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Summary

Advances in sensing and satellite technologies and the rapid spread of moving devices

generate a large volume of spatiotemporal data of different types and promote the devel-

opment of spatiotemporal database, thereby arising an increasing need for discovering

spatiotemporal patterns in spatiotemporal data. To date, although a lot of works have

been proposed for mining patterns in spatiotemporal databases, there are some research

areas that need further investigation. In this thesis, we focus on efficiently and ef-

fectively discovering the spatiotemporal patterns in three popular spatiotemporal data

types: biological sequence data, snapshot data and moving object data. We outline our

approaches as follows.

First, we study the problem of mining mutation chains in biological sequences

which are associated with location and time. We propose a mutation model where

each biological sequence influences its spatiotemporal nearby biological sequences. We

therefore define the notion of mutation chains and design an efficient algorithm to mine

frequent mutation chains. Second, we tackle the problem of discovering localized and

time-associated patterns in snapshot data. We propose an influence model where each

object exerts an influence to its spatiotemporal nearby regions. Based on the influence

model, we investigate this problems in two steps: We introduce the global Spatial In-

teraction Patterns (SIPs) on a single snapshot and propose a grid based influence model

to mine the frequent SIPs. We further extend the SIPs to Geographical-specific Inter-

action Patterns (GIPs) and propose a quadtree based influence model and an efficient

v



mining algorithm to mine frequent GIPs over time. Finally, we address the problem

of discovering duration-aware trajectory patterns in moving object data for trajectory

classification. The influences of moving objects to the regions are measured by the

amount of time spent by the moving objects in the regions. Based on the influence, we

introduce the duration-sensitive region rules and a top-down region partition approach

to discover valid region rules. We also introduce the speed-differentiating path rule

and propose a trajectory network to facilitate the mining of discriminative path rules.

Two classifiers, TCF and TCRP, are built using the discovered region rules and path

rules. Experiment results on real-world datasets show that both classifiers outperform

the existing classifiers.
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Chapter 1

Introduction

In recent years, we witnessed the rapid development of sensing and satellite technolo-

gies and tracking devices, which significantly changed and are changing our world.

The high spatial and spectral resolution remote sensing systems and other monitoring

devices are gathering vast amounts of data with location and time attributes. These

spatiotemporal data are stored and managed in spatiotemporal databases. This, in turn,

leads to interest in spatiotemporal data mining.

Spatiotemporal data mining aims to disclose insightful knowledge embedded in

spatiotemporal data, and enables people to understand the underlying process in spa-

tiotemporal phenomena, and enables decision makers to make policies for emerging

spatiotemporal events. To users, interesting spatiotemporal phenomena are those that

are not random but rather follow certain rules. We call the repeating regular structures

in space and time as spatiotemporal patterns.

Different types of spatiotemporal data have different regular structures, thereby hav-

ing different spatiotemporal patterns. Spatiotemporal patterns are important because

they not only are insightful knowledge but also can be applied for further data analysis

and knowledge discovery. This thesis focuses on the spatiotemporal pattern mining in

three popular types of spatiotemporal data.

1
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1.1 Spatiotemporal Database

A spatiotemporal database deals with either geometry changes over time in discrete

steps, or location of objects in a continuous manner [18]. Accordingly, the spatiotem-

poral data can be divided into moving object data and non-moving data.

The moving object data record the continuous location sequences of moving objects,

where the location sequence of each object can be represented by a trajectory. The non-

moving data record the information of spatial objects over time in discrete steps, where

the spatial objects are distinct from each other. Further, the non-moving data can be

modelled as events or snapshots. Event data record the discrete spatial objects over

time. A point-based event is a spatial object which is tagged with the exact spatial and

temporal information. The biological sequences which are associated with location and

time can be treated as the point-based event data. Snapshot data record the distribution

of spatial objects over time. Each snapshot is a time slice to record the distribution of

spatial objects.

1.1.1 Biological sequence data

Biological sequence analysis is one of the major research area in the biomedical and

bioinformatics. The biomedical applications generate a large volume of biological

sequences. A biological sequence is a single, continuous molecule of nucleic acid

or protein. Besides the biomolecular sequence (nucleic acid or protein), the annota-

tion information (organism, species, function, spatiotemporal information, mutations

linked to particular diseases, bibliographic, etc) are also stored in biological sequence

databases [3].

Due to the annotated spatiotemporal information, each biological sequence can be

seen as one point-based event in spatiotemporal space, which is associated with a se-

quence of molecules. Figure 1.1 shows an example of the biological sequence database,
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which consists of seven biological sequences, and its distribution in spatiotemporal

space.

BDDFvsABDAvsBAFCvs

ADDAvsBCADvsFBCCvsABCDvs

===
====

765

4321

,,

,,,,

6vs4vs
7vs

3vs

5vs

2vs

1vs

����

�

�

Figure 1.1: Sequences data

1.1.2 Snapshot data

Studies of El Nino effects in meteorology, forest fires in forestry, volcanic activities and

earthquake zones in geophysics, vegetation evolution in botany, generate a large volume

of images that capture the spatiotemporal phenomena. For example, botanists maintain

a historical record of the spatial distribution of trees to analyze the spatial patterns of

vegetation [5]. Another major source of snapshot data is from web related applications.

A web site may record a large volume of geographical information such as providers’

locations, content locations, serving locations [76], and visitors’ locations and visiting

time.

These data are represented as a sequence of snapshots where each snapshot is as-

sociated with a spatial plane and a time slice, and contains a set of spatial objects.

Figure 1.2 shows several snapshots over time, where each snapshot is a spatial plane

during a time period.
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�

Figure 1.2: Snapshot data

1.1.3 Moving object data

In the applications which emphasize on the behavior of objects, moving object data

are generated and managed in databases for online object tracking and future trajectory

analysis. In meteorology, meteorologists maintain the data of moving storms, devel-

opments of high pressure areas and precipitation areas in the spatiotemporal database.

In zoology, zoologists maintain animal movements, mating behavior, species relocation

and extinction in the spatiotemporal database. In our daily living, traffic department and

commercial companies store the trajectories of cars, trucks and taxis.

Moving object data are the time-ordered sequences of object locations. Figure 1.3

shows the geographical projection of tropical storm tracking trajectory data on the North

Atlantic Ocean during 1950-2008, which are the linear segments of sampling points.

Besides, moving object data may contain other affiliation information about the objects.

Figure 1.3 shows the speeds and scales of tropical storms where blue trajectories are

gentle tropical storms and red trajectories are hurricanes.

1.2 Motivations

While there have been some research works that focus on the pattern mining in biolog-

ical sequence data, snapshot data and moving object data, more works need to be done.
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Figure 1.3: Moving object data

In this thesis, we explore the challenges of mining spatial patterns and spatiotemporal

patterns in biological sequence data, snapshot data and moving object data, respectively.

1.2.1 Pattern mining in biological sequence data

To date, researches on sequence data mainly focus on the frequent patterns of sequences

such as sequential pattern. Sequential patterns [2, 88, 54] are the frequent subsequences

in a sequence database. Sequential pattern mining has received long-term research

attention, because sequential patterns have broad applications including the analysis

of long-term customer purchase behaviors for cross selling and target marketing, the

analysis of Web access patterns for understanding user behaviors, the analysis of se-

quencing or time-related processes such as scientific experiments, natural disasters, and

disease treatments, the analysis of patients’ medical records, the analysis of biological

sequences such as genome sequences and protein sequences, and so on.

There is no research which focuses on the spatiotemporal relationship of sequences.

Taking spatiotemporal behaviors into account is important to better understand the bio-

logical sequence mutations. For example, influenza is a major human pathogen and the

influenza virus, in existence for centuries, has been continually infecting both humans

and animals. A recent trend is to develop region-specific vaccines which requires the

spatial and temporal dynamics of the viral mutations. Thus, it is highly desirable to
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find out when and where the mutations occur, i.e., we need to know the highly-mutated

regions (hotspots) in sequences at one geographical location and their changes when

the sequence mutates in another location.

The spatiotemporal patterns of biological sequences are complex because they not

only detect the highly-mutated regions in sequences but also identify the temporal

chains of changes. Extending existing sequential pattern mining algorithms [2, 88, 54]

or existing spatiotemporal event sequence mining algorithm [33] to find these complex

spatiotemporal patterns is not feasible due to the large search space of highly-mutated

regions in sequences and temporal dimensions. Therefore, it is desirable to formally de-

fine and efficiently mine the frequent spatiotemporal patterns of biological sequences.

1.2.2 Mining spatiotemporal patterns in snapshot data

Many applications, such as epidemiology and web services, have sustained interest

in developing techniques to discover the localized patterns for performing further re-

gional analysis and providing Location-Based-Services (LBS). The localized patterns

may change over time, which leads to the chains of localized patterns.

For example, a comprehensive web site contains a large number of web pages,

which are categorized into different topics such as news, sports, entertainment, and

so on. The web site designer wants to know the visitors’ interests in different coun-

tries/regions. If geographical-specific interests are discovered, the web site can pack

the specific topic combinations for the visitors of specific countries/regions, and pro-

vide customized advertisements to different regions.

The traditional approaches to define the spatial relationship of events on snapshots

are based on either the grid [72] or the Euclidean distance [31]. The grid based ap-

proach performs a preprocessing which imposes a grid on the spatial plane, transforms

the events into transactions, and applies the well-developed transaction based pattern
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mining algorithms. The grid based approach is efficient, but it is inappropriate for spa-

tial data due to the spatial information loss during preprocessing. On the other hand,

the Euclidean distance based approach evaluates the spatial relationship by first com-

puting the distance for every event pair and then counting the close pairs. A typical

Euclidean distance based pattern is the spatial collocation pattern [63, 31] which is the

set of event types whose events occur close together. In spite of no spatial information

loss in Euclidean distance based approach, it is computationally expensive to compute

the pairwise event distances. In addition, the discovered patterns are sensitive to the

distance threshold and imprecise spatial data. Therefore, we need an interestingness

measure which can identify the spatial relationship, handle imprecise data and do not

rely on the grid.

The localized patterns (patterns with confined locations) and their changes over time

are crucial to understand the spatiotemporal phenomena in snapshot data. However,

there is no research work which focuses on such localized pattern mining. It is inap-

propriate to first mine the local patterns on the sub-datasets and then combine the local

patterns, because it is difficult to determine the granularity of sub-datasets and is ex-

pensive to discover many intermediate patterns. We need an approach which does not

rely on the existing geographical domain knowledge like hierachical region structures,

and can automatically determine the region granularity. In addition, the localized pat-

terns and their changes are complex because the patterns contain spatial and temporal

information, which leads to a huge number of candidate patterns. We need the efficient

algorithms to prune the candidate pattern space and discover the localized patterns and

their changes.
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1.2.3 Mining spatiotemporal patterns for trajectory classification

Trajectory classification is an important research problem in trajectory data analysis.

Assume each trajectory in the trajectory database has a class label, trajectory classi-

fication is the process of predicting the class labels of moving objects based on their

trajectories and other features.

The ability to classify trajectories is useful in many real world applications. In

meteorology, a trajectory classifier can predict the intensity and scale of an approaching

hurricane, so that precautionary actions can be carried out in advance. In homeland

security, it is reported that more than 160,000 vessels are travelling in the United States’

waters [45], and an anomaly trajectory detection classifier that can evaluate the vessels’

behaviors and highlight suspicious vessels for further monitoring is highly desirable.

Existing work on trajectory classification [42] selects the regions and representative

trajectories as the features for classification. Regions are mined based on the spatial dis-

tribution of trajectories, and representative trajectories are mined based on the shapes of

trajectories. However, it does not take the duration of the trajectories into consideration

in differentiating the objects that move at different speeds. For example, the speed at

which a tropical hurricane passes the Gulf of Mexico is an important criterion in classi-

fying the scale and intensity of the trajectories in Figure 1.3. Classifiers, that look only

at the spatial distributions and movement directions of hurricanes but ignore the moving

speeds, are unable to accurately classify the intensities of the hurricanes.

Spatiotemporal patterns which focus on both the actual movement paths and the

movement speeds are desirable to build the trajectory classifier. However, few existing

works considered the duration information in the moving object data analysis. Existing

works on moving clustering [46, 36], motion group [81] and convoy [35] focus on the

discovery of moving objects which exhibit synchronous movement behaviors. Even

with low support, the paths of moving clusters or motion groups may not be enough
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for classification. This happens especially in the database where the moving objects are

unlikely to move simultaneously, such as the annual hurricane trajectory database and

the shuttle bus trajectories.

The trajectory patterns [25] are duration associated patterns which capture the Region-

of-Interests (RoIs) and the transition time between every two RoIs. The mining of

trajectory patterns is based on the pre-defined popular regions and transform the tra-

jectories into region sequences. Having a pre-determined granularity for regions and

duration intervals is undesirable because if the granularity is too coarse, it will lead to

a small number of trajectory patterns which is not enough to build an accurate classi-

fier. On the other hand, if the granularity is too fine, it will lead to a large number of

trajectory patterns, resulting in overfitting. Hence, the trajectory patterns do not have

discriminative power for accurate classification.

1.3 Contributions

This thesis is organized as follows. Figure 1.4 shows the overall framework. In this fig-

ure, the spatiotemporal data is further categorized into biological sequence data, snap-

shot data and moving object data. Figure 1.4 includes the spatial pattern mining layer,

the spatiotemporal pattern mining layer, and the other data mining task layer to address

the three data mining problems above.

The first problem is the mutation chains mining in biological sequence data based

on a spatiotemporal constraint. The second problem is the discovery of localized and

time-associated spatial relationships in snapshot data, where the spatial relationships

are presented by interaction patterns. The third problem focuses on the discovery of the

region rules and path rules in moving object data and the application of these rules for

trajectory classification. The three major contributions are summarized as follows.
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Figure 1.4: Thesis Framework

1. We propose a mutation model for biological sequence data where each biolog-

ical sequence influences the other nearby biological sequences. Based on this

mutation model, we define the problem of mining mutation chains and introduce

a measure called mutation index to capture the confidence of a mutation. We

present an integrated algorithm to discover contiguous subsequences of muta-

tions. The algorithm utilizes two data structures to facilitate the mining process.

The PointMutation tree summarizes position-specific single character mutations

while the compact MaxMutation tree is designed to store the complete set of con-

tiguous subsequences of mutations (k-mutations). We propose two pruning strate-

gies to improve the mining efficiency. The first strategy prunes positions which

are impossible to have any valid mutations based on the lower and upper bounds

of their entropy measures. The second strategy is a selective join that enables us

to prune unnecessary sequence chains based on the previous rounds of mining
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results. We evaluate the algorithms on both synthetic and real world datasets. Ex-

periments on the real world Influenza A virus database provide insights into the

spread and mutation of the highly pathogenic Avian H5N1 influenza virus and

the recent H1N1 swine flu. This work is published in [67].

2. We propose an influence model for snapshot data where each object exerts influ-

ence to its nearby regions. The influence model is able to capture the underly-

ing spatial relationship among objects on the snapshot. Based on the influence

model, we investigate the problem of discovering localized and time-associated

patterns by two steps. First, we mine the global Spatial Interaction Patterns

(SIPs) on single snapshot. We propose a grid based influence model and de-

sign an algorithm called PROBER to discover SIPs. We design the interaction

tree structure to store the possible combination of candidate spatial interaction

patterns, and extend PROBER algorithm to mining maximal SIPs. Second, we

extend SIPs to the Geographical-specific Interaction Patterns (GIPs) over con-

tinent snapshots. We propose a quadtree based influence model and design an

algorithm called FlexiPROBER to discover the localized GIPs. We define three

pattern trends, i.e., enlargement, shrinkage and movement of supporting regions,

to capture the changes in these patterns and develop an algorithm called MineGIC

to discover these changes. Experiment results on both synthetic and real world

datasets demonstrate that the proposed approach is effective in mining the lo-

cal geographical-specific interests patterns and discover their changes over time.

This work is published in [65, 64].

3. We propose duration-sensitive region rules and speed-differentiating path rules

for trajectory classification. We propose that the influences of moving objects

to the regions are measured as the time spent by the moving objects in the re-

gions. Based on this influence definition, we propose a top-down region parti-
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tion approach to discover the valid region rules. We also introduce the trajectory

network to model the distribution of trajectory database. The granularity is con-

trolled and measured by the Minimum Description Length (MDL) gain. Based

on the trajectory network, we design a path pattern tree to enumerate the candi-

date path patterns, and design an efficient path pattern mining algorithm to mine

the top-k covering path rules. Two classifiers, TCF and TCRP, are built using the

discovered region rules and path rules. Experiment results on real-life trajectory

datasets show that both TCF and TCRP obtain higher classification accuracy than

the existing classifier. This work is submitted to conference for review [66].

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 reviews the related work on

sequential pattern mining, pattern mining in snapshot data and spatiotemporal mining

in moving object data. Chapter 3 proposes a mutation model and studies the mining

of mutation chains in biological sequence database. Chapter 4 introduces the grid-

based influence model and studies the mining of global interaction pattern in snapshot

databases. Chapter 5 proposes a Quadtree based influence model and studies the mining

of localized interaction patterns and further examines their enlargement, shrinkage and

movement chains over space and time. Next, we consider the pattern mining in mov-

ing object data. Chapter 6 studies the discovery of duration-sensitive region rules and

speed-differentiating path rules for trajectory classification. Two classifiers are built on

those discovered rules. Finally, we conclude our studies and discuss some future work

in Chapter 7.



Chapter 2

Related Work

Frequent pattern mining is an important research area in data mining. It focuses on dis-

covering interesting knowledge in different data types, such as transactions, sequences,

graphs, multimedia data and the other complex data types.

Agrawal et.al [1] first proposed to mine frequent item/itemset in transaction database

and further discover association rules which are useful knowledge to discover the co-

occurrence relationship among items. They applied the Apriori property to enumerate

the candidate patterns and developed an efficient algorithm to mine all frequent patterns

based on the Apriori property. As a paradigm in the area of data mining, the frequent

pattern mining problem is explored and studied extensively.

Agrawal et.al [2] further proposed the sequential pattern mining problem. This

problem is different from the association rule mining problem because sequential pat-

terns are mined in sequence database, where each sequence is anorderedlist of itemsets,

instead of transactions in the association rule mining. Compared to the association rule

mining problem, sequential pattern mining is more complex because the sequences con-

tain more potential candidate patterns than transactions. A lot of work are proposed to

efficiently find complete or compact set of sequential patterns, which will be surveyed

in Section 2.1.

13
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Spatiotemporal data are alsotemporally orderedsequences, but they contain more

semantics than sequences due to the mixture of spatial and temporal information. Hence,

spatiotemporal pattern mining is more complex and challenging than sequence pattern

mining. First, the conventional frequent pattern mining approaches and algorithms need

to be modified to perform efficient mining. Second, the discovered spatiotemporal pat-

terns are expected to include spatial and temporal information.

However, existing work [1, 2, 72] on spatiotemporal mining are the direct extension

of the conventional pattern mining in transactions or sequences. They usually employ

a preprocessing step to transform spatiotemporal data into transactions or sequences,

and then apply the existing pattern mining algorithms on the transformed data. This

is undesirable because the transformed data may miss a lot of important spatial infor-

mation during this preprocessing step. For example, two spatially close objects may

fall into two different buckets using gridding spatial partition approach. In this chapter,

we review the related work on sequential pattern mining, on pattern mining in event

databases, and finally on data mining in moving object data.

2.1 Sequential pattern mining

Sequential pattern mining problem can be stated as “given a sequence database and the

min support threshold, sequential pattern mining is to find the complete set of sequential

patterns in the database” [29]. Some important definitions in this area are listed as

follows. An itemseti is denoted by (i1i2 . . . im), wherei j is an item. A sequences is

denoted by〈s1s2 . . . sn〉 wheresj is an itemset. A sequence〈a1a2 . . . an〉 is contained

by another sequence〈b1b2 . . . bm〉 if there exist integersi1 < i2 < . . . < in such that

a1 ⊆ bi1,a2 ⊆ bi2, . . . , an ⊆ bin. For example, the sequence〈(bd)(c)(ac)〉 is contained in

〈(e)(bd)(ae)(c)(b)(acd)〉, since (bd) ⊆ (bd), (c) ⊆ (c), (ac) ⊆ (acd). Table 2.1 gives an

example of sequence database which contains four transactions.
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TID sequences
10 〈(e)(bd)(ae)(c)(b)(acd)〉
20 〈(bd)(c)(ac)〉
30 〈(d)(ac)(abc)〉
40 〈(e)(g)(a f)(c)(b)(c)〉

Table 2.1: An example of sequence database

From Table 2.1, we can see that each sequence is temporally ordered itemsets and

the sequential patterns are the frequent subsequences in the sequence database. Similar

to frequent patterns, sequential patterns have the anti-monotone (i.e., downward clo-

sure) property as follows: every non-empty sub-sequence of a sequential pattern is a

sequential pattern. In other words, if a sequenceS is infrequent, none of the super-

sequences ofS will be frequent. For example, suppose〈hb〉 is infrequent, all of its

super-sequences, such as〈hab〉 or 〈h(bc)〉, are infrequent. Based on this anti-monotone

property, the sequential pattern mining focuses on the development of efficient algo-

rithms to discover the sequential patterns.

GSP [71] is a sequential pattern mining algorithm based on a horizontal data format.

It adopts a multiple-pass, candidate-generation-and-test approach in sequential pattern

mining. The first database scan determines the support of each item, and every frequent

item yields a 1-element frequent sequence. After the initialization of 1-item sequences,

GSP utilizes the sequential pattern ofk-item to generate new potential patterns of (k+1)-

item, called candidate sequences. GSP carries out one database scan to collect support

count for candidate sequences. All candidates whose support in the database are no

less than minimal support form the set of the newly found sequential patterns. The

algorithm terminates when no new sequential pattern is found in a pass, or no candidate

sequence can be generated. However, GSP still generates a large number of candidates

and requires costly multiple database scans.

SPADE [88] is an Apriori-Based vertical data format sequential pattern mining algo-
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rithm. SPADE maps a sequence database into the vertical data format which takes each

item as the center of observation and takes its associated sequence and event identifiers

as data sets. Similar to GSP, SPADE generates the (k+1)-length candidate patterns by

joining two frequentk-length sequential patterns. The SPADE algorithm reduces the ac-

cess of sequence databases since the information required to construct longer sequences

are localized to the related items and/or subsequences represented by their associated

sequences and event identifiers. However, the basic search methodology of SPADE is

similar to GSP, exploring both breadth-first search and Apriori pruning.

PrefixSpan [53] is a write-based sequential mining algorithm. PrefixSpan uses fre-

quent items to recursively project sequence databases into a set of smaller projected

databases and grow subsequence fragments in each projected database. To reduce the

length of projected sequences, PrefixSpan examines only the prefix subsequences and

project only their corresponding postfix subsequences into projected databases. Pre-

fixSpan counts the supports of candidate patterns in the projected database. The mining

algorithm terminates when no new projected database is generated or no new sequen-

tial pattern is found. PrefixSpan is reported to outperform GSP and SPADE because the

projected databases are much smaller than the whole database.

The sequential pattern mining methodology has also been extended to handle differ-

ent application scenarios. To handle incremental mining problem, IncSpan [10] defines

an intermediate state between frequent patterns and infrequent patterns called semi-

frequent patterns. Givenmin sup, and a factorµ ≤ 1, a sequential pattern is semi-

frequent if its support falls in the range [µ ∗ min sup,min sup). With the incremental

updating of sequence database, the patterns may transform among different states, from

infrequent to semi-frequent, from semi-frequent to frequent, etc. Based on the state

transformation, IncSpan proposes some pruning strategies to prune the search space of

sequential patterns. To handle the noisy environment where the items of sequence data
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may be imprecise, [84] has studied the problem of mining frequent sequences with the

help of the compatibility matrix, which provides a probabilistic connection from the

observation to the underlying true value.

All the related work above need to generate a complete set of candidate patterns

during the mining. The performance of such algorithms often degrades dramatically

when mining long frequent sequences, or when using very low support thresholds. To

tackle this problem, CloSpan [82] is proposed to mine frequent closed sequential pat-

terns, i.e., those containing no super-sequence with the same support, instead of mining

the complete set of frequent subsequences. CloSpan performs an early termination on

the prefix search tree when finding the backward sub-patterns or super-patterns. How-

ever, setting min support is a subtle task in the sequential pattern mining algorithms.

TSP [73] is proposed to discover top-k closed sequences. TSP finds the most frequent

patterns early in the mining process and allows dynamic raising of minimal support

which is then used to prune unpromising branches in the search space.

Many researchers [23, 55, 56] shift their attention towards mining sequences by in-

corporating constraints to reduce search space. [23] proposes regular expressions as

constraints for sequence pattern mining and develops a family of SPIRIT algorithms

while members in the family achieve various degrees of constraint enforcement. Fol-

lowing that, [55, 56] conducts a systematic study on pushing various constraints deep

into sequential pattern mining and characterizes constraints for sequential pattern min-

ing according to their application semantics and roles in sequence pattern mining

Sequential pattern mining, which focuses on the temporal relationship of itemsets,

has been studied extensively. However, existing work on sequential pattern mining do

not consider the spatial relationship and spatial information in the mining. It is infeasi-

ble to transform the spatiotemporal data into sequence data by mapping the regions into

items of sequences. This is because the mapping mechanism results in inevitable in-
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formation loss in spatiotemporal data. Hence, sequential pattern mining is unable to be

directly applied to mine spatiotemporal patterns. The pattern mining in spatiotemporal

data is more complicated than sequential pattern mining due to the mixture of temporal

and spatial relationship.

2.2 Pattern mining in event data

Spatiotemporal event data are a collection of events in the space-time dimensions, where

each event is associated with a set or a sequence of event type. Typically, spatiotempo-

ral event data come from GIS, meteorology applications and web logs. Spatiotemporal

patterns mining in event data will discover the frequent patterns by measuring spa-

tiotemporal relationship among events. There are many research work in this research

area. Depending on the methods to measure spatiotemporal relationship among events,

the existing work can be classified into two categories.

• Snapshot-grid. Snapshot-grid model assigns a spatial snapshot for each time slice

along the time axis and links all spatial planes together with chronological order.

Snapshot-grid model imposes a grid on each spatial snapshot, relying on a do-

main knowledge or cell granularity if no domain knowledge. Figure 2.1(a) shows

an example of spatiotemporal data which are stored and accessed by snapshot-

grid model. Based on the snapshot and grid, the spatiotemporal data are easily

transformed into transactions of cell ids, so that the conventional pattern mining

techniques [1, 2] can be seamlessly employed in spatiotemporal data mining.

• Event model. Event model emphasizes the mutual relation of event pairs and a

global relation of dataset through some existing distance functions and similarity

measure. The relation does not rely on any domain knowledge but a spatiotempo-

ral distance definition. Figure 2.1(b) shows an example of event model, in which
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the events are in X-dimension and time-dimension for easy illustration and dash

arcs are boundaries of the event influence range. The spatial access techniques

are usually employed to facilitate the access and computation of spatiotemporal

distance.
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(b) Event model

Figure 2.1: An example of spatiotemporal database

2.2.1 Snapshot-grid model

[72] is an early work of spatiotemporal mining based on grid-snapshot model. In this

work, Tsoukatos et.al impose a grid on the spatial plane so that each event is rep-

resented by a cell id of the grid. A spatiotemporal sequential pattern has the form

IS1 → IS2 → . . . → ISn to describe a frequent event sequence, where two neighbor-

ing items have both spatial and temporal constraints. More specifically,IS1, . . ., ISn

all occur in the same cell and each neighboring item pair,ISi−1 and ISi, happens in

two consecutive snapshots. This work utilizes a lattice structure to enumerate candi-

date sequential patterns. Tsoukatos et.al proposes the algorithm DFSMINE to mine
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all maximal sequential patterns in the depth first search manner. The limitations of this

work are that the patterns largely depend on the pre-imposed grid and all items in a

sequential pattern must occur in the same cell, which is a strong spatial constraint.

Flow patterns [79, 78] partially alleviate the spatial constraint in the spatiotemporal

sequential patterns [72]. Like spatiotemporal sequential patterns, a flow pattern also has

the form IS1 → IS2 → . . . → ISn. Each neighboring item pair,ISi−1 and ISi, occurs

in two neighboring cells (or the same cell) and happens in two consecutive snapshots,

which is a relaxed spatiotemporal constraint. Compared to spatiotemporal sequential

patterns, flow patterns contain more knowledge due to the relaxed spatiotemporal con-

strain, which also lead to great increase of candidate patterns. An Apriori-like algorithm

FlowMiner is proposed to efficient mine the flow patterns. However, FlowMiner still

relies on the pre-defined spatial neighbor definition based on grid.

The pervious two works partition the spatial plane by imposing a uniform grid,

Verhein et.al [74] further alleviate this limitation by allowing the use of domain knowl-

edge to manually partition the spatial plane. They define the spatio-temporal regions,

stationary regions and high traffic regions, and further define the spatio-temporal associ-

ation rules called STAR, denoted by (r i ,T Ii ,q) → (r j ,T Ii+1), wherer i andr j are dense

regions,T Ii and T Ii+1 are two consecutive time intervals andq is a selection predi-

cate. The algorithm STAR-miner mines spatio-temporal association rules by devising a

pruning property based on the high traffic regions. However, in spite of the flexibility

of non-uniform region partition, their work falls into the category of grid model, which,

as mentioned, may cause information loss.

In summary, grid model is a simple but effective model to transform spatial data

into spatial identifier, such that the spatiotemporal mining may be simplified and some

existing pattern mining algorithms could be applied directly. However, grid model has

two major problems, which are summarized as follows. First, grid model is not adaptive
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to handle different datasets. It needs different pre-knowledge or cell granularity to han-

dle different datasets. Second, grid model is not robust to handle uncertain data, while

the uncertainty is ubiquitous in spatial data because of both equipment limitations and

man-made error.

2.2.2 Event model

Spatial association rule [41] is an early work on the research of spatial relationship

among spatial event. The work defines a set of predicates such as “adjacentto”, “close to”,

“within” and so on, and a set of hierarchies for data relations. This rule can describe

how frequent one or more predicates occur in the spatial database. Based on the hier-

archical topology relations, the proposed solution converts spatial database into trans-

action database, such that spatial association rules mining problem is transformed into

conventional association rule mining.

Spatial collocation pattern [63, 51, 31] is another kind of spatial patterns. This

pattern presents a set of event types which are frequently located close to each other,

and its statistical foundation is based on Ripley’s K function [58, 14]. Spatial colloca-

tion pattern is first proposed in [63] and further improved in [31]. Their solutions are

based on theevent centric model, where aninstanceof a patternP is a set of objects

that satisfy the unary (feature) and binary (neighborhood) constraints specified by the

pattern’s graph. For example,{a1,b1, c1} is an instance supporting the clique pattern

P = {a,b, c}, if the distance of any two instances is not more than the given thresh-

old σ. Two measures, participation ratio and prevalence, are developed to evaluate the

candidate patterns. The prevalence is a monotonic measure to allow iterative pruning.

Based on these concepts, an Apriori-like approach called Co-location Miner is devel-

oped to find all the frequent collocation patterns. Co-location Miner initially performs

a spatial join to retrieve object pairs which are close to each other, and then it uses
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the Apriori-based candidate generation algorithm to generate the candidates of length

(k+1)-pattern fromk-patterns and validate the candidates by joining the instances of the

k-patterns which share the firstk-1 feature instances. Similarly, [51] studies the same

problem to find sets of services located close to each other. This work also presents

an Apriori-like algorithm. Different from Co-location Miner, it uses a Voronoi diagram

and a quaternary tree to improve running time. However, the algorithms based on event

centric model require an expensive spatial-join operation, so they are not scalable to the

database size, i.e., the event number.

To alleviate the problem of event centric model, a few works [90, 87, 85, 77] focus

on the issue of decreasing the number of spatial-join operation. Zhang et.al [90] utilize

a space partitioning approach to partition the map into many buckets and distribute the

events into corresponding buckets based on the event positions. The main advantage of

this space partitioning approach is that one bucket maintains all possible neighbors for

each event which is in this bucket. Hence, the mining algorithm can perform an inde-

pendent spatial-join operation on each bucket and summarize the results of all buckets.

Yoo et.al [87, 85] propose partial-join and join-less approaches to reduce the number

of spatial-join operation. The key idea of both algorithms is to enumerate and sort all

the neighboring instances into a projected database during the preprocessing phase, and

focus on the projected database to prune instances. Similarly, Wang et.al [77] also em-

ploy the projected database to prune instances, but they propose a summary structure

to store the necessary position information of events, and two hash-based indices to

facilitate information retrieval operations in the summary-structure.

Celik et.al [8] extend the concept of collocation pattern and propose the mixed-drove

spatiotemporal co-occurrence patterns which present the collocation patterns frequently

over time. They employ a time prevalence to measure the time confidence of collocation

pattern. They design a Apriori-like algorithm to prune the candidates. Yoo et.al [86]
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propose a co-evolving collocation patter query. Given a sequence of prevalence as a

query, this work searches the collocation patterns whose normalized Euclidean distance

between patterns’ prevalence over the time and the query is less than a distance thresh-

old. They employ lower bounding distance, instance-level upper bound and event-level

upper bound to prune the candidate collocation patterns.

Huang et.al [32, 33] propose an extension of event model from spatial domain to

spatiotemporal domain. Depending on the neighborhood parameters, each event has

the spatiotemporal relationship to both spatially and temporally close events. They

introduce the spatiotemporal sequential patterns of event data and use a sequence in-

dex as the significance measure for spatiotemporal sequential patterns. They propose

an algorithm called Slicing-STSMiner for mining spatiotemporal sequential patterns.

Slicing-STSMiner employs the temporal slicing to partition the data set into overlap-

ping time slices, processes each slice separately, and recovers the whole patterns across

slice boundaries due to the unidirectional property of time.

In summary, event model has less preprocessing than snapshot-grid model, but event

model requires expensive spatial-join operations in mining, which is the major disad-

vantage of event model. Using the distance threshold as the spatiotemporal constraint,

event model is also sensitive to noise data. This happens especially when the event

distances are around the boundary of distance threshold. In addition, existing work on

event model focus on the single feature events, not the combined feature events. There-

fore, they can only discover long, single point sequences, i.e., sequences which occur

multiple times at a specific position. They are unable to find sequential patterns which

involve multiple features. In Chapter 3, we propose a novel event model based method

to mine sequential patterns in event sequences.
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2.3 Spatiotemporal mining in moving object database

The data mining of moving object data has emerged as a hot topic due to the increas-

ing use of wireless communication devices. There are two sampling schemes to record

the trajectories of moving objects: Uniform sampling and non-uniform sampling. Uni-

form sampling scheme records the object locations at every fixed time duration, while

non-uniform sampling scheme records the object locations only if the velocity, the di-

rection, or the other statuses change. Non-uniform sampling scheme greatly decreases

the amount of data, but it results in greater research challenges because the snapshot

model does not work on the non-uniform sampling data.

We also notice that the discovered patterns can be categorized into synchronous

patterns and non-synchronous patterns. The synchronous patterns focus on the syn-

chronous movement of some moving objects. The non-synchronous patterns focus on

the common movement paths of moving object where they may not move together.

Based on the sampling scheme in moving object data and the presence of syn-

chronousness in patterns, existing works can be classified into five categories as fol-

lows.

• Shape-based. The trajectory data do not include temporal information, so the data

analysis and mining are performed on the shape of trajectories.

• Fixed duration and synchronous patterns (FDSYN). The trajectories are sampled

with the fixed time duration, and the data analysis and mining are performed

based on snapshot analysis.

• Non-fixed duration and synchronous patterns (NFDSYN): The trajectories are

sampled with the non-fixed sampling rate so that the time durations between two

sampling points may not be the same, and the data analysis and mining are per-

formed based on a variant of snapshot analysis.
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• Fixed duration and non-synchronous patterns (FDNONSYN). The trajectories

are sampled by a fixed time duration, and the data analysis and mining are per-

formed in a non-synchronous event/object analysis manner.

• Non-Fixed duration and non-synchronous patterns (NFDNONSYN). The trajec-

tories are sampled by a non-fixed sampling rate, and the data analysis and mining

are performed in a non-synchronous event/object analysis manner.

We summarize the related work of moving object data mining by the five categories

above and four data mining tasks in Table 2.2.

Table 2.2: A summary of related work on moving object database mining

Frequent Pattern miningClustering Prediction Classification
Shape-based [7] [22, 43] [42]
FD SYN [48, 83] [46, 36] [34]
NFD SYN [60, 35, 81]
FD NONSYN
NFD NONSYN [25] [50] our work in Chapter 6

2.3.1 Frequent Trajectory Pattern Mining

In the category of shape-based, Cao et.al [7] study the problem of discovering the fre-

quent repeated moving object paths based on the trajectory shapes. They do not utilize

the grid partition strategy. Instead, they initially approximate trajectories by line seg-

ments, then discover frequent singular patterns from the segment set, finally perform

mining using a substring tree. The output patterns are sequences ids, which are ob-

tained from the influential regions of segments.

By snapshot based pattern mining, there are several existing work on mining sequen-

tial patterns in moving object databases. Mamoulis et.al [48] define periodic patterns

in a long trajectory. Their solution is similar to snapshot-grid model. Given a grid, it
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partitions the entire spatial spaceS into n non-overlapping regionsr i, 1 ≤ i ≤ n, such

that S = r1 ∪ r2 ∪ . . . ∪ rn and for any two regionsr i ∩ r j = φ, 1 ≤ i, j ≤ n. The

spatiotemporal data are translated into cell sequences. To overcome the disadvantage

of snapshot-grid model mentioned in Section 2.2, Mamoulis et.al apply a density-based

clustering to discover the dense clusters as the valid regions. To find spatiotemporal pe-

riodic patterns, they develop a two-phase top-down method. First, it uses a hash-based

method to retrieve all frequent 1-patterns (i.e., a set of valid clusters), and replaces

the trajectories in the database using cluster ids. Next, it uses the same methodology

of maxsubpattern-tree algorithm to discover all the frequent patterns. Yang et.al [83]

address the imprecise trajectories of moving objects since the sampling points are im-

precise in real world applications. They apply the snapshot-grid model where the cell

centers serve as the candidate locations of patterns, and propose a probability model to

describe the uncertain support of pattern.

Two existing work focus on pattern mining in non-uniform sampling data. Sacharidis

et.al [60] investigate the problem of maintaining hot motion paths, i.e., routes frequently

followed by multiple objects over the recent past. Jeung et.al [35] focus on the discov-

ery of object groups that have travelled together from some consecutive time intervals.

They adopt a trajectory simplification technique to select the necessary snapshots for

analysis. They apply the filter-and-refinement paradigm to reduce the overall compu-

tational cost. Similar to the convoy in [35], Wang et.al [81] introduce the valid group

which is a group of moving users that are within a distance threshold from one another

for at least a minimum time duration, but [81] focuses on the mining of maximal valid

groups. An efficient algorithm called VGBK is proposed to identify maximal valid

group by enumerating all maximal cliques in an undirected graph.

To discover non-synchronous movement in moving object data of non-fixed sam-

pling rate, Giannotti et.al [25] introduce the trajectory patterns which are the sequence
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of dense areas associated with durations. During preprocessing, the dense areas named

Region-of-interests (RoIs) are extracted and each trajectory is translated into a sequence

of RoIs which are associated with the durations between two neighboring RoIs. Each

trajectory is a temporally annotated sequences, so the frequent RoI sequences (i.e. tra-

jectory patterns) are mined by the temporal-annotated pattern mining algorithm [24],

which follows the projected database based sequential pattern mining paradigm. How-

ever, the main problem is how to select the proper parameters to control the granularity

of Region-of-Interests (RoI), as too large granularity damage the pattern semantics and

too small granularity results in a small number (or none in worst case) of patterns.

2.3.2 Trajectory Clustering

The early work of trajectory clustering is [22], in which Gaffney et.al propose a mixed

model to cluster trajectories by considering a trajectory as a whole. Gaffney et.al uti-

lize a probability density function to model the observed trajectories and adopt an

Expectation-Maximization algorithm to train and obtain the local optimal probability

density function. Lee et.al [43] propose a different approach which considers a par-

tial trajectory i.e., segments, as the basic units for clustering. They propose a partition

and group clustering framework which first partitions the trajectories into line segments

guided by MDL principle, then groups the line segments using a variant of density

based clustering algorithm. Both works above are based on the shapes of trajectories

and do not consider the temporal information of moving object data.

Moving cluster detection [46, 36] considers the temporal information into cluster-

ing. Moving cluster is a group of objects in which a majority of members move together

for some continuous snapshots. The main idea for this problem is to identify the clusters

on snapshots by applying the existing clustering algorithms, like micro-clustering [46]

and DBSCAN [36], and summarize the clusters which have common objects over time
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slices (snapshots). In [46], the bounding rectangles are employed to measure the com-

pactness of the moving micro-clusters. If the size of the bounding rectangle exceeds

a certain threshold, the micro-cluster is split. In contrast, Kalnis et.al [36] measure

the similarity of two clusters by the percentage of common object identifiers. They

not only propose two exact moving cluster detection algorithms, but also propose an

approximate algorithm using grid and a process similar to video compression.

2.3.3 Moving Object Prediction

Moving object location prediction [34, 50] is seen as the application of moving object

patterns based on one of the two assumptions that the moving object movement obeys its

historical paths or the frequent paths of the other moving objects. Jeung et.al [34] pre-

dict the location based on the first assumption. They employ the periodic patterns [48]

from the historic trajectory of the moving object to predict the positions of this object.

A trajectory pattern tree is built to accelerate the pattern search in the later phase of

prediction. Monreale et.al [50] predict the future position of moving objects based on

the second assumption, i.e., the moving objects follow the common paths of the other

moving objects. Monreale et.al employ trajectory patterns [25], which are the natural

way to present such common paths of moving objects, to predict the future positions

of moving objects. The trajectory patterns are organized in a compact structure called

T-pattern tree to facilitate the prediction.

2.3.4 Trajectory Classification

Trajectory classification is a rather new research problem. Previous work on classify-

ing trajectories are based on the feature vector (e.g., the maximum velocity, direction)

derived from the whole trajectory [6]. The classification accuracy drops when handling

complex trajectory datasets consisting of trajectories of varying lengths. To alleviate
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this problem, Lee et.al [42] propose a classification framework to partition the trajec-

tories into line segments and derive two kinds of features, regions and representative

trajectories. Regions are used to distinguish the activity areas of different trajectories,

which are obtained by partitioning the spatial plane guided by MDL. The representative

trajectories are used to summarize the common paths of different trajectories, which

are obtained by the average paths of trajectory clusters. A major limitation of [42] is

that both regions and representative trajectories are merely shape based features, which

are not able to distinguish the moving objects of different velocities. In addition, the

representative trajectories are skewed to the dominant trajectory class. In Chapter 6, we

propose a novel classification approach based on the temporal information associated

patterns.



Chapter 3

Mining Mutation Chains in Biological

Sequences

Pattern mining in biological sequences helps in understanding the structure, function,

and organization of cellular systems. Existing works on general sequential pattern min-

ing [71, 88, 53] and biological sequential pattern mining [80, 30] are proposed to find

the sequential patterns which are repeating subsequences in biological sequences. How-

ever, to the best of our knowledge, there is no existing work which considers the spa-

tiotemporal relationship of biological sequences. This relationship is important to un-

derstand the virus mutation of infectious disease such as influenza.

The annual and occasionally pandemic influenza has become an alarming source of

morbidity, mortality, and economic burden to the world. The influenza virus, in exis-

tence for centuries, has been continually infecting both humans and animals. It is able to

do so because the genes of the influenza virus can change its protein coat (i.e., antigens)

from time to time by mutation so as to find new susceptible non-immune populations

to infect. In addition, the virus has an air-borne disease transmission mechanism which

enables it to spread across geographical regions quickly. In the case of influenza A

H5N1 virus, its natural reservoir in aquatic birds enables it to be spread rapidly over

30
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large distances geographically. The rapid increase in population density, air travel and

interconnections between countries and continents further escalates the speed of disease

transmissions.

Thus, it is highly desirable to present how mutations happen and when and where

the mutations occur, i.e., we need to know the highly-mutated regions (hotspots) in

virus sequences at one geographical location and their changes when the virus moves to

another location. However, existing sequence mutation analysis [37] and phylogenetic

analysis [16] cannot reveal the spread of mutation patterns as they do not correlate the

mutations with where and when specific mutations have occurred. Existing sequential

pattern mining algorithms [2, 88, 54] did not consider the spatiotemporal conditions.

In this chapter, we propose to mine mutation patterns which take the spatiotemporal

features of sequences into account. The likelihood of whether a viral sequence mutates

to another viral sequence is dependant on whether they occur within some time window

period, the connectivity between the locations where they occur and their sequence

similarity. We formally define the concept ofk-mutation chains to present the two

dimensional mutation patterns. We propose an efficient algorithm to minek-mutation

chains in biological sequences. We also apply the mining algorithm in the Influenza A

virus database to discover mutation patterns.

3.1 Motivation

Mutations in influenza virus isolates have been found to be responsible for new out-

breaks in Russia [40] and India [49]. Existing mutation analysis methods use sequence

alignment and sequence comparison to identify point mutations [37]. They derive a

model in the form of an amino acid translation probability matrix to estimate the future

composition of amino acids. However, this model cannot reveal a virus’s spread patterns

as it does not correlate them with where and when specific mutations have occurred.



32

The fast-changing, fast-spreading virus render vaccines developed in advance of a

pandemic to become less effective over time. A recent trend is to develop region-specific

vaccines which requires the spatial and temporal dynamics of the viral mutations, i.e.,

we need to know how highly-mutated regions (hotspots) in virus sequences at one ge-

ographical location change when the virus moves to another location over time. We

introduce the notion ofmutation chains to capture mutation patterns with geographi-

cal spread over time.

Furthermore, current research has focused solely on identifying single-point mu-

tations in the viral sequence. Single-point mutations are small mutations that alters

only one nucleotide at a time. They are responsible for the so-called “antigenic drift”,

in which the virus gradually accumulates more and more such mutations, eventually

causing them to become new strains. In contrast, “antigenic shift” is caused by a large

and sudden mutation that involved the changing of many nucleotides, often leading to

major outbreaks. This is because the more a virus has mutated, the more likely that

the population’s immune systems would not recognize it, and therefore would not have

immunity to it. As such, in this chapter, we not only mine for single-point mutations

(1-mutation), but we will also detect larger genetic changes that involved more than one

(say, k) consecutive nucleotides (k-mutations) in the viruses’ sequences as they spread

over time and space.

Table 3.1: An example of virus protein sequence databases
ID Year Aligned Sequences Country Host
vs1 1985 MNPNQKABCD Mexico Human
vs2 1987 MNPNQKFBCC USA Human
vs3 1988 MNPNQKBCAD Canada Human
vs4 1989 MNPNQKADDA Russia Swine
vs5 1988 MNPNQKBAFC Spain Human
vs6 1993 MNPNQKABDA Vietnam Avian
vs7 1991 MNPNQKBDDF Iceland Avian
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Table 3.1 shows an example virus sequence database where each sequence is aligned

with the others and a representative sequence segment of ten positions are shown for

illustration. Positions 1 to 6 are conserved regions for the viruses because no muta-

tion occurs at these six positions, while positions 7 to 10 are highly-mutated regions

(hotspots). To further understand how sequences mutate at hotspots, we observe that

vs1 andvs2 occur within a viable period of two years with a strong sequence similarity

(i.e., eight positions have the same amino acids and two positions are different). These

two virus are found in Mexico and USA, countries which share a common border. These

factors provide evidence thatvs1 could possibly mutate tovs2: “A” mutates to “F” at

position 7, and “D” mutates to “C” at position 10. Extending this one step further, we

observe thatvs2 has a relatively high sequence similarity withvs5 (only positions 7, 8

and 9 are different) and although Spain is not geographically close to USA, there are

extensive air travel patterns between the two countries. Sincevs5 occurs in Spain af-

ter vs2 in USA, we suspect that the mutation spread could originate from Mexico and

spread to USA, and further on to Spain. We denote this mutation chain as〈7, ABCD→

FBCC→ BAFC 〉, where 7 indicates the start position of the hotspot.

A mutation chain is frequent if it is supported by an adequate number of sequence

chains. Detecting frequent mutation chains is important to understand mutation behav-

iors which are vital to vaccine research targeting on the mutations. However, frequent

mutation chain mining is computationally challenging because many sequences could

possibly mutate to the others and the mutations could occur numerous times, leading to

a large number of mutated sequence chains.

It is not feasible to use existing sequential pattern mining algorithms [2, 88, 54] to

find mutation chains due to two reasons. First, sequential pattern mining is performed

on the transactions, which are expensive to generate mutation chains as transactions

to feed into sequential pattern mining algorithms. Second, sequential pattern mining
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is not position-specific, and after performing sequential pattern mining algorithms for

each position in the virus sequence, we still require some way to efficiently combine the

sequential patterns from different positions into thek-mutation chains. The existing spa-

tiotemporal mining techniques [79, 33] can only discover long, single point mutations

(i.e., mutations which occur multiple times at a specific position). They are unable to

find co-mutations, which involve multiple positions. Combining the long, single point

mutations again requires an expensive post-processing step.

In this chapter, we design a framework that integrates both horizontal (across multi-

ple positions) and vertical mining (increasing depth of mutation chains) to perform early

pruning of infeasible mutation chains, leading to algorithms that find highly mutated re-

gions and identify how sequences mutate in virus sequences in a real world scenario.

We take advantage of the growing availability of spatial and temporal information in

public biological databases such as the SWISS-PROT protein sequence data bank [3] to

discover meaningful mutation chains in the viral genetic sequence data. To the best of

our knowledge, the problem of discovering patterns of mutations in the various genetic

subtypes of the virus that takes into account of the spatial and temporal variations has

not been explored by current bioinformatics research. We summarize the contributions

of this work as follows:

• We define the problem of mining mutation chains and introduce a measure called

mutation index to capture the confidence of a mutation.

• We present an integrated algorithm to discover contiguous subsequences of muta-

tions. The algorithm utilizes two data structures to facilitate the mining process.

The PointMutation tree summarizes position-specific single character mutations

while the compact MaxMutation tree is designed to store the complete set of con-

tiguous subsequences of mutations (k-mutations).

• We propose two pruning strategies to improve the mining efficiency. The first
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strategy prunes positions which are impossible to have any valid mutations based

on the lower and upper bounds of their entropy measures. The second strategy

is a selective join that enables us to prune unnecessary sequence chains based on

the previous rounds of mining results.

• We evaluate the algorithms on both synthetic and real world datasets. Exper-

iments on the real world Influenza A virus database provide insights into the

spread and mutation of the highly pathogenic Avian H5N1 influenza virus and

the recent H1N1 swine flu.

The remainder of this chapter is organized as follows. Section 6.2 gives the pre-

liminaries and problem statement. Section 3.3 presents both the bottom-up and the

top-down mutation mining frameworks, and proposes two pruning techniques. In Sec-

tion 3.4 we evaluate our algorithms on both synthetic datasets and real-world datasets.

Finally, we conclude our work in Section 3.5.

3.2 Definitions and Problem Statement

A biological sequence database containsn tuples where each tuple comprises of the

viral sequencevs, sequence idsid, as well as the location (x, y) and timet where the

sequence was isolated or reported. The viral sequences are preprocessed by a multiple

sequence alignment so that all sequences have identical number of positions where

each position is an amino acid or a gap, denoted as “−”. For protein sequences, 20

standard amino acids are available. Given a viral sequence, the amino acid or gap at

p-th position is said to be thep-th character in the viral sequence. After alignment, the

p-th character of a viral sequence will have a correspondingp-th character in another

viral sequence.
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Figure 3.1: Example to show the likelihood of a virus mutating to another

We describe the mutation from a viral sequence to another viral sequence by position-

specific character mutations. For example, if a sequenceA−CXEmutates to another se-

quenceABCDE, we say thatA, C, E remain unchanged at positions 1, 3, 5 respectively,

while B is inserted at position 2, andX is changed toD at position 4.

The likelihood of whether a viral sequencevsmutates to another viral sequencevs′

is dependant on whether they occur within some time window period, the connectivity

between the locations where they occur and their sequence similarity. Figure 3.1 shows

the viral sequences from Table 3.1 with highly-mutated regions only, and a simplified

likelihood model in the form of a cylinder with a circular base centered at (x, y), radius

δ and heightτ, denoting that a virus has a high probability of mutating to another virus

if they occur in the same cylinder. From the two cylinders in Figure 3.1,vs1 is likely to

mutate tovs2 andvs3, while vs2 is likely to mutate tovs3 andvs5. These mutations are

indicated byvsi → vsj.

We useNB(vs) to denote the set of viruses that are likely to be mutated fromvsand
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define point mutation as follows.

Definition 1. Let cp and c′p be the p-th characters of sequences vs and vs′ respectively.

cp is said topoint mutateor 1-mutateto c′p, if and only if vs′ ∈ NB(vs) and cp , c′p.

We denote the point mutation at position p as〈p, cp→ c′p〉.

In addition to the point-mutations, longer mutations can also occur over a set of

consecutive positions on the viral sequence. We introduce the notion of k-mutations to

capture these:

Definition 2. Let cp . . . cp+k−1 be a subsequence of characters of viral sequence vs in po-

sition range [p, p+k-1], and c′p . . . c
′
p+k−1 to be a subsequence of characters of viral se-

quence vs′ in position range [p, p+k-1]. cp . . . cp+k−1 is said tok-mutateto c′p . . . c
′
p+k−1,

if and only if vs′ ∈ NB(vs) and cp → c′p, cp+1 → c′p+1, . . ., cp+k−1 → c′p+k−1. We denote

this k-mutation starting at position p as〈p, cpcp+1 . . . cp+k−1→ c′pc
′
p+1 . . . c

′
p+k−1〉.

A sequence pair (vs1, vs2) is said tosupport the k-mutation 〈p, cp . . . cp+k−1 →
c′p . . . c

′
p+k−1〉 if vs2 ∈ NB(vs1) and the sequence of characters starting at positionp

in vs1 and vs2 corresponds tocp . . . cp+k−1 and c′p . . . c
′
p+k−1 respectively. For exam-

ple, the sequence pair (ABCD,CDMA) supports the 3-mutations:〈1,ABC→ CDM〉,
〈2, BCD→ DMA〉, as well as the 4-mutations:〈1,ABCD→ CDMA〉.

As the mutation of the virus is an ongoing operation against the population’s im-

munity system, a mutation could occur over multiple time points leading to a mutation

chain. We define ak-mutation chain overT time points as follows.

Definition 3. A k-mutation chain is given by〈p, s1→s2→ . . . si→si+1 . . .→sT〉 where

si is said to be the i-th statein the k-mutation chain where si is a sequences of length

k, i ∈ [1,T]. In a k-mutation chain〈p, s1→ s2→ . . . si→si+1 . . .→sT〉, si→si+1 denotes

the i-th k-mutation〈p, si → si+1〉 where si and si+1 are biological sequences of length k,

i ∈ [1,T − 1].
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(b) A 6-mutation chain

Figure 3.2: Examples ofk-mutation chains. The mutation chain in (a) is a sub-mutation
of the mutation chain in (b)

A chain of sequences,vs1→vs2. . .→vsT , is said tosupport the k-mutation chain

〈p, s1→s2→ . . .→sT〉, if (vsi , vsi+1) supports thei-th k-mutation〈p, si → si+1〉 for ∀i ∈
[1,T − 1]. A k-mutation chain,M1 = 〈p, s1→s2→ . . .→sT〉, is a sub-mutation of a

k′-mutation chain,M2 = 〈p′, s′1→s′2→ . . .→s′T′〉, denoted asM1 v M2, if and only if

1. p′ ≤ p ≤ p′ + k′ − k; k ≤ k′; T ≤ T′;

2. ∃r ∈ [0,T′−T] and∃c ∈ [0, k′−k] such thatsi(q) = s′i+r(q+c) for ∀i ∈ [1,T] and

∀q ∈ [1, k], wheresi(q) ands′i+r(q + c) are theq-th character ofsi and (q + c)-th

character ofs′i+r , respectively.

Specifically,M1 = M2 if M1 v M2 andM2 v M1. For example,〈1,AB→ BD〉 v
〈0,CAB→ ABD〉 v 〈0,ATGP→ CABC→ ABDT〉.

Figure 3.2 shows a 3-mutation chain and a 6-mutation chain, and the 3-mutation

chain is a sub-mutation of the 6-mutation chain. The mutations, indicated by the shaded

regions, may be biologically significant since they are considered as hotspots and de-

serve further investigations.

Suppose we have a sequence chain (CABABDE → ABDBDFE) that supports the

3-mutation〈1,CAB→ ABD〉. ABandBD are substrings ofCABandABDat position 2

respectively. Clearly, if a sequence supportsCAB→ ABDat position 1, it must support
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AB → BD at position 2. Hence, if a sequence chain support ak-mutationM, it will

support allM’s sub-mutations.

Let S upport(M, i) be the collection of sequences belonging to a sequence chain

supportingM and are on thei-th state of their respective chain. Thesupport setof a

k-mutation chainM = 〈p, s1→s2→ . . .→sT〉, denoted asS upportS et(M), is an ordered

list of T sequence collections,S upportS et(M) = [S upport(M,1), . . . ,S upport(M,T)].

Definition 4. The support of M= 〈p, s1→s2→. . .→sT〉, denoted as S upport(M), is

defined as S upport(M) = mini∈[1,T] |S upport(M, i)|.

Figure 3.1 gives aBS D= {ABCD, FBCC, BCAD, ADDA, BAFC, ABDA, BDDF}.
Let M = 〈2, BC→ CA→ DD〉 to be a 2-mutation chain. Since there are two sequence

chains inBS D: (ABCD, BCAD, ADDA) and (FBCC, BCAD, BDDF) that support

M, we haveS upportS et(M) = [S upport(M,1), S upport(M,2), S upport(M,3)], such

that S upport(M,1) = {ABCD, FBCC}, S upport(M,2) = {BCAD}, S upport(M,3) =

{ADDA, BDDF}. ThenS upport(M) = min{2,1,2} = 1.

Definition 5. Let BS D be a biological sequence database, and M= 〈p, s1→s2→ . . .→sT〉
be a k-mutation chain. Let Count(c, p) be the number of sequences in BS D that have

character c at position p. We define the mutation ratio of string si mRatio(M, i) as:

mRatio(M, i) =
|S upport(M, i))|

MAXq∈[1,k](Count(si(q), p + q− 1))

where si(q) is the q-th character of si.

ThemRatiomeasures the fraction of sequences that supports mutation M at thei-

th state to the sequence that happen to have the charactersi(q) at positionp + q − 1,

where 1≤ q ≤ k. Intuitively, a high value ofmRatioat the i-th state indicates that

the probability of the mutation occurring at thei-th state is high. Consider our running

exampleM = 〈2, BC→CA→DD〉. We compute the counts of characters B and C at
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positions 2 and 3 respectively:

Count(B,2) = |{ABCD, FBCC,ABDA}| = 3

Count(C,3) = |{ABCD, FBCC}| = 2.

With this, we compute themRatioas follows:

mRatio(M,1) =
|S upport(M,1)|

MAX{Count(B,2),Count(C,3)}
= 0.67.

Similarly, mRatio(M,2)=1.0 andmRatio(M,3)=0.67.

Definition 6. The mutation index of M= 〈p, s1→ s2→ . . .→ sT〉, denoted as mIndex(M),

is defined as mIndex(M) = mini∈[1,T] mRatio(M, i)

In our example,mIndex(M) = min{0.67,1.0,0.67} = 0.67. The mutation index

is essentially a variant of allconfidence [52], a correlation measure satisfying anti-

monotone property. Hence, the mutation index also satisfies anti-monotone property.

Lemma 1. Anti-monotonicity Property.Given two mutation chains M1 v M2, mIndex(M2) ≤
mIndex(M1).

Proof: LetM1 = 〈p, s1→s2→ . . .→sT〉 be ak-mutation chain, andM2 = 〈p′, s′1→s′2→ . . . s′T′〉
be ak′-mutation chain. Without loss of generality, letM1 v M2, so that we have 1)

∆p = p − p′; 2) ∃r, si(q) = s′i+r(q + ∆p) for 1 ≤ q ≤ k, 1 ≤ i ≤ T. By definition of

sub-mutation, if a sequence chainvs1 → . . . → vsT supportsM2, it must also support

M1. So∀1 ≤ i ≤ T,∃r, |S upport(M2, r + i)| ≤ |S upport(M1, i)|. Therefore,∀1 ≤ i ≤ T,
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we have

mRatio(M2, r + i)

=
|S upport(M2, r + i)|

MAXq∈[1,k′](count(s′r+i(q), p′ + q− 1))

≤ |S upport(M2, r + i)|
MAXq∈[1,k](count(s′r+i(q + ∆p), p + q− 1))

≤ S upport(M1, i)|
MAXq∈[1,k](count(si(q), p + q− 1))

= mRatio(M1, i)

By Definition 5,

mIndex(M2)

= min{mRatio(M2,1), . . . ,mRatio(M2,T
′)}

≤ min{mRatio(M2,1 + r), . . . ,mRatio(M2,T + r)}

≤ min{mRatio(M1,1), . . . ,mRatio(M1,T)}

= mIndex(M1)

�

Given a mutation index thresholdminIndexand a support thresholdminS up, a k-

mutation chainM is valid if and only if mIndex(M) ≥ minIndex, andS upport(M) ≥
minS up.

In biology, translation probability matrix [37] is utilized to estimate the future com-

position of amino acids. The valid point mutations are related to the translation proba-

bility matrix because they can be directly derived from the elements of high probability

in the translation probability matrix. Further, the validk-mutation chains are the ex-

tension of valid point mutations by identifying the continuous mutated amino acid se-

quence positions and exploring the times of mutation. Therefore, the validk-mutation
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chains present more knowledge on amino acid mutations than the valid point mutations

(or translation probability matrix).

k-Mutation Chain mining Problem (k-MCP). Given a biological sequence database

BS D, minimal support minS up, minimal mutation index threshold minIndex, minimal

mutation length mink, we want to find all k-mutation chains M, where k≥ min k,

mIndex(M) ≥ minIndex and S upport(M) ≥ minS up.

3.3 Mining Mutation Chains

Next, we present our approach that integrates the search for the largestk-mutations in

sequences with the discovery of chains ofk-mutations. We first produce sequence pairs

that satisfy the likelihood requirement for mutation.

3.3.1 Generate Valid Point Mutations

We can find point mutations naively by enumerating the character combinations and

checking the validity of each combination via a database scan. To avoid unnecessary

candidate generation, we construct a PointMutation tree to maintain the candidate point

mutations of each position.

The PointMutation tree has three levels. The root node hasL entries, whereL is the

sequence length. Each entryp points to a child node that hasm entries corresponding

to them characters that can occur at positionp, 1 ≤ p ≤ L, 1 ≤ m≤ |Σ|, whereΣ is the

alphabet of database. Each entry consists of a characterc and a pointer to a leaf node.

Each leaf node has a set of entries, each of which corresponds to a mutation fromc to

c′ at positionp, as well as the set of sequence pairs that support this mutation.

We first initialize a PointMutation tree with a root node,L non-leaf nodes and their

corresponding leaf nodes. The tree can be completed by scanning the set of neighboring
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Figure 3.3: PointMutation tree for Figure 3.1

sequence pairsSF 2 once. For each sequence pair (vsi , vsj) ∈ SF 2, we extract the

characters at positionp, denoted as (vsi(p), vsj(p)), and create an entry for the character

vsi(p) in the p-th non-leaf node if it does not already exist. We also create an entry in

the leaf node for the charactervsj(p) if it does not already exist andvsj(p) , vsi(p), and

link the leaf node to (vsi , vsj).

Figure 3.3 shows the PointMutation tree for our example in Figure 3.1. The root

node has 4 children since the virus sequence has length 4. The first child node has

3 entries corresponding to the characters A, B, F that occur at position 1 in the virus

sequence database. The entry corresponding to character A has 2 leaf nodes since A at

position 1 can mutate to B and F only. The entry corresponding to character B has only

1 leaf node of A, though B at position 1 can mutate to A and B. The mutation index and

support for each candidate point mutation are given at the bottom of Figure 3.3.

The PointMutation tree checks the validity of the 1-mutations as follows. During

the generation of neighboring sequence pairs, we determine the occurrences of each

characterc at a positionp, denoted byCount(c, p). The support sequence pairs of a

point mutation are obtained by the links of its corresponding leaf node. The mutation
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ratio and support are computed fromCount(c, p) and support sequence pairs. A point

mutation is valid if its mutation ratio≥ minIndexand its support is≥ minS up. If

minS up= 0.1 andminIndex= 0.6, we have 5 valid point mutations in Figure 3.3:

〈1, F → B〉, 〈2, B→ C〉, 〈2,C→ D〉, 〈3,A→ D〉 and〈3,C→ A〉.

3.3.2 Level-wise Mining

The valid point mutations need to be extended to validk-mutations by level-wise min-

ing, which is similar to the paradigm of frequent itemset mining [1]. Level-wise min-

ing approach consists of two phases. The first phase generates the candidate (k+1)-

mutations based on the existing validk-mutations. The second phase evaluates the

candidate (k+1)-mutations. The algorithm iterates the two phases until no validk-

mutations. Algorithm 1 gives the outline of level-wise mining. Candidate 2-mutations

are generated from the valid 1-mutations if their positions are consecutive. Those 2-

mutations, whose mutation ratios are no less than themin Indexand supports are no

less thanmin sup, are inserted into the valid 2-mutation set.

Subsequently, two validk-mutations

〈p, cpcp+1 . . . cp+k−1→ c′pc
′
p+1 . . . c

′
p+k−1〉 and

〈p + 1, cp+1 . . . cp+k−1cp+k → c′p+1 . . . c
′
p+k−1c

′
p+k〉

can be joined using the union operation to form a candidate (k + 1)-mutation

〈p, cpcp+1 . . . cp+k−1cp+k → c′pc
′
p+1 . . . c

′
p+k−1c

′
p+k〉.

Again, the mutation ratios of the newly generated (k + 1)-mutations are computed to

determine their validity. The mining process will stop when the set of valid (k + 1)-

mutations is empty.

Example 1. We continue the mining process of running example. We have five valid

1-mutations (shown in Figure 3.4), in which one 1-mutation are in the first position,

two are in the second position, two are in the third position. There is no 1-mutation in
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Algorithm 1 : Level-Wise-Miner
input :M1: the 1-mutations;

min sup: the minimal support;
min Index: the minimal mutation index;
min k: the minimal length of sequence mutation.

output: the sequence mutations of length≥ min k
k = 2;M = ∅;1

whileMk−1 , ∅ do2

if k ≥ min k then3

M =M∪Mk−1;4

Mk = ∅;5

foreach (k− 1)-mutation pair M1, M2 ∈ Mk−1 do6

if M1 and M2 share a common k− 2 point mutationsthen7

M = Union(M1,M2);8

insertM intoMcand;9

Mk = Evaluate(Mcand,min sup,min Index);10

k + +;11

return M.12

the fourth position. The mining process is shown in Figure 3.4. To mine the longer se-

quence mutations, we combine the 1-mutations set such that six candidate 2-mutations

are obtained. For the candidate 2-mutation M= 〈1, FB → BC〉, only one instance

(vs2, vs3)=(FBCC,BCAD) supports M, i.e., S upport(M, t1) = {vs2} and S upport(M, t2) =

{vs3}. Therefore, mIndex(M)=min( 1
max{1,3} ,

1
max{3,1} ) = 0.33. Three out of six candi-

dates have 0.0 mutation index values because no sequence pair supports them. Given

min mIndex=0.6, two candidates〈2, BC → CA〉 and 〈2,CA → DD〉 are valid 2-

mutations as their mutation index values are greater than minmIndex.

The level-wise mining algorithm generates candidate (k + 1)-mutations from valid

k-mutations. This may lead to the generation of many candidate mutations that do not

even occur in the sequence database. For example, the 2-mutation〈1, FC → BD〉 in

Figure 3.4 is generated from two 1-mutations, but it is not supported by any neighboring

sequence pairs. The top-down mining approach aims to overcome this drawback.
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BF →,1
CB →,2

DC →,2

DA →,3

AC →,3

BCFB →,1

BDFC →,1

CDBA →,2 DDCA →,2

CABC →,2 DACC →,2

Figure 3.4: The mutation lattice of level-wise mining

3.3.3 Top-down Mining

Before we describe the extension of valid point mutations to validk-mutations by top-

down mining, we introduce a set of operations for thek-mutation mining phase.

• Range(M). Given ak-mutation patternM, the range operation will return the

mutated position range [p, p + k − 1] where p is the start position ofM. We

denote the lower and upper boundaries to beRl(M) = p andRu(M) = p + k − 1,

respectively.

• Union(M1,M2). Given two mutation patterns, the union operation returns position-

specific expressions using theorderedalternation symbols in regular expression

for positions in Range(M1) ∪ Range(M2). Specifically, if we have two point

mutationsM1=〈p, c1→c′1〉 and M2=〈p,c2→c′2〉, then Union(M1,M2) is given by

〈p,[c1|c2]→[c′1|c′2]〉. For example,〈2,[a|b]→[c|d]〉 means that at position 2,a can

mutate toc, or b can mutate tod, butnot a to d, norb to c.

• Intersect(M1,M2). Given two mutation patterns, the intersect operation will re-

turn the common character for each position in Range(M1) ∩ Range(M2). Hence
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if we have two point mutationsM1=〈p,c1→c′1〉 andM2=〈p,c2→c′2〉, the intersect

at position p is given by



< p, [c] → [c′] > if c1 = c2 = c andc′1 = c′2 = c′

< p, [ε] → [c′] > if c1 , c2 andc′1 = c′2 = c′

< p, [c] → [ε] > if c1 = c2 = c andc′1 , c′2

ε otherwise

In Section 3.3.1, we generate all the valid 1-mutations. We can compact these 1-

mutations into position-specific expressions to form a maximal mutation expression,

Mmax = (R1→ R2), whereR1 andR2 are regular expressions obtained by concatenating

all the compact expressions at each positionp, 1 ≤ p ≤ L, L is the sequence length.

For example, by combining all valid point mutations in Figure 3.3, we haveMmax =

〈1, F[B|C][A|C]ε → B[C|D][D|A]ε〉.
All candidate mutations can be obtained by scanning the sequence pairs once. For

each sequence pair (vsi , vsj), we generate ahit mutationby Intersect(Mmax, M), where

M=〈1,vsi→vsj〉. For example, givenMmax = 〈1, F[B|C][A|C]ε → B[C|D][D|A]ε〉, the

hit mutation for sequence pair (ABCD, FBCC) is〈1,εBCε→εεεε〉 = ε, while the hit

mutation for sequence pair (FBCC, BCAD) is〈1,FBCε→BCAε〉 = 〈1,FBC→BCA〉.
Non-empty hit mutations will be stored and their support sequence pairs set updated

to facilitate the subsequent mining process. We design a tree calledMaxMutation tree

to store these information. In MaxMutation tree, the root node is the maximal mutation,

and the nodes are ordered based on their sub-mutation relationship:

1. A noded is the parent of a nodee if the k-mutation at nodee is a sub-mutation of

that at noded, and

2. All the sibling nodes do not have a sub-mutation relationship with each other.
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For each sequence pair (vsi , vsj), we obtain a hit mutationM = 〈p, s1 → s2〉 by in-

tersecting (vsi , vsj) with the maximal mutationMmax and ignoring positions with empty

mutationsε. We perform a breadth-first traversal of theMaxMutationtree to insert the

hit mutation. Letd be a node that contains ak-mutationMd = 〈p′, sd
1 → sd

2〉.

1. If p = p′ ands1 = sd
1 ands2 = sd

2, then insert the sequence pair (vsi , vsj) into the

support set ofd.

2. If p ≥ p′ and s1 is a substring ofsd
1 starting at positionp and s2 is a substring

of sd
2 starting at positionp, that is,M is a sub-mutation ofMd, then we create a

new nodend to store thek-mutation〈p, s1→s2〉 and attachnd as a child node of

d. The support set innd is the sequence pair (vsi , vsj).

3. If p ≤ p′ and andsd
1 is a substring ofs1 starting at positionp′ andsd

2 is a substring

of s2 starting at positionp′, that is,Md is a sub-mutation ofM, then we create a

new nodend to store thek-mutation〈p, s1→s2〉 and insertnd betweend andd’s

parent. The support set innd is the sequence pair (vsi , vsj).

4. Otherwise, create a new nodend to store thek-mutation and insert it as a child of

the root node. The support set innd is the sequence pair (vsi , vsj).

The above enumeration will miss implicit sub-mutations. Suppose theMaxMutation

tree has nodesM1 = 〈1,ABCD→ EFGH〉 and M2 = 〈1,RBCT→ JFGW〉, which

imply a sub-mutationMsub = 〈2, BC → FG〉. To ensure completeness of the patterns

mined, we need to explicitly store all such sub-mutations by checking for intersections

between thek-mutation〈p, s1 → s2〉 and the mutations in theMaxMutationtree. If

we find any non-empty intersection with a mutation at a noded, a new hit mutation is

obtained and inserted into theMaxMutationtree as described above.

Algorithm 2 gives the details of the construction process. LetMhit be the hit mu-

tation of sequence pair (vsi , vsj) andMmax. Lines 1-2 findd’s child nodes that contain
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Algorithm 2 : InsertHitMutation(Mhit, (vsi , vsj), d)
input : Mhit: the hit mutation to be inserted;

(vsi , vsj): the support sequence pair;
d: the current node;

C = {dc|dc is a child node ofd ∧ Mdc v Mhit} ;1

P = {dp|dp is a child node ofd ∧ Mhit v Mdp};2

O = {do|do is a child node ofd ∧ do < C ∧ do < P };3

if O , ∅ then4

foreachdo ∈ O do5

M′
hit= Intersect(Mhit, Mdo);6

InsertHitMutation(M′
hit, (vsi , vsj),do);7

if ∃ de, such that de is a child of d∧ Mde = M then8

Insert (vsi , vsj) into de’s support;9

else ifC , ∅ then10

Remove all nodes inC from d’s child nodes ;11

Create a nodenw of mutationMhit as a child node ofd;12

Attach all nodes inC as the child nodes ofnw;13

else ifP , ∅ then14

foreachdp ∈ P do15

InsertHitMutation(Mhit, (vsi , vsj),dp);16

else17

Create a nodenw of mutationMhit as a child node ofd;18

sub-mutations and super-mutations ofMhit. Line 3 findsd’s child nodes other than the

nodes inC andP. Lines 4-7 recursively intersectMhit and each nodedo in O, and insert

the intersection mutations intodo. Lines 8-9 insert the sequence pair (vsi , vsj) into the

support set of nodede, if de contains the mutation equal toMhit; otherwise, if noded

has a set of child nodesC that contains sub-mutations ofMhit, we create a new nodenw

to storeMhit and insertnw between noded and the nodes inC (Lines 11-13). If node

n has an empty child node setC but a non-emptyP, we call Algorithm 2 to insertMhit

into each parent node inP (Lines 15-16). If bothC andP are empty, we create a new

nodenw of mutationMhit as a child node ofd (Line 18).

Lemma 2. TheMaxMutationtree stores the complete set of candidate k-mutations.



50

Algorithm 3 : Top-Down-Miner
input :M1: the 1-mutations;

minS up: the minimal support;
minIndex: the minimal mutation index;
min k: the minimal mutation length;

output: the maximalk-mutations, wherek ≥ min k
Mmax = Union(M1) ;1

initialize the noderoot of mutation tree ofMmax;2

foreachsequence pair(vsi,vsj) ∈ SF 2 do3

Mhit = Intersect((vsi,vsj), Mmax) ;4

InsertHitMutation(Mhit, (vsi , vsj), root);5

Mk = ∅;6

TopdownEvaluate(MTree.root,minS up,minIndex,Mk);7

return Mk.8

Procedure TopdownEvaluate(d, minS up, minIndex,Mk)9

if ∃M ∈ Mk such that Md v M then10

return;11

if mIndex(Md) ≥ minIndex∧ S upport(Md) ≥ minS upthen12

insertMd intoMk;13

else14

foreachchild node dc of d do15

S upport(dc) = S upport(dc) ∪ S upport(d);16

TopdownEvaluate (dc, minS up, minIndex,Mk);17

Proof: Let the hits be generated in the orderH1, H2, . . ., Hn. We prove by induc-

tion. Wheni=1, all candidate mutations fromH1 are direct children of the root node.

Wheni = 2, let S etH1 andS etH2 be the sets of candidate mutations fromH1 andH2

respectively. For each pair ofk-mutationsh1 andh2, h1 ∈ S etH1, h2 ∈ S etH2, one of

these cases is true:

1. There exists a sub-mutation relationship betweenh1 andh2. Without loss of gen-

erality, leth1 be a sub-mutation ofh2. Thenh1 will be a child node ofh2 in the

tree.

2. There is an overlap betweenh1 andh2. In this case, the overlap must be a sub-

mutation ofh1 andh2 and is inserted as child node of bothh1 andh2.
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3. There is no overlap betweenh1 andh2. Both will be inserted as child nodes of the

root.

Thus, the lemma is true for the base cases since all candidate mutations forH1 andH2

are kept in the tree. Assume that theMaxMutationtree is complete fori = m. When

i = m+ 1, if thek-mutations ofHi overlap with the mutations of the previous hitsdH j1,

dH j2, . . ., dH jk , where 1≤ j1 ≤ . . . ≤ jk ≤ i, the overlap will be stored in some nodes

created along the pathdH j1, dH j2, . . ., dH jk starting from the root. Hence, no candidate

mutations will be missed.

�

Algorithm 3 shows the top-down mining algorithm. We first construct theMax-

Mutation tree to capture thek-mutations and their support sets (Lines 1-5). Next, we

initialize a variableMk to maintain the list of valid mutations (Line 6). Each node in

theMaxMutationtree is associated with an instance set that stores the support sets of

its ancestor nodes, including its own support set. This instance set is updated as we

traverse the tree in a depth-first manner. The instance set of a noded is used to compute

the mIndexof the correspondingk-mutation. If thek-mutation at noded is valid, we

insert it intoMk, and we do not visit the child nodes ofd. Finally,Mk contains the list

of valid k-mutations (Lines 9-17).

From Figure 3.3, we haveMmax = 〈1, F[B|C][A|C]ε → B[C|D][A|D]ε〉 by combin-

ing the valid 1-mutations at all of the four positions. We generate the hit mutations for

the six virus pairs in Figure 3.1, four of which satisfy themin k = 2. These hit mutations,

〈1,εBCε→εCAε〉, 〈1, FBCε→BCAε〉, 〈1, εCAε→εDDε〉, 〈1, εCAε→εDDε〉, are trans-

lated into thek-mutations by removing the empty mutationε: 〈2, BC→CA〉, 〈1, FBC→BCA〉,
〈2,CA→DD〉, 〈2,CA→DD〉, and inserted into theMaxMutationtree. Figure 3.5 shows

the final MaxMutation tree obtained. IfminIndex=0.6, then the candidate mutation

〈1,FBC→ BCA〉 is not valid. Its support is propagated to its child nodeMc = 〈2, BC→
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εε ]|][|[]|][|[,1 ADDCBCACBF →

BCAFBC →,1

CABC →,2

DDCA →,2

Figure 3.5: MaxMutation tree for Figure 3.1

CA〉, which leads toS upport(Mc,1) = {ABCD, FBCC} andS upport(Mc,2)= {BCAD},
such thatmIndex(Mc) = 0.67. Note that〈2, BC→CA〉 and〈2,CA→DD〉 are valid max-

imal mutations.

We can further improve the Top-Down-Miner by applying aposition pruning strat-

egywhich is based on the observation that certain positions cannot have any valid mu-

tations.

Lemma 3. Let minS up be the minimal support. Sequences corresponding to positions

[pi , · · · , pi+k−1] can support a valid k-mutation chain with t states if and only if the

entropy measure corresponding to these positions lies in the range[Hlb,Hub], where

Hlb = log t and Hub = −t ·minS up· logminS up+ (1− t ·minS up) log |D|], D is the total

number of sequences.

PROOF: Entropy measures the purity of an attribute. A low entropy measure implies

high purity. Positions [pi , · · · , pi+k−1] have the lowest entropy when we have exactlyt

subsequences and theset subsequences have identical frequencies. For this case, the
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entropy is given by

Hlb =

t∑

i=1

−1
t

log
1
t

= log t

The worst case occurs when positions [pi , · · · , pi+k−1] havet subsequences each having

a frequency ofminS up, with (1− t · minS up)|D| number of subsequences being fully

random. Letα = (1− t ·minS up).

Hub = −
t∑

i=1

minS up· logminS up−
α|D|∑

i=1

1
|D| log

1
|D|

= −t ·minS up· logminS up+ α log |D|

This corresponds to the entropy bounds of [Hlb,Hub].

�

With this lemma, we can prune a position if there is no sequence involving this

position whose entropy measure falls in the range [Hlb,Hub].
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Figure 3.6: Generation of mutation chains by Selective Join
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3.3.4 Generate Mutation Chains

In this section, we describe the mining of mutation chains. The naive approach is to

generate a chain ofk-mutation with lengthT from chains ofk-mutation with length

T − 1. But this is infeasible as the Apriori property does not hold. For example, se-

quence chain (vs1, vs2, vs3) supports ak-mutation chain〈1,AB→BB→CD〉, but it may

not support the subsequence of this chain〈1,AB→CD〉, as it may not satisfy the likeli-

hood requirement for mutation. Hence, we cannot joink-mutations with lengthT − 1

to obtain candidatek-mutations with lengthT. To tackle this problem, we define an

operator called selective join, denoted asZs:

SF T = SF T−1 Zs SF 2

whereSF T−1 is the set of sequence chains of lengthT − 1, andSF 2 is the set of

sequence pairs. A sequence chain (vs1, . . . , vsT−1) in SF T−1 will join with a sequence

pair (vsi , vsj) in SF 2 if and only if

1. (vs1, . . . , vsT−1) supports a validk-mutation chain (s1→ . . .→ sT−1);

2. (vsi , vsj) supports a validk′-mutation (si → sj);

3. sT−1 andsi share a common substring of lengthk′′ ≥ min k.

The selective join will greatly prune the sequence chains, and it will not miss any

potential sequence chains which are possible to support one of validk-mutation chains.

This is guaranteed by Lemma 4.

Lemma 4. If a sequence chain of length T supports a mutation chain, it supports all

subsequences of the chain.

Proof: Lets1 → s2 → . . . → sT to be ak-mutation chain of length T, andvs1 →
vs2 → . . . → vsT be the virus sequence chain that supports the mutation chain. This
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impliesvs1 supports1, . . . , vsT supportsT . Then for each subsequencesi → . . . → sj,

where 1≤ i ≤ j ≤ T, there exists a corresponding subsequence,vsi → . . . → vsj, such

thatvsi supportsi, . . . , vsj supportsj.

�

Figure 3.6 shows the process of selective join. We first delete the sequence pairs

(vs1, vs2) and (vs2, vs5) because they do not support any validk-mutations〈2, BC →
CA〉 and〈2,CA → DD〉. The remaining sequence pairs (vs1, vs3) and (vs3, vs4) can

be joined because (vs1, vs3) supports〈2, BC→ CA〉 and (vs3, vs4) supports〈2,CA→
BD〉, and the last state of〈2, BC → CA〉 share a common “CA” with the first state of

〈2,CA→ BD〉. Finally, we obtain four sequence chains. Note that two sequence chains

(vs1, vs2, vs3) and (vs1, vs2, vs5) are pruned based on Lemma 4.

Algorithm 4 shows thek-Mutation-Miner (kMM) framework to minek-mutation

chains. Lines 1-2 first initialize an empty mutation setM, generate the sequence pairs

SF 2. Line 3 prunes the positions which are impossible to contain validk-mutations

by entropy bounds, and Line 4 finds the valid point mutations on the unpruned posi-

tions. Line 5 mines the validk-mutations of length 2 by using the Top-Down-Miner.

Thek-mutation chains are stored inM (Line 6). Next, we generate validk-mutations

of increasing lengtht by applying the selective join operator onSF t andSF 2, t ≥ 2 to

obtainSF t+1. With SF t+1, we call Top-Down-Miner to discover the validk-mutation

chains of lengtht + 1 using a modifiedMaxMutationtree. The nodes in the modified

MaxMutationtree storesk-mutation chains instead ofk-mutations. The process contin-

ues untilMt is empty (Lines 8-13). Line 14 returnsM.

Theorem 1. The k-mutation chains returned by Algorithm 4 is correct and complete.

Proof: For correctness, we prove that both the sequence pairs and sequence chains

all satisfy the likelihood requirement for mutation. Step 2 of Algorithm 4 ensures that

only the sequence pairs satisfying the likelihood requirement for mutation will par-
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Algorithm 4 : kMM
input : BS D: biological sequence database;

minS up: the minimum support;
minIndex: the minimum mutation index;
min k: the minimum mutation length.

output: the maximalk-mutation chains, wherek ≥ min k
M = ∅;1

SF 2 = set of sequence pairs that satisfies the likelihood requirement for2

mutation;
Perform position pruning strategy;3

Find valid point mutationsM2
1 fromSF 2 (Section 3.3.1);4

M2
K = Top-Down-Miner (M2

1, minS up, minIndex, min k) (Section 3.3.3);5

M =M∪M2
K;6

t = 2;7

whileMt
K , ∅ do8

SF t+1 = SF t Zs SF 2 (Section 3.3.4);9

Perform position pruning strategy;10

Find point mutation chainsMt+1
1 fromSF t+1 (Section 3.3.1);11

Mt+1
K = Top-Down-Miner (Mt+1

1 , minS up, minIndex, min k) (Section 3.3.3);12

M =M∪Mt
K; t + +;13

return M ;14

ticipate in the selective join. Since sequence chains of lengthT are obtained by the

selective join between chains of lengthT − 1 with the sequence pairs obtained in Step

2, the sequence chains generated also satisfy the likelihood requirement for mutation.

For completeness, Lemma 2 states that the MaxMutation tree maintains the com-

plete set of candidate k-mutation chain. We use a counter example to prove that the se-

quence chains setSF T is complete forT > 2. Let M′ v M andM is a valid k-mutation

chain of lengthT andM′ is a k-mutation chain ofT − 1. From the anti-monotonicity

property (Lemma 1),M′ is a valid k-mutation chain. Let a sequence chain (vs1, . . .,

vsT) supportM. If the sequence chain is excluded inSF T , it does not support any valid

k-mutation chain of lengthT − 1 according to the operation of selective join. However,

(vs1, . . ., vsT) supportsM′ according to Lemma 4. This is a contradiction.

�
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3.4 Experimental Studies

In this section, we report the results of our mining algorithm on both synthetic and real

world datasets. All the algorithms are implemented in C++ and the experiments are

carried out on a server with dual Xeon 3GHZ processors and 4GB memory, running

Windows server 2003.

3.4.1 Experiments on Synthetic Datasets

The synthetic datasets are generated by modifying the data generator in [33]. We use

two parameters to generate sequences with location and time:L is the length of se-

quences andmin k is the length of mutations. By default, the space and time dimen-

sions are set to 1000× 1000× 1200, and the alphabet size|Σ| is set to 20. We use the

notationDAT A− (|D|)− (L) to denote a dataset of|D| sequences andL sequence length.

We also develop the level-wise-miner (LWM) as a baseline for comparison. LWM

generates candidate (k+1)-mutations based on existing validk-mutations and evaluates

candidate (k+1)-mutations to find valid mutations whose mutation ratios and supports

are no less than theminIndexandminS uprespectively.

LWM V.S. kMM

We examine the scalability of LWM andkMM by varying the database size|D| and the

sequence lengthL. We incorporate threek-mutation chains of lengthT, where 7≤ k ≤14

and 2≤T≤5, into the datasets.

Figure 3.7(a) shows the results for varying|D| andL=100. We observe that LWM

is much slower thankMM. This is expected thekMM detect mutations in the top-down

manner, which is more efficient to find longk-mutations. Figure 3.7(b) shows the results

for varyingL. We see that LWM is slower than thekMM by an order of magnitude as

L increases.
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Figure 3.7: Comparative study ofkMM and LWM

We also test the performance of LWM andkMM by varyingmin k. The dataset used

has 5,000 sequences and contains threek-mutation chains of length 2, where 5≤k≤10.

Figure 3.7(c) shows that runtime of LWM andkMM suddenly decrease atmin k=12.

This is because both algorithms terminates as they do not find any validk-mutations

whenmin k≥12.

We observe thatmin k has no salient effect on LWM whenmin k≤10. This is be-

cause LWM perform level-wise mining which combine the point mutations at the final

stage, hence it cannot prune infeasible point mutations early. Figure 3.7(c) also shows

that that runtime ofkMM decrease asmin k increases. This is because a largemin k

reduces the number of hit mutations in MaxMutation tree, which leads to less time in

constructing and traversing theMaxMutationtree.
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Figure 3.8: Effect of pruning techniques

Effect of pruning techniques inkMM

Next, we examine the effectiveness of the pruning techniques, position selection and

selective join. We have two variants ofkMM: kMM-PS which iskMM without position

selection andkMM-SJ which iskMM without selective join. InkMM-SJ, we join all

instances to obtain instance chains.

We fix sequence lengthL=100 and generate datasets by varying|D| from 2k to 20k

and incorporate threek-mutation chains of lengthT, where 7≤k≤14 and 2≤T≤4, into

the datasets. We setmin k=7. The results in Figure 3.8(a) shows thatkMM outperforms

kMM-SJ becausekMM prunes the sequence instances which do not support any valid

mutations using selective join. Figure 3.8(a) also show thatkMM outperformskMM-

PS. This is becausekMM prunes the positions which will not satisfy the entropy bound.

We also study the effect of sequence lengthL. Each dataset has threek-mutation
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chains of lengthT, where 7≤k≤14 and 2≤T≤4. We setmin k=7. Figure 3.8(b) shows

the results. We observe thatkMM is faster than bothkMM-PS andkMM-SJ because

kMM can prune more positions as the sequence length increases, and prune the se-

quence instances.

Finally, we test the effect of varyingmin k. In this experiment, the dataset has

5,000 sequences and contains threek-mutation chains of length 2, where 5≤k≤10. Fig-

ure 3.8(c) shows the results. We see that the runtime ofkMM-PS andkMM decrease

slowly with the increase ofmin k. This is because the number of hit mutations in Max-

Mutation tree is reduced asmin k increases, which leads to less time for constructing

MaxMutation tree. We also see that the runtime ofkMM decrease faster than that of

kMM-PS. This is becausekMM can prune positions.

3.4.2 Experiments on Influenza A Virus Dataset

Next, we use the influenza A virus protein dataset [4] to discover meaningful mutation

chains. The dataset contains information on the sequences of 11 influenza A viral pro-

teins, including the subtype (e.g., H5N1,H1N1), host (e.g., human, avian), country and

year of isolation. Table 3.2 shows the the length and number of sequences for each

subtype in influenza A dataset.

Alignment. Multiple sequence alignments of the 11 proteins (as listed in Table 3.2)

were carried out with MUSCLE 3.6 [17]. Due to the great variability exhibited by the

HA and NA protein, separate alignments were obtained from each subtype (16 subtypes

for HA and 9 for NA). The subtype alignments were merged using the MUSCLE tool

to obtain the final HA and NA alignment. The introduction of gaps in the resulting

alignments was minimized by merging sequences based on sequence similarity between

subtypes. The sequence lengths after alignment are shown in the “Length” column in

Table 3.2.
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Table 3.2: The meta data of Influenza A virus proteins dataset
Protein Length H5N1 H1N1 H3N2 others Total
PB2 759 520 518 1384 721 3143
PB1 758 516 476 1402 780 3174
F2 90 58 285 1263 1646 1989
PA 718 520 419 1380 383 3111
HA 610 790 1897 3240 1189 7116
NP 499 549 405 1653 1156 3763
NA 493 715 968 1790 748 4221
M1 252 579 259 1517 1426 3781
M2 97 390 370 1491 898 3149
NS1 237 567 443 1429 1320 3759
NS2 121 374 364 1404 978 3120
Total 4634 5578 6404 17953 10391 40326

Likelihood of mutation. We observe that one protein sequencevs1 is likely to

mutate to another sequencevs2 if vs2 occurs within two years from the occurrencevs1,

and the geographical distance ofvs1 andvs2 is less than 1,000 kilometers, and their edit

distance is less than 20% of the whole sequence length. This makes sense because the

viruses spread and mutate gradually, instead of sudden changes and promulgation.

All experiments are performed by setting minSup=0.01 and minIndex=0.5, which

are suggested by our biologists.

On H5N1 subtype (bird flu)

We apply our algorithm to discover the point mutations andk-mutations on the H5N1

subtype (bird flu). All in all, we discovered 205 point mutations using our algorithm, as

shown in Table 3.3. We use the abbreviationcpc′ to denote〈p, c→ c′〉.
Within all of the point substitutions, we highlight the point mutation〈627,E→K〉

(E627K for short) in protein PB2.E627K has been shown to have important biological

effect of converting a nonlethal H5N1 influenza A virus to a lethal virus [69]. We exam-

ine the geographical spread forE627K as shown in Figure 3.9(a). The spatiotemporal
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Table 3.3: The amino acid substitution in H5N1 subtype
Protein Point Mutations
PB2 M64I, A105T, A108T, T108A, R288Q, K299R,

K339T, K340R, M483V, S590G,E627K, I649V,
V649I, A661T, I667V

PB1 A14V, V113I, V149I, K215R, R215K, S375N,
S384L, R386K, T400A

F2 L37R, R69Q, R81K
PA G58S, V100I, I129T, R204K, S245K, F246L,

L247S, N248Q, V249M, I324V, A338T, G366S,
I389V, V389I, K393R, R393K, D396N, P402S,
I556V, P655S, A671V, T714A, R718K

HA R67K, D77N, N77D, N116S, S116N, V118A,
V118T, D126N, N157D, N157S, S157D, E159D,
L162S, Q172L, K174R, K174S, P176S, S176P,
S192N, A193T, T193A, M212L, K226R, R226K,
V237I, S254P, D264E, E264D, A309T, L316V,
V316L, M330I, K358R, R358K, T368S, R380G,
D443N, K530R, K540R, N556K, M568I, I571T

NP G34S, K77R, M136L, I183V, A354I, A374T,
T374A, S483N

NA I17T, T17I, I20V, V20I, V26I, I29M,
H39Q, Q39H, H44R, P48S, N82K, A91V,
V91A, N106R, R106N, S106N, I110V, V110I,
H111Y, Y111H, G116S, K122R, H166Y, Y166H,
G212E, Y264H, R268K, I269M, M269I, D282N,
N282D, M356V, V356M, L358P, P358L, P358S,
S358P, I366V, V366I, E402G, G402E, N407S,
S407N, G477S, S477G

M1 V15I, R27K, T37A, I59M, I107M, F144L,
L144F, T168I, S207N, S224N, K230R, D232N,
N232D, I234L, L234I

M2 G14E, R18K, N31S, A64S, S82N
NS1 L22F, L27M, M27L, N48S, E55R, R55E,

A60E,E60A, H63Q, Q63H, P87S, F103L,
L103F, I106M, A112T, T112A, K118R, R118K,
N127T, F138Y, N139D, A143T, T143A, D152E,
G153E, D171G, D171N, E171D, G171N, N171G,
I180V, V180I, L198I, N207D, D209N, N209D,
P212L, P213S, S213P, N217K, E229K, K229E

NS2 M14V, V14M, V52M, A115T
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spread patterns forE627K suggests that the virus originated in Vietnam, and spread

outwards and eventually caused the disease outbreaks in the two northern countries,

namely Russia and Mongolia.
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(a) PB2:〈627,E→ K〉
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(b) PA: 〈244,S FLNV →
KLS QM〉
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(c) HA: 〈571,−−−−−−−−− →
YQILS IYS T〉

Figure 3.9: The dominant support chains for mutations in H5N1 subtype. 1 means
Year 2003-2004, 2 means Year 2004-2005, 3 means Year 2005-2006, 4 means Year
2003-2005, 5 means Year 2004-2006

In addition to discovering point mutations, our method also discovers a 5-mutation

pattern in PA protein,〈244,S FLNV→ KLS QM〉. Figure 3.9(b) shows the geographi-

cal spread of this mutation. We can see that the spread chains origin from Vietnam and

spread to three neighboring countries, China, Indonesia and Cambodia.

We also find an insertion mutation in HA protein:〈571,− − − − − − − − − →
YQILS IYS T〉. Its dominant spread flows are shown in Figure 3.9(c).

On H1N1 subtype (swine flu)

We also apply our algorithm to discover point mutations andk-mutations on the H1N1

subtype. Due to the importance of the polymerase genes (i.e., PB1 and PB2) in adap-

tive mutations and potential reassortment [44], we focus the mutation mining in such

proteins. We discovered one 2-mutations in the PB1 protein〈455,HE→YA〉, and two

2-mutation in the PB2 protein〈489,NA→S T〉 and〈489,S T→ NA〉.



64

Figure 3.10(a) depicts two major geographical spread chain of PB1. The first spread

occurred during 2002 and 2003, and spread from Canada to USA and an internal mu-

tation in USA. The second spread occurred during 2005 and 2007 in USA. Similarly,

Figure 3.10(b) shows two major geographical spread chain of PB2〈489,NA→S T〉.
The first one occurred during 2001 and 2003, and spread from USA to Canada and in-

clude an internal mutation in USA. The second spread occurred during 2007 and 2009 in

USA, indicating that this mutation is likely to have influenced the recent epidemic swine

flu. Figure 3.10(c) depicts four internal spreads for the PB2 mutation〈489,S T→ NA〉.
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(b) PB2:〈489,NA→ S T〉
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(c) PB2:〈489,S T→ NA〉

Figure 3.10: The dominant support chains for mutations in H1N1 subtype. 1 means
Years 2001-2003, 2 means Year 2002-2003, 3 means Years 2005-2007, 4 means Years
2007-2009, 5 means Years 1999-2001, 6 means Years 1976-1978

On H3N2 subtype

We also performed a similar analysis in H3N2, a human influenza virus. We detected

20 point mutations using our algorithm, as shown in Table 3.4 .

Again, one of the detected mutations,〈176,K → N〉 (K176N for short) in HA

protein turns out to cause the H3N2 outbreak in Nepal in 2004 [13]. Note that the

position 176 in the aligned H3N2 HA protein corresponds to the position 145 in [13].

Figure 3.11(a) and 3.11(b) shows the spatiotemporal spread for K176N in Asia and

Europe.



65

Table 3.4: The amino acid substitution in H3N2 subtype
Protein Point Mutations
PB2 R340K,
PB1 I179M, K586R,
F2 Q25R, L82S
HA D174N,K176N, E188K, G205D, V259I, D319G
NP R77K, K98R, R103K, I197V, V197I
NA N104D, G154V, E211K, I277T,

Another point mutation of interest is〈188,E→ K〉, which was reported to undergo

multiple mutual substitutions [68]. Such spatiotemporal information are useful for the

biologists to better understand the epidemiology of influenza, and in turn, to develop

more effective vaccines (e.g. region-specific ones) to combat the spread of this fast

changing virus.

Next, we focus on the mining ofk-mutations andk-mutation chains on H3N2 sub-

type by allowing the deletion and insertion. We discover one valid pattern in HA pro-

tein: 〈390, IAGFIENGWEGM→ − − − − − − − − − − −−〉. Its major spread chains

are shown in Figure 3.11(c).
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(a) HA: 〈176,K → N〉, Asia
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(b) HA: 〈176,K → N〉, Europe
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(c) HA:
〈390, IAGFIENGWEGM
→ − − − − − − − − − − −−〉

Figure 3.11: The dominant support chains for mutations in H3N2 subtype. 1 means
Year 2003-2004, 2 means Year 2002-2004, 3 means Year 1992-1993, 4 means Year
2002-2003
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3.5 Summary

The genetic structure of viruses is highly combinatorial in nature. Point mutations and

gene segment exchange may occur anywhere along the primary sequence, contributing

to a huge variability of viral protein products and the possibility of producing a new

virus that can be easily transmitted between humans and initiate a pandemic. Effec-

tive influenza surveillance for pandemic preparedness is therefore critical to avoid the

potentially deadly disaster for human kind. In particular, with the increasing availabil-

ity of spatial and temporal information in the biological databases, new and advanced

data analysis methods capable of rapid and in-depth genomic analysis that takes into

account the spatiotemporal dynamics of the evolving viral species can help biologists

to understand the evolution and circulation of the various viral species and to develop

more effective and specific vaccines.

In this work, we have proposed a novel framework for discovering sequence muta-

tions based on the mutation likelihood, including location and time of viral sequences

and the sequence similarity. We designed an integrated algorithm to mine mutation

chains in a top-down search manner and using two pruning strategies to reduce the

search space. Experiments on synthetic datasets showed that our algorithm is more

scalable and more efficient than the base line algorithms. Experiments on real world

Influenza A virus database showed that our algorithms can discover meaningful mu-

tations. Our methods are expected to provide an effective tool in the fight against

emerging and re-emerging infectious diseases that are capable of rapid mutations and

transmissions.



Chapter 4

Mining Global Interaction Pattern in

Snapshot Data

Besides the mutation patterns in biological sequences, another class of useful spatiotem-

poral patterns is localized and time-associated interaction patterns which are discovered

in snapshot data. It is complex to mine localized and time-associated interaction pat-

terns because both spatial point event types in snapshot data and spatiotemporal infor-

mation are involved in the patterns. Therefore, we solve this mining problem in two

steps: In this chapter, we first focus on the mining of interaction patterns among spatial

point events on a single snapshot. In Chapter 5, we extend the work of this chapter to

mine localized and time-associated interaction patterns.

Location-related patterns have many scientific applications [41, 63, 31, 90, 85]. For

example, in epidemiology studies, dengue fever and Aedes mosquito tend to exhibit

spatial correlation while in ecology, Nile crocodile and Egyptian plover are often found

in tandem. Knowing the set of E-services that are located together is beneficial to

mobile companies to improve their location-based services. The analysis of web log

can also reveal the localized interests of customers in different geographical locations.

In view of this, there has been sustained interest in developing techniques to dis-

67
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cover spatial collocation patterns [63, 31, 90, 85]. The interestingness measure of these

patterns is abinary notion of proximity where adistance thresholdis set and objects

are either close or far away based on the threshold. Ripley’s K function [58, 14] sup-

ports this measure by computing the probability of how objects of one feature is close

to objects of one or more features. Interesting collocation patterns are then defined to

be a set of features that are frequently close to each other [31, 90].

(a) Dataset

��

��

��

��

����

��

�� ��

��
��

�
�

(b) Observed Instance Distribu-
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(c) Underlying Instance Distri-
bution

Figure 4.1: Some instances and their spatial relationship

Geo-spatial data are however by nature imprecise due to various reasons which in-

clude the limitation of measuring instruments, human recording errors, concern for pri-

vacy and dynamic movement of some objects. This means that no precise point can be

used to represent the location of these objects.

Existing collocation mining algorithms, however, does not lend itself easily for han-

dling uncertain spatial data. To address this problem, in this chapter, we will model the

error distribution of the spatial data to beGaussianinstead of a precise point. Fig-

ure 4.1(a) gives a sample dataset of objects. Without special presentation, objects refer

to the spatial instances in dataset in the rest of this chapter. With three feature types

f1, f2, f3, denoted by the symbols�, 4, and©, respectively. Figure 4.1(b) gives the

objects’ distribution where the dotted circles define the object’s distance threshold. We

observe that many of the4 objects have� objects within the distance threshold. In other
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words,{�, 4} is a collocation pattern. However, if the exact locations of the� instances

are as shown in Figure 4.1(c), then{�, 4} will not be a collocation pattern since many

of their instance pairs are now outside the distance threshold. At the same time, many

© objects are now within the distance threshold of the4 objects.

The above example demonstrates that existing collocation mining approaches, which

employ the exact support measure (i.e. the number of instances), are sensitive to the as-

signed distance threshold. As previously mentioned in Chapter 2, both snapshot-grid

model and event model are sensitive to imprecise data. With different distance thresh-

olds or noise in data, these algorithms may find different collocation patterns. In addi-

tion, they do not show good scalability as collocation mining procedure is, in essence,

nothing more than the expensive spatial join among multiple datasets [90].

While one may build an uncertain model to capture the underlying distribution for

each object, and derive the probability of an object being close to another object for a

given distance threshold, such an approach is computationally expensive as each feature

may have multiple objects.

Motivated by these challenges, we propose to model the spatial features in a contin-

uous space using the radial basis functions. This approach resembles the kernel density

estimation (KDE) [70] in statistics, but KDE does not consider the positional error of

the uncertain data and focuses on the density estimation of only one feature.

In this chapter, we use two Gaussian functions, namely, the error function and the

kernel function to model the observed position of the object. The actual influence is

computed as the convolution of these two functions, which is still a Gaussian function

with a wider bandwidth. By summing up the influences of all the instances of a feature,

we obtain the influence distribution (or the influence map) of the feature.

We introduce the notion ofSpatial Interaction Patterns(SIPs) to capture the interac-

tions among sets of features. These patterns are sets of binary features whose influence
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maps are commonly correlated. For each feature type, we build an influence map that

captures the distribution of the feature instances. Superimposing the influence maps

allows the interaction of the feature types to be easily determined without costly spatial

joins. Experiments are performed on both synthetic and real world datasets to demon-

strate that the proposed approach is not only efficient but is able to discover patterns

that have been missed by existing methods.

The remainder of this chapter is organized as follows. Section 4.1 proposes the in-

fluence model and its properties. Section 4.2 introduces the proposed mining algorithm

called PROBER. We study the performance of the mining algorithm in Section 4.3 and

summarize our finding in Section 4.4.

4.1 Influence Model

In this section, we introduce the notations used in defining the influence function to

capture the degree of affinity between two spatial objects. We extend the notations to

the influence maps of features, i.e., object groups, and infer some useful properties.

4.1.1 Object-to-Object Influence Function

Recall that most spatial data are inherently uncertain with an error distribution modeled

by the Gaussian distributionN (µ, σ2),

e(µ, x) =
1√
2πσ

e−
|µ−x|2
2σ2 , (4.1)

whereµ is the observedi-th dimensional value andx is the underlying value.

When two spatial objects are near each other, they exert an influence on each other.

This degree of influence is represented as a radial basis kernel function in the form of

either Gaussian, Epanechnikov, Biweight or Triangle function. Letki(·) andei(·) denote
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the kernel function and error function, respectively, on thei-th dimension. Taking into

account the effect of error distribution due to the uncertain spatial data, the actual influ-

ence exerted between two spatial objects along thei-th dimension is the convolution of

ki(·) with ei(·), ki ⊗ ei.

Definition 7. The actual influence of an object on a point in the i-th dimension, denoted

as in fi, is defined as

in fi = ki ⊗ ei ≡
∫ ∞

−∞
ei(x)ki(x− τ)dτ (4.2)

where ki(·) is the kernel function and ei(·) is the error function, along the i-th dimension

.

In this work, we select the Gaussian function to be the kernel due to its unique

influence range (−∞,∞) among candidate kernels. Hence, the influence of an object

on a point is the convolution of two Gaussian functions, namely Gaussian kernel and

Gaussian error. We know that the convolution of two Gaussians is also a Gaussian

function. Without loss of generality, letei = N (0, σ2
e) andki = N (0, σ2

k), in fi = ki ⊗ ei

= N (0, σ2
e + σ2

k).

From this definition, we can easily generalize the influence function to the high

dimensional space.

Definition 8. Assuming that each dimension has identical Gaussian errorN (0, σ2
e)

and Gaussian kernelN (0, σ2
k). Given a d-dimensional object o= (h1, h2, . . . , hd), its

influence to the neighboring point p= (p1, p2, . . . , pd) in the d-dimensional space, is

the product of influence on each dimension:

in f (o, p) =

d∏

i=1

1√
2π(σ2

e + σ2
k)

exp{− (hi − pi)2

2(σ2
e + σ2

k)
} = (2π(σ2

e+σ
2
k))
−d/2exp{−

d∑
i=1

(hi − pi)2

2(σ2
e + σ2

k)
}

(4.3)
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In fact, the exponential factor
d∑

i=1
(hi − pi)2 is the square of Euclidean distance ofo

andp in d-dimensional space, (Euclidean(o, p))2. We observe that this influence func-

tion has the following properties.Monotonicity: It is anti-monotonic to the Euclidean

distance between two objects in a high dimensional space; andRobustness: It takes into

consideration the uncertainty in the data.

In the case of a 2D spatial objecto on the x-y plane, its influence distribution is a

bivariate Gaussian function whose mean is the observed position ofo and standard de-

viation is
√

(σ2
e + σ2

k). If the kernel on each dimension has the same standard deviation

(i.e.,σx = σy), the influence distribution is circular in shape, otherwise, it is an ellipse.

Figure 4.2 illustrate an influence function of circular shape. We call this bell-like 3D

shape aninfluence unit. For the remainder of this chapter, we useN (0, σ2) to denote

an influence unit, whereσ =

√
σ2

e + σ2
k. Note that the circular region denotes a range

of mean±3σ along the x-y plane and it captures over 95% of the influence exerted by

the object.

���������

Figure 4.2: Influence distribution on 2D space

Lemma 5. The influence measure is symmetric, i.e., in f(oi , oj) = in f (oj ,oi).

Proof: It can be inferred from the Definition 8 as theEuclidean(oi , oj) = Euclidean(oj ,

oi).

�
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(a) S( f1) (b) S( f2) (c) S( f3) (d) S( f1, f2) (e) S( f2, f3)

Figure 4.3: Examples of influence maps and their interaction

4.1.2 Feature-to-Feature Influence Function

Similar to the kernel density estimator [62], the influence map of a feature on a 2D plane

is the normalized summation of all the instances’ influence units of this feature. In our

influence model, each object is assigned the identical bandwidth to model its influence.

We do not focus on the selection of proper bandwidths to model influence maps, but

smoothing techniques of kernel density estimator, which study the selection of proper

bandwidths for different situations and are well-developed in statistics, can be easily

adopted in our influence model.

Definition 9. Given a set of spatial objects{o1,o2, . . . , on} of feature f on a spatial

planeP, and the influence function in f(·). The influence of feature f on a position

p ∈ P, denoted by S( f , p), is

S( f , p) =
1
n

n∑

i=1

in f (oi , p). (4.4)

We use S( f ) to denote theinfluence mapof feature f .

The volume ofS( f ) can be computed as the integral of the influence of all points in

P. This leads to Lemma 6.

Lemma 6. The volume of an influence map S( f ) is 1.

Proof: Assume the featuref containsn objects{o1, o2, . . . , on}.
Volume ofS( f ) =

∫
p∈P S( f , p)dp
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=
∫

p∈P
1
n

∑n
i=1 in f (oi , p)dp

= 1
n

∫
p∈P in f (o1, p)dp+ . . . +

∫
p∈P in f (on, p)dp

= 1
n × n× (Volume o f in f luence unit)

= 1.

�

Definition 10. Given two influence maps S( f1) and S( f2) with respect to feature f1

and f2 and the spatial planeP, the influence of a feature pair { f1, f2} on a position

p ∈ P, denoted as S( f1, f2, p), is min{S( f1, p), S( f2, p)}. We use S( f1, f2) to denote the

influence map of the feature pair{ f1, f2} on planeP.

Definition 11. The interaction between a pair of features{ fi , f j} is measured as the

volume of the influence map S( fi , f j). We call this measure theInteraction (I) of feature

pair { fi , f j} and is denoted as I( fi , f j) =
∫

p∈P S( fi , f j , p)dp.

The definition of influence map takes the minimum operator due to two reasons.

First, it is consistent with allconfidence [52], a well-accepted correlation measure sat-

isfying anti-monotone property: The interaction value decreases as the increase of fea-

tures. Second, it is consistent with the definition of prevalence, a well-accepted measure

of collocation patterns [63, 51, 31].

From Lemma 6, we infer that 0≤ I ≤ 1. The interaction between a feature and

itself is 1, i.e.,I ( fi , fi) = 1. Hence,I ( fi , f j) = 1 indicates that the objects of featurefi

and f j have the same distribution. On the other hand,I ( fi , f j) = 0 implies that the data

distributions of featurefi and f j are far apart from each other.

Figure 4.3 shows the influence maps for featuref1 and f3, and the feature pair

{ f1, f3}. Note that Definition 10 and Definition 11 can be easily extended to three or

more features. For three features, we haveI ( f1, f2, f3) =
∫

p∈P min{S( f1, p), S( f2, p),

S( f3, p)}dp. The Interaction measure (I) is used to determine the significance of a spa-

tial interaction. This measure indicates how much a feature is affected by the interaction
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from the other features in a feature set. Lemma 7 and Lemma 8 gives some important

properties of interaction measure.

Lemma 7. (Symmetry property) The interaction measure is Symmetric, i.e., I( fi , f j) =

I ( f j , fi).

Proof: It can be inferred from the Lemma 5 and Definition 11 as bothEuclidean()

andmin() subfunctions are symmetric.

�

Lemma 8. (Apriori property) The Interaction measure (I) is monotonically non-increasing

as the increase of features.

Proof: Let us assume that a feature setPn consists ofn features,f0, f1, . . . , fn−1,

and the interaction ofn features,f0, f1, . . . , fn−1, to beI ( f0, f1, . . . , fn−1). According to

Definition 10,I ( f0, f1, . . . , fn−1) =
∫

p∈P min{S( f0, p), S( f1, p), . . . , S( fn−1, p)}dp. Then

for a longer feature setPn+1 = P
⋃{ fn}, we have

I ( f0, f1, . . . , fn−1, fn)

=
∫

p∈Pmin{S( f0, p),S( f1, p), . . . ,S( fn−1, p),S( fn, p)}dp

=
∫

p∈Pmin{min{S( f0, p), . . . ,S( fn−1, p)},S( fn, p)}dp

≤
∫

p∈P min{S( f0, p),S( f1, p), . . . ,S( fn−1, p)}}dp

= I ( f0, f1, . . . , fn−1).

�

Lemma 7 implies that we can construct an undirected graph where each node indi-

cates a feature and the edges associated with node pairs indicate the interaction. Lemma

8 implies that the pattern generation may follow the classic Apriori property, avoiding

some patterns which are impossible to be valid.
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4.2 Mining Spatial Interaction Patterns

In this section, we present the algorithm PROBER (sPatial inteRactiOn Based pattErns

mineR) to find the interaction patterns in spatial databases.

Definition 12. Given a spatial database containing a feature setF and a threshold

min I, a Spatial Interaction Pattern S IP is the set of features{ f1, f2, . . . , fk} ⊆ F and

I ( f1, . . . , fk) ≥ min I.

If the interaction of a SIP is greater than a predefined thresholdmin I , we call this

SIP to be avalid SIP orfrequentSIP. A SIPP1 is asubpatternof another SIPP2 if P1

⊆ P2. For this case, we also sayP2 is asuperpatternof P1. Due to the Apriori property,

if a SIP is valid, any one of its subpatterns is a valid SIP. We say that a valid SIPcovers

its all subpatterns.

A SIP P is amaximalSIP if 1) P is a valid SIP, and 2) there does not exist any its

superpatternP′ such thatP′ is a valid SIP. ThemaximalSIP set is the set of maximal

SIPs. For example, given the valid SIPs{{ f1, f2}, { f2, f3}, { f1, f3}, { f3, f4}, { f1, f2, f3}},
the maximal SIP set is{{ f3, f4}, { f1, f2, f3}}.

The problem of mining spatial interaction patterns is defined as follows.Given a

spatial database containing m features and n instances, as well as the minimal interac-

tion measure minI, our goal is to find the maximal SIP set.

Mining of SIPs is computationally expensive due to two-fold reasons. First, the

comparison of continuous spaces is computationally infinite. Second, the enumeration

of all candidate patterns is exponential. We consider the first problem in Section 4.2.1

and examine the second problem in Section 4.2.2 and 4.2.3. In Section 4.2.4, we present

the PROBER algorithm and analyze its complexity.
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4.2.1 Uniform Sampling Approximation

In theory, the influence map of one feature is continuous, which means that there are

infinite comparisons when considering the relationship between two influence maps.

To expedite the mining process, we uniformly divide the spatial plane into disjoint cells

and only the centers of these cells serve as the positions of influence. In this way, the

comparison between influence maps is reduced to cell comparisons.

We useprogressive refinement approachto build approximate influence maps by

allowing errors. Assume that the target geographical plane is a square of lengthL.

Given a resolutionR, we divide the plane intoLR × L
R cells. For each cell, we use the

center of the cell to approximate the influences exerted on this cell by other objects in

the neighbouring cells. The parameterRdetermine the resolution of this approximation.

As long asR is sufficiently small, our model will provide a good approximation. We

denote this the approximation ofS to beŜ. One issue is to estimate the upper of this

approximation error. We define theInfluence Error (IErr) as follows.

Definition 13. Suppose we represent the approximate influence mapŜ as a[n × m]

matrix. For any granularity coefficient, c, the refined approximate influence mapŜ′ is

a [c · n× c ·m] matrix. The difference in the two influence maps is given by:

IErr (Ŝ′, Ŝ) =
1

|Ŝ′|
×

∑

every cell∈Ŝ′

‖ cellŜ′ − cell̂S ‖
MAX(cellŜ′ , cell̂S)

(4.5)

where|Ŝ′| denotes the matrix size of̂S′, cellŜ′ is a single cell at̂S′, and cell̂S is the cell

which covers cell̂S′ at matrixŜ .

For example, Figure 4.4 showŝS andŜ′, respectively, and one view of the intersec-

tion plane. In this example,IErr is the volume of the shaded areas in the right part of

Figure 4.4.IErr = 1
4 × ( |60−50|

60 + |65−50|
65 + |45−50|

50 + |40−50|
50 ) ≈ 1

4 × 0.69= 0.17.

Note that although the term ”resolution” used here is similar to the bin width in his-
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(b) Intersection

Figure 4.4: An example to compute influence error

togram theory in statistics [62], our approximation approach is different. In statistics,

a fine bin width is selected to avoid under-smoothing while estimating data distribu-

tion [70], whereas our goal is to compare multiple influence maps (estimators in KDE)

efficiently within an acceptable error tolerance. In this sense, bin width selection in

histogram theory is not suitable for our mining requirement. Hence, we design a new

mechanism to select the proper resolution for a given error bound.

Lemma 9. Asθ = R
σ
, the error bound IErr between the approximate influence map of

resolution r,Ŝ|R=r , and the space of resolutionr2, Ŝ|R=r/2, is

IErr (Ŝ|R=r , Ŝ|R=r/2) ≤ 1− e−
R2

16σ2 e−
kR
4σ + e

kR
4σ − e

R2

16σ2

2
, (4.6)

where0 ≤ k ≤ 3.

Proof: Appendix gives the proof for Formula 7.6. Here, we extend the proof to

Formula 4.6. This is done in two steps. First, for one particular cell and a set of objects,

Formula 7.6 holds because the influence from a set ofn objects to the center positionp

of one cell is1
n

∑n
i=1 in f (oi , p) given by Definition 9. Next, for all cells on the plane and

the set of objects, the influence error is essentially the normalized combination of every

singular cell given by Definition 13, so Formula 7.6 still holds. Hence, we conclude

Ŝ(·)|R=r =
∑n

i=1

∑
all cells in f (oi , cell center).
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Figure 4.5: The error bound of influence error

�

Figure 4.5 shows the error bounds as we varyk, where the x- coordinate is the ratio

θ = R
σ
, y- is the possible fluctuation over the real influence. Thek = 3 curve is the

error boundwhen 0≤ k ≤ 3. The worst case error occurs when a split is performed

on the marginal cells of an influence unit. In practice, this does not happen often. As a

result, the influence fluctuation is far less than the error bound. The real error curve will

depends on the data distribution, which is supported by experiments in Section 4.3.1.

In fact, we have the Theorem 2 no matter the data distributions are.

Theorem 2. As θ = R
σ
→ 0, the approximate influence map̂S converges to the real

influence map S .

Proof: With an initial resolutionr, we obtain the approximation spacêS|R=r . Next,

we halve the resolution to obtain its finer approximation spacêS|R=r/2. Lemma 9 gives

the upper bound and lower bound of the ratio of the two approximation spaces. By

iterating this operationk steps, we have the approximation spaces ofθ = R
σ

= r
2k×σ → 0.

From Formula 4.6 and Figure 4.5, we haveŜ
S → 1, which completes the proof.

�

Algorithm. Let O = {o1,o2, . . . , on} be a set of objects of one particular feature. To

obtain the approximate influence map of this feature, we employ the BuildApproSpace

algorithm.
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Algorithm 5 : BuildApproSpace
input : DatasetO;

kernel deviationσ;
inital resolutionr;
error boundmin err.

output: Approximate influence map̂S(·).
Initialize two approximation spacesSb = Ŝ(·)|r andS f = Ŝ(·)|r/2;1

while (IErr (S f ,Sb) > min err) do2

Sb← S f ;3

r ← r
2;4

Initialize S f = Ŝ(·)|r/2;5

return S f .6

Line 1 of Algorithm 5 builds two spaces,S f andSb. S f is implemented as aLr × L
r

matrix whileSb is a 2L
r × 2L

r matrix, whereL is the plane width. For each objectoi ∈ O,

we superimpose a minimal bounding rectangle (MBR) of side 6σ onto the two spaces,

centering at the position ofoi. This results in the updates of element values on the two

spaces respectively.

To compare the two matricesS f andSb, for each element ofSb, we find the cor-

responding four elements in matrixS f and obtain the absolute difference among them.

Line 2 computes the approximate error within each cell ofSb individually, and take the

arithmetic average which is given by Definition 13.

If the approximation error is greater than the user specified parametermin err, we

initialize a new matrix at half the resolution. We compute the approximation error of

this finer resolution space. This process repeats until the error is less thanmin err, and

S f is the final approximate influence map, which is guaranteed by Theorem 2.

4.2.2 Pattern Growth and Pruning

Lemma 8 indicates that the interaction measure satisfies the downward closure property.

In other words, a candidate pattern is possible to be valid only if all its subpatterns are
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valid. This allows many SIPs to be pruned during the mining process.

However, the number of valid SIPs can be very large, since a valid SIP ofn features

has (2n− 1) subsets that are also valid SIPs. The majority of these valid SIPs are redun-

dant as their interaction can be inferred from their superset. Avoiding the generation

of these redundant SIPs can significantly improve mining efficiency and save memory

space. Current state-of-the-art maximal pattern mining algorithms [26, 59] use a search

tree structure to facilitate depth-first search to find frequent itemsets, but they cannot

deal with maximal interaction pattern mining problem directly.

Motivated by the idea of maximal pattern mining algorithms, we employ a depth-

first search with “look ahead”. A tree structure calledinteraction treeis used to facilitate

the mining process. It is similar to the search tree in [26, 59], but with one important

extension. Each node at level 2 denotes an interaction pattern of 2 features, and its

associated influence map. Algorithm 6 gives the details.

Assuming that we have obtained all the valid interaction patterns of size 2, denote

by C2. In order to visualize the relationships among feature sets, aninteraction graph

can be constructed beforehand, in which each feature is a node in the graph, and two

nodes are connected by one edge if they are correlated (or exist inC2). Obviously, the

interaction graph is an undirected graph due to the symmetric property given in Lemma

7. For example, the correlated pairs from the database forms an interaction graph in

Figure 4.6(a). There are four edges indicating four pairs of correlated features.
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(a) An interaction graph
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(b) An interaction tree

Figure 4.6: Data Structure for Mining Maximal SIPs
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We further transform the interaction graph to an interaction tree as follows. A root

node is first created at level 0. At level 1, we create a node for each feature as a child

of the root, and the order of children follows sthe lexigraphical order. In the subsequent

levels, for each nodeu at levelk (k > 1) and for each right siblingv of u, if ((u, v)) is

connected in the interaction graph (namely{u, v} is an interaction pattern), we create

a child node foru with the same label ofv. For each node, we could enumerate one

candidate pattern, with prefix feature set of its parent node by concatenating the feature

in this node. For example, we construct the tree shown in Figure 4.6(b) based on Figure

4.6(a).

Note that if a patternp is not a valid SIP, then any longer pattern that containsp

cannot be a valid SIP. This allows us to effectively prune off unnecessary computations.

Further, the structure of the interaction tree always forces the evaluation of the longest

patterns first. This implies that if the longest pattern is a valid SIP, then we do not need

to evaluate any of its sub-patterns.

4.2.3 Interaction Tree Traversal

The evaluation of SIP is performed by Algorithm 6. Given a feature nodefn in the inter-

action tree, Line 1 obtains the parent node offn. Line 2 forms a candidate patternPcand

by backtracking from the current node to root of interaction tree. As an example, for

the feature nodef6 at level 3 in Figure 4.6(b), we can backtrackf6 to form a candidate

pattern{ f1, f3, f6} with prefix { f1, f3}.
Since the computation of influence map interaction is expensive, we postpone this

computation until it becomes necessary. As long as there is one superset ofPcand in C,

this computation can be delayed. Line 4 sets this node to be adelaynode and Line 5

propagates this to its children nodes. Lines 7-13 recover the influence map of the prefix.

For example, suppose we already have a maximal SIP{ f1, f2, f4, f5} in maximal SIP set
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C. The candidate patterns{ f1, f4} and{ f1, f4, f5} can be exempt from evaluating as they

are both subpatterns of{ f1, f2, f4, f5} ∈ C. Here f4 and f5 are markeddelaynodes in

interaction trees. If we need to evaluate another candidate pattern{ f1, f4, f5, f6}, the

interaction computation of its prefixes{ f1, f4} and{ f1, f4, f5} becomes necessary. So the

influence map computation will start fromf4 via f5 along the path tof6. The pseudocode

of this operation is given in Lines 7-13. Finally, Line 13 obtains the final influence map

of prefix, parS.

Lines 14-18 compute the interaction between the influence maps of the prefix node

and the current node in a depth-first manner. If the interaction is no less than the thresh-

old min I , this candidate pattern is valid, and it will be added to the maximal pattern set

C in Line 16.

Although algorithmEvalS IP(·) is devised to find maximal SIPs, it is capable to dis-

cover all valid SIPs. The idea is straightforward: the subpatterns checking in maximal

SIP setC is skipped, which is achieved by deleting Lines 3-11 in Algorithm 6.

4.2.4 Algorithm PROBER

We now present the Algorithm PROBER to mine spatial interaction patterns. The al-

gorithm incorporates the pattern enumeration technique into the mining process. Al-

gorithm PROBER takes as input the spatial databaseD, the influence error threshold

min err, the interaction measure thresholdmin I , and outputs the set of maximal SIPs.

Line 1 finds the feature set from the dataset. Lines 3-4 build the approximate in-

fluence maps for each feature, by calling theBuildApproS pace(·) algorithm. To fa-

cilitate the next mining phase, the approximate influence maps of all features are re-

quired to be superimposed using the same resolution. Therefore, the halt condition in

BuildApproS pace(·) is modified to be “If the maximalIErr (Sb,S f ) of all features is

greater thanmin err, then do the next iteration”.
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Algorithm 6 : EvalS IP( fn,min I ,C)

parNode← the parent node offn;1

backtrackingf n till root to form a candidatePcand;2

if Pcand has a superpattern in Cthen3

set fn to be adelaynode;4

EvalS IP( f n′s child node,min I );5

else6

parS = a unit matrix;7

while parNode is a delay nodedo8

parS = Interaction(parS,S(parNode));9

parNode← the parent node ofparNode;10

parS2← the influence map ofparNode;11

parS = Interaction(parS, parS2);12

f S = Interaction(parS,S( fn));13

if f S > min I then14

addPcand to C;15

call EvalS IP( f ′ns child node,min I ,C);16

else17

call EvalS IP( f ′ns sibling node,min I ,C);18

Lines 6-10 discover the interaction in all feature pairs combination. In particular,

Line 9 computes the interaction of the one feature pair by taking the minimal value

between each element pair and summing up all the minimal values. If the measure is

greater thanmin I , this feature pair is considered to be correlated.

Line 11 builds the interaction tree using the set of interaction pairs as the tree pro-

posed in [38]. Line 13 invokes algorithmEvalS IP(·) to recursively visit the necessary

feature nodes in interaction tree, starting from the root node of tree. Finally, Line 14

returns the maximal pattern setC.

Continuing with our example in Figure 4.1, we assumeσ=10 andmin I= 0.3, Table

4.1 shows the mining process of PROBER. The mining stops at level 2 because the

pattern{ f1, f3} is not a valid SIP, hence the pattern{ f1, f2, f3} is pruned. As a result, the

maximal SIPs are{{ f1, f2} and{ f2, f3}}.
Complexity Analysis. Let θ=σ/R whereR is final resolution after multiple itera-
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Algorithm 7 : PROBER
input : D: the spatial database;

σ: kernel deviation;
min err: influence error threshold;
min I : interaction threshold.

output: C: the set of SIPs.
Let RF to be all features inD;1

/*Phase 1: impose approximate influence map*/ ;2

for each feature fi ∈ RF do3

call BuildApproS pace(·) to build the influence map;4

/*Phase 2: build interaction tree*/ ;5

C = ∅;6

Impose an ordering onRF;7

for each feature pair( fi , f j), where fi ≺ f j do8

evaluate feature pair (fi , f j);9

if I ( fi , f j) ≥ min I , add pattern{ fi , f j} to C;10

build the interaction treeTcol based onC;11

/*Phase 3: mine maximal SIP*/;12

call EvalS IP(Tcol.root,min I ,C);13

return C.14

tions. To build the influence map (i.e.BuildApproS pace(·) algorithm), an influence

unit of range 6σ × 6σ is computed for each instance in the database, thus it needs

(6σ/R)2=(6/θ)2 distance computation. The overall computational complexity to build

the influence maps isO(n(6/θ)2), wheren is the database size. Since there is one in-

fluence map matrix for each feature, the space complexity isO( f ( L
R)2) whereL is the

plane length,f is the feature number.

The PROBER algorithm, in the worst case, could generate
(

f

b f
2 c
)

maximal SIPs, and

each of them requiresb f
2c influence map comparison along the path from root to the leaf

node of the maximal SIP. Each influence map comparison requires the computation of

complexityO(( L
R)2). Hence, the overall computational complexity in mining phase, is

O(
(

f

b f
2 c
)
× b f

2c × ( L
R)2). The space complexity include the space to store interaction tree

and influence matrixes. The interaction tree has maximal 2f nodes, and each node store

an influence matrix. As the space required for influence matrix dominates, the worst
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Table 4.1: Mining SIPs by influence model

level=1
f1 S( f1) (see Figure 4.3(a)) I ( f1)=1
f2 S( f2) (see Figure 4.3(b)) I ( f2)=1
f3 S( f3) (see Figure 4.3(c)) I ( f3)=1

level=2
{ f1, f2} S( f1, f2) (see Figure 4.3(d)) I ( f1, f2)=0.58
{ f1, f3} S( f1, f3) I ( f1, f3)=0.27
{ f2, f3} S( f2, f3) (see Figure 4.3(e)) I ( f2, f3)=0.38

space requirement isO((2f − f ) × ( L
R)2).

In summary, the computational complexity of PROBER isO(n(6/θ)2 +
(

f

b f
2 c
)
× b f

2c ×
( L

R)2), and the space complexity of PROBER isO(2f ( L
R)2).

4.3 Experimental Studies

In this section, we present the results of experiments to evaluate the performance of

PROBER. We also compare PROBER with existing collocation algorithms FastMiner

[90] and TPMiner [77]. In order to set reasonable comparison, we generate two versions

of PROBER, PROBERALL to discover all patterns, and PROBERMAX to discover

only maximal patterns. Note that while comparing the effectiveness of PROBER with

FastMiner and TPMiner may not be appropriate due to the different interesting measures

used, however, we could treat FastMiner and TPMiner as good baselines w.r.t both ef-

fectiveness and scalability issues. Table 4.2 show the parameter counterparts between

influence model and distance model. In the following experiments, we assign the identi-

cal values to the parameter counterparts, e.g.σ = d = 50 andmin I = min prev= 0.4.

Synthetic Datasets:We extend the synthetic data generator in [77] to generate the

synthetic spatial databases with Gaussian noise. All the data are distributed on the plane

of 8192× 8192. The synthetic datasets are named using the format “Data-(m)-(n)-(d)-
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Table 4.2: Parameter counterparts

Distance Model Influence Model
distance threshold:d influence deviation:σ
minimal prevalence:min prev minimal interaction:min I

(N)” wherem is the confidence feature number,n is the non-confidence feature number,

d is the distance threshold andN is the number of instances in the dataset. For example,

DATA-8-2-50-200k is a dataset which contains 8 confident features, 2 noise features,

distance threshold to be 50, and a total of 200k instances. For each object, we assign a

Gaussian noise of 0 mean andσe, say 5, deviation on each dimension.

Real-life Datasets:The real-life dataset used in our experiments is theDCW en-

vironmental data.We downloaded 8 layers of Minnesota state from Digital Chart of

the World1 (DCW). Each layer is regarded as a feature in our experiments as shown in

Table 4.5. We further map the dataset on a formal 8192× 8192 2D plane.

All the algorithms are implemented in C++. The experiments were carried out on a

Pentium 4 3Ghz PC with 1GB of memory, running Windows XP.

4.3.1 Performance of Influence Map Approximation

In this section, we evaluate the convergence and efficiency of theBuildApproS pace

algorithm on both synthetic data Data-6-2-100-50k and DCW data. We assign the initial

resolutionr = 256 andmin err = 0.05, as well asσ = 100 for Data-6-2-100-50k and

σ = 50 for DCW data. Table 4.3 and 4.4 shows the results. In both tables, each row

gives the influence errorIErr for each iteration. We can see that theIErr converges to

zero with each iteration.

The time taken for each iteration is shown in Figure 4.7. We observe that the runtime

increases quadratically as the number of iteration increases, as the resolution andθ are

1http://www.maproom.psu.edu/dcw
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Table 4.3: Convergence on DCW data

Iteration f0 f1 f2 f3 f4 f5 f6 f7 MAX

1 0.16 0.02 0.15 0.13 0.16 0.04 0.17 0.17 0.17
2 0.10 0.01 0.09 0.08 0.10 0.03 0.11 0.11 0.11
3 0.06 0.01 0.05 0.05 0.06 0.02 0.06 0.07 0.07
4 0.03 0.00 0.03 0.03 0.03 0.01 0.04 0.04 0.04

Table 4.4: Convergence on Data-6-2-100-50k

Iteration f0 f1 f2 f3 f4 f5 f6 f7 MAX

1 0.17 0.17 0.17 0.17 0.17 0.17 0.25 0.24 0.25
2 0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.14 0.15
3 0.05 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.08
4 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04

decreased by half. This is expected because a finer resolution and smallerθ will cause

a quadratic increase in both time and space complexity. On the other hand, the runtime

is linear to the database size for each iteration, as the DCW data contains 2837 objects

as a whole and the synthetic dataset contains 50k objects. The results in Figure 4.7 are

consistent with the analysis in Section 4.2.4.

4.3.2 Effectiveness Study

In this set of experiments, we show that PROBERALL algorithm is more robust than

FastMiner and TopologyMiner as the variation of deviation/distance threshold. As the

results of FastMiner and TopologyMiner are exactly same, we only compare PROBERALL

with TopologyMiner in our experiment.

We first use a synthetic dataset Data-5-0-50-5k to evaluate effectiveness. Without

noise, the expected patterns will be the maximal pattern of 5 confident features and all

its sub-patterns, i.e. 26 patterns (25-5-1=26). We integrate different Gaussian noise of
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Table 4.5: Feature Description

FID Name Number of Points
f0 Populated Place 517
f1 Drainage 6
f2 Drainage Supplemental 1338
f3 Hypsography 72
f4 Hypsography Supplemental687
f5 Land Cover 28
f6 Aeronautical 86
f7 Cultural Landmarks 103

identical mean 0 but different deviation ranging from 1 to 30. The comparison measure

is the number of interaction patterns discovered, including maximal and non-maximal

ones. The results are shown in Figure 4.8. From this figure, we observe that both

PROBERALL and TopologyMiner can find the whole set of possible patterns while

error deviation is less than 10. This is expected because the small error deviations

do not have impact on the influence deviation. Therefore TopologyMiner can find all

of the patterns with noise of deviation 10. On the other hand, the patterns found by

TopologyMiner show greater decrease than the ones by PROBERALL, as the increase

of error deviation.

Next, we apply PROBERALL on the DCW environment data. We set the inter-

action thresholdmin I to be 0.4. The mining results are shown in Table 4.6. We ob-

serve that regardless of how theσ varies, the patterns discovered by PROBERALL
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Table 4.6: Patterns Comparison of DCW Dataset

d/σ Distance Model Influence Model
50 NA { f0, f2}, { f2, f4}
100 { f0, f2}, { f2, f4} { f0, f2}, { f0, f4}, { f0, f6}, { f2, f4}
150 { f0, f2}, { f0, f4}, { f2, f4} { f0, f2}, { f0, f3},{ f0, f4}, { f0, f6},{ f0, f7},

{ f2, f3}, { f2, f4}, { f2, f6}, { f3, f4},{ f3, f7},
{ f4, f6},{ f4, f7}, { f6, f7}

200 { f0, f2, f4}, { f3, f4} { f0, f2, f4}, { f0, f2, f6}, { f0, f6, f7}, { f0, f3},
{ f2, f3}, { f2, f7}, { f3, f4},{ f3, f6},{ f3, f7},
{ f4, f6},{ f4, f7}

are always a superset of those found by the two distance model-based techniques, Fast-

Miner and TopologyMiner. In particular, whenσ = 200, we find that{populated place,

drainage supplemental, hypsography supplemental} and{populated place, aeronautical,

cultural landmarks} are missed by the distance model-based techniques but are discov-

ered as SIPs.

4.3.3 Scalability

In this set of experiments, we demonstrate the scalability of both PROBERALL and

PROBERMAX. We set the number of features to 10 (including non-noise and noise

features), and generate twelve datasets Data-8-2-50-{20k, 40k, 60k, 80k, 100k, 200k,

. . ., 800k}. We compare the performance of PROBER with FastMiner and Topol-

ogyMiner by varying the total number of instances. Figure 4.9(a) shows that both

FastMiner and TopologyMiner increase exponentially as the number of instances in-

creases while PROBER shows a linear increase. This is expected because the time

complexity for the distance model is polynomial time of the number of instances while

PROBERALL and PROBERMAX are linear to the number of instances during the

database scan and is independent of the database size during mining phase. In further

observation, PROBERMAX is slightly faster than PROBERALL because PROBERMAX
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Figure 4.9: Scalability study

only detects the maximal patterns which can save the mining cost.

We also set the database size at 20k instances and generate eight datasets Data-{4, 6,

8, 10, 12, 14, 16, 18}-0-50-20k to evaluate the three algorithms. The results are shown

in Figure 4.9(b). Both FastMiner and TopologyMiner do not scale well w.r.t the number

of non-noise features. TopologyMiner allows pattern growth in a depth-first manner,

but the extraction of project databases requires much time and space. PROBERMAX

shows the best scalability compared to the other algorithms, although the algorithm

slows down when the number of features exceeds 16. This is because of the large

confidence features results in the exponential growth of its interaction tree.

4.3.4 Sensitivity

Finally, we examine the effect of two parameters, influence deviationσ and interac-

tion thresholdmin I , on the performance of PROBER. Due to the intrinsic difference

between influence model and distance model, it is unfair to compare the sensitivity per-

formance of the two models. Therefore, we only include the influence model in this

experiment.

Effect of Influence Deviation (σ). We first evaluate the effect of the influence

deviation on PROBERMAX. The two datasets used in this experiment are Data-6-
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2-100-50k and Data-8-2-100-200k, which imply that the patterns will be valid once

the σ surpass 100. Figures 4.10(a) gives the results. PROBERMAX run faster as

the increase ofσ. This is expected due to two reasons: 1) The time complexity of

PROBER are inversely related to theσ, consistent to the complexity analysis in Section

4.2.4; 2) Biggerσ implies smoother distribution of influence maps, so it incurs less

iteration rounds to build approximate spaces with errorIErr , which saves the cost. On

the contrary, the algorithms of distance model are sensitive to distance threshold due to

the tremendous increase of time cost [77].

Effect of Interaction Threshold (min I ). We evaluate the three algorithms on two

dataset Data-3-3-50-20k and Data-5-5-50-50k with potential prevalence is 0.5, which

implies that the PROBER may find many patterns whilemin I < 0.5. From Figures

4.10(b), PROBERMAX are not sensitive tomin I because the mining cost is not the

dominant factor compared with the cost to build approximate spaces. On the contrary,

the runtime of FastMiner and TopologyMiner will decrease as prevalence increases.

This is expected because less patterns become frequent as the increase of prevalence,

which leads to reduced mining cost for the two algorithms.
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4.4 Summary

In this chapter, we introduce an influence model to present the spatial distribution of

event data and analyze the bounds of computational error for building influence maps.

Compared to the distance model used in existing works, the influence model considers

the spatial affinity in terms of continuous functions instead of discrete functions. This

leads to more meaningful mining results. Another advantage of the influence model

is that it avoids expensive join operations, which are traditionally required to discover

the relationship among spatial instances. We also introduce the concept of Spatial In-

teraction Patterns (SIPs) and design an approximate mining algorithm PROBER using

influence model to find maximal SIPs. The experiment results on both synthetic and

real-life datasets demonstrate that PROBER is effective and scalable.



Chapter 5

Mining Interaction Pattern Chains in

Snapshot Data

In the previous chapter, we address the problem of mining global interaction patterns

on a single snapshot, where the interaction patterns hold on thewholespatial plane of

the snapshot. In this chapter, we focus on the problem of mining localized and time-

associated interaction patterns, which are the patterns supported by the confined regions

in some consecutive snapshots.

To find localized and time-associated interaction patterns are important to satisfy

the application requirement of Location-Based Services (LBS). LBS are applications

that take the geographical-related information into account and focus on the local data

analysis and the local knowledge. Though the term of LBS has traditionally been used

to refer to mobile device services using the Global Positioning System (GPS), in the

recent years, it has been extended to web applications since the web resources contain a

plenty of location information. The location information of web resources include three

categories [76] as follows.

• Provider location: The physical location of the provider who owns the web ser-

94
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vice, such as organization, corporation or person. This kind of location is crucial

to web geographical information retrieval and navigation such as online map and

Yellow Pages services.

• Content location: The geographical location where the web resources describe,

such as the location names or the geographical-related names. The content loca-

tions are utilized to improve the performance of information retrieval based on

the location of user.

• Serving location: The geographical scope that a web resource can reach. For

example, if a web resource is visited by the people in Singapore, its serving scope

is Singapore. Knowing the serving location of a web resource can benefit many

business applications such as local advertisements and e-commerce.

Many application and research efforts have been made in content locations. The

commercial search engines, including Yahoo! Local and Google Maps, have introduced

local search services that appear to retrieval geographically relevant information using

location information of web pages; The research of location-aware text retrieval, which

combines both location proximity and text contents in text retrieval, receives much

attention [20, 11]. Both commercial search engines and location-aware text retrieval

focus on the aspect of “content location”, while local interaction patterns have many

benefits to the location-based web services based on the “serving locations” of web

pages. With the awareness of the prevalence of common interests among people who

are geographically closed together and frequently visit one common web resource or a

set of common web resources, businesses are keen to increase their competitive edge

by offering geographically tailored contents that reflect the common interests of the

geographical region of the web visitors.

As we know, existing web servers typically organize the web pages they host in

some hierarchical structures. For example, a commercial web server may organize
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the pages into different categories such as: “Sports”, “Entertainment”, “Shopping”,

“News”, and each category is further decomposed into many subcategories. This static

organization is often a source of frustration for the web visitor as they need to perform

multiple clicks before they are able to locate the items of their interests. In order to pro-

vide better services and increase customer satisfaction, many web servers are looking

at customer-centric organization whereby the content of the web pages are customized

based on the locations of visitors. It is able to do so because many web servers have

already accumulated gigantic log files recording the details of each access such as: the

source IP address, the time and duration of access, and the pages visited. Analyzing

these log files for geographical-specific common interests among the web visitors is a

promising approach to dynamically customized the web structure based on the interests

that have been shown by the web visitors in the same geographical region.

In order to achieve this objective, an efficient algorithm that can automatically dis-

cover the geographical-specific common interests among the web visitors are needed.

In addition, since these interests may change from time to time, it is useful to know

what and how these interests change over time. For example, the Asian visitors may

tend to click the pages relating to “Tennis” and “Badminton” while the visitors in North

America tend to click on the pages relating to “Football” and “Basketball”. In this case,

we may conclude that the Asian visitors share the common interests of “Tennis” and

“Badminton”, while the North American visitors prefer “Football” and “Basketball”.

Furthermore, the interests of the Asian visitor changes from “Tennis” in the months of

June- October to “Badminton” in the months of March-July, while that of the North

American visitors interests changes from “Football” in the months November-February

to “Basketball” in the months April-June. The web serve may vary the services from

time to time. This example motivates the development of moving interaction patterns,

i.e., geographic-specific interaction pattern chains.
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In this chapter, we aim to find geographical-specific interaction patterns in some

local regions, and discover changes in the supporting regions (e.g., movement, en-

largement and shrinkage) over multiple time points. We design an algorithm called

FlexiPROBER that utilizes a quadtree structure to iteratively refine the regions so as to

discover the local geographical-specific interaction patterns. We define three important

pattern trends, i.e., enlargement, shrinkage and movement of supporting regions, to cap-

ture the changes in these patterns and develop an algorithm called MineGIC to discover

these changes. Experiment results on both synthetic and real world datasets demon-

strate that the proposed approach is effective in mining the local geographical-specific

interaction patterns and discover their changes over time.

The rest of the chapter is organized as follows. Section 5.1 gives the preliminaries

and problem statement. Section 5.2 introduces the multi-scale influence model. Section

5.3 presents the algorithm FlexiPROBER to mine the geographical-specific interaction

pattern on static time frame, and Section 5.4 presents the algorithm MineGIC to dis-

cover the pattern changes. Section 5.5 presents the results of experiments to evaluate

the proposed algorithm. Finally, we conclude in Section 5.6.

5.1 Preliminaries and Problem Statement

SupposeP is a 2D spatial plane with dimensions [0, xmax] x [0, ymax] andF = { f1, f2, . . . , fn}
is abinary feature set. Each featurefi could denote an interest of a web visitor. An ob-

jecto on planeP is a tuple〈x, y;F o〉, where (x, y) denotes the geographical location of

the object, andF o is a binary feature vector of the object.

Chapter 4 proposes aninfluence modelto describe spatial data distribution and mea-

sure the interaction among two or more distributions. Based on the model, the influence
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of an objecto = (xo, yo) to a pointp = (xp, yp) is measured by

In f (o, p) =
1

2πσ2
exp{− (xo − xp)2 + (yo − yp)2

2σ2
}, (5.1)

where theσ is the influence deviation, specified by the applications. Combining the

influences from all the objects exhibiting the same feature, sayf , we obtain aninfluence

mapof this feature, denoted byM( f ). The influence of featuref in point p is denoted

by M( f , p). Let {o1,o2, · · · ,om} be a set of objects that has the featuref . The influence

of f on a pointp is M( f , p) =
∑m

i=1 In f (oi , p). In term of statistics, influence map is a

density distribution about influence.

Given the influence maps of a set of features{ f1, f2, · · · , fn}, and we denote

MIN( f1, f2, · · · , fn; p) = min(M( f1, p),M( f2, p), · · · ,M( fn, p)), (5.2)

and

MAX( f1, f2, · · · , fn; p) = max(M( f1, p),M( f2, p), · · · ,M( fn, p)), (5.3)

we can determine the degree ofinteractionamong these features as follows:

I ( f1, f2, · · · , fn) =

∫
p∈P MIN( f1, f2, · · · , fn; p)dp

∫
p∈P MAX( f1, f2, · · · , fn; p)dp

. (5.4)

Interaction can measure the similarity amongst influence maps. High interaction

value means high similarity, and vice versa. Specially,I ( f1, f2, · · · , fn) = 1 if and only

if thesen features assign exactly the same influence to every point on the plane. Note

that using KL-divergence is not suitable here because it cannot be easily generalized to

measure the difference among three or more distributions.

The degree of interaction among a set of features can be constrained to a region in-

stead of the whole plane. For example, the interaction of a set of features{ f1, f2, · · · , fn}
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on a regionR ∈ P, denoted byI ( f1, f2, · · · , fn;R), is

I ( f1, f2, · · · , fn; R) =

∫
p∈R MIN( f1, f2, · · · , fn; p)dp

∫
p∈R MAX( f1, f2, · · · , fn; p)dp

. (5.5)

With this, thegeographical-specific interaction pattern(or GIP for short) can be

formally defined as follows.

Definition 14. Given a spatial database containing a set of objects and a feature setF ,

a regionR ∈ P, an interaction threshold minI, a geographical-specific interaction

pattern GIP = { f1, f2, . . ., fn; R} onR, is the set of features{ f1, f2, . . . , fn} ⊆ F such

that I( f1, f2, . . . , fn;R) ≥ min I. R is called thesupport region for GIP.

An interaction patternGIP is called ak-pattern if it consists ofk distinct features

∈ F , that is,|GIP| = k.

With this definition, we can track how the support regions of GIP pattern changes

over time. In particular, we are interested in discovering three kinds of changes in this

chapter.

• Enlargement. The support regions of a particular interaction pattern expand over

two or more continuous time frames;

• Shrinkage. The support regions of a particular interaction pattern shrink over at

least two continuous time frames;

• Movement. The support regions of one particular interaction pattern move from

one region to a neighboring region over two continuous time slots.

Definition 15. A geographical interestchain, denoted as GIC= 〈GIP : Rti → Rti+1

→ · · · → Rt j 〉, where GIP is a local geographical-specific interaction pattern and Rti

is the set of support regions of GIP at time ti, must satisfy one of the following three

conditions:
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1. Rtk ⊆ Rtk+1, for all k, i ≤ k ≤ j − 1, is an enlargement chain

2. Rtk ⊇ Rtk+1, for all k, i ≤ k ≤ j − 1, is a shrinkage chain

3.
Rtk∩Rtk+1

min(Rtk ,Rtk+1) ≥ 0, for all k, i ≤ k ≤ j − 1, is a movement chain

Problem Statement:Given a spatiotemporal database of point objects over the planeP
and an interest thresholdmin I , we aim to find the complete set of local geographical-

specific interaction patterns on the planeP, and generate all the spatial interaction pat-

tern chains.

5.2 Multi-scale Influence Map

To discover the local interaction patterns, we must first construct the influence map for

each feature on the planeP. This influence map must allow for different granularity

over different regions inP in order to highlight interests that are local to small regions.

A quadtree structure [61] is used to facilitate the construction of multi-scale influ-

ence maps. Initially, the planeP is one large cell as the root node of quadtree. All

objects on the plane are associated to this root node. We estimate the maximum, min-

imum and the average influence of all the objects on this cell (the details is elaborated

in the next paragraphs). The node split criteria is the gap of maximum and minimum

influence. High influence gap implies the skew influence distribution on this cell. In

other words, this cell can not capture the precise influence value any more. Thus, a cell

will be split into 4 equal sub-cells if its influence gap exceeds an assigned error bound,

and the associated objects in this cell are pull down to one or more sub-cells. The pro-

cess is repeated until no cell partition is required. For example, assuming the objects

of featuref1 distribute coarsely on regionsR13,R21,R22,R23,R31, and the objects of

featuref2 are on regionsR11,R12,R21,R22,R32,R33. Figure 5.1 shows the results of

implementing the strategy on featuref1 and featuref2 respectively.
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Figure 5.1: Influence Maps and Quadtrees

Please note that theR in Definition 14 may not be the leaf node in the quadtree. The

size and location ofRare determined by application interests. For example, we partition

the plane into 4× 4 buckets in Figure 5.1, andR can be any one of these buckets.

The computation of the maximum, minimum, and average influences of an objecto

to a cellG is as follows.

Case 1: Objecto is in cellG.

In this case, the minimal distance betweeno on G is 0, the average distance is deter-

mined by the Euclidean distance betweeno and the center point ofG, and the maximal

distance is the Euclidean distance betweeno and the furthest corner ofG.

Case 2: Objecto is outside cellG.

In this case, the minimum/maximum distance is the Euclidean distance fromo to the

nearest/furthest corner of the cellG, and the average distance is the Euclidean distance

betweeno and the center ofG.

Knowing the minimum, average, and maximum distances, we can compute its max-

imum, average, and minimum influence according to the influence function in Equa-

tion 5.1.
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With this, the average influence of a featuref on a cellG, denoted byavg in f ( f ,G),

is thesummationof all the average influences from the objects inG with featuref . The

minimum (maximum) influence, denoted bymin in f ( f ,G) (max in f ( f ,G)) are defined

similarly.

To determine whether one cellG should be partitioned into 4 sub-cellsG1, G2, G3

andG4, we introduce the notion of scale error (S caleErr).

S caleErr( f ,G) =
1
4
×

4∑

k=1

abs(avg in f ( f ,G) − avg in f ( f ,Gk))
max(avg in f ( f ,G),avg in f ( f ,Gk))

. (5.6)

In our work, S caleErr is used to measure the average influence change of a cell

after splitting.S caleErris normalized between 0 and 1. Specially,S caleErr= 0 if no

influence change after splitting; otherwise,S caleErr> 0. In general, the more change

one cell has, the biggerS caleErrit obtains.

The computation ofS caleErr is expensive. Suppose there aren objects exerting

some influences to a cell, we require a total of 4n distance computations. For a quadtree

of heighth, the worst time complexity isO(4h×n). To cut down the cost of constructing

the quadtree, we derive an early terminating condition to stop partitioning based on the

following two observations.

Observation 1.For any cellG, we havemin in f ( f ,G) ≤ avg in f ( f ,G) ≤ max in f ( f ,G).

This property follows from the fact that for any objecto, its minimum distance to a cell

G is less than its average distance, which in turn, is less than its maximum distance to the

cell. By Equation 1, we know the minimum influence of objecto onG is less than the

average influence which is less than the maximum influence. Summing over all the ob-

jects that are associated toG, we havemin in f ( f ,G) ≤ avg in f ( f ,G) ≤ max in f ( f ,G).

Observation 2. Given a featuref , a cell G and its four sub-cellsG1, G2, G3

andG4, min in f ( f ,G) ≤ min in f ( f ,Gk) and max in f ( f ,G) ≥ max in f ( f ,Gk) where

1 ≤ k ≤ 4. This can be proved as follows. For any object instanceoi of feature f , we
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havemin dis(oi ,G) ≤ min dist(oi ,Gk). By Equation 5.1, we concludemax in f (oi ,G)

≥max in f (oi ,Gk). Summing all object instances off and applying the transitivity prop-

erty of inequality, we havemax in f ( f ,G)≥max in f ( f ,Gk). The proof formin in f ( f ,G)

≤ min in f ( f ,Gk) is similar.

Theorem 3. Given a feature f , a cell G, and error bound E, we say that G does not

require further partitioning if both of the following conditions hold

1. min in f ( f ,G)
avg in f ( f ,G) > 1− E;

2. max in f ( f ,G)
avg in f ( f ,G) < 1 + E.

PROOF: SupposeGk is one of the sub-cells ofG. From Observation 1 and 2, we

knowmin in f ( f ,G) ≤ min in f ( f ,Gk) ≤ avg in f ( f ,Gk) ≤ max in f ( f ,Gk) ≤ max in f ( f ,G).

Case I: avg in f ( f ,G) ≤ avg in f ( f ,Gk).

By definition,

S caleErr( f ,G) = 1
4 ×

∑4
k=1

avg in f ( f ,Gk)−avg in f ( f ,G)
avg in f ( f ,Gk)

≤ 1
4 ×

∑4
k=1

max in f ( f ,G)−avg in f ( f ,G)
avg in f ( f ,G) Condition (2)

≤ 1
4 ×

∑4
k=1(1 + E − 1) = E;

Case II: avg in f ( f ,G) ≥ avg in f ( f ,Gk).

Again, we have

S caleErr( f ,G) = 1
4 ×

∑4
k=1

avg in f ( f ,G)−avg in f ( f ,Gk)
avg in f ( f ,G)

≤ 1
4 ×

∑4
k=1

avg in f ( f ,G)−min in f ( f ,G)
avg in f ( f ,G) Condition (1)

≤ 1
4 ×

∑4
k=1(1− (1− E)) = E.

�

Theorem 3 provides the early termination condition for unnecessary cell partition-

ing. With this, we give the details of the multi-scale influence map construction in

Algorithm 8 BuildQTree( f , σ). The algorithm start with a root node (Line 1) which is

initially associated with all objects (Lines 2-4). A functionS plit(·) is called in Line 5

to split the root node and its sub-node recursively.
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Algorithm 8 : BuildQTree( f , σ)
input : {o1, . . . , on}: n objects of featuref ;

σ: the standard deviation of influence function.
output: QuadtreeT.
initialize a root nodeG of QuadtreeT;1

for each object oi, 1 ≤ i ≤ n do2

appendoi into G.ob j list;3

call S plit(G, f , σ);4

return T;5

Algorithm 9 : S plit(G, f , σ)

if min in f ( f ,G)
avg in f ( f ,G) > 1− E AND max in f ( f ,G)

avg in f ( f ,G) < 1 + E then1

Exit;2

Split G into four sub-nodesG1, G2, G3 andG4;3

for each object oi ∈ G.ob j list do4

for each sub-node Gk do5

build a region ofGk of radiusσ;6

if oi falls into region of Gk then7

appendoi into Gk.ob j list;8

if S caleErr( f ,G) > E then9

for each sub-node Gk do10

S plit( f ,Gk);11

Algorithm 9 gives the details of functionS plit(·). Line 1 is an early termination

condition. Line 4 splits the area of node into four parts. Lines 5-12 distribute the

objects into four sub-nodes. If the influence error of the node and its sub-nodes less

than 0.05, we terminate further split operation of sub-nodes (Line 13); otherwise, we

continue to split each sub-node.

5.3 FlexiPROBER

Having built the multi-scale influence maps for all the features, the task now is to find

the geographical-specific interaction patterns, GIP in short, efficiently.
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Recall, a GIP in regionR is the set of features whose interaction value among the

features inR is not less than the thresholdmin I . Consider a pair of featuresf1 and f2

with influence maps as shown in Figure 5.2(i). Focusing on the regionR21, we note that

both maps have 7 cells but are of different granularity. Computing the interaction value

of f1 and f2 onR requires both maps to be of the same granularity. This is achieved by

refining the maps till all corresponding cells have the same granularity. Figure 5.2(ii),

shows the results after the refining process. Note that this refining process is relatively

inexpensive as there is no need to perform object allocation from the parent node to

the child nodes. In the final step, for each common subregions ofR, we compute the

interaction among the features as follows.

I ( fi , f j; R) =

∑
G∈R(min(avg in f ( fi ,G),avg in f ( f j ,G)) × area(G))∑
G∈R(max(avg in f ( fi ,G),avg in f ( f j ,G)) × area(G))

(5.7)

Continuing with our example, Figure 5.2(iii) shows that the final interaction off1

and f2 on regionR21 is 5×4+(50+50+50+12)+10×4+(30+30+30+30)
25×4+(50+60+65+50)+15×4+(120+120+150+136) = 342

911 = 0.38.

To generate the set of GIPs, we adopt the level-by-level candidate pattern generation

procedure. Ak-pattern candidate is generated from two (k-1)-patterns if they share a

commonk-2 prefix [65]. For GIPs, we prove that the GIPs satisfy the Min-Max theorem

as stated below.

Theorem 4. (Min-Max Theorem) Given two influence maps onR, and the interaction

threshold minI, { fi, f j} cannot be a GIP onR if one of the following conditions hold,

1. max in f ( fi ,R)
min in f ( f j ,R) < min I, or

2. max in f ( f j ,R)
min in f ( fi ,R) < min I,

where maxin f ( fi ,R) (min in f ( fi ,R)) is the maximal (minimal) influence of fi onR.

PROOF: We show the proof for Condition (1). The proof for Condition (2) is simi-

lar.
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Figure 5.2: Interaction off1 and f2 on RegionR21

Suppose Condition (1) holds, sincemin I ≤ 1, we can infer thatmin(avg in f ( fi ,G),

avg in f ( f j ,G)) = avg in f ( fi ,G), andmax(avg in f ( fi ,G), avg in f ( f j ,G)) = avg in f ( f j ,G),

whereG is a subregion inR.

By Equation 5.7,I ( fi , f j; R) =
∑

G∈R(avg in f ( fi ,G)×area(G))∑
G∈R(avg in f ( f j ,G)×area(G)) ≤

∑
G∈R(max in f ( fi ,R)×area(G))∑
G∈R(min in f ( f j ,R)×area(G))

=
max in f ( fi ,R)×∑G∈R area(G)
min in f ( f j ,R)×∑G∈R area(G) ≤ min I .

�

This theorem enables a large number of candidates to be pruned, resulting in a

highly efficient algorithm calledFlexiPROBER. Details ofFlexiPROBERare given in

Algorithm 10. Lines 1-3 construct the quadtree for each feature by callingBuildQTree(·).
For each regionR, Lines 5-14 mine the complete set of GIPs with the call to procedure

Apriori gen(·) in Line 8, and compute the interaction values in Line 10.

ProcedureApriori gen(·) (shown in Algorithm 11) generates thek-pattern candi-

dates from the (k-1)-pattern sets. Line 5 combines two (k-1)-patterns if they share
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Algorithm 10 : FlexiPROBER
input : D: the spatial database;

RF: all features inD;
min I : interaction threshold;
σ: the standard deviation of influence function;
h: the mining granularity;

output: P: the set of interaction patterns.
for each feature fi ∈ RF do1

call BuildQTree( fi , σ);2

P = ∅;3

for each cell in the h-th level of quadtree,R do4

GIP1 = QTree( fi ,R), where fi ∈ RF;5

for k = 2;Pk−1 , ∅; k + + do6

Ck = Apriori gen(GIPk−1,min I ,R);7

//Apriori property8

for each candidate c∈ Ck do9

compute the interaction ofc;10

GIPk = {c ∈ Ck|c.interaction≥ min I };11

commonk-2 prefix. Lines 6-7 prune the candidate pattern using the MIN-MAX theo-

rem. Lines 9-11 compute the minimal influence and maximal influence of the candidate

pattern and add it to the candidate pattern sets.

5.4 Discovering Interaction Patterns Changes

SupposeD1, D2, . . ., Dq correspond to the datasets at timet1, t2, . . ., tq. We can mine

GIPs from each of these datasets independently as described in Section 4. Having

generated the GIPs for each time point, we next consider how to detect interesting

changes in these patterns over time. Note that Enlargement and Shrinkage chains can

be extended from Movement chains, because they are the special cases of Movement

chains if
Rtk∩Rtk+1

Rtk
= 1 or

Rtk∩Rtk+1
Rtk+1

= 1. Hence, we only present the approach to discover

the Movement chains.

Given a patternGIP, we use a bitmap structure to indicate its support regions at
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Algorithm 11 : Apriori gen(GIPk−1,min I ,R)

for each pattern GIPp1 ∈ GIPk−1 do1

for each pattern GIPp2 ∈ GIPk−1 do2

if GIPp1 and GIPp2 have the identical prefix k− 2 featuresthen3

// f is a new feature;4

f = GIPp2[k− 1];5

c = GIPp1 ∪GIPp2;6

if max in f (p1,R)
min in f ( f ,R) < min I OR max in f ( f ,R)

min in f (p1,R) < min I then7

//MIN-MAX Theorem;8

deletec;9

else10

c.min in f = MIN(GIPp1.min in f , f .min in f );11

c.max in f = MAX(GIPp2.max in f , f .max in f );12

addc to Ck;13

return Ck;14

time point ti, i.e. Rti in Definition 15. A bit is set to 1 if the corresponding region

supports the pattern. Figure 5.3 shows examples of 4x4 bitmap structures where the

GIC1 demonstrates an enlargement chain, starting from 4 regions at timet0 to 6 regions

at timet1 to 8 regions at timet2; while GIC2 is an example of a movement chain where

the 4 support regions are shifted int1 to t3.

A naive method to discover enlargement, shrinkage and movement chains is to use

FlexiPROBER to generate the GIPs for each time frame. For each GIP, we check the

condition for all consecutive time frames to determine whether the GIP is an enlarge-

ment, shrinkage or movement chain. This approach involves many unnecessary tests.

We observe that a GIP can participate in an enlargement, shrinkage or movement

chain only if its sub-patterns occurs in some common time intervals with overlapping

regions. We introduce the notion of aspatiotemporal jointo capture this concept of

common time intervals with overlapping regions.

Let PMap(GIP, t) denote the bitmap that indicates the support regions ofGIP at

time t. We define thespatiotemporal joinof two chainsGIC1 andGIC2, denoted as
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GIC1 = 〈GIP1 : [t0,1110100000000000]→ [t1,1111110000000000]→
[t2,111111101000000]〉

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

(a) Enlargement chain

GIC2 = 〈GIP2 : [t1,1100110000000000]→ [t2,0000110011000000]→
[t3,0000011001100000]〉
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(b) Movement chain

Figure 5.3: Examples of pattern chains

〈GIP1 Z GIP2 : [t1,1100110000000000]→ [t2,0000110010000000]〉
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Figure 5.4: Spatiotemporal joinGIC1 andGIC2
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GIC1 Zst GIC2, as follows.

For two interest chains,

GIC1 = 〈GIP1 : PMap(GIP1, ti)→ · · · → PMap(GIP1, t j)〉

GIC2 = 〈GIP2 : PMap(GIP2, tm)→ · · · → PMap(GIP2, tn)〉

let [tk, tl] = [ti , t j] ∩ [tm, tn], the spatiotemporal join is defined as

GIC1 Zst GIC2 = 〈GIPZ : PMap(GIPZ, tk)→ · · · → PMap(GIPZ, tl)〉

whereGIPZ = GIP1 Z GIP2 (see Algorithm 11), and for eacht ∈ [tk, tl], PMap(GIPZ, t) =

PMap(GIP1, t) ∩ PMap(GIP2, t). For example, the spatiotemporal join ofGIC1 and

GIC2 in Figure 5.3 is shown in Figure 5.4.

The Apriori-like property exists in the chain, stating that: If a chain ofP from ti to

t j, P : Rti → Rti+1 → · · · → Rt j , is a Movement chain, then any subpattern ofP, P′, also

has a Movement chainP′ : R′ti → R′ti+1
→ · · · → R′t j

, whereR′ti ⊇ Rti , . . ., R′t j
⊇ Rt j . It

is the foundation of our next Algorithm MineGIC to discover the interesting movement

chains by level-wise mining.

The pseudocode of MineGIC is given in Algorithm 12. Lines 1-3 read the sub-

datasets and build the independent quadtrees as discussed in Section 4. Lines 4-6 ini-

tializes each feature as a 1-pattern chain. Lines 7-27 describe the level-wise candidate

generation process. Line 8 picks two chains from the (k-1)-pattern set. Line 9 performs

the spatiotemporal join of the two chains if they have (k-2) common features, and ob-

tains a candidate chainC of one k-pattern. Line 10 initializes a queue for this candidate

chainC and Line 11 push the firstPMapof chainC into this queue. Lines 12-22 detail

an iterativePMapcomparison process for each time frame with its previous one. Each

comparison consists of two phases. The first phase is the determination of the overlap-

ping regions, shown in Lines 13-16.FlexiPROBERis called to compute the interaction
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Algorithm 12 : MineGIC
input : The dataset fromt0 to te, the necessary parameters as Algorithm 10
output: The Movement chainsGIC
for each feature fi ∈ RF and each time tj, 0 ≤ j ≤ edo1

call BuildQTree( fi , σ);2

GIC = ∅;3

GIC1 = { fi : Rt0 → . . .→ Rte}| fi ∈ RF};4

GIC = GIC + GIC1;5

for k = 2;GICk−1 , ∅; k + + do6

for two chains GIC1, GIC2 ∈ GICk−1, where GIC1 and GIC2 have the7

common (k-2) prefix featuresdo
GIC = GIC1 Zst GIC2;8

Initialize a queueQ;9

PushPMap(GIC.tbegintime) into Q;10

for t j = C.begintime+ 1 to GIC.endtimedo11

for R, R=1 in element of PMap(GIC.t j) = 1 do12

Compute the interaction ofGIC in the locationR;13

LetR=0 in PMap(GIC.t j), if I (GIC;R) < min I ;14

PushPMap(GIC.t j) into Q;15

if PMap(GIC.t j) ∩ PMap(GIC.t j−1) = ∅ then16

Pop the firstPMap in Q to PMap(GIC.t j−1) as a chainGIC;17

GICK = GICK + GIC;18

k + +;19

of thisk-pattern in the overlapped regions. If the interaction is less thanmin I threshold,

this region does not support thek-pattern, and the correspondingPMapbit is set to 0.

In the second phase, shown in Lines 18-21, we compare thePMapof the current time

frame with the previous one in queue and remove those that do not have any overlapped

regions with the previous time frame.

5.5 Experimental Studies

In this section, we examine the performance of FlexiPROBER on both synthetic and

real world datasets. We also compare the performance of MineGIC with the naive
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approach. All algorithms are implemented in C++ and the experiments are carried out

on a Pentium IV PC with 3GHz CPU and 1GB memory, running Windows XP.

Synthetic Datasets: We use the synthetic data generator in [77] to generate the

spatial datasets. It generates objects of different features that are close to each other in

some regions. The target plane is [0,8192]× [0,8192] and the features have different

density distributions on this plane. The datasets are named using the convention Data-

( f )-(N) to indicate the number of featuresf and total objectsN. For example, DATA-

8-50k is a dataset which contains 8 features and a total of 50,000 objects.

Real World Datasets:We test our algorithm on a log file dataset of the web server

of an academic institute. We capture four weeks of web log files, from October 23 to

November 23 in the year 2006, which record the accesses to the web site of the School

of Computing, National University of Singapore (http:// www.comp.nus.edu.sg). This

web log consists of the IP addresses of visitors to the website. On average, the number

of accesses are about 20,000 per day, after excluding repeated IPs and dirty data. We

use the IP locator software GeoLyzer1 to identify the visitor’s geographical location in

terms of the longitude and latitude coordinates in the world map. In addition, the log

file also captures the pages accessed by the visitor over a period of four weeks. We

categorize the visited web pages into 15 features as shown in Table 5.1, where ”PP”

is the abbreviation for ”Personal Pages”. For example, all web pages of “Graduate

Program” are labelled as featuref1, and so on.

5.5.1 Effectiveness

We show the interesting chains discovered by MineGIC on the web log dataset. We first

partition the world map into 8× 8 cells as shown in Figure 5.6. We use [X-id, Y-id] to

refer to a cell in the plane. For example, cell [1,5] contains the west coast and mid-west

1http://www.geobytes.com/GeoLyzer.htm
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Table 5.1: Features in Web log Real Dataset
FID Target on FID Target on
f1 Graduate Program f9 PP on Media research
f2 Undergraduate Program f10 PP on System research
f3 Research f11 PP on Software research
f4 Computer Science Dept. f12 PP on Electronic Commerce research
f5 Information System Dept. f13 PP on Information Privacy research
f6 PP on AI research f14 PP on Knowledge Management research
f7 PP on Bio research f15 PP on Virtual Communities research
f8 PP on DB research

of U.S while cell [4, 5] covers Europe. In this experiment,min I is 0.4 andσ is 1.
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Figure 5.5: The 8× 8 bitmap over the world map

Figure 5.6 shows the trend of{ f4, f8} where shadow areas indicate the support re-

gions. This chain can be interpreted as follows: On Monday Oct 23, web visitors from

South China (cell [6,4]) showed an interest in the database research (f8). The next day,

the interest in database research has expanded to India (cell [5,4]), and subsequently to

Australia (cell [6,2]) and Japan (cell[7,5]). On Saturday Oct 28, we note a decline in

the interest with only visitors from China and India accessing the web pages. The trend

of { f4, f8} is intuitive as it captures the typical access patterns over a week where the

interest emerges on Monday and eventually declines as the weekend approaches.
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(f) Oct.28 (Saturday)

Figure 5.6: The chain of pattern{ f4, f8} = 〈{ f4, f8} : ([6,4]) → ([6,4][5,4]) →
([6,4][5,4][6,2][7,5]) → ([5,5][5,4][6,4][6,2]) → ([5,5][5,4][6,4][6,2][6,5]) →
([5,4][6,4])〉
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(c) Oct.29 (Sunday)

Figure 5.7: The chain of pattern{ f1, f4, f5} = 〈{ f1, f4, f5} : ([1,5][2,5]) →
([1,5][7,5][7,2])→ ([1,5][2,5][7,5][7,2])〉

Another interesting chain{ f1, f4, f5}, indicated again by shadow areas, is given in

Figure 5.7. This chain demonstrates a growing interest of web visitors from various

places in the graduate program offered by the computer science and information systems

departments. On Friday, visitors in the United States (cells [1,5] and [2,5]) accessed

these web pages. On Saturday, we observe additional visitors from Japan (cells [7, 5]),

Australia and New Zealand (cells [7, 2]).
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5.5.2 FlexiPROBER versus PROBER

In this set of experiments, we study the efficiency and scalability of FlexiPROBER. We

run the experiments on both synthetic and real-world datasets. The baseline algorithm

is PROBER [65], which utilizes a uniform grid framework to model the influence. In

PROBER, each influence map is a matrix ofn× n wheren is a user-defined granularity

of the planeP.

Efficiency

We define the skewness of a dataset as follows:

skewf =
Area o f f eature f

Total area .

For example,skewf 1=0.6 indicate that the objects of featuref1 cover 60% of the plane.

For uniform distribution where objects are distributed equally throughout the plane,

skewf 1=1.0.

Figure 5.8 gives the results of PROBER and FlexiPROBER on the synthetic datasets

of varying skewness. The three plots in Figure 5.8 show that the runtimes of both

PROBER and FlexiPROBER increase asσ increases, but the runtime of PROBER in-

creases faster than that of FlexiPROBER. This is expected as FlexiPROBER employs

early termination condition to avoid unnecessary candidate generation.

The three plots in Figure 5.8 also show that gap between PROBER and FlexiPROBER

is increasing as the skewness increases. This result indicates that the data distribution

affects the efficiency of FlexiPROBER. For data of skew distribution, FlexiPROBER

imposes fine granularity on the region of high data density and coarse granularity on

the region of low data density. In this case, the size of influence map is adaptive to the

data distribution, so both space and computational complexities decrease. However, in

the uniform distribution, FlexiPROBER is similar to PROBER because FlexiPROBER

imposes the same granularity over the plane.
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Figure 5.8: Efficiency of building influence maps

Scalability

We also examine the scalability of FlexiPROBER. We fix the number of features to

be 10 and generate twelve datasets Data-10-{20k, 40k, 60k, 80k, 100k, 200k,. . ., 800k}
with uniform distribution of objects. The results are shown in Figure 5.9(a). We observe

that, as database size increases, the runtimes of PROBER and FlexiPROBER increase

linearly, and the runtimes of FastMiner and TopologyMiner increase exponentially. This

result shows that PROBER and FlexiPROBER are more scalable than FastMiner and

TopologyMiner. This is expected because PROBER and FlexiPROBER do not rely

on expensive spatial join. We also observe that FlexiPROBER is slightly faster than

PROBER for each setting of database size. This is expected because FlexiPROBER

perform better than PROBER in the situation where the data distribution is skewed.

We set the database size at 20k instances and generate eight datasets Data-{4, 6,
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8, 10, 12, 14, 16, 18}-0-50-20k by varying the number of collocated features. Figure

5.9(b) shows the results. We observe that both FastMiner and TopologyMiner do not

scale well when the number of features increases. On the other hand, the runtime of

FlexiPROBER does not increase greatly because the multi-granularity mechanism is

able to compute and compare the influence space efficiently.
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Figure 5.9: Scalability of FlexiPROBER

Sensitivity

Next, we examine the effect of parametermin I on two test datasets Data-6-2-75-50k

and Data-8-2-75-200k. Figure 5.10 shows the experimental results of the effect ofmin I

on runtime. We observe that in all cases, the runtime of the three algorithms are hardly

affected by the increase inmin I . We also note that FlexiPROBER outperforms the

other two algorithms on both datasets. In particular, FastMiner’s runtime in the second

dataset is beyond the maximum scale in 5.10(b). Both plots in Figure 5.10 demonstrate

that the influence based algorithms are not sensitive to the parametermin I , because the

mining cost is dominated by the cost of building influence maps.
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Figure 5.10: Effect ofmin I

5.5.3 MineGIC versus Naive Approach

We compare the efficiency of MineGIC with the naive approach described in Section 5.4

on the NUS web log data. 15 time frame data are selected (from Oct 23 to Nov 6) from

the NUS web log dataset. Figure 5.11 shows that MineGIC performs much better than

the naive approach. The latter is not scalable as FlexiPROBER must be re-executed

for each time frame. In contrast, MineGIC focuses only on those patterns that have the

potential to be GICs. This results in an efficient pruning of a large number of candidates.
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5.6 Summary

In this chapter, the grid based influence model is extended to the quadtree based in-

fluence model, which is adaptive to the data distribution and flexible to support local

interaction pattern mining. We obtain the influence map of each feature and compute

the degree of their interactions. Those features with high degrees of interaction are

the geographical-specific interaction patterns. Based on the quadtree, we propose a

multi-scale FlexiPROBER algorithm to discover the geographical-specific interaction

patterns. Further, we design the algorithm MineGIC to efficiently mine all the enlarge-

ment, shrinkage, and movement chains of geographical-specific interaction patterns.

MineGIC is applied in the web click data to discover the geographical interest changes

of the web visitors. Experiment results on synthetic and real world datasets demonstrate

that FlexiPROBER and MineGIC are both efficient and scalable and can find meaning-

ful geographical-specific interaction patterns at one time frame and over multiple time

frames.



Chapter 6

Mining Duration-Aware Trajectory

Patterns in Moving Object Data

Besides biological data and snapshot data, another important type of spatiotemporal

data is moving object data. Moving object data is more and more popular due to the

rapid spread of GPS system and the development of tracking techniques. This has led to

the wide research interests in knowledge discovery in moving object data [25, 42, 35].

In this chapter, we focus on the mining of trajectory patterns in moving object data and

the application of these trajectory patterns in trajectory classification.

As a crucial model in trajectory data analysis,trajectory classificationis an impor-

tant research problem. Assume each trajectory in the trajectory database has a class

label. Trajectory classification is the process of predicting the class labels of moving

objects based on their trajectories and other features.

The ability to classify trajectories is useful in many real world applications. In

meteorology, a trajectory classifier can predict the intensity and scale of an approaching

hurricane, so that precautionary actions can be carried out in advance. In homeland

security, it is reported that more than 160,000 vessels are travelling in the United States’

waters [45], and an anomaly trajectory detection classifier that can evaluate the vessels’

120
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behaviors and highlight suspicious vessels for further monitoring is highly desirable.

Existing work on trajectory classification [42] selects the regions and representative

trajectories as the features for classification. Regions are mined based on the spatial

distribution of trajectories, and representative trajectories are mined based on the shapes

of trajectories, as shown in Figure 6.1(b). However, it does not take the duration of the

trajectories into consideration in differentiating the objects that move at different speeds.

For example, the speed at which a tropical hurricane passes the Gulf of Mexico is an

important criterion in classifying its scale and intensity. Classifiers, that look only at

the spatial distributions and movement directions of hurricanes but ignore the moving

speeds, are unable to accurately classify the intensities of the hurricanes.

We introduce duration-sensitive region rules to highlight regions where there is a

differentiating number of trajectories of one class passing through them taking into

account the time spent by these trajectories in the regions. We propose a top-down

space partition approach that recursively partitions a region into smaller regions. The

partitioning criterion is based on the information gain measure. The result is a set of

highly discriminative regions.

We also introduce the notion of speed-differentiating path rules to capture the actual

movement paths and movement speeds. A speed-differentiating path rule is simply a

sequence of object locations with an associated duration time between consecutive pairs

of locations. Discovering speed-differentiating path rules from a trajectory database is

challenging. Ideally, a path rule should summarize the movement, direction, and speed

of a group of similar moving objects such that the distances between the actual trajec-

tories and speeds of these moving objects to the path rule are minimized. To achieve

this, we need to adaptively vary the granularity of regions and duration intervals as

we perform our mining. Having a pre-determined granularity for regions and duration

intervals is undesirable because if the granularity is too coarse, it will lead to a small
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number of path patterns which is not enough to build an accurate classifier. On the other

hand, if the granularity is too fine, it will lead to a large number of path rules, resulting

in overfitting.

Trajectory patterns [25] are not speed-differentiating path rules. First, trajectory

patterns are not the actual movement paths. For example, Figure 6.1(a) illustrates a

trajectory pattern discovered from four objectsT1, T2, T3 andT4, where the four objects

do not follow the same path fromRoI1 to RoI2. We cannot compute the Euclidean

distance of test trajectory and trajectory patterns to measure their similarity. Second,

trajectory patterns are very coarse and do not have discriminative power for accurate

classification.
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(a) Trajectory patterns in [25]
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(b) Trajectory clusters in [43]

Figure 6.1: Existing patterns

Besides the need for a scheme that varies the granularity levels of regions and du-

ration intervals adaptively, a second challenge is the high computational complexity in

generating path rules from the trajectory dataset. To overcome this, we design an effi-

cient algorithm which can mine discriminative speed-differentiating path patterns and

prune undesirable path patterns as soon as possible. First, we summarize the trajectory

database in the form of a trajectory network with the appropriate granularity. The level

of granularity is controlled and measured by the Minimum Description Length (MDL)

gain. Based on the trajectory network, we design a path pattern tree to enumerate the

candidate path patterns, and mine the top-k covering path rules.

Two classifiers are built. The first is constructed by transforming the trajectories into

score vectors and utilizing an existing classification techniques on these score vectors.
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The second is ak-NN based classifier which predicts the class labels of trajectories

by the topk highest score rules. Experiment results on three real-world datasets show

that classifiers that are built based on both duration-sensitive region rules and speed-

differentiating path rules can achieve higher accuracy compared to classifiers that do

not take the duration information into account.

The remainder of this chapter is organized as follows. Section 6.1 and 6.2 gives

the preliminaries and the problem statement. Section 6.3 gives the overview of our

solution. Section 6.4 presents the region partition algorithm to discover region rules. In

Section 6.5, we introduce the notation of trajectory network and the training algorithm

to obtain a trajectory network, and we introduce the path pattern tree and the top-k

covering path rule mining algorithm. In Section 6.7, we evaluate our algorithms real-

world datasets. Finally, we conclude our work in Section 6.8.

6.1 Preliminaries

A trajectoryT is a time-ordered sequence of sampling points〈p1, t1〉 〈p2, t2〉 . . . 〈pN, tN〉,
wherep1, p2, . . ., pN is a sequence of moving object locations corresponding to sam-

pling time t1, t2, . . . , tN. A trajectoryT which is sampled fromt1 to tN can also be

represented asT[t1:tN]. We say that a trajectoryT[ti:t j] = 〈pi , ti〉 〈pi+1, ti+1〉 . . . 〈pj; t j〉
is asub-trajectoryof T[t1:tN], where 1≤ i ≤ j ≤ N.

A trajectoryT has an identifiertid, denoted byT.tid and a class labelC, denoted by

T.C. A trajectory and its sub-trajectories are associated with the same identifier and the

same class.

We useT[t] to denote the object location at timet, or the interpolated location if

t is not in the sampling time list. LetT(i) to denote thei-th sampling point ofT, i.e.,

T(i) = 〈pi , ti〉. We usel i to denote thei-th segment of trajectoryT, i.e., the segment

betweenT(i) andT(i + 1).
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The duration of trajectoryT[ti:t j], denoted by|T[ti:t j]|, is equal tot j − ti. Two

trajectoriesT1 andT2 areduration-matchedtrajectories if|T1| = |T2|.
Now we define the similarity of two trajectories which have non-equivalent dura-

tions. We first introduce the weight of sampling points, and then define the trajectory

distance. In trajectoryT = 〈p1, t1〉 〈p2, t2〉 . . . 〈pN, tN〉, the weightof sampling point

pi, denoted aswi, is determined by the sampling time of the sampling points which are

immediately neighboring topi.

wi =



(t2 − t1)/2 i = 1,

(tN − tN−1)/2 i = N,

(ti+1 − ti−1)/2 otherwise.

(6.1)

We consider that two trajectories are similar if they have at least one pair similar

duration-matched sub-trajectories. We use the mean Euclidean distance to measure the

similarity of duration-matched sub-trajectory. Existing time series similarity measures,

such as DTW [39], EDR [9] and LCSS [75], finds an optimal match on thewhole

sequences. Since we intend to group the similar sub-trajectories as path patterns, it is

not reasonable to compare the similarity on the whole trajectories. Instead, we consider

that two trajectories are similar if they have at least one pair similar duration-matched

sub-trajectories.

We refer to the mean Euclidean distance between trajectoriesT1 andT2 being valid

during the period [t0, t0+τ] [21], which is defined as the definite integral of the Euclidean

distance between two moving points during the given period divided by the period time.

ED(T1,T2) =
1
τ

∫ t0+τ

t0

dist(T1[t],T2[t])dt (6.2)

wheredist(·, ·) is the Euclidean distance of two points.
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By trapezoid rule, Equation (6.2) can be approximated by

ED(T1,T2) ≈ 1
2τ

n−1∑

k=1

((D(tk) + D(tk+1)) × (tk+1 − tk)) (6.3)

whereD(tk) = dist(T1[tk],T2[tk]) andn is the duration of trajectories. This approxima-

tion is guaranteed by an error bound [21].

We extend Equation (6.3) to compute the mean Euclidean distance between two

duration-matched sub-trajectoriesT′1 = T1[t1, t1 + τ] andT′2 = T2[t2, t2 + τ] of duration

τ as follows.

ED(T′1,T
′
2) =

1
2τ

n−1∑

k=1

((D′(tk) + D′(tk+1)) × (tk+1 − tk)) (6.4)

whereD′(tk) = dist(T1[t1 + tk],T2[t2 + tk]) andn is the duration of trajectories.

To efficiently compute the trajectory distanceED(T1[t1, t1 + τ],T2[t2, t2 + τ]), we

need to interpolate a collection of points inT1[t1, t1+τ] andT2[t2, t2+τ]. Such sampling

points are interpolated as follows. AssumeT1[t1, t1+τ] has raw sampling points〈p1, t1〉,
〈p2, t1+ tk1〉, . . . , 〈pm, t1+ tkm〉, andT2[t2, t2+τ] has raw sampling points〈p1, t2〉, 〈p2, t2+

tk2〉, . . . , 〈pN, t2 + tkn〉. To compare two duration-matched sub-trajectories, we combine

the sampling times of bothT1 andT2 to beK = {tk1, . . . , tkm} ∪ {tk2, . . . , tkn}. For∀t ∈ K ,

we interpolateT1 at time t1 + t if T1 does not have a sampling point at this time, and

interpolateT2 at timet2+t if T2 does not have a sampling point at this time. The purpose

of interpolation is to make corresponding sampling point pairs on two duration-matched

sub-trajectories.

After interpolation, we define the trajectory distance between two duration-matched

sub-trajectories as follows.

Definition 16. (Trajectory Distance) Given two duration-matched sub-trajectories T′1 =

T1[t1, t1 + τ] and T′2 = T2[t2, t2 + τ] of durationτ. The trajectory distance of T′1 and T′2
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Figure 6.2: Example of trajectory distance computation. Solid points are raw sampling
points in trajectories; circle points are interpolated.

is computed as follows.

T D(T′1,T
′
2) =

1
τ

∑

k∈K
wk × dk (6.5)

whereK is the set of sampling point pairs, wk is the weight of k-th sampling point pair,

dk is the Euclidean distance of the k-th sampling point pair.

Essentially, trajectory distance is theweightedaverage distance of sampling point

pairs, where the weights are measured by the weights of sampling points. Compared

to the arithmetic average distance of sampling point pairs, trajectory distance in Def-

inition 16 is more accurate to measure the similarity of duration-matched trajectories.

Note that trajectory distance will not be affected by the number of sampling points on

trajectories. The trajectory distance of two duration-matched sub-trajectories is deter-

mined no matter how many sampling point pairs they have. This property lets trajectory

distance be suitable for the similarity computation of compressed trajectories.

For example, Figure 6.2 shows two duration-matched sub-trajectories,T1[100:110]

andT2[200:210]. After interpolation, each trajectory has seven sampling points. The

weight of the sampling points are 0.5, 1, 1, 1.5, 1.5, 2.5, 2, respectively, and the tra-

jectory distance betweenT1[100:110] andT2[200:210] is 1
10(0.5d0 + d1 + d2 + 1.5d3 +

1.5d4 + 2.5d5 + 2d6), which is the mean Euclidean distance over the duration.
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6.2 Problem Statement

We define two kinds of features for classification: duration-sensitive region rules and

speed-differentiating path rules.

Definition 17. A duration-sensitiveregion rule γ is represented asγ : R⇒ C, in which

the antecedent is a discriminative region R, denoted byγ.R, and the consequent is the

class label C, denoted byγ.C.

Duration-sensitive region rule is different from region cluster [42] because we not

only consider the density of the trajectories in the region but also the amount of time the

moving objects stay in the region. For this purpose, we define the support of a region

R, denoted bysup(R). Let D be the trajectory database and|D| = ∑
T∈D |T |. sup(R) is

the ratio of the sum of trajectory durations within regionR over |D|. Thesupport of

region ruleγ : R⇒ C, denoted byγ.sup, is the ratio of the sum of classC trajectory

durations within regionR over |D|. Theconfidenceof region ruleγ : R⇒ C, denoted

by γ.con f, is γ.sup
sup(R) . Givenmin supandmin con f, we say that a region ruleγ is valid

if γ.sup≥ min supandγ.con f ≥ min con f.

For valid region rules, we consider that the larger regions are more desirable than

the smaller regions because the number of larger regions are usually small, which can

improve the classification efficiency.

Speed-differentiating path rule captures the movement and speed of moving objects

by utilizing the concept of micro-cluster. A micro-cluster is a group of nearby sampling

points of trajectories.

Definition 18. A path pattern P = (mc0
α1→ mc1

α2→ . . .
αm→ mcm) is a sequence of

micro-clusters with an associated duration interval between consecutive pairs of micro-

clusters, where mci is the i-th micro-cluster andαi is the duration interval from mci−1 to

mci.
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Given a path patternP = (mc0
α1→ mc1

α2→ . . .
αm→ mcm), if a trajectoryT hasm + 1

consecutive sampling pointspi , . . . , pi+m, such thatpi ∈ mc0, . . ., pi+m ∈ mcm, and

ti+1 − ti ∈ α1, . . ., ti+m− tm ∈ αm, we sayT supportsP or P coversT.

Given a trajectory databaseD, thesupport of path patternP, denoted bysup(P),

is defined as the ratio of the trajectories inD that supportP over the total number of

trajectories inD, i.e., |{T |T∈D∧T supports P}|
# o f tra jectories in D . If a trajectory has multiple sub-trajectories

which supportP, we only count it once. Givenmin sup, we say that path patternP is

frequent if sup(P) ≥ min sup.

Definition 19. A speed-differentiatingpath rule γ is represented asγ : P ⇒ C, in

which the antecedent is a frequent path pattern P, denoted byγ.P, and the consequent

is the class label C, denoted byγ.C.

Thesupport of path ruleγ, denoted byγ.sup, is defined as|{T |T∈D∧T.C=γ.C∧T supportsγ.P}|
# o f tra jectories in D .

Theconfidenceof γ, denoted byγ.con f, is γ.sup
sup(P) =

|{T |T∈D∧T.C=γ.C∧T supportsγ.P}|
|{T |T∈D∧T supportsγ.P}| . Given a

path ruleγ and a trajectoryT, if path patternγ.P coversT andγ.C = T.C, we say that

γ is a covering rule ofT.

Given two path rulesγ : P ⇒ C, whereP = (mc0
α1→ mc1

α2→ . . .
αm→ mcm), and

γ′ : P′ ⇒ C, whereP′ = (mc0
α1→ mc1

α2→ . . .
αk→ mck), we say thatγ′ is aprefix rule of

γ if k ≤ m. Apparently,γ.sup≤ γ′.sup.

A trajectory may have multiple covering rules. It is important to rank the signifi-

cance of covering rules for rule selection. In this work, we follow the definition of rule

significance proposed in [47, 12].

Definition 20. A path ruleγ1 is moresignificantthan another path ruleγ2 if (γ1.con f>γ2.con f )

∨ (γ1.con f=γ2.con f ∧ γ1.sup>γ2.sup).

Besides the Definition 20, given a path ruleγ, we consider its prefix ruleγ′ is more

significant for classification, if (γ.sup=γ′.sup) ∧ (γ.con f=γ′.con f). This is because the
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path patterns in prefix rules are shorter, which can improve the efficiency of path pattern

mining and trajectory classification.

Definition 21. Given a trajectory database D and minsup, thetop-k covering path

rules of trajectory T are the top-k most significant path rules out of all covering rules

of T , and their supports are not less than minsup.

Problem Definition. Given a training trajectory databaseD and a testing trajectory

databaseP, a minimal supportmin sup, a minimal confidencemin con f and the num-

berk, our goals are 1) mine the valid region rules fromD, 2) mine the top-k covering

rules fromD, and 3) select the region rules and path rules to build the classifiers and

predict the class label of test trajectories.

6.3 Solution Overview

Our solution is divided into three phases, as shown in Figure 6.3. For easy presentation,

Figure 6.3 only shows two classes of trajectories which are recognized by solid and

dashed lines.

In the first phase, we partition the regions based on the trajectory distribution in

a top-down space partition manner. A region is partitioned into two regions if those

two regions are capable to better discriminate trajectory classes than one region. The

partition evaluation criteria could be information gains [57], fisher score [15] or others.

In the second phase, we summarize the trajectory database into a simplified trajec-

tory network by a bottom-up points clustering approach. For the efficiency concern,

the points clustering performs only on a subset of trajectory database which are out of

the spatial range of valid region rules, because the trajectories in the region rules are

covered by region rules.

In the last phase, we mine the valid region rules and top-k covering path rules for
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Figure 6.3: Our solution overview

classification. We build two classifiers based on two classification strategies. This

first classifier, named TCF (Trajectory Classification based on Features), transforms

the trajectory network into feature vectors based on the valid region rules and top-k

covering path rules and feeds into SVM, C4.5 and Bayes Net to predict the class labels

of test trajectories. Hence, TCF has three versions based on SVM, C4.5 and Bayes net,

respectively. The second classifier, named TCRP (Trajectory Classification based on

Region and Path rules), is a rule-based classifier. TCRP selects the top-k rules that have

the highest scores with respect to the test trajectory and votes the class label to be the

one with the majority vote.

6.4 Region Rules

In [42], the region features are the region-based clusters, presented by the homogeneous

rectangular regions where one major class has at leastφ trajectories and the other classes

do not. They select an optimal partition line to partition the spatial plane each time.

However, this partition method may miss some local features [19] because the partition
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line partitions the whole spatial plane in each iteration. Figure 6.4(a) illustrates an ex-

ample, where the whole space is partitioned into six regions by three partition lines. For

this trajectory distribution, we expect a better partition pattern shown in Figure 6.4(b),

where the whole space is partitioned into four regions .

In [42], discriminative regions are found where one class of trajectories dominates

the other classes regardless of how much time the trajectories remain within the regions.

In addition, the regions are found by selecting an optimal partition line to partition

thewholespatial plane. This may results in some locally discriminative regions being

missed. For example, Figure 6.4 shows four trajectories of two classes which are recog-

nized by solid and dashed lines, respectively. In Figure 6.4(a), the whole spatial plane

is partitioned into six regions by three partition lines. For this trajectory distribution, a

better partition pattern is shown in Figure 6.4(b), where the whole space is partitioned

into four regions.

Targeting on the two limitations in [42], we incorporate the duration information of

trajectories in deriving the discriminative regions. We also employ a scheme to partition

the space in a divide-and-conquer manner utilizing information gain to detect the locally

discriminative regions.

(a) Partition the whole spatial plane (b) Partition the regions

Figure 6.4: An example to show the different results of two region partition approaches

The incorporation of duration information of trajectories is achieved as follows: A

trajectory exerts an influence on a region, which is measured by the duration time the
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trajectory stays within the region. This makes sense because a longer time duration of

one class trajectory within a region indicates a higher influence of that class trajectory

to the region. The influence of trajectory classC to regionR, denoted byin f (R)C, is

the accumulated influence from all trajectoriesT in training trajectory database, where

T.C = C.

A grid structure has been employed to make the evaluation of the influences of tra-

jectory class on a region computationally feasible. Each line segmentl exerts a degree

of influence, which is measure by the length ofl, to its nearby cells on the grid. Assume

n cells are influenced byl, so the line segmentl exerts |l|n influence to each one of its

nearbyn cell. The influence of a cell is the sum of influence from all line segment in

trajectory database. A regionRconsists of a set of cells, so the influence ofR is the sum

of influence on these cells.

Let C be the set of class labels in trajectory database. The support of regionR is

sum of region influence from all trajectory classes, i.e.,
∑

C∈C in f (R)C. Assume we have

a regionR and a partition lineX = x such thatR is partitioned into two regionsR− and

R+. Let P(C) be the influence weight of classC on regionR; P(x−) andP(x+) be the

support of regionR− andR+, respectively;P(C|x−) andP(C|x+) be the influence weight

of classC on regionR− andR+, respectively. The information gain of the partition line

X = x is measured as

IG(C|X = x) = H(C) − H(C|X = x) = −
∑

C∈C
P(C) logP(C)

+
∑

x∈{x−,x+}
P(x)

∑

C∈C
P(C|x) logP(C|x) (6.6)

A positive information gain implies that the partition lineX = x distinguishes the

trajectory class on regionR, and negative information gain implies thatX = x is not

discriminative. Partition lineX = x1 is more discriminative than lineX = x2, if
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IG(C|X = x1) is greater thanIG(C|X = x2). The selection of partition line on Y axis is

similar to that on X axis.

We design a space partition tree to facilitate the partition process. In a space par-

tition tree, the root node corresponds to the whole space. A non-leaf node is marked

by “|” or “−” if its corresponding region is partitioned by a partition line onX or Y

axis, respectively. Each leaf node corresponds to a region which will not be further

partitioned. Figure 6.5 gives an example of space partition tree and the corresponding

region of each node.

Figure 6.5: An example of space partition tree

Algorithm 13 presents a method to partition regions with the facilitation of a stack

structure. Line 1 detects the trajectory density on gridG. Lines 2-4 initialize a stackS

and a candidate regionR of maximal area according to the scope of gridG, and push

R into stackS. In Lines 5-14, we evaluate the candidate regions in stackS as follows.

Line 6 pops the top element inS. If R is a valid region, whose support is no less than

min supand confidence is no less thanmin con f, we translateR into a region ruleγ

based on the dominant class onR, and insertγ into the region rule setRRS(Lines 7-10).

Otherwise, Line 12 employs a sweep line moves onX andY axis onR to search the

optimal partition linepl. The goodness of partition is measured by information gain as
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Algorithm 13 : RegionPartition
input : A trajectory databaseD;

A grid G;
Minimal supportmin sup;
Minimal confidencemin con f.

output: The region rule setRRS.
Density estimation ofD onG;1

Initialize a stackS;2

R← G;3

Push(R, S);4

while S , ∅ do5

R= Pop(S);6

if (R.sup≥ min sup) then7

if R.con f ≥ min con f then8

TranslateR into region ruleγ;9

Insertγ into RRS;10

else11

Select the optimal partition linepl;12

PartitionR into regionsR− andR+;13

Push(R−, S);14

Push(R+, S);15

return RRS;16

shown in Equation 6.6, and the step width of sweep line is the cell side. Based onpl,

Line 12 partitionsR into two non-overlapping regionsR− andR+ alongpl. Lines 14-15

push the two regionsR− andR+ into stackS. Line 16 returns the region rules.

Region rules are the simple but useful features for classification. However, only

region rules are not enough for classification because the numbers of discovered region

rules are quite small or even zero for some datasets whose trajectory distribution of

different classes are highly mixed, like the trajectories in the urban transportation. This

motivates us to define and find more complicated features for classification.
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6.5 Path rules

Our proposed path rule mining method consists of three phases. First, we summarize

the trajectory data which cannot be covered by region rules, into a network structure

named trajectory network, where vertices are the Regions-of-Interest and edges are the

movement paths with duration information. Second, in order to discover the discrimi-

native features for trajectory classification, we mine the top-k covering path rules based

on the trajectory network. Finally, we build two classifiers based on the top-k covering

path rules, respectively.

In this section, we first introduce a trajectory network to model the trajectory database,

and then introduce a path pattern tree to facilitate the discovery of path rules. Section 6.6

will give the details to build classifiers.

6.5.1 Trajectory Network

Definition 22. A trajectory network M is a directed graph which can be represented

as M = 〈V,E〉, whereV is the set of vertices,E is the set of edges.

In trajectory network, each vertex is a group of nearby sampling points of trajecto-

ries, and each edge is a group of temporally close segments of trajectories. Each vertex

pair may have one or multiple edges to indicate the movement speeds between them.

The definitions of vertices and edges are the extension of the cluster feature vector

in [89] by considering the class labels of sampling points and segments, respectively.

Let the sampling pointpt of trajectoryT at timet be represented by (~pt,wt), where

~pt is the position andwt is the weight as defined in Equation (6.1). The class ofpt is

T.C.

Definition 23. Eachvertex v in a trajectory network M.V is labelled as a tuple (N,
−→
W,

−→
S , S S ), where N is the number of sampling points in v,

−→
W is a vector of weight for the
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classes in v,
−→
S is the weighted sum of the N data point locations, i.e.,

∑N
i=1 wi ~pi, and S S

is the square sum of the N data point locations, i.e.,
∑N

i=1 ~pi
2.

Given a vertexv = (N,
−→
W,
−→
S,S S), and let|C| be the number of classes inv. We also

derive itsweight(W), entropy(H), centroid(
−→
O) andradius(R) as follows.

W(v) =

|C|∑

i=1

−→
Wi (6.7)

H(v) = −
|C|∑

i=1

−→
Wi

W
log

~Wi

W
(6.8)

−→
O(v) =

−→
S
W

(6.9)

R(v) =

∑N
i=1(~pi − −→O)2

N
(6.10)

The i-th segmentl i of trajectoryT is associated with two verticesvs andve, where

vs (ve) includes the starting (ending) sampling point ofl i. The weight ofl i is equal to 1.

The class ofl i is theT.class. An edge of trajectory network is the summary of a set of

directed segments.

Definition 24. In trajectory network M, anedgee between two vertices vs and ve is

labelled as a tuple (N,
−→
W, DT, vs, ve), where N is the number of segments,

−→
W is a vector

of segment number for all classes in e, DT is the sum of duration time of all segments

in e, vs is the starting vertex, ve is the ending vertex.

Given an edgee = (N,
−→
W,DT, vs, ve) and let|C| be the number of classes ine. We

can derive itsweight(W), entropy(H), andaverage duration(D) as follows.

W(e) = N (6.11)
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(a) Raw database (b) A overfitting trajec-
tory network

(c) A simple trajectory
network

(d) A tradeoff trajec-
tory network

Figure 6.6: Trajectory network selection

H(e) = −
|C|∑

i=1

−→
Wi

W
log
−→
Wi

W
(6.12)

D(e) =
DT
W

(6.13)

Note that there can be many trajectory networks for a given trajectory database.

Given a trajectory database in Figure 6.6(a), a trajectory network which contain too

many vertices and edges, as shown in Figure 6.6(b), is not a good one for deriving path

rules due to overfitting. On the other hand, the trajectory network which contain too few

number of vertices and edges, as shown in Figure 6.6(c), is not good either because of

the large information loss. Between these two extreme cases, a good trajectory network

is shown in Figure 6.6(d), which is a reasonable tradeoff.

We propose three criteria to evaluate the goodness of a trajectory network. First,

the trajectory network should contain the least possible number of vertices and edges.

Second, the trajectory network should minimize the amount of information loss when it

models the trajectory database, that is, the network should minimize the total distance

from all trajectories in the trajectory database to the network. Third, the trajectory

network should increase the discriminative power for classification. Each vertex and

each edge are expected to be discriminative, i.e., low entropy in vertices and edges.

Based on these three criteria, we define a Minimal Description Length (MDL) cost

to find a good trajectory network. The MDL cost consists of two components, network
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codelengthL(M) and data codelengthL(D|M) [27]. Network codelengthL(M) is the

length, in bits, of the description of the candidate trajectory network.

Definition 25. (Network Codelength) Let M = 〈V,E〉 be a network with|V| vertices

and |E| edges. The information of M can be transmitted using one bit per vertex and

one bit per edge. Therefore, the code length is

L(M) = |V| + |E| (6.14)

The data codelengthL(D|M) is the length, in bits, of the description of the data when

encoded with the help of the trajectory network.L(D|M) is the sum of the entropies in

vertices and edges, and the information of weighted trajectory distance, in bits, from

trajectory databaseD to trajectory networkM.

Definition 26. (Data Codelength) Given a trajectory network M= 〈V,E〉 for a tra-

jectory database D, the data description information consists of vertex entropy, edge

entropy and the information of weighted trajectory distance.

L(D|M) =

|V|∑

i=1

H(vi) +

|E|∑

i=1

H(ei) + C(D,M) (6.15)

where H(vi) and H(ei) are the vertex entropy of vertex vi and edge entropy of edge ei,

respectively, and C(D,M) is the information of weighted trajectory distance from D to

M .

To computeC(D,M), we first introduce the distance fromD to M, denote by

T D(D,M). T D(D,M) is the weighted trajectory distance of each trajectoryT to its

most similar pathP on the trajectory networkM.

T D(D,M) =
1
|D|

∑

T∈D,P∈M
|T | × T D(T,P) (6.16)
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where|D| = ∑
T∈D |T |.

Intuitively, a smallT D(D,M) value indicates a small weighted trajectory distance

from the trajectory databaseD to the trajectory networkM. We employC(D,M), in

terms of bits, to measureT D(D,M) as follows.

C(D,M) = −
∑

T∈D

|T |
|D| log2 g(T D(T,P)) (6.17)

whereg(T D(T,P)) is a underlying distribution ofT D(T,P).

We can use the normal distribution or exponential distribution to model the under-

lying distribution ofT D(T,P). Assuming thatT D(T,P) follows the normal distribution

N(0, σ2), whereσ is the standard deviation.

Note thatσ can be assigned as a parameter or be estimated to be the standard devi-

ation of sampling point positions. In kernel density estimation [62], a global bandwidth

is assigned to all data points on the spatial plane,

h(n) = 1.06 · σ(n) · n− 1
5 (6.18)

whereσ(n) is the standard deviation distance ofn elements. The global bandwidth

of Equation (6.18) provides an estimation ofσ in Equation (6.17). A further empirical

study shows that our classifier obtains the highest accuracy when theσ value is selected

to be around the global bandwidthh(n).

The best trajectory network to model the distribution of trajectory databaseD is the

one that minimizes the MDL costL(M) + L(D|M) [27].

Algorithm TrajNet

The computation of the global minimum description length is quite costly, and exact

approaches requires time and space complexity that increases exponentially to the input
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size. Here, we adopt an approximate approach that utilize a forward search of local

optimal solution.

The basic idea of our approximate algorithm is to select the local optimal trajectory

network based on the current networkM. A candidate network modelM′ is obtained

by merging two vertices or two edges ofM. We define theMDL gain as the MDL

difference ofM andM′ as follows.

MDL gain = MDL(M) − MDL(M′) (6.19)

A large MDL gain indicates a large decrease of network codelength and a small

increase of data codelength. The candidate network model which obtains the maximal

MDL gain is the local optimal. Similar to the agglomerative hierarchical clustering [28],

our approximate algorithm, called TrajNet, selects the local optimal network in each

iteration. TrajNet has three main steps.

1. Initialization. The trajectory database is treated as an initial trajectory network,

where each vertex is a sampling point and each edge is a segment;

2. Merge Vertices.We fix the edges in the initial trajectory network, and iteratively

merge two vertices which always cause the positive largest MDLgain value;

3. Merge Edges. We fix the vertices in the current trajectory network, and for

each vertex pair, we iteratively merge two edges which cause the positive largest

MDL gain values.

In the phase of merging vertices, as there is no change in the number of edges in the

first phase, each trajectory always has a duration matched path in trajectory network.

In this phase, the overall distance from trajectory databaseD to a trajectory networkM

can be computed as follows.
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Lemma 10. The overall distance from trajectory database D to a trajectory network

M is the weighted vertex radius summation, i.e.,
∑|V|

i=1 Wi ×Ri, where Wi is the weight of

the i-th vertex and Ri is the radius of i-th vertex.

Proof: For each trajectoryT, there is a duration matched pathP in trajectory net-

work for T. Assume thatT hasN sampling points andP hasN vertices. From Defini-

tion 16,T D(T,P)=
∑N

k=1 wk × dk, wherewk is the weight ofk-th sampling point anddk

is the distance betweenk-th sampling point andk-th vertex. By combing the distances

from all trajectories to the trajectory network, we have

T D(D,M) =
1
|D|

∑

T∈D
|T | × T D(T,P) =

1
|D|

∑

T∈D

N∑

k=1

wk × dk

=
1
|D|

V∑

i=1

|vi |∑

j=1

wi j × di j =

V∑

i=1

|vi |∑

j=1

wi j

|D| × di j =

V∑

i=1

Wi × Ri

�

Lemma 10 states that the distance of trajectory database and trajectory network is

determined by the weighted vertex radius. By merging two verticesvi andvj into a

larger vertexv, the MDL gain is

1 + H(vi) + H(vj) − H(v) + C(vi) + C(vj) −C(v)

= 1 + H(vi) + H(vj) − H(v) + cv(WiR
2
i + WjR

2
j −WR2)

whereW = Wi + Wj andcv is a constant coefficient to smooth the distance error of

vertices. Here,cv = 1/(2σ2wloge2), w is the arithmetic average weight of all sampling

points.

For example, Figure 6.7(a) and Figure 6.7(b) show the process to merge vertices

v1, v2 andv3. We consider the three cases. 1) Mergev1 andv2 to be a new vertexv12

which causes MDLgain= 0.68 bits; 2) Mergev1 andv3 to be a new vertexv13 which
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(a) Before the merge
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(b) Mergev1 andv3

Figure 6.7: An example of vertex merge. The “Red” and “Blue” colors indicate the
different classes, and the “+” label indicates the centroid of each vertex.

which causes MDLgain= 0.93 bits; 3) Mergev2 andv3 to be a new vertexv23 which

causes MDLgain = -0.23 bits. Appendix 7.2.1 gives the computation details of the

three cases. Since Case 2 leads to a largest MDLgain, we select to mergev1 andv3 to

be a new vertexv13, as shown in Figure 6.7(b).

In the phase of merging edges, we update the number of edges and the distance

error after merging two edges. Assume that we merge two edgesei = v1
ti→ v2 andej =

v1

t j→ v2. After merging, the weighted duration ist =
wi ti+w j t j

wi+w j
, so the Euclidean distance

errors aredi = |t − ti | × d(v1, v2) anddj = |t − t j | × d(v1, v2), respectively. Again, we use

normal distribution to model the Euclidean distance errors. In terms of bits, such error

information can be transmitted by−wi log2
1√
2πσ

(exp(− d2
i

2σ2 )) − w j log2
1√
2πσ

(exp(− d2
j

2σ2 ))

bits. By mergingei andej into a larger edgee, the MDL gain is

1 + H(ei) + H(ej) − H(e) + C(ei) + C(ej) −C(e)

= 1 + H(ei) + H(ej) − H(e) − ce(wid
2
i + w jd

2
j )

wherece is a constant coefficient to smooth the distance error of edges. Here,ce =

1/(2σ2loge2).

For example, Figure 6.8 shows the process to merge edges. Assume that we have

three edgese1, e2 ande3 that move from vertexv1 to vertexv2. We consider three cases.
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(b) Mergee1 ande2

Figure 6.8: An example of merge edge. The “Red” and “Blue” colors indicate the
different classes, and the “+” label indicates the centroid of each vertex.

1) Mergee1 ande2 to be a new edgee12, which causes MDLgain= 0.52 bits; 2) Merge

e2 ande3 to be a new edgee23, which causes MDLgain= 0.0 bits; 3) Mergee1 ande3

to be a new edgee13, which causes MDLgain= -0.48 bits. Appendix 7.2.2 gives the

computation process of the three cases. Since Case 1 leads to a largest MDLgain, we

select to mergee1 ande2 to be a new edgee12, as shown in Figure 6.8(b).

Algorithm 14 gives the psuedocode of TrajNet algorithm. The trajectory database

is treated as an initial trajectory network, where each vertex is a sampling point and

each edge is a segment (Lines 1-2). This initial trajectory network has the maximal

codelength value and the minimal data codelength. The rest of algorithm is divided

into two phases. In the first phase, we callMergeVertex() to merge vertices (Line 3).

MergeVertex() fixes the edges in the current trajectory network, and successively merge

two vertices which always cause the largest decrease of MDL value. The merging of

two vertices will decrease the number of vertices by 1, update the vertex entropy and

enlarge the vertex radius. In the second phase, we fix the vertices in trajectory network,

and for each vertex pair, we callMergeEdge() merge two edges which cause the largest

decrease of MDL value (Lines 4-5). Line 6 returns the result.

Algorithm 15 shows the merging of vertices. Line 1 calls the functionNN search()

to find the nearest neighbor of vertexx, which can cause the largest MDLgain after

merging withx. Lines 3-4 select the vertex which has the minimal nearest neighbor

distance and merges it with its nearest neighbor to obtain a new vertexw, whose sam-
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Algorithm 14 : TrajNet
input : A trajectory databaseD
output: Trajectory networkM
M.V ← Sampling points ofD;1

M.E ← Segments ofD;2

MergeVertex(M.V);3

foreachvertex pair (vs, ve) in M.V do4

MergeEdge(M.E, vs, ve);5

return M.6

pling points are the union of the nearest vertex pair. Line 5 computes the value of

MDL gain. If MDL gain is greater than 0, Lines 7-8 attach the edges of two vertices to

w, and remove two vertices from trajectory network. Line 9 finds the nearest neighbor

of w. Lines 10-16 update the nearest neighbor distances for the other vertices whose

nearest neighbors are affected by the vertex merging operation. Line 17 inserts the new

vertexw into the vertex set of trajectory network.

Similar to Algorithm 15,MergeEdge() initializes segments to be small units for

clustering. Algorithm 16 shows the iteration of merging edges whose starting vertex is

vs and ending vertex isve. Line 1 callsNN search() to find the nearest neighbor of edge

x, which can cause the largest MDLgain after merging withx. Line 3-4 select the edge

which has the minimal nearest neighbor distance and merges it with its nearest neighbor

to obtain a new edgew. After edge merging, the starting and ending vertex ofw arevs

andve respectively, and the duration ofw is the weighted duration ofu andv. Line 5

computes the value of MDLgain. If MDL gain is greater than 0, Lines 7 removesu

andv from the edge set of trajectory network. Line 8 finds the nearest neighbor ofw

in all edges whose starting vertex isvs and ending vertex isve. Lines 9-15 update the

nearest neighbor distances for the other edges whose nearest neighbors are affected by

the edge merging operation. Line 16 inserts the new edgew into the edge set.

Theorem 5. The time complexity of Algorithm 14 is O(n2 + m2) if no spatial index is
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Algorithm 15 : MergeVertex(V)

foreach x ∈ V do x.closest← NN search(x,V);1

while truedo2

u← extract min(V); v← u.closest;3

w← merge(u, v);4

if MDL gain has no increase after mergethen5

break;6

attachedges(u,w,E); attachedges(v,w,E);7

deletevertex(u,V); deletevertex(v,V);8

w.closest← NN search(w,V);9

foreach x ∈ V do10

if x.closest is either u or vthen11

if dist(x, x.closest) ≤ dist(x,w) then12

x.closest← NN search(x,V);13

else x.closest← w;14

else ifdist(x, x.closest) ≥ dist(x,w) then15

x.closest← w;16

insert vertex(w,V);17

utilized, where n and m are the vertex number and edge number in the initial trajectory

network, respectively.

Proof: The time complexity ofMergeVertex() is O(n2) if no spatial index is uti-

lized, on account of nearest neighbor search. In Line 4 of Algorithm 14, there aren2

vertex pairs. We analyze the time complexity of merging edges by the average case

and the worst case. On average, each vertex pair hasm
n2 edges, the time complexity

of MergeEdge() is O(( m
n2 )2) and the time complexity of merging edges isO((m

n )2). In

worst case, one vertex pair is associated with allm edges and the time complexity of

merging edges isO(m2). In summary, for Algorithm 14, its average time complexity is

O(n2 + (m
n )2), and its worst time complexity isO(n2 + m2).

�
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Algorithm 16 : MergeEdge(E, vs, ve)

foreach x ∈ E ∧ x ∈ (vs, ve) do x.closest← NN search(x,E, vs, ve);1

while truedo2

u← extract min(E, vs, ve); v← u.closest;3

w← merge(u, v);4

if MDL gain has no increase after mergethen5

break;6

deleteedge(E,u); deleteedge(E, v);7

w.closest← NN search(w,E, vs, ve);8

foreach x ∈ E do9

if x.closest is either u or vthen10

if dist(x, x.closest) ≤ dist(x,w) then11

x.closest← NN search(x,E, vs, ve);12

else x.closest← w;13

else ifdist(x, x.closest) ≥ dist(x,w) then14

x.closest← w;15

insert edge(w,E, vs, ve);16

Approximate Trajectory Network Initialization

The time complexity of Algorithm 14 can be high because of the large number of sam-

pling pointsnand the large number of segmentsm in the initial trajectory network which

is obtained by Lines 1-2 of TrajNet Algorithm. We call itdata-based initialization.

To avoid the high time complexity of data-based initialization, we adopt agrid-

based initialization: By imposing a grid on the spatial plane, the sampling points in one

cell are initialized to be a vertex. The grid-based initialization is more efficient because

the number of vertices ˆn is far less than the number of sampling pointsn, n̂ � n. For

example, Figure 6.9 shows the initial trajectory networks based on the two initialization

strategy, where the initial trajectory network in Figure 6.9(b) has less vertices than that

in Figure 6.9(a). With a proper control of grid granularity, the grid-based initializa-

tion leads to the quite similar or the same trajectory network to the trajectory network

obtained by data-based initialization.

Here, we introduce parameterc to control the grid granularity. A smaller value ofc
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(a) Data-based initialization (b) Grid-based initialization

Figure 6.9: Initial trajectory networks

results in a more precise initial trajectory network and a longer clustering time. A larger

value ofc results in a coarser initial trajectory network and a shorter clustering time.

Notec is not supposed to be larger than the expected micro-cluster sideσ; Otherwise,

the initial trajectory network will depart far from the optimal trajectory network. Our

empirical studies show that we obtain a good trajectory network whenc is about half of

σ.

Similarly, we group the segments which are associated with two vertices and have

close durations, to be an initial edge. This also leads to smaller number of edges ˆm in

the initial trajectory network, where ˆm� m. In summary, the time complexity of for

the grid-based initialization isO(n̂2 + m̂2).

6.5.2 Path Pattern Tree

To generate speed differentiating path rules, we utilize a path pattern tree which enu-

merates all possible paths in the trajectory network. The root node of path pattern tree

is an empty set, and each vertex in trajectory network is a level one child node in the

tree.

In the trajectory network, each edgene maintains a set of trajectory ids to indicate

the trajectories which move along this edge. Similarly, its corresponding edgepe in the
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(a) Trajectory network
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(b) Path pattern tree

Figure 6.10: An example of trajectory network and its path pattern tree. Red solid
trajectories are classC, and blue dashed trajectories are class¬C.

path pattern tree also maintains a projected table which stores the class distribution of

trajectory ids. The projected table ofpe is obtained by intersecting the projected table of

pe’s parent with the trajectory ids inne. Clearly, the trajectory ids in the projected table

is a subset of the trajectory ids inne becausepe may have the prefixes in path pattern

tree.

For example, Figure 6.10(a) shows a trajectory network with seven vertices and the

associated segments. Based on this trajectory network, we build the path pattern tree as

shown in Figure 6.10(b). The edge from root toa is associated with a projected table

which stores the trajectory ids in vertexa. The edge from nodea to b is associated

with a projected table which contains three trajectoriesT1, T2 andT3 of classC and

one trajectoryT4 of class¬C. The edge from nodeb to e is associated with a smaller

projected table which containsT2, T3 andT4. Note thatT6 is not included in this

projected table because it does not start from nodea.
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From Definition 20, support and confidence are two measures of rule significance.

In a path pattern tree, each node can generate several path rules according to the object

ids and their class distribution in the associated projected table. We can estimate the

upper bound of the significance of all path rules which are generated from the projected

table.

Lemma 11. The upper bound of significance pair (confidence, support) for class C in

projected table is



( sup(C)
min sup,min sup) i f sup(C) < min sup,

(1.0, sup(C)) otherwise.

(6.20)

where sup(C) is the number of object ids in column C of projected table over the total

number of trajectories in D.

Proof: From Definition 20, we need to guarantee that the support of path rule is not

less thanmin sup. Let |D| to be the number of trajectories in databaseD. There are

two cases. 1) Ifsup(C) < min sup, the projected table will contain at least (min sup−
sup(C)) × |D| object ids of the classes other than classC, in order to the overall support

of projected table is no less thanmin sup. In this case, the maximal confidence of path

rule for classC is sup(C)
min sup. 2) If sup(C) ≥ min sup, the most significant path rule will be

obtained if the projected table only contains the object ids of classC. In this case, the

confidence reaches the maximal value 1.0 and the support issup(C). �

6.5.3 Top-k Covering Path Rule Set

In this section, we present the algorithm to mine top-k covering path rules for classifi-

cation. For a trajectory databaseD, the top-k covering path rules set is the combination

of top-k covering path rules of each trajectoryT ∈ D after removing the duplicate path
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rules.

Note that we do not mine the valid path rules, whose confidences are greater than

min con f, to build classifiers because the confidence threshold cannot control the num-

ber of valid path rules. Even with the high confidence threshold, a large number of

valid path rules are generated in the datasets of long trajectories, which results in the

inefficient to build classifiers and predict the class labels of test trajectories. In contrast,

the choice ofk is semantically clear, and we can easily control the number of top-k

covering path rules to build classifiers.

Based on the path pattern tree, we mine the top-k covering path rules. We maintain

a buffer to store the top-k covering rules sorted according to their significance values.

The significance value of thek-th covering rule is set as the significance threshold. This

significance threshold is utilized to guide the subtree pruning in the path pattern tree

during the generation of path rules. A subtree can be pruned if it will not generate a

more significant rule than thek-th covering rule.

Four pruning strategies are introduced as follows.

1. Support pruning. If the support of a projected table is less thanmin sup, the

subtree under this projected table can be pruned. This is because the number

of moving object ids in projected table decreases as the path pattern tree depth

increases.

2. Confidence pruning.We can derive the significance upper bound of a projected

table based on Lemma 11. If this significance upper bound is less significant than

the current significance threshold, the subtree under this projected table can be

pruned.

3. Significance pruning. If a projected table only has one nonempty column, the

subtree under this projected table can be pruned. This is because the confidence
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reaches the maximal value 1.0, but the support is non-increasing. This subtree

will not generate a more significant path rule.

4. Top-k covering rules pruning. For each columnC in a projected table, if the

significance upper bound of columnC is less than all significance thresholds of

the trajectory ids in that column, this subtree can be pruned.

Algorithm 17 gives the process to mine the top-k covering path rule set. Lines 1-3

initialize a covering rules buffer and significance threshold pair (confidence, support) to

be (0,0) for each trajectory. Line 4 creates an empty path pattern tree. Line 5 scans the

vertices of trajectory networkM to build the first level nodes of path pattern tree. The

projected tables from root node to the first level nodes are created based on the class

distribution of the first level nodes. Line 6 callsDepthFirst() to build the path pattern

tree in depth first search manner. Lines 7-8 obtain all covering path rules in buffer list

and return them.

In procedureDepthFirst(), Line 11 checks the validity of projected table based

on four pruning conditions. If any one condition holds, this subtree can be pruned.

Otherwise, Lines 12-13 create a new node in tree and derive a candidate path rule from

this node and its associated projected table. Line 14 checks the support of path rule.

Lines 15-17 update the threshold as follows. If a trajectoryTn hasm, wherem < k,

covering rules, the threshold remains unchanged; Otherwise, the threshold is equal to

the significance of thek-th covering rule. Lines 18-20 create relevant edges under the

current nodes, which are simply obtained from the trajectory network. Line 21 calls

procedureDepthFirst() to recursively search the longer path rules.
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Algorithm 17 : TopK Covering Rules Miner
input : D: trajectory database;

M: trajectory network;
min sup: minimal support;
k: number of covering rules for each trajectory.

output: R: Top-k covering path rule set.
foreachTn ∈ D do1

Initialize a buffer Bu f-n and insert to buffer list Bu f ;2

Initialize the pair (confidence, support) ofTn to be (0,0);3

Create a path pattern treePPTreewith an empty root;4

ScanM.V to build the first level nodes ofPPTree;5

Call DepthFirst(M, PPTree.root, minsup, Bu f -k);6

R=all path rules inBu f;7

return R8

Procedure DepthFirst(M, nd, min sup, Bu f)9

foreachprojected table PTi of nd’s edge ei do10

if PTi cannot be pruned by four pruning strategiesthen11

Create a nodendi as the child node ofnd;12

Generate a path ruleγi from ndi;13

if γi .sup≥ min supthen14

foreachTn ∈ D covered byγi do15

Insertγi into in Bu f-n;16

UpdateTn’s significance threshold byγi;17

foreachedge ei j of ndi in M.E do18

Create a tree edge ofndi;19

IntersectPTi with the trajectory ids ofei j to obtain a projected20

tablePTi j ;

Call DepthFirst(M, ndi, min sup, Bu f);21

6.6 Duration-Aware Classifiers

In this section, we will present the strategies to build classifiers based on the duration-

sensitive region rules and top-k path rules.

Given a path patternP = (mc0
α1→ mc1

α2→ . . .
αm→ mcm), its correspondingcentroid

path is Pc = (c0
t1→ c1

t2→ . . .
tm→ cm) whereci is the centroid ofmci and theti is the

average duration ofαi.

The distance between ruleγ and test trajectoryT, denoted bydist(γ,T), is defined



153

as follows.

dist(γ,T) =



0 if γ is a region rule∧ T ∈ γ ,

+∞ if γ is a region rule∧ T < γ,

T D(γ.Pc,T) if γ is a path rule.

(6.21)

The classification score cScore indicates the degree of confidence that a path rule

can be utilized to classify a trajectory. We consider two criteria in the cScore definition.

First, the significant path rules (See Definition 20) will have the high cScore values.

Second, the similar path rules in terms of trajectory distance will have the high cScore

values. With these two criteria, we define the classification score of ruleγ to trajectory

T as follows:

cS core(γ,T) = γ.con f × f (dist(γ,T)) (6.22)

wheref (dist(γ,T)) is a weighted function of trajectory distancedist(γ,T), which can be

any weighted function such as reciprocal functionf (x) = 1
x, quadratic functionf (x) =

1
x2 , Gaussian functionf (x) = N(x; µ, σ2). In this work, we select Gaussian function.

Note that cScore does not include the support of path rules. This is because the path

rules of high support and low confidence may have the large cScore values, which is

inconsistent to the Definition 20.

We build two classifiers based on the valid region rules and top-k covering rule set as

follows. The first classifier, namedTrajectory Classifier based on Features (TCF), is

built by first transforming each trajectory into a cScore vector w.r.t. all the valid region

rules and top-k path rules, and then feeding the vectors into a classification model.

The second classifier, namedTrajectory Classifier based on Region rules and

Path rules (TCRP), is a rule-based classifier. For a test trajectoryT, we calculate its

cScore to all path rules, as given in Equation (6.22). We select the top-k path rules
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that have the highest cScore values and vote the class label ofT to be the one with the

majority vote. Note that the valuek in TCRP is identical to the parameterk in top-k

covering path rule set mining algorithm. Ifk=1, we only select one covering path rule

in rule mining and predict the test trajectory based on the rule of the highest score. Ifk

is equal to the total number of rules, we vote the test trajectory by all rules. Thek value

will be adjusted in the reasonable range according to the trajectory length. Intuitively, a

longer trajectory implies more movement features, so a largek will be assigned for the

long trajectories and a smallk is assigned for the short trajectories.

6.7 Experimental Studies

In this section, we study the performance of TCF and TCRP. We use three real-life

trajectory databases that were obtained from climate data, animals and vehicle objects,

respectively. The details of each database are described as follows.

• Hurricane track data 1. We use the Atlantic hurricanes between the year 1950

and 2008. The Saffir-Simpson scale classifies hurricanes into Scale 0 to 5, where

a high scale indicates a high intensity. The numbers of trajectories (points) from

Scale 0 to Scale 5 are 268 (5624), 150 (4434), 62 (2486), 73 (3199), 60 (2882), 26

(1208), respectively. We use the scales as class labels and isolate the Hurricane

track data into three datasets. 1) Hurricane I contains trajectories of Scale 2 and

3; 2) Hurricane II contains trajectories of Scale 1 and 4; 3) Hurricane III contains

trajectories of Scale 0, 4, 5, and we consider Scale 4 and 5 as one class label.

• Animal movement data2. The animal movement data has been generated by the

Starkey project. We use the animal movements observed in June 1995. This data

1http://weather.unisys.com/hurricane/atlantic
2http://www.fs.fed.us/pnw/starkey/data/tables
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set is divided into three classes by species: elk, deer, and cattle, whose numbers

of trajectories (points) are 38 (7117), 30 (4333), and 34 (3540), respectively.

• Vehicle track data 3. This dataset consists of the trajectories of 2 school buses

and 50 trucks, which drive around Athens metropolitan area. The number of

trajectories (points) are 145 (66096) and 276 (112203), respectively.

All algorithms are implemented in C++, and the experiments are carried on a server

with dual Xeon 3GHZ processors and 4GB memory, running Window Server 2003

operating system. Table 6.1 summarizes the parameters used in TCRP classifier, where

l is the length of the spatial plane.

Table 6.1: Summary of parameters

Symbols Range Default Descriptions

min sup [0.01,0.02] 0.01 minimal support
min con f [0.8,0.9] 0.9 minimal confidence

k 1,3,5 3 top-k rules for voting
c [0.01, 0.04] 0.02 initial cluster side/l
σ [0.02, 0.1] 0.04 standard deviation of trajectory distance/l

6.7.1 Accuracy

We first evaluate the effects of region rules and path rules on the classification accuracy.

We implement three versions of rule-based classifiers by incorporating three combina-

tions of rules: TCR only incorporates region rules, TCP only incorporates path rules,

and TCRP incorporates both region rules and path rules. Table 6.2 shows the classi-

fication accuracy of three rule-based classifiers on different datasets. We can see that

TCR obtains the low accuracy on five datasets. This is expected because the region

3http://www.rtreeportal.org/
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Table 6.2: Effects of rules on classification accuracy (%)
Datasets TCR TCP TCRP
Hurricane I 48.14 60.00 60.00
Hurricane II 71.43 80.47 80.47
Hurricane III 68.07 75.42 79.66
Animal 73.52 81.37 82.35
Vehicle 81.00 95.80 96.56
Average 68.43 78.61 79.81

rules are not enough to distinguish the trajectories which have different moving direc-

tions. Based on Table 6.2, TCP obtains the higher accuracy than TCR on five datasets.

This is because path rules are more discriminative than region rules on account of the

significant moving features, including the speeds and directions, in path rules. Out of

the three rule-based classifiers, TCRP obtains the highest accuracy due to an enhanced

performance of both region rules and path rules on classification. The result of this ex-

periment suggests to build rule-based classifiers by incorporating both region rules and

path rules.

Next, we compare the classification accuracy of TCRP, TCF and the existing tra-

jectory classifier RB-TB [42]. In principle, RB-TB and TCF transform trajectories into

feature vectors and use existing classification methods to construct the classifier. In this

experiment, we implement RB-TB and TCF based on SVM, C4.5 and BayesNet clas-

sification models. The parameter settings in RB-TB follow the reported values in [42].

Note that TCRP and TCF are built on both region rules and path rules, which are mined

based on the default parameters:min sup=0.01,min con f=0.9 andk=5 for all datasets.

All experiments are performed based on five-fold cross validation.

Table 6.3 summarizes the classification accuracy on five datasets. We can see that

TCF is better than RB-TB on almost all datasets, and the TCF based on SVM obtains

the highest average accuracy. This shows that incorporating duration information leads

to more discriminative classifiers. Out of five datasets, TCRP obtains the highest accu-
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Table 6.3: Effect of feature types on classification accuracy (%)

Datasets
SVM C4.5 Bayes Net Rule-based

RB-TB TCF RB-TB TCF RB-TB TCF TCRP
Hurricane I 47.11 55.59 52.98 48.85 54.16 54.16 60.00
Hurricane II 75.23 77.14 72.38 73.81 74.76 77.14 80.47
Hurricane III 76.71 81.72 75.00 77.47 77.47 76.92 79.66
Animal 80.47 82.05 81.26 80.95 70.63 82.06 82.35
Vehicle 94.52 98.44 94.21 96.88 92.7 91.42 96.56
Average 74.81 78.99 75.17 75.59 73.94 76.34 79.81

racy on three datasets, Hurricane I and Hurricane II and Animal dataset. TCRP obtains

the highest average accuracy. This shows that the rule based classifier is discriminative

to handle trajectory classification. TCRP is also efficient because it is exempt from the

conversion of the test trajectories into cScore vectors. In addition, TCRP is simpler

than TCF and RB-TB because it does not need the involvement of the other classifica-

tion methods. Due to these factors above, we consider TCRP to be an ideal trajectory

classifier.

We show the discovered region rules and path rules by TCRP in Hurricane track

data, Animal movement data and Vechicle track data as follows.

Rules in Hurricane Track Data

Figure 6.11, 6.12, 6.13 show the trajectory distribution, region rules and top-3 covering

path rule sets for Hurricane I, II, III datasets, respectively. We can see that only few

region rules are discovered on three datasets. This is because the distribution of two

hurricane classes are quite similar for each dataset.

Rules in Animal Movement Data

Figure 6.14 shows the trajectory distribution of three animal species elk, deer and cattle

in Animal database, and the valid region rules and the top-3 covering rules to build
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(a) Valid region rules (b) Top-3 covering path rules

Figure 6.11: Rules for Hurricane I dataset

(a) Valid region rules (b) Top-3 covering path rules

Figure 6.12: Rules for Hurricane II dataset

(a) Valid region rules (b) Top-3 covering path rules

Figure 6.13: Rules for Hurricane III dataset
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(a) Valid region rules (b) top-3 path rules

Figure 6.14: Rules for Animal dataset

classifiers. We see that the trajectory distribution of three animal species are generally

well separated. Thus, only one valid region rule is found. In the generated path rules,

the granularity of micro-clusters is coarse and the path rules are rather short since they

are already sufficient to discriminate among the different animal species.

(a) Valid region rules (b) Top-5 path rules

Figure 6.15: Rules for Vehicle dataset

Rules in Vehicle Truck Data

Figure 6.15 shows the trajectory distribution of buses and trucks on Athens city, and the

three valid region rules and the top-5 covering path rules to build classifiers. We can

see that two classes of trajectories are concentrated on the central region of the plane

which is the urban area of Athens and all path rules occur in this area. The granularity



160

of micro-clusters is rather fine and the path patterns contains multiple micro-clusters.

This is because fine micro-clusters and long path patterns are more discriminative to

handle similar data distributions of two classes in this area.

6.7.2 Sensitivity

We study the effect ofσ on the accuracy of TCRP.σ controls the cluster size in the

MDL procedure to mine the path rules. Smallσ values result in the small clusters in

trajectory network, thus the less number of path patterns and the shorter path patterns.

Figure 6.16(a) shows the accuracy by varyingσ. We can see that the accuracy curves

reach maximal ifσ varies in [0.02, 0.04], and the accuracy curves slowly decrease

asσ increase afterσ is greater than 0.03. This is because the standard deviations

of sampling points in the five datasets range in [0.02, 0.04]. The trajectory networks

which are trained and obtained in this range ofσ properly model the trajectory database

distribution.

Next, we study the effect ofk on the accuracy of TCRP. Figure 6.16(b) shows the

accuracy by varyingk. We observe that the accuracy curves reach the peaks whenk is 3

or 5 for Hurricane datasets and Animal dataset. This result implies that a smallk value

is enough to distinguish the trajectories and a largek value may cause overfitting. For

Vehicle dataset, the accuracy curves reach the peak whenk is 5. This is because the

trajectories in this dataset are longer than the others.

6.7.3 Efficiency

In this experiment, we evaluate the time efficiency of TCRP. We test the trajectory

network training runtime by varying the initial grid sidec, which has an important

influence on the trajectory network training efficiency. In this experiment,σ is 0.04.

Figure 6.17(a) shows the runtime of trajectory network training by varyingc from 0 to
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Figure 6.16: Sensitivity

0.04, wherec=0 means that the trajectory network training is performed based on the

raw database. As we can see, the runtime decreases exponentially asc increases. This is

expected because a largerc results in fewer number of sampling points, which decreases

the trajectory network training time. Our experiments also show that the classification

accuracy is stable ifc varies in the range [0.01,0.03], which are less thanσ=0.04. This

suggests that settingc to be less thanσ to train the trajectory network is efficient.

Next, we also test the efficiency of top-k covering rule miner by varyingmin supon

five datasets. We fixk=5 and derive top-k covering rules on an existing trajectory net-

work. Figure 6.17(b) and Figure 6.17(c) show the runtime on three Hurricane datasets,

Animal dataset and Vehicle dataset. We observe that the runtime decreases asmin sup

increases for all five datasets. This is expected because a largemin supvalues trim the

path pattern tree in early stages, so that a small number rules are selected as the valid

rules or top-k covering rules.

Finally, we evaluate the effect of k in terms of efficiency. We fixmin sup to be

0.01 and run TCRP on all datasets. Figure 6.17(d) and Figure 6.17(e) show the runtime

of mining top-k covering path rules on three Hurricane datasets, Animal dataset and

Vehicle dataset. We can see that the runtime increases linearly ask increases. This is

expected because a largerk results in a larger number of path rules generated.
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6.8 Summary

Trajectory classification is a very important problem in applications, and also a chal-

lenge research work in discovering and selecting the discriminative features for classifi-

cation. Existing work [42] builds the classifier on shape-based features. In this work, we

propose to discover the spatiotemporal features, including region rules and path rules,

for classification. We utilize the influence model to present the trajectory distribution

and design a space partition tree to facilitate the detection of valid region rules. To

summarize the trajectory database, we introduce the concept of trajectory network, and

we develop a trajectory clustering algorithm to compress the trajectory database into

trajectory network of proper granularity. Based on the trajectory network, a path pat-

tern tree is designed to enumerate all potential paths and facilitate the mining of top-k

covering path rules. A few of pruning strategies are proposed to perform efficient path

rules mining..

We build a hybrid classifier TCF which translates the trajectories into spatiotemporal

feature vectors and feed in any classification model. We also build a rule-based classifier

TCRP which predicts the class labels of trajectories by the region rules and path rules.

All classifiers are tested on the real-life datasets. Experiments show that our classifiers

obtain higher classification accuracy than the existing classifier in [42].



163

 0

 100

 200

 300

 400

 500

0.01 0.02 0.03 0.04
 0.5

 0.6

 0.7

 0.8

 0.9

 1

ru
nt

im
e 

(s
ec

on
d)

ac
cu

ra
cy

c

RUNTIME
ACCURACY

(a) Effect ofc on Animal dataset

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0.01 0.015 0.02 0.025 0.03

ru
nt

im
e 

(m
se

c)

min-sup

Hurricane I
Hurricane II
Hurricane III

Animal

(b) Effect ofmin supon efficiency

 7000

 8000

 9000

 10000

 11000

 12000

0.01 0.015 0.02 0.025 0.03

ru
nt

im
e 

(m
se

c)

min-sup

Vehicle

(c) Effect ofmin supon efficiency

 200

 400

 600

 800

 1000

 1200

1 3 5 7 9

ru
nt

im
e 

(m
se

c)

k

Hurricane I
Hurricane II
Hurricane III

Animal

(d) Top-k covering path rules runtime

 10000

 15000

 20000

 25000

 30000

1 3 5 7 9

ru
nt

im
e 

(m
se

c)

k

Vehicle

(e) Top-k covering path rules runtime

Figure 6.17: Efficiency



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have investigated the spatiotemporal pattern mining in three types

of spatiotemporal data. We have reviewed the current work in the area of sequential

pattern mining, spatiotemporal data mining in event database and spatiotemporal data

mining in moving object database. Although there has been a large amount of work in

this area, there remains research challenges that need further investigation. This thesis

has focused on three research problems.

The first research is to discover mutation chain in biological sequence data where

each sequence is associated with location and time. We have proposed a mutation model

where each sequence has influences to its nearby sequences. Based on the mutation

model, we have introduced the notion of mutation chains to capture the subsequence

changes over space and time. We have designed an integrated algorithm to mine muta-

tion chains in a top-down search manner and have used two pruning strategies to reduce

the search space. Experiments on synthetic datasets have shown that our algorithm is

more scalable and more efficient than the base line algorithms. Experiments on real

world Influenza A virus database have shown that our algorithms can be used to dis-

164
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cover meaningful mutations.

The second research is to discover spatial interaction patterns in snapshot data. We

have proposed an influence model for snapshot data where each object exerts influence

to its nearby regions. We have defined the global Spatial Interaction Patterns (SIPs) on

single snapshot, and have proposed a grid based influence model and have designed an

algorithm called PROBER to discover SIPs based on a grid based influence model. Ex-

periment results have demonstrated that the influence model based patterns effectively

capture the spatial relationship of objects in snapshot data, and are easily extended to

localized and time-associated patterns. We have extended SIPs to the Geographical-

specific Interaction Patterns (GIPs) over continent snapshots, and have designed an al-

gorithm called FlexiPROBER to discover the localized GIPs based on a quadtree based

influence model. We also have developed an algorithm called MineGIC to discover

three pattern trends, i.e., enlargement, shrinkage and movement of supporting regions,

to capture the temporal changes in these patterns. Experiment results on both synthetic

and real world datasets have shown that the proposed approaches are effective in mining

the local geographical-specific interests patterns and discover their changes over time.

The last research problem is to discover duration-aware trajectory pattern in mov-

ing object data for trajectory classification. We have proposed to build trajectory clas-

sifiers that consider the duration of trajectories. We have introduced two kinds of fea-

tures which incorporate duration information, duration-sensitive region rules and speed-

differentiating path rules. The influences of moving objects to the regions are measured

as the time spent by the moving objects in the regions. Based on this influence defi-

nition, we have utilized the top-down space partition method to mine the valid region

rules. We have proposed the trajectory network to model the distribution of trajectories

and employ MDL principle to evaluate the trajectory network. We have designed a path

pattern tree to enumerate and mine the top-k covering path rules for classification. We
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also have built two classifiers TCF and TCRP to predict the class labels of test trajecto-

ries. Experiment results on real-world datasets have shown that both classifiers obtain

higher classification accuracy than the existing classifier.

7.2 Future Work

There are a number of directions that require further investigation. We list three major

directions for future work.

First, besides the physical geographical distances, the spatial constraints such as

migratory bird patterns as well as modern air transportation routes, can be used to con-

struct a spatial network to better model the spatial influence on the mutation likelihood.

In addition, in road network based moving object databases, the object distances can be

modelled by network distances instead of the geographical distances.

Another direction for future research is to investigate interesting spatial relation-

ships such as spatial exclusion. Exclusion relationship refers to features that do not

occur together, and no existing work focuses on spatial exclusion pattern mining. By

enriching and mixing the spatial relationships, we will discover more useful and inter-

esting knowledge in spatiotemporal data for real-world applications.

Finally, since spatiotemporal data comes from real application scenarios, they con-

tain noise due to the limitation of measuring instruments and human recording errors.

For example, the spatial positions of sampling points are imprecise, and the trajectories

may miss some sampling points and insert some noise points. It is desirable to design a

robust model which can handle the imprecise data and the trajectories of data inserting

and deleting.

With more and more spatiotemporal data being tracked and analyzed in the real

world, we believe this field will receive much attention in both academia and industry

in the near future.



Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Jorgeesh Bocca, Matthias Jarke, and Carlo Zaniolo, editors,20th
International Conference on Very Large Data Bases, September 12–15, 1994,
Santiago, Chile proceedings, pages 487–499, Los Altos, CA 94022, USA, 1994.
Morgan Kaufmann Publishers.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. InICDE, page 3, Los
Alamitos, CA, USA, 1995. IEEE Computer Society.

[3] A. Bairoch and R. Apweiler. The swiss-prot protein sequence data bank and its
supplement trembl in 1999.Nucleic Acids Research, 27:49–54.

[4] Y. Bao, P. Bolotov, D. Dernovoy, B. Kiryutin, L. Zaslavsky, T. Tatusova, J. Ostell,
and D. Lipman. The influenza virus resource at the national center for biotechnol-
ogy information.J. Virol., 82(2):596–601, 2008.

[5] Maurice Stevenson Bartlett.The statistical analysis of spatial pattern. Wiley,
1975.

[6] F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Object trajectory-based activity
classification and recognition using hidden markov models.Image Processing,
IEEE Transactions on, 16(7):1912–1919, 2007.

[7] Huiping Cao, Nikos Mamoulis, and David W. Cheung. Mining frequent spatio-
temporal sequential patterns. InICDM, pages 82–89, 2005.

[8] Mete Celik, Shashi Shekhar, James P. Rogers, and James A. Shine. Mixed-drove
spatiotemporal co-occurrence pattern mining.IEEE Trans. Knowl. Data Eng.,
20(10):1322–1335, 2008.

[9] Lei Chen and M. Tamer Ozsu. Robust and fast similarity search for moving object
trajectories. InSIGMOD, pages 491–502, 2005.

[10] Hong Cheng, Xifeng Yan, and Jiawei Han. Incspan: incremental mining of
sequential patterns in large database. InKDD ’04: Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 527–532, New York, NY, USA, 2004. ACM Press.

167



168

[11] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the top-k
most relevant spatial web objects.PVLDB, 2(1):337–348, 2009.

[12] Gao Cong, Kian-Lee Tan, Anthony K. H. Tung, and Xin Xu. Mining top-k cover-
ing rule groups for gene expression data. InSIGMOD Conference, pages 670–681,
2005.

[13] L. T. Daum, M. W. Shaw, A. I. Klimov, and L. C. Canas. Influenza a (h3n2)
outbreak, nepal.Emerg Infect Dis, 11(8):1186–1191, August 2005.

[14] Philip M. Dixon. Ripley’s k function.Encyclopedia of Environmetrics, 3:1796–
1803, 2002.

[15] Richard O. Duda, Peter E. Hart, and David G. Stork.Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[16] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison.Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cam-
bridge University Press, 1999.

[17] R. C. Edgar. Muscle: multiple sequence alignment with high accuracy and high
throughput.Nucleic Acids Res., 32(5):1792–1797, 2004.
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Appendix

Influence Approximation

Our idea to determine the appropriate resolution is as follows. First, we partition the

plane into a coarse granularity. Then we recursively perform a split operation to divide

each cell into 4 sub-cells. These sub-division steps will assign a finer granularity which

is exactly half of the previous resolution. In this way, we can compute the effect of

finer resolution, and eventually arrive at the appropriate resolution. Figure 7.1 shows

the splitting strategy, whereo is the position of object andp is the center of a big grid

of sideR, the distance fromo to p is indicated by symbold. After unform splitting, this

big grid is partitioned into four subgrids, each of which has a sideR/2. The distances

from o to the center of each subgrid ared′1, d′2,d
′
3,d
′
4 respectively.

In the following analysis of the bounds of the approximation, we only consider the

case where the objects are distributed in the east quarter area. Without loss of generality,

any other distributions can be transformed into this case by rotating the cell.

After splitting, we will have the following equations according to theCosine Theo-

rem:



d′21 = d2 + 1
8R2 −

√
2

2 dRcosθ1

d′22 = d2 + 1
8R2 −

√
2

2 dRcosθ2

d′23 = d2 + 1
8R2 +

√
2

2 dRcosθ3

d′24 = d2 + 1
8R2 +

√
2

2 dRcosθ4

Sinceθ1 + θ2 = π/2 andθ3 + θ4 = π/2, we have
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Figure 7.1: Cell splitting case

the following two constraints:



1 < cosθ1 + cosθ2 <
√

2

1 < cosθ3 + cosθ4 <
√

2

, and

0 < cosθ1, cosθ2, cosθ3, cosθ4 < 1.

The summation of the first two influence units is

In f1 + In f2

=
R2

4
· (e−

d′21
2σ2 + e−

d′22
2σ2 )

=
R2

4
· e− d2

2σ2 · e− R2

16σ2 · (e
√

2dRcosθ1
4σ2 + e

√
2dRcosθ2

4σ2 ) (7.1)

Let f (d) = e
√

2dRcosθ1
4σ2 +e

√
2dRcosθ2

4σ2 = e
√

2dRcosθ1
4σ2 +e

√
2dRsinθ1

4σ2 , with θ2 = π/2−θ1. f (d) reaches

a local minimal atθ1 = 0 and a local maximal atθ1=π/4. So we have

2 < 1 + e
√

2dR
4σ2 ≤ f (d) ≤ 2e

dR
4σ2 . (7.2)

From Formula 7.1 and 7.2, we have
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R2

2 · e−
d2

2σ2 · e− R2

16σ2 < In f1 + In f2 ≤ R2

2 · e−
d2

2σ2 · e− R2

16σ2 · e dR
4σ2

So the influence error at the first two sub-cells is

IErr1,2(·)

=
‖ (In f1 + In f2) − In f /2 ‖

In f1 + In f2

≤
R2

2 · e−
d2

2σ2 · (e− R2

16σ2 · e dR
4σ2 − 1)

R2

2 · e−
d2

2σ2 · e− R2

16σ2

= e
dR

4σ2 − e
R2

16σ2 (7.3)

Similarly, the summation of the last two influence units is

R2

2 · e−
d2

2σ2 · e− R2

16σ2 · e− dR
4σ2 ≤ In f3 + In f4 < R2

2 · e−
d2

2σ2 · e− R2

16σ2

So the influence error at the last two sub-cells are

IErr 3,4(·) =
‖ In f /2− (In f3 + In f4) ‖

In f /2
≤ 1− e−

R2

16σ2 e−
dR

4σ2 (7.4)

Combining Formula 7.3 and 7.4, we have the influence error

IErr (·) =
IErr1,2 + IErr 3,4

2
≤ 1− e−

R2

16σ2 e−
dR

4σ2 + e
dR

4σ2 − e
R2

16σ2

2
(7.5)

As 0 ≤ d ≤ 3σ, we normally substitutekσ for d where 0≤ k ≤ 3. So Formula 7.5

can be rewrote as

IErr (·) ≤ 1− e−
R2

16σ2 e−
kR
4σ + e

kR
4σ − e

R2

16σ2

2
(7.6)
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Merge vertices and edges

In this section, we give the computation processes of merging vertices and edges in

TrajNet algorithm.

7.2.1 Merge Vertices

Figure 6.7 shows the process to merge verticesv1, v2 andv3. Assume that all sampling

points have the identical weight, the weight of three vertices areW1 = 4 andW2 = W3 =

2, the radius ofv1, v2 andv3 are equal to 1.0, andσ=10.0. We haveH(v1)=0.81 and

H(v2)=H(v3)=0.0, andcv=0.0072. We consider the three cases as follows.

Case 1: Merge v1 and v2 to be a new vertexv12 which have the six sampling

points and radiusR12=2. Its entropyH(v12)=1 and its weightW12=6. In this case,

the MDL gain is 1+ H(v1) + H(v2) − H(v12) + cv(W1R2
1 + W2R2

2 −W12R2
12) = 1 + 0.81+

0− 1 + 0.0072× (4× 12 + 2× 12 − 6× 22) = 0.68 bits.

Case 2: Mergev1 andv3 to be a new vertexv13 which have the six sampling points

and radiusR13=2.5. Its entropyH(v13)=0.65 and its weightW13=6. In this case, the

MDL gain is 1+ H(v1) + H(v3) − H(v13) + cv(W1R2
1 + W3R2

3 −W13R2
13) = 1 + 0.81+ 0−

0.65+ 0.0072× (4× 12 + 2× 12 − 6× 2.52) = 0.93 bits.

Case 3: Merge v2 and v3 to be a new vertexv23 which have the four sampling

points and radiusR23=3. Its entropyH(v23)=1 and its weightW23=4. In this case, the

MDL gain is 1+ H(v2) + H(v3)−H(v23) + cv(W2R2
2 + W3R2

3−W23R2
23) = 1+ 0+ 0− 1+

0.0072× (2× 12 + 2× 12 − 4× 32) = -0.23 bits.

Since Case 2 leads to a largest MDLgain, we select to mergev1 andv3 to be a new

vertexv13.
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7.2.2 Merge Edges

Figure 6.8 shows the process to merge edges. Assume that we have three edgese1, e2

ande3, which move from vertexv1 to vertexv2. The Euclidean distance isd(v1, v2)=10.0.

Assume thate1 contains two red segments and their average duration is 2.0,e2 contains

one red segment and its duration is 1.0,e3 contains one blue segment and its duration is

1.0. Letσ=10.0 andcv=0.0072. We consider the three cases as follows.

Case 1: Mergee1 ande2 to be a new edgee12. Its entropyH(e12)=0. Its weighted

durationt = 2×2.0+1×1.0
2+1 = 1.67, thereby causing the distance errord1 = |1.67− 2.0| ×

10.0 = 3.3 andd2 = |1.67− 1.0| × 10.0 = 6.7. In this case, the MDLgain is 1+ H(e1) +

H(e2)−H(e12) + ce(w1d2
1 + w2d2

2) = 1+ 0+ 0− 0+ 0.0072× (2× 3.32 + 1× 6.72) = 0.52

bits.

Case 2: Mergee2 ande3 to be a new edgee23. Its entropyH(e23)=1. Its weighted

durationt = 1.0, sod1 = 0.0 andd2 = 0.0. In this case, the MDLgain is 1+ H(e1) +

H(e2) − H(e23) + ce(w2d2
2 + w3d2

3) = 0 bits.

Case 3: Mergee1 ande3 to be a new edgee13. Its entropyH(e13)=0.92 and its

weighted durationt = 2×2.0+1×1.0
2+1 = 1.67, thereby causing the distance errord1 = |1.67−

2.0| × 10.0 = 3.3 andd2 = |1.67− 1.0| × 10.0 = 6.7. In this case, the MDLgain is

1+H(e1)+H(e2)−H(e12)+ce(w1d2
1 +w2d2

2) = 1+0+0−1+0.0072× (2×3.32+1×6.72)

= -0.48 bits.

Since Case 1 leads to a largest MDLgain, we select to mergee1 ande2 to be a new

edgee12.


