INTEGRATED MOLECULAR PROFILING FOR ANALYZING AND PREDICTING THERAPEUTIC MECHANISM, RESPONSE, BIOMARKER AND TARGET

Jia Jia

(B. Sci & M. Sci, Zhejiang University)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHARMACY

NATIONAL UNIVERSITY OF SINGAPORE

2010

ACKNOWLEDGEMENTS

I would like to deeply thank Professor Chen Yu Zong, for his constant encouragement and advice during the entire period of my postgraduate studies. In particular, he has guided me to make my research applicable to the real world problem. This work would not have been possible without his kindness in supporting me to shape up the manuscript for publication. I am also tremendously benefited from his profound knowledge, expertise in scientific research, as well as his enormous support, which will inspire and motivate me to go further in my future professional career.

I am also grateful to our BIDD group members for their insight suggestions and collaborations in my research work: Dr. Tang Zhiqun, Ms. Ma Xiaohua, Mr. Zhu Feng, Ms. Liu Xin, Ms. Shi Zhe, Dr. Cui Juan, Mr. Tu Weimin, Dr. Zhang Hailei, Dr. Lin Honghuang, Dr. Liu Xianghui, Dr. Pankaj Kumar, Dr Yap Chun wei, Ms. Wei Xiaona, Ms. Huang Lu, Mr. Zhang Jinxian, Mr. Han Bucong, Mr. Tao Lin, Dr. Wang Rong, Dr. Yan Kun. I thank them for their valuable support and encouragement in my work.

Finally, I owe my gratitude to my parents for their forever love, constant support, understanding, encouragement and strength throughout my life.

A special appreciation goes to all for love and support.

Jia Jia

August 2010

TABLE OF CONTENTS

1.1 1. 1. 1.	Overview of mechanism and strategies of molecular-targeted therapeutics1.1Current progress of molecular-targeted cancer therapeutics1.2Challenges of targeted cancer therapy, receptor tyrosine kinase as a case study1.3Systematic discovery of multicomponent therapies	2 3 5 7
1.2 1. 1. 1. 1. 1.	Current progress in cancer biomarker discovery. 2.1 Introduction to biomarker in cancer diagnosis and prediction	<i>14</i> 14 15 16 20 29
1.3 1. 1. 1.	 Current progress in tumor antigen discovery 3.1 Overview of tumor vaccine for cancer immunotherapy 3.2 Introduction toT cell-defined tumor antigens 3.3 Application of computational methods for MHC-binding peptides and epitopes prediction 	<i>31</i> 31 36 39
1.4	Scope and research objective	41
2.1 2. 2. 2. 2. 2.	Introduction to machine learning methods. 1.1 Support Vector Machines. 1.2 Probabilistic neural network	45 51 53 55 56
2.2	Methodology for microarray data processing	58
2. 2. 2. 2.	 2.1 Preprocessing of microarray data	58 59 61 62
22	Easture selection procedure	62
2.3 2. 2. 2.	3.1 REF based gene selection procedure	63 64 66 67
2.4	Construction of the feature vector for peptide	69
2. 2.	4.1 Feature vector for peptide4.2 Scaling of feature vector	69 70
3.1	Introduction	74
3 2	Materials and Methods	77
3.2	2.1 Mechanism of drug interactions	77
3.	2.2 Methods for drug-combination analysis	78
3.	2.3 Collection of literature-reported drug combinations	78
3.3	Results and discussion	79
3.	3.1 Statistics of collected drug combinations and MI profiles	79
3.	3.2 Mechanism underlying the pharmacokinetic and pharmacodynamic drug interactions	80
3.4	Conclusion	102
4.1	Introduction	107
4.2	Materials and Methods	. 109
4.	2.1 Data collection and preprocessing	109
4.	 2.2 Bypass mechanism of studied tyrosin kinase inhibitors 2.3 Drug sensitivity evaluation procedure. 	116
ч. 12	B esults and discussion	110
· · ·)	INENTALIN THAT THAT AND AND A A A A A A A A A A A A A A A A	119

4. 4.	Assessment of EGFR-I sensitivity prediction by mutation and amplification profiles Assessment of integrated molecular profiling for predicting TKIs sensitivity	119 121
4.	The distribution and coexistence of drug sensitive and resistant profiles	
4.4	ummary	132
5.1	ntroduction	133
5.2	Iaterials and Methods	136
5.	Collection of genomic, mutation and expression data	
5.	2 Collection of tumor-specific antigen	
5.	3 Computational procedures	137
5.3	Pesults and Discussion	
5.	Performance of collective approach in genome-scaled TSAs identification	
5.4	Conclusion	144
6.1	ntroduction	146
6.2	Iaterials and Methods	150
6.	Lung adenocarcinoma microarray datasets and data preprocess	150
6.	2 Performance evaluation of survival marker signatures	153
6.3	esults and discussion	154
6.	System of the lung adenocarcinoma survival marker selection	
6.	2 Consistency analysis of the identified markers	156
6.	3 Disease relevant of identified markers	161
6.	The predictive ability of identified markers	
6.	5 Patient survival analysis using survival markers	
6.	5 Hierarchical clustering analysis of the survival markers	
6.4	ummary	176
7.1	Iajor findings and contributioins	178
7.2	imitations	180
7.3	Directions for future research	181

SUMMARY

Tailored cancer diagnosis and treatment has been challenged over a century. The opportunities as well as the challenges facing disease "omics" are formidable. Taken microarray technology as an example, the invention of this technology and its ability to simultaneously interrogate thousands of genes has significantly changed the paradigm of molecular targeting and classification of human cancers as well as shifting clinical prognosis models to a broader prospect. Curretnly, much effort has been done for disease mechanism, treatment development and biomarker identification from the perspective of different molecular profiling. Particularly promising areas of research include: the identification of new targets for therapeutics and the potential for accelerating drug development through more effective strategies to evaluate therapeutic effect and toxicity; the development of novel biomarkers for disease classification and outcome prediction; and delineation of altered gene expression relevant to the course of disease.

The main objective of this dissertation is to investigate the therapeutic mechanism, drug efficacy, novel therapeutic targets and biomarkers for cancer prevention and treatment by collectively considering the mutational, amplification and microarray gene expression profiles. A collected tumor specific antigens prediction approach and a cancer marker discovery system have been further developed from microarray data for tumor marker and specific antigens prediction.

Combination therapies are now standard in therapeutic areas of multifactorial disease, such as cancer, diabetes and infectious disease, which have been proved to enhance the efficacy of agents that were initially developed as single-target drugs and reduce countertarget activities and toxicities in cancer treatment. Unfortunately, the standard approach of combining monotherapies at the clinical stage limits the number of drug pairs that can be tested and bypasses the opportunity to find therapeutically relevant interactions between novel targets. It is essential to understand the molecular mechanisms underlying the successful drug combinations. The knowledge could facilitate the discovery of novel efficacious combinations and multi-targeted agents. In this study, we describe an extensive investigation of the published literatures on drug combinations for which the combination effect has been evaluated by rigorous analysis methods and for which relevant molecular interaction profiles of the drugs involved are available. Analysis of the 117 identified cases reveals general and specific modes of action of rationale combined drug, and highlights the potential value of molecular interaction profiles in the discovery of novel multicomponent therapies.

In the second study, a particular focus has been given to investigate the correlation between the integrative molecular profiles and the sensitivities of anticancer receptor tyrosine kinase inhibitor drugs (TKIs) in lung and breast cancer cell-lines. TKIs elicit markedly different response rates in clinical setting. These rates have nowadays been linked to mutation and amplification of drug target, activating-mutation of downstream signaling genes RAS, BRAF and PIK3CA, and loss-of-function of signaling regulator PTEN. Compensatory, alternative and redundant signaling that bypass target inhibition also influence drug response. Unlike the traditional cancer diagnostic and prognostic indices, which may group molecularly distinct patients into similar clinical classes based mainly on the morphology of diseases, we collectively considered the profiles of the bypass genes together with the profiles of the drug targets and the relevant downstream retrospectively analyzed mutational, amplification and microarray gene expression profiles of the drug target and known bypass and downstream drug-resistant genes in non-small cell lung cancer (NSCLC) and breast cancer cell-lines sensitive or resistant to TKIs including gefitinib, erlotinib, lapatinib, and trastuzumab. Drug sensitivity prediction has been potentiated by collective analyzing mutation, amplification and expression profiles of target, bypass genes, and drug-resistant downstream signaling and regulatory genes.

Recent progresses in profiling somatic mutations and expressions of human cancer genomes, and in predicting T-cell epitopes enable genome-scale tumor-specifi antigen (TSA), a class of potential source of disease-targeting molecules, search by collectively analyzing these profiles. Such a collective approach has not been explored in spite of the availability and usage of individual methods. In this study, genome-scale TSA search was conducted by genome-scale search of tumor-specific mutations in differentially over-expressed genes of specific cancers based on tumor-specific somatic mutation, microarray gene expression data, and *in silico* T-cell recognition analysis. The performance of our method was tested against known T-cell defined melanoma and lung cancer TSAs and archieved a fairly good perdiction performance. It is suggested that noises in expression data of small sample sizes appear to be a major factor for misidentification of known TSAs. With improved data quality and analysis methods, the collective approach is potentially useful for facilitating genome-scale TSA search.

Cancer markers are useful in following the course of cancer and evaluating which therapeutic regimes are most effective for a particular type of cancer, as well as determining long-term susceptibility to cancer or recurrence. The case is clear for development of biomarkers for early detection and screening tests for diseases such as lung, breast, colon, and ovarian cancer. In addition, diagnostic measurement of cancer disease progression is essential to successful disease management. For these reasons, development of new and effective biomarkers for cancer detection and diagnosis is crucial for efficiouse cancer prevention and treatment. In the last study, a particular focus has been given to develop marker discovery system that may benefit early disease diagnosis and correct prediction of prognosis. The expression level of such markers presents potential therapeutic drug targets and may give suggestions to proper treatment regime. We developed a novel gene selection method based on support vector machines (SVMs), recursive feature elimination (RFE), multiple random sampling strategies and multi-step evaluation of gene-ranking consistency to overcome the unstable and disease irrelevant nature of currently biomarker identification approaches. The as-developed program can be utilized to derive disease markers which present both good prediction performance and high levels of consistency with different microarray dataset combinations.

The biomarker discovery system has been test in lung adenocarcinoma for survival marker discovery by using an 86-sample lung adenocarcinoma dataset. In this case, 21 lung adenocarcinoma survival markers were identified with a farily stability across 10 sampleing-set, suggesting the effectiveness of our system on deriving stable disease markers and discovering therapeutic target.

LIST OF TABLES

Table 1-1 US FDA-approved molecule targeting drugs (kinase inhibitor) between 2001 to
201010
Table 1-2 US FDA-approved therapeutic antibody drugs. 11
Table 1-3 Clinical response rates, targeted cancer in clinical test, clinical test setting, and
kinase target / targets of 11 anticancer kinase inhibitor drugs approved or in clinical
trial for the treatment of non-small cell lung cancer (NSCLC), breast cancer, and
acute lymphoblastic leukemia (ALL)12
Table 1-4 Tumor markers used in clinical practice. Simplifed list of predictive tumor
markers in breast and other solid tumors18
Table 1-5 A list of public available microarray databases
Table 1-6 Selected cancer vaccines in early and late stages of clinical trials
Table 1-7 Examples of tumor-specific antigens and shared antigens (Source: GSK)38
Table 2-1 Websites that contain freely downloadable codes of machine learning methods46
Table 2-2 Relationships among terms of performance evaluation
Table 2-3 Division of amino acids into different groups for different physicochemical
properties71
Table 2-4 List of features for peptides 72
Table 3-1 Examples of literature reported pharmacodynamically synergistic drug
combinations due to anti-counteractive actions, in which synergy has been
determined by well established synergy/additive analysis methods and its molecular
mechanism has been revealed85
Table 3-2 Examples of literature reported pharmacodynamically synergistic drug
combinations due to complementary actions, in which synergy has been determined
by well established synergy/additive analysis methods and its molecular mechanism
has been revealed
Table 3-3 Examples of literature reported pharmacodynamically synergistic drug
combinations due to facilitating actions, in which synergy has been determined by
well established synergy/additive analysis methods and its molecular mechanism has
been revealed
Table 3-4 Examples of literature reported pharmacodynamically additive drug
combinations, in which additive action has been determined by well established
synergy/additive analysis methods and its molecular mechanism has been revealed 91
Table 3-5 Examples of literature reported pharmacodynamically antagonistic drug
combinations in 2000-2006, in which antagonism has been determined by established
methods and its molecular mechanism has been revealed. The antagonism of the
listed drug combinations is due to interfering actions of the partner drugs in each
combination
Table 3-6 Literature reported pharmacokinetically potentiative drug combinations, in
which potentiative effect has been determined by established methods and its
molecular mechanism has been revealed95
Table 3-7 Examples of literature reported pharmacokinetically reductive drug
combinations, in which reductive effect has been determined by established methods
and its molecular mechanism has been revealed95
Table 3-8 Assessment of clinically heavily-used drug combinations not collected by our
literature search procedure. These combinations have primarily been studied by less

rigorous combination analysis methods and the relevant studies have been published
before 1999
radie 4-1 The main therapeutic target, bypass genes, drug-resistant downstream signaling
and broast concor
Table 4-2 Cliniconathological features and data source of NSCL C cell-lines used in this
study. The available gene expression data. EGER amplification status, and drug
sensitivity data for gefitinib, erlotinib, and lanatinib are included together with the
relevant references
Table 4-3 Clinicopathological features and data source of breast cancer cell-lines used in
this study. The available gene expression data, HER2 amplification status, and drug
sensitivity data for trastuzumab and lapatinib are included together with the relevant
references
Table 4-4 The literature reported performance of the prediction of EGFR-I sensitive and
resistant patients by using mutation-based and amplification-based methods115
Table 4-5 Normal cell-lines (6 from the lung bronchial epithelial tissues and 9 from breast
epithelial tissues) obtained from GEO database115
Table 5-2 Known melanoma tumor-specific antigens presented by MHC-I. The label "E",
"C", "T", "B" indicates the tumor-specific antigen was selected by gene expression,
proteasome cleavage, TAP-mediated transport, HLA-binding analysis respectively.
Table 5-3 Known lung cancer tumor-specific antigens presented by MHC-I. The label "E",
"C", "I", "B" indicates the tumor-specific antigen was selected by gene expression,
proteasome cleavage, TAP-mediated transport, HLA-binding analysis respectively.
Table 5-4 Results of genome-search of melanoma tumor-specific antigens by collective
analysis of mutation, expression and 1-cell recognition. The number of $$
represents the number of known tumor-specific antigens passed a particular search
Step
analysis of mutation, expression and T coll recognition. The number of " \int "
analysis of initiation, expression and 1-cell recognition. The number of $\sqrt{1-1}$
stop
Table 6-1 Statistics of lung adenocarcinoma survival marker signatures from references
149
Table 6-2
Table 6-3 Gene information for lung adenocarcinoma survival markers shared by all of 10
signatures
Table 6-4 Average survivability prediction accuracy of 500 SVM class-differentiation
systems on the optimal SVM parameters for lung adenocarcinoma prediction. The
sigma is the optimal SVM parameter which gives the best average class-
differentiation accuracy over the 500 testing-sets. The accuracies are obtained from
500 testing-sets161
Table 6-5
Table 6-6 Average survivability prediction accuracy of the 500 SVM class-differentiation
systems constructed by 84 samples from independent Bhattacharjee's lung
adenocarcinoma dataset164

Table 6-7 Average survivability prediction accuracies of the 500 PNN class-differentiation
systems constructed by 84 samples from independent Bhattacharjee's lung
adenocarcinoma dataset165
Table 6-8 Average survivability prediction accuracy of 500 SVM class-differentiation
systems constructed by 86 samples from Beer's lung adenocarcinoma dataset167
Table 6-9 Average survivability prediction accuracies of the 500 PNN class-differentiation
systems constructed by 86 samples from Beer's lung adenocarcinoma dataset 168
Table 6-10 Comparison of the survival rate in clusters with other groups, by using

different signatures and Beer	's microarray dataset	

LIST OF FIGURES

Figure 1-1 The discovery and exploitation of cancer genes has the potential to usher in a
new era of individualized diagnosis and therapy
Figure 1-2 Procedure of microarray experiment
Figure 1-3 Filter method versus wrapper method for feature selection
Figure 3-1 Pathways affected by cisplatin-trastuzumab drug combination, figure was
generated by Microsoft Visio 2007104
Figure 3-2 Human folate metabolism pathway affected by the combination of
methotrexate (MTX) and fluorouracil (5-FU)105
Figure 3-3 Ecoli folate metabolism pathway affected by the suphamethoxazole-
trimethoprin drug combination106
Figure 6-1 System for lung adenocarcinoma survival marker derivation and survivability
prediction155
Figure 6-2 Hierarchical clustering analysis of the 21 lung adenocarcinoma survival
markers from Beer's microarray dataset. The tumor samples were aggregated into
three clusters. Substantially elevated (red) and decreased (green) expression of the
genes is observed in individual tumors171
Figure 6-3 Kaplan-Meier survival analysis of the three clusters of patients from Figure 6-
2. Average survival time of patients in cluster 1 is 50.6 months; average survival time
of patients in cluster 2 is 82.2 months; average survival time of patients in cluster 3 is
74.8 months (P<0.0001, log-rank test)172
Figure 6-4 Hierarchical clustering analysis of the 21 lung adenocarcinoma markers from
Bhattacharjee's microarray dataset. The tumor samples were aggregated into three
clusters. This 21-gene signature are shared by 10 survival genes sets of lung
adenocarcinoma derived by using datasets from Beer et al and by using multiple
random sampling method173
Figure 6-5 Kaplan-Meier survival analysis of the three clusters of patients from Figure 6-
4. Average survival time of patients in cluster 1 is 35.7 months; average survival time
of patients in cluster 2 is 32.0 months; average survival time of patients in cluster 3 is
78.3 months (P<0.001, log-rank test)174
Figure 6-6 Hierarchical clustering analysis of the 21 lung adenocarcinoma survival
markers from Beer's microarray dataset

LIST OF SYMBOLS

ALL:	acute lymphoblastic leukemia
AML:	acute myeloid leukemia
ANN:	artificial neural networks
cDNA:	complementary DNA
CTLs:	cytotoxic T lymphocytes
DNA:	deoxyribonucleic acid
EGFR-I:	EGFR inhibitors
EST:	expressed sequence tag
FDA:	food and drug administration
FN:	false negative
FP:	false positive
HER2-I:	HER2 inhibitors
HLA:	human leukocyte antigen
IG:	immunoglobulin
KEGG:	Kyoto encyclopedia of genes and genomes database
KNN:	k-nearest neighbors
LS:	least square method
MHC:	major histocompatibility complex
MI:	molecular interaction
MIAME:	minimum information about a microarray experiment
ML:	machine learning
NCBI:	national center for biotechnology information
NSCLC:	non-small cell lung cancer
NPV:	negative predictive value
NSP:	the number of non-survivable patients
PCA:	principal component analysis
PDB:	protein databank
Pfam:	protein family
PNN:	probabilistic neural networks
PPV:	positive predictive value
Q:	overall accuracy
RBF:	radian basis kernel
RFE:	recursive feature elimination
RNA:	ribonucleic acid
RTKs:	receptor tyrosine kinases
SAGE:	serial analysis of gene expression
SCLC:	small cell lung cancer
SE:	sensitivity
SMD:	Stanford Microarray Database
SMO:	sequential minimal optimization
SP:	specificity
SP:	the number of survivable patients
SQL:	structured query language
STDEV:	standard deviation
SV:	support vector
SVM:	support vector machines
TCR:	T-cell receptor

TN:true negativeTP:true positiveTTD:therapeutic target database

1 Introduction

Global gene-expression profiling using microarray technologies has improved our understanding of the histological heterogeneity of cancer and has been increasingly used to discover potential biomarkers for patient classification and promising targets for disease prevention and treatment. However, gene expression profile alone may not reflect the full story of the cancer due to cancer result from a variety of factors, including individual variations in patients and somatic cell genetic differences in tumors, even those from the same tissue of origin. The performance and general applicability of published biomarkers are highly unstable and have difficulties in generalized cancer discrimination because of small numbers of subjects examined and inclusion of heterogeneous tumor types. Anti-cancer agents developed to direct at a single altered target frequently show reduced efficacies and poor safety and resistance issues. To address these concerns and to facilitate a stable marker-selection method, collective approaches have been used for analyzing and predicting the drug mechanism, response, novel targets and biomarkers in this study. With a focus of efficacious targeted cancer therapy and disease classification by molecular indicators, the first section of this chapter introduced the increasing role of molecular targeted therapies as well as combination strategies in cancer prevention and treatment (Section 1.1). The second section (Section 1.2) of this chapter gives an overview of therapeutic molecules, particularly tumor-specific antigen, and cancer biomarkers as well. The motivation of this study and outline of the structure of this dissertation are presented in Section 1.3.

1.1 Overview of mechanism and strategies of moleculartargeted therapeutics

Knowing the origin of a disease is the first step in understanding the entire abnormal course of disease and helping the treatment of the disease. Sometimes it is very easy to determine the cause of certain diseases, such as infectious diseases which are generally caused by virus, bacteria or parasites. However, sources of some diseases may not be easily identified, especially some multifactorial diseases resulting from an accumulation of inherited and environmentally-induced changes or mutations in the genome, such as cancer [1-5], diabetes [6,7], cardiovascular disorders [8,9] and obesity [10].

For accurate disease treatment, it is very important to identify genes responsible for disease initiation, development and progress. As such, proper treatment regime can be applied and the survivability of the patients can be ultimately extended [11]. The completion of human genome project [12,13], and the new, economical, and reliable methods in functional genomics such as gene expression analysis present the potential for disease classification, target identification and drug mechanism study (Figure 1-1). Often, the potential disease targets are the molecules that show significantly different expression profiles between healthy people and patients, or among the patients with different progress stages/subtypes/outcomes, playing key roles in disease initiation [14] or disease progress [15,16]. The disease targets can be used in developing disease targeting molecules such as small molecules, antibody, and vaccines based on the protein-small molecule interaction and antibody-antigen interaction [17].

An ever-increasing number of molecular-targeted therapeutic agents are nowadays approved by US Food and Drug Administration (FDA), which have been summarized in Table 1-1 and Table 1-2. For cancer treatment, some promising targeted therapies are being studied for use alone, in combination with other targeted therapies, and in combination with other cancer treatments, such as radiotherapy and chemotherapy.

Figure 1-1 The discovery and exploitation of cancer genes has the potential to usher in a new era of individualized diagnosis and therapy.

Exploiting the cancer genome: Molecular pathology and therapy

Notes: The two critical steps in this process are: (1) the successful development of diagnostic, prognostic predictive and pharmacodynamic biomarkers; and (2) effective molecularly targeted therapeutics. The close integration of the discovery, development, and application of the molecular biomarkers and molecular therapeutics is key to future success. The figure is adapted from [18].

1.1.1 Current progress of molecular-targeted cancer therapeutics

The principle of targeted cancer therapy is certainly not new: by focusing on molecular and cellular changes that are specific to cancer, targeted cancer therapies may be more effective than other types of treatment, including chemotherapy and radiotherapy, and less harmful to normal cells. This kind of targeted cancer therapies give clinicians a better way to tailor cancer treatment, especially when a target is present in some but not all tumors of a particular type, as is the case for HER2 in breast cancer. Eventually, treatments can be individualized based on the unique set of molecular targets produced by the patient's tumor. Moreover, targeted cancer therapies also hold the promise of being more selective for cancer cells than normal cells, thus harming fewer normal cells, reducing side effects, and improving quality of life.

The success of Imatinib (Gleevec) in the treatment of chronic myelogenous leukaemia (CML) has provided evidence that cancer can be effectively treated by the identification of underlying molecular defects. With the progress of genomics and proteomics technologies and the campaigns of studying cancer mechanism by these "omics" technology, increasing number of gene signatures closely related to cancer initiation and perpetuation have been identified, thus provide rich therapeutic candidate for targeted therapies. A new generation of drugs, that targeted on the specific molecular targets, such as receptor tyrosin kinases (RTKs) and some enzymes, are playing critical roles today in cancer treatment. The promising results in trials with RTKs targeted drugs, such as gefitinib (Iressa) and trastuzumab (Herceptin) (Table 1-3) have given encouragement results for such approaches. In addition, the identified disease genes also greatly stimulated the development of antibodies and tumor vaccines that used to activate the both arms of the immune system for cancer immunoprevention and treatment.

1.1.2 Challenges of targeted cancer therapy, receptor tyrosine kinase as a case study

The ErbB (Erythroblastic Leukemia Viral Oncogene Homolog) family, a class of transmembrane RTKs, regulates various signaling pathways that are critical in the development and progression of many cancers. It consists of four receptors (ErbB 1-4) whose ligands are Neuregulins and EGFs (Epidermal Growth Factors). Upon ligand binding, they form homo- and/or heterodimers to activate the downstream signaling pathways[19], including phosphatidylinositol-3 kinase (PI3K) and Erk mitogen-activated protein kinase (MAPK). Both of these pathways are critical to regulate cell proliferation and survival [20]. The key role of ErbB family in regulating signal transduction in the context of multiple cellular processes and environments, and the regulatory approval in clinical applications makes kinase as a readily accepted druggable protein [16]. In cancer, ErbB family members, especially EGFR and ErbB2, are frequently dysregulated through gene mutation and gene amplification, resulting in receptor overexpression. For instance, EGFR is overexpressed in almost 80% of head and neck cancer whereas overexpression of ErbB2 is found in around 30% breast cancer[19].

Over the past few years, these receptors have emerged as promising anticancer targets and good prognostic indicators. Many molecular-targeted drugs are developed to target their overexpressed proteins. Due to the specific and selective action, the therapeutic effect could be highly achieved with much less toxicity, compared to the traditional cytotoxic agents. Some successfully marketed drugs are gefitinib (Iressa) for lung cancer, Imatinib (Gleevec) for chronic myeloid leukemia and trastuzumab (Herceptin) for breast cancer. Table 1-3 summarized the clinical response rate of gefitinib, trastuzumab, and nine other kinase inhibitor drugs (cetuximab, erlotinib, canertinib, vandetanib, neratinib, lapatinib,

imatinib, nilotinib and dasatinib) in along with targeted cancer (non-small cell lung cancer (NSCLC), breast cancer, and acute lymphoblastic leukemia (ALL)), clinical setting (phase I/II, II, and III trial), and kinase target or targets of each drug directly responsible for its anticancer therapeutic efficacy. To maintain statistical significance of our analysis and in consideration of the typical sizes of the available trial data, only those trials with larger than 60 NSCLC, larger than 60 breast cancer and larger than 40 ALL patients are included. It is noticed that these drugs elicit markedly different clinical response rates and clinical response rates so far have not been as high as expected, for example, that of 15~26% ErbB2-positive patients was reported to response trastuzumab single-drug treatment (Table 1-3). Thus, agents directed at RTKs, with a few notable exceptions, such as imatinib, are frequently showed reduced efficacies, poor safety and resistant problems.

The efficacy of anti-RTK agents is affected by many factors. Diversity in patients' expression and mutation of a core set of disease-causing genes could be a reason for the failure of drug targeted only on ErbB families. Activation of parallel receptors, whose pathways could bypass ErbB signaling pathways, also contributes greatly to the resistance to ErbB-targeting drugs. Some of the common parallel receptors, which also belong to classes of RTKs, are platelet-derived growth factor receptors (PDGFR), vascular endothelial growth factor receptors (VEGFR), insulin-like growth factor receptors (IGFR), and hepatocyte growth factor receptor (HGFR or c-MET). Besides, activating mutations of downstream signaling molecules of PI3K and MAPK pathways, such as Ras, PTEN (phosphatase and tensin homolog), PIK3CA (encoding PI3K), have been highly associated with drug resistance, too. These are generally attributed to their ability to activate the signaling pathways by themselves [21-23]. Although possible reasons of some drug resistance have been postulated [24-33], practical solutions remain limited due to the lack

6

of insights into detailed resistance profiles as well as a systemic analysis for it. To address these questions, the drug response rate of 4 well-studied anticancer anti-RTK agents were investigated by collectively analyzing the mutation and expression profiles of molecular targets, expression of bypass genes, and activating-mutation of downstream signaling genes, including RAS, BRAF and PIK3CA, indictaed in many of RTK resistant research studies[31,34-47].

1.1.3 Systematic discovery of multicomponent therapies

The progress of systems biology has revealed that human cells and tissues are composed of complex, networked systems with redundant, convergent and divergent signaling pathways[48-51]. For example, the redundant function of proteins involved in cell-cycle regulation[52] has inspired efforts to intervene simultaneously at multiple points in these signaling pathways [53]. Drug combinations thus have been used for treating diseases and reducing suffering ever since the earliest days of recorded history. The traditional Chinese medicines are vivid examples. In some cases, single-target drugs cannot fully correct a complex disease condition such as cancer. The poor efficacy of these agents directed against individual molecular targets can be attributed to due to network robustness[24-26], redundancy[27], crosstalk[28-30], compensatory and neutralizing actions[31,32], and antitarget and counter-target activities[33]. The limitations of many monotherapies can be overcome by attacking the disease system on multiple points. Multicomponent therapeutics can be more efficacious and less vulnerable to adaptive resistance because the biological system is less able to compensate for the action of two or more drugs simultaneously. Several categories of multicomponent therapeutics have been proposed on the basis of target relationship. In the first category, the therapeutic effect occurs at separate molecular targets that can reside within individual signaling pathways, between

pathways within a cell or at separate tissues in the body. In the second category, modulation of one target facilitates action at a second target, for example by altering compound metabolism, inhibiting efflux pumps or blocking other resistance mechanisms. The third relationship is based on a coordinated action at multiple sites on a single target or macromolecular complex, which yields the improved therapeutic effect [54].

Attempts have been made during the past century to quantitatively measure the dose-effect relationships of each drug alone and its combinations. The concepts of synergy, additivism, and antagonism have been explored extensively, particularly in the fields of pharmacology and toxicology [55-57]. Traditionally, combinations can be efficiently discovered by dose–response matrix screening and systematically analyzing for drug synergies in various cell-based models of disease [58]. The cell-based phenotypic assays are employed because they maintain reasonable experimental efficiency while preserving disease-relevant molecular-pathway interactions [58]. *In vivo* screening using a whole organism model such as the zebrafish[59] could identify multi-target therapeutics that integrates their effect at the level of the organism. Often, limited combination testing samples can be used in these systems and is unlikely to have resulted in the selection of optimal combinations among the very large number of possibilities.

The deliberate mixing of drugs in a clinical setting requires an understanding of the mechanism of action of each drug class. [58]. Tremendous progress has been made over the past decade in the development and refinement of genomic and proteomic technologies and lead to uncover many novel functional pathways, therapeutic targets, and molecular interaction (MI) profiles between disease targets and therapeutic molecules. Despite of the importance of these progress towards the system-oriented drug combinations, knowledge

8

of disease biology, drug mechanism or intuition are still required to guide a large, agnostic surveys of molecular mechanisms that can combine to produce synergistic combination effects. Knowledge of the molecular mechanisms of currently explored multicomponent therapies is a particular crucial starting point for investigating and developing rational drug combinations and multi-targeting agents. In this study, some key characteristics of the modes of multicomponent therapies have been discussed by using the knowledge of molecular interaction profiles of individual drugs, disease network crosstalks and regulations. The identified modes of actions of drug combinations reveal some important categories of multicomponents therapeutics of current successful drug-combinations and multi-targeting agents. Rational multicomponents therapeutics thus can be realized from different perspectives, such as selectively modulating the elements of counter-target and toxicity activities[60-63].

Year	Drugs	Pubchem ID	Drug Types	Molecular Target	Disease Indication	Therapeutic Application	Company
2010	Votrient (Pazopanib)	CID: 10113978	Tyrosine kinase inhibitor	VEGF receptors, c- kit, and PDGFR	Renal cell carcinoma	Advanced renal cell carcinoma	GlaxoSmithKline
2007	Tasigna(Nilotinib)	CID: 644241	Tyrosine kinase inhibitor	BCR-ABL	Chronic myeloid leukemia (CML)	Imatinib-resistant chronic myeloid leukemia	Novartis
	Sprycel (Dasatinib)	CID: 3062316	Tyrosine kinase inhibitor	BCR-ABL, SRC	CR-ABL, SRC Chronic myeloid leukemia (CML) Tre		Bristol-Myers Squibb
2006	Sutent (Sunitinib)	CID: 5329102	Tyrosine kinase inhibitor	PDGFR, VEGFR, KIT, FLT3, CSF- 1R, RET	DGFR, VEGFR, Kidney Cancer; Tre JT, FLT3, CSF- JR, RET Tumors		Pfizer
2005	Nexavar (Sorafenib)	CID: 216239	Multikinase inhibitor	VEGFR, PDGFR, c- KIT	Renal Cell Carcinoma	Cell Carcinoma Treatment of Renal Cell Carcinoma	
2004	Tarceva (Erlotinib,OSI 774)	CID: 176870	Tyrosine kinase inhibitor	EGFR	Non-small cell lung cancer (NSCLC)	Treatment of advanced refractory metastatic non-small cell lung cancer	Genentech, OSI Pharmaceuticals
2003	Iressa (Gefitinib)	CID: 123631	Tyrosine kinase inhibitor	EGFR	Non-small cell lung cancer (NSCLC)	The second-line treatment of non- small-cell lung cancer	AstraZeneca
2002	Gleevec (Imatinib mesylate)	CID: 123596	Protein-tyrosine kinase inhibitor	PDGF, SCF, c-kit,	Positive inoperable and/or metastatic malignant gastrointestinal stromal tumors (GISTs)	Treatment of gastrointestinal stromal tumors (GISTs)	Novartis
2001	Gleevec (Imatinib mesylate)	CID: 123596	Protein-tyrosine kinase inhibitor	c-kit, PDGFR	c-kit, PDGFR Chronic myeloid leukemia (CML) Oral therapy for treatment of chro myeloid leuker		Novartis

Table 1-1 US FDA-approved molecule targeting drugs (kinase inhibitor) between 2001 to 2010 [64,65].

Table 1-2 US FDA-approved therapeutic antibody drugs.	
---	--

Year	Drugs	Target Antigen	Type of Antibody	Isotype	Kd (nM)	FDA-Approved Indication(s)	Company	Reference
	Vectibix (panitumumab)	EGFR	Human antibody	IgG2, kappa	0.05	Treatment of colorectal cancer	Amgen	[64,66,67]
2006	Herceptin* (trastuzumab)	ERBB2	Humanized antibody	IgG1	0.1	A second- or third-line therapy for patients with metastatic breast cancer	Genentech	[64,68,69]
	Lucentis (ranibizumab)	VEGF	Humanized antibody fragment	IgG1 kappa		treat the "wet" type of age-related macular degeneration (ARMD), a common form of age-related vision loss	Genentech	[64,70]
2004	Avastin (bevacizumab)	VEGF	Humanized antibody	IgG1	1.1 Treatment of metastatic carcinoma of the colon or rectum		Genentech	[64,71,72]
	Erbitux (cetuximab)	EGFR	Chimeric antibody	IgG1, kappa	0.2	Treatment of EGFR-expressing metastatic colorectal cancer	Imclone, Bristol -Myers Squibb	[64,71,72]
2002	Humira (adalimumab)	TNF-alpha	Human antibody	IgG1, kappa	0.1	For treatment of adults with rheumatoid arthritis and psoriatic arthritis.	Abbott Laboratories	[64,71,72]
1998	Remicade (infliximab)	TNF-alpha	Chimeric antibody	IgG1, kappa	0.1	For treatment of rheumatoid arthritis, Crohn's disease, ankylosing spondylitis, psoriatic arthritis, and ulcerative colitis.	Johnson & Johnson	[64,71,72]
	Herceptin (trastuzumab)	HER2 protein	Humanized antibody	IgG1, kappa	5	For treatment of metastatic breast cancer	Genentech and Roche	[64,71,72]

*First approved October 1998, used extended 2006

Table 1-3 Clinical response rates, targeted cancer in clinical test, clinical test setting, and kinase target / targets of 11 anticancer kinase inhibitor drugs approved or in clinical trial for the treatment of non–small cell lung cancer (NSCLC), breast cancer, and acute lymphoblastic leukemia (ALL)

	Kinase Target / Targets Directly	Targeted	Clinical Test Setting			Clinical	Defense of Clinical Test in	
Drug	rugResponsible for Anticancer Effect (Potency) [Reference in Pubmed ID or as Specified]		Test Platform	No of Patients	Patient Status	Response Rate	Pubmed ID or as Specified	
		NSCLC	Phase II	60	Not found	3.3%	16472704	
Cetuximab	EGFR (Kd 0.39nM) [19216623]	NSCLC	Phase II	66	2nd line, recurrent or progressive NSCLC received chemotherapy	4.5%	17114658	
		NSCLC	Phase II	210	Advanced NSCLC received 1 or 2 chemotherapy, at least one with platinum	18.4%	12748244	
Gefitinib	EGFR (IC50 33nM), HER4 (IC50 476nM) [9578319, 12384534, 18089823]	NSCLC	Phase II	216	Locally advanced or metastatic NSCLC failed 2 or more chemotherapy with platinum, docetaxel	8%	Proc Am Soc Clin Oncol 21: 2002 (abstr 1166)	
		NSCLC	Phase II	100	Chemotherapy na we stage IIIB/IV NSCLC unfit for chemotherapy	6%	19289623	
		Breast Cancer	Phase II	63	Pretreated metastatic breast cancer (HER2+ subgroup)	1.6%	16947082	
	EGFR (IC50 1nM), HER4 (IC50 230- 790nM)[15711537, 18183025, 18089823]	NSCLC	Phase II	1,949	2nd/3rd-line advanced NSCLC	12%	J Clin Oncol 27: 15s, 2009 (suppl abstr 8001)	
Erlotinib		NSCLC	Phase III	731	Stage IIIB or IV NSCLC received 1 or 2 chemotherapy	8.9%	16014882	
		NSCLC	Phase II	66	Chemotherapy-naïve NSCLC aged ≥70	10%	17228019	
Canertinib	EGFR (IC50 0.8nM), HER2 (IC50 19nM),	NSCLC	Phase II	166	Advanced-stage NSCLC failed or refractory to platinum-based chemotherapy	4%	17761977	
	HER4 (IC50 4~/IIM) [12138393]	Breast Cancer	Phase II	194	Progressive or recurrent metastatic breast cancer expressed 1 or more ErbB	7.3%	19294387	
	EGFR (IC50 500nM), VEGFR2 (IC50 40nM), RET (IC50 100nM), HER4 (IC50 480nM), SRC (IC50 70nM) [12183421, 12499271, 18183025]	NSCLC	Phase II	83	Locally advanced or metastatic stage IIIB/IV NSCLC failed platinum-based chemotherapy	8%	J Clin Oncol 24, No. 18S (Suppl, 2006: 7000	
vandetanib		NSCLC	Phase II	73	NSCLC histologies and pretreated CNS metastases	7%	18936474	

Chapter 1 Introduction

Trastuzumab	HER2 (Kd 0.1nM) [19216623]	Breast	Phase II	222	Pretreated HER2+ metastatic breast	15%	19707416
		Cancer	Phase II	114	cancer		19707416
		Cancer			cancer	26%	
Neratinib	HER2 (IC50 59nM),EGFR (IC50 92nM) [19780706]	Breast Cancer	Phase II	124	HER2+ metastatic breast cancer received	26%	19733440
		Breast Cancer	Phase II	124	Trastuzumab-na ve HER2+ metastatic breast cancer	55%	19733440
Lapatinib	HER2 (IC50 7nM), EGFR (IC50 0.6-8.9nM), HER4 (IC50 54nM) [18183025]	Breast Cancer	Phase II	138	First-line ErbB2-amplified locally advanced or metastatic breast cancer	24%	18458039
		Breast Cancer	Phase II	78	Stage IIIB/IV HER2+ advanced or metastatic breast cancer received trastuzumab	13%	19179558
		Breast Cancer	Phase II	126	Relapsed or refractory HER2+ inflammatory breast cancer	39%	19394894
		Breast Cancer	Phase II	141	First-line HER2+ metastatic breast cancer	22.2%	19525314
Imatinib	ABL1 (IC50 12nM), c-KIT (IC50 14nM), PDGFRB (IC50 14nM), SRC (IC50 352nM) [18183025, 19890374, 16105974]	ALL	Phase II	48	Ph+ALL without response or relapse to chemotherapy or SCT	19%	12200353
		ALL	Phase II	56	Recurrent and refractory Ph+ ALL aged>18	19%	12200353
Nilotinib	ABL1 (IC50 56nM), PDGFR (IC50 22nM), c- KIT (IC50 18nM) [19922818]	ALL	Phase II	41	Ph+ALL resistant to imatinib or intolerant/ relapse to chemotherapy or SCT	24%	Ottmann et al(2007c)
Dasatinib	ABL1 (IC50 0.53nM), SRC (IC50 0.21nM), FGR (IC50 0.5nM), FYN (IC50 0.7nM), HCK (IC50 0.35nM), LYN (IC50 0.57nM), PDGFRB (IC50 0.63nM), PDGFRA (IC50 0.45nM), c-KIT (IC50 0.62nM) [18183025,19039322]	ALL	Phase II	46	Ph+ALL resistant to imatinib or intolerant/ relapse to chemotherapy or SCT	35%	17496201

1.2 Current progress in cancer biomarker discovery

1.2.1 Introduction to biomarker in cancer diagnosis and prediction

Generally tumors are differentiated according to their gross morphological appearance of the cells and the surrounding tissues. However, such a differentiation criterion has limitations. First, it relies on a subjective review of the tissue, which depends on the knowledge and experience of a pathologist, which may not be consistent or reproducible [73,74]. Second, this method provides discrete, rather than continuous classification of disease into broad groups with limited ability to determine the treatment regime of individual patients[75]. Third, disease with identical pathology may have different origins and respond differently to treatment [76]. Last but not the least, current pathology reports offer little information about the potential treatment regime which a disease will respond to. The accurate diagnosis and differentiation of tumor subtypes remains a challenge and the efforts to combat cancer remain extremely disappointing. One main reason for the lack of desired success in cancer diagnosis and differentiation is that in many cases, cancer is diagnosed too late and treated with improper regimens. Therefore, factors that can accurately predict response/toxicity to systemic treatments are urgently needed.

Fortunately, disease differentiation based on molecular profile of diseases can overcome those limitations [5,77-80]. Spectacular advances in molecular medicine, genomics, and proteomics are nowadays leading to the search for new biomarkers in cancer research. Microarray technology, for example, has become a very important component of disease molecular differentiation. The gene expression profiles can be used to identify markers which are closely associated with early detection/differentiation of disease, or disease behavior (disease progression, response to therapy), and could serve as disease targets for drug design [81].

1.2.2 Types of cancer biomakers

A cancer biomarker is a substance that is objectively measured and evaluated as an indicator of pathogenic processes or pharmacological response to a therapeutic intervention in oncology[82]. Broadly speaking, cancer biomarkers can be divided into three categories[83] based on the recent advances in genomic and genetic research:

(a) Diagnostic (screening) biomarkers are used to detect and identify a given type of cancer in an individual. This type of biomarkers is expected to possess high levels of diagnostic sensitivity and specificity, especially if it is used in large-screening trials;

(b) Prognostic biomarkers are commonly used in clinical outcome prediction once the disease status has been established, independent of the therapy that is used. They are expected to predict the likely course of the disease, reflecting the metastatic, recurrence potential and/or growth rate of the tumor and thus they have an important influence on the aggressiveness of the therapy[84]. Prognostic biomarkers can be further divided into biological progression markers and risk biomarkers[84]. Biological progression markers are measures of tumor burden and are commonly circulating cellular proteins that are associated with tumor progression. Among the most commonly used of these "tumor markers" are CA-125 for ovarian cancer and prostate-specific antigen (PSA) for prostate cancer [85-87]. Risk biomarkers are usually implicated in the mechanisms of disease causality or neoplastic progression, and are increasingly used in drug development to identify populations likely to be responsive to a given drug treatment. The foremost

example of this is ERBB2/HER2 gene amplification in 25% of patients with invasive breast cancer, which correlates with inferior patient survival [88];

(c) Predictive biomarkers or pharmacodynamic biomarkers serve to predict the likely clinical response to a specific treatment that are most relevant for monitoring effects of a drug or other intervention, and classifying individuals as "responders" or "non-responders" by using molecular, cellular, histopathological, and imaging parameters [83,84]. Such predictive classification is of a major importance in designing clinical drug trails to define an intended use for the drug under investigation. It is a indicator of drug effect, they may not necessarily correlate with or predict a therapeutic impact on the disease[84]. Examples of typical pharmacodynamic biomarkers include changes in proliferation using Ki67 expression, apoptosis using the TUNNEL assay, alterations in gene expression profiles, and functional or molecular imaging changes[89].

Although prognostic and predictive biomarkers have different focus, some factors, such as EGFR mutations, are used as both prognostic and predictive in clinical studies[90].

1.2.3 Approaches of cancer biomarker discovery

1.2.3.1 Traditional gene discovery method

The early approaches to discover and identify cancer biomarkers were mainly based on preliminary clinical or pathological observations. Two methods, candidate gene approach and positional cloning approach, have traditionally been used to discover physiologically and pathologically natural history markers markers underlying human diseases. Candidate gene method is based on prior biochemical knowledge about the genes, such as putative functional protein domain of genes and tissues in which genes are expressed [91,92]. Li-Fraumeni syndrome [93], hereditary prostate cancer risk [92], metastasis of hepatocellular carcinoma [94], and breast cancer risk [95] were discovered in this manner. However very limited well-characterized genes are currently available [91], and most genes cannot be analyzed in this manner due to the limitation of biochemical knowledge.

In contrast to candidate gene method, positional cloning identifies genes without any prior knowledge about gene function[8]. This method is performed in patients and their family members using DNA polymorphisms. Alleles of markers that are in close proximity to the chromosome location of the disease genes can be determined by genetic linkage analysis, and critical region can be defined by haplotype analysis. The candidate genes residing in the critical regions can be identified [8,91]. This method was applied in identifying genes related with asthma [96], cardiovascular disorders [8,9], and diabetes mellitus [7]. However, the nature of positional cloning limits its resolution to relatively large regions of the genome [91]. The candidate genes within a certain critical region need to be filtered from the relatively large regions of the genome by identifying mutations in genes that segregate with the disease [91].

These traditional approaches lead to the development of some most reliable and validated markers in daily clinic, which include carcinoembryonic antigen for a variety of cancers, such as calcitonine for medulary thyroid carcinoma,prostate-specific antigen for prostate carcinoma, thyroglobulin for papillary or follicular thyroid carcinoma, human chorionic gonadotropin or alpha-fetoprotein for germ cell tumors, CA-125 for ovarian carcinoma, CA 15-3 for breast carcinoma, and SCC for squamous cell carcinoma of the cervix (Table 1-4) [97]. The optimum management of patients with several types of malignancy also

requires the use of tumor biomarkers correlating with clinical response to a specific treatment and most relevant for monitoring drug activity. The foremost example of these biomarkers includes mutations of EGFR and K-ras for Non-small cell lung cancer and Colorectal respectively(Table 1-4)[97].

Cancer type	Marker(s)	Main use(s)	Clinical scenario
Colorectal	CEA	Prognosis, postoperative sruvelliance, monitoring therapy	
Germ cell	AFP, HCG, LDH (prognosis only)	Prognosis, postoperative surveillance, monitoring therapy	
Trophoblastic	HCG	Prognosis, postoperative surveillance, monitoring therapy	
Ovarian	CA-125	Monitoring therapy, differential diagnosis of benign and malignant masses in postmenopausal women	
Prostate	PSA	Screening, prognosis, postoperative surveillance, monitoring therapy	
Breast	ER, PR	Predicting response to hormone therapy, prognosis	Endocrine agents
	HER-2	Predicting response to trastuzumab and lapatinib, prognosis	Anti-HER2 agnets
	uPA, PAI-1 CA15-3, CEA	Prognoiss in node-negative patients postoperative surveillance, monitoring therapy	Chemotherapy
Hepatocellular	AFP	Diagnostic aid, prognosis, postoperative surveillance, monitoring therapy	
Thyroid(differentiated)	Thyroglobulin	Postoperative surveillance, monitoring therapy	
Colorectal	K-ras mutations		Getuximab
Non-small cell lung cancer	EGFR mutations		Gefitinib, erlotinib
Gastrointestinal stomal tumors	C-kit or PDGFRA mutations		Imatinib mesulate

Table 1-4 Tumor markers used in clinical practice. Simplifed list of predictive tumor markers in breast and other solid tumors [97]

Abbreviations: CEA, carcinoembryonic antigen; AFP, alpha-fetoprotein; HGC, human choriogonadotrophin; LDH, lactate dehydrogenase; PSA, prostate-specific antigen; ER, estrogen receptor; PR, progesterone receptor; uPA, urokinase plasminogen activator; PAI, plasminogen activator inhibitor.

1.2.3.2 New approaches of cancer biomarker discovery

Currently, there are a number of newly emerged platforms leading to the search for new biomarkers in cancer research. On the proteomic side, we have a number of emerging technologies that are applied in the area of biomarkers discovery, including surface enhanced laser desorption ionization (SELDI) [98,99], mass sepectrometry combined with two-dimensional liquid chromatography [100-102] or two-dimensional gel electrophoresis [103-106], protein microarrays [107-109], and imaging mass spectrometry[110-112]. On the genomic side, there are equally powerful platforms for biomarkers discovery, which use polymerase chain reaction (PCR) [113,114], serial analysis of gene expression (SAGE) [115], and DNA microarrays [4,5,116]. These technique is widely used in cancer research for the identification of cancer biomarkers, and provide new insights into tumorigenesis, tumor progression and invasiveness [4,5,117-120].

Among these well developed techniques, DNA microarrays has emerged as being the most clinically useful[121]. Computational analysis of microarray data can be used to identify certain sets of cancer-associated marker genes based on gene expression patterns. Furthermore, gene expression profiling provides high levels of specificity and sensitivity in cancer process where classical histo- or immunopathological approaches are unsatisfactory. Currently, powerful microarray technology has provided several new molecular classifications[4,117,122,123] of different solid tumors but also new prognostic and predictive tools in breast cancer [97], colorectal tumors [124], prostate cancer[125], non-Hodgkin's lymphoma [126], acute myeloid leukemia [127]. In breast cancer, multigene predictors of response to chemotherapy, endocrine therapy, or targeted agents are in earlier stages of development [97]. Two profiles, in particular, have undergone

detailed studies in this malignancy: MammaPrint[®] and Oncotype DX[®]. Similar multigene signatures are under development in other solid tumors[97].

1.2.4 Brief introduction of microarray technology

1.2.4.1 Introduction to microarray experiments

Microarray technology, also known as DNA chip, gene ship or biochip, is one of the indispensable tools in monitoring genome wide expression levels of genes in a given organism. Microarrays measure gene expression in many ways, one of which is to compare expression of a set of genes from cells maintained in a particular condition A (such as disease status) with the same set of genes from reference cells maintained under conditions B (such as normal status).

Figure 1-2 shows a typical procedure of microarray experiments [128,129]. A microarray is a glass substrate surface on which DNA molecules are fixed in an orderly manner at specific locations called spots (or features). A microarray may contain thousands of spots, and each spot may contain a few million copies of identical DNA molecules (probes) that uniquely correspond to a gene. The DNA in a spot may either be genomic DNA [130], or synthesized oligo-nucleotide strands that correspond to a gene [131-133]. This microarray can be made by the experimenters themselves (such as cDNA array) or purchased from some suppliers (such as Affymetrix GeneChip). The actual microarray experiment starts from the RNA extraction from cells. These RNA molecules are reverse transcribed into cDNA, labeled with fluorescent reporter molecules, and hybridized to the probes formatted on the microarray slides. At this step, any cDNA sequence in the sample will hybridize to specific spots on the glass slide containing its complementary sequence. The amount of cDNA bound to a spot will be directly proportional to the initial number of

RNA molecules present for that gene in both samples. Following, an instrument is used to read the reporter molecules and create microarray image. In this image, each spot, which corresponds to a gene, has an associated fluorescence value, representing the relative expression level of that gene. Then the obtained image is processed, transformed and normalized. And the analysis, such as differentially expressed gene identification, classification of disease/normal status, and pathway analysis, can be conducted.

1.2.4.2 Public repository for microarray data

Reword to the variety of journals and funding agencies which have established and enforced microarray data submission standards, currently, a wealth of microarray data is now available in different databases such as the Stanford Microarray Database (SMD) [134], Gene Expression Omnibus (GEO) [135], and Array Express (EBI) [136]. Table 1-5 gives a list of public available microarray databases. Many of those databases require a minimum information about a microarray experiment (MIAME)-compliant manner in order to interpret the experiment results unambiguously and potentially be able to reproduce the experiment [137]. As a public resource, these expression databases are valuable substrates for statistical analysis, which can detect gene properties that are more subtle than simple tissue-specific expression patterns.

1.2.4.3 Statistical analysis of microarray data

Since microarray contains the expression level of several thousands of genes, it requires sophisticated statistical analysis to extract useful information such as drug responsive markers. Theoretically, one would compare a group of samples of different conditions and identify good candidate genes by analysis of the gene expression pattern. However, a typical microarray data set is extremely sparse compared to traditional classification data sets[138]. Microarray data set may also contain some noises arising from measurement variability and biological differences [139,140]. The gene-gene interaction also affects the gene-expression level. Furthermore, the high dimensional microarray data can lead to some mathematical problems such as the curse of dimensionality and singularity problems in matrix computations, causing data analysis difficult. Therefore, choosing a suitable statistical method for gene selection is very important.
Database	Website*	Description	Organism	Ref
ArrayExpress	http://www.ebi.ac.uk/arrayexp ress/	A public repository for microarray based gene expression data	European Bioinformatics Institute	[136]
ChipDB	http://chipdb.wi.mit.edu/chipd b/public/	A searchable database of gene expression	Massachusetts Institute of Technology	[141]
ExpressDB	http://twod.med.harvard.edu/E xpressDB/	A relational database containing yeast and E. coli RNA expression data	Harvard Medical School	[142]
Gene Expression Atlas	http://symatlas.gnf.org/SymAtl as/	A database for gene expression profile from 91 normal human and mouse samples across a diverse array of tissues, organs, and cell lines	Novartis Research Foundation	[143]
Mouse Gene Expression Database (GXD)	http://www.informatics.jax.org /menus/expression_menu.shtm 1	An extensive and easily searchable database of gene expression information about the mouse	The Jackson Laboratory, Bar Harbor, Maine	[144]
Gene Expression Omnibus (GEO)	http://www.ncbi.nlm.nih.gov/g eo/	Microarray database containing tens of millions of expression profiles	National Center for Biotechnology Information	[135]
GermOnline	http://www.germonline.org/ind ex.html	Information and microarray expression data for genes involved in mitosis and meiosis, gamete formation and germ line development across species	Biozentrum and Swiss Institute of Bioinformatics	[145]
Human Gene Expression (HuGE) Index database	http://www.biotechnologycent er.org/hio/	A comprehensive database to understand the expression of human genes in normal human tissues	Boston University	[146]
MUSC DNA Microarray Database	http://proteogenomics.musc.ed u/ma/musc_madb.php?page=h ome&act=manage	A web-accessible archive of DNA microarray data	Medical University of South Carolina	[147]
RIKEN Expression Array Database (READ)	http://read.gsc.riken.go.jp/	A database of expression profile data from the RIKEN mouse cDNA microarray	RIKEN Yokohama Institute	[148]
Rice Expression Database (RED)	http://red.dna.affrc.go.jp/RED/	Expression profiles obtained by the Rice Microarray Project and other research groups	National Institute of Agrobiological Sciences, Japan	[149]
RNA Abundance Database (RAD)	http://www.cbil.upenn.edu/RA D/php/index.php	A public gene expression database designed to hold data from array-based and nonarray-based (SAGE) experiments	University of Pennsylvania	[150]
Saccharomyces Genome Database (SGD): Expression Connection	http://db.yeastgenome.org/cgi- bin/expression/expressionCon nection.pl	A gene expression database of Saccharomyces genome	Stanford University	[151]

Table 1-5 A list of public available microarray databases

Chapter 1 Introduction

Stanford Microarray Database (SMD)	http://genome- www5.stanford.edu/	Raw and normalized data from microarray experiments, as well as their corresponding image files	Stanford University	[134]
Yale Microarray Database (YMD)	http://info.med.yale.edu/micro array/	A microarray database for large-scale gene expression analysis.	Yale University	[152]
yeast Microarray Global Viewer (yMGV)	http://www.transcriptome.ens.f r/ymgv/	A database for yeast gene expression	Ecole Normale Superieure, Paris, France	[153]

The statistical methods in microarray data analysis can be classified into two groups: unsupervised learning methods and supervised learning methods. Unsupervised analysis of microarray data aims to group relative genes without knowledge of the clinical features of each sample [154]. A commonly-used unsupervised method is hierarchical clustering method. This method groups genes together on the basis of shared expression similarity across different conditions, under the assumption that genes are likely to share the same function if they exhibit similar expression profiles [155-158]. Hierarchical clustering creates phylogenetics trees to reflect higher-order relationship between genes with similar expression patterns by either merging smaller clusters into larger ones, or by splitting larger clusters into smaller ones. A dendogram is constructed, in which the branch lengths among genes also reflect the degree of similarity of expression [159,160]. By cutting the dendogram at a desired level, a clustering of the data items into the disjoint groups can be obtained. Hierarchical clustering of gene expression profiles in rheumatoid synovium identified 121 genes associated with Rheumatoid arthritis I and 39 genes associated with Rheumatoid arthritis II [161]. Unsupervised methods have some merits such as good implementations available online and the possibility of obtaining biological meaningful results, but they also possess some limitations. First, unsupervised methods require no prior knowledge and are based on the understanding of the whole data set, making the clusters difficult to be maintained and analyzed. Second, genes are grouped based on the similarity which can be affected by input data with poor similarity measures. Third, some of the unsupervised methods require the predefinition of one or more user-defined parameters that are hard to be estimated (e.g. the number of clusters). Changing these parameters often have a strong impact on the final results [162].

In contrast to the unsupervised methods, supervised methods require a priori knowledge of the samples. Supervised methods generate a signature which contains genes associated with the clinical response variable. The number of significant genes is determined by the choice of significance level. Support vector machines (SVM) [163] and artificial neural networks (ANN) [164] are two important supervised methods. Both methods can be trained to recognize and characterize complex pattern by adjusting the parameters of the models fitting the data by a process of error (for example, mis-classification) minimization through learning from experience (using training samples). SVM separates one class from the other in a set of binary training data with the hyperplane that is maximally distant from the training examples. This method has been used to rank the genes according to their contribution to defining the decision hyperplane, which is according to their importance in classifying the samples. Ramaswamy et al. used this method to identify genes related to multiple common adult malignancies [5]. ANN consists of a set of layers of perceptrons to model the structure and behavior of neutrons in the human brain. ANN ranks the genes according to how sensitive the output is with respect to each gene's expression level. Khan et al identified genes expressed in rhabdomyosarcoma from such strategy [118].

In classification of microarray datasets, it has been found that supervised machine learning methods generally yield better results [165], particularly for smaller sample sizes [140]. In particular, SVM consistently shows outstanding performance, is less penalized by sample redundancy, and has lower risk for over-fitting [166,167]. Furthermore, some studies demonstrated that SVM-based prediction system was consistently superior to other supervised learning methods in microarray data analysis [168-170]. As such, SVM for identifying marker genes related to the survival and death lung cancer patients from microarray data analysis were used in this study. The lung cancer patients discrepancy

26

capability of identified disease markers were futher evaluated and compared by supervised methods including SVM and Probabilstic Neural Network, which is an extension of ANN; whereas the unsupervised approach, hierarchical clustering, were used to generate clusters of patients bearing the different survivalbilities.

1.2.4.4 Feature selection in microarray data analysis

No matter whether the supervised or unsupervised methods are used, one critical problem encountered in both methods is feature selection, which has become a crucial challenge of microarray data analysis. The challenge comes from the presence of thousands of genes and only a few dozens of samples in currently available data. From the mathematical view, thousands of genes are thousands of dimensions. Such a large number of dimensions leads microarray data analysis to problems such as the curse of dimensionality [171,172] and singularity problems in matrix computations. Therefore, there is a need of robust techniques capable of selecting the subsets of genes relevant to a particular problem from the entire set of microarray data both for the disease classification and for the disease target discovery.

The goal of gene selection from microarray data is to search through the space of gene subsets in order to identify the optimal or near-optimal one with respect to the performance measure of the classifier. Many gene selection methods have been developed, and they generally fall into two categories: the filter method and the wrapper method [173]. Figure 1-3 shows how these two methods work.

In brief, the filter method selects genes independent of the learning algorithms [174-176]. It evaluates the goodness of the genes from simple statistics computed from the empirical distribution with the class label [177]. Filter method has some pre-defined criteria. Mutual

information and statistical testing (e.g. T-test and F-test) are two typical examples of filter method [4,174,178-182]. Filter method can be easily understood and implemented, and needs little computational time. But the pitfall of this method is that it is based on the assumption that genes are not connected to each other, which is not true in real biological process.

The Wrapper method for feature selection

Figure 1-3 Filter method versus wrapper method for feature selection

The filter method for feature selection

Wrapper method generates genes from the evaluation of a learning algorithm. It is conducted in the space of genes, evaluating the goodness of each gene or gene subsets by such criteria as cross-validation error rate or accuracy from the validation dataset [183]. The wrapper method is very popular among machine learning methods for gene discovery [173,184,185]. Although the wrapper method needs extensive computational resources and time, it considers the gene-gene interaction and its accuracy is normally higher than

the filter method [173,184,185]. Recursive feature elimination (RFE) is a good example of the wrapper method for disease gene discovery. The RFE method uses the prediction accuracy from SVM to determine the goodness of a selected subset. This thesis will employ RFE for disease gene discovery from microarray data.

1.2.5 The problems of current marker selection methods

The methodology of SVM and RFE will be discussed in Chapter 2 in details. Here, some problems encountered in current marker discovery from microarray data analysis are discussed. One problem is to specify the number of genes for differentiating disease. The number of derived colon cancer genes and leukemia genes ranges from 1 to 200 [4,186-191]. 50 genes were arbitrarily chosen for differentiating AML from ALL by Golub et al, since they supposed that 50 genes might reflect the difference between AML and ALL [4]. In most cases, the gene number was decided by the classification performance of different gene combinations. The gene combination which produced the highest classification accuracy constituted the gene signature. This strategy might produce small sets of genes (one or two genes) that formed accurate classifier [189-191]. For example, Slonim et al reported that the classifier consisting of one gene (HOXA9) outperformed all of other classifiers consisting of other gene combinations for recurrence prediction in AML patients [191]. Li and Yang showed that one gene (Zyxin) constituted the best classifiers for AML/ALL differentiation [189]. Nevertheless these results were only obtained and tested of one dataset. Considering that the number of genes should correlate with the disease situation, the selected genes should be large enough to be robust against noise and small enough to be readily applied in clinical settings. Therefore, it is not appropriate to use the arbitrary gene number. Similarly, to use just one dataset to decide the optimal gene

number may not be satisfactory, because the optimal gene number varies with the different sample sizes and sample combinations [139,192,193].

Another problem in gene discovery is that gene signatures are highly unstable and strongly depended on the selection of patients in the training sets [4,118,139,140,194-197], despite the use of sophisticated class differentiation and gene selection methods by various groups. The unstable signatures were observed in most microarray datasets including colon cancer, lung adenocarcinoma, non-Hodgkin lymphoma, acute lymphocytic leukemia, acute myeloid leukemia, breast cancer, medulloblastoma, and hepatocellular carcinoma [139,159,168,173,176,194,198-201]. While these signatures display high predictive accuracies, the highly unstable and patient-dependent nature of these signatures diminishes their application potential for diagnosis and prognosis [139]. Moreover, the complex and heterogenic nature of disease such as cancer may not be adequately described by the few cancer-related genes in some of these signatures. The unstable nature of these signatures and their lack of disease-relevant genes also limit their potential for target discovery. The instability of derived signatures is likely caused by the noises in the microarray data arising from such factors as the precision of measured absolute expression levels, capability for detecting low abundance genes, quality of design and probes, annotation accuracy and coverage, and biological differences of expression profiles [140,202]. Apart from enhancing the quality of measurement and annotation, strategies for improving signature selection have also been proposed. These strategies include the use of multiple random validation [139], large sample size [203], known mechanisms [204], and robust signature-selection methods which is insensitive to noises [140,205,206].

This thesis explored a new gene signature selection method aiming to reduce the chances of erroneous elimination of predictor-genes due to the noises contained in microarray dataset. Multiple random sampling and gene-ranking consistency evaluation procedures were incorporated into RFE gene signature selection method. The consistent genes obtained from the multiple random sampling method may give us a better understanding to the disease initiation and progress, and may provide potential disease targets.

1.3 Current progress in tumor antigen discovery

1.3.1 Overview of tumor vaccine for cancer immunotherapy

The major role of the immune system is to destroy cells expressing non-self or mutation proteins, which is carried by cytotoxic T lymphocytes (CTLs) by recognizing short peptides in association with major histocompatibility complex (MHC) class I molecules. Tumors have been known to express aberrant levels of mutated or modified forms of proteins that are associated with malignant growth. Such proteins can be immunogenic and stimulate cellular and humoral immune responses[207-209]. Inducing T-cell immunity by peptide vaccines derived from these alternated proteins holds great potential of effectively destroying cells carrying viral invaders (by recognizing the antigenic viral peptides) or against tumor cells (by recognizing peptides from tumor antigens) [210].

The interests in peptide-based cancer vaccines have been steadily growing since it has been indeed shown that peptide immunization can elicit specific CTL responses and confer protective immunity against tumor cells. Furthermore, the identification of tumorassociated and -specific T cell epitopes has contributed significantly to the understanding of the interrelationship of tumor and immune system and is instrumental in the development of attractive biomarkers and therapeutic vaccines to treat patients [211]. The discovery and identification of tumor antigens, which now number in the hundreds (Table 1-6) [212]; however, very few of tumor antigens have been successfully identified and the immune response they provoke in cancer treatment [212,213]. The main reason is that tumors cancer escape an immune response in many ways[214]. Moreover, Tumors are generally genetically unstable, and they can lose their antigens by mutation. Some tumors even lose expression of a particular MHC molecule, totally blocking antigen presentation[215]. There is a need to search for new cancer immunotherapies, such as cancer vaccines, from more diverse sources [216-219] that takes into consideration not only tumor-specific mutations and MHC-binding but also the expression profiles of the antigens, processing and transport of the epitopes, and availability of T-cell repertoire in specific tumors [220].

|--|

Product Composition	Company (location)	Product	Description	Indication	Trial phase
			Her-2/neu epitope peptide con-jugated at N terminus		
	Antigen Express (Worcester, MA,		to the C terminus of the key moiety of the MHC class		
	USA; a subsid-iary of Generex	Her-2/neu breast	II Vassociated invari-ant chain (Ii protein) containing		
	Biotechnology, Toronto)	cancer vaccine	a four Vamino-acid (LRMK) modi-fication	Breast cancer	Phase 2
			Immunopeptide (E25) from Her-2/neu administered		
	Apthera (Scottsdale, AZ, USA)	NeuVax	together with GM-CSF	Early-stage breast cancer	Phase 1/2
	Argos Therapeutics (Durham, NC,		Autologous dendritic cells loaded with total RNA from		
	USA)	AGS-003	resected tumors	Renal cancer	Phase 2
	Immunocellular Therapeutics (Los		Autologous dendritic cells treated with tumor-specific		
	Angeles, CA, USA)	ICT-107	peptides from 6 antigens expressed on glioblastomas	Brain cancer	Phase 1
			Peptide vaccine containing 12 tumor-associated		
			peptides discovered through proteom-ics, including A-		
			kinase anchor protein 9, midasin (MIDAS-containing		
	Immunotope (Doylestown, PA,		protein RAD50), talin 1, vinculin vimentin and cen-		
	USA)	IMT-1012	trosome-associated protein 350	Advanced ovarian and breast cancer	Phase 1
			Influenza virosomes expressing three Her2/neu		
	Pevion Biotech (Bern, Switzerland)	Pevi-Pro	epitopes	Breast cancer	Phase 1
			A peptide vaccine comprising the cryptic peptide		
			human telomerase reverse tran-scriptase (TERT572)		
			and its HLA-A*0201-restricted modified variant		
	Vaxon Biotech (Paris)	Vx-001	(TERT572Y)	NSCLC	Phase 1
Whole-cell-based autologous cells			Autologous cell vaccine in which patient tumor cells	Metastatic melanoma with at least one	
(personalized)	Avax Technologies (Philadelphia)	M-Vax	are treated with the hapten dinitrophenyl	tumor to create vaccine	Phase 3
			Autologous dendritic cells exposed ex vivo to fusion		
Whole-cell-based autologous cells			protein combining prostate alkaline phosphatase and	Asymptomatic, metastatic hor-mone-	
(personalized)	Dendreon	Provenge	GM-CSF	refractory prostate cancer	Phase 3
			Autologous dendritic cells trans-fected with mRNA		
			for human telomerase and a portion of lysosome-		
Whole-cell-based autologous cells			associated membrane protein (enhances antigen pre-		
(personalized)	Geron (Menlo Park, CA, USA)	GRNVAC1	sentation)	AML in remission	Phase 2
			Autologous interferon- £^-activated macrophages	Superficial bladder cancer Melanoma	
		Bexidem	(monocyte-derived activated NK cells). Autologous	with M1a or M1b stage disease and/or	
Whole-cell-based autologous cells		Uvidem	dendritic cell vaccine loaded ex vivo with tumor	in-transit lesions; stage III and IV	Phase 2/3 Phase 2 Phase
(personalized)	IDM Pharma	Collidem	antigens derived from resected tumor	melanoma Colorectal cancer	1/2
Whole-cell-based autologous cells	Introgen Therapeutics (Austin, TX,		Dendritic cells treated with an adenovector carrying		
(personalized)	USA)	INGN 225	the human p53 gene	Advanced metastatic SCLC Breast	Phase 2

Chapter 1: Introduction

Whole-cell-based autologous cells			T cells bioengineered to express MAGE 3 tumor		Phase 2 (enrollment
(personalized)	MolMed (Milan)	M3TK	antigen	Metastatic melanoma	halted)
				Hormone-dependent, nonmeta-static	
			Dendritic cells loaded with recombinant prostate-	prostate cancer Newly diagnosed	
Whole-cell-based autologous cells	Northwest Biotherapeutics	DC-Vax Prostate	specific membrane antigen (PSMA) Dendritic cells	glioblastoma multiforma requiring	
(personalized)	(Bethesda, MD, USA)	DC-Vax Brain	loaded with tumor extract	surgery, radiation and chemotherapy	Phase 3 Phase 2
Whole-cell-based autologous cells			Dendritic cells primed with a mucin-1 and a mannan-		
(personalized)	Prima Biomed (Sydney, Australia)	CVac	fusion protein adjuvant	Late-stage ovarian cancer	Phase 2
			Two allogeneic cultured cancer lines, irradiated and		
		GVAX	bioengi-neered to secrete GM-CSF. One allogeneic	Metastatic pancreatic cancer Newly	
Whole-cell-based autologous cells		pancreatic	leukemia cell line irradiated and bioengineered to	diagnosed AML, chronic CML and	
(personalized)	Cell Genesys	GVAX leukemia	secrete GM-CSF	myelodysplastic syndrome	Phase 2 Phase 2
			Four non-small cell lung cancer cell lines carrying		
Whole-cell-based autologous cells			antisense oli-gonucleotides against transform-ing		
(personalized)	NovaRx (San Diego)	Lucanix	growth factor £1-2	Advanced NSCLC	Phase 3
Whole-cell-based allogeneic					
tumor cells (off-the-shelf)	Company (location)	Product	Description	Indication	Trial phase
Whole-cell-based allogeneic		Onvvax-P	Three human cell lines repre-senting different stages		
tumor cells (off-the-shelf)	Onvvax (London)	protein	of pros-tate cancer	Hormone-resistant prostate cancer	Phase 2
tumor coms (off the sherry)		protein			Phase 2 (investigator-
Unique-antigen-based		HSPPC-96	Heat shock protein vaccine puri-fied from autologous	Recurrent glioma Resected renal-cell	initiated trial)
(personalized): purified pentide	Antigenics	Onconhage	tumor cells	carcinoma (RCC)	Phase 3 (completed)
(personalized): parified peptide		oncophage		Mantle cell lymphoma Indolent	Thuse 5 (completed)
Unique-antigen-based			Tumor-specific idiotype conjugated to keyhole limpet	follicular B-cell non-Hodgkin :	
(personalized): purified pentide	Biovest International	BiovavID	hemo-cyanin plus GM-CSE	lymphoma	Phase 2 Phase 3
Shared antigen (off the shelf):	Diovest international	DIOVANID	Immunogenic pentide derived from the Her 2/neu	Farly stage Her 2 positive breast	
purified protein or pentide	Apthera (Scottsdale, AZ, USA)	NeuVay	protein plus GM-CSE	cancer	Phase 2/3
Shared antigen (off the shelf):	Aptilera (Scottsuale, AZ, USA)	INCUVAX	protein plus GM-CSI		1 hase 2/5
purified protein or pantide	CallDay	CDV 110	A 14 amino acid segment of a mutated ECEP	Glioblastoma multiforma	Phase 2/3
Shared antigen (off the shalf):	Cutos Piotoshnology (Sahlioran	CVT004	Modified fragment of the Malen A/MART 1 protein		Thase 2/5
shared antigen (on-the-shen):	Cytos Biotechnology (Schneren,	C11004- MalObC10	sounled to the corrier ObC10	Advanced stage melanome	Dhasa 2
purmed protein of peptide	Switzerland)			Advanced-stage meranoma	Fliase 2
Shand antigen (aff the shalf)		11- K/11ED2/	Dentide meeting and initial I: Kennedified Hen 2/men		
Shared anugen (on-the-shen):	Conserve Distantianale and	Key/HEK2/lieu	Pepide vacche containing II-Key modified Hei-2/neu	Node monthing human and	Dhara 2
purified protein or peptide	Generex Biotechnology	Cancer vaccine	pro-tein iragment	Node-negative breast cancer	Phase 2
		MAGE-AS			
		anugen-specific			
Shared antigan (aff the shalf)	Clave Smith Kling Di-1	can-cer	Linesemally neeksned concerning and the OF	Matastatia MACE A2	
Shared antigen (on-the-shell):	(Drazos nith Kline Biologicals	ti-	Liposoniany packaged cancer vaccine against MAGE-	wetastatic WAGE-A3-positive	Dhara 2 Dhara 2
purified protein or peptide	(Brussels, Belgium)	uc	S anugen	meianoma NSCLC following surgery	Phase 3 Phase 3
Shared antigen (off-the-shelf):		ID14 2101	Nine CIL epitopes from four tumor-associated	NECLO	
purified protein or peptide	IDM Pharma	IDM-2101	antigens, including two proprietary native epitopes and	NSCLC	Phase 2

			seven modified epitopes and one universal epitope (a source of T-cell help)		
Shared antigen (off-the-shelf):	Immatics Biotechnologies	IMA901	Peptide vaccine comprising multiple fully synthetic		
purified protein or peptide	(Tuebingen, Germany)	IMA910	tumor-associated peptides	Renal cancer Colorectal cancer	Phase 2 Phase 1/2
Shared antigen (off-the-shelf):	Norwood Immunology (Chelsea	Melanoma			
purified protein or peptide	Heights, Australia)	cancer vaccine	Melanoma-specific peptides gp100 and MAGE-3	Melanoma	Phase 2
Shared antigen (off-the-shelf):			Liposomal vaccine containing a synthetic 25 Namino-		
purified protein or peptide	Oncothyreon	Stimuvax	acid-peptide sequence from MUC-1	Stage III NSCLC	Phase 3
Shared antigen (off-the-shelf):			Recombinant protein vaccine tar-geting human		
purified protein or peptide	Pharmexa (Hoersholm, Denmark)	GV1001	telomerase reverse transcriptase, plus GM-CSF	Pancreatic Liver Lung	Phase 3 Phase 2 Phase 2
Antigenics		OncoPhage	Heat shock protein vaccine puri-fied from autologous tumor cells	Renal cell carcinoma	Approved in Russia Granted fast track status by US FDA
Biovest International		BiovaxID	Tumor-specific idiotype conju-gated to keyhole limpet hemocya-nin, plus GM-CSF	Various B-cell Vrelated cancers	Compassionate use in France, Germany, Italy, Greece, Spain and the UK. Granted fast track status by US FDA
Corixa (acquired by GSK in 2005)		Melacrine	Lysate from two melanoma cell lines, Detox adjuvant (proprietary) with monophosphoryl lipid A and mycobacterial cell wall skeleton	Melanoma	Approved in Canada
CreaGene (Seoul)		CreaVaxRCC	Autologous monocytes treated with GM-CSF and IL-4 to create immature dendritic cells acti-vated with tumor extracts plus cytokines	Metastatic renal cell carcinoma	Approved in Korea
Genoa Biotechnologia (Brazil)		Hybricell	Autologous monocytes treated with cytokines and converted to dendritic cells that are fused with patient- derived tumor cells	Various cancers	Approved in Brazil
Vaccinogen (Frederick, MD, USA)		OncoVax	Metabolically active, irradiated, autologous tumor cells with BCG	Colon cancer	Approved in Europe, available in Switzerland Granted Fast Track status by FDA
Mologen (Berlin)		dSlim/Midge	Genetically modified allogeneic (human) tumor cells for the expression of IL-7, GM-CSF, CD80 and CD154, in fixed combination with a DNA-based double stem loop immunomodulator (dSLIM).	Kidney cancer	Orphan drug status granted by EMEA in 2006
Center of Molecular Immunology					
(Cuba)		CimaVax EGF	EGF conjugated to rP64k	Lung cancer	Cuba, Peru

•

1.3.2 Introduction toT cell-defined tumor antigens

As discussed previously, the most dominant mechanism of immune response to foreign or self protein antigens is the activation of T-cells by the recognition of T-cell receptors of specific peptides degraded from these proteins and transported to the surface of antigen presenting cells [221]. Theoretically, every sub-sequence along the protein could be antigenic. However, T cell immunity is limited to a small number of immunodominant peptides [210]. Such recognition requires the binding of antigen-peptides to major histocompatibility complex (MHC) molecules. Peptide epitopes recognized by T-cells are potential tools for diagnosis and vaccines for immunotherapy of infectious, autoimmune, and cancer diseases [222]. Currently, reverse immunogenetic approaches attempt to optimize the selection of candidate epitopes, and thus minimize the experimental effort needed to identify new epitopes [223]. When predicting cytotoxic T cell epitopes, the main focus has been on the highly specific MHC binding event [223].

1.3.2.1 The role of MHC-peptides biding in T-cell epitopes pathway

The MHC pathway of antigen processing and presentation is highly complex and involve many steps that select the peptides to be presented on the cell surface. The first step in this pathway is the digestion of native proteins. Peptides (epitopes) are initially generated in this step by proteasome, a multi-subunit protease that is responsible for the majority of intra-cellular protein degradation and representing about 1% of total cellular proteins [224]. It shows some degree of specificity, as some sites in the proteins are preferentially cleaved [225]. Furthermore, those peptides having escaped from proteolytic attack of various cytosolic proteases are transported into the endoplasmic reticulum (ER) by TAP. Within the ER, peptides may undergo N-terminal trimming, whereas their C terminus is

kept intact [226,227]. The ER aminopeptidase associated with Ag processing responsible

for this trimming was recently identified [228-230]. Peptides with correct sizes and proper amino acid sequence motifs bind to MHC, and the receptor-peptide complexes are transferred via the Golgi to the cell surface. The MHC binding is the most essential and selective step since only a minor fraction of the peptide repertoire will bind to a given MHC molecule [231]. Peptides in the ER with less efficient MHC binding are either degraded there or exported for rapid degradation in the cytosol [232]. For several areas in immunology, including the identification of CTL epitopes and vaccine design, reliable prediction of MHC binders is important [233].

1.3.2.2 Types of tumor antigens

Broadly speaking, tumor antigens can be classified into unique antigens and shared antigens based on their pattern of expression [234-237]. Examples of these two groups of antigens are listed in Table 1-7. Unique antigens result from point mutations in genes that are expressed ubiquitously and some of these mutations may be implicated in tumoral transformation by affecting the coding region of the gene [235]. Such tumor-specific antigens (TSAs), which are unique to the tumor of an individual patient or restricted to very few patients, play an important role in the natural anti-tumor immune response of individual patients.

On the other hand, shared antigens are present on many independent tumors and may also be expressed by normal tissues. Such tumor-associated antigens (TAAs) can be further divided into three groups [237]. One group corresponds to peptides encoded by "cancergermline" genes, such as MAGE, which are expressed in many tumors but not in normal tissues. The only normal cells in which significant expression of such genes has been detected are placental trophoblasts and testicular germ cells. Because these cells do not express MHC class I molecules, gene expression should not result in the expression of the antigenic peptides and such antigens can therefore be considered as strictly tumor-specific. The genes encoding such antigens have also been referred to as "cancer-testis" (CT) genes. A second group of shared tumor antigens, named differentiation antigens, are also expressed in the normal tissue of origin of the malignancy. The paradigm is tyrosinase, which is expressed in normal melanocytes and in most melanomas. Antigens of this group are not tumor-specific, and their use as targets for cancer immunotherapy may result in autoimmunity towards the corresponding normal tissue. More serious concerns about autoimmune side effects apply to carcinoembryonic antigen (CEA), an oncofetal protein expressed in normal colon epithelium and in most gut carcinomas. Autoimmune toxicity should not be an issue, however, in situations where the tissue expressing the antigen is dispensable or even rejected by the surgeon in the course of cancer therapy, as would be the case for prostate specific antigen (PSA). The last group of shared antigens refers antigens that are expressed in a wide variety of normal tissues and overexpressed in tumors. Full list of T-cell defined TSAs and TAAs are available at Cancer Immunity database (http://www.cancerimmunity.org/ peptidedatabase/Tcellepitopes.htm).

Expressed in cancer only		
	MAGE-3	
	NY-ESO-1	
	TRAG-3	
Expressed in some normal tissues	5	
	WT-1	
	PRAME	
	SURVIVIN-2B	
Overexpressed in cancer		
	Her-2	
	MUC-1	
	Survivin	
Mutated, unique		
	p53	
	a-actinin-4	
	Malic enzymes	

Table 1-7 Examples of tumor-specific antigens and shared antigens (Source: GSK)

1.3.3 Application of computational methods for MHC-binding peptides and epitopes prediction

To facilitate the discovery of T-cell epitopes, computational methods for predicting MHCbinding peptides [238-244] and T-cell epitopes [223,242,245-249] have been developed. These methods predict MHC-binding peptides and T-cell epitopes by using binding motifs [240,241,244], quantitative matrices of structure-affinity relationships [242], structurebased methods [239], and statistical learning methods such as ANN [238,246] and SVM [246,250]. These methods achieve impressive prediction accuracies of 70%~90% for the binders and 40%~80% for the non-binders of selected MHC alleles [238-244]. T-cell epitope prediction accuracy has been further improved by integrating MHC-binding peptide prediction with proteasomal cleavage and TAP transport [223,231,247-249,251].

The application range and accuracy of *in silico* T-cell epitope prediction approaches can be affected by several factors. Most prediction systems have been developed for peptides of a few fixed lengths, 8, 9 and 10mers for MHC Class I and 9, 13 and 15mers for MHC Class II alleles, with the majority of these focusing on 9mers only [238-244]. While the longer peptides have been studied by using all of their constituent sequential segments of fixed lengths [238], this introduces some non-binder segments as binders. Some binders of longer lengths form mini-hairpin-like structure with the central section unattached and the two ends attached to the binding groove [252]. By fixing a shorter length, these peptides may not be adequately represented. Moreover, most studies have used a relatively small number of non-binders to train the respective prediction system, typically no more than 100 peptides [238-244], which may not be enough to cover the vast sequence space of 20ⁿ possible sequences for an n-mers peptide. This inadequate representation of non-binders likely leads to a higher false binder rate. Some of the methods use sequence

39

straightforwardly for representing peptides, instead of their structural and physicochemical properties [243]. Consequently, the derived prediction systems tend to be less effective for peptides non-homologous to the known binders. Moreover, most studies cover a limited number of MHC alleles partly due to the lack of statistically significant number of known peptides in commonly studied length ranges.

These problems may be partially alleviated if the prediction algorithm is based on peptides of flexible lengths and sequence-derived structural and physicochemical properties, and the training is conducted by using a sufficiently diverse set of non-binders. A suitable method for accommodating these features is support vector machines [253]. SVM has shown promising capability for predicting proteins of varying lengths that belong to a specific functional class from sequence-derived structural and physicochemical properties [254,255]. Improved performance has been archieved while predicting novel proteins non-homologous to other proteins [255,256]. MHC-binding peptides also possess similar characteristics in that they also share some structural and physicochemical features to facilitate MHC binding [257-259]. Therefore, SVM is expected to be equally applicable for predicting MHC-binding peptides.

Based on this assumption, our research group developed a SVM prediction system (MHC-BPS) of 18 MHC Class I and 12 Class II alleles by using 4208~3252 binders and 234333~168793 non-binders, and evaluated by an independent set of 545~476 binders and 110564~84430 non-binders[260]. The comparison between MHC-BPS and other popular computational methods such as MHCBN, BIAS and AFIPHITH suggested that this tool works more efficiently than other well-known methods for the same HIV test dataset with improved sensitivity and specificity. Currently the reported sensitivities (true hit rates) of

three T-cell recognition software NetChop3.0, NetCTL1.2, and MHC-BPS (for the studied alleles in this work) are 81%, 98.5%, and 75–93.8%, and the reported specificities (true non-hit rates) are 48%, 32%, and 96.2–99.8% respectively [231,261,262]. In this work, MHC-BPS was therefore used to facilitate the in silico prediction of T-cell recognistion of newly derivied tumor antigens.

1.4 Scope and research objective

The main purpose of this study is to explore the usefulness of cancer molecular profiling toward "personalized" cancer therapies. Collected molecular profiling is used to analyze the general and specific mode of actions of combination treatment and prediction, to evaluate the efficacy of molecular-targeted cancer therapy, and to design bioinformatics tools for tumor biomarker and antigens discovery.

There are three main objectives of this work. The first objective of this study is to understand the mechanism that underlies the rational combination disease treatment (Chapter 3). Due to the lower response rate observed in a single molecular targeted therapy, systems-oriented drug design, such as development of multi-component therapies, has been increasingly emphasized as a potentially more productive strategy in multifactorial diseases treatment. Understanding the molecular mechanisms underlying synergistic, potentiative and antagonistic effects of drug combinations is crucial to discover of novel efficacious combinations and multi-targeted agents from systemically perspective. Analysis of 117 selected drug combinations revealed 7 general and specific modes of action from the cases of synergistic, potentiative, additive, antagonistic and reductive combinations. It is suggested that knowledge of MI profiles of individual drugs, network crosstalk and regulation, and modes of actions of drug combinations are useful starting points for investigating the effects of drug combinations. The molecular clues derived from the pharmacodynamic, toxicological and pharmacokinetic effects should be highlighted in the discovery of novel multicomponent therapies.

The second objective of this study, as shown in Chapter 4, is to study the drug efficacy of anticancer tyrosine kinase inhibitors by using genetic and expression profiles of target and bypass gene in selected cancer types. In this chapter, we retrospectively analyzed mutation, amplification and gene expression profiles of targets and known bypass genes of 4 well studied anti-cancer drugs, namely gefitinib, erlotinib, lapatinib, and trastuzumab. The clinical relevance of the correlation analysis against cell-line data was evaluated by comparing the levels of correlation between the individual profiles and the sensitive/resistant cell-lines with the reported level of correlations. The study suggested that the individual-profile tends to show good performance for sensitivity prediction and it is capable of predicting EGFR inhibitors sensitivity from NSCLC cell-lines at performance levels that reflect the sensitivity of real patients. Comparing to the individual profiles, the collective profiles showed a more balanced and improved correlation with sensitive and resistant cell-lines. This study suggests that an accurate patient differentiation, better safety profile, improved response rate and personalized treatment can be achieved by system-oriented molecular profiling approaches. Moerover, this study also indicates that disease molecular profiles are useful sources of discover new diagnostic and effective therapeutic targets with targeted disease population. In Chapter 5, we applied the similar strategy of genome-scale tumor-specific antigens (TSAs) search by collectively considering the tumor-specific mutations in differentially over-expressed genes in specific cancers. Virtual T-cell recognition analysis, including proteasomal cleavage, TAP mediated transport and MHC-I binding affinity prediction, were performed to ensure the

tumorgenic and epitopable of identified peptides. While the results show fair agreement in identifying know TSAs from melanoma and lung cancer, the known TSA hit rates (1.9% and 0.8%) are enriched by 29-fold and 35-fold over those of mutation analysis. The numbers of predicted TSAs are within the testing range of typical screening campaigns.

The third objective of this study is to design bioinformatics tools for cancer biomarker discovery from microarray data. A cancer biomarker discovery system is developed by using gene selection strategies from microarray data. This system aims to identify stable and cancer relevant biomarkers with good prediction performance for disease diagnosis and differentiation. The strategies include the incorporation of multiple random sampling methods and the evaluation of gene-consistency into RFE gene selection procedure. The stable gene signatures may help us understand the mechanism of disease initiation and process, and may provide an insight for diagnosing disease, predicting disease types, prognosis of the outcome of a specific therapeutic strategy, and drug resistance before drug treatment. In Chapter 6, survival marker selection from lung cancer is used as a case study to evaluate the performance of the system. The stable gene signatures provide the biologists an opportunity to further investigate the role of derived genes in the initiation and progress of a disease, and give suggestions about potential disease targets for therapeutic molecule design.

This thesis is divided into 7 chapters. Chapter 1 provides the background, current progress, and challenges of molecular-targeted therapy and cancer biomarker discovery. Chapter 2 describes the methodology of this study. Methods for machine learning approach, especially the support vector machine, and microarray data analysis are described in detail. The rationale of current combination therapy is discussed in Chapter 3. Chapter 4 and Chapter 5 present the application of integrated molecular profiling for drug sensitivity and

novel target identification. The development and application of bioinformatics tools for cancer biomarker discovery is described in Chapter 6. Chapter 7 presents the conclusion and future work.

2 Methodology

In this Chapter, a specific introduction of machine learning algorithms related to this study is described in the first Section of this chapter (Section 2.1), which includes Support vector machines, Probabilistic neural network, and Hierarchical clustering. Strategies of microarray data processing used for drug sensitivity, cancer biomarker, and tumor-specific antigen are presented in section 2.2. Other important methodologies used for biomarker discovery are further introduced in Section 2.3. The last section introduces the methodologies are required for tumor-specific antigen prediction.

2.1 Introduction to machine learning methods

Machine learning is the study of computer algorithms capable of learning to improve their performance automatically through experiences [263]. The goal of machine learning is to extract useful information from data by building good probabilistic modes, which should be simple enough to be understood by human [264]. Machine learning is closely related to statistics and pattern recognition, since they all study the analysis of data. However, unlike statistics and pattern recognition, machine learning is primarily concerned with the algorithmic complexity of computational implementations [265]. These methods for classification employ computational and statistical methods to construct mathematical models from training samples which is used to classify independent test sample. The training samples are represented by vectors which can binary, categorical or continuous.

Over the past 50 years, a variety of machine learning methods have been developed for solving real-life problems, for examples, Decision Tree (DT), Hidden Markov Model (HMM), Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Self

organized map (SOM). All these methods could be classified along the distinction between supervised and unsupervised learning. In supervised learning, a classification system is given some inputs along with their answers. The purpose of the learning process is to specify a relationship between the sample vector input and the answers. Algorithms under this category such as decision trees, neural networks and support vector machines were widely applied in the field of pattern recognition. On the contrary, answer set would not be given to unsupervised learning approach, so it is basically left on its own to classify its inputs. Well-known clustering methods and self-organized maps are implemented in the unsupervised manner. Websites for the freely downloadable codes of some methods are given in Table 2-1. In the following section, three machine learning algorithms will be introduced, including support vector machines, neural network and hierarchical clustering. The specific properties of each method will be discussed briefly.

Table 2-1 Websites that contain freely downloadable codes of machine learning methods

Decision Tree				
PrecisionTree	http://www.palisade.com.au/precisiontree/			
DecisionPro	http://www.vanguardsw.com/decisionpro/jdtree.htm			
C4.5	http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html			
C5.0	http://www.rulequest.com/download.html			
	KNN			
k Nearest Neighbor	http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html			
PERL Module for	http://aspn.activestate.com/ASPN/CodeDoc/AI-			
KNN	Categorize/AI/Categorize/kNN.html			
Java class for KNN	http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/old/KNN.html			
DTREG	http://www.dtreg.com/lda.htm			
LR				
Paul Komarek's				
Logistic Regression	http://komarix.org/ac/lr/lrtrirls			
Software				
Web-based logistic	http://statpagag.org/logistic.html			
regression calculator	http://statpages.org/logistic.ittill			
Neural Network				
BrainMaker	http://www.calsci.com/			
Libneural	http://pcrochat.online.fr/webus/tutorial/BPN_tutorial7.html			
fann	http://leenissen.dk/fann/			
NeuralWorks Predict	http://www.neuralware.com/products.jsp			
NeuroShell Predictor	http://www.mbaware.com/neurpred.html			
SVM				

SVM light	http://svmlight.joachims.org/
LIBSVM	http://www.csie.ntu.edu.tw/~cjlin/libsvm/
mySVM	http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
BSVM	http://www.csie.ntu.edu.tw/~cjlin/bsvm/
SVMTorch	http://www.idiap.ch/learning/SVMTorch.html
WinSVM	http://www.cs.ucl.ac.uk/staff/M.Sewell/winsvm/
LS-SVMlab	http://www.esat.kuleuven.ac.be/sista/lssvmlab/
GIST SVM Server	http://svm.sdsc.edu/svm-intro.html

2.1.1 Support Vector Machines

Support vector machines (SVM), a new machine learning method proposed by Vapnik in 1995 [163,266,267], is a supervised classification algorithm that provides state-of-the art performance in a variety of applications, including image classification and object detection [268,269], text categorization [270], prediction of protein solvent accessibility [271], microarray data analysis [169,170,187,200], protein fold recognition [272], protein secondary structure prediction [273], prediction of protein-protein interaction [274] and protein functional class classification [254].

Based on the structural risk minimization principle of statistical learning theory[275,276], SVM has shown outstanding classification performance due to the system can be less penalized by sample redundancy and has lower risk for over-fitting[277,278]. In linearly separable cases, SVM constructs a hyper-plane to separate two different groups of feature vectors with a maximum margin. For the cases of biomarker identification from cancer patients and healthy people, a feature vector is represented by \mathbf{x}_i , with gene expression descriptors of a patient as its components. The hyperplane is constructed by finding another vector \mathbf{w} and a parameter *b* that minimizes $\|\mathbf{w}\|^2$ and satisfies the following conditions:

$$\mathbf{w} \cdot \mathbf{x}_i + b \ge +1$$
, for $y_i = +1$ Class 1 (active) (1)

$$\mathbf{w} \cdot \mathbf{x}_i + b \le -1$$
, for $y_i = -1$ Class 2 (inactive) (2)

where y_i is the class index, **w** is a vector normal to the hyperplane, $|b|/||\mathbf{w}||$ is the perpendicular distance from the hyperplane to the origin and $||\mathbf{w}||^2$ is the Euclidean norm of **w**. Base on **w** and *b*, a given vector *x* can be classified by

$$f(\mathbf{x}) = sign[(\mathbf{w} \cdot \mathbf{x}) + b]$$
(3)

A positive or negative $f(\mathbf{x})$ value indicates that the vector \mathbf{x} belongs to the cancer patient or healthy people respectively.

In nonlinearly separable cases, which frequently occur in classifying gene expression profile of high dimension, non-linear SVM projects both positive and negative examples into a higher-dimensional feature space using a kernel function $K(\mathbf{x}_i, \mathbf{x}_j)$ and then separates them in that space.

An example of a kernel function is the Gaussian radian basis kernel (RBF), which has been extensively used and consistently shown better performance than other kernel functions in a number of classification studies [271-274,279-281]

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{x}_j - \mathbf{x}_i\|^2 / 2\sigma^2}$$
(4)

After project the examples into higher-dimensional feature space, the linear SVM procedure is then applied to the feature vectors in this feature space with the following decision function:

$$f(\mathbf{x}) = sign(\sum_{i=1}^{l} \alpha_i^0 y_i K(\mathbf{x}, \mathbf{x}_i) + b)$$
(5)

Where the coefficients α_i^0 and *b* are determined by maximizing the following Langrangian expression:

$$\sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
(6)

Under conditions:

$$a_i \ge 0$$
 and $\sum_{i=1}^{l} \alpha_i y_i = 0$ (7)

A positive or negative value from Eq. (3) or Eq. (5) indicates that the vector **x** belongs to the positive or negative group respectively.

RBF kernel was chosen to construct the SVM model in cancer biomarker and tumor antigen discovery in this study. In practice, RBF kernel is the most widely used kernel function due to three reasons. First, linear kernel and sigmoid kernel can be treated as special cases since RBF kernel in certain parameters has the same performance as the linear kernel [282] or sigmoid kernel [283]. Second, comparing with polynomial kernel, RBF kernel has few parameters which influence the complexity of model selection. Third, RBF function has less computational cost compared with polynomial kernels in which kernel values may go to infinity or zero while the degree is large. Based on these reasons, we mainly applied RBF kernel SVM model in this study. We further choosed hard margin SVM and scanned σ from 1 to 200 for the best discrepancy model for survival and death lung cancer patient. An integrated SVM software, LibSVM[284], was chosen to do the machine learning in this work.

Figure 2-1 Margins and hyperplanes of a 2D SVM model

Linear SVM is the simplest form of SVM, in which the data represented as a p-dimensional vector (a list of p numbers) can be separated by a p-1 dimensional hyperplane. On each side of this p-1 hyperplane, two parallel hyperplanes can be constructed (Figure 2-1). The separating hyperplane is the one that maximizes the distance between these two parallel hyperplanes. Many linear hyperplanes (also called classifiers) can separate the data. However, only one can achieve the maximum separation. Under the assumption that the larger the margin or distance between these two parallel hyperplanes, the better of the generalization error of the classifier will be [285], the maximum separating hyperplane (also known as maximum-margin hyperplane) is clearly of interest.

2.1.2 Probabilistic neural network

Artificial neural network (ANN) is a statistical learning method inspired by the biological nervous system, which employs a multilayered network and uses its connected structures for pattern recognition and classification [286,287](Figure 2-2). Neural networks perform impressively in various applications such as pattern reorganization, association, and transformation to modeling in process control or expert system. It is suitable for both discrete and continuous data (especially better for the continuous domain). Probabilistic Neural Networks (PNN) is an improved form of ANN that classifies objects based on Bayes' optimal decision rule[288]:

$$h_i c_i f_i(\mathbf{x}) > h_j c_j f_j(\mathbf{x}) \tag{8}$$

where h_i and h_j are the prior probabilities, c_i and c_j are the costs of misclassification and $f_i(x)$ and $f_j(x)$ are the probability density function for class *i* and *j* respectively.

A compound x is classified into class i if the product of all the three terms is greater for class i than for any other class j (not equal to i). In most applications, the prior probabilities and costs of misclassifications are treated as being equal. The probability density function for each class for a univariate case can be estimated by using the Parzen's nonparametric estimator[289].

$$g(\mathbf{x}) = \frac{1}{n\sigma} \sum_{i=1}^{n} W(\frac{\mathbf{x} - \mathbf{x}_i}{\sigma})$$
(9)

where *n* is the sample size, σ is a scaling parameter which defines the width of the bell curve that surrounds each sample point, W(d) is a weight function which has its largest value at d = 0 and $(\mathbf{x} - \mathbf{x}_i)$ is the distance between the unknown vector and a vector in the training set. The Parzen's nonparametric estimator was later expanded by Cacoullos[290] for the multivariate case.

$$g(x_1,...,x_p) = \frac{1}{n\sigma_1...\sigma_p} \sum_{i=1}^n W(\frac{x_1 - x_{1,i}}{\sigma_1},...,\frac{x_p - x_{p,i}}{\sigma_p})$$
(10)

The Gaussian function is frequently used as the weight function because it is well behaved, easily calculated and satisfies the conditions required by Parzen's estimator. Thus the probability density function for the multivariate case becomes

$$g(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \exp(-\sum_{j=1}^{p} \left(\frac{x_{j} - x_{ij}}{\sigma_{j}}\right)^{2})$$
(11)

In this work, PNN was used to evaluation the classification performance of identified cancer biomarkers, and the programme is developed by our research group.

Figure 2-2 PNN architecture

The network architectures of PNN are determined by the number of input samples and descriptors in the training set. There are 4 layers in a PNN. The input layer provides input values to all neurons in the pattern layer and has as many neurons as the number of descriptors in the training set. The number of pattern neurons is determined by the total number of samples in the training set. Each pattern neuron computes a distance measure between the input and the training case represented by that neuron and then subjects the distance measure to the Parzen's nonparameteric estimator. The summation layer has a neuron for each class and the neurons sum all the pattern neurons' output corresponding to members of that summation neuron's class to obtain the estimated probability density function for that class. The single neuron in the output layer then estimates the class of the unknown sample x by comparing all the probability density function from the summation neurons and choosing the class with the highest probability density function.

2.1.3 Hierarchical clustering

Cluster analysis, which is one of the famous pattern recognition tools and has hierarchical and non-hierarchical methods, contributes to the objectivity in this sense. Instead of relying on any expertise or personal interpretations, clustering methods provide a mathematical approach with the multivariate data set.

Hierarchical clustering is often portrayed as the better quality clustering approach, but is limited because of its quadratic time complexity[291,292]. Its quality may be observed if an appropriate distance metric can be defined to obtain the similarity, in this case a *distance matrix*. Some of the best known distances metric for distance measures are Minkowski Metric, Euclidean Metric, Manhattan Metric, and Mahalanobis Distance. Minkowski metric is a more general form where some others can be extracted from.

$$d(x, x') = \left(\sum_{k=1}^{d} |x_k - x_k'|^q\right)^{1/q}$$
(12)

where d(x, x') is the distance between x and x'.

The Euclidean metric is a particular case of Minkowski metric. In this case we have the distance as following:

$$d(x, x') = \left(\sum_{k=1}^{d} |x_k - x_k'|^2\right)^{1/2}$$
(13)

Manhattan metric which can also be intuitively seen from Minkowski metric is

$$d(x, x') = \sum_{k=1}^{-1} |x_k - x_k'|$$
(14)

It is also known as taxicab distance.

Mahalanobis distance is

$$d(x,x') = (x-x')^{t} \sum_{i=1}^{n-1} (x-x')$$
(15)

where Σ^{-1} is the inverse of the covariance matrix [293]

There are two major types of hierarchical techniques: divisive and agglomerative. Agglomerative hierarchical techniques are used more commonly in microarray data analysis. The idea behind this set of techniques is to start with each cluster comprising of exactly one object and then progressively agglomerating (combining) the two nearest clusters until there is just one cluster left consisting of all the objects. Nearness of clusters is based on a measure of distance between clusters. All agglomerative methods require as input a distance measure between all the objects that are to be clustered. This measure of distance between objects is mapped into a metric for the distance between clusters (sets of objects) metrics for the distance between two clusters. The only difference between the various agglomerative techniques is the way in which this inter-cluster distance metric is defined[292]. Three graphical tools are often used to measure inter-clusters distances. These graphical methods are single linkage (distance between any two clusters is the minimum distance between two points such that one of the points is in each of the clusters.), complete linkage(distance between any two clusters is the minimum distance between two points such that one of the points is in each of the clusters) and average linkage methods (distance between any two clusters is the average distance between two points such that each pair has a point in both clusters)[294].

In this work, the hierarchical clustering was carried out by using a software, Cluster, developed by EisenLab, which provides variety of types of cluster analysis and data processing on large microarray datasets [160].

Figure 2-3 Example of agglomerative hierarchical clustering by using Single Linkage method

Agglomerative clustering starts from leaf which keeps on adding together untill it reaches to root. The Single Linkage method firstly determines and stores the distance between each pair of clusters. (Initially, each point is considered a cluster by itself) Also, for each cluster determine its nearest neighbor. The pair of clusters with the smallest distance between them can be determined and agglomerated. Finally, the system updates the pairwise distances and the new nearest neighbors. This process is repeated till only one cluster is left.

2.1.4 Parameters optimization and model validation

To each machine learning method, parameters that represent the best prediction performance must be optimized by using training data sets. In this work SVM is trained by using a Gaussian RBF function which has an adjustable parameter σ . The range of σ is estimated from the recommedate values of LibSVM, where σ =sqrt(number of features) [295].

For PNN, the only parameter to be optimized is a scaling parameter σ . Optimization of the parameter for each of these methods is conducted by scanning the parameter through a range of values. The set of parameters that produces the best prediction performance model can be determined by using test data sets or cross-validation methods, such as 5-fold cross-validation or leave-one-out cross-validation (LOOCV). Finally, an independent data can be used to further validate the generalization capability of selected models.

Overfitting, a major concern in machine learning, is recognized as a violation of Occam's razor[296]. In the process of overfitting, the performance on the training samples still increases, whereas the performance on the test data worsens. Overfitting occurs, for example, because the model is too complicated, or irrelevant descriptors are used, or the training sample is too small or its dimension is too high, and the learning process is too long [297]. It is somewhat suspicious that a learning method, without any mechanism to reduce the risk of overfitting, can achieve a robust performance. Various regularization methods such as penalization, selection and shrinkage can be employed to reduce the risk of overfitting [298]. In real life application, a simply but frequently used method of overfitting evaluation and prevention is to compare the prediction accuracies determined by using cross validation methods with those determined by using independent validation sets[297]. It is suggested that a model that is not overfitted should not have large differences in the estimation of its predictive capability between cross-validation methods and independent validation sets.

Microarray data are typically small size sample with high dimension descriptors, it is therefore overfitting need to be handled with caution during the period of gene selection. In this study, methods include LOOCV and validation with independent data set was used to parameters optimization and overfitting avoidance.

2.1.5 Performance evaluation

The performance of SVM can be measured as true positive TP (the number of positive examples which are correctly predicted as positive), false negative FN (the number of positive examples which are incorrectly predicted as negative), true negative TN (the number of negative examples which are correctly predicted as negative) and false positive

FP (the number of negative examples which are incorrectly predicted as positive) (Table 2-2).

The simplest way to evaluate the performance of a classification is overall accuracy (Q), which measures the proportion of the total number of the correctly predicted examples.

$$Q = \frac{TP + TN}{TP + FN + TN + FP}$$
(16)

Another three concepts, sensitivity (SE), specificity (SP) and Matthew's correlation coefficient MCC [299], which measure the positive and negative prediction performance respectively, are also frequently used in classification.

$$SE = \frac{TP}{TP + FN} \tag{17}$$

$$SP = \frac{TN}{TN + FP} \tag{18}$$

$$MCC = \frac{TP \times TN - FN \times FP}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}$$
(19)

In some cases such as epidemiology and the evaluation of diagnostic tests [300], positive predictive value (PPV, also called precision rate) and negative predictive value (NPV) are very important.

$$PPV = \frac{TP}{TP + FP} \tag{20}$$

$$NPV = \frac{TN}{TN + FN} \tag{21}$$

		Condition		
		True	false	
Test	Positive	True positive (TP)	False positive (FP)	→Positive predictive value (PPV)
outcome	Negative	False negative (FN)	True negative (TN)	→Negative predictive value (NPV)
		↓ Sensitivity (SE)	↓ Specificity (SP)	

Table 2-2 Relationshi	ps among terms of	performance	evaluation
			• • •••••••••••••••••••••••••••••••••••

Typically, the performance of screening large data sets can be measured by the quantities of yield (similar to TP, the number of positive examples which are correctly predicted as positive), hit-rate (similar to PPV, percentage of virtual hits that are known positives), false-hit rate (similar to NPV, percentage of virtual hits that are known negatives), and enrichment factor (EF, magnitude of hit-rate improvement over random selection) [301].

$$EF = \frac{\text{hit rate}}{(TP + FN) / (TP + FN + TN + FP)}$$
(22)

2.2 Methodology for microarray data processing

2.2.1 Preprocessing of microarray data

The goal of data preparation in microarray data analysis is the same as for all data mining, which is to transform the data to make it suitable for analysis and to aid in producing the best possible models. Data preparation usually takes place in two stages. The first stage contains those aspects of data preparation which are independent of any class data; these are scaling normalization, thresholding, filtering, and missing data estimation. Thresholding and filtering are "low-level" forms of data cleaning; techniques of this kind
are broadly applicable, but the details will vary with the microarray device used to produce the data. The thresholding and filtering details given in this study are specific to the paper suggestions.

The second stage of microarray data processing contains aspects which make specific use of classification information of given data set, and is broadly termed as "feature selection". Here we are performing a new data reduction method by narrowing the set of features to those relevant to the specific set of disease classes to be analyzed.

2.2.2 Normalization and scaling

Normalization is the attempt to compensate systematic experimental and/or technical variations affects the measured gene expression levels, so that biological difference can be easily distinguished and the comparison of expression levels across samples can be performed. Although normalization alone cannot control for all systematic variations, normalization plays an important role in the earlier stage of microarray data analysis because expression data can significantly vary from different normalization procedures. Subsequent analyses, such as differential expression testing would be more important such as clustering, and gene networks, though they are quite dependent on a choice of a normalization procedure[4,160]

Normalization methods differ for experimental platforms (eg. dual-labeled platforms versus single labeled platforms such as the Affymetrix GeneChip arrays) [302,303]. Yang et al.[303] summarized a number of normalization methods for dual labelled microarrays such as global normalization and locally weighted scatterplot smoothing (LOWESS) [304]. There have been some extensions for global and intensity-dependent normalizations. For example, Kepler et al. [305] considered a local regression to estimate

59

a normalized intensities as well as intensity dependent error variance. Wang et al.[306] proposed an iterative normalization of cDNA microarray data for estimating a normalized coefficients and identifying control genes. Workman et al. [307,308] proposed a roust nonlinear method for normalization using array signal distribution analysis and cubic splines. Chen et al.[309] proposed a subset normalization to adjust for location biases combined with global normalization for intensity biases. Edwards [308] considered a non-linear LOWESS normalization in one channel cDNA microarrays mainly for correcting spatial heterogeneity. For affymetrix microarray data, many methods have been proposed in the literature for signal quantification, detection and normalization. Robust Multichip Average (RMA [310]) and Affymetrix Microarray Suite (MAS) 5.0 algorithms are two popular methods. MAS 5.0 yields scaled, background-subtracted, nonnormalized signal intensities, while RMA provides background-subtracted, log-transformed signal intensities. In this study, the approach used in microarray data normalization is conducted according to the platform properties. Data extraction was performed using affy library in BioConductor[311], an R-based package[312].

Molecular descriptors are usually scaled before they are used in machine learning methods. This is to ensure that all descriptors have equal potential to affect the prediction model. The similar procedure is also applied via processing the microarray data for biomarker discovery. Currently, a typical scaling procedure for microarray data is (1) normalizing the expression levels of each sample to zero-mean and unit variance, and then (2) normalizing the expression levels of each gene to zero-mean and unit variance over all the samples. This scaling method have been shown to perform well [313,314] and is applied in this thesis.

2.2.3 Threshold filtering

Since many genes are not expressed at all or do not vary sufficiently to be useful, a threshold filtering operation is usually applied before subsequent analyses, such as differential expression testing and clustering. Typical filtering 1) eliminates genes showing abnormal expression intensities, and 2) excludes genes showing minimal variation across samples.

Studies of expression measurement error, which process the same sample several times, have shown that the measurements were reproducible above values of 100, and much less reproducible below 100 [315]. For data believed to contain noise, a lower threshold of 100 would be appropriate. For classification problems that are very robust (e.g. distinguishing different types of brain tumors), we used a threshold of 100 units because there was a sufficiently large number of genes correlated with the distinction that the threshold could be set high, thereby minimizing noise, and maximizing potential biological interpretation of the marker genes. For the more subtle distinctions (e.g. outcome prediction), few correlates of the distinction are found, and for this reason the threshold was set at a lower level (20 units) so as to avoid missing any potentially informative marker genes. The upper threshold is usually 16,000 because this level has been observed as the fluorescence saturation of the scanner; values above this cannot be reliably measured and image intensities above this level tend to have a non-linear correlation with the actual expression levels. [316,317]

Gene variation filtering be realized through variation filter tests for a fold-change and absolute variation over samples, for example

MaxValue(G) / MinValue(G) < 5

MaxValue(G) - MinValue(G) < 500

where MaxValue(G) and MinValue(G) are the maximum and minimum values of gene G across all samples. If maxValue/minValue is lower than the specified ratio (5 in this case) and maxValue - minValue is lower than the specified difference (500 in the above dialog), then the gene are excluded from the resulting data set.

In this study, threshold filtering was performed accordingly with the purpose of the analysis. The precise parameters of the variation filtering for data sets of cancer biomarker identification are provided in method section of Chapter 6 (In most cases the variation filter excluded those where max/min < 5 and max – min < 500. In some cases more or less stringent values were used.)

2.2.4 Missing data estimation

Missing values is a common issue existing in microarray data. The missing values arise from experimental errors due to spotting problems (cDNA), dust, poor hybridization, inadequate resolution, fabrication errors (e.g. scratch) and image corruption [318,319]. They could also come from the suspicious data with low expression (e.g. background is stronger than signal) or censored data [117]. Repeating experiments could be a solution but often not be a realistic option because of economic reasons or limitations in biological material [170,320]. However, many microarray data analysis methods, such as classification, clustering and gene selection methods, require complete data matrix. Therefore in many microarray projects, one needs to determine how to estimate missing values. Proper missing value estimation can significantly improve performance of the analysis methods [321-323]. The simplest way is to remove all genes and arrays with missing values, or to replace missing values with an arbitrary constant (usually zero), row (gene) average or column (array) average. The better approaches had also been proposed such as k-nearest neighbors method (KNN) [323], least square methods (LS) [320,324],

and principal component analysis (PCA) [325,326]. Among these estimation methods, KNN is the most widely used and is also a standard method for missing value estimation currently [134,321,323].

The KNN-based method for missing value estimation involves selecting k neighbor genes with similar expression profiles to the target gene (the gene with missing values in one or more arrays), and estimating the missing value of the target gene in specific array as the weighted mean of the expression levels of the k neighbor genes in this array. A popular KNN-based method is KNNimpute [323], which is the only imputation method available in many microarray data analysis tools for missing value estimation [116,327,328]. KNNimpute can be downloaded from Stanford Microarray Database [134,329]. In this thesis, KNNimpute is employed if the microarray data contains missing values.

2.3 Feature selection procedure

Feature (gene) selection is a necessary step in supervised learning methodologies as many classifier algorithms cannot deal with thousands of input variables and require some type of dimensionality reduction or prior selection. Meanwhile, the problem of choosing statistically significant molecular markers or differentially expressed genes provides a subset of candidate predictor-genes for further validation with traditioned experimental technique (e.g. RT-PCR, immunochemistry, etc.). In this work, a new REF based biomarker selection procedure was developed by incooperating random sampling, feature elimination and consistency evaluation is described in detail in the following setions.

2.3.1 **REF** based gene selection procedure

A novel gene selection procedure method based on Support Vector Machines classifier, recursive feature elimination, multiple random sampling strategies and multi-step evaluation of gene-ranking consisitency was established (Figure 2-4): (1) After preprocessing the original data, by using random sampling method, a large number of training-test sample combinations are generated from the original data set.

(2) The large number of sample combinations is divided into n groups, and each group contains 500 sample combinations.

(3) In each training-test sample combination of each group, SVM and RFE are used to classify the samples (SVM classifiers) and rank the genes (RFE gene rank criteria). Therefore 500 gene ranking sequences are formed.

(4) The consistency evaluation can be performed based on the 500 sequences and a certain number of genes (for example, k genes) can be eliminated.

(5) Step (3) and (4) can be iteratively done until no gene can be eliminated.

(6) The gene subset which gives us the highest overall accuracies of the 500 test sample sets can be selected as gene signatures of this group. Using this method, we can obtain n gene signatures.

(7) The stability evaluation of the gene signatures can be performed by looking into the overlap gene rate of the n gene signatures.

In the following section Recursive feature elimination [330] is introduced first and followed by a detailed introduction of the whole feature selection procedure.

Figure 2-4 Overview of the gene selection procedure

2.3.2 Recursive feature elimination

During gene selection procedure, the genes are ranked according to their contribution to the SVM classifiers. The contributions of genes are calculated by Recursive feature elimination (RFE) procedure, which sort genes according to a gene-ranking function generated from SVM classifier. As described in Section 2.1, SVM training process needs to find the solution for the optimum problem (also known as objective function or cost function) shown in equation (14), which can be rewritten as

$$J = \frac{1}{2}\alpha^{T}H\alpha - \alpha^{T}1$$
(22)

Under the constraints $\sum_{i=1}^{n} a_i y_i = 0$ and $\alpha_i \ge 0$, i=1,2,...n.

Where $H(i, j) = y_i y_j K(x_i, x_j)$, *K* is the kernel function.

The gene-ranking function of RFE can be defined as the change in the objective function J upon removing a certain gene. When a given feature is removed or its weight w_k is reduced to zero, the change in the cost function J(k) is

$$DJ(k) = \frac{1}{2} \frac{\partial^2 J}{\partial w_k^2} (Dw_k)^2$$
(23)

where the change in weight $Dw_k = w_k - 0$ corresponds to the removal of feature k.

Under the assumption that the removal of one feature will not significantly influence the values of α s, the change of cost function can be estimated as

$$DJ(k) = \frac{1}{2}\alpha^{T}H\alpha - \frac{1}{2}\alpha^{T}H(-k)\alpha$$
(24)

Where *H* is the matrix with elements $y_i y_j K(x_i, x_j)$, and *H*(-*k*) is the matrix computed by using the same method as that of matrix *H* but with its *k*th component removed.

The change in the cost function indicates the contribution of the feature to the decision function, and serves as an indicator of gene ranking position [331].

2.3.3 Random sampling, feature elimination and consistency evaluation

In order to present statistical meaning, gene selection is conducted based on multiple random sampling. Each random sampling divide all microarray samples into a training set which contains half number of samples and an associates test set which contains another half number of samples. This sampling method can be treated as a special case of the bootstrap technique. Many researchers showed that bootstrap-related techniques present more accurate estimation than cross-validation on small sample sets [332,333]. By using this random sampling, thousands of training-test sets, each containing a unique combination of samples, are generated. These thousands of randomly generated training-test sets are randomly divided into several sampling groups, with equal number of training-test sets (such as 500 traing-test sets) in each group. Every sampling group is then used to derive a signature by RFE-SVM.

In every training-test sampling group generated by multiple random sampling, each training-set (totally 500 training-test sets) is used to train a SVM class-differentiation system and the genes are ranked by using Recursive feature elimination (RFE), according to the contribution of genes to the SVM classifier. In order to derive a gene-ranking criterion consistent for all iterations and all the 500 training-test sets in this group, a SVM class-differentiation system with a universal set of globally optimized parameters, which

give the best average class-differentiation accuracy over all of the 500 test sets in this group, is applied by RFE gene-ranking function at every iteration step and for every training-test set.

To further reduce the chance of erroneous elimination of predictor-genes, additional generanking consistency evaluation steps are implemented on top of the normal RFE procedures in each group:

(1) For every training-set, subsets of genes ranked in the bottom (which give least contribution to the SVM classification procedure) with combined score lower than the first few top-ranked genes (which give highest contribution to the SVM classification procedure) are selected such that collective contribution of these genes less likely outweigh top-ranked ones;

(2) For every training-set, the step (1) selected genes are further evaluated to choose those not ranked in the upper 50% in previous iteration so as to ensure that these genes are consistently ranked lower;

(3) A consensus scoring scheme is applied to step (2) selected genes such that only those appearing in most of the 500 testing-sets were eliminated.

For each sampling group, different SVM parameters are scanned, various RFE iteration steps are evaluated to identify the globally optimal SVM parameters and RFE iteration steps that give the highest average class-differentiation accuracy for the 500 testing-sets.

The several signatures derived from these sampling-groups are then applied to evaluate the stability and performance.

2.4 Construction of the feature vector for peptide

2.4.1 Feature vector for peptide

Conventional computational methods, such as machine learning based approaches, have been widely applied in various protein studies. In protein classification problem, machine learning methods cannot accept the sequence information directly. It is essential to convert the sequences into numerical vectors as input. Various methods were proposed to construct a feature vector from protein sequence [238-244], most of which are straightforward by using original sequence directly or binary vector representation of the amino acid of the sequence. In this study, we constructed a digital feature vector from the encoded representations of tabulated residue properties including amino acid composition, hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, surface tension, secondary structure and solvent accessibility [254,274]. This well-formulated and high performance approach was firstly proposed by our research group [254,255]. Following are the detailed procedures of feature vector constructed for representing the structural and physicochemical properties of a given peptide.

Given the sequence of a protein, its amino acid composition and the properties of every constituent amino acid are computed according to the amino acid physical and chemical properties, and used to generate this vector. The computed amino acid properties include hydrophobicity, normalized Van der Waals volume, polarity, polarizability, charge, surface tension, secondary structure and solvent accessibility [254]. Amino acids are divided into three groups for each properties such that those in a particular group are regarded to have approximately the same property[254].

A typical peptide is mainly about 7~30 amino acids long in the case of MHC binding peptides study, which is quite shorter than protein sequence. For this reason, amino acids

are divided into three or even six groups in this study to improve the physical and chemical sensitivities of generated vectors. For instance, amino acids can be divided into hydrophobic (CVLIMFW), neutral (GASTPHY), and polar (RKEDQN) groups (Table 2-3). Three descriptors, composition (C), transition (T), and distribution (D), are introduced to describe global composition of each of these properties. C is the number of amino acids of a particular property (such as hydrophobicity) divided by the total number of amino acids in a protein sequence. T characterizes the percent frequency with which amino acids of a particular property is followed by amino acids of a different property. D measures the chain length within which the first, 25%, 50%, 75% and 100% of the amino acids of a particular property is located respectively. Overall, there are 51 elements representing these three descriptors: 6 for C, 15 for T and 30 for D, with a six-grouped property.

Overall, the feature vector of a peptide is constructed by combining the 51 elements of all of those 6-groups properties, 21 elements of those 3-groups properties and the 20 elements of amino acid composition in sequential order. A total of 308 elements are used as feature vector for each protein as shown in Table 2-4.

Table 2-5 gives the computed descriptors of the HLA-0201 binding peptide (VLFRGGPRGLLAVA [334]). The feature vector of a peptide is constructed by combining all of the descriptors in sequential order.

2.4.2 Scaling of feature vector

Molecular descriptors are usually scaled before they are used for machine learning methods. This is to ensure that all descriptors have equal potential to affect the prediction model. There are four main types of descriptor scaling: autoscaling, range scaling, feature

weighting and Pareto scaling (Livingstone 1995 and Eriksson 2001). Range scaling is the most common type of descriptor scaling methods used in various applications.

In range scaling, the minimum value of the descriptor is subtracted from the descriptor values and the resultant values are divided by the range:

$$A_i^{new} = \frac{2*(A_i - A_i)}{\max(A_i) - \min(A_i)} - 1$$
(23)

where $\min(A_i)$ and $\max(A_i)$ are the minimum and maximum value of descriptor *i* respectively. The range-scaled descriptors have a minimum and maximum value of -1 and 1 respectively. Range scale can be carried out over any preferred range by multiplication of the range-scaled values by a factor. The disadvantage of range scaling is that it mainly depends on the minimum and maximum values of the descriptors, which makes it very sensitive to outliers.

Property		Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	
Uridao abobioitu	Туре	0~0.043	0.165~0.359	0.45~0.501	0.616~0.738	0.825~0.88	0.943~1	
Hydro-phobletty	Amino Acids in Group	RDE	HNQKS	TG	ACPM	VWY	ILF	
Van der Waals	Value	0~1.6	2.43~2.78	2.95~3	3.78~4.0	4.43~4.77	5.89~8.08	
volume	Amino Acids in Group	GAS	CTPD	NV	EQIL	MHK	FRYW	
Dolomitry	Value	0	0.352~0.456	0.6~0.608	0.648~0.696	0.792~0.8	0.864~1.0	
Polarity	Amino Acids in Group	VI	LFWCMY	PA	TGS	HQR	KNED	
Dolonizohility	Value	0~0.062	0.105~0.108	0.128~0.15	0.18~0.186	0.219~0.23	0.29~0.409	
Polarizability	Amino Acids in Group	GAS	DT	CPNVE	QIL	KMH	FRYW	
		Group 1		Group 2		Group 3	Group 3	
Charge	Туре	Positive		Neutral		Negative		
Charge	Amino Acids in Group	KRH		ANCQGHILMFPSTWYV		DE		
Surface tension	Value	-0.20~0.16	5	-0.3~ -0.52		-0.98~ -2.46		
Surface tension	Amino Acids in Group	GQDNAH	IR	KTSEC		ILMFPWYV	τ	
Secondary	Туре	Helix	Helix		Strand			
structure	Amino Acids in Group	EALMQK	EALMQKRH		VIYCWFT		GNPSD	
Solvent	Туре	Buried		Exposed	Exposed		Intermediate	
accessibility	Amino Acids in Group	ALFCGIV	W V	RKQEND	RKOEND		MPSTHY	

Table 2-3 Division of amino acids into different groups for different physicochemical properties.

Table 2-4 List of features for peptides

Feature Description	Number of group	Number of dimensions
Amino acid composition	-	20
Hydrophobicity	6	51
Van der Waals volume	6	51
Polarity	6	51
Polarizability	6	51
Charge	3	21
Surface tension	3	21
Secondary structure	3	21
Solvent accessibility	3	21
Total	-	308

Table 2-5 Computed descriptors of the HLA-0201 biding peptide (sequence: VLFRGGPRGLLAVA [334]). The feature vector of a peptide is constructed by combining all of the descriptors in sequential order.

Property	Element	ts of desci	riptors							
Amino acid	14.29	0.00	0.00	0.00	7.14	21.43	0.00	0.00	0.00	21.43
composition	0.00	0.00	7.14	0.00	14.29	0.00	0.00	14.29	0.00	0.00
^	14.29	0.00	21.43	21.43	14.29	28.57	0.00	15.38	7.69	0.00
	7.69	0.00	0.00	0.00	0.00	7.69	0.00	7.69	15.38	7.69
Hydro- phobicity	7.69	28.57	28.57	28.57	28.57	57.14	0.00	0.00	0.00	0.00
	0.00	35.71	35.71	35.71	42.86	64.29	50.00	50.00	50.00	85.71
	100.00	7.14	7.14	7.14	7.14	92.86	14.29	14.29	21.43	71.43
	78.57									
	35.71	7.14	14.29	21.43	0.00	21.43	7.69	15.38	15.38	0.00
	15.38	0.00	0.00	0.00	7.69	7.69	0.00	0.00	0.00	7.69
Van der	0.00	35.71	35.71	42.86	64.29	100.0	50.00	50.00	50.00	50.00
waals volume	50.00	7.14	7.14	7.14	7.14	92.86	14.29	14.29	14.29	71.43
	78.57	0.00	0.00	0.00	0.00	0.00	21.43	21.43	21.43	28.57
	57.14									
	14.29	28.57	21.43	21.43	14.29	0.00	7.69	15.38	0.00	0.00
	0.00	7.69	7.69	7.69	0.00	7.69	7.69	0.00	15.38	0.00
Polarity	0.00	7.14	7.14	7.14	7.14	92.86	14.29	14.29	21.43	71.43
	78.57	50.00	50.00	50.00	85.71	100.00	35.71	35.71	35.71	42.86
	64.29	28.57	28.57	28.57	28.57	57.14	0.00	0.00	0.00	0.00
	0.00									
	35.71	0.00	21.43	21.43	0.00	21.43	0.00	23.08	15.38	0.00
	15.38	0.00	0.00	0.00	0.00	7.69	0.00	7.69	0.00	7.69
Polarizability	0.00	35.71	35.71	42.86	64.29	100.0	0.00	0.00	0.00	0.00
1 Olarizaolinty	0.00	7.14	7.14	7.14	50.00	92.86	14.29	14.29	14.29	71.43
	78.57	0.00	0.00	0.00	0.00	0.00	21.43	21.43	21.43	28.57
	57.14									
	14.29	85.71	0.00	30.77	0.00	0.00	28.57	28.57	28.57	28.57
Charge	57.14	7.14	21.43	50.00	78.57	100.0	0.00	0.00	0.00	0.00
	0.00									
Surface	50.00	0.00	50.00	0.00	53.85	0.00	28.57	28.57	42.86	64.29
tension	100.00	0.00	0.00	0.00	0.00	0.00	7.14	7.14	21.43	71.43
	92.86								L	
Secondary	50.00	21.43	28.57	38.46	30.77	0.00	14.29	14.29	57.14	78.57
structure	100.00	7.14	7.14	7.14	21.43	92.86	35.71	35.71	42.86	50.00
Silucture	64.29									

Chapter 2. Methodology

Solvent	78.57	14.29	7.14	23.08	7.69	7.69	7.14	14.29	42.86	78.57
	100.00	28.57	28.57	28.57	28.57	57.14	50.00	50.00	50.00	50.00
accessionity	50.00									

Combination therapies are increasingly becoming an important part of modern disease therapy. By exploiting targeted, mechanism-based treatments through the use of rational combinations, the personalized treatment and increased treatment efficacy can be achieved. Understanding the molecular mechanisms underlying synergistic, potentiative and other contrasting combinations can greatly facilitate the discovery of efficacious combinations and multi-targeting agents as well. In this study, we performed an extensive investigation of 117 drug combinations for which the combination effect has been evaluated by rigorous analysis methods and for which relevant molecular interaction (MI) profiles of the drugs involved are available. Seven general and specific modes of action are summarized based on the MI profiles and pathway analyzing of identified drug combinations. The study also highlights the potential value of molecular interaction profiles and network regulation in the discovery of novel multicomponent therapies.

3.1 Introduction

In recent years, drug discovery efforts have primarily focused on identifying agents that modulate preselected individual targets[335-337]. While new drugs have continuously been discovered, there is a growing productivity gap, despite major spending on research and development and advances in technology development[338]. This problem arises partly because agents directed at an individual target frequently show limited efficacies and poor safety and resistance profiles, which are often due to factors such as network robustness[24-26], redundancy[27], crosstalk[28-30], compensatory and neutralizing actions[31,32], and anti-target and counter-target activities[33]. With such issues in mind,

<u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> systems-oriented drug design has been increasingly emphasized[60-63] and supported by several clinical successes of multicomponent therapies that use drug-combinations and multi-targeting agents[54,339-341].

Increasing interests and efforts have been directed at the discovery of new multicomponent therapies[26,54,60-62,342,343]. However, uncovering drug combinations by direct screening is quite challenging due to the large number of potential combinations. A recent high-throughput screen was able to systematically test about 120,000 different two-drugs combinations[58]. Yet, the campaign of NCI60 anticancer drug screen count with a stock of above 100,000 potential therapeutic agents[344], resulting in more than 5 $\times 10^9$ drugs pairs. The situation is worse when we address combinations that consist of more than two drugs. More important, assuming that most drug combinations will not improve significantly over single drugs, attempting such high-throughput screens is highly inefficient. Understanding the molecular mechanisms underlying the known synergistic, potentiative and other contrasting combinations is therefore important to provide general guideline for efficacious experimental design.

Knowledge of the molecular mechanisms of currently explored multicomponent therapies provides useful clues for discovering new drug combinations and multi-targeting agents. Some key characteristics of the modes of multicomponent therapies have been outlined [33,54,62,342]. The multiple targets can reside in the same or different pathways and tissues. Their modulation produces more-than-additive (synergistic) effects triggered by actions converging at a specific pathway site, and by negative regulation of network compensatory and neutralizing responses, drug resistance sources, and anti-target and

<u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> counter-target activities. However, the exact mechanism has been fully elucidated for few of the explored drug combinations[62,345-350].

Advances in the comprehension of biological systems, driven by genomics and proteomics, have recently provided a framework in which preclinical scientists can predict the biological responses resulting from the modulation of multiple independent targets in combination. These advances provide a change in extensive investigations of the molecular basis of drug actions and responses, yielding a substantial amount of information on experimentally determined drug-mediated molecular interaction (MI) profiles and regulatory activities of many drugs and compounds[65,335,336,351-355]. The MI profile of a drug describes its interactions with individual biomolecules, pathways or processes attributable to its pharmacodynamic, toxicological, pharmacokinetic, and combination effects. Apart from using them for guiding the development of target discovery technologies[356-362], MI profiles may be explored for gaining further insights into general modes of actions of multicomponent therapies and the mechanism of specific drug combinations. Such a task may be accomplished by analyzing the relevant MI profiles from the perspective of coordinated interactions and network regulations[29-31].

In this work we introduce a systematic framework to analyze effective drug combinations by comprehensively investigating literature reported synergistic and other types of drug combinations. The action modes of some of combination therapies and the multi-target therapeutics that are currently on the market or in development were evaluated based on the identified MI profiles and pathways analysis. This pathway-focused approach to target discovery could help lead to a greater understanding of disease biology, helping outline <u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> some of the important aspects of the discovery of multi-targeting therapeutics using compounds and cell-based *in vitro* assays.

3.2 Materials and Methods

3.2.1 Mechanism of drug interactions

Often, multicomponent therapies are developed and evaluated from cell-based *in vivo* test via acting simultaneously at multiple molecular targets. Some terminology, such as synergism, additivity, antagonism, independence, inertism and coalism, are commonly used to describe the mechanism of joint action of two agents in these cell-based *in vivo* tests[363]. When two drugs produce the same broad therapeutic effect, their combination produces the same effect of various magnitudes compared with the summed effects of the individual drugs. A combination can be pharmacodynamically synergistic, additive or antagonistic if the effect is greater than, equal to, or less than the summed effects of the partner drugs [364]. Drug combinations may also produce pharmacokinetically potentiative or reductive effects such that the therapeutic activity of one drug is enhanced or reduced by another drug via regulation of its absorption, distribution, metabolism and excretion (ADME) [364]. A further type of drug combination is a coalistic combination, in which all of the drugs involved are inactive individually but are active in combination[363,365-367].

Synergistic and potentiative drug combinations have been explored to achieve one or more favourable outcomes: enhanced efficacy; decreased dosage at equal or increased level of efficacy; reduced or delayed development of drug resistance; and simultaneous enhancement of therapeutic actions and reduction of unwanted actions (efficacy synergism plus toxicity antagonism)[54,62,367]. The mechanisms underlying these activities can be

77

<u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> better understood by studying the mechanistically contrasting additive, antagonistic and reductive drug combinations.

3.2.2 Methods for drug-combination analysis

Attempts have been made during the past century to quantitatively measure the dose-effect relationships of each drug alone and its combinations and to determine whether or not a given combined treatment would gain a synergistic effect [363,364,368]. We have carefully chosen 7 rigorous drug-combination analysis methods, which have been developed and extensively used for analyzing combinations from experimental data[54,60,369]. These include checkerboard, combination index, fractional effect analysis, isobolographic analysis, interaction index, median drug effect analysis, and response surface approach[369-373].

3.2.3 Collection of literature-reported drug combinations

PubMed remains an optimal tool in biomedical electronic research, which is accessed for free and offers optimal update frequency and includes online early articles[374]. We therefore searched Pubmed[375] to select literature-reported drug combinations that had been evaluated by rigorous combination analysis methods and for which relevant MI profiles were retrievable from Pubmed. Combinations of the keywords "drug combination", "drug interaction", "multi-drug", "additive", "antagonism", "antagonistic", "infra-additive", "potentiated", "potentiative", "potentiation", "reductive", "supra-additive", "synergism", "synergistic", and "synergy" were used to search publications since 1999. Coalistic drug combinations were not evaluated because few of them are described in the literature. This is partly due to the focus on combinations of drugs that include at least one active drug; indeed, a Medline search using "coalistic" and "coalism"

<u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> returns only one abstract. In addition, a significantly higher percentage of the studies published before 1999 are based on non-rigorous drugcombination methods. It has been suggested that analysis without using a rigorous method may easily lead to errors in assessing synergism with respect to such effects as enhancement and potentiation[369]. Therefore, to maintain the level of reliability of our assessment without substantially losing statistical significance, we focused on studies published since 1999, which constitute approximately 50% of all abstract entries selected by using our search method.

3.3 Results and discussion

3.3.1 Statistics of collected drug combinations and MI profiles

We collected 315, 88 and 62 abstract entries describing pharmacodynamically synergistic, additive, and antagonistic combinations, respectively, and 56 and 33 abstract entries describing pharmacokinetically potentiative and reductive combinations, respectively. We then removed 158, 53, 32, 15 and 18 of these entries, respectively, that are redundant (for example, the same combination or the same paper selected by different keyword combinations); ambiguous (for example, synergistic in one report or condition, additive in another report or condition); and involving more than two drugs so as to focus on simpler cases. We further removed 45, 12, 1, 1 and 2 papers, respectively, that described studies using nonrigorous drug-combination methods. For the remaining 217 papers, we searched additional literature for experimentally determined MI profiles related to the mechanism of the claimed combination effects. Our analysis showed that the available literature-reported MI profiles are insufficient or irrelevant to substantiate the claimed combination effects in 110 (59 synergistic, 11 additive, 17 antagonistic, 20 potentiative and 3 reductive combinations) of the 217 remaining papers. This led to the identification of 107 combinations that can be substantiated by available literature-reported MI profiles. These

Chapter 3: Mechanisms of drug combinations: interaction and network perspectives comprise 53, 12 and 12 sets of pharmacodynamically synergistic, additive and antagonistic combinations, and 20 and 10 sets of pharmacokinetically potentiative and reductive combinations, respectively. Examples of our evaluated drug combinations are shown in Table 3-1 to Table 3-7. Full data are summarized in Appendix Table S1 to Table S7, together with literature-reported mechanisms related to their therapeutic and combination effects. The statistical significance of our assessment can be roughly estimated as follows: for the 110 combination sets that are not substantiated by the available MI profiles, it is reasonable to assume a high percentage of these combinations may eventually be substantiated by additional experimental findings. If one further assumes that the reported combination effects substantiated by MI profiles are at least partly true, then the estimated ratio of truly and falsely reported combinations should be substantially larger than 107 out of 110. Hence, there seems to be a statistically significant number of combinations and sufficient percentages of true claims for supporting a fair assessment of general combination types and mechanisms of drug combinations from the information collected by our search methods.

3.3.2 Mechanism underlying the pharmacokinetic and pharmacodynamic drug interactions

The general and specific modes of action of 4 pharmacokinetic interactions and 3 pharmacodynamic interactions were studied based on the 117 drug combinations. These include pharmacodynamically synergistic drug combinations due to anti-counteractive actions, complementary actions, and facilitating actions, pharmacodynamically additive drug combinations, pharmacodynamically antagonistic, potentiative and reductive drug combinations, which are described separately in the following sections.

Chapter 3: Mechanisms of drug combinations: interaction and network perspectives The use of multiple drugs with different mechanisms or modes of action may direct the different combined-actions and therapeutic benefits. The possible favorable or undesired outcomes can be explained by analyzing the relevant MI profiles of drugs from the perspective of coordinated interactions and network regulations. Many of the MI profiles directly point to a specific bimolecular as the inhibiting, activating or regulating target. Therefore, it is possible to determine the combination effects based on the expected therapeutic and pharmacokinetic consequences of these interactions. Although the molecular target is not exactly specified, some of the profiles identify a specific pathway or process as a target, and provide the pharmacodynamic or pharmacokinetic consequence of the interaction. For instance, in literature reports, arsenic trioxide produces anticancer activity by generating reactive oxygen species, which is partially counteracted by its activation of the AKT survival pathway[376]. The anticancer agent 17-(allylamino)-17demethoxygeldanamycin (17-AAG) produces its effects by inhibiting the nuclear factorκb (NF-κb), AP-1 (also known as Jun) and phosphatidylinositol 3-kinase(PI3K)-AKT pathways61. Therefore, when used in combination, 17-AAG abrogates arsenic trioxide's counteractive activation of AKT survival pathway[376].

3.3.2.1 Pharmacodynamically synergistic combinations

It is known that pharmacodynamically synergistic may arise from anti-counteractive action, complementary action, and facilitating action[377]. Anti-counteractive actions reduce network's counteractive activities against a drug's therapeutic effect. Complementary actions positively regulate a target or process by interactions with multiple target/pathway sites, different target subtypes and states, and competing mechanisms[60]. Facilitating actions are secondary actions of one drug in enhancing the activity or level of another drug. The 53 sets of synergistic drug-combinations arise from anti-counteractive (21 sets), complementary (26 sets), and facilitating (6 sets) actions of

Chapter 3: Mechanisms of drug combinations: interaction and network perspectives the drugs were involved in this stduy. The therapeutic and synergistic mechanism of the sets in these three combination groups are summarized in Appendix Table S1, Table S2, and Table S3 (examples are given in Table 3-1, Table 3-2 and Table 3-3) respectively.

Anti-counteractive actions may arise from interactions against anti-targets or countertarget[33] and from negative modulations of network's robustness[24-26], crosstalk[28-30], and compensatory and neutralizing actions[31,32]. These anti-counteractive synergistic combinations act on different targets of related pathways (8 sets), different targets of corss-talking pathways (4 sets), different targets of the same pathway that crosstalk to each other via another pathway (1 set) or regulate the same (5 sets) or different targets (2 sets), and different sites of the same target (1 set). An example of actions on different targets is the anticancer cisplatin-topotecan combination[378-380]. Cisplatin binds to the major groove of GG, AG and TACT sites in DNA[381], which is bypassed by network's counteractive activity of mutagenic translesional bypass replication across cisplatin-DNA adducts[382]. Topotecan inhibits topoisomerase I, interacts with DNA, and stabilizes covalent topoisomerase-DNA complex to block DNA replication forks[383]. The last function reduces the counteractive effect against cisplatin, resulting in synergism. An example of actions on the same target is the anticancer cisplatin-trabectedin combination[384]. Trabectedin interacts with DNA and its repair systems in a way different from cisplatin[384] via covalent binding to the 2-amino group of the central guanine of selected DNA pyrimidine-G-G and purine-G-C triplets[385], which induces the formation of unusual DNA replication intermediates that strongly inhibits DNA replication[386] which subsequently reduces the counteractive effect against cisplatin.

Chapter 3: Mechanisms of drug combinations: interaction and network perspectives Complementary actions primarily involve positive regulation of a target or process by targeting multiple points of a pathway[387,388] and its crosstalk pathways[387-391], interacting with multiple sites[381,392], states[393], conformations[60], and mutant forms[60] of the target, collectively modulating target activity and expression[348], and simultaneously enhancing the positive and reducing the negative effects of the target[394,395]. These combinations act on different targest of the related pathways that regualated the same targets (8 sets) or the same target/process (5 sets), different targets of related pathways that regulate different targets (6 sets), different targets of the same pathway that regulate the same target (2 sets), different target subtypes in related pathways (1 set), and the same target at different sites (2 sets), overlapping sites (1 set), and different states (1 set). An example of actions on different targets is the elecoxib-emodin combination, which synergistically represses the growth of certain cancer cells[396]. Celecoxib, a COX-2 inhibitor, suppresses cancer growth by inactivating protein kinase Akt to stop its suppression of apoptosis[397]. Emodin suppresses cancer growth by inhibiting tyrosine kinase[398] and down-regulating Akt via inhibition of PI3K pathway to reduce Akt suppression of apoptosis[399]. The later complements celecoxib's inactivation of Akt[397] to reduce its suppression of apoptosis.

Facilitating actions can be illustrated by two examples. One is the gentamicin-vancomycin combination that produces synergistic antibacterial action against penicillin-resistant bacterial strains[400]. Gentamicin targets bacterial ribosome, causes misreading of the genetic code and inhibits translocation to disrupt protein synthesis[401]. Vancomycin inhibits bacterial cell wall peptidoglycan synthesis[402] and alters permeability of cell membrane and selectively inhibits ribonucleic acid synthesis[403]. The later enhances gentamicin penetration into bacterial cells thereby increasing its bioavailability. The

second example is the BQ-123 and enalapril combination that produces synergistic endothelium-dependent vasodilation enhancement[404]. BQ-123 is an ETA receptor antagonist that mediates vasodilatation[405], enalapril up-regulates ETB as well as inhibits ACE leading to vasodilation[406,407]. BQ-123 antagonism of ETA[405] displaces endogenous ET-1 from ETA onto upregulated ETB to enhance its activity by effectively increasing ETB agonist concentration[404].

Table 3-1 Examples of literatur	e reported pharmacodynamically syner	rgistic drug combinations due	e to anti-counteractive actions, in which
synergy has been determined by	y well established synergy/additive ana	lysis methods and its molecu	lar mechanism has been revealed

Combination	Drug A (mechanism of actions related	Drug B (mechanism of actions	Reported synergistic	Synergism	Possible mechanism of synergism in anti-
target	to synergy)	related to synergy)	effect	determination	counteractive actions
relationship			a	method	
Different targets	Oxaliplatin (DNA adduct, preferably	Irinotecan (DNA topoisomerase	Synergistic anticancer	Median drug	Effect of oxaliplatin's DNA adduct formation[408]
of the same	bind to major groove of GG, AG and	I innibitor, increased EGFR	effect in AZ-521 and	effect analysis	may be partially reduced by certain mutant DNA
patnway	IACI sites, complex conformation	phosphorylation in Lovo &	NUGC-4 cells,		topoisomerase I acting on DNA adduct to generate
	different from that of cisplatin[408],	wiDR cens[410])			DNA transient repoisomers[412]. Irinotecan innibition of
	caused DNA strand break and non-DNA		MKN-45 cells[411]		DNA topoisomerase 1[410] partially off-sets this
D'ff	Initiated apoptosis[409])		C	Encoding 1	Counteractive activity
Different targets	DL-cycloserine (bacterial cell wall	Epigallocatechin gallate	Synergistic effect on	Fractional	Cell wall alteration may induce counteractive cell wall
of the same	synthesis inhibitor[413])	(disrupted integrity of bacterial	bacterial cell	innibitory	synthesis to restore cell wall integrity[414], DL-
pathway that		cell wall via direct binding to	wan[415]	concentration	cycloserine innibition of cell wall synthesis mindered
regulated the		peptidoglycan[413])		index	the restoration thereby enhanced Epigallocatechin
same target	Deal's al (at 1'l' a las' and 1 las 's	NUCLAO (CDV : 1'1' and 1	C	M. P In .	gallate's cell wall disruption activity
Different targets	Paclitaxel (stabilized microtubules via	NU6140 (CDK inhibitor, down-	Synergistic apoptotic	Median drug	Use of both drugs promoted complementary apoptosis
or related	mitoria to trigger exectoria[415]	regulated antiapoptotic protein	response[421]	effect analysis	activities via triple actions of surviving down-
paniways	induced n52 and CDV inhibitors[416]	surviviii[421])			stabilization[205] and assume activation[417] by
	induced p55 and CDK initiotions[410],				stabilization[595] and caspase activation[417] by
	2 leading to apoptosis[417] activated				partially offset by its counteractive pro-growth
	EPK [418] and CDK2[410] activated				activation of EPK[418] and CDK2[410], which may be
	p_{38} MAP kinase and p_{53} [420])				partially reduced by NU6140's inhibition of CDK[421]
Different targets	Gefitinih (EGER tyrosine kinase	Taxane (disrupted microtubule	Strong synergistic	Combination	Taxane produced anticancer effect by inducing
of cross-talking	inhibitor induced cyclin-dependent	by binding to beta-tubulin[423]	effect in breast cancer	index	apontosis[416] and microtubule disruption[423]
nathways	kinase inhibitors p27 and p21 decreased	induced tumor suppressor gene	MCF7/ADR	Index	Crossfalk between EGER and hypoxia-inducible factor-
panways	MMP-2 and MMP-9 enzyme	n53 and cyclin-dependent kinase	cells[474]		1alpha pathways increased resistance to apoptosis by
	activity[422])	inhibitors P21 down regulated			up-regulating survivin[28] Gefitinib produced
		Bel-2 leading to			anticancer effect via EFER tyrosine kinase inhibition
		apoptosis[416])			which offsets the counteractive EGFR-hypoxia
					crossfalk in resisting taxane's pro-apoptosis activity
Different targets	Gefitinib (EGFR tyrosine kinase	PD98059 (MEK inhibiton[425])	Synergistic antitumor	Combination	An autocrine growth loop critical for tumor growth is
in the same	inhibitor, induced cyclin-dependent	(effect in breast cancer	index.	formed in EGFR-Ras-Raf-MEK-ERK network such
pathway that	kinase inhibitors p27 and p21, decreased		MDA-MB-361	isobolographic	that activated MEK activates ERK which upregulates
crosstalks via	MMP-2 and MMP-9 enzyme		cells186	analysis	EGFR ligands which promotes the autocrine growth

other notherest	activity[122])				loop[426] This loop produced counterective estivity
other pathway	activity[422])				loop[426]. This loop produced counteractive activity
					against gefitinib or PD98059 by reducing the effect of
					MEK or EGFR tyrosine kinase inhibition.
					Simultaneous use of both drugs helps disrupting this
					autocrine growth loop, thereby enhancing each other's
					effect
Same target	AZT (HIV-1 reverse transcriptase	Non-nucleoside HIV-1 reverse	Antiviral	Isobolographic	AZT resistance is partly due to phosphorolytical
(different sites)	inhibitor[427])	transcriptase inhibitor[428]	synergism[429]	analysis,	removal of the AZT-terminated primer[430], NNRTI
				Yonetani &	inhibited RT catalyzed phosphorolysis, thereby reduced
				Theorell plot	AZT resistance[429]

Table 3-2 Examples of literature reported pharmacodynamically synergistic drug combinations due to complementary actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed

Combination	Drug A (mechanism of actions	Drug B (mechanism of actions	Reported	Synergism	Possible mechanism of synergism in promoting
target relation	related to synergy)	related to synergy)	synergistic effect	determination	complementary actions
				method	
Different	Azithromycin (hindered bacterial	Ceftazidime (blocked penicillin-	Synergistic	Checkerboard	Hindered protein synthesis by azithromycin[431]
targets of the	protein synthesis by binding to 50S	binding proteins and thus bacterial	antibacterial	method, fractional	reduces penicillin-binding proteins to complement
related	component of 70S ribosomal	cell wall synthesis[432])	effect[433]	inhibitory	ceftazidime's blocking of penicillin-binding
pathways that	subunit[431])			concentration	proteins[432]
regulate the					
same targets					
Different	Aplidin (induced apoptosis by	Cytarabine (DNA binder[437],	Aplidin synergizes	Chou-Talelay	Both drugs complement each other's activity by
targets of the	activating and clustering death	inhibited synthesome associated DNA	with cytarabine in	combination index	inducing apoptosis via each of the two major cascades
related	receptors of FasL[434], activating	polymerase alpha activity[438],	exhibiting anticancer	(Calcusym	of apoptosis pathway, aplidin activated and clustered
pathways that	JNK, EGFR, Src, and	inhibited RNA synthesis and DNA	activities in leukemia	Biosoft)	death receptors of FasL[434] which subsequently
regulate the	p38MAPK[435], inhibited VEGF	repair that lead to increased cellular	and lymphoma		activates the receptor-mediated extrinsic cascade
same process	release and secretion[436])	stress and reduced survival protein	models in vitro and		[441], cytarabine increased cellular stress and reduced
		Mcl-1 which subsequently activate	in vivo[440]		survival protein Mcl-1 [439] which subsequently
		caspase and apoptosis[439])			triggers the mitochondrial intrinsic cascade [441]
Different	Paclitaxel (stabilized microtubules	Tubacin (histone deacetylase 6	Synergistically	Combination	Both drugs complement each other's microtubule
targets of the	via alpha-tubulin acetylation[395],	inhibitor, inhibited microtubule	enhanced tubulin	index (Calcusym)	stabilization effects through enhanced acetylation
same pathway	distorted mitosis to trigger	associated alpha-tubulin deacetylase	acetylation[394]		activity of alpha-tubulin by paclitaxel[395] and
that regulate the	apoptosis[415] and induce p53 and	activity[442])			reduced deacetylation activity of alpha-tubulin
same target	CDK inhibitors[416])				deacetylase by tubacin[442]
Different	Gefitinib (EGFR tyrosine kinase	ST1926 (activated MAP kinases p38	Synergistic	Combination	Gefitinib 's inhibition of EGFR is complemented by

targets of related pathways that regulate the same target	inhibitor, induced cyclin-dependent kinase inhibitors p27 and p21, decreased MMP-2 and MMP-9 enzyme activity[422])	and JNK, released cytochrome c, activated caspase proteolytic cascad[443])	modulation of survival signaling pathways[444]	Index	ST1926's activation of MAP kinases p38[443] that subsequently mediates internalization of EGFR[445], and by ST1926's activation of caspase proteolytic cascade[443]
Different targets of related pathways	Sildenafil (phosphodiesterase-5 inhibitor[446])	Iloprost (prostacyclin receptor agonist leading to vascular relaxation[447], activated phospholipase C [448] that promoted VEGF-induced skin vasorelaxation [449], self-regulated endothelial cell adhesion molecules[450])	Synergistic action to cause strong pulmonary vasodilatation[451]	Dose effect curve surpassed that of individual drug alone combined	Sildenafil produced vasodilation activity by inhibiting phosphodiresterase-5[446], iloprost produced vasodilation activity by agonizing prostacyclin receptor[447] and by activating phospholipase C[448]. Targeting of multiple vasodilatation regulation pathways NO/cGMP[452], MaxiK channel -mediated relaxation[453], and phospholipase C[448] contribute to the synergistic actions.
Different target subtypes of related pathways	Dexmedetomidine (alpha2A receptor agonist, produced antinociceptive effect via an endogenous sleep-promoting pathway[454])	ST-91 (agonist of alpha2 receptor of other subtypes, produced antinociceptive effect via upraspinal receptors and at both spinal and brainstem levels of the acoustic startle response pathway[455])	Synergistic antinociceptive action[345,456]	Isobolographic analysis	ST-91 modulated spinal and supraspinal pathways[455] that regulate pain[390], dexmedetomidine promoted sleepiness[454] that sustains reduction in spike activity of spinoreticular tract neurons[389]
Same target (different states)	Mycophenolate mofetil (inosine monophosphate dehydrogenase inhibitor, drug metabolite mycophenolic acid binds to the site of nicotinamide adenine dinucleotide cofactor[393])	Mizoribine (inosine monophosphate dehydrogenase inhibitor, drug metabolite mizoribine monophosphate binds to the enzyme in transition state having a new conformation[457])	Mild synergistic suppression of T and B cell proliferation[458]	Median drug effect analysis, Combination index	Simultaneous inhibition of enzyme reactant-state and transition state have the advantage of covering more conformational space for the inhibitors to better compete with natural substrates for the binding sites.
Same target (overlapping binding sites)	Paclitaxel (stabilized microtubules via alpha-tubulin acetylation[395], distorted mitosis to trigger apoptosis[415] and induce p53 and CDK inhibitors[416])	Discodermolide (stabilized microtubule dynamics and enhanced microtubule polymer mass[459] resulting in aberrant mitosis that triggers apoptosis [415] and induced p53 and CDK inhibitors[416], retained antiproliferative activity against carcinoma cells resistant to paclitaxel due to beta-tubulin mutations[460])	Antiproliferative synergy[461]	Combination index	Explanation 1: Binding sites of both drugs overlapping, certain mutations resistant to one drug are ineffective against the other, thereby covering more diverse range of mutant types[60,340,462]. Explanation 2: One drug binds and induces conformational change in tubulin that increases the binding affinity of the other[60,463]. Explanation 3: These drugs may differentially bind to or affect different tubulin subtypes, microtubule architectures, or microtubule regulators, thereby covering more diverse range of microtubule dynamics[57,60,463,464]
Same target	Paclitaxel (stabilized microtubules	Peloruside A (binds at a different site	Peloruside A	Berenbaum's	Explanation 1: Binding sites of both drugs

(different	via alpha-tubulin acetylation[395]	from that of paclitaxel stabilized	synergizes with	combination index	overlanning certain mutations resistant to one drug are
(unificient	via alpha-tubulili acctylation[595],	from that of pacifiaxer, stabilized	synergizes with	comonation macx	overlapping, certain indiations resistant to one drug are
binding sites)	distorted mitosis to trigger	microtubules via binding to a unique	paclitaxel to enhance		ineffective against the other, thereby covering more
	apoptosis[415] and induce p53 and	site on the tubulin alpha, beta	the antimitotic action		diverse range of mutant types[60,340,462].
	CDK inhibitors[416])	heterodimer[465])	of the drugs[465]		Explanation 2: One drug binds and induces
					conformational change in tubulin that increases the
					binding affinity of the other[60,463]. Explanation 3:
					These drugs may differentially bind to or affect
					different tubulin subtypes, microtubule architectures,
					or microtubule regulators, thereby covering more
					diverse range of microtubule dynamics[57,60,435,463]

Table 3-3 Examples of literature reported pharmacodynamically synergistic drug combinations due to facilitating actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed

Combination	Drug A (mechanism of actions	Drug B (mechanism of actions	Reported synergistic	Synergism	Possible mechanism of synergism in promoting
target	related to synergy)	related to synergy)	effect [Ref]	determination method	facilitating actions
relationship					
Different targets	Ampicillin (blocked penicillin-	Daptomycin (disrupted bacterial	Significant antibacterial	Checkerboard method,	Most penicilling-binding proteins are associated
of related	binding protein 2A and thus	membrane structure [467])	synergy[347]	fractional inhibitory	with membrane[468], membrane disruption by
pathways	bacterial cell wall			concentration	daptomyci [467] likely hinders the functions of
	synthesis[466])				penicilling-binding proteins and further expose
					them to ampicillin binding
Different targets	Candesartan-cilexetil	Ramipril (angiotensin converting	Synergistically reduced	Dose-response curve	Candesartan-cilexetil reduced systolic blood
of related	(angiotensin AT1 receptor	enzyme inhibitor[470], reduced	systolic blood	shifted 6.6-fold	pressure by antagonizing angiotensin AT1
pathways that	antagonist[469])	angiotensin II formation [471])	pressure[472]	leftwards compared to	receptor[469], ramipril reduced systolic blood
regulate the same				hypothetic additive	pressure by inhibiting angiotensin converting
target				curve	enzyme[470], ramipril inhibited AT1 receptor
					agonist formation[471] thereby facilitating the
					action of candesartan-cilexetil by reducing AT1
					agonist-antagonist competition

3.3.2.2 Pharmacodynamically additive and antagonistic combinations

Investigation of additive and antagonistic combinations provides contrasting perspectives for facilitating the study of synergistic combinations. Additive combinations (Appendix Table S4, examples in Table 3-4) result from equivalent or overlapping actions (9 sets) and independent actions (4 sets) of the drugs involved. Equivalent and overlapping actions involve interactions with different targets of the same pathways that equivalently regulate the same target (7 sets) or interactions that directly or indirectly affect the same site of the same target (2 sets). For instance, retinoic acid and trichostatin A additively inhibit cell proliferation by overlapping actions of up-regulation of retinoic acid receptor beta and reactivation of its messenger RNA (mRNA) expression[473]. Independent actions involve interactions at different targets of un-related pathways (3 sets) or different sites of the same target (1 set). For instance, doxorubicin and trabectedin produce additive anticancer effect via equivalent action of DNA intercalation and covalent guanine adduct formation at specific sites in DNA minor groove[474]. Both drugs bind to DNA in non-interfering manner, and doxorubicin prefers AT regions[475], while trabectedin prefer to alkylates guanines[476]. Recent progresses in designing dual platinum-intercalator conjugates[477] suggest that it is possible for both drugs to act without hindering each other's binding mode.

Antagonistic drug combinations (Appendix Table S5, examples in Table 3-5) involve interfering actions at the same target (2 sets) or different targets of related pathways that regulate the same target (2 sets). One possible mechanism for antagonistic drug combination against the same target is mutual interference at the same site, which can be illustrated by the aminophylline-theophylline combination[478]. Both aminophylline and

<u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> theophylline are adenosine receptor antagonist and phosphodiesterase inhibitor, and involved in the release of intracellular calcium[478]. Adenosine receptor antagonist binding may be associated with non-unique binding site conformations[479]. Therefore, aminophylline or theophylline binding likely locks the receptor into a unique conformation that hinders theophylline or aminophylline binding, leading to antagonism. Likewise, inhibitor-activator, antagonist-agonist, blocker-substrate, and other mutually interfering pairs of drugs that bind to the same site may also produce antagonism. One mechanism for antagonistic drug combination against different targets of related pathways is the counteractive actions that hinder a partner drug's normal actions, which can be illustrated by the cytarabine and 17-AAG combination[437]. Cytarabine is a DNA binder[437] and 17-AAG is a heat-shock protein antagonist that abrogates Akt survival pathway[376,480]. 17-AAG antagonizes the cytotoxic activity of cytarabine, due in part to the induction of G1 arrest, which subsequently prevent the incorporation of cytarabine into cellular DNA[437].

Table 3-4 Examples of literature reported pharmacodynamically additive drug combinations, in which additive action has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed

Action type	Combination target relationship	Drug A (mechanism of action related to additive effect)	Drug B (mechanism of action related to additive effect)	Reported additive effect [Ref]	Additism determination method	Possible mechanism of additive effect
Equivalent or overlapping actions	Different targets of the same pathways that regulate the same target	Diazoxide (ATP-sensitive K+ channel opener[481], enhanced ATPase activity of channel regulatory subunits sulphonylurea receptors[482])	Dibutyryl-cGMP (activated ATP-sensitive K+ channel[481], activated channel via a cGMP-dependent protein kinase[483, 484])	Additive antinociceptive effect[485]	ANOVA synergism & dose effect data analysis	Diazoxide enhanced ATPase activity of channel regulatory subunits[482], Dibutyryl- cGMP activated channel via a cGMP- dependent protein kinase [483,484]
	Same target (different sites with direct contact with agonist site)	Propofol (interacted with GABA A receptor, acting on at TM3 segment of the beta2 subunit[486])	Sevoflurane (interacted with GABA A receptor at Ser270 of the alpha1 and alpha2 subunits[487])	Additive action in producing consciousness and movement to skin incision during general anesthesia[488]	Dixon up-down method	Propofol binds to TM3 segment of the beta2 subunit[486], Sevoflurane binds to Ser270 of the alpha1 subunit[487]. As agonist binding site is located between alpha1 and beta2 subunits[489], both drugs likely hinder agonist activity, thereby producing mutually substitutable actions.
	Same target (same site):	Ampicillin (blocked penicillin- binding protein 2A and thus bacterial cell wall synthesis)[466]	Imipenem (inhibited penicillin- binding protein -1A, -1B, -2, -4 and -5 and thus bacterial cell wall synthesis)[490]	Additive antibacterial effect[347]	Checkerboard method, fractional inhibitory concentration	Both acted at the same active site of penicillin-binding protein 2A[491] but at relatively high MICs of \geq 32µg/ml [466]. The relatively high MICs make it less likely for both drugs to saturate target sites, thereby maintaining additive antibacterial effect.
Independen t actions	Different targets of unrelated pathways	Artemisinin (interfered with parasite transport proteins PfATP6, disrupted parasite mitochondrial function, modulated host immune function)[492]	Curcumin (generated ROS and down-regulated PfGCN5 histone acetyltransferase activity, producing cytotoxicity for malaria parasites)[261]	Additive antimalarial activities[493]	Fractional inhibitory concentrations	Artemisinin blocked calcium transport to endoplasmic reticulum[492], Curcumin induced DNA damage and histone hypoacetylation[261]. They act at different sites in non-interfering manner.
	Same target (different sites)	Doxorubicin (DNA intercalator[475], preferred AT regions[475])	Trabectedin (formed covalent guanine adduct at specific sites in DNA minor grove[476], interacted with DNA repair system)	Additive anticancer effect[474]	Isobolographic analysis	Both bind to DNA in non-interfering manner, one preferred AT regions[475], the other alkylated guanines[476]. Recent progresses in designing dual platinum- intercalator conjugates[477] suggested that it is possible for both drugs to act without hindering each

Chapter 3: Mechanisms of drug combinations: interaction and network	perspectives
---	--------------

						other's binding mode
Independen	Different targets of	Azithromycin (hindered	Imipenem (inhibited penicillin-	Additive antibacterial	Checkerboard	Azithromycin hindered bacterial protein
t actions at	unrelated pathways	bacterial protein synthesis by	binding protein -1A, -1B, -2, -4	effect[433]	method,	synthesis[431] at MIC of 0.12µg/ml[494].
dosages		binding to 50S component of	and -5 and thus bacterial cell		fractional	Imipenem blocked bacterial cell wall
significantl		70S ribosomal subunit[431])	wall synthesis)[490]		inhibitory	formation[490] at MICs of $\geq 32 \mu g/ml[466]$.
y lower					concentration	At dosages significantly lower than MICs for
than MICs,						both drugs, azithromycin's reduction of
complemen						penicillin-binding proteins[490] may be
tary actions						insufficient for imipenem to saturate these
at higher						proteins, allowing its unhindered inhibition of
dosages						these proteins[490], thereby these actions
						proceed in non-interfering manner

Table 3-5 Examples of literature reported pharmacodynamically antagonistic drug combinations in 2000-2006, in which antagonism has been determined by established methods and its molecular mechanism has been revealed. The antagonism of the listed drug combinations is due to interfering actions of the partner drugs in each combination.

Combination target	Drug A (mechanism of	Drug B (mechanism of	Reported antagonistic	Antagonism	Possible mechanism of antagonism of interfering
relationship	action related to	action related to	effect [Ref]	determination	actions
	antagonism)	antagonism)		method	
Different targets of	Amphotericin B (formed	Ravuconazole (inhibited	Antagonism in	Loewe additivity-	Amphotericin B can form ion channels more easily in
related pathways that	ion channels in fungal	biosynthesis of ergosterol, a	experimental invasive	based drug-	the presence of ergosterol [495], ravuconazole
regulate the same target	membranes[495])	component of fungal cell	pulmonary	interaction model	inhibition of ergosterol synthesis[496] can therefore
		membrane[496])	aspergillosis[497,498]		reduce the activity of amphotericin B in forming ion
					channels[495]
Same target	Aminophylline (adenosine	Theophylline (released	Antagonism of inhibitory	Quantal release	Adenosine receptor antagonist binding may be
	receptor antagonist,	intracellular calcium,	adenosine autoreceptors	measurement	associated with non-unique binding site
	phosphodiesterase	adenosine receptor antagonist,	and release of intracellular		conformations [479]. Aminophylline binding may
	inhibitor, released	phosphodiesterase	calcium[478]		lock the receptor into a unique conformation that
	intracellular calcium[478])	inhibitor[478])			hinder theophylline binding, thereby producing
					antagonistic effect

3.3.2.3 Pharmacodynamically potentiative combinations

Potentiative drug combinations (Appendix Table S6, examples in Table 3-6) involve positive modulation of drug transport or permeation (7 sets), distribution or localization (8 sets), and metabolism (3 sets). Potentiative modulation of drug transport or permeation enhances drug absorption via disruption of transport barrier, delay of barrier recovery, or reduction of first-pass excretion by inhibiting drug efflux. Potentiative modulation of drug distribution or localization increases drug concentration in plasma or specific tissue by blocking drug uptake and inhibiting metabolic processes that convert drugs into excretable forms. Potentiative metabolism modulation stimulates the metabolism of drugs into active forms, or inhibits the metabolism of drugs into inactive forms.

Typical potentiative effects can be illustrated by two examples. One is the enhanced absorption of antithrombotic low molecular weight heparin (LMWH) by chitosan[499]. LMWH is an antithrombin binder that inhibits activated coagulation factors. Chitosan reversibly interacts with components of tight junctions to widen paracellular routes, which increases permeability of LMWH across mucosal epithelia and thus enhances its absorption and improved therapeutic effect. The second example is 2'-deoxyinosine enhancement of antitumor activity of 5-fluorouracil in human colorectal cell lines and colon tumor xenografts[500]. 5-fluorouracil is metabolized by thymidine phosphorylase and others into a metabolite that stabilizes P53 due to RNA-directed effects. 2'-deoxyinosine enhances thymidine phosphorylase activity and thus the metabolism of 5-fluorouracil into active metabolite, which is subsequently incorporated into cellular ribonucleic acid (RNA) in place of the normal metabolite, yielding fraudulent RNA[501].

3.3.2.4 Pharmacokinetically reductive combinations

Appendix Table S7 (examples in Table 3-7) summarized 2, 1 and 4 of the 7 sets of reductive drug combinations involve negative modulation of drug transport or permeation, distribution or localization, and metabolism respectively. Reductive modulation of drug transport or permeation typically blocks drug absorption or promotion of first-pass excretion by such actions as drug-drug aggregation to reduce permeability and inhibition of drug transport into plasma or target site. Reductive modulation of drug distribution/localization decreases drug concentration in plasma or specific tissue, which typically involves stimulation of metabolic processes for converting drugs into excretable forms and inhibition of metabolic processes for increasing drug concentration. Drug activity can also be reduced by metabolism modulation to covert drugs into inactive forms.
Table 3-6 Literature reported pharmacokinetically potentiative drug combinations, in which potentiative effect has been determined by established methods and its molecular mechanism has been revealed

Biochemical class of potentiative effect	Drug A (therapeutic or toxic effects and mechanism of actions)	Drug B (mechanism of action related to potentiative effect)	Reported potentiative effect [Ref]	Possible mechanism of potentiative actions
Positive regulation of drug transport or permeation	AZT (anti-HIV, HIV-1 reverse transcriptase inhibitor)	1,8-Cineole (formed hydrogen bonds with lipid head groups of stratum corneum lipids[502])	Enhanced cross-skin permeation of AZT[503]	Enabled drug transport across skin possibly by disrupting absorption barrier via binding to lipid head groups
Enhanced drug distribution or localization	Cerivastatin (cholesterol-lowering, HMG-CoA reductase inhibitor)	Gemfibrozil (inhibited CYP2C8 mediated metabolism of statins, inhibited OATP2 mediated uptake of cerivastatin[504])	Increased plasma concentration of statins by inhibiting their metabolism and uptake[504-506]	Enhanced level of drug in plasma by metabolism and uptake inhibition
Enhanced drug metabolism	Doxorubicin (anticancer by DNA intercalation, converted to doxorubicinol by NADPH-dependent aldo/keto or carbonyl reductases [507], which produced cardiotoxicity by mediating transition from reversible to irreversible damage)	Paclitaxel (stimulated enzymatic activity of NADPH-dependent aldo/keto or carbonyl reductases[507])	Enhanced cardiotoxicity by increasing metabolism of doxorubicin into toxic metabolit[507]	Enhanced metabolism of drug into toxic metabolite

Table 3-7 Examples of literature reported pharmacokinetically reductive drug combinations, in which reductive effect has been determined by established methods and its molecular mechanism has been revealed.

Biochemical class	Drug A (therapeutic or toxic effects and	Drug B (mechanism of action	Reported reductive effect [Ref]	Possible mechanism of
of reductive effect	mechanism of actions)	related to reductive effect)		reductive actions
Drug transport and	Amphotericin B (antileishmanial, formed	Miltefosine (antileishmanial,	Reduced miltefosine-induced paracellular	Reduced drug permeability and
permeation	aggregate with miltefosine [508])	formed aggregate with	permeability enhancement in Caco-2 cell	transport
		amphotericin B[508])	monolayers, inhibited uptake of both drugs,	
		1 1 2/	decreased transpithelial transport of both drugs[509]	
Drug distribution	Cisplatin (DNA inter- and intra- strand	Procainamide hydrochloride	Reduced cisplatin-induced hepatotoxicity via	Reduced level of toxic drug by
and localization	adduct, preferably bind to the major groove	(formed cisplatin-procainamide	formation of less toxic platinum complex, leading to	formation of less toxic complex
	of GG, AG and TACT sites[381] thereby	complex[511])	inactivation of cisplatin or its highly toxic	and rearrangement of its
	inhibited DNA polymerization and induced		metabolites and to a different subcellular distribution	subcellular distribution
	DNA damage to trigger apoptosis[510])		of platinum[511]	
Drug metabolism	Warfarin (anticoagulant and antithrombotic,	Quinidine (stimulated CYP3A4	Reduced anticoagulanet effect of warfarin by	Enhanced metabolism of active
	affected coagulation proteins that act	mediated metabolism of	stimulating its metabolism[513]	drug into inactive metabolite
	sequentially to produce thrombin,	warfarin[513])		
	metabolized by CYP3A4[512])			

3.3.2.5 Further assessment of popularly-used combinations

A number of drug combinations have been heavily used in clinical applications for decades 1999[514-520]. For some of these classical drug combinations, the studies of their combination effects have been primarily conducted and published before 1999, and are frequently based on non-rigorous combination analysis methods. Thus, some of these classical combinations were not selected by our search procedure. Non-the-less, their popular use is a strong indication of their possible beneficiary combination effects in comparison to those of individual drugs. Therefore, it is of interest to assess the effects and mechanisms of these classical drug combinations.

We identified 10 sets of classical drug combinations that were missed by our search procedure and contain no drug of abuse and withdrawn drug. Table 3-8 summarizes literature-described modes of actions of individual drugs, suggested combination type and possible mechanism of these combinations. The 10 combinations include 5 synergistic[514, 515, 519-521], 1 dual synergistic/additive[515], 1 nonsynergistic[515, 522] combinations. This non-synergistic combination has been replaced by single drug therapy in clinical setting[515]. For the remaining 3 combinations, we were unable to find a literature report indicating their possible types of combination. It is also noted that 4 of the 10 combinations have been studied by rigorous drug combination analysis methods.

Table 3-8 Assessment of clinically heavily-used drug combinations not collected by our literature search procedure. These combinations have primarily been studied by less rigorous combination analysis methods and the relevant studies have been published before 1999.

Suggested combination type	Combination target	Drug A (mechanism of actions related to combination effect)	Drug B (mechanism of actions related to combination effect)	Reported combination effect [Ref]	Combination analysis method	Possible mechanism of combination actions
Potentiative combination by enhanced drug distribution or localization		Amoxicillin (inhibited bacterial cell wall synthesis[523], destructed by beta-lactamase[524])	Clavulanate (beta- lactamase inhibitor[525])	Antibacterial synergy[514]	Comparison of inhibitory activity	Clavulanate maintained level of amoxicillin at bacterial cell wall by inhibiting its degradation enzyme beta-lactamase inhibitor[525], thereby potentiatived the antibacterial activity of amoxicillin.
Synergistic combination due to facilitating actions	Different targets of related pathways that regulate the same target	Salmeterol (beta 2-adrenoceptor agonist[526] that activated T-cell subtypes ¹⁸⁹ and promoted apoptosis via adrenoreceptor- and cAMP- independent, Ca2+-dependent mechanism[527])	Fluticasone (glucocorticoid receptor binder[528] that induced apoptosis[529], up- regulated beta2- adrenoceptor[530])	Synergistic in vitro T- cell activation and apoptosis induction in asthma[521]	Comparison of activity and protein levels	Salmeterol's agonistic activity on beta 2- adrenoceptor[526] is facilitated by fluticasone's up-regulation of beta2- adrenoceptor[530], leading to synergistic T- cell activation and apoptosis induction
Redundent combination in targeting upstream and downstream targets of the same single-route pathway	Different targets of the same pathway (upstream – downstream relationship)	Suphamethoxazole (dihydropteroate synthase inhibitor[531], metabolite covalently haptenated human serum proteins[532])	Trimethoprin (dihydrofolate reductase inhibitor[533])	No synergy detected against E. coli[522], S. somaliensis strains[515], therapeutic effect due to sulphamethoxazole alone, clinical use of combination discontinued and converted to single drug[515]	Chequerboard	Both drug target the same single-route folate metabolism pathway, with suphamethoxazole targeting the upstream dihydropteroate synthase[531] and trimethoprin targeting the dounsstream dihydrofolate reductase[533]. Redundent combination if suphamethoxazole effectively inhibits dihydropteroate synthase, trimethoprin inhibition of dihydrofolate reductase serves as a backup when suphamethoxazole becomes less effective
Unclear	Different targets of related pathways	Rifampicin (bacterial DNA- dependent RNA polymerase inhibitor[534])	Fusidic acid (interfered with bacterial protein synthesis by inhibiting the translocation of peptide elongation factor G from the ribosome[535])	Synergistic effect against S. somaliensis strains in Vitro[515]	Chequerboard	Mechanism unclear. There is a report that transcribing activity of DNA-dependent RNA polymerase from Ecoli is inhibited in vitro by addition of preparations of elongation factor Ts purified to homogeneity[536]
Synergistic combination due to	Different targets of related	Erythromycin (binds to bacterial 70S ribosomal complex to inhibit	Penicillin (binds to DD- transpeptidase that links	Combination inhibited 80% of	Chequerboard	Weakening of bacterial cell wall by penicillin[537] enhanced erythromycin

	1		1		n	1
facilitating action	pathways	bacterial protein synthesis[537])	peptidoglycan, which weakens bacterial cell wall[538])	the S. somaliensis strains both synergically and additively[515]		penetration into bacterial cells, thereby enhancing its bioavailability
Potentiative combination by enhanced drug distribution or localization		Ergotamine (5-HT1B/1D receptor agonist[539], agonist of presynaptic dopamine receptors and alpha 2- adrenoceptors, postsynaptic alpha 1 and alpha 2-adrenoceptors, and antagonist of the postsynaptic alpha 1-adrenoceptors[540])	Caffeine (adenosine receptor antagonist[541] that increased dopamine and GABAergic activities[542], cAMP- phosphodiesterase inhibitor[543])	Symptomatic treatment of chronic vascular headache by the combination[516]	Comparison of activity	Caffeine increased water solubility of ergotamine to enhance its absorption[544], producing potentiative effect. Possible synergy may occur at dopamine receptor that require further investigation
Additive combination duo to equivalent action	Different targets of related pathways	Niacin (niacin receptor HM74A agonist that inhibited hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL cholesterol[545])	Simvastatin (HMG-CoA reductase inhibitor that reduced synthesis of LDL cholesterol and triglycerides and increased HDL- cholesterol [546])	Combination reduced LDL and VLDL, and increased HDL cholesterol[517]	Comparison of activity and protein levels	Niacin reduced secretion of VLDL and LDL cholesterol[545], simvastatin reduced synthesis of LDL cholesterol and triglycerides[546], both drugs equivalently reduced the level of LDL cholesterol
Synergistic combination duo to complementary action	Same target different binding sites	Cisplatin (DNA inter- and intra- strand adduct, preferably bind to the major groove of GG, AG and TACT sites[381] thereby inhibited DNA polymerization and induced DNA damage to trigger apoptosis[510])	Cyclophosphamide (metabolite formed DNA adduct at phosphoester[547] and at G N-7 positions[548], thereby inhibited DNA polymerization and induced DNA damage to trigger apoptosis[485])	Combination produced response rates of 60% to 80% in small cell lung cancer patients[518])	Comparison of activity	Cisplatin and cyclophosphamide formed DNA adduct at different sites[510 [.] 547] possibly at mutually compatable binding conformation because of the small size of the drugs, thereby complementing each other's actions on DNA
Synergistic combination duo to facilitating action	Same target	Methotrexate (dihydrofolate reductase inhibitor[549])	Fluorouracil (anticancer, metabolite inhibited thymidylate synthase that stopped DNA synthesis[550], stabilized and activated P53 by blocking MDM2 feedback inhibition through ribosomal proteins[551])	Synergism in inhibiting viability of L1210 murine tumor cells[519]	Comparison of activity	Apart from methotrexate's anticancer dihydrofolate reductase inhibitory activity[549], methotrexate metabolite formed reversible ternary complexes with fluorouracil on one site of thymidylate synthase to enhance its binding to the enzyme[552], thereby facilitating fluorouracil's anticancer thymidylate synthase inhibitory activity

Synergistic	Same target	Diclofenac (non-selective COX	Paracetamol (major	Synergy in treatment of	Isobolographi	Apart from its analgesic action via
combination duo to		inihibitor[553], COX1 inhibition	ingredient of Tylenol	acute pain in	c analysis	cannabinoid receptors[489,554], paracetamol
complementary		increased brain KYNA formation to	and Panadol, metabolite	humans[520]		reduced active oxidized form of COX to
action		produce analgesic effect[553])	agonized cannabinoid			resting form[555] to complement
			receptors to produce			diclofenac's analgesic action of COX1
			analgesic			inhibition[553]
			effect[489,554], reduced			
			active oxidized form of			
			COX to resting			
			form[555], selective			
			COX2 variant			
			inhibitor[556])			

Chapter 3: Mechanisms of drug combinations: interaction and network perspectives Literature-described MI profiles appear to provide clues to the possible reasons for 9 of the 10 combinations. The synergistic salmeterol-fluticasone, methotrexate-fluorouracil, and erythromycin-penicillin combinations likely involve facilitating actions[530,537,552], diclofenac-paracetamol synergism may arise from complementary action[553,555]. Amoxicillin-clavulanate synergism possibly stems from potentiative enhancement of drug distribution[525]. We were unable to find information for assessing the reported synergism of rifampicin-fusidic acid combination[515]. The reported non-synergistic suphamethoxazole-trimethoprin combination appears to involve redundant actions in targeting upstream and downstream targets of a single-route pathway, with the downstream drug acting as a second line of defense [531,533]. For the 3 combinations that did not report the types of combination actions, cisplatin-cyclophosphamide combination likely produces synergistically complementary action[510,547], caffeine in the ergotamine/caffeine combination may involve the potentiation of ergotamine's action by enhancing its distribution[544], and niacin-simvastatin combination possibly produces additive effect duo to their equivalent actions[546].

3.3.2.6 Pathway analysis

Pathway analysis is an effective approach for more comprehensive assessment of drug combination effects[557] as well as other drug activities and responses[558,559]. Advances in systems biology and other areas of biomedical and pharmaceutical research have enabled the integration of biomolecular network information, individual MI profiles, omics data, and disease information for drug validation and for understanding of the mechanism of drug actions[560-562]. It is therefore of interest to explore pathway analysis approaches for further studying some of the drug combinations evaluated by MI profiling.

Figure 3-1 shows the related pathways of cisplatin-trastuzumab combination (Appendix Table S1) based on reference and conventional pathways in KEGG database, and literature reports of drug pathways. Cisplatin is a DNA adduct that inhibits DNA polymerization and induces DNA damage to trigger apoptosis[510] (via P53-Bax, P53-Fas, P38-JNK, and p73 paths in Figure 3-1). Trastuzumab is an anti-HER-2/neu antibody that inhibits HER2mediated proliferation, angiogenesis, survival and migration [563] (via PI3K-AKT-mTOR and RAS-ERK paths). Cisplatin's induction of DNA damage and apoptosis may be attenuated by DNA repair systems in certain cell types[510] (via P53-P21 paths). This counteractive DNA repair action may be reduced by trastuzumab's anti-HER2 activity that suppresses DNA repair pathway [564] and inhibits PI3K-AKT pathway [565] to enhance apoptosis[566]. The corresponding paths (dashed lines in Figure 3-1) involve the inhibition of HER2-PI3K-AKT mediated activation of P21, which reduces P21's activity in facilitating Chk1-P53-P21 and Chk1-P53-Gadd45a-P21 mediated induction of cell cycle arrest important for ATM mediated DNA repair process. Reduction of AKT activity by trastuzumab's inhibition of HER2 also lowers Mdm2's activity in facilitating P53 degradation, which enhances P21 activation to counter-balance the reduced AKT activation of P21. We were unable to identify another counter-balance path, and it is unclear to what extent the Mdm2 mediated counter-balance path affects the overall state of P21 activation.

In addition to the paths of protein-protein, protein-substrate, and protein-nucleic acid interactions, pathway analysis also needs to take into consideration of drug metabolism, transport, drug-drug interaction and complex formation. This can be illustrated by comparative analysis of the anticancer methotrexate-fluorouracil[549,552] and <u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> antibacterial suphamethoxazole-trimethoprin[531,533] combinations (Table 3-8) that target human and bacterial folate metabolism pathways respectively but produce contrasting combination effects. The pathways affected by these two combinations are shown in Figure 3-2 and Figure 3-3 respectively. Although both combinations target upstream and downstream targets in a single route path leading to DNA synthesis (assuming that synthesis of 7,8-dihydropteroate is essential for bacterial growth), only the suphamethoxazole-trimethoprin combination shows the expected redundant effect such that effective inhibition of dihydropteroate synthase by suphamethoxazole renders trimethoprin inhibition of dihydrofolate reductase unnecessary for reducing DNA synethesis[531,533]. The un-expected methotrexate-fluorouracil synergism arises because methotrexate metabolite forms reversible ternary complexes with fluorouracil on one site of thymidylate synthase to enhance its binding to the enzyme [549,552] (dashed line in Figure 3-2), which synergistically facilitates fluorouracil's anticancer thymidylate synthase inhibitory activity.

3.4 Conclusion

Understandings of MI profiles of individual drugs, network crosstalks and regulations, and modes of actions of drug combinations are useful starting points for investigating the effects of drug combinations. For the analyzed cases of synergistic, potentiative, additive, antagonistic and reductive combinations, and likely many others, the literature-described MI profiles of the drugs involved appear to offer useful clues to the mechanism of combination actions from the perspectives of coordinated molecular interactions and network regulations. Clues to other aspects of pharmacodynamic, toxicological, and pharmacokinetic effects may also be obtained from the relevant MI profiles. <u>Chapter 3: Mechanisms of drug combinations: interaction and network perspectives</u> Discovery of efficacious drug combinations may be facilitated by targeting key efficacy and toxicity regulating nodes of positive[388,390] and negative regulations[26,28-30], anti-targets and counter-targets[33], compensatory and neutralizing actions[31,32], and transporter and enzyme mediated pharmacokinetic activities[499]. Both the discovery and the analysis of drug combinations can be facilitated by the collective use of different approaches and methods. For instance, signs of MI profiles as well as genes, pathways affected by or responsive to drug-combinations[440] and individual drugs[567-569] may be detected from gene expression or proteomics profiles by using unsupervised hierarchical clustering and supervised machine learning methods[440,567,570,571]. These combined with knowledge of the characteristics and activities of targets[337] and ADME-Tox proteins[355] enable the prediction of responses and markers[567-569], unknown therapeutic actions[570], targets and characteristics[570,572,573], efficacies[574], toxicological effects[570], and resistance profiles[571] of drug combinations and individual drugs Figure 3-1 Pathways affected by cisplatin-trastuzumab drug combination, figure was generated by Microsoft Visio 2007

Figure 3-2 Human folate metabolism pathway affected by the combination of methotrexate (MTX) and fluorouracil (5-FU)

Figure 3-3 Ecoli folate metabolism pathway affected by the suphamethoxazoletrimethoprin drug combination

Receptor tyrosine kinase inhibitors elicit markedly different anticancer clinical response rates in clinical trials[575]. These rates have been linked to mutation and amplification of drug target, activating mutation of RAS, BRAF and PIK3CA, and PTEN loss-offunction[576,577]. The possible correlation with target expression is under investigation[578]. Compensatory and alternative signaling that bypass target inhibition also influence drug response[31,579]. In this work, we retrospectively analyzed mutation, amplification and microarray gene expression profiles of drug target and 8-11 known bypass and downstream drug-resistant genes in 53 NSCLC and 31 breast cancer cell-lines sensitive or resistant to gefitinib, erlotinib, lapatinib, and trastuzumab. The individual profiles correlate with sensitive and resistant cell-lines at levels comparable to the reported correlations with clinical response rates. The collective profiles showed more balanced and improved correlation with sensitive and resistant cell-lines.

4.1 Introduction

Receptor tyrosine kinase inhibitors, such as EGFR inhibitor gefitinib and erlotinib, HER2 monoclonal antibody trastuzumab, and multi-target EGFR and HER2 inhibitor lapatinib, are highly successful anticancer drugs that elicit markedly different anticancer clinical response rates in clinical trials [575,578,580,581]. For instance, the reported clinical response rates of gefitinib and erlotinib are 19.9% and 8.9% for the treatment of NSCLC

[575,578], and those of lapatinib and trastuzumab are 8~24% and 12-34% for the treatment of breast cancer [580,581]. These clinical response rates have been linked to mutation and amplification of the drug target, activating-mutation of downstream signaling genes RAS, BRAF and PIK3CA, and loss-of-function of the downstream signaling regulator PTEN [576,577]. The possible correlation of the response rates with the expression level of the drug target is also under investigation on the basis that the drug target such as EGFR is known to induce carcinogenesis via overexpression, amplification and somatic mutations [578].

Moreover, compensatory, alternative and redundant signaling that bypass target inhibition also influence drug response [31,579]. As summarized in Table 4-1, several such bypass mechanisms against the inhibition of EGFR or HER2 have been reported in the literature. While these mechanisms may appear scattered in individual patients, they collectively are expected to have a significant impact on the overall drug response rates in large patient populations. Therefore, collective consideration of the profiles of the bypass genes that regulate these bypass mechanisms together with usual consideration of the mutational, amplification and expression profiles of the drug targets and the relevant downstream genes may improve the prediction of clinical response to the relevant drugs.

To determine whether the collective profiles show a more balanced and improved correlation with sensitive and resistant cell-lines than the individual profiles, we retrospectively analyzed mutational, amplification and microarray gene expression profiles of drug target and 8-11 known bypass and downstream drug-resistant genes in 53 NSCLC and 31 breast cancer cell-lines sensitive or resistant to gefitinib, erlotinib, lapatinib, and trastuzumab. The clinical relevance of the correlation analysis against cell-line data was

evaluated by comparing the levels of correlation between the individual profiles and the sensitive and resistant cell-lines with the reported level of correlations between these profiles and clinical data to determine if they are consistent with each other.

Gefitinib and erlotinib have been approved for lung and pancreatic cancers, trastuzumab and lapatinib have been approved for breast cancer [576,582]. These drugs were evaluated because of their clinical relevance, knowledge of drug-resistance mechanisms, and availability of drug sensitivity, genetic and expression data for statistically significant number of cell-lines. The analyzed genetic data include drug sensitizing mutations and copy number variations in EGFR, activating mutations in RAS, BRAF, PIK3CA and inactivating mutations in PTEN directly contribute to the resistance against EGFR inhibitors (EGFR-I) or HER2 inhibitors (HER2-I) in significant percentage of patients (>2%) [576,577]. The expression data include microarray gene expression data of EGFR, HER2, PTEN, and several bypass genes directly contribute to the resistance against EGFR-I or HER2-I [31,579].

4.2 Materials and Methods

4.2.1 Data collection and preprocessing

4.2.1.1 Drug sensitivity data for NSCLC and breast cell-lines

We identified from literatures 48, 85, and 83 NSCLC cell-lines with available sensitivity data for gefitinib, erlotinib, and lapatinib, and 24 and 22 breast cancer cell-lines with available sensitivity data for trastuzumab and lapatinib. Overall, 46 NSCLC and 17 breast cancer cell-lines with sensitivity data for one or more drugs were collected. A cell-line was considered to be sensitive to a drug if the drug inhibits it at IC50 \leq 1µM[583], otherwise it

was considered to be resistant to the drug. Sensitivity data of NSCLC cell-lines treated with gefitinib, erlotinib, and lapatinib, and breast cancer cell-lines treated with trastuzumab and lapatinib are summarized in Table 4-2 and Table 4-3 respectively. Table 4-4 listed the literature reported performance of the prediction of EGFR-I sensitive and resistant patients by using mutation-based and amplification-based methods.

4.2.1.2 Molecular profiling used for NSCLC and breast cell-lines

The genetic and microarray gene expression data for 53 NSCLC and 31 breast cancer celllines were collected from the published literatures, and COSMIC and GEO databases. We further identified from GEO database the microarray gene expression data for 6 lung and 9 breast cell-lines of healthy people respectively. The relevant data and literature sources for these cell-lines are summarized in Table 4-2, 4-3, and 4-5. These expression data retrieved from GEO database were processed by using R[312] and Bioconductor[311]. Raw data obtained from GEO database was filtering with imagine intensity threshold in the range of 20 to 16,000 units and followed by RMA normalization [310].

Table 4-1 The main therapeutic target, bypass genes, drug-resistant downstream signaling or regulatory genes, and the relevant bypass mechanisms in the treatment of NSCLC and breast cancer

Targeted Cancer: NSCLC Main Target for the Treatment of Specific Cancer: EGFR Drugs Evaluated: Gefitinib, Erlotinib, and Lapatinib								
Bypass Gene	Bypass Mechanism							
HER2	EGFR inhibition upregulated HER2 and induced compensatory EGFR-HER2, HER2- HER3, HER2-HER4 heterodimerisation to promote alternative signaling[34-36]							
HER3	EGFR inhibition induced compensatory transactivation of HER3 signaling[31]							
IGF1R	EGFR inhibition upregulated IGF1R and induced EGFR-IGF1R heterodimerization and activation of IGFR signaling[40,42]							
c-MET	EGFR inhibition countered by focal amplification of MET that transactivates HER3 signaling and interacts with EGFR to promote alternative signaling[39,41,46]							
PDGFR	EGFR inhibition countered by PDGFR transactivation of HER3 signaling[41]							
FGFR	Contributed to EGFR inhibitor resistance via alternative signaling[44]							

VEGFR2	Contributed to EGFR inhibitor resistance via alternative signaling[38]
Drug-Resistant Downstream Gene	Resistance Mechanism
PTEN	PTEN loss or inactivating mutation contributed to EGFR inhibitor resistance by activation of Akt and EGFR[37,47]
KRAS	KRAS activating mutation mediated EGFR-independent signaling and contributed to EGFR inhibitor resistance[43,45]
РІКЗСА	PIK3CA activating mutation mediated EGFR-independent AKT signaling and contributed to EGFR inhibitor resistance[584]
AKT	AKT activating mutation mediated EGFR-independent AKT signaling and could lead to resistance against EGFR inhibitor[585]
Targeted Cancer: B Main Target for the Drugs Evaluated: T	reast Cancer e Treatment of Specific Cancer: HER2 rastuzumab, Lapatinib
Bypass Gene	Bypass Mechanism
EGFR	Compensatory crosstalk of HER2-EGFR heterodimerisation promoted alternative ERBB signaling[34,36]
HER3	HER2 inhibition increased HER3 localization[579] and induced compensatory transactivation of HER3 signaling[31], HER2-HER3, HER2-HER4 heterodimerisation promotes alternative ERBB signaling[34]
IGF1R	Contributed to HER2 inhibitor resistance via IGF1R-HER2 crosstalk and alternative IGF1R signaling[579,580]
c-MET	HER2 inhibition countered by overexpressed MET that interacts with EGFR to promote alternative signaling[46]
ESR1	HER2 inhibition induced compensatory ER signaling via activation of FOXO3a and caveolin-1 mediated ESR1 transcriptional activity[586]
AXL	HER2 inhibition countered by overexpressed AXL that crosstalks with HER3, ER to promote AkT and ER signaling[587]
Drug-Resistant Downstream Gene	Resistance Mechanism
PTEN	PTEN loss and inactivating mutation contributed to HER2 inhibitor resistance by activation of Akt[579]
PIK3CA	PIK3CA activating mutation mediated HER2 independent AKT signaling and contributed to HER2 inhibitor resistance[588]

Histologias		alogical	Gene Expression	EGFR	EGFR Amplification	Mutated	Sensitivity Data		
Cell-line	Subtype *	Source *	Sample ID at GEO Database[589]	Amplification (gene copy number >3)[590]	(gene copy number >4) [590]	Gene/Genes [591,592]	Gefitinib[593,594]	Erlotinib[590,594]	Lapatini b[590]
A427	NS	PT	NA			KRAS		R	R
A549	NS	PT	GSM108799			KRAS	R	R	R
Calu1	EC	PE	GSM108801			KRAS	R	R	R
Calu3	AD	PE	GSM108803				S		S
Calu6	APC	PT	GSM108805			KRAS	R	R	R
Colo699	AD	PF	NA	Y				R	R
DV90	AD	PE	NA			KRAS		R	R
EKVX	AD	PT	NA					R	R
H1155	LCC	PT	NA	NA	NA	KRAS,PTEN	R	R	
H1299	LCC	LN	GSM108807			NRAS	R	R	R
H1355	AD	РТ	GSM108809			KRAS, BRAF	R	R	R
H1395	AD	PT	GSM108811			BRAF	R	R	R
H1437	AD	PT	GSM108813				R	R	R
H1563	AD	PT	NA			PIK3CA		R	R
H1568	AD	PT	NA	Y	Y			R	R
H157	SQ	PT	GSM108815			KRAS, PTEN	R	R	R
H1648	AD	LN	GSM108817				R	R	S
H1650	AD	PE	GSM108819	Y		EGFR	R	R	R
H1666	AD	PE	GSM108821			BRAF	R	R	S
H1734	AD	PT	NA	Y		KRAS		R	R
H1755	AD	Live	NA			BRAF		R	R
H1770	NE	LN	GSM108825				R	R	
H1781	AD	PE	NA			ERBB2	R	R	R
H1792	AD	PE	GSM171848	Y		KRAS		R	R
H1819	AD	LN	GSM108827	Y			R	R	S
H1838	AD	РТ	NA	Y	Y			R	R
H1915	SCC	Brain	NA					R	R
H1944	AD	ST	NA			KRAS		R	R
H1975	AD	PT	GSM108829	Y		EGFR	R	R	R
H1993	AD	LN	GSM108831	_			R	R	R
H2009	AD	LN	GSM108833			KRAS	R	R	R
H2030	AD	LN	NA			KRAS		R	R
H2052	MT	PE	GSM171854					R	R
H2077	AD	PT	NA					R	R
H2087	AD	LN	GSM108835			BRAF, NRAS	R	R	R
H2110	NS	PE	NA					R	R
H2122	AD	PE	GSM108837			KRAS	R	R	R
H2126	LCC	PE	GSM108839				R	R	R
H2172	NS	PT	NA					R	R
H2228	AD	PT	NA					R	R
H23	AD	PT	GSM171868			KRAS, PTEN		R	R
H2347	AD	РТ	GSM108841			NRAS	R	R	R
H2444	NS	PT	NA	Y		KRAS		R	R
H28	MT	PE	GSM171870					R	R
H2882	NS	PT	GSM108843				R	R	R
H2887	NS	PT	GSM108845			KRAS	R	R	R
H3122	AD	PT	GSM171874					R	R
H322	AD	PT	GSM171876	Y			R	R	R

Table 4-2 Clinicopathological features and data source of NSCLC cell-lines used in this study. The available gene expression data, EGFR amplification status, and drug sensitivity data for gefitinib, erlotinib, and lapatinib are included together with the relevant references.

H322M	AD	PT	NA					R	S
H3255	AD	PT	GSM108847	Y	Y	EGFR	S	S	S
H358	AD	РТ	GSM108849			KRAS	R	R	R
H441	AD	РТ	GSM108851			KRAS	R	R	R
H460	LCC	PE	GSM108853			KRAS, PIK3CA	R	R	R
H520	SQ	РТ	NA				R	R	R
H522	AD	РТ	NA	Y				R	R
H596	AD	РТ	NA	Y		PIK3CA		R	R
H647	ADSQ	PE	NA			KRAS		R	R
H661	LC	LN	GSM171884					R	R
H820	AD	LN	GSM108855	Y		EGFR	R	R	R
HCC1171	NS	PT	GSM108857			KRAS	R	R	R
HCC1195	ADSQ	PT	GSM108859	Y		NRAS	R	R	R
HCC1359	SGC	PT	GSM108861				R	R	R
HCC15	SQ	PT	GSM108863			NRAS	R	R	R
HCC1833	AD	PT	GSM171898					R	R
HCC193	AD	PT	GSM108865	Y			R	R	R
HCC2279	AD	PT	GSM108867	Y	Y	EGFR	S	S	R
HCC2429	NS	РТ	GSM171900					R	R
HCC2450	SQ	PT	GSM171902			PIK3CA		R	R
HCC2935	AD	PE	GSM108869			EGFR	S	S	S
HCC364	AD	PT	NA			BRAF		R	R
HCC366	ADSQ	PT	GSM108871				R	R	R
HCC4006	AD	PE	GSM108873	Y	Y	EGFR	S	S	S
HCC44	AD	РТ	GSM108875			KRAS	R	R	R
HCC461	AD	PT	GSM108877			KRAS	R	R	R
HCC515	AD	PT	GSM108879			KRAS	R	R	R
HCC78	AD	PE	GSM108881				R	R	R
HCC827	AD	PT	GSM108883	Y	Y	EGFR	S	S	S
HCC95	SQ	PE	GSM108885				R	R	R
HOP62	AD	РТ	NA			KRAS		R	R
HOP92	AD	PT	NA	Y				R	R
LCLC103H	LCC	PE	NA					R	R
LCLC97TM	LCC	PT	NA			KRAS		R	R
LouNH91	SQ	PT	NA	Y		EGFR		R	R
PC9	AD	PT	NA	Y		EGFR	S	S	R
SKLU1	AD	PT	NA			KRAS		R	R

Chapter 4: Integrated molecular profiling for predicting drug ser

* Determined from the ATCC (http://www.atcc.org) and DSMZ (http://www.dsmz.de) websites, and references therein.Abbreviations: AD, lung adenocarcinoma; APC, anaplastic carcinoma; EC, epidermoid carcinoma; LCC, large cell lung cancer; LN, lymph node; MT, mesothelioma; NA: not available; NE, neuroendocrine neoplasm; NS, not specified; NSCLC: non-small cell lung cancer; PE, pleural effusion; PF, pleural fluid; PT, primary tumor; R, resistant; S, sensitive ; SCC, small-cell carcinoma; SGC: spindle and giant cell carcinoma; ST, soft tissue; Y, gene amplified

	Listological			Cono				a	
	Subtypo*		FD/DD/	Gene Expression	Amplification	Amplificatio	Mutatad	Sensitivity	y Data
Sample Name	(Subtype	Source*	HFR?	Sample ID at	(gene conv	n (gene conv	Cono/Conos[50		
Sample Name	Reported in Ref	Source	Status*	CFO	(gene copy	number >4)	1 5021	Tractuzumah	I anatinih[
	[595 596])		Status	Database[597]	[595]	[595]	1,572]	[598-601]	602-6041
BT20	AC (A)	РТ	_/_/_	GSM320590	[370]	[370]	PIK3CA	R	R
BT474	IDC (L)	PT	+/+/+	GSM320596	Y	Y		S	S
BT549	IDC (B)	РТ	-/-/-	GSM320598			PTEN	R	R
CAL51	AC (B)	PE	-/NA/-	GSM320616			PIK3CA		R
CAMA1	$AC(L^{\#})$	PE	+/-/- #	GSM320599	Y	Y	PTEN	R	R
EFM19	IDC (L)	PE	+/+/-	GSM320618			PIK3CA		R
EFM192A	AC (L)	PE	+/+/+	GSM320619	Y	Y	PIK3CA	R	R
HCC1143	DC (A)	РТ	-/-/-	GSM320631				R	
HCC1395	DC (B)	PT	-/-/-	GSM320630				R	
HCC1419	DC (L)	РТ	-/-/+	GSM320624	Y	Y		R	
HCC1954	DC (A)	РТ	-/-/+	GSM320627	Y	Y	PIK3CA	R	
HCC70	DC (A)	PT	-/-/-	GSM320625				R	
HS578T	C Sar (B)	PT	_/_/_	GSM320601			HRAS		R
JIMT-1	IDC (B [#])	PE	NA	GSM320639	Y	Y	PIK3CA	R	R
KPL1	IDC (L [#])	PE	NA	GSM320622					R
MCF7	Met AC (L)	PE	+/+/-	GSM320602			PIK3CA	R	R
MDA-MB-157	Med C (B)	PE	-/-/-	GSM421871					R
MDA-MB-175VII	IDC (L)	PE	+/-/-	GSM320603					S
MDA-MB-231	Met AC (B)	PE	-/-/-	GSM320604			BRAF,KRAS	R	R
MDA-MB-361	Met AC (L)	BR	+/+/+	GSM320605	Y	Y	PIK3CA	R	R
MDA-MB-415	$AC(L^{\#})$	PE	+/-/- #	GSM320606	Y	Y	PTEN	R	
MDA-MB-435s	IDC $(B^{\#})$	PE	-/-/- #	GSM320607	Y	Y	BRAF	R	R
MDA-MB-436	AC (B)	PE	_/_/_	GSM320608				R	
MDA-MB-453	Met C (L)	PE	-/-/+	GSM320609	Y	Y	PIK3CA,PTEN	S	
MDA-MB-468	Met AC (A)	PE	_/_/_	GSM320610			PTEN	R	R
SK-BR-3	AC (L)	PE	_/_/_	GSM320611	Y	Y		S	S
T47D	IDC (L)	PE	+/+/-	GSM320612			PIK3CA	R	R
UACC812	IDC (L)	PT	+/-/+	GSM320613	Y	Y		S	S
UACC893	IDC (L)	PT	-/-/+	GSM320638	Y	Y	PIK3CA	R	S
ZR-75-1	IDC (L)	AF	+/-/-	GSM320614					R
ZR-75-30	IDC (L)	AF	+/-/+	GSM320633	Y	Y		S	

Table 4-3 Clinicopathological features and data source of breast cancer cell-lines used in this study. The available gene expression data, HER2 amplification status, and drug sensitivity data for trastuzumab and lapatinib are included together with the relevant references.

* Determined from the ATCC (http://www.atcc.org) and DSMZ (http://www.dsmz.de) websites, and references therein, or from this study. # information only obtained from Ref [596]

Abbreviations: A, basal A subtype; AC, adenocarcinoma; AF, ascites fluid; B, basal B subtype; C Sar, carcinoma sarcoma; CWN, chest wall nodule; DC, ductal carcinoma; IDC, invasive ductal carcinoma; Inf, inflammatory carcinoma; ILC, invasive lobular carcinoma; L, luminal subtype; Med C, medullary carcinoma, Met AC, metastatic adenocarcinoma; Met C, metastatic carcinoma; NA, not available; PE, pleural effusion; PT, primary tumor; R, resistant; S, sensitive ; Y, gene amplified

Study	Study Details	No of EGFR-I Resistant Patients	No of EGFR-I Resistant Patients	No of EGFR-I Resistant Patients	Method for Predicting EGFR-I Sensitivity	Percent of EGFR-I sensitive patients predicted by method	Percent of EGFR-I resistant patients predicted by method
Chan <i>et al</i> . 2006	15 studies 3,016 patients 509 with EGFR mutations	280	90	190	EGFR sensitizing mutation	77%	76%
Wu <i>et al.</i> 2007	6 studies 506 patients 152 with EGFR mutations	57	22	35	EGFR sensitizing mutation	77%	54%
Murray <i>et al.</i> 2008	202 studies 12,244 patients 3,188 with EGFR mutations	1578	498	1080	EGFR sensitizing mutation	80%	75%
Uramoto <i>et al.</i> 2007	27 studies 1170 patients 437 with EGFR mutations	1170	384	786	EGFR sensitizing mutation	82%	84%
Linardou <i>et al.</i> 2008	17 studies 1008 patients 165 with KRAS mutation	1008	105	903	KRAS activating mutation	95%	23%
Linardou <i>et al.</i> 2008	7 studies 756 patients 127 with KRAS mutation	756	81	675	KRAS activating mutation	98%	19%
Uramoto <i>et al.</i> 2007	7 studies 663 patients 211 with EGFR amplification	663	108	555	EGFR amplification	61%	74%

Table 4-4 The literature reported performance of the prediction of EGFR-I sensitive and resistant patients by using mutation-based and amplification-based methods

Table 4-5 Normal cell-lines (6 from the lung bronchial epithelial tissues and 9 from breast epithelial tissues) obtained from GEO database

Gene Expression Sample ID of Normal Cell-line at GEO Database	Cell-lines	Source of Cell-lines	Reference
GSM427196	NHBE	Normal human bronchial epithelial cells	
GSM427197	NHBE	Normal human bronchial epithelial cells	
GSM427198	BEAS-2B	Immortalized bronchial epithelial cells	Dof [605]
GSM427199	BEAS-2B	Immortalized bronchial epithelial cells	Kei [005]
GSM427200	1799	Immortalized lung epithelial cells	
GSM427201	1799	Immortalized lung epithelial cells	
GSM158659	BPE	Normal human mammary epithelial cells	
GSM158660	BPE	Normal human mammary epithelial cells	
GSM158661	BPE	Normal human mammary epithelial cells	
GSM158662	BPE	Normal human mammary epithelial cells	
GSM158663	BPE	Normal human mammary epithelial cells	Ref [606]
GSM158670	HME	Normal human mammary epithelial cells	
GSM158672	HME	Normal human mammary epithelial cells	
GSM158673	HME	Normal human mammary epithelial cells]
GSM158674	HME	Normal human mammary epithelial cells	

4.2.2 Bypass mechanism of studied tyrosin kinase inhibitors

The clinical efficacy of gefitinib, erlotinib, and lapatinib against NSCLC, and that of trastuzumab and lapatinib against breast cancer are mostly due to their inhibition of the main targets, EGFR and HER2, respectively [576,582]. Resistance to EGFR-I and HER2-I primarily arises from resistant mutations and amplification of the main target, activating mutations of down-stream signaling genes and loss of function of down-stream regulatory genes [31,576,577], and compensatory, alternative and redundant signaling genes frequently up-regulated or amplified in resistant patients [31,39,579]. Efflux-pumps, primarily responsible for the resistance of chemotherapy drugs [607], are not expected to significantly contribute to the resistance of the evaluated drugs because these drugs are either efflux-pump inhibitors [608-610], or monoclonal antibody un-affected by efflux-pumps [611]. Table 3-1 summarizes the literature-reported 11 and 8 bypass-genes and downstream signaling and regulatory genes that directly contribute to EGFR-I and HER2-I resistance respectively, the corresponding bypass and resistance mechanisms, and relevant literatures.

4.2.3 Drug sensitivity evaluation procedure

We retrospectively evaluated the capability of the individual and combinations of the genetic and expression profiles of the main target, downstream signaling and regulatory genes, and bypass genes in Table 3-1 for predicting the sensitivity of the 53 NSCLC cell-lines to gefitinib (6 sensitive, 38 resistant), erlotinib (7 sensitive, 46 resistant), and lapatinib (8 sensitive, 40 resistant), and that of the 31 breast cancer cell-lines to trastuzumab (5 sensitive, 19 resistant) and lapatinib (5 sensitive, 17 resistant). We

evaluated 11 mutation-based, amplification-based, expression-based, and combination methods. Due to inadequate copy number data, the amplification-based methods exclude the profiles of the bypass and downstream genes, which directly contribute to EGFR-I and HER2-I resistance [39], Non-the-less, copy number variation significantly influence gene expression, with 62% of amplified genes showing moderately or highly elevated expression [612]. Thus the effects of amplification of bypass genes are expected to be partially reflected by the expression profiles.

In mutation-based method M1, a NSCLC cell-line is predicted as sensitive to a drug if EGFR contains a mutation sensitizing to the drug [578] and the drug inhibits EGFR at IC50 \leq 500nM [583] (a stricter condition of IC50 \leq 100nM gives the same results in all studied cases), otherwise it is predicted as drug-resistant. In mutation-based method M2, a NSCLC cell-line is predicted as sensitive to a drug if the drug inhibits EGFR at IC50 \leq 500nM [583], and the un-inhibited KRAS has no activating mutation [45]. In mutation-based method M3, a NSCLC or breast cancer cell-line is predicted as sensitive to a drug if:

(1) the drug inhibits EGFR or HER2 at IC50≤500nM [583] and EGFR in NSCLC cellline has at least one sensitizing mutation [578];

- (2) the un-inhibited KRAS, NRAS, BRAF, PIK3CA in NSCLC cell-line [576] or PIK3CA in breast cell-line [578] has no activating mutation;
- (3) there is no PTEN loss or PTEN inactivating mutation in NSCLC [576] and breast [578] cell-line.

117

The mutation profiles of the relevant genes in each cell-line were generated by comparative sequence analysis with respect to the reported sensitizing, activating or inactivating mutations, which are summarized in Appendix Table S8 and Table S9. PTEN loss was assumed to occur if its microarray gene expression level is $\leq 1/5$ of the median level of PTEN in the normal tissue cell-lines [613], based on the comparison of the western-blot staining of a PTEN-deficient cell-line ZR-75-1[614] with that of a PTEN-normal cancer cell-line MCF-7 [614] (variation of this cut-off from 0 to 1/3 of the median level gives the same results in all studied cases).

In amplification-based method A1 and A2, a NSCLC or breast cell-line is predicted as sensitive to a drug if EGFR or HER2 in the respective cell-line is amplified and inhibited by the drug at IC50 \leq 500nM [583]. A gene in a cell-line is considered amplified if its copy number is \geq 4 [615] in method A1 and \geq 3 [616] in method A2 respectively. Copy numbers of the evaluated genes in the studied cell-lines were from literatures [616,617]. In expression-based method E1, a NSCLC or breast cell-line is predicted as sensitive to a drug if EGFR or HER2 in the respective cell-line is over-expressed [578] and inhibited by the drug at IC50 \leq 500nM [583]. The expression-based method E2 differs from method E1 by an additional condition: all un-inhibited bypass genes in a cell-line are not over-expressed. Bypass genes are frequently up-regulated or amplified in resistant patients [31,39,579], which likely enable the promotion of drug-resistant signaling at significant levels. A gene in cancer cell-lines was assumed as over-expressed if its microarray gene expression level is \geq 2-fold higher than the lowest level of the same gene in the corresponding healthy tissue cell-lines [618].

4.3 Results and discussion

4.3.1 Assessment of EGFR-I sensitivity prediction by mutation and amplification profiles

The performance and clinical relevance of the methods M1, M2, A1 and A2 in predicting gefitinib and erlotinib sensitive and resistant NSCLC cell-lines were evaluated. The results are summarized in Table 4-6 together with the reported performance of the mutation-based [45,578,619] and amplification-based [619] methods in predicting EGFR-I sensitive and resistant patients, and are detailed in Appendix Table S10 and Table S11 together with the respective cell-line sensitivity data. The EGFR-I sensitizing mutations in these Tables are applicable to all 3 drugs against NSCLC. The methods M1 and M2 correctly predicted 67% and 100% EGFR-I sensitive and 100% and 47% of EGFR-I resistant cell-lines respectively, which are comparable to the reported 77%~82% and 95%~98% accuracies in predicting EGFR-I sensitive, and 54%~84% and 19%~23% accuracies in predicting EGFR-I resistant patients by EGFR-I sensitizing mutation [578] and KRAS activating mutation [45] methods respectively. The method A1 and A2 correctly predicted 67% and 67% EGFR-I sensitive and 100% and 83% of EGFR-I resistant cell-lines respectively, which are comparable to the reported 61% and 74% accuracy in predicting EGFR-I sensitive and resistant patients by the EGFR amplification method [619]. Thus, the evaluated methods are capable of predicting EGFR-I sensitivity from NSCLC cell-lines at performance levels that reflect the sensitivity of real patients.

Table 4-6 Comparison of the literature reported performance of the prediction of EGFR-I sensitive and resistant patients with that of EGFR-I sensitive and resistant NSCLC cell-lines by using mutation-based and amplification-based methods

Study	Study Details	No of EGFR-I Treated Patients	No of EGFR-I Sensitive Patients	No of EGFR-I Resistant Patients	Method for Predicting EGFR- I Sensitivity	Percent of EGFR-I sensitive patients predicted by method	Percent of EGFR-I resistant patients predicted by method
Chan <i>et al.</i> 2006	15 studies 3,016 patients 509 with EGFR mutations	280	90	190	EGFR sensitizing mutation	77%	76%
Wu <i>et al.</i> 2007	6 studies 506 patients 152 with EGFR mutations	57	22	35	EGFR sensitizing mutation	77%	54%
Murray <i>et al.</i> 2008	202 studies 12,244 patients 3,188 with EGFR mutations	1578	498	1080	EGFR sensitizing mutation	80%	75%
Uramoto <i>et al.</i> 2007	27 studies 1170 patients 437 with EGFR mutations	1170	384	786	EGFR sensitizing mutation	82%	84%
Linardou <i>et al.</i> 2008	17 studies 1008 patients 165 with KRAS mutation	1008	105	903	KRAS activating mutation	95%	23%
Linardou <i>et al.</i> 2008	7 studies 756 patients 127 with KRAS mutation	756	81	675	KRAS activating mutation	98%	19%
Uramoto <i>et al.</i> 2007	7 studies 663 patients 211 with EGFR amplification	663	108	555	EGFR amplification	61%	74%
Study	Study Details	No of EGFR-I Treated Cell- Lines	No of EGFR-I Sensitive Cell-lines	No of EGFR-I Resistant Cell-lines	Method for Predicting EGFR-I Sensitivity	Percent of EGFR-I sensitive cell- lines predicted by method	Percent of EGFR-I resistant patients predicted by method
					EGFR sensitizing mutation (M1)	67%	94%
This work	53 NSCLC cell-lines	52	6	17	KRAS activating mutation (M2)	100%	47%
	gefitinib or erlotinib		0	4/	EGFR amplification (A1)	67%	100%
					EGFR amplification (A2)	67%	83%

4.3.2 Assessment of integrated molecular profiling for predicting TKIs sensitivity

Both the reported studies and our analyses in Table 4-6 indicated that the individualprofile tends to show good performance for sensitive cell-lines at the expense of resistant cell-lines or vice versa. Combined mutation and amplification profiles have shown good correlation with clinical response [620]. It is of interest to evaluate whether more balanced performance can be achieved by using combination-profile methods. We therefore evaluated 5 two-profile methods in both NSCLC and breast cell-lines: M3+A1 (C1), M3+E1 (C2), M3+E2 (C3), A1+E1 (C4), and A1+E2 (C5), and 2 three-profile methods: M3+A1+E1 (C6) and M3+A1+E2 (C7). Overlapping of drug resistant mutation was not identify between drug target and downstream genes in EGFR-I sensitive cell-lines, resulting the similar prediction performance of M1 and M3 in these cell-lines. We therefore used M3 in combined profiles. M2 is KARS drug resistant mutation-based method which was used to compare the reported diagnositic accuracy in clinical trails. Forthermore, gene amplification cutoff in A1 showed better performance than that of A2 in drug resistant cell-lines. Only A1 was included in combined profiles. The results of 5 two-profile and 2 three-profile methods are summarized in Table 4-7, and detailed in Table 4-8 and Table 4-9 which also include the cell-line sensitivity data and the genetic and expression profiles of the main target, bypass genes and downstream signaling and regulatory genes.

Overall, the combination-profile methods showed more balanced and improved predictive performance over the individual-profile methods. Consideration of the contribution of bypass genes substantially improved the predictive performance for resistant cell-lines, except one drug trastuzumab at the expense of reduced performance for sensitive celllines. C4 method showed slightly lower performance than the other combination methods probably due to its limited focus on the amplification and expression profiles of the main target only. The three-profile methods did not show improved performance over the twoprofile methods possibly due to two reasons. One is the substantial level of redundancy among drug sensitizing mutation, amplification and expression profiles and among drug resistant activating/inactivating mutation and expression profiles. Another is the high noise levels of microarray gene expression data [140] that negatively affect the performances of the combination methods with expression profiles.

4.3.3 The distribution and coexistence of drug sensitive and resistant profiles

Table 4-10 shows the distribution and coexistence of drug sensitizing mutation, amplification and expression profiles, and drug resistant mutation and expression profiles in the evaluated NSCLC and breast cancer cell-lines. In NSCLC cell-lines, EGFR-I sensitizing mutations are mostly distributed in EGFR-I sensitive cell-lines and substantially coexist with EGFR amplification and over-expression, and the resistance profiles are dominated by RAS activating mutation and HER3 over-expression, which are consistent with literature reports [31,578]. In breast cell-lines, HER2 amplification occurs in majority of the cell-lines and primarily coexists with HER2 over-expression, and with PIK3CA activating mutations and HER3 and IGF1R over-expression that dominate the resistance profiles, which is consistent with recent findings [31,579,621]. Up to 3 of the 7 NSCLC cell-lines with EGFR-I sensitizing mutations and up to 6 of the 11 HER2 amplified breast cancer cell-lines are EGFR-I and HER2-I resistant respectively, primarily due to EGFR resistance mutation and over-expression of bypass genes and downstream genes, suggesting the importance of these genes in drug sensitivity analysis. Drugs

targeted on the EGFR resistance mutation and over-expressed bypass genes can compensate the resistant profiles observed in NSCLC and breast cancer cells. Two NSCLC cell-lines (HCC366, HCC1650) with EGFR sensitizing mutation and one NSCLC cell-line with EGFR amplification (HCC2279) are with null resistance profile but are resistant to gefitinib/erloitinib and lapatinib respectively, probably due to other bypass mechanism not yet included in Table 4-1.

Table 4-7 Percentages of gefitinib, erlotinib, or lapatinib sensitive and resistant NSCLC cell-lines, and percentages of trastuzumab or lapatinib sensitive and resistant breast cancer cell-lines correctly predicted by mutation-based method M1, M2, and M3, amplification-based method A1 and A2, expression-based method E1 and E2, and combination methods C1, C2, C3, C4, C5, C6, and C7. Ps and Pr is percentage for sensitive and resistant cell-lines respectively

				Perce	entage o	of Correc	tly Pred	icted Se	nsitive (Cell-Line	es (P _S) ai	nd Resist	ant Cell	-Lines (P _F) by Dif	ferent M	lethods	
					Mu	itation-B	ased	Amplif	ication-	Expre	ession-	C	ombinat	ion of Tw	o Metho	ds	Comb	ination
						Method	l	Based 1	Method	Based I	Method						of T	hree
			Number of														Met	thods
	Main		Cell-lines									C1=	C2=	C3=	C4=	C5=	C6=	C7=
	Target of	Drug (Efficacy	(Sensitive/		M1	M2	M3	A1	A2	E1	E2	M3+A1	M3+E1	M3+E2	A1+	A1+E	M3+A1	M3+A1
Cancer	Cancer	Targets)	Resistant)												E1	2	+E1	+E2
		Gefitinih		$\mathbf{P}_{\mathbf{S}}$	67%	100%	67%	67%	67%	50%	50%	83%	50%	50%	83%	83%	83%	83%
		(EGFR)	44(6/38)	P_R	92%	39%	97%	100%	82%	95%	97%	97%	92%	97%	95%	97%	92%	95%
		Erlotinib		Ps	80%	100%	80%	80%	80%	60%	60%	100%	100%	100%	100%	100%	100%	100%
		(EGFR)	51(5/46)	P_R	93%	37%	98%	100%	87%	96%	98%	98%	96%	98%	98%	100%	96%	98%
		Lanatinih		Ps	38%	100%	38%	38%	50%	38%	38%	50%	50%	50%	50%	50%	50%	50%
NSCLC	EGFR	(HER2, EGFR)	48(8/40)	P _R	90%	43%	95%	98%	83%	95%	98%	95%	90%	93%	93%	95%	90%	93%
		Trastuzumah		P_{S}	-	-	71%	71%	-	100%	71%	57%	71%	57%	100%	71%	71%	57%
	Trastuzum (HER2)	(HER2)	24(5/19)	P_R	-	-	58%	74%	-	74%	84%	95%	95%	100%	74%	84%	95%	100%
Breast		L anatinih		P_{S}	-	-	80%	80%	-	100%	100%	80%	80%	80%	100%	100%	80%	80%
Cancer	HER2	(HER2, EGFR)	22(5/17)	P_R	-	-	67%	78%	-	72%	89%	100%	100%	100%	72%	89%	100%	100%

Table 4-8 The genetic and expression profiles of the main target, downstream genes and regulator, and bypass genes of 53 NSCLC cell-lines, and the predicted and actual sensitivity of these cell-lines against 3 kinase inhibitors: gefitinib (D1), erlotinib (D2), and lapatinib (D3).

NSCLC Cell lines	Profil Relate	e of Main ed to Drug	Target (I Sensitivi	EGFR) ity	Profile of Main Target (EGFR) Related to Drug Resistance	Profile Signal Direct Resist	e of Dov ling Ger ly Cont ance	vnstream ne or Regul tributing to	lator o Drug	Profile of B Resistance	Sypass G	ene Dire	ctly Con	tributing to	Drug		Predicted (P Actual (Act) Sensitivity to Gefitinib (D Erlotinib (D	rre) a 0 1) an 2)	nd	Predicted (Pr and Actual (A Sensitivity to Lapatinib (D)	·e) Act) 3)
	over exp	amp (copy no>4)	amp (copy no>3)	s-mut	r-mut	RAS a-mut	BRAF a-mut	PIK3CA a-mut	PTEN loss	HER2 over exp (Not applicable to D3)	HER3 over exp	FGFR1 over exp	IGF1R over exp	VEGFR2 over exp	c-MET over exp	PDGFR over exp	Pre by M1, M2, M3, A1, E1, E2, C1, C2, C3, C4, C5, C6, C7	Act (D1)	Act (D2)	Pre by M1, M2, M3, A1, E1, E2, C1, C2, C3, C4, C5, C6, C7	Act (D3)
Calu3	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R	S	NA	R,S,R,R,R,R,R, R,R,R,R,R,R	S
H3255	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	S,S,S,S,S,S,S,S,S ,S,S,S,S,S	S	S	S,S,S,S,S,S,S,S,S, S,S,S,S,S	S
HCC2279	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	S,S,S,S,R,R,S, S,S,S,S,S,S	S	S	S,S,S,S,R,R,S,S ,S,S,S,S,S	R
HCC2935	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	S,S,S,R,S,S,S, S,S,S,S,S,S	S	S	S,S,S,R,S,S,S,S ,S,S,S,S,S	S
HCC4006	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	S,S,S,S,R,R,S, S,S,S,S,S,S	S	S	S,S,S,S,R,R,S,S ,S,S,S,S,S	S
HCC827	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	S,S,S,S,S,S,S,S,S ,S,S,S,S,S	S	S	S,S,S,S,S,S,S,S,S, S,S,S,S,S	S
A549	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R	R
Calu1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R	R
Calu6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R	R
H1299	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R	R
H1355	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R	R
H1395	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R	R
H1437	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R	R
H157	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R,R R,R,R,R,R,R	R

H1648	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R
H1650	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	S,S,S,R,R,R,S, S,R,R,R,S,S	R	R	S,S,S,R,R,R,S, S,R,R,R,S,S R
H1666	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R
H1770	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R
H1792	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	R,R,R,R,R,R,R ,R,R,R,R,R,R	JA	R	R,R,R,R,R,R,R, R,R,R,R,R,R R
H1819	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R S
H1975	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	S,S,R,R,R,R,R, R,R,R,R,R,R	R	R	S,S,R,R,R,R,R, R,R,R,R,R,R R
H1993	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H2009	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R R
H2052	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	R,S,R,R,R,R,R ,R,R,R,R,R,R	JA	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H2087	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R R
H2122	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R R
H2126	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H23	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R	JA	R	R,R,R,R,R,R,R, R,R,R,R,R,R R
H2347	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	R,R,R,R,R,R,R ,R,R,R,R,R	R	R	R,R,R,R,R,R,R, R,R,R,R,R,R R
H28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R	JA	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H2882	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H2887	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R	R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
H3122	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R	JA	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H322	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R	R	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H358	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R	R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
H441	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,

H460	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R R	R	R,R,R,R,R,R,R, R,R,R,R,R,R R
H661	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	R,S,R,R,R,R,R ,R,R,R,R,R,R NA	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
H820	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	S,S,R,R,R,R,R, R,R,R,R,R,R R	R	S,S,R,R,R,R,R, R,R,R,R,R,R R
HCC1171	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
HCC1195	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
HCC1359	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	R,S,R,R,R,R,R ,R,R,R,R,R,R R	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
HCC15	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
HCC1833	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R NA	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
HCC193	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	R,S,R,R,S,R,R, S,R,S,R,S,R R	R	R,S,R,R,S,R,R, S,R,S,R,S,R R
HCC2429	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R NA	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
HCC2450	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R NA	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
HCC366	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R,S,R,R,S,S,R, R,S,S,S,S,S R	R	R,S,R,R,S,S,R, R,S,S,S,S,S R
HCC44	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,S,R,R,R,R,R R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
HCC461	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
HCC515	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	R,R,R,R,R,R,R ,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,
HCC78	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	R,S,R,R,R,R,R ,R,R,R,R,R,R R	R	R,S,R,R,R,R,R, R,R,R,R,R,R R
HCC95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R,S,R,R,R,R,R R R R R R R R	R	R,S,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R

Notes: "1" and "0" indicates the corresponding profile is positive (over-expressed, amplified or mutated) and negative (not over-expressed, amplified or mutated) respectively. "S", "R", "NA", "s-mut", "r-mut", 'a-mut', "amp", "over exp", "pre", and "act" stands for sensitive to drug, resistant to drug, no available drug sensitivity, drug sensitive mutation, drug resistance mutation, activating mutation, amplification, over expression, predicted drug sensitivity, and actual drug sensitivity respectively. The prediction methods M1, M2, M3, A1, E1, E2, C1, C2, C3, C4, C5, C6, and C7 are described in the text.

Table 4-9 The genetic and	d expression profiles of the r	nain target, downstrea	m signaling genes and	regulator, and bypass g	genes of 31 breast
cancer cell-lines, and the	predicted and actual sensitiv	vity of these cell-lines a	aganist 2 kinase inhibit	ors trastuzumab (D4) a	und lapatinib (D3).

Breast Cancer Cell line	Profile of Related 1	f Main Targ to Drug Sen	get sitivity	Profile of J Signaling Regulator Contribut Resistance	Downstre Gene or Directly ing to Dru	eam ug	Profile of I Drug Resis	Bypass Ger stance	ne Directly	Contribu	ting to)	Predicted (Pre) and Actu (Act) Sensitivity to Trastuzumab (D4)	ual	Predicted (Pre) and Act (Act) Sensitivity to Lapa (D3)	ual tinib
	HER2 over exp	HER2 amp (copy no≥4)	HER2 amp (copy no≥3)	PIK3CA mut	PTEN mut	PTEN loss	EGFR over exp (Not applicable to D3)	HER3 over exp	ESR1 over exp	IGF1R over exp	AXL over exp	c-MET over exp	Pre by M3, A1, E1, E2, C1, C2, C3, C4, C5, C6, C7	Act (D4)	Pre by M3, A1, E1, E2, C1, C2, C3, C4, C5, C6, C7	Act (D3)
BT474	1	1	1	0	0	0	0	0	0	0	0	0	S,S,S,S,S,S,S,S,S,S,S,S	S	S,S,S,S,S,S,S,S,S,S,S,S	S
HCC1419	1	1	1	0	0	0	0	1	0	0	0	0	S,S,S,R,S,S,R,S,R,S,R	S	S,S,S,R,S,S,R,S,R,S,R	NA
MDA-MB-453	1	1	1	1	0	0	0	0	0	0	0	0	R,S,S,S,R,R,R,S,S,R,R	S	R,S,S,S,R,R,R,S,S,R,R	NA
MDA-MB-175VII	1	0	0	0	0	0	0	0	0	0	0	0	S,R,S,S,R,S,S,S,S,S,S,S	NA	S,R,S,S,R,S,S,S,S,S,S	S
SK-BR-3	1	1	1	0	0	0	0 0 0 0 0 0 0 s,s,s,				S,S,S,S,S,S,S,S,S,S,S,S	S	\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$	S		
ZR-75-30	1	1	1	0	0	0	0	1 0 0 0 s		S,S,S,R,S,S,R,S,R,S,R	S	S,S,S,R,S,S,R,S,R,S,R	NA			
UACC812	1	1	1	0	0	0	0	0	0	0	0	0	\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$	S	\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$	S
UACC893	1	1	1	1	0	0	0	0	0	0	0	0	R,S,S,S,S,R,R,S,S,R,R	R	R,S,S,S,S,R,R,S,S,R,R	S
BT20	0	0	0	1	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R	R
BT549	0	0	0	0	1	0	0	0	0	0	0	0	R,R,R,R,R,R,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R	R
CAL51	0	0	0	1	0	0	0	0	0	0	0	0	R,R,R,R,R,R,R,R,R,R,R	N A	R,R,R,R,R,R,R,R,R,R,R,R	R
CAMA1	0	0	0	0	1	0	0	0	0	0	0	0	R,R,R,R,R,R,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R	R
EFM19	1	0	0	1	0	0	0	1	0	1	0	0	R,R,S,R,R,R,R,S,R,R,R	N A	R,R,S,R,R,R,R,S,R,R,R	R
EFM192A	1	1	1	1	0	0	0	1	0	0	0	0	R,S,S,R,R,R,R,S,R,R,R	R	R,S,S,R,R,R,R,S,R,R,R	R
HCC1143	0	0	0	0	0	0	0 0 0 0 0 1 0 S,F		S,R,R,R,R,R,R,R,R,R,R,R	R	S,R,R,R,R,R,R,R,R,R,R,R	NA				
HCC1395	0	0	0	0	0	0	0 0 0			0	0	0	S,R,R,R,R,R,R,R,R,R,R,R	R	S,R,R,R,R,R,R,R,R,R,R,R	NA
HCC1954	1	1	1	1	0	0	0 0 0 0 0 0 0 0 0 0 0				0	R,S,S,S,R,R,R,S,R,R,R	R	R,S,S,S,R,R,R,S,R,R,R	NA	

1					1			1					1			
HCC70	0	0	0	0	0	0	0	0	0	0	0	0	S,R,R,R,R,R,R,R,R,R,R,R	R	S,R,R,R,R,R,R,R,R,R,R,R	NA
JIMT-1	1	1	1	1	0	0	0	0	0	0	0	0	R,S,S,S,R,R,R,S,S,R,R	R	R,S,S,S,R,R,R,S,S,R,R	R
Hs578T	0	0	0	0	0	0	0	0	0	0	1	0	S,R,R,R,R,R,R,R,R,R,R,R	N A	S,R,R,R,R,R,R,R,R,R,R,R	R
KPL1	0	0	0	0	0	0	0	1	0	0	0	0	S,R,R,R,R,R,R,R,R,R,R,R	N A	S,R,R,R,R,R,R,R,R,R,R,R	R
MCF7	0	0	0	1	0	0	0	1	0	1	0	0	R,R,R,R,R,R,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R	R
MDA-MB-157	0	0	0	0	0	0	0	0	0	1	0	0	S,R,R,R,R,R,R,R,R,R,R,R	N A	S,R,R,R,R,R,R,R,R,R,R,R	R
MDA-MB-231	0	0	0	0	0	0	0	0	0	0	1	0	S,R,R,R,R,R,R,R,R,R,R,R	R	S,R,R,R,R,R,R,R,R,R,R,R	R
MDA-MB-361	1	1	1	1	0	0	0	1	0	1	0	0	R,S,S,R,R,R,R,R,S,R,R,R	R	R,S,S,R,R,R,R,S,R,R,R	R
MDA-MB-415	0	0	0	0	1	0	0	1	0	0	0	0	R,R,R,R,R,R,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R	NA
MDA-MB-435s	0	0	0	0	0	0	0	0	0	0	0	0	S,R,R,R,R,R,R,R,R,R,R,R	R	S,R,R,R,R,R,R,R,R,R,R,R	R
MDA-MB-436	0	0	0	0	0	0	0	0	0	0	0	0	S,R,R,R,R,R,R,R,R,R,R,R	R	S,R,R,R,R,R,R,R,R,R,R,R	NA
MDA-MB-468	0	0	0	0	1	0	1	0	0	0	0	0	R,R,R,R,R,R,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R	R
T47D	0	0	0	1	0	0	0	1	0	0	0	0	R,R,R,R,R,R,R,R,R,R,R,R	R	R,R,R,R,R,R,R,R,R,R,R,R	R
ZR-75-1	0	0	0	0	0	0	0	0	0	0	0	0	S,R,R,R,R,R,R,R,R,R,R,R	N A	S,R,R,R,R,R,R,R,R,R,R,R	R

Notes: "1" and "0" indicates the corresponding profile is positive (over-expressed, amplified or mutated) and negative (not over-expressed, amplified or mutated) respectively. "S", "R", "NA", "s-mut", "a-mut", "a-mut", "over exp", "pre", and "act" stands for sensitive to drug, resistant to drug, no available drug sensitivity, drug sensitive mutation, drug resistance mutation, activating mutation, amplification, over expression, predicted drug sensitivity, and actual drug sensitivity respectively. The prediction methods M3, A1, E1, E2, C1, C2, C3, C4, C5, C6, and C7 are described in the text.

Table 4-10 The distribution and coexistence of drug sensitizing mutation, amplification and expression profiles, and the drug resistance mutation and expression profiles in NSCLC and breast cancer cell-lines

Cancer: NSCLC																			
Main Target for the Treatmen	t of Specific Ca	ncer: EG	FR inih (D3)																
Drug Sensitizing or Resistance Profile (<i>index</i>)	Number of Cell-Lines with This Profile	Number with And Profile Drug	of These C other Sensit	ell-Lines tizing <i>Profile</i>		Num	ber of	These	e Cell- Dru	Lines	with	Anotl e Prof	ner Re <i>ïle</i>	esistanc	e Profi	le	Numbe Cell-Li -Resista	er of Th ines Ser ant to D	ese 1sitive/ rug
Drug Sensitizing profile		<i>S1</i>	S2	<i>S3</i>	R1	R2	<i>R3</i>	R4	R5	R6	R 7	R 8	R9	R10	R11	R12	D1	D2	D3
EGFR s-mut (S1)	7		3	2	2						1						4/3	4/3	3/4
EGFR amp(copy no≥4) (<i>S2</i>)	4	3		2													4/0	4/0	3/1
EGFR over exp (S3)	5	2	2									1					3/2	3/1	3/2
Drug Resistance profile																			
EGFR r-mut (<i>R1</i>)	2										1						0/2	0/2	0/2
RAS a-mut (<i>R</i> 2)	22						1				7	2				1	0/20	0/22	0/21
BRAF a-mut (R3)	3					1					1						0/3	0/3	1/2
PIK3CA a-mut (<i>R</i>4)	2										2						0/1	0/2	0/2
PTEN loss (R5)	0																		
HER2 over exp (<i>R6</i>)	2										2						1/1	0/1	2/0
HER3 over exp (<i>R</i>7)	18				1	7	1	2		2		1				1	1/14	0/17	3/12
MET over exp (<i>R</i> 8)	5					2					1						0/5	0/5	1/4
PDGFR over exp (<i>R9</i>)	4																		
IGF1R over exp (<i>R</i>10)	0																		
FGFR1 over exp (<i>R11</i>)	0																		
VEGFR2 over exp (<i>R12</i>)	1					1					1						0/1	0/1	0/1
Cancer: Breast cancer																			
Chapter 4: Integrated molecular profiling for predicting drug sensitivity

Main Target for the Treatmen	t of Specific Ca	ancer: HER2												
Drug Sensitizing or Resistance Profile (<i>index</i>)	(D1) and lapatin Number of Cell-Lines with This	Number of Th with Another S Profile	ese Cell-Lines Sensitizing	Number of These Cell-Lines with Another Resistance Profile								file	Number of These Cell-Lines Sensitive/ Resistant to Drug	
	Profile	Drug Sensi	Drug Sensitizing Profile		Drug Resistance Profile								itesistant to Drug	
Drug Sensitizing profile		<u>S1</u>	S2	R1	R2	<i>R3</i>	<i>R4</i>	R5	<i>R6</i>	R 7	R 8	R9	D1	D2
HER2 amp (copy no \geq 4) (S1)	11	11		5	1			4	1				5/6	4/3
HER2 over exp (S2)	13		11	7	1			6	2				5/8	5/4
Drug Resistance profile														
PIK3CA a-mut (R1)	11							5	3				1/8	1/8
PTEN ina-mut (R2)	4						1	2					0/4	0/3
PTEN loss (R3)	0													
EGFR over exp (R4)	1				1								0/1	0/1
HER3 over exp (R5)	9			5	2				3				1/6	0/6
IGF1R over exp (R6)	4			3				3					0/2	0/4
AXL over exp (R7)	3												0/2	0/2
ESR1 over exp (R8)	0													
MET over exp (R9)	0													

4.4 Summary

In summary, collective analysis of mutation, amplification and expression profiles of target, bypass genes, and drug-resistant downstream signaling and regulatory genes are potentially useful for facilitating drug sensitivity prediction. Drug sensitivity prediction can be greatly potentiated by collective analyzing the profiles of target, bypass genes, and drug-resistant downstream signaling and regulatory genes. In the long run, an accurate patient differentiation, better safety profile, improved response rate and personalized treatment can also be archieved by this system-oriented approach. Development, integration and expanding application of next generation sequencing [622], microarrays [623], and copy number variation [624] detection tools and methods coupled with expanded knowledge of cancer biology and drug resistance bypass mechanisms enable more accurate prediction of drug sensitivity.

5 Collective approach for tumor-specific antigen discovery

An important application of high-throughput technique, such as DNA microarray, is to discover potential disease targets which can be used for therapeutic molecule design and achieve the goal of effective disease treatment and prevention. Our previous study indicates that disease molecular profiles are useful sources of discover new diagnostic and effective therapeutic targets with targeted disease population. Tumor-specific antigens (TSAs), often overexpressed or mutated on particular tumors, but nonetheless present at lower frequencies in normal tissues, can potentially be explored for applications in cancer diagnosis and immunotherapy vaccine. The lack of effective vaccines for many cancers has prompted strong interest in improved TSA search methods. In this chapter, a collective method of analyzing genome-scale TSA was developed, which helps to identify the novel TSA in human cancer genome scale. We collectively analyzed genome-scaled tumor-specific somatic mutations, microarray gene expression data, and T-cell recognition of peptides derived cancer genome. Collectively considering the available profiles of TSAs showed a fairly prediction performance in melanoma and lung cancer. With improved data quality and analysis methods, the collective approach is potentially useful for facilitating genome-scale TSA search.

5.1 Introduction

Among the tumor antigens, some may be tumor specific, namely tumor-specific antigens (TSAs), while others may be also expressed by normal tissues, namely tumor-associated antigens (TAAs). In practice, cancer antigens targeted by active immunotherapies have

more often been tumor associated: overexpressed or mutated on tumors, but nonetheless present at lower frequencies in normal tissues [212]. TSA is therefore have been explored as sources of vaccines for cancer immunotherapy and immunoprevention [217,218,220] and biomarkers for cancer diagnosis.

TSAs elicit cancer immunogenicity by presenting genetically variant and differentially over-expressed epitopes distinguished from those of normal cells [211,625,626]. Tumor-specific mutations in these "self-antigens" provide structural or physicochemical features distinguished from those of normal cells for them to be recognized as"non-self" [626]. Moreover, these antigens are primarily genes prevalently over-expressed in cancer patients, and less expressed in normal persons to override immune tolerance thresholds [627] and weak immunogenicity [211], and to prevent outgrowth of non-immunogenic variants in cancer patients[216]. Many known TSAs are cytotoxic T lymphocyte (CTL) epitopes [216,217,220] that are cleaved from intracellular protein antigens by proteasomes, transported to the endoplasmic reticulum by TAP, assembled with MHC-I, and presented at the surface of cancer cells to be recognized by CTLs [221].

In recent years, the diagnosis and treatment of cancers have improved, but the long-term survival rate, especially the survival rate for advanced cases, still has not been markedly increased. Therefore, it is very important to search for tumor-specific antigen (TSA) and tumor-associated antigen (TAA) to ensure the early detection, early diagnosis and early treatment of list of various cancers. In spite of extensive efforts, effective vaccine for most cancer types is still lacking partly due to difficulties in overcoming immunosuppressive activities[628,629], selective pressures towards non-epitope variants[630] and other

factors in immune tolerance and evasion [631,632]. There is a need to search for cancer vaccines from more diverse sources[37,216,217,219] that takes into consideration not only tumor-specific mutations and MHC-binding but also the expression profiles of the antigens, processing and transport of the epitopes, and availability of T-cell repertoire in specific tumors [220]

The discovery of potential therapeutic targets from human cancers is greatly facilitated by microarray technology [211,629]. Furthermore, there have been significant progresses in genome-wide profiling of tumor-specific somatic mutations[633-635] and in improving T-cell epitope prediction by collective analysis of proteasomal cleavage, TAP mediated transport and MHC-binding[223,231,247-249,251,261]. These progresses make it possible to conduct genome-scale search of TSAs via collective analysis of tumor-specific mutations, expression profiles, and T-cell recognition of the epitopes that include the cleavage, transport and MHC-binding of the epitopes.

This chapter covers the usage of collective approach in genome-scale search of TSAs from melanoma and lung cancer, which early on was found to have tumor-specific antigens and has been targeted frequently using the protein or peptide approach. Genome-scaled tumor-specific somatic mutations, microarray gene expression data, and in silico T-cell recognition were incorporated into this collective approach. Collectively considering the available profiles of TSAs showed a fairly prediction performance in melanoma and lung cancer.

5.2 Materials and Methods

5.2.1 Collection of genomic, mutation and expression data

The human genome sequence (release 38) was obtained from NCBI database (http://www.ncbi.nlm.nih.gov/projects/genome/guide/human/), which contains 180,000 full-length protein-coding transcripts. Tumor-specific somatic mutation data for melanoma and lung cancer were from comprehensive literature search from sources such as COSMIC database (release 35) and a number of other publications in PubMed (1970–March 2008) using key words "mutation" and "melanoma" or "lung cancer" in the title or abstract.Our search identified 2361 articles (2315 from COMIC database and 46 from PubMed), which report 841 and 340 somatic nonsynonymous mutations in 491 and 338 encoded proteins for melanoma and lung cancer respectively.

The microarray gene expression data for melanoma (GSE4845) and lung cancer (GSE1037) were from GEO database. The melanoma dataset contains the expression profiles of 33,000 genes from 12 melanoma patients and 3 normal persons, and the lung cancer dataset is composed of the expression patterns of 14,211 genes and 15,276 ESTs from 27 lung cancer patients and 19 normal persons.

5.2.2 Collection of tumor-specific antigen

Tumor cells expressing epitopes derived from TSAs and TAAs is recognized and destroyed by Cytotoxic T-lymphocytes (CTLs) derived from T8-lymphocytes (CD8+ T cells) [636]. CTLs recognize antigen on target and APCs[637] as epitopes composed of peptide fragments, 8–12 amino acids long, that are completed to MHC-I molecules [637-639]. Several CTL epitopes restricted by HLA-A2, the most common human

histocompatibility molecule (40–50%), have been previously reported [640]. Definition of HLA-A restricted TSAs is thus an important step in the development of specific CTL-based cancer immunotherapies.

In this study, with the focus of HLA-A restricted TSAs, the collection of human tumor antigens recognized by CD8+ CTLs were carried out by search Cancer Immunity database (http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm) and literatures. The 12 known melanoma TSAs of the 5 MHC-I alleles A1, A2, A3, A24, and A6801, and the 4 known lung cancer TSAs of the 3 MHC-I alleles A1, A2, A6802 were collected in this study for validation purpose. The sequence, binding HLA alleles, and information of host proteins of these known TSAs are given in Tables 5-2 and Tables 5-3 for melanoma and lung cancer respectively.

5.2.3 Computational procedures

5.2.3.1 Identify overexpressed candidates from microarray data

All of the known tumor-specific somatic mutations of melanoma and lung cancer were substituted into the protein products of human genome sequence to generate the human cancer genomes for melanoma and lung cancer. Since the length of identified the 16 known TSAs are in range of 8 to 11 amino acids, only the 8–11mer tumor-specific mutant peptides were extracted from the corresponding encoded protein sequences such that each peptide contains at least one mutated residue uniquely found in melanoma or lung cancer. The expression levels of the corresponding host proteins of these tumor-specific mutant peptides were evaluated.

We calculated the percentage of cancer patients whose selected genes were at least x-fold overexpressed, in comparison with y% of normal people. A range of x (1.5, 2, 2.5, 3) and y (50% to 100%, which means to compare with at least half of normal samples) values were tested. When y value was varied at a fixed value of x, a stable percentage (>40%) of patients carrying the overexpressed genes were observed with the increase in y. We therefore fix the x to 2 and y to 50%.

Therefore, peptides were selected such that their host proteins are expressed at higher levels (2 fold-change) in >40% of patients (5 out of 12 for melanoma, and 11 out of 27 for lung cancer) than those in >50% of normal persons (2 out 3 for melanoma, and 10 out of 19 for lung cancer) in the melanoma and lung cancer datasets respectively.

5.2.3.2 Derivation of structural and physicochemical properties from peptide sequence

As introduced in the chapter of methodology, a feature vector can be constructed for representing the structural and physicochemical properties of a *peptide*. Given the sequence of a peptide, its amino acid composition and the properties of every constituent amino acid are computed and then used to generate this vector. The computed amino acid properties include hydrophobicity, normalized Van der Waals volume, polarity, polarizability, charge, surface tension, secondary structure and solvent accessibility [254].

For each of these properties, amino acids are divided into three or six groups such that those in a particular group are regarded to have approximately the same property. Three descriptors, composition (C), transition (T), and distribution (D), are introduced to describe global composition of each of these properties. Overall, there are 51 elements representing these three descriptors: 6 for C, 15 for T and 30 for D, with a six grouped property; and 21 elements: 3 for C, 3 for T and 15 for D, with a three grouped property.

Construction of peptide feature vectors can be illustrated by the generation of the amino composition descriptors hypothetical sequence acid of two peptides, Ι (AEAAAEAEEAAAA) and sequence II (AEAEEEAAEEAAEEAAE). Sequence I contains 9 alanines (n1=9) and 4 glutamic acids (n2=4) and sequence II includes 7 alanines (n1=7) and 10 glutamic acids (n2=10). The composition is C1= (n1 \times 100/ (n1+n2), $n2 \times 100/(n1+n2)$ = (69.23, 30.77) for sequence I, and C2= (41.18, 58.82) for sequence II. There are 6 A=>E and E=>A transitions in sequence I, and 9 such transitions in sequence II. The total number of transitions is 12 in sequence I and 16 in sequence II. The percent frequency of transition is thus $T1 = (6/12) \times 100 = 50.00$ for sequence I, and $T2=(9/16) \times 100=56.25$ for sequence II. The first, 25%, 50%, 75% and 100% of As and Cs are located within the 1st, 4th, 10th, 11th, 13th residues and the 2nd, 2nd, 6th, 8th, 9th residues respectively for sequence I, and within the 1st, 3rd, 8th, 15th, 16th residues and the 2nd, 5th, 9^{th} , 13^{th} , 17^{th} residues respectively for sequence II. The distribution is then D1=(1/13×100, 4/13×100, 10/13×100, 11/13×100, 13/13×100, 2/13×100, 2/13×100, 6/13×100, 8/13×100, 9/13×100)=(7.69, 30.77, 76.92, 84.62, 96.67, 15.38, 15.38, 46.15, 61.54, 69.23) for sequence I, and D2=(1/17 ×100, 3/17×100, 8/17×100, 15/17×100, 16/17×100, 2/17 ×100, 5/17×100, 9/17×100, 13/17×100, 17/17×100)=(5.88, 17.65, 47.06, 88.23, 94.12, 11.76, 29.41, 52.94, 76.47, 100.00) for sequence II. Overall, the amino acid composition feature vector is x1=(C1, T1, D1)=(69.23, 30.77, 50.00, 7.69, 30.77, 76.92, 84.62, 96.67, 15.38, 15.38, 46.15, 61.54, 69.23) for sequence I, and $x^2 = (C^2, T^2, D^2) = (41.18, 58.82, 56.25, T^2)$ 5.88, 17.65, 47.06, 88.23, 94.12, 11.76, 29.41, 52.94, 76.47, 100.00) for sequence II. The two vectors \mathbf{x} and \mathbf{x} thus have equal length, which is useful for classification of peptides

of variable lengths by using statistical learning methods.

5.2.3.3 Application of computational method for T-cell recognition prediction

The differentially overexpressed peptides and their neighboring residues in the host proteins were analyzed by NetChop3.0 (Nielsen et al., 2005), a neural networks based prediction tool developed form the experimental validated MHC Class I molecules[641], to determine which of them are cleavable by the proteasome (C-term 3.0 score with cutoff larger than 0.5). The predicted cleavable peptides were then screened by NetCTL1.2 [223] to select those transportable by TAP (TAP transport efficiency score with cutoff lower than 1). The selected proteasome cleavable and TAP transportable peptides were then screened by using MHC-BPS[261], a SVM-based MHC binding prediction software developed by our research group, to determine which of them can bind to MHC-I alleles A1, A2, A3, A24, A6801 for melanoma and MHC-I alleles A1, A2, A0301, A6802 for lung cancer respectively.

Table 5-2 Known melanoma tumor-specific antigens presented by MHC-I. The label "E", "C", "T", "B" indicates the tumor-specific antigen was selected by gene expression, proteasome cleavage, TAP-mediated transport, HLA-binding analysis respectively.

							TSA
ніл	TSA and mutated	Sequence	Length	Host protein and gene		Reference	passed
allele	residue(underline)	location	of TSA	name	Function of host protein	(PMID)	steps
				Hedgehogacyltransferase	• • • • • • • • • • • • • • • • • • •		-
A1	FL <u>E</u> GNEVGKTY(G)	446-455	11	(MART2)	Hedgehogsignaling	11160356	CTB
				Neuroblastoma RAS			
				viral (v-ras) oncogene			
A1	ILDTAG <u>R</u> EEY(Q)	55-64	10	homolog (NRAS)	Signaling	11971032	С
				Cyclin-dependent kinase	~		~~~~
A2	A <u>C</u> DPHSGHFV(R)	23-32	10	4 (CDK4)	Cellcycle	7652577	СТВ
				Glyceraldehyde3-			
		1 (0, 197	10	phosphate		15614045	OTTO
A2	GIVEGLIIIV(M)	168-1//	10	dehydrogenase(GAPDH)	Energymetabolism	15614045	CIB
		291 200	10	Growth arrest-specific /	College 1	15614045	ECTD
A2	SLADEAEV <u>Y</u> L(H)	281-290	10	(GAS7)	Celicycle	15614045	ECTB
A2	LLLDD <u>L</u> LVSI(S)	163-172	10	Peroxiredoxin5(PRDX5)	Oxidativestress	15695408	ECTB
					Cell-		
A24	SYLDSGIH <u>F</u> (S)	29–37	9	Catenin 1(CTNNB1)	celladhesion/Wntsignaling	8642260	ECTB
				Elongation factor Tu			
				GTP binding domain			
A3	KILDAVVAQ <u>K</u> (E)	668–677	10	containing 2(EFTUD2)	RNAprocessing	16247014	ECTB
				Glycoproteinnmb			
A3	TL <u>D</u> WLLQTPK(G)	179–188	10	(GPNMB)	Melanosomalprotein	16247014	CT
A3	<u>K</u> INKNPKYK(E)	911–919	9	MyosinclassI(MYO1B)	Cellularmotility	10064075	ECTB
A3	KIFSEVT <u>L</u> K(P)	192-200	9	Sirtuin-2(SIRT2)	Transcriptionalsilencing	16247014	СТВ
A (001		222 220		Melanoma associated	N. 1 1 1 1	10020201	ECTD
A0801	EAFIQPITK(S)	522-530	9	anugen-3(MUM3)	Nucleicacidmetabolism	10820291	ECIB

Table 5-3 Known lung cancer tumor-specific antigens presented by MHC-I. The label "E", "C", "T", "B" indicates the tumor-specific antigen was selected by gene expression, proteasome cleavage, TAP-mediated transport, HLA-binding analysis respectively.

							TSA passed
HLA	TSA and mutated	Sequence	Length	Host protein and	Function of	Reference	search
allele	residue (underline)	location	of TSA	gene name	host protein	(PMID)	steps
				Hedgehog			
				acyltransferase	Hedgehog		
A1	FLEGNEVGKTY(G)	446-455	11	(MART2)	signaling	11160356	ECTB
				Actinin, alpha 4			
A2	FIAS <u>N</u> GVKLV(K)	118-127	10	(ACTN4)	Adhesion	11358829	ECTB
				Malic enzyme 1	Energy		
A2	FLDEFMEG(A)	224-231	8	(ME1)	metabolism	11325844	EB
				Eukaryotic			
				translation elongation	Protein		
A6802	ETVSEQSNV(E)	581-589	9	factor 2 (EEF2)	translation	9823325	ECTB

5.3 **Results and Discussion**

5.3.1 Performance of collective approach in genome-scaled TSAs identification

The results of the collective approach in predicting melanoma and lung cancer TSAs from the human cancer genomes are given in Tables 5-4 and Tables 5-5 respectively. A total of 36, 250, 31, 22, and 8 putative melanoma TSAs were predicted for HLA A1, A2, A24, A3, and A6801 alleles, and a total of 17, 359, and 14 putative lung cancer TSAs were predicted for HLA A1, A2, and A6802 alleles respectively.

The differentially overexpressed peptides and their neighboring residues in the host proteins were analyzed by NetChop3.0[231] (Nielsen et al., 2005), a neural networks based prediction tool developed form the experimental validated MHC Class I molecules[641], to determine which of them are cleavable by the proteasome (C-term 3.0 score with cutoff larger than 0.5). The predicted cleavable peptides were then screened by NetCTL1.2 [223] to select those transportable by TAP (TAP transport efficiency score with cutoff lower than 1). The selected proteasome cleavable and TAP transportable peptides were then screened by using MHC-BPS[261], a SVM-based MHC binding prediction software developed by our research group, to determine which of them can bind to MHC-I alleles A1, A2, A3, A24, A6801 for melanoma and MHC-I alleles A1, A2, A0301, A6802 for lung cancer respectively.

The predicted TSAs include 50% and 75% of the 12 and 4 known T-cell defined tumorspecific melanoma and lung cancer antigens in Cancer Immunity database. Overall, the yields, hit rates and enrichment factors (with respect to mutation analysis alone) of the collective approach are 50% and 75%, 1.9% and 0.8%, and 29 and 35 for melanoma and lung cancer respectively. The yields are slightly less than the 70–90% levels of the prediction tools that solely predict T-cell epitopes [238,240,242,244], suggesting that the collective approach is capable of identifying TSAs at accuracy levels not too far away from those of the tools that only predict T-cell epitopes.

Table 5-4 Results of genome-search of melanoma tumor-specific antigens by collective analysis of mutation, expression and T-cell recognition. The number of " $\sqrt{}$ " represents the number of known tumor-specific antigens passed a particular search step.

Known mela	anoma tumo	or-specific antigens	Putative tumor-spec mutation, expression	Known melanoma tumor-specific antigens by collective analysis							
HLA allele	Antigen length	No and host gene name of known melanoma tumor-specific antigens of this length	No of tumor-specific mutated peptides of this length in coding region of human genome	No of peptides in column 4 whose host protein is differentially over-expressed in >40% patients (5 out of 12) with respect to >50% of normal person (2 out of 3)	No of peptides in column 5 predicted to be proteasome cleavable	No of peptides in column 6 predicted to be TAP substrate	No of peptides in column 7 predicted to be HLA binder	No of known melanoma tumor-specific antigens selected	Yield	Hit rate	Enrichment factor (with respect to mutation analysis)
A1	10	1	6,211(985	566	326	15	0	-	-	-
A1	11	1	6,819(/)	1,081	598	356	21	0	-	-	-
A2	10	4	6,211(\(\(\(\) \(\) \)	985(\sqrt{\sqt{\sqrt{\s}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	566(326(\sqrt{s})	250(2	50%	0.8%	12
A24	9	1	5,601(888(1)	503(1)	291()	31(1)	1	100%	3.2%	181
A3	9	2	5,601(/ /)	888(/)	503(,/)	291(/)	9(,/)	1	50%	11.1%	311
A3	10	2	6,211(/ /)	985()	566()	326()	13(,/)	1	50%	7.7%	240
A6801	9	1	5,601()	888(/)	503(1)	291()	8(1)	1	100%	12.5%	700
Overall	9-11	12	18,631	2,945	1,667	973	316	6	50%	1.9%	29

Table 5-5 Results of genome-search of lung cancer tumor-specific antigens by collective analysis of mutation, expression and T-cell recognition. The number of " $\sqrt{}$ " represents the number of known tumor-specific antigens passed a particular search step

Known lung	cancer turr	nor-specific antigens	Putative tumor-speci mutation, expression	Known lung cancer tumor- specific antigens by collective analysis							
HLA allele	Antigen length	No and host gene name of known lung cancer tumor-specific antigens of this length	No of tumor-specific mutated peptides of this length in coding region of human genome	No of peptides in column 4 whose host protein is differentially over-expressed in >40% patients (11 out of 27) with respect to >50% of normal person (10 out of 19)	No of peptides in column 5 predicted to be proteasome cleavable	No of peptides in column 6 predicted to be TAP substrate	No of peptides in column 7 predicted to be HLA binder	No of known melanoma tumor-specific antigens selected	Yield	Hit rate	Enrichment factor (with respect to mutation analysis)
A1	11	1	5,366(√)	4,301(√)	1,690(√)	844(√)	17(√)	1	100%	5.9%	316
A2	8	1	3,916(√)	3,137(√)	1,247	657	54	0	-	-	-
A2	10	1	4,884(√)	3,914(√)	1,550(√)	793(√)	305(√)	1	100%	0.3%	16
A6802	9	1	4,401(√)	3,526(√)	1,401(√)	730(√)	14(√)	1	100%	7.2%	314
Overall	8-11	4	18,567	14,878	5,888	3,024	390	3	75%	0.8%	35

Evidences indicative of higher expression levels of some of the host proteins of these malnoma TSAs have been reported. CDK4 [642] and GPNMB [643] has been reported to be amplified in melanoma. Hedgehog signaling has been found to be required for melanoma [644], which suggests the possibility of higher levels of hedgehog acyltransferase in melanoma patients. Therefore, increased sampling sizes as well as the

enhancement of the quality of measurement and analysis of microarray data [645] may enable the further improvement of the TSA prediction performance of the collective approach in genome-scale search studies.

5.4 Conclusion

The collective consideration of somatic mutations, expressions, and T-cell recognition appears to show fairly good capability in predicting TSAs in genome-scale search campaigns. The numbers of predicted putative TSAs from genome-scale search studies are within the range manageable by typical screening campaigns, and the hit rates are enriched to levels that enable effective identification of TSAs. The prediction performance, the yield and hit rates, of the collective approach may be further improved by expanding the sampling size as well as improving the quality of measurement and analysis of gene expression data[645]. With expanding knowledge of the respective peptides and the further development of in silico tools, the performance for predicting proteasomal cleavage, TAP mediated transport, and HLA-binding are expected to be further improved [223,231,261], which helps to increase the capability of the collective approach in facilitating the genome-scale search of TSAs.

6 Lung adenocarcinoma survival marker selection

Micoarrays have been explored for deriving molecular signatures, subsets of genes differentially expressed in patients of different outcomes, for determining diseaseoutcomes, mechanisms, targets, and treatment-strategies. While exhibiting good predictive performance, derived signatures are unstable due to noises arising from measurement variability and biological differences. Improvements in measurement, annotation and signature-selection methods have been proposed. We explored a new gene signature selection method by incorporating consensus scoring of multiple random sampling and multi-step evaluation of gene-ranking consistency for maximally avoiding erroneous elimination of predictor-genes. The best prediction performance was achieved in cancer biomarkers discovery of a well-studied 62-sample colon-cancer dataset. This chapter provides a case study of applying this gene selection system to survival biomarker selection from a 86-sample lung adenocarcinoma dataset. The derived gene signatures of 10 sampling-sets, composed of 5,000 training-testing sets, are fairly stable with 40%~62% of all predictor-genes shared by all 10 sampling-sets. These shared predictor-genes include 15 cancer-related and 5 cancer-implicated genes. The predictive ability of these survival markers are evaluated by neural network models, SVM models, and unsupervised hierarchical clustering methods. The derived signatures outperform all previously-derived signatures in predicting patient outcomes from an independent dataset, suggesting its usefulness for deriving stable signatures in facilitating biomarker and target discovery.

6.1 Introduction

The fundamental goals of discovery cancer biomarker includes the prediction of cancer stages, the likelihood of disease redeveloping following an apparent resolution of a disease or to predict outcomes such as life expectancy, survivability, progression, and drug sensitivity after initial diagnosis [646]. Molecular risk factors are commonly used prognostically to stratify the subtype of cancer patients and to prescribe the appropriate treatment regimens that match their risk profiles, so that proper treatment regimen can be applied and ultimately extend the survival of the patients[11]. Certain cancer types, such as lung cancer, are prescribed various types of treatments such as chemotherapy and radiation therapy based on the known molecular factors, such as the status of EGFR expression[647,648]; however, there is no assurance that metastases and recurrence will never occur[647,648]. The ability to predict the metastases and invasions behavior of lung cancer still remains one of the greatest clinical challenges in thisfield.

In order for clinician developing proper treatment regime and ultimately extend the survival of the patients, the accurate identification of cancer subtype and prognosis effect is crucial [11]. Extensive studies have been recently conducted to discover cancer subtype and prognostic prediction based on disease and patients molecular expression profiles[4,5,117-120]. The successful rate of current prediction is low due to the complex and very heterogeneous of lung cancer[120]. However, studies on lung adenocarcinoma survival marker discovery and prognosis prediction still provide a platform for subtype discovery and prognostic prediction based on disease and patients molecular details [4,5,117-120]

Lung cancer is the leading cause of cancer-related mortality not only in the United States but also around the world[649]. In 2007, lung cancer accounts for 29% of all cancer deaths (31% in men, 26% in women) in US [650]. The 2 main types of lung cancer are small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC); NSCLC accounts for approximately 85% of all cases of lung cancer[651]. The NSCLC can be further classified as squamous cell carcinoma and adenocarcinoma, and large-cell lung cancer[652]. The proportional of squamous cell carcinoma is around 20~25%, and the proportional of adenocarcinoma is 50~60% [651]. Despite advances in early detection and standard treatment, prognosis for both NSCLC and SCLC lung cancers are poor. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. The average survival time of advanced NSCLC is 6 months for untreated patients, and 9 months for patients treated with chemotherapy [651]. Five-year survival rate is 60~70% for patients with stage I disease and zero for patients with stage IV disease [651]. The treatment and prevention of lung cancer are major unmet needs that can probably be improved by a better understanding of the molecular origins and evolution of the disease.

The lung cancer patients can be roughly stratified from the morphological assessment based on conventional sputum cytology and chest radiography. These techniques have not yet demonstrated an impact on decreasing lung-cancer mortality [653]. In one study, only 41% of cases that independent lung pathologists agreed on lung adenocarcinoma subclassification [654]. Recently some specific indicators, including tumor size, poor differentiation and high tumor-proliferative index, have been identified to predict the survival of lung cancer patients [655-658], However, these indicators have only limited power in survival prediction.

147

It is suggested that common molecular features may be able to predict such outcome discrepancies among patients more reliably. For instance, the efficacy of EGFR antagonists has been shown to depend on expression and mutation status of its target EGFR in the tumor [659]. Also, the beneficial effect of chemotherapies might depend on the expression of certain enzymes such as thymidine synthetase for pemetrexed[660]. Thus, improved classification of NSCLC by using molecular indicators is of considerable clinical interest.

The development of microarray technology holds the potential to find molecular biomarkers of lung cancer subtype and outcome prediction systematically [661-664]. These biomarkers allow new insights in the process of lung carcinogenesis, and they may provide new tools for determination of prognosis and identification of innovative treatments. However, the reproducibility of gene expression signatures to predict high-risk of relapse or recurrence is rarely reported. The molecule marker selection is strongly dependent on the patient samples, causing the significantly different marker signatures in different groups for lung adenocarcinoma prognosis (Table 6-1) [662,663] and diminishing their application potential for prognosis [139]. Moreover, the prognostic power of previous selected survival genes for individual patients was seldom reported in their studies [662,663]. Guo et al. provided the prediction accuracy for their selected survival genes. However, their selected survival genes were only applicable to one dataset, and the predictive power to the independent dataset was very limited [661]. It is therefore highly desirable to identify stable molecular markers that can reliably determination of prognosis and predict specific subgroups of high- and low-risk patients. This would be helpful to select the most appropriate therapy for individual patient

G 1	Number of selected	Number of genes selected by other N studies								
Study	survival genes in signature	4	3	2	1	0				
Lu et al [665]	125	0	0	0	8	116				
Chen et al [666]	16	0	0	0	0	16				
Xu et al [667]	5	0	0	0	2	3				
Beer et al [662]	100	0	0	0	8	92				
Guo et al [661]	37	0	0	0	4	34				

Table 6-1 Statistics of lung adenocarcinoma survival marker signatures from references

In this chapter, we developed a new recursive feature selection method based on a model built from SVM in identifying novel survival markers with respect to the interactions among genes. The consensuses scoring of multiple random sampling and the evaluation of gene-ranking consistency have been embedded in the recursive feature selection system to reduce the chances of erroneous elimination of predictor-genes and improving the stability across the different sample groups. The new method has been applied to identify important biomarkers in prediction of the survivability of individual patients with lung adenocarcinoma. A total of 21 genes were selected after repeating smapling of the same experiment for 10 times. Results show that the prediction models can accurately predict the clinical outcome for individual patients with lung adenocarcinoma by use of independent datasets. The differential expression analysis, function prediction, and literature searches of the identified biomarkers implies that this group of genes plays important roles in lung adenocarcinoma progress and may contain novel therapeutic targets.

6.2 Materials and Methods

6.2.1 Lung adenocarcinoma microarray datasets and data preprocess

Two independent datasets of clinical samples were used for lung adenocarcinoma survival marker gene selection and validation of the effect of our selected genes. The original gene expression profiles of patient samples have been reported in previous publications [662,663].

The dataset for survival marker gene selection contained the gene expression profiles from 86 primary lung adenocarcinomas (Beer's dataset) [443,662], including 67 stage I and 19 stage III tumors, from oligonucleotide arrays seen at the University of Michigan Hospital between May 1994 and July 2000. This gene expression profile, containing 7129 gene expression levels, was obtained before surgery. Sixty two patients survived (survivable patients) whereas 24 patients died at last follow-up (non-survivable patients). The detailed clinical information of samples is listed in Appendix Table S12. For preprocessing, those genes with little variation (less than 2) across all of 86 samples were removed, and 6009 genes were used for survival gene selection [139,331]. Although this gene filtering procedure may potentially result in the loss of some information, it in this manner decreased the possibility of introduce the noise into the machine learning method and clustering algorithm which might be strongly influenced by genes with little or no expression[443,662].

The robustness of our selected signatures in predicting survivability in lung adenocarcinomas was tested using oligonucleotide gene-expression data obtained from a

completely independent lung adenocarcinoma dataset (Bhattacharjee's dataset) [663,668]. To ensure equivalent testing power and comparability of samples, 84 primary lung tumor samples of which at least 40% samples being cancer cells were selected [662]. In these 84 samples, 41 patients were alive at last follow-up (survivable patients), whereas 43 died (non-survivable patients). The detailed sample clinical information is listed in Appendix Table S13.

In order to present a statistically meaningful evaluation, signature selection was conducted based on multiple random sampling on the Beer's dataset [662]. In multiple random sampling, this dataset was randomly divided into a training set containing 43 samples (including 12 poor outcome samples and 31 good outcome samples) and an associated test set containing the other 43 samples (including the other 12 poor outcome samples and 31 good outcome samples). To reduce computational cost, 5,000 training-test sets, each containing a unique combination of samples, were generated. These 5,000 training-test sets were randomly placed into 10 sampling groups; each containing 500 training-test sets. Every sampling group was then used to derive a signature by using the similar way as colon cancer marker discovery. Finally, the 10 different signatures derived from these sampling groups were compared in order to test the level of stability of selected predictor-genes.

Repeated random sampling was used to archieve statistically meaningful evaluation in analyzing Beer's dataset [139]. In multiple random sampling, the dataset was randomly divided into a training set containing 43 samples (including 12 poor outcome samples and 31 good outcome samples) and an associated test set containing the other 43 samples (including the other 12 poor outcome samples and 31 good outcome samples). To reduce computational cost, 5,000 training-test sets, each containing a unique combination of samples, were generated. These 5,000 training-test sets were randomly placed into 10 sampling groups; each containing 500 training-test sets. Finally, the 20 different signatures derived from these sampling groups were compared in order to test the level of stability of selected predictor-genes.

Each of the 10 sampling groups was used to derive a set of survival marker genes. In the 500 training-testing sets in every sampling group, each training-set was used to select genes by RFE based on SVM system. For all iterations and testing-sets, SVM system employed a set of globally modified parameters which gave the best average class-differentiation accuracy over the 500 testing-sets.

In every sampling group, three gene-ranking consistency evaluation steps were implemented on top of the normal RFE procedures in all sampling groups:

- (1) For every training-set, subsets of genes ranked in the bottom 10% (if no gene was selected in current iteration, this percentage was gradually increased to the bottom 40%) with combined score lower than the first top-ranked gene were selected such that collective contribution of these genes less likely outweighed higher-ranked ones;
- (2) For every training-set, genes selected from the step (1) were further evaluated to choose those not ranked in the upper 50% in previous iteration so as to ensure that these genes were consistently ranked lower;
- (3) A consensus scoring scheme was applied to genes selected from the step (2)such that only those appearing in >90% (if no gene was selected in current iteration, this

percentage was gradually reduced to 60%) of the 500 training-sets were eliminated..

6.2.2 Performance evaluation of survival marker signatures

The predictive capability of survival marker signatures were evaluated by using the SVM and PNN classification system on 500 randomly-generated training-testing sets generated from the Bhattacharjee's dataset [663] and the Beer's dataset [662]. For each training-testing set, the training data was used to construct a classifier model, whereas the testing data was used to evaluate the performance of the model. The predictive performance of selected signatures was evaluated by the accuracies for survival patients (Sensitivity, SE) (Equation 2-17), non-survivable patients (Specificity, SP) (Equation 2-18), and overall accuracies (Q) (Equation 2-16) over the 500 models. Besides the evaluation by using supervised classifiers, unsupervised hierarchical clustering analysis was also applied to evaluate the performance of signatures.

Hierarchical cluster analysis was conducted by using the selected survival on the 86 samples from Beer et al. [662] and the independent dataset from Bhattacharjee *et al.* [663]. Kaplan-Meier survival analysis, often referred as survival analysis, was used in this study together with hierarchical cluster analysis. This analysis is popularly employed in medical research to estimate the percentage of patients living for a certain amount of time after surgery. It allows the estimation of survival over time, even when patients drop out or are studied for different lengths of time. A typical application of Kaplan-Meier analysis involves (1) grouping patients into different categories, and (2) comparing the survival curves from those categories by the log-rank test to assess the statistical significance of the

difference among the survival curves for the categories. The Kaplan-Meier analysis was performed by using XLSTAT software [669].

6.3 Results and discussion

6.3.1 System of the lung adenocarcinoma survival marker selection

10 sets of survival marker genes were obtained. The number or predictor-genes in each sampling group ranged from 34 to 57 (Table 6-2, Appendices Table S14). The stability of selected signatures was evaluated from the percentage of predictor-genes shared across every sampling group. As shown in Table 6-2 and Table 6-3 a total of 21 predictor-genes were presented in all experiments, accounting 40% to 62% genes identified by 10 sampling groups. The identified survival markers shown a moderate stability when comparing to the results from 5 previous studies (Table 6-1), which shows that 5~125 selected predictor-genes in each of the 5 previous studies were seldom presented in the other 4 studies.

PNN and SVM classifiers were used to evaluate classifier accuracy of selected predictorgenes. The classification capability of selected 21 predicator-genes was further evaluated by PNN and SVM classifiers, hierarchical clustering method and Kaplan-Meier survival analyses as shown in Figure 6-1.

Figure 6-1 System for lung adenocarcinoma survival marker derivation and survivability prediction

Table 6-2 Statistics of the lung adenocarcinoma survival markers by class-differentiation systems constructed from 10 different sampling-sets, each composed of 500 training-testing sets generated by random sampling.

Signature (method)	Signature (method) Number of selected survival genes in signature		Number of survival-genes also included in N other signatures derived by using different sampling-set											
· · · ·	genes in signature	9	8	7	6	5	4	3	2	1	0			
1	51	21	4	1	7	5	3	3	2	1	4			
2	54	21	6	1	6	3	2	5	5	2	3			
3	42	21	6	2	4	3	2	2	2	0	0			
4	34	21	3	2	1	2	2	1	2	0	0			
5	46	21	6	2	7	5	1	2	2	0	0			
6	54	21	6	2	8	5	3	2	2	2	3			
7	57	21	5	1	7	2	1	3	5	2	10			
8	50	21	6	2	6	2	1	4	5	2	1			
9	53	21	6	1	5	5	1	4	3	4	3			
10	47	21	6	2	5	4	1	2	3	1	2			

6.3.2 Consistency analysis of the identified markers

The optimal SVM parameter, σ , for the 10 sample sets were in the range of 41 to 46, and the highest average accuracies across the 10 sampling-sets were 84.1%~88.4% for nonsurvivable (those died at last follow-up) and 100% for survivable patients (those alive at last follow-up) respectively (Table 6-4). The accuracies for the 5,000 individual testingsets ranged from 63.6%~100% for non-survivable and 100% for survivable patients respectively. The relatively small variations of optimal SVM parameters and prediction accuracies across the 10 sampling-sets suggest that the performance of the SVM classdifferentiation systems constructed by using globally optimized parameters and RFE iteration steps are fairly stable across different sampling combinations.

Gene Name	Gene description	Chromoso me Location	Туре	Family	Function in metagenesis	Gene Ontology: Function	Gene Ontology: Process	Pathway (from KEGG, Reactome, proteinlounge)	References
VEGF	vascular endothelial growth factor	6p12	Growth Factor	PDGF/VEGF Family of Growth Factors	Angiogenesis, therapeutic target for lung cancer therapy	extracellular matrix binding; growth factor activity; growth factor activity; heparin binding; protein binding; protein homodimerization activity; vascular endothelial growth factor receptor binding	angiogenesis; anti-apoptosis; cell migration; cell proliferation; epithelial cell differentiation; eye photoreceptor cell development; induction of positive chemotaxis; lung development; mesoderm development; multicellular organismal development; nervous system development; nervous system development; nervous system development; positive regulation of epithelial cell proliferation; positive regulation of vascular endothelial growth factor receptor signaling pathway; regulation of progression through cell cycle; response to hypoxia; signal transduction; vasculogenesis	VEGF Pathway; Inhibition of Angiogenesis by TSP1; eNOS Signaling; Relaxin Pathway; Phospholipase-C Pathway; CRHR Pathway; mTOR Pathway; Paxillin Interactions; PAK Pathway; Ras Pathway; Cellular Apoptosis Pathway; Cellular Apoptosis Pathway; Rap1 Pathway; GPCR Pathway; TGF-Beta Pathway; MAPK Family Pathway; P2Y Receptor Signaling; RhoGDI Pathway ; NF- KappaB Family Pathway; FGF Pathway; HIF1Alpha Pathway; Rac1 Pathway; JAK/STAT Pathway; Renin-Angiotensin Pathway; Mitochondrial Apoptosis; NF- KappaB (p50/p65) Pathway; Telomerase Components in Cell Signaling; Rho Family GTPases	670-675]
BSG	basigin	19p13.3			Tumor marker, angiogenesis, immunoangiost asis	mannose binding; signal transducer activity; sugar binding	cell surface receptor linked signal transduction		[676-680]
CXCL3	chemokine (C-X-C motif) ligand 3	4q21	Cytokine	Intercrine Alpha (Chemokine CXC) Family	Oncogene, immune tolerance gene, angiogenesis, organ-specific metastases	chemokine activity	G-protein coupled receptor protein signaling pathway; chemotaxis; immune response; inflammatory response	Rho Family GTPases	681-684]
CHRNA2	cholinergic receptor, nicotinic, alpha 2 (neuronal)	8p21	Receptor, Transporter , Neurotrans mitter	Ligand-Gated Ionic Channel (TC 1.A.9) Family; autocrine growth factors	therapeutic target for lung cancer therapy	acetylcholine receptor activity; extracellular ligand-gated ion channel activity; ion channel activity; nicotinic acetylcholine-activated cation-selective	ion transport; signal transduction; synaptic transmission		675,685,686]

Table 6-3 Gene information for lung adenocarcinoma survival markers shared by all of 10 signatures.

						channel activity			
FUT3	fucosyltransf erase 3	19p13.3				transferase activity, transferring glycosyl groups	carbohydrate metabolic process; protein amino acid glycosylation		[687-690]
FXYD3	FXYD domain containing ion transport regulator 3	19q13.11- q13.12	ion channel activity, chloride channel activity			chloride channel activity; chloride ion binding; ion channel activity	chloride transport; ion transport		[691,692]
PLD1	phospholipas e D1	3q26	Signal Transductio n	PLD Family		hydrolase activity; phosphoinositide binding; phospholipase D activity; protein binding	Ras protein signal transduction; cell communication; chemotaxis; lipid catabolic process; metabolic process; phospholipid metabolic process	Ras pathway; Rho Family GTPases; RhoA Pathway ;Rac1 Pathway; Endothelin-1 Signaling Pathway	[693,694]
POLD3	polymerase (DNA- directed), delta 3, accessory subunit	11q14				DNA binding; delta DNA polymerase activity; transferase activity	DNA synthesis during DNA repair; mismatch repair	DNA polymerase; Purine metabolism; Pyrimidine metabolism; Cell Cycle (Mitotic); DNA Repair; DNA Replication; Maintenance of Telomeres	[695]
PRKACB	protein kinase, cAMP- dependent, catalytic, beta	1p36.1	Kinase	Ser/Thr Family of Protein Kinases (cAMP Subfamily)		ATP binding; cAMP- dependent protein kinase activity; magnesium ion binding; nucleotide binding; protein kinase activity; protein serine/threonine kinase activity; transferase activity	G-protein signaling, coupled to cAMP nucleotide second messenger; protein amino acid phosphorylation; signal transduction	Apoptosis; Calcium signaling pathway; Gap junction; GnRH signaling pathway; Hedgehog signaling pathway; Insulin signaling pathway; Long-term potentiation; MAPK signaling pathway; Olfactory transduction; Taste transduction; Wnt signaling pathway; PKA pathway(17333334)	[696]
CXCR7	chemokine (C-X-C motif) receptor 7	2q37.3			Immune tolerance gene, therapeutic target for lung cancer therapy, organ-specific metastases	receptor activity; rhodopsin-like receptor activity	G-protein coupled receptor protein signaling pathway; biological_process; signal transduction		[675,681,684, 697,698]

REG1A	regenerating islet-derived 1 alpha	2p12				sugar binding	positive regulation of cell proliferation		[699,700]
RPS3	ribosomal protein S3	11q13.3- q13.5	Structural Protein	S3P Family of Ribosomal Proteins.	involved in DNA repair pathway and apoptosis pathway, interacted with metastasis suppressor nm23	RNA binding; structural constituent of ribosome	translation	DNA repair pathway and apoptosis pathway	[701,702]
SERPIN E1	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1	7q21.3-q22	Metabolic	SERPIN Family	angiogenesis				[703-706]
SLC2A1	solute carrier family 2 (facilitated glucose transporter)	1p35-p31.3	Transport	Sugar Transporter (Subfamily- Glucose Transporter)	providing energy to rapidly dividing tumor cells,	glucose transporter activity; protein binding; sugar porter activity; transporter activity	carbohydrate transport; glucose transport		[707]
SPRR1B	small proline-rich protein 1B	1q21-q22	structural molecule activity			protein binding, bridging; structural molecule activity	epidermis development; keratinization; keratinocyte differentiation; peptide cross-linking		[708,709]
TUBA4A	tubulin, alpha 4a	2q35	Structural	Tubulin Superfamily	angiogenesis		GTP binding; GTPase activity; nucleotide binding; protein binding; structural molecule activity		[710-712]
VDR	vitamin D (1,25- dihydroxyvit amin D3) receptor	12q13.11	Transcripti on Factor	Nuclear Hormone Receptor Family (NR1 Subfamily)	Research tumor target	metal ion binding; protein binding; sequence-specific DNA binding; steroid hormone receptor activity; transcription factor activity; vitamin D3 receptor activity;	calcium ion homeostasis; calcium ion transport; intestinal absorption; multicellular organismal development; negative regulation of transcription; organ morphogenesis; regulation of transcription, DNA-dependent; signal transduction; skeletal development; transcription	МАРК	713]

					zinc ion binding		
ADFP	Adipose differentiatio n-related protein	9p22.1					
ANXA8	annexin A8	10q11.2			calcium ion binding; calcium-dependent phospholipid binding	blood coagulation	
GALNT4	GalNAc transferase 4	12q21.3- q22		GalNAc- transferase family	calcium ion binding; manganese ion binding; sugar binding; transferase activity, transferring glycosyl groups	carbohydrate metabolic process	
LDHB	lactate dehydrogena se B	12p12.2- p12.1	Metabolic	Ldh Family	L-lactate dehydrogenase activity; oxidoreductase activity	anaerobic glycolysis; tricarboxylic acid cycle intermediate metabolic process	

Table 6-4 Average survivability prediction accuracy of 500 SVM class-differentiation systems on
the optimal SVM parameters for lung adenocarcinoma prediction. The sigma is the optimal SVM
parameter which gives the best average class-differentiation accuracy over the 500 testing-sets.
The accuracies are obtained from 500 testing-sets.

5	Signature (method)	Optimal SVM parameter	Number of selected	Non-survivable patients Surviv			able p			
(genes in signature	TP	FN	SE	TN	FP	SP	Q
	1	45	51	5275	814	86.6%	14908	3	100%	96.1%
	2	44	54	5175	939	84.6%	14886	0	100.%	95.5%
	3	43	42	5173	909	85.1%	14918	0	100%	95.7%
	4	41	34	5347	802	87.0%	14845	6	100%	96.2%
	5	43	46	5340	703	88.4%	14956	1	100%	96.6%
	6	45	54	5230	865	85.8%	14905	0	100%	95.9%
	7	45	57	5139	972	84.1%	14889	0	100%	95.4%
	8	46	50	5201	949	84.6%	14850	0	100%	95.5%
	9	43	53	5313	801	86.9%	14886	0	100%	96.2%
	10	46	47	5333	757	87.6%	14910	0	100%	96.4%

6.3.3 Disease relevant of identified markers

The 21 predictor-genes shared by all 10 sampling-sets included 16 cancer-related genes (4 anticancer targets, 1 oncogene, 2 angiogenesis genes, 1 organ-specific metastases gene, 1 tumor stability gene, 2 apoptosis genes, 1 cancer growth gene, and 4 cancer-pathway-affiliated genes). In our analysis, anticancer targets were obtained from the latest version of therapeutic target database (http://bidd.nus.edu.sg/group/cjttd/ttd.asp) [337,714], and the cancer-related genes and cancer-pathways were taken from recent publications [715-720].

Gene Group	Predictor-genes selected by this work only					
Therapeutic target	VEGFA, CHRNA2, TUBA4A, VDR					
Oncogene	CXCL3					
Organ-specific metastases	FUT3					
Cellular growth of carcinomas	FXYD3					
Apoptosis	RPS3, REG1A					
Stability genes	POLD3					
Cancer pathway affiliated gene	PRKACB, PLD1, SERPINE1, SLC2A1					

Table 6-5 List of predictor-genes of lung adnocacinoma cancer dataset shared by all 10 sampling-sets.

6.3.4 The predictive ability of identified markers

The predictive capabilities of our selected and 10 previously-derived signatures were evaluated using the SVM and PNN classification system on 500 randomly-generated training-testing sets that were generated from the Bhattacharjee's dataset [663] and the Beer's dataset [662]. For each training-test set, the training data was used to construct a classifier model, whereas the test data was used to evaluate the performance of the model. The predictive performance of selected signatures was evaluated by the overall accuracies (Q) of the 500 models.

Table 6-6 gives the prediction accuracies from the SVM prediction system constructed by independent samples from Bhattacharjee's dataset [663] using our selected gene signatures and 9 other previous-derived signatures. The accuracies for non-survival patients, survival patients and all patients of the our selected 10 gene signatures over the 500 test sets were in the range of 77.8% to 81.2%, 74.3% to 80.1% and 77.6% to 80.2% correspondingly,

while the standard deviations of the accuracy of all patients were ranged from 4.7% to 4.9%. The accuracies for non-survival patients, survival patients and overall accuracies for all patients of the 21 survival genes shared by all of the 10 signatures over the 500 test sets were 78.9%, 76.8% and 77.9% respectively, while the standard deviation of the accuracy of all patients was 4.8%. In contrast, the accuracies for non-survivable patients, survival patients and all patients of the 9 previous-derived signatures were in the range of 70.1%~77.2%, 56.4% to 78.0% and 66.0% to 77.6% respectively, and the standard deviations of the accuracy of all patients were in the range of 5.5%~6.9%. These results suggest that the performance of our signatures is more stable than those of other signatures by using independent database and by applying the SVM models.

Table 6-7 illustrates the predictive performance of the 500 testing sets by using the PNN classification system and the 500 randomly generated training-testing dataset generated from the independent Bhattacharjee's dataset [663] using our selected genes. The accuracies for non-survivable patients, survival patients and all patients of our selected 10 signatures over the 500 test sets were, respectively, in the range of 69.3% to 80.2%, 64.5% to 78.0% and 69.1% to 76.6%, while the standard deviations of the accuracy of all patients were in the range of 4.2% to 4.9%. The accuracies for non-survivable patients, survival genes shared by all the 10 signatures over the 500 test sets were 75.2%, 62.6% and 69.2% respectively, while the standard deviation of the overall accuracy was 4.4%. The accuracies for non-survivable patients, survival patients and patients of the 9 previous-derived signatures were in the range of 53.5%~95.6%, 45.7% to 76.8% and 64.0% to 71.7% respectively, while the standard deviation of accuracy of all patients were in the range of 4.7%~6.1%. These results recommend that the survival genes we selected have a slightly better consistency and more

stable predictive performance than those of the signatures selected by other studies with

the PNN classification system.

Table 6-6 Average survivability prediction accuracy of the 500 SVM class-differentiation systems constructed by 84 samples from independent Bhattacharjee's lung adenocarcinoma dataset [663] using each of the signatures derived from this study and 9 previous studies. The accuracies were obtained from the 500 testing-sets.

Signature (method)	Number of selected survival	Non-survivable patients			Survivable patients			Q	STDEV
	genes in signature	TP	FN	SE	TN	FP	SP		
1*	51	8495	2369	78.2%	7864	2272	77.6%	77.9%	4.8%
2*	54	8602	2262	79.2%	7783	2353	76.8%	78.0%	4.7%
3*	42	8745	2119	80.5%	8014	2122	79.1%	79.8%	4.8%
4*	34	8452	2412	77.8%	7837	2299	77.3%	77.6%	4.8%
5*	46	8723	2141	80.3%	8117	2019	80.1%	80.2%	4.9%
6*	54	8600	2264	79.2%	7731	2405	76.3%	77.8%	4.7%
7*	57	8802	2062	81.0%	7807	2329	77.0%	79.1%	4.8%
8*	50	8414	2450	77.4%	7533	2603	74.3%	75.9%	4.8%
9*	53	8655	2209	79.7%	7992	2144	78.8%	79.3%	4.7%
10*	47	8823	2041	81.2%	7899	2237	77.9%	79.6%	4.8%
Genes selected by all sampling sets*	21	8571	2293	78.9%	7788	2348	76.8%	77.9%	4.8%
Beer et al [662]	100	8287	2577	76.3%	7540	2596	74.4%	75.4%	6.2%
Beer et al [662]	50	7616	3248	70.1%	7407	2729	73.1%	71.5%	6.3%
Chen et al [666]	16	7755	3109	71.4%	7255	2881	71.6%	71.5%	6.6%
Chen et al [666]	5	7684	3180	70.7%	6820	3316	67.3%	69.1%	6.4%
Guo et al [661]	37	8088	2776	74.4%	7443	2693	73.4%	74.0%	6.4%
Guo et al [661]	8	8386	2478	77.2%	7904	2232	78.0%	77.6%	6.6%
Lu et al [665]	125	8348	2516	76.8%	7588	2548	74.9%	75.9%	5.8%
Lu et al [665]	64	8237	2627	75.8%	7612	2524	75.1%	75.5%	5.5%
Xu et al [667]	5	8141	2723	74.9%	5720	4416	56.4%	66.0%	6.9%

* Data from this study

	Number of	Noi	1-surviv patients	able	Survivable patients				
Signature (method)	selected survival genes in signature	TP	FN	SP	TN	FP	SE	Q	STDEV
1*	51	7769	3156	71.1%	7270	2805	72.2%	71.6%	4.5%
2*	54	7837	3088	71.7%	7478	2597	74.2%	72.9%	4.9%
3*	42	8762	2163	80.2%	7333	2742	72.8%	76.6%	4.6%
4*	34	8656	2269	79.2%	6810	3265	67.6%	73.6%	4.3%
5*	46	7995	2930	73.2%	7863	2212	78.0%	75.5%	4.6%
6*	54	8019	2906	73.4%	6502	3573	64.5%	69.1%	4.5%
7*	57	8177	2748	74.8%	7518	2557	74.6%	74.7%	4.4%
8*	50	8000	2925	73.2%	7514	2561	74.6%	73.9%	4.2%
9*	53	7575	3350	69.3%	7140	2935	70.9%	70.1%	4.6%
10*	47	8379	2546	76.7%	7413	2662	73.6%	75.2%	4.7%
Genes selected by all sampling sets*	21	8217	2708	75.2%	6305	3770	62.6%	69.2%	4.4%
Beer et al [662]	100	7537	3388	69.0%	7515	2560	74.6%	71.7%	5.5%
Chen et al [666]	5	10446	479	95.6%	4600	5475	45.7%	71.6%	4.7%
Guo et al [661]	8	7752	3173	71.0%	7189	2886	71.4%	71.1%	5.2%
Guo et al [661]	37	7537	3388	69.0%	7284	2791	72.3%	70.6%	5.5%
Xu et al [667]	5	7884	3041	72.2%	6844	3231	67.9%	70.1%	5.6%
Beer et al [662]	50	9220	1705	84.4%	5310	4765	52.7%	69.2%	4.9%
Chen et al [666]	16	6780	4145	62.1%	7734	2341	76.8%	69.1%	5.7%
Lu et al [665]	125	6874	4051	62.9%	7591	2484	75.3%	68.9%	6.1%
Lu et al [665]	64	5845	5080	53.5%	7591	2484	75.3%	64.0%	6.1%

Table 6-7 Average survivability prediction accuracies of the 500 PNN class-differentiation systems constructed by 84 samples from independent Bhattacharjee's lung adenocarcinoma dataset [663] using each of the signatures derived from this study and 9 previous works.

* Data from this study

The predictive accuracies of the 500 SVM survivability prediction systems from the original Beer' dataset [662] are shown in Table 6-8. These 500 training sets and 500 test sets were different from those used for survivability gene signatures selection. The accuracies for non-survivable patients, survival patients and all patients of the 10 survival gene signatures over the 500 test sets were in the range of 94.2% to 96.1%, 99.8 to 100% and 98.3% to 98.9% respectively, and the standard deviations of accuracy of all patients

were in the range of 3.2~3.7%. The accuracies for non-survival patients, survival patients and all patients of the 21 survival genes shared by all the 10 signatures over the 500 test sets were 90.5%, 99.5% and 96.9% respectively, and the standard deviation of the accuracy of all patients was 4.0%. The performances of our selected genes were both higher and more stable than those of the other 9 studies, in which the accuracies for non-survivable patients, survival patients and all patients were in the range of 52.5% to 66.6%, 81.8% to 96.8% and 75.6% to 88.3% respectively, and the standard deviations of accuracy of all patients were in the range of 5.8% to 8.0%. Overall, the survival predictor-genes selected from this study showed a better performance and relative low standard deviations than those previously identified ones when evaluated by the similar SVM classification system.

The predictive accuracies of the 500 PNN classification systems for survivability prediction from the original Beer' dataset [662] are shown in Table 6-9. The accuracies for non-survivable patients, survival patients and all patients of the 10 survival gene signatures over the 500 test sets were in the range of 79.6% to 89.8%, 95.9% to 98.9% and 93.4% to 95.5% respectively, and the standard deviations (STDEV) were in the range of 4.3% to 5.2%. The accuracies for non-survivable patients, survival patients and all patients of the 21 survival genes shared by all the 10 signatures over the 500 test sets were 75.1%, 96.2% and 90.2% respectively, and the standard deviations of the overall accuracy was 5.7%. In contrast, the accuracies for non-survivable patients, survival patients and all patients of the 9 gene signatures from other studies over the 500 test sets were in the range of 57.2% to 76.1%, 73.5% to 89.7% and 72.1% to 80.6% respectively, and the standard deviation were in the range of 7.5% to 11.0%. This comparison indicated that the
performance of our selected gene signatures is better and stabler than those of other studies using the PNN classification methods for survivability prediction.

	Number of	Non-survival patients			Survi	vable pa			
(method)	selected survival genes in signature	TP	FN	SE	TN	FP	SP	Q	STDEV
1*	51	5589	342	94.2%	15047	22	99.9%	98.3%	3.4%
2*	54	5671	260	95.6%	15043	26	99.8%	98.6%	3.2%
3*	42	5622	309	94.8%	15061	8	99.9%	98.5%	3.5%
4*	34	5630	301	94.9%	15037	32	99.8%	98.4%	3.3%
5*	46	5679	252	95.8%	15039	30	99.8%	98.7%	3.5%
6*	54	5664	267	95.5%	15054	15	99.9%	98.7%	3.7%
7*	57	5678	253	95.7%	15059	10	99.9%	98.7%	3.4%
8*	50	5694	237	96.0%	15069	0	100%	98.9%	3.3%
9*	53	5702	229	96.1%	15047	22	99.9%	98.8%	3.3%
10*	47	5686	245	95.9%	15052	17	99.9%	98.8%	3.3%
Genes selected by all sampling sets *	21	5369	562	90.5%	14987	82	99.5%	96.9%	4.0%
Beer et al [662]	100	3951	1980	66.6%	14589	480	96.8%	88.3%	5.8%
Beer et al [662]	50	3302	2629	55.7%	14134	935	93.8%	83.0%	6.7%
Lu et al [665]	64	3526	2405	59.5%	13658	1411	90.6%	81.8%	6.4%
Lu et al [665]	125	3467	2464	58.5%	13570	1499	90.0%	81.1%	6.2%
Guo et al [661]	37	2760	3171	46.5%	13974	1095	92.7%	79.7%	7.0%
Chen et al [666]	16	2925	3006	49.3%	13702	1367	90.9%	79.2%	7.0%
Xu et al [667]	5	3696	2235	62.3%	12432	2637	82.5%	76.8%	7.5%
Chen et al [666]	5	3577	2354	60.3%	12325	2744	81.8%	75.7%	8.0%
Guo et al [661]	8	3113	2818	52.5%	12760	2309	84.6%	75.6%	7.3%

Table 6-8 Average survivability prediction accuracy of 500 SVM class-differentiation systems constructed by 86 samples from Beer's lung adenocarcinoma dataset [662].

* Data from this study

	No. of selected	Noi	n-survivable patients		Survi	vable p			
Signature (Method)	predictor genes in signature	ТР	FN	SE	TN	FP	QN	Q	STDEV
1*	51	5069	862	85.5%	14635	434	97.1%	93.8%	4.8%
2*	54	5062	869	85.3%	14726	343	97.7%	94.2%	4.6%
3*	42	4939	992	83.3%	14715	354	97.7%	93.6%	4.7%
4*	34	4719	1212	79.6%	14904	165	98.9%	93.4%	5.2%
5*	46	5210	721	87.8%	14798	271	98.2%	95.3%	4.5%
6*	54	5326	605	89.8%	14730	339	97.8%	95.5%	4.3%
7*	57	5214	717	87.9%	14533	536	96.4%	94.0%	4.9%
8*	50	5089	842	85.8%	14707	362	97.6%	94.3%	4.5%
9*	53	5319	612	89.7%	14450	619	95.9%	94.1%	4.4%
10*	47	5100	831	86.0%	14571	498	96.7%	93.7%	4.8%
Genes selected by all sampling sets*	21	4454	1477	75.1%	14495	574	96.2%	90.2%	5.7%
Beer et al [662]	50	3393	2538	57.2%	13523	1546	89.7%	80.6%	7.5%
Beer et al [662]	100	4183	1748	70.5%	12648	2421	83.9%	80.1%	9.0%
Lu et al [665]	64	4515	1416	76.1%	11700	3369	77.6%	77.2%	10.0%
Xu et al [667]	5	4205	1726	70.9%	11960	3109	79.4%	77.0%	7.5%
Chen et al [666]	5	3601	2330	60.7%	11985	3084	79.5%	74.2%	7.9%
Guo et al [661]	8	3743	2188	63.1%	11768	3301	78.1%	73.9%	8.2%
Chen et al [666]	16	3569	2362	60.2%	11936	3133	79.2%	73.8%	7.8%
Lu et al [665]	125	4310	1621	72.7%	11078	3991	73.5%	73.3%	12.5%
Guo et al [661]	37	3903	2028	65.8%	11232	3837	74.5%	72.1%	11.0%
* Data from this study	y								

Table 6-9 Average survivability prediction accuracies of the 500 PNN class-differentiation systems constructed by 86 samples from Beer's lung adenocarcinoma dataset [662].

6.3.5 Patient survival analysis using survival markers

Hierarchical cluster analysis can cluster the samples according to their expression profiles across the gene we selected. The comparison of the survival curves from these clusters can be used to assess the statistical significance of the survivability difference among the clusters. By using 21 identified markers, hierarchical cluster analysis grouped 86 lung adenocarcinoma patients in the Beer's dataset [662] into three clusters (Figure 6-2). Kaplan-Meier survival analysis showed that the survival time after therapy was significantly different in the three patient clusters (P<0.0001, log-rank test, Figure 6-3). Cluster 1 was the poor prognosis group. The average survival time of patients in this cluster was 50.6 months. In this cluster, the numbers of survivable patients (SP) and nonsurvivable patients (NSP) were 12 and 14 respectively (Table 6-10). The survival percentage, which defined by SP/(SP+NSP), were 46%. Cluster 2 was the good prognosis groups with average survival time of 82.2 months. The SP, NSP and survival percentage were 26, 1 and 96% respectively. Cluster 3 was the moderate prognosis group with average survival time of 74.8 months. The SP, NSP and survival percentage were 22, 9 and 72% respectively. By using the similar way, Guo et al [661] clustered these samples [662] into three clusters by using 37 genes and the survival percentages were 69%, 72% and 75% for poor, moderate and good prognosis clusters, respectively (Table 6-10). The survival percentage for three clusters generated by 100 genes in Beer et al [662] are 43%, 57% and 88% for poor, moderate and good prognosis clusters, respectively (Table 6-10). These results indicated that the 21 genes selected by using our method can be classified into better clinically meaningful groups for further prognosis than the genes selected by other group.

Hierarchical clustering of the 21 genes on the independent validation dataset -Bhattacharjee's dataset [663] showed the similar results (Figure 6-4). Three clusters had significant difference by using Kaplan-Meier analysis with P<0.001 from log-rank test (Figure 6-5). The average survival time for cluster 1, which was poor prognosis group, was 35.7 months. The average survival time for cluster 2, which was moderate prognosis group, was 32.0 months. The average survival time for cluster 3, which was good prognosis group, was 78.3 months. The survival percentages of the three clusters were 30%, 43 % and 73% for poor, moderate and good prognosis clusters, as shown in Table 6-11. By using the similar strategies, Guo et al [661] clustered the sample into three clusters. However, the survivability percentages among the clusters were 45%, 46% and 51% for three clusters by using the Kaplan-Meier analysis, showing little statistically different among the clusters (Table 6-10). The survival percentage of three clusters formed by 21 genes we selected were more spread out than those formed by the genes selected by other researchers, further suggesting that 21 genes we selected have robust behavior for prognosis prediction.

Table 6-10 Comparison of the survival rate in clusters with other groups, by using different signatures and Beer's microarray dataset [662].

Study	Gene	Poor prognosis cluster		Moderate prognosis			Good prognosis			
	number in			cluster			cluster			
	signatures	SP^1	NSP^2	Survival	SP	NSP	Survival	SP	NSP	Survival
				rate ³			rate			rate
This study	21	12	14	46%	22	9	72%	26	1	96%
Guo's group [661]	37	25	11	69%	15	6	71%	20	7	74%
Beer's group $[662]^4$	100	25	19	43%	23	19	57%	37	5	88%

¹SP: the number of survivable patients

²NSP: the number of non-survivable patients

³ Survival rate= SP/(SP+NSP)

⁴ The cluster analysis was done on 128 lung cancer samples

Figure 6-2 Hierarchical clustering analysis of the 21 lung adenocarcinoma survival markers from Beer's microarray dataset [662]. The tumor samples were aggregated into three clusters. Substantially elevated (red) and decreased (green) expression of the genes is observed in individual tumors.

Figure 6-3 Kaplan-Meier survival analysis of the three clusters of patients from Figure 6-2. Average survival time of patients in cluster 1 is 50.6 months; average survival time of patients in cluster 2 is 82.2 months; average survival time of patients in cluster 3 is 74.8 months (P<0.0001, log-rank test).

Study	Gene	Poor prognosis cluster			Moderate prognosis			Good prognosis		
	number in				cluster			cluster		
	signatures	SP^1	NSP^2	Survival	SP	NSP	Survival	SP	NSP	Survival
				rate ³			rate			rate
This study	21	12	14	46%	22	9	72%	26	1	96%
Guo's group [661]	37	25	11	69%	15	6	71%	20	7	74%
Beer's group [662] ⁴	100	25	19	43%	23	19	57%	37	5	88%

Figure 6-4 Hierarchical clustering analysis of the 21 lung adenocarcinoma markers from Bhattacharjee's microarray dataset [663]. The tumor samples were aggregated into three clusters. This 21-gene signature are shared by 10 survival genes sets of lung adenocarcinoma derived by using datasets from Beer et al [662] and by using multiple random sampling method.

Figure 6-5 Kaplan-Meier survival analysis of the three clusters of patients from Figure 6-4. Average survival time of patients in cluster 1 is 35.7 months; average survival time of patients in cluster 2 is 32.0 months; average survival time of patients in cluster 3 is 78.3 months (P<0.001, log-rank test).

Study	Gene	Poor prognosis cluster			М	oderate p clust	prognosis ter	Good prognosis cluster		
Study	signatures	SP	NSP	Survival rate	SP	NSP	Survival rate	SP	NSP	Survival rate
This study	21	10	23	30%	9	12	43%	22	8	73%
Guo's group [661]	37	9	11	45%	11	13	46%	20	19	51%

6.3.6 Hierarchical clustering analysis of the survival markers

In the hierarchical analysis for 86 lung adenocarcinoma patients in the Beer's dataset [662], 21 survival genes were formed into two clusters (Figure 6-6). Genes in gene cluster 1 are correlated with a poor prognosis of lung adenocarcinoma, whereas genes in cluster 2 are correlated with a moderate prognosis of lung adenocarcinoma. Figure 6-6 shows that

higher expression of the genes in cluster 1 is associated with poor prognosis in patients in lung adenocarcinoma, and higher expression of the genes in cluster 2 is associated with moderate prognosis in patients in lung adenocarcinoma. On the other hand, the lower expression of all these 21 genes in both cluster 1 and 2 is associated with good prognosis. The 11 poor-prognosis genes in cluster 1 are CXCR7, POLD3, ADFP, VEGF, SLC2A1, RPS3, LDHB, PLD1, SPRR1B, VDR, and TUBA4A, of which four genes, VEGF, CXCR7, TUBA4A and VDR, are therapeutic tumor targets. The 10 moderate-prognosis genes in cluster 2 consist of PRKACB, CXCL3, REG1A, FUT3, GALNT4, FXYD3, CHRNA2, ANXA8, SERPINE1 and BSG. CHRNA2 is a molecular target for lung cancer therapy. The target information was obtained from the latest version of therapeutic target database [337,714],

Figure 6-6 Hierarchical clustering analysis of the 21 lung adenocarcinoma survival markers from Beer's microarray dataset [662]

Most of the selected genes were experimentally proved that high expression of these genes was related to adverse survivability of patients. High level of serum VEGF (vascular endothelial growth factor) in the NSCLC may directly predict worse survival [721,722], and acts as a crucial parameter in lung cancer, especially associated with NSCLC [721,722]. The expression of VDR (Vitamin D receptor) was observed in lung adenocarcinoma [723]. Increased SLC2A1 (solute carrier family 2) expression in tumors was identified as an adverse prognostic factor and a predictive prognosis marker [724]. Elevated PLD1 (phospholipase D1) activity could promote tumor progress and show high invasive potential [694,725-727]. Up-regulated expression of FXYD3 (FXYD domain containing ion transport regulator 3) in cancer indicated that FXYD3 might contribute to the proliferative activity of malignancy [691]. In vivo experiments demonstrated that BSG (basigin; CD147) overexpression stimulated tumor angiogenesis and growth [678]. Higher expression of FUT3 (fucosyltransferase 3) was often observed in high grade and poor prognosis tumors [728]. The expression level of SERPINE1 (plasminogen activator inhibitor-1) in tissue was significantly and positively correlated with tumor severity and tumor size [729], and high level of SERPINE1 could indicate an aggressive phonotype of carcinomas [730,731], serving as an indicator of poor prognosis in adenocarcinomas of the lung [732]. REG1A (regenerating islet-derived 1 alpha) expression was reported to be closely related to the carcinoma invasiveness of neoplasm [733], and to be an independent predictor of overall cancer patient survival as well [734]. The over-expression of SPRR1B (small proline-rich protein 1B) for prolonged periods might disrupt normal progression of mitosis [708]. Therefore, the expression of most of our selected survival marker genes has been validated as either directly or closely related to cancer metastasis and prognosis in the literatures indicated in Table 6-3.

6.4 Summary

In this chapter, the comprehensive gene selection system was further evaluated on the selection of survival marker for lung adenocarcinoma. By way of multiple random sampling, 21 genes were selected by all of ten sets of lung adenocarcinoma survival

marker signatures, in which 34 to 53 genes were selected. These 21 markers were then used to develop PNN and SVM prediction models to predict prognosis for lung adenocarcinoma patients from different datasets. The survivability analysis by hierarchical clustering analysis and Kaplan-Meier survival analysis further suggested that the derived signatures from our system could provide better performance when comparing with other signatures. Most of the selected genes have been experimentally proved that high expression of the genes is relevant to adverse survivability of patients. 12 markers, including 5 known targets and 7 novel targets, were successfully predicted as therapeutic targets by using a therapeutic target prediction system.

7 Conclusion and Future Work

This last chapter summarizes the major findings and contributions (section 7.1) of this work to the progress of using integrated molecular profiling and machine learning approaches for therapeutic mechanism, response, target, and biomarker discovery. Limitations of the present work (section 7.2) and possible areas for future studies (section 7.3) are also discussed.

7.1 Major findings and contributioins

Drug discovery efforts are nowadays to search for therapeutic regimens that comprise more than one active ingredient and drugs that are composed of a single chemical entity but combat multiple targets. In chapters 3, a focus study in the early drug discovery process on identifying and optimizing the activity of combinations of molecules was carried out and the newly identified drug combination actions can result in the identification of more effective drug regimens in clinical setting. It is the first time that we comprehensivly observed the coordinated interactions and network regulations from a systems perspective to understand the mechanism and mode of actions of successful drug combinations. The identified modes of actions of drug combinations reveal seven important categories of multicomponents therapeutics of current successful drugcombinations and multi-targeting agents, which will be a starting point to guide a rational combination screening by using different mode of actions.

In chapters 4 and 5, the application of integrated molecular profiling, including mutational, amplification and microarray gene expression profiles, suggests a useful approach for efficiously exploring of drug efficacy issues and developing of novel therapeutic target.

First of all, the use of integrated molecular profilingprovide a reasonable explanation for the variations observed in clinical TKI drug responses and prediction as its application in the future. The identified co-altered genes may serve as potential targets for new drug development and choice of combination therapy. Secondly, the exploration of the potential epitopes help better understanding of the antigen recognition mechanism and dramatically reduce the workload for experimental identification of antigenic scources. The methodology developed in this work could be further extended to the studies of other fields of immunology in disease treatment..

Finally, a robust computational system for gene signature derivation from microarray data was developed. A popular and accurate machine learning method, support vector machines, was applied to classify the samples. Recursive feature selection incorporating with multiple random sampling method and gene consistency evaluation strategies was used in gene selection procedure. This system has been successfully applied to selection colon cancer markers and lung adenocarcinoma survivability markers. A total of 21 lung adenocarcinoma survivability biomarkers were identified and shared by all of the 10 sampling-sets. The results from the lung adenocarcinoma survival gene selection suggest that, our system is able to derive stable and good predictive marker signatures. The use of consensus scoring for multiple random sampling and evaluation of gene-ranking consistency seem to have impressive capability in avoiding erroneous elimination of predictor-genes due to such noise as measurement variability and biological differences. This approach can be further implemented in biomarker selection for other highthroughput biological data.

7.2 Limitations

Some obvious limitations of using microarray data are the main obstacles hindering the identification of the real TSAs and biomarkers in this study In tumor antigen discovery, six known melanoma TSAs were misidentified which mainly because of failing of expression analysis. Due to the high cost of microarray experiments, the sample size is much smaller than what is required for a satisfactory diagnosis and prognosis of a certain disease such as cancer. The currently available platforms for microarray data are different. Increasing sample size via synchronizing the different platforms remains a challenged task. Although we introduced a multiple random sampling strategies in cancer biomarker identification from microarray data, which has shown improved consistency and stability while feature selection from 5000 different microarray dataset combinations. The combination is far from the complex of heterogenic cancer patients [Ref]. Therefore, large size of representative samples may improve the accuracy of our system. Further improvement in experimental design, measurement quality, annotation accuracy and coverage, and signature-selection will enable the derivation of more accurate signatures for facilitating biomarker and target discovery.

In this study, the application integrated molecular profiling is currently limited to the RTKs, in which the signaling pathways are rather well established. Sufficient information could also be collected for their possible assistant genes. However, it may be much more difficult to do so for less characterized pathways involving novel genes. Moreover, downstream signaling genes and proteins themselves could be not only actively mutated but also highly activated due to the posttranslational modifications and translocation activiation. This way makes the analysis on the profiles of gene expression and genetic variation is extremely complicated and susceptible to errors. Therefore, more factors

should be considered in the cilincial application despite the importance of the drug effeicacy evaluation strategy. On the other heand, there is still lack of information about clinical trials for many drugs, such as those targeting IGFR-1 and MET. Once their results are released, the information could be added to further validate the usefulness of method.

7.3 Directions for future research

Both therapeutic selectivity and rational combination therapeutics are major challenge in drug discovery. This is especially true for the treatment of cancer, metabolic, or inflammation disorders, which must rely on targets that are present in both healthy and diseased tissues, and which are thwarted by the compensatory mechanisms available to complex biological systems. This work aims to translate the fundamental insight of disease causing-genes for systemic drug efficacy studies. Development strategies to improve selectivity of targeted and multicomponent therapy will be the focus of my research in the near future. To address these challenges, I will mainly focus on the development of efficient computational methods for agnostic screening of compound combination and multi-target agents from a library of chemical and biological agents that perturb a diverse set of molecular targets.

In practical study of compound combination, a comparatively small number of compounds will provide a very large number of combinations; a collection of 1,000 compounds yields more than 500,000 pairwise combinations, and many more higher-order combinations. Moreover, variations in molar ratio and timing of compound addition can be relevant and increase the size of the search space. Therefore, efficient methods, such as improving the strategy of dose-response matrix design, are needed to facilitate the screening or simulation the possible and rational combination pairs. Moreover, experimental strategies, including antibodies, negative dominant controls, antisense oligonucleotides, ribozymes,

small-interfering RNAs, and mouse reverse genetics such as knockout phenotypes, are need to be established for validation of developed combinations and various ratios of the component drugs.

Currently multi-target kinase inhibitors are among the most successful clinical anticancer drugs (e.g. sunitinib against PDGFR and VEGFR, dasatinib against Abl and Src, sorafenib against Braf and VEGFR, and lapatinib against EGFR and HER2) and have been actively pursued in current drug discovery efforts[735,736]. Methods for efficient search of multi-target agents are highly desired. It is known that virtual screening (VS) methods have been widely explored for facilitating lead discovery against individual targets[737-739]. In particular, molecular docking[740], pharmacophore[741], QSAR[742], machine learning[743], and combination methods[744] have been extensively used for VS of single-target kinase inhibitors, but few multi-target VS studies have been reported[745,746]. Thus, it is interesting to develop strategies by using VS method from the know multi-target kinase inhibitors and facilicate the highthrouput screening of novel agents targeting the larger kinase set[746].

BIBLIOGRAPHY

- 1 Sandberg, A.A. and Chen, Z. (1994) Cancer cytogenetics and molecular genetics: detection and therapeutic strategy. *In Vivo* 8 (5), 807-818
- 2 Chen, Z. and Sandberg, A.A. (2002) Molecular cytogenetic aspects of hematological malignancies: clinical implications. *Am J Med Genet* 115 (3), 130-141
- **3** Mrozek, K. et al. (2004) Cytogenetics in acute leukemia. *Blood Rev* 18 (2), 115-136
- 4 Golub, T.R. et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. *Science* 286 (5439), 531-537
- 5 Ramaswamy, S. et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures. *Proc Natl Acad Sci U S A* 98 (26), 15149-15154
- 6 Robinson, S. and Kessling, A. (1992) Diabetes secondary to genetic disorders. *Baillieres Clin Endocrinol Metab* 6 (4), 867-898
- 7 Clee, S.M. et al. (2006) Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. *Nat Genet* 38 (6), 688-693
- 8 Li, D. (2006) Positional cloning: single-gene cardiovascular disorders. *Methods Mol Med* 128, 125-136
- **9** Gulcher, J. and Stefansson, K. (2006) Positional cloning: complex cardiovascular traits. *Methods Mol Med* 128, 137-152
- 10 Hotta, K. (2005) [Genetic testing and gene-based testing for obesity]. *Nippon Rinsho* 63 Suppl 12, 280-284
- **11** Zhang, W. et al. (2006) A method for predicting disease subtypes in presence of misclassification among training samples using gene expression: application to human breast cancer. *Bioinformatics* 22 (3), 317-325
- Sachidanandam, R. et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. *Nature* 409 (6822), 928-933
- 13 Larsson, T.P. et al. (2005) Comparison of the current RefSeq, Ensembl and EST databases for counting genes and gene discovery. *FEBS Lett* 579 (3), 690-698
- 14 Knowles, J. and Gromo, G. (2003) A guide to drug discovery: Target selection in drug discovery. *Nat Rev Drug Discov* 2 (1), 63-69
- 15 Collins, I. and Workman, P. (2006) New approaches to molecular cancer therapeutics. *Nat Chem Biol* 2 (12), 689-700
- 16 Workman, P. (2005) Genomics and the second golden era of cancer drug development. *Mol Biosyst* 1 (1), 17-26
- 17 Shimoji, T. et al. (2006) [Gene expression profiling for prediction of response to chemotherapy]. *Gan To Kagaku Ryoho* 33 (1), 1-5
- **18** Workman, P. and Kaye, S.B. (2002) Translating basic cancer research into new cancer therapeutics. *Trends Mol Med* 8 (4 Suppl), S1-9
- **19** Sahin, O. and Wiemann, S. (2009) Functional genomics and proteomics approaches to study the ERBB network in cancer. *FEBS Lett* 583 (11), 1766-1771
- 20 Uberall, I. et al. (2008) The status and role of ErbB receptors in human cancer. *Exp Mol Pathol* 84 (2), 79-89
- 21 Miller, T.W. et al. (2009) Loss of Phosphatase and Tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. *Cancer Res* 69 (10), 4192-4201

- 22 Normanno, N. et al. (2009) Target-based therapies in breast cancer: current status and future perspectives. *Endocr Relat Cancer* 16 (3), 675-702
- **23** Park, B.H. and Davidson, N.E. (2007) PI3 kinase activation and response to Trastuzumab Therapy: what's neu with herceptin resistance? *Cancer Cell* 12 (4), 297-299
- 24 Ocampo, M.T. et al. (2002) Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. *Mol Cell Biol* 22 (17), 6111-6121
- **25** Papp, B. (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. *Nature* 429, 661-664
- 26 Smalley, K.S. et al. (2006) Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. *Mol Cancer Ther* 5 (5), 1136-1144
- 27 Pilpel, Y. et al. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. *Nat Genet* 29 (2), 153-159
- **28** Peng, X.H. et al. (2006) Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. *J Biol Chem* 281 (36), 25903-25914
- **29** Muller, R. (2004) Crosstalk of oncogenic and prostanoid signaling pathways. *J Cancer Res Clin Oncol* 130 (8), 429-444
- **30** Massarweh, S. and Schiff, R. (2006) Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. *Endocr Relat Cancer* 13 Suppl 1, S15-24
- **31** Sergina, N.V. et al. (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. *Nature* 445 (7126), 437-441
- **32** Kassouf, W. et al. (2005) Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. *Cancer Res* 65 (22), 10524-10535
- **33** Christopher M. et al. (2006) Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. *Nature Reviews Cancer* 6, 227-239
- 34 Citri, A. and Yarden, Y. (2006) EGF-ERBB signalling: towards the systems level. *Nat Rev Mol Cell Biol* 7 (7), 505-516
- **35** Engelman, J.A. and Cantley, L.C. (2006) The role of the ErbB family members in non-small cell lung cancers sensitive to epidermal growth factor receptor kinase inhibitors. *Clin Cancer Res* 12 (14 Pt 2), 4372s-4376s
- **36** Reid, A. et al. (2007) Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). *Eur J Cancer* 43 (3), 481-489
- **37** Mellinghoff, I.K. et al. (2007) PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. *Clin Cancer Res* 13 (2 Pt 1), 378-381
- 38 Perveen, R. et al. (2007) A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation. *Hum Mol Genet* 16 (9), 1030-1038
- **39** Engelman, J.A. et al. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. *Science* 316 (5827), 1039-1043
- 40 Morgillo, F. et al. (2007) Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. *Clin Cancer Res* 13 (9), 2795-2803
- 41 Sawyers, C.L. (2007) Cancer: mixing cocktails. *Nature* 449 (7165), 993-996
- 42 Guix, M. et al. (2008) Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. *J Clin Invest* 118 (7),

	2609-2619
43	Raponi, M. et al. (2008) KRAS mutations predict response to EGFR inhibitors.
	Curr Opin Pharmacol 8 (4), 413-418
44	Thomson, S. et al. (2008) Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. <i>Clin Exp Metastasis</i> 25 (8), 843-854
45	Linardou, H. et al. (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. <i>Lancet Oncol</i> 9 (10), 962-972
46	Agarwal, S. et al. (2009) Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells. <i>Br J Cancer</i> 100 (6), 941-949
47	Sos, M.L. et al. (2009) PTEN loss contributes to erlotinib resistance in EGFR- mutant lung cancer by activation of Akt and EGFR. <i>Cancer Res</i> 69 (8), 3256-3261
48	Blume-Jensen, P. and Hunter, T. (2001) Oncogenic kinase signalling. <i>Nature</i> 411 (6835), 355-365
49	Brent, R. (2000) Genomic biology. Cell 100 (1), 169-183
50	Kanehisa, M. et al. (2002) The KEGG databases at GenomeNet. <i>Nucleic Acids Res</i> 30 (1), 42-46
51	Kitano, H. (2002) Systems biology: a brief overview. <i>Science</i> 295 (5560), 1662-1664
52	Zhang, P. (1999) The cell cycle and development: redundant roles of cell cycle regulators. <i>Curr Opin Cell Biol</i> 11 (6), 655-662
53	Shaheen, R.M. et al. (2001) Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. <i>Cancer Res</i> 61 (4), 1464-1468
54	Zimmermann, G.R. et al. (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. <i>Drug Discov Today</i> 12 (1-2), 34-42
55	Chou, T.C. and Talalay, P. (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. <i>Adv Enzyme Regul</i> 22, 27-55
56	Chou TC, T.P. (1983) Analysis of combined drug effects: a new look at a very old problem. <i>Trends Pharmacol Sci</i> 4, 450-454
57	Loewe, S. (1953) The problem of synergism and antagonism of combined drugs. <i>Arzneimittelforschung</i> 3 (6), 285-290
58	Borisy, A.A. et al. (2003) Systematic discovery of multicomponent therapeutics. <i>Proc Natl Acad Sci U S A</i> 100 (13), 7977-7982
59	Zon, L.I. and Peterson, R.T. (2005) In vivo drug discovery in the zebrafish. <i>Nat Rev Drug Discov</i> 4 (1), 35-44
60	Keith, C.T. et al. (2005) Multicomponent therapeutics for networked systems. <i>Nat</i> <i>Rev Drug Discov</i> 4 (1), 71-78
61	Csermely, P. et al. (2005) The efficiency of multi-target drugs: the network approach might help drug design. <i>Trends Pharmacol Sci</i> 26 (4), 178-182
62	Kitano, H. (2007) A robustness-based approach to systems-oriented drug design. <i>Nat Rev Drug Discov</i> 6 (3), 202-210
63	Kamb, A. et al. (2007) Why is cancer drug discovery so difficult? <i>Nat Rev Drug Discov</i> 6 (2), 115-120

64	http://www.centerwatch.com/patient/drugs/druglist.html.
65	Wishart, D.S. et al. (2006) DrugBank: a comprehensive resource for in silico drug
	discovery and exploration. <i>Nucleic Acids Res</i> 34 (Database issue), D668-672
66	Saltz L et al. (2006) Panitumumah. Nat Rev Drug Discov 5 (12) 987-988
67	Vang, X D, at al. (1000) Fradication of established tumors by a fully human
07	Taily, A.D. et al. (1999) Eradication of established tumors by a fully human
	monocional antibody to the epidermal growth factor receptor without concomitant
	chemotherapy. <i>Cancer Res</i> 59 (6), 1236-1243
68	Carter, P. et al. (1992) Humanization of an anti-p185HER2 antibody for human
	cancer therapy. Proc Natl Acad Sci USA 89 (10), 4285-4289
69	Goldenberg, M.M. (1999) Trastuzumab, a recombinant DNA-derived humanized
	monoclonal antibody, a novel agent for the treatment of metastatic breast cancer.
	Clin Ther 21 (2) 309-318
70	Posenfeld PL et al. (2006) Panihizumah for neovascular aga related macular
10	Rosennerding, N.E., LIM, 1255 (14), 1410, 1421
	degeneration. <i>N Engl J Med</i> 355 (14), 1419-1431
71	Carter, P.J. (2006) Potent antibody therapeutics by design. <i>Nat Rev Immunol</i> 6 (5),
	343-357
72	Reichert, J.M. et al. (2005) Monoclonal antibody successes in the clinic. Nat
	Biotechnol 23 (9), 1073-1078
73	Boiesen, P. et al. (2000) Histologic grading in breast cancerreproducibility
	between seven nathologic departments. South Sweden Breast Cancer Group. Acta
	Oncol 39 (1) 41-45
74	Dietel M and Sers C (2006) Personalized medicine and development of targeted
/ 4	therepies: The upcoming challenge for diagnostic melecular pathology. A review
	therapies. The upcoming channelige for diagnostic molecular pathology. A review.
	Virchows Arch 448 (6), 744-755
75	Orsenigo, C. (2008) Gene Selection and Cancer Microarray Data Classification Via
	Mixed-Integer Optimization Lecture Notes in Computer Sciences 4973, 141-152
76	Isaacs, C. et al. (2001) New prognostic factors for breast cancer recurrence. Semin
	<i>Oncol</i> 28 (1), 53-67
77	Ross, D.T. et al. (2000) Systematic variation in gene expression patterns in human
	cancer cell lines. Nat Genet 24 (3), 227-235
78	Yeang, C.H. et al. (2001) Molecular classification of multiple tumor types.
	Bioinformatics 17 Suppl 1, S316-322
79	Ooi, C.H. and Tan, P. (2003) Genetic algorithms applied to multi-class prediction
••	for the analysis of gene expression data <i>Bioinformatics</i> 19 (1) 37-44
80	Peng S et al. (2003) Molecular classification of cancer types from microarray data
00	using the combination of canatic algorithms and support vactor machines. EEPS
	using the combination of genetic argonithms and support vector machines. <i>FEDS</i>
01	Lett $555(2)$, $558-502$
81	Massion, P.P. and Carbone, D.P. (2003) The molecular basis of lung cancer:
	molecular abnormalities and therapeutic implications. <i>Respir Res</i> 4, 12
82	Mishra, A.V., M (2010) Cancer Biomarkers: Are We Ready for the Prime Time?
	<i>Cancers</i> 2, 190-208
83	Mahmoud H. Hamdan, D.M.D., Nico M. Nibbering. (2007) Cancer biomarkers:
	analytical techniques for discovery, WILEY
84	Sarker, D. and Workman, P. (2007) Pharmacodynamic biomarkers for molecular
	cancer therapeutics. Adv Cancer Res 96, 213-268
85	Bubley GL et al. (1999) Eligibility and response guidelines for phase II clinical
00	trials in androgen independent prostate cancer: recommendations from the
	Drostate Specific Antigen Weaking Crown, I Clin On 117 (11) 24(1.24)
07	Prostate-Specific Antigen working Group. J Clin Oncol 17 (11), 3401-3407
80	Rustin, G.J. (2003) Use of CA-125 to assess response to new agents in ovarian

	Dibliography
	cancer trials. J Clin Oncol 21 (10 Suppl), 187s-193s
87	Rustin, G.J. et al. (2004) Use of CA-125 in clinical trial evaluation of new
	therapeutic drugs for ovarian cancer. Clin Cancer Res 10 (11), 3919-3926
88	Slamon, D.J. et al. (1987) Human breast cancer: correlation of relapse and survival
	with amplification of the HER-2/neu oncogene. Science 235 (4785), 177-182
89	Kelloff, G.J. and Sigman, C.C. (2005) New science-based endpoints to accelerate
	oncology drug development. Eur J Cancer 41 (4), 491-501
90	Rossi, A. et al. (2009) Biological prognostic and predictive factors in lung cancer.
	Oncology 77 Suppl 1, 90-96
91	Giallourakis C, et al. (2005) Disease gene discovery through integrative genomics.
/ 1	Annu Rev Genomics Hum Genet 6, 381-406
92	Kim H L and Steinberg GD (2000) New insights and candidate genes and their
/	implications for care of nations with hereditary prostate cancer. Curr Ural Ran 1
	(1) Q 14
03	(1), 7-14 Malkin D at al. (1000) Corm line p52 mutations in a familial syndrome of breast
95	cancer sarcomas and other peoplasms. Science 250 (4085), 1233–1238
04	Cui LE et al. (2006) Identification of matastasis candidate protoins among HCC
74	cull lines by comparative protooms and biological function analysis of \$100.4.4 in
	ten mes by comparative proteome and biological function analysis of $5100A4$ m
05	Dherech, DD, et al. (2007) Association between Common Variation in 120
95	Condidate Cones and Proast Concer Disk. <i>PL</i> - <i>S Const</i> 2 (2), a42
04	Candidate Genes and Breast Cancer Risk. <i>PLos Genet 5</i> (5), e42
90	Sinui, A.K. and Meyers, D.A. (2003) Fanning studies and positional cioning of
	genes for astrima and related prenotypes. <i>Immunol Allergy Clin North Am</i> 25 (4),
07	041-034 Schuittere D. (2000) ESMO Handback of Concer Diagnosis and Treatment
91	Schrijvers, D. (2009) ESMO Handbook of Cancer Diagnosis and Treatment
00	Evaluation. Hutcheng TW VT (1002) New descention strategies for the mass spectrometric
90	analysis of macromolecular, <i>Banid Commun Mass Spectrom</i> 7, 576, 580
00	Tang N at al. (2004) Current developments in SELDI offinity technology. Mass
99	Substant Day 22 (1) 24 44
100	Spectrom Kev 25 (1), 54-44
100	Link, A.J. et al. (1999) Direct analysis of protein complexes using mass
101	spectrometry. <i>Nat Biotechnol</i> 17 (7), 676-682
101	wolters, D.A. et al. (2001) An automated multidimensional protein identification
103	technology for shotgun proteomics. Anal Chem 73 (23), 5683-5690
102	wang, H. and Hanash, S. (2003) Multi-dimensional liquid phase based separations
103	in proteomics. J Chromatogr B Analyt Technol Biomea Life Sci 187 (1), 11-18
103	O Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins.
104	J Biol Chem 250 (10), 4007-4021
104	Aebersold, R. and Goodlett, D.R. (2001) Mass spectrometry in proteomics. Chem
105	<i>Rev</i> 101 (2), 269-295
105	Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. <i>Nature</i>
107	422 (6928), 198-207
106	Klose, J. and Kobalz, U. (1995) Two-dimensional electrophoresis of proteins: an
	updated protocol and implications for a functional analysis of the genome.
10=	Electrophoresis 16 (6), 1034-1059
107	Espina, V. et al. (2003) Protein microarrays: molecular profiling technologies for
4.0 -	clinical specimens. Proteomics 3 (11), 2091-2100
108	MacBeath, G. (2002) Protein microarrays and proteomics. <i>Nat Genet</i> 32 Suppl,
	526-532

109	Petricoin, E.F. and Liotta, L.A. (2003) Clinical applications of proteomics. <i>J Nutr</i> 133 (7 Suppl), 2476S-2484S
110	Caprioli, J. et al. (1996) Temporal corneal phacoemulsification combined with superior trabeculectomy: a controlled study. <i>Trans Am Ophthalmol Soc</i> 94, 451-463; discussion 463-458
111	Chaurand, P. et al. (1999) Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. <i>Anal Chem</i> 71 (23), 5263-5270
112	Stoeckli, M. et al. (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. <i>Nat Med</i> 7 (4), 493-496
113	Datta, Y.H. et al. (1994) Sensitive detection of occult breast cancer by the reverse- transcriptase polymerase chain reaction. <i>J Clin Oncol</i> 12 (3), 475-482
114	Krismann, M. et al. (1995) Low specificity of cytokeratin 19 reverse transcriptase- polymerase chain reaction analyses for detection of hematogenous lung cancer dissemination. <i>J Clin Oncol</i> 13 (11), 2769-2775
115	Velculescu, V.E. et al. (1995) Serial analysis of gene expression. <i>Science</i> 270 (5235), 484-487
116	Tusher, V.G. et al. (2001) Significance analysis of microarrays applied to the ionizing radiation response. <i>Proc Natl Acad Sci U S A</i> 98 (9), 5116-5121
117	Alizadeh, A.A. et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. <i>Nature</i> 403 (6769), 503-511
118	Khan, J. et al. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. <i>Nat Med</i> 7 (6), 673-679
119	Ross, M.E. et al. (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. <i>Blood</i> 102 (8), 2951-2959
120	Yeoh, E.J. et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. <i>Cancer Cell</i> 1 (2), 133-143
121	Tillinghast, G.W. Microarrays in the clinic. Nat Biotechnol 28 (8), 810-812
122	van de Vijver, M.J. et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. <i>N Engl J Med</i> 347 (25), 1999-2009
123	van 't Veer, L.J. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. <i>Nature</i> 415 (6871), 530-536
124	Lind, G.E. et al. (2006) ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. <i>Cell Oncol</i> 28 (5-6), 259-272
125	Dhanasekaran, S.M. et al. (2001) Delineation of prognostic biomarkers in prostate cancer. <i>Nature</i> 412 (6849), 822-826
126	Shi, H. et al. (2007) Discovery of novel epigenetic markers in non-Hodgkin's lymphoma. <i>Carcinogenesis</i> 28 (1), 60-70
127	Mrozek, K. et al. (2007) Influence of new molecular prognostic markers in patients with karyotypically normal acute myeloid leukemia: recent advances. <i>Curr Opin Hematol</i> 14 (2), 106-114
128	Babu, M.M. (2004) An Introduction to Microarray Data Analysis, Horizon Bioscience
129	Leung, Y.F. and Cavalieri, D. (2003) Fundamentals of cDNA microarray data analysis. <i>Trends Genet</i> 19 (11), 649-659
130	Pinkel, D. et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. <i>Nat Genet</i> 20 (2), 207-211

	Dibilogiupity
131	Hughes, T.R. et al. (2001) Expression profiling using microarrays fabricated by an ink-iet oligonucleotide synthesizer. <i>Nat Biotechnol</i> 19 (4), 342-347
132	Lockhart, D.J. et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. <i>Nat Biotechnol</i> 14 (13), 1675-1680
133	Dalma-Weiszhausz, D.D. et al. (2006) The affymetrix GeneChip platform: an overview <i>Methods Enzymol</i> 410, 3-28
134	Demeter, J. et al. (2007) The Stanford Microarray Database: implementation of new analysis tools and open source release of software. <i>Nucleic Acids Res</i> 35 (Database issue), D766-770
135	Barrett, T. et al. (2007) NCBI GEO: mining tens of millions of expression profiles- -database and tools update. <i>Nucleic Acids Res</i> 35 (Database issue), D760-765
136	Parkinson, H. et al. (2007) ArrayExpressa public database of microarray experiments and gene expression profiles. <i>Nucleic Acids Res</i> 35 (Database issue), D747-750
137	http://www.mged.org/Workgroups/MIAME/miame.html.
138	Tang, Y. et al. (2007) Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. <i>IEEE/ACM Trans Comput Biol Bioinform</i> 4 (3), 365-381
139	Michiels, S. et al. (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. <i>Lancet</i> 365 (9458), 488-492
140	Allison, D.B. et al. (2006) Microarray data analysis: from disarray to consolidation and consensus. <i>Nat Rev Genet</i> 7 (1), 55-65
141	Harrison, R. and DeLisi, C. (2002) Condition specific transcription factor binding site characterization in Saccharomyces cerevisiae. <i>Bioinformatics</i> 18 (10), 1289-1296
142	Aach, J. et al. (2000) Systematic management and analysis of yeast gene expression data. <i>Genome Res</i> 10 (4), 431-445
143	Su, A.I. et al. (2002) Large-scale analysis of the human and mouse transcriptomes. <i>Proc Natl Acad Sci U S A</i> 99 (7), 4465-4470
144	Smith, C.M. et al. (2007) The mouse Gene Expression Database (GXD): 2007 update. <i>Nucleic Acids Res</i> 35 (Database issue), D618-623
145	Wiederkehr, C. et al. (2004) GermOnline, a cross-species community knowledgebase on germ cell differentiation. <i>Nucleic Acids Res</i> 32 (Database issue), D560-567
146	Haverty, P.M. et al. (2002) HugeIndex: a database with visualization tools for high- density oligonucleotide array data from normal human tissues. <i>Nucleic Acids Res</i> 30 (1), 214-217
147	Argraves, G.L. et al. (2003) The MUSC DNA Microarray Database. <i>Bioinformatics</i> 19 (18), 2473-2474
148	Bono, H. et al. (2002) READ: RIKEN Expression Array Database. <i>Nucleic Acids</i> <i>Res</i> 30 (1), 211-213
149	Yazaki J, K.N., Ishikawa M, Endo D, Kojima K, MicroArray Center, Kikuchi S. (2002) The Rice Expression Database (RED): gateway to rice functional genomics. <i>Trends in Plant Science</i> 12, 563-564
150	Manduchi, E., Pizarro, A., Stoeckert, C. (2001) RAD (RNA Abundance Database): an infrastructure for array data analysis. <i>Proc. SPIE</i> 4266, 68-78
151	Dwight, S.S. et al. (2002) Saccharomyces Genome Database (SGD) provides

secondary gene annotation using the Gene Ontology (GO). *Nucleic Acids Res* 30 (1), 69-72

152 Cheung, K.H. et al. (2002) YMD: a microarray database for large-scale gene expression analysis. Proc AMIA Symp, 140-144 153 Lelandais, G. et al. (2004) yMGV: a cross-species expression data mining tool. Nucleic Acids Res 32 (Database issue), D323-325 154 Schoch C, D.M., Kern W, Kohlmann A, Schnittger S, Haferlach T. (2004) "Deep insight" into microarray technology. Atlas Genet Cytogenet Oncol Haematol 155 DeRisi, J.L. et al. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278 (5338), 680-686 Tavazoie, S. et al. (1999) Systematic determination of genetic network 156 architecture. Nat Genet 22 (3), 281-285 157 Jansen, R. et al. (2002) Relating whole-genome expression data with proteinprotein interactions. Genome Res 12 (1), 37-46 Ramirez-Benitez Mdel, C. et al. (2001) VIR.II: a new interface with the antibody 158 sequences in the Kabat database. Biosystems 61 (2-3), 125-131 159 Alon, U. et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96 (12), 6745-6750 160 Eisen, M.B. et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95 (25), 14863-14868 161 van der Pouw Kraan, T.C. et al. (2003) Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immun 4 (3), 187-196 162 Sherlock, G. (2000) Analysis of large-scale gene expression data. Curr Opin Immunol 12 (2), 201-205 163 Vapnik, V. (1998) Statistical Learning Theory. 164 Bishop, C. (1995) neural networks for pattern recognition. 165 Qiu, P. et al. (2005) Ensemble dependence model for classification and prediction of cancer and normal gene expression data. *Bioinformatics* 21 (14), 3114-3121 166 Li, F. and Yang, Y. (2005) Analysis of recursive gene selection approaches from microarray data. Bioinformatics 21 (19), 3741-3747 Pochet, N. et al. (2004) Systematic benchmarking of microarray data classification: 167 assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 (17), 3185-3195 168 Isabelle Guyon, J.W., Stephen Barnhill, Vladimir Vapnik. (2002) Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning 46 (1-3), 389-422 169 Furey, T.S. et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. *Bioinformatics* 16 (10), 906-914 170 Brown, M.P. et al. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A 97 (1), 262-267171 Bellman., R.E. (1961) Adaptive Control Processes. 172 Koeppen, M. (2000) The Curse of Dimensionality. 5th Online World Conference on Soft Computing in Industrial Applications (WSC5) 173 Inza, I. et al. (2004) Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med 31 (2), 91-103 174 Model, F. et al. (2001) Feature selection for DNA methylation based cancer

	classification. <i>Bioinformatics</i> 17 Suppl 1, S157-164
175	Robnik-Šikonja, M. and Kononenko, I. (2003) Theoretical and Empirical Analysis of ReliefF and RReliefF <i>Machine Learning</i> 53 (1-2) 23-69
176	Ding, C. and Peng, H. (2005) Minimum redundancy feature selection from
2.0	microarray gene expression data. J Bioinform Comput Biol 3 (2), 185-205
177	Ben-Bassat, M. (1982) Pattern recognition and reduction of dimensionality.
	Handbook of statistics II, p. 773–791.
178	Cheng, J. and Greiner, R. (1999) Comparing Bayesian Network Classifiers.
	Proceedings of the 15th Annual Conference on Uncertainty in Artificial
	Intelligence (UAI-99), 101-110
179	Aris V, R.M. (2002) A method to improve detection of disease using selectively
	expressed genes in microarray data. Methods of Microarray Data Analysis.
	Proceedings of the First Conference on Critical Assessment of Microarray Data
	Analysis, CAMDA'00. p. 69—80.
180	Beibel, M. (2000) Selection of informative genes in gene expression based
	diagnosis: a nonparametric approach. Lecture Notes in Computer Sciences.
	Proceedings of the First International Symposium in Medical Data Analysis,
	<i>ISMDA'00</i> 1933, p. 300-307
181	Ding, C. (2002) Analysis of gene expression profiles: class discovery and leaf
	ordering. Proceedings of the Sixth International Conference on Research in
100	Computational Molecular Biology, p. 127-136
182	Baker, S.G. and Kramer, B.S. (2006) Identifying genes that contribute most to good
107	classification in microarrays. BMC Bioinformatics 7, 407
183	Konavi, R. and John, G.H. (97) wrappers for feature subset selection. Artificial
18/	The transfer identification by feature wrappers. Genome Res.
104	11 (11), 1878-1887
185	Kohavi, R. and John, G.H. (1997) Wrappers for feature subset selection. Artificial
107	<i>Intelligence</i> Special issue on relevance (1-2), 273 - 324
186	Talvinen, K. et al. (2006) Biochemical and clinical approaches in evaluating the
105	prognosis of colon cancer. Anticancer Res 26 (6C), 4/45-4/51
18/	Ancona, N. et al. (2006) On the statistical assessment of classifiers using DNA
188	Theng, X W, et al. (2005) Molecular diagnosis of human cancer type by gene
100	expression profiles and independent component analysis. <i>Fur I Hum Genet</i> 13
	(12) 1303-1311
189	Li, W. and Yang, Y. (2002) How Many Genes Are Needed for a Discriminant
207	Microarray Data Analysis ? <i>Methods of Microarray Data Analysis. Proceedings of</i>
	the First Conference on Critical Assessment of Microarray Data Analysis,
	CAMDA'00., 137-150
190	Grate, L.R. (2005) Many accurate small-discriminatory feature subsets exist in
	microarray transcript data: biomarker discovery. BMC Bioinformatics 6, 97
191	Slonim, D.K. et al. (2000) Class prediction and discovery using gene expression
	data. Proceedings of the 4th Annual International Conference on Computational
	Molecular Biology (RECOMB)
192	Ahmed, A.A. and Brenton, J.D. (2005) Microarrays and breast cancer clinical
105	studies: forgetting what we have not yet learnt. Breast Cancer Res 7 (3), 96-99
193	Brenton, J.D. et al. (2005) Molecular classification and molecular forecasting of
	breast cancer: ready for clinical application? J Clin Oncol 23 (29), 7350-7360

194	Bullinger, L. and Valk, P.J. (2005) Gene expression profiling in acute myeloid
105	leukemia. J Clin Oncol 23 (26), 6296-6305
195	Bullinger, L. et al. (2004) Use of Gene-Expression Profiling to Identify Prognostic
107	Subclasses in Adult Acute Myeloid Leukemia. N Engl J Med 350 (16), 1605-1616
196	Valk, P.J.M. et al. (2004) Prognostically Useful Gene-Expression Profiles in Acute Myeloid Leukemia N Engl I Med 350 (16) 1617-1628
197	Ntzani E E, and Joannidis I P (2003) Predictive ability of DNA microarrays for
177	cancer outcomes and correlates: an empirical assessment. <i>Lancet</i> 362 (9394),
	1439-1444
198	Zhou, X. and Mao, K.Z. (2005) LS Bound based gene selection for DNA
	microarray data. Bioinformatics 21 (8), 1559-1564
199	Bo, T. and Jonassen, I. (2002) New feature subset selection procedures for
	classification of expression profiles. Genome Biol 3 (4), RESEARCH0017
200	Huang, T.M. and Kecman, V. (2005) Gene extraction for cancer diagnosis by
	support vector machinesan improvement. Artif Intell Med 35 (1-2), 185-194
201	Liu, X. et al. (2005) An entropy-based gene selection method for cancer
	classification using microarray data. BMC Bioinformatics 6 (1), 76
202	Draghici, S. et al. (2006) Reliability and reproducibility issues in DNA microarray
	measurements. Trends Genet 22 (2), 101-109
203	Ioannidis, J.P. (2005) Microarrays and molecular research: noise discovery? Lancet
	365 (9458), 454-455
204	Gardner, S.N. and Fernandes, M. (2005) Prediction of cancer outcome with
	microarrays. Lancet 365 (9472), 1685
205	Biganzoli, E. et al. (2005) Prediction of cancer outcome with microarrays. <i>Lancet</i>
	365 (9472), 1683; author reply 1684-1685
206	Winegarden, N. (2003) Microarrays in cancer: moving from hype to clinical
	reality. Lancet 362 (9394), 1428
207	Disis, M.L. et al. (1997) High-titer HER-2/neu protein-specific antibody can be
••••	detected in patients with early-stage breast cancer. J Clin Oncol 15 (11), 3363-3367
208	Jager, D. et al. (2002) Identification of tumor-restricted antigens NY-BR-1, SCP-1,
	and a new cancer/testis-like antigen NW-BR-3 by serological screening of a
200	testicular library with breast cancer serum. <i>Cancer Immun</i> 2, 5
209	Scanlan, M.J. et al. (2001) Humoral immunity to numan breast cancer: antigen
310	definition and quantitative analysis of mRNA expression. <i>Cancer Immun</i> 1, 4
210	Altuvia, Y. and Margalit, H. (2004) A structure-based approach for prediction of
011	MHC-binding peptides. <i>Methods</i> $34(4)$, $454-459$
211	Adam, J.K. et al. (2003) Immune responses in cancer. <i>Pharmacol Ther</i> 99 (1), 113-
212	132 Coldman B and DeFrencesco L (2000) The concernation roller constant Nat
212	<i>Biotochnol</i> 27 (2), 120, 120
212	Dividential 27 (2), 129-139 De Leo A P (2005) p52 based immunothereny of cancer Approaches re reversing
213	De Leo, A.B. (2003) p35-based minimuloulerapy of cancel. Approaches to Teversing
	Otorhinolary age 62, 134, 150
214	Manara M V and Sylkas M (2004) Tolorance and concert mechanisms of tumor
214	evosion and strategies for breaking tolerance <i>LClin Orgol</i> 22 (6) 1136-1151
215	Wu L and Lanier L L (2003) Natural killer cells and cancer Adv Cancer Res 90
413	$127_{-}156$
216	Fisenbach I et al. (2000) Antitumor vaccination using pentide based vaccines
-10	Immunol Lett 74 (1), 27-34

	DIUIIUgiauliv
217	Lollini, P.L. et al. (2006) Vaccines for tumour prevention. <i>Nat Rev Cancer</i> 6 (3), 204-216
218	Mittendorf, E.A. et al. (2007) Breast cancer vaccines: promise for the future or pipe dream? <i>Cancer</i> 110 (8), 1677-1686
219	Schlom, J. et al. (2007) Cancer vaccines: moving beyond current paradigms. <i>Clin</i>
220	Purcell, A.W. et al. (2007) More than one reason to rethink the use of peptides in
221	Lichtman, A.K.A.A.H. (2005) Cellular and Molecular Immunology, Updated
222	Eatton (Book + Student Consult + Evolve w.B. Saunders Company Shoshan, S.H. and Admon, A. (2004) MHC-bound antigens and proteomics for result true t discourse Bl
223	Larsen, M.V. et al. (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. <i>Eur. J. Immunol</i> 35 (8), 2295-2303
224	Tanahashi, N. et al. (1993) Molecular structure of 20S and 26S proteasomes. <i>Enzyme Protein</i> 47 (4-6), 241-251
225	Eggers, M. et al. (1995) The cleavage preference of the proteasome governs the yield of antigenic peptides. <i>J Exp Med</i> 182 (6), 1865-1870
226	Craiu, A. et al. (1997) Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. <i>Proc Natl Acad Sci U S A</i> 94 (20), 10850-10855
227	Serwold, T. et al. (2001) ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. <i>Nat Immunol</i> 2 (7), 644-651
228	Serwold, T. et al. (2002) ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. <i>Nature</i> 419 (6906), 480-483
229	York, I.A. et al. (2002) The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. <i>Nat Immunol</i> 3 (12), 1177-1184
230	Saric, T. et al. (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. <i>Nat Immunol</i> 3 (12), 1169-1176
231	Nielsen, M. et al. (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. <i>Immunogenetics</i> 57 (1-2), 33-41
232	Peters, B. et al. (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. <i>J Immunol</i> 171 (4), 1741-1749
233	Nussbaum, A.K. et al. (2003) Using the World Wide Web for predicting CTL epitopes. <i>Curr Opin Immunol</i> 15 (1), 69-74
234	Houghton, A.N. et al. (2001) Immunity against cancer: lessons learned from melanoma. <i>Curr Opin Immunol</i> 13 (2), 134-140
235	Parmiani, G. et al. (2007) Unique human tumor antigens: immunobiology and use in clinical trials. <i>J Immunol</i> 178 (4), 1975-1979
236	Van den Eynde, B.J. and van der Bruggen, P. (1997) T cell defined tumor antigens. <i>Curr Opin Immunol</i> 9 (5), 684-693
237	Van Der Bruggen, P. et al. (2002) Tumor-specific shared antigenic peptides recognized by human T cells. <i>Immunol Rev</i> 188, 51-64
238	Honeyman, M.C. et al. (1998) Neural network-based prediction of candidate T-cell epitopes. <i>Nat Biotechnol</i> 16 (10), 966-969
239	Altuvia, Y. et al. (1997) A structure-based algorithm to predict potential binding

	peptides to MHC molecules with hydrophobic binding pockets. <i>Hum Immunol</i> 58
	(1), 1-11
240	Mallios, R.R. (2001) Predicting class II MHC/peptide multi-level binding with an iterative stepwise discriminant analysis meta-algorithm. <i>Bioinformatics</i> 17 (10),
	942-948
241	Reche, P.A. et al. (2004) Enhancement to the RANKPEP resource for the
	prediction of peptide binding to MHC molecules using profiles. <i>Immunogenetics</i> 56 (6), 405-419
242	Dovtchinova, I.A. et al. (2004) Coupling in silico and in vitro analysis of peptide-
	MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes. <i>J Immunol</i> 172 (12), 7495-7502
243	Donnes P and Elofsson A (2002) Prediction of MHC class I binding pentides
	using SVMHC BMC Bioinformatics 3 25
244	Nielsen M et al (2004) Improved prediction of MHC class I and class II epitopes
277	using a novel Gibbs sampling approach <i>Bioinformatics</i> 20 (0) 1388-1307
245	Sung M H and Simon R (2004) Candidate epitope identification using pentide
273	property models: application to cancer immunotherapy. Methods 34 (A) A60 A67
246	Phasin M and Paghava CP (2004) Prediction of CTL opitopos using OM SVM
240	and ANN techniques. Vaccine 22 (22-24), 2105-2204
247	Detrovaly N and Drusic V (2004) Virtual models of the III A close Longican
24/	Petrovsky, N. and Brusic, V. (2004) Virtual models of the HLA class I antigen
240	processing painway. <i>Methods</i> 34 (4), 429-435
248	Donnes, P. and Konibacher, O. (2005) Integrated modeling of the major events in the MHC along Landier processing methods $P_{\rm eff}$ is $G_{\rm eff}$ in (2007) 1122-2140.
240	the MHC class I antigen processing pathway. Protein Sci 14 (8), 2132-2140
249	Ienzer, S. et al. (2005) Modeling the MHC class I pathway by combining
	predictions of proteasomal cleavage, TAP transport and MHC class I binding. <i>Cell</i>
	Mol Life Sci 62 (9), 1025-1037
250	Zhao, Y. et al. (2003) Application of support vector machines for T-cell epitopes
0.51	prediction. <i>Bioinformatics</i> 19 (15), 1978-1984
251	Bian, H. and Hammer, J. (2004) Discovery of promiscuous HLA-II-restricted T
	cell epitopes with TEPITOPE. <i>Methods</i> 34 (4), 468-475
252	Rudolph, M.G. et al. (2006) How TCRs Bind MHCs, Peptides, and Coreceptors.
050	Annu Rev Immunol
253	Burges, C.J.C. (1998) A tutorial on Support Vector Machine for pattern
	recognition. Data Mining and Knowledge Discovery 2, 121-16/
254	Cai, C.Z. et al. (2003) SVM-Prot: Web-based support vector machine software for
	functional classification of a protein from its primary sequence. <i>Nucleic Acids Res</i>
	31 (13), 3692-3697
255	Han, L.Y. et al. (2004) Prediction of RNA-binding proteins from primary sequence
	by a support vector machine approach. Rna 10 (3), 355-368
256	Han, L.Y. et al. (2005) Prediction of functional class of novel viral proteins by a
	statistical learning method irrespective of sequence similarity. <i>Virology</i> 331 (1),
	136-143
257	Matsumura, M. et al. (1992) Emerging principles for the recognition of peptide
	antigens by MHC class I molecules. Science 257 (5072), 927-934
258	Zhang, C. et al. (1998) Structural principles that govern the peptide-binding motifs
	of class I MHC molecules. J Mol Biol 281 (5), 929-947
259	McFarland, B.J. and Beeson, C. (2002) Binding interactions between peptides and

McFarland, B.J. and Beeson, C. (2002) Binding interactions between peptides and proteins of the class II major histocompatibility complex. *Med Res Rev* 22 (2), 168-

	biolography
260	Cui, J. et al. (2007) Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. <i>Mol Immunol</i> 44 (5),
	866-877
261	Cui, L. et al. (2007) Cytotoxic effect of curcumin on malaria parasite Plasmodium
	falciparum: inhibition of histone acetylation and generation of reactive oxygen
	species. Antimicrob Agents Chemother 51 (2), 488-494
262	Peters B et al (2005) The immune epitope database and analysis resource: from
0	vision to blueprint. <i>PLoS Biol</i> 3 (3), e91
263	Mitchell, T.M. (1997) Machine Learning, McGraw-Hill Science/Engineering/Math
264	Pierre Baldi and Brunak, S. (2001) <i>Bioinformatics: The Machine Learning</i>
265	Dietterich T.C. (2002) Machine Learning. In Nature Europhyrol din of Constitute
205	Seimer (Mel 2) no. 071 081 Neture Publiching Crown
200	Science (Vol. 2), pp. 971-981, Nature Publishing Group
266	vapnik, V. (1979) Estimation of dependences based on empirical data [in
	Russian]. [English tanslation: Spring Verlag, New York, 1982]
267	Vapnik, V. (1995) The nature of statistical learning theory, Springer
268	Souheil Ben-Yacoub, Y.A., and Eddy Mayoraz. (1999) Fusion of Face and Speech
	Data for Person Identity Verification. <i>IEEE transactions on neural networks</i> 10, 1065-1074
269	Karlsen R E G. David L: Gerhart, Grant R (2000) Target classification via
-07	support vector machines <i>Ontical Engineering</i> 39 (3) 704-711
270	Shin C S K K I Park M H Kim H I (2001) Support vector machine-based
	text detection in digital video <i>Pattern recognition</i> 34 527-529
271	Yuan Z et al. (2002) Prediction of protein solvent accessibility using support
	vector machines <i>Proteins</i> 48 (3) 566-570
272	Ding C H and Dubchak I (2001) Multi-class protein fold recognition using
212	support vector machines and neural networks. <i>Bioinformatics</i> 17 (4) 349-358
273	Hua S and Sun Z (2001) A novel method of protein secondary structure
213	prediction with high segment overlap measure: support vector machine approach L
	Mol Biol 308 (2) 397-407
274	Bock I P and Gough D A (2001) Predicting protein protein interactions from
2/7	primary structure <i>Bioinformatics</i> 17 (5) 455 460
275	Vannik VN (1005) The nature of statistical learning theory. Springer
213	Purges C I C (1008) A tutorial on support vector machines for pattern
270	Burges, C.J.C. (1998) A tutorial on support vector machines for pattern
277	Deshet N et al. (2004) Systematic handbracking of microarray data classification.
211	Pochet, N. et al. (2004) Systematic benchmarking of microarray data classification.
	assessing the role of non-linearity and dimensionality reduction. <i>Bioinformatics</i> 20,
270	$\frac{3185-3195}{1.5}$
218	Li, F. and Yang, Y. (2005) Analysis of recursive gene selection approaches from
250	microarray data. Bioinformatics 21, 3/41-3/4/
279	Burges, C. (1998) A tutorial on Support Vector Machine for pattern recognition.
• • • •	Data Min. Knowl. Disc. 2, 121-167
280	Karchin, R. et al. (2002) Classifying G-protein coupled receptors with support
	vector machines. <i>Bioinformatics</i> 18 (1), 147-159
281	Cai, Y.D. and Lin, S.L. (2003) Support vector machines for predicting rRNA-,
	RNA-, and DNA-binding proteins from amino acid sequence. <i>Biochim Biophys</i>
	Acta 1648 (1-2), 127-133
282	Keerthi, S.S. and Lin, C.J. (2003) Asymptotic behaviors of support vector
	machines with Gaussian kernel. Neural Comput 15 (7), 1667-1689

202	
283	Lin, HI., CJ. Lin. (2003) A study on sigmoid kernels for SVM and the training of
	non-PSD kernels by SMO-type methods. Technical report, Department of
	Computer Science, National Taiwan University.
284	Chang, C.C. and Lin, C.J. (2001) LIBSVM : a library for support vector machines.
285	Burges, C.J.C. (1998) A Tutorial on Support Vector Machines for Pattern
	Recognition. Data Mining and Knowledge Discovery 2, 121-167
286	Wang, D. and Larder, B. (2003) Enhanced prediction of lopinavir resistance from
	genotype by use of artificial neural networks. J Infect Dis 188 (5), 653-660
287	Draghici, S. and Potter, R.B. (2003) Predicting HIV drug resistance with neural networks. <i>Bioinformatics</i> 19 (1), 98-107
288	Specht, D.F. (1990) Probabilistic neural networks. Neural Networks 3 (1), 109-118
289	Parzen, E. (1962) On estimation of a probability density function and mode. Ann.
	Math. Stat. 33, 1065-1076
290	Cacoullos, T. (1966) Estimation of a multivariate density. Ann. I. Stat. Math. 18.
	179-189
291	Kumar, M.S.G.K.V. (2000) A Comparison of Document Clustering Techniques.
	KDD Workshop on Text Mining, University of Minnesota
292	Olson, C.F. (1993) Parallel Algorithms for Hierarchical Clustering. Technical
	Report UCB//CSD-94-786, University of California at Berkeley
293	Jain A.K., M.M.N., and Flynn P.J. (1999) Data Clustering: A Review. ACM
	Computing Surveys 31 (3), 264-323
294	Pang-Ning Tan, M.S., Vipin Kumar. (2005) Introduction to Data Mining. Addison
	Wesley
295	Rong En Fan, P.H.C., Chih Jen Lin. (2005) Working set selection using second
	order information for training SVM. Journal of Machine Learning Research 6,
	1889-1918
296	Richard O. Duda, P.E.H., David G. Stork. (2000) Pattern Classification, 2nd
	Edition. Wiley
297	Hawkins, D.M. (2004) The problem of overfitting. J Chem Inf Comput Sci 44 (1),
	1-12
298	Trevor Hastie, R.T., Jerome H. Friedman, (2001) The elements of statistical
	learning: data mining, inference, and prediction. Springer
299	Matthews, B. (1975) Comparison of the predicted and observed secondary
	structure of T4 phage lysozyme. <i>Biochim Biophys Acta</i> 405 (2), 442-451
300	Gunnarsson, R K, and Lanke, J. (2002) The predictive value of microbiologic
000	diagnostic tests if asymptomatic carriers are present Stat Med 21 (12) 1773-1785
301	Li H et al. (2007) Machine learning approaches for predicting compounds that
501	interact with the apeutic and ADMET related proteins <i>LPharm Sci</i> 96 (11) 2838-
	2860
302	Zhao X et al. (2005) An adaptive method for cDNA microarray normalization
502	BMC Rightformatics 6, 28
303	Vang VH et al. (2002) Normalization for cDNA microarray data: a robust
505	composite method addressing single and multiple slide systematic variation
	Nucleic Acids Res 30 (A) e15
304	WS C (1074) Pobust locally weighted regression and smoothing seatternlets
304	w 5, C. (1774) Robust locally weighted regression and smoothing scatterpiols.
205	Journal of the American Statistical Association 14, 829-830
303	Replet , 1.D. et al. (2002) Normalization and analysis of DINA microarray data by $C_{1,2}(7)$, DESEAD (20027)
201	self-consistency and local regression. Genome Biol 3 (7), RESEARCH0037
300	wang, Y. et al. (2002) Iterative normalization of cDNA microarray data. <i>IEEE</i>

	Trans Inf Technol Biomed 6 (1), 29-37
307	Workman, C. et al. (2002) A new non-linear normalization method for reducing
	variability in DNA microarray experiments. Genome Biol 3 (9), research0048
308	Edwards, D. (2003) Non-linear normalization and background correction in one-
	channel cDNA microarray studies. Bioinformatics 19 (7), 825-833
309	Chen, Y.J. et al. (2003) Normalization methods for analysis of microarray gene-
	expression data. J Biopharm Stat 13 (1), 57-74
310	Irizarry, R.A. et al. (2003) Exploration, normalization, and summaries of high
	density oligonucleotide array probe level data. <i>Biostatistics</i> 4 (2), 249-264
311	Irizarry, R.A. et al. (2003) Summaries of Affymetrix GeneChip probe level data.
•	Nucleic Acids Res 31 (4), e15
312	Ihaka R G R (1996) R: A language for data analysis and graphics <i>Journal of</i>
012	Computational and Graphical Statistics 5 (3) 299-314
313	Chu W et al (2005) Biomarker discovery in microarray gene expression data with
515	Gaussian processes <i>Bioinformatics</i> 21 (16) 3385-3303
314	Michael F. Wall, A.R. Luis M. Rocha (2002) Microarray analysis
514	techniques: Singular value decomposition and principal component analysis
	Kluwer A cademic Press
315	Saccone R A Raunivar R K and Patti M - F (2002) Sources of Experimental
515	Variability In Expression Data Derived From High-Density Oligonucleotide
	Microarrays: Practical Experience From An Academic Core Laboratory 2nd
	Annual UMass Rightformatics Conference, UMass Lowell
316	Pomerov S L et al (2002) Prediction of central nervous system embryonal tumour
510	outcome based on gene expression Nature 415 (6870) 436-442
317	Steamaier K et al. (2004) Gene expression-based high-throughput screening(GE-
517	HTS) and application to leukemia differentiation. Nat Canat 36 (3) 257-263
318	Schuchbardt L et al. (2000) Normalization strategies for cDNA microarrays
510	Nucleic Acids Res 28 (10) E47
310	The V et al. (2002) Quantitative noise analysis for gene expression microarray
517	experiments Proc Natl Acad Sci U S A 99 (22) 14031-14036
320	Bo TH et al. (2004) I Simpute: accurate estimation of missing values in
320	microarray data with least squares methods. Nucleic Acids Res 32 (3) e34
321	de Brevern A G et al (2004) Influence of microarrays experiments missing values
521	on the stability of gene groups by hierarchical clustering <i>BMC Bioinformatics</i> 5
	11 <i>A</i>
322	Hu L et al. (2006) Integrative missing value estimation for microarray data <i>BMC</i>
	Rioinformatics 7 449
323	Trovanskava Ω et al (2001) Missing value estimation methods for DNA
020	microarrays <i>Bioinformatics</i> 17 (6) 520-525
324	Kim, H. et al. (2005) Missing value estimation for DNA microarray gene
	expression data: local least squares imputation. <i>Bioinformatics</i> 21 (2), 187-198
325	Oba S et al (2003) A Bayesian missing value estimation method for gene
020	expression profile data <i>Bioinformatics</i> 19 (16) 2088-2096
326	Scholz, M et al. (2005) Non-linear PCA: a missing data approach <i>Bioinformatics</i>
020	21 (20) 3887-3895
327	Bair, E, and Tibshirani, R. (2004) Semi-supervised methods to predict patient
	survival from gene expression data <i>PLoS Riol</i> 2 (4) F108
328	Scheel, L et al. (2005) The influence of missing value imputation on detection of
	differentially expressed genes from microarray data. <i>Bioinformatics</i> 21 (23), 4272-

	4279
329	http://helix-web.stanford.edu/pubs/impute/.
330	Hanson, S.J. and Halchenko, Y.O. (2008) Brain reading using full brain support vector machines for object recognition: there is no "face" identification area.
221	Neural Comput 20 (2), 486-503
331	Guyon, I. et al. (2002) Gene Selection for Cancer Classification using Support Vector Machines. <i>Machine Learning</i> 46 (1-3), 389-422
332	Sima, C. et al. (2005) Superior feature-set ranking for small samples using bolstered error estimation. <i>Bioinformatics</i> 21 (7), 1046-1054
333	Fu, W.J. et al. (2005) Estimating misclassification error with small samples via bootstrap cross-validation. <i>Bioinformatics</i> 21 (9), 1979-1986
334	Henderson, R.A. et al. (1992) HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. <i>Science</i> 255 (5049), 1264-1266
335	Drews, J. (2000) Drug discovery: a historical perspective. <i>Science</i> 287 (5460), 1960-1964
336	Peter I., C.S. (2007) Drugs, their targets and the nature and number of drug targets. <i>Nature Reviews Drug Discovery</i> 5 (5460), 821-834
337	Zheng, C.J. et al. (2006) Therapeutic targets: progress of their exploration and investigation of their characteristics. <i>Pharmacol Rev</i> 58 (2), 259-279
338	Ashburn, T.T. and Thor, K.B. (2004) Drug repositioning: identifying and developing new uses for existing drugs. <i>Nat Rev Drug Discov</i> 3 (8), 673-683
339	Nelson, H.S. (2001) Advair: combination treatment with fluticasone propionate/salmeterol in the treatment of asthma. <i>J Allergy Clin Immunol</i> 107 (2),
340	Gupta, E.K. and Ito, M.K. (2002) Lovastatin and extended-release niacin combination product: the first drug combination for the management of humarlinidamia. Heart Dis $A(2)$, 124, 137
341	Larder, B.A. et al. (1995) Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. <i>Science</i> 269 (5224), 696-699
342	Dancey, J.E. and Chen, H.X. (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents. <i>Nat Rev Drug Discov</i> 5 (8), 649-659
343	Silver, L.L. (2007) Multi-targeting by monotherapeutic antibacterials. <i>Nat Rev</i> <i>Drug Discov</i> 6 (1), 41-55
344	Shoemaker, R.H. (2006) The NCI60 human tumour cell line anticancer drug screen. <i>Nat Rev Cancer</i> 6 (10), 813-823
345	Graham, B.A. et al. (2000) Synergistic interactions between two alpha(2)- adrenoceptor agonists, dexmedetomidine and ST-91, in two substrains of Sprague- Dawley rats. <i>Pain</i> 85 (1-2), 135-143
346	Kisliuk, R.L. (2000) Synergistic interactions among antifolates. <i>Pharmacol Ther</i> 85 (3), 183-190
347	Rand, K.H. and Houck, H. (2004) Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. <i>J Antimicrob Chemother</i> 53 (3), 530-532
348	Dryselius, R. et al. (2005) Antimicrobial synergy between mRNA- and protein- level inhibitors. <i>Journal of Antimicrobial Chemotherapy</i> 56 (1) 97-103
349	Azrak, R.G. et al. (2006) The mechanism of methylselenocysteine and docetaxel synergistic activity in prostate cancer cells. <i>Mol Cancer Ther</i> 5 (10) 2540-2548
350	Bell, A. (2005) Antimalarial drug synergism and antagonism: mechanistic and clinical significance. <i>FEMS Microbiol Lett</i> 253 (2), 171-184

351	Robertson, J.G. (2005) Mechanistic basis of enzyme-targeted drugs. <i>Biochemistry</i> 44 (15), 5561-5571
352	Zybarth, G. and Kley, N. (2006) Investigating the molecular basis of drug action and response: chemocentric genomics and proteomics. <i>Curr Drug Targets</i> 7 (4),
	387-395
353	Yao, L.X. et al. (2006) Internet resources related to drug action and human response: a review. <i>Appl Bioinformatics</i> 5 (3), 131-139
354	Liu, T. et al. (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. <i>Nucleic Acids Res</i> 35 (Database issue), D198-201
355	Issue), D198-201 Ji, Z L, et al. (2003) Internet resources for proteins associated with drug
	therapeutic effects, adverse reactions and ADME. <i>Drug Discov Today</i> 8 (12), 526- 529
356	Chen, Y.Z. and Zhi, D.G. (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. <i>Proteins</i> 43 (2), 217-226
357	Paul, N. et al. (2004) Recovering the true targets of specific ligands by virtual screening of the protein data bank. <i>Proteins</i> 54 (4), 671-680
358	Cleves, A.E. and Jain, A.N. (2006) Robust ligand-based modeling of the biological targets of known drugs. <i>J Med Chem</i> 49 (10), 2921-2938
359	Armour, C.D. and Lum, P.Y. (2005) From drug to protein: using yeast genetics for high-throughput target discovery. <i>Curr Opin Chem Biol</i> 9 (1), 20-24
360	Nettles, J.H. et al. (2006) Bridging chemical and biological space: "target fishing" using 2D and 3D molecular descriptors. <i>J Med Chem</i> 49 (23), 6802-6810
361	Han, L.Y. et al. (2007) Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. <i>Drug Discov Today</i> 12 (7-8), 304-313
362	Chen, X. et al. (2007) Does drug-target have a likeness? <i>Methods Inf Med</i> 46 (3), 360-366
363	Greco, W.R. et al. (1995) The search for synergy: a critical review from a response surface perspective. <i>Pharmacol Rev</i> 47 (2), 331-385
364	Chou, T.C. (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. <i>Pharmacol Rev</i> 58 (3), 621-681
365	Dolara, P. et al. (1992) Sister-chromatid exchanges in human lymphocytes induced by dimethoate, omethoate, deltamethrin, benomyl and their mixture. <i>Mutat Res</i> 283 (2), 113-118
366	Johnson, M.D. et al. (2004) Combination antifungal therapy. <i>Antimicrob Agents</i> <i>Chemother</i> 48 (3), 693-715
367	Peterson, J.J. and Novick, S.J. (2007) Nonlinear blending: a useful general concept for the assessment of combination drug synergy. <i>J Recept Signal Transduct Res</i> 27 (2-3), 125-146
368	Berenbaum, M.C. (1989) What is synergy? Pharmacol Rev 41 (2), 93-141
369	Chou, T.C. (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.
370	<i>Pharmacological Keviews</i> 58 (5), 021-081 Tallarida R I (2007) Interactions between drugs and occupied recentors
510	Pharmacology & Therapeutics 113 (1), 197-209
371	Jonker, D.M. et al. (2005) Towards a mechanism-based analysis of

pharmacodynamic drug-drug interactions in vivo	. Pharmacology & Therapeutics	
106 (1), 1-18		

- Peters, G.J. et al. (2000) Basis for effective combination cancer chemotherapy with antimetabolites. *Pharmacology & Therapeutics* 87 (2-3), 227-253
- **373** Barrera, N.P. et al. (2005) Principles: mechanisms and modeling of synergism in cellular responses. *Trends in Pharmacological Sciences* 26 (10), 526-532
- Falagas, M.E. et al. (2008) Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. *FASEB J* 22 (2), 338-342
- Wheeler, D.L. et al. (2004) Database resources of the National Center for
 Biotechnology Information: update. *Nucleic Acids Res* 32 (Database issue), D35-40
- Kawakami, H. et al. (2007) Inhibition of heat shock protein-90 modulates multiple functions required for survival of human T-cell leukemia virus type I-infected T-cell lines and adult T-cell leukemia cells. *Int J Cancer* 120 (8), 1811-1820
- **377** Arthur J. Atkinson, D.R.A., Charles E. Daniels, FASHP, Robert L. Dedrick, and Sanford P. Markey. (2007) Principles of Clinical Pharmacology (Second Edition). *Elsevier*
- Lin, X. et al. (1999) The role of DNA mismatch repair in cisplatin mutagenicity. *Journal of Inorganic Biochemistry* 77 (1-2), 89-93
- Rhee, I. et al. (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. *Nature* 416 (6880), 552-556
- 380 van Waardenburg, R.C. et al. (2004) Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. *Journal of Biological Chemistry* 279 (52), 54502-54509
- Grimaldi, K.A. et al. (1994) DNA damage by anti-cancer agents resolved at the nucleotide level of a single copy gene: evidence for a novel binding site for cisplatin in cells. *Nucleic Acids Res* 22 (12), 2311-2317
- Bassett, E. et al. (2003) Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. *Biochemistry* 42 (48), 14197-14206
- Koster, D.A. et al. (2007) Antitumour drugs impede DNA uncoiling by topoisomerase I. *Nature* 448 (7150), 213-217
- D'Incalci, M. et al. (2003) The combination of yondelis and cisplatin is synergistic against human tumor xenografts. *Eur J Cancer* 39 (13), 1920-1926
- 385 Marco, E. and Gago, F. (2005) DNA structural similarity in the 2:1 complexes of the antitumor drugs trabectedin (Yondelis) and chromomycin A3 with an oligonucleotide sequence containing two adjacent TGG binding sites on opposing strands. *Mol Pharmacol* 68 (6), 1559-1567
- Dziegielewska, B. et al. (2004) SV40 DNA replication inhibition by the monofunctional DNA alkylator Et743. *Biochemistry* 43 (44), 14228-14237
- Dai, Z. et al. (2006) 5-Aza-2'-deoxycytidine and depsipeptide synergistically induce expression of BIK (BCL2-interacting killer). *Biochem Biophys Res Commun* 351 (2), 455-461
- Georgakis, G.V. et al. (2006) The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. *Exp Hematol* 34 (12), 1670-1679
- Soja, P.J. et al. (2001) Spontaneous spike activity of spinoreticular tract neurons during sleep and wakefulness. *Sleep* 24 (1), 18-25
- **390** Staud, R. (2002) Evidence of involvement of central neural mechanisms in

	generating fibromyalgia pain. Curr Rheumatol Rep 4 (4), 299-305
391	Tham, S.M. et al. (2005) Synergistic and additive interactions of the cannabinoid
	agonist CP55,940 with mu opioid receptor and alpha2-adrenoceptor agonists in
	acute pain models in mice. British Journal of Pharmacology 144 (6), 875-884
392	Malonga, H. et al. (2005) Taxol anticancer activity and DNA binding. Mini Rev
	Med Chem 5 (3), 307-311
393	Sintchak, M.D. et al. (1996) Structure and mechanism of inosine monophosphate
	dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell
	85 (6), 921-930
394	Marcus, A.I. et al. (2005) The synergistic combination of the farnesyl transferase
	inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a
	functional tubulin deacetylase. Cancer Res 65 (9), 3883-3893
395	Piperno, G. et al. (1987) Microtubules containing acetylated alpha-tubulin in
	mammalian cells in culture. J Cell Biol 104 (2), 289-302
396	Lai, G.H. et al. (2003) Celecoxib acts in a cyclooxygenase-2-independent manner
	and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro
	through a mechanism involving enhanced Akt inactivation and increased activation
	of caspases-9 and -3. Molecular cancer therapeutics 2 (3), 265-271
397	Alloza, I. et al. (2006) Celecoxib inhibits interleukin-12 alphabeta and beta2
	folding and secretion by a novel COX2-independent mechanism involving
	chaperones of the endoplasmic reticulum. Mol Pharmacol 69 (5), 1579-1587
398	Jayasuriya, H. et al. (1992) Emodin, a protein tyrosine kinase inhibitor from
	Polygonum cuspidatum. J Nat Prod 55 (5), 696-698
399	Olsen, B.B. et al. (2007) Emodin negatively affects the phosphoinositide 3-
	kinase/AKT signalling pathway: a study on its mechanism of action. Int J Biochem
	<i>Cell Biol</i> 39 (1), 227-237
400	Cottagnoud, P. et al. (2003) Vancomycin acts synergistically with gentamicin
	against penicillin-resistant pneumococci by increasing the intracellular penetration
	of gentamicin. Antimicrobial Agents and Chemotherapy 47 (1), 144-147
401	Yoshizawa, S. et al. (1998) Structural origins of gentamicin antibiotic action. <i>Embo</i>
	J 17 (22), 6437-6448
402	Cegelski, L. et al. (2002) Rotational-echo double resonance characterization of the
	effects of vancomycin on cell wall synthesis in Staphylococcus aureus.
402	<i>Biochemistry</i> 41 (43), 13053-13058
403	Watanakunakorn, C. (1984) Mode of action and in-vitro activity of vancomycin. J
40.4	Antimicrob Chemother 14 Suppl D, 7-18
404	Goddard, J. et al. (2004) Endothelin A receptor antagonism and angiotensin-
	converting enzyme inhibition are synergistic via an endotherin B receptor-mediated
	and mitric oxide-dependent mechanism. <i>Journal of the American Society of</i>
405	Nephrology 15 (10), 2001-2010
405	vernaar, M.C. et al. (1998) Endotnenn-A receptor antagonist-mediated
	vasodilatation is attenuated by initional of initic oxide synthesis and by
106	Endotherm-B receptor blockade. Circulation $97(8)$, $72-750$ Moridaire K at al. (2002) ACE inhibition increases expression of the ETP
400	mondana, K. et al. (2005) ACE initionion increases expression of the ETB
	284 (1) F200-217
407	204 (1), 1207-217 Pollock DM at al (1995) Endothalin recentors and coloium signaling Easch 10
-10/	(12) 1196_{-1204}
408	Chaney S G et al. (2004) Protein interactions with platinum-DNA adducts: from
100	chance, s.s. et al. (2007) Frotein interactions with plaunum DTVT adducts. Hom

	structure to function. J Inorg Biochem 98 (10), 1551-1559
409	Faivre, S. et al. (2003) DNA strand breaks and apoptosis induced by oxaliplatin in
	cancer cells. Biochem Pharmacol 66 (2), 225-237
410	Koizumi, F. et al. (2004) Synergistic interaction between the EGFR tyrosine kinase
	inhibitor gefitinib ("Iressa") and the DNA topoisomerase I inhibitor CPT-11
	(irinotecan) in human colorectal cancer cells. Int J Cancer 108 (3), 464-472
411	Tanaka, R. et al. (2005) Synergistic interaction between oxaliplatin and SN-38 in
	human gastric cancer cell lines in vitro. Oncol Rep 14 (3), 683-688
412	Kobayashi, S. et al. (1993) Singly-linked catenation and knotting of cisplatin-DNA
	adduct by DNA topoisomerase I. Nucleic Acids Symp Ser (29), 137-138
413	Zhao, W.H. et al. (2001) Mechanism of synergy between epigallocatechin gallate
	and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob
	Agents Chemother 45 (6), 1737-1742
414	Bickle, M. et al. (1998) Cell wall integrity modulates RHO1 activity via the
	exchange factor ROM2. <i>Embo J</i> 17 (8), 2235-2245
415	Abal, M. et al. (2003) Taxanes: microtubule and centrosome targets, and cell cycle
44.6	dependent mechanisms of action. Curr Cancer Drug Targets 3 (3), 193-203
416	Ganansia-Leymarie, V. et al. (2003) Signal transduction pathways of taxanes-
417	Induced apoptosis. Curr Med Chem Anticancer Agents 3 (4), 291-306
41/	Park, S.J. et al. (2004) Taxof induces caspase-10-dependent apoptosis. J Biol Chem
<i>A</i> 18	Okano, L et al. (2007) The growth inhibition of liver cancer cells by paclitavel and
410	the involvement of extracellular signal-regulated kinase and apoptosis. Oncol Rep
	17 (5) 1195-1200
419	Zhang, W et al. (1999) ERK pathway mediates the activation of Cdk2 in IGE-1-
11/	induced proliferation of human osteosarcoma MG-63 cells <i>J Bone Miner Res</i> 14
	(4), 528-535
420	Bacus, S.S. et al. (2001) Taxol-induced apoptosis depends on MAP kinase
	pathways (ERK and p38) and is independent of p53. Oncogene 20 (2), 147-155
421	Pennati, M. et al. (2005) Potentiation of paclitaxel-induced apoptosis by the novel
	cyclin-dependent kinase inhibitor NU6140: a possible role for survivin down-
	regulation. Mol Cancer Ther 4 (9), 1328-1337
422	Lee, E.J. et al. (2007) The epidermal growth factor receptor tyrosine kinase
	inhibitor ZD1839 (Iressa) suppresses proliferation and invasion of human oral
	squamous carcinoma cells via p53 independent and MMP, uPAR dependent
	mechanism. Ann N Y Acad Sci 1095, 113-128
423	Fanucchi, M. and Khuri, F.R. (2006) Taxanes in the treatment of non-small cell $T_{\rm res}$ (2011) 101
42.4	lung cancer. Ireat Respir Med 5 (3), 181-191
424	Takabatake, D. et al. (2007) Tumor infibitory effect of gentinib (ZD1839, Iressa)
	and taxane combination therapy in EGFR-overexpressing breast cancer centimes $(MCE7/ADP, MDA, MP, 221)$ Int L Cancer 120 (1) 181–188
125	(INCL7//ADK, NIDA-MD-231). Int J Cuncer 120 (1), 101-100 Europeople M et al. (2001) A MEK inhibitor $DD08050$ enhances II 1 induced
423	NE-kannaB activation by the enhanced and sustained degradation of IkannaBalnha
	Riochem Riophys Res Commun 283 (1) 248-254
426	Roberts PL and Der C L (2007) Targeting the Raf-MEK-ERK mitogen-activated
⊐ ⊿ ∪	protein kinase cascade for the treatment of cancer <i>Oncoopno</i> 26 (22) 3291-3310
427	De Clerca, E. (1993) HIV-1-specific RT inhibitors: highly selective inhibitors of
	human immunodeficiency virus type 1 that are specifically targeted at the viral
	reverse transcriptase. Med Res Rev 13 (3), 229-258
428	Fattorusso, C. et al. (2005) Specific targeting highly conserved residues in the
-------	--
	HIV-1 reverse transcriptase primer grip region. Design, synthesis, and biological
	evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. J
	Med Chem 48 (23), 7153-7165
429	Cruchaga, C. et al. (2005) Inhibition of phosphorolysis catalyzed by HIV-1 reverse
	transcriptase is responsible for the synergy found in combinations of 3'-azido-3'-
	deoxythymidine with nonnucleoside inhibitors. Biochemistry 44 (9), 3535-3546
430	Rigourd, M. et al. (2002) Primer unblocking and rescue of DNA synthesis by
	azidothymidine (AZT)-resistant HIV-1 reverse transcriptase: comparison between
	initiation and elongation of reverse transcription and between (-) and (+) strand
	DNA synthesis. J Biol Chem 277 (21), 18611-18618
431	Drew, R.H. and Gallis, H.A. (1992) Azithromycinspectrum of activity,
	pharmacokinetics, and clinical applications. <i>Pharmacotherapy</i> 12 (3), 161-173
432	Wynd, M.A. and Paladino, J.A. (1996) Cefepime: a fourth-generation parenteral
	cephalosporin. Ann Pharmacother 30 (12), 1414-1424
433	Fernandez-Cuenca, F. et al. (2003) In vitro activity of azithromycin in combination
	with amikacin, ceftazidime, ciprofloxacin or imipenem against clinical isolates of
	Acinobacter baumannii. Chemotherapy 49 (1-2), 24-26
434	Gajate, C. and Mollinedo, F. (2005) Cytoskeleton-mediated death receptor and
	ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer
	chemotherapy. J Biol Chem 280 (12), 11641-11647
435	Cuadrado, A. et al. (2004) JNK activation is critical for Aplidin-induced apoptosis.
126	<i>Oncogene</i> 23 (27), 4673-4680
430	Biscardi, M. et al. (2005) VEGF inhibition and cytotoxic effect of apliain in
	leukemia cell lines and cells from acute myeloid leukemia. Ann Oncol 16 (10),
137	Palicano, H. et al. (2006) Targeting Hen00 by 17 AAG in laukemia cells:
437	mechanisms for synergistic and antagonistic drug combinations with arsenic
	trioxide and Ara-C leukemia 20 (4) 610-619
438	Abdel-Aziz W et al. (2000) Ara-C affects formation of cancer cell DNA
100	synthesome replication intermediates. <i>Cancer Chemother Pharmacol</i> 45 (4), 312-
	319
439	de Vries, J.F. et al. (2006) The mechanisms of Ara-C-induced apoptosis of resting
	B-chronic lymphocytic leukemia cells. <i>Haematologica</i> 91 (7), 912-919
440	Humeniuk, R. et al. (2007) Aplidin synergizes with cytosine arabinoside:
	functional relevance of mitochondria in Aplidin-induced cytotoxicity. Leukemia
441	Hajra, K.M. and Liu, J.R. (2004) Apoptosome dysfunction in human cancer.
	Apoptosis 9 (6), 691-704
442	Haggarty, S.J. et al. (2003) Domain-selective small-molecule inhibitor of histone
	deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA
	100 (8), 4389-4394
443	Di Francesco, A.M. et al. (2007) The novel atypical retinoid ST1926 is active in
	ATRA resistant neuroblastoma cells acting by a different mechanism. <i>Biochem</i>
	<i>Pharmacol</i> 73 (5), 643-655
444	Zanchi, C. et al. (2005) Modulation of survival signaling pathways and persistence
	of the genotoxic stress as a basis for the synergistic interaction between the
	atypical retinoid ST1926 and the epidermal growth factor receptor inhibitor $ZD1920$, C_{1} , C_{2}
1 A E	LD1839. Cancer Kes 65 (6), 2364-2372
443	Zwang, 1. and Tarden, 1. (2000) p58 MAP kinase mediates stress-induced

	internalization of EGFR: implications for cancer chemotherapy. <i>Embo J</i> 25 (18), 4105–4206
446	Reffelmann, T. and Kloner, R.A. (2006) Cardiovascular effects of
	phosphodiesterase 5 inhibitors. Curr Pharm Des 12 (27), 3485-3494
447	Walch, L. et al. (1999) Prostanoid receptors involved in the relaxation of human pulmonary vessels. <i>Br J Pharmacol</i> 126 (4), 859-866
448	Parkinson, P.A. et al. (2000) Phospholipase C activation by prostacyclin receptor agonist in cerebral microvascular smooth muscle cells. <i>Proc Soc Exp Biol Med</i> 223
110	(1), 53-58 Ashrafnour, H. et al. (2004) Vacadilator affect and machanism of action of vacaular
449	endothelial growth factor in skin vasculature. <i>Am J Physiol Heart Circ Physiol</i> 286 (3), H946-954
450	Della Bella, S. et al. (2001) Novel mode of action of iloprost: in vitro down-
451	regulation of endothelial cell adhesion molecules. <i>Prostaglandins</i> 65 (2-3), 73-83 Ghofrani, H.A. et al. (2002) Combination therapy with oral sildenafil and inhaled
452	iloprost for severe pulmonary hypertension. <i>Ann Intern Med</i> 136 (7), 515-522 Mullershausen, F. et al. (2006) Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. <i>Mel Pharmacel</i> 69 (6), 1069–1074
453	Yamaki, F. et al. (2001) MaxiK channel-mediated relaxation of guinea-pig aorta following stimulation of IP receptor with beraprost via cyclic AMP-dependent and -independent mechanisms. <i>Naunyn Schmiedebergs Arch Pharmacol</i> 364 (6), 538- 550
454	Nelson, L.E. et al. (2003) The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. <i>Anesthesiology</i> 98 (2), 428-436
455	Davis, M. et al. (1989) Spinal vs. supraspinal sites of action of the alpha 2- adrenergic agonists clonidine and ST-91 on the acoustic startle reflex. <i>Pharmacol</i> <i>Biochem Behay</i> 33 (1), 233-240
456	Philipp, M. et al. (2002) Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. <i>Am J Physiol Regul Integr Comp</i> <i>Physiol</i> 283 (2) R287-295
457	Gan, L. et al. (2003) The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase. <i>Biochemistry</i> 42 (4), 857-863
458	Shimmura, H. et al. (2006) Combination effect of mycophenolate mofetil with mizoribine on cell proliferation assays and in a mouse heart transplantation model.
459	Jordan, M.A. (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. <i>Curr Med Chem Anticancer Agents</i> 2 (1), 1-17
460	Madiraju, C. et al. (2005) Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. <i>Biochemistry</i> 44 (45), 15053-15063
461	Honore, S. et al. (2004) Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. <i>Cancer Res</i> 64 (14), 4957-4964
462	Black, D.M. (2003) The development of combination drugs for atherosclerosis. <i>Curr Atheroscler Rep</i> 5 (1), 29-32.
463	Mondimore, F.M. et al. (2003) Drug combinations for mania. <i>J Clin Psychiatry</i> 64 Suppl 5, 25-31

	Dioliography
464	Curatolo, M. and Sveticic, G. (2002) Drug combinations in pain treatment: a review of the published evidence and a method for finding the optimal
	combination. Best Pract Res Clin Anaesthesiol 16 (4), 507-519
465	Wilmes, A. et al. (2007) Peloruside A synergizes with other microtubule stabilizing agents in cultured cancer cell lines. <i>Mol Pharm</i> 4 (2), 269-280
466	Guignard, B. et al. (2005) Beta-lactams against methicillin-resistant Staphylococcus aureus. <i>Curr Opin Pharmacol</i> 5 (5), 479-489
467	Braga, P.C. et al. (2002) Daptomycin morphostructural damage in Bacillus cereus visualized by atomic force microscopy. <i>I Chemother</i> 14 (4), 336-341
468	Paul, T.R. et al. (1995) Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin V derivative. <i>I Bacteriol</i> 177 (13) 3631-3640
469	Nishikawa, K. (1998) Angiotensin AT1 receptor antagonism and protection against cardiovascular end-organ damage. <i>J Hum Hypertens</i> 12 (5), 301-309
470	Rokoss, M.J. and Teo, K.K. (2005) Ramipril in the treatment of vascular diseases. <i>Expert Opin Pharmacother</i> 6 (11), 1911-1919
471	Carlsson, L. and Abrahamsson, T. (1989) Ramiprilat attenuates the local release of noradrenaline in the ischemic myocardium. <i>Eur J Pharmacol</i> 166 (2), 157-164
472	Raasch, W. et al. (2004) Combined blockade of AT1-receptors and ACE synergistically potentiates antihypertensive effects in SHR. <i>J Hypertens</i> 22 (3), 611-618
473	Touma, S.E. et al. (2005) Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. <i>Clinical Cancer Research</i> 11 (9), 3558-3566
474	Meco, D. et al. (2003) Effective combination of ET-743 and doxorubicin in sarcoma: preclinical studies. <i>Cancer Chemotherapy and Pharmacology</i> 52 (2), 131-138
475	Kellogg, G.E. et al. (1998) Identification and hydropathic characterization of structural features affecting sequence specificity for doxorubicin intercalation into DNA double-stranded polynucleotides. <i>Nucleic Acids Res</i> 26 (20), 4721-4732
476	Zewail-Foote, M. et al. (2001) The inefficiency of incisions of ecteinascidin 743- DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. <i>Chem Biol</i> 8 (11), 1033-1049
477	Baruah, H. et al. (2004) Platinum-intercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. <i>Curr Top Med Chem</i> 4 (15), 1537-1549
478	Nickels, T.J. et al. (2006) Effect of theophylline and aminophylline on transmitter release at the mammalian neuromuscular junction is not mediated by cAMP. <i>Clin Exp Pharmacol Physiol</i> 33 (5-6), 465-470
479	Barrington, W.W. et al. (1989) Demonstration of distinct agonist and antagonist conformations of the A1 adenosine receptor <i>J Biol Chem</i> 264 (22) 13157-13164
480	Yao, Q. et al. (2007) Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. <i>Clin Cancer</i> <i>Res</i> 13 (5), 1591-1600
481	Alves, D.P. et al. (2004) Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K+ channels, and sodium nitroprusside and dibutyryl_cGMP. <i>Eur L Pharmacol</i> 489 (1-2), 59,65
482	Russ, U. et al. (2003) Binding and effect of K ATP channel openers in the absence

-	Biolography
	of Mg2+. Br J Pharmacol 139 (2), 368-380
483	Soares, A.C. and Duarte, I.D. (2001) Dibutyryl-cyclic GMP induces peripheral
	antinociception via activation of ATP-sensitive K(+) channels in the rat PGE2-
	induced hyperalgesic paw. Br J Pharmacol 134 (1), 127-131
484	Deka, D.K. and Brading, A.F. (2004) Nitric oxide activates glibenclamide-sensitive
	K+ channels in urinary bladder myocytes through a c-GMP-dependent mechanism.
	<i>Eur J Pharmacol</i> 492 (1), 13-19
485	Alves, D.S. et al. (2004) Membrane-related effects underlying the biological
	activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol 68 (3),
	549-561
486	Campagna-Slater, V. and Weaver, D.F. (2007) Anaesthetic binding sites for
	etomidate and propofol on a GABA(A) receptor model. Neurosci Lett 418 (1), 28-
	33
487	Nishikawa, K. and Harrison, N.L. (2003) The actions of sevoflurane and
	desflurane on the gamma-aminobutyric acid receptor type A: effects of TM2
	mutations in the alpha and beta subunits. Anesthesiology 99 (3), 678-684
488	Harris, R.S. et al. (2006) Interaction of propofol and sevoflurane on loss of
	consciousness and movement to skin incision during general anesthesia.
400	Anesthesiology 104 (6), 1170-1175
489	Sigel, E. (2002) Mapping of the benzodiazepine recognition site on GABA(A)
100	receptors. Curr Top Med Chem 2 (8), 833-839
490	Ono, S. et al. (2005) Mechanisms of resistance to impenem and ampicillin in Γ_{1}
401	Enterococcus faecalis. Antimicrob Agents Chemother 49 (7), 2954-2958
491	Fuda, C. et al. (2004) The basis for resistance to beta-factam antibiotics by
	<i>Cham</i> 270 (20) 40802 40806
102	Krishna S et al. (2006) Re-evaluation of how artemisining work in light of
7/4	emerging evidence of in vitro resistance. Trands Mol Mad 12 (5) 200-205
493	Nandakumar D N et al. (2006) Curcumin-artemisinin combination therapy for
775	malaria Antimicrob Agents Chemother 50 (5) 1859-1860
494	Furuya R et al. (2006) In vitro synergistic effects of double combinations of beta-
	lactams and azithromycin against clinical isolates of Neisseria gonorrhoeae. I
	Infect Chemother 12 (4), 172-176
495	Huang, W. et al. (2002) Ion channel behavior of amphotericin B in sterol-free and
	cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model
	membranes investigated by electrochemistry and spectroscopy. <i>Biophys J</i> 83 (6),
	3245-3255
496	Walsh, T.J. et al. (2000) New targets and delivery systems for antifungal therapy.
	Med Mycol 38 Suppl 1, 335-347
497	Meletiadis, J. et al. (2006) Triazole-polyene antagonism in experimental invasive
	pulmonary aspergillosis: in vitro and in vivo correlation. J Infect Dis 194 (7),
	1008-1018
498	Carrillo-Munoz, A.J. et al. (2006) Antifungal agents: mode of action in yeast cells.
	<i>Rev Esp Quimioter</i> 19 (2), 130-139
499	Thanou, M. et al. (2001) Oral drug absorption enhancement by chitosan and its
	derivatives. Advanced drug delivery reviews 52 (2), 117-126
500	Ciccolini, J. et al. (2000) Enhanced antitumor activity of 5-fluorouracil in
	combination with 2'-deoxyinosine in human colorectal cell lines and human colon
	tumor xenografts. Clinical Cancer Research 6 (4), 1529-1535

501 Glazer, R.I. and Lloyd, L.S. (1982) Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol Pharmacol 21 (2), 468-473 502 Narishetty, S.T. and Panchagnula, R. (2005) Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J Control Release 102 (1), 59-70 503 Narishetty, S.T. and Panchagnula, R. (2004) Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Control Release 95 (3), 367-379 504 Shitara, Y. et al. (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311 (1), 228-236 505 Fujino, H. et al. (2003) Studies on the interaction between fibrates and statins using human hepatic microsomes. Arzneimittelforschung 53 (10), 701-707 Prueksaritanont, T. et al. (2002) Effects of fibrates on metabolism of statins in 506 human hepatocytes. Drug Metab Dispos 30 (11), 1280-1287 507 Minotti, G. et al. (2001) Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. Clin Cancer Res 7 (6), 1511-1515 Menez, C. et al. (2007) Physicochemical characterization of molecular assemblies 508 of miltefosine and amphotericin B. Mol Pharm 4 (2), 281-288 509 Menez, C. et al. (2006) Interaction between miltefosine and amphotericin B: consequences for their activities towards intestinal epithelial cells and Leishmania donovani promastigotes in vitro. Antimicrob Agents Chemother 50 (11), 3793-3800 510 Siddik, Z.H. (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22 (47), 7265-7279 Zicca, A. et al. (2002) Reduction of cisplatin hepatotoxicity by procainamide 511 hydrochloride in rats. Eur J Pharmacol 442 (3), 265-272 512 Kaminsky, L.S. and Zhang, Z.Y. (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73 (1), 67-74 Ngui, J.S. et al. (2001) In vitro stimulation of warfarin metabolism by quinidine: 513 increases in the formation of 4'- and 10-hydroxywarfarin. Drug Metab Dispos 29 (6), 877-886 514 Matsuura, M. et al. (1980) Combined antibacterial activity of amoxicillin with clavulanic acid against ampicillin-resistant strains. Antimicrob Agents Chemother 17 (6). 908-911 515 Nasher, M.A. and Hay, R.J. (1998) Synergy of antibiotics against Streptomyces somaliensis isolates in vitro. J Antimicrob Chemother 41 (2), 281-284 Cohen, S.G. and Criep, L.H. (1949) Observations on the symptomatic treatment of 516 chronic vascular headache with cafergone (ergotamine tartrate and caffeine). N Engl J Med 241 (23), 896-900 517 Stein, E.A. et al. (1996) Efficacy and Tolerability of Low-dose Simvastatin and Niacin, Alone and in Combination, in Patients With Combined Hyperlipidemia: A Prospective Trial. J Cardiovasc Pharmacol Ther 1 (2), 107-116 518 Loehrer, P.J., Sr. et al. (1988) Cisplatin plus etoposide in small cell lung cancer. Semin Oncol 15 (3 Suppl 3), 2-8 519 Vendsborg, P.B. and Bach-Mortensen, N. (1977) Fat cell size and blood lactate in humans. Scand J Clin Lab Invest 37 (4), 317-320

520	Fletcher, D. et al. (1997) Isobolographic analysis of interactions between intravenous morphine, propacetamol, and diclofenac in carrageenin-injected rats.
	Anesthesiology 87 (2), 317-326
521	Pace, E. et al. (2004) Synergistic effects of fluticasone propionate and salmeterol on in vitro T-cell activation and apoptosis in asthma. <i>J Allergy Clin Immunol</i> 114 (5), 1216-1223
522	Greenwood, D. and O'Grady, F. (1976) Activity and interaction of trimethoprim and sulphamethoxazole against Escherichia coli. <i>J Clin Pathol</i> 29 (2), 162-166
523	Rolinson, G.N. (1980) Effect of beta-lactam antibiotics on bacterial cell growth rate. <i>J Gen Microbiol</i> 120 (2), 317-323
524	Cole, M. (1982) Biochemistry and action of clavulanic acid. <i>Scott Med J</i> 27 Spec No., S10-16
525	Brogden, R.N. et al. (1981) Amoxycillin/clavulanic acid: a review of its antibacterial activity, pharmacokinetics and therapeutic use. <i>Drugs</i> 22 (5), 337-362
526	Nials, A.T. et al. (1993) Investigations into factors determining the duration of action of the beta 2-adrenoceptor agonist, salmeterol. <i>Br J Pharmacol</i> 108 (2), 507-515
527	Mamani-Matsuda, M. et al. (2004) Long-acting beta2-adrenergic formoterol and salmeterol induce the apoptosis of B-chronic lymphocytic leukaemia cells. <i>Br J Haematol</i> 124 (2), 141-150
528	Meltzer, E.O. (1997) The pharmacological basis for the treatment of perennial allergic rhinitis and non-allergic rhinitis with topical corticosteroids. <i>Allergy</i> 52 (36 Suppl), 33-40
529	Zhang, X. et al. (2000) Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. <i>Eur J Pharmacol</i> 406 (3), 325-332
530	Barnes, P.J. (2002) Scientific rationale for inhaled combination therapy with long- acting beta2-agonists and corticosteroids. <i>Eur Respir J</i> 19 (1), 182-191
531	Voeller, D. et al. (1994) Interaction of Pneumocystis carinii dihydropteroate synthase with sulfonamides and diaminodiphenyl sulfone (dapsone). <i>J Infect Dis</i> 169 (2), 456-459
532	Meekins, C.V. et al. (1994) Immunochemical analysis of sulfonamide drug allergy: identification of sulfamethoxazole-substituted human serum proteins. <i>J Allergy</i> <i>Clin Immunol</i> 94 (6 Pt 1), 1017-1024
533	Brumfitt, W. and Hamilton-Miller, J.M. (1993) Reassessment of the rationale for the combinations of sulphonamides with diaminopyrimidines. <i>J Chemother</i> 5 (6), 465-469
534	Lowe, P.A. and Malcolm, A.D. (1976) Rifampicin binding as a probe for subunit interactions in Escherchia coli RNA polymerase. <i>Biochim Biophys Acta</i> 454 (1), 129-137
535	Lee-Huang, S. et al. (1974) Inhibition of polypeptide chain initiation in Escherichia coli by elongation factor G. <i>Proc Natl Acad Sci U S A</i> 71 (8), 2928-2931
536	Biebricher, C.K. and Druminski, M. (1980) Inhibition of RNA polymerase activity by the Escherichia coli protein biosynthesis elongation factor Ts. <i>Proc Natl Acad</i> <i>Sci U S A</i> 77 (2), 866-869
537	Dinos, G.P. et al. (2003) Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation. <i>Mol Pharmacol</i> 63 (3), 617-623
538	Rojo, F. et al. (1984) Analysis of the different molecular forms of penicillin-

binding protein 1B in Escherichia coli ponB mutants lysogenized with specialized
Villalon, C M, et al. (1000) Canina avternal caractid vascoonstriction to
villaton, C.M. et al. (1999) Calline external carolid vasoconstruction to
and alpha2-adrenoceptors Br J Pharmacol 126 (3) 585-594
Badia, A. et al. (1988) Effects of ergotamine on cardiovascular catecholamine
receptors in the pithed rat. <i>Gen Pharmacol</i> 19 (3), 475-481
Boulenger, J.P. et al. (1982) Effects of caffeine and theophylline on adenosine and
benzodiazepine receptors in human brain. <i>Neurosci Lett</i> 30 (2), 161-166
Mukhopadhyay, S. and Poddar, M.K. (1995) Caffeine-induced locomotor activity:
possible involvement of GABAergic-dopaminergic-adenosinergic interaction.
Neurochem Res 20 (1), 39-44
Levin, R.M. et al. (1981) Quantitative analysis of the effects of caffeine on sperm
motility and cyclic adenosine 3',5'-monophosphate (AMP) phosphodiesterase.
Fertil Steril 36 (6), 798-802
Anderson, J.R. et al. (1981) Effect of caffeine on ergotamine absorption from rat
small intestine. J Pharm Sci 70 (6), 651-657
Ganji, S.H. et al. (2003) Niacin and cholesterol: role in cardiovascular disease (12003) LN_{10} $LN_$
(review). J Nutr Biochem 14 (0), 298-305 Plasker, GL and MaTavish, D. (1005) Simulatoria. A reappresided of its
pharmacology and therapeutic efficacy in hypercholesterolaemia. Drugs 50 (2)
334-363
Maccubbin, A.E. et al. (1991) A cyclophosphamide/DNA phosphoester adduct
formed in vitro and in vivo. <i>Cancer Res</i> 51 (3), 886-892
Mehta, J.R. et al. (1980) Alkylation of guanosine and deoxyguanosine by
phosphoramide mustard. Cancer Res 40 (11), 4183-4186
Haller, D.G. (1997) Trimetrexate: experience with solid tumors. Semin Oncol 24 (5
Suppl 18), S18-71-S18-76
Pinedo, H.M. and Peters, G.F. (1988) Fluorouracil: biochemistry and
pharmacology. J Clin Oncol 6 (10), 1653-1664
Sun, X.X. et al. (2007) 5-fluorouracil activation of p53 involves an MDM2- ribeserval protein interaction I Biol Cham 282 (11) 8052 8050
Fernandes, D. L. and Bertino, J. P. (1980) 5 fluorouracil methotravate supergy:
enhancement of 5-fluorodeoxyridylate binding to thymidylate synthese by
dihydropteroylpolyglutamates. <i>Proc Natl Acad Sci U S A</i> 77 (10) 5663-5667
Schwieler, L. et al. (2005) Prostaglandin-mediated control of rat brain kynurenic
acid synthesisopposite actions by COX-1 and COX-2 isoforms. J Neural Transm
112 (7), 863-872
Bertolini, A. et al. (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev
12 (3-4), 250-275
Ouellet, M. and Percival, M.D. (2001) Mechanism of acetaminophen inhibition of
cyclooxygenase isoforms. Arch Biochem Biophys 387 (2), 273-280
Hinz, B. et al. (2008) Acetaminophen (paracetamol) is a selective cyclooxygenase-
2 inhibitor in man. FASEB J 22 (2), $383-390$
oralisis in drug discovery and development. Curr Onin Drug Discov Devel 11 (1)
analysis in drug discovery and development. Curr Opin Drug Discov Devel 11 (1), 86-94
Eckstein N. et al. (2008) Epidermal growth factor recentor nathway analysis
identifies amphiregulin as a key factor for cisplatin resistance of human breast

	cancer cells. J Biol Chem 283 (2), 739-750
559	Ganter, B. et al. (2008) Pathway analysis tools and toxicogenomics reference
	databases for risk assessment. Pharmacogenomics 9 (1), 35-54
560	Apic, G. et al. (2005) Illuminating drug discovery with biological pathways. <i>FEBS Lett</i> 579 (8), 1872-1877
561	Davidov, E. et al. (2003) Advancing drug discovery through systems biology. <i>Drug Discov Today</i> 8 (4), 175-183
562	Huang, S. (2002) Rational drug discovery: what can we learn from regulatory networks? <i>Drug Discov Today</i> 7 (20 Suppl), S163-169
563	Nahta, R. and Esteva, F.J. (2007) Trastuzumab: triumphs and tribulations. Oncogene 26 (25), 3637-3643
564	Pietras, R.J. et al. (1998) Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. <i>Oncogene</i> 17 (17), 2235-2249
565	Le, X.F. et al. (2005) Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase-AKT signaling. <i>J Biol Chem</i> 280 (3), 2092-2104
566	Lee, S. et al. (2002) Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. <i>Cancer Res</i> 62 (20), 5703-5710
567	Bild, A.H. et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. <i>Nature</i> 439 (7074), 353-357
568	Cheok, M.H. and Evans, W.E. (2006) Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. <i>Nat Rev Cancer</i> 6 (2), 117-129
569	Lee, J.K. et al. (2007) A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. <i>Proc Natl Acad Sci U S A</i> 104 (32), 13086-13091
570	Gerhold, D.L. et al. (2002) Better therapeutics through microarrays. <i>Nat Genet</i> 32 Suppl, 547-551
571	Rickardson, L. et al. (2005) Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. <i>Br J Cancer</i> 93 (4), 483-492
572	den Boer, M.L. and Pieters, R. (2007) Microarray-based identification of new targets for specific therapies in pediatric leukemia. <i>Curr Drug Targets</i> 8 (6), 761-764
573	Wirth, G.J. et al. (2006) Microarrays of 41 human tumor cell lines for the characterization of new molecular targets: expression patterns of cathepsin B and the transferrin receptor. <i>Oncology</i> 71 (1-2), 86-94
574	Andre, F. et al. (2006) DNA arrays as predictors of efficacy of adjuvant/neoadjuvant chemotherapy in breast cancer patients: current data and issues on study design. <i>Biochim Biophys Acta</i> 1766 (2), 197-204
575	Ho, C. and Laskin, J. (2009) EGFR-directed therapies to treat non-small-cell lung cancer. <i>Expert Opin Investig Drugs</i> 18 (8), 1133-1145
576	Sharma, S.V. et al. (2007) Epidermal growth factor receptor mutations in lung cancer. <i>Nat Rev Cancer</i> 7 (3), 169-181
577	Stemke-Hale, K. et al. (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. <i>Cancer Res</i> 68 (15), 6084-6091
570	Line der H. et al. (2000) Sametic ECEP metations and efficience of the single line

578 Linardou, H. et al. (2009) Somatic EGFR mutations and efficacy of tyrosine kinase

	inhibitors in NSCLC. Nat Rev Clin Oncol 6 (6), 352-366
579	Chen, F.L. et al. (2008) Acquired resistance to small molecule ErbB2 tyrosine
	kinase inhibitors. Clin Cancer Res 14 (21), 6730-6734
580	Nahta, R. et al. (2006) Mechanisms of disease: understanding resistance to HER2- targeted therapy in human breast cancer. <i>Nat Clin Pract Oncol</i> 3 (5), 269-280
581	Cameron, D.A. and Stein, S. (2008) Drug Insight: intracellular inhibitors of HER2 clinical development of lapatinib in breast cancer. <i>Nat Clin Pract Oncol</i> 5 (9), 512-520
582	Knight, Z.A. et al. Targeting the cancer kinome through polypharmacology. <i>Nat</i> <i>Rev Cancer</i> 10 (2), 130-137
583	Oprea, T.I. et al. (2009) A crowdsourcing evaluation of the NIH chemical probes. <i>Nat Chem Biol</i> 5 (7), 441-447
584	Sartore-Bianchi, A. et al. (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. <i>Cancer Res</i> 69 (5), 1851-1857
585	Laurent-Puig, P. et al. (2009) Mutations and response to epidermal growth factor receptor inhibitors. <i>Clin Cancer Res</i> 15 (4), 1133-1139
586	Xia, W. et al. (2006) A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. <i>Proc Natl Acad Sci U S A</i> 103 (20), 7795-7800
587	Liu, L. et al. (2009) Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. <i>Cancer Res</i> 69 (17), 6871-6878
588	Eichhorn, P.J. et al. (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. <i>Cancer Res</i> 68 (22), 9221-9230
589	Zhou, B.B. et al. (2006) Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. <i>Cancer Cell</i> 10 (1), 39-50
590	Sos, M.L. et al. (2009) Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. <i>J Clin Invest</i> 119 (6), 1727-1740
591	Forbes, S.A. et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. <i>Nucleic Acids Res</i> 38 (Database issue), D652-657
592	Thomas, R.K. et al. (2007) High-throughput oncogene mutation profiling in human cancer. <i>Nat Genet</i> 39 (3), 347-351
593	Amann, J. et al. (2005) Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. <i>Cancer Res</i> 65 (1), 226- 235
594	Gandhi, J. et al. (2009) Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. <i>PLoS One</i> 4 (2), e4576
595	Kao, J. et al. (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. <i>PLoS One</i> 4 (7), e6146
596	Neve, R.M. et al. (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. <i>Cancer Cell</i> 10 (6), 515-527
597	Hoeflich, K.P. et al. (2009) In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. <i>Clin Cancer Res</i> 15 (14), 4649-4664

598	Finn, R.S. et al. (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor,
	preferentially inhibits proliferation of luminal estrogen receptor-positive human
	breast cancer cell lines in vitro. Breast Cancer Res 11 (5), R77
599	Junttila, T.T. et al. (2009) Ligand-independent HER2/HER3/PI3K complex is
	disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-
	0941. Cancer Cell 15 (5), 429-440
600	Kataoka, Y. et al. Association between gain-of-function mutations in PIK3CA and
	resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines.
	Ann Oncol 21 (2), 255-262
601	Kawa, S. et al. (2009) A novel mouse monoclonal antibody targeting ErbB2
	suppresses breast cancer growth. Biochem Biophys Res Commun 384 (3), 329-333
602	Konecny, G.E. et al. (2006) Activity of the dual kinase inhibitor lapatinib
	(GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer
	cells. <i>Cancer Res</i> 66 (3), 1630-1639
603	Koninki, K. et al. Multiple molecular mechanisms underlying trastuzumab and
(04	lapatinib resistance in JIM I-1 breast cancer cells. <i>Cancer Lett</i>
604	Rusnak, D. w. et al. (2007) Assessment of epidermal growth factor receptor
	(EGFR, ErbB1) and HER2 (ErbB2) protein expression levels and response to
	apatinib (Tykerb, Gw5/2016) in an expanded panel of numan normal and tumour
605	Cell lines. Cell Prolif 40 (4), 580-594 Kadara II at al. (2000) Identification of gone signatures and molecular markers
005	for human lung cancer prognosis using an in vitro lung carcinogenesis system
	Cancer Prov Res (Phila Pa) 2 (8) 702-711
606	Ince TA et al. (2007) Transformation of different human breast enithelial cell
000	types leads to distinct tumor phenotypes. <i>Cancer Cell</i> 12 (2) 160-170
607	Eckford, P.D. and Sharom, F.J. (2009) ABC efflux pump-based resistance to
	chemotherapy drugs. <i>Chem Rev</i> 109 (7), 2989-3011
608	Kitazaki, T. et al. (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly
	inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung
	<i>Cancer</i> 49 (3), 337-343
609	Noguchi, K. et al. (2009) Substrate-dependent bidirectional modulation of P-
	glycoprotein-mediated drug resistance by erlotinib. Cancer Sci 100 (9), 1701-1707
610	Polli, J.W. et al. (2008) The role of efflux and uptake transporters in [N-{3-chloro-
	4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-
	2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug
	interactions. Drug Metab Dispos 36 (4), 695-701
611	Imai, K. and Takaoka, A. (2006) Comparing antibody and small-molecule therapies for example, $N \neq R = C$
(1)	for cancer. Nat Rev Cancer 6 (9), /14-/2/ Delleck, LD, et al. (2002) Microarrey englysis reveals a major direct role of DNA
012	Pollack, J.K. et al. (2002) Microarray analysis reveals a major direct role of DINA
	Proc Natl Acad Sci U S A 99 (20) 12963-12968
613	Perren A et al. (1999) Immunohistochemical evidence of loss of PTEN expression
015	in primary ductal adenocarcinomas of the breast Am I Pathol 155 (4) 1253-1260
614	Li L et al (1997) PTEN a putative protein tyrosine phosphatase gene mutated in
UT I	human brain, breast, and prostate cancer. <i>Science</i> 275 (5308), 1943-1947
615	Beroukhim, R. et al. (2007) Assessing the significance of chromosomal aberrations
	in cancer: methodology and application to glioma. <i>Proc Natl Acad Sci U S A</i> 104
	(50), 20007-20012
616	Redon, R. et al. (2006) Global variation in copy number in the human genome.

_

	Nature 444 (7118), 444-454
617	Rennstam, K, et al. (2007) Cytogenetic characterization and gene expression
011	profiling of the trastuzumab-resistant breast cancer cell line JIMT-1. <i>Cancer Genet</i>
	Cytogenet 172 (2), 95-106
618	Draghici, S. (2002) Statistical intelligence: effective analysis of high-density
	microarray data. Drug Discov Today 7 (11 Suppl), S55-63
619	Uramoto, H. and Mitsudomi, T. (2007) Which biomarker predicts benefit from
	EGFR-TKI treatment for patients with lung cancer? Br J Cancer 96 (6), 857-863
620	Laurent-Puig, P. et al. (2009) Analysis of PTEN, BRAF, and EGFR status in
	determining benefit from cetuximab therapy in wild-type KRAS metastatic colon
	cancer. J Clin Oncol 27 (35), 5924-5930
621	Kadota, M. et al. (2009) Identification of novel gene amplifications in breast
	cancer and coexistence of gene amplification with an activating mutation of
	PIK3CA. Cancer Res 69 (18), 7357-7365
622	Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. <i>Nat Biotechnol</i>
(00)	26 (10), 1135-1145
623	Pariset, L. et al. (2009) Microarrays and high-throughput transcriptomic analysis in
	species with incomplete availability of genomic sequences. N Biotechnol 25 (5),
624	2/2-2/9
024	via genome wide SNP genotyping. Nat Genet 40 (10), 1100, 1203
625	Finn $O[L]$ (2003) Cancer vaccines: between the idea and the reality Nat Rev
025	Immunol 3 (8) 630-641
626	Pardoll, D. (2003) Does the immune system see tumors as foreign or self? Annu
020	Rev Immunol 21, 807-839
627	Viola, A. and Lanzavecchia, A. (1996) T cell activation determined by T cell
	receptor number and tunable thresholds. Science 273 (5271), 104-106
628	Francis, T. (2003) Mechanisms of Tumor Escape from the Immune Response.
	Routledge,USA
629	Singh, S. et al. (1992) Stroma is critical for preventing or permitting
	immunological destruction of antigenic cancer cells. J Exp Med 175 (1), 139-146
630	Dunn, G.P. et al. (2004) The immunobiology of cancer immunosurveillance and
	immunoediting. Immunity 21 (2), 137-148
631	Zitvogel, L. et al. (2006) Cancer despite immunosurveillance: immunoselection
(22)	and immunosubversion. <i>Nat Rev Immunol</i> 6 (10), 715-727
632	Greiner, J. et al. (2000) Simultaneous expression of different immunogenic autientic sector sector $E_{\rm eff}$ (12) 1412 1422
622	antigens in acute myeloid leukemia. <i>Exp Hematol</i> 28 (12), 1413-1422
035	of human breast and colorectal cancers" Science 317 (5844), 1500: author reply
	1500
634	Rubin A F and Green P (2007) Comment on "The consensus coding sequences of
004	human breast and colorectal cancers" <i>Science</i> 317 (5844), 1500
635	Wood, L.D. et al. (2007) The genomic landscapes of human breast and colorectal
	cancers. Science 318 (5853), 1108-1113
636	Berke, G. (1994) The binding and lysis of target cells by cytotoxic lymphocytes:
	molecular and cellular aspects. Annu Rev Immunol 12, 735-773
637	Rammensee, H.G. et al. (1993) Peptides naturally presented by MHC class I
	molecules. Annu Rev Immunol 11, 213-244
638	Zinkernagel, R.M. and Doherty, P.C. (1997) The discovery of MHC restriction.

	Immunol Today 18 (1), 14-17
639	York, I.A. and Rock, K.L. (1996) Antigen processing and presentation by the class
	I major histocompatibility complex. Annu Rev Immunol 14, 369-396
640	Kawashima, I. et al. (1999) Identification of HLA-A3-restricted cytotoxic T
	lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in
	vitro immunization with peptide-pulsed dendritic cells. Cancer Res 59 (2), 431-435
641	Kesmir, C. et al. (2002) Prediction of proteasome cleavage motifs by neural
	networks. Protein Eng 15 (4), 287-296
642	Muthusamy, V. et al. (2006) Amplification of CDK4 and MDM2 in malignant
	melanoma. Genes Chromosomes Cancer 45 (5), 447-454
643	Okamoto, I. et al. (2005) Seven novel and stable translocations associated with
	oncogenic gene expression in malignant melanoma. <i>Neoplasia</i> 7 (4), 303-311
644	Stecca, B. et al. (2007) Melanomas require HEDGEHOG-GLI signaling regulated
	by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad
	Sci U S A 104 (14), 5895-5900
645	Ein-Dor, L. et al. (2006) Thousands of samples are needed to generate a robust
	gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103 (15),
	5923-5928
646	Cruz, J.A. and Wishart, D.S. (2006) Applications of Machine Learning in Cancer
	Predictionand Prognosis. Cancer Informatics 2, 59-78
647	Salomon, D.S. et al. (1995) Epidermal growth factor-related peptides and their
	receptors in human malignancies. Crit Rev Oncol Hematol 19 (3), 183-232
648	Ochs, J.S. (2004) Rationale and clinical basis for combining gefitinib (IRESSA,
	ZD1839) with radiation therapy for solid tumors. Int J Radiat Oncol Biol Phys 58
	(3), 941-949
649	Jemal, A. et al. (2008) Cancer statistics, 2008. CA Cancer J Clin 58 (2), 71-96
650	Jemal, A. et al. (2007) Cancer statistics, 2007. CA Cancer J Clin 57 (1), 43-66
651	http://www.merck.com/mmpe/sec05/ch062/ch062b.html#sec05-ch062-ch062b-
	1405. Lung Carcinoma: Tumors of the Lungs, Online edition. Merck Manual
	Professional Edition
652	Herbst, R.S. et al. (2008) Lung cancer. N Engl J Med 359 (13), 1367-1380
653	Huber, R.M. and Stratakis, D.F. (2004) Molecular oncologyperspectives in lung
	cancer. Lung Cancer 45 Suppl 2, S209-213
654	Sorensen, J.B. et al. (1993) Interobserver variability in histopathologic subtyping
	and grading of pulmonary adenocarcinoma. <i>Cancer</i> 71 (10), 2971-2976
655	Gail, M.H. et al. (1984) Prognostic factors in patients with resected stage I non-
	small cell lung cancer. A report from the Lung Cancer Study Group. <i>Cancer</i> 54 (9),
656	Takise, A. et al. (1988) Histopathologic prognostic factors in adenocarcinomas of
(FF	the peripheral lung less than 2 cm in diameter. <i>Cancer</i> 61 (10), 2083-2088
657	Okada, M. et al. (1999) Evaluation of TMIN classification for lung carcinoma with
	ipsilateral intrapulmonary metastasis. Ann Thorac Surg 68 (2), 326-330; discussion
(70	
658	Harpole, D.H., Jr. et al. (1995) A prognostic model of recurrence and death in stage
	1 non-small cell lung cancer utilizing presentation, histopathology, and oncoprotein $C_{\rm rescar}$ $C_{\rm rescar}$ $D_{\rm res}$ 55 (1) 51 56
<u> </u>	expression. <i>Cancer Kes</i> 55 (1), 51-50 Sequist L V et al. (2007) Molecular and dictors of responses to encidence it
039	Sequisi, L. v. et al. (2007) whole cutar predictors of response to epidermal growth
	Tactor receptor antagonists in non-sman-cen lung cancer. J Clin Oncol 25 (5), 587-
	J7J

	Bibliography
660	Scagliotti, G.V. et al. (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-
	stage non-small-cell lung cancer. J Clin Oncol 26 (21), 3543-3551
661	Guo, L. et al. (2006) Constructing molecular classifiers for the accurate prognosis
	of lung adenocarcinoma. Clin Cancer Res 12 (11 Pt 1), 3344-3354
662	Beer, D.G. et al. (2002) Gene-expression profiles predict survival of patients with
	lung adenocarcinoma. <i>Nat Med</i> 8 (8), 816-824
663	Bhattachariee, A. et al. (2001) Classification of human lung carcinomas by mRNA
	expression profiling reveals distinct adenocarcinoma subclasses. <i>Proc Natl Acad</i>
	<i>Sci U S A</i> 98 (24), 13790-13795
664	Edgerton, E. et al. (2007) Data Mining for Gene Networks Relevant to Poor
	Prognosis in Lung Cancer Via Backward-Chaining Rule Induction. <i>Cancer</i>
	Informatics 2, 93-114
665	Lu, Y. et al. (2006) A gene expression signature predicts survival of patients with
	stage I non-small cell lung cancer. <i>PLoS Med</i> 3 (12), e467
666	Chen, H.Y. et al. (2007) A five-gene signature and clinical outcome in non-small-
	cell lung cancer. N Engl J Med 356 (1), 11-20
667	Xu, J. et al. (2005) Survival analysis of microarray expression data by
	transformation models. Comput Biol Chem 29 (2), 91-94
668	http://www.genome.wi.mit.edu/MPR/lung.
669	http://www.xlstat.com/en/support/tutorials/km.htm.
670	Joo, Y.E. et al. (2002) Expression of vascular endothelial growth factor and p53 in
	pancreatic carcinomas. Korean J Intern Med 17 (3), 153-159
671	Strohmeyer, D. et al. (2000) Vascular endothelial growth factor and its correlation
	with angiogenesis and p53 expression in prostate cancer. Prostate 45 (3), 216-224
672	Maeda, K. et al. (1998) Expression of p53 and vascular endothelial growth factor
	associated with tumor angiogenesis and prognosis in gastric cancer. Oncology 55
	(6), 594-599
673	Liu, D.H. et al. (2001) Expression of vascular endothelial growth factor and its role
	in oncogenesis of human gastric carcinoma. World J Gastroenterol 7 (4), 500-505
674	Lee, J.S. et al. (2002) Expression of vascular endothelial growth factor in
	adenocarcinomas of the uterine cervix and its relation to angiogenesis and p53 and
	c-erbB-2 protein expression. Gynecol Oncol 85 (3), 469-475
675	Gills, J.J. et al. (2004) Targeting aberrant signal transduction pathways in lung
	cancer. Cancer Biol Ther 3 (2), 147-155
676	Muraoka, K. et al. (1993) Enhanced expression of a tumor-cell-derived
	collagenase-stimulatory factor in urothelial carcinoma: its usefulness as a tumor
	marker for bladder cancers. Int J Cancer 55 (1), 19-26
677	Caudroy, S. et al. (2002) EMMPRIN-mediated MMP regulation in tumor and
	endothelial cells. <i>Clin Exp Metastasis</i> 19 (8), 697-702
678	Tang, Y. et al. (2005) Extracellular matrix metalloproteinase inducer stimulates
	tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix
(70	metalloproteinases. Cancer Res 65 (8), 3193-3199
079	ran, L. et al. (2005) Koles of the multifunctional glycoprotein, emmprin (basigin; $CD(47)$ in turnous program T_{1} , L_{1} , L_{2} , $CD(47)$ and $CD(47)$
(00	Klein C. A. et al. (2002) Combined transmistering and 1. (2012) Combined transmistering and 1.
080	Kiein, C.A. et al. (2002) Combined transcriptome and genome analysis of single micromotostatic calle. Net $Pis(x, l, n, l, 200, 4)$, 207, 202
601	Incrometastatic cens. <i>Nat Diofectitol 20</i> (4), 587-592 Striator D.M. et al. (2004) CVC champleines: anciegospecia increasion instanta
U01	and matastasas in lung concer. Ann NVA and Sci 1029, 251, 260
	and inclustases in lung cancel. Ann is I Actu Sci 1020, 331-300

	DIUIIOEIMDII						
682	Strieter, R.M. et al. (2005) CXC chemokines in angiogenesis relevant to chronic						
	fibroproliferation. Curr Drug Targets Inflamm Allergy 4 (1), 23-26						
683	Tzouvelekis, A. et al. (2006) Angiogenesis in interstitial lung diseases: a						
(0)	pathogenetic hallmark or a bystander? <i>Respir Res</i> 7, 82						
084	Strieter, R.M. et al. (2004) Chemokines: Angiogenesis and Metastases in Lung Cancer, John Wiley & Sons						
685	Schuller, H.M. (2007) Neurotransmitter recentor-mediated signaling pathways as						
005	modulators of carcinogenesis. <i>Prog Exp Tumor Res</i> 39, 45-63						
686	Ho, Y.S. et al. (2005) Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-						
	pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial						
	epithelial cells through NFkappaB activation and cyclin D1 up-regulation. Toxicol						
	Appl Pharmacol 205 (2), 133-148						
687	Hakomori, S. (1989) Aberrant glycosylation in tumors and tumor-associated						
	carbohydrate antigens. Adv Cancer Res 52, 257-331						
688	Friederichs, J. et al. (2000) The CD24/P-selectin binding pathway initiates lung						
	arrest of human A125 adenocarcinoma cells. <i>Cancer Res</i> 60 (23), 6714-6722						
689	Martin-Satue, M. et al. (1998) Enhanced expression of alpha(1,3)-						
	fucosyltransferase genes correlates with E-selectin-mediated adhesion and						
	metastatic potential of human lung adenocarcinoma cells. <i>Cancer Res</i> 58 (7), 1544-						
690	Ohyama, C. et al. (1999) Dual roles of stalyl Lewis X oligosaccharides in tumor						
(01	metastasis and rejection by natural killer cells. <i>Embo J</i> 18 (6), 1516-1525						
691	Grzmil, M. et al. (2004) Up-regulated expression of the MAI-8 gene in prostate						
	cancer and its siRNA-mediated inhibition of expression induces a decrease in						
(0)	proliferation of human prostate carcinoma cells. Int J Oncol 24 (1), 97-105						
692	Kayed, H. et al. (2006) FXYD3 is overexpressed in pancreatic ductal						
	(1) 42 54						
603	(1), 43-54 Kim I.H. et al. (2006) Phospholipase D1 regulates cell migration in a linase						
075	activity independent manner I Biol Cham 281 (23) 15747-15756						
694	Zhong M et al (2003) Phospholinase D prevents apoptosis in v-Src-transformed						
074	rat fibroblasts and MDA-MB-231 breast cancer cells. <i>Biochem Biophys Res</i>						
	Commun 302 (3) 615-619						
695	Kahlina K et al. (2004) p68 DEAD box RNA helicase expression in						
070	keratinocytes Regulation nucleolar localization and functional connection to						
	proliferation and vascular endothelial growth factor gene expression. <i>J Biol Chem</i>						
	279 (43). 44872-44882						
696	Kvissel, A.K. et al. (2007) Androgen dependent regulation of protein kinase A						
	subunits in prostate cancer cells. <i>Cell Signal</i> 19 (2), 401-409						
697	Burns, J.M. et al. (2006) A novel chemokine receptor for SDF-1 and I-TAC						
	involved in cell survival, cell adhesion, and tumor development. J Exp Med 203						
	(9), 2201-2213						
698	Strieter, R.M. et al. (2005) CXC Chemokines in Angiogenesis Relevant to Chronic						
	Fibroproliferation. Current Drug Targets - Inflammation & Allergy 4 (1), 23-26						
699	Oue, N. et al. (2005) Expression and localization of Reg IV in human neoplastic						
	and non-neoplastic tissues: Reg IV expression is associated with intestinal and						
	neuroendocrine differentiation in gastric adenocarcinoma. J Pathol 207 (2), 185-						
	198						
700	Solvikawa A at al. (2005) Describle role of REC Jalpha protein in vigorative colitic						

700 Sekikawa, A. et al. (2005) Possible role of REG Ialpha protein in ulcerative colitis

	and colitic cancer. Gut 54 (10), 1437-1444					
701	Jang, C.Y. et al. (2004) RpS3, a DNA repair endonuclease and ribosomal protein, is					
	involved in apoptosis. FEBS Lett 560 (1-3), 81-85					
702	Kim, S.H. and Kim, J. (2006) Reduction of invasion in human fibrosarcoma cells					
	by ribosomal protein S3 in conjunction with Nm23-H1 and ERK. <i>Biochim Biophys</i>					
	Acta 1763 (8), 823-832					
703	Robert, C. et al. (1999) Expression of plasminogen activator inhibitors 1 and 2 in					
	lung cancer and their role in tumor progression. Clin Cancer Res 5 (8), 2094-2102					
704	Almholt, K. et al. (2003) Metastasis of transgenic breast cancer in plasminogen					
	activator inhibitor-1 gene-deficient mice. Oncogene 22 (28), 4389-4397					
705	Speleman, L. et al. (2007) Prognostic value of plasminogen activator inhibitor-1 in					
	head and neck squamous cell carcinoma. Head Neck 29 (4), 341-350					
706	Gil-Bazo, I. et al. (2006) [New prognostic and predictive factors in advanced					
	colorectal cancer]. Med Clin (Barc) 126 (14), 541-548					
707	Goldman, N.A. et al. (2006) GLUT1 and GLUT8 in endometrium and endometrial					
	adenocarcinoma. Mod Pathol 19 (11), 1429-1436					
708	Tesfaigzi, Y. et al. (2003) SPRR1B overexpression enhances entry of cells into the					
	G0 phase of the cell cycle. Am J Physiol Lung Cell Mol Physiol 285 (4), L889-898					
709	Patterson, T. et al. (2001) Mechanism of repression of squamous differentiation					
	marker, SPRR1B, in malignant bronchial epithelial cells: role of critical TRE-sites					
	and its transacting factors. Oncogene 20 (5), 634-644					
710	Zhong, H. and Bowen, J.P. (2006) Antiangiogenesis drug design: multiple					
	pathways targeting tumor vasculature. Curr Med Chem 13 (8), 849-862					
711	Kyu-Ho Han, E. et al. (2000) Modulation of drug resistance by alpha-tubulin in					
	paclitaxel-resistant human lung cancer cell lines. <i>Eur J Cancer</i> 36 (12), 1565-1571					
712	Dumontet, C. and Sikic, B.I. (1999) Mechanisms of action of and resistance to					
	antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin					
-10	<i>Oncol</i> 17 (3), 1061-1070					
713	Kommagani, R. et al. (2006) Identification of vitamin D receptor as a target of p63.					
71 4	$\begin{array}{c} Oncogene \ 25 \ (26), \ 3/45-3/51 \\ Oncogene \ 25 \ (26), \$					
714	(1) A12 A15					
715	(1), 412-415 Eutropl $\mathbf{P}_{\mathbf{A}}$ at al. (2004) A consumption concertainty $Nat \mathbf{P}_{\mathbf{C}} (an cont A(2))$					
/15	Futfear, P.A. et al. (2004) A census of numan cancer genes. <i>Nat Kev Cancer</i> 4 (5),					
716	Vogalstein P and Kinzler K W (2004) Cancer genes and the nothways they					
/10	control Nat Mad 10 (8) 780 700					
717	de Castro Junior, G et al. (2006) Angiogenesis and cancer: A cross-talk between					
/1/	hasic science and clinical trials (the "do ut des" paradigm) Crit Rev Oncol					
	Hematol 59 (1), 40-50					
718	Mancuso, A, and Sternberg, C.N. (2005) Colorectal cancer and antiangiogenic					
. 10	therapy: what can be expected in clinical practice? <i>Crit Rev Oncol Hematol</i> 55 (1).					
	67-81					
719	Irish, J.M. et al. (2006) Mapping normal and cancer cell signalling networks:					
	towards single-cell proteomics. Nat Rev Cancer 6 (2), 146-155					
720	Muller, A.J. and Scherle, P.A. (2006) Targeting the mechanisms of tumoral					
	immune tolerance with small-molecule inhibitors. Nat Rev Cancer 6 (8), 613-625					
721	Ilhan, N. et al. (2004) Functional significance of vascular endothelial growth factor					
	and its receptor (receptor-1) in various lung cancer types. Clin Biochem 37 (9),					
	840-845					

722	Dudek, A.Z. and Mahaseth, H. (2005) Circulating angiogenic cytokines in patients					
	with advanced non-small cell lung cancer: correlation with treatment response and					
	survival. Cancer Invest 23 (3), 193-200					
723	Kaiser, U. et al. (1996) Expression of vitamin D receptor in lung cancer. J Cancer					
	Res Clin Oncol 122 (6), 356-359					
724	Cooper, R. et al. (2003) Glucose transporter-1 (GLUT-1): a potential marker of					
	prognosis in rectal carcinoma? Br J Cancer 89 (5), 870-876					
725	Noh, D.Y. et al. (2000) Overexpression of phospholipase D1 in human breast					
	cancer tissues. Cancer Lett 161 (2), 207-214					
726	Zhao, Y. et al. (2000) Increased activity and intranuclear expression of					
	phospholipase D2 in human renal cancer. Biochem Biophys Res Commun 278 (1),					
	140-143					
727	Oka, M. et al. (2003) Protein kinase C alpha associates with phospholipase D1 and					
	enhances basal phospholipase D activity in a protein phosphorylation-independent					
	manner in human melanoma cells. J Invest Dermatol 121 (1), 69-76					
728	Madjd, Z. et al. (2005) High expression of Lewis y/b antigens is associated with					
	decreased survival in lymph node negative breast carcinomas. Breast Cancer Res 7					
	(5), R780-787					
729	Castello, R. et al. (2006) Plasminogen activator inhibitor-1 4G/5G polymorphism					
	in breast cancer patients and its association with tissue PAI-1 levels and tumor					
	severity. Thromb Res 117 (5), 487-492					
730	Bhuvarahamurthy, V. et al. (2004) In situ gene expression of urokinase-type					
	plasminogen activator and its receptor in transitional cell carcinoma of the human					
	bladder. Oncol Rep 12 (4), 909-913					
731	Shetty, S. and Idell, S. (1999) Posttranscriptional regulation of urokinase receptor					
	gene expression in human lung carcinoma and mesothelioma cells in vitro. <i>Mol</i>					
	<i>Cell Biochem</i> 199 (1-2), 189-200					
732	Pedersen, H. et al. (1994) Urokinase and plasminogen activator inhibitor type 1 in					
	pulmonary adenocarcinoma. <i>Cancer Res</i> 54 (1), 120-123					
733	Yonemura, Y. et al. (2003) REG gene expression is associated with the infiltrating					
5 24	growth of gastric carcinoma. <i>Cancer</i> 98 (7), 1394-1400					
734	Dhar, D.K. et al. (2004) Expression of regenerating gene I in gastric					
	adenocarcinomas: correlation with tumor differentiation status and patient survival. $C_{\rm rescar}$ 100 (6) 1120 1126					
725	<i>Cancer</i> 100 (0), 1150-1150					
135	king, M. and Higerom, A. (2008) Recent advances in the development of multi-					
736	Cill A L at al (2007) A comparison of physicochemical property profiles of					
730	marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in					
	clinical development. Curr Top Mad Cham 7 (14) 1408 1422					
737	Shoichet B.K. (2004) Virtual screening of chemical libraries. <i>Nature</i> A32 (7019)					
151	Showed (2004) virtual screening of chemical holaries. <i>Nature</i> 432 (7017), 862-865					
738	Yamane S et al. (2008) Proinflammatory role of amphiregulin an epidermal					
100	growth factor family member whose expression is augmented in rheumatoid					
	arthritis patients. J. Inflamm (Lond) 5, 5					
739	Ma, X H, et al. (2008) Evaluation of virtual screening performance of support					
	vector machines trained by sparsely distributed active compounds. <i>J Chem Inf</i>					
	Model 48 (6), 1227-1237					
740	Gozalbes, R. et al. (2008) Development and experimental validation of a docking					
	strategy for the generation of kinase-targeted libraries. J Med Chem 51 (11), 3124-					

	3132
741	Deng, X.Q. et al. (2008) Pharmacophore modelling and virtual screening for
	identification of new Aurora-A kinase inhibitors. Chem Biol Drug Des 71 (6), 533-
	539
742	Deanda, F. et al. (2008) Kinase-Targeted Library Design through the Application of
	the PharmPrint Methodology. J Chem Inf Model 48 (12), 2395-2403
743	Briem, H. and Gunther, J. (2005) Classifying "kinase inhibitor-likeness" by using
744	machine-learning methods. Chembiochem 6 (3), 558-566
744	Gundla, R. et al. (2008) Discovery of novel small-molecule inhibitors of human epidermal growth factor receptor-2: combined ligand and target based approach. I
	Med Chem 51 (12) 3367-3377
745	Prado-Prado, F.J. et al. (2008) Unified OSAR approach to antimicrobials, 4. Multi-
	target OSAR modeling and comparative multi-distance study of the giant
	components of antiviral drug-drug complex networks. <i>Bioorg Med Chem</i>
746	Zhang, X. and Fernandez, A. (2008) In silico drug profiling of the human kinome
	based on a molecular marker for cross reactivity. Mol Pharm 5 (5), 728-738
747	Bigioni, M. et al. (2007) Antitumour effect of combination treatment with
	Sabarubicin (MEN 10755) and cis-platin (DDP) in human lung tumour xenograft.
- 40	Cancer Chemother Pharmacol
748	Robert, J. and Larsen, A.K. (1998) Drug resistance to topoisomerase II inhibitors.
740	Biochimile 80 (5), 247-254 Hogiimakars, I.H. (2001) Canoma maintananca machanisms for preventing cancer
/4/	Nature 411 (6835) 366-374
750	Meshnick, S.R. (2002) Artemisinin: mechanisms of action, resistance and toxicity.
	Int J Parasitol 32 (13), 1655-1660
751	Atamna, H. et al. (1996) Mode of antimalarial effect of methylene blue and some
	of its analogues on Plasmodium falciparum in culture and their inhibition of P.
	vinckei petteri and P. yoelii nigeriensis in vivo. Biochem Pharmacol 51 (5), 693-
752	Farber, P.M. et al. (1998) Recombinant Plasmodium falciparum glutathione
	reductase is inhibited by the antimalarial dye methylene blue. <i>FEBS Left 422 (3)</i> , 211, 214
753	Nascimento, C.G. and Branco, I.G. (2007) Role of the peripheral heme oxygenase-
100	carbon monoxide pathway on the nociceptive response of rats to the formalin test:
	evidence for a cGMP signaling pathway. <i>Eur J Pharmacol</i> 556 (1-3), 55-61
754	Akoachere, M. et al. (2005) In vitro assessment of methylene blue on chloroquine-
	sensitive and -resistant Plasmodium falciparum strains reveals synergistic action
	with artemisinins. Antimicrob Agents Chemother 49 (11), 4592-4597
755	Meshnick, S.R. et al. (1993) Iron-dependent free radical generation from the
	antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 37 (5),
756	1108-1114 Cinchurg H at al. (1008) Inhibition of alutathional dependent degradation of home
/50	by chloroquine and amodiaguine as a possible basis for their antimalarial mode of
	action <i>Biochem Pharmacol</i> 56 (10), 1305-1313
757	Raymond, E. et al. (2000) Epidermal growth factor receptor tyrosine kinase as a
	target for anticancer therapy. <i>Drugs</i> 60 Suppl 1, 15-23; discussion 41-12
758	Rusthoven, J.J. et al. (1999) Multitargeted antifolate LY231514 as first-line
	chemotherapy for patients with advanced non-small-cell lung cancer: A phase II
	study. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 17

	(4), 1194					
759	Smit, E.F. et al. (2003) ALIMTA (pemetrexed disodium) as second-line treatment					
	of non-small-cell lung cancer: a phase II study. Ann Oncol 14 (3), 455-460					
760	Vogelzang, N.J. et al. (2003) Phase III study of pemetrexed in combination with					
	cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J					
	Clin Oncol 21 (14), 2636-2644					
761	Giovannetti, E. et al. (2008) Molecular mechanisms underlying the synergistic					
	interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase					
	inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung					
	cancer cells. Mol Pharmacol 73 (4), 1290-1300					
762	Becker, J.C. et al. (2006) Molecularly targeted therapy for melanoma: current					
	reality and future options. Cancer 107 (10), 2317-2327					
763	Ishii, Y. et al. (2007) Targeting the ubiquitin-proteasome pathway in cancer					
	therapy. Anticancer Agents Med Chem 7 (3), 359-365					
764	Marks, P. et al. (2001) Histone deacetylases and cancer: causes and therapies. Nat					
	<i>Rev Cancer</i> 1 (3), 194-202					
765	Xu, Y. et al. (2005) The histone deacetylase inhibitor suberoylanilide hydroxamic					
	acid down-regulates expression levels of Bcr-abl, c-Myc and HDAC3 in chronic					
	myeloid leukemia cell lines. Int J Mol Med 15 (1), 169-172					
766	Dai, Y. et al. (2008) Interactions between bortezomib and romidepsin and					
	belinostat in chronic lymphocytic leukemia cells. <i>Clin Cancer Res</i> 14 (2), 549-558					
767	Adjei, A.A. et al. (2000) A Phase I trial of the farnesyl transferase inhibitor					
	SCH66336: evidence for biological and clinical activity. <i>Cancer Res</i> 60 (7), 1871-					
768	David, E. et al. (2005) The combination of the farnesyl transferase inhibitor					
	Ionafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis					
	in numan myeloma cens that is associated with down-regulation of p-AK1. <i>Blood</i> $106(12)$, 4222 , 4220					
760	Shao L at al. (2000) Oneogenic Pas mediated call growth arrest and aportosis are					
109	associated with increased ubiquitin-dependent cyclin D1 degradation <i>L Biol Cham</i>					
	275 (30) 22916-22924					
770	Bundred N I (2007) Bs24 apontosis: why surgeons need to understand it ANZ I					
110	Surg 77 Suppl 1 A6					
771	Coradini, D. et al. (1994) Activity of tamoxifen and new antiestrogens on estrogen					
	receptor positive and negative breast cancer cells. <i>Anticancer Res</i> 14 (3A), 1059-					
	1064					
772	Argiris, A. et al. (2004) Synergistic interactions between tamoxifen and					
	trastuzumab (Herceptin). Clinical Cancer Research 10 (4), 1409-1420					
773	Osborne, C.K. and Schiff, R. (2003) Growth factor receptor cross-talk with					
	estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast					
	12 (6), 362-367					
774	Schiff, R. et al. (2004) Cross-talk between estrogen receptor and growth factor					
	pathways as a molecular target for overcoming endocrine resistance. <i>Clin Cancer</i>					
	<i>Res</i> 10 (1 Pt 2), 331S-336S					
775	Sawyers, C.L. (2003) Will mTOR inhibitors make it as cancer drugs? Cancer Cell					
	4 (5), 343-348					
776	Sebolt-Leopold, J.S. and Herrera, R. (2004) Targeting the mitogen-activated					
	protein kinase cascade to treat cancer. <i>Nat Rev Cancer</i> 4 (12), 937-947					
777	Legrier, M.E. et al. (2007) Targeting protein translation in human non small cell					

	Bibliography
	lung cancer via combined MEK and mammalian target of rapamycin suppression.
778	Marzac M at al. (2007) Oncogenic tyrosine kinase NPM/ALK induces activation
110	of the rapamycin_sensitive mTOR signaling pathway <i>Oncogeng</i> 26 (38) 5606
	561 <i>A</i>
779	Deininger MW and Druker B L (2003) Specific targeted therapy of chronic
11)	myelogenous leukemia with impetinib <i>Pharmacol Ray</i> 55 (3) 401-423
780	Gianni M at al (2001) Turosina kinasa inhibitor STI571 notantiatas the
700	pharmacologic activity of ratinoic acid in acute promyologytic loukomia colls:
	offacts on the degradation of DADalpha and DML DADalpha, <i>Blood</i> 07 (10), 2224
	22/2
791	de Rono, I.S. at al. (2002) Fornegultransforaça inhibitors and their potential in the
/01	treatment of breast earcineme. Semin Queel 20 (5 Suppl 16), 70.02
707	Deduikovia A et al. (2006) Combination treatment of imptinib consistive and
/04	Radujković, A. et al. (2000) Combination treatment of infatinio-sensitive and -
	inhibitors, Autic many Bas 26 (2A), 2160, 2177
707	HILDROIS. ANUCANCER Res 20 (3A), 2109-21// Hoover B.B. et al. (2002) Overcoming STI571 resistor of with the former-1
103	Hoover, R.R. et al. (2002) Overcoming S115/1 resistance with the farmesyl
704	transferase inhibitor SCH00550. <i>Blood</i> 100 (5), 1008-10/1
/84	Goga, A. et al. (1995) Alternative signals to RAS for hematopoletic transformation
705	by the BCR-ABL oncogene. Cell 82 (6), 981-988
/85	McCubrey, J.A. et al. (2008) largeting survival cascades induced by activation of
	Ras/Raf/MEK/ERK, PI3K/PIEN/Akt/mIOR and Jak/SIAI pathways for effective
7 07	leukemia therapy. Leukemia $K_{i} = 0.000$ T $K_{i} = 1.111$ $K_{i} = 1.000$
/80	Kim, S. Y. et al. (2008) Trastuzumab inhibits the growth of human gastric cancer
	(1) 80.05
707	(1), 89-95 Shah N.D. et al. (2004) Quantiding insetinih register as with a neural A.D. kingas
101	shall, N.P. et al. (2004) Overhuing infatinito resistance with a novel ABL kinase
700	Infibitor. Science 305 (5082), 599-401 Walnow M L and Jacobara D A (1002) Dessarab priorities in rhoumatalacty Br. L
/88	walport, M.J. and Isenberg, D.A. (1992) Research priorities in rneumatology. Br J
700	$ \begin{array}{c} \text{Relumator 51 (8), 505-500} \\ Ode and Test al. (2007) The ELT2 in likiten DKC412 error to differential call could be a set of the test of test $
/89	Odgerel, I. et al. (2007) The FLI3 inhibitor PKC412 exerts differential cell cycle
700	Entropy Details (2000) DKC412 - a protein biness in bibits protein biness in the based
/90	Fabbro, D. et al. (2000) PKC412a protein kinase inhibitor with a broad the magnetic material A_{i} (i) $D_{i} = D_{i} = 15$ (1) 17.29
701	Chierane K V et al. (2007) Semeniation and the inhibitions of foots of true terration
/91	Gierxner, K. v. et al. (2007) Synergistic growth-inhibitory effects of two tyrosine
	kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the
=0.2	D816V-mutated oncogenic variant of K11. Haematologica 92 (11), 1451-1459
192	Vichalkovski, A. et al. (2006) Tyrosine kinase modulation of protein kinase C
	activity regulates G protein-linked Ca 2 + signaling in leukemic hematopoietic cells.
=0.2	Cell Calcium 39 (6), 517-528
793	Q1, X. and Mochly-Rosen, D. (2008) The PKC{delta} -Abl complex
	communicates ER stress to the mitochondria - an essential step in subsequent
= 0.4	apoptosis. J Cell Sci 121 (Pt 6), 804-813
794	Trudel, S. et al. (2007) The Bcl-2 family protein inhibitor, ABT-737, has
	substantial antimyeloma activity and shows synergistic effect with dexamethasone
	and melphalan. Clin Cancer Res 13 (2 Pt 1), 621-629
795	Laane, E. et al. (2007) Dexamethasone-induced apoptosis in acute lymphoblastic
	leukemia involves differential regulation of Bcl-2 family members. <i>Haematologica</i>

92 (11), 1460-1469

796	Gil, L. et al. (2007) Activity of bortezomib in adult de novo and relapsed acute				
	myeloid leukemia. Anticancer Res 27 (6B), 4021-4025				
797	Cardoso, F. et al. (2006) Bortezomib (PS-341, Velcade) increases the efficacy of				
	trastuzumab (Herceptin) in HER-2-positive breast cancer cells in a synergistic				
=00	manner. <i>Mol Cancer Ther</i> 5 (12), 3042-3051				
798	Biswas, D.K. et al. (2000) Epidermal growth factor-induced nuclear factor kappa B				
	activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. <i>Proc Natl Acad Sci U S A</i> 97 (15), 8542-8547				
799	Yu, C. et al. (2003) Histone deacetylase inhibitors promote STI571-mediated				
	apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia				
	cells. Cancer Res 63 (9), 2118-2126				
800	Hofmann, W.K. et al. (2002) Ph(+) acute lymphoblastic leukemia resistant to the				
	tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. <i>Blood</i> 99				
	(5), 1860-1862				
801	Cunningham, J.T. et al. (2007) mTOR controls mitochondrial oxidative function				
	through a YY1-PGC-1alpha transcriptional complex. Nature 450 (7170), 736-740				
802	Xu, R.H. et al. (2005) Synergistic effect of targeting mTOR by rapamycin and				
	depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells.				
	Leukemia 19 (12), 2153-2158				
803	Nau, P.N. et al. (2002) Metabolic adaptation of the fetal and postnatal ovine heart:				
	regulatory role of hypoxia-inducible factors and nuclear respiratory factor-1.				
	Pediatr Res 52 (2), 269-278				
804	Wetzler, M. et al. (2007) Synergism between arsenic trioxide and heat shock				
	protein 90 inhibitors on signal transducer and activator of transcription protein 3				
	activitypharmacodynamic drug-drug interaction modeling. Clin Cancer Res 13				
	(7), 2261-2270				
805	Schwock, J. et al. (2007) Efficacy of Hsp90 inhibition for induction of apoptosis				
	and inhibition of growth in cervical carcinoma cells in vitro and in vivo. Cancer				
	Chemother Pharmacol				
806	Chatterjee, M. et al. (2007) STAT3 and MAPK signaling maintain overexpression				
	of heat shock proteins 90alpha and beta in multiple myeloma cells, which critically				
	contribute to tumor-cell survival. Blood 109 (2), 720-728				
807	Lu, J. et al. (2007) Targeting thioredoxin reductase is a basis for cancer therapy by				
	arsenic trioxide. Proc Natl Acad Sci USA 104 (30), 12288-12293				
808	Wang, E. et al. (2001) The farnesyl protein transferase inhibitor SCH66336 is a				
	potent inhibitor of MDR1 product P-glycoprotein. Cancer Res 61 (20), 7525-7529				
809	Ghosal, A. et al. (2006) Identification of human liver cytochrome P450 enzymes				
	responsible for the metabolism of lonafarnib (Sarasar). Drug Metab Dispos 34 (4),				
010	628-635				
810	Shi, B. et al. (2000) The farnesyl protein transferase inhibitor SCH66336				
	synergizes with taxanes in vitro and enhances their antitumor activity in vivo.				
044	Cancer Chemother Pharmacol 46 (5), 387-393				
811	Pan, L. et al. (2007) Histone deacetylase inhibitor trichostatin a potentiates				
	doxorubicin-induced apoptosis by up-regulating PTEN expression. <i>Cancer</i> 109 (8),				
010	16/6-1688				
812	Fiorenes, V.A. et al. (2004) Deacetylase inhibition in malignant melanomas: impact				
017	on cell cycle regulation and survival. <i>Melanoma Kes</i> 14 (3), 1/3-181				
013	Biol Med 213 (2), 138-149				

81/	Dowdy S C at al. (2006) Histore descetylese inhibitors and pacifitavel cause
014	bowdy, S.C. et al. (2000) Instone dealectyrase minorous and pacification in papillary serious
	and emotival sensor colls. Mol Cancer Ther 5 (11) 2767 2776
015	Hur L et al. (2006) Deculation of expression of DIV presence totic protein in
015	human broast concer caller 5 2 dependent induction of DIV mDNA by fully actrant
	numan breast cancer cens: p55-dependent induction of BIK mKNA by fulvestrant and protocol dependent induction of BIK mKNA by fulvestrant
016	and proteasomal degradation of BIK protein. <i>Cancer Res</i> 66 (20), 10153-10161
816	Primeau, M. et al. (2003) Synergistic antineoplastic action of DNA methylation
	inhibitor 5-AZA-2'-deoxycytidine and histone deacetylase inhibitor depsipeptide
	on human breast carcinoma cells. International Journal of Cancer 103 (2), 177-
	184
817	Falugi, C. et al. (2003) Increasing complexity of farnesyltransferase inhibitors
	activity: role in chromosome instability. Curr Cancer Drug Targets 3 (2), 109-118
818	Russo, P. et al. (2002) RPR-115135, a farnesyltransferase inhibitor, increases 5-
	FU- cytotoxicity in ten human colon cancer cell lines: role of p53. Int J Cancer
	100 (3), 266-275
819	Ogata, M. et al. (2005) Mechanism of action of dipropofol and synergistic action
	with other antibacterial agents in vitro. Biol Pharm Bull 28 (9), 1773-1775
820	Boger, D.L. (2001) Vancomycin, teicoplanin, and ramoplanin: synthetic and
	mechanistic studies. Med Res Rev 21 (5), 356-381
821	Qiu, Y. et al. (2007) The farnesyltransferase inhibitor R115777 up-regulates the
	expression of death receptor 5 and enhances TRAIL-induced apoptosis in human
	lung cancer cells. Cancer Res 67 (10), 4973-4980
822	Medeiros, B.C. et al. (2007) The farnesyl transferase inhibitor, tipifarnib, is a
	potent inhibitor of the MDR1 gene product, P-glycoprotein, and demonstrates
	significant cytotoxic synergism against human leukemia cell lines. Leukemia 21
	(4), 739-746
823	Caraglia, M. et al. (2004) The farnesyl transferase inhibitor R115777 (Zarnestra)
	synergistically enhances growth inhibition and apoptosis induced on epidermoid
	cancer cells by Zoledronic acid (Zometa) and Pamidronate. Oncogene 23 (41),
	6900-6913
824	LaVallee, T.M. et al. (2003) 2-methoxyestradiol up-regulates death receptor 5 and
	induces apoptosis through activation of the extrinsic pathway. <i>Cancer Res</i> 63 (2),
	468-475
825	Debernardis, D. et al. (1996) Interactions between taxol and camptothecin.
	Anticancer Drugs 7 (5), 531-534
826	Takebayashi, Y. et al. (1999) Poisoning of human DNA topoisomerase I by
	ecteinascidin 743, an anticancer drug that selectively alkylates DNA in the minor
	groove. Proc Natl Acad Sci U S A 96 (13), 7196-7201
827	Fayette, J. et al. (2006) E1-743: a novel agent with activity in soft-tissue sarcomas.
	<i>Curr Opin Oncol</i> 18 (4), 347-353
828	Takebayashi, Y. et al. (2001) Ecteinascidin 743 induces protein-linked DNA breaks
	in human colon carcinoma HCTT16 cells and is cytotoxic independently of
0.00	topoisomerase I expression. Clin Cancer Res 7 (1), 185-191
829	Beumer, J.H. et al. (2007) Trabectedin (ET-743, Yondelis) is a substrate for P-
	glycoprotein, but only high expression of P-glycoprotein confers the multidrug
020	resistance phenotype. Invest New Drugs 25 (1), 1-7
830	Takanashi, N. et al. (2002) Sequence-dependent synergistic cytotoxicity of
	ecteinascidin-/43 and paclitaxel in human breast cancer cell lines in vitro and in $P_{\rm eff} = (2, (22), (200, 5015))$
	v1vo. Cancer Kes 62 (23), 6909-6915

	Bibliography
831	Tedesco, K.L. and Rybak, M.J. (2004) Daptomycin. <i>Pharmacotherapy</i> 24 (1), 41- 57
832	Silverman, J.A. et al. (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. <i>Antimicrob Agents Chemother</i> 47 (8), 2538-2544
833	Boaretti, M. and Canepari, P. (2000) Purification of daptomycin binding proteins (DBPs) from the membrane of Enterococcus hirae. <i>New Microbiol</i> 23 (3), 305-317
834	sigma32-dependent promoters by rifampicin. <i>FEBS Lett</i> 440 (1-2), 172-174
835	Galvao, M. (1990) Role of angiotensin-converting enzyme inhibitors in congestive heart failure. <i>Heart Lung</i> 19 (5 Pt 1), 505-511
836	Patick, A.K. et al. (1997) Activities of the human immunodeficiency virus type I (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.
837	Antimicrob Agents Chemother 41 (10), 2159-2164 Molla, A. et al. (2002) In vitro antiviral interaction of lopinavir with other protease inhibitors. Antimicrob Agents Chemother 46 (7), 2249-2253
838	Sobrado, M. et al. (2003) Combined nimodipine and citicoline reduce infarct size, attenuate apoptosis and increase bcl-2 expression after focal cerebral ischemia. <i>Neuroscience</i> 118 (1), 107-113
839	Hansen, M.R. et al. (2007) Overexpression of Bcl-2 or Bcl-xL prevents spiral ganglion neuron death and inhibits neurite growth. <i>Dev Neurobiol</i> 67 (3), 316-325
840 841	Rong, Y. and Distelhorst, C.W. (2007) Bcl-2 Protein Family Members: Versatile Regulators of Calcium Signaling in Cell Survival and Apoptosis. <i>Annu Rev Physiol</i> Yagami, T. et al. (2003) Prostaglandin E2 rescues cortical neurons from amyloid
842	beta protein-induced apoptosis. <i>Brain Res</i> 959 (2), 328-335 Tham, S.M. et al. (2005) Synergistic and additive interactions of the cannabinoid agonist CP55,940 with mu opioid receptor and alpha2-adrenoceptor agonists in acute pain models in mice. <i>Br J Pharmacol</i> 144 (6), 875-884
843	Blednov, Y.A. et al. (2003) A pervasive mechanism for analgesia: activation of GIRK2 channels. <i>Proc Natl Acad Sci U S A</i> 100 (1), 277-282
844	Paris, A. and Tonner, P.H. (2005) Dexmedetomidine in anaesthesia. <i>Curr Opin</i> <i>Anaesthesiol</i> 18 (4), 412-418
845	Hara, K. et al. (2005) The effects of anesthetics and ethanol on alpha2 adrenoceptor subtypes expressed with G protein-coupled inwardly rectifying potassium channels in Xenopus oocytes. <i>Anesth Analg</i> 101 (5), 1381-1388
846	Raehal, K.M. and Bohn, L.M. (2005) Mu opioid receptor regulation and opiate responsiveness. <i>Aaps J</i> 7 (3), E587-591
847	Marker, C.L. et al. (2005) Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa- opioids. <i>J Neurosci</i> 25 (14), 3551-3559
848	Tsuura, Y. et al. (1994) Nitric oxide opens ATP-sensitive K+ channels through suppression of phosphofructokinase activity and inhibits glucose-induced insulin release in pancreatic beta cells. <i>J Gen Physiol</i> 104 (6), 1079-1098
849	Slater, A.F. (1993) Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. <i>Pharmacol Ther</i> 57 (2-3), 203-235
850	Alvarez, S. et al. (2007) Structure, function and modulation of retinoic acid receptor beta, a tumor suppressor. <i>Int J Biochem Cell Biol</i>
851	Lee, M.O. and Kang, H.J. (2002) Role of coactivators and corepressors in the

induction of the RARbeta gene in human colon cancer cells. *Biol Pharm Bull* 25 (10), 1298-1302

- 852 Morris, M.I. and Villmann, M. (2006) Echinocandins in the management of invasive fungal infections, part 1. *Am J Health Syst Pharm* 63 (18), 1693-1703
- Karlowsky, J.A. et al. (2006) In vitro interactions of anidulafungin with azole antifungals, amphotericin B and 5-fluorocytosine against Candida species. *Int J Antimicrob Agents* 27 (2), 174-177
- Kuefer, R. et al. (2007) Antagonistic effects of sodium butyrate and N-(4hydroxyphenyl)-retinamide on prostate cancer. *Neoplasia* 9 (3), 246-253
- Shimada, K. et al. (2002) Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4-hydroxyphenyl)retinamide-induced apoptosis in prostate cancer cells. *Mol Carcinog* 35 (3), 127-137
- Pankey, G.A. and Ashcraft, D.S. (2005) In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant Pseudomonas aeruginosa. *Antimicrob Agents Chemother* 49 (7), 2959-2964
- Duncan, R. et al. (2005) Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. *Endocr Relat Cancer* 12 Suppl 1, S189-199
- Tahara, H. et al. (2006) Inhibition of oat3-mediated renal uptake as a mechanism for drug-drug interaction between fexofenadine and probenecid. *Drug Metab Dispos* 34 (5), 743-747
- Nakajima, Y. et al. (2004) Mechanism of the drug interaction between valproic acid and carbapenem antibiotics in monkeys and rats. *Drug Metab Dispos* 32 (12), 1383-1391
- Tsai, J.C. et al. (1996) Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors. *J Pharm Sci* 85 (6), 643-648
- Babita, K. and Tiwary, A.K. (2005) Transcutaneous delivery of levodopa: enhancement by fatty acid synthesis inhibition. *Mol Pharm* 2 (1), 57-63
- Koller, W.C. and Rueda, M.G. (1998) Mechanism of action of dopaminergic agents in Parkinson's disease. *Neurology* 50 (6 Suppl 6), S11-14; discussion S44-18
- **863** Tomita, M. et al. (1995) Absorption-enhancing mechanism of sodium caprate and decanoylcarnitine in Caco-2 cells. *J Pharmacol Exp Ther* 272 (2), 739-743
- Motlekar, N.A. et al. (2005) Oral delivery of low-molecular-weight heparin using sodium caprate as absorption enhancer reaches therapeutic levels. *J Drug Target* 13 (10), 573-583
- 865 Verhaeghe, R. (1998) The use of low-molecular-weight heparins in cardiovascular disease. *Acta Cardiol* 53 (1), 15-21
- Kanamitsu, S.I. et al. (2000) Prediction of in vivo drug-drug interactions based on mechanism-based inhibition from in vitro data: inhibition of 5-fluorouracil metabolism by (E)-5-(2-Bromovinyl)uracil. *Drug Metab Dispos* 28 (4), 467-474
- Podder, H. et al. (2001) Pharmacokinetic interactions augment toxicities of sirolimus/cyclosporine combinations. *J Am Soc Nephrol* 12 (5), 1059-1071
- Hayashi, K. et al. (2000) Potentiation of ganciclovir toxicity in the herpes simplex virus thymidine kinase/ganciclovir administration system by ponicidin. *Cancer Gene Ther* 7 (1), 45-52
- Okuda, T. et al. (2004) Drug interaction between methamphetamine and antihistamines: behavioral changes and tissue concentrations of methamphetamine in rats. *Eur J Pharmacol* 505 (1-3), 135-144
- 870 Rothman, R.B. et al. (2006) Dual dopamine-5-HT releasers: potential treatment

	Dionography
	agents for cocaine addiction. Trends Pharmacol Sci 27 (12), 612-618
871	Hayashi, K. et al. (2006) The role of a HSV thymidine kinase stimulating
	substance, scopadulciol, in improving the efficacy of cancer gene therapy. J Gene
	Med 8 (8), 1056-1067
872	Simonson, S.G. et al. (2004) Rosuvastatin pharmacokinetics in heart transplant
	recipients administered an antirejection regimen including cyclosporine. <i>Clinical</i>
0=2	Pharmacology and Therapeutics 76 (2), 167-177
873	Yamazaki, M. et al. (2005) Effects of fibrates on human organic anion-transporting
	polypeptide IB1-, multidrug resistance protein 2- and P-glycoprotein-mediated
054	transport. Xenobiotica 35 (7), 737-753
874	Schneck, D.W. et al. (2004) The effect of gemfibrozil on the pharmacokinetics of
075	rosuvastatin. Clin Pharmacol Ther 75 (5), 455-463
8/5	Higley, B. et al. (1982) Pyrimidine nucleoside phosphorylase activity in tumour
07/	and matched normal gastrointestinal mucosa. Gut 23 (12), $10/2-10/6$
8/0	Meyers, M. et al. (2001) Role of the hMLH1 DNA mismatch repair protein in fluoronyminiding mediated call death and call evaluation for an angle fluoron and fluoro
	fluoropyrimaine-mediated cell death and cell cycle responses. <i>Cancer Res</i> 61 (15), 5102 5201
877	Cowon P I at al (2004) Hypovia targeted gone thereby to increase the efficiency of
0//	tiranazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and
	effecting cure Cancar Ras $64 (A)$ 1396-1402
878	Wang Ω et al. (2007) Monocarboxylate transporter (MCT) mediates the transport
070	of gamma-hydroxybutyrate in human kidney HK-2 cells <i>Pharm Res</i> 24 (6) 1067-
	1078
879	Wang, O. and Morris, M.E. (2007) Flavonoids modulate monocarboxylate
	transporter-1-mediated transport of gamma-hydroxybutyrate in vitro and in vivo.
	Drug Metab Dispos 35 (2), 201-208
880	Ngui, J.S. et al. (2000) Cytochrome P450 3A4-mediated interaction of diclofenac
	and quinidine. Drug Metab Dispos 28 (9), 1043-1050
881	Mackenzie, P.I. (2000) Identification of uridine diphosphate
	glucuronosyltransferases involved in the metabolism and clearance of
	mycophenolic acid. Ther Drug Monit 22 (1), 10-13
882	Kuypers, D.R. et al. (2005) Drug interaction between mycophenolate mofetil and
	rifampin: possible induction of uridine diphosphate-glucuronosyltransferase. Clin
	<i>Pharmacol Ther</i> 78 (1), 81-88
883	Dickinson, R.G. et al. (1984) pH-dependent rearrangement of the biosynthetic ester
	glucuronide of valproic acid to beta-glucuronidase-resistant forms. Drug Metab
004	Dispos 12 (2), 247-252
884	Perucca, E. (2002) Pharmacological and therapeutic properties of valproate: a
005	summary after 35 years of clinical experience. CNS Drugs 16 (10), 695-714
992	Hynes, N.E. and Schlange, I. (2006) Targeting ADAMS and ERBBS in lung
002	cancer. Cancer Cell 10 (1), 7-11 Des. LL (1088) The reasons family and hymon correins genesis. Mutat Bes 105
000	(3), 255-271
887	McDermott, U. et al. (2007) Identification of genotype-correlated sensitivity to
	selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc
	Natl Acad Sci U S A 104 (50), 19936-19941
888	Bader, A.G. et al. (2006) Cancer-specific mutations in PIK3CA are oncogenic in
000	vivo. Proc Natl Acad Sci U S A 103 (5), 1475-1479
889	Gymnopoulos, M. et al. (2007) Rare cancer-specific mutations in PIK3CA show

	gain of function. Proc Natl Acad Sci USA 104 (13), 5569-5574
890	Forgacs, E. et al. (1998) Mutation analysis of the PTEN/MMAC1 gene in lung
	cancer. Oncogene 17 (12), 1557-1565
891	Hollestelle, A. et al. (2007) Phosphatidylinositol-3-OH kinase or RAS pathway
	mutations in human breast cancer cell lines. Mol Cancer Res 5 (2), 195-201
892	Jonsson, G. et al. (2007) High-resolution genomic profiles of breast cancer cell
	lines assessed by tiling BAC array comparative genomic hybridization. Genes
	Chromosomes Cancer 46 (6), 543-558

APPENDICES

Appendix Table S1 Literature reported pharmacodynamically synergistic drug combinations due to anti-counteractive actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed.

Combination target relationship	Drug A (mechanism of actions related to synergy)	Drug B (mechanism of actions related to synergy)	Reported synergistic effect	Synergism determination method	Possible mechanism of synergism in anti- counteractive actions
Different targets of the same pathway	17-AAG (heat-shock protein antagonist, induced cell cycle inhibition and apoptosis by inhibiting NF-kappaB, AP-1 and PI3K/Akt pathways[376], Hsp90/FLT3 inhibitor[480])	Arsenic trioxide (degraded aberrant PML-retinoic acid receptor alpha fusion protein, generated reactive oxygen species, and activated Akt survival pathway[437])	Synergistic anticancer effect[437]	Median dose effect analysis (Calcusym)	Arsenic trioxide's anticancer generation of reactive oxygen species is partially off-set by its own counteractive activation of Akt survival pathway[376]. 17-AAG abrogated arsenic trioxide's activation of Akt survival pathway[376] to reduce the counteractive effect
	Oxaliplatin (DNA adduct, preferably bind to major groove of GG, AG and TACT sites, complex conformation different from that of cisplatin[408], caused DNA strand break and non-DNA initiated apoptosis[409])	Irinotecan (DNA topoisomerase I inhibitor, increased EGFR phosphorylation in Lovo & WiDR cells[410])	Synergistic anticancer effect in AZ-521 and NUGC-4 cells, additive effect in MKN-45 cells[411]	Median drug effect analysis	Effect of oxaliplatin's DNA adduct formation[408] may be partially reduced by certain mutant DNA topoisomerase I acting on DNA adduct to generate different topoisomers[412]. Irinotecan inhibition of DNA topoisomerase I[410] partially off-sets this counteractive activity
Different targets of the same pathway that regulated the same target	Cisplatin (DNA inter- and intra- strand adduct, preferably bind to the major groove of GG, AG and TACT sites[381] thereby inhibited DNA polymerization and induced DNA damage to trigger apoptosis[510])	Trabectedin (bind covalently to central G in the minor groove of selected DNA pyrimidine-G-G and purine-G-C triplets[385], formed unusual DNA replication intermediates thereby inhibited DNA replication[386], interacted with DNA and DNA repair systems in a way different from cisplatin[384])	Synergistic antitumor activity[384]	Interaction index method of Berebbaum	Trabectedin inhibition of DNA replication[386] reduced the counteractive activity of DNA polymerase mediated mutagenic translesional bypass replication across cisplatin-DNA adducts[382]
	Cisplatin (DNA inter- and intra- strand adduct, preferably bind to the major groove of GG, AG and	Topotecan (topoisomerase I inhibitor, interacted with DNA, stabilized a covalent	Synergistic cytotoxic activity[378-380]	Multi-drug effect equation, combination	Topotecan blocking of DNA replication[383] reduced the counteractive activity of mutagenic translesional bypass replication across cisplatin-DNA adducts[382]

	TACT sites[381] thereby inhibited DNA polymerization and induced DNA damage to trigger apoptosis[510])	topoisomerase-DNA complex, thereby blocked DNA replication forks[383])		index, median- drug effect method	
	Cisplatin (DNA inter- and intra- strand adduct, preferably bind to the major groove of GG, AG and TACT sites[381] thereby inhibited DNA polymerization and induced DNA damage to trigger apoptosis [510])	Sabarubicin (topoisomerase II inhibitor ¹⁷)	Synergistic cytotoxic effect in tumour cell lines NSCLC H460 and SCLC GLC4[747]	Combination index	Sabarubicin blocking of DNA replication ¹⁷ reduced the counteractive activity of mutagenic translesional bypass replication across cisplatin-DNA adducts[382]
	DL-cycloserine (bacterial cell wall synthesis inhibitor[413])	Epigallocatechin gallate (disrupted integrity of bacterial cell wall via direct binding to peptidoglycan[413])	Synergistic effect on bacterial cell wall[413]	Fractional inhibitory concentration index	Cell wall alteration may induce counteractive cell wall synthesis to restore cell wall integrity[414], DL- cycloserine inhibition of cell wall synthesis hindered the restoration thereby enhanced Epigallocatechin gallate's cell wall disruption activity
	Gefitinib (EGFR tyrosine kinase inhibitor, induced cyclin- dependent kinase inhibitors, inhibited p27 and p21, decreased MMP-2 and MMP-9 enzyme activity[422])	Irinotecan (DNA topoisomerase I inhibitor, increased EGFR phosphorylation in Lovo & WiDR cells[410])	Synergistic inhibitory effect on colorectal cancer Lovo & WiDR cells[410]	Combination index	Irinotecan produced anticancer effect via DNA topoisomerase inhibition, but promoted proliferation by increased phosphorylation of EGFR in certain cell types[410]. Gefitinib produced anticancer effect via EFFR tyrosine kinase inhibition and others [422], which offsets the counteractive effect of increased EGFR phosphorylation
Different targets of related pathways	17-AAG (heat-shock protein antagonist, induced cell cycle inhibition and apoptosis by inhibiting NF-kappaB, AP-1 and PI3K/Akt pathways[376])	Etoposide (topoisomerase II inhibitor, induced DNA double- strand breaks during DNA replication[748], increased expression of DNA repair- related protein Rad51[749])	Synergism between etoposide and 17-AAG in leukemia cells[480]	Combination index method (CalcuSyn by BioSoft)	The effect of etoposide's DNA strand break is partially offset by its own counteractive increase of expression of DNA repair-related protein Rad51[749]. Higher levels of Rad51 and its interacting partner Chk1 are associated with presence of FLT3[480]. Inhibition of Hsp90/FLT3 by 17-AAG may reduce Rad51 and Chk1 to reduce the counteractive effect
	Artemisinin (interacted with heme to mediate its decomposition into free radicals that alkylate essential malarial proteins[750])	Methylene blue (inhibited heme polymerization[751]; selectively inhibited glutathione reductase[752]; soluble guanylate cyclase inhibitor[753]	Synergistic antimalarial effects in both chloroquine - sensitive and - resistant P.	isobologram method	Artemisinin's antimalarial activity possibly arise from its interaction with heme that facilitates heme conversion into free radical[755], which can be off-set by parasite's counteractive actions of heme polymerization into insoluble hemozoin and heme degradation by glutathione[756]. These counteractive

actions are partially reduced by methylene blue's falciparum strains[754] inhibition of heme polymerization[751] and glutathione reductase[752], resulting in synergistic antimalarial effect Erlotinib (EGFR tyrosine kinase Erlotinib's inhibition of EGFR may trigger activation of Pemetrexed (dihvdrofolate Combination-Svnergistic Akt-mediated negative-feedback signaling, leading to inhibitor[757]) reductase, thymidylate synthase cytotoxicity in all index method increased membrane HER3 expression and reduced and glycinamide ribonucleotide cells[761] formyl transferase HER3 phosphatase activity, thereby evading EGFR inhibition[31]. This counteractive action can be partially inhibitor[758-760];increased EGFR phosphorylation and reduced by pemetrexed's reduction of Akt reduced Akt phosphorylation[761], leading to synergistic effect phosphorvlation[761]) Bortezomib (proteasome inhibitor, Sodium butyrate or HDAC inhibitor's pro-apoptotic down-regulation of Synergistic Combination protected pro-apoptotic pathways suberoylanilide hydroxamic acid Bcr-abl is partially offset by its mediation of NFapoptosis Index kappaB activation [763]. This counteractive action can by inhibiting proteasome (Histone deacetvlase inhibitor. induction in degradation of P53[762], inhibited promoted histone acetylation be partially reduced by bortezomib's pro-apoptotic human multiple myeloma cells⁴¹ NF-kappaB and induced inhibition of NF-kappaB[766] and chromatin structure endoplasmic reticulum stress[763]) relaxation[764], down-regulated expression levels of Bcr-abl, c-Myc and HDAC3[765]; mediated RelA acetvlation and NF-kappaB activation[766] Lonafarnib (farnesyl transferase Bortezomib (proteasome Isobolographic Bortezomib produced anticancer effect by inhibiting Synergistic inhibitor, inhibited Ras inhibitor, protected promyeloma- cell analysis proteasome degradation of P53[762]. But protesome apoptotic pathways by inhibiting death activity[768] inhibition reduced ubiquitin-dependent cyclin D1 farnesylation[767]) proteasome degradation of degradation, which hindered Ras-mediated cell growth P53[762], inhibited NF-kappaB arrest and apoptosis[769] thereby reduced bortezomib's and induced endoplasmic anticancer effect. This counteractive activity can be reticulum stress[763]) partially offset by lonafamib inhibition of Ras farnesylation[767] that subsequently induced apoptosis by activating the pro-apoptotic protein BAD in BCL2 family[770] Tamoxifen (estrogen receptor Trastuzumab (herceptin) (anti-Synergistic growth Combination ER crosstalks with EGFR and HER-2/neu[774], antagonist[771]) inhibition in ERindex HER-2/neu antibody [563]) signaling via EGFR and HER-2/neu can activate ER and positive. HERits coactivator AIB1. ER of cell membrane can activate 2/neu -EGFR/HER-2[773]. Anti-HER-2/neu antibody

overexpressing trastuzumab[563] stopped HER-2/neu induced BT-474 breast activation of ER and AIB1. ER antagonist tumor tamoxifen[771] stopped ER induced activation of cells[772,773] EGFR/HER-2. Use of both drugs reduced the counteractive crosstalks CI-1040 or PD0325901 (MEK Effects of the inhibition of mTOR by rapamycin or its Rapamycin or deforolimus Cell proliferation Synergistic analogue deforolimus may be partially offset by (mTOR inhibitor[775]) inhibitor[776]) antitumor efficacy assay and in animal models combination index NPM/ALK-induced mTOR activation that is transduced of human lung method of Chou through the MEK-ERK signaling pathway[778]. This countractive action may be reduced by CI-1040 or cancer and in Kand Talalay PD0325901's inhibition of MEK[776] RAS mutant, non-V600EB-RAF, B-RAFV600E mutant cell lines[777] NU6140 (CDK inhibitor, down-Use of both drugs promoted complementary apoptosis Paclitaxel (stabilized microtubules Synergistic Median drug activities via triple actions of surviving down-regulation effect analysis regulated antiapoptotic protein apoptotic via alpha-tubulin acetylation[395] response[421] survivin[421]) by NU6140[421], microtubule stabilization[395] and distorted mitosis to trigger apoptosis[415], induced p53 and caspase activation [417] by paclitaxel. Paclitaxel's CDK inhibitors [416], activated promotion of apoptosis may be partially offset by its caspase-10, caspases-8, -6, and -3, counteractive pro-growth activation of ERK[418] and leading to apoptosis [417], CDK2[419], which may be partially reduced by activated ERK [418] and NU6140's inhibition of CDK[421] CDK2[419], activated p38 MAP kinase and p53[420]) Different targets of Gefitinib (EGFR tyrosine kinase Taxane (disrupted microtubule Combination Taxane produced anticancer effect by inducing Strong synergistic cross-talking inhibitor, induced cyclinby binding to beta-tubulin[423], effect in breast apoptosis[416] and microtubule disruption[423]. index Crosstalk between EGFR and hypoxia-inducible factordependent kinase inhibitors p27 induced tumor suppressor gene pathways cancer and p21, decreased MMP-2 and p53 and cyclin-dependent kinase MCF7/ADR 1alpha pathways increased resistance to apoptosis by MMP-9 enzyme activity[422]) inhibitors P21, down regulated cells[424] up-regulating survivin[28]. Gefitinib produced anticancer effect via EFFR tyrosine kinase inhibition, Bcl-2, leading to which offsets the counteractive EGFR-hypoxia crosstalk apoptosis[416]) in resisting taxane's pro-apoptosis activity Gleevec inhibition of Abl may leed to selection of Gleevec (selective inhibitor of c-L744.832 or LB42918 Median dose Synergistically Abl, p210bcr-abl, c-Kit, and (farnesyltransferase inhibitor, promoted effect analysis resistant mutatons in Bcr-Abl[783], some of the Bcr-Abl

	Appendices					
	PDGF-R tyrosine kinases[779,780])	inhibited Ras farnesylation[781])	apoptosis in different imatinib- sensitive and - resistant BCR- ABL-positive CML cells[782]	method of Chou and Talalay	mutants bind to Ras associated proteins to activate an alternative Ras mediated tansformation[784] and survival[785] signal. The survival signal involves activation of survival cascades via Ras/Raf/MEK/ERK signaling[785]. This counteractive alternative signal may be partially blocked by using farnesyltransferase inhibitor to inhibit Ras farnesylation	
	Cisplatin (DNA inter- and intra- strand adduct, preferably bind to the major groove of GG, AG and TACT sites[381] thereby inhibited DNA polymerization and induced DNA damage to trigger apoptosis[510])	Trastuzumab (herceptin) (anti- HER-2/neu antibody[563])	Synergistic growth inhibition in SNU- 216 as an HER2- amplified cell line among gastric cancer cell lines[786]	Isobologram analysis	Cisplatin formed DNA adduct to induce DNA damage and apoptosis, which may be attenuated by DNA repair systems in certain cell types[510]. This counteractive DNA repair action may be partially reduced by herceptin's anti-HER2 activitity that suppressed DNA repair pathway known to crosstalk to HER2[564] and inhibited PI3K-AKT pathway[565] to enhance apoptosis[566]	
	Dasatinib(inhibitor of c-abl,src, fyn, lck and kit[787,788])	PKC412 (inhibitor of Flt[789], PKC, VEGFR2, PDGFR, c- kit[790])	Synergistic apoptotic effects in HMC-1.2 cells[791]	Combination index	Inhibition of c-abl and src enhances catalytic activity of some PKC subtypes and their binding to Bcr/Abl in specific cell types[792]. Complex of abl with certain PKC subtypes enable communication of ER stress to mitochondria, which is an essential step in subsequent apoptosis [793]. This possible counteractive action against dasatinib's inhibition of c-abl and src ⁷⁷ may be partially alleviated by PKC412's inhibition of PKC ⁸⁰	
Different targets in the same pathway that crosstalks via other pathway	Gefitinib (EGFR tyrosine kinase inhibitor, induced cyclin- dependent kinase inhibitors p27 and p21, decreased MMP-2 and MMP-9 enzyme activity[422])	PD98059 (MEK inhibiton[425])	Synergistic antitumor effect in breast cancer MDA-MB-361 cells186	Combination index, isobolographic analysis	An autocrine growth loop critical for tumor growth is formed in EGFR-Ras-Raf-MEK-ERK network such that activated MEK activates ERK which upregulates EGFR ligands which promotes the autocrine growth loop[426]. This loop produced counteractive activity against gefitinib or PD98059 by reducing the effect of MEK or EGFR tyrosine kinase inhibition. Simultaneous use of both drugs helps disrupting this autocrine growth loop, thereby enhancing each other's effect	
Same target (different sites)	AZT (HIV-1 reverse transcriptase inhibitor[427])	Non-nucleoside HIV-1 reverse transcriptase inhibitor[428]	Antiviral synergism[429]	Isobolographic analysis, Yonetani & Theorell plot	AZT resistance is partly due to phosphorolytical removal of the AZT-terminated primer[430], NNRTI inhibited RT catalyzed phosphorolysis, thereby reduced AZT resistance[429]	

Appendix Table S2 Literature reported pharmacodynamically synergistic drug combinations due to complementary actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed.

Combination target relation	Drug A (mechanism of actions related to synergy)	Drug B (mechanism of actions related to synergy)	Reported synergistic effect	Synergism determination method	Possible mechanism of synergism in promoting complementary actions
Different targets of the related pathways that regulate the same targets	17-AAG (Inhibited Hsp90/FLT3[480], which degraded ALK and Akt, dephosphorylated ERK, downregulated cyclin D1, CDK4, and CDK6 in ALCL cells[388], heat-shock protein antagonist, induced cell cycle inhibition and apoptosis by inhibiting NF-kappaB, AP-1 and PI3K/Akt pathways[376])	U0126 (MEK1/2 inhibitor)	17-AAG synergizes with U0126 in ALCL irrespective of ALK expression[388]	Combination index and isobologram from Chou-Talalay method (Calcusyn by Biosoft)	Activated ERK promotes ALCL cell survival. HSP90 is abundantly expressed in ALCL cells. 17-AAG produced its effect on ALCL cells by inhibiting Hsp90/FLT3 which dephosphorylated ERK [388]. Such an action is complemented by U0126's inhibition of MEK1/2 which inhibited ERK[388]
	ABT-737(Bcl-2 family proteins Bcl-2, Bcl-xL inhibitor[794])	Dexamethasone (down- regulatied Bcl-2 and Bcl- xL[795])	Synergistic effect in inducing myeloma cell death[794]	Combination Index	ABT-738's inhibition of Bcl-2 and Bcl-xL[794] is complemented by dexamethasone 's down-regulation of Bcl-2 and Bcl-xL[795]
	Azithromycin (hindered bacterial protein synthesis by binding to 50S component of 70S ribosomal subunit[431])	Ceftazidime (blocked penicillin-binding proteins and thus bacterial cell wall synthesis[432])	Synergistic antibacterial effect[433]	Checkerboard method, fractional inhibitory concentration	Hindered protein synthesis by azithromycin[431] reduces penicillin-binding proteins to complement ceftazidime's blocking of penicillin-binding proteins[432]
	Bortezomib(inhibited proteasome and NF-kappaB[796])	Trastuzumab (herceptin) (anti- HER-2/neu antibody[563])	Synergistic apoptosis effect in HER-2 positive breast cancer cell lines[797]	Combination Index	Bortezomib's inhibition of NF-kappaB[796] is complemented by herceptin's inhibition of HER-2 receptor[797] that subsequently blocks EGF-induced NF-kappaB activation[798]
	Gleevec (selective inhibitor of c- Abl, p210bcr-abl, c-Kit, and PDGF-R tyrosine kinases[779,780])	Histone deacetylase inhibitor (promoted histone acetylation and chromatin structure relaxation[764]; down- regulated Bcr-abl, c-Myc and HDAC3[765])	Synergistically induced apoptosis in STI571-resistant K562 and LAMA 84 cells[799]	Combination index	Gleevec 's pro-apoptotic inhibition of Abl[780,800] may be partially complemented by Histone deacetylase inhibitor's down-regulation of Bcr-abl[765]
	Rapamycin or deforolimus (mTOR inhibitor[775];targeted transcription	3-BrOP (inhibited glycolysis by inactivating hexokinase, a	Synergistically impacted energy	Combination Index	mTOR inhibition by rapamycin further compromised the ability of cells to uptake glucose when the

				<u>.</u>	
	factor yy1 to down-regulate mitochondrial transcriptional regulators PGC-1alpha, oestrogen- related receptor alpha and nuclear respiratory factors[801] (18046414)	key enzyme in the glycolytic pathway[802])	metabolism in cancer cells[802]		glycolytic pathway is inhibited by 3-BrOP[802], which is partly due to the down-regulation of nuclear respiratory factors by 3-BrOP[801] that down- regulated glycolytic and mitochondrial oxidative proteins[803]
	Triclosan (E.coli fabI inhibitor, antimicrobial activity[348])	Antisense drug Ec106fabI targeting mRNA of E.coli fabI[348]	Some combinations of protein inhibitor and antisense drug of shared genetic target satisfy conservative definition of antimicrobial synergy[348]	Checkerboard method, fractional inhibitory concentration indices	Joint inhibition and reduction of bacterial protein
	Celecoxib (COX-2 inhibitor, inactivated protein kinase Akt to stop its suppression of apoptosis, it also inhibited ER Ca2+ ATPase[397])	Emodin (tyrosine kinase inhibitor [398], down- regulated protein kinase Akt via inhibition of components of the PI3K pathway to reduce AKT suppression of apoptosis[399])	Synergistically suppressed growth of certain tumor cells[396]	Isobolographic analysis, fractional inhibition method, Zhang method	In addition to its antitumor activity via tyrosine kinase inhibition, emodin down-regulated Akt[399] to complement celecoxib's inactivation of Akt[397] to reduce Akt's suppression of apoptosis
Different targets of the related pathways that regulate the same process	17-DMAG (Inhibited Hsp90, which prevented stabilization of "client" cancer targets such as mutated p53, Raf-1, ErbB2, and other signaling proteins[804], thereby induced apoptosis and growth arrest in certain carcinoma cells[805]. Attenuated STAT3 and phospho- ERK level[806]	Arsenic trioxide (inhibited thioredoxin reductase leading to apoptosis, which is the basis for its anticancer activity[807], down-regulated constitutive STAT3 activity in AML cells[804]	ATO and Hsp90 inhibitor 17-DMAG showed synergistic interactions in inhibiting constitutive STAT3 activity and inducing cell death, in spite of a concurrent synergistic up- regulation of HSP70[804]	Isobologram	Both drugs complement each other's activity by inducing apoptosis via Hsp90[804] and thioredoxin reductase inhibition[807]. Moreover, both drugs downregulated the constitutive STAT3[804,806], which are overexpressed in 50% of AML cases.
	Aplidin (induced apoptosis by activating and clustering death receptors FasL[434], activating JNK, EGFR, Src, and	Cytarabine (DNA binder[437], inhibited synthesome associated DNA polymerase alpha activity[438], inhibited	Aplidin synergizes with cytarabine in exhibiting anticancer activities in leukemia	Chou-Talelay combination index (Calcusym Biosoft)	Both drugs complement each other's activity by inducing apoptosis via each of the two major cascades of apoptosis pathway, aplidin activated and clusterd death receptors of FasL [434] which subsequently

p38MAPK[435], inhibited VEGF activates the receptor-mediated extrinsic cascade[441], RNA synthesis and DNA and lymphoma release and secretion[436]) repair that lead to increased models in vitro and cytarabine increased cellular stress and reduced cellular stress and reduced in vivo[440] survival protein Mcl-1[439] which subsequently survival protein Mcl-l which triggers the mitochondrial intrinsic cascade[441]. subsequently activate caspase and apoptosis [439]) Paclitaxel (stabilized microtubules Both drugs complement each other's microtubule Different targets of Lonafarnib (farnesyl Synergistically Thin plate spline stabilization effects through enhanced acetylation the same pathway transferase inhibitor, inhibited inhibited method via alpha-tubulin acetylation[395]. deacetylating activity that regulate the Ras farnesylation, microtubule activity of alpha-tubulin by paclitaxel[395] and distorted mitosis to trigger same target associated alpha-tubulin of tubulin apoptosis [415] and induce p53 and reduced deacetylation activity of alpha-tubulin deacetylase [394], and Pdecaetylase[810] CDK inhibitors [416]) deacetylase by lonafarnib[394] gp[808], metabolized by CYP3A4 and CYP3A5[809]) Both drugs complement each other's microtubule Paclitaxel (stabilized microtubules Tubacin (histone deacetylase 6 Synergistically Combination stabilization effects through enhanced acetylation enhanced tubulin inhibitor, inhibited index (Calcusym) via alpha-tubulin acetylation[395]. microtubule associated alphaacetylation[394] activity of alpha-tubulin by paclitaxel[395] and distorted mitosis to trigger tubulin deacetylase apoptosis[415] and induce p53 and reduced deacetylation activity of alpha-tubulin activity[442]) CDK inhibitors [416]) deacetylase by tubacin [442] Synergistic effects These drugs complement each other by two actions. Paclitaxel (stabilized microtubules Trichostatin (histone Individual/combin deacetylase inhibitor, inhibited on apoptosis and One jointly promotes apoptosis by triggering it via ation response via alpha-tubulin acetylation[395] aberrant mitosis (paclitaxel)[415] and by enhancing it microtubule associated alphamicrotubule preprocessing and distorted mitosis to trigger tubulin deacetylase activity comparative apoptosis[415] and induce p53 and stabilization[814] via upregulating PTEN (trichostatin)[811]. The other [394], acetvlated core analysis involves microtubule stabilization by enhanced CDK inhibitors [416]) histones at PTEN promoter acetylation activity of alpha-tubulin (paclitaxel)[395] thereby induced PTEN and reduced deacetylation activity of alpha-tubulin transcription leading to deacetylase (trichostatin [394] enhanced apoptosis[811], induced cyclin-dependent kinase inhibitor p21[812] thereby induced G1 arrest and blocked entry into S phase[813]) Different targets of 5-AZA-2'-deoxycytidine (DNA Fluorouracil (metabolite Synergistic effect of 5-AZA-2'-deoxycytidine inhibition of DNA

related pathways that regulate the same target	methyltransferase -1 and -3B inhibitor, stopped silencing of the pro-apoptotic BI [387])	inhibited thymidylate synthase that stopped DNA synthesis[550], stabilized and activated P53 by blocking MDM2 feedback inhibition through ribosomal proteins[551])	5-Aza-2'- deoxycytidine and 5- fluorouracil on drug- resistant tumors		methyltransferase -1 and -3B stopped silencing of tumor suppressor gene, pro-apoptotic BIK, in cancer cells[387]. Fluorouracil stabilized and activated P53 [551], activation of P53 upregulated BIK[815] which complements 5-AZA-2'-deoxycytidine' un-silencing of BIK
	5-AZA-2'-deoxycytidine (DNA methyltransferase -1 and -3B inhibitor, stopped silencing of the pro-apoptotic BIK[387])	Depsipeptide (histone deacetylase inhibitor, induced the pro-apoptotic BIK[387])	Synergistic antineoplastic effect[816]	Valeriote & Lin's comparative analysis method	5-AZA-2'-deoxycytidine inhibition of DNA methyltransferase -1 and -3B stopped silencing of tumor suppressor gene, pro-apoptotic BIK, in cancer cells to complement depsipeptide's induction of the same gene[387]
	Gefitinib (EGFR tyrosine kinase inhibitor, induced cyclin-dependent kinase inhibitors p27 and p21, decreased MMP-2 and MMP-9 enzyme activity[422])	ST1926 (activated MAP kinases p38 and JNK, released cytochrome c, activated caspase proteolytic cascad[443])	Synergistic modulation of survival signaling pathways[444]	Combination Index	Gefitinib 's inhibition of EGFR is complemented by ST1926's activation of MAP kinases p38[443] that subsequently mediates internalization of EGFR[445], and by ST1926's activation of caspase proteolytic cascade[443]
Different targets of related pathways	Fluorouracil (metabolite inhibited thymidylate synthase that stopped DNA synthesis[550], stabilized and activated P53 by blocking MDM2 feedback inhibition through ribosomal proteins[551])	RPR-115135 (farnesyl transferase inhibitor, inhibited Ras farnesylation[817])	Synergistic cytotoxic effect[818]	Combination index	Joint tumor suppressive (via fluorouracil stabilization of P53[551]) and antiproliferative (via RPR-115135 inhibition of Ras farnestlation[817]) actions
	CP55940 (cannabinoid agonist, elicited analgesic effects in acute and chronic pain states via spinal and supraspinal pathways[391])	Dexmedetomidine (alpha2 adrenoceptor agonist, activated endogenous nonrapid eye movement sleep-promoting pathways[454])	Significant antinociception synergy in some cases	Isobolographic analysis	Cannabinoid agonist modulated spinal and supraspinal pathways[391] that regulate pain[390], dexmedetomidine promoted sleepiness[454] that sustains reduction in spike activity of spinoreticular tract neurons[389]
	Dipropofol (inhibited bacterial protein synthesis or amino acid incorporation[819])	Vancomycin (blocked transglycosylation and transpeptidation reactions in polymerization of bacterial cell wall peptidoglycan, thereby inhibited cell wall	Synergism against vancomycin resistant bacterial strains[819]	Checkerboard method	Hindered protein synthesis by dipropofol[819] might reduce cell-wall synthesis proteins and thus complement vancomycin's inhibition of cell wall

		biosynthesis[820])			
	Tipifarnib (farnesyl transferase inhibitor, inhibited Ras farnesylation, upregulated death receptor 5, a p53 target gene and receptor of TRAIL[821], inhibited P-gp[822])	Zoledronic acid (activated caspase 3 and fragmented PARP to induce apoptosis, reduced Ras activity and antagonized its stimulation by EGF[823])	Strong synergism in growth inhibition and apoptosis[823]	Combination index (Calcusym)	Joint anti-growth activities via tipifarnib inhibition of Ras farnesylation[821] and zoledronic acid reduction of Ras activity[823], joint apoptosis activities via tipifarnib upregulation of death receptor 5[821] and zoledronic acid activation of caspase 3[823], upregulation of death receptor helps to activate capspases[824])
	Paclitaxel (stabilized microtubules via alpha-tubulin acetylation[395] distorted mitosis to trigger apoptosis[415] and induce p53 and CDK inhibitors[416], activated caspase-10, caspases-8, -6, and -3, leading to apoptosis[417], activated ERK[418] which in turn activates CDK2[419], activated p38 MAP kinase and p53[420])	NU6140 (CDK inhibitor, down-regulated antiapoptotic protein survivin[421])	Synergistic apoptotic response[421]	Median drug effect analysis	Use of both drugs promoted complementary apoptosis activities via triple actions of surviving down- regulation by NU6140[421], microtubule stabilization[395] and caspase activation[417] by paclitaxel. Paclitaxel's promotion of apoptosis may be partially offset by its counteractive pro-growth activation of ERK [418] and CDK2[419], which may be partially reduced by NU6140 via its inhibition of CDK[421]
	Sildenafil (phosphodiesterase-5 inhibitor[446])	Iloprost (prostacyclin receptor agonist leading to vascular relaxation[447], activated phospholipase C [448] that promoted VEGF-induced skin vasorelaxation [449], self- regulated endothelial cell adhesion molecules[450])	Synergistic action to cause strong pulmonary vasodilatation[451]	Dose effect curve surpassed that of individual drug alone combined	Sildenafil produced vasodilation activity by inhibiting phosphodiresterase-5[446], iloprost produced vasodilation activity by agonizing prostacyclin receptor[447] and by activating phospholipase C[448]. Targeting of multiple vasodilatation regulation pathways NO/cGMP[452], MaxiK channel -mediated relaxation[453], and phospholipase C[448] contribute to the synergistic actions.
Different target subtypes of related pathways	Dexmedetomidine (alpha2A receptor agonist, produced antinociceptive effect via an endogenous sleep-promoting pathway[454])	ST-91 (agonist of alpha2 receptor of other subtypes, produced antinociceptive effect via upraspinal receptors and at both spinal and brainstem levels of the acoustic startle response pathway[455])	Synergistic antinociceptive action[345,456]	Isobolographic analysis	ST-91 modulated spinal and supraspinal pathways[455] that regulate pain[390], dexmedetomidine promoted sleepiness[454] that sustains reduction in spike activity of spinoreticular tract neurons[389]

Same target (different states)	Mycophenolate mofetil (inosine monophosphate dehydrogenase inhibitor, drug metabolite mycophenolic acid binds to the site of nicotinamide adenine dinucleotide cofactor[393])	Mizoribine (inosine monophosphate dehydrogenase inhibitor, drug metabolite mizoribine monophosphate binds to the enzyme in transition state having a new conformation[457])	Mild synergistic suppression of T and B cell proliferation[458]	Median drug effect analysis, Combination index	Simultaneous inhibition of enzyme reactant-state and transition state have the advantage of covering more conformational space for the inhibitors to better compete with natural substrates for the binding sites.	
Same target (overlapping binding sites)	Paclitaxel (stabilized microtubules via alpha-tubulin acetylation[395], distorted mitosis to trigger apoptosis[415] and induce p53 and CDK inhibitors[416])	Discodermolide (stabilized microtubule dynamics and enhanced microtubule polymer mass[459] resulting in aberrant mitosis that triggers apoptosis [415] and induced p53 and CDK inhibitors[416], retained antiproliferative activity against carcinoma cells resistant to paclitaxel due to beta-tubulin mutations[460])	Antiproliferative synergy[461]	Combination index	Explanation 1: Binding sites of both drugs overlapping, certain mutations resistant to one drug are ineffective against the other, thereby covering more diverse range of mutant types[60,340,462]. Explanation 2: One drug binds and induces conformational change in tubulin that increases the binding affinity of the other[60,463]. Explanation 3: These drugs may differentially bind to or affect different tubulin subtypes, microtubule architectures, or microtubule regulators, thereby covering more diverse range of microtubule dynamics[57,60,463,464]	
Same target (different binding sites)	Paclitaxel (stabilized microtubules via alpha-tubulin acetylation[395], distorted mitosis to trigger apoptosis[415] and induce p53 and CDK inhibitors[416])	Peloruside A (binds at a different site from that of paclitaxel, stabilized microtubules via binding to a unique site on the tubulin alpha, beta heterodimer[465])	Peloruside A synergizes with paclitaxel to enhance the antimitotic action of the drugs[465]	Berenbaum's combination index	Explanation 1: Binding sites of both drugs overlapping, certain mutations resistant to one drug are ineffective against the other, thereby covering more diverse range of mutant types[60,340,462]. Explanation 2: One drug binds and induces conformational change in tubulin that increases the binding affinity of the other[60,463]. Explanation 3: These drugs may differentially bind to or affect different tubulin subtypes, microtubule architectures, or microtubule regulators, thereby covering more diverse range of microtubule dynamics[57,60,435,463]	
	Paclitaxel (external DNA binder with partial helix stabilization without altering B-form, binds to A-T, G-C bases and the backbone PO(2) groups[392], interacted	Trabectedin (formed DNA adduct at the central G in minor groove of pyrimidine- G-G and purine-G-C triplets that stabilizes duplex DNA to	Synergistic cytotoxicity[830]	Isobolographic analysis, Chou- Talalay equation	Both drugs enhance each other's effect by two actions: (1) binding to different sites of DNA at mutually compatible conformation, thereby complement each other on their blocking of DNA polymerase and transcription processes[385,392], (2) these bindings	
Appendices with DNA topoisomerase I[825]) hamper strand separation and stall replication and transcription forks[385], induced topoisomerase I mediated protein-linked DNA breaking actions[826]. facilitated interaction with DNA topoisomerase I[825] and its DNA breaking actions[826]. breaks[826], traped protein breaks[826], traped protein breaks[826], traped protein

from the nucleotide-excision repair system resulting in DNA damage[827], induced transient p53 elevation[828],

and it is a P-gp substrate[829]) **Appendix Table S3** Literature reported pharmacodynamically synergistic drug combinations due to facilitating actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed.

Combination target relationship	Drug A (mechanism of actions related to synergy)	Drug B (mechanism of actions related to synergy)	Reported synergistic effect [Ref]	Synergism determination method	Possible mechanism of synergism in promoting facilitating actions
Different targets of related pathways	Ampicillin (blocked penicillin- binding protein 2A and thus bacterial cell wall synthesis[466])	Daptomycin (disrupted bacterial membrane structure[467])	Significant antibacterial synergy[347]	Checkerboard method, fractional inhibitory concentration	Most penicilling-binding proteins are associated with membrane[468], membrane disruption by daptomyci [467] likely hinders the functions of penicilling-binding proteins and further expose them to ampicillin binding
	Gentamicin (targeted bacterial ribosome, caused misreading of the genetic code and inhibited translocation, thereby disrupted protein synthesis[401])	Vancomycin (inhibited bacterial cell wall peptidoglycan synthesis[402], altered permeability of cell membrane and selectively inhibited ribonucleic acid synthesis[403])	Synergistic action against penicillin- resistant bacterial strains[400]	Checkerboard method, fractional inhibitory concentration indices	Vancomycin altered membrane permeability[403] thereby enhanced gentamicin penetration into bacterial cells and its bioavailability
	Daptomycin (disrupted bacterial membrane function without penetrating into the cytoplasm[831], depolarized membrane[832], and inhibited lipoteichoic acid synthesis[833])	Rifampicin (interfered with bacterial nucleic acid synthesis by binding to the beta subunit of prokaryotic RNA polymerases[834])	Significant antibacterial synergy[347]	Checkerboard method, fractional inhibitory concentration	Depolarization of bacterial membrane by daptomycin[832] enhanced rifamapicin penetration into bacterial cells and thus its bioavailability
Different targets of related pathways that regulate the same target	BQ-123 (Endothelin A receptor antagonist, mediated vasodilatation[405])	Enalapril (angiotensin converting enzyme inhibitor, up-regulated Endothelin B[406], vasodilation is mediated by both ACE inhibition[835] and Endothelin B1 upregulation[407])	Synergistic endothelium- dependent vasodilation enhancing actions[404]	Randomized, double- blind, crossover studies	Enalapril up-regulated ETB as well as inhibited ACE leading to vasodilation[406,407], BQ-123 antagonism of ETA caused vasodilation[405] and displaced endogenous ET-1 from ETA onto upregulated ETB to enhance its activity by effectively increasing ETB agonist concentration[404]
	Candesartan-cilexetil (angiotensin AT1 receptor antagonist[469])	Ramipril (angiotensin converting enzyme inhibitor[470], reduced angiotensin II formation[471])	Synergistically reduced systolic blood pressure[472]	Dose-response curve shifted 6.6-fold leftwards compared to hypothetic additive curve	Candesartan-cilexetil reduced systolic blood pressure by antagonizing angiotensin AT1 receptor[469], ramipril reduced systolic blood pressure by inhibiting angiotensin converting

	r				
					enzyme[470], ramipril inhibited AT1 receptor
					agonist formation [471] thereby facilitating the
					action of candesartan-cilexetil by reducing AT1
					agonist-antagonist competition
Same target	Saquinavir (HIV protease	Lopinavir (HIV protease	Synergistic inhibition of	Combination indices	As a Pgp substrate, HIV protease inhibitor
	inhibitor[836], Pgp	inhibitor (9835517), inhibited	HIV1 replication in MT4		saquinavir may be removed by Pgp mediated drug
	substrate[837])	Pgp in CACO-2 cells[837])	cells[837]		efflux, making it less available for HIV protease
					inhibition[837]. Inhibition of Pgp by another HIV
					protease inhibitor lopinavir facilitates the
					therapeutic action of saquinavir by blocking its
					efflux[837], leading to synergistic action.

Appendix Table S4 Literature reported pharmacodynamically additive drug combinations, in which additive action has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed

Action type	Combination target relationship	Drug A (mechanism of action related to additive effect)	Drug B (mechanism of action related to additive effect)	Reported additive effect [Ref]	Additism determination method	Possible mechanism of additive effect
Equivalent or overlapping actions	Different targets of the same pathways that regulate the same target	Citicoline (increased BCL-2 expression[838], regulated Bcl-2 antiapoptotic pathway for neuron cell survival [839]. Bcl-2 interacted with IP(3) receptor Ca(2+) channels on ER, regulating their opening in response to IP(3) and thus inhibiting IP(3)-mediated Ca(2+) signals that induce apoptosis[840])	Nimodipine (L-type voltage sensitive calcium channel blocker [838], reduced Ca(2+) influx to rescue cortical neurons from apoptosis[841])	Additive neuroprotective effect[838]	Measurement of infarct volume	Citicoline upregulated Bcl-2[838], thereby enhanced inhibition of IP(3)- mediated Ca(2+) signals which reduced apoptosis[840].Nimodipine reduced Ca(2+) influx to rescue cortical neurons from apoptosis[841].
		CP55940 (cannabinoid antagonist[842], coupling to postsynaptic GIRK2 potassium channels[843])	Dexmedetomidine (alpha2 adrenoceptor agonist[844], coupling to postsynaptic GIRK2 potassium channels[845])	Additive antinociceptive actions in some cases and synergistic actions in other cases[842]	Isobolographic analysis	Both produced therapeutic actions via coupling to postsynaptic GIRK2 potassium channels[843,845]
		CP55940 (cannabinoid antagonist[842], coupling to postsynaptic GIRK2 potassium channels[843])	Morphine (mu opioid receptor agonist[846], coupling to postsynaptic GIRK2 potassium channels[847])	Additive antinociceptive actions in some cases and synergistic actions in other cases[842]	Isobolographic analysis	Both via their coupling to postsynaptic GIRK2 potassium channel [843,847]
		Diazoxide (ATP-sensitive K+ channel activator[481], enhanced ATPase activity of channel regulatory subunits sulphonylurea	Sodium nitroprusside (activated ATP-sensitive K+ channel[481], acted as the donor of nitric oxide which subsequently opened	Additive antinociceptive effect[485]	ANOVA synergism & dose effect data analysis	Diazoxide enhanced ATPase activity of channel regulatory subunits[482], Sodium nitroprusside opened the channel by acting as the donor of nitric oxide[848].

	receptors[482])	channel[848])			
	Diazoxide (ATP-sensitive K+ channel opener[481], enhanced ATPase activity of channel regulatory subunits sulphonylurea receptors[482])	Dibutyryl-cGMP (activated ATP-sensitive K+ channel[481], activated channel via a cGMP-dependent protein kinase[483, 484])	Additive antinociceptive effect[485]	ANOVA synergism & dose effect data analysis	Diazoxide enhanced ATPase activity of channel regulatory subunits[482], Dibutyryl-cGMP activated channel via a cGMP-dependent protein kinase [483,484]
	Methylene blue (inhibited heme polymerization[751]; selectively inhibited glutathione reductase[752]; soluble guanylate cyclase inhibitor[753]	Mefloquine and quinine (heme polymerase inhibitor[849])	Additive antimalarial effect in chloroquine- sensitive and - resistant P. falciparum strains[754]	Isobolographic analysis	Both acted redundantly at the heme polymerization pathway
	Retinoic acid (activated and up-regulated retinoic acid receptor beta, a tumor suppressor that promote apoptosis[850])	Trichostatin A (histone deacetylase inhibitor, reactivated retinoic acid receptor beta mRNA expression[851])	Additive inhibition of cell proliferation[473]	ANOVA synergism & dose effect data analysis	Retinoic acid activated and up-regulated the target[850], Trichostatin A up- regulated the target[851]
Same target (different sites with direct contact with agonist site)	Propofol (interacted with GABA A receptor, acting on at TM3 segment of the beta2 subunit[486])	Sevoflurane (interacted with GABA A receptor at Ser270 of the alpha1 and alpha2 subunits[487])	Additive action in producing consciousness and movement to skin incision during general anesthesia[488]	Dixon up-down method	Propofol binds to TM3 segment of the beta2 subunit[486], Sevoflurane binds to Ser270 of the alpha1 subunit[487]. As agonist binding site is located between alpha1 and beta2 subunits[489], both drugs likely hinder agonist activity, thereby producing mutually substitutable actions.
Same target (same site):	Ampicillin (blocked penicillin- binding protein 2A and thus bacterial cell wall synthesis)[466]	Imipenem (inhibited penicillin- binding protein -1A, -1B, -2, -4 and -5 and thus bacterial cell wall synthesis)[490]	Additive antibacterial effect[347]	Checkerboard method, fractional inhibitory concentration	Both acted at the same active site of penicillin-binding protein $2A[491]$ but at relatively high MICs of $\geq 32\mu$ g/ml [466]. The relatively high MICs make it less likely for both drugs to saturate target

						sites, thereby maintaining additive antibacterial effect.
Independent actions	Different targets of unrelated pathways	Anidulafungin (inhibitor of beta-(1,3)-dglucan synthase, an essential component of fungal cell wall)[852]	Amphotericin B (formed ion channels in fungal membranes)[495]	Additive antifungal effect[853]	Checkerboard method, fractional inhibitory concentration	Anidulafungin disrupted cell wall formation during reproductive cycle[852], Amphotericin B disrupted membranes of mature fungi[495]. They act at different stages and different sites in non-interfering manner.
		Artemisinin (interfered with parasite transport proteins PfATP6, disrupted parasite mitochondrial function, modulated host immune function)[492]	Curcumin (generated ROS and down-regulated PfGCN5 histone acetyltransferase activity, producing cytotoxicity for malaria parasites)[261]	Additive antimalarial activities[493]	Fractional inhibitory concentrations	Artemisinin blocked calcium transport to endoplasmic reticulum[492], Curcumin induced DNA damage and histone hypoacetylation[261]. They act at different sites in non-interfering manner.
	Same target (different sites)	Doxorubicin (DNA intercalator[475], preferred AT regions[475])	Trabectedin (formed covalent guanine adduct at specific sites in DNA minor grove[476], interacted with DNA repair system)	Additive anticancer effect[474]	Isobolographic analysis	Both bind to DNA in non-interfering manner, one preferred AT regions[475], the other alkylated guanines[476]. Recent progresses in designing dual platinum- intercalator conjugates[477] suggested that it is possible for both drugs to act without hindering each other's binding mode
Independent actions at dosages significantly lower than MICs, complementary actions at higher dosages	Different targets of unrelated pathways	Azithromycin (hindered bacterial protein synthesis by binding to 50S component of 70S ribosomal subunit[431])	Imipenem (inhibited penicillin- binding protein -1A, -1B, -2, -4 and -5 and thus bacterial cell wall synthesis)[490]	Additive antibacterial effect[433]	Checkerboard method, fractional inhibitory concentration	Azithromycin hindered bacterial protein synthesis[431] at MIC of 0.12μ g/ml[494]. Imipenem blocked bacterial cell wall formation[490] at MICs of \geq 32 μ g/ml[466]. At dosages significantly lower than MICs for both drugs, azithromycin's reduction of penicillin-binding proteins[490] may be insufficient for imipenem to saturate these proteins, allowing its unhindered inhibition of these proteins[490], thereby these actions proceed in non-interfering manner

Appendix Table S5 Literature reported pharmacodynamically antagonistic drug combinations in 2000-2006, in which antagonism has been determined by established methods and its molecular mechanism has been revealed. The antagonism of the listed drug combinations is due to interfering actions of the partner drugs in each combination.

Combination target relation	Drug A (mechanism of action related to antagonism)	Drug B (mechanism of action related to antagonism)	Reported antagonistic effect [Ref]	Antagonism determination method	Possible mechanism of antagonism of interfering actions
Different targets of related pathways that regulate the same target	17-AAG (heat-shock protein antagonist, induced cell cycle inhibition and apoptosis by inhibiting NF- kappaB, AP-1 and PI3K/Akt pathways[376], Hsp90/FLT3 inhibitor[480])	Cytarabine (DNA binder [437], inhibited synthesome associated DNA polymerase alpha activity[438])	17-AAG antagonized the cytotoxic activity of cytarabine[437]	Median dose effect analysis (Calcusym)	17-AAG altered the condition necessary for cytarabine to produce its activity. It induced G1 arrest, which subsequently prevented cytarabine incorporation into cellular DN[437]
	Amphotericin B (formed ion channels in fungal membranes[495])	Ravuconazole (inhibited biosynthesis of ergosterol, a component of fungal cell membrane[496])	Antagonism in experimental invasive pulmonary aspergillosis[497,498]	Loewe additivity- based drug- interaction model	Amphotericin B can form ion channels more easily in the presence of ergosterol [495], ravuconazole inhibition of ergosterol synthesis[496] can therefore reduce the activity of amphotericin B in forming ion channels[495]
Same target	4-HPR (Reduced ERK activity to inhibit prostate cancer cells[854], activated JNK to induce apoptosis[855], suppressed IκBα phosphorylation which inhibited NF-κB activation and downregulated antiapoptotic genes[854])	Sodium butyrate (Reduced ERK activity to inhibit prostate cancer cells[854], activated JNK to induce apoptosis[855] suppressed IκBα phosphorylation which inhibited NF-κB activation and downregulated antiapoptotic genes[854])	Sodium butyrate and 4-HPR administered together antagonize effects of each other on prostate cancer[854]	Isobologram	Co-administration of 4-HPR and sodium butyrate possibly affected each other's actions in suppressing IκBα phosphorylation, thereby reduced their inhibitory effects on NF-κB activation and antiapoptotic gene expression. NF-κB activation also downregulated JNK phosphorylation leading to inhibition of apoptosis in prostate cells[854].

Aminophylline (adenosine receptor antagonist, phosphodiesterase inhibitor, released intracellular calcium[478])	Theophylline (released intracellular calcium, adenosine receptor antagonist, phosphodiesterase inhibitor[478])	Antagonism of inhibitory adenosine autoreceptors and release of intracellular calcium[478]	Quantal release measurement	Adenosine receptor antagonist binding may be associated with non-unique binding site conformations [479]. Aminophylline binding may lock the receptor into a unique conformation that hinder theophylline binding, thereby producing antagonistic effect
---	---	---	--------------------------------	--

Appendix Table S6 Literature reported pharmacokinetically potentiative drug combinations, in which potentiative effect has been determined by established methods and its molecular mechanism has been revealed

Biochemical class of potentiative effect	Drug A (therapeutic or toxic effects and mechanism of actions)	Drug B (mechanism of action related to potentiative effect)	Reported potentiative effect [Ref]	Possible mechanism of potentiative actions
Positive regulation of drug transport or permeation	AZT (anti-HIV, HIV-1 reverse transcriptase inhibitor)	1,8-Cineole (formed hydrogen bonds with lipid head groups of stratum corneum lipids[502])	Enhanced cross-skin permeation of AZT[503]	Enabled drug transport across skin possibly by disrupting absorption barrier via binding to lipid head groups
	Ciprofloxacin (antibacterial, inhibited DNA gyrase, an enzyme specific and essential for all bacteria)	Gatifloxacin (inhibited efflux pump of ciprofloxacin[856])	Synergistic antibacterial action against pseudomonas aeruginosa via efflux pump inhibition[856]	Avoided drug excretion by inhibiting efflux pump of ciprofloxacin
	Doxorubicin (anticancer by DNA intercalation)	HPMA copolymer (formed conjugate with anthracycline[857])	Polymer anthracycline conjugation enabled bypass of multi-drug resistance[857]	Enabled drug absorption by avoiding its efflux via drug-polymer conjugate formation
	Fexofenadine (nonsedating antihistamine, H1-antagonist, renal uptake by hOAT3 transporter)	Probenecid (inhibited hOAT3 transporter uptake of fexofenadine[858])	Increased plasma concentration of fexofenadine due to inhibition of its renal elimination[859]	Avoided drug excretion by inhibiting hOAT3 transporter uptake of fexofenadine
	Levodopa (dopaminergic agent in Parkinson's disease)	Fatty acid synthesis inhibitor (selective inhibition of fatty acid synthesis delays barrier recovery rates after barrier perturbation of drugs[860])	Enhanced transcutaneous delivery of levodopa[860-862]	Delayed recovering of drug transport barrier by inhibiting the synthesis of barrier components
	Low molecular weight heparin (antithrombotic, antithrombin binder to inhibit activated coagulation factors)	Chitosan (absorption enhancer, reversibly interacted with components of tight junctions, leading to widening of paracellular routes and increased permeability of peptide drugs across	Oral drug absorption enhancement[499]	Disrupted drug absorption barrier across mucosal epithelia via interaction with barrier components

				1
		mucosal epithelia[499])		
	Low molecular weight heparin (antithrombotic, antithrombin binder to inhibit activated coagulation factors)	Sodium caprate (absorption enhancer, released calcium from intracellular stores via activation of phospholipase C in plasma membrane, which induced contraction of calmodulin-dependent actin microfilament, followed by dilatation of the paracellular route[863])	Sodium caprate acts as a relatively safe and efficient absorption enhancer of low molecular weight heparin[863-865]	Disrupted drug absorption barrier at plasma membrane
Enhanced drug distribution or localization	Fluorouracil (anticancer, metabolized by thymidine phosphorylase and others, metabolite inhibited thymidylate synthase that stopped DNA synthesis[550], metabolite stabilized P53 due to RNA- directed effects)	Sorivudine (antiviral, metabolized into (E)-5-(2-Bromovinyl)uracil by thymidine phosphorylase, which subsequently inactivates this enzyme by irreversible binding[866])	Enhanced toxic activity of fluorouracil by elevating its plasma concentrations[866]	Enhanced level of drug in plasma by metabolism and uptake inhibition
	Cerivastatin (cholesterol-lowering, HMG-CoA reductase inhibitor)	Gemfibrozil (inhibited CYP2C8 mediated metabolism of statins, inhibited OATP2 mediated uptake of cerivastatin[504])	Increased plasma concentration of statins by inhibiting their metabolism and uptake[504-506]	Enhanced level of drug in plasma by metabolism and uptake inhibition
	Cyclosporine (immunosuppressive via calcineurin antagonism, induced nephrotoxicity by decreasing renal blood flow, generating reactive free radicals, and inducing vasoconstriction and apoptosis)	Sirolimus (increased cyclosporine concentrations in whole blood and, particularly, in kidney[867])	Exacerbated renal dysfunction by cyclosporine[867]	Enhanced level of drug in tissue of toxic action
	HSV thymidine kinase gene and ganciclovir (anticancer gene therapy drug combination)	Ponicidin (significantly accumulated the phosphorylated metabolites of ganciclovir and suppressed the extracellular release of ganciclovir[868])	Potentiated ganciclovir cytotoxicity[868]	Enhanced level of prodrug metabolite
	Methamphetamine (psychomotor stimulant by targeting biogenic amine transporters)	D-chlorpheniramine (increased plasma and brain tissue concentrations of methamphetamine[869])	Significantly potentiated methamphetamine-induced psychomotor activation[869,870]	Enhanced level of drug in tissue of therapeutic action
	HSV thymidine kinase gene and ganciclovir (anticancer gene therapy	Scopadulciol (stimulated HSV thymidine kinase activity, increased	Improved efficacy of cancer gene therapy via enhanced activity and increased level	Enhanced level of prodrug metabolite

	drug combination)	levels of ganciclovir metabolite[871])	of prodrug metabolite[871]	
	Rosuvastatin (decreased levels of atherogenic lipoproteins in patients with or at high risk of cardiovascular disease, HMG-CoA inhibitor)	Cyclosporine (Inhibited OATP-C mediated uptake, rosuvastatin is a substrate of this process[872])	Significantly increased systemic exposure of rosuvastatin[872]	Enhanced level of drug by inhibiting drug uptake
	Rosuvastatin (decreased levels of atherogenic lipoproteins in patients with or at high risk of cardiovascular disease, HMG-CoA inhibitor)	Gemfibrozil (Inhibited OATP2 mediated uptake, rosuvastatin is a substrate of this process[873])	Increased plasma concentrations of rosuvastatin[874]	Enhanced level of drug by inhibiting drug uptake
Enhanced Drug metabolism	Fluorouracil (anticancer, metabolized by thymidine phosphorylase and others [875], metabolite inhibited thymidylate synthase that stopped DNA synthesis[550], metabolite stabilized P53 due to RNA- directed effects[876])	2'-deoxyinosine (modulator that enhances thymidine phosphorylase activity[500])	Enhanced antitumor activity of fluorouracil in human colorectal cell lines and colon tumor xenografts[500]	Enhanced metabolism of prodrug into active metabolite
	Doxorubicin (anticancer by DNA intercalation, converted to doxorubicinol by NADPH-dependent aldo/keto or carbonyl reductases [507], which produced cardiotoxicity by mediating transition from reversible to irreversible damage)	Paclitaxel (stimulated enzymatic activity of NADPH-dependent aldo/keto or carbonyl reductases[507])	Enhanced cardiotoxicity by increasing metabolism of doxorubicin into toxic metabolit[507]	Enhanced metabolism of drug into toxic metabolite
	Tirapazamine and cisplatin (Tirapazamine produced anti-cancer effect and potentiated cisplatin anticancer activities when metabolized by P450R into toxic free radical[877], cisplatin is a DNA adduct)	Adenoviral delivery of human P450R genes (enhanced tirapazamine metabolizing enzyme expression and metabolism of prodrug into active metabolite[877])	Targeted gene prodrug therapy increased efficacy of tirapazamine[877]	Enhanced metabolism of prodrug into active metabolite

Appendix Ta	able S7 Literature repo	rted pharmacokinetically	reductive drug co	mbinations, in wh	hich reductive effect h	as been determined by
established n	nethods and its molecu	ılar mechanism has been	revealed.			

Biochemical class of	Drug A (therapeutic or toxic effects	Drug B (mechanism of action related to	Reported reductive effect [Ref]	Possible mechanism of
reductive effect	and mechanism of actions)	reductive effect)		reductive actions
Drug transport and permeation	Amphotericin B (antileishmanial, formed aggregate with miltefosine[508])	Miltefosine (antileishmanial, formed aggregate with amphotericin B[508])	Reduced miltefosine-induced paracellular permeability enhancement in Caco-2 cell monolayers, inhibited uptake of both drugs, decreased transepithelial transport of both drugs[509]	Reduced drug permeability and transport
	Gamma-hydroxybutyrate (drug of abuse, increased dopamine concentration, MCT1 transporter mediated its disposition and renal reabsorption[878])	Luteolin (exhibited MCT1 transporter mediated uptake of gamma- hydroxybutyrate[879])	Significantly increased renal and total clearances of gamma- hydroxybutyrate[878]	Enhanced drug excretion
Drug distribution and localization	Cisplatin (DNA inter- and intra- strand adduct)	Procainamide hydrochloride (formed cisplatin-procainamide complex[511])	Reduced cisplatin-induced hepatotoxicity via formation of less toxic platinum complex, leading to inactivation of cisplatin or its highly toxic metabolites and to a different subcellular distribution of platinum[511]	Reduced level of toxic drug by formation of less toxic complex and rearrangement of its subcellular distribution
Drug metabolism	Warfarin (anticoagulant and antithrombotic, affected coagulation proteins that act sequentially to produce thrombin, metabolized by CYP3A4[512])	Quinidine (stimulated CYP3A4 mediated metabolism of warfarin[513])	Reduced anticoagulanet effect of warfarin by stimulating its metabolism[513]	Enhanced metabolism of active drug into inactive metabolite
	Diclofenac (anti-inflammatory, metabolized into 5-hydroxylated by cytochrome P450 CYP3A4[880])	Quinidine (stimulated CYP3A4 mediated metabolism of diclofenac[880])	Increased diclofenac clearance and reduced its plasma concentration by enhanced metabolism[880]	Reduced level of drug by enhanced metabolism
	Mycophenolate mofetil (immunosuppressive, a prodrug whose metabolite mycophenolic acid is a potent and reversible uncompetitive inhibitor of inosine monophosphate dehydrogenase, metabolized by	Rifampin (induced expression of gastrointestinal uridine diphosphate-glucuronosyltransferases[882])	Drug interaction leads to underexposure and loss of clinical efficacy of mycophenolate mofetil by induction of renal, hepatic, and gastrointestinal uridine diphosphate-glucuronosyltransferases and organic anion transporters[882]	Reduced level of drug by enhanced metabolism

gastrointestinal uridine diphosphate- glucuronosyltransferases[881]) Valproic acid (antiepileptic, increased gabaergic transmission, reduced release and/or effects of excitatory amino acids, blocked voltage-gated sodium channels, modulated dopaminergic and serotoninergic transmission, metabolized into valproic acid glucuronide[883])	Carbapenem antibiotics (inhibited the hydrolytic enzyme involved in the hydrolysis of valproic acid glucuronide to valproic acid, resulting in a decrease of plasma concentration of valproic acid[859])	Caused seizures in epileptic patients due to lowered plasma levels of valproic acid[859,884]	Reduced level of drug in plasma by metabolism inhibition
---	---	--	---

Appendix Table S8 Drug related sensitizing/resistant mutations of EGFR and cancer related activating mutations of EGFR, PIK3CA, RAS, and BRAF, and inactivation mutations of PTEN.

Disease	Type of Mutation	Percentage of 85 NSCLC Cell-lines or 40 Breast Cancer Cell-lines with This Type of Mutation	Specific Mutations (Number of NSCLC or Breast Cancer Cell-lines with This Mutation)
	Gefitinib , erlotinib , and lapatinib sensitizing mutation of EGFR ^[576]	11.7%	E746_A750del (4) / E746_A750del, T751A(1) / E746_T751del, I ins(1) / L747_E749del, A750P(1) / L747_S752del, P753S(1) / L858R(2)
	Gefitinib, erlotinib, and lapatinib resistant mutation of EGFR ^[576]	2.4%	T790M (2)
	Gefitinib and erlotinib resistant mutation of HER2 ^[885]	1.2%	G776VC (1)
NSCLC	Activating mutation of KRAS ^[886]	32.9%	G12A (1) / G12C (9) / G12D (3) / G12R (1) / G12S (1) / G12V (4) / G13C (2) / G13D (4) / Q61H (2) / Q61K (1)
	Activating mutation of NRAS ^[886]	5.9%	Q61K (3) / Q61L (1) / Q61R (1)
	Activating mutation of BRAF ^[887]	7.1%	G466V(1) / G469A(3) / L597V(1) / V600E(1)
	Activating mutation PIK3CA [888,889]	4.7%	E542K (1) / E545K (2) / H1047R(1)
	Inactivating mutation PTEN ^[890]	4.7%	H61R(1) / G251C(1) / R233*(2)
Breast Cancer	Activating mutation PIK3CA ^[889]	41.9%	C420R(2) / E542K(2) / E545K(2) / H1047L(1) / H1047R(6) / P539 (1)
Breast Cancer	Inactivating mutation PTEN ^[891]	12.9%	A72fsX(1) / C136Y(1) / D92H(1) / V275fs*(1)

,

Call lines	Diagan	Metotod Conc[501 502]	Turne of Martation	Mutation Details		
Cen-nnes	Disease	Mutated Gene[591,592]	Type of Mutation	Amino Acid	Nucleotide	
A427	NSCLC	KRAS	Activating mutation	G12D	35G>A	
A549	NSCLC	KRAS	Activating mutation	G12S	34G>A	
Calu1	NSCLC	KRAS	Activating mutation	G12C	34G>T	
Calu3	NSCLC	ND				
Calu6	NSCLC	KRAS	Activating mutation	Q61K	181C>A	
Colo699	NSCLC	ND *				
DV90	NSCLC	KRAS	Activating mutation	G13D	38G>A	
EKVX	NSCLC	ND				
H1155	NSCLC	KRAS	Activating mutation	Q61H	183A>T	
H1155	NSCLC	PTEN	Inactivating mutation	R233*	697C>T	
H1299	NSCLC	NRAS	Activating mutation	Q61K	181C>A	
H1355	NSCLC	KRAS	Activating mutation	G13C	37G>T	
H1355	NSCLC	BRAF	Activating mutation	G469A	1406G>C	
H1395	NSCLC	BRAF	Activating mutation	G469A	1406G>C	
H1437	NSCLC	ND				
H1563	NSCLC	PIK3CA*	Activating mutation	E542K	1624G>A	
H1568	NSCLC	ND				
H157	NSCLC	KRAS	Activating mutation	G12R	34G>C	
H157	NSCLC	PTEN	Inactivating mutation	G251C	751G>T	
H157	NSCLC	PTEN	Inactivating mutation	H61R	182A>G	
H1648	NSCLC	ND				
H1650	NSCLC	EGFR	EGFR sensitizing mutation	E746_A750del	2235_2249del15	
H1666	NSCLC	BRAF	Activating mutation	G466V	1397G>T	
H1734	NSCLC	KRAS	Activating mutation	G13C	37G>T	

Appendix Table S9 Cancer related and drug related specific mutations in 85 NSCLC and 40 breast cancer cell-lines.

111755	NECLC	DDAE		C4(0)	140(C) C
H1/55	NSCLC	BKAF	Activating mutation	G469A	1406G>C
H1770	NSCLC	ND			
H1781	NSCLC	ERBB2*	gefitinib and erlotinib resistant mutation	G776VC	
H1792	NSCLC	KRAS	Activating mutation	G12C	34G>T
H1819	NSCLC	ND			
H1838	NSCLC	ND			
H1915	NSCLC	ND*			
H1944	NSCLC	KRAS*	Activating mutation	G13D	38G>A
H1975	NSCLC	EGFR	EGFR-I sensitizing mutation	L858R	2573T>G
H1975	NSCLC	EGFR	EGFR-I resistant mutation	T790M	2369C>T
H1993	NSCLC	ND			
H2009	NSCLC	KRAS	Activating mutation	G12A	35G>C
H2030	NSCLC	KRAS	Activating mutation	G12C	34G>T
H2052	NSCLC	ND			
H2077	NSCLC	ND*			
H2087	NSCLC	BRAF	Activating mutation	L597V	1789C>G
H2087	NSCLC	NRAS	Activating mutation	Q61K	181C>A
H2110	NSCLC	ND			
H2122	NSCLC	KRAS	Activating mutation	G12C	34G>T
H2126	NSCLC	ND			
H2172	NSCLC	ND*			
H2228	NSCLC	ND			
H23	NSCLC	KRAS	Activating mutation	G12C	34G>T
H23	NSCLC	PTEN	Inactivating mutation	R233*	697C>T
H2347	NSCLC	NRAS	Activating mutation	Q61R	182A>G
H2444	NSCLC	KRAS*	Activating mutation	G12V	

H28	NSCLC	ND			
H2882	NSCLC	ND			
H2887	NSCLC	KRAS*	Activating mutation	G12V	
H3122	NSCLC	ND			
H322	NSCLC	ND			
H3255	NSCLC	EGFR	EGFR-I sensitizing mutation	L858R	34G>T
H358	NSCLC	KRAS	Activating mutation	G12C	34G>T
H441	NSCLC	KRAS	Activating mutation	G12V	35G>T
H460	NSCLC	PIK3CA	Activating mutation	E545K	1633G>A
H460	NSCLC	KRAS	Activating mutation	Q61H	183A>T
H520	NSCLC	ND			
H522	NSCLC	ND			
H596	NSCLC	PIK3CA	Activating mutation	E545K	1633G>A
H647	NSCLC	KRAS	Activating mutation	G13D	38G>A
H661	NSCLC	ND			
H820	NSCLC	EGFR*	EGFR-I sensitizing mutation	E746_T751del, I ins	
H820	NSCLC	EGFR*	EGFR-I resistnat mutation	T790M	2369C>T
HCC1171	NSCLC	KRAS*	Activating mutation	G12C	
HCC1195	NSCLC	NRAS*	Activating mutation	Q61L	
HCC1359	NSCLC	ND*			
HCC15	NSCLC	NRAS*	Activating mutation	Q61K	
HCC1833	NSCLC	ND*			
HCC193	NSCLC	ND*			
HCC2279	NSCLC	EGFR*	EGFR-I sensitizing mutation	E746_A750del	2235_2249del15
HCC2429	NSCLC	ND*			
HCC2450	NSCLC	PIK3CK*	Activating mutation	H1047R	3140A>G
HCC2935	NSCLC	EGFR*	EGFR-I sensitizing mutation	E746_A750del, T751A	

			-		
HCC364	NSCLC	BRAF	Activating mutation	V600E	1799T>A
HCC366	NSCLC	ND*			
HCC4006	NSCLC	EGFR*	EGFR-I sensitizing mutation	L747_E749del, A750P	
HCC44	NSCLC	KRAS*	Activating mutation	G12C	
HCC461	NSCLC	KRAS*	Activating mutation	G12D	
HCC515	NSCLC	KRAS*	Activating mutation	G13D	
HCC78	NSCLC	ND*			
HCC827	NSCLC	EGFR*	EGFR-I sensitizing mutation	E746_A750del	2235_2249del15
HCC95	NSCLC	ND*			
HOP62	NSCLC	KRAS	Activating mutation	G12C	34G>T
HOP92	NSCLC	ND			
LCLC103H	NSCLC	ND			
LCLC97TM	NSCLC	KRAS	Activating mutation	G12V	35G>T
LouNH91	NSCLC	EGFR*	EGFR-I sensitizing mutation	L747_S752del, P753S	
PC9	NSCLC	EGFR*	EGFR-I sensitizing mutation	E746_A750del	2235_2249del15
SKLU1	NSCLC	KRAS*	Activating mutation	G12D	35G>A
AU565	Breast cancer	ND			
BT20	Breast cancer	PIK3CA	Activating mutation	P539R	1616C>G
BT20	Breast cancer	PIK3CA	Activating mutation	H1047R	3140A>G
BT474	Breast cancer	ND			
BT549	Breast cancer	PTEN	Inactivating mutation	V275fs*1	823delG
CAL-51	Breast cancer	PIK3CA	Activating mutation	E542K	1624G>A
CAMA1	Breast cancer	PTEN	Inactivating mutation	D92H	274G>C
EFM19	Breast cancer	PIK3CA	Activating mutation	H1047L	3140A>T
EFM19	Breast cancer	PIK3CA*	Activating mutation	H1047R	3140A>G
EFM192A	Breast cancer	PIK3CA*	Activating mutation	C420R	
HCC1143	Breast cancer	ND			
	1				

HCC1395	Breast cancer	ND			
HCC1419	Breast cancer	ND			
HCC1954	Breast cancer	PIK3CA*	Activating mutation	H1047R	3140A>G
HCC70	Breast cancer	ND			
HS578T	Breast cancer	HRAS	Activating mutation	G12D	c35G>A
JIMT-1	Breast cancer	PIK3CA [#]	Activating mutation	C420R	
KPL1	Breast cancer	ND*			
MCF7	Breast cancer	PIK3CA	Activating mutation	E545K	c633G>A
MDA-MB-157	Breast cancer	ND			
MDA-MB-175VII	Breast cancer	ND			
MDA-MB-231	Breast cancer	BRAF	Activating mutation	G464V	1391G>T
MDA-MB-231	Breast cancer	KRAS	Activating mutation	G13D	38G>A
MDA-MB-361	Breast cancer	PIK3CA	Activating mutation	E545K	1633G>A
MDA-MB-361	Breast cancer	PIK3CA	Activating mutation	K567R	1700A>G
MDA-MB-415	Breast cancer	PTEN	Inactivating mutation	C136Y	407G>A
MDA-MB-435s	Breast cancer	BRAF	Activating mutation	V600E	1799T>A
MDA-MB-436	Breast cancer	ND			
MDA-MB-453	Breast cancer	PTEN	Inactivating mutation	E307K	919G>A
MDA-MB-453	Breast cancer	PIK3CA	Activating mutation	H1047R	3140A>G
MDA-MB-468	Breast cancer	PTEN	Inactivating mutation	A72fsX5	253+1G>T
SK-BR-3	Breast cancer	ND			
T47D	Breast cancer	PIK3CA	Activating mutation	H1047R	3140A>G
UACC812	Breast cancer	ND*			
UACC893	Breast cancer	PIK3CA	Activating mutation	H1047R	3140A>G
ZR-75-1	Breast cancer	ND			

ZR-75-30	Breast cancer	ND			
----------	---------------	----	--	--	--

* Mutation was only reported in Ref [592]; # PIK3CA mutation of JIMT-1 was reported by Ref [892]

Abbreviations: ND, no sensitizing/resistant/activating mutation was detected according to COSMIC database and Ref 4.

Appendix Table S10 Sensitivity data of NSCLC cell-lines treated with gefitinib, erlotinib, and lapatinib

NSCLC Sensitivity of C line to Gefitir		Reported Potency (IC50) of Gefitinib Inhibition (μM)		Sensitivity of Cell- line to Erlotinib	Reported P of Erlotin	otency (IC50/ED50) ib Inhibition (µM)	Sensitivity of Cell- line to Lapatinib	Reported Potency (ED50) of Lapatinib Inhibition (μM)
Cen-nne	Inhibition [#]	Ref [594]	Ref [593]	Inhibition [#]	Ref [594]	Ref [590]	Inhibition [#]	Ref [590]
A427				R		1.24	R	9.4406
A549	R	25		R	60	10	R	10
Calu1	R		41	R		10	R	10
Calu3	S	0.78		-	1.29	0.7	S	0.1679
Calu6	R		34	R		9.65	R	2.7542
Colo699				R		4.26	R	5.8884
DV90				R		3.95	R	1.4125
EKVX				R		10	R	10
H1155	R	183		R	8.63			
H1299	R	26.4		R	41.9	10	R	10
H1355	R	325		R	27	3.31	R	5.6885
H1395	R	71		R	10.5	5.05	R	6.6834
H1437	R	62		R	12.5	10	R	10
H1563				R		10	R	10
H1568				R		1.08	R	2.541
H157	R	115		R	128	10	R	10
H1648	R	36.7		R	34	7.77	S	0.9441
H1650	R	11.7		R	15	2.13	R	3.8905
H1666	R	180		R	13	3.31	S	0.5957
H1734				R		3.79	R	4.3652
H1755				R		7.5	R	10

					Appendic	es	
H1770	R	160	R	111	10		
H1781	R	19	R	44	2.54	R	2.9174
H1792			R		10	R	10
H1819	R	19	R	6.3	3.92	S	0.7328
H1838			R		3.47	R	10
H1915			R		10	R	10
H1944			R		1.83	R	10
H1975	R	25	R	33	10	R	10
H1993	R	17.9	R	5.2	8.06	R	4.3152
H2009	R	33.2	R	25.8	10	R	10
H2030			R		4.95	R	5.0119
H2052			R		8.98	R	10
H2077			R		10	R	10
H2087	R	18.4	R	9.9	10	R	10
H2110			R		4.5	R	2.7861
H2122	R	35	R	76.8	10	R	10
H2126	R	21.4	R	13	10	R	10
H2172			R		10	R	8.9125
H2228			R		10	R	10
H23			R		10	R	5.6234
H2347	R	60	R	5.2	10	R	5.9566
H2444			R		4.22	R	7.6736
H28			R		10	R	1.6032
H2882	R	19.2	R	66	10	R	5.1286
H2887	R	110	R	101	10	R	10
H3122			R		10	R	10
H322	R	120	R	56	2.21	R	2.4831

						Appendice	<u>s</u>	
1	1	1	1	I	1	1	1	1
H322M				R		1.29	S	0.4416
H3255	S	0.089		S	0.129	0.02	S	0.309
H358	R	12.5		R	6.2	1.11	R	1.6032
H441	R	15.7		R	7.1	3.61	R	10
H460	R	16.9		R	72	10	R	3.3113
H520	R	13.6		R		10	R	6.8391
H522				R		5.83	R	8.7096
H596				R		1.2	R	10
H647				R		10	R	10
H661				R		10	R	10
H820	R	3		R	7.1	10	R	10
HCC1171	R	127		R	160	10	R	10
HCC1195	R	27.6		R	175	10	NA	
HCC1359	R	65		R	88	10	R	10
HCC15	R	52		R	100	10	R	10
HCC1833				R		10	R	2.6915
HCC193	R	21.1		R	20.5	10	R	1.7378
HCC2279	S	0.0479		S	0.093	0.01	R	10
HCC2429				R		10	R	5.9566
HCC2450				R		10	R	10
HCC2935	S	0.11		S	0.163	0.07	S	0.2344
HCC364				R		4.19	R	10
HCC366	R	30		R	11	0.99	R	10
HCC4006	S	0.23		S	0.124	0.04	S	0.537
HCC44	R	57.8		R	28	10	R	10
HCC461	R	13.9		R	16	9.04	R	10
HCC515	R	120		R	154	1.85	R	9.5499

	Appendices							
HCC78	R	81		R	21.2	10	R	4.1687
HCC827	S	0.04		S	0.0388	0.02	S	0.7943
HCC95	R	24		R	18.4	10	R	3.2359
HOP62				R		10	R	5.4325
HOP92				R		10	R	10
LCLC103H				R		10	R	10
LCLC97TM				R		5.26	R	7.3282
LouNH91				R		3.05	R	5.1286
PC9	S	0.0309		S		0.02	R	1.4962
SKLU1				R		10	R	10

* A cell-line with IC50 $\leq 1 \mu$ mol/L for gefitinib, erlotinib, and lapatinib was considered to be sensitive (S) to a given drug^[583], otherwise it was considered as resistant (R) to the drug. - : cell-line with inconsistent sensitivity data, which is not included in this study.

Broast Concor	Sensitivity of Cell-line	Reported	Potency of The the inhibition of the second	rastuzumab I	nhibition	Sensitivity of Cell-	Reported Potency(IC50) of Lapatinib			
Cell-lines	to Trastuzumab	(<i>7025</i> grow	or ED50	≤1µg/ml)	at 10 µg/111	line to Lapatinib]	Inhibition (μM)		
	inhibition"	Ref [599]	Ref [600]	Ref [601]	Ref [598]	Inhibition"	Ref [602]	Ref [604]	Ref [603]	
BT20	R			R		R	9.8			
BT474	S	S	S	S	S	S	0.022	0.025		
BT549	R		R			R		6.35		
CAL51						R	1.2			
CAMA1	R		R			R	8.3			
EFM19						R	4.6			
EFM192A	R				R	R	1.1			
HCC1143	R			R						
HCC1395	R			R						
HCC1419	S	S	S							
HCC1954	R	R	R							
HCC70	R		R							
Hs578T						R		5.11		
JIMT-1	R	R				R			>1.5	
KPL1						R	5.4			
MCF7	R	R	R	R		R	7.7	4.82		
MDA-MB-157						R	6.3			
MDA-MB-175VII						S	0.012			
MDA-MB-231	R		R	R		R	18.6	7.01		
MDA-MB-361	R		R		R	R	0.99			
MDA-MB-415	R		R							
MDA-MB-435s	R		R	R		R	8.5			
MDA-MB-436	R			R						
MDA-MB-453	S		S			-	3.9	0.079		
MDA-MB-468	R			R		R	4.7	2.32		
SK-BR-3	S	S	S			S	0.037	0.032		
T47D	R		R	R		R	1.9	4.83		
UACC812	S		S			S	0.01			
UACC893	R		R			S	0.433			

Appendix Table S11 Sensitivity data of breast cancer cell-lines treated with trastuzumab and lapatinib

	Appendices												
ZR75-1	-		R	S		R	9.9	3.01					
7R75 -30	2	2	2										

ZR75-30SSS# A cell-line with IC50 $\leq 1 \mu mol/L$ for lapatinib or %25 growth inhibition of cancer cells at $10 \mu g/ml$ for Trastuzumab was considered to be sensitive (S) to a given drug^[583],
otherwise it was considered as resistant (R) to the drug. - : cell-line with inconsistent sensitivity data, which is not included in this study.

Sample	cluster ID ¹	Age	Sex	Tumor stage. either 1 or 3	T (tumor size)	N (nodal status)	Survival times (month) ²	Patient's survival status	classification (tumor histological type) ³	Tumor differentiation	p53 nuclear accumulation status	12/13th codon K- ras mutation status	Smoking ⁴
AD2	Cluster 1	65.6	F	1	1	0	91.8	alive	BD	Poor	+	-	48
AD5	Cluster 1	62	F	1	2	0	108.2	alive	BA	Well	-	+	positive
L01	Cluster 1	76.7	М	1	2	0	47	alive	BD/CC	Poor	-	-	100
L06	Cluster 1	57.9	F	1	1	0	91.9	alive	BD	Poor	-	+	NA
L26	Cluster 1	61.4	Μ	1	2	0	17.7	alive	BD	Poor	-	+	90
L33	Cluster 1	53.5	F	3	4	0	29.4	alive	BD	Moderate	-	-	23
L43	Cluster 1	50.6	F	1	2	0	78.5	alive	BD	Moderate	-	-	57
L56	Cluster 1	60.2	М	1	1	0	61.8	alive	BD/CC	Moderate	+	-	90
L62	Cluster 1	52.3	F	3	3	2	52.4	alive	BD	Moderate	-	-	none
L83	Cluster 1	62	F	1	2	0	30.6	alive	BA/mucinous	Well	-	-	none
L91	Cluster 1	63.7	М	3	2	2	6.1	alive	BD/mucinous	Poor	-	-	30
L92	Cluster 1	55.4	Μ	3	4	0	8.5	alive	BD	Poor	-	-	50
AD10	Cluster 1	65	Μ	1	1	0	84.1	death	BD	Moderate	-	NA	60
L04	Cluster 1	51.7	М	1	2	0	45.8	death	BD	Poor	-	-	50
L13	Cluster 1	67.1	М	1	1	0	79.5	death	BD	Moderate	+	+	25
L19	Cluster 1	56.5	М	3	3	2	9.6	death	BD	Moderate	-	+	40
L34	Cluster 1	77.2	М	3	1	2	14.9	death	BD	Moderate	+	-	45
L36	Cluster 1	69.7	М	3	1	2	7.2	death	BD/PA	Moderate	-	+	25
L37	Cluster 1	64.4	М	3	1	2	2.6	death	BD	Poor	-	+	84
L41	Cluster 1	73.1	F	1	2	0	8.4	death	BD/CC	Poor	-	+	26
L54	Cluster 1	45.8	F	3	3	1	4	death	BD	Poor	+	+	75
L40	Cluster 1	54.9	F	3	1	2	20.1	death	BD	Moderate	-	-	7.5
L80	Cluster 1	68.2	F	1	2	0	10.1	death	BD/mucinous	Moderate	+	+	50
L61	Cluster 1	63.1	F	1	2	0	20.6	death	BD	Moderate	-	-	30
L95	Cluster 1	72	F	3	2	2	5.4	death	BD	Poor	-	+	50
L96	Cluster 1	64	F	3	3	1	21.2	death	BD	Moderate	-	+	50
AD7	Cluster 2	56	М	1	1	0	68.1	alive	BD	Moderate	+	-	80
L02	Cluster 2	63.2	М	1	1	0	39.1	alive	BD	Poor	-	-	27

Appendix Table S13 The clinical information of 86 lung adenocarcinoma samples from Beer et al [662]

L09	Cluster 2	48.2	F	1	1	0	98.7	alive	BD	Moderate	-	+	none
L101	Cluster 2	46.3	F	1	1	0	40	alive	B/A/mucinous	Well	-	-	NA
L103	Cluster 2	84.6	F	1	1	0	30.8	alive	B/A	Well	-	-	none
L104	Cluster 2	68.5	F	1	1	0	24.4	alive	B/A	Well	-	-	5
L105	Cluster 2	74.2	F	1	1	0	28.3	alive	B/A with PA	Well	-	+	75
L108	Cluster 2	61	F	1	1	0	19.5	alive	B/A	Well	-	+	100
L111	Cluster 2	54.9	F	1	1	0	1.5	alive	B/A	Well	-	+	40
L12	Cluster 2	44.6	F	1	1	0	85.2	alive	BD	Moderate	-	-	15
L18	Cluster 2	82.5	F	1	1	0	48.2	alive	BD	Well	-	-	none
L23	Cluster 2	62.2	М	3	2	2	15.1	alive	BD/PA	Moderate	-	+	20
L25	Cluster 2	62.6	F	1	2	0	14.5	alive	BD	Well	-	+	50
L27	Cluster 2	70	М	1	1	0	21.1	alive	BD	Poor	+	-	60
L38	Cluster 2	78.5	F	3	4	2	10	alive	BD	Poor	+	+	2
L42	Cluster 2	76	F	1	1	0	63.4	alive	BD	Well	-	-	40
L46	Cluster 2	60.4	М	1	2	0	82.4	alive	BD	Poor	-	+	160
L47	Cluster 2	60	М	1	2	0	60.5	alive	BD	Moderate	-	+	27
L48	Cluster 2	42.8	М	1	1	0	77.8	alive	BD	Moderate	-	-	60
L52	Cluster 2	67.3	М	1	1	0	65.4	alive	BA	Well	-	-	30
L57	Cluster 2	73.6	F	1	2	0	54.8	alive	BD/PA	Moderate	-	+	50
L65	Cluster 2	59.6	М	1	1	0	52.9	alive	BD	Moderate	-	-	60
L78	Cluster 2	75.6	F	1	1	0	36.5	alive	BD	Moderate	-	+	108
L82	Cluster 2	69.2	F	1	1	0	34.1	alive	BA/BD	Well	-	-	40
L85	Cluster 2	60.2	М	1	1	0	26.8	alive	BD/mucinous	Moderate	-	+	60
L97	Cluster 2	63.6	F	1	1	0	4.9	alive	B/A	Well	-	+	34
L50	Cluster 2	72.1	М	1	1	0	19	death	BD/PA	Moderate	+	+	100
AD3	Cluster 3	59.5	F	1	2	0	93.7	alive	BD	Moderate	-	-	positive
AD8	Cluster 3	75	Μ	1	2	0	34.2	alive	BD	Moderate	-	-	14
L05	Cluster 3	54.6	F	1	1	0	110.6	alive	BD/CC	Moderate	-	-	29
L08	Cluster 3	59.9	F	1	1	0	107.9	alive	BD	Moderate	-	+	80
L102	Cluster 3	74.6	F	1	1	0	40	alive	BD	Moderate	-	-	50
L106	Cluster 3	82.8	F	1	1	0	25.3	alive	B/A	Well	-	-	none
L107	Cluster 3	59.4	F	1	1	0	13	alive	BD	well/mod.	-	+	none

L17	Cluster 3	40.9	F	1	2	0	83.7	alive	BD/PA	Moderate	-	+	15
L22	Cluster 3	65.6	Μ	1	1	0	12.5	alive	BD	Moderate	+	-	90
L30	Cluster 3	51.8	F	1	1	0	20.2	alive	BD	Moderate	+	-	20
L31	Cluster 3	62.1	F	1	1	0	25.2	alive	BA/mucinous	Well	-	-	20
L49	Cluster 3	65.8	F	1	1	0	70.7	alive	BD	Moderate	-	+	20
L59	Cluster 3	71.5	F	3	2	2	54.6	alive	BD/PA	Moderate	-	+	25
L64	Cluster 3	65.4	М	1	2	0	48.1	alive	BD	Moderate	+	-	12
L76	Cluster 3	46.2	М	1	1	0	87.7	alive	BD	Poor	-	+	50
L81	Cluster 3	58.4	М	1	1	0	36	alive	BA	Well	-	-	90
L84	Cluster 3	66.8	F	1	2	0	32.2	alive	BD	Poor	-	-	15
L86	Cluster 3	62.7	F	1	1	0	10.1	alive	B/A	Well	-	-	45
L87	Cluster 3	66.3	М	1	1	0	10.4	alive	BD	Moderate	+	-	18
L88	Cluster 3	52.9	F	1	1	0	8.3	alive	BD	Poor	+	+	60
L89	Cluster 3	58.8	М	3	2	2	12.2	alive	BD	Moderate	NA	+	48
L99	Cluster 3	73.8	М	1	2	0	4.5	alive	B/A/mucinous	Well	-	+	55
L100	Cluster 3	72.9	F	1	1	0	43.8	censored	B/A	Well	-	-	2.5
L24	Cluster 3	84.5	F	1	1	0	1.6	censored	BD	Poor	-	-	75
AD6	Cluster 3	66.2	М	1	2	0	34.6	death	BA	Well	-	+	NA
L11	Cluster 3	68.2	F	1	2	0	34.7	death	BA	Well	-	+	none
L20	Cluster 3	79.8	М	1	2	0	19.9	death	BA	Well	-	-	30
L35	Cluster 3	64.4	М	3	2	2	28.2	death	BD	Moderate	+	+	4
L45	Cluster 3	74.9	F	1	1	0	29.6	death	BD	Poor	-	+	30
L53	Cluster 3	58.5	F	3	2	2	16.6	death	BD/PA	Moderate	-	-	none
L79	Cluster 3	49	F	1	2	0	8.7	death	BD	Poor	-	-	60
L90	Cluster 3	63.8	F	1	1	0	5.8	death	BD/PA	Moderate	-	-	100
1.94	Cluster 3	72	М	3	3	2	2.4	death	BD/mucinous	Moderate	-	-	50

¹These clusters are obtained from hierarchical cluster analysis of the 86 samples and 21 survival marker genes share by 10 signatures ²This is patient's survival time from operation date to death or last follow up as of May 2001 ³BD: bronchial derived; BA: bronchial alveolar; CC: clear cell; PA: papillary; Note that some tumors contained a mixture of two histological types

⁴Patient smoking history in packs per year

Sample ID	Cluster ID ¹	Age	Sex	Stage:AJCC TNM	Stage Summary	Survival time (month) ²	Patient's status*	Clinical Path (type diameter features) ³	Path II ⁴	Site of elapse/ metastasis	Smoking ⁵
AD111	Cluster 3	76	F	T1NxMx	IA	72.4	1	ad 2.0 m-p			40
AD115	Cluster 2	70	F	T2N1M0	IIB	21.9	3	ad 6.5 m	adm/adw	lung, LN	75
AD118	Cluster 3	69	М	T1N0Mx	IA	49.6	3	ad 2.5 m	adm	lung, LN	25
AD120	Cluster 3	68	М	T2N0Mx	IB	38.9	3	ad 8.0 m	adm	bone	54
AD122	Cluster 1	73	F	T2N1Mx	IIB	33.9	3	ad 5.0 m	adm	lung	0
AD123	Cluster 1	60	М	T3N0Mx	IIB	74	1	ad 5.0 m	adm,pap		126
AD127	Cluster 3	65	F	T1N2Mx	IIIA	8.2	3	ad 1.8 p	adp	LN	69
AD130	Cluster 1	75	М	T2N1Mx	IIB	7.1	d	ad 15.0 BAC	BAC		100
AD136	Cluster 1	66	F	T2N0Mx	IB	31.4	1	ad 4.0 m	adm		100
AD159	Cluster 1	71	М	T2N1Mx	IIB	19.7	d	ad 5.5 m-p	adw,acinar		80
AD162	Cluster 3	75	F	T2N0Mx	IB	41.7	1	ad 3.5 m	admod,acinar		60
AD164	Cluster 1	68	М	T3N0Mx	IIB	15	3	ad 4.5 p	adpoor, acinar	LN	80
AD167	Cluster 2	77	М	T2N0Mx	IB	41.7	1	ad 2.5 w w/BAC	adw,acinar/adm bac		0
AD169	Cluster 1	47	F	T2N0Mx	IB	20	3	ad 2.5 m	adw/pap or BAC,mucinous w/pap	bone, myocardium	21.6
AD170	Cluster 3	61	F	T1N0M0	IA	78.4	1	ad 2.5 w w/pap	BAC & pap,well		60
AD173	Cluster 1	57	F	T2N1Mx	IIB	22.3	d	ad 5.0 m-p	admod,acinar		27
AD179	Cluster 2	85	М	T2N0Mx	IB	24.3	3	ad 5.6 m w/BAC	adw//adw,acinar	lung, bone	24.75
AD187	Cluster 1	69	М	T1N0Mx	IA	86.3	3	ad 1.8 p	adp	lung	120
AD183	Cluster 2	75	F	T1N0Mx	IA	42.2	2	ad 2.0 m BAC	adw//adw,acinar		22.5
AD188	Cluster 1	74	F	T2NxMx	IB	21.6	d	ad 2.7 BAC	adw,acinar		116
AD201	Cluster 1	46	М	T1N2	IIIA	12.3	3	ad 1.5 m		lung, bone	90
AD203	Cluster 3	60	F	T1N0Mx	IA	106.1	1	ad 2.2 m-p			0
AD207	Cluster 3	64	F	T2	IB	66.8	4	ad 3.5 w BAC	ad m		0
AD212	Cluster 3	55	F	T2N0M0	IB	59	1	ad 3.0 m-p			54
AD213	Cluster 2	69	М	T1Nx	IA	48.8	d	ad 2.5 m			111

Appendix Table S14The clinical information of 84 lung adenocarcinoma samples from Bhattacharjee et al [663]

AD225	Cluster 1	88	М	T2NxMx	IB	2.6	4	ad 3.5 m			72
AD226	Cluster 1	56	F	T1N0Mx	IA	60.5	1	ad 2.0 m			18
AD228	Cluster 1	60	F	T2N0	IB	41.2	3	ad 3.0 m		brain	75
AD230	Cluster 3	56	М	T1N0	IA	56.7	1	ad 2.5 p	adp		60
AD232	Cluster 3	73	М	T1Nx	IA	56.3	а	ad 2.4 w BAC	adm (BAC cluster)		25
AD236	Cluster 1	53	F	T2N0Mx	IB	14.2	3	ad 5.5 m-p		lung, brain	40
AD239	Cluster 3	60	М	T2N0M0	IB	58.5	1	ad 2.9 m w/BAC	BAC		40
AD240	Cluster 1	77	F	T1N0M0	IA	43.5	1	ad 2.0 m-w			5
AD243	Cluster 2	64	F	T1N0M0	IA	50.1	1	ad 1.5 w w/BAC	adw resemblance to BAC		30
AD247	Cluster 3	49	М	T1N0	IA	71.1	1	ad 2.0 m			32
AD249	Cluster 1	67	М	T1Nx	IA	31	4	ad 1.2 m			45
AD250	Cluster 3	61	F	T1Nx	IA	91	2	ad 2.0 w w/BAC	adm	lung	10
AD252	Cluster 2	66	F	T1N0	IA	16.5	3	ad 1.4		LN, CSF, brain	50
AD255	Cluster 3	79	М	T2N0	IB	44.8	1	ad 3.5 m			50
AD258	Cluster 1	67	М	T2Nx	IB	12.3	3	ad 4.5 p		bone	54
AD259	Cluster 2	58	М	T3N0	IIB	20.5	d	ad 5.0			45
AD260	Cluster 1	61	М	T2Nx	IB	21	d	ad 3.0 m	adm some BACpattern		50
AD261	Cluster 2	66	F	T1N0	IA	57.6	1	ad 2.7 w w/BAC			75
AD262	Cluster 2	63	F	T4N1Mx	IIIB	16.6	4	ad 2.0 m-p			10
AD266	Cluster 2	65	F	T1N0	IA	41.9	3	ad 2.5 w w/BAC	adm	lung, bone, liver	0
AD267	Cluster 3	61	М	T2N0M0	IB	56	1	ad 2.8 m-p			120
AD268	Cluster 3	50	F	T2N0M0	IB	50.1	1	ad 3.5 p			10
AD276	Cluster 2	68	М	T2N2	IIIA	4.5	3	ad 2.1 m-p		pleura, brain	140
AD277	Cluster 3	72	F	T1Nx	IA	8.2	3	ad 3.0 m		liver, ?bone	27
AD283	Cluster 3	78	М	T1N0	IA	47.2	3	ad 2.5 m w/pap		lung, LN, bone, groin	20
AD287	Cluster 3	36	F	T4Nx	IIIB	7.4	d	ad 4.0 p	adp		10
AD296	Cluster 1	63	М	T1N1	IIA	9.3	3	ad 2.4 m-p w/pap		liver	88
AD299	Cluster 1	78	F	T1N0M0	IA	37.9	3	ad 2.2 m-p		lung	50
AD301	Cluster 1	59	F	T2N0M0	IB	7.8	3	ad 4.0 p		brain	40

Appendices

AD302	Cluster 3	65	F	T2N3Mx	IIIB	57.8	3	ad 3.7 w BAC	adm w/BAC	lung	0
AD304	Cluster 2	71	F	T2N0	IB	8.2	3	ad 5.0 p		lung, liver, spleen	35
AD308	Cluster 3	62	М	T2N0	IB	79	2	ad 4.0 m		brain	66
AD309	Cluster 1	77	F	T2N0	IB	37.6	3	ad 3.4 w	adw	lung	0
AD311	Cluster 1	63	F	T2N0	IB	50.5	1	ad 5.0 m	ok 50%		13
AD313	Cluster 1	74	F	T1N0	IA	25.3	3	ad 1.5 m-p	adp	LN	90
AD317	Cluster 3	41	F	T2Nx	IB	99.1	1	ad 3.5 m pap			7
AD318	Cluster 1	54	М	T2N0M0	IB	83	1	ad 4.0 muc	adm		100
AD323	Cluster 1	56	F	T2N1	IIB	6.8	d	ad 4.0 p			39
AD327	Cluster 1	50	F	T2N0	IB	81.9	1	ad 6.5 m			27
AD330	Cluster 3	50	F	T1N1	IIA	7.3	3	ad 2.4 m		brain	40
AD331	Cluster 3	59	М	T1N0M0	IA	52.9	1	ad 2.0 m			45
AD332	Cluster 1	52	М	TxN0	Ι	6	3	ad m		pleura, liver, colon, ?adrenal, ?pancreas	75
AD335	Cluster 2	40	F	T3N0	IIB	46.9	1	ad 4.5 m			20
AD336	Cluster 3	71	М	T2N0Mx	IB	21.1	4	ad 1.7 m			0
AD338	Cluster 3	55	F	T2NxMx	IB	75.4	1	ad 5.0 w BAC	(1) ad w/BAC or (2)BAC		15
AD346	Cluster 2	65	F	T1N0	IA	17.3	1	ad 2.5 m			50
AD347	Cluster 1	65	F	T2N0Mx	IB	0.5	1	ad 3.5 m BAC	adm		20
AD351	Cluster 2	43	F	T2N1	IIA	24.3	3	ad 5.5 m		lung, LN	0
AD353	Cluster 3	69	М	T2N0Mx	IB	13.7	1	ad 3.5 m BAC	adw w/bac		30
AD356	Cluster 2	72	М	T2N0	IB	49.2	1	ad 4.0 w BAC			50
AD361	Cluster 1	54	F	T2N	IB	6.4	4	ad 4.5 p			0
AD362	Cluster 3	56	М	T2N0	IB	71.5	d	ad 6.5 BAC	BAC muc		40
AD366	Cluster 2	71	М	T2N2	IIIA	9.4	3	ad 6.2 m-p w/pap		lung	23
AD367	Cluster 1	55	F	T2N0	IB	76.1	2	ad 6.5 m-p		brain	25
AD368	Cluster 3	33	F	T2N0	IB	62.6	1	ad 6.0 m-p w/muc			32
AD374	Cluster 1	51	М	T2N0	IB	8.8	3	ad 11.0 p		lung, pleura, pericardium, diaphragm	100
AD375	Cluster 2	47	F	T2N0	IB	23.4	d	ad 7.2 p	adm		13
AD379	Cluster 2	65	М	T2N1	IIB	35.4	2	ad 5.5 w/clear		lung, adrenal, brain	80

Appendices

AD382	Cluster 2	51	F	T2N2Mx	IIIA	30.1	3	ad 5.0 p	brain	31
1	-					~				

¹These clusters are obtained from hierarchical cluster analysis of the 84 samples and 21 survival marker genes we selected. ²Patient status at last followup or death (1= alive; 2=alive with recurrence; 3= dead with recurrence; 4= dead without evidence of recurrence; d= dead, disease status unknown) ^{3,4}diameter (cm) subtype (BAC = bronchioloalveolar carcinoma). type (ad = adenocarcinoma) differentiation (p, m-p, m, m-w, w) /w= with ⁵Smoking: patient smoking history (self-reported) in pack/year

Signata	Number of	Gene rank in each signature (Number of selected gene in each signature)									
Gene Name (EST number)	signatures which	1	2	3	4	5	6	rected g			10
	included this gene	(51)	(54)	(42)	(34)	(46)	(54)	(57)	(50)	(53)	(47)
ADFP(X97324)	10	1	46	35	28	19	22	15	18	3	13
CXCL3(X53800)	10	2	37	24	7	23	3	14	4	6	19
PLD1(U38545)	10	5	7	2	31	41	17	8	9	11	3
SLC2A1(K03195)	10	6	3	12	3	3	8	13	12	2	11
SPRR1B (M19888)	10	7	10	29	11	10	7	9	10	5	12
GALNT4 (Y08564)	10	8	23	25	27	11	32	25	14	1	28
LDHB(X13794)	10	10	11	1	1	15	16	11	8	15	1
FXYD3(U28249)	10	11	6	7	29	14	52	18	42	22	5
REG1A(J05412)	10	13	8	9	23	9	15	16	45	14	6
CHRNA2 (U62431)	10	14	24	26	30	8	46	28	40	27	27
SERPINE1 (J03764)	10	18	30	16	22	12	2	1	31	4	15
FUT3(U27326)	10	19	14	19	21	2	28	10	15	30	21
PRKACB (M34181)	10	20	5	5	15	6	1	3	1	33	4
TUBA4A(X06956)	10	21	1	14	25	13	53	49	29	26	14
VEGF(M27281)	10	22	33	8	26	30	14	26	19	23	32
RPS3(X55715)	10	25	2	10	2	5	39	55	13	17	36
ANXA8(X16662)	10	28	32	18	12	21	20	4	22	18	26
VDR(J03258)	10	32	39	33	6	4	30	2	11	16	37
CXCR7(U67784)	10	33	47	30	24	43	41	37	27	39	29
POLD3(D26018)	10	35	25	15	18	1	11	50	2	31	8
BSG(X64364)	10	36	38	39	17	33	48	27	3	20	33
CYP24(L13286)	9	23	13	34	20	22	23		41	19	25
HLA-G (HG273-HT273)	9	30	27	11		25	19	34	32	24	31
WNT10B (U81787)	9	39	35	28		39	36	29	25	38	41
GARS(U09510)	9	41	26	31		31	26	19	46	44	20
SPRR2A(M21302)	9		21	13	34	40	21	21	34	47	18
NULL (HG2175-HT2245)	9		49	37	5	44	34	56	35	53	16
CD58(Y00636)	8	16	12	3	14	17	6		44		34
KRT14(J00124)	8			20	9	34	25	12	23	12	22
E48(X82693)	7	9	15			20	33	22	5	48	
FADD(X84709)	7	12		6		35	51	17		8	9
STX1A(L37792)	7	15	18	22		46	5		6		24
ENO2(X51956)	7	24	4			32	38	32		45	47
SPRR2A(L05188)	7	29	41			7	45	44	48	28	
FEZ2(U69140)	7	38		23			42	30	26	9	17
KRT18(X12876)	7	43	42	41		26	44	6	43		
ALDH2(X05409)	7		19		10	45	4	20	21		23
UCN(U43177)	6	4		36	13	18	9				10
SCYB5(L37036)	6	31	16		33	42	31			29	
AIP-1(U23435)	6	37		42		28	18			32	7

Appendix Table S15 List of 10 derived lung adenocarcinoma prognosis marker gene signatures selected by SVM class-differentiation systems

NULL(U92014)	6	42	17			27		39		36	42
NULL(L43579)	6	47	54				35	5	24	37	
CEBPA(U34070)	6			17		24	12		47	25	30
KIAA0138 (D50928)	5	34	29		19		37				2
TFF1(X52003)	5	40	34			37	24			43	
KRT19(Y00503)	5	49			4		40	54	20		
RPS26(X69654)	4	17	28				49			21	
S100A2(Y07755)	4	26	51					40		34	
GS3686 (AB000115)	4	46	36						49	41	
EMP1(Y07909)	4		9			38	27		38		
HPCAL1(D16227)	4		43		8			33	36		
LCN2(\$75256)	4			38				41	37		44
PEX7(U88871)	4			4		29				40	43
EFNB2(U81262)	3	44							30		40
ALDH8(U37519)	3	45	52						17		
EPS8(U12535)	3		20				50			51	
NDRG1(D87953)	3		22					48			46
CSTB(U46692)	3		40					45		10	
PSPH(Y10275)	3		44	27				23			
CYBA(M21186)	3						29	7	7		
CNN3(S80562)	3							57	39	49	
VIPR1(X77777)	3			40					50		35
NULL(U49020)	2	51							16		
ALDH7(U10868)	2		45				10				
AXL (HG162-HT3165)	2		53							35	
TYRO3(U02566)	2			32		36					
P2RX5(U49395)	2				32	16					
GRO1(X54489)	2								28	42	
ERBB3(M34309)	2							51		7	
BM-002(Z70222)	2				16		13				
LAMB3(U17760)	2			21							39
INHA(X04445)	2							38		46	
TAX1BP2 (U25801)	1	3									
IGHM(V00563)	1	27									
SPRR2A(X53065)	1	48									
NP(K02574)	1	50									
P63(X69910)	1		31								
AP3B1(U91931)	1		48								
C6(X72177)	1		50								
HFL1(M65292)	1										38
PRKCN (HG2707-HT2803)	1							24			
SHB(X75342)	1									13	
EIF5A(S72024)	1								33		
FCGR3B(J04162)	1							47			
GRIN1 (HG4188-HT4458)	1						47				

SLC2A3(M20681)	1						45
CA9(X66839)	1				42		
FLJ20746 (U61836)	1			43			
PPBP(M54995)	1				52		
TUBA4A (HG2259- HT2348)	1			54			
EMS1(M98343)	1				53		
IGF2(M17863)	1				36		
CHAT (HG4051-HT4321)	1				31		
LAMC2(U31201)	1					50	
BMP2(M22489)	1				43		
KIAA0111 (D21853)	1					52	
TNFAIP6 (M31165)	1				35		
NULL (HG415-HT415)	1				46		

LIST OF PUBLICATIONS

- Synergistic therapeutic actions of herbal ingredients and their mechanisms from molecular interaction and network perspectives X. H. Ma, C.J. Zheng, L.Y. Han, B. Xie, J. Jia, Z.W. Cao, Y.X. Li and Y. Z. Chen. <u>Drug Discov Today.</u> 14:579-588(2009).
- Genetic and Expression Profiles of Target and Bypass Genes Correlate with Sensitivity to Anticancer Tyrosine Kinase Inhibitor Drugs. J. Jia, S.Y. Yang, Y.Q. Wei,and Y. Z. Chen (submitted, 2010)
- Genome-Scale Search of Tumor-Specific Antigens by Collective Analysis of Mutations, Expressions and T-Cell Recognition. J. Jia, Cui. J., X. H. Liu, J. H. Han, S. Y. Yang, Y. Q. Wei, and Y. Z. Chen. <u>Mol. Immunol.</u> 46:1824-1829(2009)
- Update of KDBI: Kinetic Data of Bio-molecular Interaction Database. P. Kumar, Z.L. Ji, B.C. Han, Z. Shi, J. Jia, Y.P, Wang, Y.T. Zhang, L. Liang, and Y. Z. Chen. <u>Nucleic Acids Res.</u> 37(Database issue): D636-41(2009).
- Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. X.H. Ma, J. Jia, F. Zhu, Y. Xue, Z.R. Li and Y.Z. Chen. <u>*Comb. Chem. High Throughput Screen.*</u> 12(4):344-357(2009).
- Mechanisms of drug combinations from interaction and network perspectives J. Jia, F. Zhu, X.H. Ma, Z.W. Cao, Y.X. Li and Y.Z. Chen. *Nat. Rev. Drug Discov.*, 8(2):111-28(2009).
- Trends in the Exploration of Anticancer Targets and Strategies in Enhancing the Efficacy of Drug Targeting. F. Zhu, C.J. Zheng, L.Y. Han, B. Xie, J. Jia, X. Liu, M.T. Tammi, S.Y. Yang, Y.Q. Wei and Y.Z. Chen. <u>*Curr Mol Pharmacol.*</u> 1(3):213-232(2008).
- Simulation of the Regulation of EGFR Endocytosis and EGFR-ERK Signaling by Endophilin-Mediated RhoA-EGFR Crosstalk. C.Y. Ung, H. Li, X.H. Ma, J. Jia, B.W. Li, B.C. Low and Y.Z. Chen. *FEBS Lett*. 582:2283-2290 (2008).
- A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor. L.Y. Han, X.H. Ma, H.H. Lin, J. Jia, F. Zhu, Y. Xue, Z.R. Li, Z.W. Cao, Z.L. Ji, Y.Z. Chen. *J Mol Graph Mod.* 26(8):1276-1286 (2008)
- Prediction of Antibiotic Resistance Proteins from Sequence Derived Properties Irrespective of Sequence Similarity. H.L. Zhang, H.H. Lin, L. Tao, X.H. Ma, J.L. Dai, J. Jia, Z.W. Cao. *Int J Antimicrob Agents*. 32(3):221-226 (2008)
- Derivation of Stable Microarray Cancer-differentiating Signatures by a Featureselection Method Incorporating Consensus Scoring of Multiple Random Sampling and Gene-Ranking Consistency Evaluation. Z.Q. Tang, L.Y. Han, H.H. Lin, J. Cui, J. Jia, B.C. Low, B.W. Li, Y.Z. Chen. *Cancer Res.* 67(20):9996-10003 (2007).
- Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. L.Y. Han, C.J. Zheng, B. Xie, J. Jia, X.H. Ma, F. Zhu, H.H. Lin, X. Chen, and Y.Z. Chen. *Drug Discov. Today* 12(7-8): 304-313 (2007).