is rectSlot , cirSlot  is modified at 1Site , and at the same time 

a new feature Rib  is attached to the initial Stock  at 2Site , as shown in Fig. 4.10(b, c). 

However, due to the interaction between the modified cirSlot  and the new feature Rib , 

the design model becomes invalid when the concurrent operations are synchronized. 

As shown in Fig. 4.10(d), the top of cirSlot  is blocked byRib . This is a shortcoming 

of current feature-based modeling where the validities of the design features cannot be 

maintained during the design process (Bidarra and Bronsvoort, 2000). In replicated 

collaborative design, this problem is more critical. Since the two conflicting operations 

are performed by two designers, they need to discuss with one another to resolve this 

problem. In the proposed concurrency approach, after the execution of an operation, 

the designer needs to send a message to the operation initiator. If the two concurrent 

operations are conflicting and causing the design model to be invalid, a success 

message of the execution will not be sent; instead, they will resolve this problem 

collaboratively. 

Fig. 4.9 Edge naming 
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4.4 Case Study 

A proof-of-concept prototype system for the proposed concurrency control approach 

has been developed based on JDK 1.6 and the Open CASCADE. Fig. 4.11 shows the 

graphical user interface, and a case study with the directed acyclic graph (DAG) of the 

design features. According to the concurrency control approach, the case study model 

can be divided into independent portions. At most, four ‘modify feature’ operations 

and one ‘create feature’ operation can be processed concurrently, as shown in Table 

4.1. Since the dependency relationship is basically a parent-child relation, the 

effectiveness of the concurrency control is restricted by the parent-child relations of 

the features on a design model. If the design features have more generations, more 

feature portions can be divided and edited concurrently by using this coordination 

approach. The extreme case is when all the design features are attached to the initial 

Fig. 4.10 Model validation 
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stock, as shown in Fig. 4.12. In this case, only one designer is permitted to edit the 

design model at any time, and this concurrency control approach becomes a total-

locking mechanism.   

Table 4.1 Parallel operations 
Edited 

feature 
2holesS −  holeB −  rib  2pocket  New feature 

DS  
2holesS − , 

slot  

2block , 

holeB −  

stock ,block , 

rib  

1pocket , 

2pocket  
4pocket  

 
 

 
 

stock 

chamfer 

rib 

pocket1 S-holes2 

slot block pocket4 

pocket3 

pocket2 block2 

B-hole 

S-holes1 

Fig. 4.11 Case model 
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4.5 Summary 

In this Chapter, a granular locking mechanism has been proposed as the coordination 

mechanism for replicated collaborative feature modeling. The dependency scope of a 

feature, which includes its direct ancestral features, direct descendant features and the 

feature itself, is employed as the locking granularity. At any time, more than one 

‘modify operation’ can be executed concurrently as long as their dependency scopes 

are mutually exclusive. However, only one ‘create operation’ is permitted so as to 

maintain the consistency of the ‘feature creation order’. The potential conflicts of 

design operations caused by feature interactions are resolved using a naming and 

stock 

chamfer1 

pocket1 

boss 

slot1 
pocket2 

hole 

chamfer2 

slot2 

Fig. 4.12 An extreme case 
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matching mechanism, through which the correspondence of the modified topological 

entities can be achieved correctly. The modified attached faces are identified using 

a hFaceIdGrap  and the modified reference edges are identified through their adjacent 

feature faces. The limitation of the proposed approach is that the concurrency 

effectiveness depends strongly on the parent-child relations of the features on a design 

model. If the design features have more generations, more feature portions can be 

divided. When all the features are attached or constrained to the initial stock, they have 

only one direct ancestor, so they are within only one dependency scope. Hence, all the 

features need to be locked together each time, and the proposed coordination approach 

degrades to be the total-locking mechanism. 
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Chapter 5 Freeform Feature Modeling 

 

5.1 Introduction 

The success of a new product does not only depend on its quality and short 

development time, but also rely on its attractive and pleasing appearance. Under this 

consideration, freeform feature modeling has been proposed to facilitate users to create 

and manipulate freeform surfaces, which are commonly described in Bézier, B-spline 

and Non-Uniform Rational B-Spline (NURBS) formats. As presented in the review 

Section 2.1.3, current freeform feature modeling has some problems and weaknesses, 

which require further research effort. Firstly, the specification of freeform features is 

not straightforward as in regular feature modeling. Since the essence of freeform 

feature modeling is to create and represent a design model using freeform solutions, 

restricting a freeform feature to a geometric shape may contradict this essence. 

Secondly, since the boundary of freeform models is not planar, the boundary surface of 

a freeform feature may not contact the attach modify surface seamlessly, and the 

attachment operation of a freeform feature to a base model becomes a challenge. 

Thirdly, the smoothness across the boundary curve of two freeform surfaces becomes a 

crucial issue in freeform feature modeling. In product design, a tangential or even 

higher smoothness across the boundary curve is usually needed, and this issue has 

attracted many research studies. 

 

In this Chapter, some issues in freeform feature modeling will be discussed. 

Specifically, in the first section, the specification of volumetric freeform features is 

presented and discussed, which may be used for creating simple models in conceptual 

design; in the second section, a surface blending approach used in displacement feature 
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modeling is elaborated; in the third section, the displacement feature modeling is fit 

into a collaborative design environment, in which the coordination and synchronization 

mechanisms are discussed briefly. 

 

5.2 Specification of Volumetric Freeform Features 

5.2.1 3D Constraint Solving 

Approaches to constraint solving in 3D space have been reported in the literature, in 

which a graph-based approach is an effective approach (Du and Hwang, 1995; Durand 

and Hoffmann, 2000). In the graph-based approach, the constraint problem is 

constructed as a graph, in which the nodes represent the geometric entities and an edge 

between two nodes represent a constraint between the two geometric entities. The 

geometric entities considered are points and planes, and the constraints allowed are 

distance between two points, distance between a point and a plane, and angle between 

two planes. A point is represented by its Cartesian coordinates, ),,(: zyx pppp , and a 

plane is represented by the direction cosines of the unit normal and the signed distance 

from the origin, ),,,(: dnnnP zyx , where 1222 =++ zyx nnn . There are two general phases 

for the graph-based approach, namely constraint graph analysis and geometry 

construction. In the first phase, the characteristic of the constraint graph is analyzed 

and the constraints in the graph are decomposed into clusters of geometric entities that 

are placed with respect to one another. In the second phase, all the clusters are 

combined using a recursive technique, resulting in a valid placement for all the 

geometric entities. Placing a new entity requires that it is constrained by the three 

already known entities, since each geometric entity has three degrees of freeform. 

Hence, in the construction of a cluster, a set of three pairwise constrained nodes is 

necessary, and a new entity is added to the cluster if it is incident to three nodes 
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already in the cluster. However, there may eventually be unused constraints in the 

remaining initial graph, yet no new cluster can be started. In this case, any remaining 

constraint and its two incident nodes would form a degenerate cluster.  

 

The above construction process is illustrated in Fig. 5.1, where the problem is to place 

the six vertices of the 3D object shown on the left. The lengths of the edges between 

the vertices are the constraints. In the first analysis phase, the first cluster is 

constructed using nodes r , s , and t , and its edges are labeled 1. The second cluster is 

constructed using nodes u , v , and w , and its edges are labeled 2. The remaining 

constraints cannot be added to the constructed clusters, so they generate degenerate 

clusters, labeled 3, 4, and 5. In the second construction phase, all the clusters are 

merged. This constraint problem is under-constrained, so it needs another three 

distance constraints, which are ),( ut , ),( vt , and ),( us  to make the configuration rigid, 

resulting in a octahedron.    

 
 
5.2.2 Geometric Constraint in Volumetric Freeform Features 

In the geometry description of a regular feature, a cross-section is usually swept along 

a trajectory to create the feature shape. The cross-section is a 2D sketch comprising of 

geometric entities and constraints. The geometric entities can be points and lines, and 

the constraints allowed are distance between two points, distance between a point and 

Fig. 5.1 A three-dimensional object and its constraint graph 
(Du and Hwang, 1995) 
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a line, and angle between two lines. As shown in Fig. 5.2, the geometric entities, four 

points 4321 ,,, pppp  and four lines 4321 ,,, llll , can be configured by certain constraints, 

namely, 54321 ,,,, ddddd  and angle constraints ba, , shown on the left. When the 

geometric entities are placed and configured, the generated 2D sketch can be swept 

along a path (in red color) to create a feature shape, as shown on the right in Fig. 5.2.   

 
 

Likewise, the shapes of volumetric freeform features can also be described with the 

sweeping operation. In the geometry description, an enclosed 3D profile curve is swept 

along a 3D trajectory curve, and the two ends of the swept surface are enclosed by the 

two cap faces. The 3D curves used are generated by interpolating some definition 

points (DPs), which are points in 3D space represented by their Cartesian coordinates, 

),,(: zyx pppp . The difference from regular features is that the 3D curve needs to be 

fitted to the attach surface in the model seamlessly, thus the feature attachment 

operation can be performed correctly. The main task is to place the DPs and generate 

the interpolating 3D curve on the attach surface seamlessly, after which the feature 

shape can be generated by some standard sweeping operations. 

 

Since each geometric point has three degrees of freeform, a new DP can be positioned 

uniquely in 3D space by constraining it to three already known geometric entities. In 

the placement operations of DPs, the generic positions of the three initial entities 

Fig. 5.2 2D sketch and the swept shape 
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depend on the geometric information determined by user input. In this work, there are 

four initial geometric entities, namely one point and three plane, which constitute the 

local coordinate system for the feature shape. The initial point (IP) is the local origin, 

and the three initial planes (IPs) are the local coordinate planes, YZXY , , and XZ plane. 

At the beginning of feature instantiation, the IP is placed on the attach surface and the 

z  coordinate axis is parallel to the normal vector of the attach surface at the IP point. 

Through this initial placement, the IP and the IPs can be positioned using the 

geometric information determined by user input. After that, the DPs can be positioned 

by solving the constraints between themselves and the initial entities. Since the DPs of 

the 3D curve need to be placed on the attach surface, only two distance constraints are 

defined between the DPs and the local YZXZ ,  plane, and the other degree of freeform 

is determined by the attach surface. The constraint specification is as follows: firstly, 

since the distance between a point ),,(:1 zyx pppp  and a plane ),,,(: 22 dnnnP zyx  is 

12d : 12221 ddnp +=• , the distance between a DP p  and the local XZ  plane is 

1d : 1dpy = , and the distance between a DP p  and the local YZ  plane is 2d : 2dpx = ; 

secondly, since the two distance constraints of a DP can determine two planes, 1dpy =  

and 2dpx = , the DP will locate on the intersection line l  of the two planes. In this case, 

the DP is positioned at the intersection point of the line l and the attach surface. 

Through the above constraint specification, all the DPs are configured and placed on 

the attach surface seamlessly. The procedure of the placement operations of DPs is 

illustrated in Fig. 5.3, where an extruded feature face is created. 
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5.2.3 3D Profile Curve Generation 

As presented in previous section, the 3D curve of a sweeping freeform feature can be 

generated by interpolating the DPs that are placed on the attach surface. However, the 

interpolating curve may be not lying completely on the attach surface if standard 

interpolation operations are performed directly on the DPs, thus the boundary of the 

swept freeform surface is not seamlessly matched with the attach surface. The 

desirable 3D curve should be a B-spline curve in control points representation and 

lying completely on the attach surface, which can be used as a trimming curve. The 

trimming curve on a freeform surface is usually first computed in the parametric 

domain of the surface, and then represented in space form as the mapping of the 

domain curve on the surface (Renner and Weiβ, 2004; Yang et al., 2008). In this 

research, the parametric values of a DP can be computed by using inverse 

parameterization techniques, and a corresponding point in the parametric domain is 

found, termed Domain Definition Point (DDP). Hence, all the corresponding DDPs of 

the DPs can be computed, and a domain curve is generated by interpolating the DDPs, 

(a) Attach surface (b) Local Coordinate 

(e) Fitting 3D Curve 

(c) Placing a DP 

(d) Placement of DPs (f) Extruded Surface 

Fig. 5.3 Placement of definition points 
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termed domain sketch. The domain sketch is then mapped to the attach surface as the 

boundary curve of a freeform feature. In such an approach, it ensures that the boundary 

lies on the attach surface seamlessly, thus the contact between the swept surface and 

the attach surface has no gap at all. 

 

In Summary, a volumetric freeform feature can be defined using a cross-section 3D 

curve and a trajectory 3D curve, which are obtained by interpolating certain 3D points. 

Once the 3D points are positioned in 3D space using constraint solving, a volumetric 

freeform surface can be generated using standard sweeping techniques. Since the 

cross-section needs to lie on the attach surface seamlessly, a parametric curve can be 

first interpolated in the domain space, which is then evaluated in the attach surface. In 

this way, the generated freeform shape is attached to the base surface seamlessly. 

However, the swept freeform shapes can only be used in certain conceptual designs for 

initial review of the product model. It is due to the fact that the feature shape here is 

restricted by certain 3D points and the standard sweeping operations, and is due to the 

fact that the generated freeform surface is not described using the commonly used 

representations, e.g., Bézier, B-spline, NURBS. 

 

5.3 Displacement Feature Modeling 

Displacement feature is a type of freeform surface features that is commonly used in 

industrial parts. As presented in the review Section 2.1.3.3, there are three major steps 

in displacement feature modeling: firstly, the boundary curve is specified on the base 

surface; secondly, the modified surface region is trimmed and displaced towards the 

exterior or interior of the base surface; thirdly, the transition surface is generated by a 

surface blending approach. The two crucial issues in the modeling procedure are 
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discussed in this section, namely, the specification of the boundary curve and the 

surface blending approach. 

 
5.3.1 Boundary Curve Specification 

 
 
In this work, the boundary curve in a displacement feature is an exact curve lying on 

the base surface to ensure that the continuity across the boundary is at least 0G . 

Alternatively, the approximation algorithm reported by Yang et al. (2008) may be used 

to generate a boundary curve lying on the base surface seamlessly. Firstly, the domain 

curve of the boundary curve is approximated by a polyline, and the base surface is 

divided into Bézier surface patches. Secondly, the approximated polyline is projected 

to the Bezier surfaces to generate certain Bézier curves. In this approximation, the 

Hausdorff diatance between the approximated 3D curve and the exact 3D curve, and 

the tangent discrepancy between any pair of adjacent 3D Bézier curves are both under 

the user-specified tolerance. As in Fig. 5.4, (a) shows a B-spline domain curve; (b) 

(b) 

(d) 

(a) 

(c) 

Exact Curve 

Approximate Curve 

Fig. 5.4 Exact curve and approximated curve 
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shows the mapped 3D curve of the exact domain curve computed using the modeling 

algorithms in Open CASCADE; (c) shows the approximated polyline of the domain 

curve; (d) shows the mapped 3D curve of the polyline. Table 5.1 gives the comparison 

between the mapped 3D curve of the exact domain curve and that of the polyline. 

Table 5.1 Comparison between exact curve and approximated curve 
 

 Tolerance  Degrees  
Number of 

control points 
Number of 
segments 

Continuity 

Exact curve - 7 50 8 G1 

Approximated 1.0×10-2/5° 3 376 125 5°-G1 

 

The shortcomings of this approximation algorithm are as follows. Firstly, although the 

mapped space curve lies completely on the base surface, its degree, )( vu dd +  where 

ud  and vd  are the surface degrees, cannot be decreased as specified by users. Secondly, 

there are too many segments of the mapped space curve, which may make the surface 

blending complicated if it is used in this work. Thirdly, the adjacent Bézier curves on 

the base surface have normal discrepancy, which will remain in the blending surface. 

In addition to the shortcomings of this algorithm itself, the mapping algorithms 

provided in OCC is basically an approximation technique, which samples the domain 

curve and interpolates the sample points using a continuous B-spline curve. That is 

why the degrees of the exact mapped curves and the approximated 3D curve in Fig. 5.4 

are not (3+3)*3 and (3+3)*1, but 7 and 3 respectively. 

 

In this work, the boundary curve is generated using Maple, which generates an exact 

3D curve lying on the base surface. The generated 3D curve using Maple is not 

represented in Bézier representation, but in the power basis representation, which can 

be converted to Bézier using an available algorithm, which will be elaborated in 

Chapter 6. 
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5.3.2 The Proposed Surface Blending Approach 

5.3.2.1 Algorithm Overview. A Bézier curve is defined by 

∑
=

=
p

i
ipi tBt

0
, )()( PC  

 
where iP  are the control points, and piB ,  are the p th-degree Bézier basis functions.  

 

A Bézier surface in the 3D space is defined by 
 

∑∑
= =

=
n

i
jimj

m

j
ni vBuBvu

0
,,

0
, )()(),( PS  

 
where ji,P are the control points, and )(, uB ni  and )(, vB mj  are the n th-degree and m th-

degree Bézier basis functions, respectively. 

 

The Cubic Hermite Interpolant is denoted in Eq. (5.1), 
 

)()()()()()()()(),( 211110201100 tvhtvhtvhtvhvt TTCCS +++=         (5.1) 

 

where 1C  and 2C  are the boundary curves and 1T  and 2T  are the tangent fields along 

the boundary curves.  

 

In this work, the Cubic Hermite Interpolant is approximated for surface blending, so 

the blending surface is a 3×n  Bézier surface ),( vtS , where n  is the degree of the 

boundary curve )(1 tC . In order to ensure that the blending surface is tangential to the 

base surface, the connection between the t  isocurve of the blending surface and the 

base surface can be interrogated. If the t  isocurve is tangential to the base surface, it 

assures that the blending surface has the tangential smoothness with the base surface.  

 

The t  isocurve of the blending surface can be obtained as follows: 
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For fixed 0tt = , 
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    (5.2) 

where ∑
=

=
n

i
jinij tBt

0
,0,0 )()( PQ , is a Bézier curve lying on the blending surface.  

 

 
This indicates that the t  isocurve of the blending surface is a Bézier curve )(v

0tC , in 

which the control points are )( 0tjQ  ( 3...0=j ), and )(v
0tC  is attached to the base 

surface at point )( 01 tC , as shown in Fig. 5.5. If the tangent vector of the t  isocurve 

)(v
0tC  at point )( 01 tC  is on the tangent plane of the base surface at point )( 01 tC , 

)(v
0tC  is tangential to the base surface at point )( 01 tC . Hence, one can now 

interrogate the tangent vector of the t  isocurve )(v
0tC  at point )( 01 tC , which is given 

in Eq. (5.3), where 3=m  and )( 00 tQ , )( 01 tQ  are the first two control points of )(v
0tC .  

))()(()0( 0001 ttm QQC
0t −=′ , ))()(()1( 010 ttm mm −−=′ QQC

0t
     (5.3)  

 

From Eq. (5.2), it can be obtained that 
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Fig. 5.5 t  isocurve and the relevant curves 
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where 0,iP  and 1,iP  are the first two column control points of the blending surface. 0,iP  

is also the control point of the boundary curve )(1 tC , which ensures that the blending 

surface is attached to the base surface seamlessly along the boundary curve. 

 

From above, in order to achieve the tangential connection between )(v
0tC  and the base 

surface, the control point )( 01 tQ  needs to be assigned on the tangent plane of the base 

surface at point )( 01 tC . Stated differently, for fixed 0tt = , the point on the Bézier 

curve ∑
=

=
n

i
ini tBt

0
1,,1 )()( PQ  should be on the corresponding tangent plane. The cause-

effect relation in the proposed algorithm is illustrated in Fig. 5.6. 

 

 
Consequently, a Bézier curve )(1 tQ  that is in the tangent field of the boundary curve 

needs to be obtained. To achieve this goal, the main task in this research is to offset the 

boundary curve on the tangent planes for a certain distance to obtain the control points 

1,iP , which are used as the control points of the blending surface. The offset curve, 

Tangential connection between blending surface and base surface 

Tangential connection between t  isocurve )(v
0tC  and base surface 

)( 01 tQ  is on the tangent plane of base surface at point )( 01 tC  

Bézier curve ∑
=

=
n

i
ini tBt

0
1,,1 )()( PQ is in the tangent field of boundary curve 

Represents “requires”; Represents “lead to”. 

Fig. 5.6 Cause-effect relation in the proposed algorithm 
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which is the Bézier curve ∑
=

=
n

i
ini tBt

0
1,,1 )()( PQ , ensures that the point )( 01 tQ  is on the 

corresponding tangent plane, and hence the t  isocurve )(v
0tC  is tangential to the base 

surface. For offsetting the boundary curve, a number of points is first sampled and 

offset on the corresponding tangent planes. Next, these offset sample points are 

interpolated as a B-spline curve. The main algorithm flow is described as follows. 

1. Sample points on the boundary curve and determine the offset direction vectors at 

these sample points. 

2. Translate the sample points along the offset vectors obtained and interpolate the 

offset points as a B-spline curve. 

3. Knots refine the boundary curve and the offset curve for surface blending.  

 

For constructing the entire blending surface, the modified surface region is displaced 

towards the interior or exterior of the base surface. Hence, the boundary curve )(1 tC  is 

also displaced, which forms the other boundary curve )(2 tC  of the blending surface. 

Analogous to the offset of )(1 tC , )(2 tC  is offset on the tangent planes of the displaced 

surface region to obtain a Bézier curve ∑
=

=
n

i
ini tBt

0
2,,2 )()( PQ , which ensures that the 

point )( 02 tQ  is on the corresponding tangent plane. Finally, all the four column 

control points of the blending surface ),( vtS  are obtained to generate the transition 

geometry. 

 

5.3.2.2 Surface Blending. Points sampling is based on the bounds on the second 

derivatives. For parametric curves, the number of sample points for equally spaced 

parameters on [0, 1] is computed as follows (Piegl and Tiller, 1999): 
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8
)

1
(

M
n pow

ε
=  

 

where 
otherwise

ionapproximatlinear 

34.0

5.0





=pow . M  is the bound on the second derivative of 

the offset curve and ε  is a user-defined tolerance.  

 

For a Bézier curve, )1(2 +p  can be sampled for computing the second derivatives at 

these points, where p  is the degree of the Bézier curve, and the magnitude of the 

maximum of these derivatives is used for M  (Piegl and Tiller, 1999). A default 

number 1+= pn  is introduced by Piegl and Tiller (1999) to ensure that a small curve 

segment can be sampled properly when the tolerance is large. The offset direction 

vector at the sample point is determined by  

)))(),((
)(

()( tvtu
dt

td
t n

C
T ×±= ,  

 

where 
dt

td )(C
 is the tangent vector of boundary curve )(tC , and ))(),(( tvtun is the 

normal vector in the surface for each point along )(tC . For each sample point ip  in the 

boundary curve, the line iiqp  is parallel to the respective offset vector, where iq  is the 

offset sample point. Hence, the parameter values at iq should correspond to the 

parameters at ip , which are set as  

)0(
1

ni
n

i
ui <≤

−
= ,  

 
where n  is the sampling number. Once the parameterization of the offset sample 

points has been set properly, a number of interpolation schemes can be used to 

interpolate the offset sample points to a B-spline curve (Farouki and Sverrisson, 1996). 

In this work, one can simply use the interpolation functions provided in Open 
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CASCADE (2009). This algorithm interpolates a B-spline curve passing through an 

array of points, where the parameters of each of the points can be given.  

 
 

As shown in Fig. 5.7(a) a quadratic Bézier parameter curve is evaluated in a cubic and 

quadratic Bézier surface, resulting in a 10th-degree Bézier curve lying on the surface. 

In Fig. 5.7(b-c), the offset curves with two different tolerances are shown. Since the 

boundary curve is simple, the interpolating curve of the offset points is basically a 

Bézier curve. Hence, the control points of the boundary curve and that of the offset 

curve are used for interpolating the blending surface, as shown in Fig. 5.7(d). 

 

In Fig. 5.8, a 4th-degree Bézier curve is evaluated in a cubic and quadratic Bézier 

surface, resulting in a 20th-degree Bézier curve lying on the surface. In Fig. 5.8(b-c), 

the offset curves with two different tolerances are shown. Since the boundary curve is 

(a) 

(c) (d) 

(b) 

Fig. 5.7 Example#1 of offset curve and blending surface: (a) curve 
lying on surface; (b) offset curve with 410−=ε ; (c) offset curve 

with 510−=ε ; (d) blending surface with 510−=ε . 
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more complex, the interpolating curve of the offset points is a B-spline curve with 

three interior knots. Analogously, the offset curve of the displaced boundary curve is a 

B-spline curve with one interior knot. To generate the blending surface, the boundary 

curves and the offset curves are converted to the same degree and in the common knot 

vector. Finally, the compatible B-spline curve has four interior knots, and the B-spline 

curves are converted into five Bézier curve segments. The control points of the Bézier 

segments are used to generate the blending surface, as shown in Fig. 5.8(d), which 

contains five constitutive Bézier surface patches.  

 
 

5.3.2.3 Comparison with other works 

In Section 5.3.2.3, it is known that the points on the Bézier curve ∑
=

=
n

i
ini tBt

0
1,,1 )()( PQ , 

not the control points 1,iP , should be on the corresponding tangent planes. However, in 

(a) (b) 

(c) (d) 

Fig. 5.8 Example#2 of offset curve and blending surface: (a) curve lying 
on surface; (b) offset curve with 410−=ε ; (c) offset curve with 510−=ε ; 

(d) blending surface with 410−=ε . 
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the work reported by van Elsas’s method (1998), the control points of the boundary 

curve are translated along the vectors on the tangent planes, and it does not guarantee 

that the offset curve )(1 tQ  is on the tangent planes. It is true that Bézier curves are 

invariant under the usual transformations, such as rotations, translations, and scaling, 

which means one applies the transformation to the curve by applying it to the control 

polygon (Piegl and Tiller, 1997). However, for this property of affine invariance, the 

transformation vectors must be the same for the entire control polygon. 

 

In the work of van Elsas, the translation vectors of each control point of the boundary 

curve are different, and hence translating the control points along the tangent planes 

cannot guarantee that the corresponding Bézier curve is on the tangent planes. As a 

result, the work of van Elsas has the weakness that it may not be able to find the 

tangent field curve of the boundary curve by translating its control points. However, 

his approach can be used when accuracy is not strictly needed, such as for certain 

conceptual illustrations. As shown in Fig. 5.9(a), the sample points are those used in 

Fig. 5.7(c), which are on the tangent planes, and the Bézier curve is generated by 

offsetting the control points of the boundary curve. It can be seen that the curve 

obtained using van Elsas’s method interpolates almost all the sample points. However, 

it is not a reliable approach when the boundary curve and the base surface become 

more complex. As shown in Fig. 5.9(b), the Bézier curve does not interpolate all the 

sample points used in Fig. 5.8(b), and has a discrepancy, which means the tangential 

smoothness has not been achieved here. It is difficult to identify the difference between 

this study and the work of van Elsas from the visualization of the blending surface 

viewpoint, but it can be manifested by the normal deviation along the boundary curve, 

as shown in Fig. 5.10. The normal vectors along the boundary curve are computed on 
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the base surface and on the blending surface respectively, which are compared to 

obtain the normal deviation. In the model in this case study, the normal deviation using 

the proposed method is much smaller, and the difference to that using van Elsas’s 

method is as large as three orders of magnitudes. It should be noted that the offset 

tolerance here is 410−=ε . Consequently, for certain conceptual design cases, the 

boundary curve can be offset simply by offsetting its control points, as in van Elsas’s 

method. However, for a complex boundary curve and surfaces which require higher 

accuracy, which is quite common in practice, the proposed method is much better for 

achieving tangential smoothness. 
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(a) (b) 
Fig. 5.9 The offset boundary curve using Elsas’s method (1998) does not 
interpolate the sample points on the tangent planes: (a) example#1; (b) 

example#2 
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(b) Normal Deviation 
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Fig. 5.10 Normal deviation across the boundary curve in Example#2 (a) using the 
proposed method with 410−=ε ; and (b) using van Elsas’s method 

 
In addition, in surface approximation, there is a general trade-off between accuracy 

and the compactness of the resulting surface. In the work of van Elsas, the control 

points of the boundary curve are offset directly, and hence the offset curve is 

compatible with the boundary curve. As the examples in Fig. 5.7 and Fig. 5.8, the 

boundary curve is a Bézier curve, and the offset curve is also a Bézier curve with the 

same degree, In this case, the resulting blending surface only has one Bézier surface 

patch. However, in the present work, the offset curve is generated by interpolating the 

sampled points, which is usually a B-spline curve having more than one interior knot. 

When the interpolated B-spline curve is converted into Bézier curves, the B-spline 

curve is split into more than one curve segments. In order for surface blending, the 

boundary curve needs to be transformed to be compatible with the offset curve, and it 

is also split into the same number of curve segments by the interior knots. As the 

example in Fig. 5.8, when the offset curve and the boundary curve are converted into 

the same degree and in the common knot vector, the corresponding curves are split into 

five curve segments, and hence the resulting blending surface has five Bézier patches. 

As a result, the proposed method can generate more accurate tangential smoothness 
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across the boundary curve, but it usually generates more surface patches than van 

Elsas’s method.  

 
5.3.3 Self-Intersection Issue 

5.3.3.1 Eliminate Self-Intersection in Domain Space.  

 

 
Since the boundary curve is offset in the tangent field, the self-intersection issue needs 

to be addressed. As shown in Fig. 5.11, a 4th-degree Bézier curve is evaluated in a 

cubic and quadratic Bézier surface, resulting in a 20th-degree Bézier curve lying on the 

surface, and self-intersection arises when the sample points are offset on the tangent 

planes. Self-intersection in offset curves and surfaces is a popular research topic, and 

some related studies have been reported (Pekerman et al., 2008; Seong et al., 2006). 

There are two types of self-intersection in the offset curves, namely local and global 

self-intersection. When the offset distance is larger than the local curvature radius in 

the original curve, local self-intersection arises. Global self-intersection occurs when 

two different points in the curve are offset to the same location. In this study, only the 

local self-intersection will be considered and addressed, as illustrated in Fig. 5.11. 

Current research in offset curves and self-intersection detection is mainly focused on 

(a) (b) 

Fig. 5.11 Local self-intersection: (a) curve lying on surface; (b) local self-
intersection 
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planar curves, but this research addresses offset curves in the 3D space. Since the 

offset of planar curves has been quite well addressed, in this research, self-intersection 

in the offset boundary curve is transformed to the parameter space of the base surface, 

which is inspired by the work reported by Flöry and Hofer (2008). In the work by 

Flöry and Hofer, the curve fitting on the manifolds is carried out as the curve fitting in 

the parameter space of the manifolds. 

 

When a point ip  in a surface S is offset on the corresponding tangent plane 
iST , the 

offset direction vector is denoted as )( ipV . As it is known, the tangent plane 
iST  is as 

the union of tangent vectors to surface S at the point ip  (Rovenski, 2000). On the 

tangent plane, each tangent vector to surface S  can be formulated as the linear 

combination of the two tangents along iso-parametric curves, uS  and vS , which are 

the vectors calculated using the first partial derivative of S with respect to u  and v . 

Hence, the offset vector )( ipV  can be reformulated as 

)()()( iviui vu pSpSpV ∗∆+∗∆= , as illustrated in Fig. 5.12.  

 

 

)( iu pS

)( iv pS

)( iuu pS∗∆

)( ipV
)( ivv pS∗∆

)( iv pS

)( iu pS

S

ip

iST

S

ip

ip

Fig. 5.12 Offset vector and its formulation on tangent plane 
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In order to address the self-intersection as in planar curves, one needs to map the offset 

vectors to a medium plane. Since the offset vector )( ipV  implies the change of ip  on 

the tangent plane with respect to the changes of the parameters u  and v , one can 

approximately map )( ipV  to the changes of parameters in the parameter space of S. 

Although ip  is not moved in the base surface, u∆  and v∆  in the parameter space can 

represent the move direction of ip  approximately. Hence, the equivalent offset vector 

in the parameter space is formulated as vupr vuDi ∆+∆=)( , as shown in Fig. 5.13, 

where vu× is the parameter space of S and Dip  is the parameter point of ip . Once 

self-intersection occurs, the equivalent vector )( Dipr of the original offset vector 

)( ipV is obtained for offsetting the corresponding parameter points. In the parameter 

space, where the parameter curve is a planar curve, the self-intersection in the offset 

polygon can be detected and eliminated efficiently using available algorithms (Hansen 

and Arbab, 1992; Park and Shin, 2002). As shown in Fig. 5.14, the local self-

intersection in the offset polygon is detected and eliminated.  

uo

)Dir(p

v∆

u∆

v

Dip

)Dir(p

Fig. 5.13 Equivalent offset vector in parameter space 

Dip
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Once the self-intersection in the offset parameter curve has been eliminated, the 

remaining offset parameter points {Djp }, mj ,...,1= , where m  is the number of the 

remaining offset parameter points, are interpolated as a B-spline curve. Since the 

relative fair parameterization of the given curves is important for the smoothness of the 

blending surface (Cohen et al., 1997), the parameter values ju  of Djp  are set using the 

centripetal method described next. 

 

Let ∑
=

−−=
m

j
jDDjd

2
)1(pp , then 01 =u , 1=mu , 

d
uu

jDDj

jj

)1(
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−
−

−
+=

pp
 

1,...,2 −= mj .  

 

)( iuu pS∗∆

)( ipV
)( ivv pS∗∆

)Dir(p

v∆

u∆

3D 2D 

Dip

Fig. 5.15 Mapping between offset vectors on the tangent plane 
and parameter space 

 

(a) (b) 

Fig. 5.14 Self-intersection elimination in parameter space: (a) self-
intersection; (b) eliminate self-intersection  
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In order to offset the original sample points { }iP , 1,...,0 −= ni  on the tangent planes, it 

is necessary to obtain n  equivalent offset vectors in the parameter space. Hence, the 

interpolating parameter curve is re-sampled with n  points, and the offset parameter 

vector is formulated as )0('')(' nivuDi <≤∆+∆= vupr , where 'u∆  and 'v∆  are the 

new changes of u  and v . Since the offset vectors in the parameter space and that in 

the tangent planes can be transformed from one another, as shown in Fig. 15, the offset 

vector )(' ipV  in the corresponding tangent plane 
kST can be reformulated as 

)(')(')(' iviui vu pSpSpV ∆+∆= . The original sample points ip  in the boundary curve 

are offset using the newly obtained direction vectors )(' ipV  for surface blending, as 

shown in Fig. 5.16. Although )(' ipV  is different from )( ipV , the sample points in the 

boundary curve are still offset on the corresponding tangent planes, and hence the 

tangential smoothness is achieved. In this case, the new offset vector )(' ipV  is not in 

the normal of the boundary curve any more, and the offset distances are not constant 

for all the sample points. 

 

 
5.3.3.2 Offset the Parameter Curve Directly.  

If there is no self-intersection in the offset boundary curve, the offset vector )( ipV  is 

normal to the boundary curve and the offset distance for all the sample points is 

(b) (a) 

Fig. 5.16 Blending surface after removal of self-intersection: 
(a) offset boundary curve; (b) blending surface 
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constant. Hence, the roundness along the boundary curve is constant. However, once 

the offset vector )( ipV  is replaced by )(' ipV , the sample points are not offset in the 

normal direction of the boundary curve, and the roundness along the boundary curve is 

not constant any longer. In practice, if it is necessary to keep the constant roundness 

along the boundary curve, the offset distance needs to be set carefully so that self-

intersection does not occur. If the roundness radius along the boundary curve can be a 

variable, the offset vector )( ipV  can be obtained by offsetting the parameter curve 

directly. In this case, the parameter curve is offset in the parameter space directly, and 

the self-intersection is detected and eliminated if needed. The offset vector in the 

parameter space can be mapped to the corresponding tangent planes, which has been 

illustrated in Fig. 5.15. As shown in Fig. 5.17, the parameter curve is offset to its 

normal direction by 02.0=d  with a tolerance of 510−=ε . The offset vectors are 

obtained in the parameter space, and mapped to the corresponding tangent planes. 

Thus, the offset curve in the tangent planes and the blending surface can be obtained, 

as shown in Fig. 5.18. Offsetting the parameter curve has the same effect with the 

method presented in Section 5.3.3.1, and it has lower computational cost. Hence, if the 

constant roundness is not a must and the boundary curve has small local curvature 

radius, which may probably cause self-intersection, offsetting the parameter curve 

directly is a better choice.   

 

 

Fig. 5.17 Offset domain curve directly 
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5.3.4 Examples 

In the proposed method, the blending surface is composed of certain Bézier patches, 

and hence the boundary curve of the displacement feature should be a Bézier curve or 

convertible to Bézier curves. Once the boundary curve is obtained in Bézier form, the 

tangent filed curve can be generated by interpolating the sampled points that are on the 

tangent planes of the base surface, and hence the blending surface patch can be 

constructed. The number of the sampled points depends on the complexity of the 

boundary curve, e.g. higher second derivative, and user-defined tolerance of the 

tangent field curve. As a result, the proposed method can be used for any boundary 

curve that is in Bézier form, and the computation time depends on the complexity of 

the boundary curve and user-defined tolerance of the tangent field curve. The surface 

blending algorithm presented in this section is validated using several examples. All of 

the examples have been implemented on an Intel(R) Pentium(R) D CPU 2.80GHz, 2G 

Memory, Microsoft Windows XP, Microsoft Visual C++ 6.0, and Open CASCADE. 

 

In the first example, a B-spline curve in the parameter space is obtained by 

interpolating six points {(0.25, 0.375), (0.75, 0.375), (0.8125, 0.5), (0.75, 0.625), (0.25, 

0.625), (0.1875, 0.5)}. The interpolating parameter curve is split into six Bézier curves, 

(b) (a) 

Fig. 5.18 Blending surface by offsetting the parameter curve directly: (a) 
offset boundary curve; (b) blending surface 
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and evaluated in a cubic ×quadratic Bézier surface using 3×4 control points, as shown 

in Fig. 5.19(a).  

 

 
 

The control points of the Bézier surface are given below. 
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The Bézier curves lying on the surface are offset by 2.0=d with a tolerance of 

510−=ε , and displaced towards the exterior of the surface by 5.0=h , as shown in Fig. 

5.19(b). The blending surface is computed using the proposed algorithm, and shown in 

Fig. 5.19(c-d). Analogously, a depression displacement feature can be generated if the 

modified region is displaced towards the interior of the surface. To investigate the 

normal deviation across the boundary curve, 1500 points, which are equally spaced on 

(a) (b) 

(c) (d) 

Fig. 5.19 Surface blending of a boundary curve#1: (a) boundary curve lying 
on the surface; (b) boundary curve, offset boundary curve and displaced 

curve; (c) blending surface; (d) displacement feature 
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[0, 1], are sampled on each Bézier segment. The normal vectors at these sample points 

are determined in the given surface and in the blending surface respectively, and the 

normal vector deviation is calculated and averaged, as shown in Fig. 5.20. 
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Fig. 5.20 Normal deviation across the boundary curve for the example in Figure 5.19 
 
 

In the second example, a B-spline curve in the parameter space is obtained by 

interpolating eight points {(0.5, 0.7), (0.44, 0.67), (0.35, 0.55), (0.45, 0.33), (0.5, 0.36), 

(0.55, 0.33), (0.65, 0.55), (0.56, 0.67)}. The interpolating parameter curve is split into 

eight Bézier curves and evaluated in the given surface in example#1, as shown in Fig. 

5.21(a). The Bézier curves lying on the surface are offset by 3.0=d with a tolerance of 

510−=ε , and displaced towards the exterior of the surface by 5.0=h , as shown in Fig. 

5.21(b). When the displaced curve is offset, self-intersection problem arises, which are 

eliminated using the approach proposed in this research. The blending surface is 

computed using the proposed algorithm, as shown in Fig. 5.21(c-d). The normal vector 

deviation of 1000 sample points on each Bézier segment are calculated and averaged, 

as shown in Fig. 5.22.  
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Fig. 5.22 Normal deviation across the boundary curve for the example in Figure 5.21 

 

(d) 

(a) 
(b) 

(c) 
Fig. 5.21 Surface blending of a boundary curve#2: (a) boundary curve 

lying on the surface; (b) boundary curve, offset boundary curve, 
displaced curve and offset displaced curve; (c) blending surface; (d) 

displacement feature. 
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Fig. 5.23 Displacement features in a practical part 

 
Displacement features, as shown in Fig 5.23, are commonly used in many practical 

products. In this study, one of the depression features is respectively generated using 

the proposed surface blending approach and Elsas’s method, as shown in Fig. 5.24. It 

is impossible to observe the difference between the two methods from the visualization 

of the depression feature, so the normal deviation along the boundary curve, the 

number of the blending surface patches, and the computation time are summarized in 

Table 5.2. It should be noted that the user-specified tolerance of the tangent field curve 

is 410−=ε . In addition to displacement feature modeling, writing text on the parts can 

also be accomplished using this proposed approach. As shown in Fig. 5.25, the 

designers set the boundary of the required letter “LEI”, and then the corresponding 3D 

letter can be generated by setting the parameters, in which the tangential smoothness 

across the boundary curves is maintained.  

 

Using proposed method Using Elsas’s method 

Fig. 5.24 Create displacement features using the proposed approach and Elsas’s 
method 
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Table 5.2 Comparison between proposed method and Elsas’s method 

 
Average normal 
deviation along 
boundary curve 

Blending surface 
patches 

Computation time 

Elsas’s method 2.2*1.0E-3 8 125ms 

Proposed method 

3.8*1.0E-5 (user-
defined tolerance of 
tangent field curve is 

410−=ε ) 

16 282ms 

 

  

 
5.3.5 Summary 

A surface blending approach for displacement feature modeling in freeform surfaces is 

presented in this work. To avoid the high polynomial degree of the tangent field curve 

obtained symbolically, an approximation for the Cubic Hermite Interpolant is proposed. 

It is found that the Bézier curve using the interior row of the control points in the 

blending surface should be in the tangent field. As a result, the boundary curve of the 

displacement feature is offset in the tangent field with a user-specified tolerance to 

obtain the interior control points of the blending surface. The local self-intersection 

problem in the offset curve can be transformed approximately and eliminated in the 

parameter space of the base surface. The proposed algorithm is validated with four 

examples, in which the boundary curve of the displacement feature can be specified 

flexibly by the users. The normal vectors along the boundary curve are determined in 

the blending surface and the base surface respectively, and this shows that the normal 

deviation is even smaller than the offset tolerance. Since the offset tolerance can be set 

Fig. 5.25 Write texts on parts using the proposed approach 
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by the users for specific cases, the 1G  smoothness can be achieved with different user 

specified tolerance. 

 

5.4 Displacement Feature Modeling in a Collaborative Environment 

Collaborative feature modeling is a paradigm for the co-design of a product model, in 

which the scheduling of design activities and the product information sharing are the 

two crucial issues, as presented in the review Section 2.2.2. Since a team of designers 

co-create the design model, a granular-locking mechanism is proper for scheduling the 

concurrent design activities. In this section, the combination of displacement feature 

modeling with the collaborative feature modeling will be discussed, in which the co-

ordination and model information sharing will be addressed.  

 

In displacement features, the feature shape is mainly determined by its boundary curve 

lying on the base surface. As a result, in a collaborative environment, the feature shape 

can be designed collaboratively by reviewing the boundary curve among the designers, 

after which the modified surface region is trimmed and the transition surface is 

generated. In addition, normally, several displacement features are embedded into a 

base surface for creating a functional part. The relationships between the boundary 

curves on a base surface can be categorized as interacting and non-interacting 

C1 

C2 
C3 C4 

Fig. 5.26 Relationships of boundary curves 
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relationships. The interacting relationships between a boundary curve that is defined 

on the base surface and a boundary curve already in the base surface include 

overlapping and nesting. As shown in Fig. 5.26, curves 1C  and 3C  are overlapping 

relationship, curves 2C  and 3C are nesting relationship, and curves 4C  and 3C  are non-

interacting relationship. Generally, the non-interacting boundary curves can be defined 

concurrently by designers, since their transition surfaces are normally non-interacting 

either. However, when the boundary of a feature nests in or overlaps with another 

boundary curve, the two boundaries can only be modified by one user at any time.   

 
Based on the above classification, a granular locking mechanism can be used for 

scheduling the concurrent design activities in displacement feature modeling, as the 

mechanism presented in Chapter 4. The locking granularity can be a single feature that 

has no interacting boundary curve, or it can be a group of features whose boundary 

curves are interacting. As shown in Fig. 5.26, two groups of features are identified, 

namely, curves 1C  2C  3C  are in one group and 4C  is in another. A designer can only 

modify a displacement feature after receiving the permission from other designers. As 

such, designers can work on different features at the same time, and the design 

efficiency can be improved. 

 

The change information of the design model needs to be synchronized, thus the 

replicated design models are maintained consistently. In this work, at the client sides, 

each user has the full-fledged modeling functions, thus only the modeling operation 

needs to be synchronized for updating product change. However, since a boundary 

curve defined by one user does not need to be defined and computed by other users 

again, the boundary curve is also transmitted each time for product information sharing. 
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A boundary curve is basically a B-spline curve or several Bézier curve segments, so it 

does not pose much communication load. When a boundary curve is reviewed and 

finalized by certain designers, it is broadcast to all sites together with the parameters 

for surface blending to update the designed model.  

 

5.5 Summary 

Freeform feature modeling has been discussed in this Chapter. Firstly, a simple 

volumetric freeform feature is created by standard sweeping operations, in which the 

profile 3D curve and the trajectory 3D curve are defined by interpolating certain 3D 

points. Secondly, the surface blending in displacement feature modeling is 

approximated to avoid the higher polynomial degree in the transition surface. In this 

approximation, the boundary curve is first offset in the tangent field, and then it is 

knot-refined to be compatible with the offset curve for surface blending. Thirdly, 

displacement feature modeling in a collaborative design environment is briefly 

discussed, where displacement features can be grouped according to the relationships 

of their boundary curves.  
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Chapter 6 Implementation Environment and Case Studies 

The implementation methods and tools used in this study are described in this chapter. 

Firstly, the working environments for the case studies presented in previous chapters 

will be elaborated in details. Secondly, the proposed mechanisms are combined in the 

replicated collaborative feature modeling, where the modeling system is validated 

using two examples. 

   

6.1 Implementation Studies 

6.1.1 Open CASCADE Technology 

Open CASCADE Technology (OCC) is a powerful open source C++ library, 

consisting of the classes and solutions in the areas of surface and solid modeling, 3D 

and 2D visualization, data exchange, etc. Modeling functions are used for constructing 

an object comprising of geometry and topology, and visualization functions are used to 

display and manipulate the designed object. As shown in Class#1, a solid box is being 

constructed by sweeping a sketch face along a vector, which is displayed in Fig. 6.1. 

Analogously, a freeform object, e.g., a Bézier surface, can be constructed and 

displayed, as described in Class#2. In OCC, all the modeling functions and data 

structure are carried out using C++, so it becomes more complicated when combining 

OCC with Java. In order to connect OCC and Java, Java Native Interface (JNI) can be 

used to provide the Interface functions. As coded in Class#3, the functions in Java can 

be defined as native functions, which are actually executed using the loaded DLL 

module. This DLL module is a library containing the modeling functions written in 

C++, as coded in Class#4. Once a native function in Java is called, the corresponding 

arguments and objects are transferred to the functions in the DLL module, which then 

returns back the calculated results to the Java Function. 
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Class#1  
{ 
 //***********definition of the corner points in the sketch***************// 
 gp_Pnt point1(0,0,0); 
 gp_Pnt point2(1,0,0); 
 gp_Pnt point3(1,1,0); 
 gp_Pnt point4(0,1,0); 
 //***********definition of the four edges in the sketch*****************// 
 TopoDS_Edge edge1 = BRepBuilderAPI_MakeEdge(point1, point2);  
 TopoDS_Edge edge2 = BRepBuilderAPI_MakeEdge(point2, point3);  
 TopoDS_Edge edge3 = BRepBuilderAPI_MakeEdge(point3, point4); 
 TopoDS_Edge edge4 = BRepBuilderAPI_MakeEdge(point4, point1); 
 //**************the sketch of the solid box******** *****************// 

TopoDS_Wire sketch = BRepBuilderAPI_MakeWire(edge1, edge2, edge3,                 
edge4); 

 TopoDS_Face sketchFace = BRepBuilderAPI_MakeFace(sketch); 
 //************** sweeping solid box**************** **************//
  
 gp_Vec vec(0, 0, 1.5); 
 TopoDS_Shape box = BRepPrimAPI_MakePrism(sketchFace, vec); 
 //**************visualization of the solid box***** *****************// 
 Handle(AIS_Shape) ais_shape = new AIS_Shape(box); 
 myAISContext->SetColor(ais_shape,Quantity_NOC_PINK); 
 myAISContext->SetMaterial(ais_shape,Graphic3d_NOM_PLASTIC); 
 myAISContext->SetDisplayMode(ais_shape,1); 
 myAISContext->Display(ais_shape); 
}  

 

Class#2  
{ 
 //***************control points of the Bézier surf ace*****************// 
 TColgp_Array2OfPnt Poles(0, 3, 0, 2); 
 Poles.SetValue(0, 0, gp_Pnt(0,0,0)); 
 Poles.SetValue(1, 0, gp_Pnt(3,0,2)); 
 Poles.SetValue(2, 0, gp_Pnt(6,0,2)); 
 Poles.SetValue(3, 0, gp_Pnt(9,0,0)); 

Fig. 6.1 Visualization of a solid box shape 
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 Poles.SetValue(0, 1, gp_Pnt(0,3,2)); 
 Poles.SetValue(1, 1, gp_Pnt(3,3,4)); 
 Poles.SetValue(2, 1, gp_Pnt(6,3,4)); 
 Poles.SetValue(3, 1, gp_Pnt(9,3,2)); 
 Poles.SetValue(0, 2, gp_Pnt(0,6,0)); 
 Poles.SetValue(1, 2, gp_Pnt(3,6,2)); 
 Poles.SetValue(2, 2, gp_Pnt(6,6,2)); 
 Poles.SetValue(3, 2, gp_Pnt(9,6,0)); 
 //*******************geometry of the Bézier surfac e*****************// 
 Handle(Geom_BezierSurface) mySurf = new Geom_BezierSurface(Poles); 
 //*******************topology of the Bézier surfac e*****************// 
 TopoDS_Face Face = BRepBuilderAPI_MakeFace(mySurf); 
 //*******************visualization of the Bézier s urface**************// 
 Handle(AIS_Shape) ais_shape = new AIS_Shape(Face); 
 myAISContext->SetColor(ais_shape,Quantity_NOC_GRAY); 
 myAISContext->SetMaterial(ais_shape,Graphic3d_NOM_PLASTIC); 
 myAISContext->SetDisplayMode(ais_shape,1); 
 myAISContext->Display(ais_shape); 
} 
 
Class#3 
public class MakeSegment  
{ 
 static  

{ 
  System.loadLibrary("geometryJni"); //the DLL module// 
 } 
 public GC_MakeSegment(gp_Pnt P1, gp_Pnt P2) 

{ 
  GC_MakeSegment_0(P1, P2); 

} 
//****************native function****************** **********// 

 public final  native void GC_MakeSegment_0(gp_Pnt P1, gp_Pnt P2);  
} 
 
Class#4 
JNIEXPORT void JNICALL Java_geometryJni_GC_1MakeSegment_GC_1M 
 akeSegment_10 (JNIEnv *env, jobject theobj, jobject P1, jobject P2) 
{ 
 //********P1 and P2 are the 3D points transferred from Java function******// 
 gp_Pnt* the_point1 = (gp_Pnt*) jcas_GetHandle(env,P1); 
 gp_Pnt* the_point2 = (gp_Pnt*) jcas_GetHandle(env,P2); 
 GC_MakeSegment* theret = new  GC_MakeSegment(*the_point1, 
*the_point2); 
 //********returns back the Segment constructed using OCC functions******// 
 jcas_SetHandle(env, theobj, theret);  
} 
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6.1.2 Implementation Methods for History-Independent Modeling 

The performance measurement of the proposed history-independent modeling, which 

has been presented in Chapter 3, was conducted using OCC and VC++. In this section, 

only the average behavior model, introduced in Fig. 3.11(b), will be studied to measure 

the performance of the proposed modeling approach, and the performance 

measurements of the other two representative models are presented in Appendix A. 

This average behavior model consists of a Block  with a row of 33 feature groups, each 

of which have three intersecting features inserted sequentially: first Rib , then Slot , 

and finally eThroughHol , as described in Class#5 and displayed in Fig. 6.2. The 

‘remove operation’ of a Rib  is described in Class#6 and is displayed in Fig. 6.3, in 

which there are three steps, namely, removing the boundary faces originating the Rib , 

merging the intersection face portions stored at this step, and updating the boundary 

faces of the intersecting features created later than Rib . The intersection face portion 

of the Rib , as shown in Fig. 6.4, is identified and stored during its ‘add operation’.  

Class#5 
{ 

TopoDS_Shape result, rib, slot, hole; 
 TopoDS_Shape block= Block(0,0,0,665,20,20); 
 result = block 

clock_t start, finish; 
 for(int i=0;i<33;i++) 
 { 
  rib = Rib(10+i*20,0,20,20,10,5,30); 
  slot = Block(5+i*20,0,0,10,20,5); 
  hole = Hole1(15+i*20,10,0,3,25); 
   BRepAlgoAPI_Fuse fuse(result, rib);  
  BRepAlgoAPI_Cut cut(fuse.Shape(),slot); 
  start=clock(); 
  BRepAlgoAPI_Cut cut1(cut.Shape(),hole); 
  result = cut1.Shape(); 
  finish= clock(); 
  //*****************measure the modeling time******* *********// 
  double time =double(finish-start)/CLOCKS_PER_SEC; 

myAverageModel = result; 
} 

} 
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Class#6 
{ 
 BRepBuilderAPI_Sewing sewing; 
 int j=20; //suppose the 20th Rib is being removed// 
 TopoDS_Shape result = averageModel; //load the designed average model//
  
 rib = Rib(10+j*20,0,20,20,10,5,30); 
 hole = Hole1(15+j*20,10,0,3,25); 
 //**********find the face originating from the rib being removed******// 
 int n=0; 
 BRepAlgoAPI_Common common(result,rib); 
   Handle(TopTools_HArray1OfShape) myArrayRemoveFace; 

TopTools_ListOfShape listOfShape; 
 for(TopExp_Explorer exp(result, TopAbs_FACE);exp.More();exp.Next()) 
 { 
  listOfShape = common.Modified(exp.Current());    
  if (listOfShape.Extent()) 
   myArrayRemoveFace->SetValue(n++,exp.Current()); 
 } 
 //*******end of find the face originating from the rib being removed****//
  
 TopoDS_Shape interFace; 
 BRep_Builder bb; 
 CString tempCS = "averagecase/H"+"j+1"+"Int.brep"; 
 BRepTools::Read(interFace,path,bb); //load the stored ‘intersection face 
portion’ //  
 BRepTools_ReShape reShape; 
 start = clock();   
 //**********remove the face originating from rib*** ****************// 
 for(int i=0;i<5;i++) 
  reShape.Remove(myArrayRemoveFace->Value(i)); 
 result = reShape.Apply(result); 
 //***********end of remove the face originating from rib*************// 
 sewing.Add(result); 
 //************update the intersection face portion*******************// 

sewing.Add(interFace); 
 sewing.Perform(); 
 result = sewing.SewedShape(); 
 //***************end of update the intersecting fac e*****************// 

Fig. 6.2 Average behavior model 
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 //***************update the face of the intersectin g feature***********// 
 BRepAlgoAPI_Common common1(rib,hole); 
 result = BRepAlgoAPI_Cut(result,common1.Shape()); 
 //***************end of update the face of the inte rsecting feature******// 
 finish = clock(); 
 //***************measure the modeling time******** **************// 
 double time =double(finish-start)/CLOCKS_PER_SEC; 
} 
 

 
 

 
 
6.1.3 Maple used in Displacement Feature Modeling 

Maple is a computer algebra system, and it has extensive support for numeric 

computations to a precision which can be set arbitrarily, as well as symbolic 

computation and visualization. In this study, Maple is used for the numeric and 

Fig. 6.4 Intersection face portion of the Rib  

Fig. 6.3 Proposed ‘remove feature’ operation 
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symbolic computations in the modeling of freeform curves and surfaces, such as 

evaluating a 2D parametric curve in a 3D surface, calculating the derivatives of curves 

and surfaces, etc. Since B-spline basis functions cannot be represented directly in 

Maple, the B-spline curve used in this work is converted into Bézier segments to 

enable the symbolic calculation. For the evaluation of a 2D parametric curve, the 

obtained result is a 3D space curve in polynomial representation, which can be 

converted to a Bézier curve using the available algorithm. As described in 

Algorithm#1, K  is the matrix for the change of basis from the power basis to the 

Bernstein basis, A  are the coefficients of the original polynomial, and C  are the 

control points of the Bézier curve. Once the sample points and offset points are 

obtained in Maple, they are interpolated as B-spline curves in VC++ for surface 

blending. 

Algorithm#1 

 

6.2 Case Studies 

In current product design and aesthetic design, both regular-shaped features and 

freeform features are commonly used. In this section, two types of product models are 

used to validate the proposed modeling system. In the first case model, a freeform 

feature has the similar representation as a regular 2.5D feature, comprising a top 

surface, a bottom surface, and the transition surface. However, the transition surface 
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and bottom surface of the freeform feature are described in freeform representation, 

including a single or multiple patches (Sundararajan and Wright, 2004), but the bottom 

surface of the regular 2.5D feature is a planar surface. As shown in Fig. 6.5(a), the 

2.5D pocket has a planar bottom surface, but the transition surface of the freeform 

feature comprises multiple freeform surface patches. In the second case study model, 

the product comprises two parts, namely the support part and the sheet panel, as shown 

in Fig. 6.5(b). The support part is normally composed of regular features, whilst the 

sheet panel is a freeform surface including depression and protrusion surface regions. 

 
 
A proof-of-concept prototype system of the proposed modeling approach has been 

established. The server manages a design session, containing some Java Socket, HTTP 

and Java RMI services, as shown in Fig. 6.6. Through the socket services, designers 

can download the needed modeling kernel from server. The HTTP and RMI services 

enable designers to obtain the exported remote functions on server and communicate 

with the server through design events. The design events in this work include design 

operations, e.g., ‘create feature’ operation and ‘modify feature’ operation, and 

communication message. On the client sides, the design context contains the feature 

model, including the features and feature relationships, and the resulting geometric 

(a) (b) 

Fig. 6.5 (a) Freeform feature and 2.5D feature, (b) support part and sheet 
panel part 
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model. The viewing, manipulation and modeling functions are implemented based on 

OCC, and as shown in Fig. 6.7. 

 

 

6.2.1 First Case Study 

Two designers A and B are working on a product model concurrently, as shown in Fig. 

6.8. Designer A intends to add two pins on the bottom surface of thepocket , and sends 

a ‘create feature’ operation event to the server, described as 

>< 9),1,30,10,10,10#(),(,)( facefeaturepocketSCFRT A . 

Fig. 6.6 Remote server 

Fig. 6.7 Design context 
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The specification of the feature operation includes its identity 10#feature , the 

parameters )30,10,10( , and the reference entity 1face . Meanwhile, designer B intends 

to add a freeform pocket in the top surface of thestock , described as 

>< 9),2,,10#(),(,)( facesignfreeformDefeaturestockSCFRT B . 

Once the server receives and broadcasts the two operation events, designer B finds that 

the operation performed by designer A should be executed first due to his lower 

priority. As a result, in the resulting model, the pins defined by A have the 

identity 10#feature , and the freeform feature defined by B has the identity 11#feature . 

 

6.2.2 Second Case Study 

In the second case study, a team of designers work on a product model including a 

support part and a sheet panel, as shown in Fig. 6.9. In this case, the design team can 

be divided into two working groups. One group works on the support part, and the 

other focuses on the sheet panel. This modeling paradigm is similar to assembly design, 

stock 

chamfer 

Free2 
pocket Free1 

holes 

slot 

block 

holes 

step 

Fig. 6.8 Case model#1 
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and the interface between the support part and the sheet panel is predefined and 

constrained. As such, the concurrent operations on the support part can be managed 

using the locking mechanism presented in Chapter 4, and the operations on the sheet 

panel are managed using the mechanism presented in Section 5.4.   

 

6.3 Summary 

The implementation tools and the programming works used in this study are presented 

in this chapter. A proof-of-concept system used for validating the proposed modeling 

approach has been established based on Java, VC++ and OCC. Two types of models 

that can be used in the proposed collaborative platform are introduced, namely the 

model including regular 2.5D features and freeform features, and the model 

comprising of a support part and a sheet panel. 

Fig. 6.9 Case model#2 
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Chapter 7 Conclusions and Future Work 

 

7.1 Conclusions and Contributions 

The primary objective of this research is to develop a set of methodologies to provide a 

productive and effective collaborative environment for product modeling, in which a 

team of designers work together on creating a regular prismatic model or designing 

displacement features on freeform surfaces. The investigated and explored works 

include: a history-independent modeling approach for overcoming the flaws of the 

boundary evaluation in history-based modeling, a granular locking mechanism for 

providing a parallel working process, and a collaborative environment for creating 

displacement features on freeform surfaces.  

 

7.1.1 Collaborative Feature Modeling Framework 

The proposed design framework is a replicated collaborative feature modeling system. 

On the client sides, two modeling functions were enhanced, namely, a history-

independent modeling approach for prismatic models and a surface blending approach 

for displacement feature modeling. On the server side, a granular locking mechanism 

was explored for scheduling the concurrent design operations, and the product 

information can be synchronized by broadcasting the modeling operations across the 

designers. 

 

This modeling platform provides a valuable paradigm for designers working together 

on a complex product model, which is strongly needed in current product development. 

In this case, a group of designers work on different portions of a part model, so as to 

achieve the design task concurrently. Meanwhile, the engineers in different domains 
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can cooperate on the definition of a feature shape before its execution, which ensures 

that the design model satisfies more constraints than stand-alone modeling. As 

presented in Chapter 6, a complex product model, including both regular features and 

freeform features, can be accomplished collaboratively in this proposed system. 

 

7.1.2 Proposition of a History-Independent Modeling Approach 

This study explored the history-independent modeling for overcoming the 

shortcomings of the traditional history-based modeling, as presented in Chapter 3. The 

‘remove feature’ operation is accomplished in three steps: firstly, the boundary faces 

originating from the feature being edited are removed; secondly, the boundary 

contribution of its intersection face portion is updated; lastly, the boundary 

contribution of its intersecting features is updated. Since the creation step of the feature 

being modified is changed after each modification, the problems caused by the static 

‘feature creation order’ can be solved. It is found that the computational complexity of 

the boundary evaluation using the proposed approach is better than that in history-

based modeling. This is because all the features are re-evaluated sequentially in 

history-based modeling, but only the intersecting features of the feature being edited 

are re-evaluated in this work. The simulation results for three representative models 

show that more computation time is needed compared to the work reported by Bidarra 

et al. (2005), which is due to that not all partitioned faces are stored in this work. This 

approach takes a major step towards ‘history-independent modeling’, in which the 

feature model is always evaluated according to designer’s specifications and the 

computation efficiency is improved. All the topological entities of the current B-rep 

model can be referred to constrain the feature being modified, and the re-evaluation is 

on the basis of the current status of the boundary faces. As such, the feature being 
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modified can be specified and evaluated accurately according to the desirable 

intentions. The modeling mechanism used in current feature-based modeling may be 

replaced by the proposed mechanism so as to solve the problems encountered in 

practical works. 

 

7.1.3 Enhancement of the Granular Locking Mechanism for Replicated 
Collaborative Feature Modeling 

 
In this study, the granular locking mechanism was enhanced so as to address two 

issues, namely, maintaining the exclusive ‘feature creation order’, solving the potential 

operation conflicts, as presented in Chapter 4.  It is found that the potential conflicts of 

design operations caused by feature interactions can be resolved by the correspondence 

of the modified topological entities, in which the modified topological faces are 

tracked using a hFaceIdGrap  and the modified topological edges are identified using 

their adjacent faces. As such, all the operations may be executed correctly and the 

consistency of the replicated models would be maintained. Compared to the works 

reported by Li et al. (2008) and Jing et al. (2009), this work has the advantage in that 

the operation conflicts are resolved by the system automatically and the replicated 

models are synchronized consistently. Hence, this work extends the previous works on 

using the granular locking mechanism in collaborative feature modeling. In this work, 

the designers can perform operations at the same time, and the concurrent operations 

are coordinated and executed by the modeling server.  

 

7.1.4 Proposition of a Surface Blending Approach for Creating Displacement 
Features in Freeform Surfaces   

 
The freeform feature modeling implemented in a collaborative design environment has 

been explored in this work. Specifically, the modeling procedure of displacement 
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features was discussed, including the specification of the boundary curve and the 

surface blending. As presented in Chapter 5, a surface blending approach for 

approximating the Cubic Hermite Interpolant was proposed and validated. It is found 

that the tangential smoothness across the boundary curve can be achieved by offsetting 

the boundary curve in its tangent field, and then constructing the transition surface 

using the control points of the curves obtained. As such, the blending surface has a 

lower polynomial degree than that obtained using standard Cubic Hermite Interpolant, 

in which the tangent field curves are computed symbolically. It is because the 

polynomial degree of the offset curve depends solely on the interpolating algorithm, 

which can provide much lower-degree B-spline curves. In symbolic computation, 

however, the tangent curve of a boundary curve of n  degree can be as high 

as 3)12( −nm , where m is the degree of the base surface in u and v  directions. In 

addition, the proposed blending approach can achieve tangential smoothness for a 

more complex boundary curve, which is quite useful in practice, compared to the 

works reported by van Elsas and Vergeest (1998). The investigation of the normal 

deviation along the boundary curve indicates that the normal deviation is even smaller 

than the offset tolerance. This shows the proposed approximation approach has good 

accuracy, and it provides a valuable approach for surface blending in practice.  

 

In this proposed approach, users can offset the boundary curve with different 

tolerances for specific applications, which should provide flexibility for displacement 

feature modeling. In conceptual design, the accuracy of the smoothness may be not 

critical, so designers can offset the boundary curve with a large tolerance, which would 

not affect the visual effect of the designed model. In detailed design, a smaller 

tolerance can be used for offsetting the boundary curve, which generates a blending 
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surface that has better smoothness across the boundary curve and has lower 

polynomial degree. In addition, the approximation approach may be extended for 

achieving higher smoothness across the boundary curve. 

 

7.2 Future Works and Suggestions 

7.2.1 Development of History-Independent Modeling 

Being an exploratory and preliminary study, the proposed history-independent 

modeling approach needs more research efforts in several issues, such as the naming 

and matching of topological entities, database management, position referencing of 

features, and the design of a graphical user interface, etc. The boundary faces are 

stored and retrieved frequently in this work, but the management of the boundary faces 

has not been explored. The naming and matching mechanism used in this work is 

adapted from the reported works (Capoyleas et al., 1996; Cripac, 1997; Wu et al., 2001; 

Wang and Nnaji, 2005), and it is not implemented. Furthermore, the matching of 

boundary entities are lacking, as the correspondence of the reference faces and edges 

presented in Chapter 4. An intelligent mechanism for the correspondence of boundary 

entities is very useful in the modeling fields, such as solving the persistent naming 

problem, compatible exchange of two models represented in different design systems, 

etc. Consequently, the naming and matching mechanism would need more research 

efforts in future, both in algorithm and in implementation. 

 

7.2.2 Exploration in Freeform Feature Modeling 

7.2.2.1 Evaluation of a 3D Curve lying on a Freeform Surface  

The boundary curve of the displacement features was calculated symbolically using 

Maple in this work, which has a higher degree as presented in Section 5.3.1. The 
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approximation algorithm proposed by Yang et al. (2008) decreases the polynomial 

degree, but it generates many curve segments, which makes surface blending very 

complicated. As a result, a good alternative algorithm is needed for generating a 

boundary curve with a lower degree. As it is known, the degree of a 3D curve lying on 

a base surface depends on both the degree of its parameter curve and the degree of the 

base surface. In order to reduce the degree of the parameter curve, Yang et al. (2008) 

used a polyline to approximate the parameter curve, which results in many line 

segments in the evaluated 3D curve. Since the degree of the parameter curve cannot be 

reduced lower than a polyline, the algorithms from this angle would not produce a 

desirable solution. Hence, the boundary curve should be approximated during its 

evaluation on the freeform surface, as presented by Renner and Weiβ (2004). The key 

point is to provide an algorithm that can be used with different user-specified 

tolerances.  

 

7.2.2.2 Surface Blending in Displacement Feature Modeling 

In this work, an approximation approach was proposed for surface blending, and it can 

achieve the tangential smoothness across the boundary curve. The boundary curve 

needs to be offset in the tangent field, which is an offset issue of a 3D space curve. 

Offset curve in 3D space is useful in practice, but, currently, the offset curve is mainly 

addressed in the 2D domain, as the studies reported in the literature (Pekerman et al., 

2008; Seong et al., 2006). As a result, an effective algorithm for offsetting a 3D curve 

is needed in future work. Specifically, the self-intersection issue in the offset curve 

should be addressed as well, since both local and global self-intersections are common 

in offset curves.  
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The surface blending approach used in this work only achieves 1G  smoothness across 

the boundary curve, which is not sufficient in practice. The nG  smoothness may be 

required in current surface modeling. Consequently, a more effective algorithm is 

needed in future work for achieving the nG  smoothness. The expected algorithm may 

be an approximation as the approach presented in this work, but the key point is that 

the algorithm should be implemented with different user-specified tolerances. Once a 

more useful surface blending has been implemented, the surface modeling of a 

freeform model could become intuitive and effective. 
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Appendix A Programming of the Performance Measurement using 
the Proposed Modeling Approach 

 
The performance measurement programming of the proposed modeling approach is 

presented in this appendix. For the best behavior model, it is a Block containing 100 

non-intersecting Holes, as shown in Fig. A.1. The intersection face portions of each 

Hole is stored at its creation step, as the intersection face portions of the No. 32 Hole 

shown in Fig. A.2. For the worst behavior model, it is a Block containing 20 horizontal 

Holes and 20 vertical Holes, where the horizontal Hole is larger than the vertical Hole, 

as shown in Fig. A.3. In Fig. A.4, the intersection face portions of the second vertical 

Hole are shown. The programming works presented in this appendix are as follows: in 

A.1, two primitive features are constructed, namely, Block and Hole; in A.2, the ‘add 

feature’ operation and ‘remove feature’ operation of the best behavior model are 

presented; in A.3, the two operations of the worst behavior model are presented. 

 
Fig. A.1 The best behavior model 
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A.1 Primitive Features 

/***************two primitive features: Block and H ole*****************/ 
TopoDS_Shape CModelingDoc::Block(Standard_Real x, Standard_Real y,     
Standard_Real z, Standard_Real length, Standard_Real width, Standard_Real height) 
{ 

gp_Pnt point1(x,y,z); 
gp_Pnt point2(x, y+width, z); 
gp_Pnt point3(length+x, y+width, z); 
gp_Pnt point4(length+x, y, z); 
TopoDS_Edge edge1 = BRepBuilderAPI_MakeEdge(point1, point2); 

Fig. A.2 Intersection face portions of the 32nd Hole in the best model 

Fig. A.3 The worst behavior model 

Fig. A.4 Intersection face portions of the second vertical Hole in the worst model 
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TopoDS_Edge edge2 = BRepBuilderAPI_MakeEdge(point2, point3); 
TopoDS_Edge edge3 = BRepBuilderAPI_MakeEdge(point3, point4); 
TopoDS_Edge edge4 = BRepBuilderAPI_MakeEdge(point4, point1); 
TopoDS_Wire sketch = BRepBuilderAPI_MakeWire(edge1, edge2, edge3,   
edge4); 
TopoDS_Face start = BRepBuilderAPI_MakeFace(sketch); 
gp_Vec vec(0, 0, height); 
TopoDS_Shape shape = BRepPrimAPI_MakePrism(start, vec); 
return shape; 

} 
 
TopoDS_Shape CModelingDoc::Hole(Standard_Real x, Standard_Real y, 
Standard_Real z, Standard_Real radius, Standard_Real depth) 
{ 

gp_Pnt origin(x, y, z); 
gp_Dir dir(0, 0, 1); 
gp_Ax2 asix(origin, dir); 
gp_Circ circle(asix, radius); 
TopoDS_Edge cirEdge = BRepBuilderAPI_MakeEdge(circle); 
TopoDS_Wire cirWire = BRepBuilderAPI_MakeWire(cirEdge); 
TopoDS_Face cirFace = BRepBuilderAPI_MakeFace(cirWire); 
gp_Vec vec(0, 0, depth); 
TopoDS_Shape shape = BRepPrimAPI_MakePrism(cirFace, vec); 
return shape; 

} 
/*******************end of constructing the primiti ve features*************/ 

 

A.2 Measurement of Best Behavior Model 

/*******************measurement of the best behavio r model*************/ 
/***********removing the 33rd hole in the model**** **********************/ 
void CModelingDoc::OnMeasureBest()  
{ 
 TopTools_ListOfShape listOfShape; 
 BRepTools_ReShape reShape; 
 TopoDS_Shape removeFace, myBestModel, result,tempShape; 
 clock_t start, finish; 
 TopoDS_Shape stock = Block(0,0,0,1505,20,20); 
 int n=0,m=0, i = 32; 
 CString temp,temp1; 

Handle(TopTools_HArray1OfShape) myTemp = new 
TopTools_HArray1OfShape(0,3);  

 ofstream output; 
 output.open("C:\\Documents and Settings\\g0501018\\Desktop\\sxlyyl\\ 

   Myproject\\bestTimeAdd33.txt");  
 result = stock; 
 for (m=0;m<i;m++) 
 { 
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  TopoDS_Shape hole = Hole(10+15*m,10,0,5,20); 
  result = BRepAlgoAPI_Cut(result, hole); 
 } 

TopoDS_Shape hole; 
 for(int j=0;j<100;j++)/*measure 100 times to get the average value*/ 
 { 
  hole = Hole(10+15*i,10,0,5,20); 
  start=clock(); 
  result = BRepAlgoAPI_Cut(result, hole); 
  finish = clock(); 
  double time =double(finish-start)/CLOCKS_PER_SEC; 
  output<<time<<endl; 
 } 
   /********find and store the intersection face portions*****************/ 
   TopExp_Explorer exp(hole, TopAbs_FACE); 
   m=0; 
   while(exp.More()) 
   { 
    temp.Format("%d",j); 
    temp1.Format("%d", ++m); 

CString path = "C:\\Documents and 
Settings\\Administrator\\Desktop\\Temp\\bestcase\\H"+temp+"Int"+tem
p1+".brep";  

    char* path1 = new char[path.GetLength()+1]; 
  strcpy(path1,(const char*)path.GetBuffer(0)); 
    BRepTools::Write(exp.Current(), path1); 
    delete path1; 
  path.ReleaseBuffer(); 
    exp.Next(); 
 }  
   /********end of find and store the intersection face port*************/ 
  /********for remove and modify operation********* ***************/ 
 for(int n=95;n<100;n++)/**********remove the Nth hole******/  
 { 
  temp.Format("%d",n); 
  Standard_CString path = "bestcase/bestmodel.brep"; 
  BRep_Builder bb; 
  BRepTools::Read(myBestModel,path,bb);  
  TopExp_Explorer exp2(myBestModel, TopAbs_SHELL); 
  TopoDS_Shell modelShell=TopoDS::Shell(exp2.Current()); 
  /*find the face originating from the hole being removed*/ 
  TopoDS_Shape hole = Hole(10+15*n,10,0,5,20); 

TopoDS_Shell holeShell = 
BRepTools::OuterShell(TopoDS::Solid(hole)); 

  BRepAlgoAPI_Common common(holeShell, modelShell); 
  TopExp_Explorer exp1(modelShell, TopAbs_FACE); 
  while(exp1.More()) 
  { 
   listOfShape = common.Modified(exp1.Current()); 
   if(listOfShape.Extent()) 
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   { 
    removeFace = exp1.Current(); 
   } 
   exp1.Next(); 
  } 
  /*end of find the face originating from the hole being removed*/ 
  TopoDS_Shape interFace1,interFace2; 
  CString tempStr1 = CString("bestcase/H")+temp+CString("Int2.brep"); 
  CString tempStr2 = CString("bestcase/H")+temp+CString("Int3.brep"); 
  char* path1 = new char[tempStr1.GetLength()+1]; 
  strcpy(path1,(const char*)tempStr2.GetBuffer(0)); 
  char* path2 = new char[tempStr2.GetLength()+1]; 
  strcpy(path2,(const char*)tempStr1.GetBuffer(0)); 
  BRepTools::Read(interFace1,path1,bb); 
  BRepTools::Read(interFace2,path2,bb); 
  delete path1; 
  tempStr1.ReleaseBuffer(); 
  delete path2; 
  tempStr2.ReleaseBuffer(); 
  /*************measuring time******************/ 
  ofstream output; 
 output.open("C:\\Documents and Settings\\g0501018\\Desktop\\sxlyyl\\ 

Myproject\\bestTimeRemove"+temp+".txt");  
  BRepBuilderAPI_Sewing sewing; 
  for(int j=0;j<100;j++)/*measure the evaluation time for 100 times*/ 
  { 
   start=clock();  
   reShape.Remove(removeFace); 
   sewing.Add(interFace1); 
   sewing.Add(interFace2); 
   sewing.Perform();  
   myBestModel= sewing.SewedShape(); 
   finish = clock(); 
   double time =double(finish-start)/CLOCKS_PER_SEC; 
   output<<time<<endl; 
  } /*end of measure 100 times*/  
 } 
 /***********end of remove and modify operation**** ************/   
} 
/*********************end of measure the best behav ior model***************/ 

 

A.3 Measurement of Worst Behavior Model 

/*******************measurement of the worst behavi or model**************/ 
void CModelingDoc::OnMeasureWorst()  
{ 
 clock_t start, finish; 
 ofstream output; 
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 output.open("C:\\Documents and Settings\\g0501018\\Desktop\\sxlyyl\\ 
Myproject\\worstTimeRemove10.txt"); 

 TopTools_ListOfShape listOfShape,listOfShape1,listOfShape2; 
 BRepTools_ReShape reShape; 
 BRep_Builder bb; 

Handle(TopTools_HArray1OfShape) myTemp = new 
TopTools_HArray1OfShape(0,3); 

Handle(TopTools_HArray1OfShape) myHoleH = new 
TopTools_HArray1OfShape(0,20);  

Handle(TopTools_HArray1OfShape) myHoleV = new 
TopTools_HArray1OfShape(0,20); 

Handle(TopTools_HArray1OfShape) myIntFace = new 
TopTools_HArray1OfShape(0,100); 

 TopoDS_Shape stock = Block(0,0,0,410,410,20); 
 TopoDS_Shape result,tempShape,hole; 
 result = stock; 
 TopoDS_Shell modelShell; 
 int n=0,m=0,k,i; 
 for(i=0;i<20;i++) 
 { 
  tempShape = Hole(0,15+20*i,10,5,410); 
  myHoleH->SetValue(i,tempShape);  
  tempShape = Hole2(15+20*i,0,10,4.5,410); 
  myHoleV->SetValue(i,tempShape); 
 } 
 i=9; /*add the 9th horizontal and vertical hole***********/ 
 /*************add the horizontal hole************* *****/ 
 tempShape = myHoleH->Value(i); 

for(TopExp_Explorer exp1(tempShape, TopAbs_FACE); exp1.More(); 
exp1.Next()) {     myTemp->SetValue(m++,exp1.Current()); } 

 BRepAlgoAPI_Cut cut1(result,tempShape); 
 for(TopExp_Explorer exp(result, TopAbs_FACE);exp.More();exp.Next()) 
 { 
  listOfShape = cut1.Modified(exp.Current());    
  if(listOfShape.Extent())/*find and store the intersecting faces*/ 
  { 
   myArrayTempFace->SetValue(n++,exp.Current()); 
  } 
 }    
 for(k=0;k<n;k++)/*remove intersecting faces in the model*/ 
 { 
  reShape.Remove(myArrayTempFace->Value(k)); 
  myIntFace->SetValue(k,BRepAlgoAPI_Cut(myArrayTempFace-> 

Value(k),tempShape)); 
 }   
 result= reShape.Apply(result);    

BRepBuilderAPI_Sewing sewing; 
 sewing.Add(result); 
 for(k=0;k<n;k++)/*add the updated intersecting faces to the model*/ 
 { 
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  sewing.Add(myIntFace->Value(k)); 
 } 
 if (i==0)/*add the new faces in the new feature to the model*/  
  sewing.Add(myTemp->Value(0)); 
 else 
  { 
   TopoDS_Shape tempS2 = myTemp->Value(0); 
   for(k=0;k<i;k++) 
   { 
   tempS2 = BRepAlgoAPI_Cut (tempS2,myHoleV->Value(k)); 
   } 
   sewing.Add(tempS2); 
    } 

sewing.Perform(); 
 m=0; 
 n=0; 
 /**********for add vertical hole***************/ 
 result = sewing.SewedShape();   
            tempShape = myHoleV->Value(i); 

for(TopExp_Explorer 
exp2(tempShape,TopAbs_FACE);exp2.More();exp2.Next()) 

  myTemp->SetValue(m++,exp2.Current());  
 start = clock(); 
 BRepAlgoAPI_Cut cut2(result,tempShape); 
 CString temp; 
 for(TopExp_Explorer exp3(result, TopAbs_FACE);exp3.More();exp3.Next()) 
 { 
  listOfShape = cut2.Modified(exp3.Current()); 
  temp.Format("%d",n+1); 

CString tempCS = 
CString("worstcase/H4")+CString("Int")+temp+".brep"; 

  char* path = new char[tempCS.GetLength()+1]; 
  strcpy(path,(const char*)tempCS.GetBuffer(0));   
             if (listOfShape.Extent())/*find and store the intersecting faces*/ 
  { 
   myArrayTempFace->SetValue(n++,exp3.Current()); 

 BRepTools::Write(BRepAlgoAPI_Common(exp3.Current(),tem  
pShape),path); 

  }    
  delete path; 
  tempCS.ReleaseBuffer(); 
 } 
 for(k=0;k<n;k++) 
 { 

reShape.Remove(myArrayTempFace->Value(k));/*remove inter face*/ 
myIntFace->SetValue(k,BRepAlgoAPI_Cut(myArrayTempFace-

>Value(k),tempShape)); 
 } 

result= reShape.Apply(result); 
 BRepBuilderAPI_Sewing sewing2; 
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 sewing2.Add(result); 
 for(k=0;k<n;k++) 
 { 
  sewing2.Add(myIntFace->Value(k));/*add the update inter face*/ 
 } 

if (i==0) /*add the face from the vertical hole being added*/ 
sewing2.Add(BRepAlgoAPI_Cut(myTemp->Value(0),myHoleH->Value(0))); 

 else /*add the face from the vertical hole being added*/ 
 { 
  TopoDS_Shape tempS2 = myTemp->Value(0); 
  int a=0; 
  for(k=0;k<i+1;k++) 
  { 

for(TopExp_Explorer exp(myHoleH->Value(k), 
TopAbs_FACE); exp.More();exp.Next()) 

    myTemp->SetValue(a++,exp.Current());  
  
   BRepAlgoAPI_Fuse fuse (tempS2,myTemp->Value(0)); 
    TopTools_ListOfShape listShape; 
   listShape = fuse.Modified(tempS2); 

sewing2.Add(listShape.First()); 
   tempS2 = listShape.Last(); 
   a=0; 
  } 
  sewing2.Add(tempS2); 
 } 
 sewing2.Perform(); 
 result = sewing2.SewedShape(); 
 finish = clock(); 
 double time =double(finish-start)/CLOCKS_PER_SEC; 
 output<<time<<endl; 
/**********************end of add operation******** ***************/ 
    
/*******************begin of remove operation****** ***************/ 

i=19;//remove the 19th vertical hole 
int count=0; 
for(int j=0;j<10;j++)//measure 10 times to get the average value// 
{  

  BRepBuilderAPI_Sewing sewing;  
  n=0; 
  Standard_CString path1 = "worstcase/model.brep"; 
  BRepTools::Read(result,path1, bb); 
  tempShape = myHoleV->Value(i); 

for(TopExp_Explorer exp1(tempShape, TopAbs_FACE); 
exp1.More();exp1.Next()) 

  myTemp->SetValue(m++,exp1.Current());  
  m=0; 
  //finding the faces originating from the hole being removed// 
  BRepAlgoAPI_Common common(tempShape,result); 
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for(TopExp_Explorer exp(result,TopAbs_FAC);exp.More();exp.Next()) 
  { 
   count++; 
   listOfShape = common.Modified(exp.Current()); 
   
   if (listOfShape.Extent()) 
   { 
    myArrayTempFace->SetValue(n++,exp.Current()); 
   } 
  } 
  //end of finding the faces originating from the hole being removed// 
  CString temp,temp1; 
  TopoDS_Shape tempIntface; 
 
  for(k=1;k<i+4;k++) 
  { 
   temp.Format("%d",k); 
   temp1.Format("%d",i+1); 

CString tempCS = 
CString("worstcase/NewH")+temp1+CString("Int")+temp+".bre
p"; 

   char* path = new char[tempCS.GetLength()+1]; 
   strcpy(path,(const char*)tempCS.GetBuffer(0));  
   BRepTools::Read(tempIntface,path, bb); 
   myArrayRemoveFace->SetValue(k,tempIntface); 
   delete path; 
   temp.ReleaseBuffer(); 
  } 
  //retrieve the intersection face portions stored at the step// 
  start = clock(); 
  //removing face originating from the hole being removed 
  for(k=1;k<n;k++) 
  { 
   reShape.Remove(myArrayTempFace->Value(k)); 
  } 
  reShape.Remove(myArrayTempFace->Value(0)); 
  result= reShape.Apply(result); 
 
  sewing.Add(result); 
  //end of removing face originating from the hole being removed 
  //merge the intersection face portions 
  for(k=1;k<i+4;k++) 
  { 
   sewing.Add(myArrayRemoveFace->Value(k)); 
  } 
  //end of merge the intersection face portions 
  //update the intersecting feature 
  for(k=i+1;k<20;k++) 
  { 
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BRepAlgoAPI_Common 
common(BRepTools::OuterShell(TopoDS::Solid(myHoleH-
>Value(k))),tempShape); 

   sewing.Add(common.Shape());  
  } 
  //end of update the intersecting feature 
  sewing.Perform(); 
  result = sewing.SewedShape(); 
  finish = clock(); 
  double time =double(finish-start)/CLOCKS_PER_SEC; 
  output<<time<<endl; 
  //display the result 
 }  
 myWorstModel = result; 
/**********************end of remove operation***** **********************/ 
} 
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Appendix B  Implementation of Example#2 in Chapter 5.3.4  

The implementation of the proposed surface blending is conducted using Maple and 

VC++. In Maple, as presented in B.1, the derivative vectors of the base surface and the 

derivative vectors of the boundary curve are computed to determine the offset vectors, 

which are used to offset the sample points in the boundary curve. In VC++, as 

presented in B.2, the offset ‘sample points’ obtained in Maple are interpolated as a B-

spine curve, and the four types of curves, namely boundary curve, offset ‘boundary 

curve’, displaced curve, offset ‘displaced curve’, are transformed to be compatible for 

surface blending. For eliminating self-intersection in the offset curve, the intersection 

is removed in the offset polygon first. Next, the remaining offset points in the offset 

polygon are re-interpolated as a B-spline curve, which is then re-sampled using the 

original sampling number.  

 

B.1 Calculation in Maple 

 
/**************Construction of the base surface**** ******************/  
p00 := [0, 0, 0]; p10 := [3, 0, 2]; p20 := [6, 0, 2]; p30 := [9, 0, 0]; p01 := [0, 3, 2]; 
p11 := [3, 3, 4]; p21 := [6, 3, 4]; p31 := [9, 3, 2]; p02 := [0, 6, 0]; p12 := [3, 6, 2]; 
p22 := [6, 6, 2]; p32 := [9, 6, 0]; 
P2 := [p00, p10, p20, p30, p01, p11, p21, p31, p02, p12, p22, p32]; 

 

s := plot3d([surf(u, v)[1], surf(u, v)[2], surf(u, v)[3]], u = 0 .. 1, v = 0 .. 1); 
/***************end of construction of the base surface***************/  
/******the 8 Bezier segments of the feature boundary in the parametric domain****/  
P1 := [[.5, .69999999999999996], [.47884017662539796, .69339121717578978], 
[.45889469798551014, .68228130340680704], 
[.43999999999999995, .66999999999999993]];#arc1 
[#arc2-#arc8 are omitted] 
/**********determine the 3D space curve of the Bezier segments**********/  
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plots[display](m1, s, axes = boxed); 

 
/***********determine the control points of the 3D boundary curve**********/  
X1 := [4.5, 4.461912318, 4.424136896, 4.386670499, 4.349509891, 4.312651837, 
4.276093102, 4.239830451, 4.203860647, 4.168180456, 4.132786643, 4.097675971, 
4.062845207, 4.028291114, 3.994010456, 3.96]; Y1 := [4.2, 4.192069461, 
4.183367299, 4.173937424, 4.163823743, 4.153070166, 4.141720601, 4.129818957, 
4.117409142, 4.104535066, 4.091240637, 4.077569764, 4.063566355, 4.049274318, 
4.034737564, 4.02]; Z1 := [2.34, 2.34211481, 2.344190147, 2.346215692, 
2.348180833, 2.350074779, 2.35188668, 2.353605729, 2.355221255, 2.356722815, 
2.358100265, 2.359343835, 2.360444185, 2.361392459, 2.362180322, 2.3628]; 

 

#segment 1 
[#segment 2 - #segment 8 omitted] 
/****displace the boundary curve towards the exterior of the base surface********/ 
for d to 16 do CP1[d] := Vector[row]([X1[d], Y1[d], Z1[d]+.5]) end do; #segment1 

 

plots[display](M1, DisM1, DisM2, DisM3, DisM4, DisM5, DisM6, DisM7, DisM8, s); 
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/***************determine the offset vector of the boundary curve*******/ 
s := [surf(u, v)[1], surf(u, v)[2], surf(u, v)[3]]; Su := diff(s, u); Sv := diff(s, v); Susub := 
eval(subs(u = bez1(t)[1], v = bez1(t)[2], Su)); Svsub := eval(subs(u = bez1(t)[1], v = 
bez1(t)[2], Sv)); nt := linalg[crossprod](Susub, Svsub); 
 
BouC := [c1(t)[1], c1(t)[2], c1(t)[3]]; Ct := diff(BouC, t); TT := linalg[crossprod](Ct, 
nt); Ctt := diff(Ct, t); Cttt := diff(Ctt, t); b := linalg[crossprod](Ct, Ctt); B := [b[1], b[2], 
b[3]]/linalg[norm]([b[1], b[2], b[3]], 2); 
/*******determine the sampling number of the offset curve**************/  
k := linalg[norm]([b[1], b[2], b[3]], 2)/linalg[norm](Ct, 2)^3; k1 := linalg[norm](Ct, 
2)^2*linalg[dotprod](linalg[crossprod](Ct, Cttt), B); k2 := 3*(linalg[dotprod](Ct, 
Ctt))(linalg[dotprod](linalg[crossprod](Ct, Ctt), B)); kk := (k1-k2)/linalg[norm](Ct, 
2)^5; 
CC := (1-.3*k)*Ctt-.3*kk*Ct; for d from 0 to 31 do linalg[norm](evalm(subs(t = 
(1/31)*d, CC)), 2) end do; 
/*************the offset vector of the sample points********************/  
for d from 0 to 15 do V1[d+1] := Vector[row]([subs(t = (1/15)*d, TT[1]), subs(t = 
(1/15)*d, TT[2]), subs(t = (1/15)*d, TT[3])]); V1[d+1] := 
V1[d+1]/linalg[norm](V1[d+1], 2) end do; #segment 1 
/******************offset the sample points******** ******************/ 
for d from 0 to 15 do CP12[d+1] := evalm(subs(t = (1/15)*d, BouC)-.3*V1[d+1]) end 
do;  
CP11[1] := Vector[row](3, {(1) = 4.563197514, (2) = 3.916634287, (3) = 
2.415564190}); CP11[2] := Vector[row](3, {(1) = 4.530640228, (2) = 3.909487693, (3) 
= 2.417221598}); CP11[3] := Vector[row](3, {(1) = 4.498114933, (2) = 3.901698707, 
(3) = 2.418838533}); CP11[4] := Vector[row](3, {(1) = 4.465616906, (2) = 
3.893289079, (3) = 2.420408060}); CP11[5] := Vector[row](3, {(1) = 4.433142511, (2) 
= 3.884281157, (3) = 2.421922930}); CP11[6] := Vector[row](3, {(1) = 4.400689032, 
(2) = 3.874697942, (3) = 2.423375632}); CP11[7] := Vector[row](3, {(1) = 
4.368254513, (2) = 3.864563128, (3) = 2.424758433}); CP11[8] := Vector[row](3, {(1) 
= 4.335837603, (2) = 3.853901119, (3) = 2.426063436}); CP11[9] := Vector[row](3, 
{(1) = 4.303437422, (2) = 3.842737038, (3) = 2.427282621}); CP11[10] := 
Vector[row](3, {(1) = 4.271053391, (2) = 3.831096712,(3) = 2.428407888}); 
CP11[11] := Vector[row](3, {(1) = 4.238685128, (2) = 3.819006652,(3) = 
2.429431105}); CP11[12] := Vector[row](3, {(1) = 4.206332320, (2) = 
3.806494048,(3) = 2.430344148}); CP11[13] := Vector[row](3, {(1) = 4.173994610, 
(2) = 3.793586709,(3) = 2.431138937}); CP11[14] := Vector[row](3, {(1) = 
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4.141671498, (2) = 3.780313057,(3) = 2.431807478}); CP11[15] := Vector[row](3, 
{(1) = 4.109362243, (2) = 3.766702071,(3) = 2.432341878}); CP11[16] := 
Vector[row](3, {(1) = 4.077065779, (2) = 3.752783263,(3) = 2.432734389}); 
OFF1 := plots[pointplot3d]([seq(CP11[i], i = 1 .. 16)], color = blue);  
plots[display](M1, M2, M3, M4, M5, M6, M7, M8, OFF2, OFF1, OFF3, OFF4, OFF5, 
OFF6, OFF7, OFF8, s); 

 
/*********end of offset the sample points********** **********/  
/**********offset the displaced curve************** ******/  
OffDisC := [DisC1(t)[1], DisC1(t)[2], DisC1(t)[3]]; 
for d from 0 to 15 do OffDisCP1[d+1] := evalm(subs(t = (1/15)*d, 
OffDisC)+.3*V1[d+1]) end do; OFFDis1 := plots[pointplot3d]([seq(OffDisCP1[i], i = 
1 .. 16)], color = blue); plots[display](M1, DisM1, OFFDis1); 
/****************remove intersection of curve4 **** *****/ 
for d from 0 to 28 do Up[d+1] := subs(t = (1/28)*d, Susub); Vp[d+1] := subs(t = 
(1/28)*d, Svsub); UpM[d+1] := linalg[norm](Up[d+1], 2); VpM[d+1] := 
linalg[norm](Vp[d+1], 2); UUp[d+1] := Up[d+1]/UpM[d+1]; UVp[d+1] := 
Vp[d+1]/VpM[d+1] end do; 
/************determine the offset vector in the derivative direction*********/ 
for d to 29 do VecU[d] := linalg[dotprod](.3*V4[d], UUp[d]); VecV[d] := 
linalg[dotprod](.3*V4[d], UVp[d]) end do; 
/**************determine the offset vector in the d omain space********/ 
for d to 29 do DU[d] := VecU[d]/UpM[d]; DV[d] := VecV[d]/VpM[d] end do; 
/*******************offset the domain curve4******* ******/ 
for d from 0 to 28 do DP4[d+1] := [subs(t = (1/28)*d, bez1(t)[1]), subs(t = (1/28)*d, 
bez1(t)[2])]+[DU[d+1], DV[d+1]] end do; 
/*****do the same for curve5, and remove the intersection [omitted] **********/ 
/*get the remaining offset points in curve4 and curve5*/ 
DP[1] := [.4620217182, .2847979055]; DP[2] := [.4645870586, .2863146607]; 
DP[3] := [.4670388800, .2878676247]; DP[4] := [.4693866810, .2894413983]; 
DP[5] := [.4716388264, .2910226484]; DP[6] := [.4738024697, .2925995814]; 
DP[7] := [.4758835416, .2941615274]; DP[8] := [.4778867749, .2956986262]; 
DP[9] := [.4798157482, .2972015966]; DP[10] := [.4816729335, .2986615760]; 
DP[11] := [.4834597399, .3000700196]; DP[12] := [.4851765511, .3014186504]; 
DP[13] := [.4868227519, .3026994553]; DP[14] := [.4883967479, .3039047230]; 
DP[15] := [.4898959780, .3050271266]; DP[16] := [.4913169238, .3060598491]; 
DP[17] := [.4926551245, .3069967616]; DP[18] := [.4939052052, .3078326512]; 
DP[19] := [.4950609314, .3085635114]; DP[20] := [.4961153090, .3091868913]; 
DP[21] := [.4970607523, .3097023036]; DP[22] := [.4978893475, .3101116801]; 
DP[23] := [.4985932465, .3104198438]; DP[24] := [.4991652247, .3106349481]; 
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DP[25] := [.4995994290, .3107688016]; DP[26] := [.4998923250, .3108369598]; 
DP[27] := [.5000084867, .3108359610]; DP[28] := [.5003065830, .3107651677]; 
DP[29] := [.5007468457, .3106274381]; DP[30] := [.5013255051, .3104073036]; 
DP[31] := [.5020365187, .3100930982]; DP[32] := [.5028725197, .3096768408]; 
DP[33] := [.5038255634, .3091538936]; DP[34] := [.5048876777, .3085225090]; 
DP[35] := [.5060512519, .3077833494]; DP[36] := [.5073092952, .3069390283]; 
DP[37] := [.5086555995, .3059937002]; DP[38] := [.5100848356, .3049527111]; 
DP[39] := [.5115926061, .3038223106]; DP[40] := [.5131754719, .3026094246]; 
DP[41] := [.5148309661, .3013214823]; DP[42] := [.5165576045, .2999662921]; 
DP[43] := [.5183548988, .2985519643]; DP[44] := [.5202233768, .2970868783]; 
DP[45] := [.5221646106, .2955796925]; DP[46] := [.5241812565, .2940394026]; 
DP[47] := [.5262770983, .2924754527]; DP[48] := [.5284570963, .2908979090]; 
DP[49] := [.5307274273, .2893177059]; DP[50] := [.5330955057, .2877469821]; 
DP[51] := [.5355699607, .2861995195]; DP[52] := [.5381605398, .2846912994]; 
/**************determine the parameter values for interpolation********/ 
for d to 51 do Vpp[d] := Vector[row](DP[d+1]-DP[d]) end do; for d to 51 do 
VppM[d] := linalg[norm](Vpp[d], 2) end do; chord := 0.; for d to 51 do chord := 
chord+VppM[d] end do; uu[1] := 0; uu[52] := 1; for d from 2 to 51 do uu[d] := uu[d-
1]+VppM[d-1]/chord end do; for d to 52 do uu[d] end do; 
/************get the newly sample ‘domain points’ after removing intersection****/ 
DUV := [[.4620217182, .2847979055], [.4634512709, .2856289951], 
[.4648653398, .286485992], [.4662647032, .287366857], 
[.4676501144, .2882695198], [.4690223923, .2891919916], 
[.4703824416, .2901323885], [.4717312155, .2910888874], 
[.4730697081, .2920597099], [.4743989695, .2930431305], 
[.475720095, .2940374503], [.4770342286, .295040988], [.478342573, .2960520604], 
[.4796463896, .2970689626], [.480947011, .2980899468], 
[.4822458588, .2991131863], [.4835444557, .3001367437], 
[.4848444504, .3011585257], [.4861476543, .3021762127], 
[.4874560834, .3031871737], [.4887720174, .3041883471], 
[.4900980857, .3051760587], [.4914373945, .3061457398], 
[.4927937196, .307091469], [.4941718212, .3080051574], 
[.4955779972, .3088749907], [.4970212127, .3096816905], 
[.4985158317, .3103878381], [.5000948058, .3108231197]]; 
/**************get the newly offset vector in domai n space************/ 
for d to 29 do RemVec[d] := [DUV[d][1], DUV[d][2]]+[-subs(t = (d-1)*1/28, 
bez1(t)[1]), -subs(t = (d-1)*1/28, bez1(t)[2])] end do; 
/**************get the offset displace in derivativ e direction in base surface***/ 

for d to 29 do ZU[d] := RemVec[d][1]*Up[d]; ZV[d] := RemVec[d][2]*Vp[d]; 
ZVec[d] := ZU[d]+ZV[d] end do; 
/**************determine the newly offset points SP*************/ 
for d to 29 do PP1[d] := subs(t = (d-1)*1/28, BouC)+ZU[d]; PP2[d] := subs(t = (d-
1)*1/28, BouC)+ZV[d]; PP3[d] := subs(t = (d-1)*1/28, BouC); PP4[d] := 
Vector[row]([subs(t = (d-1)*1/28, nt[1]), subs(t = (d-1)*1/28, nt[2]), subs(t = (d-
1)*1/28, nt[3])]) end do; 
for d to 29 do solve({(x-PP1[d][1])*UUp[d][1]+(y-PP1[d][2])*UUp[d][2]+(z-
PP1[d][3])*UUp[d][3] = 0, (x-PP2[d][1])*UVp[d][1]+(y-PP2[d][2])*UVp[d][2]+(z-
PP2[d][3])*UVp[d][3] = 0, (x-PP3[d][1])*PP4[d][1]+(y-PP3[d][2])*PP4[d][2]+(z-
PP3[d][3])*PP4[d][3] = 0}, {z, x, y}) end do; 



Appendices 

 175 

SP41[1] := [4.162299935, 1.707173383, 2.815045962]; SP41[2] := [4.175017126, 
1.712262649, 2.817148559]; SP41[3] := [4.187597415, 1.717507035, 2.819277655]; 
SP41[4] := [4.200047111, 1.722893701, 2.821428307]; SP41[5] := [4.212372356, 
1.728409659, 2.823595529]; SP41[6] := [4.224579964, 1.734042451, 2.825774463]; 
SP41[7] := [4.236677596, 1.739780281, 2.827960375]; SP41[8] := [4.248673425, 
1.745611768, 2.830148571]; SP41[9] := [4.260576071, 1.751525838, 2.832334349]; 
SP41[10] := [4.272394741, 1.757511781, 2.834512980]; SP41[11] := [4.284139123, 
1.763559092, 2.836679684]; SP41[12] := [4.295819413, 1.769657419, 2.838829584]; 
SP41[13] := [4.307446409, 1.775796441, 2.840957704]; SP41[14] := [4.319031500, 
1.781965748, 2.843058928]; SP41[15] := [4.330586781, 1.788154722, 2.845127987]; 
SP41[16] := [4.342125193, 1.794352300, 2.847159436]; SP41[17] := [4.353660652, 
1.800546802, 2.849147607]; SP41[18] := [4.365208234, 1.806725647, 2.851086612]; 
SP41[19] := [4.376784537, 1.812874926, 2.852970262]; SP41[20] := [4.388408015, 
1.818978892, 2.854791993]; SP41[21] := [4.400099538, 1.825019254, 2.856544775]; 
SP41[22] := [4.411883136, 1.830974065, 2.858220925]; SP41[23] := [4.423787161, 
1.836816042, 2.859811815]; SP41[24] := [4.435845994, 1.842509823, 2.861307376]; 
SP41[25] := [4.448102887, 1.848007075, 2.862695184]; SP41[26] := [4.460614914, 
1.853237159, 2.863958699]; SP41[27] := [4.473463131, 1.858084716, 2.865072971]; 
SP41[28] := [4.486777078, 1.862325654, 2.865992473]; SP41[29] := [4.500853252, 
1.864938718, 2.866521894]; 
OFF41 := plots[pointplot3d]([seq(SP41[i], i = 1 .. 29)], color = blue): 
plots[display](M4,M5,DisM1, DisM2, DisM3, DisM4, DisM5, DisM6, DisM7, 
DisM8,OFF41,OFF51, s); 

 
 

B.2 Surface Construction in VC++ 

void CMapleBlendingDoc::OnMapleDemo1()  
{ 
 /***************base surf, same control points as in B.1***************/ 
 TColgp_Array2OfPnt Poles(0, 3, 0, 2); 
 Handle(Geom_BezierSurface) mySurf = new Geom_BezierSurface(Poles); 
 TopoDS_Face Face = BRepBuilderAPI_MakeFace(mySurf); 
 /*******************end of base surf************** *****************/ 
 /********************domain curve***************** ***************/ 

Handle(TColgp_HArray1OfPnt2d) DIntpoints = new 
TColgp_HArray1OfPnt2d(1,8); 

 DIntpoints->SetValue(1, gp_Pnt2d(0.5, 0.7)); 
 DIntpoints->SetValue(2, gp_Pnt2d(0.44, 0.67)); 
 DIntpoints->SetValue(3, gp_Pnt2d(0.35, 0.55)); 
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 DIntpoints->SetValue(4, gp_Pnt2d(0.45, 0.33)); 
 DIntpoints->SetValue(5, gp_Pnt2d(0.5, 0.36)); 
 DIntpoints->SetValue(6, gp_Pnt2d(0.55, 0.33)); 
 DIntpoints->SetValue(7, gp_Pnt2d(0.65, 0.55)); 
 DIntpoints->SetValue(8, gp_Pnt2d(0.56, 0.67)); 
 Geom2dAPI_Interpolate DInttoBSpline(DIntpoints,1,1.0e-3); 
 DInttoBSpline.Perform(); 
 Handle(Geom2d_BSplineCurve) DIntBspCur = DInttoBSpline.Curve(); 
 int NbPo = DIntBspCur->NbPoles(); 
 gp_Pnt2d poles[9]; 
 for(int i=0;i<9;i++) 
  poles[i] = DIntBspCur->Pole(i+1); 
 /*************end of domain curve***************** ******/ 
 /************convert to bspline curve of domain bezier curve********/ 
 Geom2dConvert_BSplineCurveToBezierCurve toBezCur(DIntBspCur); 
 int NbArc = toBezCur.NbArcs();/*8 arcs*/ 
 Handle(Geom2d_BezierCurve) bezCur = toBezCur.Arc(1);/*do same f other 

arcs*/ 
 gp_Pnt2d bezPoles[4]; 
 for(i=0;i< bezCur->NbPoles();i++) 
 bezPoles[i] = bezCur->Pole(i+1); 
 /*********end of domain curve convert************* ********/ 
 /********input the domain curve in Maple to get 3D curve***********/ 
 /*************boundary curve 1******************** ****/ 
 TColgp_Array1OfPnt cPoles1(1,16); 
 double Xpoles1[16] = {4.5, 4.461912318, 4.424136896, 4.386670499, 

4.349509891, 4.312651837, 4.276093102, 4.239830451, 4.203860647, 
4.168180456, 4.132786643, 4.097675971, 4.062845207, 4.028291114, 
3.994010456, 3.96}; 

 double Ypoles1[16] = {4.2, 4.192069461, 4.183367299, 4.173937424, 
4.163823743, 4.153070166, 4.141720601, 4.129818957, 4.117409142, 
4.104535066, 4.091240637, 4.077569764, 4.063566355, 4.049274318, 
4.034737564, 4.02}; 

 double Zpoles1[16] = {2.34, 2.34211481, 2.344190147, 2.346215692, 
2.348180833, 2.350074779, 2.35188668, 2.353605729, 2.355221255, 
2.356722815, 2.358100265, 2.359343835, 2.360444185, 2.361392459, 
2.362180322, 2.3628}; 

 for(i=0;i<16;i++) 
   cPoles1.SetValue(i+1,gp_Pnt(Xpoles1[i],Ypoles1[i],Zpoles1[i])); 
 Handle(Geom_BezierCurve) bezCur1 = new Geom_BezierCurve(cPoles1); 
 /******************convert bezCur1 to Bspline curv e*********/ 
 TColStd_Array1OfReal knot(1,2); 
 knot.SetValue(1,0); 
 knot.SetValue(2,1); 
 TColStd_Array1OfInteger multiplicity(1,2); 
 multiplicity.SetValue(1,16); 
 multiplicity.SetValue(2,16); 

Handle(Geom_BSplineCurve) firstBspCur1 = new 
Geom_BSplineCurve(cPoles1,knot,multiplicity,15); 

[do the same program for boundary curve2-curve8] 
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/*******get the offset points of the boundary curve from Maple********/ 
 /*********offset curve1, d=0.3, 1.0e-5************ **********/ 
 TColgp_Array1OfPnt OFFpoints1(1,16); 
 OFFpoints1.SetValue(1, gp_Pnt(4.563197514,3.916634287,2.415564190)); 
 OFFpoints1.SetValue(2, gp_Pnt(4.530640228,3.909487693,2.417221598)); 
 OFFpoints1.SetValue(3, gp_Pnt(4.498114933,3.901698707,2.418838533)); 
 OFFpoints1.SetValue(4, gp_Pnt(4.465616906,3.893289079,2.420408060)); 
 OFFpoints1.SetValue(5, gp_Pnt(4.433142511,3.884281157,2.421922930)); 
 OFFpoints1.SetValue(6, gp_Pnt(4.400689032,3.874697942,2.423375632)); 
 OFFpoints1.SetValue(7, gp_Pnt(4.368254513,3.864563128,2.424758433)); 
 OFFpoints1.SetValue(8, gp_Pnt(4.335837603,3.853901119,2.426063436)); 
 OFFpoints1.SetValue(9, gp_Pnt(4.303437422,3.842737038,2.427282621)); 
 OFFpoints1.SetValue(10, gp_Pnt(4.271053391,3.831096712,2.428407888)); 
 OFFpoints1.SetValue(11, gp_Pnt(4.238685128,3.819006652,2.429431105)); 
 OFFpoints1.SetValue(12, gp_Pnt(4.206332320,3.806494048,2.430344148)); 
 OFFpoints1.SetValue(13, gp_Pnt(4.173994610,3.793586709,2.431138937)); 
 OFFpoints1.SetValue(14, gp_Pnt(4.141671498,3.780313057,2.431807478)); 
 OFFpoints1.SetValue(15, gp_Pnt(4.109362243,3.766702071,2.432341878)); 
 OFFpoints1.SetValue(16, gp_Pnt(4.077065779,3.752783263,2.432734389)); 
 /***************interpolate the offset points to B spline*********/ 
 TColStd_Array1OfReal parameter1(1,16); 
 for(i=1;i<17;i++) 
 { 
  double para = (i-1)/15.0; 
  parameter1.SetValue(i, para); 
 } 
 GeomAPI_PointsToBSpline OFFtoBSpline1(OFFpoints1,parameter1); 
 Handle(Geom_BSplineCurve) offBspCur1 = OFFtoBSpline1.Curve(); 
 [do the same program for boundary curve2-curve8] 
 /***************displace the boundary curve******* ****************/ 
 /**************displace curve 1******************* **************/ 
 TColgp_Array1OfPnt DiscPoles1(1,16); 
 for(i=0;i<16;i++) 
  

 DiscPoles1.SetValue(i+1,gp_Pnt(Xpoles1[i],Ypoles1[i],Zpoles1[i]+0.5)); 
 Handle(Geom_BezierCurve) DisbezCur1 = new 

Geom_BezierCurve(DiscPoles1); 
Handle(Geom_BSplineCurve) DisBspCur1 = new 

Geom_BSplineCurve(DiscPoles1,knot,multiplicity,15); 
 [do the same program for boundary curve2-curve8] 
 /***************end of displace boundary curve**** *******************/ 
 /************************offset displace curve**** ************/ 
 /***********get the offset points of displaced curve from Maple***/ 
 /************offset displace curve1, d=0.3, 1.0e-5******************/ 
 TColgp_Array1OfPnt DisOFFpoints1(1,16); 
 DisOFFpoints1.SetValue(1, gp_Pnt(4.436802486,4.483365713,2.764435810)); 
 DisOFFpoints1.SetValue(2, gp_Pnt(4.393474980,4.473942887,2.766968382)); 
 DisOFFpoints1.SetValue(3, gp_Pnt(4.350693135,4.463793125,2.769450857)); 
 DisOFFpoints1.SetValue(4, gp_Pnt(4.308456434,4.452965713,2.771873044)); 
 DisOFFpoints1.SetValue(5, gp_Pnt(4.266763289,4.441509337,2.774224898)); 
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 DisOFFpoints1.SetValue(6, gp_Pnt(4.225611176,4.429472028,2.776496576)); 
 DisOFFpoints1.SetValue(7, gp_Pnt(4.184996817,4.416901128,2.778678489)); 
 DisOFFpoints1.SetValue(8, gp_Pnt(4.144916323,4.403843267,2.780761338)); 
 DisOFFpoints1.SetValue(9, gp_Pnt(4.105365360,4.390344360,2.782736159)); 
 DisOFFpoints1.SetValue(10, gp_Pnt(4.066339257,4.376449614,2.784594348)); 
 DisOFFpoints1.SetValue(11, gp_Pnt(4.027833162,4.362203544,2.786327701)); 
 DisOFFpoints1.SetValue(12, gp_Pnt(3.989842158,4.347650008,2.787928432)); 
 DisOFFpoints1.SetValue(13, gp_Pnt(3.952361366,4.332832219,2.789389207)); 
 DisOFFpoints1.SetValue(14, gp_Pnt(3.915386054,4.317792797,2.790703164)); 
 DisOFFpoints1.SetValue(15, gp_Pnt(3.878911729,4.302573795,2.791863920)); 
 DisOFFpoints1.SetValue(16, gp_Pnt(3.842934221,4.287216737,2.792865611)); 
          /***************interpolate offset points  to Bspline**************/ 
 TColStd_Array1OfReal Disparameter1(1,16); 
 for(i=1;i<17;i++) 
 { 
  double para = (i-1)/15.0; 
  Disparameter1.SetValue(i, para); 
 } 
 GeomAPI_PointsToBSpline DisOFFtoBSpline1(DisOFFpoints1,Disparameter1); 
 Handle(Geom_BSplineCurve) DisoffBspCur1 = DisOFFtoBSpline1.Curve(); 
 [do the same program for boundary curve2-curve8] 
 /***************end of offset displaced curve***** ************/ 
 /******************compatible the four types of cu rves*************/ 
 /*************compatible curve 7****************** **************/ 
 /*get the knot vector*/ 
 offBspCur7->IncreaseDegree(15); 
 int nb = offBspCur7->NbKnots(); 
 TColStd_Array1OfInteger KnotMul(1,nb); 
 offBspCur7->Multiplicities(KnotMul); 
 int nMul=0; 
 for (i=1;i<=nb;i++) 
 { 
  nMul+= KnotMul.Value(i); 
 } 
 TColStd_Array1OfReal KnotSeq(1,nMul); 
 offBspCur7->KnotSequence(KnotSeq); 
 double KV[32]; 
 for(i=0;i<32;i++) 
 { 
  KV[i]=KnotSeq.Value(i+1); 
 } 
 DisoffBspCur7->IncreaseDegree(15); 
 int Disnb = DisoffBspCur7->NbKnots(); 
 TColStd_Array1OfInteger DisKnotMul(1,Disnb); 
 DisoffBspCur7->Multiplicities(DisKnotMul); 
 int DisnMul=0; 
 for (i=1;i<=Disnb;i++) 
 { 
  DisnMul+= DisKnotMul.Value(i); 
 } 
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 TColStd_Array1OfReal DisKnotSeq(1,DisnMul); 
 DisoffBspCur7->KnotSequence(DisKnotSeq); 
 double DisKV[32]; 
 for(i=0;i<32;i++) 
 { 
  DisKV[i]=KnotSeq.Value(i+1); 
 } 
 /************end of get the knoe vector*********** ***********/ 
 [do the same job for other curves] 
 /*get the bezier curve Bez111, first ‘1’ means first boundary curve, second ‘1’ 

means first curve of the four types of curves (boundary curve, offset, displaced, 
offset displaced), third ‘1’ means first Bezier curve of the boundary curve*/ 

 offBspCur1->IncreaseDegree(15); 
 DisoffBspCur1->IncreaseDegree(15); 
 GeomConvert_BSplineCurveToBezierCurve toBezier11(offBspCur1); 
 int Nbarc11 = toBezier11.NbArcs (); 
 Handle(Geom_BezierCurve) Bez111 = toBezier11.Arc(1); 
 GeomConvert_BSplineCurveToBezierCurve toBezier13(DisoffBspCur1); 
 int Nbarc13 = toBezier13.NbArcs (); 
 Handle(Geom_BezierCurve) Bez131 = toBezier13.Arc(1); 
 /*********end of get the bezier curve of the compatible curve***********/ 
 /******************surf construction************** ***************/ 
 TColgp_Array1OfPnt Bez111poles(1,16),Bez131poles(1,16); 
 Bez111->Poles(Bez111poles); 
 Bez131->Poles(Bez131poles); 
 TColgp_Array2OfPnt PatchPoles1(0, 15, 0, 3); 
 for(i=0;i<16;i++) 
 { 
  PatchPoles1.SetValue(i, 0, cPoles1.Value(i+1)); 
  PatchPoles1.SetValue(i, 1, Bez111poles.Value(i+1)); 
  PatchPoles1.SetValue(i, 2, Bez131poles.Value(i+1)); 
  PatchPoles1.SetValue(i, 3, DiscPoles1.Value(i+1)); 
 } 

Handle(Geom_BezierSurface) mySurfPatch1 = new 
Geom_BezierSurface(PatchPoles1); 

 /*end of compatible boundary curve 1************** ***************/ 
  [do the same job for boundary curve2-8:compatible curves and surface 

construction] 
 /****************displace feature construction**** ****************/ 
 /*displace the modify region*/ 
 int index = 0; 
 BRepFeat_SplitShape splitter(Face); 

TopoDS_Edge myMappedEdge = BRepBuilderAPI_MakeEdge(DIntBspCur,  
mySurf); 

 BRepLib::BuildCurve3d(myMappedEdge); 
 splitter.Add(myMappedEdge, Face); 
 splitter.Build(); 
 TopTools_ListIteratorOfListOfShape iter(splitter.Modified(Face)); 

  Handle(TopTools_HArray1OfShape) m_Face = new 
TopTools_HArray1OfShape(0,1); 
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 for(;iter.More();iter.Next()) 
 { 
  m_Face->SetValue(index,iter.Value()); 
  index++; 
 } 
 gp_Trsf transformation; 
 transformation.SetTranslation(gp_Vec(0., 0., 0.5)); 
 TopoDS_Shape m_TrsfSrfRegion = m_Face->Value(1); 
 m_TrsfSrfRegion.Location(TopLoc_Location(transformation)); 
 Handle(AIS_Shape) ais_shape1 = new AIS_Shape(m_Face->Value(0)); 
 Handle(AIS_Shape) ais_shape2 = new AIS_Shape(m_TrsfSrfRegion); 
 /*************end of displace the modify region*** ***********/ 
 /********remove the self-intersection in curve4 and curve5********/ 
 /*******get the offset points in domain space from Maple********/ 

Handle(TColgp_HArray1OfPnt2d) DRemIntpoints = new 
TColgp_HArray1OfPnt2d(1,52); 

 DRemIntpoints->SetValue(1, gp_Pnt2d(.4620217182, .2847979055)); 
 DRemIntpoints->SetValue(2, gp_Pnt2d(.4645870586, .2863146607)); 
 DRemIntpoints->SetValue(3, gp_Pnt2d(.4670388800, .2878676247)); 
 DRemIntpoints->SetValue(4, gp_Pnt2d(.4693866810, .2894413983)); 
 DRemIntpoints->SetValue(5, gp_Pnt2d(.4716388264, .2910226484)); 
 DRemIntpoints->SetValue(6, gp_Pnt2d(.4738024697, .2925995814)); 
 DRemIntpoints->SetValue(7, gp_Pnt2d(.4758835416, .2941615274)); 
 DRemIntpoints->SetValue(8, gp_Pnt2d(.4778867749, .2956986262)); 
 DRemIntpoints->SetValue(9, gp_Pnt2d(.4798157482, .2972015966)); 
 DRemIntpoints->SetValue(10, gp_Pnt2d(.4816729335, .2986615760)); 
 DRemIntpoints->SetValue(11, gp_Pnt2d(.4834597399, .3000700196)); 
 DRemIntpoints->SetValue(12, gp_Pnt2d(.4851765511, .3014186504)); 
 DRemIntpoints->SetValue(13, gp_Pnt2d(.4868227519, .3026994553)); 
 DRemIntpoints->SetValue(14, gp_Pnt2d(.4883967479, .3039047230)); 
 DRemIntpoints->SetValue(15, gp_Pnt2d(.4898959780, .3050271266)); 
 DRemIntpoints->SetValue(16, gp_Pnt2d(.4913169238, .3060598491)); 
 DRemIntpoints->SetValue(17, gp_Pnt2d(.4926551245, .3069967616)); 
 DRemIntpoints->SetValue(18, gp_Pnt2d(.4939052052, .3078326512)); 
 DRemIntpoints->SetValue(19, gp_Pnt2d(.4950609314, .3085635114)); 
 DRemIntpoints->SetValue(20, gp_Pnt2d(.4961153090, .3091868913)); 
 DRemIntpoints->SetValue(21, gp_Pnt2d(.4970607523, .3097023036)); 
 DRemIntpoints->SetValue(22, gp_Pnt2d(.4978893475, .3101116801)); 
 DRemIntpoints->SetValue(23, gp_Pnt2d(.4985932465, .3104198438)); 
 DRemIntpoints->SetValue(24, gp_Pnt2d(.4991652247, .3106349481)); 
 DRemIntpoints->SetValue(25, gp_Pnt2d(.4995994290, .3107688016)); 
 DRemIntpoints->SetValue(26, gp_Pnt2d(.4998923250, .3108369598)); 
 DRemIntpoints->SetValue(27, gp_Pnt2d(.5000084867, .3108359610)); 
 DRemIntpoints->SetValue(28, gp_Pnt2d(.5003065830, .3107651677)); 
 DRemIntpoints->SetValue(29, gp_Pnt2d(.5007468457, .3106274381)); 
 DRemIntpoints->SetValue(30, gp_Pnt2d(.5013255051, .3104073036)); 
 DRemIntpoints->SetValue(31, gp_Pnt2d(.5020365187, .3100930982)); 
 DRemIntpoints->SetValue(32, gp_Pnt2d(.5028725197, .3096768408)); 
 DRemIntpoints->SetValue(33, gp_Pnt2d(.5038255634, .3091538936)); 
 DRemIntpoints->SetValue(34, gp_Pnt2d(.5048876777, .3085225090)); 
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 DRemIntpoints->SetValue(35, gp_Pnt2d(.5060512519, .3077833494)); 
 DRemIntpoints->SetValue(36, gp_Pnt2d(.5073092952, .3069390283)); 
 DRemIntpoints->SetValue(37, gp_Pnt2d(.5086555995, .3059937002)); 
 DRemIntpoints->SetValue(38, gp_Pnt2d(.5100848356, .3049527111)); 
 DRemIntpoints->SetValue(39, gp_Pnt2d(.5115926061, .3038223106)); 
 DRemIntpoints->SetValue(40, gp_Pnt2d(.5131754719, .3026094246)); 
 DRemIntpoints->SetValue(41, gp_Pnt2d(.5148309661, .3013214823)); 
 DRemIntpoints->SetValue(42, gp_Pnt2d(.5165576045, .2999662921)); 
 DRemIntpoints->SetValue(43, gp_Pnt2d(.5183548988, .2985519643)); 
 DRemIntpoints->SetValue(44, gp_Pnt2d(.5202233768, .2970868783)); 
 DRemIntpoints->SetValue(45, gp_Pnt2d(.5221646106, .2955796925)); 
 DRemIntpoints->SetValue(46, gp_Pnt2d(.5241812565, .2940394026)); 
 DRemIntpoints->SetValue(47, gp_Pnt2d(.5262770983, .2924754527)); 
 DRemIntpoints->SetValue(48, gp_Pnt2d(.5284570963, .2908979090)); 
 DRemIntpoints->SetValue(49, gp_Pnt2d(.5307274273, .2893177059)); 
 DRemIntpoints->SetValue(50, gp_Pnt2d(.5330955057, .2877469821)); 
 DRemIntpoints->SetValue(51, gp_Pnt2d(.5355699607, .2861995195)); 
 DRemIntpoints->SetValue(52, gp_Pnt2d(.5381605398, .2846912994)); 
 /************interpolate the remaining domain offset points***********/ 
 /*set the respective parameters, determined from Maple*/ 
 Handle(TColStd_HArray1OfReal) projPara = new 

TColStd_HArray1OfReal(1,52); 
double chord[52] = 
{0,0.03218506726,0.06352856506,0.09405353285,0.1237722992,0.1526865502
,0.1807875868,0.2080567566,0.2344660186,0.2599785925,0.2845496780,0.308
1272480,0.3306528981,0.3520627906,0.3722887194,0.3912593092,0.40890145
64,0.4251420084,0.4399097926,0.4531380306,0.4647671978,0.4747483395,0.4
830468132,0.4896463705,0.4945533971,0.4978010960,0.4990556514,0.502364
5343,0.5073464611,0.5140327260,0.5224278030,0.5325136152,0.5442538447,
0.5575980408,0.5724853960,0.5888480711,0.6066140527,0.6257095645,0.646
0610914,0.6675970601,0.6902492575,0.7139540491,0.7386534355,0.76429599
13,0.7908377206,0.8182428569,0.8464845679,0.8755456087,0.9054188640,0.9
361077588,0.9676264833,1}; 

 Geom2dAPI_Interpolate DRemInttoBSpline(DRemIntpoints,projPara,0,1.0e-5); 
 DRemInttoBSpline.Perform(); 
 Handle(Geom2d_BSplineCurve) DRemIntBspCur = DRemInttoBSpline.Curve(); 
 /***********resample the domain curve using original sampling number***/ 
 gp_Pnt2d DSamplePnt[57]; 
 double Dpara=0; 
 double f = DRemIntBspCur->FirstParameter(); 
 double l = DRemIntBspCur->LastParameter(); 
 for(i=0;i<57;i++) 
 { 
  Dpara = (l-f)*i/56.0; 
  DRemIntBspCur->D0(Dpara,DSamplePnt[i]); 
 } 
} 


