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Summary

This thesis studies effects of model uncertainties on the force-based operational space

control formulation. Although this control framework works perfectly in simulation, its

performance is significantly degraded when faced with model uncertainties, as will be

shown experimentally in this thesis.

Since the model plays an important role in the control framework, we first proposed

a systematic procedure for identifying the robot dynamic model. To cater to the effects

of the nonlinear joint friction, we suggested a simple and yet effective scheme to ob-

tain a more accurate dynamic model. Experimental results on an actual industrial robot

demonstrate the efficacy of our proposed procedure.

Using the identified dynamic model, it is shown that model uncertainties can produce

different effects depending on the control space. The analytical results also suggest that

the control space need to be chosen carefully in order to minimise the effects of model

uncertainties on control performance. This is also one of the main reasons for the poor

performance of the force-based operational space control.

The analyses raise a need of seeking for an alternative formulation to minimise the

effects of model uncertainties while maintaining all the advantages of the force-based

operational space control formulation. This is the main motivation for our proposed

dual-loop operational space control structure. To justify the usefulness of the proposed

control structure, intensive work on this control framework including stability analysis

vi



Contents

and real-time implementation on a real industrial robot have been carried out. Real-time

experimental results have shown a significant improvement in comparison to the con-

ventional approach.

Since compliant motion control capability is one of the key features of enlarging the

applications of robots in real life, the proposed dual-loop control structure has been stud-

ied in a real application, the grinding application in the last chapter. Experimental results

in this chapter revealed some potential issues that need to be addressed in future research.

Keywords: Compliant Motion, Robotic Manipulator, Model Identification, Opera-

tional Space Control, Singular Perturbation, Dual-loop Control Structure.
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Nomenclature

J̄ Dynamically consistency generalised inverse ofJ

μ Task space Coriolis and Centrifugal vector

ρ Task space gravity vector

ϕ Task space disturbance vector

Λ Task space inertia matrix

Λ∗
n Inverse of null space inertia matrix

Γ Joint torque vector

Γfric Joint friction vector

Γnull Join torque vector from desired null space tasks

Γtask Join torque vector from desired task space tasks

C Joint space Coriolis and Centrifugal vector

D Joint space disturbance vector

F Control force vector at the operational point

Fcontact Contact force vector at the operational point

G Joint space gravity vector

h Vector of the inertia parameters of the robot
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hb Vector of the base parameters of the robot

q Vector of joint space variables

qn Vector of null space variables

x Vector of task space variable

J Jacobian matrix of the operational frame expressed in base frame

Jn Null space Jacobian

M Joint space inertia matrix

Sn Null space selection matrix
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Chapter 1

Introduction

1.1 Compliant Motion Tasks

Industrial robots have been used in various industries for nearly 50 years since General

Motor introduced the first industrial robot, the Unimate, in 1961. Since then, there has

been a steady increase in the use of robots in manufacturing [2]. One typical applica-

tion of robots in the industrial environment is the pick-and-place task, i.e. robots are

commanded to pick up an object from one location and place it to another along a pre-

defined trajectory (Figure 1.1). Although this type of task is still commonly being used

nowadays, there is an increasing interest on developing and applying the compliant mo-

tion control capability for industrial robots [3]. This can be observed from the fact that

several big robot-manufacturing companies such as ABB and KUKA have been incor-

porating the force control capability into their new product lines in the last few years.

With this additional capability, robots will be able to handle more complicated tasks

such as screwing, deburring, grinding and so on. Figure 1.2 shows a typical example

of these tasks, the grinding task that has been used as a case study in the last chapter

of this work. In general, when tasks require the robot to interact with the environment,

compliant motion control is a must-have capability. It is noted that the ability of sensing

and controlling contact forces not only enables the robot to handle more tasks but also

enables the robots to work in human environments where safety and cooperative ability

are typically the two most important criteria.

1



1.1. Compliant Motion Tasks

Figure 1.1: Pick-and-place task.

Figure 1.2: Grinding using the Mitsubishi PA10 manipulator.

2



1.2. State of the Art

1.2 State of the Art

There are two main approaches for handling interaction tasks ( [4], [5]):

• Indirect Force Control Approach : in this approach, the desired motion and force

are achieved by adjusting or controlling the mechanical impedance of the robot.

The well-known stiffness/admittance control [6] and impedance control [7] are the

typical examples of this approach. In these control schemes, the desired force in

the compliant directions is realised by regulating the control parameters (e.g., the

larger desired contact force, the higher robot stiffness is required). If the geometry

of the working environment is perfectly known, high stiffness will be targeted for

the free-motion directions to improve the motion tracking performance. However,

since perfect knowledge is usually not possible, poor motion tracking accuracy is

expected in practice [8]. If the dynamic model of the robot is available, it can be

used to decouple the control system so that the robot impedance can be indepen-

dently assigned. Moreover, if the stiffness of the environment is also known, it is

possible to accurately resolve the required impedance for a desired contact force

in the face of the absence of force/torque sensor [5].

• Direct Force Control Approach: this approach differs from the above indirect

force control in the sense that the control loop is closed on the force errors rather

than inferring the force errors from position/velocity errors. One typical example

of this approach is the so-called hybrid motion/force control structure, which was

first proposed by Craig [9]. This force control scheme is based on the observation

that we can always decompose compliant tasks into task constraints [10]. Another

notable control structure, which also belongs to the direct force control approach,

is the inner-outer structure [11]. In this control framework, an external force feed-

back loop has been used to generate the position commands for the inner position

controller. However, these above approaches fail to address the importance of the

robot dynamics, which turns out to be critical to dynamically decouple the posi-

tion and force in the operational space [12]. Since the control framework proposed
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by Craig does not take into account the dynamics of the end-effector, Khatib in-

troduced the concept of task space dynamics as well as a control framework [13],

the operational space control formulation, of the hybrid motion/force control for

both non-redundant and redundant robots. The original operational space control

framework does not consider the task prioritisation, which usually occurs when

multi-tasks are needed to be achieved, as an important criterion. However, a re-

cent work from the same group [12,14] has extended the conventional operational

space formulation to handle arbitrary prioritised task points. This new control

framework can be regarded to be one of the most complete treatments for mo-

tion/force control of both non-redundant and redundant robots.

From the above discussion, it is clear that if motion/force tracking control performance

is an important measured criterion, direct force control is preferable. Since most tasks

using industrial robots require controlling the robots to follow a precise motion/force

trajectory, this dissertation will mainly focus on the second compliant motion control

approach, the direct force control approach.

1.3 Research Objectives

The robot dynamic model plays an important role in robot control. Especially, in the

operational space control formulation, the dynamic model is used not only to linearise

the nonlinear robot system but also to dynamically decouple the task space and the null

space of redundant robots [15]. In this work, the term ”robot dynamic model” is consid-

ered to be comprised of two parts, the robot inertia and the nonlinear disturbances such

as joint friction, motor dynamics and joint flexibility. Theoretically, the first part of the

dynamic model, the robot inertia, can be computed from the robot CAD data. However,

due to imperfections in the manufacturing and assembling process, the robot inertia is

usually obtained through an identification process. The second part of the robot model,

the nonlinear disturbances, on the other hand, is usually obtained using an empirical

approach. It is worth pointing out that although parameter identification techniques for
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robot manipulators has received much attention in the robotics research community (for

example [16–25] are a shortlist of researches that focused on identifying the robot dy-

namic model), the correctness of these identified results is hard to be justified because the

robot inertia and the unknown disturbances are always coupled together. For instance,

the work in [26] revealed that the identified dynamic model of the well-known PUMA

560 robot can vary significantly for different research groups although all these models

wereclaimedto produce good results through experiments. This observation leads to

a question of how areasonably goodmodel of any robot can be obtained for advanced

control purpose. This is of critical importance since much research on advanced con-

trol for robotic manipulators is performed on the basis that the robot model is available

to some degree of accuracy. Thus, a systematic procedure for obtaining ausablerobot

dynamic model is a must-have capability. This is also the first aim of this research.

Since aperfectdynamic model is inaccessible in practice, a proper controller should

be designed to compensate for the unmodelled dynamics. Although much research has

been done on designing such controllers for robotic manipulators, it should be noted

that most of these studies only analyse the stability of the closed-loop system in the

continuous domain [13,14,27–30]. In other words, the digitisation effects of the digital

controllers are usually ignored in these studies. However, due to the fact that most robot

controllers are digitally implemented, examining these digitised effects on the control

performance has practical significance. Thus, the second aim of this work is to analyse

the control performance of the operational space controller under the presence of model

uncertainties and digitisation effects.

Although there are generally three types of operational space controllers (Chapter

2), this study mainly focuses on force-based operational space control because this con-

trol model can be considered as the most advanced control framework for both non-

redundant and redundant robots. In order to maintain the advantages of the force-based

operational space control, while still minimising the impacts of model uncertainties and

digitised effects on the control performance, a new control structure, the dual-loop con-
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trol structure, is proposed1. Note that the dual-loop control structure has been mentioned

in some previous work such as [31–33]. However, in those studies, the robot dynamics is

usually ignored at the outer-loop level i.e. the conversion from task space commands to

joint space commands is usually done kinematically. On the other hand, our dual-loop

operational space control (OSC) framework makes use of the robot dynamics at both

levels. In other words, instead of using the robot model to linearise the system and to

obtain the dynamic response in task space at the same time as in the conventional force-

based OSC, the dual-loop OSC brings the inverse dynamics concept from task space to

joint space (inner-loop), while the dynamic response is still obtained from task space

(outer-loop). The reason for shifting the inverse dynamics concept from the operational

space into joint space is to minimise the effects (if possible) of model uncertainties, as

will be explained in detail in Chapter 4. To justify the usefulness of the proposed control

structure, extensive experiments have been performed on the PA10 industrial manipu-

lator. From the experimental results, it is shown that the dual-loop control structure

with an inner inverse-dynamics loop can provide a considerably better control perfor-

mance in comparison to the conventional force-based operational space control. Thus,

the third aim of this work is to provide a detailed analysis of the proposed dual-loop

control framework from both the theoretical and the empirical point of view.

The contributions of this PhD work are:

• A systematic procedure for identifying the robot dynamic model subjected to ad-

vanced model-based control. A simple and effective scheme was proposed to im-

prove the quality of the identified dynamic model. The proposed identification

method has been carried out on the PA10 industrial manipulator. Experimental

results have shown significant performance improvement in comparison to con-

ventional identification methods.

• Although the dynamic model can be used to linearise the nonlinear system of the

robot in both joint space and task space, it is shown in this thesis that it is better

1We referred to the ”dual-loop operational space control” as the ”multi-rate operational space control”
in our prior publications but ”dual-loop” is a more accurate term.
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to use the imperfect dynamic model in joint space rather than in task space if a

discrete control law is implemented. The validity of this observation has been

shown in both simulation and experiment. This result is of crucial importance

since it gives an explicit explanation of why the control performance of the force-

based operational space control is significantly degraded in the presence of model

uncertainties.

• Since model uncertainties always exist in practice, a new dual-loop operational

space control structure has been proposed to better handle model uncertainties in

comparison to the conventional operational space control framework. The pro-

posed controller has been extensively studied based on both analytical and em-

pirical points of view. Stability analysis is presented. Experimental results using

this new controller scheme on an actual industrial robot, the PA10 manipulator,

showed a great improvement in both motion and force control.

1.4 Thesis Outline

We first give a brief on the operational space control framework in Chapter 2. The

following chapter, Chapter 3, is devoted to a detailed procedure to identify the robot

dynamic model. Due to the importance of the robot model, a simple and yet effective

scheme to obtain a more accurate dynamic model is proposed in this chapter. In Chap-

ter 4, the effects of uncertainties on the operational space control are studied in detail.

It will be shown that the model uncertainties can create different effects depending on

the control space. Following this analysis, a dual-loop control structure is proposed in

Chapter 5 to minimise the effects of model uncertainties while maintaining the advan-

tages of the force-based operational space control framework. Stability analysis of the

proposed controller as well as experimental results on an industrial manipulator, the Mit-

subishi PA10 manipulator, is also presented in this chapter. Since the previous chapters

mainly focus on motion control, Chapter 6 will be devoted to investigate the performance

of the proposed controller in compliant motion tasks, the grinding task. Experimental
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results showed good performance can be achieved by adjusting the control gains. Po-

tential problems are also highlighted in this chapter. Chapter 7 concludes this thesis

by summarising the work done and contributions. Suggestions for future work are also

presented.
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Chapter 2

Compliant Motion Control Using

Operational Space Control Framework

The main purpose of this chapter is to provide the necessary background theory for

the readers who are not familiar with the operational space formulation, i.e. the force-

based operational space control, which was first introduced by Khatib from Stanford

University [34]. This chapter will first give a brief on the history of the operational

space controllers. The force-based operational space control will then be explained in

detail. A brief discussion on the source of the poor performance as well as some existing

solutions for improving the control performance is also provided.

2.1 The Operational Space Controllers

One main motivation for creating robots is to help people perform some tasks. Intu-

itively, these tasks are specified in task space/operational space (as a sequence of the

end-effector position and orientation) rather than in joint space. However, since most in-

dustrial robots are equipped with motion controllers at each joint, they lack the ability to

directly resolve the task space commands. As a result, proper kinematic transformations

need to be performed to translate tasks in the operational space into corresponding joint

space instructions. Literally, there are two main approaches to resolve operational space

tasks into joint space commands: the inverse-kinematics approach and the operational
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space control approach.

In the first approach, commands in the Cartesian coordinate are transformed into the

corresponding joint space commands by performing the inverse kinematic transforma-

tion using either an analytical or a numerical approach. The joint commands are then

executed injoint spaceby any joint space controller such as the well-known indepen-

dent joint control or computed-torque control schemes in joint space where the robot

dynamic model is used to linearise the system. Note that this approach fails to address

other important aspects of the robot dynamics, which turns out to be critical in terms of

defining the natural response of the robot [35]. For example, an important aspect that

inverse dynamics control in joint space fails to address is the use of the inertia matrix to

dynamically decouple end-effector dynamics (task space) from its internal motion dy-

namics (null space) for redundant manipulators (i.e., the joint space degree-of-freedom

(DOF) is higher than the required task space DOF) [13]. As a result of the redundancy,

there are infinite solutions for the inverse kinematic problem, thus, optimisation crite-

rion should be imposed to get the optimum solution [36, 37]. A direct consequence of

this add-on optimisation is that the computation becomes more intensive making it not

suitable for real-time implementation.

On the other hand, the second approach involvesdirectly closing the control loop on

the task space variablesi.e. pose and velocity of the operational point. Since it is hard

to perform an explicit inverse kinematic transformation at the joint-position level, opera-

tional control approaches normally involve finding an equivalent joint space commands

through theinversion of the robot Jacobian. Roughly speaking, operational space control

approaches can be divided into three groups based on the way they handle the kinematic

inversion. The first group resolves the kinematic inversion at the velocity level [38],

while the second [36, 39] and the third [13] groups are based on the acceleration. The

difference between the second and the third groups emerge when the robot is redundant.

For a redundant robot, the task space and the null space are ”kinematically” decoupled

in the second approach while they are dynamically decoupled in the third group. In other

words, the third approach dynamically decouples the workspace into task space and null

10
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space by making use of the robot inertia matrix to weigh the pseudo-inverse solution.

These two spaces are then separately controlled by model-based controllers. The third

approach sometimes has been referred to as force-based operational space control [40]

because of its dynamically-decoupling property.

Theoretically, force-based operational space control can be regarded as the most ad-

vanced control framework for redundant robots. One main reason is because it uses the

robot inertia matrix to weigh the pseudo-inverse solution, thus, providing an optimal so-

lution in the sense that the kinetic energy is minimised along the path [35]. In addition,

this control framework can be used as a general framework for controlling redundant

robots with many interesting features such as [14]:

• Motion and force can be simultaneously controlled through the hybrid control

framework. By introducing the general selection matrix [13], tasks involving mo-

tion and force (or compliant motion tasks) can easily be achieved. Moreover, since

this control framework is a force-based controller, i.e. it controls the so-called op-

erational force at the operational point to achieve the goal, it is natural to extend

this framework to handle tasks that require the robot to interact with the environ-

ment or with other robots (cooperative tasks) [34].

• Tasks can be prioritised in such a way that the higher priority tasks are always

achieved first, while the lower priority tasks are executed separately without af-

fecting the main tasks. In other words, the main tasks and sub-tasks can be totally

decoupled. This capability is crucially important because it allows the users to

incorporate some important constraints (as highest priority tasks) into the control

framework. The remaining control degree of freedom can be used to perform other

tasks without affecting the above important constraints. As a result, the whole

robot body can be fully utilised in a dynamic manner (i.e., they are dynamically

decoupled) [14].

In order to address the nonlinear effects due to link inertia, gravity and joint friction,

Khatib [13] introduced the concept of task space dynamics where the joint space dynam-

ics has been transformed into task space at the operational point. He also suggested a
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model-based PD controller to achieve exponential stability. It is worth noting that this

exponential stability can only be assured when the robot model isaccurately knownand

the controller iscontinuously implemented. However, since both assumptions are al-

ways violated in practice, the control performance can be significantly degraded due to

the inaccuracy of the robot dynamic model.

Besides the modelling uncertainties, all operational space control approaches suffer

from the singularity problem, which can be roughly described as losing the ability to

move in certain directions. A direct consequence of this singularity issue is that the task

space model of the robot becomes indefinite at singular configurations. Controlling the

robot near/at a singularity is treated as a separate problem and will not be covered in this

work. Interested readers can refer to [41] for a comprehensive review as well as details

on robust singularity handling algorithms.

2.2 Force-based Operational Space Control

2.2.1 Background Theory

We consider that the robot manipulator is not operating at singular configurations. The

joint space dynamic model of an n-DOF robot in contact with the environment (Figure

2.1) can be represented as:

M(q)q̈ + C(q̇,q) + G(q) + D(q̇,q) + Γfric(q̇,q) + JTFcontact = Γ (2.1)

The equivalent task-space dynamics at any operational point can then be specified as

follows:

Λ(x)ẍ + μ(ẋ,x) + ρ(x) + ϕ(ẋ,x) + Ffric(ẋ,x) + Fcontact = F (2.2)

whereq̈, q̇,q are the generalised joint acceleration, joint velocity and joint position,

ẍ, ẋ,x are the generalised task space acceleration, task space velocity and task space

position of an arbitrary operational point andM, Λ,C, μ,G, ρ,D andϕ are the inertia
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Figure 2.1: n-DOF robot.

matrix, Coriolis-Centrifugal, gravity and unknown disturbance in joint and task space,

respectively.Fcontact is the contact force acting at the operational point.Γfric andFfric

represents the friction torque at each joint and the equivalent resistance force caused by

the joint friction in task space respectively. Note that the friction torqueΓfric−i (the

i component ofΓfric) is a local effect since it is assumed to depend only on the joint

states (i.e.qi and its derivative). However, the resistant forceFfric for any direction is a

combination of the friction effects from all joints.

The relationship between the joint space and task space dynamics can be stated as

follows:

Λ = (JM−1JT )−1 (2.3)

J̄ = M−1JT Λ (2.4)

μ = J̄TC − ΛJ̇ q̇ (2.5)

ρ = J̄TG (2.6)

ϕ = J̄TD (2.7)

Ffric = J̄TΓfric (2.8)

Γ = JTF (2.9)
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whereJ is the Jacobian associated with the desired operational point. The unified ap-

proach for motion and force control is then formulated as follows [13] (note that the

superscript(̂ ) indicates that the associated symbol is an estimate of the symbol( )):

Ftask = Fmotion + Fforce (2.10)

where:

Fmotion = Λ̂Ωumotion + μ̂ + ρ̂ + F̂fric (2.11)

Fforce = Λ̂Ω̄uforce + Fsensor (2.12)

umotion = ẍd + KMD(ẋd − ẋ) + KMP (xd − x) (2.13)

uforce = KFP (Fd − Fsensor) + KFI

∫
(Fd − Fsensor) (2.14)

The generalised task specification matricesΩ and Ω̄ are pre-defined depending on

the tasks.KMD, KMP , KFP , KFI andKFV are the gains for motion and force control

respectively. Note that Equations 2.10, 2.11, 2.12 linearise the task-space dynamics

of the robot 2.2; thus, if̂Λ = Λ, μ̂ = μ, ρ̂ = ρ, F̂fric = Ffric,D = ϕ = 0 and

Fsensor = Fcontact (perfect model and sensing estimation) then the closed-loop system

can be shown to be equivalent to n-double integrator:

ẍ = u =





umotion

uforce




 (2.15)

and good control can be achieved by a proper choice of control gains [13].

For redundant manipulators, the dynamically consistent generalised inverse of the

Jacobian matrix (Eq. 2.4) can be used to dynamically decouple the operational space to

its null space as discussed in [13,35,42]. Note that tasks in the operational space are all

transformed into the control force by Eq. 2.10, thus this control framework is sometimes

referred to as the force-based operational space controller in the literature. The above
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control force is then transformed into joint space by:

Γtask = JTFtask (2.16)

Since the task space controller need not make use of all DOF of redundant robots,

the remaining DOF of the robot should be properly controlled by a null space controller.

This null space controller can be formulated either in task space or joint space [15].

Since the work in this research mainly focuses on industrial robots which are usually

constructed from joints in series (not tree structure), a joint space controller is preferable.

The control of null space can be briefly described as follows [14].

Let us denote the set of joints that are controlled in the null space as:

qn = Snq (2.17)

whereSn acts as the selection matrix. For example, to select joint 1 and 2 for the null

space controller,Sn is:

Sn =






1 0 ... 0

0 1 ... 0




 (2.18)

Define the null space Jacobian of the tasks as:

Jn = Sn(I − J̄J) (2.19)

The null space controller is then stated as:

Fnull = (Λ∗
n)#un + (Λ∗

n)#SnM−1(Ĉ + Ĝ + D̂ + F̂fric − Γtask) (2.20)

where the inverse of the null space inertia matrixΛ∗
n is [14]:

Λ∗
n = JnM−1JT

n (2.21)
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The equivalent joint torque of the null space controller is:

Γnull = JT
n Fnull (2.22)

Thus, the total control joint torque becomes:

Γ = Γtask + Γnull (2.23)

By applying this control torque to the joint space dynamics (Eq. 2.1) under the assump-

tion of perfect model estimation, the null space closed-loop equation is reduced to [14]:

qn = un (2.24)

which can also easily be stabilised by any conventional PD controller. It is worth point-

ing out that this null space controller reveals an important property of the force-based

operational space in that it cansimultaneously achieve exponential stabilityin both task

space and null spaceunder the assumption thatthe robot model is available.

The following simulation illustrates the above control framework. Consider a 3-DOF

planar arm with three revolute joints (RRR) as shown in Figure 2.2. The main task here

is to move the end-effector of the robot from(xi, yi) = (1m, 1.5m) by 0.5m in thex

direction, i.e.,(xd, yd) = (1.5m, 1.5m) in tf = 0.5s. Quintic polynomial [43] is used for

the trajectory planning. For instance, the desired trajectoryθ̈di, θ̇di, θdi can be stated as:

θdi(t) = a0i + a1it + a2it
2 + a3it

3 + a4it
4 + a5it

5 (2.25)

θ̇di(t) = a1i + 2a2it + 3a3it
2 + 4a4it

3 + 5a5it
4 (2.26)

θ̈di(t) = 2a2i + 6a3it + 12a4it
2 + 20a5it

3 (2.27)

where the coefficientsa0i, a1i, a2i, a3i, a4i anda5i can be computed from the initial con-
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Figure 2.2: 3-DOF planar robot (three revolute joints). Each link is assumed to have
the mass and shape as depict on the left. The figure on the right hand side shows the
initial configuration of the robot(q1 = π

2
, q2 = −π

2
, q3 = −π

2
, ) and the desired position

of the end-effector:(xd, yd) = (1.5m, 1.5m) (the red dot). This 3-DOF robot has been
simulated using the SimMechanics Toolbox under Simulink environment. The integrator
has been configured asode45.

figurationθi, final configurationθf and the durationtf as follows:

a0i = θi (2.28)

a1i = θ̇i (2.29)

a2i =
θ̈i

2
(2.30)

a3i =
20θf − 20θi − (8θ̇f + 12θ̇i)tf − (3θ̈i − θ̈f )t

2
f

2t3f
(2.31)

a4i =
30θi − 30θf + (14θ̇f + 16θ̇i)tf + (3θ̈i − 2θ̈f )t

2
f

2t4f
(2.32)

a5i =
12θf − 12θi − (6θ̇f + 6θ̇i)tf − (θ̈i − θ̈f )t

2
f

2t5f
(2.33)

Since this is a 2-DOF task, the robot is redundant in this case. The sub-task here is to

control joint 3 from−π/2 to−π/4 (q3d = −π/4) (also using quintic polynomial).

Assume that the robot dynamic model is available, by applying the above force-

based operational space control framework with the task space control gains (Eq. 2.13):

Kp = 102I2, Kv = 20I2 and null space control gains (Eq. 2.20)kpn = 102, kvn = 20,

whereI2 is the identity matrix of dimension2×2. The task space and null space tracking

error(s) (quintic polynomial for the trajectory planning) are shown in Figure 2.3. It is
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Figure 2.3: Task space and null space tracking errors of the 3-DOF planar robot for the
given task. Note that quintic polynomial has been used for trajectory planning in this
simulation. The top two graphs show the responses of the robot in(x, y) direction. The
next two graphs show the tracking errors in task space. The performance of the null
space control is shown in the last two graphs: the upper graph is the response ofq3, the
bottom one is the tracking error of the null space controller.

clear from the simulation that the main task and the sub-task can be simultaneously

achieved.

2.2.2 Model Uncertainties

It is worth stressing that the control performance in the above simulation can only

be achieved under the assumption of perfect model estimation. In practice, complete

knowledge about the robot model is hard to achieve. Further investigation on the robot

dynamic model indicates that joint friction in the low-speed region is extremely compli-

cated [44–47].
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Although friction modelling is well documented in the literature, a perfect friction

model, which can capture all the non-linear effects, especially friction in the low-velocity

region, is still an open problem. In this region, friction is known to be highly nonlinear,

with the hysteresis effect, Stribeck effect, position and/or time dependency and other

nonlinearities [46]. From the literature, it seems that the LuGre friction model [44] is

one of the most popular models that can be used to capture most of the above effects ex-

cept the position/time dependence effects. However, the implementation of these friction

compensator schemes often requiresreference joint velocitiesand/orgood joint velocity

estimation. From the practical point of view, these requirements are not easily fulfilled

because there areno explicit reference joint velocitiesfor the case where the motion and

force are controlled in task space. Moreover, since most industrial robots do not have

joint velocity sensors, the feedback joint velocities are normally obtained throughthe nu-

merical differentiation of joint position measurements. As a result, errors in the velocity

estimation in low velocity region willbe amplifiedby the friction compensators due to

velocity dependence of the Stribeck and Coulomb friction models [48]. In other words,

the poor performance of the friction compensator not only comes from the inaccuracy

of the friction model but also comes from the noisy estimated velocity. Also note that

the remaining unmodelled dynamics is transformed into task space by Eq. 2.7, which

involves the estimated inertia matrix and the Jacobian. Thus, the same amount of uncer-

tainty in joint space may reproduce much different effects in the task space dynamics,

depending on the robot configuration. Since the force-based operational space control

(OSC) closes the control loop in task space through the kinematic chains as shown in

Eq. 2.11, the accuracy of the task space inertia matrix plays an important role on the

control performance. In fact, if the task space inertia matrix is not accurate, the perfor-

mance of the force-based OSC can be worse than other simpler task space controllers

as pointed out in [40]. For example, Figures 4.6-4.9 (Chapter 4) shows the task space

tracking errors when faced with model uncertainties for various control gains. A detailed

discussion on how model uncertainties affect the control performance will be given in

Chapter 4.
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2.2.3 Solutions for Model Uncertainties

In view of the above discussion, it is clear that model uncertainties always exist in prac-

tice. Hence, a proper study needs to be performed to tackle this model uncertainty issue.

In order to overcome the problem, a number of approaches, such as robust control and

adaptive control approaches have been proposed in the literature. The main difference

between the robust control approaches and adaptive control approaches is the way they

process the uncertainties. The robust control approaches use the feedback signal to reject

the uncertainties byusing a fixed control structure[28,49–52], while the adaptive control

approaches use the feedback signal to improve the quality of the control model [53–56]

by online adjusting control parameters.

As mentioned above, robust control approaches do not change the control structure,

thus they can only give an ”acceptable” performance. However, their advantage is that

they do not require much tuning efforts as compared to the adaptive control approaches

[49]. To have a fixed structure despite the model uncertainties, high control gains are

normally used in robust control approaches. As a result, chattering can occur due to

the signal noise and the discretising effects. For instance, the work in [57] showed that

instability can occur when the control gains are above some threshold values. Although

most robust controllers do not require perfect knowledge of the robot model, they often

make use of the bounds of system parameters to define the control gains. Note that most

robust control approaches are shown to be stable only in the continuous domain. As a

result, it is still not clear whether the digital implementation of these control laws will

have any adverse effect on the control performance.

Unlike robust control, adaptive control approaches attempt to ”learn” the uncertain-

ties in order to improve the control performance [53]. Theoretically, adaptive control is

supposed to be the best controller for any system in question due to its learning abil-

ity. However, because of the learning law, the complexity of these control laws is much

more in comparison to the robust control cases. As a result, adaptive control may be-

come impractical when the robot degree of freedom is high. Another disadvantage of

the adaptive control approaches is that, to guarantee the convergence of the control law,
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2.2. Force-based Operational Space Control

the linear model assumption is often used in the stability analysis and control design.

In practice, the linear model assumption may not be valid because of all the nonlinear

effects discussed before; thus, the parameters of the adaptive control law can converge

to a non-physical value [58].

Note that research in dynamic control of robotic manipulators has usually focused on

the joint space control formulation since the joint space dynamics has many interesting

properties such as the positive definiteness of the joint space inertia matrix or the linear-

in-parameters of the joint space dynamic model [59,60]. Research in task space dynamic

control, on the other hand, has mainly focused on the robust control approach [61]. One

possible reason is that the linear-in-parameter property of the task space dynamics can-

not be extended in a straightforward manner, especially for redundant robots. In other

words, for redundant robots, two separate controllers (task space and null space con-

troller) are needed to be considered for analysing the convergence of the estimated pa-

rameters. Moreover, since measurement noise and high frequency unmodelled dynamics

always exists in practice, the robustness of the convergence of adaptive controllers is still

an open problem [61]. On the other hand, robust control approach in task space has re-

ceived more attention [12, 62–64] although the majority of work is still developed in

joint space [61]. Note that while the same robust control concept can be applied in both

joint space and task space for non-redundant robots, this observation is no longer true

for the redundant case. The main reason is that the task space and null space dynamics

of redundant robots are heavily coupled through the dynamic model [13, 40, 65]. As a

result, the dynamics in one space (null space for example) can significantly affect the

control performance of other space (task space for example).

In this work, instead of seeking for a new robust/adaptive controller to cope with

model uncertainties, we will look at the uncertainty issue from a different perspective,

that is,what is the best way to usethe identified dynamic model in order tominimise

the effects of model uncertainties on the control systems andmaximiseits usefulness in

the operational space formulation [13,14]. Note that although only the standard PD con-

troller is used in most of the experiments in this research, there is no limit to applying
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2.2. Force-based Operational Space Control

all known joint space controller schemes (both adaptive and robust controllers) to the

proposed control structure in Chapter 5. In fact, since the inverse dynamics has been

shifted from task space to joint space, our control framework canbenefit muchfrom the

vast amount of work on the joint space control formulation. However, considering those

control schemes here is out of the scope of this research and will be addressed in future

work.
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Chapter 3

Identification of Rigid Body Dynamics

of an Industrial Robot

As shown in Chapter 2, the robot dynamic model is required in the implementation of

the force-based operational space control scheme. The dynamic model is crucial because

it is used to linearise the nonlinear robotics system in both joint space [66] and task

space [13]. Even in some non-model-based control schemes, a rough estimation of the

robot model is also important because it can simplify the gain-selection process [57].

Since the robot dynamic model is normally not available, proper procedures need to be

carried out to identify these parameters. If the robot can be considered as a combination

of multi-rigid bodies, an obvious way to identify its inertial parameters is to dismantle

the robot and measure link-by-link [19]. Another approach is to make use of the CAD

model (if available) to compute inertial parameters of the robot. However, it is obvious

that these approaches are not always feasible in practice. In addition, the above two

approaches cannot account for the effects of joint friction and other nonlinear dynamics.

In order to account for joint friction, several methods have been proposed. These

methods can be roughly divided into two groups: to identify joint friction and rigid body

dynamics separately [67,68] or to identify joint friction and rigid body dynamics simul-

taneously [18, 20, 23]. The former first identifies the friction parameters for each joint

and then continues to identify the robot inertia by making use of the identified friction
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parameters. Since friction parameters are identified joint by joint, nonlinear dynamic

friction models such as Stribeck and/or hysteresis effects can be easily incorporated.

The main drawback of this method comes from the observation that friction can be time-

dependent [23]. Thus, the error in friction compensation can affect the quality of the

identified robot inertia. Moreover, friction forces/torques are always coupled to the in-

ertial forces/torques. Thus, one cannot be accurately identified without the other. It is

also argued that it is more tedious to identify friction parameters and rigid body dynamic

parameters separately.

From the literature, more researchers adopt the latter method, i.e., to identify joint

frictions and the rigid body dynamics at the same time. Note that the robot inertia can be

linearised w.r.t its parameters. Thus, many proposed identification methods have been

based on the assumption that joint frictions can also be modelled in a linear-in-parameter

form so that the robot dynamic model can be fully linearised. However, this linearity is

not valid for all velocities. In the low velocity region, the friction parameters exhibit

some dynamics, and we refer to this region as the ”dynamic” region of friction. When

velocities exceed a threshold velocity, the friction parameters become ”static” and the

friction is now linear in the parameter form. We therefore refer to this region as the

”static or linear” region. The use of the linear friction model outside this linear region

can lead to significant errors in the identified parameters as the assumption of a linear

dynamic model is no longer valid. In this chapter, a simple and effective scheme will

be introduced to identify the threshold/boundary velocity that separates the joint friction

into dynamic (and nonlinear) and static (and linear in parameter) regions. Based on the

identified threshold velocity, the robot dynamic model is then identified only in the linear

region, thus more accurate dynamic parameters are obtained [16].

As the above discussion, the robot dynamic model is linear w.r.t its parameters, these

parameters can be identified using the well-known least-squares estimator. Note that

not all ten inertial parameters of each robot link can be identified due to the relative

configuration of the links of the robot (they need not all be identified for control purpose).

It is therefore necessary to reduce/simplify the robot model to ensure that the observation
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matrix of the least-squares estimator has full rank [69]. This problem can be solved either

symbolically [69] or numerically [70].

Theoretically, the robot dynamic model can be accurately resolved by the least-

squares estimator once enough motion data (i.e.{q̈, q̇,q}) and joint torque are acquired.

In practice, since the measured torques is normally noisier than the measured position,

a proper experiment should be designed to ensure the robustness of the identified re-

sults [71]. To guarantee the robustness of the estimation process, several criterions have

been proposed in the literature such as maximising the determinant or minimising the

condition number of the observation matrix [18], maximum the likelihood [72] and so

on. Note that experimental design under the above criteria results in solving a nonlinear

constrained optimisation problem. The results from this optimisation problem are the

so-called exciting/optimal trajectory that can guarantee the excitation and robustness of

all the parameters to be identified. Because of the complexity of the dynamic model, a

good guess for the initial condition is hard to achieve. Thus, we have proposed a genetic

algorithm (GA) to find the above optimal trajectory [17].

Note that the above exciting trajectory can only account for the uncertainties of the

measured torque if least-squares estimator is used [21, 61]. In practice, uncertainties

can also occur in the motion data (i.e., joint position, velocity and acceleration). Due

to the fact that most industrial manipulators do not come with velocity and acceleration

sensor, this information are normally obtained through numerical differentiation of the

joint position measurements. As a result, the accuracy of the observation matrix of

the least-squares estimator is compromised. A direct consequence of this observation

is that the results from the least-squares estimator can be much deviated from their true

value [73]. Since no constraints are imposed on the least-squares technique, it is possible

for the least-squares estimator to produce results which are physically impossible [74,

75]. Although there are other methods to cope with uncertainties on the observation

matrix such as the maximum likelihood method [72], most of them do not consider

the physical feasibility of the identified parameters as an important criterion. Note that

a physically non-feasible dynamic model cannot be used in most model-based control
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3.1. Modelling

schemes because this model can result in a non-positive definite inertia matrix, thus,

destabilise the closed loop control system. One promising solution for this problem is to

use constrained optimisation tools to adjust the least-squares result [76]. However, this

method requires the initial guess of the virtual parameters which are not always available

in practice.

Although there is a vast amount of results on the model identification topics of

robotic manipulators in the literature, a systematic procedure, which includes all the

above considerations, is still missing. Thus, we develop a systematic procedure for

identifying the robot dynamic model that can then be used in advanced model-based

controllers [77].

3.1 Modelling

3.1.1 Base Parameters

It is well known that the dynamic model of an n-degree-of-freedom (n-DOF) serial ma-

nipulator can be expressed in the following analytical form [9]:

M(q)q̈ + C(q̇,q) + G(q) + Γfric = Γ (3.1)

where:

- q̈, q̇,q1 aren × 1 vectors of joint acceleration, velocity and position, respectively.

- M(q)2,C(q̇,q),G(q) are the inertia matrix, Coriolis-Centrifugal and gravity vector

in joint space.

- Γfric is n× 1 vector of joint friction andΓ is n× 1 vector of force/torque at each joint.

For identification purpose, the above equation is re-written in the linear form [59]:

W (q̈, q̇,q, DH)h + Γfric = Γ (3.2)

1Bold-face block capital letter represents a vector quantity
2Block capital letter represents a matrix quantity
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3.1. Modelling

Here,DH is the kinematic parameters from the Denavit-Hartenberg parameters andh

is a10n × 1 vector of the inertial parameters:

hi = [xxi, yyi, xzi, yyi, yzi, zzi,mxi,myi,mzi,mi]
T (3.3)

h =

[

h1 ... hn

]T

(3.4)

where(xxi, xyi, xzi, yyi, yzi, zzi) are the inertial tensor of linki, (mxi,myi,mzi) are

the first moments andmi is the link mass. Note that, here, we only focus on the inertial

parameters of the links. The rotor inertia of motors are assumed to be known because

these values are normally available from the motor specs.

Note that not all the inertial parameters contribute to the dynamic behaviour of the

robot [69]; thus, a set of identifiable parameters (the so-called base parameters) should

be deduced from Eq. 3.4. For instance, the original dynamic parameters of the 7-DOF

Mitsubishi PA10 manipulatorh has 70 parameters but the final identifiable dynamic

parameters (excluded joint friction parameters) of the manipulator is reduced into 18

lumped-parameters [17]. By taking into account the base parameters, Eq. 3.2 becomes:

Wb(q̈, q̇,q, DH)hb + Γfric = Γ (3.5)

wherehb is the base parameters. From Eq. 3.5, it is clear that if the joint friction model

is linear with respect to its parameters, the problem of identifying the dynamic model

is a linear problem. In the next section, the condition for which the linear-in-parameter

friction model is valid will be derived.

3.1.2 Boundary Velocity and Linear Friction Model

Although joint friction is complex in reality, a simple model, which is the combination

of viscous and Coulomb friction, is normally used to describe the friction phenomenon

for all joint(s):

τfric i = fcisign(q̇i) + fviq̇i (3.6)
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3.1. Modelling

wherefci andfvi are Coulomb and viscous friction coefficients of jointi respectively.

However, this assumption can be invalid in the low velocity region as shown in many

works [44, 78, 79]. By analysing the experimental data and the dynamic friction effects

described by the LuGre model [46], it is found that there is a threshold/boundary veloc-

ity that separates the dynamic friction into nonlinear and linear regions. In the nonlinear

region, the friction effects mainly consist of stiction, Stribeck and hysteresis, while in

the linear region, the dynamic friction converges to only Coulomb and viscous fric-

tions (these two friction terms are known to be linear w.r.t. their parameters). Thus, by

analysing the velocity-torque map, one should be able to identify the boundary velocity

for each joint.

In order to get the insight of this approach, let us first study the LuGre friction which

can be considered to be one of the most popular friction models that can be found in the

literature. From the literature, The LuGre model is known to be able to capture most of

the above effects except the position/time dependence effect. The mathematical model

of the LuGre model can be described as follows:

τLuGre = σ1ż + σ0z + fv q̇ (3.7)

wherez describes the average deflection of bristles (please refer to [46] for detailed

discussions):

ż = q̇ −
σ0|q̇|
v(q̇)

z (3.8)

The functionv(q̇) characterises the Coulomb and Stribeck effect and is commonly cho-

sen as:

v(q̇) = fc + (fs − fc)e
−( q̇

vs
)2 (3.9)

wherefc, fs andvs are the Coulomb, Stribeck and Stribeck velocity accordingly. One

observation that can be made from Eq. 3.9 is that if|q̇| > 3√
2
vs, e−( q̇

vs
)2 goes to0

approximately, Eq. 3.9 becomes:v(q̇) = fc and Eq. 3.8 reduces to:

fc

σ0q̇
ż±z =

fc

σ0

(3.10)
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3.1. Modelling

Also note that Eq. 3.10 is actually a first-order system w.r.t the non-measurable state

z. The time constant of this system is reduced whenq̇ is increased. This observation

implies thatż → 0 for any non-zero initial state. In other words, when|q̇| > 3√
2
vs, thez

state will quickly converge to its static state (SS):

żSS ' 0 ⇒ zSS '
sgn(q̇)v(q̇)

σ0

(3.11)

and the LuGre friction model (Eq. 3.7) becomes:






|q̇| > 3√
2
vs

żSS ' 0

zSS ' sgn(q̇)v(q̇)
σ0

⇒ τLuGre ' sgn(q̇)fc + fv q̇ (3.12)

This observation leads to a conclusion that the nonlinear dynamic friction reduces to

the linear form (Coulomb and viscous friction model) when joint velocity|q̇| > 3√
2
vs.

The above observation can also be verified through the following simulation.

Consider a one-link system (izz = 1kgm2/rad) system under the LuGre friction effect

(σ0 = 10000, σ1 = 316, fv = 0.4, fc = 1, fs = 1.5, vs = 0.1). By increasing the applied

torque to the systemτ = 0.3t + 2sin(3t), the system response is presented in Figure

3.1. It is clear from Figure 3.1 that, when joint velocity|q̇| > 3√
2
vs = 0.212 (since the

applied torque is increasing over time),ż → 0 andz → 0.0001 = 10−4.

It is important to stress out that the existence of the above boundary velocity need

to be verified on the real manipulator since much complicated joint friction is found in

the actual manipulator. The following section describes the step-by-step procedure for

finding out the boundary velocity (if any) for each joint.

• Step 1: Mount the manipulator in such a way that the gravity has no effect on

the torque of the joint of interest. For example, consider the PA10 manipulator

in Figure 3.2, by mounting the manipulator at two different configurations: ver-

tical and horizontal configuration, gravity effect on the joint torque can be easily

eliminated.
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3.1. Modelling

One DOF system

time(s)

Figure 3.1: One-link system under LuGre friction (gravity free). From top to bottom:
applied torque (Nm), joint velocity (rad/s), friction torque from the LuGre model (Nm),
the internal statez andż. This simulation has been done under the 20sim environment
(www.20sim.com).

Figure 3.2: Eliminate the gravity effect by mounting the manipulator at different config-
urations.
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Figure 3.3: Response of the first joint of the Mitsubishi PA-10 for a sinusoidal torque.
From top to bottom: applied torque(Nm), the responses of joint 1{q1, q̇1, q̈1}. Note
that the applied torque is clean because this torque has been feed-forward to the joint
amplifier. Since only joint position(q1) is available for measurement, joint velocity and
acceleration have been obtained off-line using the central difference with zero-phase
shift filter.

To excite joint friction, a sinusoidal torque can be applied to each joint. Notice that

the frequency and magnitude of this signal have to be chosen in such a way that

the resulting joint motion is within the joint limit and the motion also excites the

dynamic friction. During this step,(qi, q̇i, q̈i, τi)1..n are recorded (n is the number

of recorded points). For instance, the responses of joint 1 of the PA10 for an

open-loop sinusoidal torque are depicted in Figure 3.3.

Since only one joint is excited at a time, if joint friction can be modelled as

Coulomb and viscous model, the equation of motion of the system becomes:

izziq̈i + fcisign(q̇i) + fviq̇i = τi (3.13)

whereizzi is the lumped inertia at the current configuration,fci andfvi are Coulomb

and viscous friction coefficients of the joint of interest. Clearly, if Eq. 3.13 can

describe the dynamic behaviours at joints,(izzi, fci, fvi) can be resolved from the
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3.1. Modelling

following linear system:









q̈i1 sign(q̇i1) q̇i1

... ... ...

q̈ir sign(q̇ir) q̇ir

















izzi

fci

fvi









=









τi1

...

τir









(3.14)

wherer ≤ n is the number of data points which are used for the identification.

• Step 2: slowly increasėqiThres from 0 to max|q̇i|, solve the linear system of equa-

tion 3.14 for the parameters(̂izzi, f̂ci, f̂vi) using only the data points for which

|q̇i| ≥ q̇iThres. Since the inertiaizzi is constant at the current configuration, if

Eq. 3.13 can properly describe the dynamic behaviours of jointi, the estima-

tion of the inertia,̂izzi, should converge to a fixed value regardless the amount

of used data points. By analysing the convergence of the inertial parameterîzzi,

one can experimentally find out the region in which the linear friction model is

held. Based on this result, we can actually reconstruct the joint velocity vs fric-

tion torque graph (or friction map) for each joint. For instance, Figure 3.4 shows

the convergence of(̂izzi, f̂ci, f̂vi) of the first joint of the PA10 manipulator. As is

seen, wheṅqThres > 0.3(rad/s), îzzi converges to around1.67. This observation

implies that when|q̇1| > 0.3(rad/s), Eq. 3.13 can be used to represent the dy-

namic behaviour of the system. In other words, the linear friction model is only

valid when joint velocity is outside the range[−0.3, 0.3](rad/s). Based on the

estimated inertiâizzi, the friction map of joint 1 of the PA10 manipulator is shown

in Figure 3.5. From the friction map, it is clear that joint friction in the low-speed

region is complicated and cannot be solely modelled by Eq. 3.13.

• Step 3: The experiment is then repeated for the rest of the joints. The resulting

q̇iThres for the first four joint of the PA10 are shown in Table 3.1. These values

will be used as constraints in designing the exciting trajectory as presented in the

next section.

In summary, if joint velocity is outside the range(−q̇Thres, q̇Thres), joint friction can
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1| |

Figure 3.4: Parameter convergence of joint 1 of the PA10(xaxis is |q̇1Thres|, yaxis is the
estimated parameter). From top to bottom: estimated inertia(̂izz1), estimated Coulomb
friction coefficient(f̂c1) and estimated viscous friction coefficient(f̂v1).

1( / )

Figure 3.5: Velocity-Friction map of joint 1 of the PA10. This friction map is obtained by
making use the estimated inertiaîzz1 from the above analysis i.e.τfriction = τ − îzz1q̈1.
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3.2. Experimental Design

be modelled as a combination of Coulomb and viscous friction (Eq. 3.6). By incorpo-

rating Eq. 3.2 and 3.6, the robot dynamic model can be rewritten as:

Wc(q̈, q̇,q, DH)hc = Γ (3.15)

whereWc andhc are:

Wc =









W1,: sign(q̇1) q̇1 ... 0 0

... ... ... ... ... ...

Wn,: 0 0 ... sign(q̇n) q̇n









,hc =












hb

fc1

fv1

...












(3.16)

Theoretically, by resolving Eq. 3.15, one can accurately estimate the inertial param-

etershc provided that the observation matrixWc and the joint torqueΓ can be accurately

obtained. In practice, these assumptions are always violated since the measured torque

and motion data are usually corrupted by noise. As a result, the identification experiment

should be designed in such a way that the results from the least-squares estimator are ro-

bust w.r.t the signal noise. This observation leads to the discussion in the next section:

the design of the exciting trajectory.

3.2 Experimental Design

3.2.1 Optimum Trajectory

In order to estimatehc from Eq. 3.15,(Wc,Γ) need to be acquired through the iden-

tification experiments. By stacking the matrix together, the observation matrix can be

formed as follows:

Wo =









Wc1

...

Wck









,Γo =









Γc1

...

Γck









(3.17)
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wherek is the number of data points. Theoretically, as long as the determinant ofW T
o Wo

(which depends on the trajectory that has been used in the identification experiment) is

non-zero (i.e.Wo is full rank), the unknown parametershc can be accurately estimated

by the well-known least-squares estimator:

ĥc =
(
W T

o Wo

)−1
Wo

TΓo (3.18)

Moreover, if the information on the signal noise is available, weighted least-squares can

be used:

ĥc =
(
W T

o RWo

)−1
W T

o RΓo (3.19)

whereR is the inverse of the diagonal covariance matrix [21] that contains the standard

deviation of the noise on the measured torque.

If only the measured torque is corrupted by noise, constraints can be imposed on

the experiment trajectory to ensure the robustness of the identified results. Physically,

finding a trajectory that satisfies these constraints is equivalent to finding an optimal

trajectory that can excite the identified parameters the most. Several criteria have been

proposed in literature [18] such as:

• A-optimality: minimises the trace of
(
W T

o Wo

)−1
.

• D-optimality: maximises the determinant of
(
W T

o Wo

)−1
.

• E-optimality: maximises the minimum singular value of
(
W T

o Wo

)−1
.

• Minimise the condition number of the observation matrix.

• Maximise the likelihood: as discussed in [72].

It is worth pointing out that contaminated data come from not only the measured

torque but also the motion data i.e.(q̈, q̇,q). The reason is because most industrial

robots only come with position sensors at joints, thus, velocity and acceleration are usu-

ally derived from numerical differentiation methods. Since numerical differentiation
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amplifies signal noise [72], preprocessing the data such as filtering technique is com-

monly used. Note that an improper use of these techniques usually lead to distorted

signals, thus, needs to be avoided.

One way to resolve this issue is to limit/control the frequency components inside the

trajectory that is used in the experiment [24]. By doing this, the validity of the used data

processing techniques can be easily justified.

3.2.2 Trajectory Parameterisation

The exciting/optimal trajectory that is used for the identification experiment should be

designed to benefit the data processing techniques later on. To this end, it is natural to

limit the frequency components inside the exciting trajectory as discussed in [72]. This

approach results in the so-called periodic exciting trajectory which can be parameterised

as a sum of a finite Fourier series. The periodic optimal trajectory can be described as

follows:

qi(t) = qi0 +
n∑

l=1

ail sin(wf lt) − bil cos(wf lt) (3.20)

q̇i(t) =
n∑

l=1

ailwf l cos(wf lt) + bilwf l sin(wf lt) (3.21)

q̈i(t) =
n∑

l=1

−ail(wf l)
2 sin(wf lt) + bil(wf l)

2 cos(wf lt) (3.22)

wherewf andn is the fundamental frequency and the number of frequency components

of the excitation trajectories. These parameters should be carefully chosen so as not to

excite the un-modelled dynamics of the manipulator.

From the discussion of finding the optimum trajectory, the problem of designing the

exciting trajectory becomes one that determines the trajectories that satisfy one of the

optimal criteria listed in the previous section. In our case, the problem can be stated as

finding the coefficients(qi0, aik, bik) such that:

CF (qi0, aik, bik) = λ1cond(Wo) + λ2
1

σ0(Wo)
(3.23)

36



3.2. Experimental Design

is minimised, where the scalarλ1 andλ2 represent the relative weights between the con-

dition number of the observation matrix:cond(Wo) and its minimum singular value:

σ0(Wo). Notice that, because we want to minimise the effect of the non-linear friction

on the identified result(s), only the data points which have velocities above a thresh-

old/boundary value (from the previous section) are considered. This differs from other

researchers which normally take into account all data points along the optimum trajec-

tory. By taking into account all the above considerations, the problem of finding the

optimal trajectory can be stated as a constrained optimisation problem. Note that phys-

ical limits of joint position, velocity and acceleration are also needed to be included

in this step also as constraints. As is seen from Eqs. 3.16 and 3.23, the cost function

is nonlinear and discontinuous (e.g. thesign function in 3.16). Thus, this can make

the optimisation process become significantly difficult. In practice, one can avoid the

discontinuity by replacing thesign(q̇i) function in Eq. 3.16 with an approximated con-

tinuous function such asatan(cq̇i). The extra coefficientc is used to adjust the steepness

of the slope wheṅq approaches zero. Due to the complexity of the problem, a good

initial guess for this optimisation is hard to achieve. We therefore use genetic algorithm

(GA) to solve the above optimisation problem [17].

Once the optimisation has been solved, the optimum trajectories for all joints are

obtained. The manipulator will be commanded to follow this optimal trajectory by any

available controller. For instance, the independent joint control scheme which includes

high-gain PID controllers at each joint can be used since we currently do not have the

robot dynamic model. The responses of the robot along the trajectories will be recorded.

In order to improve the data quality before using them to estimate the dynamic param-

eters, the data are fitted to the trajectories in Eqs. 3.20, 3.21, and 3.22 [72]. A brief

description is as follows:

• Firstly, the joint position data can be filtered by a low-pass filter with an appropri-

ate cut-off frequency which depends on the choice of the fundamental frequency

(wf , n) in Eqs. 3.20-3.22. This is reasonable because the frequency components

in the optimal trajectory are predefined to be in the range.
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3.2. Experimental Design

• Secondly, since joint velocity and acceleration are not available due to the lack of

joint sensors, this information can be obtained through a numerical differentiation.

However, since the exciting trajectory are designed in the form of Eq. 3.20-3.22,

a linear least-squares fit can be performed to estimate the coefficients(qi0, aik, bik)

of the actual optimal trajectory (i.e. the actual motion of the robot) as suggested

in [72]:

qi(t) =












qi(t = 0)

qi(t = t1)

...

qi(t = Tf )












=












1 sin(wf0) − cos(wf0) ... ...

1 sin(wf t1) − cos(wf t1) ... ...

... ... ... ... ...

1 sin(wfTf ) − cos(wfTf ) ... ...




















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

qi0

ai1

bi1

...












(3.24)

As a result, joint velocity and acceleration can be obtained by substituting these

coefficients into Equations 3.21 and 3.22.

Note that the above method should be used only if the control scheme is able to

control the manipulator to closely follow the optimal trajectory. The reason is

because the above approach only considers frequency components that are in the

form of Eqs. 3.20-3.22 of the observation matrix (the left-hand side of Eq. 3.15).

However, the measured torques (the right-hand side of Eq. 3.15) are indepen-

dently filtered, thus, it is possible that the information on two-side of Eq. 3.15 are

not consistent. For instance, if the high-gain controller (that is used to control the

robot to follow the optimal trajectory) introduces high frequency components that

are not in the predefined range (i.e.6= kwf , k = 1 : n) due to the use of high-gain,

those frequency components can appear in both side of Eq. 3.15. However, if

(q, q̇, q̈) are fitted into Eq. 3.24, only frequency components that are in the prede-

fined range remain. In other words, the fitted process has made the information on

both side of Eq. 3.15 be inconsistent.
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3.3 Parameter Estimation

Although the unknown inertial parameters can be estimated by a least-squares technique

as shown in Eqs. 3.18 -3.19, there will be a potential problem on the identified results,

the so-called physical feasibility of the results [74]. One promising solution for this

problem is to use constrained optimisation tools to adjust the least-squares result [76].

By doing this, the physical meaning of the identified parameters can be guaranteed by

imposing appropriate constraints on the estimator. The physically feasible characteristic

is especially useful for advanced control schemes because it implies that the mass matrix

M(q) in Eq. 3.1 is always positive definite. In summary, the following two steps can be

used to estimate the robot model from experimental data that can attain (not assure) the

physical feasibility of the identified model:

• Step 1: the least-squares estimator: in this step, a least-squares based estimator

(LS, weighted LS) is first performed to obtain the robot parameters. The validity

of these parameters will be checked as described in Section 3.4.2. If the physical

feasibility of the result(s) cannot be verified, the second step can be used to modify

these result(s) to obtain the final answer.

• Step 2: the optimisation-based adjustment: motivated by the idea of virtual pa-

rameters [74], a constrained optimisation is used in order to find the unknown

inertial parameters instead of the ordinary least-squares. The input vectorX to the

optimisation problem is:

X =

[

h70×1 fc1 fv1 ... ...

]T

(3.25)

whereh is the standard dynamic parameters of links as shown in Eq. 3.4. Con-

straints on the parametersh will be imposed in order to make sure that the result

will always be physically feasible. The base parameters (vectorXc), can be com-

puted from Eq. 3.25 as:

Xc =

[

hb fc1 fv1 ... ...

]T

(3.26)
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3.3. Parameter Estimation

Let us consider a constraint optimisation problem as findingX such that:

CF (X) = α1 ‖WoXc − Γo‖ + α2

∥
∥
∥Xc − ĥc

∥
∥
∥ (3.27)

is minimised subjected to constraints onX to ensure the positive definite property

of the inertia matrixM(q) (Eq. 3.1):

mi > 0 (3.28)

Ii > 01 (3.29)

whereĥc is the least-squares solution from Eq. 3.18 or 3.19, the two scalarsα1, α2

define how believable the least-squares solution is and(mi, Ii) are the mass and

the 3 × 3 inertial tensor matrix of linki (Eq. 3.3). Note that the result of the

above non-linear constrained optimisation problem will give us a set of physi-

cally feasible parameterŝhb (because of the constraints onX) which also min-

imises the error between the measured and predicted torque (because of Eq. 3.27).

Note that, theoretically, by only minimising the first term of the cost function (i.e.

α1 ‖WoXc − Γo‖), we should be able to obtain the physically feasible robot iner-

tia. However, this method may not provide a proper solution in practice because

the optimisation problem can fail (the solution does not converge). Thus, we in-

troduce the second term of the cost function (i.e.,α2

∥
∥
∥Xc − ĥc

∥
∥
∥ to improve the

convergence of the algorithm.

It is worth pointing out that the above optimisation problem can be used not only

to find the robot parametershb but also to verify the physical feasibility ofhc (by

assigningα1 = 0 andα2 = 1). Further discussion on the model verification will

be given in the next section.

1Remark thatI > 0 means that the matrixI is positive definite.
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3.4 Model Verification

From the above section, the robot parameters can be obtained from the experimental

data. However, due to the signal noise, inadequate sensing capability (for example, joint

torque sensor, velocity and acceleration sensors), there is no guarantee for the conver-

gence of the estimated parameters to the actual physical parameters of the robot. In other

words, the constrained optimisation in the previous section can only guarantee that the

estimated model will converge to a physical model (can be any robot model) that can

produce about the same control torque for only the optimal trajectory which is used to

excite the robot during the experiment. And for other trajectories, the identified physical

model may not produce the correct torques. Thus, it is necessary to independently ver-

ify the identified results to check if the identified parameters match the real/actual robot

parameters.

An obvious verification method is to compare the reconstructed the torque using the

estimated model to the measured joint torques for an arbitrary trajectory. It is worth

pointing out that if only the least-squares (LS) technique is used, it is possible for the

LS estimator to produce a set of estimated parameters that are physically impossible

[17, 74, 76] (for example, the inertia matrixM in Eq. 3.1 is not positive definite for all

configuration). Thus, it is also necessary to verify the positive definiteness property of

the estimated parameters before using it in any advanced model-based control.

3.4.1 Reconstructed Torque

Reconstructed torque is one the most common method for verifying the quality of the

identified parameters. As noted in Section 3.2, the results of the above identification pro-

cess are the parameters which include the base parameters and joint friction coefficients.

Since the base parameters are lumped from the link inertial parameters, it is impossi-

ble to directly check the correctness of the identified parameters. Instead, the identified

model is verified by comparing the reconstructed torques, which are generated from the

identified model, and the measured torques, which are the actual joint torques that are

used to control the manipulator. Since the major difference between the approach in this
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3.4. Model Verification

work and others is the use of the boundary velocity, it is necessary to check whether

the identified parameters using the boundary velocity have any advantage (please refer

back to section 3.1.2 for description of the ”boundary velocity”). Thus, to check the

correctness of the estimated parameters, the manipulator is commanded to move along

an arbitrary trajectory. Motion data such as position, velocity, acceleration (q̈, q̇,q) and

controlled joint torque (Γc) are recorded along the trajectory. By making use of Eq. 3.2,

the reconstructed torque can be obtained as follows:

Γreconstructed = W (q̈, q̇,q)ĥc (3.30)

This reconstructed torque is then compared to the measured joint torque,Γc, that was

used to achieve the testing trajectory.

3.4.2 Positive Definiteness of the Mass Matrix

As pointed out in the previous section, the estimated parameters cannot be verified di-

rectly because they are lumped parameters. This makes the problem of checking the

physical feasibility of the identified parameters significantly harder since the physical

meaning of each parameters can only be shown by individually analysing the link pa-

rameters i.e.h. Motivated by the virtual parameter concept in [74], a ”brute-force”

method is suggested to automate the checking procedure. Let us define the virtual pa-

rameters as shown in Eq. 3.25, a constrained optimisation problem can be stated as

findingX such as:

CF (X) =
∥
∥
∥Xc − ĥc

∥
∥
∥ (3.31)

is minimised under the constraints thatX is physically feasible (Eqs. 3.28-3.29). The

outcome of this optimisation problem is a set of virtual parameterX that can produce

the samêhc and yet physical feasibility.

In order to see the effectiveness of the above procedure, let us use the Mitsubishi

PA10 manipulator as a case-study.
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3.5. Case-study: The PA-10 Manipulator

3.5 Case-study: The PA-10 Manipulator

Since the purpose of this chapter is to demonstrate a step-by-step procedure for iden-

tifying the dynamic model of industrial robots, the above procedure is applied to the

first four links of the PA10 manipulator. The reason that we only identified the dynamic

model of the first four links is because the inertia of the last three links of the PA10

is insignificant in comparison to the first four links. The results from the identification

process have been verified by comparing the reconstructed torques and the measured

torques for an arbitrary joint space trajectory. In addition, the identified model has been

tested in a conventional computed-torque controller, the inverse dynamics controller in

joint space. A significant improvement in terms of tracking errors was obtained, which

also shows the usefulness of the identified model.

3.5.1 Experimental testbed

In order to achieve a critical real-time performance as well as a torque measurement

capability, a custom controller has been used instead of the original controller. Seven

custom amplifiers are installed together with an 8-axis data acquisition card. A PC which

is running the QNX 6.3 operating system is used to control the manipulator as depicted

in Figure 3.6.

3.5.2 Model Identification

The following steps were carried out in order to identify the dynamic model:

1. Derive the rigid dynamic model of the robot as shown in Eqs. 3.1 and 3.2. Note

that the Coriolis-Centrifugal and gravity term are included in this model.

2. Identify the boundary velocity for the first four joints in which the dynamic fric-

tion model becomes linear for each joint (please refer to section 3.1.2 for detailed

procedure). Table 3.1 shows the experimental results.

3. Obtain the optimum exciting trajectory as described in Section 3.2. By making
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3.5. Case-study: The PA-10 Manipulator

Figure 3.6: PA10 Customised Controller. Firstly, seven amplifiers are directly attached
to the robot joints. These amplifiers are configured to operate in current control mode.
Since each joint position sensor of the PA10 is a resolver, a custom circuit has been
built to generate the reference signal to all the joints. To get joint position informa-
tion, the response from the resolver at each joint is fed into the encoder emulator of
the connected amplifier. Outputs from the encoder emulators are then captured by a
Servo-to-go 8-axis ISA servo I/O data acquisition card (www.servotogo.com/), which is
installed inside an industrial computer (CPU: 3GHz single-core, RAM: 256MB, HDD:
80GB). Finally, the control algorithms are implemented on the industrial PC which uses
QNX Neutrino Realtime Operating System 6.3. To standardise all further developments,
the implementation of the algorithms in this work adopted theMRROC++ framework
(www.ia.pw.edu.pl/ zielinsk/). Please refer toAppendix A for further description.

Table 3.1: Boundary velocities of the first four joint of the Mitsubishi PA10 manipulator.
joint q̇iThres(rad/s)

1 0.25
2 0.27
3 0.3
4 0.6
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3.5. Case-study: The PA-10 Manipulator

use of the Matlab Genetic Algorithm Toolbox, the optimum trajectory was found

with the minimum condition number around 65.

4. Execute the optimum trajectory on the PA10; obtain the joint motion and joint

torque data. Note that because the PA10 manipulator does not have joint torque

sensor, the joint torques are obtained by measuring the motor currents as discussed

in [80]. An independent joint control scheme is used at each joint to make the

joints follow the reference/optimal trajectory.

5. The inertial parameters are estimated using the method described in Section 3.4.

The equivalent virtual parameters (Eq. 3.25) are shown in Table 3.3. Note that

these parameters were obtained with the constraint to ensure the physical feasibil-

ity of the identified results (i.e., positive definiteness of the inertia matrixM(q) in

Eq. 3.1).

3.5.3 Model Verification

As noted in Section 3.4.1, the major difference between the proposed approach and

others is the use of the boundary velocity. It is necessary to check whether the identified

parameters using the boundary velocity have any advantage. To this end, two sets of data

have been used to identifŷhc. The first set (set A) includes all the experimental points

while the second set (set B) only includes the data points which have|q̇| > q̇threshold.

In the case of the PA10 manipulator, the number of data points in set B is about30% of

the number of data points in set A. Denote the identified model using set A asĥcA and

the identified model using set B aŝhcB. Figures 3.7-3.10 shows the measured torques

vs the re-constructed torques of joints 1-4 for an arbitrarily chosen different trajectory

in joint space. In these Figures, the ”re-constructed torque” is computed as Eq. 3.30

using ĥcA and ĥcB. Note that red represents the measured torque, blue represents the

re-constructed torque usinĝhcA (all velocities) and green represents the re-constructed

torque usinĝhcB (boundary velocities). The root-mean-square (RMS) errors between

the measured torque and re-constructed torque are shown in Table 3.2.
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3.5. Case-study: The PA-10 Manipulator

Table 3.2: RMS errors between the measured torque and re-constructed torque.
joint ĥcA ĥcB

1 3.9 4.1
2 7.1 5.9
3 2.1 1.5
4 5.8 3.7

Table 3.3: Virtual parameters that can reproduceĥcB(virtual) with ||ĥcB(virtual) −
ĥcB|| ≈ 10−5.

link 1 2 3 4
xxi 0.3811 0.0347 0.0236 0.0758
yyi 0.6884 1.8651 0.0119 0.0073
zzi 0.0356 3.006 0.1705 0.588
xyi 0.9833 0.7599 0.5881 0.8631
xzi 1.1198 0.8079 0.5855 0.1214
yzi 0.317 0.0001 1.5338 0.019
mxi 0.8353 2.3296 1.3338 0.8852
myi 0.8831 0.0827 0.4072 0.1501
mzi 3.1872 0.4506 0.2006 1.6751
m 0.4696 0.2088 2.5769 3.7324

Theoretically, one should expect the quality of the identified parameter using set B to

be worse than the one using set A, because there are more data in set A. However, as can

be seen in Table 3.2, an almost opposite result was obtained. The RMS errors in set A are

bigger than set B for most of the joints. This observation implies that the extra data points

in set A contributenegativelyto the accuracy of the identified resultĥcA, especially in

low velocity regions. Moreover, the physical feasibility of the identified parameters

has also been verified using the virtual parameter method as discussed in the previous

section. The equivalent virtual parameters of the identified modelĥcB is presented in

Table 3.3. It is worth stressing that the virtual parameters from the optimisation process

do not need to be the actual parameters of the manipulator (for example:zc1 = 3.1872

cannot be the parameter of the PA10). However, to assure the physical feasibility of the

identified result, the only necessary condition is that there exists a physical model (the

virtual parameters) that can reproduce the sameĥcB.

Since the purpose of the identification process in this chapter is to obtain a model

that can be used in advanced model-based control schemes, the identified model has
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Figure 3.7: Measured torque vs reconstructed torque for joint 1.
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Figure 3.8: Measured torque vs reconstructed torque for joint 2.
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Figure 3.9: Measured torque vs reconstructed torque for joint 3.
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Figure 3.10: Measured torque vs reconstructed torque for joint 4.
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3.5. Case-study: The PA-10 Manipulator

been further tested in another experiment as described below:

1. The first four joints of the manipulator is commanded to follow a sinusoidal tra-

jectory (amplitude: 30 degree, period = 4s).

2. Two controller schemes were implemented:

• Independent Joint Control: no dynamic information was used. This control

scheme is chosen because of its widely use in most industrial manipulators

(simple to implement, cost-effective and modularisation).

• Inverse Dynamic Control: the identified dynamic parameters were used to

to decouple the dynamic behaviour among the axes. A standard joint space

computed control was implemented.

u = q̈d + KV (q̇d − q̇) + KP (qd − q) (3.32)

Γ = M̂u + Ĉ + Ĝ + Γ̂fric (3.33)

Notice that the feed-forward frictions i.e. the compensated frictions are com-

puted based on the desired joint velocities.

The tracking errors for the first four joints are shown in Figure 3.11-3.14: blue represents

the joint tracking errors using the independent joint control scheme; red represents the

joint tracking errors using the dynamic control.

It is clear that there is a significant improvement in terms of the tracking error for

joint 1, 2 and 4. The tracking error for joint 3 is not as much different as others. One

explanation that is because of the structure of the PA10 that makes the inertial effects at

joint 1, 2, 4 much easier to be excited than the rest of the joints. As a result, the quality

of the identified parameters which contribute to the joint torque of joint 3 are poorer.

This observation implies that further constraints need to be imposed on the optimum

trajectories in order to excite the dynamic effects from different joints evenly.

It is worth pointing out that the above identified dynamic model was obtained in the

high speed region. Consequently, it is necessary to see how good the identified model in
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Figure 3.11: Tracking error of joint 1 (4s).
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Figure 3.12: Tracking error of joint 2 (4s).
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Figure 3.13: Tracking error of joint 3 (4s).
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Figure 3.14: Tracking error of joint 4 (4s).

the low speed region is. In order to check the performance of the identified parameters

in the low speed region, the above experiment has been redone with the period of the

desired trajectory increased from4s to 40s. Tracking errors are shown in Figure 3.15-

3.18 where blue represents independent joint control scheme; red represent dynamic

control.

As is seen, the differences between the model-based control and non-model based

control are no longer significant as shown in the previous case. One possible explanation

is that the inertial effects of the dynamic model have been dominated by joint frictions

at low speed region. As a result, the control performance will mainly depend on how

joint frictions are compensated in this region. Since only a simple friction model is

used, where Coulomb and viscous friction are considered, poor performance should be

expected.
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Figure 3.15: Tracking error of joint 1 (40s).
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Figure 3.16: Tracking error of joint 2 (40s).
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Figure 3.17: Tracking error of joint 3 (40s).
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Figure 3.18: Tracking error of joint 4 (40s).

3.5.4 Summary

We presented an improved procedure for identifying the dynamic model of robot manip-

ulators by taking into account the effects of dynamic friction. As the linearity property

of the robot dynamic model is valid only in the static region of the dynamic friction, a

scheme was proposed to identify boundary velocity that separates the dynamic friction

into nonlinear and linear regions. The above boundary velocities have been used as a

constraint in both experimental design and parameter estimation. In addition, the physi-

cal feasibility of the identified parameters was also considered as an important criterion.

A constrained optimisation problem has been introduced to adjust the identified result(s).

Experiments are completed for the first four joints of the Mitsubishi PA10 manipulator

to validate the effectiveness of the proposed identification procedures.
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Chapter 4

Model Uncertainties and Their Effects

on Discrete Controllers

As discussed in Chapter 1, compliant motion control capability is an essential require-

ment for interaction tasks. Although this capability has been realised by many re-

searchers using laboratory robots, there are limited applications of these advanced con-

trol schemes on industrial manipulators. One possible explanation among others is that

advanced control schemes require specialised knowledge about the robot such as the

robot inertia and joint friction which are not always available in practice. In the previ-

ous chapter, we have discussed the problem of model identification for industrial robots

subjected to advanced model-based control. From the discussion, it should be clear that

a perfect model is impossible to achieve due to modelling error and the lack of sensing

capability. Thus, it is necessary to investigate the effects of model uncertainties when

the model is used in model-based control. Since this research focuses on the compliant

motion capability of industrial robots using the force-based operational space control as

discussed in Chapter 1, this chapter will be devoted to study the effects of model uncer-

tainties on the control performance from both theoretical and practical points of view.

It is worth stressing that although the force-based operational space framework works

perfectly in the simulation environment, it is known to be sensitive to the accuracy of

the robot model as pointed out in [40]. This conclusion is further reinforced when we
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implemented the force-based OSC using the identified model as discussed in the previ-

ous chapter (this implementation is referred to as the conventional implementation of the

force-based OSC). From the experiment, it seems that the task space control gains are

not only hard to tune but also trajectory dependent. In fact, it is impossible to choose

the same control gains in task space (Eq. 2.13-2.14) to have a reasonable performance

because of the model uncertainties. For instance, consider the task as depicted in Figure

4.1 which is to move the PA10’s robot end-effector20cm alongy0 direction in2s. Quin-

tic polynomials are used for trajectory planning as described in Chapter 2. Null space

control objective is to maintain the position of the first joint i.e.q1d = q1i = 0. To realise

this task, the conventional force-based OSC as presented in Chapter 2 has been imple-

mented. The identified dynamic model was obtained as discussed in Chapter 3. The

control gains are chosen to have critical damped behaviour in all task space directions

as discussed in [13, 34]. These control gains were tuned to give the best possible per-

formance as mentioned in [40]. The task space tracking errors in the(x, y, z) direction

are plotted in Figures 4.2-4.4. From the figures, it is clear that the tracking performance

for the three directions is large and inconsistent in terms of the magnitude (xaxis got

the smallest tracking error andzaxis got the largest tracking error). Further investigation

on the robot model indicates that joint friction in the low-speed region is complex as

mentioned in the previous chapter. Unfortunately, most of the interaction tasks which

are frequently used in industry such as grinding, deburring and polishing often results in

slow motion at joints.

In order to see the effects of joint friction on the conventional OSC implementation,

let us look at how torque control is implemented at each joint. For almost all industrial

manipulators, the desired joint torque is achieved through controlling the motor current

because of the lack of joint torque sensor. Figure 4.5 shows a typical torque control

loop,τdesired is the desired joint torque,idesired is the equivalent desired motor current,i

is the motor current,τM is the actual torque provided by the motor,τL is the joint torque

at the load side,n is the gear ratio,τfric is the friction torque andτdist is the unknown

disturbance. Note that only motor current is controlled and it is assumed that torque
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Figure 4.1: Free-motion task: the end-
effector is commanded to move20cm in y0

direction in2s.
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Figure 4.2: Task space tracking error inx
direction.
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Figure 4.3: Task space tracking error iny
direction.
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Figure 4.4: Task space tracking error inz
direction.

control is achieved through a known motor torque constant. Frictions in the gear box

and load side are not considered and need to be compensated by an outer loop. For the

OSC framework, the outer feedback loop is closed via the task space variables (position

and orientation) and contact force. In joint space control, the effects of the joint friction

are collocated in the individual joint variables and thus easy to compensate by any joint

space controller. However, this is no longer true in task space control because the OSC

has to indirectly compensate these effects through the kinematic chain. In other words,

the uncertainty dynamics at one joint will be compensated by adjustingall task space

control gainssince these model uncertainties at one joint are propagated into task space

through the robot kinematics. As a result, improper friction compensation in joint space

can degrade the task space tracking in motion control and cause the applied force to enter

a limit cycle [48]. Experimental results on the PA10 manipulator have also confirmed

this observation.

Although friction modelling and compensation are well documented in the literature,
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Figure 4.5: One link without torque sensor.

a perfect friction model which can capture all the non-linear friction effects, especially

frictions at the low-velocity region is still an open problem. In this region, friction is

known to be highly nonlinear, with the hysteresis effect, Stribeck effect, position and/or

time dependency and other nonlinearities. Note that the implementation of these friction

compensator schemes often requires reference joint velocities and/or good joint velocity

estimation. From the practical point of view, these requirements are not easily fulfilled

for the case where the motion and force are controlled in task space since there areno

explicit reference joint velocitiesin this case. Moreover, the feedback joint velocities are

normally obtained through numerical differentiation of the joint position measurements

since most industrial robots do not have joint velocity sensors. As a result, errors in the

velocity estimation in low velocity region will be magnified in the friction compensation

due to velocity dependence of Stribeck and Coulomb friction models.

From the above discussion, model uncertainty is an inherent problem. Although there

are many solutions have been proposed for this problem such as the robust and adaptive

control schemes, they do not consider the space where the controller takes place i.e. joint

space or task space. Thus, it is necessary to investigate the effects of the uncertainties on

joint space and task space controller.
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4.1 Effects of Model Uncertainties on JS and TS Control

- Analytical Approach

For convenience, the dynamic model of a n-DOF rigid body in joint space (Eq. 2.1) and

task space (2.2) in free space are re-written as follows:

M q̈ + N(q̇,q) = Γ (4.1)

Λẍ + H(ẋ,x) = F (4.2)

where:

N(q̇,q) = C(q̇,q) + G(q) + D(q̇,q) + Γfric (4.3)

and

H(ẋ,x) = μ(ẋ,x) + ρ(x) + ϕ(ẋ,x) + Ffric (4.4)

Let the identified or estimated dynamic model which is used in joint space control

scheme as(M̂, N̂). The equivalent task space dynamics at the end-effector are:

Λ̂ = (JM̂−1JT )−1 (4.5)

Ĥ = μ̂(ẋ,x) + ρ̂(x) + F̂fric (4.6)

whereJ(q) is the Jacobian matrix of the end-effector expressed in the base frame. Note

that we have assumed here that the robot kinematic model is precisely known. It is

reasonable in practice because the kinematic model is usually provided by the robot

manufacturer. Considering uncertainties inboth kinematic and dynamic model is out of

the scope of this work.
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4.1.1 Effects of Model Uncertainties on JS and TS Control - Con-

tinuous Case

Let us apply the well-known computed torque control scheme the inverse dynamics con-

trol technique in joint space and task space to Eqs. 4.1 and 4.2:

• Joint Space: Assume that the robot is commanded to follow a desired trajectory

in joint space{q̈d, q̇d,qd}. The control torque can be computed as:

Γ = M̂uJS + N̂ (4.7)

where:

uJS = q̈d + KDq(q̇d − q̇) + KPq(qd − q) (4.8)

By applying this control torque to Eq. 4.1, the closed-loop equation becomes:

¨̃q + M−1M̂KDq
˙̃q + M−1M̂KPqq̃ = M−1M̃ q̈d + M−1Ñ (4.9)

where:

¨̃q = q̈d − ¨̃q (4.10)

˙̃q = q̇d − ˙̃q (4.11)

q̃ = qd − q (4.12)

M̃ = M − M̂ (4.13)

Ñ = N − N̂ (4.14)

• Task Space: Assume that the robot end-effector is commanded to follow a desired

trajectory in task space:{ẍd, ẋd,xd}. The control torque can be computed as:

F = Λ̂uTS + Ĥ (4.15)

Γ = JTF (4.16)
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where:

uTS = ẍd + KDx(ẋd − ẋ) + KPx(xd − x) (4.17)

By applying this control torque to Eq. 4.2, the closed-loop equation becomes:

¨̃x + Λ−1Λ̂KDx
˙̃x + Λ−1Λ̂KPxx̃ = Λ−1Λ̃ẍd + Λ−1H̃ (4.18)

where:

¨̃x = ẍd − ¨̃x (4.19)

˙̃x = ẋd − ˙̃x (4.20)

x̃ = xd − x (4.21)

Λ̃ = Λ − Λ̂ (4.22)

H̃ = H − Ĥ (4.23)

If M̂ = M, N̂ = N, thusΛ̂ = Λ, Ĥ = H (perfect model estimation), the joint space

and task space closed-loop equations (Eq. 4.9 and Eq. 4.18) reduce ton second-order

system as follows:

¨̃q + KDq
˙̃q + KPqq̃ = 0 (4.24)

¨̃x + KDx
˙̃x + KPxx̃ = 0 (4.25)

As a result, one can choose the control gains{KDq, KPq} to achieve exponential stabil-

ity.

However, if M̂ 6= M, N̂ 6= N , the equilibriumq̃ = 0 of Eq. 4.24 is no longer

exponentially stable. Instead, a weaker stability, the uniformly boundedness stability,

can be shown as in [57]. Note that the size of the bound depends on the system parameter

and control gains. Moreover, this size can be made arbitrarily small by increasing the

control gains to infinity. In fact, [57] showed that the high-gain controller can make the

equilibrium of the above closed-loop system asymptotical stable for any non-zero initial

value of q̃(0). A similar analysis can also be performed for the task space controller.
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Since the control gains can be assigned arbitrarily high, the performance of the joint

space and task space for any same/equivalent trajectory can always be equivalent by

adjusting the control gains{KDq, KPq} and{KDx, KPx}.

The above observation implies that the uncertainties in the dynamic model can be

easily overcome by playing with the control gains. In fact, if there is no upper limit on

the control gains, both the joint space and task space inverse dynamics control schemes

(Eq. 4.7-4.15) can give a similar performance for the same inaccurate dynamic model

(M̂, N̂). For instance, consider the 3-DOF (RRR) robot as presented in Chapter 2

(Figure 4.6). Let us simplify the analysis by making the length of the three links the

same(l1 = l2 = l3 = 2m). The initial configuration is chosen as shown in Figure

4.7. Under the assumption that only the estimated mass of each link is inaccurate i.e.

(m̂1 = 10kg, m̂2 = 5kg, m̂3 = 2.5kg), the above two controllers Eq. 4.7 and Eq.

4.15 are implemented to control joint 1 from the initial configuration(q1 = π/3) to the

desired configuration(q1 = π/2) while maintaining the end-effector position at(0, 0).

Quintic polynomials are used for trajectory planning as described in Chapter 2. Since

the three link lengths are the same, the joint responses for the above task using the task

space and joint space controllers will be the same. To see the effect of the control gains

on the control performance, let us choose the control gains (as the discussion in [34,57])

i.e.,:

KPq/x
= w2I (4.26)

KDq/x
= 2wI (4.27)

Figure 4.8 and 4.10 show the task space tracking errors for somew using the joint space

controller law (Eq. 4.7). Figure 4.9 and 4.11 show the task space tracking errors for

somew using the operational space controller (Eq. 4.15). As is seen, the tracking errors

are inversely proportional tow for both joint space and task space controller. As a result,

the effect of model inaccuracy can be easily overcome by increasing the control gains (as

long as the system stability is guaranteed). It is worth noting that the above controllers

are implemented in the continuous domain.
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Figure 4.6: 3-DOF RRR robot. Figure 4.7: 3-DOF initial configuration.
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Figure 4.8: Tracking error inx direction us-
ing thejoint spacecontroller.
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Figure 4.9: Tracking error inx direction us-
ing thetask spacecontroller.
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Figure 4.10: Tracking error iny direction
using thejoint spacecontroller.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

w = 5
w = 10
w = 20

(m)

(s)

Figure 4.11: Tracking error iny direction
using thetask spacecontroller.

In practice where the above control law are mostly digitally implemented, the control

gains cannot be increased above certain threshold values. If the control gains are above

these thresholds, the closed-system can inherit the so-called chattering effects [81]. In

the next section, an upper limit of the control gains for digital controller will be derived.

Also note that there are more factors that contribute to the chattering effect such as noise

in the measured signals. However, in this section, only the effect of digital controller

will be addressed.
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4.1.2 Effects of Model Uncertainties on JS and TS Control - Discrete

Case

To see the effects of the digital controller on the overall system performance, let us

consider a set-point controller in joint space and task space as follows:

Γ = M̂uq + N̂ = M̂(−KDqq̇ + KPq(qd − q)) + N̂ (4.28)

F = Λ̂ux + Ĥ = Λ̂(−KDxẋ + KPx(xd − x)) + Ĥ (4.29)

where:

- qd andxd are the desired position in joint space and task space.

- KPq, KDq, KPx andKDx are control gains:

KDq = kDqIn×n, KPq = kPqIn×n (4.30)

KDx = kDxI6×6, KPx = kPxI6×6 (4.31)

Note that a smooth quintic-polynomial input trajectory as presented in the previous sec-

tion has been replaced by a step input to simplify the analysis. In addition, comparing

the transient responses from step input is more intuitive than comparing the tracking er-

rors along an input trajectory. The closed-loop systems using the control Eq. 4.28 and

Eq. 4.29 now becomes:

q̈ = M−1M̂(−KDqq̇ + KPq(qd − q)) − M−1Ñ (4.32)

ẍ = Λ−1Λ̂(−KDxẋ + KPx(xd − x)) − Λ−1H̃ (4.33)
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Denote:

εq =
1

kDq

, αq =
kPq

kDq

(4.34)

εx =
1

kDx

, αx =
kPx

kDx

(4.35)

sq = q̇ − αq(qd − q) (4.36)

sx = ẋ − αx(xd − x) (4.37)

The above closed-loop equations become:

q̈ =
−1

εq

M−1M̂sq − M−1Ñ (4.38)

ẍ =
−1

εx

Λ−1Λ̂sx − Λ−1H̃ (4.39)

By introducing the fast time scale:

τ =
t

ε
(4.40)

and note that:

ṡq = q̈ + αqq̇ (4.41)

ṡx = ẍ + αxẋ (4.42)

the above closed-loop equations become:






dq
dt

= q̇

dsq

dτ
= −M−1M̂sq + εq(αqq̇ − M−1Ñ)

(4.43)






dx
dt

= ẋ

dsx

dτ
= −Λ−1Λ̂sx + εx(αxẋ − Λ−1H̃)

(4.44)

From the above equations (4.43,4.44) , it is clear that the disturbanceεq(αqq̇ − M−1Ñ)

andεx(αxẋ − Λ−1H̃) will vanish at high-gains sinceεq,x → 0. As a result, the closed-
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loop equations reduce to the fast reduced subsystem:

dsq

dτ
= −M−1M̂sq = −Ωqsq (4.45)

dsx

dτ
= −Λ−1Λ̂sx = −Ωxsx (4.46)

Note that the inertia matricesM and Λ are always positive definite, thus if the esti-

mated/identified inertia matrices(M̂, Λ̂) are also positive definite as discussed in the

previous chapter, the eigenvalues ofΩq andΩx will be all positive [82] (note that this

does not imply that(Ωq, Ωx) are positive definite). As a result,sq andsx tend to0 ex-

ponentially as discussed in [81]. As is seen from above analysis, as long as the control

gains can be increased, the effects of the model uncertainties:

Dq = εq(αqq̇ − M−1Ñ) (4.47)

Dx = εx(αxẋ − Λ−1H̃) (4.48)

on the closed-loop response can be made arbitrary small and the behaviour of the closed-

loop systems (Eq. 4.38, 4.39) can be defined by adjustingαq andαx. In practice, because

the control laws (Eq. 4.28, 4.29) are usually implemented using digital computers, thus,

the control gains will have upper limits as discussed in [81] and section IV of [83].

This observation raises a question on how these gain limits restrict the response of the

closed-loop systems (Eq. 4.38- 4.39) in practice.

Before discussing the effects of the discrete high-gain computed-torque control in

joint space and task space, let us summarise the question in hand again using the follow-

ing assumptions:

(i) Assume that we have an identified dynamic model of the robot in joint space(M̂, N̂).

The equivalent task space dynamics can be obtained using (Eqs. 4.5-4.6).

(ii) Let the task in joint space and task space be exactly the same i.e.xd = P (qd),

whereP (q) is the forward kinematics of the robot. In addition, let us assume that

the kinematics model is accurately known.
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(iii) Let the control laws (Eqs. 4.28-4.29) be digitally implemented with the same

sampling periodT , and assume that the control gains are chosen high enough so

that the closed-loop systems can be approximated by (Eqs. 4.45-4.46).

The question we are interested in here is how the responses of the closed-loop systems

(Eq. 4.43, 4.44) will be.

Let us first rewrite the above closed-loop systems as:

dsq

dτ
= −M−1M̂sq

⇔
dsq

dt
= M−1M̂

−1

εq

sq

⇔ q̈ = −αqq̇ + M−1M̂uq

⇔
d

dt






q

q̇




 =






0 1

0 −αq











q

q̇




+






0n×n

In×n




M−1M̂uq

⇔
d

dt
Q = AqQ + BqM

−1M̂uq (4.49)

and similarly
dsx

dτ
= −Λ−1Λ̂sx

⇔
d

dt






x

ẋ




 =






0 1

0 −αx











x

ẋ




+






0

1




Λ−1Λ̂ux

⇔
d

dt
X = AxX + BxΛ

−1Λ̂ux (4.50)

It is important to remark that, for the ease of representation,0 and1 in the equations

should be read as thezeroandidentity matrix withappropriate dimension in this Chap-

ter. Assume thatM−1M̂ can be approximated byΩq[k] andΛ−1Λ̂ can be approximated

by Ωx[k] during thek sampling period (i.e.kT ≤ t < (k + 1)T ). The discrete forms of

the above equations (zero-order hold), under the assumption that the computation time
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of the control law is negligible, are:

Q[k + 1] = eAqTQ[k] +

(∫ T

0

eAqτdτ

)

BqM
−1M̂uq[k] (4.51)

X[k + 1] = eAxTX[k] +

(∫ T

0

eAxτdτ

)

BxΛ
−1Λ̂ux[k] (4.52)

where:

eAq,xT =






1 1−e−αq,xT

αq,x

0 e−αq,xT




 (4.53)

(∫ T

0

eAxτdτ

)

Bx =






−1+e−αq,xT +αq,xT

α2
q,x

1−e−αq,xT

αq,x




 (4.54)

For simplicity, let us assume thatqd = xd = 0. Since the control inputuq,x can be

rewritten as:

uq =

[

−αq

εq

1
εq

]

Q[k] (4.55)

ux =

[

−αx

εx

1
εx

]

X[k] (4.56)

The discrete forms of the closed-loop systems become:






q[k + 1]

q̇[k + 1]




 =

1
εq






1 + 1
αq

(
1 − e−αqT − αqT

)
Ωq

1−e−αqT

αq
+ 1

α2
q

(
1 − e−αqT − αqT

)
Ωq

(
e−αqT − 1

)
Ωq e−αqT + 1

αq

(
e−αqT − 1

)
Ωq











q[k]

q̇[k]






⇔ Q[k + 1] = ΦqQ[k]

(4.57)
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and






x[k + 1]

ẋ[k + 1]




 =

1
εx






1 + 1
αx

(
1 − e−αxT − αxT

)
Ωx

1−e−αxT

αx
+ 1

α2
x

(
1 − e−αxT − αxT

)
Ωx

(
e−αxT − 1

)
Ωx e−αxT + 1

αx

(
e−αxT − 1

)
Ωx











x[k]

ẋ[k]






⇔ X[k + 1] = ΦxX[k]

(4.58)

Since the eigenvalues ofΦq,x are(e−Tαq,x ,
εq,x−Tλqi,xi

εq,x
), whereλqi,xi is the eigenvalues

of Ωq and Ωx, the stability of the above systems can only be guaranteed when then

magnitude of the eigenvalues are within the unit circle [84]. As a result, the maximum

value that the control gains can take will depend on the maximum of the eigenvalues of

Φq andΦx.

To see the effect of the upper limit of the control gains on the joint space and task space

control performance, let us first consider the following Lemma:

Lemma 4.1: Under the above assumptions(i), (ii), (iii), the upper limits of the control

gains of the joint space and task space controller (Eqs. 4.28-4.29) are the same.

Proof: Substitute Eq. 4.5 intoΩx (assume that there are no redundancy and singularity)

leads to:

Ωx = Λ−1Λ̂ = JM−1M̂J−1 = JΩqJ
−1 (4.59)

Note that: 




J 0

0 J






−1

=






J−1 0

0 J−1




 (4.60)

because 




J 0

0 J











J−1 0

0 J−1




 =






J−1 0

0 J−1











J 0

0 J




 =






I 0

0 I




 (4.61)
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Thus,Φx can be rewritten as:

Φx =






J 0

0 J











1 + 1
αx

(
1 − e−αxT − αxT

)
Ωq

1−e−αxT

αx
+ 1

α2
x

(
1 − e−αxT − αxT

)
Ωq

(
e−αxT − 1

)
Ωq e−αxT + 1

αx

(
e−αxT − 1

)
Ωq











J 0

0 J






−1

=






J 0

0 J




 Φ̄q






J 0

0 J






−1

(4.62)

Note that by similar matrix property,Φx andΦ̄q have the same set of eigenvalues [85].

As the above discussion, Eq. 4.62 implies that the upper limits of the control gains for

both systems are the same.

FromLemma 4.1, it is clear that the responses of the closed-loop systems Eqs. 4.43-

4.44 will now depend on how significant the disturbances are (Eqs. 4.47-4.48). The

reason is becauseεq,x cannot be arbitrarily reduced to zero to eliminate the effects of

the model uncertainties, as discussed in the continuous case. To see the effects of model

uncertainties on the closed-loop systems, let us further expand the disturbance terms (Eq.

4.47-4.48):

Dq = αqq̇ − M−1C̃ (4.63)

Dx = αxẋ − Λ−1μ̃ = J(αxq̇ − M−1C̃) +
(
I − JM−1M̂J−1

)
J̇ q̇ (4.64)

As is seen, the joint space closed-loop system Eq. 4.43 is disturbed by Eq. 4.63 and the

responses can be transformed to the operational space using the kinematics relationship

between the joint space and task space. However, if the control is done in task space,

the closed-loop system Eq. 4.44 has to cope with the disturbance as shown in Eq. 4.64

which is the result of the joint space disturbance multiplied by the Jacobian. Moreover,

the uncertainties of the inertia matrix also appear as an extra term in the disturbance

equation. As a result, the discrepancy between the joint space and task space control

performance can be explained as the amplification of errors due to the Jacobian cou-

pled with the upper control gain limit (i.e. control gains cannot be further increased to
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Figure 4.12: One link robot model.

compensate for the model uncertainties) as shown in the previous section.

To verify the above observation, let us consider the simulation of a 1-DOF robot as

shown in Figure 4.12. This simulation was done using SimMechanics Toolbox under

MatLAB/Simulink environment. For simplicity, let us choose the control gainskD, kP

as (Hurwitz polynomial):

kD = 2w =
1

ε
(4.65)

kP = w2 = α
1

ε
(4.66)

The control laws for joint space and task space are Eqs. 4.28 and 4.29 accordingly.

Based on the above discussion, the upper limit of the control gains isw < 200 for both

joint space and task space. Two simulations have been carried out to show the effect

of model uncertainties on the control performance. The first simulation has been used

to illustrate the existence of the upper limit of the control gains. Figure 4.13 shows the

response of the joint space controller (Eq. 4.28) for somew (the responses in task space

are similar and thus not shown here). Clearly whenw is near to the theoretical unstable

value (i.e.200), chattering occurred. In order to evaluate the control performances, the

difference between the task space responsesye = yx − yq is plotted in Figure 4.14 for

the second simulation. Here,yq = l sin(q) is the response of the controller Eq. 4.28 and

yx = l sin(q) is the response of the controller Eq. 4.29. As is seen, the differenceye

tends to be negative which implies thatyq is towardyd faster thanyx. In other words,

under the same control gains (the maximum gains that the discrete high-gain system can

take), the PD joint space controller provides a better task space response in comparison
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Figure 4.13: Joint space responses of the one-DOF system under various control gains.

to the conventional task space controller.

4.2 Effects of Model Uncertainties on JS and TS Control

- Experiments

To reinforce the above observation from the simulation, let us implement the above sim-

ulation on the last link, link 7, of the Mitsubishi PA10 manipulator. For simplicity, let us

consider the following approximation model of link 7:

izz7q̈7 + τfric = τ (4.67)

y = lsin(q7) (4.68)

It is noted that the gravity effect has been eliminated in the above equation by putting

the robot in such a way that the gravity vector is parallel to thez axis of joint 7 (Chapter

3). Sinceizz7 andτfric are practically unknown, the following values are used in the
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Figure 4.14: Task space response’s difference between the joint space and task space
set-point control for various control gains.

controller:

l = 1 (4.69)

îzz7 = 1 (4.70)

τ̂fric = 0 (4.71)

The joint space and task space set-point controller are implemented as shown in Eq.

4.28 and Eq. 4.29 in the QNX real-time operating system at1 kHz i.e. T = 0.001s.

The control gains i.e.KP , KD have been chosen as mentioned in the simulation case.

The initial configuration isq7 = 0 or y = lsin(q7) = 0 and the desired configuration is

qd = π
12

= 0.2618rad or yd = 0.2588m. Figures 4.15-4.16 show the joint responses for

somew using the joint space set point controller. As is seen, whenw > 8, chattering did

occur.

The responses from the task space set point controller are shown in Figure 4.17-4.18.

It is noted that the chattering effect also occurs whenw > 8 which is consistent to the

above analysis ((Φq, Φx) have the same set of eigenvalues).

The difference between the responses of the joint space and task space controllerye
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Figure 4.15: Responses from the joint space set-point controller.
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Figure 4.16: Responses (zoom-in) from the joint space set-point controller.

at w = 9 is plotted in Figures 4.19-4.20. Note thatye = yx − yq tends to be negative

indicate that the response ofyq is faster. In other words, for the same control gain,yq

(response from Eq. 4.28) approachesyd = 0.2588m faster thanyx (response from Eq.

4.29). It is worth stressing that the difference between the responses in this experiment

is expected to be small because only a simple one-DOF system is considered. In prac-

tice, this difference can be much more significant depending on how the kinematic and

dynamic parameters of the robot are structured.
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Figure 4.17: Responses from the task space set-point controller.

time(s)

y(
m
)

Figure 4.18: Responses (zoom-in) from the task space set-point controller.

4.3 Conclusion

In conclusion, the above analysis suggests that the inaccuracies of the dynamic model

can produce different effects depending on the space that it is used. It is also shown

in this Chapter that due to the discretisation effects, the control gains for the popular

PD set-point controller in joint space and task space are the same. This observation

suggests that the closed-loop control performance can be different for different control

space. If the kinematic model of the robot happens to magnify the modelling errors,

the task space control performance can be much degraded due to the upper limit of

control gains. The work in this chapter not only provide an insight of the effect of model
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Figure 4.19: Task space response’s of the joint space and task space set-point controller
of the 1-DOF robot atw = 9.
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Figure 4.20: Task space response’s difference between the joint space and task space
set-point controller of the 1-DOF robot atw = 9.

uncertainties on control performance but also suggest that it is necessary to seek for an

alternative control structure for the force-based operational space since the performance

of this control framework heavily depends on the accuracy of the task space dynamic

model.
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Chapter 5

Dual-loop Control Structure for The

Force-based Operational Space Control

From the discussion in the previous chapter, it was clear that the identified dynamics

should be rather used in joint space than task space to minimise its effects on the control

performance. However, since task space dynamics play an important role on compliant

motion tasks [13, 14], it is necessary to seek for an alternative formulation to minimise

the effects of the model uncertainties on task space control performance, while main-

taining all the advantage of the above force-based operational space. One promising

approach is to use a high frequency velocity feedback control loop at each joint. This

approach will result in a so called dual-loop/inner-outer loop implementation [31,32]. It

is interesting to note that one of the motivations of this approach comes from the fact that

industrial robots usually accompany a motion controller at each joint, thus, task space

control capability can only be achieved by making an outside loop. In other words, the

outer loop is closed in task space to generate the reference joint velocity using resolved

motion rate control scheme. Subsequently, this reference joint velocity is passed to the

inner loop which will compensate for the effects of joint friction and realise this refer-

ence velocity in a faster time scale compared with the outer loop. However, this control

scheme does not take into account the system dynamics in both task space and null space.

Therefore, the task (range) space and null space cannot be dynamically decoupled as in
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the force-based operational space control. In this chapter, we will explore an alternative

solution, our dual-loop structure for enhancing the force-based operational space control

framework. Note that this control structure is not new in the sense that it has been men-

tioned in some previous work such as [31–33]. The contribution here is that the inverse

dynamics concept has been shifted from the operational space into joint space in order

to minimise the effects (if possible) of the model uncertainties. It is also interesting to

note that the experiment result(s) in the previous research was shown to give a good per-

formance in task space control (for instance, Section 6 of [32]). Nevertheless, there is

no explicit explanation of why the dual-loop structure is insensitive to model uncertain-

ties. In our proposed control structure, since the motivation is to minimise the effects

of model uncertainties, the analyses from Chapter 4 can be considered to be one of the

major reasons of the significant improvement in task space control.

The rest of this chapter will be presented as follows: first, we propose the dual-loop

control structure for the force-based operational control framework. Stability analysis

of the proposed controller in the continuous domain is presented soon after. It is shown

that the proposed control structure is uniformly ultimately bounded. It is important to

stress that the stability analysis in this section only serves as a necessary condition for

the usefulness of the proposed controller because we do not account for discretising

effects, signal noise and so on. Thus, the last section of this chapter will present the

intensive experimental result(s) of the proposed control structure on the Mitsubishi PA-

10 manipulator to show its usefulness in practice.

5.1 Dual-loop Operational Space Control Structure

In order to see why this control structure was proposed, let us recall on how the force-

based operational space control make use of the robot dynamic model to achieve its

advantages. One of the key advantages of the OSC which was first proposed in [13] is

to describe the robot dynamics (at the operational point) in the operational space. As a

result, the control formulation has also been formulated using the so-called task space

dynamics. Under the assumption of perfect dynamics model, it was shown that the task

75



5.1. Dual-loop Operational Space Control Structure

space dynamics can be used to:

• Linearise the nonlinear robot system: as a result, the closed-loop system reduces to

n double integrator which can be easily stabilised by a standard PD controller [13,

14]. A direct consequence is that the task space control performance is supposed

to be isotropic for any working condition (i.e. high-speed and low-speed tasks)

and any direction.

• Unify the motion and force control within one control framework, the operational

space framework: as a result, motion and force can be controlled independently.

This is significant for applications that require a stringent control performance

such as small tracking errors for both motion and force directions.

• Dynamically decouple the task (range) space and null space for redundant robots:

as a result, the robot working space can be easily decomposed into spaces. These

spaces can be prioritised and controlled by separated controllers as discussed in

[14]. This capability is significant because it utilises the full DOF of the robot

for any given task. Interested readers can refer to the reference [14] for a detailed

description.

In practice, perfect dynamics model are normally not achievable. Thus, the control per-

formance of the above force-based operational space control framework can be signif-

icantly degraded as discussed in [40] and Chapter 4 of this work. Also from the dis-

cussion in Chapter 4, the inaccurate dynamic model is better used in joint space than in

task space to minimise its effects on the control performance. It is thus natural to move

the feed-back linearisation concept from the task space to joint space. To this end, a

dual-loop operational space control structure is proposed as follows [86]1:

• Firstly, a lower-sampling-rate outer OSC loop is used to achieve motion and force

tracking in task space and dynamically decouple the task and null space. To do

this, the operational space command force is computed as shown in Eq. 2.10-2.14

1We referred to the ”dual-loop operational space control” as the ”multi-rate operational space control”
in our prior publications but ”dual-loop” is a more accurate term.
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5.1. Dual-loop Operational Space Control Structure

using the identified dynamics model as a reference. This task space command

is then applied to the joint space identified model to get the joint acceleration

commands. For example, for free motion control task,q̈d can be computed as

follows.

q̈d = M̂−1JT Λ̂(ux − J̇ q̇) + (I − M̂−1JT Λ̂J)M̂−1ST
n (Fnull − N̂) (5.1)

Since

ˆ̄J = M̂−1JT (JM̂−1JT )−1 (5.2)

Eq 5.1 can be rewritten as:

q̈d = ˆ̄J(ux − J̇ q̇) + (I − ˆ̄JJ)M̂−1ST
n Fnull (5.3)

ux = ẍd + KV (ẋd − ẋ) + KP (xd − x) (5.4)

It is worth noting that Eq. 5.2 is actually a inertia-weighted pseudo-inverse at the

acceleration level [42]. Thus, Eq. 5.3 will give a joint space response with respect

to a task space command{ẍd, ẋd,xd} through the identified dynamic model̂M . In

other words, the purpose of the outer loop is to transform the task space command

to the joint space command using the identified dynamic model. By integrating

this reference acceleration output, the reference joint velocities for the inner loop

can be obtained. These reference joint velocities are then realised by the PI inner-

loop (higher sampling rate) control as shown below.

• Secondly, a higher-sampling-rate inner joint velocity control loop which makes

use of the identified dynamic model is used injoint spaceto reject the effects of

local disturbances. Since the dynamic model enables the use of high-gain as is

seen in Eq. 4.45-4.46, the identified dynamic model can be used here to enhance

the performance as discussed in [32]. The input of this controller is the reference
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joint velocities and accelerations. The controller can be stated as:

ΓJS = ÂuJS + Ĉ + Ĝ + Γ̂Fric (5.5)

uJS = q̈d + K(q̇d − q̇) + KI

∫
(q̇d − q̇)dt (5.6)

whereK,KI are control gains in joint space. The desired joint velocityq̇d can be

obtained by integrating the desired joint acceleration Eq. 5.3:

q̇(t + Δt)d
Δ
=

t+Δt∫

t

q̈(t)ddt (5.7)

with the initial condition as the current{q̇,q}. Clearly, if the inner velocity con-

trol loop is able to bring the manipulator from the current state{q̇(t),q(t)} to

{q̇(t + Δt),q(t + Δt)} afterΔt (sec), the behaviour of the robot will be exactly

determined by the identified dynamic model. Because the assumption that the

inner velocity control loop can change the system states inΔt (sec) is usually vio-

lated in practice, an outer loop, which is the force-based operational space control,

is always necessary to ensure the task space control performance.

Figure 5.1 depicts the above dual-loop operational space control structure that has

been used in the implementation in the experiment section. To further demonstrate the

above control structure, consider the 3-DOF(RRR) robot with the same task as pre-

sented in Section 2.2.1 (Figure 5.1). Assume that the robot model is available, two

control schemes, the original force-based OSC and the above dual-loop OSC, are used

in the simulation. Figure 5.3-5.5 show the simulation responses of joint 1-3. Blue is

the responses of the original force-based operational space control (OSC) and red is the

responses of the proposed control structure, the modified OSC (mOSC). Clearly, if the

robot model is accurately known, the responses of the original force-based OSC and the

dual-loop OSC areidentical.
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Figure 5.1: The dual-loop operational space control structure.

5.2 Stability Analysis

Since the above dual-loop OSC uses the robot model at two different levels (outer and

inner loop), it is necessary to investigate the stability of the proposed controller, at least

for the continuous case. For simplicity, let us only focus on the stability of the motion

controller (trajectory tracking) since force control capability of the hybrid motion/force

control is also achieved through position regulation [34]. Moreover, since the concen-

tration of the proposed control structure is on the task space control performance, it is

reasonable to solely focus on non-redundant case (i.e. no null space control). Note

that the stability analysis in this section only serves asa necessary conditionfor the

usefulness of the proposed controller. If the control law is digitally implemented, the

performance of the closed-loop system will now depend on how high the control gains

can take as discussed in Chapter 4.

To analyse the stability of the proposed controller, let us apply Eq 5.6 to the robot

dynamics equation (Eq. 4.1), the closed-loop equation can be rewritten as (after some
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Figure 5.2: Initial configuration the 3-
DOF(RRR) robot. The desired position has
been marked as a blue square. Note that
quintic polynomial has been used for trajec-
tory planning.
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Figure 5.3: Response ofq1 for the conven-
tional OSC (OSC) and the dual-loop OSC
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tional OSC (OSC) and the dual-loop OSC
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manipulation):

¨̃x + KV
˙̃x + KP x̃ = J ˙̃w

˙̃w + M−1M̂Kw̃ + M−1M̂KIz = M−1M̃ q̈d + M−1H̃

ż = w̃

(5.8)
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where:
¨̃x = ẍd − ẍ

˙̃x = ẋd − ẋ

x̃ = xd − x

w̃ = ˙̃q = q̇d − q̇

˙̃w = ¨̃q = q̈d − q̈

C̃ = CM q̇ − ĈM q̇ = C − Ĉ

G̃ = G − Ĝ

H̃ = C̃ + G̃ + Γ̃Fric

(5.9)

Note that the first equation of Eqs. 5.8 implies that the task space control performance

will be disturbed by the joint space dynamics˙̃w multiplies the Jacobian.

Rewriting the equations in the matrix form results in:

d
dt












x̃

˙̃x

w̃

z












=












0 I 0 0

−KP −KV −JM−1M̂K −JM−1M̂KI

0 0 −M−1M̂K − M−1CM − αM−1M − M−1K −M−1M̂KI − αM−1CM

0 0 I 0























x̃

˙̃x

w̃

z












+












0

JM−1M̃ q̈d + JM−1H̃

(M−1CM + αM−1M + M−1K) w̃ + (−αM−1CM) z + M−1M̃ q̈d + M−1H̃

0












(5.10)

⇔ Ẋ = ΩX + B (5.11)
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Here, we are interested in the stability property of the equilibrium:

[

x̃ ˙̃x w̃ z

]T

e

=

[

0 0 0 0

]

(5.12)

of the system Eq. 5.11 since it reflect the stability of the proposed controller. Also note

that there are extra terms−M−1CM − αM−1M − M−1K in the Ω matrix, and they

have been cancelled out later in vectorB. The purpose of these terms is to simplify the

analysis for the nominal system as shown in the next section.

To analyse the stability of Eq. 5.11, we adopt the methodology proposed by Khalil

[87], that is:

- Firstly, the asymptotic stability property of the nominal systemẊ = ΩX is studied.

- Next, the solution of the overall system Eq. 5.11 is shown to be uniformly ultimately

bounded.

5.2.1 Stability of the Nominal System

Let us consider the following Lyapunov function candidate inspired by [50]:

V =
1

2
XT












Kv I 0 0

I I 0 0

0 0 M αM

0 0 αM αK + α2M












X = XT PX (5.13)

where:

K = kI (5.14)

Kp = kpI (5.15)

Kv = kvI (5.16)

KI = kiI (5.17)

α =
ki

k
> 0 (5.18)
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Note thatP is positive definite whenk > 0 andkv > 1 by Lemma 5.1 (Appendix B).

The derivative ofV is (after making use of the skew-symmetric property of the inertia

matrixXT
(
Ṁ − CM − CT

M

)
X = 0):

V̇ = −












x̃

˙̃x

w̃

z












T 










KP 0 JM−1M̂K JM−1M̂KI

KP KV − I JM−1M̂K JM−1M̂KI

0 0 M̂K + K M̂KI

0 0 αM̂K αM̂KI























x̃

˙̃x

w̃

z












= −XT






Q1 Q2

0 Q3




X = −XT QX

(5.19)

After some manipulation, using Lemma 5.2 (Appendix B) it can be shown thatQ > 0

when:

(a). Q3 > 0 i.e.

S(Q3) = Q3 =






M̂K + K αM̂K

αM̂K α2M̂K




 > 0 (5.20)

by Lemma 5.1 (Appendix B):Q3 > 0 ⇔ α, k > 0

(b). The second condition4λmin (S (Q1)) > ‖Q2‖ 2 ‖S (Q3)
−1‖ > 0 can be seen by

noting that:

(i) The eigenvalues ofS(Q1):

S(Q1) =






KP
1
2
KP

1
2
KP KV − I




 (5.21)

is:

λi =
1

2

(
−1 + kp + kv ±

√
k2

p + (kp + 1 − kv)2
)

(5.22)

(ii) The induced norm of matrix||S(Q3)
−1|| (from here onward,||A|| will be
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referred as the induced norm of matrixA [85]) can be found as follows:

S(Q3) = Q3 =






M̂K + K αM̂K

αM̂K α2M̂K




 = k






M̂ + I αM̂

αM̂ α2M̂




 (5.23)

SinceM̂ is symmetric and positive definite, let̂M be transformed by:

M̂ = TΛM̂T−1 (5.24)

whereΛM̂ is diagonal matrix.S(Q3) now becomes:

S(Q3) = k






TΛM̂T−1 + TIT−1 αTΛM̂T−1

αTΛM̂T−1 α2TΛM̂T−1




 (5.25)

= k






T 0

0 T











ΛM̂ + I αΛM̂

αΛM̂ α2ΛM̂











T−1 0

0 T−1




 (5.26)

SinceQ3 = QT
3 > 0, the induced matrix norm ofQ3 is: ‖Q3

−1‖ = 1
min|λi(Q3)| =

1
min λ(Q3)

. Becauseminλ(S(Q3)) ≤

k
2

(
1 + λM̂ + α2λM̂ −

√
(1 + λM̂ + α2λM̂ ) 2 − 4α2λM̂

)
, whereλM̂ is the

lower smallest eigenvalue of̂M ,

∥
∥S (Q3)

−1
∥
∥ =

∥
∥Q3

−1
∥
∥ ≤

2

1 + λM̂ + α2λM̂ −
√

(1 + λM̂ + α2λM̂) 2 − 4α2λM̂

(5.27)

(iii) The upper bound of the induced norm of

Q2 =






JM−1M̂K JM−1M̂KI

JM−1M̂K JM−1M̂KI




 =






L αL

L αL




 (5.28)
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can be found by noting that ( [88], Chapter 2):

‖Q2‖ =

∥
∥
∥
∥
∥
∥
∥






L αL

L αL






∥
∥
∥
∥
∥
∥
∥
≤
√

max{2‖L‖, 2α‖M‖}
√

max{‖L‖ + α‖L‖, ‖L‖ + α‖L‖}

(5.29)

SinceL = JM−1M̂K = kJM−1M̂ , L is bounded by:||L|| ≤ kδL (because

M, M̂, J are all functions ofsin(qi), cos(qi)), thus‖Q2‖ 2 ≤ 2(α + 1)k2k2
L.

After some manipulation, the above conditions(a), (b) becomes:






kp > 0

kv > 1
4
kp + 1

1 > α > 0

1
2
(kp + kv − 1 −

√
k2

p + (kp − kv + 1)2) >
(α+1)k2k2

H

(1+(1+α2)−
√

(1+(1+α2))2−4α2)

(5.30)

As is seen, if the control gaink is fixed (i.e. after the inner-loop control is tuned), Eq

5.30 can always be satisfied by increasing the task space gains(kp, kv). As a result, the

nominal systemẊ = ΩX is exponentially stable because [87]:

V̇ = −XT QX < −λmin(Q)||X||2, λmin(Q) > 0 (5.31)

5.2.2 Stability of the Overall System

Although the equilibrium pointXe = 0 of the nominal system (which is the error system

without the disturbance termB) is exponentially stable with a proper choice of gains,

the equilibrium of the actual error system Eq. 5.11 can only be shown to have bounded

stability. One main reason is because the disturbanceB is a function of joint position and

velocity, which are also the states of the error system. Before showing the boundedness

stability, let us first recall some common and useful properties of the dynamic model

(the proofs for these properties can be found from [59,82,89]):
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• The joint space inertia matrix is bounded:

0 < ‖M‖ = max |λi(M)| = max (λi(M)) ≤ δM (5.32)

0 <
∥
∥M−1

∥
∥ =

1

min |λi(M)|
≤ δM−1 (5.33)

0 <
∥
∥
∥M̂

∥
∥
∥ = max

∣
∣
∣λi

(
M̂(q(t))

)∣∣
∣ ≤ δM̂ (5.34)

0 <
∥
∥
∥M̃

∥
∥
∥ =

∥
∥
∥M − M̂

∥
∥
∥ ≤ ‖M‖ +

∥
∥
∥M̂

∥
∥
∥ = δM̃ (5.35)

• The joint space gravity is bounded:

0 ≤ ‖G‖ ≤ δG (5.36)

0 ≤
∥
∥
∥G̃
∥
∥
∥ =

∥
∥
∥G − Ĝ

∥
∥
∥ ≤ ‖G‖ +

∥
∥
∥−Ĝ

∥
∥
∥ = ‖G‖ +

∥
∥
∥Ĝ
∥
∥
∥ = δG̃ (5.37)

• Assume that the induce norm of the Jacobian is bounded i.e.‖J‖ =
√

λmax (JT J) ≤

δJ , under the assumption of singularity-free, it can be shown that [27,50]:

0 ≤ ‖q̇‖ ≤ δpJ (δẋd
+ ‖X‖) = δq̇1 + δq̇2‖X‖ (5.38)

• Using the similar approach as shown in [50], it can be shown that:

0 ≤ ‖CM (q, q̇)‖ ≤ δC‖q̇‖ ≤ δC1 + δC2‖X‖ (5.39)

0 ≤ ‖CM (q, q̇) q̇‖ ≤ δC‖q̇‖ ≤ δCq1 + δCq2‖X‖ + δCq3‖X‖2 (5.40)

0 ≤ ‖C̃M q̇‖ ≤ δ ˜Cq1 + δ ˜Cq2‖X‖ + δ ˜Cq3‖X‖2 (5.41)

0 ≤ ‖Ñ‖ ≤ δÑ1
+ δÑ2

‖X‖ + δÑ3
‖X‖2 (5.42)

0 ≤ ‖q̈d(t)‖ ≤ δq̈d1 + δq̈d2
‖X‖ + δq̈d3

‖X‖2 (5.43)
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Note that: ∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥












0

x

y

0












∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥






‖x‖

‖y‖






∥
∥
∥
∥
∥
∥
∥

(5.44)

for any vectorx,y. Thus, after some manipulations, the disturbanceB can be shown to

be bounded as follows:

‖B‖ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥












0

JM−1M̃ q̈d + JM−1Ñ

(M−1CM + αM−1M + M−1K) w̃ + αM−1CMz + M−1M̃ q̈d + M−1Ñ

0












∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

< ζ1 + ζ2||X|| + ζ3||X||2 (5.45)

whereζ1, ζ2, ζ3 > 0 are the system parameters. Using the same Lyapunov function (Eq.

5.13),V̇ now becomes:

V̇ = −XT QX + XT B ≤ ||X||(ζ1 + (ζ2 − λmin(Q))||X|| + ζ3||X||2) (5.46)

Note that when:

ζ2 − λmin(Q) < 0 (5.47)

(ζ2 − λmin(Q))2 − 4ζ1ζ3 > 0 (5.48)

by a proper choice of control gains,V̇ < 0 for ||X|| ∈ (γ1, γ2), whereγ1, γ2) > 0 are the

roots of the polynomialζ1 + (ζ2 − λmin(Q))||X|| + ζ3||X||2 (Figure 5.6). Thus, by ap-

plying the same concept as in Lemma 3.5 in [57], the overall system can be shown to be

uniformly ultimately bounded. Note that the purpose of this stability analysis is only to

show that the proposed control lawcan be stabilisedby a proper choice of control gains.

However, in practice, the size of the uniform/uniform ultimate bound cannot be made

arbitrarily small because of the upper limits on the control gains as discussed in the pre-
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Figure 5.6:||V̇ || vs ||X||.

vious Chapter. The next section will be devoted to show the experimental result(s) on a

real robotic manipulator in order to validate the performance of the proposed controller.

5.3 Case-study: The PA10 Manipulator

Since the proposed controller has shifted the inverse dynamics concept from task space

to joint space (the inner loop), the proposed controller is expected to outperform the

conventional operational space control. To show the efficiency of the proposed scheme,

the dual-loop controller is implemented on the Mitsubishi 7-DOF PA10 manipulator as

described below.

5.3.1 Experiment testbed

In order to achieve real-time torque control capability, the original controller of the PA10

has been replaced by our custom controller which is depicted in Figure 3.6. The inner

control loop has been implemented at5 kHz, while the outer control loop is running at

1 kHz as depicted in Figure 5.1. The dynamic model of the manipulator was identified

as shown in Chapter 3. Since the dynamic model has been used, the control gains in

the below experiment are supposed to be isotropic and was chosen to have a critically

damped behaviour. To show the usefulness of the proposed controller, two schemes are

implemented:
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5.3. Case-study: The PA10 Manipulator

• Conventional force-based OSC implementation (OSC): a straightforward imple-

mentation of the OSC as presented in Chapter 2. Note that due to the effects

of model uncertainties, motion control gains of the OSC were tuned to reach the

performance limits using a similar approach as described in section 6 of [40].

• The dual-loop OSC implementation or the modified OSC (mOSC): a two-layered

hierarchical controller as illustrated in Figure 5.1 is used. Note that only a simple

Euler method was used to integrate Eq. 5.7 because the integrator always used the

current statesq(t) as an initial condition, thus, the integration errors will not be

accumulated.

It is noted that although there are other techniques to improve the control performance,

only a simple model-based PID controller is used in this section. The reason is because

the purpose of this section isto evaluate the control performancewhen the task space

dynamics is shifted to joint space by the dual-loop control structure.

5.3.2 Task Space Free Motion Control

In this test, the end-effector of the manipulator was commanded to move 0.2 metre in the

y-direction of the base frame in 2 seconds from the same initial configuration for both

control schemes. Note that the end-effector pose has been obtained using the forward

kinematic model (i.e. no external measurement) since only control errors are consid-

ered. Also, quintic polynomials are used for trajectory planning as described in Chapter

2. Null space control objective for both cases is to maintain the position of the first joint

i.e. q1d = q1i = 0. The task space position tracking errors are shown in Figures 5.8-

5.10. Here, blue represents the tracking error of the conventional implementation, red

represents the tracking error of the proposed controller. As is seen, the response time for

both control schemes are quite similar (0 < t < 0.2s) because the control gains for both

schemes are at the same order of magnitude (Lemma 4.1). However, since the conven-

tional OSC needs to cope with the joint space uncertainties through the robot kinematics,

it performance is worse than the propose controller as discussed in Chapter 4. The poor
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5.3. Case-study: The PA10 Manipulator

performance of the conventional implementation can also be explained by analysing the

friction effects at each joint. Experimental results (not shown here) indicated that joint

frictions of the PA10 are significantly nonlinear due to the Stribeck effect, hysteresis

effect and is found to be position and time dependent. Clearly, the simple friction model

(viscous and Coulomb) is not able to fully describe these effects. These effects are mag-

nified through the kinematic model into operational space; the performance is therefore

degraded significantly for the conventional OSC case. On the other hand, the proposed

dual-loop OSC has an inner-loop control to suppress these nonlinear effects efficiently

at the joint level. Thus, disturbances from the inaccurate dynamics can be easily over-

come by the joint space high-gain controllers. The result(s) from this experiment show

how significant the joint space disturbances can degrade the task space control perfor-

mance in practice. Also notice that the tracking error(s) in they andz direction all have

tendency to go up at the beginning (t < 0.1s). This phenomena is the result of the in-

teraction between the integral action and joint stiction. As can also be seen in Figures

5.8-5.10, tracking errors iny andz direction are significantly larger than the tracking

error in thex direction. One possible explanation is because of the desired task and the

initial configuration of the robot (Figure 5.7). In fact, for the given task, joint 1, 3 and 5

(joints contribute motion inx direction) do not need to have any motion. As a result, the

uncertainties at those joints were not excited. The same explanation also can be made

for the difference between the tracking error in they andz direction. In other words, the

uncertainties at joint 6 create more effects on thez direction than those on they direction

because of the initial configuration.

5.3.3 Task Space Motion Control: Low-speed vs High-speed

The performance of the proposed control scheme is also evaluated for the high-speed

and low-speed tasks. In this case, the end-effector is commanded to move in a star-

like trajectory as illustrated in Figure 5.11 (this trajectory has been used to measure the

performance of different operational space controllers in [40]).
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5.3. Case-study: The PA10 Manipulator

Figure 5.7: Free-motion task on the Mis-
ubishi PA10. The manipulator is initiated
at the inverse configuration as the above fig-
ure.
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Figure 5.8: Task space tracking error in the
x direction (blue: OSC, red: mOSC).
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Figure 5.9: Task space tracking error in the
y direction (blue: OSC, red: mOSC).
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Figure 5.10: Task space tracking error in the
z direction (blue: OSC, red: mOSC).

The length of each segment is0.1m. Quintic polynomials are used for trajectory

planning for each segment as described in Chapter 2. The end-effector of the robot is

initiated at the centre of the star, the desired task is to move the end-effector from the

initial configuration to one tip of the star, then move back to the initial configuration

(both using quintic polynomial for trajectory planning). For the high-speed task, each

segment is commanded to move in 1 second. For low-speed case, this value becomes 2

seconds. Position tracking errors are shown in Figures 5.12-5.13 (note that the control

gains for both cases are the same). Since the dual-loop OSC makes use of the robot

dynamic model at two separated level, outer-loop: the dynamics is used to generate the

joint space command, inner-loop: the robot dynamics is used to compensate for the joint

space nonlinear dynamics, the purpose of this experiment is to verify the effectiveness

of the dynamic model in compensating for the nonlinear dynamics, especially the effects

of link inertia. Theoretically, the control performance should be identical for any given
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Figure 5.11: Star-shape trajectory.
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Figure 5.12: Tracking errors (low-speed).
From top to bottom: tracking error inx, y
andz direction.

0 2 4 6 8 10 12 14 16
-5

0

5
x 10

-3

z
e
(m

)

time (s)

-5

0

5
x 10

-3

y
e
(m

)

-5

0

5
x 10

-3

x
e
(m

)

Figure 5.13: Tracking errors (high-speed).
From top to bottom: tracking error inx, y
andz direction.

task since the robot nonlinear dynamics has been cancelled out by the inverse dynamic

control technique. However, in practice, differences in terms of the control performance

for different task are expectable due to the model mismatch. As can be seen from Fig-

ures 5.12-5.13, although the tracking errors at low speed and at a sufficiently high-speed

0.1m/s are not exactly similar; the tracking errors in the high-speed case (Figure 5.13)

are still around0.1mm which can validate the effectiveness of the dynamic model com-

pensation at the inner-loop.
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5.3.4 Motion and Force Control

The motion and force control capability of the proposed control scheme was evaluated

using two experiments as follows.

Force regulation

As mentioned before, regulating the contact force is a challenge for the conventional im-

plementation of the OSC in the presence of model uncertainties. In fact, because of the

unmodelled dynamics, it is impossible to maintain1N contact force at the end-effector.

However, as shown in Figure 5.14, the proposed controller is able to maintain a light

(1N) as well as a slightly heavy (10N) contact force without any retuning of force gains.

Note that in this experiment, only y-direction (base frame) is force controlled. Other axes

(x, z and orientation) are motion controlled. Note that the poor control performance of

the conventional OSC (Figure 5.16) can be explained as the interaction between the joint

stiction and the integral of the force controller [48]. Unfortunately, the force controller

usually needs the integral action to achieve zero steady state error because stiff environ-

ment limits the proportional gain (thus create large steady state error) in practice. On

the hand, the dual-loop control structure already has the integral action at the joint level

(the inner loop), thus, the outer loop, which is where the force controller takes place,

can be considered to be free of all the above joint space disturbance. As a result, the

dual-loop OSC structure can offer a better force control performance (Figures 5.15 and

5.17). Note that, in all the above experiments, task space damping (i.e.−kẋ) in the force

control direction has been used to stabilise the system during the impact period [12].

Motion and force control

In order to have a better benchmark of the force control capability, the proposed control

scheme has been compared to the commercial force control solution from PushCorp.

Because PushCorp’s compliance module only has the capability of regulating the force

in one axis, the compliance module (AFD1100) was attached to the end-effector of the

ABB robot (IRB4400) as depicted in Figure 5.20. The ABB robot is then commanded to
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Figure 5.14: One axis force regulation. The
robot has been initiated at the configuration
as the above figure. The desired contact
force is1N in they axis of the base frame.
the workpiece is made from steel.
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Figure 5.15: 1N contact force (mOSC).
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Figure 5.16: 10N contact force (OSC).
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Figure 5.17: 10N contact force (mOSC).

move in x-direction while the PushCorp compliance module regulated the contact force

in the y-direction as illustrated in Figure 5.18.

In this experiment, the task is to move the end-effector from the starting point to the end

point while maintaining the contact force to be20N. In order to have a fair comparison,

an independent JR3 sensorhas been installed at the bottom of the workpiece (Figure

5.19). The measured forces from sensor for the proposed force control using PA10 and

the PushCorp’s compliance module are presented in Figure 5.21. As the result shows,

the force tracking error of the PushCorp’s module and the PA10 force control are are

similar in terms of the magnitude. However, the PA10 controller has to control a 7-DOF

system while the PushCorp device is only concerned with the force control of a single

axis. This observation implied that the proposed controller is able to perform as good as

the 1-DOF system while maintaining the flexibility of a 7-DOF system.
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Figure 5.18: Hybrid Motion/Force Task. Figure 5.19: The workpiece.

Figure 5.20: PushCorp on the ABB.

Figure 5.21: Force responses from the Push-
Corp + ABB and the dual-loop OSC. Note
that robot end-effector has been initiated
sufficiently near to the workpiece to reduce
the impact force.

5.4 Conclusion

Based on the discussion in Chapter 4, a dual-loop operational space control structure has

been introduced in this chapter. Since the use of the robot model has been shifted from

task space to join space, the effects of model uncertainties on the control performance

are expected to be minimised. To maintain the advantages of the force-based OSC, the

identified robot model is used again at the outer loop to generate the joint space com-

mands. The proposed control structure was shown to be uniformly ultimately bounded

by Lyapunov’s direct method in the continuous domain. The usefulness of the structure

has also been verified on actual industrial robot, the Mitsubishi PA10 manipulator, using

the QNX real-time operating system. Experimental results indicated a significant im-
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provement in terms of the control tracking errors (both motion and force) in comparison

to the conventional one.
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Chapter 6

Industrial Application: Grinding Task

Although the performance of the proposed dual-loop operational space control (mOSC)

structure in the previous chapter has been verified through intensive experiments, they

are yet to be verified in a practice setting. Thus, it is necessary to analyse the usefulness

of the mOSC from a practical stand point. In this chapter, a real industrial application

is selected to evaluate the performance of the proposed control framework. We will

investigate the performance of the mOSC through the grinding process which is one of

the most common tasks in manufacturing industry. Before going into detailed description

of the application, let us first justify the reason why we need compliant motion control

capability for such grinding task.

6.1 Why Force Control for Grinding Task

Edge profiling is a common task in manufacturing industry since most machining pro-

cesses produce unwanted features such as sharp edges or burrs. These undesirable fea-

tures must be removed for part fitting and/or for safety reasons.

It is worth pointing out that although computer numerical controlled (CNC) (Fig-

ure 6.1) machines can be used for edge profiling tasks, these processes are still com-

monly carried out by human using handheld tools. The reason that CNC machines are

not preferable is because they are costly and not suitable for large workpieces (such

as aerospace/marine components). Although human equipped with suitable tools can be
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Table 6.1: Comparison between CNC machines and robot systems.
CNC Machines Robotised Finishing Systems
Higher rigidity Lower rigidity
Higher accuracy(< 10μm) Lower accuracy(∼ 100μm)
CAD/CAM offline programming Intuitive teaching and programming
Position control Position/Force/Adaptive process control
Limited workspace and low dexterity Large workspace and high dexterity
High cost Low cost
Suitable for high-precision(< 10μm) Suitable for precision surface finishing
machining of smaller parts with (100 ∼ 200μm) of larger parts with complicated
simple geometrical features geometrical features
Expensive(> 600K) Affordable(30K ∼ 200K)

more efficient than CNC machines for large parts, cost (higher skills, higher cost) and re-

peatability are some of the major disadvantages when high production rate is needed. On

the other hand, since robotic systems (Figure 6.2) can provide a rather high workspace

with great flexibility and repeatability at an affordable price, there is a recent trend of

using robots to automate the above process. Table 6.1 summarises the advantages and

disadvantages of CNC machines versus robotised systems for edge profiling tasks. As

is seen from Table 6.1, although the accuracy provided by robotic systems is not as high

as CNC machines (< 10μm vs 100 ∼ 200μm), there are still substantial opportunities

for using robotic systems to carry out cost-effective edge profiling process. This is due

to the fact that, edge finishing for many large components does not require very high

geometrical accuracy.

Figure 6.1: 5-axis CNC machine
(www.makino.de). Figure 6.2: Robotised finishing system.
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Figure 6.3: Contact force control approaches. Note that the terminology and literature
in this chapter may not be consistent to the one from Chapter 1 since it has been done
from the industry point of view [1].

Ideally, if the relationship between a robot and a workpiece is accurately known, one

can use the robot as a positioning system with tools at the end-effector to machine the

desired surfaces as in the case where CNC machines are used. However, in a typical

robotic workcell, the task space accuracy of the robot and workpiece can be fairly poor.

This will result in poor finishing quality, if the material removal approach is merely based

on positional and geometrical accuracy of the workcell. In addition, since the robotic

system serves as an independent positioning system, the dynamics of the machining

process (which is the results from the interaction between the robot and workpiece) is

totally ignored. Thus, the cutting tool can be rapidly worn and eventually damages the

workpiece. One possible solution for this problem is to provide the compliant motion

control capability for the robot as discussed in Chapter 1. By doing this, the dynamics of

the machining process can now be adjusted through controlling the compliant behaviour

of the robot.

It is worth pointing out that there are at least two approaches to provide compliance

at the end-effector of industrial robots [90]: the passive compliant approach and the ac-

tive compliant approach as depicted in Figure 6.3. In the passive compliant approach,

the applied force is passively achieved through passive compliant tools (Figure 6.4-6.5)

that are attached to the robot end-effector, while the robot operates in positioning mode.
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Since passive compliant tools cannot directly control the applied force, the applications

of these tools are limited to those require loose tolerance material removal (> 500μm ).

On the other hand, in the active compliant approach, the applied force is actively con-

trolled either through the robot (by controlling the torque at each robot joint) or ”around

the robot” [90] (by attaching another module at the robot end-effector). Note that when

the applied force is achieved around the arm, the robot is still operated as a positioning

system. In this case the compliant behaviour can be produced by the add-on module

either at the robot end-effector or at the workpiece. Figure 6.6 shows a commercially

available add-on module, the compliant module AFD1100 from PushCorp. This com-

pliant tool can achieve active force control by adopting the ”around-the-arm” approach.

Note that most available add-on compliant modules only provide force control for one

axis. In addition, in the ”around-the-arm” approach, the compliant module operates

independently to the robotic system, thus, motion planning for the robot end-effector

needs to take into consideration the reaction force between the compliant tool and the

workpiece in order to have a good force control performance (since the reaction force is

treated as an unknown disturbance to the robot motion controller).

On the other hand, although force control using the ”through the arm” approach is

quite established in the research community using laboratory robots, the application of

these force control schemes on industrial robots is still limited [91]. So far, only ABB

Corp (www.abb.com) published more convincing results [1,92] although their force con-

trol approach requires significant effort of programming (i.e teaching for the entire edge

profile is required for good force control performance). Figures 6.8-6.9 show the force

response of the IRC5 ABB force control for the same experiment as described in the

previous chapter in comparison to the responses of the PushCorp compliant module

(AFD1100) and the proposed mOSC using the Mitsubishi PA10 manipulator. As can

be seen, without a intensive teaching effort, the response from the ABB’s force control

performs the worst. Note that in this example, only starting-point and end-point are vis-

ible for all the three force control systems. If sufficient teaching points (points along the

surface) are engaged, ABB’s force control performance can be improved to a satisfac-
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6.2. Grinding Application

Figure 6.4: Passive compliant tool.
Figure 6.5: ATI’s deburring tools (www.ati-
ia.com).

Figure 6.6: Around the arm approach: Push-
corp’s active compliant tool (AFD1100)
(www .pushcorp.com).

Figure 6.7: Through the arm approach:
ABB’s force control (www.abb.com).

tory level for the aforementioned grinding task. Thus, it is interesting to find out what

is the performance of the dual-loop operational space control in practice for the same

application (i.e. grinding task using conical tool) when only starting-point and end-point

are known.

6.2 Grinding Application

From the above discussions, it is clear that the mOSC belongs to the active force control

approach. Since this approach makes use of the hybrid position/force control framework,

the desired compliant task can be achieved by decomposing it to motion and force control

tasks. For instance, let us consider a task of using a grinding wheel to create a chamfer

on a sharp edge as depicted in Figures 6.10. Obviously, this task can be decomposed

into:

• Controlling the robot to move along the desired cutting edge and
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6.2. Grinding Application

• Controling the applied force in the direction that is orthogonal to the motion con-

trol directions.

Figure 6.8: Hybrid Motion/Force Task.

Figure 6.9: Force responses from the Push-
Corp+ABB, the mOSC and ABB’s force
control.

A visualisation of the above description is shown in Figure 6.11. As can be seen from

Figure 6.11, the quality of the chamfered surface will mainly depend on the normal

contact force during the cutting process. Two possible robot-workpiece setups to realise

this grinding task are shown in Figure 6.12:

• The robot carries the workpiece, while the grinding spindle is stationary. This

setup is only applicable for a workpiece that is small and light enough for the

robot to carry. Since the workpiece is mounted after the force-sensor, inertial force

caused by the workpiece inertia will be coupled with the contact force during the

sensing process. As a result of this coupling, separating the contact force from

the inertial force is one of the major issues of this approach. In addition to the

aforementioned issue, the tool centre point (where the workpiece and tool contact)

can also change during the operation for this setup, thus further complicating the

force control scheme.

• The robot carries the grinding tool and the workpiece is stationary. Since the

grinding tool has its own dynamics causing by the spinning wheel (even no contact

and motion are involved), the force reading from the force/torque sensor can be

contaminated. Also note that the previous mentioned coupling problem between
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6.2. Grinding Application

the inertial force and contact force still exist in this setup if the tool inertia is large

and therefore cannot be ignored.

Figure 6.10: Sharp edge chamfering. Figure 6.11: Grinding process.

For experiments in this chapter, the second setup i.e. the workpiece is mounted on

the ground, while the pneumatic grinding spindle is attached to the PA10 manipulator

is adopted. Since the purpose of this experiment is to evaluate the force control per-

formance of the mOSC on edge profiling tasks with targeted to large aerospace/marine

components, process study has been conducted on actual components to find out the

suitable process parameters. From the process study, the required contact force can be

as small as2N [93]. As mentioned in Chapter 5, maintaining this light contact force is

really a challenge for the conventional operational space formulation under the presence

of model uncertainties. However, as also shown in Chapter 5, the proposed dual-loop

operational space structure is able to maintain the contact force not only as low as1N but

also as10N without re-tuning the force control gains, thus, this control framework will

be adopted in this experiment. The experiment setup for the grinding task is described

as follows.

6.2.1 Experiment Setup

• Hardware setup: the dimensions and model number of the grinding wheel are

shown in Figure 6.13. The workpiece is made from steel with the dimension of

0.15m × 0.15m × 0.01m. The initial position of the grinding wheel has been
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6.2. Grinding Application

Figure 6.12: Experiment setups: robot carries the workpiece (left) and robot carries the
grinding tool (right).

configured to be0.5cm away from the workpiece. The pneumatic grinding spindle

has been operated at a fix air pressure,4bar, in this experiment.

In this experiment, the desired contact force for the grinding process is set to3N.

The same impact control strategy (i.e. adding damping in the force control direc-

tion) as described Chapter 5 is used to stabilise the system during the transition

from free motion to constrained motion. To further reduce the effect of impact

force on the surface to be ground, step-response(1N) at the beginning is used.

The desired contact force is then gradually increased to3N in 2s as depicted in

Figure 6.14.

• Software setup:

Controlgains: the control gains of the force controller were first tuned without the

dynamic effects of the grinding wheel (i.e. the wheel is turned off). This set of

control gains is then used in the grinding experiment without any modification.

6.2.2 Practical Issues

Forcesensing: since the dual-loop operational space control requires direct force sens-

ing to close the force control loop, it is necessary to describe how force information is

obtained.

Note that the problem of observing the contact force in the presence of inertial force
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6.2. Grinding Application

and other dynamics is usually referred to as the sensor fusion problem [94–96]. The

reason of why fusing data are needed comes from the fact that acceleration information,

which can typically be obtained from the accelerometer, is required in estimating the

contact force. In this experiment, since the inertia of the tool is negligible, effect of

the tool inertia on the force measurement is ignored (i.e. only static compensation was

incorporated, inertial effect on the force reading is treated as an unknown disturbance).

To the best of our knowledge, most research on the problem of estimating contact

force for contact operations only considers the inertial effect of the heavy tool which is

mounted after the force sensor. The dynamics of the tool when it is operating is usually

ignored due to its complexity [96]. In this experiment, to minimise the effects of the dy-

namics of the grinding tool on the control performance, a low-pass filter has been used

to limit the high frequency components (caused by the dynamics of the turning wheel)

to enter the closed-loop and excite other unmodelled dynamics. The cut-off frequency

of the low-pass filter has been chosen to be5Hz by trial and error. Also note that the use

of low-pass filter in force control has also been proven to enlarge the stable region of the

entire system [97, 98]. Although the use of the low-pass filter on the force reading has

significantly simplified the tuning effort of the force control gains, one should be aware

that a very low cut-off frequency introduces a significant lag into the system. It is worth

pointing out that to avoid instability when contacting with high stiffness environment,

small proportional gain is expected in force control. Since small proportional gain usu-

ally leads to high steady-state error, integral control is commonly added to eliminate this

large steady-state error. However, this add-in integral action can have adverse effects on

the stability of the system, especially for system with high lag as the above discussion.

6.2.3 Experimental Results

The experimental results of the above grinding task for different initial conditions are

shown in Figure 6.15 - 6.16.

From the Figures, it seems that the force control performance is very sensitive to

the process dynamics. For example, by shifting the contact point between the conical
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Figure 6.13: Sharp edge deburring task. Figure 6.14: Desired contact force profile.
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Figure 6.15: Force response for the case the
contact point is about10mm from the tip.
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)

Figure 6.16: Force response for the case the
contact point is about12mm from the tip.

wheel and the workpiece2mm upward, the force responses can be much different (for

the same set of control gains). Note that it is possible to re-tune the force control gains

for case where the contact point is 12mm away from the tip to have a reasonably good

performance, the purpose of Figures 6.15 - 6.16 is to show how sensitive the force con-

trol performance to the position of the contact point is. Although low-pass filter has been

used to limit the effect of high frequency disturbance, it is clear that this commonly used

approach is not efficient in practice where precise geometrical constraints are hard to

guarantee. Also note that lower the cut-off frequency of the low-pass filter should not

always be possible in practice since the delay producing by a very low cut-off frequency

can cause the force response to enter a limit cycle. To this end, it is necessary to develop

a robust algorithm to separate the fast contact force response from other dynamics. It

is worth stressing that most of the work on the problem of separating the contact force

from other dynamics [94, 95] usually made use of the ”slowly time-varying environ-

mental force” assumption (Section II of [94] for instance) to simplify the gain selection
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6.2. Grinding Application

process. To some extent, this assumption is equivalent to have low-pass filter on the force

reading as in our case, thus, the above approaches may not be suitable for the grinding

application (since slowly time-varying assumption usually leads to the same disadvan-

tage as discussed in the low-pass filter approach). The design of such algorithms should

be addressed as an important topic in future research.
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Chapter 7

Conclusions

The overall objective of this thesis was to analyse the theoretically more advanced force-

based operational space control framework from the practical point of view. In view

of this, a detailed analysis on the above control framework in the presence of model

uncertainties and digitisation effects was conducted. Based on the analysis, an improved

version of the above control framework was proposed. Comprehensive studies from both

theoretical and empirical point of view were carried out to evaluate the performance of

the proposed controller. In addition, an improved identification process, which was used

to obtain the dynamic model of robots, was also suggested.

Firstly, the control performance of the force-based operational space controller un-

der the presence of model uncertainties and digitisation effects was analysed. The focus

of this work was only on the force-based operational space control because this con-

trol framework can be considered as the more advanced control framework for redun-

dant robots. Experimental results in Chapter 4 indicated that the accuracy of the robot

dynamic model plays an important role on the operational space control performance.

Since one does not have access to the exact dynamic model, the mismatch between the

estimated and real model can significantly degrade the operational space control per-

formance. In seeking for an explicit explanation of why the force based OSC cannot

perform well when faced with modelling errors, [99] showed that the upper limit of con-

trol gains for both joint-space inverse dynamics control and task-space inverse dynamics

control are the same under the discretisation (sampling) effects of digital controllers.
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This finding is of crucial importance because it has provided a conclusive evidence for

why the theoretically more advanced force-based operational space controllers exhibit

significant dependence on the accuracy of the dynamic model. By making use of the sin-

gular perturbation theory, conditions of when model uncertainties affect the force based

operational space controller the most were also presented.

Based on the above analysis, the computed torque techniques need to be accom-

plished in joint space to avoid magnifying the modelling errors through the robot kine-

matics. As a result, the second aim of this study was to seek for a controller that main-

tains the advantages of the force-based operational space control, while still minimising

the effects of model uncertainties and digitisation effects on the control performance.

The analysis in Chapter 4 suggested one possible solution for the above problem, the

dual-loop operational space control. The major contribution of this dual-loop control

structure is that the inverse dynamic concept has been shifted from the operational space

into joint space in order to minimise the effects of model uncertainties. Comprehensive

experimental studies were conducted to evaluate the effectiveness of the proposed con-

trol as presented in Chapter 5. The experimental results showed that the dual-loop con-

trol structure with an inner inverse-dynamics loop provides a considerably better control

performance in comparison to the conventional force-based operational space control.

As also mentioned in Chapter 5, regulating a light contact force is really a challenge

for the conventional operational space control in the presence of model uncertainties. In

fact, due to the un-modelled dynamics, it is impossible to maintain 1N contact force at

the end-effector. However, the proposed controller is able to maintain a light (1N) as

well as a slightly heavier (10N) contact force without any re-tuning of force gains. The

reason for this significant improvement is that the inner joint-space controller is less sen-

sitive to the model uncertainties than the one used in task-space. A similar result for the

hybrid position/force control was also obtained through experiments. In the experiment,

the proposed controller has been benchmarked with the commercial one-axis compli-

ance force from PushCorps. The experimental result showed that the force tracking

error of the PushCorp module and the proposed force control are similar. However, the

109



proposed controller has to control a 7-DOF system, while the PushCorp device is only

concerned with controlling the force of a single axis. This observation implied that the

proposed controller is able to perform as good as the 1-DOF system while maintaining

the flexibility of a 7-DOF system.

Although the proposed controller has been shown to outperform the conventional

force-based operational space control, it is still necessary to investigate the stability of

the proposed controller. Based on the Lyapunov second method, the work in Chapter

5 indicated that the closed-loop equation of the overall system is uniformly ultimately

bounded. To show the usefulness of the dual-loop operational space control in practice,

the proposed controller has also been evaluated through a practical grinding application,

which is a common task in manufacturing industry. Experimental results in Chapter 6

have revealed that observing the fast contact force in the presence of inertial force and

other high frequency dynamics is of crucial importance for improving the force control

performance. Thus, this problem should be properly addressed in future research.

In this study, it is assumed that the estimated robot model can provide a reasonably

good control performance. This assumption can be achieved by a proper identification

process as the work presented in Chapter 3. In this Chapter, an improved procedure

for identifying the dynamic model of robot manipulators, which also takes into account

the effects of dynamic friction, has been proposed. Since the linear property of the

robot dynamic model is valid only in the linear region of dynamic friction, a scheme

was proposed to identify the boundary velocity that separates the dynamic friction into

nonlinear and linear (steady state) regions. By making use of the above boundary veloc-

ities, explicit condition of when the robot model can be represented in the linear form

has been derived. Realistically, uncertainties exist in both measured motion data (i.e.,

joint position, velocity and acceleration) and joint torques, estimated parameters using

the conventional least squares estimator will deviated from the actual value because no

constraints are imposed on the least-squares technique. As a result, it is possible for the

least-squares estimator to produce results which are physically impossible. To account

for this issue, a constrained optimisation for obtaining the estimated parameters was
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proposed. Important constraints such as the steady state of dynamic friction and positive

definitiveness of the inertia matrix were also conveniently incorporated into this opti-

misation, thus, the physical feasibility of the identified parameters can be guaranteed.

Experimental results on the first four joints of the Mitsubishi PA10 manipulator were

provided in order to validate the effectiveness of the proposed identification procedures.

Although the proposed identification method has achieved better results, there is still

no guarantee for the convergence of the identified parameters as discussed in Chapter

3. This observation implies that further research is needed to improve the quality of the

estimated robot model, in particular model identification for advanced control purpose.
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Appendix A

Real-time Control Framework

In this Section, we briefly introduce the software framework that has been used to im-

plement all the work in this thesis. Note that the control framework is mainly based on

the MRROC++ framework, which originates from Warsaw University of Technology. A

quick fact about the MRROC++ framework is as follows [100]:

• History:

- RORC: 80s

- MRROC: 90s

- MRROC++ for QNX 4.2: later 90s

- MRROC++ for QNX 6.3.1: present

• Language:

- Object oriented C++

- Real-time performance: QNX

- Communication among nodes in the network: QNET (real-time), 500 Hz

• Advantages:

- High to low level task specification

- Hierarchical structure

- Error handling

- Decentralised computation support: from ECP level onward

- Multi-robot: support task coordinator

- Stable
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It is worth pointing out that the MRROC++ is a control structure rather than a library

(i.e. most of the source of the MRROC++ can only be used as a reference because it

is hardware dependence). The significant of the framework is that it divides the whole

control framework into modules.

Basically, the control framework is combined from the following processes (Figure

A.1):

Figure A.1: MRROC++ Framework.

• End-effector Driver Process (EDP): this process responds for controlling the motor

at each robot joint. This process is typically running at the node that has a direct

connect to the robot. In our case, the EDP serves as the inner-loop level i.e. the

velocity controller. This EDP is running at5 kHz.

• End-effector Control Process (ECP): this process responds for controlling the ele-

mentary tasks. In our case, ECP is the outer-loop (1 kHz), which is the operational

space controller.

• Master Process (MP): is used to coordinate the tasks if more than one robot is

involved to complete the assigned task. In our case, MP is just a dummy process

that calls the ECP and EDP when it is first initiated.

• Virtual Sensor Process (VSP): this process is mainly used for acquiring informa-

tion from sensors. Different sensors will have different VSP. However, all VSPs

use the same protocol to communicate to the ECP and EDP.
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• User Interface Process (UI): this module is only used to display the process infor-

mation such as the motion data (position, velocity and acceleration). UI is also

contained a simple input command mechanism for user. The command syntax is

divided in to three part:command - 1st params - 2nd params - 3rd params. For

example,moveto q 5 30will command joint5 to move to the position that have

q5 = 300. Please refer to the source code for all the available commands.

Initially, user should call the MP from the UI. Initialisation sequence has been in-

corporated into the MP and will be automatically run once MP is called. Typically, all

the EDP, ECP and MP is running on the same node. However, this behaviour can be

change by modifying the.ini in the /bin folder. Note that if processes are spcified to

run at different node, the maximum communication rate among the processes is500Hz.

Thus, it is recommended to run all the above process (MP, ECP, EDP) on the same node

if enough computation power is available. Also note that the original MRROC++ fram-

work (downloadable from (www.ia.pw.edu.pl/ zielinsk/)) supports the virtual mode i.e.

the physical hardware (robots, sensors) can be replaced by virtual ones (such as one in

Player-Stage (playerstage.sourceforge.net)), however, this feature is not yet available in

our framework.
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Appendix B

Useful Lemmas

Lemma 5.1:Consider the block matrix [101]:

A =




A1 B

BT A2



 (B.1)

If either of the following conditions is satisfied:

1. A1 = AT
1 > 0 andA2 = AT

2 > BT A−1
1 B > 0

2. A2 = AT
2 > 0 andA1 = AT

1 > BA−1
2 BT > 0

thenA > 0.

Proof: First notice thatA1 andA2 − BT A−1
1 B are both symmetric, thus,:

Ψ =




A1 0

0 A2 − BT A−1
1 B



 (B.2)

is symmetric. Moreover, becauseA1 > 0 ⇔ Eig[A1] > 0 andA2 − BT A−1
1 B > 0 ⇔

Eig[A2 − BT A−1
1 B] > 0 (Eig[X] is the eigenvalue ofX). As a result:

Eig




A1 0

0 A2 − BT A−1
1 B



 = {Eig[A1] ∪ Eig[A2 − BT A−1
1 B]} > 0 (B.3)

Combine the two observations i.e.{Ψ = ΨT , Eig[Ψ] > 0}, the block matrixΨ > 0:

Ψ =




A1 0

0 A2 − BT A−1
1 B



 > 0
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⇔




I 0

BT A−1
1 I








A1 0

0 A2 − BT A−1
1 B








I A−1

1 B

0 I



 =




A1 B

BT A2



 > 0 (B.4)

The second condition (2) can be proven in a similar manner.�

Lemma 5.2:Consider the block matrix:

P =




A B

0 D



 (B.5)

If the following conditions are satisfied:






D > 0

4λmin(S(A)) > ‖B‖2 ‖S(D)−1‖ > 0

(B.6)

whereS(D) = 1
2
(D + DT ) is the symmetric part of matrixD andλmin(S(A)) is the

minimum eigenvalue of matrixS(A), thenP > 0.

Proof: note that:

S(P ) =




S(A) 1

2
B

1
2
BT S(D)



 (B.7)

Apply Lemma 5.1:

S(P ) > 0 ⇔






D > 0

xT S(A)x − 1
4
xT (BS(D)−1BT )x > 0, ∀x ∈ Rm

(B.8)

Remark1: If A > 0 ⇔ S(A) > 0 ⇔ xT S(A)x > λmin(S(A)) ‖x‖2 > 0, ∀x ∈ Rm.

Remark2: From the spectral norm properties,1
4
xT
(
BS(D)−1BT

)
x ≤

∣
∣1
4
xT
(
BS(D)−1BT

)
x
∣
∣ ≤

1
4

∥
∥BS(D)−1BT

∥
∥ ‖x‖2 ≤ 1

4
‖B‖2 ‖S(D)−1‖ ‖x‖2.

If the following condition is satisfied:

λmin(S(A))‖x‖2 >
1

4
‖B‖2

∥
∥S(D)−1

∥
∥ ‖x‖2

⇔ 4λmin(S(A)) > ‖B‖2
∥
∥S(D)−1

∥
∥ (B.9)
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then:

xT (S(A))x ≥ λmin(S(A))‖x‖2 >
1

4
‖B‖2

∥
∥S(D)−1

∥
∥ ‖x‖2 ≥

∣
∣
∣
∣
1

4
xT
(
BS(D)−1BT

)
x

∣
∣
∣
∣ ≥ xT

(
1

4
BS(D)−1BT

)

x, ∀x ∈ Rm

⇔ xT (S(A))x > xT

(
1

4
BS(D)−1BT

)

x, ∀x ∈ Rm

⇔ xT (S(A))x − xT

(
1

4
BS(D)−1BT

)

x > 0, ∀x ∈ Rm

⇔ xT

(

S(A) −
1

4
BS(D)−1BT

)

x > 0, ∀x ∈ Rm

⇔ S(A) −
1

4
BS(D)−1BT > 0

As a result,P > 0.�
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