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SUMMARY 

Inventory management has become increasingly important in various logistics and 

supply chain problems and it has received much attention from both researchers and 

practitioners in recent decades. This thesis studies both strategic and operational supply 

chain problems that incorporate inventory consideration and management. 

The strategic supply chain problem studied is a joint facility location-allocation 

and inventory problem that incorporates multiple sources. The problem is motivated by 

a real situation faced by a multinational applied chemistry company. In this problem, 

multiple products are produced in several plants. A warehouse can be replenished by 

several plants together because of capabilities and capacities of plants. Each customer 

in this problem has stochastic demand and a certain amount of safety stock must be 

maintained in warehouses so as to achieve a certain customer service level. The 

problem is to determine the number and locations of warehouses, allocation of 

customers demand and inventory levels of warehouses so as to minimize the expected 

total cost with the satisfaction of desired demand weighted average customer lead time 

and desired cycle service level. The problem is formulated as a mixed integer nonlinear 

programming model. Utilizing approximation and transformation techniques, we 

develop an iterative heuristic method for the problem. An experiment study shows that 

the proposed procedure performs well in comparison with a lower bound. 

The operational supply chain problem considered is a multi-channel component 

replenishment problem in an assemble-to-order system. It is motivated by real 

situations faced by some contract manufacturers. The assemble-to-order manufacturer 
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faces a single period stochastic demand of a single product consisting of multiple 

components. Before product demand is realized, the manufacturer needs to decide on 

initial ordering quantities of components (called pre-stocked components). After the 

demand is realized, the needed components which cannot be filled from inventory can 

be replenished through multiple sourcing channels with different prices and lead times. 

The manufacturer then needs to decide on timing, quantities and sourcing channels of 

additional components to order, as well as final product delivery schedule. We show 

some good properties according to the structure of the problem. Based on the properties, 

we formulate the problem as a stochastic programming model and we solve a restricted 

version of our problem in which the quantities of pre-stocked components follow a 

certain fixed rank order. We then provide a closed-form optimal solution for 

dual-channel two-component problem and we develop a branch and bound method for 

multi-channel multi-component problem to search over all permutations to obtain the 

optimal solution. We also present a greedy heuristic procedure. We finally offer a 

computational experiment to demonstrate the efficiency of our solution methods and to 

compare the performance of assemble-to-order systems with single and dual 

procurement channels, respectively. 
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Chapter 1 INTRODUCTION 

With the rapid development of logistics and supply chain management in recent 

decades, inventory management has become more and more important in various 

logistics and supply chain problems. Inventory management has received much 

attention from both researchers and practitioners. In the research society, there is a huge 

amount of literature on inventory management. From an industrial perspective, there is 

an increasing need of inventory management software in industry and the inventory 

management software market has drastically expanded in recent years. Researchers and 

practitioners have considered inventory management not only in operational supply 

chain problems, but also in strategic supply chain problems. As the main facility in 

which inventory management plays an important role is the warehouse, this thesis first 

studies a multi-source facility (warehouse) location-allocation and inventory problem, 

which belongs to a strategic level supply chain problem. Also note that nowadays 

warehouse does not only act as a storage facility but adds value by doing some light 

assembly for some assemble-to-order manufacturers. We therefore consider another 

warehouse inventory and assembly problem, multi-channel component replenishment 

problem in an assemble-to-order system, which belongs to an operational level supply 

chain problem. 

The rest of Chapter 1 is organized as follows. Section 1.1 presents the research 

scope and objective of this thesis. Section 1.2 provides background on the facility 

location-allocation problem and the component replenishment problem in 
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assemble-to-order systems. The organization of this thesis is given in Section 1.3. 

1.1 Research scope and objective 

This thesis studies inventory consideration and management in two different supply 

chain problems: one is the strategic multi-source facility location-allocation and 

inventory problem; another is the operational multi-channel component replenishment 

problem in an ATO system. 

The specific objectives for studying the multi-source facility location-allocation 

and inventory problem are: 

 To present a multi-source facility location-allocation and inventory problem; 

 To formulate the problem as a mixed integer nonlinear programming model; 

 To develop an effective solution procedure to solve the proposed model and 

generate a lower bound for comparison; 

 To generate a series of problems to test the performance of proposed solution 

procedure; 

 To apply the proposed model and solving method to a case study. 

The specific objectives for studying the multi-channel component replenishment 

problem in an ATO system are: 

 To find some good properties of the dual-channel two-component problem; 

 To develop a stochastic programming model for the dual-channel 

two-component problem on the basis of these properties; 

 To solve the dual-channel two-component problem to optimality; 
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 To extend the properties and model of dual-channel two-component problem 

to multi-channel multi-component problem; 

 To propose an optimal branch-and-bound solution procedure and a heuristic 

solution procedure to solve the multi-channel multi-component problem; 

 To provide some computational studies to demonstrate the efficiency of our 

solution methods and to compare the performance of assemble-to-order 

systems with single and dual procurement channels, respectively. 

 

1.2 Background 

1.2.1 Facility location-allocation problem 

The study of the facility location-allocation problem has a relatively long history. 

Cooper (1963) presented the basic facility location-allocation problem, which is to 

decide locations of warehouses and allocations of customer demand given the locations 

and demand of customers. He described a heuristic method to solve certain classes of 

facility location-allocation problem. Since then, the problem has received a great deal 

of attention from other researchers and it has been analyzed in a number of different 

ways. 

Although a large number of facility location-allocation problem extensions have 

been studied, a limitation of most existing literature on plant/warehouse 

location-allocation problem is that customer demand is usually assumed to be 

deterministic, warehouse/distribution center (DC) is assumed to be sourced by single 
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plant, and therefore a linear warehouse/DC inventory holding cost is adopted; or 

warehouse/DC inventory holding cost is totally neglected. Although this simple way of 

modeling inventory holding cost has sharply reduced the complexity of the modeling of 

the facility location-allocation problem, the usefulness of these models may be 

questioned, especially in real-world applications. Therefore, there is a need to study 

multi-source facility location-allocation and inventory problem. 

 

1.2.2 Component replenishment problem in assemble-to-order systems 

With rapid development of global supply chain management in recent decades, 

production outsourcing has been widely adopted by many companies in the western 

countries. These companies outsource their production to assemble-to-order (ATO) 

contract manufacturers to achieve lower total manufacturing and distribution cost. In 

order to win production contracts from their clients, the manufacturers must be 

competitive in offering both low costs and short delivery times. However, to achieve 

such competitiveness is challenging. On the one hand, their clients often delay their 

confirmation of order quantities to allow themselves to mitigate market uncertainties. 

On the other hand, the long lead times for acquiring some components will affect the 

manufacturer’s ability to deliver the final products in a timely fashion. Under pressure 

from competition, many ATO manufacturers in the regions such as China and 

Singapore would adopt the strategy of keeping an appropriate amount of the required 

components in stock before their demands are confirmed in order to gain higher profit 
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through quicker response in delivering the final product, while at the same time trying 

to minimize the obsolescence costs of excess components. The component 

replenishment problem in an ATO system is motivated from this business situation and 

we consider the multi-channel component replenishment problem in an ATO system. 

 

1.3 Organization of thesis 

The thesis consists of six chapters. The rest of this thesis is organized as follows. 

Chapter 2 introduces relevant works on the facility location-allocation problem and 

the component replenishment problem in ATO systems. 

In Chapter 3, a multi-source facility location-allocation and inventory problem is 

described and a mixed integer nonlinear programming model is developed to formulate 

this problem. A heuristic method is then presented to solve the proposed model and a 

series of problems are generates to test the performance (in comparison with a lower 

bound generated) of proposed heuristic procedure. 

Chapter 4 presents a dual-channel two-component replenishment problem in an 

ATO system. Some good properties and a stochastic programming model are developed. 

A closed-form optimal solution is also presented. 

Chapter 5 extends the study of dual-channel two-component problem to 

multi-channel multi-component problem. An optimal branch-and-bound solution 

procedure and a heuristic solution procedure are developed. Computational studies are 

also provided. 
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The final chapter, Chapter 6, concludes this thesis and presents several directions 

for future research. 
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Chapter 2 LITERATURE REVIEW 

In this chapter, detailed reviews on the facility location-allocation problem and the 

assemble-to-order problem are presented. 

2.1 Facility location-allocation problem 

Facility location-allocation problem is reviewed in terms of four categories in this 

section. They are continuous facility location-allocation problem, discrete facility 

location-allocation problem, multi-objective facility location-allocation problem and 

joint facility location-allocation and inventory problem. Literature reviews on facility 

location-allocation problem can also be found in Drezner (1995), Hamacher and Nickel 

(1998), Owen and Daskin (1998), Drezner and Hamacher (2002), Klose and Drexl 

(2005) and Shen (2007), etc. 

2.1.1 Continuous facility location-allocation problem 

According to the solution space of the sites of facilities, the facility location-allocation 

problem can be divided into two parts. If the solution space of the sites of facilities is 

continuous, that is, it is feasible to locate facilities on every point in the plane, the 

problem is called continuous facility location-allocation problem; if the solution space 

of the sites of facilities is restricted to some potential locations, the problem is called 

discrete facility location-allocation problem. 

Cooper (1963) firstly presented a continuous facility location-allocation problem 

and he then described several heuristic methods to solve the continuous facility 
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location-allocation problem in a later study (Cooper, 1964). Since then, the continuous 

facility location-allocation problem has received a great deal of attention from other 

researchers and it has been analyzed in a number of different ways. Drezner and 

Wesolowsky (1978) developed a trajectory optimization method for a continuous 

multi-facility location-allocation problem. Drezner (1984) introduced a minisum 

algorithm and a minimax algorithm for a two-median and a two-center facility 

location-allocation problems respectively. Bhaskaran and Turnquist (1990) studied a 

multi-facility location-allocation problem incorporating multiple objectives. Brandeau 

(1992) characterized the trajectory of a stochastic queue median location problem in a 

planar region. Rosing (1992) presented an optimal method for solving the generalized 

multi-Weber problem. Hamacher and Nickel (1994) provided several combinatorial 

algorithms for some single facility median problems. Klamroth (2001) considered a 

problem of locating one new facility in the plane with respect to a given set of existing 

facilities where a set of polyhedral barriers restricts traveling, and he provided an exact 

algorithm and a heuristic solution procedure to solve the problem. Hsieh and Tien 

(2004) studied a continuous facility location-allocation problem incorporating 

rectilinear distances and they provided a solution method based on Kohonen 

self-organizing feature maps. Jiang and Yuan (2008) presented a variational inequality 

approach to solve a constrained multi-source Weber problem. Wen and Iwamura (2008) 

studied a fuzzy facility location-allocation problem, which can accommodate 

satisfactorily various customer demands. 
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2.1.2 Discrete facility location-allocation problem 

Wesolowsky and Truscott (1975) studied a discrete facility location-allocation problem 

incorporating multiple periods and relocation of facilities. Erlenkotter (1977) 

incorporated price-sensitive demands in a discrete facility location-allocation problem. 

Beasley (1993) presented a framework for developing Lagrangean heuristic method for 

discrete facility location-allocation problems. Revelle (1993) studied integer-friendly 

programming for discrete facility location-allocation problems. Chandra and Fisher 

(1994), Dogan and Goetschalckx (1999) and Jayaraman and Pirkul (2001) considered 

coordination of discrete facility location-allocation problems and production problems. 

Revelle and Laporte (1996) presented several extensions of the general discrete facility 

location-allocation problem: with different objectives, with multiple products and 

multiple machines in which new models of production are considered, and with spatial 

interactions. Ross (2000) incorporated some operationally-based decisions in a discrete 

facility location-allocation problem. Amiri (2006) and Ravi and Sinha (2006) studied 

integrated logistic problems that combine facility location-allocation problems and 

transport network design problems. Aboolian et al. (2007) studied a competitive facility 

location-allocation problem where the facilities compete for customer demand with 

pre-existing competitive facilities and with each other. Averbakh et al. (2007) 

incorporated demand-dependent setup and service costs in a discrete facility  

location-allocation problem. Marin (2007) studied a facility location-allocation 

problem incorporating both plant location and warehouse location. Melachrinoudis and 

Min (2007) considered a warehouse network redesigning problem. Sankaran (2007) 
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studied a discrete facility location-allocation problem considering large instances. 

 

2.1.3 Multi-objective facility location-allocation problem 

It is important to study the facility location-allocation problem from a multi-objective 

perspective as decision makers in the real-world often consider multiple objectives 

simultaneously. However, there are a few studies considering multiple objectives in the 

facility location-allocation problem. Reviews of these studies are given below. 

Lee and Franz (1979) studied a facility location-allocation problem with the 

consideration of multiple conflicting goals and they proposed a branch and bound 

integer goal programming approach to solve their problem. Lee et al. (1981) presented 

a model with multiple conflicting objectives for facility location-allocation problem 

and they considered a single product in a two-echelon system (plant and distribution 

center). Fortenberry and Mitra (1986) developed a facility location-allocation model 

with weighted objective function. However, it is hard to assign weights for different 

qualitative and quantitative factors that are considered in their model. Current et al. 

(1990) asserted that the objectives of facility location-allocation problem can be 

classified into four broad categories: cost minimization, demand coverage and 

assignment, profit maximization and environment concerns. Bhaskaran and Turnquist 

(1990) studied how to locate multiple facilities in the continental U.S. with 

simultaneous consideration of transportation cost and customer coverage, and they 

achieved some “trade-off” solutions. However, their solutions are based on an 
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empirical study on the continuous set location problem. Pappis and Karacapilidis (1994) 

presented a decision support system to solve the facility location-allocation problem 

with both cost and service level considerations. The service level in their model was 

defined as the distance limit between supplying centers and customers. Revelle and 

Laporte (1996) proposed a two-objective facility location-allocation decision model: 

one objective is to minimize total cost of transportation and manufacturing, and the 

other is to maximize demand that can be fulfilled by shipment within 24 hours. 

However, they did not provide any method for solving their problem. Sabri and 

Beamon (2000) developed a multi-objective supply chain model that integrates 

decisions on facility location-allocation, customer service level and flexibility. They 

used two sub-models (strategic level sub-model and operational level sub-model) and 

“strategic-operational optimization solution algorithm” to find their solution. Fernandez 

and Puerto (2003) considered a general multi-objective uncapacitated plant location 

problem. They presented both exact and approximation methods to obtain 

non-dominated solutions. Caballero et al. (2007) presented a multi-objective facility 

location-allocation-routing problem and they developed a multi-objective metaheuristic 

solution procedure. The objectives in their study include economic objectives (start-up, 

maintenance, and transportation costs) and social objectives (social rejection by towns 

on the truck routes, maximum risk as an equity criterion, and the negative implications 

for towns close to the plant). 

According to Klose and Drexl (2005), although a large number of facility 

location-allocation problem extensions have been studied, there are still fewer studies 
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on the multi-objective facility location-allocation problem. In our study, we consider 

three objectives and we set minimizing the expected total cost as the main objective 

and convert the other two objectives to constraints. 

 

2.1.4 Joint facility location-allocation and inventory problem 

A limitation of most existing studies on facility location-allocation problem is that 

customer demand is usually assumed to be deterministic and therefore a linear 

inventory holding cost is adopted; or inventory holding cost is totally neglected. 

Without consideration of customer demand uncertainty and warehouse/distribution 

center (DC) inventory policy, those models usually lead to sub-optimality in terms of 

total cost/profit. According to Ballou (2001), there appears to be no standard way to 

handle the “inventory consolidation effect” in location analysis and uncertainty of 

customer demand in a location problem is rarely a consideration in model building. 

However, this situation has changed in recent years, and there are increasing studies 

considering stochastic demand and incorporating inventory policy into the facility 

location-allocation problem. 

Ballou (1984) developed a large-scale computer model “DISPLAN” which 

considers nonlinear inventory holding cost in plant/warehouse location problem, and he 

presented a heuristic procedure that uses the three-dimensional transportation algorithm 

of linear programming in an iterative fashion. However, the solution quality of the 

heuristic procedure is not shown in Ballou’s study. Sabri and Beamon (2000) 
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incorporated customer demand uncertainty and inventory policy in the facility 

location-allocation model. Although a small-scale example was provided in the 

numerical study, their model may not be applicable for large-scale real-world problems. 

Erlebacher and Meller (2000) developed a model for a joint facility location-allocation 

and inventory problem and their model is only applicable for continuous customer 

locations approximation and continuous-review inventory policy. Teo et al. (2001) 

incorporated inventory cost in the “location-inventory” model, in which they focused 

on consolidation effect on inventory cost but ignored transportation cost. Daskin et al. 

(2002) studied a distribution center location model that incorporates working inventory 

and safety stock inventory costs at the distribution centers. However, their model is 

only applicable for the case that the plant to DC lead time is the same for all plant/DC 

combinations and the demand variance-to-mean ratio at each retailer is identical for all 

retailers. Shen et al. (2003) studied a joint location-inventory problem involving 

risk-pooling effect. They solved a set-covering integer-programming model which is 

restructured from the original mixed integer nonlinear location-allocation model. Their 

model only considered single supplier and some retailers. Shen and Daskin (2005) and 

Shu et al. (2005) both extended the work of Shen et al. (2003) by incorporating a 

customer service element and considering a stochastic version of 

transportation-inventory network design problem respectively. Miranda and Garrido 

(2004) incorporated both economic order quantity and safety stock as decision 

variables in a joint location-allocation and inventory problem. They solved their mixed 

integer nonlinear programming model using Lagrangian relaxation and sub-gradient 
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method. Their study is only applicable for the (order point, order quantity) inventory 

policy. They later extended their study by incorporating optimization of service level 

using a sequential heuristic approach (Miranda and Garrido, 2009). Teo and Shu (2004) 

studied a joint facility location-allocation and inventory problem which incorporates 

infinite horizon multi-echelon inventory cost function. They formulated the problem as 

a set-partitioning integer programming model and solved it using column generation. 

However, their approach may not be efficient for large-scale real-world problems. 

Gabor and Ommeren (2006) proposed a “2-approximation” method for a facility 

location-allocation problem that incorporated stochastic demand, which is only 

applicable for simple two-echelon problems. Shen and Qi (2007) incorporated routing 

cost in the joint location-allocation and inventory problem, while Ambrosino and 

Scutella (2005) and Javid and Azad (2009) considered routing decisions in the joint 

location-allocation and inventory problem. Snyder et al. (2007) presented a stochastic 

location model with risk pooling under random parameters described by discrete 

scenarios, in which the objective is to minimize the expected total cost across all 

scenarios. Wang et al. (2007) studied a joint location-allocation and inventory problem 

incorporating reverse logistics, which was applied to B2C e-markets of China. Miranda 

and Garrido (2008) and Ozsen et al. (2008, 2009) studied joint location-allocation and 

inventory problem incorporating warehouse capacity constraint, while Mak and Shen 

(2009) considered both limited manufacturing processing capacity and storage capacity 

in a joint location-inventory problem. Hinojosa et al. (2008) and Gebennini et al. (2009) 

studied the dynamic version of the facility location-allocation and inventory problem. 
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However, none of the above mentioned location-inventory studies considered 

multiple sources of warehouse/DC in their models. Multiple sources of warehouse/DC 

are not uncommon in real-world applications. An example is encountered by the 

SOLUTIA (Singapore) company. SOLUTIA is a multinational applied chemistry 

company which produces a homogeneous product (Laminated Glass Interlayer) with 

different forms at several plants. Currently, the warehouses they leased in Asia-Pacific 

are mainly initiated by customers. They want to adopt distribution network 

optimization strategy to choose some third-party logistics service providers’ 

warehouses from many potential locations so as to meet Asia-Pacific customers’ 

demand. Due to the characteristics of the product, the inventory holding cost of the 

product is relatively high. The inventory holding cost therefore plays an important role 

in the warehouse location and customer allocation decisions. The chosen warehouses 

may be replenished by several plants due to the capabilities and capacities of plants. 

Therefore, it would be necessary and interesting to take into account multiple sources 

of warehouse/DC in joint facility location-allocation and inventory problem. 

 

2.2 Assemble-to-order (ATO) problem 

The study on ATO systems has attracted immense interests in recent decades. Song and 

Zipkin (2003) provided an excellent and detailed review on a wide variety of ATO 

models and applications. They classified most ATO research works into three main 

categories: one-period models, multi-period discrete time models and continuous-time 
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models. In the following, we review some literature in recent years according to the 

above mentioned three categories. For those literature published before 2003, authors 

are referred to Song and Zipkin (2003). 

2.2.1 One-period models 

One-period model is mainly applicable to two situations: the products assembled have 

short market life or each time period in the system can be treated in isolation. Hsu et al. 

(2006, 2007) considered an optimal component stocking problem for an ATO system in 

which both the price for final product and the costs of components depend on their 

delivery lead times. Fu et al. (2006) studied an inventory and production planning 

problem for an ATO system with limited assembly capacity. Fang et al. (2008) also 

studied an ATO system with time-dependent pricing in a decentralized setting. Their 

focus is on the contractual arrangement between the assembler and the component 

suppliers. Zhang et al. (2008) examined an ATO system involving coordination of 

stocking decisions for two components which are used in two different configurations 

of a product. The components can either be produced internally or procured from 

external suppliers. Shao and Ji (2009) addressed pricing and coordination decisions in 

an ATO system with two substitutable products, three components and price-sensitive 

demand. They study both centralized and decentralized decision-making mechanisms. 

Fu et al. (2009) proposed an optimal component acquisition problem for an ATO 

system with the consideration of expediting the procurement of components. Xiao et al. 

(2010) also considered emergency replenishment of components in an ATO System. 
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They consider uncertain assembly capacity and assembly-in-advance operations. 

 

2.2.2 Multi-period discrete-time models 

The studies on multi-period discrete-time ATO systems are limited in recent years. 

Akcay and Xu (2004) studied a periodic-review ATO system in which they jointly 

considered inventory replenishment problem and component allocation problem. They 

developed a two-stage stochastic integer program and proposed an order-based 

component allocation heuristic, and they used both sample average approximation 

method and equal fractile heuristics to determine the optimal base-stock levels. 

Bollapragada et al. (2004) studied an ATO system with uncertain supply capacity and 

uncertain demand, and they proposed a decomposition approach to solve 

industrial-sized assembly problems. Mohebbi and Choobineh (2005) provided an 

extensive simulation study of an ATO system with a two-level bill-of-material and they 

studied the combined effects of component commonality, demand uncertainty and 

supply uncertainty on the system’s performance. Louly and Dolgui (2009) developed 

an inventory control model for an ATO system with random component procurement 

lead times and they developed a branch and bound algorithm to calculate component 

safety stock. 

 

2.2.3 Continuous-time models 

In contrast to few studies on multi-period discrete-time models in recent years, there 
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are quite a lot of studies on continuous-time models. Dayanik et al. (2003) developed 

several computationally efficient performance estimates for an ATO system 

incorporating capacitated production and partial order service. Lu et al. (2003) studied 

an ATO system incorporating stochastic lead times for component replenishment. Betts 

and Johnston (2005) considered just-in-time component replenishment decisions for an 

ATO system under stochastic demand and limited capital investment. Lu et al. (2005) 

and Lu (2007) studied approximations for expected number of backorders in ATO 

systems. Lu and Song (2005) developed a cost-minimization model incorporating 

order-based backorder costs to determine the optimal base-stock level for each 

component in an ATO system. Benjaafar and ElHafsi (2006) studied an optimal 

production control and inventory allocation problem for a single-product ATO system 

with multiple customer classes. Fu (2006) proposed two approximation methods to 

evaluate performance measures (e.g. fill rate, average waiting time and average number 

of backorders) in a capacitated continuous time ATO system. Plambeck and Ward 

(2006, 2008) studied optimal control of product prices, component production 

capacities and policy of sequencing customer orders for assembly for an ATO system 

with a high volume of prospective customers’ orders arriving per unit time. Zhao and 

Simchi-Levi (2006) considered an ATO system with stochastic sequential component 

replenishment lead times. They studied performance analysis and evaluation of such an 

ATO system under two different component inventory control policies: 

continuous-time base-stock policy and continuous-time batch-ordering policy. 

Plambeck and Ward (2007) identified a separation principle for a class of ATO systems, 
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in which they considered three controls: sequencing orders for assembly, component 

production planning and component expediting. ElHafsi et al. (2008) studied an ATO 

system with “nested-product” (product i has only one additional component more than 

product i-1). Feng et al. (2008) studied an optimal component production and product 

pricing problem in an ATO system. Lu (2008) studied performance analysis of an ATO 

system where demand and replenishment lead time follows renewal process and 

general distribution respectively. Plambeck (2008) examined an ATO system with 

capacitated component production and fixed transport costs. DeCroix et al. (2009) 

considered an ATO system incorporating component returns. ElHafsi (2009) considered 

an integrated production and inventory problem in an ATO system with multiple 

demand classes where customer orders arrive according to a compound Poisson process. 

Song and Zhao (2009) studied the value of component commonality in an ATO system 

with positive lead times. Zhao (2009) studied an ATO system considering demand that 

follows compound Poisson processes and continuous-time batch ordering policies of 

components. Lu et al. (2010) considered no-holdback allocation rules in 

continuous-time ATO systems. 

Among studies of ATO systems in the literature, recent works by Hsu et al. (2006) 

and Fu et al. (2009) are closely related to the problems investigated in this study. The 

ATO problems considered in these two papers include time-sensitive pricing for the 

final product which can be delivered in partial quantities of the entire order; both also 

allow for the replenishment of each component through a single procurement channel 

after the demand is realized. The difference is that Hsu at al. (2006) requires that each 
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component can only be replenished through a single “regular” purchase channel, i.e., 

the unit price for replenishing a component is the same as the regular price paid before 

demand realization. Fu et al. (2009) assume that the replenishment for each component 

can only be obtained through a single “expediting” channel and the expediting price is 

equal to or greater than the regular price. 

The single-channel settings of Hsu at al. (2006) and Fu et al. (2009) may be 

justifiable in situations where only a single replenishment price is available; for 

example, the urgency of meeting a demand can be handled only through the expedition 

of component acquisition. However, the restriction on a single replenishment channel 

for every component does limit their applicability in reality. For example, in many 

applications we observed in practice, a manufacturer may be able to purchase a 

component from different vendors who offer differentiated prices and supply lead times. 

He may even pay different prices for a component delivered from a single supplier 

using different shipping modes. Thus, the manufacturer would be very interested in 

understanding his optimal component pre-stocking decisions in a multiple 

replenishment channels ATO system; for example, when he faces a dual-channel 

system which consists of a regular channel and an expediting channel. 

Our study extends the works of Hsu at al. (2006) and Fu et al. (2009) to include a 

more realistic environment in which each component can be replenished through 

multiple acquisition channels, each offering a unique combination of unit price and 

lead time. The most general version of our problem allows any arbitrary fixed number 

of replenishment channels for each component. It turns out that this assumption makes 
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our model much more challenging to formulate and to solve. The approach developed 

in Hsu at al. (2006) and Fu et al. (2009) cannot be modified and applied to our 

problem. 

We have reviewed existing studies on the facility location-allocation problem and 

the assemble-to-order problem in this chapter. In the following three chapters, we study 

the two problems we reviewed. In the next chapter, we describe a multi-source facility 

location-allocation and inventory problem and develop a mixed integer nonlinear 

programming model to formulate this problem. A heuristic method is presented to solve 

the proposed model and a series of problems are generates to test the performance (in 

comparison with a lower bound generated) of proposed heuristic procedure. 
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Chapter 3 MULTI-SOURCE FACILITY 

LOCATION-ALLOCATION AND INVENTORY 

PROBLEM 

3.1 Problem description 

We study a multi-source facility location-allocation and inventory problem, which is 

motivated by a research project with SOLUTIA (Singapore). As mentioned, SOLUTIA 

is a multinational applied chemistry company which produces a homogeneous product 

(Laminated Glass Interlayer) with different forms at several plants. Currently, the 

warehouses they leased in Asia-Pacific are mainly initiated by customers. They want to 

adopt distribution network optimization strategy to choose some third-party logistics 

service providers’ warehouses from many potential locations so as to meet Asia-Pacific 

customers’ demand. Their objective is to minimize the expected total cost while 

keeping certain customer service level. Due to the characteristics of the product, the 

inventory holding cost of the product is relatively high. The inventory holding cost 

therefore plays an important role in the warehouse location and customer allocation 

decisions. The chosen warehouses may be replenished by several plants due to the 

capabilities and capacities of plants. 

In this problem, we consider several plants, some potential warehouses, a set of 

customers and multiple types of products. A warehouse can be replenished by several 

plants together because of limited capabilities and capacities of plants. The demand of 

customers is stochastic. Customers can be either served by warehouse or replenished by 
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plant directly. The problem is described as follows. Given distribution of customers’ 

demand, capacities of plants, and locations of plants, customers and potential 

warehouses, the problem is to determine where to locate warehouses, how to allocate 

customers to warehouses or plants, and how much inventory should be held in each 

warehouse. The objective is to minimize the expected total cost with the satisfaction of 

desired demand weighted average customer lead time and desired cycle service level. 

The satisfaction of desired demand weighted average customer lead time is motivated 

by the fact that the company wants to make sure that the strategic customers (with big 

demand) have short lead time and other customers can have relatively long lead time. 

The total cost includes transportation cost (transportation cost from plants to 

warehouses, transportation cost from plants to customers and transportation cost from 

warehouses to customers), fixed cost of warehouses, and inventory holding cost 

(inventory consists of working inventory and safety stock) of warehouses. The 

proposed problem is formulated by a mixed integer nonlinear programming model. 

Utilizing approximation and transformation techniques, we develop an iterative 

heuristic method for the problem. An experiment study shows that the proposed 

procedure performs well in comparison with a lower bound. We also present an 

example study from a research project. 

 

3.2 Model development 

The problem we described is a multi-source facility location-allocation and inventory 
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problem. In order to formulate the proposed problem, a mixed integer nonlinear 

programming model is developed. 

3.2.1 Modeling assumptions 

The following assumptions are necessary in developing the mathematical formulation 

for the problem: 

(1) Customer demand follows independent normal distribution with known mean and 

standard deviation; 

(2) Each customer is directly served by only one facility (warehouse or plant); 

(3) Transportation cost is proportional to shipment amount; 

(4) No capacity is considered for warehouse but there is capacity of plant; 

(5) Periodic review, order-up-to-level (r, S) inventory policy is adopted for each 

warehouse, and review period is known for each warehouse; 

(6) All warehouses use the same cycle service level. 

The reason that we do not consider capacity constraints at the warehouses is 

motivated by the real problem faced by SOLUTIA (Singapore). All warehouses used by 

the company are rented from third-party logistics service providers, thus the capacities 

of warehouses can be easily extended. Note that including the warehouse capacity 

constraints will not make the problem much more difficult. One may observe that the 

solution procedure presented in the thesis can still be used for the case that considers 

the warehouse capacity constraints. 
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3.2.2 Notations 

Notations we adopted in proposed model are given as follows: 

Indices 

i Plant index, i = 1, 2, …, I; 

j  Potential warehouse index, j = 1, 2, …, J; 

k Customer index, k = 1, 2, …, K; 

f Product type index, f = 1, 2, …, F. 

Parameters 

pif  Annual amount of product type f produced at plant i; 

dkf Mean annual demand of product type f at customer k; 

kf Standard deviation of annual demand of product type f at customer k; 

cpwijf Unit transportation cost of product type f from plant i to warehouse j; 

cpcikf  Unit transportation cost of product type f from plant i to customer k; 

cwcjkf Unit transportation cost of product type f from warehouse j to customer k; 

fj Annual fixed cost for leasing warehouse j; 

hj Unit holding cost per year at warehouse j; 

rj Review period of warehouse j; 

tpwij Replenishment lead time from plant i to warehouse j; 

tpcik Replenishment lead time from plant i to customer k; 

twcjk Replenishment lead time from warehouse j to customer k; 

dt Desired weighted average customer lead time; 

z Desired safety factor (it is the standard normal value corresponding to the 
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desired cycle service level). 

Decision variables 

Xijf Annual amount of product type f shipped from plant i to warehouse j; 

Tk Lead time for customer k (depending on the source of shipment); 

Pik = 1 if customer k is directly served by plant i, 0 otherwise; 

Wjk = 1 if customer k is served by warehouse j, 0 otherwise; 

Zj = 1 if warehouse j is leased, 0 otherwise; 

 

3.2.3 Model formulation 

Our proposed model differs from those in previous plant/warehouse location-allocation 

literature in three main aspects. Firstly, in most existing models, customers are all 

served by warehouses or distribution centers, while in our model, the customer can be 

either replenished by single warehouse or served by single plant directly. This 

difference is mainly due to the fact that some companies lease warehouses from 

third-party logistics service providers instead of building their own warehouses. In this 

case, some customers can be directly served by a plant rather than through a warehouse. 

Secondly, we take into account a constraint for desired demand weighted average 

customer lead time so as to make sure that weighted average customer lead time is at 

an acceptable level. This constraint is motivated by the fact that some companies want 

to ensure that they can provide short lead times to the strategic customers (with large 

demand) by opening/hiring nearby warehouses and they can serve those customers with 
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small demand directly by plants without going through warehouses (which means 

relatively long lead time). Thirdly, in most existing models, customer demand is 

assumed to be deterministic and warehouse/DC is assumed to be sourced by single 

plant and therefore a linear inventory holding cost is adopted; or inventory holding cost 

is totally neglected. In this study, we incorporate stochastic customer demand and 

periodic review, order-up-to-level (r, S) inventory policy into the facility 

location-allocation problem and we consider multiple sources for each warehouse. 

As we consider multiple sources (plants) for each warehouse because of limited 

capabilities and capacities of sources, the products ordered by a specific warehouse 

may come from several different sources (with different lead times). Also, for a given 

warehouse, the proportion of quantity ordered from each source may vary from one 

order period to another. This complicates the determination of an appropriate safety 

stock level. Our idea is to provide an approximation of safety stock level that is simple 

while taking into accounts the lead times and order quantities from each source. Here, 

we treat multiple sources as a single source and use an order quantity weighted lead 

time in the computation of safety stock level. The approximated safety stock level of 

product type f at warehouse j is given by 
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In order to use the proposed safety stock in our model formulation, we replace the 

formula (3.1) by its approximation. 
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where ε is a very small positive value. For the case that 0ijf
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that (3.2) approximates SSjf. On the other hand, if 0ijf
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Thus, 0jfSS  . In the Appendix A, we demonstrate that the proposed safety stock 

level is quite reasonable regardless of how an actual ordering policy is implemented. 

Recall that our objective is to minimize the expected annual total cost with the 

satisfaction of desired weighted average customer lead time and desired cycle service 

level. Our problem therefore can be formulated as a mixed integer nonlinear 

programming model P as follows. 
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jk jW Z   for all j and k  (3.7) 

( )k jk jk

j

T twc W   for all k  (3.8) 

( )k ik ik

i

T tpc P   for all k  (3.9) 

{0,1}ikP    for all i and k  (3.10) 

{0,1}jkW    for all j and k  (3.11) 

{0,1}jZ    for all j  (3.12) 

0ijfX    for all i, j and f  (3.13) 

0kT   for all k  (3.14) 

 

The objective function shows the expected annual total cost to be minimized. The 

first two terms represent the transportation costs from plants to warehouses and from 

plants to customers respectively. The third term includes transportation costs from 

warehouses to customers and cycle stock holding costs of warehouses. The fourth term 

denotes the fixed costs of warehouses and the last term represents safety stock holding 

costs of warehouses. Note that we intentionally exclude inventory holding costs at the 

plants because SOLUTIA (Singapore) is not accountable for the costs. 

Constraint (3.3) assures that the demand weighted average customer lead time is at 

a satisfactory level. Constraint (3.4) assures that the capacity for each product type at 

each plant cannot be violated. Constraint (3.5) ensures the flow conservation at each 

warehouse. Constraint (3.6) states that each customer must be served by either a plant 
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or a warehouse. Constraint (3.7) ensures that customers can be served by a warehouse 

only when it is opened. Constraints (3.8) and (3.9) determine the lead time for each 

customer. Constraints (3.10), (3.11) and (3.12) are binary constraints and constraints 

(3.13) and (3.14) are non-negativity constraints. 

To simplify the notation, define: 

LTC = ( ) ( )
2

j j

ijf ijf ikf kf ik jkf kf jk j j

ijf ikf jkf j
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2
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These two notations will replace all linear terms in objective function TC. 

 

3.3 Heuristic method for solving P 

The difficulty for solving the model P comes from the complicated nonlinearity term 

 ( )jf j ij ijf ijfi i
V r tpw X X    in its objective function TC. Let 

STjf = ( ) / ( )j ij ijf ijf

i i

r tpw X X    for all j and f (3.15) 

denote the square root of the sum of review period and weighted lead time for product 

type f at warehouse j. Suppose that we replace the whole term STjf in objective function 

TC by a given value jf and add the constraints STjf = jf  for all j and f. For all j and f, 

observe that the constraint STjf =  ( )j ij ijf ijfi i
r tpw X X    = jf  can be 

converted to a linear constraint    2( )j ijf ij ijf jf ijfi i i
r X tpw X X        . Let 

 be the matrix of jf’s. For given values of , the above mentioned model is denoted 

as model PA(). 
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Model PA(): 

Min ( ) jf jf
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h z W            for all j and f (3.18) 

 

Note that all constraints of model PA() are linear constraints. If we were able to 

solve the model PA() for all possible values of , then the best solution obtained 

would be an optimal solution to the model P. However, it is extremely time-consuming 

to try all the values of  because the number of combinations of jf’s can be very large 

even when we discretize the range for . Moreover, for a given , the model PA() 

might be infeasible because of the equality constraint (3.16). Note that even if we know 

the set of all feasible values of , there is no easy way to determine the optimal value 

of  because of nonlinearity of the objective function. With these reasons, we will 

propose a heuristic method to find a solution for the original model P. For comparison 

purpose, we generate a lower bound of P (see Section 3.4). We also report the 

computational results that highlight effectiveness of proposed solution approach (see 

Section 3.5). 
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Our idea is how to find a feasible value of  which will result in a good objective 

value. As mentioned earlier, given the value of , the model PA() may be infeasible 

due to the equality constraint (3.16). However, it can be observed that, given a feasible 

value of Xijf’s, a corresponding feasible value of  can be easily determined using 

equation (3.15). Our approach is to relax the equality constraint (3.16) so that the 

relaxation of model PA() will always be feasible for any given value of . Although 

constraint (3.16) does not hold for the solution obtained from the relaxed problem, we 

can use this solution to obtain another feasible value of . Then, we can repeatedly 

solve the relaxation of model PA() using the newly obtained value of . If the 

solutions converge (i.e., new  is the same as old ), it can be easily seen that 

constraint (3.16). holds (i.e., also feasible to the original model PA()). Unfortunately, 

it is very likely that the solutions for the relaxation of model PA() do not converge. 

With this reason, we will present an approach that will force its convergence. 

Let Ljf and Ujf, respectively, be the given lower and upper limits for STjf. That is, 

we will replace (3.16) with the constraints Ljf  STjf  Ujf for all j and f. Observe that the 

constraints Ljf  STjf = ( ) / ( )j ij ijf ijf

i i

r tpw X X     Ujf can be converted to 

linear constraints 
2 2( ) ( ) ( ) ( )jf ijf j ijf ij ijf jf ijf

i i i i

L X r X tpw X U X           . 

For given values of , our relaxed problem is denoted as model PB(). 

 

Model PB(): 

Min ( ) jf jf

jf

TCB LTC V α   

Subject to 



Chapter 3. MULTI-SOURCE FACILITY LOCATION-ALLOCATION AND INVENTORY PROBLEM 

                                                                                      33 

Constraints (3.3) – (3.14) and (3.17) – (3.18) 

2( ) ( ) ( )j ijf ij ijf jf ijf

i i i

r X tpw X L X                for all j and f (3.19) 

2( ) ( ) ( )j ijf ij ijf jf ijf

i i i

r X tpw X U X               for all j and f (3.20) 

 

The model PB() is still a mixed integer nonlinear program because of the terms 

jfV  in its objective function. It is worth noting that some commercial solvers may be 

able to solve model PB(); however, its optimality is not guaranteed. In this thesis, we 

adopt the standard piecewise linear approximation technique to approximate jfV , 

which is to replace the term jfV  in TCB() by a piecewise linear function of Vjf. 

After solving the model PB(), we can obtain location-allocation solution (Xijf’s, 

Pik’s, Wjk’s, and Zj’s) which is also feasible to the model P. We can use the 

location-allocation solution to calculate the objective function TC of the model P and 

its corresponding values of STjf’s (using equation (3.15)); we denote these STjf’s as βjf’s.  

As described earlier, we use an iterative approach (with a good convergence) to 

find a good solution of model P. Our idea is to iteratively update the values of , Ljf 

and Ujf used in constraints (3.19) and (3.20) and narrow the search space of  until it 

results in a solution such that jf = jf for all j and f. It is worth noting that if jf = jf for 

all j and f, then the objective value TCB() = TC. Recall that this solution is not an 

optimal solution to the original problem. We will next discuss how to update the values 

of , Ljf’s, Ujf’s and search space of . 
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3.3.1 Initialization 

According to equation (3.15), we can easily compute the lower bound of STjf by setting 

Xijf = 0 for all i, j and f. Also we can compute the upper bound of STjf by setting the 

weighted lead time ( ) / ( )ij ijf ijf

i i

tpw X X    as the largest lead time max ( )i ijtpw  

for all j and f. Therefore, the lower bound and upper bound of STjf are jr  and 

max( )j ij
i

r tpw , respectively. 

Let 
L
 and 

U
 define the lower and upper boundaries of the search space of 

.respectively. Clearly, we can initially let L

jf  = jr  and U

jf  = max( )j ij
i

r tpw . 

We can also set Ljf = jr  and Ujf = max( )j ij
i

r tpw  as initial values of lower and 

upper limits used in constraints (3.19) and (3.20) respectively. With these, we can solve 

model PB() for  = 
L
 and  = 

U
. For all j and f, let L

jf  and U

jf  denote the 

corresponding values of jf given that  = 
L
 and  = 

U
, respectively. Note that the 

values of L

jf  and U

jf  are between the lower bound and upper bound of STjf, and 

recall that the initial values of L

jf  and U

jf  are lower bound and upper bound of STjf 

respectively. Therefore, we know that L L

jf jf   and U U

jf jf  . 

 

3.3.2 Selecting new  and updating limits 

We now discuss how to select the next value of  to explore in the next iteration. The 

discussion will be based on particular value of j and f; henceforth, we drop subscripts j 

and f from jf, jf, 
L

jf , 
U

jf , 
L

jf , U

jf , Ljf and Ujf in the remainder of this section. 

Recall that our aim is to force the value of  such that it will eventually be equal to 
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. Given that we have found two points (L
, L

) and (U
, U

) from initialization, we 

would like to find a new  which is between the L
 and U

. Our idea is to seek the 

coordinate (, ) in the line joining points (L
, L

) and (U
, U

) such that  = . We 

arbitrarily choose the case L U   in Figure 3.1 as an example (same results hold for 

the case L U  ). That is,  is the solution of the following system of equations 

    (3.21) 

 
L U U L L U

L U L U

     
 

   

 
 

 
 (3.22) 

Recall that L L   and U U  . Thus, there is a solution (denoted as C
) to 

the above system of equations and it is given by 

 
U L L U

C

U L L U

   


   




  
 (3.23) 

We choose this C
 value as the next value of  to explore. 

 

Figure 3.1 Selecting new  
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We now discuss how to update lower and upper limits used in constraints (3.19) 

and (3.20). Let C
 denote the corresponding value of  given that  = 

C
. Our idea is to 

ensure that C
 will be between the two boundary points (i.e., between L

 and U
). 

Hence, the new lower and upper limits used in solving the model PB() for  = 
C
 are 

given by 

 L = min{L
, U

} and U = max{L
, U

}. (3.24) 

With bounded constraints (3.19) and (3.20) and the way of updating lower and 

upper limits L
 
and U, the two solutions corresponding to L

 and U
 are feasible for the 

model PB() for  = 
C
. 

 

3.3.3 Updating search space 

We now discuss how to update the search space. Suppose that we have found the new 

point (C
, C

). Recall that L
 and U

 are the lower and upper boundaries of the search 

space of , respectively. As mentioned, we iteratively narrow the search space of  

until it results in a solution such that  = . If C
  C

, we let (L
, L

) = (C
, C

); 

otherwise, if C
 < C

, we let (U
, U

) = (C
, C

). The way we set the lower and upper 

limits in (3.24) will shrink the feasible region of STjf continuously at each iteration. As 

a consequence, the gap between  and  will become smaller and smaller; and  will 

eventually be equal to . In addition, observe that the way we update the boundary 

points always guarantees that there exists a solution for the system of equations (3.21) 

and (3.22). That is, we can always find the next C
 to explore. 
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3.3.4 Solution procedure 

The procedure of proposed heuristic method is given as follows. 

 

Step 1: (Initialization) Set n = 1, L 
= jr , U 

= max( )j ij
i

r tpw , L = jr  and U = 

max( )j ij
i

r tpw . Determine L
 and U

 using equation (3.15) and the 

solutions obtained from model PB() for  = 
L
 and  = 

U
. 

Step 2: (Selecting new  and updating limits) Determine the new value of  to 

explore using equation (3.23) and set the new lower and upper limits using 

(3.24). Solve the corresponding model PB() for  = 
C
 obtaining C

. 

Step 3: (Stopping criteria) If n = N or |β
C
 – C

| <  for all product types and 

warehouses, then stop. Otherwise, go to Step 4. 

Step 4: (Updating search space) If C
  C

, we let (L
, L

) = (C
, C

); otherwise, if 

C
 < C

, we let (U
, U

) = (C
, C

). Set n = n +1 and go to Step 2. 

 

In the above procedure, n is the number of iterations, N is the maximum number of 

iterations allowed, and  is a small positive value representing allowable tolerance. 

Note that the value of N depends on how much computing effort can be put into the 

heuristic procedure, and the value of  can be chosen according to the values of C
 and 

β
C
. The final solution of the proposed heuristic method is given by location-allocation 

solution obtained from the last iteration. With this solution, the final objective value of 

the heuristic is given by TC of the model P. Note that our heuristic method can still be 

used for the case that considers the warehouse capacity constraints as we still can find 
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two initial solutions using model PB(
L
) and PB(

U
) and we can continuously update 

, limits and search space using the same procedure introduced above. 

 

3.4 Lower bound generation 

For comparison purpose, we establish a lower bound of the objective value of P. We 

use the following underestimate function to replace the original safety stock function as 

follows. 

2( ) ( ) / ( )jf kf jk j ij ijf ijf

k i i

SS z W r tpw X X       

2( ) min ( )kf jk j i ij ijf ijf

k i i

z W r tpw X X 
 

   
 

    

2( ) min ( )kf jk j i ij

k

z W r tpw   

Note that above underestimate function is also true for the case that 0ijf

i

X   

because 
2( ) 0kf jk

k

W   if 0ijf

i

X  . 

Recall that we can adopt the standard piecewise linear approximation technique to 

approximate 2( )kf jk

k

W , which is to replace the term 2( )kf jk

k

W  by a piecewise 

linear function of 
2( )kf jk

k

W . Note that this approximation is also an underestimate 

function of 2( )kf jk

k

W . Therefore, by means of above underestimated function and 

the standard piecewise linear underestimate approximation, objective function TC  

can be changed to an underestimate linear objective function (we denote it as TCUL ). 

Therefore, model P can be converted to a mixed integer linear programming model 

PUL. 
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Model PUL: 

Min TCUL  

Subject to 

Constraints (3.3) – (3.14). 

 

A lower bound of the objective value of P can thus be obtained by solving PUL. 

 

3.5 Computational results 

In this section, we use the proposed model and method to perform a number of 

computational studies. We first generate twenty-seven data sets to examine the 

performance of our proposed method. We then apply our model and method to the 

example study motivated by our interaction with SOLUTIA Company. 

3.5.1 Computational studies 

The computational experiments described in this section are designed to evaluate the 

performance of our proposed method with respect to a series of test problems. In order 

to show the effectiveness of our proposed model and method, we make the following 

two comparisons. Firstly, we compare our solution with the solution obtained by simple 

and normal two-stage procedure (at first stage, the location-allocation solutions are 

solved while ignoring warehouse inventory holding cost, at second stage, the 

warehouse inventory holding cost is computed based on known warehouse location and 

customer allocation). Secondly, we compare our solution with the lower bound which 
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is obtained by the model PUL described in Section 3.4. 

The heuristic is coded in C++. Both mixed integer linear programming models 

PB() and PUL are solved using CPLEX 11.0 with Concert Technology. The computer 

configuration is as follows: processor is Intel (R) Core (TM) 2 Duo CPU E6750 @ 2.66 

GHz 2.67 GHz, memory is 4 GB and operating system is 32-bit Microsoft Windows 

Vista. Due to limited computer memory, both models (PB() and PUL) are written into 

two MPS files respectively and the code calls CPLEX to read the models from the MPS 

files. 

Twenty-seven problem sets are generated. The number of plants, customers, 

potential warehouse locations and product types vary from 2 to 6, from 10 to 200, from 

2 to 20, and from 2 to 10 respectively. The mean demand requirement of each product 

type for each customer is drawn from a uniform distribution between 500 and 5000. 

The standard deviation of demand varies from 10% to 50% of mean demand. The 

production capacities of plants are drawn from a uniform distribution corresponding to 

total customer demand requirements. Plants, potential warehouses and customer sites 

are generated from a uniform distribution over a square with side 1000. The unit 

transportation cost and lead time have been computed as being proportional to the 

Euclidean distance among locations of plants and warehouses, plants and customers, 

and warehouses and customers respectively, and the proportional rate is based on the 

case in practice. Fixed cost, inventory holding cost rate and review period of 

warehouses are assumed according to the case in practice. According to real cases, 

some potential warehouses can only serve certain customers (e.g. warehouse in Japan 
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can only serve customers in Japan, it cannot serve customers in China), we also take 

into account this restriction in the generating of test problems. Table 3.1 provides 

relevant parameters for the test problems we generated. 

 

Table 3.1 Parameters for test problems 

Parameter Value 

Number of plants 2   4   6 

Number of potential warehouses 2   5   10   15   20 

Number of customers 10   50   100   150   200 

Number of product types 2   5   10 

Mean demand U(500, 5000)
a
 

Coefficient of variation of demand 0.1   0.2   0.5 

Plant capacity Corresponding to total customer demand 

Lead time 0.0001
bEuclidean distance 

Unit transportation cost 0.0004
cEuclidean distance 

Fixed cost of warehouse U(1000, 3000) 

Inventory holding cost rate of warehouse 1   2   3   4   5 

Review period of warehouse U(0.05, 0.1) 

Very small positive value ε 0.00001 

Allowable tolerance  0.001 

Maximum number of iterations allowed N 20 

a
U(500, 5000): Uniform distribution between 500 and 5000. 

b
0.0001: The proportional rate is computed based on the real case data. 

c
0.0004: The proportional rate is computed based on the real case data. 

 

Table 3.2 presents the gap between our solution and the solution obtained by 

simple two-stage procedure under different settings of inventory holding cost rate for 

twenty-seven problem sets. Figure 3.2 shows the trend of the average gap of the 

twenty-seven problem sets with the increase of inventory holding cost rate of  
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Table 3.2 Comparison between our solution and two-stage solution under different 

inventory holding cost rates 

#   

# of  

  

Gap
a
 

plants 
potential 

warehouses 
customers 

product 

types 
hcr

b
 = 1 hcr = 2 hcr = 3 hcr = 4 hcr = 5 

1  2 2 10 2  0.41% 0.98% 1.50% 1.96% 2.24% 

2  2 2 10 5  1.76% 4.33% 6.80% 8.97% 10.78% 

3  2 2 10 10  1.01% 2.57% 4.47% 6.31% 8.06% 

4  2 5 50 2  0.17% 0.45% 0.69% 0.88% 0.98% 

5  2 5 50 5  0.26% 0.63% 1.14% 1.68% 2.15% 

6  2 5 50 10  1.53% 3.36% 4.78% 5.84% 6.88% 

7  2 5 100 2  0.97% 1.87% 2.70% 3.54% 4.16% 

8  2 5 100 5  0.52% 1.15% 1.76% 2.32% 2.86% 

9  2 5 100 10  0.56% 1.05% 1.54% 2.32% 2.92% 

10  2 10 100 2  0.63% 1.20% 1.70% 2.23% 2.60% 

11  2 10 100 5  0.43% 1.22% 1.95% 2.61% 3.19% 

12  2 10 100 10  1.26% 2.97% 4.27% 5.32% 6.23% 

13  2 10 150 2  0.59% 1.27% 1.92% 2.43% 2.84% 

14  2 10 150 5  0.60% 1.53% 2.31% 2.93% 3.51% 

15  2 10 150 10  0.91% 2.15% 3.31% 4.28% 5.12% 

16  4 15 150 2  1.20% 2.76% 4.28% 5.59% 6.81% 

17  4 15 150 5  0.59% 2.67% 4.73% 6.49% 8.20% 

18  4 15 150 10  1.87% 4.50% 7.00% 9.08% 10.94% 

19  4 15 200 2  0.62% 1.55% 2.66% 3.40% 4.05% 

20  4 15 200 5  1.29% 5.02% 8.07% 10.48% 12.50% 

21  4 15 200 10  1.57% 3.75% 5.72% 7.27% 8.91% 

22  6 15 150 2  0.85% 2.34% 3.86% 5.37% 6.66% 

23  6 15 150 5  1.66% 4.18% 6.64% 8.90% 11.07% 

24  6 15 150 10  2.26% 5.05% 7.82% 10.30% 13.08% 

25  6 20 200 2  2.22% 4.53% 6.42% 7.90% 9.68% 

26  6 20 200 5  2.28% 5.45% 8.21% 10.51% 12.52% 

27   6 20 200 10   1.96% 5.00% 7.78% 9.93% 11.87% 
a
Gap: The gap is the average gap ((two-stage solution – our solution) / two-stage 

solution * 100%) under different cycle service levels (80% and 90%), different demand 

weighted average customer lead times (5 and 10 days) and different coefficients of 

variance of demand (0.1, 0.2 and 0.5) for the same problem set. 
b
hcr: inventory holding cost rate of warehouse. 

 

warehouse. According to these results, the gap between our solution and two-stage 

solution increases with the increase of inventory holding cost rate, and the gap is quite 
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significant under high inventory holding cost rate. The reason for this is obvious. With 

high inventory holding cost rate, the inventory holding cost has high weight in total 

cost. Considering inventory holding cost with transportation cost simultaneously can 

provide a better solution compared to the solution obtained by the simple two-stage 

procedure. 

 

 

Figure 3.2 Average gap between our solution and the solution obtained by the two-stage 

procedure at different inventory holding cost rates 

 

Table 3.3 presents the gap between our solution and the solution obtained by 

simple two-stage procedure under different settings of coefficient of variance of 

demand for twenty-seven problem sets. Figure 3.3 shows the trend of the average gap 

of the twenty-seven problem sets with the increase of the coefficient of variance of 

demand. According to the results, the gap between our solution and two-stage solution 
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Table 3.3 Comparison between our solution and two-stage solution under different 

coefficients of variance of demand 

#  

# of 

  

Gap
a
  

plants 
 potential 

warehouses 
customers 

product 

types 
CV

b
 = 0.1 CV = 0.2 CV = 0.5 

1 2 2 10 2  0.84% 1.15% 2.26% 

2 2 2 10 5  4.46% 5.72% 9.41% 

3 2 2 10 10  2.52% 3.73% 7.20% 

4 2 5 50 2  0.41% 0.53% 0.96% 

5 2 5 50 5  1.01% 1.09% 1.42% 

6 2 5 50 10  3.32% 4.14% 5.97% 

7 2 5 100 2  2.21% 2.45% 3.29% 

8 2 5 100 5  1.33% 1.57% 2.27% 

9 2 5 100 10  1.51% 1.56% 1.97% 

10 2 10 100 2  1.29% 1.49% 2.24% 

11 2 10 100 5  1.70% 1.87% 2.06% 

12 2 10 100 10  3.53% 3.83% 4.67% 

13 2 10 150 2  1.61% 1.77% 2.05% 

14 2 10 150 5  1.78% 2.06% 2.69% 

15 2 10 150 10  2.71% 2.99% 3.76% 

16 4 15 150 2  3.68% 3.99% 4.72% 

17 4 15 150 5  4.01% 4.38% 5.21% 

18 4 15 150 10  5.99% 6.44% 7.60% 

19 4 15 200 2  2.26% 2.35% 2.76% 

20 4 15 200 5  7.12% 7.32% 7.97% 

21 4 15 200 10  4.80% 5.17% 6.36% 

22 6 15 150 2  2.53% 3.36% 5.55% 

23 6 15 150 5  5.27% 6.11% 8.09% 

24 6 15 150 10  6.41% 7.26% 9.44% 

25 6 20 200 2  5.38% 5.97% 7.10% 

26 6 20 200 5  6.29% 7.30% 9.80% 

27 6 20 200 10   5.99% 6.91% 9.03% 
a
Gap: The gap is the average gap ((two-stage solution – our solution) / two-stage 

solution * 100%) under different cycle service levels (80% and 90%), different demand 

weighted average customer lead times (5 and 10 days) and different inventory holding 

cost rates of warehouse (1, 2, 3, 4 and 5) for the same problem set. 
b
CV: Coefficient of variance of demand (standard deviation over mean). 

 

increases slightly with the increase of coefficient of variance of demand. The reason 

can be explained as follows. With the increase of coefficient of variance of demand, the 
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safety stock holding cost increases. Consequently, the total inventory holding cost 

increases. Simultaneously considering both inventory holding cost and transportation 

cost can achieve better solution than the solution obtained by two-stage method. 

 

 
Figure 3.3 Average gap between our solution and the solution obtained by the two-stage 

procedure at different coefficients of variance of demand 

 

Table 3.4 presents the gap between our solution and the lower bound obtained by 

solving model PUL described in Section 3.4 for twenty-seven problem sets. We can see 

from Table 3.4 that the gap ranges from 0.78% to 8.93%. Most gaps between the 

solution obtained by our solving procedure and the lower bound are relatively small. 

Note that safety stock is a part (about 10% - 30%) of TC, and some gaps are a little bit 

high. The reason is mainly due to the using of underestimated linear functions of safety 

stock in the model PUL. With the increase of the coefficient of variance of demand, the 
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Table 3.4 Comparison between our solution and lower bound 

# 

# of  

Gap
a
 

plants 
potential 

warehouses 
customers 

product 

types 

1 2 2 10 2 2.38% 

2 2 2 10 5 3.17% 

3 2 2 10 10 1.29% 

4 2 5 50 2 1.06% 

5 2 5 50 5 2.40% 

6 2 5 50 10 2.50% 

7 2 5 100 2 0.78% 

8 2 5 100 5 1.85% 

9 2 5 100 10 2.16% 

10 2 10 100 2 2.51% 

11 2 10 100 5 2.60% 

12 2 10 100 10 4.53% 

13 2 10 150 2 2.23% 

14 2 10 150 5 3.12% 

15 2 10 150 10 5.17% 

16 4 15 150 2 2.82% 

17 4 15 150 5 6.87% 

18 4 15 150 10 8.21% 

19 4 15 200 2 4.26% 

20 4 15 200 5 7.22% 

21 4 15 200 10 8.40% 

22 6 15 150 2 2.84% 

23 6 15 150 5 6.33% 

24 6 15 150 10 8.29% 

25 6 20 200 2 3.00% 

26 6 20 200 5 5.42% 

27 6 20 200 10 8.93% 
a
Gap: The gap is the average gap ((our solution – lower bound) / lower bound * 100%) 

under different cycle service levels (80% and 90%), different demand weighted average 

customer lead times (5 and 10 days), different coefficients of variance of demand (0.1, 

0.2 and 0.5) and different inventory holding cost rates (1, 2, 3, 4 and 5) for the same 

problem set. 

 

inventory holding cost rate and the variety of replenishment lead times from plants to 

warehouses, the gap between our underestimated linear expression of safety stock and 
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the original nonlinear form of safety stock increases. The lower bound therefore 

becomes not very tight. As a consequence, the gap between our solution and the lower 

bound increases. 

 

3.5.2 Example study 

We now apply our model and method to the problem faced by SOLUTIA Company. As 

described in the introduction section, the multinational applied chemistry company 

SOLUTIA plans to choose some third-party logistics service providers’ warehouses 

from many potential locations so as to meet Asia-Pacific customers’ demand request for 

the product (Laminated Glass Interlayer) with some different forms. 

In the current situation of SOLUTIA, they have 23 potential warehouses locations. 

After applying our model and method, the result shows that they need to lease 16 

warehouses in Asia-Pacific. Compared to the current situation, the total cost can 

decrease 5.8% while keeping the original 95% cycle service level and 8 days demand 

weighted average customer lead time. 

We also provide tradeoff solutions between total cost and cycle service level and 

between total cost and demand weighted average customer lead time for the decision 

makers. Figure 3.4 shows the total cost at different demand weighted average customer 

lead times and cycle service levels (In order to protect confidential data, all cost values 

are normalized). We can find from Figure 3.4 that the total cost increases when one of 

the following two situations occurs: (1) desired cycle service level increases, (2)  
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Figure 3.4 Total cost at different lead times and cycle service levels 

 

desired demand weighted average customer lead time decreases. The reason for the 

increase of the total cost when situation (1) happens is obvious. If the desired cycle 

service level increases, the inventory levels in warehouses will inevitably increase, 

which leads to an increase in inventory holding cost. The reason that the total cost 

increases when situation (2) happens can be explained as follows. If the desired 

demand weighted average customer lead time decreases, more customers have to be 

served by local warehouses (with short lead time) instead of being replenished by 

plants directly (with long lead time). This will increase inventory holding cost of 

warehouses and as a consequence, total cost increases. 
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3.6 Summary 

In this chapter, we first present a multi-source facility location-allocation and inventory 

problem. We then develop a mixed integer nonlinear programming model to formulate 

the problem. In order to solve the proposed model P, we develop an iterative heuristic 

method. We then generate a lower bound of P for comparison purpose. We also report 

the computational results that highlight effectiveness of proposed solution approach 

and apply our approach to an example study. 

We have discussed the study of multi-source facility location-allocation and 

inventory problem in this chapter. In the following two chapters, we will study 

dual-channel two-component replenishment problem in an assemble-to-order system in 

Chapter 4 and then extend our study to multi-channel multi-component problem in 

Chapter 5. 
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Chapter 4 DUAL-CHANNEL TWO-COMPONENT 

REPLENISHMENT PROBLEM IN AN 

ASSEMBLE-TO-ORDER SYSTEM 

4.1 Problem description 

We consider an ATO contract manufacturer who will receive a single order of a single 

product (perhaps a product such as toy, fashion product and certain electronic product 

with short market life). The quantity of the order will be confirmed at a time 0. 

However, the customer will share the bill-of-materials and the demand forecast for the 

product before time 0 to allow the manufacturer sufficient time to identify suppliers of 

the components needed for the assembly of the final product; or even purchase some 

components in advance of the final order quantity confirmation. Upon confirmation of 

the stochastic demand D (with cumulative distribution function F(x) and probability 

density function f(x)) at time 0, the customer will accept partial delivery of the entire 

order at a unit price of P(t), which is a decreasing function of the delivery time t. No 

shortage is allowed. 

   We assume that each unit of the final product requires two components. When both 

components are available at the manufacturer’s facility, the assembly time of final 

product is assumed to be zero. In other words, we assume unlimited assembly capacity. 

Due to decreasing final product price, the manufacturer has the incentive to purchase 

some initial quantity of each component (called pre-stocked components) before time 0 

so that he can deliver the first batch of the final product at the highest unit price P(0). 
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   If the confirmed demand is not met with the pre-stocked components, the 

manufacturer has a chance to procure additional components through two channels 

with different prices and different guaranteed lead-times. We assume that component i, 

i=1, 2 can be purchased at unit price ie

ic  with a deterministic delivery lead-time ie

il , 

where ie = 1, 2. To avoid any channel dominating another, we assume that a purchase 

channel with longer lead time has a lower price. In other words, we assume 1

ic < 2

ic , 

and 1

il > 2

il . It is also reasonable to assume that the unit price for the pre-stocked 

component i is 1

ic  as we assume that there is ample time for the procurement of 

components before time 0. 

Assume that the excess component i can be salvaged at a price bi, bi < 1

ic . The 

manufacturer needs to make a tradeoff between missing higher selling price due to 

insufficient pre-stocked components and incurring cost of overstocking inventory of 

components. The manufacturer makes decisions in two stages. At the first stage before 

time 0, the manufacturer decides the pre-stocking quantity Qi of each component i. At 

the second stage when the final product demand is realized, if the product demand 

cannot be satisfied by the pre-stocked inventory, the manufacturer needs to decide the 

quantities, channels and the timing of acquiring additional components, and the 

delivery schedule of the final product to satisfy the unmet demand. 

 

4.2 Problem formulation  

We now present a mathematical formulation for the problem for which the 
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manufacturer wishes to find a solution of the problem with the highest expected profit. 

Note that it is optimal to restrict the delivery time of the final product for the 

two-component problem to a set of finite times { ie

il i = 1, 2 and ei = 1, 2} besides time 

0 (based on the insight similar to that of proposition 1 in Fu et al., 2009). Let ie

iq  (i = 

1, 2 and ei = 1, 2) denotes the quantity of additional component i  ordered by 

procurement channel ei at time 0, ie

iw  (i = 1, 2 and ei = 1, 2) denotes the quantity of 

the final product delivered at time ie

il  and 
0w  denotes the quantity of the final 

product delivered at time 0. The problem can be represented by the following profit 

maximization problem, denoted as problem A. 

 
2 2 2 2 2 2

1

0

1 1 1 1 1 1

( )

max (0) ( )i i i i

i i

e e e e

D i i i i i i i i

i e i i e i

Z E w P w P l Q c q c Q D b


     

 
      

 
   A

A

 

subject to 

2 2

0

1 1

i

i

e

i

i e

w w D
 

   (4.1) 

0 iw Q                         i = 1, 2 (4.2) 

2

0

1 : :

k i

e ee ej jk i
k j i i jk

e e

k i i

k e l l e l l

w w Q q
  

        i = 1, 2,  j = 1, 2,  ej = 1, 2 (4.3) 

0, , , 0i ie e

i i iQ q w w                  i = 1, 2,  ei = 1, 2 (4.4) 

where   max(0, )


   . 

The objective function is to maximize the expected total profit. The first two terms 

of the objective function represent the revenue received from all shipments of final 

product, the third and fourth term denote the procurement costs of pre-stocking and 
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additional components and the fifth term represents the salvage values of excess 

pre-stocking components. Constraint (4.1) ensures that the demand is satisfied. 

Constraints (4.2) and (4.3) make sure that both components are available for each 

delivery of final product. Constraints (4.4) are nonnegativity constraints. 

Note that above formulation can be directly reduced to the formulation presented 

in Fu et al. (2009) and therefore can be solved by their solution approach if there is 

only one expediting channel available for each component after the demand is realized. 

However, with dual-channel sourcing, the contract manufacturer faces more options 

than that of single-channel sourcing after product demand is realized. Besides, for any 

given Q and D, the expressions of ie

iq  and ie

iw  in above formulation vary with 

different lead time sequences (i.e. the time sequence of ie

il ) and different parameter 

values, it is very difficult to provide closed-form expressions for ie

iq  and ie

iw . For 

example, above formulation has to be divided into large numbers of sub-cases (in terms 

of different lead time sequences) even for two-component problem, and the number of 

sub-cases increases exponentially with the number of components. Therefore, the 

formulation of problem A is expected to be much more difficult to solve than the single 

channel sourcing problems with a normal or emergency channel considered by Hsu et 

al. (2006) and Fu et al. (2009), respectively. 

Instead of solving the above formulation of the problem A directly, we will 

approach the problem from a different angle. Let R(Q, D) denotes the maximum profit 

for a given first-stage decision Q and a given realization of the demand D. Thus, we 

can also model the problem A as 
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 
2

( ) max ( , )DZ E R D


 A
Q R

A Q


 (4.5) 

Where 2
R

 is the set of 2-dimensional arrays of non-negative real numbers. 

The problem A will be solved analytically. We will first present a restricted version 

of problem A where the pre-stocked quantities Q follow a given rank order [1] [2]Q Q  

([1] = 1 or 2). We will then obtain the optimal solution to the general problem A. 

For ease of exposition, we will focus our discussions in this section on a special 

rank order of iQ  where [i] = i. In other words, we will focus on solving the restricted 

problem whose optimal solution satisfies a rank order requiring 1 2Q Q . We will 

establish some structural properties for the restricted problems which allow us to solve 

them efficiently. Specifically, for each restricted problem with a fixed rank order of the 

pre-stocked inventories, we will show that there are at most three batches of deliveries 

of the final product in the optimal solution. We can then determine the optimal delivery 

quantity and highest unit profit of the final product for each batch. 

Note that the unit price for the final product is a decreasing function of the delivery 

time and the manufacturer is permitted to deliver partial quantity of the entire order. 

Thus, it is optimal for the manufacture to assemble and deliver final products as soon 

as both components are available. It can be easily seen that the manufacturer will 

deliver the first batch (i.e. batch 0) of the final product at time 0 when the demand D is 

confirmed. Due to the fact that the pre-stocking quantities Q may be smaller that the 

confirmed demand D, some final products must be assembled using some newly 

procured components. Since 1 2Q Q  by definition of the restricted problem, it can be 

easily seen that, the manufacturer has the opportunity to deliver up to three batches 
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(batches 0, 1, 2) of the final product to fulfill the entire demand D, where batch k is 

produced from additional purchases of components 1, ..., k and the pre-stocked 

components k + 1, ..., 2. Without loss of generality, we can simplify the problem by 

imposing that there are exactly three delivery batches, where the quantity produced for 

some batches may be equal to zero. It will be clear later that the quantity produced for 

batch k is equal to zero when (i) confirmed demand does not exceed the pre-stocking 

quantity of component k, or (ii) the pre-stocking quantity of component k is equal to 

that of component k + 1, i.e., Qk = Qk+1. 

We denote UPk(Q, D) as the highest unit profit for a final product delivered at 

batch k (k = 0, 1, 2), tk(Q, D) as the optimal delivery time of the final product delivered 

at batch k and Wk(Q, D) as the optimal delivery quantity of the final product delivered 

at batch k. We then can formulate the restricted problem 1 2( )Q QA  as 

 

1 2
1 2

1 2

2 2

( )

0 1

( ( ))

max ( , ) ( , ) ( )Q Q D k k i i
Q Q

k i

Q Q

Z E UP D W D OC Q D 




 



 
    

 
 A

A

Q Q
 (4.6) 

where 1

i i iOC c b  , 1 2i  , is the overstocking cost for each excess unit of 

pre-stocked component i. Inside the expectation of the overall profit function, the first 

term is the total profit generated from the three batches of final product delivery. The 

second term represents the total loss from overstocking the initial components. Note 

that the formulation of a restricted problem 2 1( )Q QA  is almost identical to what we 

have presented in this section for the rank order 1 2Q Q . 

It is clear that the optimal delivery time of the final product at batch 0 is 

0( , ) 0t D Q  and the highest unit profit for a final product delivered in batch 0 is 
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2
1

0

1

( , ) (0) i

i

UP D P c


 Q . To obtain the highest profit for this second batch (batch 1) of 

delivery, the manufacturer will choose a sourcing channel with lead time 1

1

e
l  so that 

batch 1 will be delivered at time 1

1 1

e
t l  to command the highest unit profit 

1( , )UP DQ  which is given by 1 1

1

1

1 1 1 2
1 2

( , ) max{ ( ) }e e

e
UP D P l c c

 
  Q . The highest unit 

profit 
2 ( , )UP DQ  and the optimal delivery time 2t  for delivering batch 2 is 

determined by the following unit-profit-maximization problem: 

1 2

2

2 1 2 1 2
{ , }

1

( , ) max ( ) , ,1 2,1 2i

i

e e e

i
t e

i

UP D P t c l t l t e e


 
          

 
Q  

We have the following remarks on the highest unit profit ( , )kUP DQ  and the 

optimal delivery time ( , )kt DQ . Firstly, these values depend only on the rank order of 

Q and not on any specific pre-stocked inventory decision and the realization of demand 

under problem 1 2( )Q QA , thus, ( , )kUP DQ  and ( , )kt DQ  can be reduced to kUP  

and kt . Secondly, since the unit price for the final product decreases in delivering time 

and each subsequent batch in the order of 0, 1, 2 requires the purchase of increasing 

number of additional components, it is intuitive to expect the following result: 

Lemma 4.1. The highest unit profit for the final product delivered in batch k is 

non-increasing with k, i.e., we have 0 1 2UP UP UP  . 

Third, we note that for any unit profit for batch k+1 at the time point which is earlier 

than kt  (the optimal delivery time of the final product at batch k), we can always find 

a higher or at least same unit profit for batch k+1 at time kt . Therefore, we can obtain 

the following result: 

Lemma 4.2. The optimal delivery time of the final product in batch k is non-decreasing 
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with k, i.e., we have 
0 1 2t t t  . 

We then determine Wk(Q, D). The quantity delivered by batch 0 is the smaller of D 

and the number of units of the final product that can be assembled from complete sets 

of the pre-stocked components at time 0, which is given by 
1 2 1min{ , }Q Q Q . In other 

words, 0 1( , ) min{ , }W D D QQ . If the demand is not yet fully satisfied at time 0, i.e., if 

1 0D Q  , the next delivery will not occur until some additional units of component 1 

arrive to match with the remaining 2 1Q Q  pre-stocked component 2. In this case, the 

manufacturer will order additional 1 1 2 1( , ) min{ , }W D D Q Q Q  Q  units of 

component 1. We see now that in general, each batch k, k = 1, 2 will deliver 

1( , ) min{( ) , }k k k kW D D Q Q Q

  Q  

units of the final product which are produced from additional purchases of components 

1, …, k and the pre-stocked components k+1, …, 2 (where 3Q   ). The last batch, 

batch 2, will be assembled from additional orders of both two components. 

 

4.3 Result and analysis 

Note that  min , ( )x y x x y    and if 0y  ,  min , ( )x y x x y     . We can 

re-arrange the terms of the objective function (inside the expectation) of the restricted 

problem 1 2( )Q QA  as follows: 

2 2

0 1

( , ) ( )k k i i

k i

UP W D OC Q D 

 

   Q  

2

0 1 1 1 2 2 2

1

( ) [( ) ( ) ] ( ) ( )i i

i

UP D D Q UP D Q D Q UP D Q OC Q D    



                



Chapter 4. DUAL-CHANNEL TWO-COMPONENT REPLENISHMENT PROBLEM IN AN 
ASSEMBLE-TO-ORDER SYSTEM 

                                                                                      58 

 
2

0 1

1

( ) ( ) ( )k k k k k

k

UP D UP UP D Q OC Q D 





           . 

Based on the new expression of objective function of 
1 2( )Q QA , we can solve the 

general problem A to optimality (see Appendix B.1) and obtain the following 

closed-form optimal solution. 

 

Closed-form optimal solution for the dual-channel two-component problem: 

(a) The optimal pre-stocked quantities of components for dual-channel two-component 

problem are given as follows. 

If 0 11

2 1 2 [1] 1






UP UPOC

OC UP UP
 

1 2Q Q  and 1 0 1
1

0 1 1 [1] 1

( )






 

UP UP
Q F

UP UP OC
, 1 1 2

2

1 2 2 [1] 1

( )






 

UP UP
Q F

UP UP OC
 

If 1 1 2

2 0 1 [1] 2






OC UP UP

OC UP UP
 

1 2Q Q  and 1 1 2
1

1 2 1 [1] 2

( )






 

UP UP
Q F

UP UP OC
, 1 0 1

2

0 1 2 [1] 2

( )






 

UP UP
Q F

UP UP OC
 

If 0 1 1 1 2

1 2 2 0 1[1] 1 [1] 2 

 
 

 

UP UP OC UP UP

UP UP OC UP UP
 

1 0 2
1 2

0 2 1 2

( ) 
 

  

UP UP
Q Q F

UP UP OC OC
. 

where 1 1

1

1

1 1 1 2
1 2
max{ ( ) }
 

  e e

e
UP P l c c  when [1] = 1 and [2] = 2; 

2 2

2

1

1 2 2 1
1 2
max{ ( ) }
 

  e e

e
UP P l c c  when [1] = 2 and [2] = 1. 

(b) Optimal final product delivery schedule is given as follows. 

First delivery time = 0t , delivery quantity 0 [1]( , ) min{ , } QW D D Q  

Second delivery time = 1t , delivery quantity 1 [1] [2] [1]( , ) min{( ) , }   QW D D Q Q Q  
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Third delivery time =
2t , delivery quantity 

2 [2]( , ) ( )  QW D D Q  

Proof. See Appendix B.1.                                                □ 

 

The above result of is similar to the result of the newsvendor problem. For 

example, if 0 11

2 1 2 [1] 1






UP UPOC

OC UP UP
, we can regard 1OC  as overage cost of component 1, 

2OC  as overage cost of component 2, 0 1UP UP  as underage cost of component 1 and 

1 2UP UP  as underage cost of component 2. This inequality then means overage cost 

ratio between component 1 and component 2 is greater than underage cost ratio 

between components 1 and 2. Therefore, the initial order quantity of component 1 is 

less than the initial order quantity of component 2 and the order quantities are given by 

1 underage cost

underage cost overage cost
F   

 
   

. If 1 1 2

2 0 1 [1] 2






OC UP UP

OC UP UP
, the initial order quantity 

of component 2 is less than the initial order quantity of component 1. If 1

2

OC

OC
 is 

in-between the above two terms, we should order equal quantities of components 1 and 

2, and  0 2UP UP  (i.e. 0 1 1 2UP UP UP UP   ) is the underage cost of components 1 

and 2, 1 2OC OC  is the overage cost of components 1 and 2. 

 

4.4 Summary 

In this chapter, we present an optimal dual-channel two-component replenishment 

problem in an assemble-to-order system. We investigate the structure of the problem to 

gain some good properties that help us to develop a good formulation of the problem. 
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We finally provide the closed-form optimal solution of the dual-channel 

two-component problem. In the next chapter, we will extend the study of dual-channel 

two-component problem to multi-channel multi-component problem. 
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Chapter 5 MULTI-CHANNEL 

MULTI-COMPONENT PROBLEM 

In this chapter, we extend our analysis on dual-channel two-component problem to 

multi-channel multi-component problem. We will still solve the problem analytically. 

We will first formulate and solve a restricted version of our problem in which the 

quantities of pre-stocked components follow a certain fixed rank order. Then, we will 

develop a branch-and-bound method to solve the general problem by searching over all 

rank orders of pre-stocked components and solving the corresponding restricted 

problems. We also present a greedy heuristic procedure. Finally, computational studies 

are provided at the end of this chapter. 

5.1 Description and solution approach for the general 

problem 

The problem is the same as the one described in Chapter 4 except that each unit of the 

final product now requires n components indexed as i = 1, 2, …, n. If the confirmed 

demand is not met with the pre-stocked components, the manufacturer has a chance to 

procure additional components through various suppliers who offer different prices 

with different guaranteed lead times. We assume that component i, i = 1, 2, …, n, can 

be purchased at unit price ie

ic  with a deterministic delivery lead time ie

il , where ei = 1, 

2, …, mi. In other words, component i can be purchased through mi purchase channels 

(possibly through different delivery modes and/or from different suppliers). Similarly, 
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to avoid any channel dominating another, we assume that a purchase channel with 

longer lead time has a lower price. In other words, we assume 1

ic < 2

ic < 
 
< im

ic , and 

1

il > 2

il > 
 
> im

il . 

Similarly, Let R(Q, D) denotes the maximum profit for a given first-stage decision 

Q = 1 2( , ,..., )nQ Q Q  and a given realization of the demand D. Thus, we can model the 

problem as 

 ( ) max ( , )DZ E R D


 A
Q R

A Q
n


 

Where R
n

  is the set of n-dimensional arrays of non-negative real numbers. 

We now reformulate the problem A by imposing a certain rank order on the 

first-stage decision Q. Let 1 2( , ,..., )n    be a permutation of the component 

indices 1,…, n. Define 

1 2
( ) { }

n
S Q Q Q       Q R

n

  

as the set of all pre-stocked quantities that satisfy the given rank order defined by the 

permutation  . We define the restricted version of problem A where the maximization 

of expected profit is taken over all decision variables which satisfy a rank order defined 

by the permutation   as 

 ( )
( )

( ( )) max ( , )D
S

Z E R D


 A
Q

A Q


 . 

Let   be the set of all possible permutation operators  , Clearly, the optimal 

objective function value of the overall problem A is given by 

( )maxZ Z



A A 


. 

Instead of solving the restricted problems for all possible permutations, we will develop 

a branch-and-bound procedure to find an optimal solution of the original problem as 



Chapter 5. MULTI-CHANNEL MULTI-COMPONENT PROBLEM 

                                                                                      63 

well as an efficient heuristic procedure. In the next two sections, we will present the 

formulation and the solution method for the restricted problem which is an essential 

part for both the branch-and-bound and the heuristic procedures. 

 

5.2 Formulation for the restricted problem ( )A   

For ease of exposition, we will focus our discussions in this section on a special 

permutation 0  where 0

i i  . In other words, we will focus on solving the restricted 

problem whose optimal solution satisfies a rank order requiring 1 2 nQ Q Q    . We 

will establish some structural properties for the restricted problems which allow us to 

solve them efficiently. Specifically, for each restricted problem with a fixed rank order 

of the pre-stocked inventories, we will show that there are at most n + 1 batches of 

deliveries of the final product in the optimal solution. We can then determine the 

optimal delivery quantity and highest unit profit of the final product for each batch. 

Note that the unit price for the final product is a decreasing function of the delivery 

time and the manufacturer is permitted to deliver partial quantity of the entire order. 

Thus, it is optimal for the manufacture to assemble and deliver final products as soon 

as all components are available. It can be easily seen that the manufacturer will deliver 

the first batch (i.e. batch 0) of the final product at time 0 when the demand D is 

confirmed. Due to the fact that the pre-stocking quantities Q may be smaller that the 

confirmed demand D, some final products must be assembled using some newly 

procured components. Since Q1  Q2    Qn by definition of the restricted problem, 
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it can be easily seen that, the manufacturer has the opportunity to deliver up to n + 1 

batches (batches 0, 1, ..., n) of the final product to fulfill the entire demand D, where 

batch k is produced from additional purchases of components 1, 2, ..., k and the 

pre-stocked components k + 1, ..., n. Without loss of generality, we can simplify the 

problem by imposing that there are exactly n + 1 delivery batches, where the quantity 

produced for some batches may be equal to zero. Similarly, the quantity produced for 

batch k is equal to zero when (i) confirmed demand does not exceed the pre-stocking 

quantity of component k, or (ii) the pre-stocking quantity of component k is equal to 

that of component k + 1, i.e., Qk = Qk+1. 

We still denote UPk(Q, D) as the highest unit profit for a final product delivered at 

batch k (k = 0, 1, …, n), tk(Q, D) as the optimal delivery time of the final product 

delivered at batch k and Wk(Q, D) as the optimal delivery quantity of the final product 

delivered at batch k. We then can formulate the restricted problem 0( )A   as  

0
0

0

( ) ( )
0 1

( ( )) max ( , ) ( , ) ( )
n n

D k k i i
S

k i

Z E UP D W D OC Q D 


 

 
     

 
 A

Q

A Q Q
 

  (5.1) 

where 1

i i iOC c b  , 1 i n  , is the overstocking cost for each excess unit of 

pre-stocked component i. Inside the expectation of the overall profit function, the first 

term is the total profit generated from the n + 1 batches of final product delivery. The 

second term represents the total loss from overstocking the initial components. 

 It is clear that the optimal delivery time of the final product at batch 0 is 

0( , ) 0t D Q  and the highest unit profit for a final product delivered in batch 0 is 

1

0

1

( , ) (0)
n

i

i

UP D P c


 Q . We now discuss how to determine the values of UPk(Q, D) 
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and tk(Q, D) for k = 1, 2, ..., n. 

Let ei(t) be the channel selected to procure additional units of component i required 

to produce final products at time t > 0. It is easy to see that any additional components 

required for any batch 1, ..., n must be procured using the cheapest/slowest channel 

with a lead time that is no later than the delivery/production time of that batch. That is, 

ei(t) =  
1,...,

arg max i i

i i

e e

i i
e m

l l t


 . 

Consider the delivery of batch k. Recall that each final product in batch k is 

produced from additional purchases of components 1, ..., k and the pre-stocked 

components k + 1, ..., n. Since additional unit of component k must be procured for 

batch k, we must have tk(Q, D)  km

kl . Due to the fact that the unit price of the final 

product is decreasing over time, each batch must be produced/delivered immediately 

after all components are available. Therefore, we only need to consider the lead times 

of components as potential delivery/production times. Let k , k = 1, ..., n, be the set of 

potential delivery/production times for batch k; formally, 

 1,..., , 1,...,ie

k i i il e m i k    . Hence, the highest unit profit for a final product 

delivered in batch k is  

( ) 1

, 1 1

( , ) max ( ) i

mk
k k

k n
e t

k i i
t t l i i k

UP D P t c c
    

 
   

 
 Q , 

and ( , )kt DQ  is the time corresponding to ( , )kUP DQ . 

Similarly, we have the following results, which are extensions of Lemma 4.1 and 

Lemma 4.2 respectively. 

Lemma 5.1. The highest unit profit for the final product delivered in batch k is 

non-increasing with k, i.e., we have 0 1 nUP UP UP    . 
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Lemma 5.2. The optimal delivery time of the final product in batch k is non-decreasing 

with k, i.e., we have 
0 1 nt t t    . 

With this property, we can make our UPk searching procedure more efficient by 

including the constraint 
1k kt t   (reduce the search space of t). 

Similarly, we can determine Wk(Q, D) as follows. The quantity delivered by batch 

0 is the smaller of D and the number of the final product that can be assembled from 

complete sets of the pre-stocked components at time 0, which is given by 

1 2 1min{ , ,..., }nQ Q Q Q . In other words, 0 1( , ) min{ , }W D D QQ . If the demand is not 

yet fully satisfied at time 0, i.e., if 1 0D Q  , the next delivery will not occur until 

some additional component 1 arrive to match with the remaining 2 1Q Q  complete 

sets of the pre-stocked components 2, …, n. In this case, the manufacturer will order 

additional 1 1 2 1( , ) min{ , }W D D Q Q Q  Q  units of component 1. We see now that in 

general, each batch k, k = 1, 2, …, n, will deliver 

1( , ) min{( ) , }k k k kW D D Q Q Q

  Q  

units of the final product which are produced from additional purchases of components 

1, …, k and the pre-stocked components k+1, …, n (where 1nQ    ). The last batch, 

batch n, will be assembled from additional orders of all n components. 

Similarly, we can re-arrange the terms of the objective function (5.1) (inside the 

expectation) of the restricted problem 0( )A   as follows: 

0 1

( , ) ( )
n n

k k i i

k i

UP W D OC Q D 

 

   Q  

 
1

0 1 1

1 1

( ) [( ) ( ) ] ( ) ( )
n n

k k k n n i i

k i

UP D D Q UP D Q D Q UP D Q OC Q D


    



 

                 
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0 1

1

( ) ( ) ( )
n

k k k k k

k

UP D UP UP D Q OC Q D 





           .  

For all k (1 k n  ), define 
kUC =

1k kUP UP  . Also note that 
0UP  and ( )DE D  

are constants. We see that 0( )A   is equivalent to the following problem 0( )B   

0
0

0

( ) ( )
1

( ( ) ) min ( ) ( )
n

D k k k k
S

k

Z E UC D Q OC Q D 




 
          

 
B Q

B
 

  (5.2) 

To conclude this section, we note that the formulation of a restricted problem 

( )A   for any given permutation   will be almost identical to what we have 

presented in this section for the special permutation 0 , except that the index for a 

component 0

i i   in problem 0( )A   will be replaced by i  in problem ( )A  . 

The solution method used for solving any of these restricted problems will be similar 

too. We will therefore present the solution method for problem 0( )B   in the next 

section. 

 

5.3 Solution method for the restricted problem 0( )B   

Note that the structure of problem 0( )B   is similar to the problem defined by (11) in 

Hsu at al. (2006). Both problems minimize (maximize) the summation of n single 

variable, convex (concave) functions subject to a certain rank order of the n decision 

variables. However, the Decompose-and-Combine procedure developed in Hsu at al. 

(2006) cannot be used directly to solve 0( )B   which is more general. Next, we will 

establish a series of structural properties of the optimal solutions and use them to 

develop a new procedure to solve 0( )B  . 
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For 1 i j n   , define problem 0

, ( )i jB   as follows: 

   0
0,

0

, ( ) ( )
( ( ) ) min ( ) ( )

i j

j

i j D k k k k
S

k i

Z E UC D Q OC Q D 




 
          

 
B Q

B
 

  (5.3) 

Note that 0( )B   is identical to 0

1, ( )nB  . We can develop a lemma which gives 

structural property of the optimal solution of the problem 0

, ( )i jB  . 

Lemma 5.3. Suppose that ,...,i kQ Q  is an optimal solution to 0

, ( )i kB  , 

1 1i k n    , and 1,...,k jQ Q  is an optimal solution to 0

1, ( )k jB  , 1k j n   . If 

1k kQ Q  , then ,...,  i jQ Q  is an optimal solution to 0

, ( )i jB  . 

Proof. Since 1k kQ Q   satisfies the permutation 0  and note that 

0 0 0

, , 1,( ) ( ) ( )i j i k k j B B B   , the optimal solution of 0

, ( )i jB   is the combination of 

the optimal solution of 0

, ( )i kB   and the optimal solution of 0

1, ( )k jB  .          □  

Lemma 5.3 shows that the optimal solution of 0

, ( )i jB   is the combination of the 

optimal solutions of two separate problems 0

, ( )i kB   and 0

1, ( )k jB   provided that 

the boundaries of the two separate optimal solutions, kQ  and 1kQ  , satisfy the 

permutation 0 . 

We now define ,i jr =

j

k

k i

j

k

k i

UC

OC








 (1 )i j n   . The following lemma shows a 

property of the relationship of ,i jr . 

Lemma 5.4. (a) If , 1,i x x jr r   (1 i x j n    ), then , , 1,i x i j x jr r r   . 

(b) If , 1,i x x jr r   (1 i x j n    ), then , , 1,i x i j x jr r r   . 

Proof. We first prove (a). 
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We first prove 
, ,i x i jr r . If 

, 1, ( 1)i x x jr r i x j     , then 1

1

jx

k k

k i k x

x j

k k
k i k x

UC UC

OC OC

  

  


 

 
 

1 1

j jx x

k k k k

k i k x k x k i

UC OC UC OC
     

     

1 1

j jx x x x x x

k k k k k k k k

k i k x k i k i k x k i k i k i

UC OC UC OC UC OC UC OC
         

           

1 1

j jx x x x

k k k k k k

k i k x k i k i k x k i

UC OC OC OC UC UC
       

   
     

   
       

j jx x

k k k k

k i k i k i k i

UC OC OC UC
   

     

jx

k k

k i k i

x j

k k
k i k i

UC UC

OC OC

 

 


 

 
, i.e. , ,i x i jr r  

We now prove , 1,i j x jr r  . If , 1, ( 1)i x x jr r i x j     , then 1

1

jx

k k

k i k x

x j

k k
k i k x

UC UC

OC OC

  

  


 

 
 

1 1

j jx x

k k k k

k i k x k x k i

UC OC UC OC
     

     

1 1 1 1 1 1

j j j j j jx x

k k k k k k k k

k i k x k x k x k x k i k x k x

UC OC UC OC UC OC UC OC
             

           

1 1 1 1

j j j jx x

k k k k k k

k x k i k x k x k i k x

OC UC UC UC OC OC
         

   
     

   
       

1 1

j j j j

k k k k

k x k i k x k i

OC UC UC OC
     

     

1

1

j j

k k

k i k x

j j

k k

k i k x

UC UC

OC OC

  

  


 

 
, i.e. , 1,i j x jr r                                       
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Proof of (b) is similar to the proof of (a), so we omit the details here.              □ 

Lemma 5.4 is used in the proof of Lemma 5.5 and Lemma 5.6. 

Lemma 5.5. If , 1,i x x jr r   ( 1 i j n   ) for all x = i, ..., 1j  , then  

1

j

k

k i
i j j j

k k

k i k i

UC

Q Q F

UC OC

 

 

 
 
    
 

 
 



 
 is an optimal solution to 0

, ( )i jB  . 

Proof. See Appendix B.2.                                                □ 

Lemma 5.5 indicates the optimal solutions of restricted problems 0

, ( )i jB   under 

certain {
,i jr } relationship. Note that if i = j, Lemma 5.5 shows that 

1( )i
i

i i

UC
Q F

UC OC




 is the optimal solution to the problem 0

, ( )i iB  , which is the 

result of Newsvendor model. 

Lemma 5.6. If , 1,i x x kr r   for all x = i, ..., k - 1, 1, 1,k x x jr r   for all x = k + 1, ..., j - 1, 

and , 1,i k k jr r  , then , 1,i x x jr r   holds for all x = i, ..., j - 1. 

Proof. 

As , 1,i x x kr r   for all x = i, ..., k - 1, according to Lemma 5.4 (a), , ,i x i kr r  for all 

x = i, ..., k - 1. Note that , 1,i k k jr r  , according to Lemma 5.4 (a), , ,i k i jr r . Thus, 

, ,i x i jr r  for all x = i, ..., k - 1. Therefore we know that , 1,i x x jr r   for all x = i, ..., k - 1 

(otherwise, if , 1,i x x jr r   for any x = i, ..., k - 1, then , ,i x i jr r  for the x according to 

Lemma 5.4 (b)). 

As 1, 1,k x x jr r   for all x = k + 1, ..., j - 1, according to Lemma 5.4 (a), 

1, 1,k j x jr r   for all x = k + 1, ..., j - 1. Note that , 1,i k k jr r  , according to Lemma 5.4 
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(a), 
, 1,i j k jr r  . Thus 

, 1,i j x jr r   for all x = k + 1, ..., j - 1. Therefore we know that 

, 1,i x x jr r   for all x = k + 1, ..., j - 1 (otherwise, if 
, 1,i x x jr r   for any x = k + 1, ..., j - 1, 

then 
, 1,i j x jr r   for the x according to Lemma 5.4 (b)). 

 We therefore can conclude that 
, 1,i x x jr r   holds for all x = i, ..., k - 1, k + 1, ..., j - 

1. Also note that , 1,i k k jr r  , Thus , 1,i x x jr r   holds for all x = i, ..., j - 1.          □ 

Lemma 5.6 shows an important property of the relationship of {
,i jr }, which is used 

to derive the optimal solution procedure. 

The following lemma shows that optimal Q values follow the same order with the 

values of 
,i jr . 

Lemma 5.7. If , 1,i t t jr r   (1 i t j n    ), then 

1 1 1

1 1

jt

k k

k i k t

t t j j

k k k k
k i k i k t k t

UC UC

F F

UC OC UC OC

   

     

  
  
   
      

   

 

   
. 

Proof. According to the definition of ,i jr , , 1,i t t jr r   means 1

1

jt

k k

k i k t

t j

k k
k i k t

UC UC

OC OC

  

  


 

 
, 

which implies 1

1 1

jt

k k

k i k t

t t j j

k k k k
k i k i k t k t

UC UC

UC OC UC OC

  

     



 

 

   
. 

Thus 
1 1 1

1 1

( ) ( )

jt

k k

k i k t

t t j j

k k k k
k i k i k t k t

UC UC

F F

UC OC UC OC

   

     



 

 

   
.                       □ 

By using Lemma 5.7, we can decide the rank order of optimal-Q based on the 
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order of 
,i jr , which can be used to show the condition in Lemma 5.3. 

Based on Lemmas 5.3, 5.5, and 5.7, we can obtain an optimal solution to the 

restricted problem if we are able to group the 
,i jr 's in the form of 

0 1 1 2 11, 1, 1,m mk k k k k kr r r
       for some m where 

0 0k   and 
mk n  such that 

1 1, 1,j jk x x kr r
    for all x = kj-1 + 1, …, kj - 1 and j = 1, …, m. We therefore can develop 

the following optimal solution procedure for solving problem 0( )B  . 

Step 1: Calculate all 
,k kr  ( 1, ...,k n   ), let 

1,1 2,2 ,{ , ,..., }n nR r r r . 

Step 2: Check the r values in R. If the r values are non-decreasing, go to Step 4. 

Step 3: Suppose that the 
,i kr  and 

1,k jr 
 are the first adjacent pair such that 

, 1,i k k jr r  , 

update R  by replacing the pair 
,i kr  and 

1,k jr 
 by 

,i jr  and go back to Step 2. 

Step 4: With 
0 1 1 2 11, 1, 1,{ , ,..., }

m mk k k k k kR r r r
    for some m where 

0 0k   and mk n , 

the optimal solution is 1

1

1 1

11

1

1 1

i

i

i i i i

i i

k

k

k k

k k k k

k k

k k k k

UC

Q Q F

UC OC





 

 



   

 
 
    
 

 
 



 
, 1, ...,i m   . 

Above procedure is to find a non-decreasing ,i jr  values, i.e., 

0 1 1 2 11, 1, 1,m mk k k k k kr r r
       so as to obtain the optimal solution. When ,i kr  and 1,k jr   

are combined to ,i jr  in Step 3, Lemma 5.6 guarantees that the conditions , 1,i x x jr r   

hold for all x = i, …, j - 1. It follows from Lemmas 5.3, 5.5, and 5.7 that the solution 

obtained from Step 4 is an optimal solution for the problem 0( )B  . Recall that the 

problem 0( )B   is equivalent to the problem 0( )A  , so the optimal solution of 

0( )B   is also the optimal solution of 0( )A  . 

In the next section, we will present a branch-and-bound algorithm to search over 

all possible permutations to obtain the optimal solution to the general problem A. We 
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will also develop a more efficient greedy heuristic procedure for problem A. 

 

5.4 Branch-and-bound algorithm and heuristic procedure for 

the problem A 

In this section, we will present a branch-and-bound procedure to solve problem A. We 

will also outline a greedy heuristic procedure. We begin by describing our branching. 

5.4.1 Branching 

Our branching is done on the ( 1,..., )i i n    values. The search tree has n levels, 

which corresponds to the n values 1 2, ,..., n    of any permutation  . Several 

fathoming rules (see Section 5.4.2) are used in narrowing the selection of k  at level 

k ( 1,..., 1k n   ) when we expand the tree. We can also generate an upper bound and a 

lower bound (feasible solution) for every node at level k (see Section 5.4.3). The search 

terminates after all nodes have been explored. After the procedure is terminated, the 

best lower bound obtained is the optimal value to problem A. 

 

5.4.2 Fathoming rules 

Before we discuss the fathoming rules, we first present a preprocessing rule, which is 

described in the following lemma. 

Lemma 5.8. For component i = 1, ..., n, if 1 1( ) ( )i ie e

i i i ic c P l P l   , ei = 2, ..., mi, then 

procurement channel ei is never used in the optimal solution of the problem A. 
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Proof. On the one hand, the increase of selling price of final product is less than (if 

there is no delivery of final product at time ie

il ) or equal to (if there is delivery of final 

product at time ie

il ) 1( ) ( )ie

i iP l P l  if we use procurement channel ( 2,..., )i ie m   

instead of procurement channel 1 to procure additional component i . On the other 

hand, the increase of purchasing cost of component i  is equal to 1ie

i ic c  if 

procurement channel 
ie  rather than procurement channel 1 is adopted for procurement 

of component i . Channel 
ie  for procurement of component i  therefore is not cost 

effective if the increase of purchasing cost of component i  outweighs the increase of 

selling price of final product.                                             □ 

The preprocessing rule shown in Lemma 5.8 can be used to exclude some 

procurement channels from consideration. We now develop the following lemma which 

shows that optimal permutation of pre-stocked quantities follows certain rank order 

under certain parameter conditions. 

Lemma 5.9. If 1 jm

i jl l , then i jQ Q  in the optimal solution. 

Proof. If 1 jm

i jl l , arrival time of additional component i ordered by procurement 

channel 1 is earlier than the arrival time of additional component j (ordered by any 

procurement channel 1, 2, …, jm ). Therefore, it is not cost efficient to order more 

pre-stocked component i than pre-stocked component j in the initial ordering.       □ 

Note that if we know the optimal solution satisfies i jQ Q  according to Lemma 

5.9, then component j cannot be chosen as k  at level k unless component i has been 

chosen at an earlier level. This can be used as fathoming rule when we branch the tree. 

Besides, the upper bound and lower bound (feasible solution) we generated for every 
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node can also be used as fathoming rules as follows: 

(i) When the upper bound of a node is equal to the lower bound of the same node, 

the sub-tree whose root is this node can be discarded; 

(ii) When the upper bound of a node is less than or equal to an existing best lower 

bound, this node can be discarded. 

 

5.4.3 Bounding 

To compute the upper bound and the lower bound for every node at each level, we will 

utilize the solution procedure for the restricted problem which requires a complete 

permutation  . Note that for any node at level k ( 1, ..., 1)k n    , components 

1 2, ,..., k    have been assigned from level 1 to level k. That is, we only have a partial 

permutation of  . Thus, we will build upon this partial permutation to obtain a 

complete permutation necessary for our solution procedure. Based on this complete 

permutation, we will use two different cost settings to obtain its respected upper and 

lower bounds. 

Observe that, for each component, if we set its cheapest procurement cost to any 

faster procurement channels, then the optimal solution to this problem provides an 

upper bound to the original restricted problem. With this idea, we will modify the 

problem such that each unassigned component will have only one procurement channel 

with the shortest lead time at the cheapest cost.  

Note that kt  can be computed for given 1 2, ,..., k    which are independent of 
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the cost and lead time of the unassigned components. According to Lemma 5.2, all 

unassigned components will not used to assemble products delivered at batch k + 1 

before time tk. Thus, for any component that has more than one procurement channels 

prior to tk, only the slowest one needs to be considered in the modified problem for 

generating the upper bound. Denote the set of all unassigned components at level k as 

k . For each i  k, the lead time of its single procurement channel for the modified 

problem is given by 

 
1

                      if 

max if 

i i

i i i

m m

i i k

i e e m

i i k i k

l l t
l

l l t l t

 
 

 

 

with the procurement cost 1 1

i ic c . 

It follows from Lemma 5.9 that, for the modified problem, it is optimal to assign 

all unassigned components according to their non-decreasing order of lead times to 

form a complete permutation. Therefore, with a complete permutation, we can then use 

the solution procedure presented in Section 5.3 to obtain an upper bound of the node. 

On the other hand, we can obtain the lower bound solution for the node by using the 

original procurement costs associated with each of the procurement channels 

considered under this modified problem. Note that this lower bound solution is also a 

feasible solution. 

 

5.4.4 Heuristics 

In this section, we describe a solution procedure based on a greedy heuristic. We 

attempt to sequentially assign components until a complete permutation is obtained. At 
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each step, we use the same technique utilized in our branch-and-bound algorithm to 

assign a component to a partial permutation. Fathoming rules provided in Section 5.4.2 

are used to reduce the number of possible candidates for the next assignment. The 

component which has the largest lower bound (see Section 5.4.3) will be chosen as the 

next assignment in the partial permutation. We keep repeating the procedure until all 

components have been assigned. With a complete permutation, we use the procedure 

described in Section 5.3 to obtain the solution of this heuristic procedure. 

 

5.5 Computational studies 

In this section, we apply our solution approach to a dual-channel case, i.e. mi = 2 for all 

i. We call channel 1 and 2 as normal and expediting procurement channel respectively. 

We first compare dual-channel solution with two single-channel solutions (set mi = 1 

for all i), i.e. either only normal channels (studied in Hsu et al. 2006) or only expediting 

channels (studied in Fu et al. 2009) are allowed for replenishing all components. We 

then compare the performance of the optimal branch-and-bound procedure and that of 

the heuristic procedure in terms of the solution quality and number of nodes explored. 

5.5.1 Comparison between dual-channel solution and single-channel 

solution 

We use a normal distribution to generate three demand patterns, where the demand 

mean and coefficient of variance are shown in Table 5.1. Number of components, lead 

times, costs and salvage values settings are also listed in Table 5.1. The price function 
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for the final product has the following three forms: quadratic function of time 

2

1 1( )P t a b t    (representing a non-increasing slope price function), linear function of 

time 
2 2( )P t a b t    and square root function of time 

3 3( )P t a b t    (representing 

a non-decreasing slope price function). The constant part a , which is the price for 

delivering the final product upon realization of the demand (i.e. t = 0), is generated as a 

percentage of the total component normal channel procurement cost. 
1b , 2b  and 3b  

are generated to make sure that 1 2 3(50) (50) (50) 0P P P   . The values a , 
1b , 2b  

and 3b  are shown in Table 5.1. The forms of three price functions are depicted in 

Figure 5.1. 

 

Table 5.1 Parameters for test problems 

Parameter Value 

Number of components 4   8 

Demand mean U(100, 200)
a
 

Demand coefficient of variance 0.5   1   2 

Normal channel lead time U(2, 50) 

Expediting channel lead time normal channel lead time × U(0.2, 0.8) 

Normal channel cost U(10, 100) 

Expediting channel cost normal channel cost × U(1.2, 2) 

Salvage value normal channel cost × U(0.1, 0.9) 

Price function 

2

1 1( )P t a b t   , 2 2( )P t a b t   , 3 3( )P t a b t    

a = 1

i

i

c ×U(1.5, 3.5) 

1 0.04%b a  , 2 2%b a  , 3 1 50b a   

a
U(100, 200): Uniform distribution between 100 and 200 
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Figure 5.1 Three forms of price functions 

 

Note that the overstocking cost iOC  for each excess unit of pre-stocked 

component i, the maximum unit profit kUP  at each batch k and the optimal delivery 

time kt  at each batch k are all independent of product demand D. Thus, only changing 

the mean of demand doesn’t affect quantity-independent optimal decisions, which 

include the selection of procurement channels and final product delivery schedule. In 

other words, mean demand does not affect the gap between the dual-channel solution 

and the single-channel solution. Thus, we only consider one demand mean in the 

experiment studies of this section. 

Table 5.2 shows comparisons between our dual-channel solutions and 

single-channel solutions under different scenarios. Observe that the gap between 

dual-channel solution and single-channel solution increases with the coefficient of 

variance of demand. This observation indicates that the higher variation of product 

demand, the more benefit is the dual-channel sourcing of components. And 
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dual-channel sourcing of components can bring more than 10% profit increase for the 

ATO manufacturer who faces high uncertain product demand. The reason can be 

explained as follows. With the increase of the coefficient of variance of the demand, the 

variation of the demand increases. Accordingly, the ability of the pre-stocked quantities 

Q to match realized demand reduces; which in turn leads to the decrease of the 

percentage of the first delivery of final product among total deliveries of final product. 

In other words, more deliveries of final product will be made after time 0 and these 

final products are assembled by some additional components procured. In this case, the 

dual-channel sourcing offers more significant economic benefits than the 

single-channel sourcing because it gives the manufacturer more options to acquire 

additional components. 

 

Table 5.2 Comparison between dual-channel and single-channel solutions 

Number of 

components 
CV

a
 

Price function 

1( )P t  2 ( )P t  3( )P t  

Gap_nor
b
 Gap_exp

c
 Gap_nor Gap_exp Gap_nor Gap_exp 

4 

0.5 2.76% 1.56% 1.46% 1.14% 0.46% 0.96% 

1 4.86% 2.75% 2.66% 2.09% 0.85% 1.79% 

2 8.34% 4.74% 4.85% 3.81% 1.60% 3.36% 

        

8 

0.5 3.37% 1.77% 1.99% 0.94% 0.90% 0.70% 

1 5.91% 3.05% 3.60% 1.69% 1.64% 1.28% 

2 10.10% 5.02% 6.43% 3.01% 3.01% 2.33% 
a
CV: coefficient of variance of demand 

b
Gap_nor = (dual – normal)/dual100% 

c
Gap_exp = (dual - expediting)/dual100% 

 

We now turn to investigate the effects of pricing functions on performances of 
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various sourcing structures. Note that the three types of price functions represent three 

different types of products in terms of product price erosion. The non-increasing slope 

price function represents the product whose price decreases slowly during the time 

immediately after demand realization; the price then drops significantly as the time 

goes by. The linear price function represents the product whose price decreases at the 

same rate at all times. The non-decreasing slope price function represents the product 

whose price drops deeply initially after time 0; but the price erosion stabilizes over 

time. We find from Table 5.2 that the non-increasing slope price function gives the 

highest gap between dual-channel solution and single-channel solution, the linear price 

function gives medium size gap and the non-decreasing slope price function has the 

lowest gap (given that the prices at time 0 are the same for all three types of functions, 

and the prices at the largest lead time point are same too). The reasons can be explained 

as follows. For the non-increasing slope price function, we tend to order less 

pre-stocked quantity as understocking cost is less. We will be more likely to expedite 

more components later. That is, more deliveries of final product will be made after time 

0 and these final products are assembled by some additional components procured. In 

this case, the dual-channel sourcing offers more significant economic benefits than the 

single-channel sourcing because it gives the manufacturer more options to acquire 

additional components. Besides, Gap_nor is higher than Gap_exp in the non-increasing 

slope price function case as the benefit of using the expediting sourcing to capture 

higher final product price is significant in the non-increasing slope price function case 

under given parameter settings. For the non-decreasing slope price function case, we 
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tend to order more pre-stocked quantity as understocking cost is high. That is, less 

deliveries of final product will be made after time 0. Therefore, the economic benefit of 

the dual-channel sourcing over the single-channel sourcing is not significant. For the 

liner price function case, the effect is in between that of non-increasing slope price 

function case and non-decreasing slope price function case. 

 

5.5.2 Comparison between the optimal branch-and-bound procedure 

and the heuristic procedure 

We use the same test problems generated in Section 5.5.1 to compare the performance 

between the optimal branch-and-bound procedure and the heuristic procedure. Both 

solution procedures are coded in MATLAB and the branch-and-bound algorithm uses 

the breadth-first branching strategy. Table 5.3 reports the comparison results. Note that 

we use the numbers of nodes explored instead of computation times to compare the 

heuristic procedure and the optimal branch-and-bound procedure as we would like the 

results to be independent from the performance of MATLAB and computer 

configuration. We find that our heuristic procedure can always find the optimal solution 

for our 4-component problem case and the number of nodes explored for the optimal 

branch-and-bound procedure and the heuristic procedure are both less than 10. For 

8-component problem case, our optimal branch-and-bound procedure needs to explore 

about 900 nodes while the heuristic procedure only needs to explore about 20 nodes. 

From the results, we observe that our heuristic procedure performs quite well in terms 
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of solution quality and number of nodes explored. Especially when the number of 

components is large, our heuristics can explore significant fewer nodes while obtaining 

a sufficiently good solution. 

 

Table 5.3 Comparison between the heuristic procedure and the optimal 

branch-and-bound procedure 

na CV 

Price function 

1( )P t  
2 ( )P t  

3( )P t  

Heuristic 

solution status 

Nodes explored Heuristic 

solution 

status 

Nodes explored Heuristic 

solution 

status 

Nodes explored 

Opt
b
 Heu

c
 Heu/Opt Opt Heu Heu/Opt Opt Heu Heu/Opt 

4 

0.5 Optimal 5 4 80% Optimal 5 4 80% Optimal 5 4 80% 

1 Optimal 5 4 80% Optimal 5 4 80% Optimal 5 4 80% 

2 Optimal 5 4 80% Optimal 5 4 80% Optimal 5 4 80% 

              

8 

0.5 Gapd = 0.030% 853 20 2.3% Optimal 921 22 2.4% Optimal 921 22 2.4% 

1 Gap = 0.051% 873 20 2.3% Optimal 921 22 2.4% Optimal 921 22 2.4% 

2 Gap = 0.082% 873 20 2.3% Optimal 921 22 2.4% Optimal 921 22 2.4% 
a
n: number of components 

b
Opt: number of nodes explored for the optimal branch-and-bound procedure 

c
Heu: number of nodes explored for the heuristic procedure 

d
Gap: (optimal solution – heuristic solution)/optimal solution × 100% 

 

5.6 Summary 

In this section, we extend our study on dual-channel two-component problem to 

multi-channel multi-component problem. We solve our problem analytically. We first 

formulate and solve a restricted version of our problem in which the quantities of 

pre-stocked components follow a certain fixed rank order. Then, we develop a 

branch-and-bound method to solve the general problem by searching over all rank 

orders of pre-stocked components and solving the corresponding restricted problems. A 
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simple heuristic procedure is also developed. We finally present computational studies 

to demonstrate the efficiency of our solution methods and to compare the performance 

of ATO systems with single and dual procurement channels, respectively. 
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Chapter 6 CONCLUSIONS AND FUTURE 

RESEARCH 

This thesis studied inventory consideration and management in a strategic supply chain 

problem and in an operational supply chain problem. The strategic supply chain 

problem studied is a multi-source facility location-allocation and inventory problem 

and the operational supply chain problem studied is multi-channel component 

replenishment problem in an assemble-to-order system. 

6.1 Multi-source facility location-allocation and inventory 

problem 

In this thesis, we study a joint facility location-allocation and inventory problem which 

incorporates multiple sources of warehouses. A mixed integer nonlinear programming 

model is formulated and a solution procedure is developed to solve the proposed model. 

A lower bound of the model is also generated for comparison purpose. In order to show 

the quality of the solution found by the proposed solving procedure, a series of 

generated test problems are solved. The model and solution method are also applied to 

a case study. 

Results show that the gap between our solution and two-stage solution increases 

with the increase of inventory holding cost rate, and the gap is quite significant under 

high inventory holding cost rate. The reason for this is obvious. With high inventory 

holding cost rate, the inventory holding cost has high weight in total cost. Considering 
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inventory holding cost with transportation cost simultaneously can provide a better 

solution compared to the solution obtained by the simple two-stage procedure. Results 

also show that the gap between our solution and two-stage solution increases slightly 

with the increase of coefficient of variance of demand. The reason can be explained as 

follows. With the increase of coefficient of variance of demand, the safety stock 

holding cost increases. Consequently, the total inventory holding cost increases. 

Simultaneously considering both inventory holding cost and transportation cost can 

achieve better solution than the solution obtained by two-stage method. 

We can obtain from the results that the proposed solution method performs well. 

The gap between the solution obtained by our heuristic method and the lower bound 

ranges from 0.78% to 8.93%. Most gaps are relatively small. Note that safety stock is a 

part (about 10% – 30%) of TC, and some gaps are a little bit high. The reason is mainly 

due to the using of underestimated linear functions of safety stock in the model PUL. 

With the increase of the coefficient of variance of demand, the inventory holding cost 

rate and the variety of replenishment lead times from plants to warehouses, the gap 

between our underestimated linear expression of safety stock and the original nonlinear 

form of safety stock increases. The lower bound therefore becomes not very tight. As a 

consequence, the gap between our solution and the lower bound increases. 

We can also obtain from the results that there are tradeoff solutions between total 

cost and cycle service level and between total cost and demand weighted average 

customer lead time for the decision makers. The total cost increases when one of the 

following two situations occurs: (a) desired cycle service level increases, (b) desired 
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demand weighted average customer lead time decreases. The reason for the increase of 

the total cost when situation (a) happens is obvious. If the desired cycle service level 

increases, the inventory levels in warehouses will inevitably increase, which leads to an 

increase in inventory holding cost. The reason that the total cost increases when 

situation (b) happens can be explained as follows. If the desired demand weighted 

average customer lead time decreases, more customers have to be served by local 

warehouses (with short lead time) instead of being replenished by plants directly (with 

long lead time). This will increase inventory holding cost of warehouses and as a 

consequence, total cost increases. 

Compared to the traditional sequential decision process, in which the facility 

location-allocation problem is considered first and then inventory problem is studied 

based on given facility location-allocation decisions, this study indicates that it is quite 

important and meaningful to consider the inventory policy in the facility 

location-allocation problem. This also follows the trend that inventory management has 

become more and more important in various logistics and supply chain problems. 

Therefore, this study can be applied in distribution network design problems in various 

kinds of industry. It can also be used in healthcare problems (e.g. blood storage points 

locating problem). Similar applications can be found in other areas. 

The problem, model and method we presented are valuable extensions to existing 

facility location-allocation research. However, there are some limitations to this study. 

In this study, only the (r, S) (“review period, order-up-to-level”) inventory policy is 

used and the review period for each warehouse is fixed as this policy is easy to 
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implement in the real-world applications. However, there are several other kinds of 

inventory policies in real-world applications. Another limitation is the proportional 

transportation cost assumption, which is adopted in order to reduce the complexity of 

the model. Therefore, important additional research can come from this study. 

Specifically, proposed future research can take the following several directions: 

(1) Other inventory policies, such as (s, Q) (“order point, order quantity”) inventory 

policy, can be considered in the future research. 

(2) More practical ways of expressing real transportation cost (e.g. fixed and per-unit 

transportation cost) may be adopted instead of proportional transportation cost in 

order to make the model more realistic. 

(3) In some real world problems, companies may give price discount to the customers 

that have long lead time. Accordingly, the revenue of the companies relates to the 

design of the distribution network. Therefore, we may use maximizing the expected 

total profit rather than minimizing the expected total cost as the main objective. 

 

6.2 Multi-channel component replenishment problem in an 

assemble-to-order system 

In the study of the multi-channel component replenishment problem in an 

assemble-to-order system, we first study the dual-channel two-component problem. A 

closed-form optimal solution to the dual-channel two-component problem is provided. 

We then extend our study to the multi-channel multi-component problem and we solve 
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the problem analytically. We first present a restricted version of the problem where the 

pre-stocked components quantities follow a certain permutation and we develop an 

optimal solution procedure for solving the restricted problem. We then provide an 

optimal branch-and-bound procedure which searches over all permutations to obtain an 

optimal solution to the general problem. A simple greedy heuristic procedure is also 

developed. We finally present computational studies to demonstrate the efficiency of 

our solution methods and to compare the performance of ATO systems with single and 

dual procurement channels, respectively. Some managerial insights are obtained based 

on the results of computational studies. 

Results show that the gap between dual-channel solution and single-channel 

solution increases with the coefficient of variance of demand. This observation 

indicates that the higher variation of product demand, the more benefit is the 

dual-channel sourcing of components. And dual-channel sourcing of components can 

bring more than 10% profit increase for the ATO manufacturer who faces high 

uncertain product demand. The reason can be explained as follows. With the increase 

of the coefficient of variance of the demand, the variation of the demand increases. 

Accordingly, the ability of the pre-stocked quantities Q to match realized demand 

reduces; which in turn leads to the decrease of the percentage of the first delivery of 

final product among total deliveries of final product. In other words, more deliveries of 

final product will be made after time 0 and these final products are assembled by some 

additional components procured. In this case, the dual-channel sourcing offers more 

significant economic benefits than the single-channel sourcing because it gives the 



Chapter 6. CONCLUSIONS AND FUTURE RESEARCH 

                                                                                      90 

manufacturer more options to acquire additional components. 

Results also show that the non-increasing slope price function gives the highest 

gap between dual-channel solution and single-channel solution, the linear price 

function gives medium size gap and the non-decreasing slope price function has the 

lowest gap (given that the prices at time 0 are the same for all three types of functions, 

and the prices at the largest lead time point are same too). The reasons can be explained 

as follows. For the non-increasing slope price function, we tend to order less 

pre-stocked quantity as understocking cost is less. We will be more likely to expedite 

more components later. That is, more deliveries of final product will be made after time 

0 and these final products are assembled by some additional components procured. In 

this case, the dual-channel sourcing offers more significant economic benefits than the 

single-channel sourcing because it gives the manufacturer more options to acquire 

additional components. Besides, Gap_nor is higher than Gap_exp in the non-increasing 

slope price function case as the benefit of using the expediting sourcing to capture 

higher final product price is significant in the non-increasing slope price function case 

under given parameter settings. For the non-decreasing slope price function case, we 

tend to order more pre-stocked quantity as understocking cost is high. That is, less 

deliveries of final product will be made after time 0. Therefore, the economic benefit of 

the dual-channel sourcing over the single-channel sourcing is not significant. For the 

liner price function case, the effect is in between that of non-increasing slope price 

function case and non-decreasing slope price function case. 

We also can find from results that our heuristic procedure can always find the 
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optimal solution for our 4-component problem case and the number of nodes explored 

for the optimal branch-and-bound procedure and the heuristic procedure are both less 

than 10. For 8-component problem case, our optimal branch-and-bound procedure 

needs to explore about 900 nodes while the heuristic procedure only needs to explore 

about 20 nodes. From the results, we observe that our heuristic procedure performs 

quite well in terms of solution quality and number of nodes explored. Especially when 

the number of components is large, our heuristics can explore significant fewer nodes 

while obtaining a sufficiently good solution. 

There are several directions where future research can be conducted. Firstly, 

ordering setup costs and assembling setup costs are ignored in this thesis, but these 

setup costs do exist in real world applications although they are usually not high. 

Therefore, future research can incorporate the setup costs so as to make the model more 

accurate. Secondly, the optimal solution procedure developed for multi-channel 

multi-component model in this thesis is not quite efficient. Future research can consider 

more efficient optimal solution methods for multi-channel multi-component problem. 

Thirdly, only one type of product is considered in this study. In the real world, more 

than one product is not uncommon. Future work therefore can study an ATO system 

with multiple final products sharing multiple components problem which can be 

replenished through multiple supply channels. 
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APPENDICES 

APPENDIX A 

A.1 Difficulty of determining multi-source safety stock level 

Suppose we consider a single-product problem with one opened warehouse which is 

replenished by two plants simultaneously. We therefore can drop the subscript index j 

and f in below analysis. We let  and  denote the mean and standard deviation of 

annual demand of the warehouse respectively (note that ( )k kk
d W   and 

2( )k kk
W   ); Dr denotes demand in review period r (note that it is a random 

variable and it is the total order quantity at each replenishment cycle); R (0  R  1) and 

1 – R denote the proportions of the total annual quantities ordered from two plants 

respectively (which can be determined from the solution of our model). Without loss of 

generality, we let tpw1 ≤ tpw2. 

Figure A.1 shows inventory levels of a warehouse replenished by two plants under 

a general implementation of (r, S) inventory policy, where RcDrc (0  Rc  1) and (1 - 

Rc)Drc denote quantities ordered from two plants at replenishment cycle c respectively. 

Note that Rc is not fixed for each replenishment cycle c but the overall proportions of 

quantities ordered from two plants equal to R and 1- R respectively, i.e. 
1

N

cc
R NR


 , 

where N is the total number of replenishment cycles. From Figure A.1, we find that it is 

difficult to compute the real constant safety stock level given a certain cycle service 

level as Rc’s are not known. Even if we know the exact implementation, it is still 
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difficult to compute the real constant safety stock level for a desired service level as Rc 

may vary from one replenishment cycle to another. 

 

 

Figure A.1 Inventory position (dashed line) and on-hand inventory (solid line) of a 

warehouse replenished by two plants (General Implementation) 

 

A.2 Analysis of cycle service level 

As described in Section 3.2.3, our proposed safety stock level is given by 

2( ) ( )jf kf jk j ij ijf ijfk i i
SS z W r tpw X X    . Note that ε can be neglected here 

as its effect to safety stock level is very small. Also note that we do not need to analyze 

the case of ijfi
X = 0 as 0jfSS   when ijfi

X  = 0, i.e., our analysis is only for a 

positive safety stock level. 
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Note that it is difficult to directly compare the real constant safety stock level with 

our proposed safety stock level due to the difficulty of computing the real constant 

safety stock level. Our idea is to compare desired cycle service level and actual cycle 

service level based on proposed safety stock level. Note that if at least one of the three 

equalities (tpw1 = tpw2, R = 0, R = 1) holds, the problem is reduced to single-source 

problem and actual cycle service level based on proposed safety stock level is equal to 

desired cycle service level under any implementations. Thus, it is a trivial problem. 

We then study the case when tpw1 < tpw2 and 0 < R < 1. We now compute actual 

cycle service level for cycle c (1  c  N) given desired cycle service level. If desired 

cycle service level is Pz (with corresponding safety factor z), we can compute 

order-up-to-level S according to our proposed safety stock and it is given as follows: 

1 2 1 2[ (1 ) ] (1 )S r R tpw R tpw z r R tpw R tpw               

Based on this order-up-to-level S, actual cycle service level Pc for cycle c is given by 

1

1 1 2 1

2

{ 0)                                                                       0

{ 0, (1 ) 0}    0 1

{ 0)                               

r tpw c

c r tpw r tpw c r tpw tpw c

r tpw

P S D D R

P P S D D S D D R D D R

P S D D



   

            

                                           1cR








 

The average actual cycle service level P is given by 
1

N

c

c

P P N


 . 

Note that Rc may vary from one replenishment cycle to another. Thus, it is difficult 

to analyze the average actual cycle service level under the general implementation 

given in Figure A.1. We therefore first study two extreme ways of implementation: (1) 

Rc = R for all replenishment cycle c, (2) we order from only one plant at each 

replenishment cycle (Rc = 0 or 1), and the proportion of the two different replenishment 

cycles equals to (1 )R R . We now compute average actual cycle service level under 
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implementations (1) and (2). 

P (under implementation (1)) 

1 1 2 1
{ 0, (1 ) 0}r tpw r tpw r tpw tpwP S D D S D D R D D             

1 1 2 1
{ , }r tpw r tpw tpw tpwP D D S R D D D S         

Let 
11 r tpwX D D   and 

1 2 12 r tpw tpw tpwX R D D D      

Actual cycle service level 1 2{ , }P X S X S   
1 2 1 2( , )

S S

f x x dx dx
 

    

Note that 
rD , 

1tpwD  and 
2 1tpw tpwD   are independent normal random variables, 

therefore, the random variables 1X  and 2X   have bivariate normal distribution with 

mean and covariance matrix as follows: 

1 2
( , )X X       and   

1

2

2

1 2

2

1 2

( , )

( , )

X

X

COV X X

COV X X





 
   

  

 

where 
1 1( )X r tpw   , 

2 2( )X R r tpw    , 
1 1X r tpw   , 

2

2

2X R r tpw    and 2

1 2 1( , ) ( )COV X X R r tpw    . We can easily calculate 

1 2 1 2( , )
S S

f x x dx dx
   by the MATLAB function mvncdf([ ,S S ],  ,  ) (this function 

is available in versions after 7.3). 

P (under implementation (2)) 

1 2
(1 ) ( 0) ( 0)r tpw r tpwR P S D D R P S D D           

1 2
(1 ) ( ) ( )r tpw r tpwR P D D S R P D D S         

1 2

1 2

( ) ( )
(1 ) ( ) ( )

S r tpw S r tpw
R R

r tpw r tpw

 
 

 

   
   

 
 

2 1 1 2

1

1 2 1 2

2

( ) (1 )

(1 ) ( )

(1 )( ) (1 )

( )

R tpw tpw z r R tpw R tpw

R
r tpw

R tpw tpw z r R tpw R tpw

R
r tpw









      

 


      

 

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We then compare desired cycle service levels with average actual cycle service 

levels under implementations (1) and (2). We also can adopt Monte-Carlo simulation to 

compare desired cycle service levels with average actual cycle service levels under 

general implementation. From simulation results, we find that: 

 Our proposed safety stock level can result in a cycle service level that is very 

close to and a little bit higher than desired cycle service level if we adopt 

implementation (1) to implement ( , )r S  inventory policy. 

 Our proposed safety stock level can result in a cycle service level that is very 

close to and a little bit lower than desired cycle service level if we adopt 

implementation (2). 

 Our proposed safety stock level can result in a cycle service level that is very 

close to desired cycle service level if we adopt general implementation. 

Therefore, our proposed safety stock level is a good approximation that can result 

in a cycle service level which is very close to desired cycle service level for two 

replenishment sources situation. We can extend our analysis to more than two 

replenishment sources situation. We consider n replenishment lead times tpw1, tpw2, …, 

tpwn (tpw1 ≤ tpw2 ≤  ≤ tpwn) from n replenishment sources respectively. Let R
1
, R

2
, …, 

R
n
 (R

1
 + R

2
 +  + R

n
 = 1) denote the proportions of the total annual quantities ordered 

from n plants respectively; 1

cR Drc, 
2

cR Drc, …, n

cR Drc ( 1

cR  + 2

cR  +  + n

cR  = 1) 

denote quantities ordered from n plants at replenishment cycle c respectively. Note that 

1

cR , 2

cR , …, n

cR  are not fixed for each replenishment cycle c but the overall 

proportions of quantities ordered from n plants equal to R
1
, R

2
, …, R

n
 respectively, i.e. 
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1

N i i

cc
R NR


  (i = 1, 2,…, n), where N is the total number of replenishment cycles. 

We then can use similar analysis to compare desired cycle service levels with average 

actual cycle service levels under extreme ways of implementation and use Monte-Carlo 

simulation to compare desired cycle service levels with average actual cycle service 

levels under general implementation, and we obtain similar results. Therefore, our 

proposed safety stock level is quite reasonable regardless of how an actual ordering 

policy is implemented. 

 

APPENDIX B 

B.1 Proof for the closed-form optimal solution 

Proof. As (b) has been shown in Section 4.2, we only need to prove (a). We first 

consider the following two cases ([1] = 1 and [1] = 2) separately. 

 Case 1: [1] = 1 and [2] = 2 (i.e. 
1 2Q Q ) 

According to the result of newsvendor model, we know that if 

0 1 1 2

0 1 1 1 2 2

 


   

UP UP UP UP

UP UP OC UP UP OC
 (i.e. 0 11

2 1 2






UP UPOC

OC UP UP
), the optimal value of 1Q  

and 2Q  for case 1 is 1 0 1
1

0 1 1

( ) 


 

UP UP
Q F

UP UP OC
 and 1 1 2

2

1 2 2

( ) 


 

UP UP
Q F

UP UP OC
. 

If 0 1 1 2

0 1 1 1 2 2

 


   

UP UP UP UP

UP UP OC UP UP OC
 (i.e. 0 11

2 1 2






UP UPOC

OC UP UP
), we can prove that 

1 0 2
1 2

0 2 1 2

( ) 
 

  

UP UP
Q Q F

UP UP OC OC
 is the optimal solution for case 1 by K-T 

conditions as follows. 
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Proof. As newsvendor model is a convex function, so 
1 2( )Q QA  is a concave 

function. The constraint 
1 2 0Q Q   is a convex function. We can show that 

1 2( , )Q Q  

[ 1 0 2
1 2

0 2 1 2

( ) 
 

  

UP UP
Q Q F

UP UP OC OC
] satisfies the following hypothesis, therefore 

1 2( , )Q Q  is an optimal solution to 
1 2( )Q QA . 

Hypothesis: We can find a multiplier 
1  satisfying 

    

1 2 1 2 1 2 1 2

1 2 1 2
1

1 1( , ) ( , ) ( , ) ( , )

( ) ( )
0

 

   
 

 

A

Q Q Q Q Q Q Q Q

Q Q Q Q

Q Q
  (B.1) 

    

1 2 1 2 1 2 1 2

1 2 1 2
1

2 2( , ) ( , ) ( , ) ( , )

( ) ( )
0

 

   
 

 

A

Q Q Q Q Q Q Q Q

Q Q Q Q

Q Q
  (B.2) 

    1 1 2[0 ( )] 0Q Q     (B.3) 

    

1 2 1 2 1 2 1 2

1 2 1 2
1 1

1 1( , ) ( , ) ( , ) ( , )

( ) ( )
0

 

    
  

   

A

Q Q Q Q Q Q Q Q

Q Q Q Q
Q

Q Q
  (B.4) 

    

1 2 1 2 1 2 1 2

1 2 1 2
1 2

2 2( , ) ( , ) ( , ) ( , )

( ) ( )
0

 

    
  

   

A

Q Q Q Q Q Q Q Q

Q Q Q Q
Q

Q Q
  (B.5) 

    1 0   (B.6) 

As 
1 2Q Q , (B.3) can be satisfied. As 

1 2 0Q Q  , in order to ensure (B.1), (B.2), 

(B.4) and (B.5) hold, (B.7) and (B.8) must hold. 

    

1 2 1 2 1 2 1 2

1 2 1 2
1

1 1( , ) ( , ) ( , ) ( , )

( ) ( )
0

 

   
 

 

A

Q Q Q Q Q Q Q Q

Q Q Q Q

Q Q
  (B.7) 

    

1 2 1 2 1 2 1 2

1 2 1 2
1

2 2( , ) ( , ) ( , ) ( , )

( ) ( )
0

 

   
 

 

A

Q Q Q Q Q Q Q Q

Q Q Q Q

Q Q
  (B.8) 

From (B.7), we can obtain the value of 1  as 1 2 1 2 0 1

0 2 1 2

( ) ( )  

  

OC UP UP OC UP UP

UP UP OC OC
, 

and we can obtain the same value of 1  from (B.8). Recall that the given condition 
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0 11

2 1 2






UP UPOC

OC UP UP
, we can easily know that 1 2 1 2 0 1

0 2 1 2

( ) ( )
0

  


  

OC UP UP OC UP UP

UP UP OC OC
, (B.6) 

therefore holds.                                                        □ 

 Case 2: [1] = 2 and [2] = 1 (i.e. 
2 1Q Q ) 

Using similar analysis with case 1, we can obtain the following result: 

If 0 11 2

1 2 1 0 1 2




   

UP UPUP UP

UP UP OC UP UP OC
 (i.e. 1 1 2

2 0 1






OC UP UP

OC UP UP
), the optimal value of 

1Q  and 
2Q  for case 2 is 1 1 2

1

1 2 1

( ) 


 

UP UP
Q F

UP UP OC
 and 1 0 1

2

0 1 2

( ) 


 

UP UP
Q F

UP UP OC
. 

If 0 11 2

1 2 1 0 1 2




   

UP UPUP UP

UP UP OC UP UP OC
 (i.e. 1 1 2

2 0 1






OC UP UP

OC UP UP
), the optimal value 

of 
1Q  and 2Q  for case 2 is 1 0 2

1 2

0 2 1 2

( ) 
 

  

UP UP
Q Q F

UP UP OC OC
. 

Note that 
0 0[1] 1 [1] 2

UP UP
 
  and 

2 2[1] 1 [1] 2
UP UP

 
  and we can show that 

0 2 1 1[1] 1 [1] 2
UP UP UP UP

 
    by analyzing all cases of dual-channel two-component 

problem, therefore we can show that 0 1 1 2

1 2 0 1[1] 1 [1] 2

UP UP UP UP

UP UP UP UP
 

 


 
. We therefore can 

summarize the results of case 1 and case 2 and obtain the following solution. 

If 0 11

2 1 2 [1] 1






UP UPOC

OC UP UP
 

1 2Q Q  and 1 0 1
1

0 1 1 [1] 1

( )






 

UP UP
Q F

UP UP OC
, 1 1 2

2

1 2 2 [1] 1

( )






 

UP UP
Q F

UP UP OC
 

If 1 1 2

2 0 1 [1] 2






OC UP UP

OC UP UP
 

1 2Q Q  and 1 1 2
1

1 2 1 [1] 2

( )






 

UP UP
Q F

UP UP OC
, 1 0 1

2

0 1 2 [1] 2

( )






 

UP UP
Q F

UP UP OC
 

If 0 1 1 1 2

1 2 2 0 1[1] 1 [1] 2 

 
 

 

UP UP OC UP UP

UP UP OC UP UP
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1 0 2
1 2

0 2 1 2

( ) 
 

  

UP UP
Q Q F

UP UP OC OC
.                                  □ 

 

B.2 Proof of Lemma 5.5 

Proof. (by using KKT condition) 

If i = j, Lemma 5.5 shows that 1( )i
i

i i

UC
Q F

UC OC




 is the optimal solution to the 

problem 0

, ( )i iB  , which is the result of Newsvendor model. We therefore only need to 

prove the case i < j. 

If 0
j

k

k i

UC


 , note that 1

1 0

j

k

k i
i i j j j

k k

k i k i

UC

Q Q Q F

UC OC

 


 

 
 
      
 

 
 



 
 is an 

optimal solution to 0

, ( )i jB  . Therefore, we only need to prove that 

1

1

j

k

k i
i i j j j

k k

k i k i

UC

Q Q Q F

UC OC

 


 

 
 
     
 

 
 



 
 is an optimal solution to 0

, ( )i jB   when 

0
j

k

k i

UC


 . 

Note that 0

, ( )i jB   is a convex function, and all constraints 

1 0 ( 1)t tQ Q i t j      are convex functions. It is obvious that 

1

1

j

k

k i
i i j j j

k k

k i k i

UC

Q Q Q F

UC OC

 


 

 
 
     
 

 
 



 
 satisfy all constraints 

1 0 ( 1)t tQ Q i t j      and we can show that 1i i jQ Q Q      



APPENDICES 

                                                                                      118 

1

j

k

k i

j j

k k

k i k i

UC

F

UC OC

 

 

 
 
 
 

 
 



 
 satisfy the following hypothesis, therefore it is an optimal 

solution to 0

, ( )i jB  . 

Hypothesis: We can find a set of multipliers 
1 1, ,..., i i j    satisfying 

    

0

, 1

( ,..., )

( ) ( )
0

i j

i j i i
i

i i
Q Q

Q Q

Q Q
 

   
     

B 
 (B.9) 

    

0

, 1
1

1

( ,..., )

( ) ( )

0 ( 1 1)
( )

i j

i j t t
t

t t

t t
t

t Q Q

Q Q

Q Q
i t j

Q Q

Q










   
 

        
  
   

B 

 (B.10) 

    

0

, 1

1

( ,..., )

( ) ( )
0

i j

i j j j

j

j j
Q Q

Q Q

Q Q






   
     

B 
 (B.11) 

    1[0 ( )] 0 ( 1)t t tQ Q i t j         (B.12) 

    

0

, 1

( ,..., )

( ) ( )
0

i j

i j i i
i i

i i
Q Q

Q Q
Q

Q Q
 

            

B 
 (B.13) 

    

0

, 1
1

1

( ,..., )

( ) ( )

0 ( 1 1)
( )

i j

i j t t
t

t t
t

t t
t

t Q Q

Q Q

Q Q
Q i t j

Q Q

Q










      
                  

B 

 (B.14) 

    

0

, 1

1

( ,..., )

( ) ( )
0

i j

i j j j

j j

j j
Q Q

Q Q
Q

Q Q






            

B 
 (B.15) 

    0 ( 1)t i t j       (B.16) 

Equations (B.9) – (B.15) are equivalent to the following equations (B.17) – (B.23) 

respectively. 
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    ( ) ( ) 0i i i i iUC OC F Q UC      (B.17) 

    
1( ) ( ) 0 ( 1 1)t t t t t tUC OC F Q UC i t j            (B.18) 

    1( ) ( ) 0j j j j jUC OC F Q UC       (B.19) 

    
1( ) 0 ( 1)t t tQ Q i t j         (B.20) 

     ( ) ( ) 0i i i i i iUC OC F Q UC Q     (B.21) 

     1( ) ( ) ( 1 1)t t t t t t tUC OC F Q UC Q i t j            (B.22) 

     1( ) ( ) 0j j j j j jUC OC F Q UC Q      (B.23) 

As 1

1

j

k

k i
i i j j j

k k

k i k i

UC

Q Q Q F

UC OC

 


 

 
 
     
 

 
 



 
, (B.20) can be satisfied. As 

1

1 0

j

k

k i
i i j j j

k k

k i k i

UC

Q Q Q F

UC OC

 


 

 
 
      
 

 
 



 
, in order to ensure that (B.17), (B.18), 

(B.19), (B.21), (B.22) and (B.23) hold, (B.24), (B.25) and (B.26) must hold. 

    ( ) ( ) 0i i i i iUC OC F Q UC      (B.24) 

    1( ) ( ) 0 ( 1 1)t t t t t tUC OC F Q UC i t j            (B.25) 

    1( ) ( ) 0j j j j jUC OC F Q UC       (B.26) 

Equations (B.24), (B.25) and (B.26) are equivalent to (B.27), (B.28) and (B.29) 

respectively. 
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    ( ) ( )i i i i iUC UC OC F Q     (B.27) 

    
1 ( ) ( ) ( 1 1)t t t t t tUC UC OC F Q i t j            (B.28) 

    1 ( ) ( )j j j j jUC OC F Q UC      (B.29) 

According to (B.27) and (B.28) and recall i jQ Q   , we can obtain the values 

of 
t  ( 1i t j   ) as follows: 

( ) ( )
t t t

t k k k i

k i k i k i

UC UC OC F Q
  

        ( 1i t j   ) 

As 1

1

j

k

k i
i i j j j

k k

k i k i

UC

Q Q Q F

UC OC

 


 

 
 
     
 

 
 



 
, we can show that 

 
1 1 1
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holds. We thus only need to show that (B.16) holds, which is to show the following 

inequalities are correct: ( ) ( ) 0
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Recall that , 1,i x x jr r   (1  i j n ) holds for all x = i, ..., 1j  . According to 

Lemma 5.4 (a), , ,i x i jr r  ( 1  i j n ) holds for all x = i, ..., 1j  , thus 
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