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Summary

Marine mammals have been observed to hunt effectively in littoral environ-

ments where man-made sonar systems have always performed poorly. Surf zones

and adjacent areas which form part of the littoral environment are particularly

problematic because transmitted signals are affected by microbubble populated

waters. Wave breaking is the dominant cause of bubble entrainment in the surf

zone. The wave breaking process generates a large distribution of bubbles where

larger bubbles tend to rise quickly to the surface while smaller ‘microbubbles’

persist for long periods of time. The difference in density and compressibility

between air bubbles and seawater causes changes in velocity, scattering and ab-

sorption of sound waves which therefore complicates the use of sound underwater

when compared to ideal ‘bubble-free’ environments.

Leighton first proposed the twin inverted pulse sonar (TWIPS) technique in

2004 [1], where he suggested exploiting the nonlinear nature of bubbles for con-

trast enhancement of a linear target buried in a cloud of bubbles. This technique

involves the transmission of a pair of high amplitude pulses, one having reverse po-

larity with respect to the other. If the amplitude of this ensonification field is high

enough, bubbles will generate nonlinear radial excursions while a linear target will

scatter linearly. When the time histories are split in the middle and combined to

make a time history half as long, enhancement and suppression occurs. Depending

on the arithmetic operator used to combine the time histories, target backscatter

is enhanced while bubble backscatter is suppressed or vice versa.
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Leighton together with co-workers, subsequently published numerous papers

on the TWIPS technique [2–13] and also filed for an international patent applica-

tion in 2006 [14]. More details on the TWIPS technique was first described in [4]

where the authors showed simulation results claiming that their technique outper-

formed the standard sonar processing technique. The patent application report

[14] provided implementation details together with simulation and experimental

results on TWIPS, but there was no thorough and quantitative measure of the

performance of TWIPS compared with the standard sonar processing technique.

In addition, the authors only discussed examples using windowed sine wave pulses

at 6 and 300 kHz, although they also claimed that their method would work for

any other type of pulses (chirps, pseudo-random noise sequences or M-sequences)

with different time durations and operating at other frequencies.

This research thesis aims to provide a quantitative measure of the performance

of TWIPS against other (simpler) signal processing techniques through the use of

signal to noise (SNR) measurements and receiver operating characteristic (ROC)

curves. This will be explored both by simulation and experiments in water popu-

lated by clouds of microbubbles. The model described by Leighton et al. in [14]

will be used and one of the simulation examples will be reproduced in this project.

Apart from the standard sonar processing technique and TWIPS discussed by the

authors, several other processing techniques including: averaging and smoothing,

bandpass filtering and standard cross correlation, have been introduced in this

project for performance comparison. In addition, a new variant of TWIPS will be

included for discussion.
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To extend the scope of the techniques discussed, simulations will include ap-

plications using bio-mimetic sonar signals from two cetacean species: echolocation

chirps from porpoises and echolocation clicks from dolphins. In general most

species of porpoises produce echolocation chirps that have low sound pressure lev-

els, narrower bandwidth and longer time duration compared to echolocation clicks

produced by some species of dolphins. The use of these two types of bio-mimetic

signals will provide insights on how bubble cloud backscatter will appear to these

animals and whether the TWIPS technique would actually work if the animals do

adopt TWIPS processing.

Experiments were conducted on a modified setup different from the model, but

it was sufficient to illustrate the performance among the different signal processing

techniques, which was found to agree with simulation results.

This study showed that TWIPS does outperform the ‘standard sonar process-

ing technique’ defined in Leighton et al. (2005). However, it also showed that

bandpass filtering or cross correlation methods performed better or equally well

against TWIPS under conditions considered in the simulations and experiments.

It is hoped that the studies here will offer alternative methods of processing sonar

signals and statistical methods for the analysis of their performances. This would

then help in the development of man-made sonar systems employing bio-mimetic

signals that perform effectively in the littoral zone.
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Chapter 1

Introduction

1.1 Motivation for research

Acoustics play an important and necessary part in our daily lives. Mankind has

evolved to use speech as the main communication channel for social interaction

among individuals. This ability is not limited to the human species as animals,

too, have evolved a complex set of vocal tools to assist in their social interactions.

In addition, some species of animals have evolved a highly complex neural-audio

system to replace vision. Most bats and some species of marine mammals are able

to use sound to aid in their navigation, and to detect objects in extreme harsh

environments where vision is obscure, such as at night. For marine mammals in

particular, the use of vision is extremely limited in the underwater environment,

especially in deep waters where there is little illumination, or in waters with high

turbidity due to sediments and phytoplankton. To overcome this problem, some
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species of marine mammals use sound in the form of echolocation signals to replace

or supplement their sense of sight underwater.

Humans also possess the innate ability to use echolocation signals for naviga-

tion and detection in their surroundings. However, they have evolved to primarily

use their sense of sight for this purpose because of the abundance of light and

clarity in the environment they live in. Nevertheless, there have been numerous

reports of vision-impaired humans employing echolocation to replace their sense

of sight. One of the earliest documented cases of a blind person using echolocation

was James Holman (1786-1857), who used the sound of a tapping cane to sense

his environment [16].

Advancements in technology have allowed humans to re-create the underwa-

ter echolocation ability of marine mammals to some extent. These man-made

(SONAR) systems can outperform marine mammal echolocation in some aspects

but they also have limitations which make them inferior under some circumstances.

One of the major problems faced by man-made sonar is the effect of noise caused

by scattering. This problem has the greatest impact in shallow waters (surf zone)

where there can be a large number of bubbles in the water.

Bubbles are efficient scatterers of sound in water because of the impedance

mismatch at the liquid/gas interface. Bubbles are formed by natural processes that

include rainfall, gas emission from the sea bed, boat wakes, living or decomposing

organisms, and wave breaking; the latter being the dominant cause of bubble

entrainment in the surf zone. Despite the complications of sound propagation

in bubble populated water, some species of cetaceans are still observed to hunt
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efficiently in shallow coastal waters and in biologically active rivers where bubbles

persist. In contrast, the performance of man-made sonar systems has always been

greatly handicapped by this phenomenon. How cetaceans manage to overcome

the problem is still largely unknown but scientists have proposed techniques that

might give a possible explanation.

Leighton first suggested the use of pulse inversion techniques for contrast en-

hancement in the surf zone in 2004 [1]. The basic concept of pulse inversion is

not novel and was in fact first proposed and applied in biomedical applications

for the detection of contrast agents in blood. He proposed the twin inverted pulse

sonar (TWIPS) technique, which is a set signal processing algorithms applied to

the backscatter from a pair of closely-spaced, high amplitude transmit pulse of

opposite polarity. It was suggested that the algorithm could help to either en-

hance linear scattering from targets while suppressing non-linear scattering from

bubbles, or vice versa. In subsequent publications on TWIPS [3–13], Leighton and

co-workers showed that TWIPS performed better than their definition of ’stan-

dard sonar processing technique’ both in simulations and experiments on target

contrast enhancement in microbubble populated water. They also suggested the

possibility of marine mammals adopting pulse inversion techniques for detecting

prey, which they hoped to further explore.
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1.2 Thesis goals

The work by Leighton and co-workers used non-biomimetic signals. In their sim-

ulations and experiments, they tested the proposed TWIPS technique using win-

dowed sine wave pulses with centre frequencies of 6 kHz and 300 kHz for probing

a linear target hidden in a non-homogeneous spherical bubble cloud. The au-

thors suggested that their technique would work for pulses with centre frequencies

within the 6 - 300 kHz range, but they did not describe an assessment of how the

technique would perform using marine mammal bio-mimetic echolocation pulses.

A quantitative analysis of the performance of TWIPS compared to other existing

methods was also unavailable. In [4], the authors mentions the possibility that

odontocetes (a sub-order of marine mammals under the Cetacea order) producing

multiple pulses, but no further work on this has been discussed in their subsequent

publications.

A literature search showed that six species of dolphins and porpoises have

been reported to use multiple echolocation pulses [17–19]. Echolocation signals

in marine mammals differ among different species but they can be classified into

two general categories. The first category refers to signals of dolphins that are

capable of whistling and the second category refers to signals of dolphins that

do not whistle [20]. Echolocation signals belonging to marine mammals from the

first category are characterised by high amplitude, broad bandwidth and short

duration. On the other hand, echolocation signals produced by marine mammals

in the second category have a much lower amplitude, narrower bandwidth and

longer duration.
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This thesis builds upon the concept of TWIPS by providing a method of evalu-

ating TWIPS compared to the standard sonar processing technique and also other

signal processing techniques not compared previously, such as standard averaging

and smoothing, bandpass filtering and standard cross correlation. In addition, a

discussion of these processing techniques applied to bubble clouds in response to

echolocation signals from two species of marine mammals will be given. In order to

achieve this, a simulation of the model described by Leighton et al.(2006) [14] was

developed. One of the examples given in [14] was tested to verify the model, after

which it was used to evaluate bubble cloud response from bio-mimetic echolocation

pulses. Experiments were also conducted to compare results from simulations.

The list below summarises the objectives of this research thesis:

• Reproduce and clarify the model described by Leighton et al. [14] using

MATLAB. Verify the model by comparing simulation results with those ob-

tained in [14].

• Simulate and compute the backscatter pressure amplitude of single bubbles

in a range of defined radii, and a target hidden in the centre of a spherical

bubble cloud with an internally consistent dispersion of bubbles consisting

of the same range of defined radii, when driven by a simulated porpoise

echolocation chirp.

• Simulate and compute the backscatter pressure amplitude of single bubbles

in a range of defined radii, and a target hidden in the centre of a spherical

bubble cloud with an internally consistent dispersion of bubbles consisting
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of the same range of defined radii, when driven by a simulated dolphin

echolocation click.

• Conduct experiments to measure the backscatter pressure amplitude from a

target hidden inside/behind a machine-generated bubble cloud when driven

by a signal from an echosounder unit.

• For all simulations and experiments, apply standard sonar processing and

TWIPS1 for evaluating target/bubble contrast enhancement. In addition,

introduce other signal processing methods to compare against standard sonar

processing and TWIPS1. Evaluate and compare the performance of these

various methods by measuring the signal to noise ratio (SNR) between

backscatter from target and bubbles. Plot the receiver operating charac-

teristics (ROC) curves to further assess the detection performance.

1.3 Thesis organisation

The thesis is organised as follows:

• Chapter 1 - Introduction

The motivation for this research project is discussed and objectives of the

thesis defined.

• Chapter 2 - Background and Related Work

Background information related to the research topic is presented in detail.
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Topics include echolocation signals in marine mammal, bubble properties

and its dynamics, and TWIPS.

• Chapter 3 - Simulation

A model of the problem is implemented and simulations are performed to

verify the model. Apply the model in simulations using bio-mimetic sonar

pulses. Report on target detection performance between various signal pro-

cessing techniques for target contrast enhancement.

• Chapter 4 -Experiment

Conduct an experiment based on a modified model used in the simulations.

Report on target detection performance between various signal processing

techniques for target contrast enhancement.

• Chapter 5 - Conclusion

A conclusion of current research outcomes and a discussion of future work

will be provided.
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Background and Related Work

2.1 Marine mammal echolocation

Marine mammals include a diverse assemblage of species that have representatives

in three mammalian orders. The order Carnivora is made up of three subgroups

consisting of the superfamily Pinnipedia (seals, sea lions and walruses), family

Mustelidae (sea otter and marine otter) and family Ursidae (polar bear). The

order Cetacea comprises of two suborders, Mysticeti (Baleen whales) and Odonto-

ceti (Tooth whales). Whales, dolphins and porpoises fall into the Cetacea order.

Finally, the order Sirenia is composed of sea cows (manatees and dugongs).

Dolphins produce sound that can be classified into two broad categories. The

first type is frequency-modulated signals of moderately long duration lasting be-

tween one-tenth of a second to several seconds, which are referred to as whistles.

They are suggested to be used for intraspecific communications [21]. The second
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type is characterised by broadband impulses in the ultrasonic frequency range

with very short durations (in the order of microseconds) and high sound intensity

which are referred to as echolocation clicks. They are used mainly for navigation

and detection.

Echolocation is the process of projecting acoustic signals and sensing the sur-

rounding environment from the echoes. Acoustic energy propagates most effi-

ciently in water compared to other forms of energy. As such, it is no surprise that

many marine mammals have evolved to use sound to replace their sense of sight

for navigation and detection underwater when conditions are unfavorable for vi-

sion. Most species of river dolphin in particular have very poorly developed vision.

The Ganges river dolphin (Platanista gangetica), for example, is reported to not

possess a pair of crystalline eye lenses [22].

Echolocation signals can be further classified into two general categories. The

first category is signals of dolphins that are capable of whistling and the second

category is signals of dolphins that do not whistle. Some species that fall into

the first category where echolocation signals have been measured include the bot-

tlenose dolphin, beluga whale, killer whale, false killer whale, Pacific whitesided

dolphin, Amazon River dolphin, Risso’s dolphin, tucuxi, Atlantic spotted dolphin,

Pacific spotted dolphin, spinner dolphin, pilot whale, rough tooth dolphin and

Chinese river dolphin. Species that fall under the second category include the har-

bor porpoise, finless porpoise, Dall’s porpoise, Commerson’s dolphin and pygmy

sperm whale. The echolocation signals from the second category compared to
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those from the first category are of a longer duration, narrower bandwidth and

lower intensity [20].

2.1.1 Echolocation in marine mammals that also produce

whistles

Echolocation signals from this category of marine mammals vary slightly among

species but generally have some common features that distinguish them from the

other category. In general, the waveform of echolocation clicks from this group of

marine mammals typically have less than 3 to 5 cycles, with the first cycle reaching

its maximum amplitude (oligocyclic waveform). They have broad bandwidth and

high sound intensity.

Echolocation signals emitted by two Atlantic bottlenose dolphins (Tursiops

truncatus) were made by Au et al. (1974) during a target detection experiment

in open waters of Kaneohe Bay, Oahu, Hawaii [23]. The signals were observed to

have peak frequencies ranging from 120 to 130 kHz and an average peak-to-peak

click level in the order of 220 dB re 1 µPa @ 1 m. Another set of signals recorded

from the same species was describe by Au (1980), where signals were observed to

have peak frequencies ranging from 110 to 130 kHz and an average peak-to-peak

click level of 228 dB re 1 µPa @ 1 m. These clicks have a 3 dB bandwidth from

30 to 60 kHz and have durations approximately between 50 to 80 µs [24].
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The waveform and spectrum of a representative echolocation click from a bot-

tlenose dolphin (Tursiops truncatus) recorded in the open sea are shown in Figures

2.1 and 2.2, respectively.
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Figure 2.1: Waveform of a bottlenose dolphin (Tursiops truncatus) echolo-
cation pulse. (Provided by Ms Simone Baumann, Eberhard-Karls-Universitt

Tbingen, Germany in cooperation with Scripps Institution of Oceanography)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (kHz)

N
or

m
al

is
ed

 A
m

pl
itu

de

Figure 2.2: Spectrum of a bottlenose dolphin (Tursiops truncatus) echoloca-
tion pulse.
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2.1.2 Echolocation in marine mammals that do not whistle

Most species of porpoises fall into this category. The echolocation waveform en-

velope increases in amplitude from the first few cycles and decays exponentially

(polycyclic waveform). This type of echolocation signal is referred to as an ‘echolo-

cation chirp’ and it generally has a narrow frequency range and long duration. The

reason for porpoises using long duration, narrow bandwidth signal may be related

to their relatively small body size. This is because for a given amplitude, the

energy in a signal is directly proportional to its duration [20].

Echolocation signals of finless porpoise (Neophocaena phocaenoides) measured

in open waters were reported by Li et al. (2005).The peak frequency typically

ranges from 87 to 145 kHz with an average of 125 ± 6.92 kHz and the 3dB

bandwidth ranged from 15 to 25 kHz with an average of 20 ± 4.24 kHz. The

duration of these signals was 30 to 122 µs with an average of 68 ± 14.12 µs [25].

Peak to peak sound pressure levels measured by Li et al. (2006) were estimated to

range from 163.7 to 185.6 dB re 1 µPa @ 1 m [26]. The waveform and spectrum

of a representative echolocation pulse recorded from Neophocaena phocaenoides in

open waters are given in Figures 2.3 and 2.4 respectively.
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Figure 2.3: Waveform of a finless porpoise (Neophocaena phocaenoides)
echolocation pulse. (Provided by Dr Tomonari Akamatsu, National Research

Institute of Fisheries Engineering, Fisheries Research Agency, Japan).
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Figure 2.4: Spectrum of a finless porpoise (Neophocaena phocaenoides) echolo-
cation pulse.
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2.2 Bubbles in water and their dynamics

2.2.1 Properties of bubbles in the sea surface layer

Wave breaking is the dominant cause of bubble entrainment in the surf zone.

These assemblages of bubbles are often referred to as clouds or plumes. Monahan

[15] proposed the existence of three types of bubble plumes (α, β and γ). He went

on to associate two of these bubble plumes with stages of whitecaps. A stage A

whitecap occurs with the crest of a spilling breaker producing α-plumes at the

subsurface extension. These α-plumes have the highest void fraction O(10−1 −

10−2) and have a lifetime of less than 1 s. A stage A whitecap then evolves into

a foam patch to become a stage B whitecap where the alpha-plumes decay into

β-plumes which are attached to the foam patch. β-plumes have a much smaller

void fraction O(10−3−10−4) and have a lifetime of approximately 4 s. In addition,

they are spatially larger than α-plumes. γ-plumes evolve from β-plumes and form

when the latter detach from the whitecap. γ-plumes have the lowest void fraction

O(10−7 − 10−7), lifetimes 10 - 100 times longer than a β-plume and the largest

spatial dimensions. γ-plumes eventually decay into a weak background layer. A

summary of the properties of bubble plumes is given in Table 2.1.

Table 2.1: Properties of bubble plumes (reproduced from Monahan [15]).

α-plume β-plume γ-plume background
Horizontal area (m2) 0.2− 1 8− 50 100− 500 -
Vertical scale (m) - 0.8 0.42− 0.75 -
Time scale (s) 1.0 3.5− 4.3 100− 1000 -
Void fraction 4−2 − 4−2 10−3 − 10−4 10−7 − 10−6 10−9 − 10−8

n(a=100µm)
(m−3µm−1)

107 − 10−8 105 − 106 102 − 104 10
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γ-plumes dominate in the subsurface (surf zone) because of their spatial di-

mension and lifetime. As such, measurements of bubble population distribution

often give results that coincide with descriptions of γ-plumes. The simulations dis-

cussed in the later chapters uses bubble population distributions that are similar

to γ-plumes.

2.2.2 Bubble dynamics

In the study of bubble dynamics, one observes the behaviour of gaseous cavities

within a body of liquid when subjected to an acoustic disturbance. A time-varying,

generally directional sinusoidal pressure source is superimposed onto the ambient

pressure causing any cavities present (bubbles of gas in the liquid medium) of an

appropriate size to be in set into a state of motion in which both expansion and

contraction phases are present. This behavior is defined as bubble oscillation.

One of the important factors that determine the response of a bubble is the

relationship between the frequency of the external oscillating pressure field and

the natural resonance frequency of the bubble. A bubble will oscillate most when

driven by a signal whose frequency matches its natural resonance frequency. The

other factor is the amplitude of the signal which, together with the driving fre-

quency, determines whether a bubble will undergo linear or non-linear oscillations.

A gas bubble in a liquid acts like an oscillator. Minnaert (1993) was the first

to calculate the natural frequency of a spherical gas bubble in a liquid [27]. The
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Minnaert resonance frequency is defined as

w0 =
1

a0

√
3κpi,e
ρ

(2.1)

where w0 is the resonance frequency, a0 is the resonance bubble radius, κ is the

polytropic exponent of gas, pi,e is the equilibrium pressure inside bubble and ρ is

the density of water.

Another form of the equation taking surface tension into consideration is

w0 =
1

a0

√
3κpi,e
ρ
− 2σ

p0a0
(2.2)

where σ is the surface tension and p0 is the atmospheric pressure.

A bubble’s natural frequency is a function of its radius as shown in Eq. 2.1

and 2.2. Knowledge of the range of bubble radii in a bubble cluster will help

determine the range of frequencies favourable for generating non-linear responses.

Bubbles found commonly in the ocean are dominated by those with radii ranging

from 10 to 100 µm. This was found from experimental measurements of bubble

populations in the field made separately by several investigators including Phelps

and Leighton 1998 [28], Farmer and Vagle 1989 [29], Leighton et al. 1996 [30, 31]

and Meers et al. 2001 [32]. A figure comparing the bubble population density

made by these investigators can be found in [32].

Resonance oscillation can occur when the frequency of the driving pulse matches

the natural (resonance) frequency of the bubble. A bubble driven at or close to its

resonance frequency will have a response which is primarily a function of damping
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by the medium in which it is suspended. Given that viscous damping is small in

most practical circumstances, the bubble will undergo large oscillations exceeding

its critical size. This results in a highly nonlinear scattering response.

The review by Plesset and Prosperetti (1977) [33] discussed several interest-

ing and important nonlinear phenomena in single bubbles. They found that with

increase in amplitude of the driving pressure, single bubbles can be driven into

nonlinear oscillations resulting in harmonic dispersions. These harmonic disper-

sions occur at frequencies in integer multiples of the driving frequency (super-

harmonics) and more unusually, at frequencies less than the driving frequency

(sub-harmonics). Both the super-harmonics and sub-harmonics become more

prominent as the driving amplitude is increased.

In the dynamic problem of acoustic cavitation and bubble oscillation, one is

interested to find the pressure and velocity field together with the radical mo-

tion of the bubble wall when excited by a time-dependent acoustic pressure field.

For simplification, bubbles are often assumed to be spherical and always remain

spherical. The equations of motion for the liquid are derived from conservation

equations for mass and momentum, and from equations of state for the liquid.

These equations give the relationship between changes in enthalpy, density and

pressure in the liquid. By combining these basic equations and making some sim-

plification assumptions, the partial differential equations describing the motion of

the liquid are reduced to an ordinary differential equation describing the bubble

radius as a function of time. The equation of motion for an ideal bubble will be

discussed in the following section.



Chapter 2. Background and Related Work 18

2.2.3 Equation of motion for different bubble models

A number of bubble models have been developed over time. They differ in com-

plexity and make different assumptions. Lord Rayleigh was the first to mathe-

matically describe bubble oscillations [34]. Rayleigh’s model assumed that the

liquid medium is incompressible, which infers an infinite velocity of sound. This

assumption only gives satisfactory results for small amplitudes of oscillations. The

motion of a bubble wall described by Rayleigh is given as

äa+
3

2
ȧ2 =

1

ρ
(pL − p∞) (2.3)

where a is the bubble radius, ȧ is the first order derivative of bubble radius, ä

is the second order derivative of bubble radius, pL is the liquid pressure at the

bubble wall and p∞ is the far field pressure.

Thirty years after Rayleigh published this concept, significant improvements

were made to his equation. Plesset (1949) [35] modified the equation by adding

a variable pressure term and surface tension term. This, together with a viscous

damping term added by Poritsky (1952) [36] is known as the Rayleigh-Plesset

equation. It is given as

äa+
3

2
ȧ2 =

1

ρ

(
pg(t)− pA(t)− 2σ

a
− 4ηȧ

a

)
(2.4)

where pg is the instantaneous gas pressure inside the bubble, pA is the driving

pressure including ambient pressure and η is the shear viscosity.



Chapter 2. Background and Related Work 19

Another common bubble model is that of Gilmore (1952) [37]. In this model,

the velocity of sound in the liquid varies with pressure. Gilmore also considered

the enthalpy difference H, between liquid at pressures under isentropic conditions.

The equation of motion in Gilmore’s model is given as

aä

(
1− ȧ

C

)
+

3

2
ȧ2
(

1− 1

3

ȧ

C

)
= h

(
1 +

ȧ

C

)
+
a

C
ḣ

(
1− ȧ

C

)
(2.5)

where C is the time dependant speed of sound and h is the liquid enthalpy.

Keller and Miksis (1980) [38] produced a radial equation based on the assump-

tion of a constant speed of sound in the liquid. This equation is suitable for large

amplitude forced oscillations and incorporates the effects of acoustic radiation by

the bubble. It also uses the approximation of a linear polytropic index. Prosperetti

(1984) [39] modified this equation which was based on the original formulations

by Herring (1941) [40], to incorporate a more exact formulation for the internal

pressure. This modified Herring-Keller equation is given as

aä

(
1− ȧ

c

)
+

3

2
ȧ2
(

1− 1

3

ȧ

c

)
=

(
1 +

ȧ

c

)
1

ρ

(
pL − p0 − pi

(
t+

a

c

))
+

a

ρc

∂pL(t)

∂t

(2.6)

where c is the speed of sound in liquid and t is the time.

The modified Herring-Keller equation was chosen for describing the bubble

motion in this research project since it is suitable for large amplitude forced oscil-

lations caused by echolocation signals at close range. In addition, this equation is

easier to implement compared to the Gilmore model. The derivation of the mod-

ified Herring-Keller equation from fundamental equations is given in Appendix
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A.

2.3 Twin Inverted Pulse Sonar (TWIPS) tech-

nique

The twin inverted pulse sonar (TWIPS) technique in summary, involves the trans-

mission of a pair of closely-spaced pulses of opposite polarity and then applying

signal processing techniques to the backscatter signal to either enhance linear scat-

tering from targets while suppressing non-linear scattering from bubbles or vice

versa. This technique operates on the basic concept of pulse inversion imaging

used in the detection of microbubble contrast agents in medical ultrasound.

In pulse inversion imaging for medical ultrasound, a pair of consecutive ultra-

sound pulse of opposite polarity is transmitted and their echoes added together.

In the case of linear scattering, the echoes will be of opposite polarity and the

addition of these echoes will cause them to cancel each other almost completely.

On the other hand, for non-linear scattering, the echoes will not cancel each other

to the same extent because the responses from the positive and negative pulse

differ in phase and amplitude.

Following the same basic principle of pulse inversion imaging in medical ul-

trasound diagnosis, it might be possible to enhance linear scattering and suppress

nonlinear scattering by applying the subtraction operator to echoes from successive

inverted driving pulses. The key to enhancing the ability to detect linear targets
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in bubbly water is to ensure that bubbles scatter energy nonlinearly and the target

in question scatters energy linearly with respect to the source of ensonification.

One point of interest is to observe that nonlinearity in the bubble response is

asymmetrical about the zero-pressure axis compared to linear scattering which is

symmetrical about the zero-pressure axis. Applying the subtraction operator to

linear scatter from pulses of opposite polarity doubles its original amplitude. On

the other hand, with the nonlinear scatter being asymmetrical, the subtraction

operator would result in the suppression of even harmonics components.

The pulse inversion technique is illustrated in Figure 2.5.

TWIPS has been proposed as a method that outperforms the use of a standard

correlator [14]. There are two basic subdivisions, TWIPS1 and TWIPS2. Their

mathematical formulations are described as follows.

The transmitted pulse, P (t), consist of two pressure components of opposite

polarity and after a time delay of t1 after each other

P (t) = Γ(t)− Γ(t− t1) (2.7)

The received signal is denoted as PRX(t), consisting of a linear (target) and non-

linear (bubbles) component

PRX(t) = Pl(t) + Pnl(t) (2.8)
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Figure 2.5: An illustration of the application of pulse inversion technique on
linear and nonlinear scatterers.
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The linear component Pl(t) is a scaled version of the transmitted signal arriving

after a time delay τ

Pl(t) = sTP (t− τ) = sT (Γ(t− τ)− Γ(t− t1 − τ)) (2.9)

where s is a constant scaling factor and τ is the two way travel time between

source/receiver and the scatterer.

The nonlinear component is assumed to be nonlinearly related to the incident

pulse such that the pressure contribution from it at the receiver can be expressed

as a power series

Pnl(t) =s1P (t) + s2P
2(t) + s3P

3(t) + s4P
4(t)...

=s1[Γ(t)− Γ(t− t1)] + s2[Γ(t)− Γ(t− t1)]2

+ s3[Γ(t)− Γ(t− t1)]3 + s4[Γ(t)− Γ(t− t1)]4 + ...

(2.10)

τ is assumed to be zero for notational simplicity

The delay t1 is assumed to be sufficiently large so that Γt and Γt−t1 are never

simultaneously non zero

Pnl(t) =s1Γ(t)− s1Γ(t− t1) + s2Γ
2(t) + s2Γ

2(t− t1)

+ s3Γ
3(t)− s3Γ3(t− t1) + s4Γ

4(t) + s4Γ
4(t− t1) + ...

=s1Γ(t) + s2Γ
2(t) + s3Γ

3(t) + s4Γ
4(t)+

...− s1Γ(t− t1) + s2Γ
2(t− t1)− s3Γ3(t− t1) + s4Γ

4(t− t1) + ...

(2.11)
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The most basic subdivision of TWIPS, referred to as TWIPS1, involves a

simple addition or subtraction operation between the first and second pulse in the

received signal. In the case of the subtraction operator applied on the backscatter

from a linearly scattering target, the following is obtained

Pl−(t) = PRX(t)−PRX(t+ t1) = sT [Γ(t)− (−Γ(t))] = 2sTΓ(t), 0 ≤ t ≤ t1 (2.12)

It can be observed that subtracting the received pulses enhances the signal

from the linear scatterer. Applying the same subtraction operation on the nonlin-

ear scattering component enhances contributions from the linear and odd-powered

nonlinearities. The even-powered nonlinearities are suppressed.

The converse is true if the addition operation is applied to the received pulses.

In this case, the even powered nonlinearities from the bubbles are enhanced and

the linear scatter is suppressed.

There is the other subdivision of TWIPS, referred to TWIPS2, which is formed

by the ratio of P+, and P− . The ratio P−/P+, for example, further enhances the

detection of linear targets while the ratio P+/P− further enhances the detection of

bubbles. Other combinations are possible such as P 2
+/P

2
− and P 2

−/P
2
+, and powers

of these ratios. The formation of this ratio has to be applied carefully because

this method can lead to a magnification of noise in the signal. This is because

the statistical distribution of noise at the output can be highly non-Gaussian.

Impulsive noise may result, leading to an increase in the false alarm rate. TWIPS2
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gives a much greater contrast in detection but at the expense of an increase in false

detection rate.

TWIPS has been implemented on simulated data and verified experimentally

by Leighton and co-workers. A description of the implementation of TWIPS to-

gether with simulation and experiment results are available in their patent applica-

tion [14]. In this research thesis, only TWIPS1 will be discussed because TWIPS2

gives a high false detection rate at the expense of greater target contrast. Com-

parisons of performance among the different signal processing methods discussed

in the subsequent chapters will be based on detection rates, hence TWIPS2 will

not implemented for discussion.



Chapter 3

Simulation

3.1 Simulation formulation

The geometry of the problem is shown in Figure 3.1. A sound source is located at

a predefined distance away from a linear target located at the centre of a spherical

bubble cloud with a radius of 1 metre. The sound source is assumed to be an

echolocating dolphin or porpoise. The linear target is assumed to be a fish (which

is appropriate to the context of an echolocating dolphin) with a target strength

of -20 dB. As a rough comparison, an Atlantic cod (Gadus morhua) with length

125 mm has a target strength of approximately -25 dB when presented broadside

to an acoustic beam at a frequency of 6 kHz [14].

While the returns from a fish are primarily from its swim bladder (which is

gas filled), one might question the similarity in the acoustic response between a

bubble and the swim bladder of a fish, and whether they exhibit the same type of

26
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response under the same conditions. The relationship between bubble radius and

resonance frequency was discussed in the previous chapter in section 2.2.1. If one

was to compare the radius between a microbubble with that of a fish swim bladder

which is in the order of centimetres, their resonance frequencies are separated by

several orders of magnitude. Thus, at the frequencies of interest discussed in this

research, a fish can be safely assumed to be a linear target.

Figure 3.1: Geometry of the model used in the simulations.

The bubble population distribution used here is modelled after the work by

Meers et al. (2001) [32] in which he described the population distribution beneath

a breaking wave as a function of bubble radius:

nb = 6× 106e−0.002(R0) (3.1)

where nb is the number of bubbles in 1 cubic metres of water per micrometre

increment and R0 is the bubble radius, expressed in microns.
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A comparison of this distribution (denoted by ‘Extrapolation 2’) against other

experimentally measured distributions is given in Figure 7 of [32]. The distribution

proposed by Meers et al. appears to be overestimated compared to the rest of the

distributions described by other investigators. However, one possible explanation

could be because Meers’s measurements were based at the surf zone whereas the

other measurements were taken at deeper waters, hence the differences.

In formulating the model, it was not computationally feasible to consider a

continuous range of bubble size. As such, the bubble population was discretised

into size bins calculated using Eq. 3.1.

Bubble positions from the center of the cloud were generated by first creating

3 sets of random uniformly distributed variables in the range of ±1 (metre), with

each set representing a component of the Cartesian coordinate (x,y,z ) and the cen-

tre of the cloud defined by (0,0,0). These sets of coordinates were then converted

to the spherical coordinate system to obtain (r, φ, θ). Cartesian coordinate com-

binations that had the corresponding radius (r) value exceeding the bubble cloud

radius limit were discarded. The process was repeated until the desired population

of sizes was obtained.

The backscatter pressure amplitude response from a single bubble was ob-

tained by solving for the bubble radius and velocity using Eq. A.21 and sub-

stituting the results into Eq. A.26. The result was then compensated for the

propagation delay and spreading loss measured by the receiver.

Calculating the total back-scatter pressure response from a bubble cluster is no
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trivial task especially if multiple scattering between bubbles is considered. How-

ever the computational process can be simplified by assuming a low bubble void

fraction. This allows bubble responses to be uncoupled. The bubble population

distribution described earlier gives a relatively low void fraction which fulfils this

criterion. The return signal from the whole bubble cloud can be formed as a

summation of convolutions, with one convolution representing the return from the

bubbles in the cloud within a size bin, where the delay is proportional to each

bubble position in the cloud with respect to the driving sound source, and the

weight proportional to spreading loss. While the bubble responses can be non-

linear, superposition still holds for the scattered signals. This significantly helps

to reduce the computational load.

In the simulation, a linear target with a predefined target strength was located

at the centre of the bubble cloud. The total scatter from the bubble cloud and

linear target was obtained from linear superposition by simply adding the two

responses together.

3.2 Scaling of equations in dimensionless vari-

ables

A MATLAB simulation for calculating the pressure response from a single bubble

and a spherical bubble cloud, when excited by a driving signal, was developed

based on the modified nonlinear Herring-Keller equation derived in Appendix A.

The equations however had to be re-scaled to dimensionless variables in order to
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reduce the number of simulation parameters and also to give more control over

the precision of results.

The following dimensionless variables were introduced in formulating the equa-

tions for implementing on MATLAB:

Radial strain,

x =
a− ae
ae

(3.2)

Characteristic frequency,

w0 =

√
p0
ρa2e

(3.3)

Dimensionless time,

τ = ω0t (3.4)

Time differentiation,

x′ =
dx

dτ
=

1

ω0

dx

dt
=

ẋ

ω0

(3.5)

Normalised pressure,

q =
p

p0
(3.6)

Normalised speed of sound,

γ =
c

aeω0

(3.7)
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Normalised shear viscosity of liquid,

vL = ηL
ω0

p0
(3.8)

Normalised surface tension,

S =
σ

p0
(3.9)

The pressure at the bubble surface pL is reformulated by expressing it in terms

of the new dimensionless variables:

qL =

(
1 +

2S

ae

)
(x+ 1)−3κ − 2Sp0

ae(x+ 1)
− 4vL

x′

x+ 1
(3.10)

The derivatives of qL are:

q1(x, x
′) =

∂qL
∂x

= −3κ(x+ 1)−3κ−1
(

1 +
2S

ae

)
+

2S

ae(x+ 1)2
− 4vL

x′

(x+ 1)2
(3.11)

q2(x, x
′) =

∂qL
∂x′

= −4vL
1

x+ 1
(3.12)

The modified nonlinear Herring-Keller equation expressed in dimensionless

variables is obtained as:

x′′(1+x)(1−M)+
3

2
x′2
(

1− M

3

)
− (1+M)(qL−1−qi)−

1

γ
(1+x)q′L = 0 (3.13)

x′′ = − 1

q3

[
3

2
x′2
(

1− M

3

)
− (1 +M)(qL − 1− qi)−

1

γ
(1 + x)q1x

′
]

= 0 (3.14)
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where

q3 = (1 + x)(1−M)− 1

γ
(1 + x)q2 (3.15)

M =
x′

γ
(3.16)

Eq. 3.14 is a second order ordinary differential equation which can be solved

numerically with a explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair.

This formula is available as a standard function (ODE45 ) in MATLAB.

3.3 Signal processing

In the numerous literature studies on target contrast enhancement by Leighton

et al., they compared the performance between standard sonar processing and

TWIPS for detecting a linear target in the centre of a bubble cloud. Other standard

signal processing techniques have also been introduced in the simulations here to

give a thorough comparison involving more techniques. These techniques include:

averaging and smoothing, bandpass filtering and standard cross correlation. In

addition, a new variant of TWIPS will be introduced and its performance will be

evaluated. To avoid confusion, the TWIPS1 method adopted by Leighton et al.

will thereafter be referred to as TWIPS1a, whereas the new variant of TWIPS

will be referred to as TWIPS1b. A more complete description of each of these

methods is as follows:

1. Standard sonar processing

Leighton et al. have described what they call ‘standard sonar processing’ as
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the result obtained by averaging and normalising the returns from a spatially

evolving bubble cloud (in which the bubbles positions in the cloud have

changed) when ensonified by two positive (identical) driving pulses, and

cross-correlating this averaged and normalised output with the envelope of

the input signal. The reason for using an averaged pair of pulses for standard

sonar processing is because TWIPS1 has the advantage of using return echoes

from a single pair of pulses. Hence it seems fair for standard sonar processing

to average the return from two pulses.

2. TWIPS1a

TWIPS1a has been previously described in detail in Section 2.3 of this thesis.

In summary, TWIPS1a is performed by first finding the difference between

the normalised backscatter responses from a pair of inverted pulses ensonify-

ing a bubble cloud. The normalised difference between the two backscatter

responses is then filtered by a narrowband bandpass filter with a centre fre-

quency similar to the driving pulse. In real life situations, the bubble cloud

has to be spatially evolving. However in TWIPS1a, pairs of inverted pulses

are assumed to be transmitted with a very short delay, such that the posi-

tions of bubbles in the cloud have not changed. The bubble cloud is however

allowed to evolve between pairs of inverted pulses.

3. Averaging and smoothing

The averaging and smoothing method was introduced to observe the direct

effects of constructive and/or non-constructive addition by backscatters from
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a spatially evolving bubble cloud. This method is identical to standard sonar

processing except that the cross-correlation operation is omitted.

4. Bandpass filtering

The bandpass filtering method was introduced for comparison with the other

methods for its simplicity. In addition, the bandpass filtering method serves

as a good comparison with TWIPS1a since TWIPS1a consist of a bandpass

filter stage. This way, one can compare and observe the effects with and

without the effects of linear enhancement and nonlinear suppression from the

subtraction operator in TWIPS1a. Bandpass filtering is identical to standard

sonar processing except that the cross-correlation operator has been replaced

with a bandpass filter (similar to the one used in TWIPS1a).

5. Standard cross correlation

Leighton et al. in their description of standard sonar processing, used the

envelope of the driving pulse for cross-correlation. An alternative to this

would be to perform coherent processing, whereby cross-correlation is per-

formed with the original driving pulse. This method theoretically gives a

much higher processing gain and should therefore be included for compar-

ison. The standard cross correlation is introduced here and defined as a

method similar to Leighton’s definition of standard sonar processing except

that the cross-correlation operator is performed with the original driving

pulse.

6. TWIPS1b

One might have noticed that all the signal processing methods mentioned
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above, except for TWIPS1a, use the backscatter from two pulses whereby

bubble positions in the cloud have changed. It would be interesting to ob-

serve any effects on detection performance if the bubble cloud is allowed

to evolve spatially between a positive and negative driving pulse. The

TWIPS1b method is introduced here and defined to be similar to TWIPS1a

except that the bubble positions in the bubble cloud are allowed to change

during the time between a positive and negative driving pulse.

3.4 Verification of model by comparing with ex-

amples by Leighton et al. (2006)

In [14], the authors described the performance of TWIPS1a compared to conven-

tional (standard) sonar processing with two specific simulation examples. The

simulations were carried out using windowed pulses with centre frequencies of 6

and 300 kHz. The former example was reproduced and will be discussed in this

section.

Assumptions following those given in [14] were made in all the simulations

presented in this work unless otherwise specified:

1. Bubble responses are uncoupled;

2. All bubbles in the entire cloud are driven by the same input sound pressure;

3. All bubbles in the cloud do not move during the time between each twin pair

of pulses;
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4. The time between twin pulses allows bubbles to move;

5. The target does not displace any bubble. It has no acoustic shadow and

does not diffract any acoustic energy;

The bubble population distribution model described in [14] gives a low void

fraction which helps to support the first assumption. In real life situations, such

distributions exist in the form of γ-plumes which can have a void fraction in

the range between 10−7 to 10−6 and persist for durations between 100 to 1000 s

[15]. Assumption 2 might have been poorly made because one cannot neglect the

effects of attenuation as the acoustic plane wave passes through the bubble cloud.

The attenuation of a plane wave through a γ-plume was modelled by Novarini et

al. (1998) and a figure showing the attenuation coefficient against transmission

frequency is given in Figure 2.5 of [41]. Consider a 6 kHz plane wave passing

through a spherical γ-plume 2 m in diameter, with a target in the centre of the

plume. From Figure 2.5, the attenuation is approximately 0.04 dB/cm at 6 kHz;

therefore the driving pulse would be attenuated by 4 dB when it strikes the target

located at a depth of 1 m inside the bubble cloud. Similarly, for a 125 kHz plane

wave, the attenuation is approximately 0.22 dB/cm, which is equivalent to 22 dB

at 1 m range. The attenuation is noticeably significant at this frequency. However,

this observation should only serve as a rough guide because there are many other

factors that can affect the attenuation of an acoustic plane wave through any given

bubble cloud.

Owing to the complexity of the problem, assumptions 1 and 2 were made to

greatly simplify computation of the problem. A single simulation trial in which
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we compute/calculate the responses of groups of neighboring bubbles with similar

sizes and then sum their results, takes more than 10 hours to complete with this

simplification. If the effects of bubble coupling and attenuation in the bubble

cloud were taken into consideration, one would need to compute the response for

each and every bubble in the cloud. This would clearly increase the computational

time by several orders of magnitude. It should be emphasised that the assumptions

were used in the simulations here for an unbiased comparison of results with those

shown in [14]. Despite some of these poor assumptions, the authors of [14] did

obtain similar results in their simulations and experiments.

The bubble cloud population distribution used in the simulations here follow

the one used in [14] where the entire bubble cloud was discretised to consist of

bubbles within 5 logarithmically spaced size bins with centre radii 10, 50, 100, 500,

1000 and 5000 µm. The authors stated that the void fraction they found from

these centre radii and limits using Eq. 3.1 gave a value in the order of 10−6. The

bubble population distribution they used is given in page 35, Table 1 of [14] and

reproduced in Table 3.1 in this report.
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Table 3.1: Bubble population distribution described by Leighton et al. (2006)

Bubble radius (µm) Size bin radius limits (µm) Number of bubbles in size
bin per cubic meter of sea-
water

10 100.75 ≤ R0 < 101.25 3.500× 107

50 101.25 ≤ R0 < 101.75 3.300× 106

100 101.75 ≤ R0 < 102.25 3.000× 104

500 102.25 ≤ R0 < 102.75 3.100× 102

1000 102.75 ≤ R0 < 103.25 3.000× 100

5000 103.25 ≤ R0 < 103.75 0.000

Quoting from the first paragraph of Section VII in [4],

The bubble cloud is assumed to be a sphere of radius 1 m, containing

around 35 million bubbles following the population size distribution as

measured by Meers et al. [16] such that the void fractions (the ratio

of the volume of gas within a cloud to the total volume occupied by the

cloud) on the order of 10−7 (i.e 10−5%).”

Using the bubble population distribution described in Table 3.1, the total number

of bubbles in a spherical bubble cloud of 1 m radius is calculated to be 1.606×108

and the void fraction evaluated to 2.175× 10−6. It appears that the void fraction

value calculated here contradicts with what was stated in [4].

Verification of the third column in Table 3.1 using Eq. 3.1 revealed that the

number of bubbles in each size bin was much greater than those reported by

Leighton et al.. The actual values evaluated using Eq. 3.1 are presented in Table

3.2.
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Table 3.2: Bubble population distribution calculated using Equation 3.1

Bubble radius (µm) Size bin radius limits (µm) Number of bubbles in size
bin per cubic metre of sea-
water

10 100.75 ≤ R0 < 101.25 5.734× 107

50 101.25 ≤ R0 < 101.75 1.144× 108

100 101.75 ≤ R0 < 102.25 8.829× 107

500 102.25 ≤ R0 < 102.75 8.613× 106

1000 102.75 ≤ R0 < 103.25 3.887× 103

5000 103.25 ≤ R0 < 103.75 0.000

The calculated bubble population size in a spherical cloud of 1 m radius was

found to consist of approximately 1.100 × 109 bubbles occupying a gas volume of

0.004 m3. The void fraction in the bubble cloud evaluated to be approximately

9.400 × 10−4, which was about 2 to 3 orders of magnitude greater than what

Leighton et al. claimed in [3] and [14]. This large void fraction would have violated

the first assumption of uncoupling between bubbles. Through correspondence with

one of the authors of the paper, it seems like it is most likely that they made a

mistake in some of their statements.

Nevertheless, the main objective in this research is to compare the target de-

tection performance of TWIPS1a with other methods. As such, for an unbiased

comparison at this stage, the simulations presented for this purpose (in this sec-

tion) were performed using the bubble population presented in Table 3.1. It is

reasonable to use the values in this table since they fall within acceptable limits

in terms of the void fraction and population size of the γ-plumes discussed ear-

lier. The new bubble population distribution found in Table 3.2 does not seem

physically realistic given the natural occurrences of γ-plumes.

The driving pulse used in the simulation was a 6 kHz sine wave pulse consisting
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of 6 cycles with an applied Hanning window. The zero to peak pressure of the

driving pulse was 60 kPa (referenced at 1 metre away from the bubble cloud) and

a sampling resolution of 2 × 106 samples/second was used.

In [14], there was no quantitative measure of the performance between the

TWIPS1a and standard sonar processing. The assessment of performance was

purely visual and based on time-amplitude (waterfall) plots comparing the output

of the two different signal processing methods (i.e., standard sonar processing and

TWIPS1a) for target present and absent conditions.

To further substantiate/investigate the results and claims in [14], a measure

of signal to noise ratio (SNR) and receiver operating characteristics (ROC) curves

will be introduced in this project to provide a better evaluation in comparing the

performance among the different signal processing methods. A brief introduction

to ROC curves is provided in Appendix B.

The results presented in the next two sub-sections were obtained from a sim-

ulation program written using MATLAB R2009. The simulation was performed

using a desktop computer (Dell Optiplex 780, 3.16 GHz. Intel Core 2 Duo pro-

cessor, 8 GB 1066 MHz DDR3 SDRAM). All simulation parameters were kept

identical to those provided in Leighton et al. (2006) [14] and any modifications to

the simulation parameters will be highlighted.
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3.4.1 Single bubble response

The simulated backscatter waveform from a bubble in the different radius size

bins (provided in Table 3.1) in response to a positive and negative driving pulse

of 6 kHz is given in Figure 3.2. A comparison of this result obtained in the

simulation here with the result shown in Figure 9 of [14] shows that individual

bubble backscatter in the corresponding radius size bin matches reasonably well

in magnitude and their state of motion (linear or nonlinear). It can be observed

that bubbles with radii 500 µm and below scatter nonlinearly, with the 500 µm

bubble having the greatest backscatter pressure amplitude among all the size bins

since it corresponds most closely to the resonance bubble radius for a 6 kHz signal.

It can also be observed that the backscatter from bubbles with radii 10, 50, 100

and 500 µm, when ensonified with the negative pulse, is not an inverted version

of the backscatter from the positive pulse. This is due to the nonlinear pulsation

of the bubbles. It is interesting to note that for the 500 µm bubble, both the

positive and negative response exhibit non-symmetrical amplitude peaks which

are dominant in the positive cycle. In addition, they appear to be shifted copies

of each other rather than being inverted copies of each other as observed in the

linear case.

Frequency response plots (Figure 3.3) of the scattered pressure from a bubble

in the respective radius size bin reveals further information on harmonic disper-

sion. These harmonic dispersions occur at frequency multiples of the driving pulse

frequency, and can be seen clearly in the response from the 10, 50 and 500 µm

bubbles. Harmonic dispersion from the 100 µm bubble is less prominent and a
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Positive Pulse
Negative Pulse

Figure 3.2: Waveforms illustrating the backscatter from bubbles with radii
10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive and negative 6

kHz, 60 kPa windowed pulse.
Note: The scaling on the y-axis are different for each plot here and in subsequent
figures in this report. This is to better illustrate the backscatter waveform shape.
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sharp peak is observed at 28 kHz. The resonance bubble size of 500 µm scat-

ters the most energy. Harmonic dispersion can be observed for this bubble size

but there is a slight shift in the scattering frequencies. The harmonics occur at

multiples of 5.4 kHz even though the driving frequency is at 6 kHz.

The frequency response of bubble backscatter due to a negative driving pulse

exhibit the same resonance peaks as that observed from the frequency response

due to the positive driving pulse. There are however slight differences in the

higher frequency harmonics for nonlinear responses in the 10, 50, 100 and 500 µm

bubbles.
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Figure 3.3: Frequency response plots illustrating the backscatter from bubbles
with radii 10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive and

negative 6 kHz, 60 kPa windowed pulse.
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By applying standard pulse inversion technique, the frequency responses from

bubbles driven by a 6 kHz windowed pulse illustrate the enhancement and sup-

pression of harmonics in the nonlinear case. In Figure 3.4, the harmonic peaks

occur at odd and even multiples of the transmit frequency (e.g. 6 kHz, 12 kHz, 18

kHz, 30 kHz ...). When inverted pulses are summed, the fundamental component

and odd harmonics are suppressed while the even harmonics are enhanced. On the

other hand, the difference of inverted pulses enhances the fundamental component

and even harmonics while odd harmonics are suppressed.

The results shown so far all agree with what has been discussed in [14]. Sim-

ulated bubble responses look similar to those given in the examples in the quoted

reference. In addition, the enhancement and suppression of harmonics using pulse

inversion is successful demonstrated. The next section will discuss the response

from a bubble cloud.

3.4.2 Bubble cloud response

The simulation of a bubble cloud response was performed following the model

described in Figure 3.1. The transmitting source and receiver was located 10 m

from the bubble cloud and the linear target present in the middle of the bubble

cloud had a target strength of -20 dB.

In [14] the bubble cloud response was presented in the form of two- dimensional

waterfall plots. These waterfall plots were obtained by plotting the processed
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Figure 3.4: Frequency response plots illustrating the summation/subtraction
of backscatter from bubbles with radii 10, 50, 100, 500, 1000 and 5000 µm, when

driven by a positive and negative 6 kHz, 60 kPa windowed pulse.
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backscatter output from each driving pulse (ping) as a time history on a one-

dimensional line, with a colour map corresponding to the amplitude of the envelope

of the signal at a particular instance of time. The envelope was obtained by

using the Hilbert transform. A low pass filter was applied to further smooth the

envelope before plotting. Fifty such pings were stacked one on top of another

to form the waterfall plot. The x -axis shows the time delay and the y-axis the

ping number. The colour map is the normalised amplitude of the envelope of

the backscatter signal. Figure 3.5 shows an example of the envelope of bubble

cloud backscatter when a target is absent or present, and Figure 3.6 shows the

corresponding waterfall plots. The waterfall plot basically serves as a visual aid in

representing the energy difference between target absent and present conditions.
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Figure 3.5: An example plot showing the envelope of bubble cloud backscatter
when a target is absent/present.
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Figure 3.6: Corresponding waterfall plot of the example in Figure 3.5 when a
target is (a) absent; (b)present.

The backscatter from a bubble cloud consisting of a bubble distribution given

in Table 3.1 was processed using standard sonar processing and TWIPS1a, and

their waterfall plots compared.

Comparing the results shown in Figure 3.7 here with the findings shown in

Figure 12 of [14], it does seem that standard sonar processing does not perform

well in detecting the target as described in the model. The waterfall plot between

the target present and target absent case appears almost similar, except for a few

small highlights of high amplitude scattering in the target present case which does

not amount to any significant conclusion.

The narrowband bandpass filter used in the simulation for TWIPS1a is a
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Figure 3.7: Waterfall plot of bubble cloud backscatter from a 6 kHz, 60 kPa
pulse using standard sonar processing when a target is (a) absent; (b) present

(TS = -20 dB).
Note: The colour scale is the normalised backscatter amplitude from the bubble

cloud. The value of 1 represents the maximum amplitude.

digital finite impulse response (FIR) equiripple filter. The filter has a passband

gain of 1 dB from 4 to 8 kHz and a stopband gain of -80 dB at the 2 and 10 kHz

cutoff frequencies. The frequency response of the filter is shown in Figure 3.8.

The waterfall plot for TWIPS1a is given in Figure 3.9 where it shows better

contrast between the target ‘absent’ and ‘present’ cases. This result somewhat

coincides with the results given in Figure 13 of [14], which suggested a clear indi-

cation of high amplitude scattering at the position occupied by the linear target

compare to elsewhere in the bubble cloud.

Based on the waterfall plots from these two different signal processing meth-

ods, Leighton and co-workers reported that their simulations of TWIPS1a out-

performed standard sonar processing. There is however a problem with standard
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Figure 3.8: magnitude response of a 6 kHz bandpass filter used in the simu-
lations.
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Figure 3.9: Waterfall plot of bubble cloud backscatter from a 6 kHz, 60 kPa
pulse using TWIPS1a when a target is (a) absent; (b) present (TS = -20 dB).
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sonar processing that might have been overlooked for the 6 kHz driving pulse ex-

ample. If one was to compare the pulse width of the envelope of the driving pulse

with the width of the bubble cloud, it appears that the pulse width of the driving

pulse spans almost the entire diameter of the bubble cloud. As a result, this might

have affected the cross correlation performance when the target was present in

the middle of the bubble cloud. More significantly, when a simple averaging and

smoothing method was performed on two backscatter responses, its waterfall plot

showed some improvement compared to the standard sonar processing method.

Time (ms)

P
in

g 
N

um
be

r

(a) Target Absent

 

 

12 14 16 18

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Time (ms)

P
in

g 
N

um
be

r
(b) Target Present

 

 

12 14 16 18

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Figure 3.10: Waterfall plot of bubble cloud backscatter from a 6 kHz, 60 kPa
pulse using averaging and smoothing when a target is (a) absent; (b) present

(TS = -20 dB).

Comparing the waterfall plots in Figures 3.7 and 3.10, it does seem that the

performance of standard sonar processing method is inferior even against the very

simple averaging and smoothing method. As such, the standard sonar processing

method would not have served as a good comparison against TWIPS1a in the 6 kHz
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driving pulse example. The results from bandpass filtering and cross correlation

methods will be presented in Figures 3.11 and 3.12 respectively. It can be observed

that both methods show relatively good contrast between the target absent and

present case.
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Figure 3.11: Waterfall plot of bubble cloud backscatter from a 6 kHz, 60 kPa
pulse using bandpass filtering when a a target is (a) absent; (b) present (TS =

-20 dB).

The waterfall plots produce features for the human brain to differentiate be-

tween target present or absent conditions. These features may be in the form of

colours, positions of high intensity areas, and/or texture. However, it is visually

not easy to quantify and compare each of the processing methods shown. The

easiest method would perhaps be to compare the signal to noise ratio (SNR) be-

tween the energy scattered from the target alone (signal) and the energy scattered

from the bubble cloud alone (noise). In our work, the signal energy was found by

subtracting the energy of the envelope of the bubble cloud backscatter (with target
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Figure 3.12: Waterfall plot of bubble cloud backscatter from a 6 kHz, 60 kPa
pulse using cross correlation when a target is (a) absent; (b) present (TS = -20

dB).

present) from the energy of the envelope of the bubble cloud backscatter alone,

whereas the noise energy is simply the energy of the envelope of the backscatter

from the bubble cloud only. While this method might not provide the best numer-

ical measure of discrimination, it gives a good approximation of the performance

of the various signal processing methods when compared to visual analysis of the

waterfall plots.

The SNR for the simulation discussed here using different processing methods

is averaged over 50 pings and presented in Table 3.3.

Comparing the SNR among the different signal processing methods, bandpass

filtering appears to give the best target/bubble contrast. This is followed closely

by cross correlation. It is interesting to note that TWIPS1a method gives the

worst SNR among all the methods, although the waterfall plot for TWIPS1a gives
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Table 3.3: Comparison of SNR for different processing methods - 6 kHz at 60
kPa driving pulse.

Signal processing method SNR
Averaging and smoothing 0.250
Bandpass filtering 0.396
Cross correlation 0.357
Standard sonar processing 0.252
TWIPS1a 0.222

a better contrast in the area occupied by the target. However, from the waterfall

plot for TWIPS1a, there is some evidence of high amplitude scattering from other

parts of the cloud, which could have contributed to more noise, thus its low SNR.

The comparison of SNR among the different signal processing methods is not

a strict measure of performance since it does not offer statistical measures of

detection rates and confidence intervals. As such, receiver operating characteristics

(ROC) curves will be introduced to provide a better evaluation in comparing the

performance among different signal processing methods. The method of plotting

ROC curves is discussed in Appendix B.

For each simulation in this project, 50 sets (n = 50) of 100 bubble cloud

backscatter responses were generated to obtain 50 waterfall plots and 50 ROC

curves for each of the processing method discussed. Each point on the ROC curve

is plotted by varying the detection threshold and finding the percentage of correct

detections and false alarms. Correct detection is measured from the waterfall plot

(target present) by finding the number of pings in the time samples occupied by

the target that have an amplitude higher than the specified detection threshold.

A false alarm is measured from the waterfall plot (target absent) by finding the

number of pings in the entire time duration that have an amplitude higher than the
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detection threshold. The false positive rate (FPR) and true positive rate (TPR)

are then calculated using Eq. B.2 and B.1 respectively.

Each of the ROC curves presented in this report was found by averaging over 50

ROC curves. The 95 % confidence interval for a FPR of 0.1 and its corresponding

95 % confidence interval for TPR was plotted. Any overlap in the confidence

interval between two or more signal processing techniques would indicate that

these methods are not significant from each others.

The ROC curves comparing the different signal processing methods for a false

detection rate of 10% (FPR = 0.1) is shown in Figure 3.13. The 95% confidence

interval is also shown in the figure.
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Figure 3.13: 6 kHz at 60 kPa pulse - Mean ROC curve with 95% CI (n = 50)
at 0.1 FPR for (a) averaging and smoothing; (b) bandpass filtering; (c) cross

correlation; (d) standard sonar processing; (e) TWIPS1a.
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The results presented in the ROC curves show that bandpass filtering method

significantly outperforms the other methods for a FPR of 0.1. On average, the

averaging and smoothing method performed slightly better than cross correlation

and TWIPS1a, but their confidence interval overlaps, indicating that their per-

formance indicator is not significant. Standard sonar processing performs most

poorly among all the different signal processing methods.

To further address the problem of why TWIPS1a has an inferior performance

compared to some of the newly proposed methods, one of the assumptions made

earlier was re-looked into. It was assumed that bubbles in the cloud did not move

between pairs of inverted pulses for TWIPS1a. However, all of the other methods

used an average between two (positive) pulses from a non-stationary bubble cloud,

which meant that bubbles were in different positions for each pulse. The averaging

effect caused by the scattering from bubbles (noise) in different random positions

and scattering from a target (signal) in a fixed position effectively increased the

SNR. Since the linear target remains stationary, when the backscatter from two

positive pulses is added and averaged, its amplitude is the same as the backscatter

from one single pulse. However for the backscatter from the bubbles, since they

are in random positions for each positive pulse, summing the backscatter from

two positive pulses does not give a two-fold increase in amplitude. Averaging the

sum effectively reduces the magnitude of the backscatter to a value less than that

compared with the backscatter of a single pulse.

The assumption of stationary bubbles between inverted pulses in TWIPS1a

provided a disadvantage compared to the other methods. When the returns from
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a positive and negative pulse are subtracted, backscatter from the linear target

(signal) adds up, while the backscatter from the bubbles (noise) only effectively

cancels out the higher order odd harmonics which would have been removed by a

bandpass filter at the output stage. Hence it might make some sense to increase

the delay between inverted pulses to allow bubbles to move substantially within a

bubble cloud. This would not be practical in situations where the linear target is

moving rapidly. Nevertheless it would be interesting to observe any improvement

in TWIPS1a by assuming a non-stationary bubble population between pairs of

inverted pulses, hence the introduction of TWIPS1b in the simulations

The waterfall plot for TWIPS1b is given in Figure 3.14, where it shows some

improvement in suppressing scatter from bubbles in the cloud. The new calculated

SNR is approximately 0.394 (an improvement from the previous value of 0.252),

which makes it comparable in performance to bandpass filtering.

The ROC curves are plotted again to include TWIPS1b. This is shown in

Figure 3.15.

The new ROC curve shows the improvement in switching from TWIPS1a to

TWIPS1b. It can be observed that the performance of TWIPS1b is on par with

bandpass filtering. Noting that TWIPS1b uses the same bandpass filter in the

bandpass filtering method at its output stage, this could have explained why it

performs equally well as the bandpass filtering method.

The simulation results from a single bubble using the proposed model produced

results similar to those observed in the examples in [14]. Moreover, the backscatter
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Figure 3.14: Waterfall plot of bubble cloud backscatter from a 6 kHz, 60 kPa
pulse using TWIPS1b when a target is (a) absent; (b) present (TS = -20 dB).
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amplitude response from the bubble cloud as observed from the waterfall plots in

Figures 3.7 to 3.14 shows that both TWIPS1a and TWIPS1b perform better than

standard sonar processing. The model will be used for simulating bubble/bubble

cloud response from marine mammal bio-mimetic sonar in the following sections.

3.5 Response from porpoise echolocation chirp

The characteristics of an echolocation chirp from a finless porpoise were given in

Chapter 2. A close approximation of a simulated porpoise chirp can be defined by

applying a Hanning window to a 125 kHz sine wave with 9 cycles (corresponding

to a duration of 72 µs. The amplitude of the simulated porpoise chirp was chosen

to be 316 Pa (170 dB re 1 µPa @ 1m) which corresponds to the average sound

pressure level of echolocation chirps emitted by finless porpoises measured in a

closed river channel [26]. Figure 3.16 shows a comparison of the waveform and

spectrum between a real and simulated porpoise chirp.

From Figure 3.16, it can be seen that the Hanning window sine wave approxi-

mation of a simulated porpoise chirp fits the signal characteristics of a real porpoise

chirp signal. The noticeable difference between the real and simulated chirp is the

small highlight at the tail of the real porpoise waveform which is caused by internal

reverberation in the head. These small highlights have relatively low amplitude

compared to the peak amplitude of the main pulse and therefore it would not have

a significant effect on bubble backscatter.
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Figure 3.16: Comparison between the (a) waveform; (b) spectrum of a real
and simulated porpoise chirp. (Waveform of real porpoise chirp provided by
Dr Tomonari Akamatsu, National Research Institute of Fisheries Engineering,

Fisheries Research Agency, Japan).

It was discussed earlier that the bubble distribution population used by Leighton

et al. could have been misrepresented. The bubble population distribution used

previously for the 6 kHz driving pulse example consists of 5 logarithmically spaced

size bins with centre radii 10, 50, 100, 500, 1000 and 5000 µm. A rough estimate

of the resonance frequency for each of these bubble sizes is 300, 60, 30, 6, 3 and

0.6 kHz, respectively. Since the resonance bubble size for a 125 kHz driving pulse

is approximately 24 µm, the radius bins in bubble population distribution used

previously will not give a good measure of nonlinear scattering in the bubble cloud

here. It is believed that the authors could have scaled down the bubble population

size to keep the void fraction low, so as to simplify the problem of bubble coupling.



Chapter 3. Simulation 61

In addition, they could have chosen the bubble size bins such that one or more of

these bins correspond to the driving frequency they used in their simulation. Their

objective was probably to generate as much nonlinearities as possible using the

described bubble distribution in an attempt to illustrate the underlying principle

behind TWIPS, which heavily relies on using nonlinearities in bubble scatters.

Other than Eq. 3.1 described by Meers et al., other suitable models describing

bubble size distribution were unavailable for this research despite a comprehensive

literature search. Most of the bubble size distributions described in existing liter-

atures were experimental data presented in the form of plots which were difficult

to extract numerical information from. As such, Table 3.1 was used, with the 50

µm bin replaced by a 25 µm bin. This arrangement would allow few modifications

to the population distribution while maintaining the same reasonably low void

fraction.

Considering the low sound pressure levels in porpoise chirps, it was not prac-

tical to perform the simulation with the sound source at 10 m from the bubble

cloud since the signal would have been severely attenuated due to spreading loss

by the time it reached the target in the cloud. In fact, it will be shown later that

the sound source amplitude at much closer distances (in the range of 1 - 2 m) will

still be insufficient to generate highly nonlinear responses. Nevertheless, in this

simulation performed, the sound source (simulated porpoise chirp) was chosen to

be at 2 m from the centre of the bubble cloud, which was the closest reasonable

distance to use.
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3.5.1 Single bubble response

The backscatter response for bubbles with radii 10, 25, 100, 500, 1000 and 5000

µm is given in Figure 3.18. The amplitude of the porpoise chirp is much too low

to excite significant nonlinearities in the bubble responses. As such, one expects

the backscatter from all bubble sizes to be mostly linear and bigger bubbles will

scatter more energy. The frequency responses from the different bubble sizes

appear relatively similar in spectral composition and do not show any significant

harmonic peaks. The effects of pulse inversion is straightforward in this case

because of the lack of harmonic peaks. The signal has twice its original amplitude

when the responses from inverted pulses are subtracted from one another. On

the other hand, the amplitude of the signal is greatly reduced when summing the

response from inverted pulses.
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Figure 3.17: Waveforms illustrating the backscatter from bubbles with radii
10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive and negative

simulated porpoise chirp at 316 Pa.
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Figure 3.18: Frequency response plots illustrating the backscatter from bub-
bles with radii 10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive

and negative simulated porpoise chirp at 316 Pa.
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Figure 3.19: Frequency response plots illustrating the summation/subtraction
of backscatter from bubbles with radii 10, 50, 100, 500, 1000 and 5000 µm, when

driven by a positive and negative simulated porpoise chirp at 316 Pa.
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It was mentioned earlier that finless porpoises produce peak to peak source

levels estimated with range of 163 to 186 dB re 1 µPa @ 1 m. However, in a more

recent study of wild harbour porpoises (Phocoena phocoena) by Villadsgaard et

al. (2007)[42], it was suggested that the back-calculated source level measured

from this species ranged from 178 to 205 dB re 1 µPa @ 1 m with a mean source

level of 191 dB re 1 µPa @ 1 m. This measurement was 30 dB more than that

measured from animals in captivity. The spectral and temporal properties were

comparable. Studies have shown that bottlenose dolphins (Tursiops truncatus)

alter their sound output levels according to their environments, thus this observa-

tion in wild harbour porpoises is not surprising. However, these high source levels

might have only been produced by larger porpoises as studies have also shown

that echolocation source level is attributed to the physical size of the animals.

To illustrate the effects of pulse amplitude on bubble oscillations, the bubble

responses are calculated again with the same set of parameters used for the sim-

ulated finless porpoise chirp except that the signal amplitude has been increased

to 10 kPa (200 dB re 1 µPa @ 1 m). It is important to note that there have not

been any recent records of finless porpoises producing these source levels.
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Figure 3.20: Waveforms illustrating the backscatter from bubbles with radii
10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive and negative

simulated porpoise chirp at 10 kPa.
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Figure 3.21: Frequency response plots illustrating the backscatter from bub-
bles with radii 10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive

and negative simulated porpoise chirp at 10 kPa.
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Figure 3.22: Frequency response plots illustrating the summation/subtraction
of backscatter from bubbles with radii 10, 50, 100, 500, 1000 and 5000 µm, when

driven by a positive and negative simulated porpoise chirp at 10 kPa.

The waveform plot in Figure 3.20 shows some evidence of nonlinear scattering

in bubbles with radii 10 and 25 µm. This result is expected because the bubble res-

onance size is approximately 24 µm. The other larger bubbles all appear to scatter

linearly. The frequency response plot in Figure 3.21 shows harmonic dispersion in

bubbles with radii 10 and 25 µm but the frequency responses are almost similar

for both the inverted and non-inverted driving pulse unlike the highly nonlinear
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response observed previously in Figure 3.3. The results from pulse inversion do

show the enhancement and suppression of harmonics. However, how significant

this weak nonlinear response may help in contrast enhancement needs to be fur-

ther assessed. This will be discussed in the next subsection on the response from

the entire bubble cloud.

3.5.2 Cloud response

The methodology for calculating the bubble cloud response from a simulated por-

poise chirp follows the 6 kHz driving pulse example discussed previously. The

main difference is the type of signal used to ensonify the cloud and the distance of

ensonification. The simulated porpoise chirp has a centre frequency of 125 kHz,

hence it excites a different population of resonance bubble size in the bubble cloud.

In addition, the simulated porpoise chirp has a much lower source level compared

to the 6 kHz driving pulse, which would therefore not generate as much nonlin-

earities in the bubble cloud. In this example using simulated porpoise chirps, the

distance of ensonification is 2 m whereas the 6 kHz example used an ensonifica-

tion distance of 10 m. The reason for this is because TWIPS requires nonlinear

response from bubbles in order to operate effectively hence the low amplitude sim-

ulated porpoise chirp needs to drive the bubbles in the cloud at close ranges. In

the later part of this section, the driving amplitude of the simulated porpoise chirp

at measured at 1 m from the source is increase from 316 Pa to 10 kPa. This is

to compare the effects of amplitude on bubble cloud backscatter response and the

performance among the different signal processing methods.
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The narrowband bandpass filter used in this example is a digital FIR equiripple

filter. The filter has a passband gain of 1 dB from 110 to 140 kHz and a stopband

gain of -80 dB at the 100 and 150 kHz cutoff frequencies. The magnitude response

of the filter is shown in Figure 3.23.
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Figure 3.23: Magnitude response of a 125 kHz bandpass filter used in the
simulations.

The waterfall plots illustrating contrast between the presence and absence of

a linear scattering target (TS = -20 dB) when ensonified by a porpoise chirp (zero

to peak amplitude = 316 Pa measured at 1 m from the source) transmitted 2 m

from the centre of the bubble cloud is shown in Figures 3.24 to 3.29.
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Figure 3.24: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using averaging and smoothing when a target is (a)

absent; (b) present (TS = -20 dB).

Time (ms)

P
in

g 
N

um
be

r

(a) Target Absent

 

 

2 3 4 5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Time (ms)

P
in

g 
N

um
be

r

(b) Target Present

 

 

2 3 4 5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Figure 3.25: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using bandpass filtering when a target is (a) absent;

(b) present (TS = -20 dB).



Chapter 3. Simulation 73

Time (ms)

P
in

g 
N

um
be

r

(a) Target Absent

 

 

2 3 4 5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Time (ms)

P
in

g 
N

um
be

r

(b) Target Present

 

 

2 3 4 5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Figure 3.26: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using cross correlation when a target is (a) absent; (b)

present (TS = -20 dB).
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Figure 3.27: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using standard sonar processing when a target is (a)

absent; (b) present (TS = -20 dB).
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Figure 3.28: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using TWIPS1a when a target is (a) absent; (b) present

(TS = -20 dB).
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Figure 3.29: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using TWIPS1b when a target is (a) absent; (b) present

(TS = -20 dB).



Chapter 3. Simulation 75

From Figures 3.24 to 3.29, it is observed that there is no distinct contrast

between the target present and absent conditions for all the different signal pro-

cessing methods. This could be due to the fact that the driving sound pressure

level is too weak so that the amplitude of the backscatter from the target is much

lower compared to the amplitude of the backscatter from the bubbles in the cloud.

Clearly, this set of results is not useful for comparing the performance between

the different signal processing methods. But it does show that the low sound pres-

sure level in porpoise echolocation chirps are not useful for detection in bubble

populated water.

The target strength of the linear target also plays a part in the target/bubble

cloud contrast results. A higher target strength could give a better result. In

order to illustrate the effects of linear scattering in bubbles and the performance

among the different signal processing methods in this particular example, the

target strength of the linear target is increased such that it starts to appear vaguely

in the cloud. For that, a target strength of -10 dB is used.

The waterfall plots when using a target strength of -10 dB for the linear target

show an improvement in the contrast between target present and absent in the

bubble cloud. Based on visual observations of Figures 3.30 to 3.35, again, the cross

correlation method gives the best contrast compare to the rest of the methods.

This method also reduces noise in the ‘target absent’ condition and therefore

general background noise so a low target strength return should be clearer.
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Figure 3.30: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using averaging and smoothing when a target is (a)

absent; (b) present (TS = -10 dB).
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Figure 3.31: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using bandpass filtering when a target is (a) absent;

(b) present (TS = -10 dB).
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Figure 3.32: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using cross correlation when a target is (a) absent; (b)

present (TS = -10 dB).
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Figure 3.33: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using standard sonar processing when a target is (a)

absent; (b) present (TS = -10 dB).
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Figure 3.34: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using TWIPS1a when a target is (a) absent; (b) present

(TS = -10 dB).
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Figure 3.35: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 316 Pa using TWIPS1b when a target is (a) absent; (b) present

(TS = -10 dB).
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The SNR for different processing methods result is averaged over 50 pings and

presented in Table 3.4.

Table 3.4: Comparison of SNR for different processing methods - simulated
porpoise chirp at 316 Pa.

Signal processing SNR
Averaging and smoothing 0.089
Bandpass filtering 0.080
Cross correlation 0.187
Standard sonar processing 0.060
TWIPS1a 0.036
TWIPS1b 0.079

From Table 3.4, the cross correlation method gives the highest SNR, followed

by the basic averaging and smoothing method. Bandpass filtering and TWIPS1b

have almost the same performance, both just slightly worse than basic averaging

and smoothing. Standard sonar processing has the second worst SNR followed by

TWIPS1a. This result is not surprising because of the linear scatters from both

bubbles and target which makes discriminating between them difficult.

The ROC curve shows that the cross correlation method significantly outper-

forms all the other methods. On the other hand, there seems to be no improve-

ment in using bandpass filtering or TWIPS1b compared to the basic averaging and

smoothing method as they all have overlapping confidence intervals. In addition,

their ROC curves lie fairly close to the diagonal of uncertainty. More interestingly,

the ROC curves for TWIPS1a and standard sonar processing have a convex shape.

This signifies that these methods have a higher probability of making false alarms

than correct detections. From Figure 3.34, despite being able to observe a vertical

indicating the scattering from the linear target, one can also notice bubble noise
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of equivalent or higher amplitude in other areas not occupied by the target. This

bubble noise contributed to the very high false alarm rates, thus a convex ROC

curve.
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Figure 3.36: Simulated porpoise chirp at 316 Pa - Mean ROC curve with
95% CI (n = 50) at 0.1 FPR for (a) Averaging and smoothing; (b) Bandpass
filtering; (c) Cross correlation; (d) Standard sonar processing; (e) TWIPS1a;

(f) TWIPS1b.

The previous example dealt with linear scattering in the bubble cloud due

to the simulated porpoise chirp having a low zero to peak amplitude of 316 Pa

(measured at 1 m from the source). It was stated previously that TWIPS1 rely on

nonlinearities to improve linear target contrast enhancement in nonlinear bubble
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scatters. The previous example was lacking this condition hence this could have

been a contributing factor the results shown.

It was also shown previously that by increasing the amplitude of the signal

to 10 kPa (measured at 1 m from the source), non-linearities were observed for

bubbles with radii 25µm and below. Using this amplitude for the simulated por-

poise chirp would therefore generate the condition for improving TWIPS1. When

the simulation was performed again using a target (TS = -20 dB), hidden in the

centre of the bubble cloud at 2 m from the sound source, the same problem of very

poor SNR was encountered. As such, the target strength was again increased to

-10 dB where the target was just barely visible in the waterfall plot for the raw

backscatter. The following figures show the simulation results using a simulated

porpoise chirp with a higher zero to peak amplitude of 10 kPa (measured at 1 m

from source) and a target strength of -10 dB for the linear target.
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Figure 3.37: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 10 kPa using averaging and smoothing when a target is (a)

absent; (b) present (TS = -10 dB).

Time (ms)

P
in

g 
N

um
be

r

(a) Target Absent

 

 

2 3 4 5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Time (ms)

P
in

g 
N

um
be

r

(b) Target Present

 

 

2 3 4 5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Figure 3.38: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 10 kPa using bandpass filtering when a target is (a) absent;

(b) present (TS = -10 dB).
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Figure 3.39: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 10 kPa using cross correlation when a target is (a) absent; (b)

present (TS = -10 dB).
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Figure 3.40: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 10 kPa using standard sonar processing when a target is (a)

absent; (b) present (TS = -10 dB).
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Figure 3.41: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 10 kPa using TWIPS1a when a target is (a) absent; (b) present

(TS = -10 dB).
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Figure 3.42: Waterfall plot of bubble cloud backscatter from a simulated
porpoise chirp at 10 kPa using TWIPS1b when a target is (a) absent; (b)

present (TS = -10 dB).
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From Figures 3.37 to 3.42, it seems like the increase in driving pulse amplitude

did not make significant difference in the results when compare to the previous

simulation which used a much lower driving signal amplitude. Although there is

a slight increase in SNR across all the different processing methods, their order of

performance remains unchanged.

Table 3.5: Comparison of SNR for different processing methods - simulated
porpoise chirp at 10 kPa.

Signal processing SNR
Averaging and smoothing 0.093
Bandpass filtering 0.087
Cross correlation 0.199
Standard sonar processing 0.060
TWIPS1a 0.046
TWIPS1b 0.087

The ROC curve in Figure 3.43 compared to Figure 3.36 also shows no signifi-

cant improvement in performance among the different processing methods.

In this section, the backscatter pressure amplitude response of a bubble cloud

when ensonified by a simulated porpoise chirp is presented. It was observed that

the low sound pressure levels produced by porpoises require a much shorter dis-

tance between the sound source and bubble cloud. In addition, a higher target

strength (i.e -10 dB) is required in order for proper detection of a target within in

the bubble cloud. Among all the different signal processing methods considered,

cross correlation gives the best performance in target detection. The basic aver-

aging and smoothing method perform equally bad with the bandpass filtering and

TWIPS1b methods. These methods have a less than 10 % correct detection rate

for an allowed tolerance of 10 % error. Their ROC curves lie close to the diagonal
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Figure 3.43: Simulated porpoise chirp at 10 kPa - Mean ROC curve with
95% CI (n = 50) at 0.1 FPR for (a) Averaging and smoothing; (b) Bandpass
filtering; (c) Cross correlation; (d) Standard sonar processing; (e) TWIPS1a;

(f) TWIPS1b.

of uncertainty indicating that the detection approximated a random guess. It is

more disappointing to observe that the standard sonar processing and TWIPS1a

methods have a higher probability of making mistakes than making correct detec-

tions. It doesn’t make much of a difference to use a signal amplitude of 316 Pa

or 10 kPa as both did not generate enough nonlinearities in the cloud for some of

the proposed methods to work well.

In the next section, the backscatter response from a bubble and bubble cloud

ensonified by a simulated dolphin echolocation clicks will be discussed. In general,
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dolphins produce echolocation click with sound pressure levels much higher than

porpoises, and thus have a better chance of generating strong nonlinearities in

bubble clouds. As such, it is expected that there should be some differences in the

performance of the various signal processing methods.

3.6 Response from a typical dolphin echoloca-

tion click

Bottlenose dolphin echolocation clicks are characterised by high energy, short dura-

tions and broad bandwidths. Unlike porpoise chirps, echolocation clicks produced

by bottlenose dolphins have source levels of up to 220 dB re 1 µPa @ 1 m, which

are sufficiently high to drive bubbles into highly nonlinear oscillations.

Au (1993) reported that a typical sonar click of an Atlantic bottlenose dolphin

(Tursiops truncatus) resembles an exponentially damped sinusoidal wave with a

duration between 40 and 70 µs and with 4 to 10 positive excursions [17]. He used

a mathematical expression consisting of a Gabor function and a Gaussian curve

to describe a simulated dolphin click.

s(t) = A cos(2πf0t+ φ)e−π
2 (t−τ0)2

∆τ2 (3.17)

or

s(t) = A sin(2πf0t+ φ)e−π
2 (t−τ0)2

∆τ2 (3.18)
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where A is the relative amplitude, f0 is the centre frequency, τ0 is the centroid of

the signal, ∆τ is the rms duration of the signal and φ is the phase shift.

The waveform and spectrum of a simulated dolphin click using Equation 3.17 is

shown in Figure 3.44. The simulated dolphin click has a duration of approximately

45 µs and a peak frequency of 125 kHz. This peak frequency corresponds to

a resonance bubble radius of approximately 24 µm. Bubbles with radii 10, 25,

100,500, 1000 and 5000 will be driven by this simulated click with a peak source

level of 100 kPa (220 dB re 1 µPa @ 1 m).
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Figure 3.44: Simulated dolphin click (a) waveform; (b) spectrum (from Au
(1993) [17]).

Although the sound pressure amplitude of the simulated dolphin click is much

higher compared to the simulated porpoise chirps used earlier, the sound source

was still chosen to be at 2 m from the centre of the bubble cloud. This would

ensure high nonlinearities from bubble scatters.
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3.6.1 Single bubble response

The backscatter pressure amplitude response from a single bubble of air in water

with radius 10, 25, 100, 500, 1000 and 5000 µm driven by the simulated dolphin

click given in Figure 3.44 is discussed here.

From the bubble scatter waveform shown in Figure 3.45, it can be observed

that bubbles with a radius of 10 and 25 µm scatter nonlinearly. The frequency

response plots shown in Figure 3.46 reveal more interesting observations with

regard to nonlinear scatterers. The frequency response of bubbles with a radius of

10 µm shows that harmonic dispersion is not clearly present and inverted pulses

scatter different frequencies. In addition, the backscatter from both positive and

negative driving pulses has a resonance peak at 280 kHz. For bubbles with a radius

of 25 µm, multiple harmonic peaks are observed in the frequency response. They

however do not all occur at integer multiples of the driving frequency. This could

be accounted for because of the very high source levels of the driving pulse which

caused the shifting of frequency in the harmonic peaks.
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Figure 3.45: [Waveforms illustrating the backscatter from bubbles with radii
10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive and negative

simulated dolphin click at 100 kPa.
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Figure 3.46: Frequency response plots illustrating the backscatter from bub-
bles with radii 10, 50, 100, 500, 1000 and 5000 µm, when driven by a positive

and negative simulated dolphin click at 100 kPa.
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Figure 3.47: Frequency response plots illustrating the summation and sub-
traction of backscatter from bubbles with radii 10, 50, 100, 500, 1000 and 5000
µm, when driven by a positive and negative simulated dolphin click at 100 kPa.

The pulse inversion output of bubbles driven by a simulated dolphin click is

given in Figure 3.47. As mentioned earlier, the frequency response from positive

and negative pulses in the 10 µm bubble are different, thus the performance of

harmonic suppression and enhancement is affected. Consider the result for the 10

µm bubble: it is not easy to make any useful observations due to the absence of

harmonics. For the 25 µm bubble, there is some evidence of harmonic enhancement
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and suppression but it becomes less obvious in the higher order harmonics. These

observations might have been attributed to the short pulse length and high source

levels.

The contribution of highly nonlinear responses from bubbles with radii 10

and 25 µm (which makes up a high percentage of bubbles in a real experimental

measurement of bubble cloud distribution in the surf zone) sets up favourable

conditions for the TWIPS approach. The response from a bubble cloud driven by

a simulated dolphin click will be discussed in the next section.

3.6.2 Cloud response

The bubble cloud population distribution used for this simulation is the same as

the one used in the simulation for porpoise chirps for the same reasons due to the

similarity in centre frequency of the source signal. Although the driving sound

pressure level involved in this simulation is much higher compare to the one used

previously, the distance of the sound source is still fixed at 2 m from the centre

of the bubble cloud. The target strength for the linear target is chosen to be -15

dB such that it would be just barely detectable in the cloud when observed from

the waterfall plots. A target strength that is too low will just give zero detection

rates for all or most of the processing methods while a target strength that is too

high will give 100 % detection in all or most of the processing methods, which will

not be useful either.
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Figures 3.49 to 3.53 shows the waterfall plots of the various signal processing

methods applied to the bubble cloud backscatter when driven by a simulated

dolphin click. It can be observed that bandpass filtering gives the best contrast

enhancement. This is followed by both TWIPS1a and TWIPS1b, where both

seem to perform equally well. Cross correlation does not perform as well as in the

previous examples and it has a problem with suppressing the scatter from bubbles

when observed from its waterfall plot. The basic averaging and smoothing method

and standard sonar processing totally gives no contrast in this case.
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Figure 3.48: Waterfall plot of bubble cloud backscatter from a simulated
dolphin click at 10 kPa using averaging and smoothing when a target is (a)

absent; (b) present (TS = -15 dB).
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Figure 3.49: Waterfall plot of bubble cloud backscatter from a simulated
dolphin click at 10 kPa using bandpass filtering when a target is (a) absent; (b)

present (TS = -15 dB).
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Figure 3.50: Waterfall plot of bubble cloud backscatter from a simulated
dolphin click at 10 kPa using cross correlation when a target is (a) absent; (b)

present (TS = -15 dB).
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Figure 3.51: Waterfall plot of bubble cloud backscatter from a simulated
dolphin click at 10 kPa using standard sonar processing when a target is (a)

absent; (b) present (TS = -15 dB).
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Figure 3.52: Waterfall plot of bubble cloud backscatter from a simulated
dolphin click at 10 kPa using TWIPS1a when a target is (a) absent; (b) present

(TS = -15 dB).
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Figure 3.53: Waterfall plot of bubble cloud backscatter from a simulated
dolphin click at 10 kPa using TWIPS1b when a target is (a) absent; (b) present

(TS = -15 dB).
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A comparison of SNR among these methods suggests the same results as the

waterfall plots. The order of performance from best to worst based on SNR is

bandpass filtering, TWIPS1b, TWIPS1a, cross correlation, standard sonar pro-

cessing and averaging and smoothing.

Table 3.6: Comparison of SNR for different processing methods - simulated
dolphin click at 100 kPa.

Signal processing SNR
Averaging and smoothing 0.008
Bandpass filtering 0.122
Cross correlation 0.064
Standard sonar processing 0.026
TWIPS1a 0.073
TWIPS1b 0.094

The ROC plot is shown in Figure 3.54. Bandpass filtering method performs

best and is significantly better than all the other methods. The waterfall plots for

both TWIPS1a and TWIPS1b give few clues on whether one outperforms another

and whether this is significant. However, the ROC plot provides this missing

information by showing that TWIPS1b significantly outperforms TWIPS1a. The

ROC curve for both cross correlation and standard sonar processing lies fairly close

to the diagonal of uncertainty while the basic averaging and smoothing method

gives a convex ROC curve. This indicates that their performances are unreliable.

In this section, it is shown that simulated dolphin click provides a sound

pressure amplitude sufficient to drive bubbles into highly nonlinear oscillations. In

addition, with the centre frequency of the click signal corresponding to a resonance

bubble size that dominates in the bubble cloud population distribution, the scatter

from the bubble cloud becomes highly nonlinear too. This renders some of the
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Figure 3.54: Simulated dolphin click at 100 kPa - Mean ROC curve with
95% CI (n = 50) at 0.1 FPR for (a) Averaging and smoothing; (b) Bandpass
filtering; (c) Cross correlation; (d) Standard sonar processing; (e) TWIPS1a;

(f) TWIPS1b.

methods discussed no longer as useful as they were in other examples where linear

scatting dominated.

3.7 Simulation summary

So far, it seems that the original TWIPS1 method (TWIPS1a) proposed by Leighton

and co-workers has never emerged as the best performing method in all the sim-

ulations discussed although it has always performed better than standard sonar

processing in examples where the bubble cloud response was highly nonlinear.
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From a summary of SNR comparison on the different signal processing methods

using different driving pulses given in Table 3.7, it can been seen that there is

a noticeable improvement in detection performance across all signal types when

switching from TWIPS1a to TWIPS1b.

Table 3.7: Summary of SNR comparison on different processing methods using
different driving pulse.

Signal processing method 6 kHz
pulse
(60 kPa)

Porpoise
chirp
(316 Pa)

Porpoise
chirp (10
kPa)

Dolphin
click (100
kPa)

Averaging and smoothing 0.250 0.089 0.093 0.008
Bandpass filtering 0.400 0.080 0.087 0.122
Cross correlation 0.357 0.187 0.200 0.064
Standard sonar processing 0.251 0.060 0.060 0.026
TWIPS1a 0.222 0.036 0.046 0.073
TWIPS1b 0.394 0.079 0.087 0.094

In cases with high nonlinearities generated in the bubble cloud (6 kHz pulse

and simulated dolphin click), the bandpass filtering method gives the highest SNR.

On the other hand, in the other examples with low amplitude driving pulse which

generated linear or weakly nonlinear responses in the bubble cloud (simulated

porpoise chirp), the cross correlation methods gives the highest SNR. In fact the

SNR is two times more than the next best performing method in the linear case.

Comparing the performance between the 6 kHz pulse and simulated dolphin

click examples based on their ROC curves, it is observed that the 6 kHz pulse gives

an overall better performance across all the different signal processing methods.

The detection rates for a 10 % error are much higher for the 6 kHz example despite

the simulated dolphin click having a higher source level (100 kPa vs 60 kPa). This

could be accounted for because of the difference in the centre frequency and pulse

duration between these two signals. The 6 kHz pulse having a much lower centre
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frequency, effectively drives a much larger population of bubbles nonlinearly (from

500 µm and below). On the other hand, the simulated dolphin click with a centre

frequency of 125 kHz, drives a small population of bubbles in the cloud (25 µm

and below) into nonlinear pulsations. With the 6 kHz pulse being able to generate

nonlinearities on a larger population of bubbles in the bubble cloud, more of these

non-linear components can be removed thus improving the signal to noise ratio.

Proof of concept will be discussed in the next chapter where experiments were

conducted on a modified setup that is different from the simulated model.



Chapter 4

Experiment

4.1 Experimental setup

In the numerical simulations discussed in Chapter 3, the structure of the bubble

cloud and its distribution were defined. In addition, the void fraction of the sim-

ulated cloud was assumed to be low. However, this is generally not the case for

actual experiments conducted in a laboratory tank setting where bubble clouds

do not have a definite shape. Moreover, the generation of a controlled and precise

bubble size distribution with a low void fraction is difficult. It is possible to charac-

terise the size of bubbles in a cloud and measure the void fraction experimentally,

but these measurements have been excluded because of complexity in experiment

design and the lack of specialized equipment for this task. Nevertheless, within

the stated limits, the reliability of results obtained from the experiments was not

compromised. TWIPS processing requires bubbles to be driven nonlinearly, hence

prior knowledge of bubble size distribution would be helpful in determining the

102
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most suitable excitation frequency. In the case of this experiment, it would be

sufficient to show that the excitation frequency and amplitude used was able to

produce nonlinearities in the backscatter which could be easily measured.

All the experiments discussed here were conducted in a rigid tank measuring

2 m long, 1 m wide and 0.8 m deep. The tank was filled with seawater with

a salinity of 35 parts per thousand (ppt). An air-filled plastic bottle was used

as a linear target and was placed along the centre axis of the main lobe of the

acoustic driving source. The bubble generator consisted of a water pump which is

modified such that air is entrained into an impeller. An inline valve restricted the

water inlet to the pump. The air hose was connected via a valve to an air pump

that maintained a slight positive pressure on the air supply. The generator could

provide a variety of different bubble cloud populations depending on the relative

settings of the air/water valves. The target when present was placed just above,

and slightly behind the bubble generator such that bubbles enveloped the front

surface of the target.

The driving pulse was produced by an echosounder (Odom Hydrographics

Systems Inc, Model: OTSBB33) with a centre frequency of 33 kHz and 3 dB

beamwidth of 23◦. The return backscatter signal was received by a broadband

omnidirectional hydrophone (Reson, Model: TC4013) mounted directly infront of

the echosounder.

A power amplifier (Brüel & Kjær, Model: Type 2713) was used to amplify

the driving pulse. The power amplifier is able to provide a maximum voltage out-

put of 100 V peak. This together with the transducer gain provided a maximum
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source level of 179 dB re 1µPa @ 1 m. A data acquisition device from National

Instruments (Model: NI-USB 6251) was connected to a laptop computer (Mac-

book, 2.26 GHz Intel Core 2 Duo processor, 4 GB 1066 MHz DDR3 SDRAM), to

generate the transmit pulse and to digitise the received signal. The received signal

was sampled at 500 kHz and the acquired data was post processed on a desktop

computer (Dell Optiplex 780, 3.16 GHz Intel Core 2 Duo processor, 8 GB 1066

MHz DDR3 SDRAM) running MATLAB R2009b.

Before the actual experiment tests began, several preliminary tests were car-

ried out to determine the geometry, and most importantly the range from the

transducer to bubble cloud. Clearly the shorter the range, the greater the received

level at the bubble cloud, and the more likely nonlinear oscillations would result.

A distance of 0.6 meters was chosen, and the bubble generator, and eventually

the target were placed there. Figure 4.1 shows a block diagram of the experiment

setup.

Figure 4.1: Block diagram showing the experiment setup.

The source level from the echosounder was measured at 0.6 m and shown

in Figure 4.2. Another preliminary test was carried out to measure the target
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strength, which was estimated to be -10 dB at 33 kHz.
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Figure 4.2: Source level measured at position occupied by target.

The driving pulse was created by applying a Hanning window on a 37 kHz

sine waveform with a duration of 50 µs. The centre frequency of the driving signal

was chosen to be 37 kHz despite the transducer having a resonance frequency of

33 kHz. This was because a centre frequency of 37 kHz gave the highest pressure

amplitude when measured from the transducer. When this signal was sent to the

transducer, it properties were modified due to the nature of the transducer. The

waveform of the signal transmitted by the transducer is shown in Figure 4.3.

As mentioned earlier, the distribution of bubble size and void fraction in the

bubble cloud could not be measured in the experiments conducted. For simplic-

ity, it would be sufficient to show that the backscatter from the cloud exhibits a

nonlinear response. This would then mean that the driving sound pressure level

is sufficient and the driving frequency falls within the range of bubble resonance

frequencies in the bubble cloud. The backscatter from the bubble cloud when
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Figure 4.3: Waveform of the driving pulse used in the experiment.

driven by the defined pulse was measured and the air/water valves controlling the

bubble cloud was adjusted until some nonlinearities were observed.
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Figure 4.4: Waveform of the backscatter from bubble cloud used in the ex-
periment.

Figures 4.4 and 4.5 show the waveform and frequency response of the bubble

cloud driven by the 37 kHz pulse from the echosounder. It can be observed from
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Figure 4.5: Frequency response of the bubble cloud used in the experiment.

the frequency response plot that weak nonlinearities were generated and this was

the best that could be achieved with the available resources.

Earlier, there was a discussion on the effects of delay between the positive and

negative driving pulse affecting the performance of TWIPS. To illustrate this effect,

two experiments were conducted. The first experiment used a pair of inverted

pulses with no time delay to ensure that bubbles have not move during this period.

The second experiment introduced a 0.5 s delay between each inverted pulse during

which bubbles would have moved during this period of time.

4.2 Experiment results - Bubble cloud response

Consider the description of the signal processing methods used in [14], where the

backscatter from the positive and negative pulse were taken at the same time and

the other processing methods uses an average of two positive pulses from different
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instances in time. Two sets of data were collected in the first experiment, one with

the bubble cloud alone and the other with a target in the bubble cloud. In each

set, the bubble cloud (with/without target) was pinged with 100 pairs in inverted

pulses. The duration between each positive and negative pulse was at a minimum

which was limited by the hardware latency. The duration between each pair of

inverted pulses was 0.5 s which was sufficiently long to allow bubbles to move. In

the second experiment, two sets of data were again collected, one with the bubble

cloud alone and the other with a target in the bubble cloud. In each set, the bubble

cloud (with/without target) was pinged with 100 pairs in inverted pulses. In this

experiment however, the duration between each positive and negative pulse was

set to 0.5 s to provide a time delay sufficient to allow bubbles to move spatially

with respect to the cloud.

The data collected from experiment 1 was post-processed to produce the wa-

terfall plots in Figure 4.6 to 4.10, whereas the data from experiment 2 was used

to produce the waterfall plot for TWIPS1b as shown in Figure 4.11.
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Figure 4.6: Waterfall plot of bubble cloud backscatter from experiment driving
pulse using averaging and smoothing when a target is (a) absent; (b) present.

Time (ms)

P
in

g 
N

um
be

r

(a) Target Absent

 

 

0 0.5 1 1.5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Time (ms)

P
in

g 
N

um
be

r

(b) Target Present

 

 

0 0.5 1 1.5

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Figure 4.7: Waterfall plot of bubble cloud backscatter from experiment driving
pulse using bandpass filtering when a target is (a) absent; (b) present.
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Figure 4.8: Waterfall plot of bubble cloud backscatter from experiment driving
pulse using cross correlation when a target is (a) absent; (b) present.
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Figure 4.9: Waterfall plot of bubble cloud backscatter from experiment driving
pulse using standard sonar processing when a target is (a) absent; (b) present.
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Figure 4.10: Waterfall plot of bubble cloud backscatter from experiment driv-
ing pulse using TWIPS1a when a target is (a) absent; (b) present.
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Figure 4.11: Waterfall plot of bubble cloud backscatter from experiment driv-
ing pulse using TWIPS1b when a target is (a) absent; (b) present.
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A comparison between the waterfall plots shows that the cross correlation

method gives the best target contrast. All the other methods except standard

sonar processing perform relatively well from one another.

A comparison of SNR is provided in Table 4.1. It can be observed that cross

correlation outperforms the other methods. Averaging and smoothing give the

next best SNR followed by bandpass filtering and TWIPS1b which are almost

equally good or bad. TWIPS1a has the second lowest SNR followed by standard

sonar processing.

Table 4.1: Comparison of SNR for different processing methods applied on
experiment data.

Signal processing SNR
Averaging and smoothing 0.898
Bandpass filtering 0.815
Cross correlation 1.303
Standard sonar processing 0.171
TWIPS1a 0.657
TWIPS1b 0.817

The ROC curves in Figure 4.12 show that the cross correlation method sig-

nificantly outperforms all the other methods. Basic averaging and smoothing,

bandpass filtering and both TWIPS1a and TWIPS1b are on par with one another

except that TWIPS1b performs slightly better for lower FPRs. Standard sonar

processing had difficulty suppressing the scatter from the bubble cloud thus it

performed very poorly as shown in the ROC plot.

Thus far, its has been observed that even with the simplest experimental

setting, the experiment results do agree with the results from simulation, whereby

TWIPS1 does outperform standard sonar processing but fails to perform well
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Figure 4.12: Experiment data - ROC curve for (a) Averaging and smoothing;
(b) Bandpass filtering; (c) Cross correlation; (d) Standard sonar processing; (e)

TWIPS1a; (f) TWIPS1b.

against bandpass filtering or cross correlation method. Conclusions drawn from

both the simulations and experiments will be provided in the following chapter.



Chapter 5

Conclusion and Future Work

Despite much effort to reproduce the work by Leighton and co-workers, the simula-

tion results obtained here seem somewhat disappointing. This is not because of the

fact that the results were incorrect, but rather because of the much discussion on

TWIPS and its benefits over their version of ‘standard sonar processing’ method,

when it turns out that a simple bandpass filter or cross correlation method may

work equally well in the simulations. Efforts were made to contact the authors for

clarification in some of their implementations, where they were extremely helpful

and enthusiastic initially. At one stage of the project, it was found that there

could be some discrepancies in the calculation of the bubble population distribu-

tion. Through correspondence with one of the authors of the paper, it seems like

it is most likely that they made a mistake in some of the statements they made. It

was also observed that the authors did not include comparisons of TWIPS against

other signal processing methods in any of their reports or articles. There was a
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mention of on-going studies to investigate the ROC curve characteristics of TWIPS

in [11], but there have not been any known reports to date.

The experiment was very challenging to conduct due to the lack of specialised

equipment and a suitable experiment site. Moreover, the design of a well controlled

experiment requiring the characterisation of bubble population distribution and

measurements of void fraction was complicated and way beyond the scope and

requirements for this course. Nevertheless, some preliminary experiments were

still conducted using available resources.

The data collected from experiments produced results that somewhat agree

with simulation results presented in this research, in which TWIPS1 performed

better than ’standard sonar processing’ but not against the standard cross corre-

lation method. Of course it may be argued that the bubble cloud size distribution

and void fraction were not properly characterised and the acoustic source levels

used were insufficient to generate the high nonlinearities required. But these were

limitations that could not be easily resolved with the resources available.

There is little doubt that TWIPS does work experimentally based on various

reports of experimental trials on TWIPS [11, 14]. However, these trials were

all made in a controlled laboratory setting. The task would probably be more

representative and challenging in real sea trials.

Unfortunately this research did not have the luxury of working with real dol-

phin research subjects, as this would have been the best test of whether these

animals do exploit nonlinearities for target detection in bubble populated water.
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If a controlled bubble population distribution in the form of a bubble screen or

bubble cloud could be generated, it would be interesting to see if dolphins change

the centre frequency and amplitude of their echolocation pulses to match that of

the resonance bubble frequency. More importantly, the backscatter from the bub-

ble cluster could be measured to see if nonlinearities were indeed generated. The

various signal processing techniques and analysis methods discussed here could

then be used with this data to compare which method(s) might be most useful.

There can also be another interesting outcome whereby none of the proposed sig-

nal processing methods described here work, and yet the dolphin still manages

to somehow detect a target hidden in or behind a bubble cloud/screen. It might

then suggest that there is a possibility of dolphins using a much superior processing

method yet unknown to us which needs further investigation.

To conclude, the research here is not an attempt to disprove any of the claims

by the inventors of TWIPS, but rather to close up missing links that they might

have left out. It is hoped that the studies described here offer alternatives methods

for processing sonar signals and provide statistical methods for the analysis of their

performances. This would then help in the development of man-made sonar sys-

tems employing bio-mimetic signals that perform effectively in the littoral zone.



Appendix A

Formulating the modified

Herring-Keller equation

The formulation of the Herring-Keller equation was described in detail by Hoff(2001)

[43]. A summary of this derivation is given here.

In deriving the equation of motion of a bubble, the Bernoulli equation is first

combined with the linear wave equation to give a set of equations for the velocity

potential at the bubble surface.

Bernoulli equation:
∂Φ

∂t
+

1

2

(
∂Φ

∂r

)2

+ h = 0; (A.1)

Linear wave equation:
∂2Φ

∂r2
− 1

c2
∂2Φ

∂t2
= 0 (A.2)

Speed of sound, c: (
∂ρ

∂p

)
S

=
1

c2
= constant (A.3)

Enthalpy, h:

h =
p(r)− p∞

p∞
(A.4)
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The expression for enthalpy in Equation A.4 is correct to the first order in 1/c

and boundary conditions at the bubble surface r = a(t) are given as:

p(a, t) = pL(t) (A.5)

∂Φ(a, t)

∂r
= u(a, t) = ȧ(t) (A.6)

Eq. A.1 to A.6 are combined to obtain a new set of equations for the velocity

potential at the bubble surface:

∂Φ

∂t
+

1

2
ȧ2 + h = 0 (A.7)

∂2Φ

∂r2
− 1

c2
∂2Φ

∂t2
= 0 (A.8)

∂Φ

∂r
= ä (A.9)

The general solution to the wave equation is given as:

Φ(r, t) =
f1(t− r/c)

r
+
f2(t+ r/c)

r
(A.10)

where f1(x) and f2(x) are arbitrary functions.

Taking partial derivatives with time and radius,

∂Φ

∂t
=

f ′1
r

+
f ′2
r

(A.11)

∂Φ

∂r
= −f

′
1

rc
− f1
r2

+
f ′2
rc
− f2
r2

(A.12)

The partial derivatives are inserted into the Bernoulli equation (Eq. A.1) and

replacing the velocity potential (Eq. A.9) gives:

c(f1 + f2) = aa2
(

1

2
ȧ2 − ca+ h

)
+ 2af ′2 (A.13)
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Differentiate with respect to time,

c

(
1− ȧ

c

)
(f ′1 + f ′2) =ca

(
−2ȧ2

(
1− 1

2

ȧ

c

)
− aä

(
1− ȧ

c

)
+ 2

ȧ

c
h+

a

c
ḣ

)
+

2a

(
1 +

ȧ

c

)
f ′′2

(A.14)

The time derivatives of f1 and f2 are eliminated by using the equation:

f ′1 + f ′2
a

+
1

2
ȧ2 + h = 0 (A.15)

The equation of motion for the bubble surface is finally obtained after substi-

tuting for the time derivatives of f1 and f2:

aä

(
1− ȧ

c

)
+

3

2
ȧ2
(

1− 1

3

ȧ

c

)
− h

(
1 +

ȧ

c

)
− a

c
ḣ− 2

c

(
1 +

ȧ

c

)
f ′′2

(
t+

a

c

)
= 0

(A.16)

The driving acoustic field is included by the term containing f ′′2 (t+a/c) because

f2(t+ a/c) represents a converging spherical wave.

The driving field which is described by a velocity potential field, can be de-

composed into spherical harmonics and spherical Bessel functions. Since bubble

oscillation is purely radial, the zeroth term is the only term that interacts with

this radial mode. The zeroth term is given as:

Φi0(r, t) =
f2(t+ r/c) + f3(t− r/c)

r
(A.17)

The driving field has its potential in the bubble center where r = 0. This

would imply that f3 = −f2 and the driving acoustic field is given as:

Φi0(r, t) =
f2(t+ r/c)− f2(t− r/c)

r
(A.18)

As the bubble diameter is small compared to the wavelength of the driving

pressure field, only small variations are allowed in the function f2 over a distance

equal to the bubble diameter. The variation of f2 over the bubble diameter is
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approximated as:
f2(t+ r/c)− f2(t− r/c)

a
≈ 2

c
f ′2(t) (A.19)

If the driving acoustic field is treated linearly, then the driving pressure pi(a, t)

at the bubble surface can be found from the velocity potential:

pi(a, t) = −ρ∂Φi0

∂t

∣∣∣
r=a

= −2ρ

c
f ′′2 (t) (A.20)

The above equation is substituted into the equation of motion given in Eq.

A.16. The driving acoustic field Φi0 will disappear at r =∞, giving p∞ = p0. The

final expression for the equation of motion for the bubble is given as:

aä

(
1− ȧ

c

)
+

3ȧ2

2

(
1− ȧ

3c

)
−
(

1 +
ȧ

c

)
1

ρ

(
pL − p0 − pi(t+

a

c
)
)

+
a

ρc

∂pL(t)

∂t
= 0

(A.21)

The pressure at the bubble surface pL is given as:

pL =

(
p0 +

2σ

a

)(
a

ae

)3κ

− 2σ

a
− 4ηLȧ

a
(A.22)

Assuming that the liquid medium is incompressible, the pressure at a distance

r from the bubble center is given by;(
p

p∞
− 1

)
p∞
ρ

=
a

r

(
äa+ 2ȧ2

)
− ȧ2

2

(a
r

)4
(A.23)

Numerical differentiation to find the bubble wall acceleration ä can easily

become inaccurate and unstable, thus it is reformulated using the equation of

motion:

äa+
3

2
ȧ2 +

p∞ − pL
ρ

= 0 (A.24)

Expressing the equation of motion in terms of ä,

ä =
1

a

(
−3

2
ȧ2 − p∞ − pL

ρ

)
(A.25)
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The pressure radiated by the bubble can then be solved by substituting for ä

to obtain:

ps = p− p∞ =
a

r

(
1

2
ρȧ2 + pL − p∞

)
− ρȧ

2a4

2ṙ4
(A.26)



Appendix B

Receiver Operating

Characteristic (ROC) Curves

Receiver Operating Characteristic (ROC) curves was developed in the 1950’s where

it was used for signal detection in radio signals contaminated by noise. It is a

technique used generally for organising classifiers and visualisation of their per-

formance. Other applications of ROC curves include medical decision making,

machine learning and data mining.

In this research project, the ROC technique is used as a 2 class classifier (target

present and target absent).Given a classifier (actual class) and instance (measured

data), there are 4 possible outcomes. If an instance detects a target and the target

is physically present, it is considered as a true positive; if the target is physically

absent, it is considered as a false positive. If an instance doesn’t detect a target

and the target is physically absent, it is considered a true negative; if the target

is physically present, it is considered a false negative. Given the set of classifiers

and instances, a two-by-two confusion matrix (contingency table) can be created.

The following information can be obtained from the confusion matrix:

True Positive (TP) - Correct detection

True Negative (TN) - Correct rejection

False Positive (FP) - False alarm

False Negative (FN) - Miss

122



Appendix B. Receiver Operating Characteristic (ROC) Curves 123

Figure B.1: Confusion Matrix

Sensitivity or True Positive Rate (TPR) - Correction detection rate

TPR =
TP

P
=

TP

TP + FN
(B.1)

False Positive Rate (FPR) - False alarm rate

FPR =
FP

N
=

FP

Fp+ TN
(B.2)

Specificity or True Negative Rate (TNR)

Specificity = 1− FPR (B.3)

The ROC curve is a plot of True Positive Rate (y-axis) against False Positive

Rate (x-axis) over a range of detection thresholds. In signal detection theory, an

ideal receiver in the absence of interference will have a TPR of 1 and a FPR of

0 for the entire detection threshold range. However in practical situations this is

not possible. A good detector aims to maximise the TPR while minimising the

FPR. The diagonal line joining the points (0,0) and (1,1) is called the diagonal of

uncertainty where it means that the outcome is a random guess.
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To compare the performance between ROC curves, one needs to apply a mea-

sure of variance to each curve and see if they are significantly different from one

another. The measure of variance can be achieved by averaging the curve over

multiple data sets for each signal processing method adopted. There are many

methods for averaging ROC curves. The most basic methods include vertical and

threshold averaging.

In vertical averaging, vertical samples of the ROC curves are taken at fixed

intervals of FPR and the corresponding TPR are averaged. However, this method

gives only a one dimensional measure of variance. Moreover, the FPR is not an

independent variable that is under direct control of the experiment controller.

A preferred method is to average ROC points with independent variables whose

values can be controlled directly. The threshold method overcomes this limitation.

The Area Under Curve (AUC) method is sometimes used to compare classifier

performance. This method reduces the two dimensional ROC space into a single

scalar value giving a measure of expected performance. The AUC, as its name

depicts, is found by calculating the area under the ROC curve. The AUC is

used when one wishes to evaluate performance over the entire range of detection

probability, and this is useful since two ROC curves may have different curvatures

but yet have the same AUC. In this research project however, the interest is in the

detection performance at specific FPR rather than overall performance. Hence,

the threshold averaging method is more suitable.

For each simulation in this research, 50 sets of 100 bubble cloud backscatter

responses were generated to obtain 50 waterfall plots and 50 ROC curves for each

of the processing method discussed. Each point on the ROC curve is plotted by

varying the detection threshold and finding the percentage of correct detections

and false alarms. Correct detection (TP) is measured from the waterfall plot

(target present) by finding the number of pings in the time samples occupied by

the target that have an amplitude higher than the specified detection threshold.

A false alarm (FP) is measured from the waterfall plot (target absent) by finding

the number of pings in the entire time duration that have an amplitude higher

than the detection threshold. The FPR and TPR is then calculated using Eq. B.2

and B.1 respectively.

Each of the ROC curves presented in this research thesis was found by aver-

aging over 50 ROC curves. The 95 % confidence interval for a FPR of 0.1 and
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its corresponding 95 % confidence interval for TPR were plotted. Any overlap in

the confidence interval of the ROC curve for the different signal processing tech-

niques would indicate that one technique is not significantly better than any of

the others.
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