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Summary

Advances in sensing and satellite technologies and the rapid spread of moving devices
generate a large volume of spatiotemporal datafééidint types and promote the devel-
opment of spatiotemporal database, thereby arising an increasing need for discovering
spatiotemporal patterns in spatiotemporal data. To date, although a lot of works have
been proposed for mining patterns in spatiotemporal databases, there are some research
areas that need further investigation. In this thesis, we focusfioneatly and ef-
fectively discovering the spatiotemporal patterns in three popular spatiotemporal data
types: biological sequence data, snapshot data and moving object data. We outline our
approaches as follows.

First, we study the problem of mining mutation chains in biological sequences
which are associated with location and time. We propose a mutation model where
each biological sequence influences its spatiotemporal nearby biological sequences. We
therefore define the notion of mutation chains and desigrfament algorithm to mine
frequent mutation chains. Second, we tackle the problem of discovering localized and
time-associated patterns in snapshot data. We propose an influence model where each
object exerts an influence to its spatiotemporal nearby regions. Based on the influence
model, we investigate this problems in two steps: We introduce the global Spatial In-
teraction Patterns (SIPs) on a single snapshot and propose a grid based influence model
to mine the frequent SIPs. We further extend the SIPs to Geographical-specific Inter-

action Patterns (GIPs) and propose a quadtree based influence model dhdiemt e

Vv



mining algorithm to mine frequent GIPs over time. Finally, we address the problem
of discovering duration-aware trajectory patterns in moving object data for trajectory
classification. The influences of moving objects to the regions are measured by the
amount of time spent by the moving objects in the regions. Based on the influence, we
introduce the duration-sensitive region rules and a top-down region partition approach
to discover valid region rules. We also introduce the speéérdntiating path rule

and propose a trajectory network to facilitate the mining of discriminative path rules.
Two classifiers, TCF and TCRP, are built using the discovered region rules and path
rules. Experiment results on real-world datasets show that both classifiers outperform

the existing classifiers.

Vi
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Chapter 1

Introduction

In recent years, we witnessed the rapid development of sensing and satellite technolo-
gies and tracking devices, which significantly changed and are changing our world.
The high spatial and spectral resolution remote sensing systems and other monitoring
devices are gathering vast amounts of data with location and time attributes. These
spatiotemporal data are stored and managed in spatiotemporal databases. This, in turn,
leads to interest in spatiotemporal data mining.

Spatiotemporal data mining aims to disclose insightful knowledge embedded in
spatiotemporal data, and enables people to understand the underlying process in spa-
tiotemporal phenomena, and enables decision makers to make policies for emerging
spatiotemporal events. To users, interesting spatiotemporal phenomena are those that
are not random but rather follow certain rules. We call the repeating regular structures
in space and time as spatiotemporal patterns.

Different types of spatiotemporal data hav@edent regular structures, thereby hav-
ing different spatiotemporal patterns. Spatiotemporal patterns are important because
they not only are insightful knowledge but also can be applied for further data analysis
and knowledge discovery. This thesis focuses on the spatiotemporal pattern mining in

three popular types of spatiotemporal data.



1.1 Spatiotemporal Database

A spatiotemporal database deals with either geometry changes over time in discrete
steps, or location of objects in a continuous manner [18]. Accordingly, the spatiotem-
poral data can be divided into moving object data and non-moving data.

The moving object data record the continuous location sequences of moving objects,
where the location sequence of each object can be represented by a trajectory. The non-
moving data record the information of spatial objects over time in discrete steps, where
the spatial objects are distinct from each other. Further, the non-moving data can be
modelled as events or snapshots. Event data record the discrete spatial objects over
time. A point-based event is a spatial object which is tagged with the exact spatial and
temporal information. The biological sequences which are associated with location and
time can be treated as the point-based event data. Snapshot data record the distribution
of spatial objects over time. Each snapshot is a time slice to record the distribution of

spatial objects.

1.1.1 Biological sequence data

Biological sequence analysis is one of the major research area in the biomedical and
bioinformatics. The biomedical applications generate a large volume of biological
sequences. A biological sequence is a single, continuous molecule of nucleic acid
or protein. Besides the biomolecular sequence (nucleic acid or protein), the annota-
tion information (organism, species, function, spatiotemporal information, mutations
linked to particular diseases, bibliographic, etc) are also stored in biological sequence
databases [3].

Due to the annotated spatiotemporal information, each biological sequence can be
seen as one point-based event in spatiotemporal space, which is associated with a se-

guence of molecules. Figure 1.1 shows an example of the biological sequence database,



which consists of seven biological sequences, and its distribution in spatiotemporal

space.

vs, = ABCD,vs, = FBCC,vs,; = BCAD,vs, = ADDA,
vss = BAFC,vsy = ABDA,vs, = BDDF

Vs
1 o
0 VS
o 5 Vs, o

o
Vs, VS, o

» time

Figure 1.1: Sequences data

1.1.2 Snapshot data

Studies of El Nino fects in meteorology, forest fires in forestry, volcanic activities and
earthquake zones in geophysics, vegetation evolution in botany, generate a large volume
of images that capture the spatiotemporal phenomena. For example, botanists maintain
a historical record of the spatial distribution of trees to analyze the spatial patterns of
vegetation [5]. Another major source of snapshot data is from web related applications.
A web site may record a large volume of geographical information such as providers’
locations, content locations, serving locations [76], and visitors’ locations and visiting
time.

These data are represented as a sequence of snapshots where each snapshot is as-
sociated with a spatial plane and a time slice, and contains a set of spatial objects.
Figure 1.2 shows several snapshots over time, where each snapshot is a spatial plane

during a time period.
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Figure 1.2: Snapshot data

1.1.3 Moving object data

In the applications which emphasize on the behavior of objects, moving object data
are generated and managed in databases for online object tracking and future trajectory
analysis. In meteorology, meteorologists maintain the data of moving storms, devel-
opments of high pressure areas and precipitation areas in the spatiotemporal database.
In zoology, zoologists maintain animal movements, mating behavior, species relocation
and extinction in the spatiotemporal database. In our daily livinfi¢rdepartment and
commercial companies store the trajectories of cars, trucks and taxis.

Moving object data are the time-ordered sequences of object locations. Figure 1.3
shows the geographical projection of tropical storm tracking trajectory data on the North
Atlantic Ocean during 1950-2008, which are the linear segments of sampling points.
Besides, moving object data may contain othi@hation information about the objects.
Figure 1.3 shows the speeds and scales of tropical storms where blue trajectories are

gentle tropical storms and red trajectories are hurricanes.

1.2 Motivations

While there have been some research works that focus on the pattern mining in biolog-

ical sequence data, snapshot data and moving object data, more works need to be done.



Figure 1.3: Moving object data

In this thesis, we explore the challenges of mining spatial patterns and spatiotemporal

patterns in biological sequence data, snapshot data and moving object data, respectively.

1.2.1 Pattern mining in biological sequence data

To date, researches on sequence data mainly focus on the frequent patterns of sequences
such as sequential pattern. Sequential patterns [2, 88, 54] are the frequent subsequences
in a sequence database. Sequential pattern mining has received long-term research
attention, because sequential patterns have broad applications including the analysis
of long-term customer purchase behaviors for cross selling and target marketing, the
analysis of Web access patterns for understanding user behaviors, the analysis of se-
guencing or time-related processes such as scientific experiments, natural disasters, and
disease treatments, the analysis of patients’ medical records, the analysis of biological
sequences such as genome sequences and protein sequences, and so on.

There is no research which focuses on the spatiotemporal relationship of sequences.
Taking spatiotemporal behaviors into account is important to better understand the bio-
logical sequence mutations. For example, influenza is a major human pathogen and the
influenza virus, in existence for centuries, has been continually infecting both humans
and animals. A recent trend is to develop region-specific vaccines which requires the

spatial and temporal dynamics of the viral mutations. Thus, it is highly desirable to



find out when and where the mutations occur, i.e., we need to know the highly-mutated
regions (hotspots) in sequences at one geographical location and their changes when
the sequence mutates in another location.

The spatiotemporal patterns of biological sequences are complex because they not
only detect the highly-mutated regions in sequences but also identify the temporal
chains of changes. Extending existing sequential pattern mining algorithms [2, 88, 54]
or existing spatiotemporal event sequence mining algorithm [33] to find these complex
spatiotemporal patterns is not feasible due to the large search space of highly-mutated
regions in sequences and temporal dimensions. Therefore, itis desirable to formally de-

fine and diciently mine the frequent spatiotemporal patterns of biological sequences.

1.2.2 Mining spatiotemporal patterns in snapshot data

Many applications, such as epidemiology and web services, have sustained interest
in developing techniques to discover the localized patterns for performing further re-
gional analysis and providing Location-Based-Services (LBS). The localized patterns
may change over time, which leads to the chains of localized patterns.

For example, a comprehensive web site contains a large number of web pages,
which are categorized into fikerent topics such as news, sports, entertainment, and
so on. The web site designer wants to know the visitors’ interestsfliarelint coun-
triegregions. If geographical-specific interests are discovered, the web site can pack
the specific topic combinations for the visitors of specific counteggons, and pro-
vide customized advertisements téfelient regions.

The traditional approaches to define the spatial relationship of events on snapshots
are based on either the grid [72] or the Euclidean distance [31]. The grid based ap-
proach performs a preprocessing which imposes a grid on the spatial plane, transforms

the events into transactions, and applies the well-developed transaction based pattern



mining algorithms. The grid based approachfigceent, but it is inappropriate for spa-

tial data due to the spatial information loss during preprocessing. On the other hand,
the Euclidean distance based approach evaluates the spatial relationship by first com-
puting the distance for every event pair and then counting the close pairs. A typical
Euclidean distance based pattern is the spatial collocation pattern [63, 31] which is the
set of event types whose events occur close together. In spite of no spatial information
loss in Euclidean distance based approach, it is computationally expensive to compute
the pairwise event distances. In addition, the discovered patterns are sensitive to the
distance threshold and imprecise spatial data. Therefore, we need an interestingness
measure which can identify the spatial relationship, handle imprecise data and do not
rely on the grid.

The localized patterns (patterns with confined locations) and their changes over time
are crucial to understand the spatiotemporal phenomena in snapshot data. However,
there is no research work which focuses on such localized pattern mining. It is inap-
propriate to first mine the local patterns on the sub-datasets and then combine the local
patterns, because it isfiicult to determine the granularity of sub-datasets and is ex-
pensive to discover many intermediate patterns. We need an approach which does not
rely on the existing geographical domain knowledge like hierachical region structures,
and can automatically determine the region granularity. In addition, the localized pat-
terns and their changes are complex because the patterns contain spatial and temporal
information, which leads to a huge number of candidate patterns. We nedfticrene
algorithms to prune the candidate pattern space and discover the localized patterns and

their changes.



1.2.3 Mining spatiotemporal patterns for trajectory classification

Trajectory classification is an important research problem in trajectory data analysis.
Assume each trajectory in the trajectory database has a class label, trajectory classi-
fication is the process of predicting the class labels of moving objects based on their
trajectories and other features.

The ability to classify trajectories is useful in many real world applications. In
meteorology, a trajectory classifier can predict the intensity and scale of an approaching
hurricane, so that precautionary actions can be carried out in advance. In homeland
security, it is reported that more than 160,000 vessels are travelling in the United States’
waters [45], and an anomaly trajectory detection classifier that can evaluate the vessels’
behaviors and highlight suspicious vessels for further monitoring is highly desirable.

Existing work on trajectory classification [42] selects the regions and representative
trajectories as the features for classification. Regions are mined based on the spatial dis-
tribution of trajectories, and representative trajectories are mined based on the shapes of
trajectories. However, it does not take the duration of the trajectories into consideration
in differentiating the objects that move affdrent speeds. For example, the speed at
which a tropical hurricane passes the Gulf of Mexico is an important criterion in classi-
fying the scale and intensity of the trajectories in Figure 1.3. Classifiers, that look only
at the spatial distributions and movement directions of hurricanes but ignore the moving
speeds, are unable to accurately classify the intensities of the hurricanes.

Spatiotemporal patterns which focus on both the actual movement paths and the
movement speeds are desirable to build the trajectory classifier. However, few existing
works considered the duration information in the moving object data analysis. Existing
works on moving clustering [46, 36], motion group [81] and convoy [35] focus on the
discovery of moving objects which exhibit synchronous movement behaviors. Even

with low support, the paths of moving clusters or motion groups may not be enough



for classification. This happens especially in the database where the moving objects are
unlikely to move simultaneously, such as the annual hurricane trajectory database and
the shuttle bus trajectories.

The trajectory patterns [25] are duration associated patterns which capture the Region-
of-Interests (Rols) and the transition time between every two Rols. The mining of
trajectory patterns is based on the pre-defined popular regions and transform the tra-
jectories into region sequences. Having a pre-determined granularity for regions and
duration intervals is undesirable because if the granularity is too coarse, it will lead to
a small number of trajectory patterns which is not enough to build an accurate classi-
fier. On the other hand, if the granularity is too fine, it will lead to a large number of
trajectory patterns, resulting in overfitting. Hence, the trajectory patterns do not have

discriminative power for accurate classification.

1.3 Contributions

This thesis is organized as follows. Figure 1.4 shows the overall framework. In this fig-
ure, the spatiotemporal data is further categorized into biological sequence data, snap-
shot data and moving object data. Figure 1.4 includes the spatial pattern mining layer,
the spatiotemporal pattern mining layer, and the other data mining task layer to address
the three data mining problems above.

The first problem is the mutation chains mining in biological sequence data based
on a spatiotemporal constraint. The second problem is the discovery of localized and
time-associated spatial relationships in snapshot data, where the spatial relationships
are presented by interaction patterns. The third problem focuses on the discovery of the
region rules and path rules in moving object data and the application of these rules for

trajectory classification. The three major contributions are summarized as follows.
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Figure 1.4: Thesis Framework

1. We propose a mutation model for biological sequence data where each biolog-
ical sequence influences the other nearby biological sequences. Based on this
mutation model, we define the problem of mining mutation chains and introduce
a measure called mutation index to capture the confidence of a mutation. We
present an integrated algorithm to discover contiguous subsequences of muta-
tions. The algorithm utilizes two data structures to facilitate the mining process.
The PointMutation tree summarizes position-specific single character mutations
while the compact MaxMutation tree is designed to store the complete set of con-
tiguous subsequences of mutations (k-mutations). We propose two pruning strate-
gies to improve the miningficiency. The first strategy prunes positions which
are impossible to have any valid mutations based on the lower and upper bounds
of their entropy measures. The second strategy is a selective join that enables us

to prune unnecessary sequence chains based on the previous rounds of mining
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results. We evaluate the algorithms on both synthetic and real world datasets. Ex-
periments on the real world Influenza A virus database provide insights into the
spread and mutation of the highly pathogenic Avian H5N1 influenza virus and

the recent HLN1 swine flu. This work is published in [67].

. We propose an influence model for snapshot data where each object exerts influ-
ence to its nearby regions. The influence model is able to capture the underly-
ing spatial relationship among objects on the snapshot. Based on the influence
model, we investigate the problem of discovering localized and time-associated
patterns by two steps. First, we mine the global Spatial Interaction Patterns
(SIPs) on single snapshot. We propose a grid based influence model and de-
sign an algorithm called PROBER to discover SIPs. We design the interaction
tree structure to store the possible combination of candidate spatial interaction
patterns, and extend PROBER algorithm to mining maximal SIPs. Second, we
extend SIPs to the Geographical-specific Interaction Patterns (GIPs) over con-
tinent snapshots. We propose a quadtree based influence model and design an
algorithm called FlexiPROBER to discover the localized GIPs. We define three
pattern trends, i.e., enlargement, shrinkage and movement of supporting regions,
to capture the changes in these patterns and develop an algorithm called MineGIC
to discover these changes. Experiment results on both synthetic and real world
datasets demonstrate that the proposed approadfieidige in mining the lo-

cal geographical-specific interests patterns and discover their changes over time.

This work is published in [65, 64].

. We propose duration-sensitive region rules and spegerentiating path rules
for trajectory classification. We propose that the influences of moving objects
to the regions are measured as the time spent by the moving objects in the re-

gions. Based on this influence definition, we propose a top-down region parti-
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tion approach to discover the valid region rules. We also introduce the trajectory
network to model the distribution of trajectory database. The granularity is con-
trolled and measured by the Minimum Description Length (MDL) gain. Based
on the trajectory network, we design a path pattern tree to enumerate the candi-
date path patterns, and design d&inceent path pattern mining algorithm to mine

the topk covering path rules. Two classifiers, TCF and TCRP, are built using the
discovered region rules and path rules. Experiment results on real-life trajectory
datasets show that both TCF and TCRP obtain higher classification accuracy than

the existing classifier. This work is submitted to conference for review [66].

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 reviews the related work on
sequential pattern mining, pattern mining in snapshot data and spatiotemporal mining
in moving object data. Chapter 3 proposes a mutation model and studies the mining
of mutation chains in biological sequence database. Chapter 4 introduces the grid-
based influence model and studies the mining of global interaction pattern in snapshot
databases. Chapter 5 proposes a Quadtree based influence model and studies the mining
of localized interaction patterns and further examines their enlargement, shrinkage and
movement chains over space and time. Next, we consider the pattern mining in mov-
ing object data. Chapter 6 studies the discovery of duration-sensitive region rules and
speed-dierentiating path rules for trajectory classification. Two classifiers are built on
those discovered rules. Finally, we conclude our studies and discuss some future work

in Chapter 7.



Chapter 2

Related Work

Frequent pattern mining is an important research area in data mining. It focuses on dis-
covering interesting knowledge infterent data types, such as transactions, sequences,
graphs, multimedia data and the other complex data types.

Agrawal et.al [1] first proposed to mine frequent ifgemset in transaction database
and further discover association rules which are useful knowledge to discover the co-
occurrence relationship among items. They applied the Apriori property to enumerate
the candidate patterns and developedfénient algorithm to mine all frequent patterns
based on the Apriori property. As a paradigm in the area of data mining, the frequent
pattern mining problem is explored and studied extensively.

Agrawal et.al [2] further proposed the sequential pattern mining problem. This
problem is diferent from the association rule mining problem because sequential pat-
terns are mined in sequence database, where each sequenaeleradlist of itemsets,
instead of transactions in the association rule mining. Compared to the association rule
mining problem, sequential pattern mining is more complex because the sequences con-
tain more potential candidate patterns than transactions. A lot of work are proposed to
efficiently find complete or compact set of sequential patterns, which will be surveyed

in Section 2.1.

13
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Spatiotemporal data are alsamporally orderedsequences, but they contain more
semantics than sequences due to the mixture of spatial and temporal information. Hence,
spatiotemporal pattern mining is more complex and challenging than sequence pattern
mining. First, the conventional frequent pattern mining approaches and algorithms need
to be modified to performf&cient mining. Second, the discovered spatiotemporal pat-
terns are expected to include spatial and temporal information.

However, existing work [1, 2, 72] on spatiotemporal mining are the direct extension
of the conventional pattern mining in transactions or sequences. They usually employ
a preprocessing step to transform spatiotemporal data into transactions or sequences,
and then apply the existing pattern mining algorithms on the transformed data. This
is undesirable because the transformed data may miss a lot of important spatial infor-
mation during this preprocessing step. For example, two spatially close objects may
fall into two different buckets using gridding spatial partition approach. In this chapter,
we review the related work on sequential pattern mining, on pattern mining in event

databases, and finally on data mining in moving object data.

2.1 Sequential pattern mining

Sequential pattern mining problem can be stated as “given a sequence database and the
min support threshold, sequential pattern mining is to find the complete set of sequential
patterns in the database” [29]. Some important definitions in this area are listed as
follows. An itemset is denoted byi(i,...im), whereij is an item. A sequencgis

denoted by(s;s; ... s,) wheres; is an itemset. A sequence;a;...a,) is contained

by another sequencd;b,...by) if there exist integers; < i, < ... < i, such that

a Chby,achb,...,a, € b,. Forexample, the sequeni®d)(c)(ac)) is contained in

i1

((e)(bd)(ae)(c)(b)(acd)), since pd) c (bd), (c) < (c), (ac) c (acd). Table 2.1 gives an

example of sequence database which contains four transactions.
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TID | sequences

10 | (e)(bd)(ag)(c)(b)(acd))
20 | {(bd)(c)(ac))

30 | {(d)(ac)(abg)

40 | (&) (9)(af)(©)(b)(c)

Table 2.1: An example of sequence database

From Table 2.1, we can see that each sequence is temporally ordered itemsets and
the sequential patterns are the frequent subsequences in the sequence database. Similar
to frequent patterns, sequential patterns have the anti-monotone (i.e., downward clo-
sure) property as follows: every non-empty sub-sequence of a sequential pattern is a
sequential pattern. In other words, if a seque8as infrequent, none of the super-
sequences of will be frequent. For example, suppodab) is infrequent, all of its
super-sequences, such(haby or (h(bc)), are infrequent. Based on this anti-monotone
property, the sequential pattern mining focuses on the developmeffficiém algo-
rithms to discover the sequential patterns.

GSP [71] is a sequential pattern mining algorithm based on a horizontal data format.

It adopts a multiple-pass, candidate-generation-and-test approach in sequential pattern
mining. The first database scan determines the support of each item, and every frequent
item yields a 1-element frequent sequence. After the initialization of 1-item sequences,
GSP utilizes the sequential patterrkefem to generate new potential patternslofl)-

item, called candidate sequences. GSP carries out one database scan to collect support
count for candidate sequences. All candidates whose support in the database are no
less than minimal support form the set of the newly found sequential patterns. The
algorithm terminates when no new sequential pattern is found in a pass, or no candidate
sequence can be generated. However, GSP still generates a large number of candidates
and requires costly multiple database scans.

SPADE [88] is an Apriori-Based vertical data format sequential pattern mining algo-



16

rithm. SPADE maps a sequence database into the vertical data format which takes each
item as the center of observation and takes its associated sequence and event identifiers
as data sets. Similar to GSP, SPADE generateskthk){length candidate patterns by
joining two frequenk-length sequential patterns. The SPADE algorithm reduces the ac-
cess of sequence databases since the information required to construct longer sequences
are localized to the related items @mdsubsequences represented by their associated
sequences and event identifiers. However, the basic search methodology of SPADE is
similar to GSP, exploring both breadth-first search and Apriori pruning.

PrefixSpan [53] is a write-based sequential mining algorithm. PrefixSpan uses fre-
guent items to recursively project sequence databases into a set of smaller projected
databases and grow subsequence fragments in each projected database. To reduce the
length of projected sequences, PrefixSpan examines only the prefix subsequences and
project only their corresponding postfix subsequences into projected databases. Pre-
fixSpan counts the supports of candidate patterns in the projected database. The mining
algorithm terminates when no new projected database is generated or no new sequen-
tial pattern is found. PrefixSpan is reported to outperform GSP and SPADE because the
projected databases are much smaller than the whole database.

The sequential pattern mining methodology has also been extended to hdigale di
ent application scenarios. To handle incremental mining problem, IncSpan [10] defines
an intermediate state between frequent patterns and infrequent patterns called semi-
frequent patterns. Givemin.sup and a factopu < 1, a sequential pattern is semi-
frequent if its support falls in the rangg ¥ min_sup min_sup. With the incremental
updating of sequence database, the patterns may transform anffengrdistates, from
infrequent to semi-frequent, from semi-frequent to frequent, etc. Based on the state
transformation, IncSpan proposes some pruning strategies to prune the search space of

sequential patterns. To handle the noisy environment where the items of sequence data
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may be imprecise, [84] has studied the problem of mining frequent sequences with the
help of the compatibility matrix, which provides a probabilistic connection from the
observation to the underlying true value.

All the related work above need to generate a complete set of candidate patterns
during the mining. The performance of such algorithms often degrades dramatically
when mining long frequent sequences, or when using very low support thresholds. To
tackle this problem, CloSpan [82] is proposed to mine frequent closed sequential pat-
terns, i.e., those containing no super-sequence with the same support, instead of mining
the complete set of frequent subsequences. CloSpan performs an early termination on
the prefix search tree when finding the backward sub-patterns or super-patterns. How-
ever, setting min support is a subtle task in the sequential pattern mining algorithms.
TSP [73] is proposed to discover top-k closed sequences. TSP finds the most frequent
patterns early in the mining process and allows dynamic raising of minimal support
which is then used to prune unpromising branches in the search space.

Many researchers [23, 55, 56] shift their attention towards mining sequences by in-
corporating constraints to reduce search space. [23] proposes regular expressions as
constraints for sequence pattern mining and develops a family of SPIRIT algorithms
while members in the family achieve various degrees of constraint enforcement. Fol-
lowing that, [55, 56] conducts a systematic study on pushing various constraints deep
into sequential pattern mining and characterizes constraints for sequential pattern min-
ing according to their application semantics and roles in sequence pattern mining

Sequential pattern mining, which focuses on the temporal relationship of itemsets,
has been studied extensively. However, existing work on sequential pattern mining do
not consider the spatial relationship and spatial information in the mining. It is infeasi-
ble to transform the spatiotemporal data into sequence data by mapping the regions into

items of sequences. This is because the mapping mechanism results in inevitable in-
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formation loss in spatiotemporal data. Hence, sequential pattern mining is unable to be
directly applied to mine spatiotemporal patterns. The pattern mining in spatiotemporal
data is more complicated than sequential pattern mining due to the mixture of temporal

and spatial relationship.

2.2 Pattern mining in event data

Spatiotemporal event data are a collection of events in the space-time dimensions, where
each event is associated with a set or a sequence of event type. Typically, spatiotempo-
ral event data come from GIS, meteorology applications and web logs. Spatiotemporal
patterns mining in event data will discover the frequent patterns by measuring spa-
tiotemporal relationship among events. There are many research work in this research
area. Depending on the methods to measure spatiotemporal relationship among events,

the existing work can be classified into two categories.

e Snapshot-grid. Snapshot-grid model assigns a spatial snapshot for each time slice
along the time axis and links all spatial planes together with chronological order.
Snapshot-grid model imposes a grid on each spatial snapshot, relying on a do-
main knowledge or cell granularity if no domain knowledge. Figure 2.1(a) shows
an example of spatiotemporal data which are stored and accessed by snapshot-
grid model. Based on the snapshot and grid, the spatiotemporal data are easily
transformed into transactions of cell ids, so that the conventional pattern mining

techniques [1, 2] can be seamlessly employed in spatiotemporal data mining.

e Event model. Event model emphasizes the mutual relation of event pairs and a
global relation of dataset through some existing distance functions and similarity
measure. The relation does not rely on any domain knowledge but a spatiotempo-

ral distance definition. Figure 2.1(b) shows an example of event model, in which
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the events are in X-dimension and time-dimension for easy illustration and dash
arcs are boundaries of the event influence range. The spatial access techniques

are usually employed to facilitate the access and computation of spatiotemporal

distance.
t1 t2 t3 t4
: » time
c a c
b | f e
d d
(a) Snapshot-grid model
> time

(b) Event model

Figure 2.1: An example of spatiotemporal database

2.2.1 Snapshot-grid model

[72] is an early work of spatiotemporal mining based on grid-snapshot model. In this
work, Tsoukatos et.al impose a grid on the spatial plane so that each event is rep-
resented by a cell id of the grid. A spatiotemporal sequential pattern has the form
IS; - 1S, — ... —» IS, to describe a frequent event sequence, where two neighbor-
ing items have both spatial and temporal constraints. More specifitglly, . ., 1S,

all occur in the same cell and each neighboring item p&ir,; andIS;, happens in

two consecutive snapshots. This work utilizes a lattice structure to enumerate candi-

date sequential patterns. Tsoukatos et.al proposes the algorithnMINES to mine
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all maximal sequential patterns in the depth first search manner. The limitations of this
work are that the patterns largely depend on the pre-imposed grid and all items in a
sequential pattern must occur in the same cell, which is a strong spatial constraint.

Flow patterns [79, 78] partially alleviate the spatial constraint in the spatiotemporal
sequential patterns [72]. Like spatiotemporal sequential patterns, a flow pattern also has
the formlS; —» IS, — ... — IS,. Each neighboring item paitS;_; andlS;, occurs
in two neighboring cells (or the same cell) and happens in two consecutive snapshots,
which is a relaxed spatiotemporal constraint. Compared to spatiotemporal sequential
patterns, flow patterns contain more knowledge due to the relaxed spatiotemporal con-
strain, which also lead to great increase of candidate patterns. An Apriori-like algorithm
FlowMiner is proposed tofgcient mine the flow patterns. However, FlowMiner still
relies on the pre-defined spatial neighbor definition based on grid.

The pervious two works partition the spatial plane by imposing a uniform grid,
Verhein et.al [74] further alleviate this limitation by allowing the use of domain knowl-
edge to manually partition the spatial plane. They define the spatio-temporal regions,
stationary regions and high ffec regions, and further define the spatio-temporal associ-
ation rules called STAR, denoted by, (T I;,q) — (rj, T liz1), wherer; andr; are dense
regions, Tl and T li,; are two consecutive time intervals agds a selection predi-
cate. The algorithm STAR-miner mines spatio-temporal association rules by devising a
pruning property based on the highfira regions. However, in spite of the flexibility
of non-uniform region patrtition, their work falls into the category of grid model, which,
as mentioned, may cause information loss.

In summary, grid model is a simple buffective model to transform spatial data
into spatial identifier, such that the spatiotemporal mining may be simplified and some
existing pattern mining algorithms could be applied directly. However, grid model has

two major problems, which are summarized as follows. First, grid model is not adaptive
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to handle diferent datasets. It needgtdrent pre-knowledge or cell granularity to han-
dle different datasets. Second, grid model is not robust to handle uncertain data, while
the uncertainty is ubiquitous in spatial data because of both equipment limitations and

man-made error.

2.2.2 Event model

Spatial association rule [41] is an early work on the research of spatial relationship
among spatial event. The work defines a set of predicates such as “adpicécibse to”,
“within” and so on, and a set of hierarchies for data relations. This rule can describe
how frequent one or more predicates occur in the spatial database. Based on the hier-
archical topology relations, the proposed solution converts spatial database into trans-
action database, such that spatial association rules mining problem is transformed into
conventional association rule mining.

Spatial collocation pattern [63, 51, 31] is another kind of spatial patterns. This
pattern presents a set of event types which are frequently located close to each other,
and its statistical foundation is based on Ripley’s K function [58, 14]. Spatial colloca-
tion pattern is first proposed in [63] and further improved in [31]. Their solutions are
based on thevent centric modeWwhere annstanceof a patternP is a set of objects
that satisfy the unary (feature) and binary (neighborhood) constraints specified by the
pattern’s graph. For examplég,, by, c1} is an instance supporting the clique pattern
P = {a,b,c}, if the distance of any two instances is not more than the given thresh-
old . Two measures, participation ratio and prevalence, are developed to evaluate the
candidate patterns. The prevalence is a monotonic measure to allow iterative pruning.
Based on these concepts, an Apriori-like approach called Co-location Miner is devel-
oped to find all the frequent collocation patterns. Co-location Miner initially performs

a spatial join to retrieve object pairs which are close to each other, and then it uses
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the Apriori-based candidate generation algorithm to generate the candidates of length
(k+1)-pattern fronk-patterns and validate the candidates by joining the instances of the
k-patterns which share the firktl feature instances. Similarly, [51] studies the same
problem to find sets of services located close to each other. This work also presents
an Apriori-like algorithm. Diferent from Co-location Miner, it uses a Voronoi diagram
and a quaternary tree to improve running time. However, the algorithms based on event
centric model require an expensive spatial-join operation, so they are not scalable to the
database size, i.e., the event number.

To alleviate the problem of event centric model, a few works [90, 87, 85, 77] focus
on the issue of decreasing the number of spatial-join operation. Zhang et.al [90] utilize
a space partitioning approach to partition the map into many buckets and distribute the
events into corresponding buckets based on the event positions. The main advantage of
this space partitioning approach is that one bucket maintains all possible neighbors for
each event which is in this bucket. Hence, the mining algorithm can perform an inde-
pendent spatial-join operation on each bucket and summarize the results of all buckets.
Yoo et.al [87, 85] propose patrtial-join and join-less approaches to reduce the number
of spatial-join operation. The key idea of both algorithms is to enumerate and sort all
the neighboring instances into a projected database during the preprocessing phase, and
focus on the projected database to prune instances. Similarly, Wang et.al [77] also em-
ploy the projected database to prune instances, but they propose a summary structure
to store the necessary position information of events, and two hash-based indices to
facilitate information retrieval operations in the summary-structure.

Celik et.al [8] extend the concept of collocation pattern and propose the mixed-drove
spatiotemporal co-occurrence patterns which present the collocation patterns frequently
over time. They employ a time prevalence to measure the time confidence of collocation

pattern. They design a Apriori-like algorithm to prune the candidates. Yoo et.al [86]
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propose a co-evolving collocation patter query. Given a sequence of prevalence as a
guery, this work searches the collocation patterns whose normalized Euclidean distance
between patterns’ prevalence over the time and the query is less than a distance thresh-
old. They employ lower bounding distance, instance-level upper bound and event-level
upper bound to prune the candidate collocation patterns.

Huang et.al [32, 33] propose an extension of event model from spatial domain to
spatiotemporal domain. Depending on the neighborhood parameters, each event has
the spatiotemporal relationship to both spatially and temporally close events. They
introduce the spatiotemporal sequential patterns of event data and use a sequence in-
dex as the significance measure for spatiotemporal sequential patterns. They propose
an algorithm called Slicing-STSMiner for mining spatiotemporal sequential patterns.
Slicing-STSMiner employs the temporal slicing to partition the data set into overlap-
ping time slices, processes each slice separately, and recovers the whole patterns across
slice boundaries due to the unidirectional property of time.

In summary, event model has less preprocessing than snapshot-grid model, but event
model requires expensive spatial-join operations in mining, which is the major disad-
vantage of event model. Using the distance threshold as the spatiotemporal constraint,
event model is also sensitive to noise data. This happens especially when the event
distances are around the boundary of distance threshold. In addition, existing work on
event model focus on the single feature events, not the combined feature events. There-
fore, they can only discover long, single point sequences, i.e., sequences which occur
multiple times at a specific position. They are unable to find sequential patterns which
involve multiple features. In Chapter 3, we propose a novel event model based method

to mine sequential patterns in event sequences.
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2.3 Spatiotemporal mining in moving object database

The data mining of moving object data has emerged as a hot topic due to the increas-
ing use of wireless communication devices. There are two sampling schemes to record
the trajectories of moving objects: Uniform sampling and non-uniform sampling. Uni-
form sampling scheme records the object locations at every fixed time duration, while
non-uniform sampling scheme records the object locations only if the velocity, the di-
rection, or the other statuses change. Non-uniform sampling scheme greatly decreases
the amount of data, but it results in greater research challenges because the snapshot
model does not work on the non-uniform sampling data.

We also notice that the discovered patterns can be categorized into synchronous
patterns and non-synchronous patterns. The synchronous patterns focus on the syn-
chronous movement of some moving objects. The non-synchronous patterns focus on
the common movement paths of moving object where they may not move together.

Based on the sampling scheme in moving object data and the presence of syn-
chronousness in patterns, existing works can be classified into five categories as fol-

lows.

e Shape-based. The trajectory data do not include temporal information, so the data

analysis and mining are performed on the shape of trajectories.

e Fixed duration and synchronous patterns (6®WN). The trajectories are sampled
with the fixed time duration, and the data analysis and mining are performed

based on snapshot analysis.

¢ Non-fixed duration and synchronous patterns (NE©N): The trajectories are
sampled with the non-fixed sampling rate so that the time durations between two
sampling points may not be the same, and the data analysis and mining are per-

formed based on a variant of snapshot analysis.
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e Fixed duration and non-synchronous patterns ffONSYN). The trajectories

are sampled by a fixed time duration, and the data analysis and mining are per-

formed in a non-synchronous evgatiject analysis manner.

¢ Non-Fixed duration and non-synchronous patterns (N\NNDNSYN). The trajec-

tories are sampled by a non-fixed sampling rate, and the data analysis and mining

are performed in a non-synchronous eyeject analysis manner.

We summarize the related work of moving object data mining by the five categories

above and four data mining tasks in Table 2.2.

Table 2.2: A summary of related work on moving object database mining

Frequent Pattern mining Clustering| Prediction| Classification
Shape-based | [7] [22, 43] [42]
FD_SYN [48, 83] [46, 36] [34]
NFD_SYN [60, 35, 81]
FD_NONSYN
NFD_NONSYN | [25] [50] our work in Chapter 6

2.3.1 Frequent Trajectory Pattern Mining

In the category of shape-based, Cao et.al [7] study the problem of discovering the fre-

guent repeated moving object paths based on the trajectory shapes. They do not utilize

the grid partition strategy. Instead, they initially approximate trajectories by line seg-

ments, then discover frequent singular patterns from the segment set, finally perform

mining using a substring tree. The output patterns are sequences ids, which are ob-

tained from the influential regions of segments.

By snapshot based pattern mining, there are several existing work on mining sequen-

tial patterns in moving object databases. Mamoulis et.al [48] define periodic patterns

in a long trajectory. Their solution is similar to snapshot-grid model. Given a grid, it
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partitions the entire spatial spaento n non-overlapping regions, 1 < i < n, such

thatS = r,Ur, U ... Ur, and for any two regionsiNr; = ¢, 1 < i,j < n. The
spatiotemporal data are translated into cell sequences. To overcome the disadvantage
of snapshot-grid model mentioned in Section 2.2, Mamoulis et.al apply a density-based
clustering to discover the dense clusters as the valid regions. To find spatiotemporal pe-
riodic patterns, they develop a two-phase top-down method. First, it uses a hash-based
method to retrieve all frequent 1-patterns (i.e., a set of valid clusters), and replaces
the trajectories in the database using cluster ids. Next, it uses the same methodology
of maxsubpattern-tree algorithm to discover all the frequent patterns. Yang et.al [83]
address the imprecise trajectories of moving objects since the sampling points are im-
precise in real world applications. They apply the snapshot-grid model where the cell
centers serve as the candidate locations of patterns, and propose a probability model to
describe the uncertain support of pattern.

Two existing work focus on pattern mining in non-uniform sampling data. Sacharidis
et.al [60] investigate the problem of maintaining hot motion paths, i.e., routes frequently
followed by multiple objects over the recent past. Jeung et.al [35] focus on the discov-
ery of object groups that have travelled together from some consecutive time intervals.
They adopt a trajectory simplification technique to select the necessary snapshots for
analysis. They apply the filter-and-refinement paradigm to reduce the overall compu-
tational cost. Similar to the convoy in [35], Wang et.al [81] introduce the valid group
which is a group of moving users that are within a distance threshold from one another
for at least a minimum time duration, but [81] focuses on the mining of maximal valid
groups. An éicient algorithm called VGBK is proposed to identify maximal valid
group by enumerating all maximal cliques in an undirected graph.

To discover non-synchronous movement in moving object data of non-fixed sam-

pling rate, Giannotti et.al [25] introduce the trajectory patterns which are the sequence
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of dense areas associated with durations. During preprocessing, the dense areas named
Region-of-interests (Rols) are extracted and each trajectory is translated into a sequence
of Rols which are associated with the durations between two neighboring Rols. Each
trajectory is a temporally annotated sequences, so the frequent Rol sequences (i.e. tra-
jectory patterns) are mined by the temporal-annotated pattern mining algorithm [24],
which follows the projected database based sequential pattern mining paradigm. How-
ever, the main problem is how to select the proper parameters to control the granularity
of Region-of-Interests (Rol), as too large granularity damage the pattern semantics and

too small granularity results in a small number (or none in worst case) of patterns.

2.3.2 Trajectory Clustering

The early work of trajectory clustering is [22], in which fBzey et.al propose a mixed
model to cluster trajectories by considering a trajectory as a whol&né&yaet.al uti-

lize a probability density function to model the observed trajectories and adopt an
Expectation-Maximization algorithm to train and obtain the local optimal probability
density function. Lee et.al [43] propose dfdrent approach which considers a par-

tial trajectory i.e., segments, as the basic units for clustering. They propose a partition
and group clustering framework which first partitions the trajectories into line segments
guided by MDL principle, then groups the line segments using a variant of density
based clustering algorithm. Both works above are based on the shapes of trajectories
and do not consider the temporal information of moving object data.

Moving cluster detection [46, 36] considers the temporal information into cluster-
ing. Moving cluster is a group of objects in which a majority of members move together
for some continuous snapshots. The main idea for this problem is to identify the clusters
on snapshots by applying the existing clustering algorithms, like micro-clustering [46]

and DBSCAN [36], and summarize the clusters which have common objects over time
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slices (snapshots). In [46], the bounding rectangles are employed to measure the com-
pactness of the moving micro-clusters. If the size of the bounding rectangle exceeds
a certain threshold, the micro-cluster is split. In contrast, Kalnis et.al [36] measure
the similarity of two clusters by the percentage of common object identifiers. They
not only propose two exact moving cluster detection algorithms, but also propose an

approximate algorithm using grid and a process similar to video compression.

2.3.3 Moving Object Prediction

Moving object location prediction [34, 50] is seen as the application of moving object
patterns based on one of the two assumptions that the moving object movement obeys its
historical paths or the frequent paths of the other moving objects. Jeung et.al [34] pre-
dict the location based on the first assumption. They employ the periodic patterns [48]
from the historic trajectory of the moving object to predict the positions of this object.
A trajectory pattern tree is built to accelerate the pattern search in the later phase of
prediction. Monreale et.al [50] predict the future position of moving objects based on
the second assumption, i.e., the moving objects follow the common paths of the other
moving objects. Monreale et.al employ trajectory patterns [25], which are the natural
way to present such common paths of moving objects, to predict the future positions
of moving objects. The trajectory patterns are organized in a compact structure called

T-pattern tree to facilitate the prediction.

2.3.4 Trajectory Classification

Trajectory classification is a rather new research problem. Previous work on classify-
ing trajectories are based on the feature vector (e.g., the maximum velocity, direction)
derived from the whole trajectory [6]. The classification accuracy drops when handling

complex trajectory datasets consisting of trajectories of varying lengths. To alleviate
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this problem, Lee et.al [42] propose a classification framework to partition the trajec-
tories into line segments and derive two kinds of features, regions and representative
trajectories. Regions are used to distinguish the activity areadtefett trajectories,

which are obtained by partitioning the spatial plane guided by MDL. The representative
trajectories are used to summarize the common pathsfiefreint trajectories, which

are obtained by the average paths of trajectory clusters. A major limitation of [42] is
that both regions and representative trajectories are merely shape based features, which
are not able to distinguish the moving objects dfatient velocities. In addition, the
representative trajectories are skewed to the dominant trajectory class. In Chapter 6, we
propose a novel classification approach based on the temporal information associated

patterns.



Chapter 3

Mining Mutation Chains in Biological

Sequences

Pattern mining in biological sequences helps in understanding the structure, function,
and organization of cellular systems. Existing works on general sequential pattern min-
ing [71, 88, 53] and biological sequential pattern mining [80, 30] are proposed to find
the sequential patterns which are repeating subsequences in biological sequences. How-
ever, to the best of our knowledge, there is no existing work which considers the spa-
tiotemporal relationship of biological sequences. This relationship is important to un-
derstand the virus mutation of infectious disease such as influenza.

The annual and occasionally pandemic influenza has become an alarming source of
morbidity, mortality, and economic burden to the world. The influenza virus, in exis-
tence for centuries, has been continually infecting both humans and animals. Itis able to
do so because the genes of the influenza virus can change its protein coat (i.e., antigens)
from time to time by mutation so as to find new susceptible non-immune populations
to infect. In addition, the virus has an air-borne disease transmission mechanism which
enables it to spread across geographical regions quickly. In the case of influenza A

H5N1 virus, its natural reservoir in aquatic birds enables it to be spread rapidly over

30
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large distances geographically. The rapid increase in population density, air travel and
interconnections between countries and continents further escalates the speed of disease
transmissions.

Thus, it is highly desirable to present how mutations happen and when and where
the mutations occur, i.e., we need to know the highly-mutated regions (hotspots) in
virus sequences at one geographical location and their changes when the virus moves to
another location. However, existing sequence mutation analysis [37] and phylogenetic
analysis [16] cannot reveal the spread of mutation patterns as they do not correlate the
mutations with where and when specific mutations have occurred. Existing sequential
pattern mining algorithms [2, 88, 54] did not consider the spatiotemporal conditions.

In this chapter, we propose to mine mutation patterns which take the spatiotemporal
features of sequences into account. The likelihood of whether a viral sequence mutates
to another viral sequence is dependant on whether they occur within some time window
period, the connectivity between the locations where they occur and their sequence
similarity. We formally define the concept &fmutation chains to present the two
dimensional mutation patterns. We propose fiitient algorithm to min&-mutation
chains in biological sequences. We also apply the mining algorithm in the Influenza A

virus database to discover mutation patterns.

3.1 Motivation

Mutations in influenza virus isolates have been found to be responsible for new out-
breaks in Russia [40] and India [49]. Existing mutation analysis methods use sequence
alignment and sequence comparison to identify point mutations [37]. They derive a
model in the form of an amino acid translation probability matrix to estimate the future
composition of amino acids. However, this model cannot reveal a virus’s spread patterns

as it does not correlate them with where and when specific mutations have occurred.
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The fast-changing, fast-spreading virus render vaccines developed in advance of a
pandemic to become lesfective over time. A recent trend is to develop region-specific
vaccines which requires the spatial and temporal dynamics of the viral mutations, i.e.,
we need to know how highly-mutated regions (hotspots) in virus sequences at one ge-
ographical location change when the virus moves to another location over time. We
introduce the notion ofmutation chainsto capture mutation patterns with geographi-
cal spread over time.

Furthermore, current research has focused solely on identifying single-point mu-
tations in the viral sequence. Single-point mutations are small mutations that alters
only one nucleotide at a time. They are responsible for the so-called “antigenic drift”,
in which the virus gradually accumulates more and more such mutations, eventually
causing them to become new strains. In contrast, “antigenic shift” is caused by a large
and sudden mutation that involved the changing of many nucleotides, often leading to
major outbreaks. This is because the more a virus has mutated, the more likely that
the population’s immune systems would not recognize it, and therefore would not have
immunity to it. As such, in this chapter, we not only mine for single-point mutations
(1-mutation), but we will also detect larger genetic changes that involved more than one
(say, k) consecutive nucleotides (k-mutations) in the viruses’ sequences as they spread
over time and space.

Table 3.1: An example of virus protein sequence databases
ID | Year | Aligned Sequences Country | Host
vs | 1985 MNPNQKABCD | Mexico | Human
vs | 1987 MNPNQKFBCC USA | Human
vs | 1988 MNPNQKBCAD | Canada| Human
vs, | 1989 MNPNQKADDA | Russia | Swine
Vs | 1988 MNPNQKBAFC Spain | Human

Vs | 1993 MNPNQKABDA | Vietham| Avian
vs, | 1991 MNPNQKBDDF | Iceland | Avian
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Table 3.1 shows an example virus sequence database where each sequence is aligned
with the others and a representative sequence segment of ten positions are shown for
illustration. Positions 1 to 6 are conserved regions for the viruses because no muta-
tion occurs at these six positions, while positions 7 to 10 are highly-mutated regions
(hotspots). To further understand how sequences mutate at hotspots, we observe that
vs; andvs, occur within a viable period of two years with a strong sequence similarity
(i.e., eight positions have the same amino acids and two positionsféeeedt). These
two virus are found in Mexico and USA, countries which share a common border. These
factors provide evidence thas, could possibly mutate tgs,: “A” mutates to “F” at
position 7, and “D” mutates to “C” at position 10. Extending this one step further, we
observe thavs, has a relatively high sequence similarity witk; (only positions 7, 8
and 9 are dterent) and although Spain is not geographically close to USA, there are
extensive air travel patterns between the two countries. Siggceccurs in Spain af-
tervs in USA, we suspect that the mutation spread could originate from Mexico and
spread to USA, and further on to Spain. We denote this mutation cham aBCD —

FBCC— BAFC ), where 7 indicates the start position of the hotspot.

A mutation chain is frequent if it is supported by an adequate number of sequence
chains. Detecting frequent mutation chains is important to understand mutation behav-
iors which are vital to vaccine research targeting on the mutations. However, frequent
mutation chain mining is computationally challenging because many sequences could
possibly mutate to the others and the mutations could occur numerous times, leading to
a large number of mutated sequence chains.

It is not feasible to use existing sequential pattern mining algorithms [2, 88, 54] to
find mutation chains due to two reasons. First, sequential pattern mining is performed
on the transactions, which are expensive to generate mutation chains as transactions

to feed into sequential pattern mining algorithms. Second, sequential pattern mining
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is not position-specific, and after performing sequential pattern mining algorithms for
each position in the virus sequence, we still require some wafjitoemtly combine the
sequential patterns fromfierent positions into thiemutation chains. The existing spa-
tiotemporal mining techniques [79, 33] can only discover long, single point mutations
(i.e., mutations which occur multiple times at a specific position). They are unable to
find co-mutations, which involve multiple positions. Combining the long, single point
mutations again requires an expensive post-processing step.

In this chapter, we design a framework that integrates both horizontal (across multi-
ple positions) and vertical mining (increasing depth of mutation chains) to perform early
pruning of infeasible mutation chains, leading to algorithms that find highly mutated re-
gions and identify how sequences mutate in virus sequences in a real world scenario.
We take advantage of the growing availability of spatial and temporal information in
public biological databases such as the SWISS-PROT protein sequence data bank [3] to
discover meaningful mutation chains in the viral genetic sequence data. To the best of
our knowledge, the problem of discovering patterns of mutations in the various genetic
subtypes of the virus that takes into account of the spatial and temporal variations has
not been explored by current bioinformatics research. We summarize the contributions

of this work as follows:

¢ We define the problem of mining mutation chains and introduce a measure called

mutation index to capture the confidence of a mutation.

e We present an integrated algorithm to discover contiguous subsequences of muta-
tions. The algorithm utilizes two data structures to facilitate the mining process.
The PointMutation tree summarizes position-specific single character mutations
while the compact MaxMutation tree is designed to store the complete set of con-

tiguous subsequences of mutations (k-mutations).

e \We propose two pruning strategies to improve the minifigciency. The first
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strategy prunes positions which are impossible to have any valid mutations based
on the lower and upper bounds of their entropy measures. The second strategy
is a selective join that enables us to prune unnecessary sequence chains based on

the previous rounds of mining results.

e We evaluate the algorithms on both synthetic and real world datasets. Exper-
iments on the real world Influenza A virus database provide insights into the
spread and mutation of the highly pathogenic Avian H5N1 influenza virus and

the recent HIN1 swine flu.

The remainder of this chapter is organized as follows. Section 6.2 gives the pre-
liminaries and problem statement. Section 3.3 presents both the bottom-up and the
top-down mutation mining frameworks, and proposes two pruning technigues. In Sec-
tion 3.4 we evaluate our algorithms on both synthetic datasets and real-world datasets.

Finally, we conclude our work in Section 3.5.

3.2 Definitions and Problem Statement

A biological sequence database containiples where each tuple comprises of the

viral sequencers, sequence igid, as well as the locatiorx(y) and timet where the
sequence was isolated or reported. The viral sequences are preprocessed by a multiple
sequence alignment so that all sequences have identical number of positions where
each position is an amino acid or a gap, denoted-ds For protein sequences, 20
standard amino acids are available. Given a viral sequence, the amino acid or gap at
p-th position is said to be theth character in the viral sequence. After alignment, the

p-th character of a viral sequence will have a correspongitiyg character in another

viral sequence.
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vs, = ABCD
time 4 vs, = FBCC
vs, = BCAD
vs, = ADDA
vss = BAFC
/ vs, = ABDA
A vs, = BDDF

1995

1990

Vs, —> Vs,

Vs, —> Vs,
1985
Vs, —=> Vs,

VS, —> VS5

Vs; — Vs,

\j

X Vs, = Vs,

Figure 3.1: Example to show the likelihood of a virus mutating to another

We describe the mutation from a viral sequence to another viral sequence by position-
specific character mutations. For example, if a sequér€E2XE mutates to another se-
quenceABCDE we say tha#, C, E remain unchanged at positions 1, 3, 5 respectively,
while B is inserted at position 2, arXlis changed t® at position 4.

The likelihood of whether a viral sequenesmutates to another viral sequence
is dependant on whether they occur within some time window period, the connectivity
between the locations where they occur and their sequence similarity. Figure 3.1 shows
the viral sequences from Table 3.1 with highly-mutated regions only, and a simplified
likelihood model in the form of a cylinder with a circular base centerea,af(radius
6 and heightr, denoting that a virus has a high probability of mutating to another virus
if they occur in the same cylinder. From the two cylinders in Figure\aslis likely to
mutate tovs, andvss, while vs; is likely to mutate tovs andvs;. These mutations are
indicated bys — vs,.

We useN B(vs) to denote the set of viruses that are likely to be mutated freand
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define point mutation as follows.

Definition 1. Let ¢, and ¢, be the p-th characters of sequences vs aridespectively.
Cp is said topoint mutateor 1-mutateto ¢, if and only if v € NB(vs) and ¢, # c,.

We denote the point mutation at position X@sc, — Cp).

In addition to the point-mutations, longer mutations can also occur over a set of
consecutive positions on the viral sequence. We introduce the notion of k-mutations to

capture these:

Definition 2. Let g, ... cp«-1 be a subsequence of characters of viral sequence vs in po-
sition range [p, p-k-1], and ¢, . .. Cop g 1O be a subsequence of characters of viral se-

quence vsin position range [p, pK-1]. Cy. .. Cpii-1 is said tok-mutateto c;,... ¢, 4,

if and only if vs € NB(vs) and G, — ¢, Cpi1 — Chipr - Cprk1 = C/p+k—1' We denote
this k-mutation starting at position p &, CyCp1 - - - Cpik-1 — c’pc;[)+1 . c’p+k_1>.

A sequence pairvls, vs) is said tosupport the k-mutation{p,C,...Cpik-1 —

C/

b Chuk ) if v € NB(vs) and the sequence of characters starting at position

in v, andvs, corresponds t@,...Cp-1 and c’p...c]mk_1 respectively. For exam-
ple, the sequence paiABCD,CDMA) supports the 3-mutationgl, ABC - CDM),
(2,BCD — DMA), as well as the 4-mutationg§l, ABCD — CDMA).

As the mutation of the virus is an ongoing operation against the population’s im-
munity system, a mutation could occur over multiple time points leading to a mutation

chain. We define &mutation chain over time points as follows.

Definition 3. A k-mutation chainis given by(p, $s—»$—...5§—S,1... —Sr) Where
s is said to be the-th statein the k-mutation chain wherg s a sequences of length
k,i1€[1,T]. Inak-mutation chaiqp, ss,—» S, = ... §S—>S;1...—Sr), S—S.1 denotes
the i-th k-mutation(p, s — S.1) where sand s,; are biological sequences of length k,

ie[1,T - 1].
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(a) A 3-mutation chain (b) A 6-mutation chain

Figure 3.2: Examples d¢¢mutation chains. The mutation chain in (a) is a sub-mutation
of the mutation chain in (b)

A chain of sequencey,s;—VS...—VSr, is said tosupport the k-mutation chain
(p,S1—S— ... —Sr), if (V§,VSs,1) supports the-th k-mutation{p, s — s,1) for Vi €
[1, T — 1]. A k-mutation chainM; = (p, s;—>S— ... —Sr), iS asub-mutation of a

k’-mutation chainM; = (p’, s;—s,— ... —S,), denoted as$/, = My, if and only if
L.p<psp+kK-kk<Kk;T<T,

2. dr [0, T'=T]and3c € [0,k —K] such thats(q) = s/,,(q+c) for Vi € [1, T] and
¥q € [1,K], wheres(g) ands, (g + c) are theg-th character of and  + ¢)-th

character of,,, respectively.

Specifically,M; = M, if M; C M, andM, C M;. For example{l, AB — BD) C
(0,CAB— ABD)C (0,ATGP— CABC— ABDT).

Figure 3.2 shows a 3-mutation chain and a 6-mutation chain, and the 3-mutation
chain is a sub-mutation of the 6-mutation chain. The mutations, indicated by the shaded
regions, may be biologically significant since they are considered as hotspots and de-
serve further investigations.

Suppose we have a sequence ch@iABABDE — ABDBDFE) that supports the
3-mutatior1, CAB— ABD). ABandBD are substrings d@ ABandABD at position 2

respectively. Clearly, if a sequence supp@8B — ABD at position 1, it must support
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AB — BD at position 2. Hence, if a sequence chain suppdnautation M, it will
support allM’s sub-mutations.

Let SupportM, i) be the collection of sequences belonging to a sequence chain
supportingM and are on thé-th state of their respective chain. Thepport setof a
k-mutation chairM = (p, s,—S— ... —Sr), denoted a$ upportS €M), is an ordered
list of T sequence collectionS,upportS €M) = [Suppor{M, 1),...,Suppor{M, T)].

Definition 4. The support of M= (p, s;—>S—...—Sr), denoted as SuppdM), is
defined as Suppdi) = mingy 1 IS upporM,i)l.

Figure 3.1 gives 8S D= {ABCD, FBCC, BCAD, ADDA, BAFC, ABDA, BDDR.
LetM = (2,BC - CA — DD) to be a 2-mutation chain. Since there are two sequence
chains inBSD (ABCD, BCAD, ADDA) and (BCC, BCAD, BDDF) that support
M, we haveS upportS €M) = [Suppor{M, 1), Suppor{M, 2), SupportM, 3)], such
that Suppor{M, 1) = {ABCD, FBCGQG, Suppor{M, 2) = {BCAD}, Suppor{M, 3) =
{ADDA, BDDF}. ThenSupporf{M) = min{2,1,2} = 1.

Definition 5. Let BS D be a biological sequence database, and §p, s,—S— ... —Sr)
be a k-mutation chain. Let Coupt p) be the number of sequences in BS D that have

character c at position p. We define the mutation ratio of stringRatiqM, i) as:

IS uppor{M,i))|
MAXgei(Coun(s(q), p+q— 1))

mRatidM, i) =

where {q) is the g-th character of;s

The mRatiomeasures the fraction of sequences that supports mutation M &t the
th state to the sequence that happen to have the chasgc)eat positionp + q— 1,
where 1< g < k. Intuitively, a high value oimRatioat thei-th state indicates that
the probability of the mutation occurring at théh state is high. Consider our running

exampleM = (2,BC—»CA—-DD). We compute the counts of characters B and C at
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positions 2 and 3 respectively:
Coun{(B, 2) = {ABCD FBCC ABDA}| = 3
CountC, 3) = {ABCD,FBCC}| = 2.

With this, we compute thenRatioas follows:

|Suppor{M, 1)|
MAX{Coun(B, 2), Coun{(C, 3)}
0.67.

mRatidM, 1)

Similarly, mRatiqM, 2)=1.0 andmRatiqM, 3)=0.67.

Definition 6. The mutation index of M (p,s; » S, — ... — Sr), denoted as mInd€M),
is defined as mind¢l) = ming: 1 mRatidM, i)

In our examplemindeXM) = min{0.67,1.0,0.67} = 0.67. The mutation index
is essentially a variant of attonfidence [52], a correlation measure satisfying anti-

monotone property. Hence, the mutation index also satisfies anti-monotone property.

Lemma 1. Anti-monotonicity Property.Given two mutation chains M= M,, mindexXM,) <

mindexXM,).

Proof: LetM; = (p, ss—— ... —Sr) be ak-mutation chain, an¥l; = (p’, s;—S,— ... s},)
be ak’-mutation chain. Without loss of generality, Ist; T M;, so that we have 1)
Ap=p-p;2)3dr,s@=s,(@+Ap)forl <g<k 1<i<T. Bydefinition of
sub-mutation, if a sequence chaig — ... — vs; supportsM,, it must also support

M;. SoV1<i < T,3dr, |SupportM,,r +1i)| < [Suppor{My,i)|. Thereforey1<i<T,
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we have

mRatiqMo, r + 1)
|ISupportMa, r +1)]

MAXgeki(coun(s,;(Q), p +q - 1))
|ISupportMy, r +1)]

<
MAXgeg(coun(s.,;(q+Ap), p+q-1))
3 S uppor(M,. i)
~ MAXgepng(coun(s(a), p+q-1))
= mRatidMy, 1)
By Definition 5,
mindexXM,)

= min{imRatiqM,, 1),..., mRatidM,, T’)}

IA

minfmRatiqM;, 1 +r),..., mRatidM,, T +r)}

IA

minfmRatiqMy, 1), ..., mRatiqM,, T)}

= mindexM,)

Given a mutation index thresholdinindexand a support thresholdinSup a k-
mutation chainM is valid if and only if mIndeXM) > minindex andS uppor{M) >
minSup

In biology, translation probability matrix [37] is utilized to estimate the future com-
position of amino acids. The valid point mutations are related to the translation proba-
bility matrix because they can be directly derived from the elements of high probability
in the translation probability matrix. Further, the vakénutation chains are the ex-
tension of valid point mutations by identifying the continuous mutated amino acid se-

guence positions and exploring the times of mutation. Therefore, thekratidtation
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chains present more knowledge on amino acid mutations than the valid point mutations
(or translation probability matrix).

k-Mutation Chain mining Problem (k-MCP). Given a biological sequence database
BS D, minimal support minS up, minimal mutation index threshold minindex, minimal
mutation length mirk, we want to find all k-mutation chains M, where>k min_k,

mindexXM) > minindex and S uppai1) > minSup.

3.3 Mining Mutation Chains

Next, we present our approach that integrates the search for the lengesations in
sequences with the discovery of chainkehutations. We first produce sequence pairs

that satisfy the likelihood requirement for mutation.

3.3.1 Generate Valid Point Mutations

We can find point mutations naively by enumerating the character combinations and
checking the validity of each combination via a database scan. To avoid unnecessary
candidate generation, we construct a PointMutation tree to maintain the candidate point
mutations of each position.

The PointMutation tree has three levels. The root nodd hexgries, wherd is the
sequence length. Each enfpypoints to a child node that has entries corresponding
to them characters that can occur at positipnl < p< L, 1 < m< [Z|, whereX is the
alphabet of database. Each entry consists of a charaatst a pointer to a leaf node.
Each leaf node has a set of entries, each of which corresponds to a mutationtrom
¢’ at positionp, as well as the set of sequence pairs that support this mutation.

We first initialize a PointMutation tree with a root nodenon-leaf nodes and their

corresponding leaf nodes. The tree can be completed by scanning the set of neighboring
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(vs1, vs2) (vs1, vs3)

(vs2, vs3) vs3, vs4) )( (vs3, vs7)

N

mindex: 0.330.33 0.33 0.67 0.330.67 1.0 067 1.0 0.5 05 050505

(vs2, vsb)

Support: 1717 U7 17 LU T VY A T 17 177 17 AT AT AT

Figure 3.3: PointMutation tree for Figure 3.1

sequence pairS¥?2 once. For each sequence paig(vs) € SF?2, we extract the
characters at positiop, denoted asvs(p), vsj(p)), and create an entry for the character
vs(p) in the p-th non-leaf node if it does not already exist. We also create an entry in
the leaf node for the charactes;(p) if it does not already exist ands;(p) # vs(p), and

link the leaf node to\(s, vs;).

Figure 3.3 shows the PointMutation tree for our example in Figure 3.1. The root
node has 4 children since the virus sequence has length 4. The first child node has
3 entries corresponding to the characters A, B, F that occur at position 1 in the virus
sequence database. The entry corresponding to character A has 2 leaf nodes since A at
position 1 can mutate to B and F only. The entry corresponding to character B has only
1 leaf node of A, though B at position 1 can mutate to A and B. The mutation index and
support for each candidate point mutation are given at the bottom of Figure 3.3.

The PointMutation tree checks the validity of the 1-mutations as follows. During
the generation of neighboring sequence pairs, we determine the occurrences of each
characterc at a positionp, denoted byCoun{c, p). The support sequence pairs of a

point mutation are obtained by the links of its corresponding leaf node. The mutation
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ratio and support are computed fradoun{c, p) and support sequence pairs. A point
mutation is valid if its mutation ratigz: minindexand its support is= minSup If
minSup= 0.1 andminindex= 0.6, we have 5 valid point mutations in Figure 3.3:

(LF - B),(2,B—C),(2,C - D), (3,A— D)and(3,C — A).

3.3.2 Level-wise Mining

The valid point mutations need to be extended to vialidutations by level-wise min-
ing, which is similar to the paradigm of frequent itemset mining [1]. Level-wise min-
ing approach consists of two phases. The first phase generates the carididte (
mutations based on the existing vakemutations. The second phase evaluates the
candidate K+1)-mutations. The algorithm iterates the two phases until no \alid
mutations. Algorithm 1 gives the outline of level-wise mining. Candidate 2-mutations
are generated from the valid 1-mutations if their positions are consecutive. Those 2-
mutations, whose mutation ratios are no less thamihlrelndexand supports are no
less thammin_sup are inserted into the valid 2-mutation set.

Subsequently, two valik-mutations
(P, CpCps+1 - - - Cpik-1 — c’pc’p+l . c’p+k_1> and

(P+1,Cpi1. .. Cpik-1Cpik — C'p+1 ... c’p+k_1c’p+k)

can be joined using the union operation to form a candidatel()-mutation

(P, CpCps1 - - - Cprk-1Cprk = CpChuy - - - Chi 1Chii)-

Again, the mutation ratios of the newly generat&d+-(1)-mutations are computed to
determine their validity. The mining process will stop when the set of vilid {)-

mutations is empty.

Example 1. We continue the mining process of running example. We have five valid
1-mutations (shown in Figure 3.4), in which one 1-mutation are in the first position,

two are in the second position, two are in the third position. There is no 1-mutation in
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Algorithm 1: Level-Wise-Miner
input : M;: the 1-mutations;
min_sup the minimal support;
min_Index the minimal mutation index;
min_k: the minimal length of sequence mutation.
output: the sequence mutations of lengthmin_k

1 k=2, M=0;

2 while My_1 # 0 do

3 if k> minkthen

4 L M= MU M4

5 M =0;

6 foreach (k — 1)-mutation pair M, M, € M,_, do
7 if M; and M, share a common k 2 point mutationghen
8 M = Union(M¢,M,);

9 insertM into Mcang;

10 My = Evaluate (Mcang, minsup min_Iindex;
u | K+ +;

12 return M.

the fourth position. The mining process is shown in Figure 3.4. To mine the longer se-
guence mutations, we combine the 1-mutations set such that six candidate 2-mutations
are obtained. For the candidate 2-mutation ¥ (1, FB — BC), only one instance

(Vs, vs)=(FBCC,BCAD) supports M, i.e., Suppdivl, t;) = {vs}and SupporiM, t,) =

{vss). Therefore, minde)=min(rr3 mam) = 0-33 Three out of six candi-

dates have 0.0 mutation index values because no sequence pair supports them. Given

minmIndex=0.6, two candidate$2, BC — CA) and (2,CA — DD) are valid 2-

mutations as their mutation index values are greater thanmindex.

The level-wise mining algorithm generates candid&te ()-mutations from valid
k-mutations. This may lead to the generation of many candidate mutations that do not
even occur in the sequence database. For example, the 2-mytatid®d — BD) in
Figure 3.4 is generated from two 1-mutations, but it is not supported by any neighboring

sequence pairs. The top-down mining approach aims to overcome this drawback.
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Position 1 Position 2 Position 3
0.5 0.67
0.67 (2,B - C) (3,4 - D)
(LF - B) 10 1.0
(2.¢ - D) (3.c - A)
0.33 0.0 0.67
(1,FB — BC) (2,BA - CD)  (2,CA — DD)
0.0 0.67 0.0
(LFC — BD) (2,BC - CA)  (2,CC - DA)

Figure 3.4: The mutation lattice of level-wise mining

3.3.3 Top-down Mining

Before we describe the extension of valid point mutations to \khautations by top-

down mining, we introduce a set of operations for khutation mining phase.

e Range(M). Given ak-mutation patterriVl, the range operation will return the
mutated position rangep] p + k — 1] where p is the start position oM. We
denote the lower and upper boundaries t&{®1) = pandR,(M) = p+ k-1,

respectively.

e Union(M, M,). Given two mutation patterns, the union operation returns position-
specific expressions using tbederedalternation symbols in regular expression
for positions in Rangé{l;) U RangeM,). Specifically, if we have two point
mutationsM;=(p, c;—¢;) and M,=(p,c;—C,), then UnionM,, My) is given by
(p,[cilco]—[cylcy]). For example(2,[alb]—[c|d]) means that at position 3,can

mutate toc, or b can mutate tal, butnot atod, norbtoc.

¢ Intersect(M;, My). Given two mutation patterns, the intersect operation will re-

turn the common character for each position in Rakgg( RangeM.,). Hence
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if we have two point mutation®;=(p,c;—c;) and My=(p,c,—C,), the intersect

at position p is given by

<pfc] = [c]>ifcl=c2=candc,=cC,=C
<p[e] = [c]> ifcl#c2andc;=c,=C

<p,[c] = [€] > ifcl=c2=candc] #C,

€ otherwise

In Section 3.3.1, we generate all the valid 1-mutations. We can compact these 1-
mutations into position-specific expressions to form a maximal mutation expression,
Mmax = (R = Ry), whereR; andR, are regular expressions obtained by concatenating
all the compact expressions at each posijiprd < p < L, L is the sequence length.

For example, by combining all valid point mutations in Figure 3.3, we Hdygy =
(1, F[BIC][AIC]e — B[C|D][DI|A]€).

All candidate mutations can be obtained by scanning the sequence pairs once. For
each sequence pawg,Vvs;), we generate hit mutationby Intersectilnay, M), where
M=(1,vs—vs;). For example, givetMnyax = (1, F[BIC][AIC]e — B[C|D][D|A]¢), the
hit mutation for sequence pair (ABCD, FBCC) (%,eBCe—e€cee) = €, while the hit
mutation for sequence pair (FBCC, BCADXFBCe—BCAe) = (1,FBC—BCA).

Non-empty hit mutations will be stored and their support sequence pairs set updated
to facilitate the subsequent mining process. We design a tree dadigMutation tree
to store these information. In MaxMutation tree, the root node is the maximal mutation,

and the nodes are ordered based on their sub-mutation relationship:

1. A noded is the parent of a nodeif the k-mutation at node is a sub-mutation of

that at nodel, and

2. All the sibling nodes do not have a sub-mutation relationship with each other.



48

For each sequence pawy| vs;), we obtain a hit mutatioM = (p,s; — ) by in-
tersecting ¥s, vs;) with the maximal mutatiotM,ax and ignoring positions with empty
mutationse. We perform a breadth-first traversal of thiexMutationtree to insert the

hit mutation. Letd be a node that containskemutationMy = (p’, s — sd).

1. If p=p ands; = s ands, = <5, then insert the sequence paig(vs;) into the

support set ofl.

2. If p> p ands; is a substring ois‘lj starting at positiorp ands; is a substring
of sJ starting at positiorp, that is,M is a sub-mutation oM, then we create a
new nodend to store thek-mutation(p, s;—$,) and attacind as a child node of

d. The support set indis the sequence paivg, vs;).

3. Ifp<spand and# IS a substring 0§, starting at positionp’ ands‘z‘ is a substring
of s, starting at positiorp’, that is,Mg is a sub-mutation oM, then we create a
new nodend to store thek-mutation(p, s;—<,) and inserind betweerd andd’s

parent. The support set mdl is the sequence pawvg, vs;).

4. Otherwise, create a new nodd to store thék-mutation and insert it as a child of

the root node. The support setrid is the sequence pavs, vs)).

The above enumeration will miss implicit sub-mutations. SupposklthéMutation
tree has nodeM; = (1, ABCD - EFGH) andM, = (1, RBCT — JFGW), which
imply a sub-mutatiorMg, = (2, BC —» FG). To ensure completeness of the patterns
mined, we need to explicitly store all such sub-mutations by checking for intersections
between thé&k-mutation(p,s; — $) and the mutations in th®axMutationtree. If
we find any non-empty intersection with a mutation at a ndde& new hit mutation is
obtained and inserted into tihdaxMutationtree as described above.

Algorithm 2 gives the details of the construction process. Mgt be the hit mu-

tation of sequence paiv§, vs)) and Mmnay. Lines 1-2 findd’s child nodes that contain
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Algorithm 2 : InsertHitMutationMp, (vS, Vs;), d)

input : My;: the hit mutation to be inserted,;
(vs, vs)): the support sequence pair;
d: the current node;

C = {d.|d. is a child node ofl A My, C Mt} ;

# = {dpld, is a child node ofl A Myt © Mg };

O = {dyldyisachildnodeofiAd, ¢ CAdy & P };

if O # 0then

foreachd, € O do
L M;,= Intersect (Mpi, Mq,);

InsertHitMutation(M/,, (VS,Vs)),do);

N o g b~ WN P

[ee]

if 3 de, such that dis a child of dA Mgy, = M then
Insert {/s, vs;) into d¢’s support;
10 else ifC # 0 then
11 Remove all nodes i@ from d's child nodes ;
12 Create a noda,, of mutationM;;; as a child node of;
13 Attach all nodes irC as the child nodes af,;
14 else ifP # ( then
15 | foreachd, e ¥ do
16 L InsertHitMutation(Myg, (VS,VS),dp);

©

17 else
18 L Create a noda,, of mutationMy;; as a child node odi;

sub-mutations and super-mutationshdfi. Line 3 findsd’s child nodes other than the
nodes inC and®. Lines 4-7 recursively interseM;; and each nodd, in O, and insert
the intersection mutations int. Lines 8-9 insert the sequence paig(vs)) into the
support set of nodd,, if de contains the mutation equal td;; otherwise, if noded
has a set of child nod&3that contains sub-mutations bf;,;, we create a new nodg,

to storeMy;; and inserin,, between nodeé and the nodes i@ (Lines 11-13). If node
n has an empty child node s@étbut a non-emptyP, we call Algorithm 2 to inseriMy;
into each parent node i (Lines 15-16). If bothC and® are empty, we create a new

noden,, of mutationM;; as a child node ofl (Line 18).

Lemma 2. TheMaxMutationtree stores the complete set of candidate k-mutations.
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Algorithm 3: Top-Down-Miner

input : M;: the 1-mutations;
minS up the minimal support;
minlndex the minimal mutation index;
min_k: the minimal mutation length;

output: the maximak-mutations, wheré& > mink

Mmax= Union(My) ;

initialize the nodeaoot of mutation tree oM ay;

foreach sequence pair(vys) € S7?do

Mpit = Intersect ((VS,VS), Mmao ;
L InsertHitMutation(Mpg, (VS,VS)), root);

M= 0;
7 TopdownEvaluate (MT reeroot,minS upminindexM,);
8 return M.

a b~ W N P

(o]

9 Procedure TopdownEvaluatel, minS up minindex My)
10 If AM € M, such that M C M then
1 | return;

12 if mindeXMy) > minindexA Suppor{Mg) > minS upthen
13 | insertMy into M;

14 else

15 foreach child node ¢ of ddo

1 Supporfd.) = Supporfd.) U Supporfd);

17 L TopdownEvaluate (d., minS up minindex My);

»

Proof: Let the hits be generated in the ordér, Ho, ..., H,. We prove by induc-
tion. Wheni=1, all candidate mutations fro¥; are direct children of the root node.
Wheni = 2, letSetH andS etH be the sets of candidate mutations fréifa and >
respectively. For each pair &mutationsh; andh,, h; € SetH, h, € SetH, one of

these cases is true:

1. There exists a sub-mutation relationship betwiegandh,. Without loss of gen-
erality, leth, be a sub-mutation df,. Thenh; will be a child node oh, in the

tree.

2. There is an overlap betwedn andh,. In this case, the overlap must be a sub-

mutation ofh; andh, and is inserted as child node of bdthandhs,.



51

3. There is no overlap betwedn andh,. Both will be inserted as child nodes of the

root.

Thus, the lemma is true for the base cases since all candidate mutatigtisdod >
are kept in the tree. Assume that thkaxMutationtree is complete for = m. When
i = m+ 1, if thek-mutations of; overlap with the mutations of the previous hitg,,
Oz - - -0 Oy, Where 1< j1 < ... < Jk < i, the overlap will be stored in some nodes
created along the patly,, dy,, ..., dy, starting from the root. Hence, no candidate
mutations will be missed.
i

Algorithm 3 shows the top-down mining algorithm. We first construct eex-
Mutationtree to capture thi-mutations and their support sets (Lines 1-5). Next, we
initialize a variableMy to maintain the list of valid mutations (Line 6). Each node in
the MaxMutationtree is associated with an instance set that stores the support sets of
its ancestor nodes, including its own support set. This instance set is updated as we
traverse the tree in a depth-first manner. The instance set of alnsdsed to compute
the mIndexof the corresponding-mutation. If thek-mutation at nodel is valid, we
insert it into My, and we do not visit the child nodes of Finally, My contains the list
of valid k-mutations (Lines 9-17).

From Figure 3.3, we hav®lax = (1, F[B|C][AIC]e — B[C|D][AlD]e) by combin-
ing the valid 1-mutations at all of the four positions. We generate the hit mutations for
the six virus pairs in Figure 3.1, four of which satisfy then k = 2. These hit mutations,
(1,eBCe—€eCAe), (1, FBCe—BCAe), (1, eCAc—eDDe), (1, eCAc—eDDe), are trans-
lated into thek-mutations by removing the empty mutatien(2, BC—»CA), (1, FBC—BCA),
(2, CA—DD), (2, CA—>DD), and inserted into th®laxMutationtree. Figure 3.5 shows
the final MaxMutationtree obtained. liminindex0.6, then the candidate mutation

(1LLFBC — BCA) is not valid. Its support is propagated to its child ndde= (2, BC —
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(L,F[BIC][AICle = B[C|D][D1Ale)

/N

(1, FBC — BCA) (2,¢A - DD )

/

(2,BC — CA)

v

(ABCD, BCAD) (FBCC, BCAD) (BCAD, ADDA)
(BCAD, BDDF)

' "/’

Figure 3.5: MaxMutation tree for Figure 3.1

CA), which leads t& uppor{M,, 1) = {ABCD, FBCC} andS upportM,, 2) = {BCAD},
such thaimmindexXM.) = 0.67. Note that{2, BC—CA) and(2, CA—DD) are valid max-
imal mutations.
We can further improve the Top-Down-Miner by applying@sition pruning strat-
egywhich is based on the observation that certain positions cannot have any valid mu-

tations.

Lemma 3. Let minS up be the minimal support. Sequences corresponding to positions
[pi,- -, Pisk-1] can support a valid k-mutation chain with t states if and only if the
entropy measure corresponding to these positions lies in the rgdgeH, ], where

Hp = logtand Hy = —t-minSuplogminSup+ (1-t-minSuplog|D|], D is the total

number of sequences.

PROOF: Entropy measures the purity of an attribute. A low entropy measure implies
high purity. Positions, - - - , pizk_1] have the lowest entropy when we have exattly

subsequences and thdssubsequences have identical frequencies. For this case, the
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entropy is given by

t
log

Ho = ) -

~1
~|

1
= logt

The worst case occurs when positiops {- - , pi.k_1] havet subsequences each having
a frequency ominSup with (1 —t - minSup|D| number of subsequences being fully
random. Letw = (1 - t- minSuy.

a|D|

t
: : 1 1
Hp = - E minSup logminSup- E Blo D
= = bl "Dl

—t-minSup logminS up+ alog|D|

This corresponds to the entropy boundstef,[ Hyp).
m]
With this lemma, we can prune a position if there is no sequence involving this

position whose entropy measure falls in the raridg, Hup)-

Sequence chains Sequence pairs Join result

VS; | VS3 VS, | VSg VS; |VS3 | VS,
VS, |VS3 VS, | VS3 VS, |VS3 |VSy
\LF) L \&7) VSt VS; | VS3 |VSy
VS3 | VS, VS; | Vs, Vs, [vsy |vs,
VS | Vs, VS3 | Vs,

Figure 3.6: Generation of mutation chains by Selective Join



54

3.3.4 Generate Mutation Chains

In this section, we describe the mining of mutation chains. The naive approach is to
generate a chain démutation with lengthT from chains ofk-mutation with length

T — 1. But this is infeasible as the Apriori property does not hold. For example, se-
guence chains, Vs, vss) supports &-mutation chainl, AB—»BB—CD), but it may

not support the subsequence of this chdimMB—CD), as it may not satisfy the likeli-
hood requirement for mutation. Hence, we cannot Jomutations with lengtil — 1

to obtain candidat&-mutations with lengthl. To tackle this problem, we define an

operator called selective join, denoted-as
SF' =SF s SF?

whereSF ! is the set of sequence chains of length- 1, andSF? is the set of
sequence pairs. A sequence chais,( ..,vsr_1) in SF'* will join with a sequence

pair (vs, vs) in S7?2if and only if
1. (vs,...,VSr 1) supports a valid-mutation chaing, — ... — Sr_1);
2. (vs,Vs;) supports a valid’-mutation & — s;);
3. sr_1 ands share a common substring of lendgth> min_k.

The selective join will greatly prune the sequence chains, and it will not miss any
potential sequence chains which are possible to support one okwalidation chains.

This is guaranteed by Lemma 4.

Lemma 4. If a sequence chain of length T supports a mutation chain, it supports all

subsequences of the chain.

Proof: Lets;, —» s, — ... — s to be ak-mutation chain of length T, ands, —

VS — ... — VSt be the virus sequence chain that supports the mutation chain. This
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impliesvs; supports,, ..., vsr supportsr. Then for each subsequenge— ... — s,
where 1< i < j < T, there exists a corresponding subsequewge ... — vsj, such
thatvs supports, ..., vs; supports;.

i

Figure 3.6 shows the process of selective join. We first delete the sequence pairs

(vs, Vo) and ¢, vs;) because they do not support any vatidhutations(2, BC —

CA) and(2,CA — DD). The remaining sequence paikss(, vs;) and ¢s;, vs;) can

be joined because/§,, vs) supports2, BC —» CA) and ¢s;, vs4) support2, CA —

BD), and the last state @R, BC — CA) share a commonCA” with the first state of
(2,CA — BD). Finally, we obtain four sequence chains. Note that two sequence chains
(vs, Ve, V) and s, v, VS;) are pruned based on Lemma 4.

Algorithm 4 shows the&k-Mutation-Miner kMM) framework to minek-mutation
chains. Lines 1-2 first initialize an empty mutation 3df generate the sequence pairs
S#2. Line 3 prunes the positions which are impossible to contain \afitutations
by entropy bounds, and Line 4 finds the valid point mutations on the unpruned posi-
tions. Line 5 mines the vali#-mutations of length 2 by using the Top-Down-Miner.
The k-mutation chains are stored iwl (Line 6). Next, we generate validkmutations
of increasing length by applying the selective join operator &' andSF?,t > 2 to
obtainSF**. With SF***, we call Top-Down-Miner to discover the validmutation
chains of lengtht + 1 using a modifiedMaxMutationtree. The nodes in the modified
MaxMutationtree store&-mutation chains instead &mutations. The process contin-

ues untilM, is empty (Lines 8-13). Line 14 returnsl.
Theorem 1. The k-mutation chains returned by Algorithm 4 is correct and complete.

Proof: For correctness, we prove that both the sequence pairs and sequence chains
all satisfy the likelihood requirement for mutation. Step 2 of Algorithm 4 ensures that

only the sequence pairs satisfying the likelihood requirement for mutation will par-
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Algorithm 4 : kMM
input : BS D biological sequence database;
minS up the minimum support;
minindex the minimum mutation index;
min_k: the minimum mutation length.
output: the maximak-mutation chains, wherde> min.k
1 M=0;
> SF? = set of sequence pairs that satisfies the likelihood requirement for
mutation;
3 Perform position pruning strategy;
4 Find valid point mutations\{? from S7 2 (Section 3.3.1);
5 MZ = Top-Down-Miner (MZ?, minS upminindex mink) (Section 3.3.3);
6 M= MU MZ;
7t=2;
8 while M # 0 do
o | SF'™ = SF' s SF? (Section 3.3.4);
10 Perform position pruning strategy;
11 Find point mutation chaindft* from S7"** (Section 3.3.1);
12 | M = Top-Down-Miner (M{, minS up minindex mink) (Section 3.3.3);
13 M=MUM;t++;
14 return M ;

ticipate in the selective join. Since sequence chains of leiigdne obtained by the

selective join between chains of length- 1 with the sequence pairs obtained in Step

2, the sequence chains generated also satisfy the likelihood requirement for mutation.
For completeness, Lemma 2 states that the MaxMutation tree maintains the com-

plete set of candidate k-mutation chain. We use a counter example to prove that the se-

quence chains s&F ' is complete fofl > 2. LetM’ C M andM is a valid k-mutation

chain of lengthT and M’ is a k-mutation chain of — 1. From the anti-monotonicity

property (Lemma 1)M’ is a valid k-mutation chain. Let a sequence chaig (...,

vsr) supportM. If the sequence chain is excludedS# ', it does not support any valid

k-mutation chain of lengti’ — 1 according to the operation of selective join. However,

(Vsi, ..., VSr) supportsM’ according to Lemma 4. This is a contradiction.

O
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3.4 Experimental Studies

In this section, we report the results of our mining algorithm on both synthetic and real
world datasets. All the algorithms are implemented i+Cand the experiments are
carried out on a server with dual Xeon 3GHZ processors and 4GB memory, running

Windows server 2003.

3.4.1 Experiments on Synthetic Datasets

The synthetic datasets are generated by modifying the data generator in [33]. We use
two parameters to generate sequences with location and tiniethe length of se-
guences andhink is the length of mutations. By default, the space and time dimen-
sions are set to 1000 1000x 1200, and the alphabet si2g is set to 20. We use the
notationDAT A- (|D|) — (L) to denote a dataset [#D| sequences andsequence length.

We also develop the level-wise-miner (LWM) as a baseline for comparison. LWM
generates candidatk«1)-mutations based on existing vakemutations and evaluates
candidate K+1)-mutations to find valid mutations whose mutation ratios and supports

are no less than thminindexandminS uprespectively.

LWM V.S. kMM

We examine the scalability of LWM arkdMM by varying the database siz®| and the
sequence length. We incorporate threle mutation chains of length, where & k <14
and XT<5, into the datasets.

Figure 3.7(a) shows the results for varyidy andL=100. We observe that LWM
is much slower thakRMM. This is expected theMM detect mutations in the top-down
manner, which is morefigcient to find longk-mutations. Figure 3.7(b) shows the results
for varyingL. We see that LWM is slower than thk@&IM by an order of magnitude as

L increases.
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Figure 3.7: Comparative study kMM and LWM

We also test the performance of LWM akidM by varyingmin_k. The dataset used
has 5,000 sequences and contains threritation chains of length 2, wherek<10.
Figure 3.7(c) shows that runtime of LWM ahk®iM suddenly decrease atin k=12.
This is because both algorithms terminates as they do not find anykvedigtations
whenmin_k>12.

We observe thamin k has no salientféect on LWM whenmin k<10. This is be-
cause LWM perform level-wise mining which combine the point mutations at the final
stage, hence it cannot prune infeasible point mutations early. Figure 3.7(c) also shows
that that runtime okMM decrease amink increases. This is because a largig k
reduces the number of hit mutations in MaxMutation tree, which leads to less time in

constructing and traversing tivdaxMutationtree.
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Figure 3.8: Hect of pruning techniques

Effect of pruning techniques inkMM

Next, we examine thefiectiveness of the pruning techniques, position selection and
selective join. We have two variantskiiM: kMM-PS which iskMM without position
selection an&kMM-SJ which iskMM without selective join. InkMM-SJ, we join all
instances to obtain instance chains.

We fix sequence length=100 and generate datasets by varyidgfrom 2k to 20k
and incorporate threlemutation chains of lengtf, where &k<14 and ZT <4, into
the datasets. We setin k=7. The results in Figure 3.8(a) shows tkitM outperforms
kMM-SJ becaus&MM prunes the sequence instances which do not support any valid
mutations using selective join. Figure 3.8(a) also show kie¥l outperformskMM-
PS. This is becaudeMM prunes the positions which will not satisfy the entropy bound.

We also study thefeect of sequence length Each dataset has thr&emutation
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chains of lengthT, where &k<14 and ZT<4. We setmink=7. Figure 3.8(b) shows
the results. We observe thid¥IM is faster than botkMM-PS andkMM-SJ because
kMM can prune more positions as the sequence length increases, and prune the se-
guence instances.

Finally, we test the fect of varyingmin.k. In this experiment, the dataset has
5,000 sequences and contains thHegmutation chains of length 2, wherek<10. Fig-
ure 3.8(c) shows the results. We see that the runtimd/dfl-PS andkMM decrease
slowly with the increase ahin k. This is because the number of hit mutations in Max-
Mutation tree is reduced amin k increases, which leads to less time for constructing
MaxMutation tree. We also see that the runtimekbfM decrease faster than that of

kKMM-PS. This is becauseVIM can prune positions.

3.4.2 Experiments on Influenza A Virus Dataset

Next, we use the influenza A virus protein dataset [4] to discover meaningful mutation
chains. The dataset contains information on the sequences of 11 influenza A viral pro-
teins, including the subtype (e.g., HSN1,H1N1), host (e.g., human, avian), country and
year of isolation. Table 3.2 shows the the length and number of sequences for each
subtype in influenza A dataset.

Alignment. Multiple sequence alignments of the 11 proteins (as listed in Table 3.2)
were carried out with MUSCLE 3.6 [17]. Due to the great variability exhibited by the
HA and NA protein, separate alignments were obtained from each subtype (16 subtypes
for HA and 9 for NA). The subtype alignments were merged using the MUSCLE tool
to obtain the final HA and NA alignment. The introduction of gaps in the resulting
alignments was minimized by merging sequences based on sequence similarity between
subtypes. The sequence lengths after alignment are shown in the “Length” column in

Table 3.2.
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Table 3.2: The meta data of Influenza A virus proteins dataset
Protein| Length || H5N1 | HIN1 | H3N2 | others| Total
PB2 759 520 | 518 1384 | 721 3143
PB1 758 516 | 476 1402 | 780 3174
F2 90 58 285 1263 | 1646 | 1989
PA 718 520 | 419 1380 | 383 3111
HA 610 790 1897 | 3240 | 1189 | 7116
NP 499 549 | 405 1653 | 1156 | 3763
NA 493 715 | 968 1790 | 748 4221
M1 252 579 | 259 1517 | 1426 | 3781
M2 97 390 | 370 1491 | 898 3149
NS1 237 567 | 443 1429 | 1320 | 3759
NS2 121 374 | 364 | 1404 | 978 3120
Total | 4634 5578 | 6404 | 17953| 10391 | 40326

Likelihood of mutation. We observe that one protein sequence is likely to
mutate to another sequenes if vs, occurs within two years from the occurrencg,
and the geographical distancewsf andvs; is less than 1,000 kilometers, and their edit
distance is less than 20% of the whole sequence length. This makes sense because the
viruses spread and mutate gradually, instead of sudden changes and promulgation.

All experiments are performed by setting minS@PO1 and minindex0.5, which

are suggested by our biologists.

On H5N1 subtype (bird flu)

We apply our algorithm to discover the point mutations &ndutations on the H5N1
subtype (bird flu). All'in all, we discovered 205 point mutations using our algorithm, as
shown in Table 3.3. We use the abbreviatipt to denote(p, ¢ — ).

Within all of the point substitutions, we highlight the point mutati@27, E—K)
(E627K for short) in protein PBZ627K has been shown to have important biological
effect of converting a nonlethal HSN1 influenza A virus to a lethal virus [69]. We exam-

ine the geographical spread fB8627K as shown in Figure 3.9(a). The spatiotemporal



Table 3.3: The amino acid substitution in HSN1 subtype

Protein

Point Mutations

PB2

M641, A105T, A108T, T108A, R288Q, K299R,
K339T, K340R, M483V, S590&627K, 1649V,
V649, A661T, 1667V

PB1

Al4V, V113l, V149I, K215R, R215K, S375N,
S384L, R386K, T400A

F2

L37R, R69Q, R81K

PA

G58S, V100I, 1129T, R204K, S245K, F246L,
L247S, N248Q, V249M, 1324V, A338T, G366S,
1389V, V389I, K393R, R393K, D396N, P402S,
1556V, P655S, A671V, T714A, R718K

HA

R67K, D77N, N77D, N116S, S116N, V118A,
V118T, D126N, N157D, N157S, S157D, E1590
L162S, Q172L, K174R, K174S, P176S, S176P,
S192N, A193T, T193A, M212L, K226R, R226K
V2371, S254P, D264E, E264D, A309T, L316V,
V316L, M330I, K358R, R358K, T368S, R380G
D443N, K530R, K540R, N556K, M568lI, I571T

)

NP

G34S, K77R, M136L, 1183V, A354l, A374T,
T374A, S483N

NA

1177, T171, 120V, V20I, V26l, 129M,

H39Q, Q39H, H44R, P48S, N82K, A91V,
VI1A, N106R, R106N, S106N, [110V, V110I,
H111Y, Y111H, G116S, K122R, H166Y, Y166H
G212E, Y264H, R268K, 1269M, M269I, D282N
N282D, M356V, V356M, L358P, P358L, P358S
S358P, 1366V, V3661, E402G, G402E, N407S,
S407N, G477S, S477G

M1

V15l, R27K, T37A, 159M, 1107M, F144L,
L144F, T168Il, S207N, S224N, K230R, D232N,
N232D, 1234L, L234I

M2

G14E, R18K, N31S, A64S, S82N

NS1

L22F, L27M, M27L, N48S, E55R, R55E,
AG60E,EG0A, H63Q, Q63H, P87S, F103L,
L103F, 1106M, A112T, T112A, K118R, R118K,
N127T, F138Y, N139D, A143T, T143A, D152E,
G153E, D171G, D171N, E171D, G171N, N171
1180V, V180I, L198I, N207D, D209N, N209D,
P212L, P213S, S213P, N217K, E229K, K229E

G,

NS2

M14V, V14M, V52M, A115T
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spread patterns fdE627K suggests that the virus originated in Vietnam, and spread
outwards and eventually caused the disease outbreaks in the two northern countries,

namely Russia and Mongolia.

% T2 Mj
e o v

7
1y 1
3 %1,3,4,5 5 5

(@) PB2:(627,E > K)  (b) PA: (244SFLNV  — (c) HAI (571 ————————— -
KLS QM) YQILSIYST

Figure 3.9: The dominant support chains for mutations in HSN1 subtype. 1 means
Year 2003-2004, 2 means Year 2004-2005, 3 means Year 2005-2006, 4 means Year
2003-2005, 5 means Year 2004-2006

In addition to discovering point mutations, our method also discovers a 5-mutation
pattern in PA proteirn244 SFLNV — KLS QM. Figure 3.9(b) shows the geographi-
cal spread of this mutation. We can see that the spread chains origin from Vietham and
spread to three neighboring countries, China, Indonesia and Cambodia.

We also find an insertion mutation in HA protei67, — - — - — — — — — —

YQILSIYST. Its dominant spread flows are shown in Figure 3.9(c).

On H1N1 subtype (swine flu)

We also apply our algorithm to discover point mutations kimdutations on the HIN1
subtype. Due to the importance of the polymerase genes (i.e., PB1 and PB2) in adap-
tive mutations and potential reassortment [44], we focus the mutation mining in such
proteins. We discovered one 2-mutations in the PB1 pra@ss HE—Y A), and two
2-mutation in the PB2 proteié#89 NA—S T) and(489 ST— NA).



64

Figure 3.10(a) depicts two major geographical spread chain of PB1. The first spread
occurred during 2002 and 2003, and spread from Canada to USA and an internal mu-
tation in USA. The second spread occurred during 2005 and 2007 in USA. Similarly,
Figure 3.10(b) shows two major geographical spread chain of @B2 NA—-ST).

The first one occurred during 2001 and 2003, and spread from USA to Canada and in-
clude an internal mutation in USA. The second spread occurred during 2007 and 2009 in
USA, indicating that this mutation is likely to have influenced the recent epidemic swine

flu. Figure 3.10(c) depicts four internal spreads for the PB2 mutatief S T— NA).

et — —
- -

' i,

e —

(a) PB1:(455 HE — YA (b) PB2:(489 NA—> ST) (c) PB2:(489 ST — NA)

Figure 3.10: The dominant support chains for mutations in HIN1 subtype. 1 means
Years 2001-2003, 2 means Year 2002-2003, 3 means Years 2005-2007, 4 means Years
2007-2009, 5 means Years 1999-2001, 6 means Years 1976-1978

On H3N2 subtype

We also performed a similar analysis in H3N2, a human influenza virus. We detected
20 point mutations using our algorithm, as shown in Table 3.4 .

Again, one of the detected mutationd,76 K — N) (K176N for short) in HA
protein turns out to cause the H3N2 outbreak in Nepal in 2004 [13]. Note that the
position 176 in the aligned H3N2 HA protein corresponds to the position 145 in [13].
Figure 3.11(a) and 3.11(b) shows the spatiotemporal spread for K176N in Asia and

Europe.
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Table 3.4: The amino acid substitution in H3N2 subtype
Protein | Point Mutations

PB2 R340K,
PB1 1179M, K586R,
F2 Q25R, L82S

HA D174N,K176N, E188K, G205D, V259I, D319G
NP R77K, KO8R, R103K, 1197V, V197I
NA N104D, G154V, E211K, 1277T,

Another point mutation of interest {488 E — K), which was reported to undergo
multiple mutual substitutions [68]. Such spatiotemporal information are useful for the
biologists to better understand the epidemiology of influenza, and in turn, to develop
more dfective vaccines (e.g. region-specific ones) to combat the spread of this fast
changing virus.

Next, we focus on the mining d¢mutations and-mutation chains on H3N2 sub-
type by allowing the deletion and insertion. We discover one valid pattern in HA pro-
tein: (390 IAGFIENGWEGM—» - — — - = — — — — — —— ». Its major spread chains

are shown in Figure 3.11(c).

5 4
S $
)
1,2
1
(a) HA: (176 K — N), Asia (b) HA: (176 K — N), Europe (c) HA:

(390 IAGFIENGWEGM
i )

Figure 3.11: The dominant support chains for mutations in H3N2 subtype. 1 means
Year 2003-2004, 2 means Year 2002-2004, 3 means Year 1992-1993, 4 means Year
2002-2003
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3.5 Summary

The genetic structure of viruses is highly combinatorial in nature. Point mutations and
gene segment exchange may occur anywhere along the primary sequence, contributing
to a huge variability of viral protein products and the possibility of producing a new
virus that can be easily transmitted between humans and initiate a pandefi@c: E

tive influenza surveillance for pandemic preparedness is therefore critical to avoid the
potentially deadly disaster for human kind. In particular, with the increasing availabil-
ity of spatial and temporal information in the biological databases, new and advanced
data analysis methods capable of rapid and in-depth genomic analysis that takes into
account the spatiotemporal dynamics of the evolving viral species can help biologists
to understand the evolution and circulation of the various viral species and to develop
more dfective and specific vaccines.

In this work, we have proposed a novel framework for discovering sequence muta-
tions based on the mutation likelihood, including location and time of viral sequences
and the sequence similarity. We designed an integrated algorithm to mine mutation
chains in a top-down search manner and using two pruning strategies to reduce the
search space. Experiments on synthetic datasets showed that our algorithm is more
scalable and morefigcient than the base line algorithms. Experiments on real world
Influenza A virus database showed that our algorithms can discover meaningful mu-
tations. Our methods are expected to provide fiacéve tool in the fight against
emerging and re-emerging infectious diseases that are capable of rapid mutations and

transmissions.



Chapter 4

Mining Global Interaction Pattern in

Snapshot Data

Besides the mutation patterns in biological sequences, another class of useful spatiotem-
poral patterns is localized and time-associated interaction patterns which are discovered
in snapshot data. It is complex to mine localized and time-associated interaction pat-
terns because both spatial point event types in snapshot data and spatiotemporal infor-
mation are involved in the patterns. Therefore, we solve this mining problem in two
steps: In this chapter, we first focus on the mining of interaction patterns among spatial
point events on a single snapshot. In Chapter 5, we extend the work of this chapter to
mine localized and time-associated interaction patterns.

Location-related patterns have many scientific applications [41, 63, 31, 90, 85]. For
example, in epidemiology studies, dengue fever and Aedes mosquito tend to exhibit
spatial correlation while in ecology, Nile crocodile and Egyptian plover are often found
in tandem. Knowing the set of E-services that are located together is beneficial to
mobile companies to improve their location-based services. The analysis of web log
can also reveal the localized interests of customersfiarént geographical locations.

In view of this, there has been sustained interest in developing techniques to dis-

67
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cover spatial collocation patterns [63, 31, 90, 85]. The interestingness measure of these
patterns is @inary notion of proximity where alistance thresholds set and objects

are either close or far away based on the threshold. Ripley’s K function [58, 14] sup-
ports this measure by computing the probability of how objects of one feature is close
to objects of one or more features. Interesting collocation patterns are then defined to

be a set of features that are frequently close to each other [31, 90].

ID [X [Y [FID lyx T
001 [ 228 [ 275 | fu PR Y iea
002 | 32.2 | 60.8 | fu S
003 | 75.1 | 60.4 | fu PRSI SEOT
004 | 703 | 725 | fu CRA B (A 5 O
005 | 324 | 17.7 | fa O 77T RN
006 | 25.1 | 40.2 | fa D f f1D\\ Af2 |
007 | 42.4 | 67.0 | fo AL Q N i
008 | 61.0 | 61.2 | f - N N7 SN S
000 | 452 [ 33.0 | J3 S N~ TH
010 | 54.9 | 37.0 | f3
011 | 40.1 | 48.2 | f3

(a) Dataset (b) Observed Instance Distribe) Underlying Instance Distri-

tion bution

Figure 4.1: Some instances and their spatial relationship

Geo-spatial data are however by nature imprecise due to various reasons which in-
clude the limitation of measuring instruments, human recording errors, concern for pri-
vacy and dynamic movement of some objects. This means that no precise point can be
used to represent the location of these objects.

Existing collocation mining algorithms, however, does not lend itself easily for han-
dling uncertain spatial data. To address this problem, in this chapter, we will model the
error distribution of the spatial data to aussianinstead of a precise point. Fig-
ure 4.1(a) gives a sample dataset of objects. Without special presentation, objects refer
to the spatial instances in dataset in the rest of this chapter. With three feature types
f1, fo, f3, denoted by the symbols, A, andQ, respectively. Figure 4.1(b) gives the
objects’ distribution where the dotted circles define the object’s distance threshold. We

observe that many of theobjects havel objects within the distance threshold. In other
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words,{O, A} is a collocation pattern. However, if the exact locations oftthestances

are as shown in Figure 4.1(c), thém A} will not be a collocation pattern since many

of their instance pairs are now outside the distance threshold. At the same time, many
O objects are now within the distance threshold of shebjects.

The above example demonstrates that existing collocation mining approaches, which
employ the exact support measure (i.e. the number of instances), are sensitive to the as-
signed distance threshold. As previously mentioned in Chapter 2, both snapshot-grid
model and event model are sensitive to imprecise data. Wifhrent distance thresh-
olds or noise in data, these algorithms may finfledlent collocation patterns. In addi-
tion, they do not show good scalability as collocation mining procedure is, in essence,
nothing more than the expensive spatial join among multiple datasets [90].

While one may build an uncertain model to capture the underlying distribution for
each object, and derive the probability of an object being close to another object for a
given distance threshold, such an approach is computationally expensive as each feature
may have multiple objects.

Motivated by these challenges, we propose to model the spatial features in a contin-
uous space using the radial basis functions. This approach resembles the kernel density
estimation (KDE) [70] in statistics, but KDE does not consider the positional error of
the uncertain data and focuses on the density estimation of only one feature.

In this chapter, we use two Gaussian functions, namely, the error function and the
kernel function to model the observed position of the object. The actual influence is
computed as the convolution of these two functions, which is still a Gaussian function
with a wider bandwidth. By summing up the influences of all the instances of a feature,
we obtain the influence distribution (or the influence map) of the feature.

We introduce the notion @patial Interaction Pattern&SIPs) to capture the interac-

tions among sets of features. These patterns are sets of binary features whose influence
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maps are commonly correlated. For each feature type, we build an influence map that
captures the distribution of the feature instances. Superimposing the influence maps
allows the interaction of the feature types to be easily determined without costly spatial
joins. Experiments are performed on both synthetic and real world datasets to demon-
strate that the proposed approach is not officient but is able to discover patterns
that have been missed by existing methods.

The remainder of this chapter is organized as follows. Section 4.1 proposes the in-
fluence model and its properties. Section 4.2 introduces the proposed mining algorithm
called PROBER. We study the performance of the mining algorithm in Section 4.3 and

summarize our finding in Section 4.4.

4.1 Influence Model

In this section, we introduce the notations used in defining the influence function to
capture the degree offmity between two spatial objects. We extend the notations to

the influence maps of features, i.e., object groups, and infer some useful properties.

4.1.1 Object-to-Object Influence Function

Recall that most spatial data are inherently uncertain with an error distribution modeled

by the Gaussian distributioN (u, 0?),

e(u, X) = e 27?2, (4.2)

wherey is the observedth dimensional value andis the underlying value.
When two spatial objects are near each other, they exert an influence on each other.
This degree of influence is represented as a radial basis kernel function in the form of

either Gaussian, Epanechnikov, Biweight or Triangle functionki{(gtande(-) denote
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the kernel function and error function, respectively, onitite dimension. Taking into
account the #ect of error distribution due to the uncertain spatial data, the actual influ-

ence exerted between two spatial objects along-thalimension is the convolution of

k() withe(-), k ®e.

Definition 7. The actual influence of an object on a point in the i-th dimension, denoted

as inf, is defined as

inf=k®eg = [wQ(X)K(X—T)dT (4.2)

where k(-) is the kernel function and ) is the error function, along the i-th dimension

In this work, we select the Gaussian function to be the kernel due to its unique
influence range-<{co, o) among candidate kernels. Hence, the influence of an object
on a point is the convolution of two Gaussian functions, namely Gaussian kernel and
Gaussian error. We know that the convolution of two Gaussians is also a Gaussian
function. Without loss of generality, let = N (0, 02) andk = N (0,0, infi=k ® &
=N (0,02 + o).

From this definition, we can easily generalize the influence function to the high

dimensional space.

Definition 8. Assuming that each dimension has identical Gaussian exdo0, -2)
and Gaussian kerneV (0, aﬁ). Given a d-dimensional objecte (hy, h,, ..., hy), its
influenceto the neighboring point p- (p1, P2, ..., pg) in the d-dimensional space, is

the product of influence on each dimension:

d
y oo igl(hi - p)?
} = (2n(oetoy)) eXH_W}

(4.3)

d
inf(o, p) = 1_[ ! exfd

i=1 \/27(03 + 0'5)

(hi — pi)?

22+ 0D)
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In fact, the exponential factc_)%l(hi — p)? is the square of Euclidean distancecof
andp in d-dimensional spaceE(uI;:Iidear(o, p))>. We observe that this influence func-
tion has the following propertiesMonotonicity It is anti-monotonic to the Euclidean
distance between two objects in a high dimensional spaceRahdstnesdt takes into
consideration the uncertainty in the data.

In the case of a 2D spatial objezion the x-y plane, its influence distribution is a
bivariate Gaussian function whose mean is the observed positmarmd standard de-
viation is /(02 + o). If the kernel on each dimension has the same standard deviation
(i.e., o = gy), the influence distribution is circular in shape, otherwise, it is an ellipse.
Figure 4.2 illustrate an influence function of circular shape. We call this bell-like 3D
shape arninfluence unit. For the remainder of this chapter, we ugg0, o) to denote
an influence unit, where- = /o2 + o2. Note that the circular region denotes a range
of mean+30- along the x-y plane and it captures over 95% of the influence exerted by

the object.

t influence

Figure 4.2: Influence distribution on 2D space

Lemma 5. The influence measure is symmetric, i.e.{@fo;) = inf(0;, 0;).

Proof: It can be inferred from the Definition 8 as taclidean(o;, 0;) = Euclidearfo;,
Oi).

O
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(a) S(f1) (b) S(f2) (c) S(f3) (d) S(f1, f2) (e) S(f2. fs)

Wl <>

vl o B R T

Figure 4.3: Examples of influence maps and their interaction

4.1.2 Feature-to-Feature Influence Function

Similar to the kernel density estimator [62], the influence map of a feature on a 2D plane
is the normalized summation of all the instances’ influence units of this feature. In our
influence model, each object is assigned the identical bandwidth to model its influence.
We do not focus on the selection of proper bandwidths to model influence maps, but
smoothing techniques of kernel density estimator, which study the selection of proper
bandwidths for dferent situations and are well-developed in statistics, can be easily

adopted in our influence model.

Definition 9. Given a set of spatial object®,,0,,...,0,} of feature f on a spatial
plane®, and the influence function if). Theinfluence of feature f on a position

p € P, denoted by &, p), is

S(f.p) = %Z inf (o, p). (4.4)
i=1

We use $f) to denote thénfluence mapof feature f.

The volume ofS(f) can be computed as the integral of the influence of all points in

. This leads to Lemma 6.
Lemma 6. The volume of an influence maypfJis 1.

Proof: Assume the featurecontainsn objects{o, 0, ..., 0,}.

Volume of S(f) = fpep S(f, p)dp
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= Joep 2y inf(o, p)dp

=1 IDESDinf(ol, pdp+...+ pepinf(on, p)dp
= r—l] x nx (Volume of influence unit

=1.

O

Definition 10. Given two influence maps(&) and S f,) with respect to feature, f
and £ and the spatial plané, theinfluence of a feature pair{f,, f,} on a position
p € P, denoted as &, f, p), is MNS(f1, p), S(f2, p)}. We use $fy, f,) to denote the

influence map of the feature pair{f,, f,} on planep.

Definition 11. The interaction between a pair of featurgls, f;} is measured as the
volume of the influence mag f3 f;). We call this measure tHateraction (I) of feature

pair {f;, f;} and is denoted aqf;, f;) = fep S(fi, f;, pdp.

P
The definition of influence map takes the minimum operator due to two reasons.
First, it is consistent with altonfidence [52], a well-accepted correlation measure sat-
isfying anti-monotone property: The interaction value decreases as the increase of fea-
tures. Second, itis consistent with the definition of prevalence, a well-accepted measure
of collocation patterns [63, 51, 31].
From Lemma 6, we infer that & | < 1. The interaction between a feature and
itself is 1, i.e.,I(f;, fi) = 1. Hence,|l(fi, f;) = 1 indicates that the objects of featufe
and f; have the same distribution. On the other hard, f;) = 0 implies that the data
distributions of featurd; and f; are far apart from each other.
Figure 4.3 shows the influence maps for featfyeand f;, and the feature pair
{f1, f3}. Note that Definition 10 and Definition 11 can be easily extended to three or
more features. For three features, we hbife, f,, f3) = fpep min{S(f1, p), S(fz, p),
S(fs, p)}dp. The Interaction measure (1) is used to determine the significance of a spa-

tial interaction. This measure indicates how much a featuréastad by the interaction



75

from the other features in a feature set. Lemma 7 and Lemma 8 gives some important

properties of interaction measure.

Lemma 7. (Symmetry property) The interaction measure is Symmetric, (f&.f;) =

I(f;, fi).

Proof: It can be inferred from the Lemma 5 and Definition 11 as l&athlidearf)
andmin() subfunctions are symmetric.

O

Lemma 8. (Apriori property) The Interaction measure (I) is monotonically non-increasing

as the increase of features.

Proof: Let us assume that a feature Bgtconsists ofn features,fy, f1, ..., fro1,
and the interaction afi featuresfo, fy, ..., f,_1, to bel(fo, f1, ..., fn_1). According to
Definition 10,I(fo, 1, ..., fi_1) = fpep min{S(fo, p), S(f1, p), ..., S(fr1, p)}dp. Then
for a longer feature s, = P J{f,}, we have
I(fo, f1, ..., fao1, Tr)
= Joep MiNS(fo, P), S(f1, P). . .., S(fn-1. P), S(fn, P)}dPp
= Joep MINMIN{S(To, P), - .., S(fn-1, P)}, S(fn, P)Idp
< Joepmin{S(fo, p), S(f1, P). ..., S(fa-1, P}}dP
= 1(fo, f1, ..., fo1).
i
Lemma 7 implies that we can construct an undirected graph where each node indi-
cates a feature and the edges associated with node pairs indicate the interaction. Lemma
8 implies that the pattern generation may follow the classic Apriori property, avoiding

some patterns which are impossible to be valid.
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4.2 Mining Spatial Interaction Patterns

In this section, we present the algorithm PROBER (sPatial inteRactiOn Based pattErns

mineR) to find the interaction patterns in spatial databases.

Definition 12. Given a spatial database containing a feature $etaind a threshold
min_l, a Spatial Interaction Pattern S IP is the set of featurdd,, f,, ..., fy} € F and

I(fy, ..., f) > min.L.

If the interaction of a SIP is greater than a predefined thresinaid , we call this

SIP to be avalid SIP orfrequentSIP. A SIPP; is asubpatterrof another SIFP; if P,
C P,. For this case, we also s&y is asuperpatterrof P;. Due to the Apriori property,
if a SIP is valid, any one of its subpatterns is a valid SIP. We say that a validdsE?s

its all subpatterns.

A SIP P is amaximalSIP if 1) P is a valid SIP, and 2) there does not exist any its
superpatterr® such that? is a valid SIP. ThanaximalSIP set is the set of maximal
SIPs. For example, given the valid SIR$,, f,}, {f,, f3}, {f1, f3}, {f3, 4}, {f1, o, f3}},
the maximal SIP set i f3, f4}, {1, fo, f3}}.

The problem of mining spatial interaction patterns is defined as foll@®sen a
spatial database containing m features and n instances, as well as the minimal interac-
tion measure mir, our goal is to find the maximal SIP set.

Mining of SIPs is computationally expensive due to two-fold reasons. First, the
comparison of continuous spaces is computationally infinite. Second, the enumeration
of all candidate patterns is exponential. We consider the first problem in Section 4.2.1
and examine the second problem in Section 4.2.2 and 4.2.3. In Section 4.2.4, we present

the PROBER algorithm and analyze its complexity.
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4.2.1 Uniform Sampling Approximation

In theory, the influence map of one feature is continuous, which means that there are
infinite comparisons when considering the relationship between two influence maps.
To expedite the mining process, we uniformly divide the spatial plane into disjoint cells
and only the centers of these cells serve as the positions of influence. In this way, the
comparison between influence maps is reduced to cell comparisons.

We useprogressive refinement approath build approximate influence maps by
allowing errors. Assume that the target geographical plane is a square of length
Given a resolutiorR, we divide the plane int(§ X g cells. For each cell, we use the
center of the cell to approximate the influences exerted on this cell by other objects in
the neighbouring cells. The parameRuetermine the resolution of this approximation.

As long asR is suficiently small, our model will provide a good approximation. We
denote this the approximation 8fto beS. One issue is to estimate the upper of this

approximation error. We define tiefluence Error (IErr) as follows.

Definition 13. Suppose we represent the approximate influence @a&; aln x m|
matrix. For any granularity cogcient, c, the refined approximate influence nﬁp’s

a[c-nxc-m] matrix. The dfference in the two influence maps is given by:

|| cells — cellg ||
> (4.5)
MAX(cellg, cells)

every cekS

IErr(S',S) =

ISI

where|S’| denotes the matrix size 8F, cell is a single cell a5, and celk is the cell

which covers ce at matrixS.

For example, Figure 4.4 shov@sandS’, respectively, and one view of the intersec-
tion plane. In this exampldErr is the volume of the shaded areas in the right part of

Figure 4.4.1Err = 3 x (8529 4 6550 15550 1030 15 0.69=0.17.

Note that although the term "resolution” used here is similar to the bin width in his-
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Figure 4.4: An example to compute influence error

togram theory in statistics [62], our approximation approachfieint. In statistics,

a fine bin width is selected to avoid under-smoothing while estimating data distribu-
tion [70], whereas our goal is to compare multiple influence maps (estimators in KDE)
efficiently within an acceptable error tolerance. In this sense, bin width selection in
histogram theory is not suitable for our mining requirement. Hence, we design a new

mechanism to select the proper resolution for a given error bound.

Lemma 9. AsfO = 5, the error bound IErr between the approximate influence map of

resolution r,S|r-,, and the space of resolutidj) Slrr,2, is

R2 R2
1- e’@e—% + eszS — e1672

|Err (Slrers Slrerj2) < 5 ,

(4.6)

where0 < k < 3.

Proof: Appendix gives the proof for Formula 7.6. Here, we extend the proof to
Formula 4.6. This is done in two steps. First, for one particular cell and a set of objects,
Formula 7.6 holds because the influence from a satadfjects to the center positign
of one cell isﬁ >, inf(oj;, p) given by Definition 9. Next, for all cells on the plane and
the set of objects, the influence error is essentially the normalized combination of every
singular cell given by Definition 13, so Formula 7.6 still holds. Hence, we conclude

SOlrer = 21 San cetsin (0;, cell centey.
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IErr

Figure 4.5: The error bound of influence error

Figure 4.5 shows the error bounds as we Janyhere the x- coordinate is the ratio
0 = 5, y- is the possible fluctuation over the real influence. Khe 3 curve is the
error boundwhen 0< k < 3. The worst case error occurs when a split is performed
on the marginal cells of an influence unit. In practice, this does not happen often. As a
result, the influence fluctuation is far less than the error bound. The real error curve will
depends on the data distribution, which is supported by experiments in Section 4.3.1.

In fact, we have the Theorem 2 no matter the data distributions are.

Theorem 2. As# = B — 0, the approximate influence ma§) converges to the real

o

influence map S.

Proof: With an initial resolutiom, we obtain the approximation spa8._,. Next,
we halve the resolution to obtain its finer approximation s;ﬁf@z. Lemma 9 gives

the upper bound and lower bound of the ratio of the two approximation spaces. By

iterating this operatiok steps, we have the approximation spac%:c)f}j = 5> — 0.
From Formula 4.6 and Figure 4.5, we h%/e% 1, which completes the proof.
i
Algorithm. LetO = {0,0,,...,0,} be a set of objects of one particular feature. To
obtain the approximate influence map of this feature, we employ the BuildApproSpace

algorithm.
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Algorithm 5: BuildApproSpace
input : Datase®;
kernel deviatiorr;
inital resolutionr;
error boundmin_err. .
output: Approximate influence mag(-).
Initialize two approximation spac&, = S()|; andS; = S()|/2;

1

2 while (1Err (S¢, Sp) > min_err) do
3 Sp < Sy,

4 res,

5 | Initialize St = S()|r2;

6 return Ss.

Line 1 of Algorithm 5 builds two space§; andS,. Sy is implemented as {ax %
matrix while Sy, is a& x & matrix, whereL is the plane width. For each objegte O,
we superimpose a minimal bounding rectangle (MBR) of sidenfito the two spaces,
centering at the position @. This results in the updates of element values on the two
spaces respectively.

To compare the two matrices; andSy, for each element o, we find the cor-
responding four elements in mati®¢ and obtain the absoluteftérence among them.
Line 2 computes the approximate error within each ce8pindividually, and take the
arithmetic average which is given by Definition 13.

If the approximation error is greater than the user specified parameétezrr, we
initialize a new matrix at half the resolution. We compute the approximation error of
this finer resolution space. This process repeats until the error is lessithamr, and

St is the final approximate influence map, which is guaranteed by Theorem 2.

4.2.2 Pattern Growth and Pruning

Lemma 8 indicates that the interaction measure satisfies the downward closure property.

In other words, a candidate pattern is possible to be valid only if all its subpatterns are
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valid. This allows many SIPs to be pruned during the mining process.

However, the number of valid SIPs can be very large, since a valid Sifeatures
has (2 — 1) subsets that are also valid SIPs. The majority of these valid SIPs are redun-
dant as their interaction can be inferred from their superset. Avoiding the generation
of these redundant SIPs can significantly improve minifigiency and save memory
space. Current state-of-the-art maximal pattern mining algorithms [26, 59] use a search
tree structure to facilitate depth-first search to find frequent itemsets, but they cannot
deal with maximal interaction pattern mining problem directly.

Motivated by the idea of maximal pattern mining algorithms, we employ a depth-
first search with “look ahead”. A tree structure caliettraction treds used to facilitate
the mining process. It is similar to the search tree in [26, 59], but with one important
extension. Each node at level 2 denotes an interaction pattern of 2 features, and its
associated influence map. Algorithm 6 gives the details.

Assuming that we have obtained all the valid interaction patterns of size 2, denote
by C,. In order to visualize the relationships among feature setsjtaraction graph
can be constructed beforehand, in which each feature is a node in the graph, and two
nodes are connected by one edge if they are correlated (or exig}.i®©bviously, the
interaction graph is an undirected graph due to the symmetric property given in Lemma
7. For example, the correlated pairs from the database forms an interaction graph in

Figure 4.6(a). There are four edges indicating four pairs of correlated features.

Level 0

a @ Q Level 1 ‘ﬂ
Level2 | 13 | \szmee‘

@) @) s

(a) Aninteraction graph (b) An interaction tree

‘f2Hf3Hf4Hf5‘

Figure 4.6: Data Structure for Mining Maximal SIPs
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We further transform the interaction graph to an interaction tree as follows. A root
node is first created at level 0. At level 1, we create a node for each feature as a child
of the root, and the order of children follows sthe lexigraphical order. In the subsequent
levels, for each node at levelk (k > 1) and for each right sibling of u, if ((u,V)) is
connected in the interaction graph (namg@lyv} is an interaction pattern), we create
a child node foru with the same label of. For each node, we could enumerate one
candidate pattern, with prefix feature set of its parent node by concatenating the feature
in this node. For example, we construct the tree shown in Figure 4.6(b) based on Figure
4.6(a).

Note that if a patterrp is not a valid SIP, then any longer pattern that contains
cannot be a valid SIP. This allows us tieetively prune & unnecessary computations.
Further, the structure of the interaction tree always forces the evaluation of the longest
patterns first. This implies that if the longest pattern is a valid SIP, then we do not need

to evaluate any of its sub-patterns.

4.2.3 Interaction Tree Traversal

The evaluation of SIP is performed by Algorithm 6. Given a feature rigdethe inter-
action tree, Line 1 obtains the parent noddpfLine 2 forms a candidate patteRy,ng
by backtracking from the current node to root of interaction tree. As an example, for
the feature nodd; at level 3 in Figure 4.6(b), we can backtrafgkto form a candidate
pattern{ f;, f3, fs} with prefix {f, f3}.

Since the computation of influence map interaction is expensive, we postpone this
computation until it becomes necessary. As long as there is one supeRsgiyon C,
this computation can be delayed. Line 4 sets this node todeaynode and Line 5
propagates this to its children nodes. Lines 7-13 recover the influence map of the prefix.

For example, suppose we already have a maximal §IR,, f4, fs} in maximal SIP set



83

C. The candidate patteri$,, f;} and{fy, f4, fs} can be exempt from evaluating as they
are both subpatterns ¢fy, f,, f4, fs} € C. Here f; and f5 are markeddelaynodes in
interaction trees. If we need to evaluate another candidate pafter, fs, fs}, the
interaction computation of its prefix¢§, f;} and{f,, f4, fs} becomes necessary. So the
influence map computation will start frofpvia fs along the path tdg. The pseudocode

of this operation is given in Lines 7-13. Finally, Line 13 obtains the final influence map
of prefix, parS.

Lines 14-18 compute the interaction between the influence maps of the prefix node
and the current node in a depth-first manner. If the interaction is no less than the thresh-
old min_I, this candidate pattern is valid, and it will be added to the maximal pattern set
Cin Line 16.

Although algorithmEvalS IR-) is devised to find maximal SIPs, it is capable to dis-
cover all valid SIPs. The idea is straightforward: the subpatterns checking in maximal

SIP seC is skipped, which is achieved by deleting Lines 3-11 in Algorithm 6.

4.2.4 Algorithm PROBER

We now present the Algorithm PROBER to mine spatial interaction patterns. The al-
gorithm incorporates the pattern enumeration technique into the mining process. Al-
gorithm PROBER takes as input the spatial dataliasthe influence error threshold
min_err, the interaction measure threshahih_I, and outputs the set of maximal SIPs.
Line 1 finds the feature set from the dataset. Lines 3-4 build the approximate in-
fluence maps for each feature, by calling BeildApproS pacg) algorithm. To fa-
cilitate the next mining phase, the approximate influence maps of all features are re-
quired to be superimposed using the same resolution. Therefore, the halt condition in
BuildApproS pacg) is modified to be “If the maximalErr (Sy, S¢) of all features is

greater thamin_err, then do the next iteration”.
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Algorithm 6 : EvalS IR f,, min_I, C)

parNode« the parent node of;;
backtrackingfn till root to form a candidat®ang;
if Pcang has a superpattern in @en

setf, to be adelaynode;

EvalS IR fr’s child nodemin_l);

else

parS = a unit matrix;

while parNode is a delay nodgo

L parS = Interaction(parS, S(parNod9);

© 00 N O 0o b~ W N PP

=
o

parNode« the parent node gbarNode

11 parS2 « the influence map ogbarNode

12 parS = InteractionparS, parS2);

13 fS = InteractionparS, S(f,));

14 if fS > min.l then

15 addP.anqto C;

16 call EvalS IR f;s child nodemin_I, C);
17 else

18 L call EvalS IR f/s sibling nodemin_I, C);

Lines 6-10 discover the interaction in all feature pairs combination. In particular,
Line 9 computes the interaction of the one feature pair by taking the minimal value
between each element pair and summing up all the minimal values. If the measure is
greater thamin_I, this feature pair is considered to be correlated.

Line 11 builds the interaction tree using the set of interaction pairs as the tree pro-
posed in [38]. Line 13 invokes algorithivalS IR-) to recursively visit the necessary
feature nodes in interaction tree, starting from the root node of tree. Finally, Line 14
returns the maximal pattern 96t

Continuing with our example in Figure 4.1, we assum€l0 andmin_|= 0.3, Table
4.1 shows the mining process of PROBER. The mining stops at level 2 because the
pattern{ f,, f3} is not a valid SIP, hence the pattdf, f,, f3} is pruned. As a result, the
maximal SIPs ar¢{ f;, f,} and{f,, f3}}.

Complexity Analysis. Let =0 /R whereR is final resolution after multiple itera-
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Algorithm 7: PROBER
input : D: the spatial database;
o kernel deviation;
min_err: influence error threshold;
min_l: interaction threshold.
output: C: the set of SIPs.
1 Let RFto be all features i;
2 [*Phase 1: impose approximate influence mgp*
3 for each feature;fe RF do
4 L call BuildApproS pacg) to build the influence map;

5 /*Phase 2: build interaction treg¥

6 C=0;

7 Impose an ordering oRF;

s for each feature pai(f;, f;), where { < f; do
9 evaluate feature paiffi( f;);

10 L if 1(fi, f;) > min_l, add patterrif;, f;} to C;

11 build the interaction tre&., based orC;
12 /*Phase 3: mine maximal SIP*

13 call EvalS IR T¢g.root, min_l, C);

14 return C.

tions. To build the influence map (i.BuildApproS pacg) algorithm), an influence
unit of range 6 x 60 is computed for each instance in the database, thus it needs
(60-/R)?=(6/6)? distance computation. The overall computational complexity to build
the influence maps i©(n(6/6)?), wheren is the database size. Since there is one in-
fluence map matrix for each feature, the space complex@(f$§)2) wherelL is the
plane lengthf is the feature number.

The PROBER algorithm, in the worst case, could gene(té})amaximal SIPs, and
each of them requird_s‘ij influence map comparison along the path from root to the leaf
node of the maximal SIP. Each influence map comparison requires the computation of
complexityO((g)z). Hence, the overall computational complexity in mining phase, is
O((L;) X L%J X (g)z). The space complexity include the space to store interaction tree
and influence matrixes. The interaction tree has maxirhab2es, and each node store

an influence matrix. As the space required for influence matrix dominates, the worst
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Table 4.1: Mining SIPs by influence model

level=1
f S(fy) (see Figure 4.3(a)) | I(fy)=1
f, S(f,) (see Figure 4.3(b)) | I(fy)=1
f3 S(f3) (see Figure 4.3(c)) | I(f3)=1
level=2
{f1, T2} | S(fy, f2) (see Figure 4.3(d)) I1(f,, f2)=0.58
{f1, fa} | S(fy, f3) |(fy, f3)=0.27
{1y, 3} | S(f2, f3) (See Figure 4.3(e)) 1(f,, f3)=0.38

space requirement B8((2" - f) x (§)?).
In summary, the computational complexity of PROBER{(6/6)? + (LL) X 5] %
2
(£)?), and the space complexity of PROBERI&'(E)?).

4.3 Experimental Studies

In this section, we present the results of experiments to evaluate the performance of
PROBER. We also compare PROBER with existing collocation algorithms FastMiner
[90] and TPMiner [77]. In order to set reasonable comparison, we generate two versions
of PROBER, PROBERALL to discover all patterns, and PROBHRAX to discover
only maximal patterns. Note that while comparing tlfkeetiveness of PROBER with
FastMiner and TPMiner may not be appropriate due to therdint interesting measures
used, however, we could treat FastMiner and TPMiner as good baselines w.r.t both ef-
fectiveness and scalability issues. Table 4.2 show the parameter counterparts between
influence model and distance model. In the following experiments, we assign the identi-
cal values to the parameter counterparts, €.¢.d = 50 andmin.| = min_prev= 0.4.
Synthetic Datasets:We extend the synthetic data generator in [77] to generate the
synthetic spatial databases with Gaussian noise. All the data are distributed on the plane

of 8192x 8192. The synthetic datasets are named using the format “Djd@z)-(d)-
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Table 4.2: Parameter counterparts

Distance Model Influence Model
distance thresholdd influence deviationo
minimal prevalencemin_prev | minimal interactionmin_|

(N)” wheremis the confidence feature numbeis the non-confidence feature number,

d is the distance threshold aitis the number of instances in the dataset. For example,
DATA-8-2-50-200k is a dataset which contains 8 confident features, 2 noise features,
distance threshold to be 50, and a total of 200k instances. For each object, we assign a
Gaussian noise of 0 mean amg say 5, deviation on each dimension.

Real-life Datasets: The real-life dataset used in our experiments ISV en-
vironmental data.We downloaded 8 layers of Minnesota state from Digital Chart of
the World* (DCW). Each layer is regarded as a feature in our experiments as shown in
Table 4.5. We further map the dataset on a formal 848292 2D plane.

All the algorithms are implemented irG. The experiments were carried out on a

Pentium 4 3Ghz PC with 1GB of memory, running Windows XP.

4.3.1 Performance of Influence Map Approximation

In this section, we evaluate the convergence diidiency of theBuildApproS pace
algorithm on both synthetic data Data-6-2-100-50k and DCW data. We assign the initial
resolutionr = 256 andmin_err = 0.05, as well agr = 100 for Data-6-2-100-50k and
o = 50 for DCW data. Table 4.3 and 4.4 shows the results. In both tables, each row
gives the influence errdErr for each iteration. We can see that li@r converges to
zero with each iteration.

The time taken for each iteration is shown in Figure 4.7. We observe that the runtime

increases quadratically as the number of iteration increases, as the resolutiarand

Ihttpy//www.maproom.psu.egddcw
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Table 4.3: Convergence on DCW data

lteration| fo [ [f, [ fs | fa |fs [fs | f [MAX

1 0.16| 0.02| 0.15| 0.13| 0.16| 0.04| 0.17| 0.17| 0.17
2 0.10| 0.01| 0.09| 0.08| 0.10| 0.03| 0.11| 0.11| 0.11
3 0.06| 0.01| 0.05| 0.05| 0.06| 0.02| 0.06 | 0.07| 0.07
4 0.03| 0.00| 0.03| 0.03| 0.03| 0.01| 0.04| 0.04 | 0.04

Table 4.4: Convergence on Data-6-2-100-50k

lteraton| fo [ [f, |[fs | fa |[fs [ fs | f [ MAX

1 0.17|0.17|0.17] 0.17| 0.17| 0.17| 0.25| 0.24| 0.25
2 0.10| 0.10| 0.10| 0.10| 0.10| 0.10| 0.15| 0.14| 0.15
3 0.05| 0.06| 0.06| 0.06| 0.06| 0.06| 0.08| 0.08| 0.08
4 0.03| 0.03| 0.03| 0.03| 0.03| 0.03| 0.04| 0.04 | 0.04

decreased by half. This is expected because a finer resolution and shvallezause

a quadratic increase in both time and space complexity. On the other hand, the runtime
is linear to the database size for each iteration, as the DCW data contains 2837 objects
as a whole and the synthetic dataset contains 50k objects. The results in Figure 4.7 are

consistent with the analysis in Section 4.2.4.

4.3.2 Hfectiveness Study

In this set of experiments, we show that PROBERL algorithm is more robust than
FastMiner and TopologyMiner as the variation of devigttiistance threshold. As the
results of FastMiner and TopologyMiner are exactly same, we only compare PRAGBER
with TopologyMiner in our experiment.

We first use a synthetic dataset Data-5-0-50-5k to evalu&teteness. Without
noise, the expected patterns will be the maximal pattern of 5 confident features and all

its sub-patterns, i.e. 26 pattern821=26). We integrate dierent Gaussian noise of
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Figure 4.7: Convergence Performance Figure 4.8: Hectiveness study

Table 4.5: Feature Description

FID | Name Number of Points
fo Populated Place 517

f Drainage 6

f, Drainage Supplemental | 1338

f3 Hypsography 72

f4 Hypsography Supplemental687

fs Land Cover 28

fs Aeronautical 86

f; Cultural Landmarks 103

identical mean O but lierent deviation ranging from 1 to 30. The comparison measure
is the number of interaction patterns discovered, including maximal and non-maximal
ones. The results are shown in Figure 4.8. From this figure, we observe that both
PROBERALL and TopologyMiner can find the whole set of possible patterns while
error deviation is less than 10. This is expected because the small error deviations
do not have impact on the influence deviation. Therefore TopologyMiner can find all
of the patterns with noise of deviation 10. On the other hand, the patterns found by
TopologyMiner show greater decrease than the ones by PROBEHERas the increase
of error deviation.

Next, we apply PROBER\LL on the DCW environment data. We set the inter-
action thresholdnin_| to be 0.4. The mining results are shown in Table 4.6. We ob-

serve that regardless of how thevaries, the patterns discovered by PROBERL
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Table 4.6: Patterns Comparison of DCW Dataset

d/o | Distance Model Influence Model

50 | NA {fo, T2}, { T2, T4}

100 | {fo, T2}, { T2, fa} {fo, T2}, {fo, fa}, {fo, T6}, { T2, fa)

150 | {fo, T2}, {fo, fa}, { T2, fa} | {fo, f2}, {fo, fa}.{ o, fa}, {fo, f6}.{ fo, f7},
{f2, fa}, {2, fa}, (T2, f6}, {3, fa},{ 5, T4},

{fa, fe}.{ T4, T2}, {6, T}

{

{

{

200 | {fo, T2, fa}, {f3, fa) fo, T2, fa}, {fo, T2, fe}, {To, f6, T2}, {fo, f3},
fZ’ f3}’ {f27 f7}1 {f3’ f4}1{f3a fe}l{ f3, f7}1

f4’ f6},{ f4’ f7}

are always a superset of those found by the two distance model-based techniques, Fast-
Miner and TopologyMiner. In particular, when= 200, we find thatpopulated place,
drainage supplemental, hypsography supplemgatal{populated place, aeronautical,
cultural landmarksare missed by the distance model-based techniques but are discov-

ered as SIPs.

4.3.3 Scalability

In this set of experiments, we demonstrate the scalability of both PROSHRand
PROBERMAX. We set the number of features to 10 (including non-noise and noise
features), and generate twelve datasets Data-8{2@K-40k, 60k, 80k, 100k, 200Kk,

..., 800K. We compare the performance of PROBER with FastMiner and Topol-
ogyMiner by varying the total number of instances. Figure 4.9(a) shows that both
FastMiner and TopologyMiner increase exponentially as the number of instances in-
creases while PROBER shows a linear increase. This is expected because the time
complexity for the distance model is polynomial time of the number of instances while
PROBERALL and PROBERMAX are linear to the number of instances during the
database scan and is independent of the database size during mining phase. In further

observation, PROBEMRIAX is slightly faster than PROBERLL because PROBERIAX
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Figure 4.9: Scalability study

only detects the maximal patterns which can save the mining cost.

We also set the database size at 20k instances and generate eight dataqdtsd)ata-
8, 10, 12, 14, 16, 180-50-20k to evaluate the three algorithms. The results are shown
in Figure 4.9(b). Both FastMiner and TopologyMiner do not scale well w.r.t the number
of non-noise features. TopologyMiner allows pattern growth in a depth-first manner,
but the extraction of project databases requires much time and space. PROBER
shows the best scalability compared to the other algorithms, although the algorithm

slows down when the number of features exceeds 16. This is because of the large

confidence features results in the exponential growth of its interaction tree.

4.3.4 Sensitivity

Finally, we examine theftect of two parameters, influence deviatierand interac-
tion thresholdmin_l, on the performance of PROBER. Due to the intrinsitedence
between influence model and distance model, it is unfair to compare the sensitivity per-
formance of the two models. Therefore, we only include the influence model in this
experiment.

Effect of Influence Deviation ¢r). We first evaluate thefiect of the influence

deviation on PROBERMAX. The two datasets used in this experiment are Data-6-
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Figure 4.10: Sensitivity study

2-100-50k and Data-8-2-100-200k, which imply that the patterns will be valid once
the o surpass 100. Figures 4.10(a) gives the results. PROBEBR run faster as

the increase ofr. This is expected due to two reasons: 1) The time complexity of
PROBER are inversely related to threconsistent to the complexity analysis in Section
4.2.4; 2) Biggero implies smoother distribution of influence maps, so it incurs less
iteration rounds to build approximate spaces with efEr, which saves the cost. On

the contrary, the algorithms of distance model are sensitive to distance threshold due to
the tremendous increase of time cost [77].

Effect of Interaction Threshold (min_l). We evaluate the three algorithms on two
dataset Data-3-3-50-20k and Data-5-5-50-50k with potential prevalence is 0.5, which
implies that the PROBER may find many patterns whilg_| < 0.5. From Figures
4.10(b), PROBERMAX are not sensitive tanin_| because the mining cost is not the
dominant factor compared with the cost to build approximate spaces. On the contrary,
the runtime of FastMiner and TopologyMiner will decrease as prevalence increases.
This is expected because less patterns become frequent as the increase of prevalence,

which leads to reduced mining cost for the two algorithms.
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4.4 Summary

In this chapter, we introduce an influence model to present the spatial distribution of
event data and analyze the bounds of computational error for building influence maps.
Compared to the distance model used in existing works, the influence model considers
the spatial #inity in terms of continuous functions instead of discrete functions. This
leads to more meaningful mining results. Another advantage of the influence model
is that it avoids expensive join operations, which are traditionally required to discover
the relationship among spatial instances. We also introduce the concept of Spatial In-
teraction Patterns (SIPs) and design an approximate mining algorithm PROBER using
influence model to find maximal SIPs. The experiment results on both synthetic and

real-life datasets demonstrate that PROBERTsotive and scalable.



Chapter 5

Mining Interaction Pattern Chains in

Snapshot Data

In the previous chapter, we address the problem of mining global interaction patterns
on a single snapshot, where the interaction patterns hold ontibke spatial plane of

the snapshot. In this chapter, we focus on the problem of mining localized and time-
associated interaction patterns, which are the patterns supported by the confined regions
in some consecutive snapshots.

To find localized and time-associated interaction patterns are important to satisfy
the application requirement of Location-Based Services (LBS). LBS are applications
that take the geographical-related information into account and focus on the local data
analysis and the local knowledge. Though the term of LBS has traditionally been used
to refer to mobile device services using the Global Positioning System (GPS), in the
recent years, it has been extended to web applications since the web resources contain a
plenty of location information. The location information of web resources include three

categories [76] as follows.

e Provider location: The physical location of the provider who owns the web ser-

94
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vice, such as organization, corporation or person. This kind of location is crucial
to web geographical information retrieval and navigation such as online map and

Yellow Pages services.

e Content location: The geographical location where the web resources describe,
such as the location names or the geographical-related names. The content loca-
tions are utilized to improve the performance of information retrieval based on

the location of user.

e Serving location: The geographical scope that a web resource can reach. For
example, if a web resource is visited by the people in Singapore, its serving scope
is Singapore. Knowing the serving location of a web resource can benefit many

business applications such as local advertisements and e-commerce.

Many application and researclff@ts have been made in content locations. The
commercial search engines, including Yahoo! Local and Google Maps, have introduced
local search services that appear to retrieval geographically relevant information using
location information of web pages; The research of location-aware text retrieval, which
combines both location proximity and text contents in text retrieval, receives much
attention [20, 11]. Both commercial search engines and location-aware text retrieval
focus on the aspect of “content location”, while local interaction patterns have many
benefits to the location-based web services based on the “serving locations” of web
pages. With the awareness of the prevalence of common interests among people who
are geographically closed together and frequently visit one common web resource or a
set of common web resources, businesses are keen to increase their competitive edge
by offering geographically tailored contents that reflect the common interests of the
geographical region of the web visitors.

As we know, existing web servers typically organize the web pages they host in

some hierarchical structures. For example, a commercial web server may organize
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the pages into dlierent categories such as: “Sports”, “Entertainment”, “Shopping”,
“News”, and each category is further decomposed into many subcategories. This static
organization is often a source of frustration for the web visitor as they need to perform
multiple clicks before they are able to locate the items of their interests. In order to pro-
vide better services and increase customer satisfaction, many web servers are looking
at customer-centric organization whereby the content of the web pages are customized
based on the locations of visitors. It is able to do so because many web servers have
already accumulated gigantic log files recording the details of each access such as: the
source IP address, the time and duration of access, and the pages visited. Analyzing
these log files for geographical-specific common interests among the web visitors is a
promising approach to dynamically customized the web structure based on the interests
that have been shown by the web visitors in the same geographical region.

In order to achieve this objective, affieient algorithm that can automatically dis-
cover the geographical-specific common interests among the web visitors are needed.
In addition, since these interests may change from time to time, it is useful to know
what and how these interests change over time. For example, the Asian visitors may
tend to click the pages relating to “Tennis” and “Badminton” while the visitors in North
America tend to click on the pages relating to “Football” and “Basketball”. In this case,
we may conclude that the Asian visitors share the common interests of “Tennis” and
“Badminton”, while the North American visitors prefer “Football” and “Basketball”.
Furthermore, the interests of the Asian visitor changes from “Tennis” in the months of
June- October to “Badminton” in the months of March-July, while that of the North
American visitors interests changes from “Football” in the months November-February
to “Basketball” in the months April-June. The web serve may vary the services from
time to time. This example motivates the development of moving interaction patterns,

i.e., geographic-specific interaction pattern chains.
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In this chapter, we aim to find geographical-specific interaction patterns in some
local regions, and discover changes in the supporting regions (e.g., movement, en-
largement and shrinkage) over multiple time points. We design an algorithm called
FlexiPROBER that utilizes a quadtree structure to iteratively refine the regions so as to
discover the local geographical-specific interaction patterns. We define three important
pattern trends, i.e., enlargement, shrinkage and movement of supporting regions, to cap-
ture the changes in these patterns and develop an algorithm called MineGIC to discover
these changes. Experiment results on both synthetic and real world datasets demon-
strate that the proposed approachfteetive in mining the local geographical-specific
interaction patterns and discover their changes over time.

The rest of the chapter is organized as follows. Section 5.1 gives the preliminaries
and problem statement. Section 5.2 introduces the multi-scale influence model. Section
5.3 presents the algorithm FlexiPROBER to mine the geographical-specific interaction
pattern on static time frame, and Section 5.4 presents the algorithm MineGIC to dis-
cover the pattern changes. Section 5.5 presents the results of experiments to evaluate

the proposed algorithm. Finally, we conclude in Section 5.6.

5.1 Preliminaries and Problem Statement

Suppose’ is a 2D spatial plane with dimensions f&hay] X [0, Ymad andF = {fy, fo, ..., T}
is abinary feature set. Each featufecould denote an interest of a web visitor. An ob-
jecto on planeP is a tuple(x, y; ¥ o), where k&, y) denotes the geographical location of
the object, andF, is a binary feature vector of the object.

Chapter 4 proposes amfluence moddb describe spatial data distribution and mea-

sure the interaction among two or more distributions. Based on the model, the influence
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of an objecto = (X,, Yo) to a pointp = (X, Yp) is measured by

1 (X0 = Xp)? + (Yo — Yp)?
Zﬂazexn_ 2072 b

Inf(o, p) = (5.1)

where theo is the influence deviation, specified by the applications. Combining the
influences from all the objects exhibiting the same featuref sase obtain annfluence
mapof this feature, denoted byi(f). The influence of featuré in point p is denoted

by M(f, p). Let{o;,0,,- - ,0n} be a set of objects that has the featérd he influence

of f on a pointp is M(f, p) = >, Inf(0;, p). In term of statistics, influence map is a

density distribution about influence.

Given the influence maps of a set of featujgsf,, - - - , f,}, and we denote
MIN(fy, fo,- -+, fa; p) = min(M(f, p), M(f2, p), - - -, M(f,, p)), (5.2)
and
MAX(fy, fa, -+, fo; p) = maxM(fy, p), M(f2, p), - -+, M(f,, p)), (5.3)

we can determine the degreeinferactionamong these features as follows:

) fpePMIN(fl,fz,-~~,fn; p)dp

[(fy, f,---, fy) = .
(1 2 n) fp€¢>MAX(fl’ fz,"',fn; p)dp

(5.4)

Interaction can measure the similarity amongst influence maps. High interaction
value means high similarity, and vice versa. Speci&(lfs, f2,--- , f,) = 1 if and only
if thesen features assign exactly the same influence to every point on the plane. Note
that using KL-divergence is not suitable here because it cannot be easily generalized to
measure the fierence among three or more distributions.

The degree of interaction among a set of features can be constrained to a region in-

stead of the whole plane. For example, the interaction of a set of feéfwés- - - , f,}
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on aregiork € P, denoted byt (fy, fo, -+, fy; R), is

Joer MIN(f1, 2, -, o p)dp

[(fy, fo, -, fi; R) = .
(l 2 n ) fPGRMAX(fl’fZ’...’fn;p)dp

(5.5)

With this, thegeographical-specific interaction pattefor GIP for short) can be

formally defined as follows.

Definition 14. Given a spatial database containing a set of objects and a featufe,set
a regionR € P, an interaction threshold mih, a geographical-specific interaction
pattern GIP = {f;, f,, ..., f;; R} onR, is the set of featuredy, fy, ..., f,} € F such

that I(fy, fo, ..., f;;R) = min.l. Ris called thesupport region for GIP.

An interaction patteriGIP is called ak-pattern if it consists ok distinct features
€ ¥, that is,|GIP| = k.

With this definition, we can track how the support regions of GIP pattern changes
over time. In particular, we are interested in discovering three kinds of changes in this

chapter.

e Enlargement. The support regions of a particular interaction pattern expand over

two or more continuous time frames;

e Shrinkage. The support regions of a particular interaction pattern shrink over at

least two continuous time frames;

e Movement. The support regions of one particular interaction pattern move from

one region to a neighboring region over two continuous time slots.

Definition 15. A geographical interesthain, denoted as GIC= (GIP : R, - R,
— --- = Ry;), where GIP is a local geographical-specific interaction pattern apd R
is the set of support regions of GIP at timgmust satisfy one of the following three

conditions:
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1. R, cR,,, forallk,i<k<j-1,isan enlargement chain

2. R, 2R, forallk,i <k < j-1,is ashrinkage chain

3 Ry Ry
T min(RyRy.4)

>0, forallk,i<k< j-1,isamovement chain

Problem Statement: Given a spatiotemporal database of point objects over the flane
and an interest threshoidin_I, we aim to find the complete set of local geographical-
specific interaction patterns on the pla®eand generate all the spatial interaction pat-

tern chains.

5.2 Multi-scale Influence Map

To discover the local interaction patterns, we must first construct the influence map for
each feature on the plafe This influence map must allow for ftierent granularity
over diferent regions iP in order to highlight interests that are local to small regions.

A quadtree structure [61] is used to facilitate the construction of multi-scale influ-
ence maps. Initially, the plarn® is one large cell as the root node of quadtree. All
objects on the plane are associated to this root node. We estimate the maximum, min-
imum and the average influence of all the objects on this cell (the details is elaborated
in the next paragraphs). The node split criteria is the gap of maximum and minimum
influence. High influence gap implies the skew influence distribution on this cell. In
other words, this cell can not capture the precise influence value any more. Thus, a cell
will be split into 4 equal sub-cells if its influence gap exceeds an assigned error bound,
and the associated objects in this cell are pull down to one or more sub-cells. The pro-
cess is repeated until no cell partition is required. For example, assuming the objects
of featuref, distribute coarsely on regioml 3,R21,R22,R23,R31, and the objects of
featuref, are on region®11,R12,R21,R22,R32,R33. Figure 5.1 shows the results of

implementing the strategy on featutgand featuref, respectively.
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Qtree(f1) Qtree(f2)

Mining R1
Granularity

Figure 5.1: Influence Maps and Quadtrees

Please note that tife in Definition 14 may not be the leaf node in the quadtree. The
size and location dR are determined by application interests. For example, we partition
the plane into 4 4 buckets in Figure 5.1, arfdl can be any one of these buckets.

The computation of the maximum, minimum, and average influences of an object
to a cellG is as follows.

Case 1: Objeab is in cell G.

In this case, the minimal distance betweeaon G is 0, the average distance is deter-
mined by the Euclidean distance betweesnd the center point @, and the maximal
distance is the Euclidean distance betweamd the furthest corner @.

Case 2: Objeab is outside cellG.

In this case, the minimuymaximum distance is the Euclidean distance fromo the
nearegturthest corner of the céll, and the average distance is the Euclidean distance
betweerp and the center db.

Knowing the minimum, average, and maximum distances, we can compute its max-
imum, average, and minimum influence according to the influence function in Equa-

tion 5.1.
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With this, the average influence of a featdren a cellG, denoted byavg inf(f, G),
is thesummatiorof all the average influences from the object&iwith featuref. The
minimum (maximum) influence, denoted byn.inf (f, G) (maxinf(f,G)) are defined
similarly.

To determine whether one cé&ll should be partitioned into 4 sub-ce®, G?, G*

andG*, we introduce the notion of scale err& ¢aleErj.

(5.6)

1 2 abgavginf(f,G) — avginf(f, GX))
ScaleEn(f,G) = 7 ; maxavginf(f,G),avginf(f,GY) '

In our work, S caleErris used to measure the average influence change of a cell
after splitting.S caleErris normalized between 0 and 1. SpeciaByaleErr= 0 if no
influence change after splitting; otherwigecaleErr> 0. In general, the more change
one cell has, the biggé& caleErrit obtains.

The computation ofs caleErris expensive. Suppose there arebjects exerting
some influences to a cell, we require a total nfiistance computations. For a quadtree
of heighth, the worst time complexity i©(4"x n). To cut down the cost of constructing
the quadtree, we derive an early terminating condition to stop partitioning based on the
following two observations.

Observation 1. For any cellG, we havanin.inf(f,G) < avginf(f,G) < maxinf(f,G).
This property follows from the fact that for any objextits minimum distance to a cell
Gisless than its average distance, which inturn, is less than its maximum distance to the
cell. By Equation 1, we know the minimum influence of objean G is less than the
average influence which is less than the maximum influence. Summing over all the ob-
jects that are associated® we havemin.inf(f,G) < avginf(f,G) < maxinf(f,G).

Observation 2. Given a featuref, a cellG and its four sub-cell$s?, G2, G3
and G* mininf(f,G) < mininf(f,G) and maxinf(f,G) > maxinf(f,G¥) where

1 < k < 4. This can be proved as follows. For any object instama# featuref, we
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havemin.dis(o;, G) < min.dist(o;, GX). By Equation 5.1, we conclud@axinf(o;, G)
> maxinf (o, GX). Summing all object instances bfind applying the transitivity prop-
erty of inequality, we havenaxin f (f, G) > maxinf(f,G¥). The proof fomin.inf(f, G)

< mininf(f,G¥) is similar.

Theorem 3. Given a feature f, a cell G, and error bound E, we say that G does not
require further partitioning if both of the following conditions hold

mininf(f,G) .
1. avginf(f,G) 1-E

maxinf(f,G)
2. Agnf(fo) < 1+E.

PROOF: Suppos6EX is one of the sub-cells . From Observation 1 and 2, we
knowmin.inf(f,G) < mininf(f,G¥) < avginf(f,G*) < maxinf(f,G¥) < maxinf(f,G).
Case t avginf(f,G) < avginf(f,GX).
By definition,

N
ScaleEr(f,G) =1 x 3, avglnfg;sin)f(a;g;wf(f,e)

<ixyp, ma’“”;(\fgzl‘f?fv’%i)”f“’e) Condition (2)
<Ixyi (1+E-1)=E;
Case It avginf(f,G) > avginf(f,GX).

Again, we have

S CaIeEr(f, G) — %1 % Z‘klzl avginf(f,G)-avginf(f,GX)

avginf(f,G)
4 inf(f,G)-min.inf(f,G e
< 3 X i, MRl Condition (1)
<ixTia(l-(1-E)=E

O

Theorem 3 provides the early termination condition for unnecessary cell partition-
ing. With this, we give the details of the multi-scale influence map construction in
Algorithm 8 BuildQT re€f, o). The algorithm start with a root node (Line 1) which is
initially associated with all objects (Lines 2-4). A functi@wplit(-) is called in Line 5

to split the root node and its sub-node recursively.
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Algorithm 8: BuildQTredf, o)
input : {oy,...,0,}: nobjects of featurd;
o the standard deviation of influence function.
output: QuadtreeT.
1 initialize a root nodé&s of QuadtreeT;
2 for each objectpl<i<ndo
3 | append into G.objlist;

4 call S plit(G, f, o);
5 return T;

Algorithm 9: S plit(G, f, o)

L if Tentte > 1- E AND T2l < 1+ E then
2 | Exit;

3 Split G into four sub-node&?, G?, G2 andG#;

4 for each object pe G.obj list do

5 | for each sub-node &do

6 build a region ofGX of radiusc;

7 if o; falls into region of & then

8 | append into G*.objlist;

- ScaleEr(f,G) > E then
10 for each sub-node &o

11 L S plit(f, G);

©
=

Algorithm 9 gives the details of functioB plit(-). Line 1 is an early termination
condition. Line 4 splits the area of node into four parts. Lines 5-12 distribute the
objects into four sub-nodes. If the influence error of the node and its sub-nodes less
than 0.05, we terminate further split operation of sub-nodes (Line 13); otherwise, we

continue to split each sub-node.

5.3 FlexiPROBER

Having built the multi-scale influence maps for all the features, the task now is to find

the geographical-specific interaction patterns, GIP in shfiitjently.
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Recall, a GIP in regiorR is the set of features whose interaction value among the
features iNR is not less than the threshamin_l. Consider a pair of featurefs and f,
with influence maps as shown in Figure 5.2(i). Focusing on the rdgignwve note that
both maps have 7 cells but are oftdrent granularity. Computing the interaction value
of f; and f, onR requires both maps to be of the same granularity. This is achieved by
refining the maps till all corresponding cells have the same granularity. Figure 5.2(ii),
shows the results after the refining process. Note that this refining process is relatively
inexpensive as there is no need to perform object allocation from the parent node to
the child nodes. In the final step, for each common subregio& afe compute the

interaction among the features as follows.

2eer(mMin(avginf(fi, G), avginf(f;, G)) x areaG))
Yeer(Maxavginf(f, G), avginf(f;, G)) x areqG))

I(fi, f;; R) = (5.7)

Continuing with our example, Figure 5.2(iii) shows that the final interactiofy of

5x4+(50+50+50+12+10x4+(30+30+30+30)  _ 342 _ 0.38

andf; on regionRy; is 25x4+(50+60+65+ 50+ 15x4+(120+120+150+136) — 911

To generate the set of GIPs, we adopt the level-by-level candidate pattern generation
procedure. Ak-pattern candidate is generated from twel)-patterns if they share a
commonrk-2 prefix [65]. For GIPs, we prove that the GIPs satisfy the Min-Max theorem

as stated below.

Theorem 4. (Min-Max Theorem) Given two influence mapsfnand the interaction
threshold minl, {f;, f;} cannot be a GIP o if one of the following conditions hold,

1 maxinf(f,R)

© TNt R) < min.l, or

inf(f;,R) .
2. % < minl,
where maxinf(f;, R) (min.inf(f;, R)) is the maximal (minimal) influence qfdnR.

PROOF: We show the proof for Condition (1). The proof for Condition (2) is simi-

lar.
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Qtree(f1, R21) Qtree(f2, R21)
50 (60
5 50 25
. 65 |12
0]
120|120
10 15 30
150 | 136
lPartition lParTition
50 | 50 50 | 60
5 25
50 | 50 65 | 12
(i)
120|120 30 | 30
10 15
150 | 136 30 | 30
J MIN MAX {
50 | 50 50 | 60
5 25
50 | 12 65 | 50
(iii)
30 | 30 120|120
10 15
30 | 30 150 [ 136

Figure 5.2: Interaction of; and f, on RegionR,;

Suppose Condition (1) holds, sinogn.| < 1, we can infer thamin(avginf(f;,G),
avginf(f;,G)) =avginf(f;, G), andmaxavg.inf(fi,G), avginf(f;,G)) =avginf(f;, G),
whereG is a subregion ifR.

. £ _ Yeer(avginf(fi,G)xareaG)) Yeer(Mmaxinf(fi,R)xarea(G))
By Equation 5.7) (f;, f;; R) = 2§€:(avginf(fj,G)xarea(G)) = Zzei(mimnf(fj,R)xarea(G))

_ maxinf(fi,Rx>cg areaG)

~ mininf(f;,RAxYger areaG) < mindl.

O
This theorem enables a large number of candidates to be pruned, resulting in a
highly efficient algorithm calledrlexiPROBER Details ofFlexiPROBERare given in
Algorithm 10. Lines 1-3 construct the quadtree for each feature by caliuiig QT re€-).
For each regioR, Lines 5-14 mine the complete set of GIPs with the call to procedure
Apriori_gen(-) in Line 8, and compute the interaction values in Line 10.
ProcedureApriori_ger(:) (shown in Algorithm 11) generates tlkepattern candi-

dates from thek-1)-pattern sets. Line 5 combines twk-X)-patterns if they share
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Algorithm 10: FlexiPROBER
input : D: the spatial database;
RF: all features irD;
min_l ; interaction threshold;
o the standard deviation of influence function;
h: the mining granularity;
output: P: the set of interaction patterns.
1 for each featurefe RF do
2 | call BuildQTredf;, 0);

P=0;

for each cell in the h-th level of quadtre®,do
GIP; = QTredf;, R), wheref; € RF;

for k=2;P1 #0;k+ + do

Cx = Apriori_genGIPy_1, min_l, R);
//Apriori property

for each candidate € Cy do

10 L compute the interaction @f

© 00 N o 0o b~ W

11 | GIP = {c € Cyc.interaction> min_I};

commonk-2 prefix. Lines 6-7 prune the candidate pattern using the MIN-MAX theo-
rem. Lines 9-11 compute the minimal influence and maximal influence of the candidate

pattern and add it to the candidate pattern sets.

5.4 Discovering Interaction Patterns Changes

SupposeD;, Dy, ..., Dq correspond to the datasets at tilety, ..., t;. We can mine

GIPs from each of these datasets independently as described in Section 4. Having
generated the GIPs for each time point, we next consider how to detect interesting
changes in these patterns over time. Note that Enlargement and Shrinkage chains can

be extended from Movement chains, because they are the special cases of Movement

Ry Ry g —1or Ry Ryy1

chains if
Rtk k+1

= 1. Hence, we only present the approach to discover
the Movement chains.

Given a patterrGIP, we use a bitmap structure to indicate its support regions at
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Algorithm 11: Apriori_genGIPy_1, min.l, R)
1 for each pattern GIB, € GIP,_; do

2 for each pattern GIB, € GIP,_; do

3 if GIP,, and GIR,, have the identical prefix k 2 featuresthen
4 // T is a new feature;

5 f = GIPp,[k-1];

6 c=GIP,, UGIP,,;

7 if Teocn B < min | OR mid < min | then
8 //MIN-MAX Theorem;

9 deletec;

10 else

11 cmininf = MIN(GIP,,.mininf, f.min.inf);
12 c.maxinf = MAX(GIPp,.maxinf, f.maxinf);
13 addc to Cy;

14 return Cy;

time pointt;, i.e. R, in Definition 15. A bit is set to 1 if the corresponding region
supports the pattern. Figure 5.3 shows examples of 4x4 bitmap structures where the
GIC; demonstrates an enlargement chain, starting from 4 regions at,ttmé regions

at timet; to 8 regions at timé; while GIC,; is an example of a movement chain where

the 4 support regions are shiftedtirto ts.

A naive method to discover enlargement, shrinkage and movement chains is to use
FlexiPROBER to generate the GIPs for each time frame. For each GIP, we check the
condition for all consecutive time frames to determine whether the GIP is an enlarge-
ment, shrinkage or movement chain. This approach involves many unnecessary tests.

We observe that a GIP can participate in an enlargement, shrinkage or movement
chain only if its sub-patterns occurs in some common time intervals with overlapping
regions. We introduce the notion ofspatiotemporal joirto capture this concept of
common time intervals with overlapping regions.

Let PMap(GIP,t) denote the bitmap that indicates the support regionSIéf at

time t. We define thespatiotemporal joinof two chainsGIC; andGIC,, denoted as



GIC; = (GIP; : [tr,1110100000000000% [t;,1111110000000000}
[t2,111111101000000]

o
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Figure 5.3: Examples of pattern chains

(GIPy » GIP; : [t;,1100110000000000% [t,,0000110010000009]
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Figure 5.4: Spatiotemporal jo@1C,; andGIC,
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GIC; g GIC,, as follows.

For two interest chains,
GIC; = (GIP; : PMapGIPy,t)) — --- - PMapGIPy, t)))
GIC, = (GIP, : PMapGIP,,ty) — --- > PMapGIP,, t,))

let [ty, y] = [, t;] N [tm, ], the spatiotemporal join is defined as
GICy =g GIC, = (GIP,, : PMapGIP,,t) — --- —» PMapGIP,,1))

whereGIP,, = GIP, = GIP; (see Algorithm 11), and for eatle [ty, t;], PMap(GIP,,t) =
PMap(GIPs,t) n PMap(GIP,,t). For example, the spatiotemporal join@tC; and
GIC; in Figure 5.3 is shown in Figure 5.4.

The Apriori-like property exists in the chain, stating that: If a chaifPdfom t; to
tj, P: R, » R, = --- = Ry, is a Movement chain, then any subpatterriPpf’, also
has a Movement chaif’ : R - R — --- - R, whereR 2 R;,..., R, 2 Ry. It
is the foundation of our next Algorithm MineGIC to discover the interesting movement
chains by level-wise mining.

The pseudocode of MineGIC is given in Algorithm 12. Lines 1-3 read the sub-
datasets and build the independent quadtrees as discussed in Section 4. Lines 4-6 ini-
tializes each feature as a 1-pattern chain. Lines 7-27 describe the level-wise candidate
generation process. Line 8 picks two chains from #ag)¢pattern set. Line 9 performs
the spatiotemporal join of the two chains if they hake?] common features, and ob-
tains a candidate cha of one k-pattern. Line 10 initializes a queue for this candidate
chainC and Line 11 push the fir@Mapof chainC into this queue. Lines 12-22 detall
an iterativeP Map comparison process for each time frame with its previous one. Each
comparison consists of two phases. The first phase is the determination of the overlap-

ping regions, shown in Lines 13-1B6lexiPROBERS called to compute the interaction
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Algorithm 12: MineGIC
input : The dataset fromy to te, the necessary parameters as Algorithm 10
output: The Movement chain&1C

1 for each feature;fe RF and each timg {0 < j < edo

2 L call BuildQT re€f;, o);

3 GIC =0;

4 GIC; ={fi: R, —» ... » R }Ifi e RF};
5 GIC = GIC + GICy;

6 for k=2;GIC1 # 0;k+ + do

7 for two chains GIG, GIC, € GIC,_1, where GIG and GIG have the
common (k-2) prefix featureko

8 GIC = GIC; x5 GICy;

9 Initialize a queud);

10 PUShPM&F(G'C.tbegimimg into Q;

1 for t; = C.begintime+ 1to GIC.endtimedo

12 for R, R=1in element of PMa(&GIC.t;) = 1do

13 Compute the interaction &IC in the locationg;

14 L Let R=0 in PMap(GIC.;), if I(GIC;R) < min.I;

15 PushPMapGIC.t;) into Q;

16 if PMap(GIC.t;) n PMapGICdt; ;) = 0 then

17 Pop the firsPMapin Q to PMap(GIC.tj_,) as a chairGIC;

18 LGICK:GICK+GIC;

19 K+ +;

of thisk-pattern in the overlapped regions. If the interaction is lessithian threshold,
this region does not support thepattern, and the correspondifgMap bit is set to O.
In the second phase, shown in Lines 18-21, we comparP hep of the current time
frame with the previous one in queue and remove those that do not have any overlapped

regions with the previous time frame.

5.5 Experimental Studies

In this section, we examine the performance of FlexiPROBER on both synthetic and

real world datasets. We also compare the performance of MineGIC with the naive
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approach. All algorithms are implemented ir€and the experiments are carried out
on a Pentium IV PC with 3GHz CPU and 1GB memory, running Windows XP.

Synthetic Datasets: We use the synthetic data generator in [77] to generate the
spatial datasets. It generates objects iedent features that are close to each other in
some regions. The target plane is§@92] x [0,8192] and the features havetdrent
density distributions on this plane. The datasets are named using the convention Data-
(f)-(N) to indicate the number of featurdsand total object®N. For example, DATA-
8-50k is a dataset which contains 8 features and a total of 50,000 objects.

Real World Datasets: We test our algorithm on a log file dataset of the web server
of an academic institute. We capture four weeks of web log files, from October 23 to
November 23 in the year 2006, which record the accesses to the web site of the School
of Computing, National University of Singapore (httpyww.comp.nus.edu.sg). This
web log consists of the IP addresses of visitors to the website. On average, the number
of accesses are about 20,000 per day, after excluding repeated IPs and dirty data. We
use the IP locator software GeolLyZeo identify the visitor's geographical location in
terms of the longitude and latitude coordinates in the world map. In addition, the log
file also captures the pages accessed by the visitor over a period of four weeks. We
categorize the visited web pages into 15 features as shown in Table 5.1, where "PP”
is the abbreviation for "Personal Pages”. For example, all web pages of “Graduate

Program” are labelled as featufg and so on.

5.5.1 Hfectiveness

We show the interesting chains discovered by MineGIC on the web log dataset. We first
partition the world map into & 8 cells as shown in Figure 5.6. We use [X-id, Y-id] to

refer to a cell in the plane. For example, cell [1,5] contains the west coast and mid-west

Ihttpy/www.geobytes.copGeolyzer.htm
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Table 5.1: Features in Web log Real Dataset

FID | Target on FID | Targeton

fi Graduate Program fo PP on Media research

f, Undergraduate Program| f;o | PP on System research
fs Research fi1 | PP on Software research

fa Computer Science Dept.| f;» | PP on Electronic Commerce research
fs Information System Dept. f;3 | PP on Information Privacy research

fs PP on Al research fis | PP on Knowledge Management research
f7 PP on Bio research fis | PP on Virtual Communities research
fg PP on DB research

of U.S while cell [4, 5] covers Europe. In this experimanin_| is 0.4 andr is 1.
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Figure 5.5: The & 8 bitmap over the world map

Figure 5.6 shows the trend ¢f,, fg} where shadow areas indicate the support re-
gions. This chain can be interpreted as follows: On Monday Oct 23, web visitors from
South China (cell [6,4]) showed an interest in the database resefgychifie next day,
the interest in database research has expanded to India (cell [5,4]), and subsequently to
Australia (cell [6,2]) and Japan (cell[7,5]). On Saturday Oct 28, we note a decline in
the interest with only visitors from China and India accessing the web pages. The trend
of {fy4, fg} is intuitive as it captures the typical access patterns over a week where the

interest emerges on Monday and eventually declines as the weekend approaches.
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([6,4][5. 4][6. 2][7.5]) — ([5,5][5,4][6,4][6.2]) — ([5.5][5.4][6,4][6,2][6,5]) —
([5,4][6.4])
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Figure 5.7: The chain of patterfify, fs, fs} = ({f1, fs, fs} : ([1,5][2,5]) —
([1,5][7.5][7, 2]) — ([1,5][2, 3][7, 5][7. 2]))

Another interesting chaiffy, f4, fs}, indicated again by shadow areas, is given in
Figure 5.7. This chain demonstrates a growing interest of web visitors from various
places in the graduate prograffieved by the computer science and information systems
departments. On Friday, visitors in the United States (cells [1,5] and [2,5]) accessed
these web pages. On Saturday, we observe additional visitors from Japan (cells [7, 5]),

Australia and New Zealand (cells [7, 2]).
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5.5.2 FlexiPROBER versus PROBER

In this set of experiments, we study thi@@ency and scalability of FlexiPROBER. We

run the experiments on both synthetic and real-world datasets. The baseline algorithm
is PROBER [65], which utilizes a uniform grid framework to model the influence. In
PROBER, each influence map is a matrixof n wheren is a user-defined granularity

of the planep.

Efficiency

We define the skewness of a dataset as follows:

Area of feature f
Total area

skew =
For exampleskew;=0.6 indicate that the objects of featuirecover 60% of the plane.
For uniform distribution where objects are distributed equally throughout the plane,
skew,=1.0.

Figure 5.8 gives the results of PROBER and FlexiPROBER on the synthetic datasets
of varying skewness. The three plots in Figure 5.8 show that the runtimes of both
PROBER and FlexiPROBER increaseascreases, but the runtime of PROBER in-
creases faster than that of FlexiPROBER. This is expected as FlexiPROBER employs
early termination condition to avoid unnecessary candidate generation.

The three plots in Figure 5.8 also show that gap between PROBER and FlexiPROBER
is increasing as the skewness increases. This result indicates that the data distribution
affects the #iciency of FlexiPROBER. For data of skew distribution, FlexiPROBER
imposes fine granularity on the region of high data density and coarse granularity on
the region of low data density. In this case, the size of influence map is adaptive to the
data distribution, so both space and computational complexities decrease. However, in

the uniform distribution, FlexiPROBER is similar to PROBER because FlexiPROBER

imposes the same granularity over the plane.
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Figure 5.8: Hiciency of building influence maps
Scalability

We also examine the scalability of FlexiPROBER. We fix the number of features to
be 10 and generate twelve datasets Dat§208; 40k, 60k, 80k, 100k, 200k, ., 800K

with uniform distribution of objects. The results are shown in Figure 5.9(a). We observe
that, as database size increases, the runtimes of PROBER and FlexiPROBER increase
linearly, and the runtimes of FastMiner and TopologyMiner increase exponentially. This
result shows that PROBER and FlexiPROBER are more scalable than FastMiner and
TopologyMiner. This is expected because PROBER and FlexiPROBER do not rely
on expensive spatial join. We also observe that FlexiPROBER is slightly faster than
PROBER for each setting of database size. This is expected because FlexiPROBER
perform better than PROBER in the situation where the data distribution is skewed.

We set the database size at 20k instances and generate eight datase¢ts Bata-
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8, 10, 12, 14, 16, 180-50-20k by varying the number of collocated features. Figure

5.9(b) shows the results. We observe that both FastMiner and TopologyMiner do not
scale well when the number of features increases. On the other hand, the runtime of
FlexiPROBER does not increase greatly because the multi-granularity mechanism is

able to compute and compare the influence spé&taently.
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Figure 5.9: Scalability of FlexiPROBER

Sensitivity

Next, we examine thefect of parametemin_| on two test datasets Data-6-2-75-50k
and Data-8-2-75-200k. Figure 5.10 shows the experimental results dféiceamin_|

on runtime. We observe that in all cases, the runtime of the three algorithms are hardly
affected by the increase min.I. We also note that FlexiPROBER outperforms the
other two algorithms on both datasets. In particular, FastMiner’s runtime in the second
dataset is beyond the maximum scale in 5.10(b). Both plots in Figure 5.10 demonstrate
that the influence based algorithms are not sensitive to the paramatérbecause the

mining cost is dominated by the cost of building influence maps.
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5.5.3 MineGIC versus Naive Approach

We compare thef@ciency of MineGIC with the naive approach described in Section 5.4
on the NUS web log data. 15 time frame data are selected (from Oct 23 to Nov 6) from
the NUS web log dataset. Figure 5.11 shows that MineGIC performs much better than
the naive approach. The latter is not scalable as FlexiPROBER must be re-executed
for each time frame. In contrast, MineGIC focuses only on those patterns that have the

potential to be GICs. This results in afieient pruning of a large number of candidates.
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Runtime(sec)
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Figure 5.11: Hiciency of MineGIC
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5.6 Summary

In this chapter, the grid based influence model is extended to the quadtree based in-
fluence model, which is adaptive to the data distribution and flexible to support local
interaction pattern mining. We obtain the influence map of each feature and compute
the degree of their interactions. Those features with high degrees of interaction are
the geographical-specific interaction patterns. Based on the quadtree, we propose a
multi-scale FlexiPROBER algorithm to discover the geographical-specific interaction
patterns. Further, we design the algorithm MineGICftacently mine all the enlarge-
ment, shrinkage, and movement chains of geographical-specific interaction patterns.
MineGIC is applied in the web click data to discover the geographical interest changes
of the web visitors. Experiment results on synthetic and real world datasets demonstrate
that FlexiPROBER and MineGIC are botfiieient and scalable and can find meaning-

ful geographical-specific interaction patterns at one time frame and over multiple time

frames.



Chapter 6

Mining Duration-Aware Trajectory

Patterns in Moving Object Data

Besides biological data and snapshot data, another important type of spatiotemporal
data is moving object data. Moving object data is more and more popular due to the
rapid spread of GPS system and the development of tracking techniques. This has led to
the wide research interests in knowledge discovery in moving object data [25, 42, 35].
In this chapter, we focus on the mining of trajectory patterns in moving object data and
the application of these trajectory patterns in trajectory classification.

As a crucial model in trajectory data analygisjectory classifications an impor-
tant research problem. Assume each trajectory in the trajectory database has a class
label. Trajectory classification is the process of predicting the class labels of moving
objects based on their trajectories and other features.

The ability to classify trajectories is useful in many real world applications. In
meteorology, a trajectory classifier can predict the intensity and scale of an approaching
hurricane, so that precautionary actions can be carried out in advance. In homeland
security, it is reported that more than 160,000 vessels are travelling in the United States’

waters [45], and an anomaly trajectory detection classifier that can evaluate the vessels’

120
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behaviors and highlight suspicious vessels for further monitoring is highly desirable.

Existing work on trajectory classification [42] selects the regions and representative
trajectories as the features for classification. Regions are mined based on the spatial
distribution of trajectories, and representative trajectories are mined based on the shapes
of trajectories, as shown in Figure 6.1(b). However, it does not take the duration of the
trajectories into consideration inftkrentiating the objects that move affdrent speeds.

For example, the speed at which a tropical hurricane passes the Gulf of Mexico is an
important criterion in classifying its scale and intensity. Classifiers, that look only at
the spatial distributions and movement directions of hurricanes but ignore the moving
speeds, are unable to accurately classify the intensities of the hurricanes.

We introduce duration-sensitive region rules to highlight regions where there is a
differentiating number of trajectories of one class passing through them taking into
account the time spent by these trajectories in the regions. We propose a top-down
space partition approach that recursively partitions a region into smaller regions. The
partitioning criterion is based on the information gain measure. The result is a set of
highly discriminative regions.

We also introduce the notion of speedkdrentiating path rules to capture the actual
movement paths and movement speeds. A spegereitiating path rule is simply a
sequence of object locations with an associated duration time between consecutive pairs
of locations. Discovering speedti#irentiating path rules from a trajectory database is
challenging. Ideally, a path rule should summarize the movement, direction, and speed
of a group of similar moving objects such that the distances between the actual trajec-
tories and speeds of these moving objects to the path rule are minimized. To achieve
this, we need to adaptively vary the granularity of regions and duration intervals as
we perform our mining. Having a pre-determined granularity for regions and duration

intervals is undesirable because if the granularity is too coarse, it will lead to a small
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number of path patterns which is not enough to build an accurate classifier. On the other
hand, if the granularity is too fine, it will lead to a large number of path rules, resulting
in overfitting.

Trajectory patterns [25] are not speedkglientiating path rules. First, trajectory
patterns are not the actual movement paths. For example, Figure 6.1(a) illustrates a
trajectory pattern discovered from four objetis T,, Tz andT,4, where the four objects
do not follow the same path frorRol, to Rol. We cannot compute the Euclidean
distance of test trajectory and trajectory patterns to measure their similarity. Second,
trajectory patterns are very coarse and do not have discriminative power for accurate

classification.

Representative
trajectory

Trajectory cluster/ 13

(a) Trajectory patterns in [25] (b) Trajectory clusters in [43]

Figure 6.1: Existing patterns

Besides the need for a scheme that varies the granularity levels of regions and du-
ration intervals adaptively, a second challenge is the high computational complexity in
generating path rules from the trajectory dataset. To overcome this, we desiffit an e
cient algorithm which can mine discriminative speeffedentiating path patterns and
prune undesirable path patterns as soon as possible. First, we summarize the trajectory
database in the form of a trajectory network with the appropriate granularity. The level
of granularity is controlled and measured by the Minimum Description Length (MDL)
gain. Based on the trajectory network, we design a path pattern tree to enumerate the
candidate path patterns, and mine the kagwvering path rules.

Two classifiers are built. The firstis constructed by transforming the trajectories into

score vectors and utilizing an existing classification techniques on these score vectors.
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The second is & NN based classifier which predicts the class labels of trajectories
by the topk highest score rules. Experiment results on three real-world datasets show
that classifiers that are built based on both duration-sensitive region rules and speed-
differentiating path rules can achieve higher accuracy compared to classifiers that do
not take the duration information into account.

The remainder of this chapter is organized as follows. Section 6.1 and 6.2 gives
the preliminaries and the problem statement. Section 6.3 gives the overview of our
solution. Section 6.4 presents the region partition algorithm to discover region rules. In
Section 6.5, we introduce the notation of trajectory network and the training algorithm
to obtain a trajectory network, and we introduce the path pattern tree and the top-
covering path rule mining algorithm. In Section 6.7, we evaluate our algorithms real-

world datasets. Finally, we conclude our work in Section 6.8.

6.1 Preliminaries

AtrajectoryT is a time-ordered sequence of sampling poiptsty) (P2, t2) ... {Pn, tn),
wherep, p2, ..., Py iS @ sequence of moving object locations corresponding to sam-
pling time ty,t,,...,ty. A trajectory T which is sampled front; to ty can also be
represented ab[t;:ty]. We say that a trajector¥[ti:t;] = (pi, ti) (Pir1, tiv1) ... (P} )

is asub-trajectoryof T[t;:ty], where 1<i < j < N.

A trajectoryT has an identifietid, denoted byl .tid and a class lab&l, denoted by
T.C. Atrajectory and its sub-trajectories are associated with the same identifier and the
same class.

We useT]|t] to denote the object location at tinteor the interpolated location if
t is not in the sampling time list. Le(i) to denote the-th sampling point ofT, i.e.,

T() = (pi,t;). We usel; to denote the-th segment of trajectory, i.e., the segment

betweenr (i) andT(i + 1).
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The duration of trajectory T[t;:t;], denoted by{T[t;:t;]|, is equal tot; — ti. Two
trajectoriesl'; andT, areduration-matchedrajectories ifi T,| = |T5|.

Now we define the similarity of two trajectories which have non-equivalent dura-
tions. We first introduce the weight of sampling points, and then define the trajectory
distance. In trajectorfy = (p1,t1) (P2, t2) ... (Pn,tn), theweightof sampling point
pi, denoted asv;, is determined by the sampling time of the sampling points which are

immediately neighboring t;.

(t—11)/2 i=1

Wi =9 (tn —tn-1)/2 P =N, (6.1)

(tiy1 —ti_1)/2 otherwise

We consider that two trajectories are similar if they have at least one pair similar
duration-matched sub-trajectories. We use the mean Euclidean distance to measure the
similarity of duration-matched sub-trajectory. Existing time series similarity measures,
such as DTW [39], EDR [9] and LCSS [75], finds an optimal match onvthele
sequences. Since we intend to group the similar sub-trajectories as path patterns, it is
not reasonable to compare the similarity on the whole trajectories. Instead, we consider
that two trajectories are similar if they have at least one pair similar duration-matched
sub-trajectories.

We refer to the mean Euclidean distance between trajectbyiand T, being valid
during the periodtp, to+7] [21], which is defined as the definite integral of the Euclidean

distance between two moving points during the given period divided by the period time.

ED(T,, Ty) = %ftOHdist(Tl[t],Tz[t])dt (6.2)

to

wheredist(., -) is the Euclidean distance of two points.
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By trapezoid rule, Equation (6.2) can be approximated by

n-1
ED(TL,T2) ~ = 3 (D) + D) X (tet ~ 1) 63)
k=1

whereD(ty) = dist(Ty[tk], To[tk]) andn is the duration of trajectories. This approxima-
tion is guaranteed by an error bound [21].

We extend Equation (6.3) to compute the mean Euclidean distance between two
duration-matched sub-trajectori€s = Tq[t1,t; + 7] and T, = T[t,, t, + 7] of duration

T as follows.

n-1
ED(T},T9) = 2= 3 (D't + D'tea) X (fr ~ 1) (6.4)
k=1

whereD’(t) = dist(Tq[t; + t], To[t> + tk]) andnis the duration of trajectories.

To dficiently compute the trajectory distan&D(T,[t;,t; + 7], To[to, t + 7)), We
need to interpolate a collection of pointslif(t;, t; + 7] and T[t,, t;+7]. Such sampling
points are interpolated as follows. Assumét, t; +7] has raw sampling pointg., t1),
(P2, tr+ k1), - - - » {Pm» 1+ tkm), @ndT[to, t2+ 7] has raw sampling pointgy, t2), (P2, t2+
t2), ..., {Pn, L2 + tkn). TO compare two duration-matched sub-trajectories, we combine
the sampling times of both, andT, to beX = {tx1, ..., tkm} U {tko, ..., tkn}. FOrvt € K,
we interpolateTl; at timet; + t if T, does not have a sampling point at this time, and
interpolaterT, at timet, +t if T, does not have a sampling point at this time. The purpose
of interpolation is to make corresponding sampling point pairs on two duration-matched
sub-trajectories.

After interpolation, we define the trajectory distance between two duration-matched

sub-trajectories as follows.

Definition 16. (Trajectory Distancg Given two duration-matched sub-trajectoriesT

Ti[t, s + 7] and T, = Ty[ty, 1o + 7] of durationr. The trajectory distance of;Tand T,
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Figure 6.2: Example of trajectory distance computation. Solid points are raw sampling
points in trajectories; circle points are interpolated.
is computed as follows.

1
TD(T,, T} = ;Zwkxdk (6.5)
ke

whereX is the set of sampling point pairs,\e the weight of k-th sampling point pair,

dk is the Euclidean distance of the k-th sampling point pair.

Essentially, trajectory distance is thesightedaverage distance of sampling point
pairs, where the weights are measured by the weights of sampling points. Compared
to the arithmetic average distance of sampling point pairs, trajectory distance in Def-
inition 16 is more accurate to measure the similarity of duration-matched trajectories.
Note that trajectory distance will not b&acted by the number of sampling points on
trajectories. The trajectory distance of two duration-matched sub-trajectories is deter-
mined no matter how many sampling point pairs they have. This property lets trajectory
distance be suitable for the similarity computation of compressed trajectories.

For example, Figure 6.2 shows two duration-matched sub-traject®i{d€0:110]
andT,[200:210]. After interpolation, each trajectory has seven sampling points. The
weight of the sampling points are 0.5, 1, 1, 1.5, 1.5, 2.5, 2, respectively, and the tra-
jectory distance betweer[100:110] andT,[200:210] isl—10(0.5d0 +dy +dy + 1.5d3 +

1.5d, + 2.5d5 + 2dg), which is the mean Euclidean distance over the duration.
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6.2 Problem Statement

We define two kinds of features for classification: duration-sensitive region rules and

speed-dterentiating path rules.

Definition 17. A duration-sensitiveegion rule y is represented ag : R = C, in which
the antecedent is a discriminative region R, denoteg.By and the consequent is the

class label C, denoted byC.

Duration-sensitive region rule isftierent from region cluster [42] because we not
only consider the density of the trajectories in the region but also the amount of time the
moving objects stay in the region. For this purpose, we define the support of a region
R, denoted bysugR). Let D be the trajectory database aij = > +.p |T|. SUAR) is
the ratio of the sum of trajectory durations within regi@rover |D|. The support of
region ruley : R = C, denoted byy.sup is the ratio of the sum of clags trajectory
durations within regiorR over|D|. Theconfidenceof region ruley : R = C, denoted

by y.conf, is SVL'J?(“FS. Givenmin_supandmin_conf, we say that a region rukgis valid

if y.sup> min_supandy.conf > min_.conf.

For valid region rules, we consider that the larger regions are more desirable than
the smaller regions because the number of larger regions are usually small, which can
improve the classificationficiency.

Speed-dterentiating path rule captures the movement and speed of moving objects
by utilizing the concept of micro-cluster. A micro-cluster is a group of nearby sampling

points of trajectories.

Definition 18. A path patternP = (mg “ mac, 2.3 mG,) is a sequence of
micro-clusters with an associated duration interval between consecutive pairs of micro-
clusters, where mds the i-th micro-cluster and; is the duration interval from mg to

mgG.
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Given a path patter® = (Mg > mc = ... 3 mcy), if a trajectoryT hasm + 1
consecutive sampling pointg, ..., pi.m, such thatpi € mg, ..., pism € MG, and
tiya—tieay, ..., tiym—th € am we sayT supportsP or P coversT.

Given a trajectory databag$®, the support of path patterrP, denoted bysupP),

is defined as the ratio of the trajectoriesDnthat supportP over the total number of

{T|TeDAT supports B

trajectories inD, Ii.e., #of trajectories i D *

If a trajectory has multiple sub-trajectories
which supportP, we only count it once. Givemin_sup we say that path pattefis

frequent if sugP) > min_sup

Definition 19. A speed-gferentiatingpath rule v is represented ag : P = C, in
which the antecedent is a frequent path pattern P, denotedmyand the consequent

is the class label C, denoted pyC.

Thesupport of path ruley, denoted by.sup is defined ag™ S - ubRote .

: : y.sup _ |{T|TeDAT.C=y.CAT supportsy.P}| .
Theconfidenceof y, denoted by.conf, is o) = TTITeDAT supports, Pl - Given a

path ruley and a trajectoryl, if path patterny.P coversT andy.C = T.C, we say that
v is a covering rule ofr.
Given two path ruley : P = C, whereP = (mg 5 ma 5 ... 33 m¢,), and
y P’ = C, whereP’ = (mg S ma, 5 ... 5 mq), we say thay’ is aprefix rule of
v if k< m. Apparently,y.sup< y’.sup
A trajectory may have multiple covering rules. It is important to rank the signifi-
cance of covering rules for rule selection. In this work, we follow the definition of rule

significance proposed in [47, 12].

Definition 20. A path ruley, is moresignificantthan another path rule; if (v;.con f>y,.conf)

V (y1.conf=y,.conf A y;.sup>y,.sup).

Besides the Definition 20, given a path redewe consider its prefix rulg’ is more

significant for classification, if{.sup=y’.sup A (y.conf=y’.conf). This is because the
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path patterns in prefix rules are shorter, which can improveftteancy of path pattern

mining and trajectory classification.

Definition 21. Given a trajectory database D and msup, thetop-k covering path
rules of trajectory T are the top-k most significant path rules out of all covering rules

of T, and their supports are not less than nsnp.

Problem Definition. Given a training trajectory databaBeand a testing trajectory
databas&, a minimal supporimin_sup a minimal confidencenin.conf and the num-
berk, our goals are 1) mine the valid region rules fr@m?2) mine the tog« covering
rules fromD, and 3) select the region rules and path rules to build the classifiers and

predict the class label of test trajectories.

6.3 Solution Overview

Our solution is divided into three phases, as shown in Figure 6.3. For easy presentation,
Figure 6.3 only shows two classes of trajectories which are recognized by solid and
dashed lines.
In the first phase, we partition the regions based on the trajectory distribution in
a top-down space partition manner. A region is partitioned into two regions if those
two regions are capable to better discriminate trajectory classes than one region. The
partition evaluation criteria could be information gains [57], fisher score [15] or others.
In the second phase, we summarize the trajectory database into a simplified trajec-
tory network by a bottom-up points clustering approach. For theiency concern,
the points clustering performs only on a subset of trajectory database which are out of
the spatial range of valid region rules, because the trajectories in the region rules are
covered by region rules.

In the last phase, we mine the valid region rules andktopvering path rules for
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Figure 6.3: Our solution overview

classification. We build two classifiers based on two classification strategies. This
first classifier, named TCF (Trajectory Classification based on Features), transforms
the trajectory network into feature vectors based on the valid region rules arkd top-
covering path rules and feeds into SVM, C4.5 and Bayes Net to predict the class labels
of test trajectories. Hence, TCF has three versions based on SVM, C4.5 and Bayes net,
respectively. The second classifier, named TCRP (Trajectory Classification based on
Region and Path rules), is a rule-based classifier. TCRP selects theulgs-that have

the highest scores with respect to the test trajectory and votes the class label to be the

one with the majority vote.

6.4 Region Rules

In [42], the region features are the region-based clusters, presented by the homogeneous
rectangular regions where one major class has atddeajectories and the other classes
do not. They select an optimal partition line to partition the spatial plane each time.

However, this partition method may miss some local features [19] because the patrtition
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line partitions the whole spatial plane in each iteration. Figure 6.4(a) illustrates an ex-
ample, where the whole space is partitioned into six regions by three partition lines. For
this trajectory distribution, we expect a better partition pattern shown in Figure 6.4(b),

where the whole space is partitioned into four regions .

In [42], discriminative regions are found where one class of trajectories dominates
the other classes regardless of how much time the trajectories remain within the regions.
In addition, the regions are found by selecting an optimal partition line to partition
thewholespatial plane. This may results in some locally discriminative regions being
missed. For example, Figure 6.4 shows four trajectories of two classes which are recog-
nized by solid and dashed lines, respectively. In Figure 6.4(a), the whole spatial plane
is partitioned into six regions by three partition lines. For this trajectory distribution, a
better partition pattern is shown in Figure 6.4(b), where the whole space is partitioned
into four regions.

Targeting on the two limitations in [42], we incorporate the duration information of
trajectories in deriving the discriminative regions. We also employ a scheme to partition
the space in a divide-and-conquer manner utilizing information gain to detect the locally

discriminative regions.

(a) Partition the whole spatial plane (b) Partition the regions

Figure 6.4: An example to show thefidirent results of two region partition approaches

The incorporation of duration information of trajectories is achieved as follows: A

trajectory exerts an influence on a region, which is measured by the duration time the
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trajectory stays within the region. This makes sense because a longer time duration of
one class trajectory within a region indicates a higher influence of that class trajectory
to the region. The influence of trajectory cla4o regionR, denoted byinf(R)c, is
the accumulated influence from all trajectorie training trajectory database, where
T.C=C.

A grid structure has been employed to make the evaluation of the influences of tra-
jectory class on a region computationally feasible. Each line segihesietts a degree
of influence, which is measure by the length,db its nearby cells on the grid. Assume
n cells are influenced bl so the line segmeritexerts“ﬁ' influence to each one of its
nearbyn cell. The influence of a cell is the sum of influence from all line segment in
trajectory database. A regidhconsists of a set of cells, so the influencéra$ the sum
of influence on these cells.

Let C be the set of class labels in trajectory database. The support of regeon
sum of region influence from all trajectory classes, }&,. inf(R)c. Assume we have
a regionR and a partition lineX = x such thaR is partitioned into two regionR™ and
R*. Let P(C) be the influence weight of clags on regionR; P(x™) andP(x*) be the
support of regiorR™ andR*, respectivelyP(C|x~) andP(C|x*) be the influence weight
of classC on regionR™ andR*, respectively. The information gain of the partition line

X = xis measured as

IG(CIX = X) = H(C) - H(CIX = X) = — Z P(C) log P(C)
CeC

+ > P(X ) PCIYlogP(CIx) (6.6)

Xe{X~,x*} CeC

A positive information gain implies that the partition liné = x distinguishes the
trajectory class on regioR, and negative information gain implies thdt= x is not

discriminative. Partition lineX = x; is more discriminative than lin&X = X, if
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IG(CIX = x;) is greater thanG(C|X = X;). The selection of partition line on Y axis is
similar to that on X axis.

We design a space partition tree to facilitate the partition process. In a space par-
tition tree, the root node corresponds to the whole space. A non-leaf node is marked
by “I” or “="if its corresponding region is partitioned by a partition line ¥ror Y
axis, respectively. Each leaf node corresponds to a region which will not be further
partitioned. Figure 6.5 gives an example of space partition tree and the corresponding

region of each node.

Figure 6.5: An example of space patrtition tree

Algorithm 13 presents a method to partition regions with the facilitation of a stack

structure. Line 1 detects the trajectory density on @id.ines 2-4 initialize a stack

and a candidate regidR of maximal area according to the scope of gédand push
Rinto stackS. In Lines 5-14, we evaluate the candidate regions in s&ak follows.

Line 6 pops the top element B. If Ris a valid region, whose support is no less than
min_supand confidence is no less tharin.conf, we translateR into a region ruley
based on the dominant classRand inseriy into the region rule séRRYLines 7-10).
Otherwise, Line 12 employs a sweep line movesxoandY axis onR to search the

optimal partition linepl. The goodness of partition is measured by information gain as



134

Algorithm 13: RegionPartition
input : A trajectory databas®;
A grid G;
Minimal supportmin_sug
Minimal confidencemin_conf.
output: The region rule seéRRS
1 Density estimation o> on G;
2 Initialize a stackS;

3 R« G;

4 PushR, S);

5 while S # 0 do

s | R=PopE);

7 if (Rsup=> min_sup then

8 if Rconf > min.confthen

9 TranslateR into region ruley;

10 Inserty into RRS

11 else

12 Select the optimal partition linpl;
13 PartitionR into regionsR™ andR*;
14 PushR~, S);

15 PushR", S);

16 return RRS

shown in Equation 6.6, and the step width of sweep line is the cell side. Basgll on
Line 12 partitionsR into two non-overlapping regior® andR*" alongpl. Lines 14-15
push the two region®™ andR* into stackS. Line 16 returns the region rules.

Region rules are the simple but useful features for classification. However, only
region rules are not enough for classification because the numbers of discovered region
rules are quite small or even zero for some datasets whose trajectory distribution of
different classes are highly mixed, like the trajectories in the urban transportation. This

motivates us to define and find more complicated features for classification.
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6.5 Pathrules

Our proposed path rule mining method consists of three phases. First, we summarize
the trajectory data which cannot be covered by region rules, into a network structure
named trajectory network, where vertices are the Regions-of-Interest and edges are the
movement paths with duration information. Second, in order to discover the discrimi-
native features for trajectory classification, we mine thekapvering path rules based
on the trajectory network. Finally, we build two classifiers based on th& tapering
path rules, respectively.

In this section, we firstintroduce a trajectory network to model the trajectory database,
and then introduce a path pattern tree to facilitate the discovery of path rules. Section 6.6

will give the details to build classifiers.

6.5.1 Trajectory Network

Definition 22. A trajectory network M is a directed graph which can be represented

as M= (V, E), whereV is the set of vertices; is the set of edges.

In trajectory network, each vertex is a group of nearby sampling points of trajecto-
ries, and each edge is a group of temporally close segments of trajectories. Each vertex
pair may have one or multiple edges to indicate the movement speeds between them.
The definitions of vertices and edges are the extension of the cluster feature vector
in [89] by considering the class labels of sampling points and segments, respectively.

Let the sampling poinp, of trajectoryT at timet be represented byg{(, w;), where
p; is the position anday; is the weight as defined in Equation (6.1). The clasg,a8
T.C.

Definition 23. Eachvertex v in a trajectory network MV is labelled as a tuple (NTV,

3 , SS), where N is the number of sampling pointsW\irs a vector of weight for the
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classesin v§ is the weighted sum of the N data point locations, L&, wi g, and S S

is the square sum of the N data point locations, &\, p‘)}z.

Given a vertex = (N, V—>V—S) S 9), and let/C| be the number of classesynWe also

derive itsweight(W), entropy(H), centroic(?))) andradiugR) as follows.

W) = W 6.7)
i=1
H(V) = —iv—)ﬁmgﬂ (6.8)
LW W
8@:% (6.9)

R(V) = W (6.10)

Thei-th segment; of trajectoryT is associated with two verticeg andve, where
Vs (Ve) includes the starting (ending) sampling point;ofThe weight ofl; is equal to 1.

The class of; is theT.class An edge of trajectory network is the summary of a set of
directed segments.

Definition 24. In trajectory network M, aredgee between two vertices and \ is
labelled as a tuple (N\Tv, DT, \, Vo), where N is the number of segmeWsjs avector

of segment number for all classes in e, DT is the sum of duration time of all segments

in e, & is the starting vertex,qis the ending vertex.

Given an edge = (N,W, DT, vg, Ve) and let|C| be the number of classes e We

can derive itaveight(W), entropy(H), andaverage duratio(D) as follows.

W(e) = N (6.11)
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(a) Raw database (b) A overfitting trajec- (c) A simple trajectory (d) A tradedf trajec-
tory network network tory network

Figure 6.6: Trajectory network selection

oW, W

He =- ) —log— (6.12)
; W W

D(e) = D_v\-; (6.13)

Note that there can be many trajectory networks for a given trajectory database.
Given a trajectory database in Figure 6.6(a), a trajectory network which contain too
many vertices and edges, as shown in Figure 6.6(b), is not a good one for deriving path
rules due to overfitting. On the other hand, the trajectory network which contain too few
number of vertices and edges, as shown in Figure 6.6(c), is not good either because of
the large information loss. Between these two extreme cases, a good trajectory network
is shown in Figure 6.6(d), which is a reasonable trédeo

We propose three criteria to evaluate the goodness of a trajectory network. First,
the trajectory network should contain the least possible number of vertices and edges.
Second, the trajectory network should minimize the amount of information loss when it
models the trajectory database, that is, the network should minimize the total distance
from all trajectories in the trajectory database to the network. Third, the trajectory
network should increase the discriminative power for classification. Each vertex and
each edge are expected to be discriminative, i.e., low entropy in vertices and edges.

Based on these three criteria, we define a Minimal Description Length (MDL) cost

to find a good trajectory network. The MDL cost consists of two components, network
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codelengthL(M) and data codelength(D|M) [27]. Network codelength.(M) is the

length, in bits, of the description of the candidate trajectory network.

Definition 25. (Network CodelengthLet M = (V, &) be a network withV| vertices
and|&| edges. The information of M can be transmitted using one bit per vertex and

one bit per edge. Therefore, the code length is
L(M) = [VI+]&l (6.14)

The data codelength(D|M) is the length, in bits, of the description of the data when
encoded with the help of the trajectory netwotKD|M) is the sum of the entropies in
vertices and edges, and the information of weighted trajectory distance, in bits, from

trajectory database to trajectory networkM.

Definition 26. (Data Codelength Given a trajectory network M= (V, &) for a tra-
jectory database D, the data description information consists of vertex entropy, edge

entropy and the information of weighted trajectory distance.

[V (8]

L(DIM) = > H(w) + >" H(e) + C(D, M) (6.15)
i=1 i=1

where Hv;) and H(e) are the vertex entropy of vertexand edge entropy of edgg e
respectively, and (D, M) is the information of weighted trajectory distance from D to

M.

To computeC(D, M), we first introduce the distance frol to M, denote by
TD(D, M). TD(D, M) is the weighted trajectory distance of each trajectorio its

most similar pathP on the trajectory networkA.

TD(D,M):% Z IT| x TD(T, P) (6.16)

l | TeD,PeM
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where|D| = Y 1p [TI.
Intuitively, a smallT D(D, M) value indicates a small weighted trajectory distance
from the trajectory databade to the trajectory networlbvl. We employC(D, M), in

terms of bits, to measurfeD(D, M) as follows.

C(D,M) = - % log, (T D(T, P)) (6.17)
TeD

whereg(T D(T, P)) is a underlying distribution of D(T, P).

We can use the normal distribution or exponential distribution to model the under-
lying distribution of T D(T, P). Assuming thaf D(T, P) follows the normal distribution
N(0, ), whereo is the standard deviation.

Note thato- can be assigned as a parameter or be estimated to be the standard devi-
ation of sampling point positions. In kernel density estimation [62], a global bandwidth

is assigned to all data points on the spatial plane,
h® = 1.06- ™ . ns (6.18)

whereo™ is the standard deviation distance mklements. The global bandwidth
of Equation (6.18) provides an estimationcofn Equation (6.17). A further empirical
study shows that our classifier obtains the highest accuracy whenvdllee is selected
to be around the global bandwidhiY.

The best trajectory network to model the distribution of trajectory databas¢he

one that minimizes the MDL co&t(M) + L(D|M) [27].

Algorithm TrajNet

The computation of the global minimum description length is quite costly, and exact

approaches requires time and space complexity that increases exponentially to the input
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size. Here, we adopt an approximate approach that utilize a forward search of local
optimal solution.

The basic idea of our approximate algorithm is to select the local optimal trajectory
network based on the current netwdvk A candidate network modeé¥l’ is obtained
by merging two vertices or two edges bf. We define theMIDL gain as the MDL

difference ofM andM’ as follows.

MDL_gain = MDL(M) — MDL(M’) (6.19)

A large MDL gain indicates a large decrease of network codelength and a small
increase of data codelength. The candidate network model which obtains the maximal
MDL gain is the local optimal. Similar to the agglomerative hierarchical clustering [28],
our approximate algorithm, called TrajNet, selects the local optimal network in each

iteration. TrajNet has three main steps.

1. Initialization. The trajectory database is treated as an initial trajectory network,

where each vertex is a sampling point and each edge is a segment;

2. Merge Vertices. We fix the edges in the initial trajectory network, and iteratively

merge two vertices which always cause the positive largest MBih value;

3. Merge Edges. We fix the vertices in the current trajectory network, and for
each vertex pair, we iteratively merge two edges which cause the positive largest

MDL _gain values.

In the phase of merging vertices, as there is no change in the number of edges in the
first phase, each trajectory always has a duration matched path in trajectory network.
In this phase, the overall distance from trajectory dataBaea trajectory network

can be computed as follows.
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Lemma 10. The overall distance from trajectory database D to a trajectory network
M is the weighted vertex radius summation, i ﬂV\/. X R;, where Wis the weight of

the i-th vertex and Rs the radius of i-th vertex.

Proof. For each trajectory, there is a duration matched pahn trajectory net-
work for T. Assume thal hasN sampling points an& hasN vertices. From Defini-
tion 16, T D(T, F’)=ZKN:1W|< x dy, wherew is the weight ofk-th sampling point andl
is the distance betwedath sampling point an#ét-th vertex. By combing the distances

from all trajectories to the trajectory network, we have

TD(D, M)_ Z|T|><TD(T P) = i ZZkadk

TeD TeD k=1
1 Vv Vo vl Wi
:ﬁzz |JXdIJ_ZZ|DJ| dij ZVViXRi
i=1 j=1 i=1 j=1 i=1

Lemma 10 states that the distance of trajectory database and trajectory network is
determined by the weighted vertex radius. By merging two verticesdyv; into a

larger vertexv, the MDL gain is

1+ H(v) + H(v;) = H(v) + C(v) + C(v;) — C(v)

= 1+ H(V) + H(v})) - H(v) + c(WR* + W,R - WR)

whereW = W, + W; andc, is a constant cd&cient to smooth the distance error of
vertices. Hereg, = 1/(20°wlog.2), w is the arithmetic average weight of all sampling
points.

For example, Figure 6.7(a) and Figure 6.7(b) show the process to merge vertices
Vi, V2 andvs. We consider the three cases. 1) Mewgandv, to be a new vertex;,

which causes MDLgain= 0.68 bits; 2) Mergev; andvs to be a new vertex;; which
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V3 ® e °
V1 V13
(a) Before the merge (b) Mergev; andvs

Figure 6.7: An example of vertex merge. The “Red” and “Blue” colors indicate the
different classes, and the™label indicates the centroid of each vertex.
which causes MDLgain= 0.93 bits; 3) Merges, andvs to be a new vertex,; which
causes MDLgain = -0.23 bits. Appendix 7.2.1 gives the computation details of the
three cases. Since Case 2 leads to a largest Ig&ih, we select to mergg andvs to
be a new vertex;s, as shown in Figure 6.7(b).

In the phase of merging edges, we update the number of edges and the distance

error after merging two edges. Assume that we merge two eglges, — v, ande; =

Witi+wit;
wi+wj

so the Euclidean distance

Vi l V,. After merging, the weighted durationtis-
errors ared; = |t — tj| x d(va, V) andd; = |t — t;| x d(v1, v2), respectively. Again, we use
normal distribution to model the Euclidean distance errors. In terms of bits, such error
information can be transmitted byw; log, ﬁ(exq—%)) —w;log, ﬁ(exr(—%‘i))

bits. By merginge ande; into a larger edge, the MDL gain is

1+ H(e) + H(e) — H(e) + C(e) + C(g;) — C(e)

= 1+ H(e) + H(e) ~ H(®) - co(wid? +w;cf)

wherec, is a constant caicient to smooth the distance error of edges. Heges
1/(20%l0ge2).
For example, Figure 6.8 shows the process to merge edges. Assume that we have

three edges,, e, ande; that move from vertex; to vertexv,. We consider three cases.
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es =10 e; 1.0 |,
T [d(\Vi,Ve)=1000 + T T (V4 ,V,)=10.00 4
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e, 1=1.0 " o

ez t2=20 > €12 t12=1.66 ’
V1 1T V1

V2 V2
(a) Before the merge (b) Mergee; ande,

Figure 6.8: An example of merge edge. The “Red” and “Blue” colors indicate the
different classes, and the™label indicates the centroid of each vertex.

1) Mergee; ande, to be a new edge;,, which causes MDlgain= 0.52 bits; 2) Merge

e ande; to be a new edge,s, which causes MDlgain= 0.0 bits; 3) Mergee; ande;

to be a new edge;3, which causes MDlgain = -0.48 bits. Appendix 7.2.2 gives the
computation process of the three cases. Since Case 1 leads to a largegfautDive
select to merge; ande;, to be a new edge;,, as shown in Figure 6.8(b).

Algorithm 14 gives the psuedocode of TrajNet algorithm. The trajectory database
is treated as an initial trajectory network, where each vertex is a sampling point and
each edge is a segment (Lines 1-2). This initial trajectory network has the maximal
codelength value and the minimal data codelength. The rest of algorithm is divided
into two phases. In the first phase, we ddikrgeVertef to merge vertices (Line 3).
MergeVertef) fixes the edges in the current trajectory network, and successively merge
two vertices which always cause the largest decrease of MDL value. The merging of
two vertices will decrease the number of vertices by 1, update the vertex entropy and
enlarge the vertex radius. In the second phase, we fix the vertices in trajectory network,
and for each vertex pair, we callergeEdg€) merge two edges which cause the largest
decrease of MDL value (Lines 4-5). Line 6 returns the result.

Algorithm 15 shows the merging of vertices. Line 1 calls the funchidyh.searclf)
to find the nearest neighbor of vert@xwhich can cause the largest MOjain after
merging withx. Lines 3-4 select the vertex which has the minimal nearest neighbor

distance and merges it with its nearest neighbor to obtain a new weriskose sam-



144

Algorithm 14: TrajNet

input : A trajectory databasP

output: Trajectory networkvi

M.V « Sampling points oD;

M.E « Segments oD;

MergeVertex (M.V);

foreach vertex pair (4, Ve) in M.V do
L MergeEdge (M.&, Vs, Vo);

6 return M.

a A W N

pling points are the union of the nearest vertex pair. Line 5 computes the value of
MDL _gain. If MDL _gain is greater than O, Lines 7-8 attach the edges of two vertices to
w, and remove two vertices from trajectory network. Line 9 finds the nearest neighbor
of w. Lines 10-16 update the nearest neighbor distances for the other vertices whose
nearest neighbors aré@cted by the vertex merging operation. Line 17 inserts the new
vertexw into the vertex set of trajectory network.

Similar to Algorithm 15,MergeEdgé initializes segments to be small units for
clustering. Algorithm 16 shows the iteration of merging edges whose starting vertex is
Vs and ending vertex i%. Line 1 callsNN_searcH) to find the nearest neighbor of edge
X, which can cause the largest MJain after merging witlx. Line 3-4 select the edge
which has the minimal nearest neighbor distance and merges it with its nearest neighbor
to obtain a new edge. After edge merging, the starting and ending vertewairevs
andv, respectively, and the duration wfis the weighted duration af andv. Line 5
computes the value of MDigain. If MDL _gain is greater than O, Lines 7 remoues
andv from the edge set of trajectory network. Line 8 finds the nearest neighlwr of
in all edges whose starting vertexvsand ending vertex i8.. Lines 9-15 update the
nearest neighbor distances for the other edges whose nearest neighbfliected by

the edge merging operation. Line 16 inserts the new adig¢o the edge set.

Theorem 5. The time complexity of Algorithm 14 is(@ + n) if no spatial index is
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Algorithm 15: MergeVertex{y)

1 foreach x € vV do x.closest— NN_searcl{x, V);
2 while truedo

3

4
5
6

10
11
12
13
14
15
16

17

u « extractmin(‘V); v « u.closest

w «— merg€u, v);

if MDL_gain has no increase after mergfgen
| break;

attachedgegu, w, &); attachedgesgv, w, &);
deletevertexu, V); deletevertexv, V),
w.closest— NN_searchw, V);
foreachx € vV do
if x.closest is either u or then
if dist(x, x.closes} < dist(x, w) then
| x.closest— NN_searcl{x, V);
else x.closest— w;
else ifdist(x, x.closes} > dist(x, w) then
| xclosest—w;

insertverteXw, V);

utilized, where n and m are the vertex number and edge number in the initial trajectory

network, respectively.

lized, on account of nearest neighbor search. In Line 4 of Algorithm 14, thene? are

vertex pairs. We analyze the time complexity of merging edges by the average case

Proof: The time complexity oMergeVerteg) is O(n?) if no spatial index is uti-

and the worst case. On average, each vertex pairshadges, the time complexity

of MergeEdgé is o«n—”;)z) and the time complexity of merging edgesO@(r—r?)Z). In

worst case, one vertex pair is associated wittma#idges and the time complexity of

merging edges i®(m?). In summary, for Algorithm 14, its average time complexity is

O(r? + (2)?), and its worst time complexity i©(n? + ).

O
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Algorithm 16: MergeEdgeg, Vs, Ve)

1 foreachx € & A x € (g, Vo) dO X.Closest— NN_searcl{x, &, Vs, Ve);
2 while truedo

3 U « extractmin(&, vs, Ve); V « Uu.closest

4 w «— merg€u, v);

5 if MDL_gain has no increase after mergfgen

6 | break;

deleteedgd&, u); deleteedgdés, v);
8 w.closest— NN_searchiw, &, Vg, Ve);
9 foreachx € £do

10 if x.closest is either u or then

11 if dist(x, x.closes} < dist(x,w) then

12 \ x.closest— NN_search{x, &, v, Ve);
13 else x.closest— w;

14 else ifdist(x, x.closes} > dist(x, w) then
15 | xclosest—w;

16 | insertedgéw,&, Vs, Ve);

Approximate Trajectory Network Initialization

The time complexity of Algorithm 14 can be high because of the large number of sam-
pling pointsn and the large number of segments the initial trajectory network which
is obtained by Lines 1-2 of TrajNet Algorithm. We calldata-based initialization

To avoid the high time complexity of data-based initialization, we adogtid
based initialization By imposing a grid on the spatial plane, the sampling points in one
cell are initialized to be a vertex. The grid-based initialization is méieient because
the number of verticen is far less than the number of sampling poini$ < n. For
example, Figure 6.9 shows the initial trajectory networks based on the two initialization
strategy, where the initial trajectory network in Figure 6.9(b) has less vertices than that
in Figure 6.9(a). With a proper control of grid granularity, the grid-based initializa-
tion leads to the quite similar or the same trajectory network to the trajectory network
obtained by data-based initialization.

Here, we introduce parameteto control the grid granularity. A smaller value of
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(a) Data-based initialization (b) Grid-based initialization

Figure 6.9: Initial trajectory networks

results in a more precise initial trajectory network and a longer clustering time. A larger
value ofc results in a coarser initial trajectory network and a shorter clustering time.
Notec is not supposed to be larger than the expected micro-clusteosid¢herwise,
the initial trajectory network will depart far from the optimal trajectory network. Our
empirical studies show that we obtain a good trajectory network wleabout half of
ag.

Similarly, we group the segments which are associated with two vertices and have
close durations, to be an initial edge. This also leads to smaller number of mdges ~
the initial trajectory network, whemn < m. In summary, the time complexity of for

the grid-based initialization i©(A? + AY).

6.5.2 Path Pattern Tree

To generate speedftirentiating path rules, we utilize a path pattern tree which enu-
merates all possible paths in the trajectory network. The root node of path pattern tree
is an empty set, and each vertex in trajectory network is a level one child node in the
tree.

In the trajectory network, each edgemaintains a set of trajectory ids to indicate

the trajectories which move along this edge. Similarly, its correspondinggdgehe
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(a) Trajectory network (b) Path pattern tree

Figure 6.10: An example of trajectory network and its path pattern tree. Red solid
trajectories are clags, and blue dashed trajectories are cla€s

path pattern tree also maintains a projected table which stores the class distribution of
trajectory ids. The projected table pfis obtained by intersecting the projected table of
pe’s parent with the trajectory ids in.. Clearly, the trajectory ids in the projected table

is a subset of the trajectory ids m becausgy, may have the prefixes in path pattern
tree.

For example, Figure 6.10(a) shows a trajectory network with seven vertices and the
associated segments. Based on this trajectory network, we build the path pattern tree as
shown in Figure 6.10(b). The edge from rootat@s associated with a projected table
which stores the trajectory ids in vertex The edge from noda to b is associated
with a projected table which contains three trajectofiésT2 andT3 of classC and
one trajectoryT 4 of class—-C. The edge from nodk to e is associated with a smaller
projected table which containg2, T3 andT4. Note thatT6 is not included in this

projected table because it does not start from reode
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From Definition 20, support and confidence are two measures of rule significance.
In a path pattern tree, each node can generate several path rules according to the object
ids and their class distribution in the associated projected table. We can estimate the
upper bound of the significance of all path rules which are generated from the projected

table.
Lemma 11. The upper bound of significance pair (confidence, support) for class C in

projected table is

() ‘minsup if supC) < minsup

min_sup’

(6.20)
(2.0, sugC)) otherwise

where sufC) is the number of object ids in column C of projected table over the total

number of trajectories in D.

Proof: From Definition 20, we need to guarantee that the support of path rule is not
less thamrmin_sup Let |D| to be the number of trajectories in datab&seThere are
two cases. 1) IBUC) < min_sup the projected table will contain at leastifisup-—
sufC)) x |D| object ids of the classes other than cl@s# order to the overall support
of projected table is no less thamn_sup In this case, the maximal confidence of path
rule for clas<C is %Scu)p. 2) If sugC) > min_sup the most significant path rule will be

obtained if the projected table only contains the object ids of clads this case, the

confidence reaches the maximal value 1.0 and the suppsuf€). O

6.5.3 Top-k Covering Path Rule Set

In this section, we present the algorithm to mine kopevering path rules for classifi-
cation. For a trajectory databaBethe topk covering path rules set is the combination

of topk covering path rules of each trajectofye D after removing the duplicate path
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rules.

Note that we do not mine the valid path rules, whose confidences are greater than
min_conf, to build classifiers because the confidence threshold cannot control the num-
ber of valid path rules. Even with the high confidence threshold, a large number of
valid path rules are generated in the datasets of long trajectories, which results in the
inefficient to build classifiers and predict the class labels of test trajectories. In contrast,
the choice ofk is semantically clear, and we can easily control the number oktop-
covering path rules to build classifiers.

Based on the path pattern tree, we mine thekapvering path rules. We maintain
a buter to store the top-covering rules sorted according to their significance values.
The significance value of tHeth covering rule is set as the significance threshold. This
significance threshold is utilized to guide the subtree pruning in the path pattern tree
during the generation of path rules. A subtree can be pruned if it will not generate a
more significant rule than thHeth covering rule.

Four pruning strategies are introduced as follows.

1. Support pruning. If the support of a projected table is less tham_sup the
subtree under this projected table can be pruned. This is because the number
of moving object ids in projected table decreases as the path pattern tree depth

increases.

2. Confidence pruning. We can derive the significance upper bound of a projected
table based on Lemma 11. If this significance upper bound is less significant than
the current significance threshold, the subtree under this projected table can be

pruned.

3. Significance pruning. If a projected table only has one nonempty column, the

subtree under this projected table can be pruned. This is because the confidence
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reaches the maximal value 1.0, but the support is non-increasing. This subtree

will not generate a more significant path rule.

4. Top-k covering rules pruning. For each columrC in a projected table, if the
significance upper bound of colunthis less than all significance thresholds of

the trajectory ids in that column, this subtree can be pruned.

Algorithm 17 gives the process to mine the topevering path rule set. Lines 1-3
initialize a covering rules Kter and significance threshold pair (confidence, support) to
be (0,0) for each trajectory. Line 4 creates an empty path pattern tree. Line 5 scans the
vertices of trajectory networki to build the first level nodes of path pattern tree. The
projected tables from root node to the first level nodes are created based on the class
distribution of the first level nodes. Line 6 cale pthFirs() to build the path pattern
tree in depth first search manner. Lines 7-8 obtain all covering path rulester bt
and return them.

In procedureDepthFirs{), Line 11 checks the validity of projected table based
on four pruning conditions. If any one condition holds, this subtree can be pruned.
Otherwise, Lines 12-13 create a new node in tree and derive a candidate path rule from
this node and its associated projected table. Line 14 checks the support of path rule.
Lines 15-17 update the threshold as follows. If a trajectbyjhasm, wherem < Kk,
covering rules, the threshold remains unchanged; Otherwise, the threshold is equal to
the significance of th&-th covering rule. Lines 18-20 create relevant edges under the
current nodes, which are simply obtained from the trajectory network. Line 21 calls

procedureDepthFirs() to recursively search the longer path rules.
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Algorithm 17: TopK Covering Rules Miner
input : D: trajectory database;
M: trajectory network;
min_sup minimal support;
k: number of covering rules for each trajectory.
output: R: Topk covering path rule set.
1 foreachT, e D do
2 Initialize a buter Buf-n and insert to bfier listBuf ;
3 L Initialize the pair (confidence, support) ©f to be (0,0);

Create a path pattern tr&T reewith an empty root;
ScanM.“V to build the first level nodes &?PTree
CallDepthFirst (M, PPTree.root, mirsup, Buf-R;
R=all path rules inBuf;

return R

Procedure DepthFirst(M, nd, min_sup Buf)

10 foreach projected table PiTof nd’s edge edo

11 if PT; cannot be pruned by four pruning strategteen

© 00 N o 0 b

12 Create a nodad as the child node afid;

13 Generate a path rube from nd;

14 if y;.sup> min_supthen

15 foreach T, € D covered byy; do

16 Inserty; into in Buf-n;

17 UpdateT,’s significance threshold by;;

18 foreachedge g of nd in M.E do

19 Create a tree edge afi;

20 IntersectPT; with the trajectory ids o&; to obtain a projected
table PT”,

21 CallDepthFirst (M, nd, min.sup, Bub;

6.6 Duration-Aware Classifiers

In this section, we will present the strategies to build classifiers based on the duration-
sensitive region rules and tdppath rules.

Given a path patter® = (Mg — Mo — ... 3 mgy), its correspondingentroid
pathis P. = (co AN C1 LY Iy Cm) Whereg; is the centroid oimg and thet; is the
average duration af;.

The distance between rujeand test trajectory, denoted bydist(y, T), is defined
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as follows.
0 if yisaregionruleA T ey,

dist(y, T) = { 400 if y is a region rulen T ¢ y, (6.21)

TD(y.P., T) if yisapathrule

The classification score cScore indicates the degree of confidence that a path rule
can be utilized to classify a trajectory. We consider two criteria in the cScore definition.
First, the significant path rules (See Definition 20) will have the high cScore values.
Second, the similar path rules in terms of trajectory distance will have the high cScore
values. With these two criteria, we define the classification score oy riddrajectory

T as follows:

cScoréy, T) = y.confx f(dist(y, T)) (6.22)

wheref (dist(y, T)) is a weighted function of trajectory distandest(y, T), which can be
any weighted function such as reciprocal functigqm) = % quadratic functiorf (x) =
X—lz, Gaussian functiori(X) = N(X; u, o). In this work, we select Gaussian function.

Note that cScore does not include the support of path rules. This is because the path
rules of high support and low confidence may have the large cScore values, which is
inconsistent to the Definition 20.

We build two classifiers based on the valid region rules anktoprering rule set as
follows. The first classifier, nameltajectory Classifier based on Features (TCF)is
built by first transforming each trajectory into a cScore vector w.r.t. all the valid region
rules and togk path rules, and then feeding the vectors into a classification model.

The second classifier, nam@dajectory Classifier based on Region rules and
Path rules (TCRP), is a rule-based classifier. For a test trajectbryve calculate its

cScore to all path rules, as given in Equation (6.22). We select th& path rules
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that have the highest cScore values and vote the class labeidbe the one with the
majority vote. Note that the valuein TCRP is identical to the parametkrin topk
covering path rule set mining algorithm.K£1, we only select one covering path rule

in rule mining and predict the test trajectory based on the rule of the highest scbkre. If
is equal to the total number of rules, we vote the test trajectory by all rulesk Fdlee

will be adjusted in the reasonable range according to the trajectory length. Intuitively, a
longer trajectory implies more movement features, so a langdl be assigned for the

long trajectories and a smdllis assigned for the short trajectories.

6.7 Experimental Studies

In this section, we study the performance of TCF and TCRP. We use three real-life
trajectory databases that were obtained from climate data, animals and vehicle objects,

respectively. The details of each database are described as follows.

e Hurricane track data®. We use the Atlantic hurricanes between the year 1950
and 2008. The Shr-Simpson scale classifies hurricanes into Scale 0 to 5, where
a high scale indicates a high intensity. The numbers of trajectories (points) from
Scale Oto Scale 5 are 268 (5624), 150 (4434), 62 (2486), 73 (3199), 60 (2882), 26
(1208), respectively. We use the scales as class labels and isolate the Hurricane
track data into three datasets. 1) Hurricane | contains trajectories of Scale 2 and
3; 2) Hurricane Il contains trajectories of Scale 1 and 4; 3) Hurricane Ill contains

trajectories of Scale 0, 4, 5, and we consider Scale 4 and 5 as one class label.

¢ Animal movement date. The animal movement data has been generated by the

Starkey project. We use the animal movements observed in June 1995. This data

Ihttpy/weather.unisys.cofhurricangatlantic
2httpy/www.fs.fed.ugpnw/starkeydatagtables
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set is divided into three classes by species: elk, deer, and cattle, whose numbers

of trajectories (points) are 38 (7117), 30 (4333), and 34 (3540), respectively.

e Vehicle track data 3. This dataset consists of the trajectories of 2 school buses
and 50 trucks, which drive around Athens metropolitan area. The number of

trajectories (points) are 145 (66096) and 276 (112203), respectively.

All algorithms are implemented in-&+, and the experiments are carried on a server
with dual Xeon 3GHZ processors and 4GB memory, running Window Server 2003
operating system. Table 6.1 summarizes the parameters used in TCRP classifier, where

| is the length of the spatial plane.

Table 6.1: Summary of parameters

| Symbols | Range | Default | Descriptions

min_sup | [0.01,0.02]| 0.01 | minimal support
min.conf | [0.8,0.9] 0.9 minimal confidence
k 1,35 3 topk rules for voting
c [0.01,004] | 0.02 | initial cluster sidd
o [0.02, Q1] 0.04 | standard deviation of trajectory distayice

6.7.1 Accuracy

We first evaluate theffects of region rules and path rules on the classification accuracy.
We implement three versions of rule-based classifiers by incorporating three combina-
tions of rules: TCR only incorporates region rules, TCP only incorporates path rules,
and TCRP incorporates both region rules and path rules. Table 6.2 shows the classi-
fication accuracy of three rule-based classifiers dfedint datasets. We can see that

TCR obtains the low accuracy on five datasets. This is expected because the region

Shttpy/www.rtreeportal.org
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Table 6.2: Hects of rules on classification accuracy (%)
Datasets TCR | TCP | TCRP
Hurricane | | 48.14| 60.00| 60.00
Hurricane Il | 71.43| 80.47| 80.47
Hurricane lll | 68.07 | 75.42| 79.66
Animal 73.52| 81.37| 82.35
Vehicle 81.00| 95.80| 96.56
Average 68.43| 78.61| 79.81

rules are not enough to distinguish the trajectories which hatereint moving direc-

tions. Based on Table 6.2, TCP obtains the higher accuracy than TCR on five datasets.
This is because path rules are more discriminative than region rules on account of the
significant moving features, including the speeds and directions, in path rules. Out of
the three rule-based classifiers, TCRP obtains the highest accuracy due to an enhanced
performance of both region rules and path rules on classification. The result of this ex-
periment suggests to build rule-based classifiers by incorporating both region rules and
path rules.

Next, we compare the classification accuracy of TCRP, TCF and the existing tra-
jectory classifier RB-TB [42]. In principle, RB-TB and TCF transform trajectories into
feature vectors and use existing classification methods to construct the classifier. In this
experiment, we implement RB-TB and TCF based on SVM, C4.5 and BayesNet clas-
sification models. The parameter settings in RB-TB follow the reported values in [42].
Note that TCRP and TCF are built on both region rules and path rules, which are mined
based on the default parametersin_sup=0.01,min_con f=0.9 andk=5 for all datasets.

All experiments are performed based on five-fold cross validation.

Table 6.3 summarizes the classification accuracy on five datasets. We can see that
TCF is better than RB-TB on almost all datasets, and the TCF based on SVM obtains
the highest average accuracy. This shows that incorporating duration information leads

to more discriminative classifiers. Out of five datasets, TCRP obtains the highest accu-
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Table 6.3: Hect of feature types on classification accuracy (%)
SVM C4.5 Bayes Net Rule-based
RB-TB | TCF | RB-TB | TCF | RB-TB | TCF || TCRP
Hurricane | | 47.11 | 55.59| 52.98 | 48.85| 54.16 | 54.16| 60.00
Hurricane Il | 75.23 | 77.14| 72.38 | 73.81| 74.76 | 77.14| 80.47
Hurricane lll | 76.71 | 81.72| 75.00 | 77.47| 77.47 | 76.92| 79.66
Animal 80.47 | 82.05| 81.26 | 80.95| 70.63 | 82.06| 82.35
Vehicle 94.52 | 98.44| 94.21 | 96.88| 92.7 91.42| 96.56
Average 74.81 | 78.99| 75.17 | 75.59| 73.94 | 76.34| 79.81

Datasets

racy on three datasets, Hurricane | and Hurricane Il and Animal dataset. TCRP obtains
the highest average accuracy. This shows that the rule based classifier is discriminative
to handle trajectory classification. TCRP is alsibogent because it is exempt from the
conversion of the test trajectories into cScore vectors. In addition, TCRP is simpler
than TCF and RB-TB because it does not need the involvement of the other classifica-
tion methods. Due to these factors above, we consider TCRP to be an ideal trajectory
classifier.

We show the discovered region rules and path rules by TCRP in Hurricane track

data, Animal movement data and Vechicle track data as follows.

Rules in Hurricane Track Data

Figure 6.11, 6.12, 6.13 show the trajectory distribution, region rules and top-3 covering
path rule sets for Hurricane I, I, 1l datasets, respectively. We can see that only few
region rules are discovered on three datasets. This is because the distribution of two

hurricane classes are quite similar for each dataset.

Rules in Animal Movement Data

Figure 6.14 shows the trajectory distribution of three animal species elk, deer and cattle

in Animal database, and the valid region rules and the top-3 covering rules to build
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L 74

(a) Valid region rules (b) Top-3 covering path rules

Figure 6.11: Rules for Hurricane | dataset

(a) Valid region rules (b) Top-3 covering path rules

Figure 6.12: Rules for Hurricane Il dataset

L 74

L4

(a) Valid region rules (b) Top-3 covering path rules

Figure 6.13: Rules for Hurricane IIl dataset
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(a) Valid region rules (b) top-3 path rules

Figure 6.14: Rules for Animal dataset

classifiers. We see that the trajectory distribution of three animal species are generally
well separated. Thus, only one valid region rule is found. In the generated path rules,
the granularity of micro-clusters is coarse and the path rules are rather short since they

are already dticient to discriminate among theffrent animal species.

(a) Valid region rules (b) Top-5 path rules

Figure 6.15: Rules for Vehicle dataset

Rules in Vehicle Truck Data

Figure 6.15 shows the trajectory distribution of buses and trucks on Athens city, and the
three valid region rules and the top-5 covering path rules to build classifiers. We can
see that two classes of trajectories are concentrated on the central region of the plane

which is the urban area of Athens and all path rules occur in this area. The granularity



160

of micro-clusters is rather fine and the path patterns contains multiple micro-clusters.
This is because fine micro-clusters and long path patterns are more discriminative to

handle similar data distributions of two classes in this area.

6.7.2 Sensitivity

We study the ffect of o on the accuracy of TCRIe: controls the cluster size in the
MDL procedure to mine the path rules. Smallalues result in the small clusters in
trajectory network, thus the less number of path patterns and the shorter path patterns.
Figure 6.16(a) shows the accuracy by varyingWe can see that the accuracy curves
reach maximal ifo- varies in [0.02, 0.04], and the accuracy curves slowly decrease
as o increase afterr is greater than 0.03. This is because the standard deviations
of sampling points in the five datasets range in [0.02, 0.04]. The trajectory networks
which are trained and obtained in this rangerqiroperly model the trajectory database
distribution.

Next, we study theféect ofk on the accuracy of TCRP. Figure 6.16(b) shows the
accuracy by varyingg. We observe that the accuracy curves reach the peakskibén
or 5 for Hurricane datasets and Animal dataset. This result implies that alswadilie
is enough to distinguish the trajectories and a l&galue may cause overfitting. For
Vehicle dataset, the accuracy curves reach the peak wieb. This is because the

trajectories in this dataset are longer than the others.

6.7.3 Hificiency

In this experiment, we evaluate the timfig@ency of TCRP. We test the trajectory
network training runtime by varying the initial grid sidg which has an important
influence on the trajectory network trainingfieiency. In this experimentr is 0.04.

Figure 6.17(a) shows the runtime of trajectory network training by vargifigm O to
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Figure 6.16: Sensitivity

0.04, wherec=0 means that the trajectory network training is performed based on the
raw database. As we can see, the runtime decreases exponentidtigi@ases. This is
expected because a largaesults in fewer number of sampling points, which decreases
the trajectory network training time. Our experiments also show that the classification
accuracy is stable if varies in the range [0.01,0.03], which are less tha®.04. This
suggests that settingto be less thapr to train the trajectory network idlcient.

Next, we also test thefleciency of topk covering rule miner by varyingnin_supon
five datasets. We fik=5 and derive togk covering rules on an existing trajectory net-
work. Figure 6.17(b) and Figure 6.17(c) show the runtime on three Hurricane datasets,
Animal dataset and Vehicle dataset. We observe that the runtime decreasiessap
increases for all five datasets. This is expected because anhamgaipvalues trim the
path pattern tree in early stages, so that a small number rules are selected as the valid
rules or topk covering rules.

Finally, we evaluate thefiect of k in terms of dficiency. We fixmin_supto be
0.01 and run TCRP on all datasets. Figure 6.17(d) and Figure 6.17(e) show the runtime
of mining topk covering path rules on three Hurricane datasets, Animal dataset and
Vehicle dataset. We can see that the runtime increases linealinaseases. This is

expected because a larderesults in a larger number of path rules generated.
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6.8 Summary

Trajectory classification is a very important problem in applications, and also a chal-
lenge research work in discovering and selecting the discriminative features for classifi-
cation. Existing work [42] builds the classifier on shape-based features. In this work, we
propose to discover the spatiotemporal features, including region rules and path rules,
for classification. We utilize the influence model to present the trajectory distribution
and design a space partition tree to facilitate the detection of valid region rules. To
summarize the trajectory database, we introduce the concept of trajectory network, and
we develop a trajectory clustering algorithm to compress the trajectory database into
trajectory network of proper granularity. Based on the trajectory network, a path pat-
tern tree is designed to enumerate all potential paths and facilitate the mininglof top-
covering path rules. A few of pruning strategies are proposed to perfiiicreat path

rules mining..

We build a hybrid classifier TCF which translates the trajectories into spatiotemporal
feature vectors and feed in any classification model. We also build a rule-based classifier
TCRP which predicts the class labels of trajectories by the region rules and path rules.
All classifiers are tested on the real-life datasets. Experiments show that our classifiers

obtain higher classification accuracy than the existing classifier in [42].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have investigated the spatiotemporal pattern mining in three types
of spatiotemporal data. We have reviewed the current work in the area of sequential
pattern mining, spatiotemporal data mining in event database and spatiotemporal data
mining in moving object database. Although there has been a large amount of work in
this area, there remains research challenges that need further investigation. This thesis
has focused on three research problems.

The first research is to discover mutation chain in biological sequence data where
each sequence is associated with location and time. We have proposed a mutation model
where each sequence has influences to its nearby sequences. Based on the mutation
model, we have introduced the notion of mutation chains to capture the subsequence
changes over space and time. We have designed an integrated algorithm to mine muta-
tion chains in a top-down search manner and have used two pruning strategies to reduce
the search space. Experiments on synthetic datasets have shown that our algorithm is
more scalable and mordfeient than the base line algorithms. Experiments on real

world Influenza A virus database have shown that our algorithms can be used to dis-
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cover meaningful mutations.

The second research is to discover spatial interaction patterns in snapshot data. We
have proposed an influence model for snapshot data where each object exerts influence
to its nearby regions. We have defined the global Spatial Interaction Patterns (SIPs) on
single snapshot, and have proposed a grid based influence model and have designed an
algorithm called PROBER to discover SIPs based on a grid based influence model. Ex-
periment results have demonstrated that the influence model based patectigety
capture the spatial relationship of objects in snapshot data, and are easily extended to
localized and time-associated patterns. We have extended SIPs to the Geographical-
specific Interaction Patterns (GIPs) over continent snapshots, and have designed an al-
gorithm called FlexiPROBER to discover the localized GIPs based on a quadtree based
influence model. We also have developed an algorithm called MineGIC to discover
three pattern trends, i.e., enlargement, shrinkage and movement of supporting regions,
to capture the temporal changes in these patterns. Experiment results on both synthetic
and real world datasets have shown that the proposed approachffsetressin mining
the local geographical-specific interests patterns and discover their changes over time.

The last research problem is to discover duration-aware trajectory pattern in mov-
ing object data for trajectory classification. We have proposed to build trajectory clas-
sifiers that consider the duration of trajectories. We have introduced two kinds of fea-
tures which incorporate duration information, duration-sensitive region rules and speed-
differentiating path rules. The influences of moving objects to the regions are measured
as the time spent by the moving objects in the regions. Based on this influence defi-
nition, we have utilized the top-down space partition method to mine the valid region
rules. We have proposed the trajectory network to model the distribution of trajectories
and employ MDL principle to evaluate the trajectory network. We have designed a path

pattern tree to enumerate and mine the kaqmvering path rules for classification. We
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also have built two classifiers TCF and TCRP to predict the class labels of test trajecto-
ries. Experiment results on real-world datasets have shown that both classifiers obtain

higher classification accuracy than the existing classifier.

7.2 Future Work

There are a number of directions that require further investigation. We list three major
directions for future work.

First, besides the physical geographical distances, the spatial constraints such as
migratory bird patterns as well as modern air transportation routes, can be used to con-
struct a spatial network to better model the spatial influence on the mutation likelihood.
In addition, in road network based moving object databases, the object distances can be
modelled by network distances instead of the geographical distances.

Another direction for future research is to investigate interesting spatial relation-
ships such as spatial exclusion. Exclusion relationship refers to features that do not
occur together, and no existing work focuses on spatial exclusion pattern mining. By
enriching and mixing the spatial relationships, we will discover more useful and inter-
esting knowledge in spatiotemporal data for real-world applications.

Finally, since spatiotemporal data comes from real application scenarios, they con-
tain noise due to the limitation of measuring instruments and human recording errors.
For example, the spatial positions of sampling points are imprecise, and the trajectories
may miss some sampling points and insert some noise points. It is desirable to design a
robust model which can handle the imprecise data and the trajectories of data inserting
and deleting.

With more and more spatiotemporal data being tracked and analyzed in the real
world, we believe this field will receive much attention in both academia and industry

in the near future.
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Appendix

Influence Approximation

Our idea to determine the appropriate resolution is as follows. First, we partition the
plane into a coarse granularity. Then we recursively perform a split operation to divide
each cell into 4 sub-cells. These sub-division steps will assign a finer granularity which
is exactly half of the previous resolution. In this way, we can compute fileeteof

finer resolution, and eventually arrive at the appropriate resolution. Figure 7.1 shows
the splitting strategy, wheris the position of object angd is the center of a big grid

of sideR, the distance frono to pis indicated by symbal. After unform splitting, this

big grid is partitioned into four subgrids, each of which has a 8d2 The distances
from o to the center of each subgrid aif d,,d;,d; respectively.

In the following analysis of the bounds of the approximation, we only consider the
case where the objects are distributed in the east quarter area. Without loss of generality,
any other distributions can be transformed into this case by rotating the cell.

After splitting, we will have the following equations according to esine Theo-

d2 =d? + iR - %dRcosel

d2 = o2+ 3R - ngcosez
rem Sinced; + 0, = /2 andbs + 6, = n/2, we have

dZ = d? + iR + %dRcoseg

dZ =d?+ iR + ngcos&
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Figure 7.1: Cell splitting case

1 < cosf; + cosh, < V2
the following two constraint , and

1 < CcOS83 + coSb, < V2
0 < cosh4, cosh,, COSH3, COSH, < 1.

The summation of the first two influence units is

In fl +1In f2
rRR ¥ ¢
= — (e 2?2 +e »2)
4
R2 &2 _ R V2dRcosty V2dRcosd,
— Z.e 22 . @ 16172'(e 452 + e 4?2 ) (71)
V2dRcossy V2dRcost, V2dRcosfy V2dRsingy

Letf(d)=e 4«2 +e 2«2 =€ 2 +e 2 ,with6, =nx/2-60,. f(d) reaches

a local minimal ab; = 0 and a local maximal & =r/4. So we have
RE: AR
2<1l+ew? < f(d)<2ew?. (7.2)

From Formula 7.1 and 7.2, we have
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R ¢ _ R R
%-e2<r2-e1&r2<lnf1+lnf2§§-ew2-e1&;2.e402

So the influence error at the first two sub-cells is

|Err1’2(‘)
I (Inf, + Inf) — Inf/2 |
|nf1 + |nf2

d? R2 dR
R.g2?. (g2 - ew? — 1)

IA

d2 R2
%2 @ 22 . @ 162
dR R
= @2 — el&? (7.3)

Similarly, the summation of the last two influence units is

42

_&® R _d&r 2 2
e 202 . @ 1662 . @ 402 < Inf3+ Inf4< i

_dc _ R
?-e 202 . @ 1652

R
2

So the influence error at the last two sub-cells are

I Inf/2 - (Infs + Infy) |

<1-enreis (7.4)
—_ 160~ 40
Inf/2 : '

IErraa() =

Combining Formula 7.3 and 7.4, we have the influence error

IErri,+ |ErT 1—e‘%e‘$ +e& —e%
IErr() = —=2 5 34 < 5 (7.5)

As 0 < d < 30, we normally substituté&os for d where 0< k < 3. So Formula 7.5

can be rewrote as

R2 R?
1- e‘@e—% + e% — e16:2

[Err() < >

(7.6)
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Merge vertices and edges

In this section, we give the computation processes of merging vertices and edges in

TrajNet algorithm.

7.2.1 Merge Vertices

Figure 6.7 shows the process to merge vertiges, andvs. Assume that all sampling
points have the identical weight, the weight of three vertice$\are 4 andW, = W5 =
2, the radius oWy, v, andvs are equal to 1.0, anad=10.0. We haveH(v;)=0.81 and
H(v,)=H(v3)=0.0, andc,=0.0072. We consider the three cases as follows.

Case 1 Mergev; andv, to be a new vertex;, which have the six sampling
points and radiuf;,=2. Its entropyH(vi2)=1 and its weightW;,=6. In this case,
the MDL_gain is 1+ H(vy) + H(v2) — H(V12) + C,(WiRE + W,oR5 — W,R2,) = 1+ 0.81+
0-1+0.0072x (4x 12+ 2x 1?2 — 6 x 22) = 0.68 bits.

Case 2 Mergev; andv; to be a new vertex; ; which have the six sampling points
and radiusR;3=2.5. Its entropyH(v13)=0.65 and its weightW,;3=6. In this case, the
MDL _gain is 1+ H(vy) + H(vs) — H(v13) + C/(W1 RS + W5R3 — Wi3RE,) = 1+ 0.81+ 0 -
0.65+ 0.0072x (4 x 1% + 2 x 1 — 6 x 2.5%) = 0.93 bits.

Case 3 Mergev, andvs; to be a new vertex,; which have the four sampling
points and radiuf;3=3. Its entropyH(v»3)=1 and its weight\,3=4. In this case, the
MDL _gain is 1+ H(v2) + H(Vs) — H(V23) + Cy(WoR5 + W3RE —Wo3R5,) =1+ 0+0— 1+
0.0072x (2x 12+ 2x 12 — 4 x 3?) = -0.23 bits.

Since Case 2 leads to a largest MIghin, we select to mergg andvs to be a new

vertexvis.
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7.2.2 Merge Edges

Figure 6.8 shows the process to merge edges. Assume that we have three, gelges
ande;, which move from vertex; to vertexv,. The Euclidean distancedv,, v,)=10.0.
Assume thag; contains two red segments and their average duration igc0ntains
one red segment and its duration is f¢ontains one blue segment and its duration is
1.0. Leto=10.0 andc,=0.0072. We consider the three cases as follows.

Case 1 Mergee, ande, to be a new edge;,. Its entropyH(e;»)=0. Its weighted
durationt = 223x10 — 1 67, thereby causing the distance erdgr= [1.67 — 2.0| x
10.0 = 3.3 andd, = |1.67-1.0] x 10.0 = 6.7. In this case, the MDlgain is 1+ H(e;) +
H(e2) — H(ewo) + Ce(Wqd + Wod3) = 1+ 0+ 0—0+0.0072x (2% 3.3 + 1x 6.7%) = 0.52
bits.

Case 2 Mergee, ande; to be a new edgeys. Its entropyH(ey3)=1. Its weighted
durationt = 1.0, sod; = 0.0 andd, = 0.0. In this case, the MDlgain is 1+ H(e) +
H(ez) — H(ezs) + Ce(Wod5 + w3d3) = O bits.

Case 3 Mergee; ande; to be a new edge;s. Its entropyH(ei3)=0.92 and its
weighted duration = 222+10 — 1 67, thereby causing the distance empr= |1.67 -
2.0 x 100 = 3.3 andd, = |1.67 - 1.0] x 100 = 6.7. In this case, the MDlgain is
1+ H(er) + H(ex) — H(ern) + Ce(W102 +Wod3) = 1+0+0—1+0.0072x (2% 3.3+ 1x6.7%)
=-0.48 bits.

Since Case 1 leads to a largest MIghin, we select to merge ande, to be a new

edgee;,.



