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Summary 

Advances in biotechnology have produced an unprecedented growth in the volume and 

diversity of biological data. To answer complex research questions, bioinformatics analysis 

needs to aggregate increasing quantities of information from expanding number of diverse 

sources, combining multiple tasks into analysis pipelines. Even as bioinformatics becomes 

integrated with the daily work of biomedical researchers, the lack of advanced computing 

skills restricts their access to complex computational analysis. In this thesis, we identified 

major issues for the scalability of bioinformatics: system and information heterogeneities 

must be overcome when aggregating knowledge from diverse sources; intuitive user 

interfaces are needed for life scientists to control analysis processes; and knowledge 

representation standards are needed to support knowledge flow between analysis tools. To 

model complex bioinformatics processes, we have developed a model of biological 

knowledge mining, which facilitates integration of new data with existing knowledge. We 

present a novel knowledge aggregation approach based on user-defined structural rules, which 

provides researchers with an intuitive user interface mechanism for overcoming information 

heterogeneities.  

The knowledge aggregation method was implemented in the ABK software tool, and 

applied to multiple knowledge aggregation tasks. The AVANA software tool was developed 

to support information-theoretical diversity analysis of multiple sequence alignments, 

supporting peptide entropy and mutual information methods. A large-scale influenza A 

protein sequence dataset complete with descriptive metadata (including host, strain, 

geographic and temporal information), was constructed from over 90,000 public database 

records using the ABK platform. Using this dataset, we conducted a large-scale comparison 

of human-transmissible influenza strains against avian strains, using a novel method based on 

mutual information. The resulting catalogue of 70 adaptive amino acid mutations, distributed 

over eight influenza proteins, is the most comprehensive to date and reveals complex patterns 

of adaptations to humans. Genomic adaptation signatures, derived from this catalogue, were 



            

used to assess the pandemic potential of H5N1 and other avian influenza strains. The ABK 

and AVANA tools were applied, in a collaborative research, to a systematic whole-genome 

analysis of vaccine targets. Conserved peptides with high HLA-binding potential were 

identified from large datasets of viral sequences. The conservation analysis method 

introduced peptide entropy, a novel measure of antigenic variability, followed by the use of 

HLA binding prediction algorithms to select candidate peptides. This method has been 

applied to multiple pathogens. In the final application, our knowledge mining approach was 

extended to the analysis of biomedical text for the curation of an allergen database. We 

devised a text mining approach based on active learning, which can be user-controlled via a 

simple annotation interface. Since no domain knowledge needs to be built into this text 

mining tool, it can be reused on a variety of curation tasks. The feasibility and utility of this 

approach were demonstrated by extending the ABK platform with text analysis tools. The 

diverse applications presented in this thesis demonstrate that our new knowledge aggregation 

approach is both practical and versatile, and represents an important contribution to 

bioinformatics and to the fields of biomedical research in which it is applied. 
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1. INTRODUCTION 

            Where is the wisdom we have lost in knowledge? 
            Where is the knowledge we have lost in information? 

T. S. Eliot 

 

The primary goal of biomedical research is to relieve humanity of the burden of disease, to 

improve the quality and length of human life. Much of this research is focused on furthering 

our understanding of cellular and molecular mechanisms, essential to the design of targeted 

therapies and preventions. In recent years, advances in biotechnology have dramatically 

enhanced our ability to observe these mechanisms: high-throughput methods, such as 

genome-scale sequencing and microarray analysis, produce massive quantities of data about a 

multitude of genes and their products (Hall 2007; Bernstein and Kellis 2005). We are now 

able to observe and measure the behaviour and characteristics of multiple molecular 

components, and repeat these observations under the same or different conditions. Constantly 

decreasing operational costs allow genomic studies to process samples from populations of 

individuals, under a variety of environmental and medical conditions, to pinpoint multiple 

contributing disease factors (Wellcome Trust Case Control Consortium 2007). The shift from 

targeted studies of single molecules to multidimensional studies of thousands of interacting 

molecules provides opportunities to build more complete biological models, and perhaps 

preempting disease by mapping detailed identification of risk factors (Zerhouni 2005). 

However, as the volume and variety of biological data increases, the gap between the wealth 

of knowledge that can be extracted from this data and our ability to extract it is growing. 

Although current computational methods are able of discerning underlying patterns in large, 

multi-dimensional sets of data, most computational biology methods tend to support relatively 

small-scale analyses, often focused on a single task. Researchers are increasingly left to 

“swim a sea of data” (Roos 2001) without being able to extract the maximum value possible. 

New computational approaches are needed, to allow biomedical researchers to perform large-

scale analyses and make full use of the large-scale datasets to answer ever more complex 
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biological questions. 

This thesis addresses the question of scaling up the computational discovery process to 

make the best use of the growing quantities of biological data that are becoming available. We 

have developed a new conceptual approach in bioinformatics, biological knowledge mining, 

which enhances the analysis of biological data with contextual information that provides 

conceptual models that describe the data. Rather than relying on the analysis of raw data 

entities, knowledge-enabled analysis discovers significant patterns using biologically 

meaningful models, and therefore allows new types of analysis to be performed. The task of 

knowledge aggregation is the essential component of this approach, in which knowledge from 

diverse databases is extracted, combined and encoded so it can be used by analysis tools. Our 

approach enables biomedical researchers to aggregate large-scale datasets comprising 

thousands of records, through user-friendly interfaces that do not require specialized 

programming. The knowledge-enabled analysis tools implemented in this thesis are capable 

of analyzing these large datasets, using the accompanying knowledge to organize the analysis 

data. This approach and methods have been applied to three real-life biomedical research 

problems. The results of these applications demonstrate the utility of our approach, and its 

applicability to a variety of diverse analysis tasks. 

 The work presented in this thesis is a systematic and multi-disciplinary effort, 

containing theoretical and practical components from multiple fields: bioinformatics, the 

discipline that focuses on the computational analysis of biological data; knowledge 

management, a branch of computing that deals with the acquisition, representation and 

analysis of knowledge; and software engineering, the branch of computing concerned with 

the construction of software tools. The applications presented are relevant to the biomedical 

fields of immunology and virology. These applications were chosen as proofs of concept, and 

the applications of the approach presented here are not limited to these fields. 

1.1 Background 

Technological advances in the fields of biotechnology and information technology (IT) have 
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revolutionized life sciences research. Biotechnology advances have produced cheaper, more 

flexible and faster methods for obtaining a variety of molecular and cellular-level 

observations, such as genomic or proteomic sequencing, gene and protein expression levels, 

cell sorting, functional profiling, and others. The Human Genome Project took 13 years to 

sequence the fist human genome, at a cost of US$400 million by its completion in 2003. Only 

four years later, James Watson’s genome was sequenced in less than two months, for under 

US$1M (Patrick 2007). Inexpensive large-scale DNA sequencing has opened up new research 

opportunities for the study of large-scale genomic datasets (Mardis 2008), which are already 

producing a significant impact to the study of pathogens (Medini et al. 2008).  

Bioinformatics applies computational techniques to the investigation of biological 

hypotheses, discerning patterns in the most relevant biological data (Brazma et al. 1998). 

Computational analyses (often referred to as in silico assays) provide data analysis and 

statistical support for hypotheses, and are widely used for computational prescreening, to 

narrow the scope of subsequent in vitro or in vivo experimentation. In silico results lead to 

rational and focused experimental design, which is becoming essential to the ability to 

investigate complex biomedical problems (Yu et al. 2004). Early successful applications of 

bioinformatics methods were limited to the study of molecular entities, such as genes, 

proteins and genomes, to answer biological questions at the molecular level. However, as our 

understanding of cellular mechanisms increases, it becomes clearer that the complexity and 

diversity of life has a combinatorial nature, deriving from interactions of many thousands of 

components (Zuckerkandl 2006). Phenotypic traits are rarely governed by single genes; 

rather, genes work in teams, regulating, enhancing and disrupting each other's function. 

Proteins produced by genes must therefore be viewed as components of complex and diverse 

systems, where they interact with other molecules, physically as part of assemblies, 

chemically as participants in cellular processes, and functionally as effectors or regulators of 

biological processes. To apply bioinformatics from a more systemic perspective, there is an 

increasing need to combine the analysis of data from multiple experiments with knowledge 

accumulated from the other kinds of analysis (Kanehisa and Bork 2003).  
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Although the high volume of diverse data generated by high-throughput biotechnology 

appears an ideal starting point for system bioinformatics, there is mounting concern that 

currently available bioinformatics tools and approaches are not sufficient to effectively tackle 

large-scale systemic research questions. In part, this problem is caused by the fact that most 

tools are limited to the analysis of entities, thus extracting knowledge solely from raw data. 

The analysis of systems and populations, on the other hand, requires the integration of models 

that describe the data. For example, current sequence phylogenetic tools can discover 

significant clades (clusters) of evolutionarily related organisms by analyzing sequence data 

alone. However, we also need tools that can use the clade model produced by phylogenetic 

analysis to identify systematic molecular differences between clades, co-evolving mutations, 

patterns of evolution, etc. In the absence of tools that are capable of “understanding” models, 

researchers have to organize datasets and analysis results manually, which is unsuitable for 

tasks that span thousands of records.  

An additional obstacle to large-scale analysis is the difficulty of constructing large 

datasets. The 2008 Molecular Biology Database Collection lists over 1,000 publicly-

accessible biological databases (Galperin 2008), which differ widely in size, purpose, level of 

detail and data structures, and use a diversity of standards for encoding and accessing their 

data. For biological researchers, the all-important task of extracting and combining 

information from these “information silos” is a daunting prospect, both technically and 

logistically (Philippi and Köhler 2006), as will be discussed in detail in Chapter 2 of this 

thesis. This problem is compounded by a relatively low level of computational skills among 

biomedical researchers, who often resort to manual methods to aggregate their datasets. As 

datasets grow to thousands, tens of thousands, or even greater numbers of sequences, manual 

curation becomes prohibitively expensive, highly error-prone and difficult. At this stage it 

represents a grater obstacle to large-scale analysis than the availability of suitable 

computational resources. Paradoxically, just as bioinformatics analysis tasks become 

increasingly important for the daily work of biologists, the level of technological skill 

required to perform these tasks increasingly exceeds the scope of a biologist’s training. 
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1.2 Aims of this thesis 

The key motivation for this thesis is to lay the foundation of what we term “second-

generation” bioinformatics – analysis of biological data that is (a) knowledge-enabled, in that 

it makes use of descriptive models as well as raw data, and integrates analysis results with 

existing knowledge; (b) arbitrarily scalable, in that it can process increasing numbers of 

records, exceeding hundreds or thousands, aggregated from multiple and disparate sources; 

and (c) biologist-friendly, in that it directly empowers life science researchers to perform 

complex analyses with tools that do not require complex programming or significant IT 

infrastructure. 

To realize this vision, we developed a novel conceptual framework, which models 

bioinformatics studies as complex pipelines of analysis tasks, with knowledge flowing from 

one task to the next. In this biological knowledge mining framework, knowledge comprises 

raw data, descriptive information about the data (metadata), and the results of analysis tasks. 

Knowledge thus encompasses data and models that describe the data; these models are 

augmented as more knowledge is aggregated, for example, as a result of the execution of an 

analysis task (Michalski 2003).  

In most biological knowledge mining processes, the core task is the initial knowledge 

aggregation task, which deals with the construction of large-scale analysis datasets from 

diverse data sources. This task currently presents insurmountable problems for biologists, 

because data is fragmented across multiple databases, and presents heterogeneities, which are 

discussed in Chapter 2. In this thesis, we have developed a knowledge aggregation approach 

that overcomes common heterogeneities, empowering biologists (who have limited IT skills) 

to perform complex analyses. We implemented this approach as a desktop tool, the 

Aggregator of Biological Knowledge (ABK), which is able to process datasets consisting of 

tens of thousands of records on a current standard-configuration desktop computer system. 

ABK allows users to interact with data to be aggregated, specifying the data to be extracted 

by example through a simple point-and-click interface, and controlling the format of the 
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extracted data through user-defined vocabularies. From these user selections, ABK learns 

structural rules that are automatically applied to large sets of data records, seamlessly 

extracting the desired knowledge in the form required by the user. The level of automation 

provided by ABK, combined with the flexibility in specifying the knowledge to be extracted, 

dramatically reduces the effort needed for curation, allowing biologists to construct in a 

relatively short time large-scale datasets that would have been prohibitively laborious to 

assemble manually. 

In practical implementations, biological knowledge mining requires knowledge-enabled 

analysis tools, which are able to utilize raw data as well as its accompanying knowledge for 

analysis. In addition, a knowledge representation standard must be defined, capable of 

describing accurately and expressively varied types of knowledge, but sufficiently generic to 

allow diverse tools to transfer knowledge along the analysis pipeline. In this thesis, we have 

developed the Antigenic Variability Analyzer (AVANA), a knowledge-enabled tool that 

performs information-theoretical analysis of variability in viral protein sequence alignments. 

AVANA integrates sequence data with descriptive metadata (such as sequence protein name, 

subtype, year and place of isolation, etc.), allowing the alignments to be partitioned into 

biologically meaningful subsets, subsequently used in comparative studies and meta-analyses. 

Since AVANA accepts arbitrary metadata fields, the user can model the population 

represented by the sequence alignment in the way that is most appropriate to the analysis task. 

As a result, biologists can rapidly test hypotheses and models by performing simple metadata 

queries, without having to reconstruct datasets, which is often necessary with current 

available tools. We identified semantic technologies as a suitable candidate platform for 

knowledge transfer in bioinformatics pipelines, and demonstrated that these technologies can 

use reasoning to perform useful data aggregation tasks, which will further reduce the need for 

programming. In this thesis, however, we do not define a full knowledge representation 

standard, as this field is still relatively immature. 

To demonstrate that “second-generation” bioinformatics tasks can generate important 

results from large-scale analysis tasks, we applied the approaches and methods developed in 
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this thesis to three different applications, all of which addressed real biomedical research 

questions. The applications are relevant to the fields of immunology and virology, and were 

chosen to demonstrate the generality and versatility of our approaches and methods. However, 

other fields of biomedical research can be addressed. 

In our first application, we constructed a dataset of influenza A proteins that comprised 

all sequences available in public databases, annotated with several metadata fields. This 

knowledge aggregation task, performed by the ABK system, reduced to two weeks the time 

taken to fully aggregate, curate and verify a dataset from more than 90,000 database records. 

Such rapid construction of a large-scale annotated dataset, which would have been practically 

impossible to build manually, demonstrates the applicability our knowledge aggregation 

method on real analysis tasks. The availability of descriptive metadata allowed the AVANA 

tool to partition the dataset, separating currently circulating human-infecting lineages and 

avian lineages, and perform comparative analyses to identify mutations that are characteristic 

of human lineages. Knowledge-enabled analysis, in combination with a novel mutual 

information algorithm, produced a catalogue of 70 characteristic mutations involved in human 

transmissibility of influenza A. This catalogue is twice as large as similar catalogues produced 

by previous studies, showing that the combination of large-scale dataset, accurate metadata 

and sensitive statistical measures can dramatically extend the analytical power. From a 

virological perspective, this extensive catalogue of mutations has revealed new insights into 

the systemic nature of human host adaptation in influenza A.  

In line with our knowledge mining approach, the mutations catalogue (the result of an 

analysis task) constitutes important new metadata that can be used in further analysis of the 

dataset. We extended the AVANA tool to use the catalogue of characteristic mutations to 

produce adaptive signatures of avian influenza A isolates, which show the extent of presence 

of human-adaptive mutations. This further knowledge-enhanced analysis task has provided a 

tool for assessing the human-infecting potential of avian influenza, showing that recent H5N1 

strains capable of jumping the host barrier are unusually rich in adaptive mutations. These 

important results are a clear demonstration that knowledge transfer in the analysis pipeline 
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can enable entirely new analysis tasks to be carried out. 

In our second application, we used the AVANA tool to perform conservation analysis of 

viral sequences, based on a novel peptide entropy measure, to identify universally conserved 

peptides that could be used as epitope-based vaccine targets. The large-scale annotated 

influenza dataset was partitioned based on the metadata, to model groups of influenza viruses 

that are important from an epidemiological viewpoint. AVANA performed conservation 

analysis within each group, and conducted meta-analysis to identified peptides conserved in 

all groups. This study, conducted by AT Heiny, produced a catalogue of 50 candidate vaccine 

targets, showing that our knowledge-enabled approached could easily be repurposed to extract 

new knowledge with a different perspective. The generality of our conservation analysis was 

further demonstrated by a similar study, performed by AM Khan on a dataset comprising over 

12,000 dengue virus sequences, aggregated using the ABK tool. This study yielded a set of 34 

candidate vaccine components, showing that the method can be successfully reused on 

multiple pathogens. 

The third application extended our knowledge mining approach to a completely different 

problem: the identification of biomedical publications that contain information on allergen 

cross-reactivity, for the purpose of curation of an immunological database. The knowledge 

aggregation task collected large a large dataset of biomedical abstract, allowing the user to 

construct a metadata model by specifying relevant text features, and by annotating some 

examples. We demonstrated that standard machine learning software, given this metadata 

about the text abstracts, can select further relevant documents, reducing considerably the 

manual curation effort needed. Furthermore, user annotation of selected abstracts, effected by 

simple gestures, is also used to improve the accuracy of this text mining method. This 

application shows that the knowledge mining principles (large-scale dataset, knowledge-

enabling and biologist-friendly interface) can be applied to a completely different class of 

problem. 

Figure 1-2 shows a high-level overall model of the applications covered in this thesis. 

Each analysis “stage” should not be thought of as a single task, but rather as a number of 
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cascaded knowledge mining tasks, which will be described in detail in the relevant chapters. 

All three applications presented in this thesis scaled to handle tens of thousands of records on 

standard desktop computing hardware commonly available to life scientists, and there are no 

inherent limits to the scalability of the techniques used. Larger datasets can be handled by our 

knowledge aggregation methods and statistical measures, and the extent of automation in the 

knowledge aggregation tasks means that these methods will continue to be applicable as the 

volume of data increases. 

In summary, our biological knowledge mining approach, through the application of 

knowledge aggregation and scalable knowledge-aware analysis tools, has enabled new classes 

of knowledge discovery tasks, which have revealed new, detailed knowledge about important 

immunological and virological problems. These approaches can be controlled by biomedical 

researchers, and do not require ad-hoc programming for task customization. The approach, 

techniques and tools presented herein constitute important contributions to biomedical 

research, and pave the way for second-generation bioinformatics analysis to become a reality. 
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Figure 1-2: High-level representation of the Biological Knowledge Mining applications. 
Knowledge Aggregation, conducted using the ABK tool, constructs large-scale datasets by 
querying multiple databases with user-specified queries, and extracting the desired values 
using user-specified structural rules. This is the first stage for the three Biological Knowledge 
Mining tasks detailed in this thesis. The Conservation Analysis task performs a meta-analysis 
of conserved peptides in multiple co-circulating viral lineages, and selects conserved peptides 
predicted to bind to HLA molecules. The Characteristic Mutations Analysis task compares 
human-infecting influenza strains with avian strains, using mutual information to identify 
amino acid sites that present characteristic mutations. In the Active Text Mining application, 
free text abstracts are analyzed based on user-defined dictionaries and patterns, and on 
previously annotation abstracts. A simple user interface allows an expert to rapidly annotate 
top-scoring documents, and these annotations are fed back to improve classification accuracy. 
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1.3 Key Contributions 

The original work presented in this thesis makes several important contributions by the author 

to the fields of bioinformatics, immunology and virology, which are summarized here: 

• A new biological knowledge mining conceptual framework for modeling “second 

generation” biological discovery processes, in which knowledge flows through 

analysis pipelines consisting of multiple cascaded tasks. 

• A novel knowledge aggregation method based on structural rules for extracting, 

aggregating and reconciling information from multiple heterogeneous biological 

databases, regardless of their native data structures. This method includes user-

friendly interfaces for specifying rules, and mechanisms for overcoming information 

heterogeneities, including rule prioritization and text filters based on user dictionaries. 

• The Aggregator of Biological Knowledge (ABK), a desktop tool for performing large-

scale knowledge aggregation tasks. ABK implements XML-based structural rules, 

and accesses diverse databases by means of an extensible mediator framework. 

Through an intuitive graphical user interface, ABK allows users to visualize and 

manage the extracted knowledge, which can be processed by plug-in analysis tools. 

• An annotated dataset built from over 90,000 influenza A database records from 

GenBank and GenPept, complete with metadata describing sequence provenance, 

host organism, geographic origin, etc. The dataset was automatically curated by the 

ABK tools, then verified and completed by human curators. It was subsequently used 

for two major genome-wide analysis tasks. This work has been extended by 

collaborators to the analysis of other viruses, including dengue, rabies and hantavirus. 

• An evaluation of the semantic heterogeneity of sequence records metadata in 

GenBank and GenPept, two key data sources for bioinformatics research. 

• A proof-of-concept demonstration that aggregated biological knowledge, expressed 

using standard semantic technologies (RDF and OWL), can be processed by generic 

software. The author shows that simple semantic rules can be used to improve 
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metadata structure and quality. 

• A method for the rational identification of stable vaccine targets across whole viral 

genomes. This method identifies conserved peptides by information entropy analysis, 

and assesses the presence of immune epitopes by applying predictive algorithms. This 

method, jointly developed with biologists AM Khan and AT Heiny at Dept. of 

Biochemistry, was used by these researchers to identify whole-genome catalogues of 

conserved potential T-cell epitopes for both influenza A and dengue viruses. 

• A novel method, based on mutual information, for identifying mutations which are 

characteristic of an aligned set of sequences, by comparison with other homologous 

alignments. This method supports the processing of large numbers of sequences, and 

processed our large-scale influenza A dataset to identify adaptive mutations 

implicated in host range determination. 

• The most complete catalogue to date of amino acid mutations involved in the 

adaptation of influenza A viruses to transmissibility amongst human hosts. The 

catalogue comprises 70 amino acid sites in eight internal influenza proteins, 

indicating that host adaptation of this virus is complex and systemic, requiring the 

participation of entire protein constellations. 

• A novel method of producing genomic adaptation signatures from the catalogue of 

characteristic sites, to visualize the presence of adaptive mutations in influenza 

isolates. Adaptation signatures are a powerful tool for assessing the potential for 

human infectivity and transmissibility of H5N1 and other avian influenza viruses. 

• The Analyzer of Antigenic Variability (AVANA), a knowledge-enabled desktop tool 

for performing information-theoretical analysis of sequence alignments. AVANA 

analyzes peptide diversity and conservation using information entropy, and is capable 

of comparative analysis based on mutual information. AVANA allows comparison 

and meta-analysis of alignment subsets selected based on metadata values. 

• A novel user-driven text mining method for document classification, which supports 
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database curation tasks by focusing the curator’s efforts on relevant documents. The 

method is customizable by end users without the need for programming. Knowledge 

acquired through annotation is injected into the text mining process by means of an 

active text mining process, which gradually improves text mining performance.  

.  

1.4 Structure of this thesis 

The first two chapters of this thesis introduce the field of Biological Knowledge Aggregation 

and Biological Knowledge Mining, analyzing the current problems inherent to the evolution 

of bioinformatics from small-scale entity-based discovery to large-scale systemic discovery. 

• Chapter 1 provides an introduction, in which the background, aims and structure of 

this work are presented.  

• Chapter 2 is a review of Biological Knowledge Mining, and Biological Knowledge 

Aggregation which is its major component. We review the knowledge analysis needs 

of the post-genome era, and discuss the need for scalability. We present the most 

significant obstacles to bioinformatics scalability in three dimensions: quantitative, 

integrative and hierarchical; some currently available solutions are evaluated. We 

introduce a framework for modeling “second-generation” bioinformatics tasks, and 

discuss the role of knowledge flow in this model. 

In Chapters 3 to 5, we propose the Biological Knowledge Aggregation method and other 

Biological Knowledge Mining techniques, illustrating their effectiveness in overcoming many 

of the scalability obstacles discussed in Chapter 2. 

• In Chapter 3, structural rule-based knowledge aggregation is discussed as a strategy 

for integrative scalability of bioinformatics. The ABK software for knowledge 

aggregation is presented, and we discuss its features and capabilities. We report the 

results of a knowledge aggregation task: the creation of a dataset of influenza A 

protein sequence, complete with descriptive metadata. These results have been used 
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to assess the extent of heterogeneities in public databases, and the effectiveness of 

structural rules in overcoming such heterogeneities. 

• Chapter 4 discusses the use of semantic technologies for the representation, 

encoding, storage and interchange of biological knowledge, as required by large-

scale bioinformatics analysis. We assess the quality improvement that can be 

achieved by applying semantic rules and reasoning to the aggregation of large-scale 

datasets. 

• Chapter 5 presents techniques derived from information theory, capable of scaling 

the study of sequence variability to populations of tens of thousands of related 

sequences. We define peptide entropy, a measure of antigenic variability, which is 

applied to the identification of conserved immunogenic epitopes. We also present a 

novel use of mutual information, as a measure of the association of mutations with 

sequence alignment subsets. The AVANA software tool, developed by the author to 

support knowledge-enabled information-theoretical analysis of sequence alignments, 

is also described. 

Chapters 6 to 8 detail the methods and results for three applications that implement the 

Biological Knowledge Mining approaches proposed.  

• In Chapter 6 we present the methods, results and conclusions of a large-scale study 

of influenza A protein sequences, aimed at identifying mutations involved in host 

adaptation to humans, and at assessing the pandemic potential of H5N1 avian 

viruses. The large-scale influenza A protein dataset presented in Chapter 3 was 

analyzed using mutual information (detailed in Chapter 5), to produce a full-genome 

map of mutations that characterize circulating human-transmissible viruses. The 

mutations catalogue was then used to produce isolate adaptation signatures, which 

provide a means of assessing the potential of avian strains to circulate among 

humans.. 

• Chapter 7 discusses the application of information entropy to the identification of 
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conserved regions in viral genomes (detailed in Chapter 5), as part of a rational 

method for identifying potential vaccine targets (see Appendix A). The results of 

applying this method on two different viruses (influenza A and dengue) are briefly 

outlined; full results are detailed in the papers in Appendices B and C. 

• Chapter 8 presents a text mining method which selects relevant literature abstracts 

from large datasets aggregated from a public database. The method makes use of 

standard data mining software components, and is able to learn from annotations 

made by an expert user, without requiring specialized computational knowledge. We 

show that this method can substantially reduce the workload of database, by focusing 

their work on relevant documents. 

In Chapter 9, we present the overall conclusions. The contributions of this thesis are 

summarized and reviewed, and future research directions are discussed. 

 

1.5 Publication summary 

Most of the work presented in this thesis has been published in international peer-reviewed 

journals and conferences during the course of the candidature period. Within the scope of this 

work, the present author published four papers as first author, and co-authored three papers. 

Two additional papers as first author have been submitted for publication, and are under 

review at the time of submission of this thesis. The content of the publications is described 

below. 

1.5.1 Published manuscripts 

• Miotto O, Tan TW, Brusic V (2005a) described the structural rule-based knowledge 

aggregation approach and the ABK software implementation, detailed in Chapter 3. 

• Miotto O, Tan TW, Brusic V (2008b) further discussed structural rule-based 

knowledge aggregation, and described the large-scale influenza dataset aggregation 
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task detailed in Chapter 3, Section 3.4. This paper also discussed the use of semantic 

technologies in bioinformatics discovery, and described the metadata quality 

improvement task based on semantic rules, detailed in Chapter 4. 

• Miotto O, Heiny AT, Tan TW, August JT, Brusic V (2008a) details the mutual 

information method for identifying characteristic mutations, presented in Chapter 5, 

Section 5.2 of this thesis, and shows its application to the identification of host range 

determinants in the influenza A PB2 protein, reported as part of Chapter 6. 

• Miotto O, Tan TW, Brusic V (2005b) described the reusable text mining method 

and its application to the study of allergen cross-reactivity, discussed in Chapter 8. 

The active learning approach is also described in that publication, which used the 

ABK knowledge aggregation platform to perform dataset construction and analysis 

tasks.  

1.5.2 Manuscripts in preparation 

• Miotto O, Heiny AT, Tan TW, August JT, Brusic V (2009a) Complete-proteome 

mapping of human influenza A adaptive mutations: implications for human 

transmissibility of avian strains (manuscript in preparation). This paper will detail the 

full-genome analysis of influenza A characteristic sites, and the assessment of avian 

influenza strains, described in Chapter 6. This work was also presented orally at the 

International Avian Influenza Conference, Bangkok, Thailand, January 2008. 

• Miotto O, Tan TW, Brusic V (2009b) AVANA: a tool for analyzing antigenic 

variability in large sets of protein sequences. Bioinformatics (manuscript in 

preparation). This article will describe the AVANA software presented in Chapter 5, 

Section 5.3.  

1.5.3 Published manuscripts as second author 

• Khan AM, Miotto O, Heiny AT, Salmon J, Srinivasan KN, Nascimento EJM, 
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Marques ET, Brusic V, Tan TW, August JT (2006) describes the method for 

identifying conserved targets for peptide vaccines, discussed in Chapter 7. This 

method is a collaborative effort, and the author of this thesis contributed to: (a) the 

dataset preparation and cleaning stage, which uses the ABK platform described in 

Chapter 3; and (b) the entropy-based conservation analysis, described in Chapter 5 

(section 5.1) and Chapter 6 of this thesis.  Other elements of the method were 

contributed by first author Mr. A. M. Khan, and other co-authors. This paper is 

included as Appendix A of this thesis. 

• Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, Brusic V, Tan TW, 

August JT (2007) and Khan AM, Miotto O, Nascimento EJM, Srinivasan KN, 

Heiny AT, Zhang GL, Salmon J, Marques ET, Tan TW, Brusic V, August JT 

(2008) applied the method described in Khan et al. (2006) to large-scale studies of 

influenza A virus and dengue virus, respectively. These two papers, which present 

important applications of the information theoretical approaches presented in Chapter 

3, are included in this thesis as Appendix B and Appendix C, respectively. Chapter 6 

of this thesis contains a very brief summary of some key results that demonstrate the 

usefulness of the methods described herein. The author of the present thesis 

contributed to both papers by providing the peptide entropy conservation analysis 

method and software (AVANA) and participating in the analysis of conservation. In 

addition, he contributed to the construction of the datasets used in both studies, which 

were aggregated using the ABK software. The author is greatly indebted to Mr. Khan 

and Ms. Heiny for applying the knowledge aggregation and information theoretical 

analysis methods to diverse case studies, thus demonstrating both the utility and 

generality of these approaches in specific case studies. The success of their studies 

has opened the way for studies of other pathogens: West Nile virus, Hantavirus, 

Rabies and HIV studies are currently ongoing, using the ABK and AVANA tools and 

the methods described therein.  
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2. BIOLOGICAL KNOWLEDGE MINING  

Information is not knowledge 
Knowledge is not wisdom 

Wisdom is not truth  

Frank Zappa 

 

In this chapter, the field of biological knowledge mining is reviewed. We analyze the role of 

bioinformatics in the biological discovery process, and discuss the advantages offered by 

computational methods in the post-genomic era, characterized by inexpensive production of 

large quantities of biological data. We consider the requirements of “second-generation” 

bioinformatics, capable of evolving biological discovery from a reductionist study of 

molecular components to a systemic discipline, processing more data from an ever increasing 

number of sources, through a greater number of tasks than was possible with earlier methods. 

A number of key obstacles to bioinformatics scalability are identified. Currently available 

solutions, including some from related fields, are reviewed. Finally, we introduce a 

conceptual framework for describing and designing scalable biological knowledge mining 

pipelines, which will be applied to structure our approach to large-scale bioinformatics studies 

throughout this thesis. In Chapters 3 to 5 of this thesis, this framework is complemented with 

scalable bioinformatics techniques, while Chapters 6 to 8 describe the application of this 

framework to real biological discovery problems in selected immunological and virological 

examples. 

2.1 Bioinformatics and Biological Knowledge 

2.1.1 Bioinformatics and its role in Biological Discovery 

In a definition written for the Encyclopedia of Molecular Pharmacology, Nilges and Linge 

(2002) have described bioinformatics as follows: 

“Bioinformatics derives knowledge from computer analysis of biological data. These can consist 

of the information stored in the genetic code, but also experimental results from various sources, 
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patient statistics, and scientific literature. Research in bioinformatics includes method 

development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing 

branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, 

statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical 

applications in different areas of biology and medicine.” 

This definition captures four essential characteristics of bioinformatics: it produces 

knowledge from data; it uses heterogeneous experimental observations from multiple sources; 

it has practical applications; and it is interdisciplinary. Bioinformatics analysis extracts 

knowledge by organizing experimental data and applying computational methods, so that 

significant patterns can be identified and extracted. While scientists of the past were able to 

analyze experimental results manually, computational analysis has become indispensable 

when handling large amounts of experimental data, as are commonly produced by modern 

automated laboratory equipment. The capability to organize and analyze large and complex 

datasets, rendering them manageable and comprehensible to human experimenters, is thus a 

key motivation for the use of bioinformatics (Luscombe et al. 2001). The initial successes of 

bioinformatics were favoured by the information-oriented nature of molecular biology. For 

many purposes, nucleotide and protein sequences can essentially be reduced to strings of 

symbols that can be meaningfully analyzed by identifying patterns and similarities, leveraging 

on computational methods developed for text analysis and linguistics. Information-based 

analysis is instrumental in deciphering genomes (Attwood 2000), identifying protein coding 

regions, locating promoters, predicting protein structure, and various other tasks 

From a computing perspective, most bioinformatics discovery processes are data mining 

processes, in which a knowledge discovery task analyzes large amounts of experimental data, 

extracting meaningful patterns that can subsequently be used for predictive tasks that describe 

new properties of biological entities, shown in Figure 2-1. The first stage, known as 

knowledge discovery in data (KDD) (Fayyad et al. 1996), is generally performed on 

experimental data collections, usually retrieved from primary databases, where they have 

been deposited by experimenters. KDD aims to identify patterns and rules “hidden” within the 
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data, which cannot be determined by visual inspection. Biological KDD based on Fayyad’s 

framework has been described by Brusic and Zeleznikow (1999). For example, sequences that 

are shown experimentally to regulate protein expression can be compared to reveal conserved 

sequence motifs, which identify protein-binding targets (Stormo 2000). The results of KDD 

often help to elucidate biological mechanisms. Whenever possible, these results are expressed 

in a human-interpretable form and collected in secondary databases (sometimes known as 

knowledgebases), such as the PROSITE motif database (Hulo et al. 2008). In the second stage 

of the biological data mining process, the acquired knowledge is used to mine new data, to 

make predictions about the properties of this data. For instance, a newly sequenced genome 

can be scanned to recognize known motifs, thus locating new putative binding sites (Morgan 

et al. 2007). The application of acquired knowledge usually requires the construction of 

prediction software systems, frequently implemented using machine learning algorithms, 

capable of learning patterns from data (Brusic et al. 1998). Since prediction software is 

typically built on simplified models, its results must be considered putative, and are subject to 

experimental verification in vivo or in vitro. This limitation does not undermine the usefulness 

of these predictions: on the contrary, it positions bioinformatics as a strategy that is 

complementary to laboratory experiments. By predicting candidates from a vast number of 

possibilities, in silico methods can dramatically reduce the number of required laboratory 

experiments, lowering research costs and accelerating discovery. These advantages have 

earned bioinformatics a place as “equal and essential” partner for the future of biomedicine 

(Benton 1996), a role that has been recognized in related fields, such as drug discovery 

(Debouck and Metcalf 2000).  
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Figure 2-1: The bioinformatics data mining process and its relationship to experimental 
biomedical research. 
 
 

Typical KDD tasks may need to combine information of different types, such as 

sequence data and protein expression levels. Often, they use derived knowledge as well as 

primary experimental data, blurring the distinction between primary databases and knowledge 

bases. The world’s largest primary nucleotide sequence database is GenBank (Benson et al. 

2008), which receives a continuous stream of submissions, largely driven by requirements for 

sequence depositing, stipulated by many important journals (Noor et al. 2006). GenBank’s 

records, however, are not limited to raw nucleotide sequences: they contain sequence-level 

annotations to provide conceptual translations, coding sequence boundaries, functional 

information, and so on, many of which are produced by bioinformatics analysis. The extent to 

which acquired knowledge has to be included is constantly increasing, being driven by the 

variety of analysis tasks to be performed. 

2.1.2 Data, Information and Knowledge in Biology 

Since this thesis will introduce knowledge mining that is distinct from data mining, we need 

to provide working definitions for the terms data, information and knowledge, which are often 

used without drawing formal distinctions. In particular, usage of the word information tends 
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to overlap with that of both data and knowledge (Boisot and Canals 2004). In knowledge 

management, these three terms are often defined in the context of the DIKW (Data, 

Information, Knowledge and Wisdom) hierarchy (Zeleny 1987): 

• Data comprises raw recordable values, such as the results of measurements. The 

creation of data may be completely automated, without human intervention. 

Examples of data in biology are nucleotide sequences generated by a sequencer, or 

intensity values obtained by scanning a microarray slide. Typically, data has syntax 

(i.e. a data format) but no structure. 

• Information is data that has been transformed to facilitate its use: formatted, 

structured, published, and so on. An example of biological information is an 

experimentally-derived peptide sequence, stored in a database and accompanied by 

descriptive data, such as organism, strain, date, clinical condition, and so on. 

Information often has complex structure, a context, and relationships to other 

information. 

• Knowledge may be defined as the interpretation of available information, in the light 

of a given context. Knowledge is generally viewed as deterministic- in other words, it 

can be derived from the analysis of existing information, at least in principle. 

However, the derivation of knowledge often requires complex expert input, and may 

be difficult to automate (machine learning approaches, such as those described in 

Chapter 8, attempt to bridge this gap by building predictive that incorporate existing 

knowledge). The analysis of multiple pieces of information is usually required when 

producing knowledge. Conversely, the same piece of information can generate 

multiple types of knowledge, through the application of different analysis processes. 

There are many examples of knowledge generation in biology: one example is the 

assignment of a putative function to a protein, by detecting its sequence similarity to 

other proteins of known function in a database; another example is the derivation of 

binding motifs from the analysis of multiple binder sequences. 
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• Wisdom is the extrapolative and non-deterministic product of accumulated 

knowledge, which affects future use of the acquired knowledge. Wisdom synthesis 

requires consciousness and cultural values such as morality and ethical codes. As a 

result, it is generally accepted that wisdom is a social product that cannot be derived 

by machines. Some models (Ackoff 1989) distinguish between wisdom and 

understanding, the latter consisting of the human analysis of past knowledge, used to 

construct wisdom that determines future actions. 

 

Data, information and knowledge can be described as three levels at which we structure 

our perception of the underlying reality (i.e. the biological entities and processes). Chun et al. 

(2000, pp 29-32) describe a “Data-Information-Knowledge Continuum” in which signals 

(such as scanned microarray fluorescence levels) are successively structured into data, 

information and knowledge, increasing both order and human agency at each structuring 

stage. Data is characterized by physical structuring (for example, the storage of a nucleotide 

sequence as a string of characters) resulting from syntactic and lexical choices; information is 

the result of cognitive structuring (e.g. assigning meaning to the data items in database 

records); knowledge requires deductive structuring (e.g. the application of rules that generates 

new facts). The acquisition of structure is accompanied by the acquisition of context: in order 

to build a structured representation of reality, we are required to choose a point of view from 

which the information and knowledge are valuable. Context is determined by purpose, and the 

same data can therefore be structured and contextualized differently to suit different purposes. 

For example, describing the function to a protein sequence does not produce any phylogenetic 

knowledge about the organism that produced it; however, analyzing the same sequence 

against its homologues in different species can produce such knowledge. Thus, cognitive 

structuring is contextual: although the same sequence data is utilized for two purposes, each 

requiring different relationships and annotations. As a result of these context dependencies, 

organizations with diverse knowledge often describe the same reality with different 

information architectures, database structures, information encodings and representations. 



           25 

Such differences clearly pose serious obstacles to information sharing and exchange, and 

make information and knowledge difficult to reuse in different contexts. It is important to 

underline that these obstacles are not necessarily the product of organizational problems or 

lack of standards, nor are they specific to the biomedical domain: they arise because 

information and knowledge are intrinsically contextual in nature (McCarthy 1987). 

Contextual dependencies have profound repercussions on the management of shared 

biological knowledge. To share experimental information and derived knowledge, 

bioinformaticians have produced a multitude of databases, varying in size, scope and purpose. 

However, such information and knowledge are often reused in a context which is different 

from the original intention or scope. This context mismatching causes gaps in the structuring 

continuum, producing information heterogeneities that are major obstacles to the biological 

discovery process. These heterogeneities are among the key motivators of the knowledge 

aggregation approaches and knowledge mining described in this thesis, and will be discussed 

in detail in this chapter. 

2.1.3 Metadata 

In previous sections, biological data was described as the outcome of experimental 

measurement, such as genomic nucleotide sequences, mass spectrometry readings, or protein 

expression levels. In most cases, raw data alone is insufficient for analysis unless additional 

descriptive data is provided. For example, protein expression levels measured by a microarray 

assay will yield no knowledge unless they are accompanied by information about organism, 

tissue type, disease condition, and so on. Such descriptive information is known as metadata 

(“data about data”). Metadata plays an essential role in bioinformatics analysis, by providing 

a context for interpreting data. Different meanings can be ascribed to the term metadata, 

arising from different usage perspectives (Lundy 1984): at system level, metadata  may 

describe the encoding of data; in databases, it defines the meaning of data fields; in database 

records, it may describe the conditions under which the data is valid, under which 

measurement were recorded, and so on. Within this broad spectrum of uses, two broad classes 
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of metadata can be defined (Bretherton and Singley 1994): 

• Control metadata, such as database schemas, is intended to aid machine processing 

of data. It captures lexical, syntactic and structural aspects of data interpretation, and 

is built into the processing software, preferably as a result of implementing 

standards.  

• Guide metadata, such as descriptions of experimental conditions or literature 

references, is intended to help humans or machines reason over the data. Although 

guide metadata is often encoded in natural language, this is not a requirement, since 

its presentation to human users is often mediated by machines. The essential feature 

of guide metadata is its role in decision-making tasks: logical operations can be 

performed on metadata in order to store, retrieve, sort, combine, analyze, and present 

the relevant data (Long JM 1986). Guide metadata is frequently encoded in data 

records, alongside the data it describes: for example, a GenBank sequence record 

contains the nucleotide sequence (data), as well as taxonomy identifier, literature 

references, and so on (metadata). Therefore, guide metadata can be viewed as “just 

data” and we consider data and guide metadata as one when discussing structural 

aspects of information. In this work, however, we will distinguish between data and 

metadata in terms of the role played in the analysis process.  

 

Both classes of metadata are essential for performing bioinformatics tasks, although they 

affect different aspects of the knowledge discovery process. Mismatches in control metadata 

between information producers (such as databases) and information consumers (such as 

analysis tools) produce information heterogeneities, which impede the correct decoding and 

usage of the data, as will be discussed later in this chapter. Errors or omissions in guide 

metadata, on the other hand, affect the analysis and decision-making process, impairing 

knowledge acquisition. For example, in a comparative analysis of viral protein sequences 

from different hosts, records with missing metadata will cause sequences to be discarded, 

while errors will assign sequences to the wrong set. In both cases the accuracy of the analysis 



           27 

results is diminished, and therefore their significance.  

Because of the impact of guide metadata deficiencies, it could reasonably be expected 

that descriptive metadata should be submitted to database storage with the same attention to 

detail as the main data. Unfortunately, this is not the case: we will show in Chapter 3 that 

metadata errors and omissions plague primary databases such as GenBank, making the 

construction of large metadata-rich datasets a very arduous task. This state of affairs may 

largely be due to a lack of appreciation of the importance of metadata for the reuse of the 

deposited data. Even journals that require sequence data to be deposited prior to publication 

(Noor et al. 2006) do not normally stipulate metadata quality requirements. To compound the 

problem, metadata errors and omissions in primary sources are almost impossible to correct 

by third parties, and therefore errors tend to propagate (Bidartondo 2008). The problem of 

guide metadata recovery is a central issue of this thesis, and will be discussed in Chapter 3 

and 4, where it will be addressed by novel rule-based methods. Since guide metadata is the 

class of metadata most frequently discussed in this work, the word “guide” will often be 

omitted- for example, the phrase “sequence metadata” should be interpreted as “guide 

metadata about a sequence”. 

2.1.4 Digital Repositories of Biological Information and Knowledge 

Experimental data is frequently made public upon publication of results, fulfilling two 

objectives: reproducibility of the analysis task, and repurposing of the data for different type 

of analysis. Digital repositories of biological data (biological databases) collect and store data 

submitted by multiple research studies, which can be aggregated and examined in different 

contexts. Within these databases, biological data (such as nucleotide sequences) is normally 

accompanied by descriptive metadata, which details experimental information, relationships 

to other records, and provenance information such as a reference to a relevant publication, 

which may be important to assess the trustworthiness and quality of the data. The number of 

publicly accessible biological databases is growing continuously: the Molecular Biology 

Database Collection, a yearly-updated catalogue of biological databases, described over 1000 
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high-quality databases at the end of 2007, an increase of 11% since the previous year 

(Galperin 2008). The list encompasses a highly diverse range of database type (shown in 

Table 2-1), reflecting the diversity of intents of the many research organizations that manage 

these repositories.  

Not all of the databases listed are repositories of experimental data: many are value-

added knowledge repositories, in which data from other databases is selected, aggregated, 

summarized and analyzed. Thus it is useful to distinguish between two broad categories of 

biological databases: generic and specialized (Brusic and Koh 2004). Metaphorically, the 

difference between these two categories is similar to that between a wholesale market and a 

specialized boutique. A boutique supplies a small range of products, selected for their quality 

and relevance, and provides significant support for choosing the correct product. The products 

available in a boutique may also be obtainable from the wholesale market, but they are far 

more difficult to find among a huge range of other products, and may not be available in the 

desired form, size or quantity. However, the variety on sale at the wholesale market may be 

advantageous when a single boutique does not offering all the products we need.  

Generic databases such as GenBank (Benson et al. 2008), UniProt (UniProt Consortium 

2008), PubMed (Wheeler et al. 2008b) and the Stanford Tissue Microarray Database 

(Marinelli et al. 2008) are the wholesale markets of biological data. Because of their emphasis 

on coverage, these databases allow the retrieval of comprehensive datasets (for example, “all 

dengue virus sequences for a given organism”) and “needle in a haystack” searches (for 

example, finding homologues of a sequence in multiple organisms). Generic databases need 

to handle a high volume of new submissions, and therefore can only offer limited centralized 

curation; as a result, individual records often present errors, inconsistencies and omissions 

(Brusic and Koh 2004). In addition, because of their general purpose nature, records in such 

databases support a limited set of descriptive annotations.  
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Database Type Count 
 Inter. Nucleotide Sequence Database Collaboration  3  
 Genes, motifs and regulatory sites 39  
 Structure, introns/exons, splicing 24  
 Transcriptional factors 48  
Nucleotide Sequences   114 
RNA Sequence, Structure and Functions   54 
 Sequences 13  
 Properties 14  
 Localization and targeting 21  
 Motifs and active sites 21  
 Domains, classification 33  
 Databases of individual protein families 58  
Protein Sequences   160 
 Annotation terms, ontologies, taxonomy 21  
 General genomics 36  
 Viral genomes 21  
 Prokaryotic genomes 55  
 Unicellular eukaryote genomes 14  
 Fungal genomes 27  
 Invertebrate genomes 47  
 Model organisms, comparative genomics  49  
 Human genomes, maps and viewers 19  
 Human proteins 19  
Genomics   308 
 Arabidopsis thaliana 18  
 Rice 14  
 Others 42  
Plant Databases    74 
Organelle Databases    21 
 Small molecules  12  
 Carbohydrates 9  
 Nucleic acid structure 10  
 Protein structure 56  
Molecular Structures   87 
 Enzymes and nomenclature 13  
 Metabolic pathways 11  
 Protein-protein Interactions 42  
 Signaling pathways 11  
Metabolic and Signaling Pathways   77 
Microarray Data and  Gene Expression   41 
Proteomics   11 
Other Molecular Biology    30 
Immunological Databases    21 
 Human genetics 10  
 Polymorphisms 25  
 Cancer genes 20  
 Gene-, system- or disease-specific 42  
Human Genes and Diseases   97 

Table 2-1 - Biological databases in the Molecular Biology Database Collection 
Data is summarized from Galperin (2008). A small number of databases were listed in 
multiple categories. 
 
 

Specialized databases tend to have a narrower, well-defined scope: they may concentrate 

on specialized topics, such as specific pathogens (e.g. PlasmoDB (Stoeckert et al. 2006)), 

cellular components (e.g. Mitome (Lee et al. 2008)), class of proteins (e.g. TOPDB (Tusnády 
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et al. 2008)), to name just a few. Because of their narrower scope, these databases contain a 

far smaller selection of records than generic databases, and are usually curated by experts in 

the area of coverage of the database. Dedicated curation effort results in high-quality, 

carefully edited records that may include specialized detailed annotation and links to related 

resources. Specialized databases often offer features that extend the usefulness of their data, 

such as integrated analysis tools that support the common relevant analysis tasks. As an 

example, the VISTA genome database provides a variety of comparison tools for identifying 

similarities in genomes of different species (Frazer et al. 2004).  Many specialized databases 

are secondary repositories, in that they aggregate data retrieved from primary repositories of 

experimental data such as GenBank, often augmenting it with analysis results and data from 

other sources. In many other cases, however, specialized databases are managed by research 

groups that produce relevant data, which may not be available elsewhere. Although the 

creation and management of “boutique” databases by expert research groups is beneficial for 

data quality, it does present a number of disadvantages. Since many biomedical research 

groups are not supported by dedicated IT infrastructures capable of designing and 

implementing complex databases systems, poor support of standards and deficient data 

structures often characterize smaller biological repositories. In addition, most biological 

databases are implemented ad hoc, using unique access mechanisms and data formats, which 

translate into difficulties in querying, retrieving and interpreting the data automatically. 

Indeed, several databases provide web interfaces that are clearly intended for human browsing 

rather than automated retrieval, probably based on the assumption that data of interest is 

normally collected manually by researchers. 

2.1.5 Dissemination of Biological Knowledge through Text 

The “gold standard” method of transferring knowledge in the biomedical research community 

is through publication in peer-review journals or conferences. From a scientific perspective, 

peer-reviewed publication is an integral part of the scientific process. It provides quality 

control, standard dissemination channels, and recognition of scholarship (Ruben 2003). 
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Publications in print also provide a very expressive medium: they support unstructured 

information, such as images, diagrams, logical discourse and descriptive natural language, as 

well as structured information in the form of tables and citations. The unstructured format of 

free text allows diverse kinds of knowledge to be combined in a single document, with a 

freedom of expression that electronic data repositories cannot currently match. At best, 

current state-of-the-art knowledge management technologies can capture complex knowledge 

as a set of simply structured statements using controlled vocabularies (ontologies), but are 

unable to encode all the nuances supported by human language. In natural language text, 

explicit knowledge is routinely supplemented by tacit knowledge, which is implicit and 

assumes shared experience and mindset (Nonaka and Takeuchi 1995), and therefore usually 

absent from databases. An important category of tacit knowledge is that of the rules we apply 

on information to generate new knowledge (André 2002). Although several approaches for 

making rules explicit (mathematical notations, workflows, logic languages) exist, they are 

generally difficult to apply, and it is therefore more common for rules to be built into software 

tools than to be expressed in reusable terms. 

The conversion of human knowledge (such as publication contents, experimental data or 

user knowledge) to an electronic shared form can be performed on both explicit and tacit 

knowledge (Table 2-2). Most knowledge transfer to databases consists of dissemination, the 

encoding of explicit knowledge into a suitable shared schema. For example, the annotation of 

UniProt protein sequences with domain information derived from structural analysis 

represents explicit knowledge encoding. The externalization of tacit knowledge is a more 

complex process, requiring manual curation by highly qualified researchers who read 

academic publications and synthesize facts contained within the text into a machine-

consumable electronic form. This conversion process is usually limited to specific portions of 

the total knowledge contained in any given publication. The process is dictated by the 

curator's specific objectives and the knowledge types supported by the target database. Some 

databases, such as OMIM (McKusick 2007), choose to present knowledge extracted from 

literature as free text, thus creating specialized literature digests. Although this approach 
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allows facts to emerge explicitly, it does not solve the problem of providing the information 

in a format that can be processed by analysis tools.  

 

From
                       To 

Tacit Knowledge Explicit Knowledge 

Tacit Knowledge Socialization Externalization 
(capture and storage) 

Explicit Knowledge 
Internalization 
(reuse) 

Combination 
(dissemination) 

 

Table 2-2 – Knowledge Conversion Matrix (Nonaka and Takeuchi 1995)  
 

 

The extraction of knowledge from peer-reviewed publications has been revolutionized 

by technological advances in digital publishing and by the growth of the Internet. All leading 

academic journals now provide indexed and searchable electronic versions of published 

papers, which can be downloaded online. New publication channels have resulted in 

continuous growth of the journal sector (Gooden et al. 2002), along with a dramatic reduction 

of the time needed for researchers to access the articles they require, as well as wider and 

more equitable access to journals (Kmietowicz 2001). In the electronic publishing world, 

subscriptions managed by libraries, corporate resource centres, and content brokers control 

access to Web resources. The scientific community is applying increasing pressure on 

publishers to make journal content freely available, to improve research dissemination. A 

number of major agencies have instated public access policies, demanding that papers funded 

under their research grants must be made freely available shortly after publication; these 

agencies include the National Institutes of Health (NIH 2008), the Howard Hughes Medical 

Institute, the Wellcome Trust, and other major European funders (Doyle et al. 2003). At the 

same time, emerging open access publishers have successfully introduced new business 

models that transfer publication costs to producers rather than consumers (Delamothe and 

Smith 2004). The trend indicates that the availability of full text content will continue to 

increase over the next few years, leading to almost universal free access to published research. 
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This has profound implication for the conversion of text-encoded knowledge to machine-

readable form: free access to full text will enable automated agents to search with more 

accuracy for relevant research, facilitating database curation. These new opportunities have 

fuelled much research in automated biomedical text mining, which could drastically reduce 

the work of database curators (Erhardt et al. 2006; de Bruijn and Martin 2002). At present, 

many text mining tools obtain their input data from freely available abstracts from the 

PubMed database (Wheeler et al. 2008b), which currently indexes over 17 million articles.  In 

the future, it is likely that PubMed will retain its primary role as an index resource, while text 

mining tools will retrieve full text data directly from journal sites. However, text mining tools 

are almost invariably bespoke applications that are problem-specific and very complex to 

build. Chapter 8 of this thesis presents a knowledge mining application that analyzes PubMed 

abstracts, to facilitate curation of biological databases. Rather than extract facts from the text, 

the application selects the most relevant documents to be read and analyzed by a human 

curator. Such document classification task can significantly reduce the search effort making it 

manageable to find relevant knowledge amongst hundreds of publications. The approach 

presented here is unique in that it contains built-in problem-specific software is needed, and a 

database curator can customize the application without programming expertise. 

2.1.6 From Laboratories to Repositories 

We have surveyed and summarized the diverse arsenal of knowledge repositories available 

for further bioinformatics analysis, and have described how data, information and knowledge 

flow from experimental laboratories to primary databases, journal publications and 

specialized knowledge bases. The knowledge flow (summarized in Figure 2-2) involves 

multiple factors and participants, and provides multiple paths for knowledge to reach its 

destination repositories. Every passage in this flow may present challenges in knowledge 

access, retrieval, transformation and representation, all of which can introduce gaps and errors 

in the resulting databases. This is clearly of central importance to the knowledge discovery 

process, since bioinformatics analysis depends on the correctness and completeness of the 
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data and metadata used in the analysis. In the following sections, we will discuss several key 

problems, which must be addressed in knowledge mining tasks. 

 
 

 

Figure 2-2: Knowledge flow from laboratories to repositories. 
Data is produced and analyzed by experimental researchers, who publish their results and 
conclusion in biomedical papers, which are indexed by literature databases. The experimental 
data is usually deposited in primary biological databases at the time of publication. 
Specialized databases tap on both published and unpublished data, collecting selected 
deposited data from primary databases and expanding annotations. Knowledge in specialized 
databases is often derived from literature, either manually by a human curator, or 
automatically by text mining. To a smaller extent, automatic annotation and human curation 
are used for curation of primary databases. 
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2.2 Opportunities in Bioinformatics Knowledge Discovery 

2.2.1 Bioinformatics in the Post-Genome Era 

The Human Genome Project has been a watershed event in the history of biomedical research, 

not only because it provided the first full reference human genome sequence, but also because 

of the great technological impetus that accompanied this project. Like NASA's missions to the 

Moon, which spurred great advances in semiconductor technologies and fuel cells, the 

colossal challenge of assembling the first human genome has encouraged the development of 

new methods in biotechnology, instrumentation, and computing, reducing enormously the 

cost of sequencing. At the same time, the availability of the full genome has revealed a wide 

range of scientific discovery possibilities: comparative genomics against other species, 

mapping of human polymorphisms and haplotypes, identification of disease-linked mutations 

(Austin 2004). One tantalizing prospect is the ability to link features of human genomes with 

those in genomes of other organisms involved in disease: for example, by simultaneously 

analyzing genomic data from malaria parasite Plasmodium, its arthropod vector Anopheles, 

and its human hosts (Hoffman et al. 2002). However, the identification of genetic factors 

associated with disease requires the analysis large numbers of genomes to achieve statistical 

significance (Forton and Kwiatkowski 2006). Thus, the completion of the first human genome 

has paved the way for the sequencing of thousands of other genomes, including humans, 

mammals, animal models, and other organisms and viruses, including pathogen sequences. 

This might have seemed an unrealistic goal just a decade ago, but the pace of advances in 

sequencing technologies leaves little doubt that it will be achieved. Additional pressure to 

reduce the cost of sequencing comes from the emergence of personalized genomics and 

personalized medicine (Wheeler et al. 2008a), a new field with high economic potential. 

Current technology trends are promising: a new sequencing approach introduced by Solexa 

(Bennett et al. 2005) has recently lowered the cost of sequencing by two orders of magnitude, 

suggesting that affordable personalized genomics will soon become a reality. Alongside the 

development of rapid and inexpensive genomic sequencing, comparable advances have been 
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made in microarray technologies. Not only has array miniaturization improved to yield 

extremely high densities, but the variety of applications has also been extended to encompass 

comparative genomics, sequencing, methylation and others alongside the more traditional 

protein expression profiling (Cowell and Hawthorn 2007). 

Until now, the growth in the volume of data has not fundamentally changed the nature of 

knowledge flow in bioinformatics. Laboratory-to-repository knowledge sharing mechanisms, 

via primary data repositories, peer-reviewed publications and value-added knowledgebases, 

will remain the main data sources for bioinformatics analysis. We anticipate that the scale on 

which knowledge sharing takes place will change dramatically in the near future. Data records 

will expand in size from the few kilobytes needed to store a single sequence, to several 

megabytes, gigabytes, or even terabytes required to encode whole genome sequences, 

expression levels from millions of microarray spots, or detailed images of pathology 

specimens. It is reasonable to predict that new secondary databases will emerge to cater for 

new types of data, and for the study of new biological entities and processes. The 

bioinformatics analysis pipeline will therefore need to scale up in multiple dimensions: by 

devising new ways to store, transfer, encode and analyze higher data volumes; and by 

enabling the aggregation of information and knowledge from a growing multitude of diverse 

data sources. As the focus shifts on comparative studies, studies of multiple entities, and 

functional studies, the availability of metadata will hold the key to properly controlled 

analysis and set selection, for the different types of biomedical data to be analyzed (van 

Vlymen and de Lusignan 2005). Thus metadata storage, retrieval, quality and representation 

will grow in importance, as will the capability of tools to make use of descriptive metadata in 

analysis, and flow knowledge to other tasks. These are very significant new challenges, which 

require a mindset shift in bioinformatics: although analysis algorithms will continue to play a 

central role, the management of large quantities of data, encoding of detailed metadata and 

connectivity to heterogeneous systems, are the domain of software engineering and systems 

engineering, rather than computer science (National Research Council 2007; Parker et al. 

2003). Metadata plays a central role in the work presented in this thesis: the knowledge 
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aggregation approach presented in Chapter 3 produces datasets which are annotated with 

metadata aggregated from multiple data sources. In Chapter 4 we show that this metadata can 

be encoded and propagated along the analysis pipeline using semantic technologies, which 

allow the metadata to be enriched using rule-based reasoning. Finally, the information 

theoretical approaches presented in Chapter 5 use metadata to select subset alignments and 

conduct comparative analyses and meta-analyses. The AVANA tool, which implements these 

approaches, is metadata-enabled as it accepts annotations of the input sequences. 

2.2.2 Bioinformatics in the Post-Sequence Era  

Another important paradigm shift, catalyzed by the rapid increase in the volume of available 

data, is the emergence of analytical tools that consider biological systems rather than 

individual components. The high cost of experimental molecular biology, and the resulting 

low data volume, has traditionally limited bioinformatics to the study of individual molecular 

components, such as DNA or protein sequences. Such small scale approaches have produced 

remarkable results, enabling the elucidation of basic cellular and molecular mechanisms, and 

sometimes identifying causes of disease. These successes have encouraged a reductionist 

view of biology, according to which different aspects of biological mechanisms can be 

studied separately, thus reducing the systemic complexity of the problem. Reductionism has 

been applied successfully in the physical sciences, and the deciphering of the physiochemical 

nature of fundamental processes such as genetic replication, transcription and translation has 

led some to believe that the reductionist approach could answer all biological questions, as 

summarized by Francis Crick: “an organism is essentially nothing but a collection of atoms 

and molecules” (Crick 1966). This philosophical view has been rejected by autonomists, who 

believe that biology cannot be rationalized in the same way as physics, but on the contrary 

can only be explained in functional terms (Dupre 1986). Both sides have valid points: 

undeniably, reductionist methods have produced breakthroughs, such as models of the 

building blocks that enable the identification of the function of proteins, or of genetic 

determinants in some diseases; however, these may be “low-hanging fruits”, and long-term 
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progress may be dependent on methods that take a broader perspective. Most diseases have 

complex causes, involving a myriad of contributing factors, which interact in non-obvious 

ways. Even if we accept that, in principle, biological systems can be explained in biophysical 

and biochemical terms, we currently have neither the sophisticated models nor the 

computational means to “make the leap” (Ogbunugafor 2004) between simple molecular 

observations and complex phenomena such as disease. The new field of systems biology has 

emerged to bridge this gap, by studying how biological entities (DNA, RNA, proteins, 

regulators and small molecules amongst others) interact to produce complex phenotypic 

results. The study of biological systems is expected to yield intermediate models that account 

for the interaction of molecular components, their assembly, their regulation mechanisms, and 

so on, as well as novel strategies for the rational development of therapies that can control or 

interfere with disease-related processes (Kitano 2002). Biological models can be applied at 

multiple levels: molecular, cellular, organ/tissue, organism, and groups of organisms (Motta 

and Brusic 2004). The applications presented in this thesis focus primarily on modeling 

molecular entities from data assembled pertaining to multiple pathogens. 

The post-genome era is therefore also a post-sequence era, in which bioinformatics 

analysis is characterized not only by growing volumes of data, but also by the increasing 

diversity of data types involved in analysis tasks, and by the growing numbers of analysis 

tasks that will have to be applied. This “second-generation” bioinformatics, as we term it in 

this work, will shift its focus from entity data in primary repositories, to knowledge-rich 

secondary databases (knowledgebases) that allow multidimensional information to be 

combined in the same study, and the resulting knowledge will pave the way for more 

complete models of cells and organisms (Kanehisa and Bork 2003). To cater for multiple 

different types of analyses, the arsenal of tools used in bioinformatics is also destined to grow, 

and individual tasks will need to be combined within complex analysis pipelines. At the 

National Institutes of Health, this emerging paradigm has been dubbed “digital biology”, that 

is, the combination of large-scale scientific data integration, multi-scale modeling (the ability 

to study different systemic aspects of biological phenomena) and networked science (the 
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ability to “wire together” multiple knowledge tasks) (Morris et al. 2005). Achieving highly 

sophisticated integration, modeling, and networking is a challenge to the growth of the field 

of bioinformatics. This thesis addresses several aspects of this quest: the aggregation of 

knowledge from heterogeneous sources; the construction of large-scale datasets of sequences; 

the recovery of critical non-obvious information (descriptive metadata); the use of metadata in 

comparative analyses and meta-analyses; the need for knowledge representation capable of 

transferring knowledge across multiple tasks; the use of information theory for efficiently-

computable metrics; the identification of useful information in free text. 

2.3 Evolving Bioinformatics Scalability  

The research questions of the post-genome era will require the study of large datasets 

consisting of whole genomes, sampled across large populations of individuals; the 

combination of increasingly diverse data types of knowledge, extending beyond plain 

nucleotide sequences, including comprehensive descriptive metadata to support decision-

making; and the harnessing of multiple methods and algorithms in complex analysis pipelines 

and meta-analyses. At present, bioinformatics analysis tools only partially meet these 

requirements: with the exception of a handful of research organization with the technology 

capability to implement large-scale bespoke systems, life scientists are limited to performing 

small-scale analyses. Such “bioinformatics in-the-small” may be characterized as being 

within the comprehension of one person and focused on a single aspect or components; 

“bioinformatics in-the-large”, one the other hand, spans component boundaries and tends 

involve multiple participants (Parker et al. 2003). Such a scale shift requires changes at 

several levels, including technology, information handling, and working practices, amongst 

others. The following are examples of typical needs: the manual collection and curation of 

datasets, typical of small-scale studies, is not viable in studies involving thousands of records; 

in analysis pipelines, derived knowledge must be transferred from one analysis tool to the 

next, rather than each stage being an end to itself; analysis tools must be able to support 

decision-making by utilizing metadata, rather than obliging the user to create multiple version 
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of the input data prior to analysis. We have identified three dimensions pertinent to 

bioinformatics scalability: 

• Integrative scalability, the ability to use knowledge of different types, from different 

sources, in different forms, and integrate it into the analysis process; 

• Quantitative scalability, the ability to analyze large volumes of data in ways that are 

efficient, fast, affordable, and accessible to researchers; 

• Hierarchical scalability, the ability to organize the discovery process in multiple 

analysis stages, driven by the researcher’s knowledge and intentions, transmitting the 

knowledge produced by a task as input information to other downstream tasks. 

In this section, we have considered each of these dimensions, and discussed the current 

challenges faced by researchers as they attempt to scale up bioinformatics analysis tasks. 

Rather than highlighting the issues faced by large change-driving organizations that benefit 

from extensive IT support, we have focussed on the needs of the vast majority of biological 

researchers needing bioinformatics analysis, who have neither an extensive IT infrastructure, 

nor sufficient programming knowledge to create customized applications.  

2.3.1 Biological Knowledge Aggregation 

Knowledge Aggregation, a core concept of this thesis, has been defined as “the problem of 

taking information from multiple heterogeneous sources and aggregating it into a unified 

knowledge base” (Zeng and Fikes 2005). Here, the term knowledge base should be interpreted 

as encompassing any structured aggregated dataset that can be queried or analyzed. The 

purpose of knowledge aggregation is to extend the usefulness of existing information by 

increasing its volume, or its dimensionality. The need for biological knowledge aggregation is 

the driving factor for integrative scalability of bioinformatics. Aggregation of multiple 

sources may take different forms, such as: 

• Sources contain essentially the same data types, but different sets of records (e.g. 

patients in different hospitals) 
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• Sources contain conceptually similar data types, but with different structure and 

scope (e.g. a gene sequence may have structural annotation in one database, with 

only a single literature reference, while another may detail splicing sites and a 

comprehensive set of literature reference s) 

• Sources contain different data types, but complementary records (e.g. a database of 

patient’s medical data and a database of patient’s accounting records) 

• Sources contain different data types, but cross-referenced records (e.g. a database of 

patients and a database of illnesses) 

In general, each data source can be assumed to maintain its own record structure, which is 

consistent for all its records, but from that of other sources, as discussed in the following 

section. A knowledge aggregation task will define some target structure (schema), and map 

extracted information from the diverse sources to this target schema. In most cases, source 

data must be transformed structurally, selecting only information of interest; records from 

multiple databases may need to be merged when they represent the same entity (for example, 

the same sequence, or patient); conflicting values from multiple source records may need to 

be reconciled; and data imputation (i.e. “filling in” gaps in aggregated data) may be required 

when complementary databases do not have equal coverage. 

2.3.2 Challenges in Integrative Scalability 

Integrative scalability depends of the ability to obtain, interpret, aggregate and use 

information from multiple sources. Bioinformatics databases number in thousands, and 

present little homogeneity: they encode different types of data, for different purposes, with 

different levels of details, using different structures, accessible using different mechanisms. 

These differences (heterogeneities) make large-scale data gathering and preparation 

insurmountable obstacles for many life scientists, who often construct datasets by cut-and-

paste extraction from a database’s Web interface to a spreadsheet. Issues related to database 

integration affect many domains of computing, and are widely studied in computer science. 

Heterogeneities can be classified in four categories (Sheth 1999; Ouksel and Sheth 1999): 
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• System heterogeneity refers to differences in mechanisms of storage, query and 

retrieval provided by databases, and affects how users obtain the right information; 

• Structural heterogeneity refers to differences in internal organization of information 

records within databases, and affects how users find values within records; 

• Syntactic heterogeneity refers to differences in the encoding of data fields within 

information records, and affects how users extract desired values from records; 

• Semantic heterogeneity refers to differences in purpose and meaning of data fields 

within information records, and affects how users interpret extracted values. 

Structural, syntactic and semantic heterogeneities involve the content of information 

records, and can therefore be considered information heterogeneities, in contrast to system 

heterogeneities which involve the management and access of information records, without 

considering their content. Each of the heterogeneities listed presents unique challenges, which 

may in turn require specific solutions. 

2.3.2.1 System heterogeneity 

Biological data sources may be accessed either locally (a copy of the whole database can be 

installed on a local computer), or remotely (there is only one copy of the data, and it is 

accessible over a network, usually the Internet). Local copies of databases, such as are 

available for GenBank or UniProt, allow fast access to the data and do not require 

implementing network protocols. However, their large size, lack of built-in querying 

facilities, and need for regular updates discourage their user unless a sophisticated computing 

infrastructure is at hand. Remote databases typically provide query and retrieval facilities, but 

may present access difficulties when implemented using different operating systems, 

programming languages, and database management systems (DBMS). Most current 

repository implementations use relational database management systems (RDBMS), which 

support the powerful SQL standard database query language (Khandheria and Garner 2007). 

However, SQL is too powerful and too low-level to be used as a robust query mechanism on a 
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public network. Leveraging on the experience of eCommerce and other computing domains, 

the vast majority of biological databases have adopted Web technologies as the standard 

interface mechanism (Figure 2-3, see Newsome et al. (1997) for an example), as this allows 

users to interact with the databases using standard Web browsers that implement the HTTP 

protocol, without the need to install specific client software (Markowitz et al. 1997). The 

Web-based application mediates between the user and the database by providing a query form 

for specifying search criteria. These criteria are translated to database queries (typically using 

SQL), and the results are converted into user-readable HTML pages that can be viewed by the 

user (Garcia-Remesal et al. 2004). There are countless variations on this architecture: some 

databases provide persistent management of query results, other integrate relevant analysis 

tools, which can be controlled via query interfaces. In addition, some databases return results 

in formats other than HTML: proprietary formats such as those used by GenBank or UniProt; 

standards such as FASTA; or ad-hoc formats such as comma-separated values (CSV). 

 

Figure 2-3: Basic structure of a typical Web-accessible biological database 
The simplest data repositories do not provide analysis tools. More sophisticated systems, 
however, may provide result management, and return results in a variety of formats. 

The use of a Web infrastructure hides difference in operating system and programming 
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language, but this is not sufficient to overcome system heterogeneities. Most repositories 

implement this common architecture differently: form fields and selectable query values are 

different for different databases, as are the HTML layouts used to display results, and form 

submissions mechanisms may also vary, sometimes utilizing scripts and hidden parameters. 

In addition, the dynamics of query execution differ between databases: some execute queries 

synchronously, while others may use queues to process results; error handling behaviour may 

vary; and some databases may require subscriptions to access data. In most cases, applications 

are only designed for interactive users: they use human-readable forms, and produce human-

readable results, which are obstacles to automated data collection and aggregation.  

2.3.2.2 Database Integration Approaches 

Several technology approaches to biological database integration have been proposed (Wong 

2002; Hernandez and Kambhampati 2004), most of which have also emerged in other 

domains of computing. These solutions usually address both system heterogeneities and 

information heterogeneities (as will be discussed in later section), and can therefore be viewed 

as architectures for integrative scalability. Federated databases (Heimbigner and McLeod 

1985; Sheth and Larson 1990) are meta-databases: a common data model (CDM) is defined, 

which integrates the schemas of the participating databases. The central federation system 

decomposes queries as appropriate, and delivers them to the component data sources, 

mapping query results to the CDM. Thus, a federation system such as Kleisli (Chung and 

Wong 1999; Wong 2000) requires information about individual data sources to be used to 

form queries. Typically, database federations maintain common control metadata, but not a 

centralized database, and thus data is retrieved from its original sources at every query. Some 

authors distinguish between various degrees of federation, characterized by their architectural 

integration (Karasavvas et al. 2004), which may be loose- for example, NCBI Entrez 

(http://www.ncbi.nlm.nih.gov/Entrez/), consist of a Web portal with integrated search and 

cross-referencing, and does not attempt to combine source data schemas. Data warehouses 

(Schönbach et al. 2000; Widom 1995) are databases constructed and maintained from data 
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retrieved from multiple sources (typically primary databases). Warehouses replicate the 

source data, mapping it to fit to a centralized CDM (the warehouse’s data schema), and 

managing it independently of its original sources. Differently from database federations, 

warehouses need not query data sources synchronously, and therefore there is no requirement 

to translate submitted queries. Furthermore, local storage of data promotes higher 

performance (Wong 2002). Many secondary biological databases are data warehouses, which 

collect publicly available information on a given theme, annotating it with metadata and 

additional knowledge from various sources. There is considerable flexibility in data 

warehouses design, and toolkits are available to support their creation from data in the main 

primary data repositories (Koh et al. 2004; Lee et al. 2006). Even with such support, the 

design and implementation of data warehouses require a high level of computing skills, and 

there is limited flexibility to accommodate design changes due to new requirements, such as 

the support of additional databases, or additional fields, at a later stage. Mediators 

(Wiederhold 1992) are a strategy for improving the flexibility of database federations. 

Mediators accept user queries in a generic query language (GQL), and access data sources by 

means of components known as wrappers. Database wrappers perform all necessary 

translations: they convert generic queries into database-specific queries; they manage the 

interaction dynamics with the source database; and they transform results to the desired form. 

Mediators do not create centralized replicas of the aggregated results, and do not require 

architectural integration with the original data sources. One of the key advantages of mediator 

systems is their inherent extensibility: in principle, wrappers for new data sources can be 

added without modification to the overall architectures. However, mediators do not usually 

provide local storage and therefore, like federated databases, may suffer from poorer 

performance. 

A comparison of the described approaches is shown in Table 2-3- fundamentally, these 

approaches offer different trade-offs. Federated database offer highly powerful, specific 

querying and superior reliability, at high organizational cost. For users with limited IT 

infrastructure and know-how, a mediator architecture appears to be a clear choice.  
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  Federated Databases  Data Warehouses  Mediators 

Query 
Expressiveness 

Very powerful because 
of detailed built‐in 
knowledge of sources 

Powerful, but limited 
to the warehouse 
structure 

Limited to translations 
of generic queries 

Query 
Performance 

Can be poor if the 
federated databases 
are distributed 

Can be very fast  Limited by the 
performance of remote 
systems 

Control over 
data schema 

Full control and 
reliability, at high 
organizational cost 

Full control   No central schema, 
depends on wrappers 
for translation 

Schema 
Flexibility 

Very expensive to 
change schemas 

Schemas can be 
changed by 
administrators 

Highly flexible, may be 
changed by end users 

Extensibility  Requires engineering 
effort to add new 
sources 

May be extensible, 
depending on 
architecture 

Generally very 
extensible, with plug‐in 
wrappers 

Infrastructure 
requirements 

Requires IT 
infrastructure and 
organization 

Requires servers, 
RDBMS, admin 
privileges 

Suitable for low‐
resource environments, 
peer‐to‐peer networks 

IT Expertise 
requirements 

Can only be 
implemented by IT 
experts 

Generally manage by 
IT administrators 

Most suitable for end‐
user management 

Table 2-3: Comparison of Database Integration Approaches 
 

2.3.2.3 Structural heterogeneity 

When information from multiple sources is aggregated, there may be significant structural 

differences between schemas (data record organizations) used by the source databases. In a 

database, schema design is strongly dependent on the purpose and perspective for which the 

database is designed. For example, designers of a small warehouse of DNA sequences have to 

choose what type of annotations are to be supported, among the many possible (open reading 

frames, introns and exons, protein products, promoter sites, polymorphisms, function, 

genomic location, etc.). Since the support of annotations requires laborious curation and 

maintenance, only a subset of annotation sources will typically be selected. Structural 

heterogeneities arise even when the same fields are supported from multiple sources, since 

most complex information can be modeled in multiple ways, and therefore encoded under 
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different structures. To complicate matters further, data can be represented using different 

data structuring paradigms (Table 2-4). Besides the strictly structured information in RDBMS 

databases and the unstructured data found in text, the Web has popularized semi-structured 

data, such as that encoded in XML documents and Web pages. Semi-structured documents 

are structured internally, but linked to each other at coarse granularity level- each document 

can therefore be thought as an interlinked “micro-database”. 

 
Data Structuring  Characteristics Examples 
Unstructured  
 

Document-based 
Minimal internal structure (or none) 

Biomedical free text abstracts 
NMR scan images  

Structured Entities with attributes 
Relationships between entities 
Schema and metadata define 
structure 

RDBMS tables 
Spreadsheets 

Semi-structured Document-based 
Has an internal structure, often self-
describing 
Relationships between documents 

XML files 
GenBank records 

Table 2-4: Data Structuring Paradigms: Structured, Unstructured and Semi-structured  
 

Several approaches have addressed structural heterogeneities, and we will discuss briefly 

some of the most important ones. First, the problem can be tackled at source, if source 

databases exchange data records using agreed data standards. Although it is unlikely that 

any two databases use the same internal structure, standardization bodies and industrial 

committees can define formats for encoding data to be interchanged between databases, 

simplifying integration tasks. For example, a data warehouse that aggregates information 

from multiple databases will be able to reuse rules for transforming results to its internal 

schema, if all databases use the same standard. At the same time, source databases can retain 

their own internal data structures, invisible to the client warehouses, and mapping query 

results into a standard-complying format at query time. Semi-structured documents are well 

suited to such standards, since they produce structured snapshots of query results, which are 

self-contained and do not require the inclusion of other data. The Extensible Markup 

Language (XML) is a suitable technology for defining biological data exchange standards 

(Achard et al. 2001), because of its semi-structured nature, and its wide support on the Web 
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platform. XML is highly versatile, allowing the definition of markup tags that are problem-

specific (DNA sequences, taxonomy, protein interactions, etc.) but can be parsed and 

manipulated by generic off-the-shelf XML software. The abundance of ongoing XML-based 

standards efforts (Brazma et al. 2006; Strömbäck et al. 2007) reflects both the success of 

XML and the reluctance of the bioinformatics community to adopt universal formats. The 

multiplicity of exchange formats forces aggregators to implement multiple transformations, 

undermining the utility of standards. Furthermore, weakly supported formats are unlikely to 

be maintained over time, as demonstrated by abandoned proposed standards, such as AGAVE 

(http://www.agavexml.org/). Low standard adoption may be due to limited technological 

know-how, to the evolving needs of the field, and to the fact that standards may appear overly 

complicated or oversimplified for specific purposes (Brazma et al. 2006) Paradoxically, the 

most popular de facto standard for sequence interchange is FASTA, which is trivially simple 

and supports no metadata, but is easy to process. In spite of these problems, interchange 

formats remain important for information aggregation, because they insulate aggregators from 

the internal structures of source databases. Even in the absence of standards, semi-structured 

documents encoded in XML (or in the native formats used by GenBank or UniProt) are an 

excellent choice as input for database wrappers. 

After results are retrieved for aggregation, a schema mapping is usually applied, to 

adapt retrieved records to the target structure (e.g. a data warehouse's schema). The mapping 

task is typically performed within a database wrapper. Schema mappings are necessary even 

when source and target schemas represent the identical data types, since relationships between 

fields may be differently (Figure 2-4). Many problems need to be addressed when designing 

schema mappings, such as field hierarchy restructure, aggregation of data from multiple 

tables, splitting of records in small-granularity objects, interpretation of source schemas 

semantics, finding correspondences between entities. Härder et al. (1999) presented a 

thorough review of these and other important issues in schema mapping. Several tools support 

schema mappings using different technical approaches, including graphical mapping 

interfaces (Hernández et al. 2001), automated schema analysis (Castano and De Antonellis 
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1999), and machine learning (Doan et al. 2001). XML has strong standard support for schema 

mapping, consisting of XPath (Clark and DeRose 1999), a query language for extracting 

information using structural paths, and XSLT (Clark 1999), a transformation language for 

defining rules for structural conversion.  

 

 

 

Figure 2-4: Three examples of different data structures encoding the same information. 
(A) All annotations are individual fields in the same sequence record; multiple sequences 
from the same isolate will need to duplicate annotations such as Isolate Id. (B) The same 
information can be encoded in a more structure fashion, grouping related attributes. This is an 
example of semi-structured record. (C) Information on the experimental sample may 
constitute a separate type of record, which is referenced by the sequence record. This 
structured model minimizes value duplication. 
 
 

Automated schema mapping is a common feature of aggregator systems, especially in 

data warehouses and systems with integrated schemas, but it is not a requirement. An 

alternative approach is represented by non-transparent mediators, which retain the original 

record structure (Karasavvas et al. 2004) and have no built-in transformation rules. The user 

must therefore explicitly specify restructuring rules, making this approach well suited to 

aggregation systems that allow ad hoc selection and transformation of fields, typically via an 

interactive interface.  

An alternative to schema mapping is to “deconstruct” the input document, converting it 

to a simply-structured knowledge representation format which is still capable of expressing 

the structure of the input information. A suitable emerging knowledge representation standard 
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is the Resource Description Framework (RDF) (Beckett 2004), a technology developed to 

support the Semantic Web. RDF and other semantic technologies are discussed in detail in 

Chapter 4, where they are proposed as a knowledge representation platform to support 

bioinformatics knowledge pipelines. In short, RDF uses an extremely simple “triple” structure 

(“subject-predicate-object”) to express statement (“facts”) which collectively convey 

equivalent information to that contained in semi-structured documents. RDF only uses the 

“triple” structure, so all RDF data is identically structured, making aggregation a trivial task.  

In addition, RDF data is easily extendable, allowing new data types and attributes to be 

defined easily, thus overcoming some of the limitations of XML (Wang et al. 2005). 

The ABK knowledge aggregation platform presented in Chapter 3 of this thesis uses a 

non-transparent mediator system, in which a user-friendly visualization of the original XML 

source document allows to specify the specification of structural rules (structural 

transformations expressed in XPath) by direct user interaction. This approach allows the user 

to extract knowledge without requiring a formal description of the source’s data structure. 

Rules are applied to all documents from the same source, providing users with immediate 

visual feedback of the rule effectiveness. Thus, extraction rules can be defined by example 

without requirements for programming skills, or in-depth knowledge of the sources, making 

the aggregation of structurally heterogeneous records accessible to life scientists. 

2.3.2.4 Syntactic Heterogeneity 

Data field values are extracted from a data source, and they may need to be converted to suit 

the data format expected by the target schema. Of the different transformations possible, the 

simplest involve a lossless conversion between formats- for example, a time stamp in textual 

format, such as “August 8, 2008 8:08 pm” may be converted to a Unix integer representation 

(the number of milliseconds since 1 January 1970), a popular date format in computing. This 

type of conversion may be supported by programming languages or software libraries, and 

does not pose particular problems. However, many data conversions are lossy, in that some 

precision may be lost in the conversion process- for instance, a source document may express 
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an experiment's sampling date using a full date, but the target system may only record the 

year. Conversely, expanding precision of such data requires making some arbitrary decisions 

(for example, “1984” may be translated to “1 July 1984 00:00” if a full date is required by the 

target system). In some cases, these conversions are non-trivial, and data loss may be 

significant- for example, with fields that record geographical locations. For an avian influenza 

sequence, a database may encode the isolation place as “Qinghai Lake, China”, while a 

different database may only report the country name, or encode the geographical position 

using coordinates, such as “36º 54' N, 100º 08' E”. Conversions between these three different 

forms require special tools, such as gazetteers or GIS software (Janée et al. 2004). In addition, 

reducing the value to retain the country name alone produces a large precision loss due to the 

size of China, as can be appreciated when converting the country name to a set of coordinates. 

Another conversion that requires special processing is the substitution of a literal value with a 

reference- for example, the values “Cow” and “Bos Taurus” may be translated to “9913”, an 

identifier in the NCBI Taxonomy database (http://www.ncbi.nlm.nih.gov/Taxonomy/). Such 

translation may require the use of specialized software, aided by a dictionary and/or an 

ontology (a controlled vocabulary, which may include synonyms), but it can resolve 

ambiguities, and enable selections and queries that leverage on taxonomic knowledge (e.g. 

“find all sequences isolated in mammals”). 

Transformations are further complicated when data is encoded in text form (which is 

frequent in major databases such as GenBank), since the format of human-readable text is 

typically unconstrained. Thus, a text-based “isolation date” field may contain values “1998” 

or “Patient infected in December 1998”, and special techniques must be used to extract the 

year value. Several text processing approaches are available: ontologies and dictionaries can 

be used to identify keywords within free text; regular expressions can identify text character 

patterns and specific lexical formats; and text mining may extract structured information 

from text by learning from existing examples (Li et al. 2005). Considerable work is being put 

into text mining techniques, in attempts to recover structured information from the vast 

quantities of free text available in biomedical literature- see (Hunter and Cohen 2006) for a 
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recent review of the state-of-the-art.  

The ABK approach described in Chapter 3 of this thesis processes information from data 

sources by applying text filters which can use either regular expressions to extract 

information from patterned text, or user-defined dictionaries to recognize problem-specific 

keywords and their synonyms. ABK alerts users about value conflicts to be resolved (for 

example, if the term “Turkey” is interpreted as a country rather than the host organism, and 

conflicts with another country name). 

2.3.2.5 Semantic Heterogeneity 

When discussing schema mapping, we make an implicit assumption that fields in the source 

and target databases have a direct correspondence, and need only be restructured and 

transformed. However, there are often semantic mismatches between databases: difference in 

the meaning or interpretation of the fields, arising from differences in purpose, objectives and 

perspective. Semantic heterogeneity is perhaps the most insidious of all information 

heterogeneities, since its resolution often requires sophisticated reasoning. It is a widely 

studied aspect of database integration (Garcia-Solaco et al. 1996), whose key aspects have 

been catalogued by Doan and Halevy (2005) as follows. First, the semantics of data have to 

be interpreted by humans, usually based on documentation or clues from control metadata, 

such as field names. Inconsistencies may arise because documentation is incomplete or 

incorrect, and the designer of the data source is not at hand to verify interpretations. Such 

heterogeneities may be observed even between records within the same databases, when data 

submitters do not work with the schema designers. For example, a large-scale aggregation of 

dengue virus protein records from GenPept revealed that the field “isolation_source” was 

inconsistently used, containing values as diverse as “Samoa” (record BAC77216), “Homo 

sapiens” (AAT85667) and “isolated in 1993” (AAN74539). These inconsistencies pose two 

problems: the data needed must be sought in a different field, while the value extracted may 

be needed for a different target field. The second aspect of semantic heterogeneity is that 

semantic clues may be incomplete or ambiguous: for example, in records about bacterial 
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infections, a field named “organism” may be interpreted as either the infecting pathogen or 

the infected host. Third, there may be multiple fields in a record that are candidates for the 

extraction of the target value, and one must consider the goodness of a semantic match of a 

field relative to other fields. In Chapter 3, we discuss how metadata in GenBank influenza 

records may be distributed over multiple fields, and encoded in different forms (for example, 

the year of isolation may be encoded as a number, or as part of an influenza isolate identifier). 

The final aspect to be considered is that semantic matching is subjective, in that depends on 

the intention and objectives of the aggregation task, and therefore may require the user to 

make explicit choices about the handling of source data. An additional important problem, 

identified by Zeng and Fikes (2005), is the need to decide which data source takes precedence 

when complementary records are used to reconstruct missing data, which raises the issue of 

trust in data sources. The same problem applies when records from different sources refer to 

the same entity, but contain conflicting values. 

Many solutions have been proposed to address semantic heterogeneity, and they fall in 

two broad categories: rule-base and learning-based systems (Doan and Halevy 2005). Rule-

based systems require the definition of mapping rules based on schema metadata, which are 

either configurable or embedded in the application code, and then applied mechanistically to 

perform transformations. In contrast, learning-based systems use machine learning or 

statistical methods to derive rules based on the content of data values in a number of example 

records. The “fuzzy” nature of this matching approach is suited to data that is inconsistently 

encoded, or where the structure of the source data is very different from that of the target data. 

Some researchers has underlined the importance of using past matches in assessing the 

accuracy of matching rules or machine learning algorithms (Do and Rahm 2002).  

The ABK platform presented in Chapter 3 of this thesis leverages on XPath rules defined 

to overcome structural heterogeneity, allowing multiple rules to contribute to the result, to 

account for encoding inconsistencies. Thus, for any target data field, it may be necessary to 

define multiple rules for multiple source schemas. These rules can be prioritized by the user, 

and inconsistencies are identified and highlighted to the user for manual resolution. In 
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Chapter 3, we analyze the contribution of multiple rules in a real-world metadata extraction 

task from more than 90,000 records from GenBank and GenPept. 

2.3.3 Challenges in Quantitative Scalability 

Quantitative scalability issues arise when the increase in data volume demands an increase in 

computing resources, to the point that changes to the computing infrastructure are necessary. 

In many cases, periodic hardware and software upgrades provide the necessary computing 

power upgrades to face new data volumes, and new analysis tasks. However, not all 

bioinformatics analysis scales linearly. The execution time and memory usage of multiple 

sequence alignment (MSA) algorithms, for example, can grow dramatically with the number 

of sequences, and different MSA tools impose tradeoffs, which may reduce accuracy or 

processing time if data volume is increased without adding computational resources (Edgar 

and Batzoglou 2006).  

A common to quantitative scalability solution, particularly in commercial domains such 

as e-Commerce, is to increase computational power by upgrading the computing 

infrastructure. A distinction is often made between vertical scalability- extending the power 

of machines by adding processors or memory- and horizontal scalability- distributing 

computing workload over a number of machines (Michael et al. 2007). While a diverse array 

of approaches is available from hardware and software vendors, bioinformatics studies 

generally favour horizontally-scalable approaches which parallelize the execution of tasks on 

multiple machines (Henschel and Muller 2007). The benefits of scaling across multiple 

processors can only be reaped if analysis tasks can be split into multiple subtasks that can be 

executed in parallel (massive parallelism), which fortunately is a characteristic of many 

important bioinformatics tasks, such as MSA. Although parallel processing is commonly 

performed by computer clusters, an emerging trend is to use a grid computing infrastructure, 

which loosely federates computing resources, distributing the computational load and 

aggregating results (Andrade et al. 2006; Carvalho et al. 2005). Some massive-scale grid 

architectures, such as Folding@home (Shirts and Pande 2000; Zagrovic et al. 2002), even 
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allow volunteers across the internet to aggregate their desktop computers, providing spare 

computing power during idle periods. Major downsides of grid computing are the paucity of 

grid-enabled analysis tools, and the high level of technical know-how required to set up and 

manage computing grids. Although grid-enabled versions of common tools (e.g. Trombetti et 

al. 2007) may gradually become available, most life scientist may be some time away from 

benefitting from these technologies.  

Quantitative scalability of bioinformatics analysis is clearly important to biologists that 

cannot count on a large IT support infrastructure, and thus rely on desktop computer hardware 

or departmental servers or their analysis. Choosing an approach with low-order computational 

complexity (i.e. whose time and memory requirements grow moderately as data increases) is 

therefore important. Some tasks may be supported by a variety of tools with different 

computational complexity characteristics (Edgar and Batzoglou 2006). For analysis tools with 

higher order complexity, it may still be possible to adopt a divide-and-conquer strategy, by 

splitting the data into smaller sets that can be analyzed separately, sand subsequently merging 

the results. Identifying suitable algorithms and strategies for all possible types of 

bioinformatics analysis is outside the scope of this work. In Chapter 5 of this thesis, we have 

presented a number of techniques for diversity analysis and for comparative studies of 

multiple sequence alignments, implemented on a desktop platform. Because of their statistical 

nature, these information-theoretical approaches scale very well, with computational 

requirements growing linearly with the number of analyzed sequences. The semantic data 

restructuring described in Chapter 4, on the other hand, illustrates a task with high-order 

complexity (semantic reasoning) which required a divide-and-conquer approach to be 

executable within a realistic timeframe. 

Finally, quantitative scalability applies to growth in the number of records, and also in 

the number of dimensions of the data. We distinguish therefore between the number of 

instances to be analyzed, and the number of features of these instances that need to be 

included in the analysis. Data mining approaches have been particularly effective at 

combining many variables into pattern discovery, and are therefore suitable approaches for 
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high-dimensional data.  

In Chapter 8 of this thesis, we present a text mining tool which is generic, since it does 

not embed domain-specific or problem-specific knowledge. To retain this generality, all 

words present in the text have to be treated as separate features, and therefore instances may 

contain thousands of features that need to be considered simultaneously. We found the 

machine learning algorithms used to be very efficient at handling such large sets of attributes, 

and note that specific claims in this sense have been made for support vector machines (SVM) 

(Joachims 1998) 

2.3.4 Challenges in Hierarchical Scalability 

2.3.4.1 Constructing Bioinformatics Workflows 

To address more complex research questions, complex analysis processes are required. Such 

analysis processes are made of multiple analysis tasks, working in concert to produce a final 

result, which can be organized in a variety of patterns. Task execution is parallel when tasks 

are independent, and their results are combined in a meta-analysis; for example, the protein 

conservation analysis described in Chapter 7 of this thesis identifies conserved regions in a 

number of co-circulating lineages separately, and then selects regions which are found in each 

of the lineages. Serial task execution occurs when one task analyzes the results of a previous 

task, and therefore the two tasks are executed in sequence; for example, the knowledge 

aggregation task that produces a dataset of all influenza sequences is executed before the 

alignment task, which is then followed by conservation analysis, and so on. Tasks may also 

be recursive, in that they may use their own results as an input; the active learning text mining 

task presented in Chapter 8, for example, uses prior classified results in order to improve 

subsequent classification. “Second-generation” bioinformatics studies may require complex 

workflows that apply several of these patterns, raising a number of challenges: first, how to 

organize workflows so they can be specified and constructed with maximum flexibility? 

Second, how to make information and knowledge flow easily from one task to the next? 



           57 

Third, how to make these tasks controllable and easily understood by biological researchers, 

allowing them to inject their choices and knowledge into the workflow? 

The construction of complex processes from smaller computational tasks is a widely 

studied aspect of system integration, a branch of computer engineering. Workflow is an 

important component of business computing, particularly in enterprises that need to use 

heterogeneous systems across multiple organizational units. The Service Oriented 

Architecture (SOA) is the approach of choice for organizing such workflows. SOA describes 

processes in terms of task-oriented components called services, which are loosely integrated, 

and invoked by applications that execute processes through service orchestration (see Erl 

2005, for an introduction). SOA services are most commonly implemented as Web Services, 

software components that can be accessed using the Web infrastructure (HTTP and XML), 

and are invoked using standard protocols. Researchers have constructed specialized web 

services that encapsulate bioinformatics analysis tools (Neerincx and Leunissen 2005), and 

there is growing focus in the integration of these services into workflows (Romano et al. 

2005; Garcia Castro et al. 2005). Recently introduced end-user tools such as Taverna (Oinn et 

al. 2004) support the design and control of service-based workflows through powerful 

graphical interfaces. However, this field is young, and significant problems still stand in the 

way of universal adoption.  

First, constructing a workflow with a tool such as Taverna is a complex task for 

biologists with limited computational skills, because of the intricate data-oriented “wiring” 

between services, which demands substantial technical background. However, such early 

implementations are making important contributions, and it is likely that more intuitive 

paradigms will emerge as the field matures.  

Second, the selection of a suitable task, and of suitable parameters, requires in-depth 

understanding of the algorithms and tools implemented by services. This problem is not 

unique to Web Services: similar choices must be faced when using today’s standalone 

analysis tools, and many researchers routinely use services such as BLAST (Altschul et al. 

1990) without understanding the significance of their parameters, relying on defaults to suit 
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their problem. Although the Web Services community has developed standard for Web 

Services description (WSDL; http://www.w3.org/TR/wsdl) and for their discovery and 

integration (UDDI; http://www.uddi.org/pubs/uddi_v3.htm), these standards describe services 

at a very low level and are therefore only suitable for programmers that need to integrate 

service calls in their software.  

The third problem is that data flowing from one service to the next may require 

transformations. If one thinks of bioinformatics tasks as biological data sources, and the 

results of task execution as equivalent to query results, then previously discussed issues of 

information heterogeneity apply. Currently, many bioinformatics tools store results in non-

standards formats (Wiley and Michaels 2004), and therefore the lack of standards for 

biological knowledge representation affects all stages in the knowledge discovery pipeline. 

Not surprisingly, some ongoing work in web service integration uses technologies that aim to 

solve information heterogeneities, such as semantic technologies based on XML, RDF and 

ontologies. The BioMoby project (Wilkinson and Links 2002) has produced an ontology of 

bioinformatics data types, able to describe the inputs and outputs of bioinformatics web 

services at a higher level than is possible using WSDL and UDDI, and supported by code 

libraries. Beyond integration with workflow tools, the ambitious long-term aim of BioMoby 

is to standardize semantic web services (McIlraith et al. 2001), with descriptions in machine-

understandable form, so that reasoning software will be able to select and invoke appropriate 

services, flowing results between them, without requiring user intervention. At this time, 

however, we can only view this effort as a promising future direction. In Chapter 4 of this 

thesis, we have discussed the role of semantic technologies in encoding and transferring 

knowledge, and present an example of how bioinformatics tasks can leverage on the 

reasoning capabilities provided by these technologies. 

2.3.4.2 Integrating the User  

Bioinformatics has been described as a discipline where a cultural gap has formed between 

three cultures- those of biologists, computer scientists, and engineers, mainly due to 
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differences in their vocabularies, perceptions of requirements, and the scarce appreciation of 

the mutual efforts needed to understand each other’s domain (Benton 1996). Over a decade 

after this assessment, there has been only limited progress on this front (Kumar and Dudley 

2007). Although bioinformatics is a multi-disciplinary field, there is little doubt that 

biomedical research is its raison d’être, and that biologists who need computational analysis 

will continue to outnumber bioinformaticians. Thus, a growing number of life scientists are 

tackling the analysis of large datasets, often equipped with little more than a standard desktop 

personal computer, and limited programming knowledge. It should come as no surprise that 

these users, may be uncomfortable with the programming libraries and command-line tools 

favoured by computer scientists. They typically prefer user-friendly graphical or Web-based 

tools with low entry barriers (Kumar et al. 2008). Although these users lack IT expertise, they 

possess extensive domain knowledge, and are often better equipped than computer scientists 

or engineers for specifying and controlling computational pipelines. Thus, bioinformaticians 

should strive to provide life scientists with easy-to-use building blocks for constructing 

analysis processes, and intuitive mechanisms for injecting the user’s own knowledge to 

control analysis tasks.  

To our knowledge, no comprehensive study of suitability of interaction mechanisms has 

been conducted specifically targeting biologists. Although such study is beyond the scope of 

this work, some important factors been identified in the course of this thesis. First of all, it is 

desirable to adopt user interface mechanisms that are familiar to biologists in their day-to-day 

usage of computers. For example, most biologists employ spreadsheet tools such as Microsoft 

Excel to manage small-scale experimental data, and are thus familiar with editable tabular 

interfaces and drag-and-drop mechanisms. Second, input data formats using plain text (such 

as comma-separated values, or FASTA), are preferred to more structured data formats (such 

as XML documents). Third, life scientists are able to read structurally complex output (such 

as records displayed by Web-based databases such as UniProt) but have less tolerance for 

“technical” formats intended for machine processing, such as native or XML formats, as they 

may perceive structure and metadata to “swamp” interesting data (Figure 2-5).  
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In the work presented this thesis, special emphasis was placed on user interaction 

mechanisms that would be acceptable to life scientists, allowing them to control the analysis 

tasks without programming. The ABK knowledge aggregation software, presented in Chapter 

3, does not present XML structured data in its “tagged” form (Figure 2-5C). Rather, data is 

presented using a specially-designed user interface component that displays a hierarchy of 

name/value pairs, offering two advantages: its layout separates control metadata from data, 

and allows the user to define extraction rules by interacting directly with the desired data. In 

addition, the dictionaries used by ABK value filters to overcome syntactic heterogeneity are 

encoded in plain text format, and can be easily extended and customized by the user. The 

results of the knowledge aggregation tasks are presented in a familiar tabular form, similar to 

that of common spreadsheets, from which the user can cut-and-paste the data. ABK is also 

capable of exporting the aggregated dataset in plain text CSV format (human readable), or in 

RDF format (machine readable). The AVANA tool, presented in Section 5.3, accepts 

metadata in plain text CSV format, allowing the user to construct ad-hoc metadata files using 

a spreadsheet application such as Excel. The metadata selection is intuitive, performed by the 

user by selecting values in list boxes. Finally, the RATMAT text mining tool presented in 

Chapter 8 allows simple user customization of the text mining task: keyword classes can be 

created from lists of words and regular expressions, and the expert user can prune the list of 

features (classification terms) at classification time. These features, which will be presented in 

detail in the relevant chapters, reflect the focus of the present work on the production of 

bioinformatics tools that are not only powerful, but also intuitive for biologists to use. 
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Figure 2-5: Different representations of the UniProt record P49639 
The same information is shown (A) as seen when browsing the EBI UniProt web site; (B) in 
the Swiss-Prot native format; and (C) in the Swiss-Prot XML format. 

2.4 Towards Biological Knowledge Mining 

2.4.1 What is Knowledge Mining? 

Second-generation bioinformatics will be driven by user knowledge, and will have to scale in 
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multiple dimensions, in order to fully utilize the vast quantities of diverse knowledge that are 

becoming available in the post-genome era. The predominant concept in knowledge discovery 

is data mining- the discovery of significant patterns in large volumes of data. Underlying this 

concept is the assumption that patterns solely result from combinatorial properties of the 

underlying data, and patterns will thus emerge from the analysis of data attributes. However, 

biological data is rarely viewed from a single perspective, and the same data may be analyzed 

for different purposes, yielding different kinds of knowledge. In addition, the concept of data 

mining appears limited when modeling processes made up of multiple, cascaded tasks. 

Recent work by Ryszard S. Michalski, a founder of the field of machine learning within 

computer science, addresses these concerns, laying the foundation for a new direction that he 

named knowledge mining (Michalski 2003). Michalski described data mining tasks as 

computationally complex in their pattern analysis operations, but conceptually simple in how 

they use the derived knowledge. Since patterns must not only be discernible, but also relevant 

to the analysis task in hand, certain limitations in data mining must be overcome: 

• the user must be allowed to express analysis goals which must be understood by the 

analysis system, and are used to drive the knowledge mining tasks; 

• background knowledge should be injected into the analysis task, where it is used to 

extract new knowledge from data, or refine existing knowledge; 

• pattern discovery should be incremental 

Thus, the “traditional” data mining paradigm: 

DATA → PATTERN 

is transformed to a knowledge mining paradigm: 

DATA + PRIOR_KNOWLEDGE + GOAL → NEW_KNOWLEDGE 

In this mapping, new knowledge from one stage of the analysis can be transferred (perhaps 

selectively) as prior knowledge to subsequent stages, thus supporting the incremental nature 

of the knowledge mining paradigm. 

In Michalski’s vision, users will not use data mining tools directly. Rather, knowledge 
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mining systems will be able to understand (in an artificial intelligence sense) user’s goals 

expressed in a suitable form, and automatically select a number of data mining approaches, 

apply them, and then reason over the results. The meta-analysis of the results, driven by the 

user’s goal, will then determine the next stage of analysis and this process will be repeated in 

subsequent stages (Kaufman and Michalski 2005). Although Michalski’s group produced 

prototypes of inductive database systems capable of processing derived knowledge (theory 

formation) (Kaufman and Michalski 2003), we are still a long way from practical and generic 

implementations of the knowledge mining paradigm. A number of gaps to be bridged were 

identified (Michalski 2005): 

• a suitable method for goal representation, intuitive enough for the user to define, but 

precise enough to be used to drive the analysis process; 

• suitable knowledge representation and management (such as a knowledge base) to 

allow reuse of discovered knowledge from multiple tasks in downstream analysis; 

• an intelligent multi-strategy data mining system that can select and invoke numerous 

data mining analysis tools; and 

• a suitable knowledge visualization tools for the user to interact with the output of the 

knowledge mining process. 

2.4.2 Applying Knowledge Mining Principles to Bioinformatics 

It is not the focus of this thesis to advance the field of knowledge mining from a computer 

science perspective. We are, however, interested in the close match between the objectives of 

knowledge mining as defined by Michalski, and those of second-generation bioinformatics, in 

particular with respect to hierarchical scalability needs. The identified knowledge mining gaps 

are very similar to gaps identified in post-genomic bioinformatics: the need to capture user 

goals is related to integration of user’s knowledge discussed in Section 2.3.4.2, while the 

issue of knowledge representation and management is identified in Section 2.3.4.1. Thus, 

knowledge mining can be used to describe second-generation bioinformatics at least 
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conceptually. We have found no evidence of previous attempts to do so and to our knowledge 

this is the first attempt to use knowledge mining for definition of second-generation 

bioinformatics concepts. 

In this thesis, we have defined biological knowledge mining, the application of 

knowledge mining to biological data; we have used knowledge mining concepts to model 

large-scale bioinformatics tasks. In other words, we have used knowledge mining to describe 

second-generation bioinformatics tasks and map the knowledge flow; rather than implement 

fully automated systems. Such a project would be ambitious and unrealistic, given the current 

state of technology. We will use a simple modeling notation which captures the knowledge 

mining paradigm (DATA + PRIOR_KNOWLEDGE + GOAL → NEW_KNOWLEDGE) as 

shown in Figure 2-6. 

 

 

Figure 2-6: Graphical notation for describing biological knowledge mining components 
 
 

 

This notation will be used to describe components of bioinformatics workflows. In the 

case studies presented in this work, we have found that the notation is suitable for both high-
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(in which the components are single data mining tasks). To compose multiple tasks into 

knowledge mining workflows, we have connected components so that the new knowledge 

generated by a task becomes the existing knowledge that affects the next. This modeling 

notation supports the cascading of tasks to analyze multiple types of data; or to refine the 

analysis of one type of data (for example, as a meta-analysis); and the recursion of tasks in 

which derived knowledge is injected to refine the result (Figure 2-7).  Each of the real-world 

knowledge mining tasks presented in Chapter 3 (aggregation of large-scale viral sequence 

datasets), Chapter 6 (evaluation of human-to-human transmissibility of avian influenza 

viruses), Chapter 7 (identification of potential epitope-based vaccine targets) and Chapter 8 

(active learning text mining of biomedical abstracts) makes use of multiple tasks, arranged 

according to these patterns. The specific details are shown in the individual chapters. In each 

task, the produced models have helped us to identify data mining components, and methods 

for injecting user’s knowledge and intentions. In addition, the models describe the knowledge 

flow, and therefore highlight knowledge representation requirements in the workflows. The 

models were found to be very versatile formalizations of the knowledge mining process, and 

we believe they can be applied to most knowledge mining tasks. 
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Figure 2-7: Three modelling patterns for biological knowledge discovery pipelines. 
In these three examples, knowledge flows between analysis tasks: (A) from upstream to 
cascaded task, used to analyze new data; (B) from upstream to cascaded task, used to refine 
the same data; and (C) feedback through the analysis task, to refine the extracted knowledge. 

 

2.5 Conclusion 
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the current “post-genome” era. An unprecedented growth in volume and availability of 

biological data, driven by low-cost biotechnologies, presents new opportunities for large-scale 

computational analyses. As a result, bioinformatics analysis tasks will have to grow in 

multiple dimensions: to integrate more diverse information sources; to handle a greater 

number of data records and greater data dimensionality; and to apply an increasing number 

and variety of algorithms to the knowledge discovery process. This scaling up of 

bioinformatics tasks brings forward many challenges. Heterogeneities in the database systems 

and the information they deliver are the major obstacles to the integrative scalability of 

bioinformatics, and they should be addressed by solutions that combine various standards, 
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intelligent processing activities (such as data mining), and user input. The high volume of 

data will pose difficulties for the growing number of biologists who need to use analysis 

tools, but who lack programming knowledge, and who have access to limited information 

technology infrastructure.  The availability of scalable algorithms and easy-to-use distributed 

computing will therefore be critical to these users. The construction of complex analysis 

workflows and their application through multiple data mining tasks present major challenges, 

in spite of significant standardization efforts around bioinformatics web services. The 

complexity of these infrastructures is an important factor, as is the lack of interchange formats 

for piping knowledge from one stage to the next. Semantic technologies, which allow generic 

representation of knowledge so it can be processed by machines, promise important advances 

in this area, but are still not developed to their full potential. Finally, an important and 

pervasive underlying consideration is that bioinformatics will ultimately be used by 

biomedical researchers, not by computer scientists or engineers. Biologists are sophisticated 

and extremely knowledgeable users, but they mostly possess very limited IT skills; solutions 

that do not take these needs into account are doomed to failure. 

The concept of knowledge mining has been introduced to extend that of data mining: 

knowledge mining does not rely exclusively on patterns embedded in the data, but also uses 

prior knowledge and user goals to drive the discovery process. Knowledge mining therefore 

supports the flow of knowledge across multiple tasks, which makes it a suitable paradigm for 

modeling “second-generation” bioinformatics processes. A simple modeling notation will be 

used throughout this thesis to describe knowledge mining task components, capturing the 

knowledge flow and user goals at each stage. 

The remainder of this thesis will develop the theme of second-generation bioinformatics 

analysis processes. A number of technical strategies are proposed to overcome many of the 

obstacles to achieving scalability of knowledge mining process. The platform for aggregating 

biological knowledge (ABK) combines several approaches to overcome multiple 

heterogeneities: a mediator architecture with database wrappers, structural rules for the 

extraction of data from XML documents, and rule prioritization. It also supports output using 
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semantic technologies (RDF and OWL), which facilitates knowledge transfer and supports 

reasoning- which we will show to an advantage for the curation of large data sets. Finally, we 

will present a set of information-theoretical methods for the analysis sequence diversity, 

which scale well to large data volumes, enabling thousands of sequences to be analyzed on 

standard desktop hardware. 

In Chapters 6 to 8 of this thesis we combine these techniques and strategies into 

knowledge mining workflows, demonstrating that they can be used to answer challenging 

real-world biomedical research questions. From a large-scale sequence dataset comprising all 

available influenza A proteins and their metadata, we have applied an analysis method based 

on mutual information, to identify molecular factors involved in the adaptation of this virus to 

human-to-human transmissibility. The results of this analysis enabled us to assess the 

pandemic potential of H5N1 avian influenza viruses. The same dataset was also used to 

investigate the presence of conserved potentially antigenic peptides in the influenza genome, 

to be investigated as potential vaccine components. The same task was also applied to a 

similar dataset of dengue virus sequences, demonstrating the generality of the analysis 

pipeline. Finally, we have shown that the ABK supports another type of analysis, that of 

biomedical text mining. A reusable knowledge mining pipeline, built from standard data 

mining algorithms, was applied to identify relevant documents from the analysis of generic 

features (text words), easily customizable by users. The results obtained from these case 

studies are evidence that biological knowledge mining is both viable and useful. The case 

studies presented in this thesis are therefore important contributions towards the establishment 

of this field in bioinformatics. 
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3. RULE-BASED AGGREGATION OF HETEROGENEOUS 
KNOWLEDGE  

In Chapter 2 we presented the conceptual approach for biological knowledge mining  (Section 

2.4), which supports the design of multi-stage bioinformatics processes, in which knowledge 

flows across tasks. Most large-scale studies begin with the construction of a dataset which, in 

a knowledge mining process, typically comprises both raw data and descriptive metadata. 

Often, datasets must be constructed by aggregating information from multiple data sources. 

As discussed in Chapter 2, Section 2.3, they heterogeneity of biological data makes 

knowledge aggregation a highly challenging task. Current approaches at automating this task, 

reviewed in Chapter 2, require in-depth technical knowledge of the data sources, and/or a high 

level of specialized IT skills. This forces most biomedical researchers to aggregate data and 

metadata manually, which is only feasible for relatively small datasets (up to tens or hundreds 

of records). 

In this chapter, we present a novel knowledge aggregation approach which enables 

biomedical researchers with limited IT skills to construct large-scale datasets from multiple 

sources. This approach overcomes system and information heterogeneities through a 

combination of innovative techniques and standard technologies, which are made available to 

end users through intuitive “biologist-friendly” user interface. End users inspect source 

records, and identify the data they need through point-and-click mechanisms. User selections 

are translated into structural rules that are applied consistently to other records, so that data 

extraction can be automated from the inspection of a limited number of records even when the 

source records are inconsistently encoded. Multiple structural rules are prioritized, and their 

output is filtered so that the aggregated values are in the form needed by the user. We have 

implemented this knowledge aggregation approach as a desktop tool, called Aggregator of 

Biological Knowledge (ABK), which is described in this chapter. ABK runs on standard 

desktop computer hardware, allowing users to handle tens of thousands of input records 

interactively, through a familiar spreadsheet-like interface. 
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We have used ABK to apply our knowledge aggregation approach to the construction of 

a dataset of over 90,000 influenza A proteins records from public databases, described in this 

chapter. The dataset, which comprised a number of descriptive metadata annotations for each 

sequence, was constructed in two weeks, included manual verification and imputation of 

missing data. The manual construction of this dataset, on the other hand, would have been far 

too laborious and expensive to carry out with a small research team. In this chapter, we 

measured the extent of heterogeneity in the public database records aggregated in this task, 

and showed that our knowledge aggregation approach is very effective at recovering metadata 

that is inconsistently encoded. The influenza A dataset was used in large-scale studies of viral 

host adaptation (Chapter 6) and of conserved immunogenic sequences (Chapter 7), which 

revealed important immunological and virological results, demonstrating that our knowledge 

aggregation approach is a key enabler of bioinformatics discovery. 

3.1 Requirements for a Knowledge Aggregation platform 

The requirements for a practical Knowledge Aggregation platform must consider scalability 

requirements (see Section 2.3), as well as key human factors such as availability and usability. 

The following requirements for ABK were identified: 

• Access mechanism independence. To address system heterogeneity, the ABK platform 

should support the capability to connect to a wide variety of databases, irrespective of 

their data access and retrieval mechanisms (for example, Web-based, SQL-based, etc.). 

• Query mechanism independence. The ABK platform should transform user-specified 

queries as appropriate for the target database, without requiring users to know specific 

query languages. 

• Extensibility. The range of available databases should be extensible without changes to 

the core architecture and code of the ABK platform. 

• Data structure independence. To address structural heterogeneity, ABK should be able 

to process input data with arbitrary structures, without any in-built knowledge about any 
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specific database being built into the software. 

• Data syntax independence. To address syntactic heterogeneity, ABK should provide 

simple mechanisms for allowing users to transform the extracted knowledge lexically and 

syntactically into the form they ultimately require. These mechanisms must be 

customizable by the end user wherever possible. 

• Semantic flexibility. To address semantic heterogeneity, ABK should not require data 

field to be interpreted in a consistent fashion. Rather, it should be able to use multiple 

fields in multiple records as the sources of a result, and resolve any emerging conflicts 

when aggregating these source values.  

• Data Management. The ABK platform should support the storage and management of 

the aggregated knowledge, and the capability to select and export this knowledge as 

needed by the user.  

• Usability. ABK should be deployable and manageable by any biological researcher 

without requiring significant expansion of their technology infrastructure, or any 

programming knowledge.  

• Scalability. ABK should be able to handle large datasets, comprising hundreds of 

thousands of database records. 

• Versatility. ABK should be expandable to allow the addition of analysis tools for specific 

purposes. In combination with the data management tools, this capability allows the 

analysis process to scale hierarchically without exiting the ABK platform. 

3.2 Defining a generic, reusable and versatile Knowledge 
Aggregation approach 

To meet the requirements outlined in the previous section, we combined a number of 

technological approaches: an extensible mediator architecture for querying and retrieval from 

data sources; a generic XML-based result processing system; and a user-friendly mechanism 

for specifying data extraction rules. All these approaches strongly support the generality of 

the ABK system, which is designed independently of any source database, encoding schema, 
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or analysis requirement. 

3.2.1 Mediator framework 

Our approach of choice is to use a non-transparent mediator framework (Karasavvas et al. 

2004), capable of reconciling conflicts in data modelling and encoding that exist between the 

data source and the ABK system- namely, systemic, syntactic and structural heterogeneities. 

This approach does not require any database-specific knowledge to be embedded into the 

ABK system- by contrast, a data warehouse requires the selection and transformation of 

specific data fields from the source database. The framework supports an extensible set of 

wrappers (database clients) for search and retrieval. These wrappers are not part of the ABK 

system, but are organized as plug-ins that can be installed independently by the user.  

The wrappers embed all database-specific code, so that new databases can be integrated 

without changes to the central ABK system. This separation of database-specific concerns is 

achieved by defining a simple, generic interface which the wrappers must adhere to. This 

interface accepts a generic user-specified query, and returns a result set from which XML 

documents that match the query can be retrieved one by one. Thus the wrapper acts as an 

intermediary through which all databases can be accessed as XML document repositories 

whose documents are returned to the central ABK system for presentation, data extraction and 

aggregation. This approach hides much of the complexity of interacting with the remote 

database, since the wrapper a) translates the generic query into a query in the specific format 

required by the target data source; b) handles interaction with the remote data sources, hiding 

any database-specific synchronization mechanisms (e.g. how many records can be retrieved 

with a single HTTP call); and c) it can transform data encoded as database-specific non-XML 

formats into XML documents that can be presented to the user. 

3.2.2 XML-based structural rules 

Aggregated results from multiple databases are encoded according to different schemas, but 

need to be processed in a homogeneous way. The main obstacle is that the desired knowledge 
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must be extracted from query results using a mechanism independent of the source database’s 

schema. Performing data extraction in the database wrapper would allow schema-specific 

processing, but would also introduce a semantic gap because the wrapper developers may 

interpret the data differently from the end user. The extraction of knowledge from an arbitrary 

schema, without leveraging on any schema-specific knowledge, may seem an impossible task. 

However, the task can be achieved by using generic mechanisms that can navigate a data 

structure, without knowing its semantics. This principle is widely used by tools that perform 

screen scraping on Web pages, such as aggregators of news and commercial information. 

These tools can collect information from multiple Web sites: for example, they may collect 

the prices of a given CD from several eCommerce sites, by extracting the price tags from their 

Web pages. These applications have no embedded knowledge of the target eCommerce site 

semantics. Rather, they support the definition of rules for extracting the desired information 

from a particular location in the source page, based on the assumption that the pages 

displayed by a given site will be identically structured for different products. In other words, 

they do not attempt to “understand” the page content (which would be almost impossible with 

HTML encoding), but merely to identify where the information is most likely to be. 

A similar approach is applied to the processing of query results returned by the ABK 

wrappers, using a mechanism known as structural rules. The central idea is to retain a record 

from a remote source in its native form (without restructuring), and to provide a uniform 

mechanism for specifying structural rules that identify the location where the desired data is 

stored. The Extensible Markup Language (XML) (Bray et al, 2006) has several features 

which make it particularly suitable as an encoding platform for supporting this mechanism. 

An XML document is structured, and consists of a hierarchy of elements which can represent 

a wide variety of schemas. XML is thus capable of structuring records from any database, 

because it is independent of the schema semantics. The document structure is self-descriptive, 

since structural tags are encoded within the document. Such tagging removes the need for a 

priori knowledge of the schema: a valid XML document can be parsed using a standard off-

the-shelf software library, which extract a hierarchical data structure (known as a DOM tree) 
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that can be queried structurally. XML has a standard syntax for querying document structure, 

known as XPath (Clark and DeRose 1999). A structural rule consists of an XPath query, 

specifying the path used to reach the desired value in a document- that is, the hierarchical path 

from the DOM tree root to the value location. It is possible to extract any XML document 

field by providing an XPath structural rule, regardless of the specific schema (set of XML 

tags) that has been used to encode the data. A key advantage of XML is that it is freely 

available and widely supported. Many larger public databases, such as GenBank (Benson et 

al. 2008) and UniProt (UniProt Consortium 2008), provide XML versions of their records, 

which can be handled directly by the ABK system. This is not always the case for many 

smaller databases, whose results may require conversion from their native representation to a 

suitable XML format; such conversion can be performed by the appropriate database wrapper. 

3.2.3 Definition of structural rules by example 

Although XML and XPath provide powerful generic mechanisms for implementing structural 

rules, the syntax of XPath rules is not sufficiently intuitive for non-technical users to specify 

them manually. Similarly, the syntax of “raw” XML documents can be verbose and difficult 

to analyze and to derive such rules. To allow users to specify XPath-based structural rules, we 

devised a user-friendly interface mechanism for specifying structural rules by example, while 

visually inspecting a document. Briefly, we present XML documents using a specially 

designed user interface component which presents the content as a hierarchy of name/value 

pairs, as shown in Figure 3-1. This novel component provides a compact display that 

evidences the data, so it can be intuitively selected by the user with a point-and-click gesture. 

The user gesture is automatically translated to an XPath rule; for simplicity, ABK structural 

rules support a limited subset of the XPath grammar, onlly allowing path constraints based on 

value matching. This restriction allows users to remove path ambiguities, while keeping the 

interface paradigm simple. The rule definition process can therefore be summarized as 

follows: the user opens an XML records for which no value has been extracted; finds the field 

that contains the value; selects the value, specifying constraints if needed; and finally 
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visualizes the extracted value. Once a rule is defined, it is automatically applied to all 

documents from the same database, as they are assumed to use the same XML schema.   

 

 

Figure 3-1: The ABK Record Viewer, showing an GenBank XML record 
The XML record is presented as a tree of name/value pairs. Although the structure is specific 
to the originating database, XML labels make it understandable to biologists. The user 
interface allows the specification of the extraction rules, by selecting desired value and 
constraints as indicated. In this example, five separate rules were specified for geographic 
location, two of which returned consistent results.  
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Note that ABK does not attempt to interpret the semantics of the data field from which 

the data is selected, since information is often embedded within semantically unrelated fields. 

For example, the influenza isolate naming conventions specify that the sampling location and 

year must be embedded in the isolate name. Therefore, a user may choose to specify rules to 

extract year and country information from the “isolate name” field (see Table 3-1); to extract 

the final value, ABK is capable of processing the selected field values, by means of filters and 

user-defined dictionaries. 

3.2.4 Filters and Dictionaries 

The extraction of property values (for example, the host organism or isolation year of a viral 

sequence) often requires some transformation of the results of structural rules: for example, 

the desired property value may be embedded in free text. To overcome this source of syntactic 

heterogeneity, ABK uses value filters: plug-in modules that perform string processing tasks 

on XPath query results. The configurable filters currently provided by ABK suit a variety of 

tasks, and new filters can be added easily. The current set includes dictionary filters (capable, 

for example, of producing the value “CHICKEN” when encountering the string “bantam”, see 

Figure 3-2), regular expression filters (capable to recognize formatted strings, such as NCBI 

identifiers “ABB12345.1”), and date parsing filters, able to recognize years in 2- and 4-digit 

formats. 

In ABK, user-defined dictionaries are generally task-specific, for a variety of reasons. 

Firstly, the input data may contain values that are recognized and meaningful in the context of 

the current aggregation task, but are not universal. For example, the abbreviation “TY” is 

commonly used in influenza isolate names to indicate a turkey host, but may be interpreted as 

a yeast transposon in a genomics dataset. Second, a specific taxonomic granularity of the 

extracted values may needed by the downstream analysis tasks. For example, the host 

organism categories “Avian”, “Human” and “Others” may be sufficient in a study of the 

transmissibility of avian influenza to humans, while studies of avian influenza may need to 

organize avian sequences by bird orders (as shown in Figure 3-2). In either case, a dictionary 
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that produces species names may be inappropriate, as it would make the downstream selection 

of groups (e.g. “Galliformes”) more complex. Finally, it is advantageous to restrict the 

dictionary to the actual values observed in the aggregated dataset, to avoid false positives. 

Although the dictionary shown in Figure 3-2 may appear incomplete and patchy at first sight, 

this is simply a reflection of the value distribution in the aggregated influenza dataset, for 

which this dictionary has been designed. Although it is possible to construct a “standard” 

dictionary comprising a complete tree-of-life taxonomy, such dictionary would mostly consist 

of irrelevant entries, and would be hard to customize by the user. Worse still, it would be 

prone to producing errors for reasons that may not be immediately obvious. Using a sparsely 

populated dictionary, a user would be forced to inspect records that do not yield a value, and 

identify the desired literal value; in such cases, however, a comprehensive dictionary of 

species would have a high match probability amongst the irrelevant entries, particularly in 

cases where values are incorrectly or ambiguously entered. For example, if a submitter 

entered the common bird name “oystercatcher” erroneously as “oyster catcher”, a match to 

“oyster” would be found in a full animal taxonomy, while a custom dictionary would return 

no value, forcing the user to verify the record. 
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Figure 3-2: A fragment of a user-defined dictionary for value filtering 
Here we show a fragment of a user-defined dictionary used to extract host organisms 
information from a free text value. If one of the strings listed is matched, the filter yields the 
value at the start of the corresponding line as the result. This dictionary, used for aggregating 
influenza A records, was edited by the end user in the course of the curation task. The 
organization of entries is determined by the user, and reflects the needs of the analysis task. 
The dictionary is generally organized according to taxonomic order, but certain important 
hosts, such as human, chicken, turkey, swine and equine, are classified separately because of 
their special significance in influenza research. 
 

3.2.5 Conflict Resolution 

Users are allowed to specify multiple structural rules for extracting a given value from 

the same XML schema, and these rules are organized in order of priority. The support of 

multiple properties allows a large degree of semantic flexibility, such that several database 

fields can be inspected to determine the extracted value. In most documents, only certain rules 

will produce values; the final value extracted from a document is that of the highest-priority 

rule that yields a value. However, if values from other rules conflict with this “winning” 

value, this conflict is flagged in the ABK system, and highlighted by the user interface (see 

Figure 3-5). Since ABK supports the association of a record to multiple source documents 

(from multiple databases), the user can also specify database priority, thus establishing an 
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order for processing documents and identifying the overall “winning value”. Conflicts 

resulting from differing values extracted from multiple documents are also automatically 

highlighted to alert the user. 

3.3 ABK architecture and components 

The ABK system has been implemented as a desktop-based software tool, installable on all 

Java-enabled platforms (such as Windows and Linux). The ABK software is freely available 

from the author, on request. It implements the technological specifications described in 

Section 3.2, and it provides record management facilities, a plug-in tool architecture for 

extending the software with analysis tools, and a simple spreadsheet-like user interface for 

visualizing the aggregated extracted information. End users control three major subsystems, 

as shown in Figure 3-3, and in expanded form in Figure 3-4. The Data Collection subsystem 

accepts user queries, executing them through the mediator framework. The query results 

(XML documents) are then handled by the Data Management subsystem, which applies 

structural rules and aggregates the results. Finally, the Data Analysis subsystem allows 

analysis tools to interact with the stored data, and augment it with further results. 
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Figure 3-3: Architecture of the ABK system 
 

 

 

 

 

 

Figure 3-4: Detailed Architecture of the ABK system 
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The mediator framework supports an extensible set of database wrappers for search and 

retrieval (only two example wrappers are shown in Figure 3-4). Generic user-specified 

queries are translated into data source-specific queries, and submitted by the wrappers to the 

remote data sources. XML Documents retrieved by the mediator framework are stored locally 

by the recordset manager, which constructs collections of local records. Documents from 

various sources which describe the same entity may be aggregated (for instance, the protein 

product of DNA sequence records in GenBank is often described by records in both UniProt 

and GenPept databases). To create a new field in a local record set, users specify structural 

rules by example, using the record viewer shown in Figure 3-1. The structural rules are 

subsequently automatically applied by the rule-based extractor and resolver, and the resulting 

aggregated value, after text filtering, are displayed through a graphical spreadsheet-like user 

interface (see Figure 3-5). The resolver identifies conflicts among the field values extracted 

from different documents, and among values extracted from the same document using 

different rules. Such conflicts are highlighted by text in red font colour (see Fig. 3-5) in the 

user interface.  This alerts user to rapidly check and, if necessary, reconcile the value after 

manual inspection, or reject the record altogether. Finally, plug-in tools are the analysis tools 

that can be applied to the whole dataset, or to a subset of records. They are useful for 

connecting to external systems, and are generally application-specific. 
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Figure 3-5: ABK provides a spreadsheet-like presentation of extracted data 
Each row in the display corresponds to a single record, and the columns represent the 
extracted properties. Values displayed in a red font indicate that there is a conflict between the 
results of multiple rules. Green fonts indicate fields where conflicts have been manually 
corrected. 
 

3.3.1 Applications of ABK 

In the period of candidature covered by the present thesis, the ABK framework has been used 

by the author and by other researchers at the Department of Biochemistry for several studies. 

The following is a summary of this application work: 

• Large datasets of viral sequences and accompanying metadata were assembled for use 

in immunological and virological studies. Data sets were produced by the author and 

other collaborators for influenza A virus, dengue virus, rabies virus and hantavirus. 

For each virus, domain-specific vocabularies were developed for the precise 

identification of host organisms and protein names. 

• A proof-of-concept plug-in tool was implemented to support the phylogenetic 

analysis of extracted viral sequences, and the visualization of the resulting trees. 

• A set of plug-in tools were developed for the analysis of text tokens, identification of 
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text patterns, creation of text occurrence matrices and the rapid annotation of 

biomedical abstracts. 

• A corpus of biomedical abstracts for allergy research was created and annotated. 

• A plug-in tool was created for aggregating records from different databases by 

matching identifiers. 

In the following sections of this chapter, we have described specific knowledge aggregation 

tasks, to illustrate the utility and performance of ABK, and the level of heterogeneity in public 

databases that this approach can overcome. 

3.4 Curation of a large-scale influenza protein dataset 

We used the ABK platform to construct a large-scale datasets of influenza A sequences and 

their accompanying metadata through the application of XML-based structural rules. The 

task involved retrieving as many protein sequences as possible from public databases, and 

extracting several metadata properties that are later used to perform a variety of comparative 

analyses. Since full manual curation of such a large volume of records is prohibitively 

expensive, we devised an approach to make this analysis viable, in which most of the 

metadata curation task is automated. After applying structural rule extraction, many records 

still had incomplete or conflicting metadata, and had to be manually corrected. Even with the 

help of productive tools, two expert curators were required to work intensively for two weeks 

to manually complete and verify the annotations. We used this metadata to analyze the 

performance of structural rules, and quantify the extent of semantic heterogeneity and 

inconsistencies, both within and between the two popular databases GenBank and GenPept 

(Benson et al. 2008). 

3.4.1 Task Requirements 

The construction of the influenza dataset was conducted as the data preparation stage of a 

multi-stage study. The study aimed at determining a number of genetic, evolutionary and 
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immunological properties of the influenza A virus, by analyzing as many protein sequences as 

possible. Eleven large separate multiple sequence alignments (MSA) were created, one for 

each of the proteins expressed by this virus. The alignments were analyzed to identify: 

• Alignment positions where adaptation to a given host (such as human) produced 

specific differentiation from the natural avian form of the virus. This knowledge was 

used to assess the potential for transmissibility to humans of avian influenza targets, 

as described in Chapter 6. 

• Protein regions that were conserved (i.e. did not mutate) for certain subtypes of the 

virus (e.g. H5N1, H3N2) over given periods of times. This knowledge is used in the 

context of identifying potential conserved vaccine targets, as described in Chapter 7. 

• Mutations associated with specific geographical areas or periods of time. 

• Alignment positions that co-evolve in different proteins (i.e. when one of the 

positions mutates, the other mutates simultaneously). 

The analysis tasks described can only be automated if sequences are accompanied by 

descriptive metadata. Metadata is “data about the data” (Swedlow et al. 2006), for example 

provenance information about the amino acid sequences that constitute the main data. Our 

study required the following fields: the subtype of the virus, the protein name for the 

sequence, the isolate name (used to associate multiple proteins for studying co-evolution), the 

host organism from which the virus was isolated, and the year and origin (country) of 

isolation. 

The study data was retrieved from the two major public databases at NCBI: GenBank (a 

nucleotide database) and GenPept (a protein database). In September 2006, over 90,000 

relevant records were available, although the actual number of unique sequences was much 

lower. In most cases, each GenBank record has a corresponding record in GenPept, 

containing the nucleotide sequence's translation. GenPept often contains multiple alternative 

versions of its own records, mirrored from other public databases. Although NCBI records 

provide semi-structured metadata, it is frequently plagued by heterogeneous encoding and 
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quality issues, as reported in other studies (Karp et al. 2001; Brusic, Millot et al. 2003). We 

found that records documenting the same sequence do not necessarily carry the same 

metadata, and sometimes provide conflicting information. Metadata is frequently missing, and 

the choice of record field for encoding a given metadata property is often arbitrary and 

inconsistent. Metadata values can be difficult to extract even when their location can be 

correctly identified- for example, because of free text embedding, misspellings and 

inaccuracies, or non-standard granularity (e.g. a city specified rather than a country) (Koh  et 

al. 2005). Such issues make this knowledge aggregation problem an excellent case study not 

only to verify the effectiveness of the ABK approach, but also for quantifying the extent of 

heterogeneities in public databases. 

3.4.2 Task Structure 

The workflow of this task can be modeled as a knowledge mining process, as shown in 

Figure 3-6. The source databases are queried through the mediator framework using a simple 

taxonomy query for the influenza A virus. The retrieved XML files are subsequently merged 

when they are found to refer to the same virus proteins, as detected by the identifier cross-

referencing tool in ABK. Finally, structural rules processing extracts data and metadata, both 

to be manually verified within the ABK tool. The output of the task are: a set of sequences for 

each influenza protein (which are to be subsequently aligned), and a metadata file. ABK can 

output the sequence sets as FASTA files, while the metadata can either be written as a simple 

comma-separated value (CSV) file, or as an RDF file using a simple ad hoc ontology (an 

application of RDF-formatted data will be described in Chapter 4). 
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Figure 3-6: Knowledge Mining Model for the Biological Knowledge Aggregation 
process. 
 

3.4.3 Methods 

Data retrieval was performed by a taxonomy query submitted to the two NCBI sequence 

databases, retrieving a total of 92,343 documents (39,775 from GenBank and 52,568 from 

GenPept). These documents were encoded in native NCBI XML format. ABK extracted 

cross-referencing identifiers from each document, and matched them to identify multiple 

documents referring to the same sequence. This task reduced the total dataset to 40,169 

records, each associated to at least one and no more than three database documents. Each of 

these records represents a protein sequence from a given isolate (GenBank record have 
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protein sequence encoded as a feature field). 

Metadata extraction was performed by ABK using structural rules. For each metadata 

property, multiple structural rules can be defined, with an order of priority chosen by the user. 

Both databases accessed in this study use the same XML schema and thus a common set of 

structural rules was specified (see Table 3-1). The rules and their priority were determined by 

an expert curator, based on manual inspection of several representative records. The same 

curator assigned GenPept a higher priority than GenBank.  

For the text filtering stage, two influenza-specific dictionaries were developed: one to 

extract the host organism information (a fragment of which is shown in Figure 3-2), and one 

to extract protein type information. In addition, a regular expression filter was configured to 

match standard influenza A isolate identifiers. 

3.4.4 Results 

We measured the yield and accuracy of property value extraction from both GenBank 

and GenPept. Yield was defined as the fraction of documents from a given database that 

produces a value from structural rules, while accuracy was computed as the percentage of 

extracted values that matches the manually curated property value (i.e. the property value at 

the end of full manual curation of the dataset by two independent domain experts). These 

results are summarized in Figure 3-7.  The yield difference between the two databases 

(approximately 9% for origin and host) indicates that GenBank records have more detailed 

annotation, justifying the decision to aggregate records from both databases. The two 

databases provided values with almost identical accuracy (within 1% for most properties), 

indicating that their priority order was not critical to the outcome of the extraction task. 

Accuracy ratings exceeded 96%, except for the host property, which produced accuracies of 

89% for GenPept and 91% for GenBank. Although this might still seem a high level of 

accuracy, it resulted in some 4,000 host annotations requiring manual correction.  

 



           88 

Property proteinName 

1 /GBSeq/GBSeq_definition 

2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='gene']/GBQualifier_value 

Property subtype 

1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='strain']/GBQualifier_value 

2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='isolate']/GBQualifier_value 

3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='organism']/GBQualifier_value 

Property isolate 

1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='strain']/GBQualifier_value 

2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='isolate']/GBQualifier_value 

3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='organism']/GBQualifier_value 

Property host 

1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='specific_host']/GBQualifier_value 

2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='strain']/GBQualifier_value 

3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='isolate']/GBQualifier_value 

4 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='organism']/GBQualifier_value 

Property origin 

1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='country']/GBQualifier_value 

2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='isolation_source']/GBQualifier_value 

3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='strain']/GBQualifier_value 

4 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='isolate']/GBQualifier_value 

5 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='organism']/GBQualifier_value 

6 /GBSeq/GBSeq_references/GBReference/GBReference_title 

Property year 

1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='note']/GBQualifier_value 

2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='isolation_source']/GBQualifier_value 

3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='strain']/GBQualifier_value 

4 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='isolate']/GBQualifier_value 

5 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier[GBQualifier_name='organism']/GBQualifier_value 

 

Table 3-1: Structural rules employed for the extraction of sequence record properties 
from GenBank and GenPept.  
For each property, the XPath expressions of all relevant structural rules are given in order of 
priority (lower numbers indicate higher priority). The proteinName property was only 
extracted from GenPept.  
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Figure 3-7: Retrieval performances of the NCBI nucleotide and protein databases 
Each chart shows 5 pairs of bars, one for each extracted property. The first (darker) bar of 
each pair shows the performance for the GenBank database while the second (lighter) bar 
shows the value for GenPept. The first chart shows the percentage of source documents from 
which a property value could be extracted, while the second graph shows the percentage of 
accurate values extracted, measured against the manually annotated dataset. 
 

The low accuracy of the host property is related to its low yield (79.5%-88.8%), primarily 

caused by a high proportion of human influenza sequences, which frequently lack the host 

annotation. Isolate naming standards are not adequate for automating metadata extraction, 

since they allow the host to be omitted from identifiers of human isolates, making the 

extraction of this property very problematic. In this study, we have chosen not to assume that 

an isolate identifier without host name necessarily implies a human virus. Such an assumption 

would have produced much higher yields, but also a much higher number of incorrect 

annotations. In these cases, we resorted to manual curation, which was expedited considerably 

by the spreadsheet-like interface of the ABK tool. 

Each property required a number of structural rules to be applied, each rule defined to 

extract a relevant value from a different location in the source document. The performance of 

the structural rules used was analyzed, and Figure 3-8 shows the percentage of documents for 

which a given rule was the “winning” rule for a given property, i.e. the highest-priority 

structural rule that produced a value. The performance diagrams display several interesting 

features. First, they clearly show the extent of semantic heterogeneity in public databases: 

although the most productive structural rule can be identified for each property, contributions 
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from other rules can constitute up to 35% of the extracted values. Second, it is evident that a 

human expert does not always rank the rules by their productivity, but rather by their 

perceived accuracy. Finally, the charts for properties isolateName, origin and year clearly 

show that identical rules produced values more frequently from GenBank, although 

documents from the two databases are identically structured. This clearly indicates that 

GenBank records are often more thoroughly annotated by submitters. Extraction from many 

GenPept records frequently has to rely on lower-priority rules, and sometimes does not yield 

any value at all. This clearly has a negative impact on studies of protein sequences, since 

researchers may limit their data gathering to the GenPept database, thus omitting significant 

proportions of the metadata. 

 

 

Figure 3-8: Performance of structural rules for five metadata properties 
Bars show the percentage of records for which a given structural rule produced the final 
property value. Rules are numbered according to their priority, matching the priorities shown 
in Table 1. 
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3.5 Discussion 

Semantic heterogeneity is a serious obstacle in the production of annotated datasets, and a 

semi-automated approach is currently the only practical solution when studies need to process 

thousands of records. We have shown that the ABK platform can recover a very high 

proportion of the necessary metadata, through the application of XML-based structural rules. 

Our case study presented relatively humble metadata needs: a small number of highly 

relevant fields, with little structural complexity. Yet, we have shown that the NCBI databases, 

arguably the most important primary data sources used in bioinformatics, are incompletely 

and inconsistently annotated to the extent that meeting even such simple requirements is a 

major challenge for automated tasks. One might argue that the problem could be solved by 

simply choosing for each property the most productive source database field, and discarding 

those records that do not yield a value. The results in Fig. 3-8 suggest that this approach may 

fully annotate up to 65% of records, which would still form a large-scale dataset. However, 

such a draconian mechanism would introduce major biases: since large influenza surveillance 

projects tend to cover specific geographies (e.g. North America), and provide more complete 

metadata, discarding records based on metadata quality would eliminate mostly records that 

are submitted by smaller projects, and thus greatly decrease the diversity of the dataset. Such 

bias would undermine the statistically-supported results of large-scale studies. To put it 

simply, metadata that is hard to recover is sometimes more valuable than metadata that is 

easily accessed.  

The large proportion of data from influenza surveillance projects should also be 

considered when reviewing the results of our isolate-based restructuring task. The number of 

inconsistencies in isolateName may appear surprising low (only 5% of the 7,640 unique 

isolate names), but most of the credit goes to the existence of a standard influenza isolate 

nomenclature (World Health Organization 1972), and to high reporting discipline and 

consistency of large-scale project that every year submit large numbers of new sequences 

isolated in specific geographies. None of the 388 isolate name corrections involved records 
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from large surveillance projects; the vast majority of the corrected records involved animal 

sequences, confirming that the techniques used were beneficial for improving dataset 

diversity. 

Structural rule-based extraction can deliver the intelligence necessary to reconstruct 

metadata for a great proportion of records. Automated recovery of the order of 90-95% makes 

it possible to complete the annotation process manually for the remaining records lacking 

metadata. XPath-based structural rules could achieve most of this metadata recovery in this 

study. Structural rules are a very powerful means for extracting annotations, yet simple to set 

up even for researchers with low technical skills, and highly generic since they can process 

data encoded in any database schema. 

3.6 Conclusions 

In this chapter we have presented an innovative approach to knowledge aggregation, and its 

implementation in the ABK software tool. The key contribution of the ABK approach is that 

it empowers real biomedical researchers, without programming skills, to overcome the system 

and information heterogeneities that currently prevent them from constructing large-scale 

metadata-rich datasets. The specification by example of structural rules is simple and 

intuitive, and rules can be prioritized to account for the different reliability of source data 

fields. Finally, text filters based on dictionaries provide a simple method for user-driven 

transformation.  

We have shown the utility of our approach and tools by constructing a large-scale 

influenza A protein sequence dataset, including several metadata fields. Our results showed 

that information heterogeneities in the source data were a very significant obstacle, and that 

structural rules were very effective at recovering metadata values, minimizing the effort 

required for manual verification and curation of the dataset. In summary, ABK enabled a team 

of two researchers to complete within a short period of time the task of aggregating tens of 

thousands of records, which would have been prohibitively laborious using manual curation, 

demonstrating the scalability of our approach. In Chapters 6 and 7 we will demonstrate that 
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the construction of such a dataset enables new discoveries of importance in immunology and 

virology. Our knowledge aggregation can therefore be considered an important enabler of 

biomedical discovery.  
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4. SEMANTIC TECHNOLOGIES FOR BIOLOGICAL 
KNOWLEDGE REPRESENTATION  

The biological knowledge mining approach presented in Chapter 2, Section 2.4 requires 

knowledge flow between the tasks that compose a bioinformatics pipeline. In other words, 

knowledge (comprising data, metadata, and analysis results) is used as input to analysis tasks, 

which can then augment the knowledge with the addition of results. Augmented knowledge is 

then transferred to downstream tasks, which continue the process, further enhancing the 

aggregated knowledge. This knowledge mining vision, originally formulated by Michalski 

(2003) requires two enabling components: a suitable knowledge representation capable of 

expressing knowledge in a generic and standard fashion, and knowledge-enabled tools 

capable of interpreting this knowledge representation, and augmenting it with new results. 

In this chapter, we reviewed a set of technologies (collectively known as semantic 

technologies) which have the potential to fulfill the knowledge representation requirements of 

our biological knowledge mining approach. These technologies are implemented as standards, 

and therefore can be integrated in any bioinformatics tools. We showed that knowledge 

encoded using semantic technologies can be easily extended, and therefore can be augmented 

with new information from analysis tools. In addition, semantic technologies are suitable for 

processing by standard reasoners, programs that can apply semantic rules to modify, 

restructure and augment knowledge. To demonstrate the utility of this technology solution, 

we encoded the large-scale aggregated influenza A dataset described in Chapter 3, Section 3.4 

using RDF and OWL technologies. By applying relatively simple semantic rules to the 

dataset, we transformed its structure and improved its quality, inferring many missing 

metadata values from those of other records from the same isolates. Alternative approaches to 

this task would require considerable amounts of custom programming. This study is a proof-

of-concept of the applicability of semantic technology to our biological knowledge mining 

approach. This technology stack is still evolving, and its current limitations are discussed in 

this chapter. Semantic technologies will therefore be the subject of further research, but their 



           96 

versatility and generality make them very promising candidates to support biological 

knowledge mining. 

4.1 Knowledge Representation in Bioinformatics 

The most fundamental need for hierarchical scalability is that of representing the knowledge 

to be transferred, so that it can be easily consumed by downstream analysis tasks. Knowledge 

representation is a well-known problem space in artificial intelligence, since it is a 

prerequisite for reasoning over knowledge using machines. Davis et al. (1993) assigned five 

distinct roles to knowledge representation: 

• As a surrogate of the reality it represents, imperfect and limited 

• As a set of ontological commitments, since it captures a particular perspective of 

reality, with a given vocabulary and set of axioms 

• As a fragmentary (reductionist) theory of intelligent reasoning, since it is generally 

only capable to reason using a small set of beliefs 

•  As a medium of efficient computing, since the purpose of the representation is to 

perform an analysis task 

•  As a medium of human expression, for users to communicate intentions to machines 

All these distinct roles play some part in the bioinformatics discovery process. The 

knowledge produced by analysis tasks generally describes patterns or properties of biological 

entities (the reality being represented). These descriptions have a specific perspective, 

determined by the purpose and context of the upstream task, which is reflected in the 

vocabulary and structure of the produced knowledge. Downstream tasks that consume 

knowledge have specific processing (reasoning) capabilities, which also supply a context for 

the interpretation of knowledge, as well as computational constraints on task execution. 

Finally, it is human intention that drives knowledge processing, typically in the form of rules. 
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Figure 4-1: Semantic Web “layercake” architectural diagram 
This “official view” of the Semantic Technologies layers has been annotated (on the left) to 
show the state of development and adoption of the various layers.  
 
Source: http://www.w3.org/2001/sw/, accessed 16 May 2008.  
Reproduction authorized under the W3C Document License: 
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231  
 
 

4.2 Semantic Technologies 

The technology platform needed to tackle the bioinformatics hierarchical scalability should 

possess the knowledge representation capabilities described in Section 4.1, and be adaptable 

to the bioinformatics problem space. The current platform that most closely meets these 

requirements is the collection of standards and technologies known as semantic technologies, 

which are coordinated under a common integrated platform, known as the Semantic Web 

(Berners-Lee et al. 2001). It is envisaged that the Semantic Web will form a complex 

interlinked network of knowledge sources, traversed by intelligent agents capable of 

reasoning over knowledge gleaned from multiple sources. Although the Semantic Web holds 

much promise for biomedical discovery (Wolstencroft et al. 2005), it is currently only a 
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vision (Neumann 2005). However, semantic technologies today form a coherent 

infrastructure, which is being implemented and adopted progressively. Figure 4-1 shows that 

different technologies are currently at different stages of adoption by the IT industry: the low-

level technologies used for the exchange of information are mature and established, while 

knowledge representation technologies are currently gaining acceptance. More abstract 

machine reasoning tasks are in the research phase and can only be prototyped at present. 

A detailed description of the full technology stack is beyond the scope of this thesis; an 

introduction with a biological perspective is provided by Stevens et al. (2006). Here, we have 

highlighted some features of semantic technologies that are particularly applicable to 

bioinformatics scalability applicable to this work: 

• Structural independence. The Semantic Web uses XML as the low-level encoding 

format. This allows records to be formatted as semi-structured files, which can be parsed 

by standard software, regardless of the vocabulary used, as discussed in Chapter 3. 

• Universal knowledge structure. Knowledge is expressed using the Resource Description 

Framework (RDF) (Beckett 2004), which organizes knowledge into a simple sequence of 

statements, simplifying its structure. RDF knowledge is not structured as tables (as in 

relational databases), or hierarchical tree structures (as in plain XML documents), but is 

made up of statements of the simple <subject, predicate, object> form, which are joined 

into graphs (see Figure 4-2), and can be traversed by reasoning tools.  

• Knowledge extensibility. RDF supports the open world assumption, which assumes that 

knowledge from any one source may be incomplete. Thus RDF supports the seamless 

aggregation of knowledge from multiple sources (see Figure 4-3). 

• Reasoning. The simple structure imposed by RDF allows the application of semantic 

rules that analyze and manipulate the knowledge. These rules can be expressed in a 

variety of ways, and executed by standard software tools called reasoners. Often, 

semantic rules syntax consists of direct statements, and is arguably simpler to learn than 

the programming necessary to achieve similar results. 
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• Ontologies. Within the RDF framework, knowledge is represented using ontologies – 

shared domain-specific models and vocabularies (Bard et al. 2004). The OWL standard 

(McGuinness and van Harmelen 2004) supports the definition of domain classes (for 

example, sequences, genes, etc.), their properties (e.g. country of isolation), specific 

instances (e.g. the hemagglutinin protein), and description logic (DL) which describe 

their semantics (e.g. “a sequences can only have a single country of origin”). Like 

semantic rules, DL are processed by reasoners, and are used to validate the consistency of 

a knowledge model.  

In summary, semantic technologies provide a complete platform for knowledge representation 

to suit bioinformatics tasks. Ontologies are defined to describe unambiguously specific 

domains of knowledge (for example, viral sequences), and provide a vocabulary for 

expressing knowledge as a series of RDF statements, encoded into XML files for portability. 

The receiving analysis tool can use and transform the knowledge by means of semantic rules, 

which can be built-in or user-generated. The simple, universal structure of RDF removes the 

need for structural transformation of information, shifting the emphasis to transforming 

meaning through ontologies. If the source RDF uses a different ontology from that of the tool 

transformations are possible by means of reasoning rules. New knowledge from analysis tasks 

can easily augment existing knowledge, since the Open World Assumption permits RDF to 

combine input and output (Figure 4-3).  

 
 

 



           100 

 

Figure 4-2: RDF flattening of knowledge structure 
In a relational database (A) data is organized in tables, each representing a different record 
type, with column contains the record properties; the table structures must therefore be known 
in order to interpret the data. When the same data is encoded in RDF, it is broken down into a 
series of simple <subject, predicate, object> statements (B), and processed in a uniform way, 
removing the need to understand table structure. The statements can be used to construct a 
graph which can be queried and traversed (C). 
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Figure 4-3: Open World Assumption in RDF 
The RDF platform makes no assumptions about the properties of any given entity (such as the 
protein sequence in this figure). We can, therefore, collect RDF statements that describe the 
entity from multiple sources (two public databases in this example). The combined RDF 
statements form a new graph, in which information from different sources complement each 
other, capturing multiple perspectives about the entity. 
 
 
 

Applications of the semantic technologies stack are still currently in their infancy. The 

combination of RDF, ontologies and rules can support the construction of a new class of 

analysis tools, which will be able to use in multiple forms of information: for example, 

metadata-aware phylogenetic tools could combine sequence similarity measures with date and 

country information, to characterize clusters of viral sequences. Only a small number of 

experimental tools offer semantic capabilities today. The Antigenic Variability Analyzer 

(AVANA) tool, presented in Chapter 5, is an example of such a metadata-aware tool, 

although it uses CSV, rather than RDF, as the metadata input format. This choice was 

motivated by the need to support users who want to create metadata from spreadsheet tools. 

This reflects the current lack of availability of RDF output from mainstream tools, which 

limits the widespread adoption of these technologies. We believe this is a temporary obstacle, 

which will diminish in importance as more tools emerge. 

 
 
 

subtype H5N1

PA

Avian (Anatidae)

1997

PROT9876

proteinName

host

year

GenBank

CHINA

H5N1

PA

PROT9876

country

subtype

proteinName

GenPept

H5N1

PA

Avian (Anatidae)

CHINA

1997

PROT9876

country

subtype

proteinName

host

year

Combined

subtype H5N1

PA

Avian (Anatidae)

1997

PROT9876

proteinName

host

year

GenBank

subtype H5N1

PA

Avian (Anatidae)

1997

PROT9876

proteinName

host

year

GenBank

CHINA

H5N1

PA

PROT9876

country

subtype

proteinName

GenPept

CHINA

H5N1

PA

PROT9876

country

subtype

proteinName

GenPept

H5N1

PA

Avian (Anatidae)

CHINA

1997

PROT9876

country

subtype

proteinName

host

year

Combined

H5N1

PA

Avian (Anatidae)

CHINA

1997

PROT9876

country

subtype

proteinName

host

year

Combined



           102 

4.3 Improving metadata quality through semantic reasoning 

Although semantic technologies are still in the adoption phase, and knowledge representation 

requires more progress in bioinformatics, it is already possible to show the direct benefits of 

applying semantic technologies to real-world bioinformatics problems. In the following 

sections, we will describe a study, performed on the large-scale influenza A dataset. The 

creation of this dataset is described in Chapter 3. Hereby we have demonstrated that semantic 

technologies can be effectively applied to improve the quality of descriptive metadata. 

In the manual verification phase of the dataset construction, we observed that influenza 

sequences are often submitted to public databases as genomic sets: up to eleven protein 

sequences, produced from the same isolate, are simultaneously deposited by the same genome 

sequencing team. Frequently, only some of the records are fully annotated with provenance 

information, while the remaining records remain incomplete. ABK structural rules can 

aggregate annotations from the two databases, but are unable to fill in missing metadata in 

one protein record with metadata from a different protein record from the same isolate. In the 

absence of automated solutions such gaps must be filled during manual curation. The 

presence of such annotation gaps reveals an underlying knowledge representation mismatch 

between the reality surrogate being submitted, and the ontological commitments dictated by 

GenBank and GenPept. These databases manage sequences as the core entities, and it is 

therefore only possible to attach descriptive metadata to sequence records. In a genomic 

study, however, much of the metadata describes the whole genome (the isolate) rather than 

individual component sequences. For example, the values for year and country of origin, or 

host organism, must be the same for all sequences from the same isolate, since they are isolate 

properties rather than sequence properties. Rather than enter the same metadata for up to 

eleven separate entries, many submitters prefer to annotate a single protein record, and omit 

metadata from the other records. Even when they choose to complete the metadata entry for 

the whole set, repeated annotations may introduce manual errors, which in turn cause 

inconsistencies between protein records from the same isolates. 
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Our study investigated how semantic technologies could be used to apply reasoning on 

our dataset, to relate multiple sequences from the same isolate, verify their metadata 

consistency, and fill existing gaps. To address the semantic mismatch introduced by the 

sequence-oriented organization of the source databases, we developed a reasoning task to 

manipulate the RDF knowledge graphs, reconstructing the relationships between sequences 

and isolates. In other words, we were able to treat isolates as entities with descriptive 

metadata, which was derived from the metadata of the component sequences. The resulting 

model was validated using the description logic of a simple OWL ontology, to assess the 

quality of the restructured metadata, and determine the amount of manual curation needed. In 

the final process step, the curated isolate metadata was used to re-annotate the sequence 

records. Therefore, this process impacts the curation task in three ways: it finds 

inconsistencies in the extracted metadata; it transfers the manual curation process from 

sequence records to isolates (fewer in number); and it fills missing sequence metadata from 

isolate annotations. As we will show in the following sections, the ontology and semantic 

rules used in this task are remarkably simple, yet they can yield very useful results. 

4.4 Materials and Methods 

Descriptive metadata for the influenza A dataset (extracted from structural rules as describe in 

Chapter 3) was encoded in RDF format, using an OWL ontology. This ontology was 

specifically designed to suit our analysis needs, as no suitable standard ontology could be 

identified for this particular purpose. In the ontology, each sequence is represented by a 

resource of type SequenceRecord, which may posses any of the properties proteinName, 

subtype, isolate, host, origin and year, amongst others. Each of these properties is declared 

both as owl:DatatypeProperty (it can be assigned a literal value), and as 

owl:FunctionalProperty (it is single-valued, since  multiple values would be inconsistent). 

Another type of object, IsolateRecord, is defined to represent individual isolates associated to 

one or more sequences. To facilitate the semantic restructuring task, properties subtype, 

isolate, host, origin and year can also be applied to IsolateRecord objects. 
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The metadata extraction task produced an RDF graph comprising thousands of 

SequenceRecord resources, with associated extracted metadata and references to their source 

documents (Figure 4-4A). This model reflects the relationships that exists between sequences 

and their properties in the source database, where records from the same isolate are not 

connected from each other. We restructured the RDF graph by reconstructing IsolateRecord 

objects associated to the SequenceRecords. Since most sequence properties (except for 

proteinName) are also isolate properties, their values were attached to the IsolateRecord, 

producing a restructured graph (Figure 4-4B). This restructuring task was effected by simple 

semantic rules, executed by Jena2 (McBride 2002), which is also used by ABK for RDF data 

storage. For convenience, semantic rules were specified in the rule language of Jena's built-in 

reasoner. However, the same rules could be defined in other semantic rule languages, such as 

SWRL (Horrocks et al. 2004), or the future standard language RIF (Hawke 2005). 

 

Figure 4-4: Restructuring sequence metadata 
Graph A shows the relationship between SequenceRecord resources, their metadata 
properties, and a source GenBank document, as encoded by ABK in its RDF output. In this 
example, records belonging to the same isolate have no relationship to each other. Graph B 
shows the same knowledge, restructured by the introduction of the IsolateRecord resource, 
and the transfer of isolate-specific metadata. 
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The two semantic rules used for the restructuring task are shown in Figure 4-5. The first rule 

identifies SequenceRecord objects that possess an isolate name, creates a URI (unique 

identifier) based on a normalized form of that isolate name, and ensures that an object of type 

IsolateRecord assigned that URI is attached to the SequenceRecord object. The second rule 

copies the desired metadata properties to the IsolateRecord object, whenever they are found in 

a SequenceRecord. The oneOf() built-in function, which matches a property type against a 

list, was created using Jena's extension mechanism. Isolate normalization was necessary in 

rule1, since isolate naming is often inconsistent (for example, “A/HongKong/123/04”, 

“A/hongkong/123/04” and “A/Hong Kong/123/04”). The function normalizeIsolate() 

was thus added to remove all whitespace and special characters (except for slashes) from 

isolate names, and convert them to lowercase. Although this normalization did not solve all 

inconsistencies, it resolved naming defects in hundreds of records. 

 
[rule1: (?rec rdf:type   vg:SequenceRecord) 

        (?rec vg:isolate ?isolateId) 

        normalizeIsolate(?isolateId, ?nIsoId) 

        uriConcat('urn:abk:isolate:', ?nIsoId, ?isolateUri) 

        ->  

        (?isolateUri rdf:type vg:IsolateRecord) 

        (?isolateUri vg:hasSequenceRecord ?rec) 

] 

 

[rule2: (?isolateUri vg:hasSequenceRecord ?rec) 

        (?rec ?prop ?value) 

        oneOf(?prop, vg:isolate, vg:virusSubtype, vg:year, 

                                 vg:country, vg:hostOrganism) 

        ->  

        (?isolateUri ?prop ?value) 

] 

Figure 4-5: Semantic rules used for the metadata restructuring task 
 
 
The inferences from semantic rules were validated against the OWL ontology using Jena's 

OWL DL reasoner, which identified all cases in which the inferred isolate metadata violated 

the ontology's description logic constraints. It identified all isolates which received conflicting 

metadata from their sequence records, and therefore were assigned multiple values for their 
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functional properties, as shown in Figure 4-6. The validation task reported all such 

inconsistencies, which were then resolved manually by a curator. In the final processing step, 

another simple semantic rule (shown in Figure 4-7) was executed to re-annotate the sequence 

records: for every SequenceRecord associated to an IsolateRecord, the IsolateRecord 

properties were copied to the SequenceRecord. This ensured metadata consistency for 

sequences derived from the same isolate, and transferred all isolate metadata corrections to 

the sequence records, thus reducing the necessary manual curation effort. 

 

Figure 4-6: Identification of conflicting metadata values 
Sequences from the same isolate should have identical value for certain metadata properties, 
such as origin. However, inconsistencies often occur, as shown in (A). Rule-based metadata 
restructuring transfers the inconsistent values to the IsolateRecord resource, as shown in (B). 
Since origin is declared as a functional property, an OWL reasoner can identify the 
inconsistency as a breach of the ontology DL constraint. 
 
 
[rule3: (?isolate rdf:type             vg:VirusIsolate) 

        (?isolate vg:hasSequenceRecord ?rec) 

        (?isolate ?prop                ?value) 

        oneOf(?prop, vg:isolate, vg:virusSubtype, vg:year, 

                                 vg:country, vg:hostOrganism) 

        -> 

        (?rec ?prop ?value) 

] 

Figure 4-7: Semantic rule used for re-annotation of sequence records  
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4.5 Results 

Reasoning was applied to all records that had an isolateName property value (38,474 records), 

producing a total of 7,640 distinct isolate records each being associated to one or more (up to 

eleven) sequence records. Figure 4-8 shows the distribution of isolates according to the 

number of sequences linked to the isolate. The predominance of isolates associated to 10 or 

11 protein sequences, accounting for about 63% of all sequences, indicates that most 

sequence records were submitted by full-genome sequencing studies (older genome sets only 

include 10 proteins, due to the relatively recent characterization of the PB1-F2 protein). At the 

other end of the scale, about 12.5% of sequences belong to isolates represented by only one or 

two sequences, usually submitted by studies that focus on one or two proteins (hemagglutinin 

and neuraminidase are more intensely studied than any other influenza proteins). Several 

individual sequences could not be associated to the correct isolate, because of errors in isolate 

name that could not be corrected by our name normalization task (e.g. misspellings). Finally, 

4.8% of sequences were associated to isolates with more than 11 protein sequences. This is 

due to artifacts from sequences used in multiple studies and resubmitted to the databases, 

sometimes as fragments of the original sequences. Identifying of such duplicates is not a 

simple task with the rule language we used, because of limited string processing capabilities. 

Figure 4-8: Associations of sequences to isolates 
The left chart shows the number of identified isolates, according to the number of sequences 
they are associated to. On the left, we have shown the distribution of sequences according to 
the number of sequences associated with their isolates. 
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Isolate metadata, inferred by the reasoner by applying semantic rules, was subsequently 

validated against the OWL ontology by an OWL DL reasoner, which identified a number of 

errors and inconsistencies. Multiple variants of isolateName were found for 388 isolates, most 

often due to upper/lower case differences; 98 isolate names contained additional symbols, 

such as spaces or dashes. For the subtype property, 22 isolates were reported as conflicting. In 

13 cases, we found that the same name had been used for two separate isolates, which 

required manual separation; in the remaining cases, one or more sequences were ambiguously 

annotated and had to be discarded. The majority of the 22 isolates with multiple host values 

contained values of different specificity (e.g. “AVIAN” and “DUCK”), which demonstrated 

once more the inconsistent standard of annotation. Similarly, 28 of 70 issues identified for 

origin were conflicts between overlapping regions (e.g. “CHINA” and “HONG KONG”). 

More importantly, the origin annotation had to be manually verified for all protein sequences 

isolates from turkeys, since the host organism was often confused with the country of origin: 

181 isolates were inspected and manually corrected. Although corrections were substantial in 

number and complexity, the advantage of our approach is that isolate metadata corrections are 

back-propagated to multiple sequences, thus significantly reducing the manual curation effort. 

Following manual curation, sequences were automatically re-annotated by semantic rule-

based reasoning; the results are summarized in Figure 4-7. Sequence re-annotation affected 

more than 1200 records, focusing on filling in the gaps and correcting errors. Although the 

numbers of records may seem small (2-3% of the total), manual curation is time consuming, 

tedious and error-prone, and these results translate to a significant impact for the curation 

workflow. It is notable that only 70.1% of isolates were annotated with the host property, a 

lower percentage than available in sequence record annotations. This indicates that full-

genome submissions tend to contain more complete annotations, probably because they are 

produced by large sequencing or surveillance studies, with stringent quality guidelines 

(Ghedin et al. 2005). 
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Figure 4-9: Isolate annotation and resulting corrections 
The left chart shows the percentage of created IsolateRecord objects with a value for each of 
the five properties. For the host and origin properties, the low yield of isolate annotations 
would indicate that isolates with a full complement of proteins (10 or 11 sequence records per 
isolate) are generally better annotated than isolates with a small number of sequences. The 
chart on the right shows the number of property values that were automatically modified (or 
added, in the case of sequence records for which structural rules did not yield a value). 

 

4.6 Discussion 

The contribution of RDF, semantic rules and description logic affects a smaller proportion of 

records, but produces sophisticated and fully automated results, reducing the effort required 

for time-consuming and error-prone manual annotation. 

Alternative approaches to metadata restructuring and quality validation could be used: 

the use of a relational database, appropriate queries and string manipulation could reconstruct 

the viral isolates and identify and correct inconsistencies. Such an approach, however, require 

a non-trivial programming effort, and significant infrastructure (such as running a database), 

beyond the skill of most biological researchers. Semantic technologies use a simple, file-

based infrastructure, and a very flexible way of defining schemas with RDF and OWL. 

Although our experiments required a certain amount of programming, all domain-specific 

functionality was embedded into the ontology and the rules employed, indicating that generic 

tools could support this class of task, leaving biologists the flexibility of structuring metadata 

according to their needs. In addition, the relative simplicity with which semantic reasoning 
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rules are specified adds utility to this approach. Many software applications (such as email 

clients or network firewalls) provide user interfaces for expressing rules of various kinds. We 

have shown that it is possible to provide similar intuitive mechanisms to support sophisticated 

rule-based data preparation and cleaning tasks using molecular database records. 

The conversion of primary public data repositories to RDF has been advocated by 

proponents of the Semantic Web vision and even prototyped for a small number of databases- 

for an example, see the UniProt-RDF project (Jain 2007). Our results, however, suggests that 

a straightforward format conversion would not solve the more fundamental semantic 

heterogeneity issues, whose causes are found in data submission practices that sacrifice 

quality to achieve greater scalability. Since NCBI sequence records are submitted by 

researchers, without a curator as an intermediary, different interpretations of metadata field 

meanings give rise to discrepancies. Even if these process defects were addressed, the 

metadata structure imposed by large primary data repository is unlikely to match the 

individual needs of different analysis tasks. This fundamental issue explains the emergence of 

a vast number of smaller-scale “boutique” databases in recent years, offering richer and more 

highly curated metadata, while the structure of large primary databases has remained 

substantially unchanged. Since small specialized databases are often the result of manual 

annotation of primary sources such as GenBank, the RDF-encoded metadata output of our 

knowledge aggregation tasks seems highly suitable as a data warehousing product. In other 

words, it might be more useful to provide simple mechanisms for researchers to make their 

high-quality metadata available in a versatile format such as RDF, than to try to convert large 

and mature primary repositories. Such capillary supply of well-curated metadata could fuel a 

“grassroots” level adoption of semantic technologies, especially once trust and provenance 

concerns are addressed (Stevens et al. 2007). In turn, this could drive the development of 

analysis tools that understand RDF metadata and can integrate it in the analysis process. 

The stack of semantic technologies is developing gradually. The foundation layers such 

as XML and RDF are solid and well-understood, while reasoning capabilities are still in the 

various stages of deployment and present early adopters with scalability concerns. We have 
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found that our simple semantic rules, when applied to tens of thousands of records, cannot be 

executed on-line within reasonable waiting times on a current fully-featured desktop 

computer. For certain tasks, we were able to increase performance dramatically with a divide-

and-conquer approach, by splitting the input data into separate files of around 6,000 records 

each. However, this approach is only viable for tasks that do not require reasoning over of 

multiple interlinked resources. Although performance gains may also be achieved by 

choosing alternative data storage and programming platform options, scalability issues 

eventually emerge, given sufficiently complex reasoning demands. At present, more research 

is needed to address some of these scalability issues: for example, to assess whether a dataset 

is suitable to be broken down into smaller datasets for a given reasoning task. Ontology 

complexity is a major area where improvements can be achieved: large ontologies contain a 

vast number of DL semantics, which cause numerous reasoning operations to be executed 

even if they are not needed for the final result. “Right-sizing” ontologies, to suit the problem 

in hand, can mitigate these problems. Scalability issues are a sign of the relative immaturity of 

the semantic technologies platform, and we expect they will be successfully addressed, as 

they have been for other integrative platforms. 

4.7 Conclusion 

In this chapter, we have reviewed semantic technologies as a knowledge representation layer 

for biological knowledge mining. We have shown that the technology stack comprising XML, 

RDF and OWL allows flexible and extensible encoding of knowledge, and therefore supports 

the flow and augmentation of knowledge necessary for biological knowledge mining (see 

Chapter 2, Section 2.4). The study presented in this chapter showed that semantic rules are a 

powerful addition to semantic knowledge representation, and are capable of restructuring and 

extending existing knowledge through the application of simple reasoning task. With a small 

number of relatively simple semantic rules, we were able to restructure our large-scale 

influenza A dataset, filling in large proportions of missing data. These results demonstrate 

that semantic technologies are expressive and powerful, and are therefore good candidates for 
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the knowledge flow backbone of bioinformatics pipelines. Their ongoing standardization will 

also mean that tools will be able to integrate these technologies using standard software 

libraries. However, we have also highlighted that semantic technologies are still evolving and 

currently present issues of scalability and ontology modelling, which will need further 

research before full adoption can take place. For these reasons, the knowledge-enabled tools 

ABK (Chapter 3, Section 3.3) and AVANA (Chapter 5, Section 5.3) presented in this thesis 

make limited use of semantic technologies. 
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5. INFORMATION THEORY-BASED SEQUENCE ANALYSIS 

In this thesis, we have chosen to demonstrate the power and utility of the biological 

knowledge mining approach through three real-life research applications in immunology and 

virology. Two of these applications are studies of the variability of pathogens from different 

perspectives: a comparative study that identifies systematic differences between groups of 

sequences (Chapter 6), and a meta-analysis that identifies sequences that are highly conserved 

in multiple significant groups of sequences (Chapter 7). Both of these applications showcase 

important aspects of “second-generation” bioinformatics analysis: they require metadata-

enabled tools to define the groups of sequences to be analyzed, and they must support 

quantitative scalability (see Chapter 2, Section 2.3.3). 

We have developed two novel methods based on information theory, which we have 

applied to the studies of viral diversity in Chapters 6 and 7 of this thesis. In the current 

chapter, we have discussed their mathematical foundations, as well as the limitations and 

statistical corrections required by these measures The first method (Section 5.1), measures 

peptide entropy a measure of diversity of n-mer peptides, which will be used in the 

identification of conserved, antigenically significant peptides in Chapter 7. Whereas 

conservation measures usually focus on the conservation of individual residue positions in 

protein alignment, peptide entropy accounts for the variability of neighbouring positions, 

providing a more realistic measurement of sequence variability, as viewed from the 

perspective of HLA molecules. The second method (Section 5.2) uses mutual information to 

measure the relationship between a mutation and the set of sequences in which it occurs most 

frequently, identifying characteristic mutations for specific sequence sets. In Chapters 6, we 

have applied this method to the identification of mutations that have permitted the adaptation 

of influenza A viruses to human-to-human host transmission. 

Information theory has previously found several applications in bioinformatics (Gatenby 

and Frieden 2007), and was selected for our applications because of its relatively simple 

computational requirements. Due to the statistical nature of entropy and mutual information, 
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the time necessary for computations increases linearly with the number of sequences, while 

memory requirements remain practically constant. As a result, the AVANA tool (presented in 

Section 5.3), which implements the methods described in this chapter, was able to handle the 

analysis of thousands of sequences in real time, using current standard desktop computer 

hardware, showing that information-theoretic measures are an excellent choice for scalable 

studies of variability. The AVANA tool is knowledge-enabled, in that it is able to use 

descriptive metadata in order to organize sequence sets in comparative analysis and meta-

analysis. The metadata handling capabilities of AVANA enabled important results to emerge 

from our applications, demonstrating the power of extending analysis tools with knowledge 

capabilities.  

5.1 Information Entropy 

In information theory (Shannon 1948), entropy is a measure of the randomness of a given 

measurement, and thus of its variability. Entropy is defined in terms of a discrete random 

event x, for which all possible outcomes are included in the set E = {e1, e2 … en}: 

( )∑
∈
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ee ppxH 2log)(     (i) 

where pe is the probability of event e ∈ E occurring. In the context of an alignment of 

homologous sequences, it is assumed that residues aligned at the same position tend to occupy 

the same structural position, and entropy can therefore be used to measure the variability of 

the residues (or peptides) that are present at that position. In this case, equation (i) is modified 

to measure peptide entropy H(x) at any given position x of the alignment as follows: 
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where p(i,x) is the probability of a particular peptide variant i being centered at position x. 

Here the term peptide is used as a generalization, which encompasses amino acid residues 

(which can be considered peptides of length 1), or amino acid strings of arbitrary length n. 

The entropy value increases as n(x), the total number of peptide variants observed at position 
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x, increases. Entropy is also sensitive to the relative frequency of variants, such that it 

decreases when one variant is clearly dominant (i.e. the position is conserved). H(x) = 0 

denotes a site with 100% conserved residues. 

Entropy is measured in bits, and its scale is determined by the number of possible 

outcomes. If the random event i has n(x) possible outcomes, the maximum possible entropy 

value is that associated with total randomness, where each of the outcomes occurs with equal 

probability. Under these conditions, the entropy value is Hmax(x) = log2 n. In a multiple 

alignment of protein sequences, there are 20 different possible amino acid residues that can be 

observed in theory at every position; the theoretical maximum residue entropy at any position 

is therefore log2 20 = 4.233. When measuring the entropy of peptides of length m, there are 

20m peptides that can be formed by combining 20 different amino acids over m neighbouring 

positions, and the theoretical maximum peptide entropy is therefore log2 20m = m log2 20, that 

is approximately m*4.322. In practice, these theoretical limits are never reached: extreme 

variability is unlikely in sets of closely related sequence sets, and the very purpose of 

alignment algorithms is to minimize position diversity in the alignments.  

Information entropy can be interpreted in a variety of ways, and two such interpretations 

are particularly meaningful for the analysis of alignments of homologous sequences.  On one 

hand, entropy gives a descriptive measure of the variability. In this sense, entropy is a 

measure of the heterogeneity of results that are obtained when sampling a population, with 

high entropy indicating that any given observation has poor generality (Martín and Rey 

2000). On the other hand, entropy can be viewed as a predictive property – a measure of 

surprisal of an observation (Tribus 1961). Under this interpretation, low entropy indicates 

stability, such that future outcomes are likely to be identical to past outcomes; conversely, 

high entropy means that future outcomes are difficult to predict. The predictive interpretation 

is interesting from an evolutionary perspective, since low entropy may indicate evolutionary 

constraints that limit the occurrence of mutations in particular regions of a sequence. 

As an enabler of quantitative scalability, information entropy offers improvements in 

terms of computational speed and memory requirements. Since entropy is a probability-based 
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measurement, the time taken for computation increases linearly with the number of 

sequences, while the memory requirements remain constant. As a metric, information entropy 

combines in a single value two dimensions of diversity: the number of observed outcomes 

and their relative frequency. The statistical nature of entropy presents an additional 

advantage: it can be used in alignments that contain partial fragments as well as full-length 

sequences. If a sequence does not extend over a particular position, it does not contribute to 

the entropy computation at that position. As a result, entropy values at different positions 

have different statistical support (i.e. the count of sequences used in the entropy computation). 

5.1.1 Residue Entropy and Peptide Entropy 

When describing the variability of a pathogen, researchers often focus on single residue 

mutations. Immunological mechanisms, however, involve short peptides rather than 

individual residues. In T cell-mediated immune responses, HLAs bind to short peptides, 

typically between 8- and 20-amino acid long, with 9 amino acids being the predominant 

length of class I peptides and the core of class II peptides (Rammensee 1995). In 

immunological studies that investigate pathogen variability, it is therefore appropriate to 

consider peptide diversity rather than residue diversity. Some studies have attempted to 

approximate peptide entropy by averaging residue entropy over a sliding window of the 

desired size (Yusim et al. 2002), but such an approach is likely to underestimate the peptide 

variability measure. The variability of individual residue positions has a combinatorial effect 

on peptide entropy. In other words, even limited variability at multiple neighbouring positions 

can produce a very diverse set of resulting peptides, unless the variants at the different 

positions co-occur (i.e. they are observed in the in the same sequences). In any case, it is clear 

that peptides must be at least as diverse as their constituent residues, and peptide entropy can 

therefore never be lower than the residue entropy of any of the spanned positions. When 

averaging over multiple positions, the effect of high entropy positions will be mitigated by 

any conserved residues, and therefore the region’s diversity will be underestimated. 

To obviate these problems, and obtain a true reflection of peptide diversity, true peptide 
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entropy should be computed at each position. This is done by applying equation (ii), 

considering each peptide of length m occurring at that position as a separate outcome. Since 

each position corresponds to a single residue, we define the position of a peptide as the 

position where the central residue in the peptide is located. For a peptide of length m, this 

residue occupies position m/2 or (m-1)/2 within the peptide, depending on whether m is even 

or odd, respectively. Theoretically, the peptide can be any one of 20m possible m amino acid 

combinations, and the maximum entropy is therefore Hmax = m log2 20. In practice, because of 

the similarity of aligned sequences, such extreme values are never reached. In our work on 

several viruses, we found that 9-mer entropy values rarely exceed the range 0.0-5.0, with the 

highest peaks (≈ 8.0) observed in the most variable regions of the HIV proteome. Considering 

peptide variants rather than residue variants is a relatively straightforward change, yet we 

found no alignment tools that supported this computation. The AVANA tool, presented in 

Section 5.3, was developed to fill this gap. 

5.1.2 Alignment Gaps in Entropy Computation 

Multiple sequence alignments tend to contain alignment gaps that represent evolutionary 

events, such as the insertion or deletion of one or more nucleotides, which affect both 

nucleotide and amino acids sequences. Alignment gaps are introduced and positioned based 

on scoring schemes, which use gap penalties and mutation matrices to determine the most 

likely location of the gaps. In the case of protein alignments, both 3-D and secondary 

structures define the proteins, and gaps must therefore be regarded as notional, since the 

physical conformation of the protein is not interrupted at the gap point. This poses a challenge 

for entropy computation: a gap position does not contain an amino acid residue to the used as 

the centre of the peptide, yet the gap is only notional, and the sequence does contain a peptide 

at that point in the protein conformation. Therefore, we cannot simply discard gapped 

sequences from entropy computations at a given position, since this operation removes some 

of the diversity at that position, artificially lowering the entropy value. Generally, gaps 

indicate higher variability and tend to be associated with high entropy values. Empirical 
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methods for estimating entropy at highly-gapped positions have been suggested (Pei and 

Grishin 2001), but we have found them very approximate, and not appropriate for application 

with small sequence sets.  

As previously discussed, entropy can be computed on alignments that contain sequences 

of different lengths. When aligned, sequences fragment may start and/or end at positions other 

than the endpoints of the alignment. To be able to store such fragments in a file, and read 

them back correctly aligned, alignment tools and sequence editors “pad” the sequence with 

padding symbols at the start and end positions, so that the all sequences are of the same 

length. Such sequence padding often uses the dash symbol ('-'). Unfortunately, this symbol is 

also used to indicate alignment gaps, and therefore several programs do not distinguish 

between alignment gaps and padding. However, this distinction is important in entropy 

computation: a padding symbol indicates that the residue at that position is unknown, while a 

gap signifies that it is known that the residue is not present. In our computations we discard 

all padding, such that the statistical support at an alignment position is the count of sequences 

that do not contain a padding symbol at that position. Conversely, gaps are accounted for in 

our entropy computation, rather than discarded. For any sequence s, the m-mer peptide 

centered at position x (m is set by the user) is constructed according to the following rules: 

1. The central residue symbol corresponds to the residue symbol at position x (either an 

amino acid or an alignment gap). 

2. The (m/2)-1 symbols preceding position x are determined by scanning the sequence 

to the left of position x, ignoring gapped positions. 

3. The (m/2) symbols following position x are determined by scanning the sequence to 

the right of position x, ignoring gapped positions. 

4. If a padding symbol is encountered either at position x, or during the scans in steps 2 

and 3, the sequence is discarded from peptide entropy computation at position x. 

5. If residue entropy (rather than peptide entropy) is being computed, the alignment gap 

is considered to be the residue at position x (i.e. it is treated as an additional amino 

acid). 
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These rules ensure that peptides containing a gap are treated distinctly from those that present 

a valid residue; however, they do not treat gaps as additional amino acids, since multiple gaps 

are discarded (if we accept that gaps are notional, it makes little sense to distinguish a single 

gap from a sequence of multiple gaps). Figure 5-1 shows how the presence of gaps in a 

sequence is handled by our method.  

 

 
Figure 5-1: Determination of 9-mer peptides at various positions in a gapped sequence, 
to be used in entropy computations.  
The term gap peptide is used to label a notional peptide at a gapped position. The presence of 
gap peptides prevents the artificial decrease in entropy values caused by excluding sequences 
containing gaps from the entropy calculation. 
 
 

Even though the above rules ensure a credible estimate of entropy at positions with a 

moderate quantity of gaps, it is harder to interpret entropy values for positions with a high 

percentage of gaps, especially when the majority of sequences do not contain a residue at 

those positions. For residue entropy calculation in particular, a high percentage of gaps will 

tend to gradually reduce the entropy value. For these reasons, a maximum gap threshold is 

chosen (for example, 50%), above which entropy computation should not be regarded as 

reliable, and therefore removed from the alignment.   

5.1.3 Set size considerations in Entropy Computation 

Information entropy is a statistical measure, and its theoretical premises assume that the set 

over which it is measured is of infinite size (i.e. it is computed from an infinite number of 

sequences). In practice, sequence sets are generally samples of a larger population, and are 

At x=14, peptide is         SHGFASDGW
At x=13, gap peptide is  SHGF-ASDG
At x=10, gap peptide is  SHGF-ASDG

If l=9
At x=8,   gap peptide is  SHGF-ASDG
At x=7,   peptide is         ESHGFASDG

AAESHGF------ASDGWRKDGAD
123456789012345678901234

At x=14, peptide is         SHGFASDGW
At x=13, gap peptide is  SHGF-ASDG
At x=10, gap peptide is  SHGF-ASDG

If l=9
At x=8,   gap peptide is  SHGF-ASDG
At x=7,   peptide is         ESHGFASDG

AAESHGF------ASDGWRKDGAD
123456789012345678901234
AAESHGF------ASDGWRKDGAD
123456789012345678901234
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likely to contain a subset of all the variants that are present in the source population. This 

leads to an artificial reduction of the variability, and hence of the entropy value; in addition, 

smaller sequence counts increase the entropy estimation error. The effects of alignment size 

bias are especially noticeable for alignments containing fewer than about 100 sequences, and 

must be accounted for when making direct comparisons between sequence alignments of 

different sizes. To illustrate this effect, Figure 5-2 shows the distribution of entropy values 

measured at four different sites (chosen as representative of different entropy levels) in an 

alignment of Influenza A PB2 proteins. The values were obtained by constructing multiple 

subset alignments, by randomly subsampling sequences from the master alignment. For 

alignments with a relatively large number of sequences (250 sequences, graph A), the 

distribution of the entropy values obtained is narrow, and the four sites are well-separated. As 

sequence count decreases (509 sequences in graph B and 20 in graph C), the average entropy 

estimation error increases, to the point that it becomes hard to distinguish between different 

entropy levels. 

Alignment size bias causes entropy to decrease with set size. It has been shown that, for 

an alignment of N sequences (Figure 5-2), size bias is proportional to 1/N (Paninski 2003; 

Slonim 2005). Leveraging on this relationship, we can correct for size bias, by applying to 

each alignment a statistical adjustment that estimates entropy values for an infinitely-sized 

alignment with analogous variant distribution. To obtain such estimate, the alignment is 

repeatedly randomly sampled to create smaller alignments of varying size, whose entropy can 

be measured. At each alignment position, the entropy of these subset alignments of size N can 

be plotted against 1/N, using a linear regression to extrapolate the entropy estimate for N→∞. 

We have found in practice that this adjustment, applied on alignments of the eleven influenza 

A protein sequences for different subtypes, produces regressions with a a very high coefficient 

of determination (r2 > 0.9 in most cases) which was used as a goodness-of-fit of the estimates, 

confirming the validity of this adjustment. The chief advantage of infinite-set extrapolation is 

that it produces entropy values that can be used for direct comparisons of sequence 

alignments with different sequence counts (Khan et al. 2008). However, that this adjustment 
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cannot address other sampling bias errors, such as excessive sampling of a narrow pool of 

sequences, which often compounds errors caused by set size bias. 

Figure 5-2: Effect of set size on information entropy.  
The probability density of entropy values at four sites of the Influenza A PB2 proteins is 
plotted for alignments of decreasing sequence count N (graph A: N=250; graph B: N=50; 
graph C: N=20). For each graph, we constructed 200 random alignments of the required size 
from the PB2 master alignment. The mean and standard deviation of measured entropy from 
these alignments were used to plot the normal probability distributions shown in this chart. 
The entropy values for different sites are well-separated in large sequence sets (plot A) while 
the likelihood of distinguishing medium-entropy sites from high- or low-entropy sites drops 
dramatically at low sequence counts (plot C). The sites were selected based on their equally-
spaced entropy values. 
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5.2 Mutual Information as a Comparative analysis tool 

Entropy computations can be combined to determine relationships between pairs of variables 

(Shannon 1948). When considering two discrete events A and B, one can measure the mutual 

information (MI) of the two events as follows: 

),()()(),( BAHBHAHBAMI −+=    (iii) 

where H(A,B) is the joint entropy of the two variables, which is computed using equation (i), 

replacing E with the set of all unique pair of values (A,B).  MI is interpreted as the reduction 

in uncertainty of the outcome of B when the outcome of A is known, and thus a measure of 

the dependence between the two variables. It has been shown (Steuer et al. 2002) that MI is 0 

for two fully independent variables, while the MI of two variables that are fully co-dependent 

is determined by the entropy of the variables: 

( ) ( ) ( ){ }BHAHBAMI , min,0 ≤≤     (iv) 

MI has been used in mapping of genes and clustering of genetic markers (Dawy et al. 2006). 

It has also been employed to identify pairs of co-evolving sites in proteins, which produce 

high MI values when individual and joint residue entropies are combined using equation (iii) 

(Martin et al. 2005). 

5.2.1 Identification of Characteristic Sites and Characteristic Variants 

In this thesis we use mutual information to identify mutations that characterize sets of 

sequences. Specifically, we seek to identify mutations that allow certain influenza A strains 

the capability to be transmitted between humans. Conservation analysis is often used as a tool 

for identifying functional residues (Valdar 2002; Nobrega and Pennacchio 2004), and we 

extend this method to the identification of functional components that confer specific 

properties to a pathogen population. We expect these mutations to be strongly conserved in 

virus populations for which the mutation is functionally necessary, and uncommon in 

populations that are do not exhibit the properties conferred by the mutations (in our case, 

human-transmissible and avian influenza strains, respectively). 
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Such functionally important mutations can be found by comparing a characterized set of 

sequences (sequences selected on the basis of a common property), against a reference set 

(the pool of sequences that do not possess this property). This comparison can identify one or 

more characteristic sites: sites that exhibit residues (which we will refer to as characteristic 

variants or characteristic mutations) which are common in the characterized set, but rare in 

the reference set, and are therefore likely to participate in conferring the defining property of 

the characterized set. The study of mutations by methods based on information theory has 

previously been explored; these analysis methods tend to be based on identifying sites that 

exhibit an entropy differential between the two groups. Korber et al. (1994) demonstrated the 

benefits of comparing the information entropy of separate alignments of HIV protein 

sequences, sampled from blood and brain tissues. They identified sites which were highly 

conserved (lower entropy) in the brain but not in blood, suggesting that the virus had forgone 

mutations to adapt to brain tissues. Because of reliance on entropy differential, only sites 

characterised by high diversity in blood isolates were selected; the method is not capable of 

identifying sites which are conserved in blood isolates, but acquire mutations as a result of 

tissue adaptation. 

Mutual information can be used to identify characteristic sites in sets of aligned 

sequences. We compare pairs of homologous alignments to measure the relationship between 

the amino acids residues observed at a site, and the alignment in which they are observed. In a 

pair of homologous alignments, every residue site n in one alignment aligns with the same 

site n in the other alignment. In practice, pairs of homologous alignments may be formed by 

extracting sets of aligned sequences from a master alignment, without further realignment. 

Thus, variables A and B in equation (iii) are replaced with the observed residue a, and the 

label S of the set (alignment) within which the residue is observed. The MI at a site x is 

therefore computed by: 

)()()()( , xHxHxHxMI aSSa −+=     (v) 

Ha(x) is simply the entropy at site x for the merged alignment, computed using equation (ii). 
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HS(x) is derived from the number of sequences in each of the two sets (n1 and n2): 
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where N = n1 + n2. Finally, HS,a(x) is given by: 

∑∑
∈

−=
S Aa

aS aSpaSpxH ),(log),()( 2,    (vii) 

where p(S,a) is the probability of any given combination of residue and set label (in other 

words, occurrences of the same amino acid in two different sequence alignments constitute 

distinct outcomes). 

Characteristic sites present different residues in the two sets, highly conserved within 

each set. Therefore, there is a strong relationship between residues and set labels at these sites, 

resulting in high MI values. Conversely, sites with low MI (e.g between 0.3 and 0) exhibit 

similar distributions of amino acid variants in the two sets and are not considered to be 

characteristics. Since there are exactly two sets, the upper bound of HS(x) is 1, the maximum 

entropy for a variable with two outcomes. From equation (iv) we therefore infer that 

( ) 10 ≤≤ xMI . However, HS(x)=1 only when both alignments are equal in size, and the range 

of MI(x) decreases as one set becomes larger than the other.  

Although a high MI value is the primary requisite of a characteristic site, the selection 

process must take into account a variety of factors that affect MI. Firstly, it is reasonable to 

assume that the mutations that characterize a specific subset may circulate in a limited 

proportion of the larger reference pool. In influenza A, one may expect some mutations that 

are highly conserved in human-transmissible strains (and thus likely to be involved in 

conferring transmissibility) to also emerge in the highly diverse avian pool. Therefore, the 

requirements for conservation in the human set are more stringent than those in the avian set; 

in addition, the presence of human variants in the avian pool lowers the MI value. These 

considerations are problem-specific, and require background knowledge of the pathogen's 

biology. Another factor that affects MI is the presence of "noise" mutations: sporadic random 

mutations and sporadic episodes of infections transmitted from other hosts, which we 
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observed in both sets. Finally, characteristic mutations may emerge gradually in the evolution 

of the pathogen, and therefore the inclusion of historical sequences, sampled before such 

variants stabilized, tends to lower the MI value. 

. To select characteristic sites and characteristic variants, we identified four criteria that 

help distinguish these sites from the background noise. The choice of threshold values for 

these criteria is largely dependent on the analysis task selection. The four criteria are: 

• A characteristic site sc must have an MI value above MImin, the MI threshold below 

which no characteristic sites are deemed to be present. 

• If a characteristic variant vc is present at site sc with probability pc(vc,sc) within the set 

it represents and po(vc,sc) in the other set, the ratio r(vc,sc)=pc(vc,sc)/po(vc,sc) must 

exceed a minimum frequency ratio rmin if  po(vc,sc) is non-zero. A high rmin ensures 

that the variant is significantly more common in the set it represents. 

• The probability pc(vc,sc) must exceed a minimum probability pcmin. Raising this 

threshold prevents statistically insignificant mutations from being considered 

characteristic, even when they are more frequent in one set than in the other.  

• At a characteristic site sc, the probability pc'(S,sc) of a set S containing variants 

characteristic of the other set must be lower that the maximum contamination 

probability pc'max(S). This threshold prevents a site from being classified as 

characteristic if there is significant cross-contamination of variants between the two 

sets. Depending on the analysis task, it is desirable to specify a different threshold for 

each set: for example, the tolerance for human variants present in avian influenza 

sequences may be greater than the tolerance for avian variants in human sequences, to 

account for a more diverse pool of mutations in the avian influenza population. 

 
The selection process produces a characteristic variant pattern: a catalogue of characteristic 

sites, each possessing a list of the characteristic variants identified for each of the two sets. A 

characteristic variant pattern presents in a concise form the systematic differences between a 

pair of aligned sequence sets, and can be used to derive a sequence signature for any 
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homologous sequence. Sequence signatures comprise only the residues at characteristic sites, 

and thus provide a concise representation of any given isolate, useful for determining which 

characteristic mutations it possesses. 

5.2.2 Set size ratio considerations in Mutual Information Computations 

The variation in MI range, caused by size disparities between sequence sets, poses a challenge 

to the objective identification of characteristic sites, since selection must rely on absolute MI 

thresholds. Figure 5-3A shows that, as one set becomes several times larger than the other, MI 

values decrease at all sites. The effect occurs at all sites, irrespective of the MI value (the six 

positions were chosen are representative of various MI ranges). 

We have devised a statistical correction that compensates for such set size bias. The 

correction uses a sampling method, which compares the smaller of the two sets to multiple 

subsets of the larger set and evaluates the mean MI. Each subset is randomly selected and 

equal in size to the smaller set of aligned sequences. Figure 5-3B shows the effect of applying 

this statistical correction: MI values remain relatively stable even as set size ratio exceeds 

1:10, especially at sites where MI is high. Small sequence counts, however, affect the estimate 

reliability at very low ratios. These measurements indicate that the sampling correction gives 

reliable MI results with size ratios up to 1:10. The capability to apply this statistical correction 

has been built into the AVANA tool. 
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Figure 5-3: Effect of set size ratio on mutual information.  
The y-axis represents the measured mutual information (MI) between two sets of influenza A 
PB2 protein sequences, comprising human and avian sequences respectively. The x-axis 
represents the size ratio Nh/Na, where Nh and Na are the sequence count in the human and 
avian sets respectively. A) Changes in MI at selected alignment sites as Nh is varied 
(Na=719). MI values fall rapidly as the ratio decreases, especially at high MI sites.  B) Each 
data point is computed by averaging the MI obtained by comparing the human set with 200 
random subsampled sets of avian sequences with the same sequence count. The estimated MI 
values remain stable up to a size ratio of approximately 1:10. At very low ratios, increased 
sampling errors due to small set size result in lower reliability of the estimate. 
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5.3 Implementation: the AVANA tool 

The Antigenic Variability Analyzer (AVANA) tool, which supports a variety of entropy-

based analyses of multiple sequence alignments, is the software engine that was developed to 

implement the information theory- based analysis methods described in this chapter, and 

which was used to perform all sequence diversity studies described in this thesis. Developed 

in the Java language, AVANA is a standalone tool that can run on personal computers 

running any Java-compatible operating systems. Because of the statistical methods used, 

AVANA performs well on large sequence alignments: we have found that a current standard-

configuration computer (3.2 GHz Pentium 4 CPU, with 1 gigabyte of RAM, running 

Windows XP operating system) analyzes alignments of over 3,000 sequences in real time, 

with excellent speed (typically under 10 seconds for entropy analysis without statistical 

corrections). AVANA is published under an open-source license, and is freely available for 

download from http://avana.sourceforge.net/. 

The AVANA tool accepted multiple sequences alignments as input, either in the standard 

FASTA format, or as tab-separated alignment files. Both formats allow multiple sequences to 

be included in a text file. FASTA formats use a single line description starting with angle 

bracket character (“>”), followed by one or more lines of sequence data. In tab-separated 

alignment files, each line contains an identifier following the aligned sequences, separated by 

a tab. Alignments can be prepared by any multiple sequence alignment tool, such as ClustalW 

(Chenna et al. 2004), MUSCLE (Edgar 2004) or T-Coffee (Notredame et al. 2000) and/or 

manually edited using a sequence editor, such as BioEdit (Hall 1999). All sequences in the 

alignment file must be of the same length- protein fragments must therefore be appropriately 

padded, as described in Section 5.1.2.  

A key feature of AVANA is its supports of descriptive metadata (annotations) to 

accompany the loaded sequences. The tool is able to load arbitrary metadata fields, encoded 

in a CSV (comma-separated values) text format which can be constructed by hand, or 

generated from a common desktop tool such as Microsoft Excel. The first line in the CSV file 
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is treated as a list of metadata field headers, and subsequence lines specify the sequence id, 

followed by the values for the metadata fields. All values are interpreted as string values, and 

the user can choose what fields to include. The use of metadata is optional, since it is loaded 

separately from the master alignment. Metadata is used to construct subset alignments from 

the master alignment, by selecting values for the sequences to be included in the subset. For 

example, for an alignment of influenza sequences, all Human H5N1 sequences are grouped 

by selecting the value "H5N1" from the "Subtype" field, and the value "Human" from the 

"Host" field. Subsets constructed by metadata selection can then be separately analyzed, used 

in comparative analysis, or in consensus conservation analysis. Metadata capabilities allow 

the definition of homologous alignments, which are managed internally by the tool rather than 

analyzed separately as would be necessary with other alignment analysis tools. 

Figures 5-3 and 5-4 show screenshots of the AVANA tool performing single-set and 

comparative diversity analyses of sequence alignments. The AVANA tool is capable of 

multiple functionalities, as follows: 

• Subset Selection and Management. After the master alignment and its associated 

metadata are loaded, AVANA allows users to create any number of subset 

alignments, based on metadata selection. The selection procedure is performed 

through a dialog box, which displays selectable lists of metadata values. Sequences 

that meet all metadata selection criteria are selected to form the subset alignment. 

The selection criteria for subsets can subsequently be modified, and subsets can 

subsequently be deleted, or used as the source for more subsets. 

• Entropy Analysis. The diversity of any alignment (master alignment or subset 

alignment) is be analyzed by computing the residue or peptide entropy at all 

alignment positions. Peptide length is user-selectable, and a peptide length of 1 

produces residue entropy analysis. Entropy value extrapolation to infinite-size set (as 

described in Section 5.1.3) can optionally be applied, to produce entropy values that 

are independent of sequence count. AVANA can also compute local average entropy 

values, using a rectangular sliding window, whose size can be specified by the user. 
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The entropy analysis results are displayed graphically as a line plot, where the 

horizontal axis corresponds to the positions along the alignment, and the vertical axis 

represents the entropy at that position (see Figure 5-3). A position cursor allows the 

user to specify an alignment position, to display detailed position statistics: the 

entropy value, number of gaps, support, etc. The display highlights positions where 

the percentage of gaps exceeds a user-specified threshold, or that have excessively 

low statistical support. In addition, a sequence logo provides a qualitative display of 

the diversity observed at the selected position. At any selected position, the user can 

inspect the metadata of sequences that contain a particular variant, so that association 

of variants with specific sequence properties can be investigated. The position 

diversity statistics for the whole alignment can be exported as a tab-separated text 

file that can be imported in spreadsheet applications.  

Figure 5-4: Screenshot of the Antigenic Diversity Analyzer (AVANA), showing single-set 
entropy analysis results.  
In this example, 9-mer peptide entropy of the NS2 protein of Avian H5N1 influenza viruses 
was analyzed. The plot's x-axis indicates amino acid positions along the alignment, while the 
y-axis represents the entropy value at those positions. On the left-hand side, the position 
cursor was used to select a low-variability position (161), and the variants observed at that 
positions are listed, in decreasing order of frequency. The sequence logo in the left corner of 
the screen shows a clear predominance of a single 9-mer peptide at this position. 
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• Region Analysis. AVANA will perform diversity analysis on any arbitrary region of 

the alignment specified by the user. In this case, the peptide length used is the length 

of the whole regions specified. This function is useful when investigating the effect 

of merging multiple conserved positions. 

• Conservation Analysis. AVANA automatically identifies conserved regions in an 

alignment, based on a user-specified threshold (either maximum entropy, or 

minimum conservation percentage). Given a user-specified minimum region length, 

the algorithm finds the longest possible regions that meet the threshold requirements 

(optionally, a maximum region length can also be specified). Conservation analysis 

can be performed on a single alignment, or as meta-analysis of conservation in 

multiple subset alignments. Multiple-alignment conservation performs conservation 

analysis on all the selected alignments, and only retains region that exhibit consensus 

conservation. Consensus-conserved regions must contain the same peptide and meet 

conservation requirements in all alignment. This type of analysis is used when it is 

desirable to separate subsets of sequences, as conservation analysis of a combined 

set would be biased by the difference in set size. 

• Variant Analysis. The AVANA tool is capable of exporting variant analysis data for 

all positions in the alignment. For each position, variants are presented in decreasing 

order of frequency, and their count, percentage conservation, and cumulative 

percentage is given. This output is used to determine the minimum set of sequences 

that would cover a given proportion of the viral diversity. 

• Comparative Analysis. Pairs of subset alignments can be compared by mutual 

information (MI) analysis, as described in section 5.2. The mutual information at 

each position is computed, and statistical set size bias compensation (see section 

5.2.2) can optionally be applied. The comparative analysis is displayed graphically, 

as shown in Figure 5-5. Parallel displays of diversity analysis for each of the two 

alignments are shown, with the addition of a MI plot overlay (green line). MI peaks 
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are thus easily identified, and can be inspected with the position cursor. AVANA can 

also apply user-defined threshold in order to identify characteristic sites, which meet 

minimum MI, and minimum variant frequency and frequency ratios. The result of 

characteristic site analysis is a characteristic site pattern, which defines the 

differences between the two alignments at characteristic site, and can be exported for 

generating sequence signatures. 

 

 

Figure 5-5: Screenshot of AVANA, showing a comparative analysis of the sequence 
subsets A2A (avian-to-avian transmissible strains, top) and HxN2 (human H3N2, H2N2 
and H1N1, bottom) for the influenza A PB2 protein. 
 Single-residue entropy is plotted along the y-axis (blue line), alongside mutual information 
between the two subsets (green). Characteristic sites are identifiable by the presence of MI 
peaks. In this example, the E627K characteristic mutation is shown. 
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• Sequence Signatures. AVANA provides a tool for generating sequence signatures 

from an alignment, given a characteristic variant pattern. For each sequence in the 

alignment, we construct a signature by concatenating the residues present at all 

characteristic sites. Partial sequences may only generate partial signatures, and 

signatures may contain gaps. Our work on influenza internal proteins did not 

produce any sequence signature containing gaps. Signatures are ordered according to 

their metadata (for example, in chronological order), and displayed so that 

characteristic variants are shown on coloured backgrounds, which differ according 

the set characterized by the variant. For example, when displaying influenza 

sequence signatures, we displayed human-to-human transmissible characteristic 

variants on a yellow background, and avian-transmissible variants on a blue 

background. Variants that are not characteristic of either set were shown on a plain 

white background. The resulting display, which is exported as an HTML document 

viewable in any Web browser, provides a concise and easy to interpret view of the 

presence of characteristic mutations in the aligned sequences. The emergence of each 

characteristic mutation is shown clearly as a coloured streak within the display, so 

that timelines for the emergence of these mutations can be observed. 

5.4 Conclusions 

In this chapter, we have developed two novel methods for measuring different aspects of 

diversity in large sequence alignments, based on computational measures defined in 

information theory. These methods were implemented in the AVANA analysis tool, which is 

capable of analyzing alignments of thousands of sequences on current standard configuration 

PC systems. AVANA is knowledge-enabled, and can utilize user-defined descriptive 

metadata to organize alignment sequences into subsets for comparative analysis or meta-

analysis. The information-theoretical methods implemented by AVANA support three novel 

types of analysis, defined in this chapter. First, peptide information entropy was defined as a 
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measure of variability that is particularly relevant in immunological applications. Peptide 

entropy accounts for the combinatorial effects of varying neighbouring residues, and therefore 

measures the pathogen protein diversity from an antigenic perspective, since immune 

responses involve short peptides. Peptide entropy was used as a step in the identification of 

potential peptide vaccine targets, as described in Chapter 7. Second, a comparative analysis 

method based on mutual information was developed, capable of discovering characteristic 

mutations associated to specific sets of sequences. In Chapter 6, we have shown that this 

method can reconstruct the catalogue of adaptive mutations that control human-to-human 

transmission of influenza A viruses. To our knowledge, this is the first application of mutual 

information for such purpose. Third, the catalogue of adaptive mutations can be used as 

descriptive metadata to produce adaptive signatures, which provide concise representations of 

the variants observed in particular viral isolates. Signatures will be used in Chapter 6 as a tool 

for evaluating the potential for transmissibility to humans of avian strains. 

The applications detailed in Chapters 6 and 7 will demonstrate that the combination of 

computational scalability and metadata capabilities that characterize AVANA is a powerful 

enabler for new types of analysis, capable of producing important results relevant to 

biomedical questions. 
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6. CHARACTERIZATION OF INFLUENZA A VIRUS  
HUMAN-TO-HUMAN TRANSMISSIBILITY  

In this chapter, we present a complete application of our knowledge mining approach, which 

demonstrates both the utility of our method and the discovery power of knowledge-enabled 

“second-generation” bioinformatics analysis. We conducted a complete-proteome large-scale 

analysis of influenza A sequences, to discover adaptive mutation sites involved in viral 

adaptation to humans and to evaluate the pandemic potential of avian strains. The biological 

knowledge mining process, shown in Figure 6-1, used knowledge aggregation to construct a 

large-scale dataset of influenza A sequences, as detailed in Chapter 3, Section 3.4. The 

AVANA tool used the aggregated metadata to partition alignment sequences into 

epidemiologically meaningful sets, and performed systematic comparative analysis between 

avian strains and the co-circulating human strains, utilizing the novel mutual information 

method detailed in Chapter 5, Section 5.2. The comparative analysis resulted in a catalogue of 

70 amino acid sites that carried characteristic mutations associated with human-to-human 

(H2H) transmissibility. This is the most comprehensive such catalogue to be produced to date, 

demonstrating that our approach has a higher resolving power than previous method, due to 

the large number of sequences used, the higher sensitivity of mutual information measures, 

and AVANA’s ability to conduct analyses based on a high-level population models. As a 

further demonstration of the utility of aggregating metadata of diverse types, the catalogue of 

adaptive mutations was used by AVANA to derive adaptation signatures of viral genomes, 

which summarize the presence of adaptive mutations in any given isolate. Adaptive signatures 

were used as a tool for evaluating the pandemic potential of H5N1 and other strains of avian 

influenza, a current question of the outmost importance for the influenza scientific 

community. 

 
 
 



           136 

 

Figure 6-1: Knowledge Mining Model for the workflow of the characterization of H2H 
transmissibility in Influenza A viruses  
Sequences aggregated using the ABK tool were organized into master alignments (one per 
protein). The AVANA tool used descriptive metadata to divide the master alignments into 
subsets, which it compared to identify characteristic sites. Finally, based on the catalogue of 
characteristic sites, AVANA extracted adaptive signatures for avian sequences. 

Evidence of 
Co-circulating 

Strains

Evidence of 
Co-circulating 

Strains

Influenza 
Proteome

Organization

Influenza 
Proteome

Organization

Select 
Characteristic 

Sites

Determine 
Sequence 
Signatures

Construct Master 
Alignments for 

Measuring Diversity

Construct Master 
Alignments for 

Measuring Diversity

Avian influenza
Mutation Maps
Avian influenza
Mutation Maps

Divide according to  
Subtypes for 
Comparisons 

Divide according to  
Subtypes for 
Comparisons 

Curator's 
Knowledge
Curator's 

KnowledgeSequence DataSequence Data

(from knowledge 
aggregation tasks)

Select Subset 
Alignments

Curator's 
Knowledge
Curator's 

Knowledge
Sequence 
Descriptive 
Metadata

Sequence 
Descriptive 
Metadata

(from knowledge 
aggregation tasks)

Align 
Homologous 
Sequences

Find Mutations 
Implicated in H2H 

Transmission

Find Mutations 
Implicated in H2H 

Transmission

Assess Avian 
strains for presence

of H2H mutations

Assess Avian 
strains for presence

of H2H mutations

A2A, H1N1, HxN2 
alignments

H5N1, Avian 
alignments

Master alignment

Catalogue of
H2H adaptive 

mutations

Catalogue of
H2H adaptive 

mutations

Evidence of 
Co-circulating 

Strains

Evidence of 
Co-circulating 

Strains

Influenza 
Proteome

Organization

Influenza 
Proteome

Organization

Select 
Characteristic 

Sites

Determine 
Sequence 
Signatures

Construct Master 
Alignments for 

Measuring Diversity

Construct Master 
Alignments for 

Measuring Diversity

Avian influenza
Mutation Maps
Avian influenza
Mutation Maps

Divide according to  
Subtypes for 
Comparisons 

Divide according to  
Subtypes for 
Comparisons 

Curator's 
Knowledge
Curator's 

KnowledgeSequence DataSequence Data

(from knowledge 
aggregation tasks)

Select Subset 
Alignments

Curator's 
Knowledge
Curator's 

Knowledge
Sequence 
Descriptive 
Metadata

Sequence 
Descriptive 
Metadata

(from knowledge 
aggregation tasks)

Align 
Homologous 
Sequences

Find Mutations 
Implicated in H2H 

Transmission

Find Mutations 
Implicated in H2H 

Transmission

Assess Avian 
strains for presence

of H2H mutations

Assess Avian 
strains for presence

of H2H mutations

A2A, H1N1, HxN2 
alignments

H5N1, Avian 
alignments

Master alignment

Catalogue of
H2H adaptive 

mutations

Catalogue of
H2H adaptive 

mutations



           137 

6.1 Background  

Influenza A viruses belong to the Orthomyxoviridae family, which circulate amongst various 

animal species. Aquatic wildfowl are generally accepted to be the natural reservoir of the 

influenza A, but these viruses routinely infect many types of domestic birds and several 

mammalian species. In humans, influenza A viruses cause widespread annual epidemics, and 

less frequent pandemics. Seasonal epidemics produce elevated economic burden and 

substantial mortality (Thompson et al. 2003). The threat of a new worldwide pandemic is a 

cause of the greatest concern, due to both the excessive death toll and the morbidity of 

pandemics. The Spanish flu of 1918/19 claimed over 40 million lives, ranking amongst the 

most destructive events in medical history (Potter 2001). The rapid large-scale spread of such 

pandemics is enabled by the introduction of novel strains, for which the human population has 

no immune memory. Such strains introduce new variants of at least one of the viral 

glycoproteins hemagglutinin (HA) or neuraminidase (NA), which are the external proteins 

most likely to interact with the human humoral immune system. Sixteen serologically distinct 

HA types, and nine NA types, are known to circulate in the avian host population; over 100 

avian influenza subtypes have been catalogued to date, resulting from the combination of 

different HA and NA types. Of all these subtypes, only four (H1N1, H2N2, H3N2 and H1N2) 

are known to have circulated amongst humans in the last century. Other influenza subtypes of 

avian origin are known to have infected humans through avian-to-human (A2H) transmission, 

but without acquiring the ability to spread within the human population. The best known 

current source of such zoonotic infections is the highly pathogenic H5N1 virus, whose spread 

among poultry and wild birds has caused considerable economic damage. Over the last ten 

years, these H5N1 viruses have been responsible for a considerable number of human 

infections and deaths in Asia and Africa: according to a June 2008 WHO report, at least 385 

individuals were infected since 1997, resulting in 243 fatalities 

(http://www.who.int/csr/disease/avian_influenza/). Although no definitive evidence of 

human-to-human (H2H) transmission of H5N1 has been reported, there is widespread concern 
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that these viruses could cause a new devastating pandemic if they acquire such capabilities. 

More generally, scientists and policymakers have become increasingly aware of the 

possibility of a pandemic caused by avian viruses, and new tools are needed for evaluating the 

pandemic risk posed by all avian subtypes. 

The limited spread of zoonotic influenza in humans indicates that immunological naivety 

of the host population is not a sufficient condition for initiating a human pandemic, and 

additional adaptive changes in the virus are required. Studies of host range determinants 

suggest that such adaptations involve multiple mutations in the viral genome. Such mutations 

appear not to be limited to the HA and NA proteins, but rather distributed across the influenza 

genome, including its nine internal proteins (Neumann and Kawaoka 2006). A full 

reconstruction of this complex landscape of adaptive mutations is needed for the elucidation 

of biological mechanisms of viral adaptations to humans. In addition, detailed knowledge of 

adaptive mutations provides an important tool for the assessment of the pandemic potential of 

avian strain. Mutations of critical importance for host range, such as PB2 E627K, have been 

experimentally identified using laboratory mutants of the virus and primate models (Subbarao 

et al. 1993). However, such experimental approaches are prohibitively expensive if extended 

to genomic-scale studies. A more cost-effective approach is to conduct statistical studies, 

involving the comparative analysis of human-infecting and avian strains, to identify 

candidates for experimental studies. These characteristic sites are genomic positions where 

different residues are consistently observed in the two groups. A residue (characteristic 

variant) that is highly conserved within the human group, but rarely observed in the pool of 

avian strains, is likely to indicate an important adaptive mutation, whose loss would affect the 

virus’ ability to replicate or propagate amongst human hosts. Studies based on visual 

inspection of small numbers of representative isolates found characteristic sites in matrix 

proteins (Buckler-White et al. 1986) and polymerases (Naffah et al. 2000). Wider availability 

of influenza sequence data from public repositories has made it possible to conduct 

comparative analyses of greater statistical significance. Such large-scale studies comprise 

hundreds or thousands of sequences, and thus require the deployment of computational 
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methods able to handle the resulting complexity. Large-scale computational methods are 

frequently based on information entropy, a statistic which is relative simple and fast to 

compute, and which summarizes multiple aspects of variability in one measure. A large-scale 

study used information entropy to identify characteristic sites for human transmissibility of 

influenza A (Chen et al. 2006). This analysis of 401 full viral proteomes identified 

characteristic sites by comparing the entropy statistics in the avian and human groups, which 

limited its applicability to positions highly conserved in both groups. Finkelstein et al. (2007) 

overcame this limitation by employing statistical tests that involve the comparison of 

frequencies of multiple residues, thus removing the requirement for residue conservation. 

This method processed more than 23,000 sequences, to construct a catalogue of 32 

characteristic mutations in five influenza proteins.  

6.2 Materials and Methods 

6.2.1 Data collection and preparation 

We built a dataset of all available influenza A sequences (as of September 2006) from the 

NCBI GenBank and GenPept databases (Wheeler et al 2008b), including entries mirrored 

from UniProt (UniProt Consortium, 2008). A total of 92,343 records were retrieved from 

these databases, using taxonomy-based queries; entries from different databases that referred 

to the same sequences were subsequently merged. Wherever sufficient information was 

available, sequences were annotated with descriptive metadata properties, including: isolate 

name, country and year of isolation, host organism, subtype, and protein name. The resulting 

dataset was verified by two independent curators, who discarded duplicates, laboratory 

strains, sequences with missing key metadata, and sequences with quality issues. The final set 

comprised a total of 40,169 unique sequences, including both full-length and fragment 

sequences, covering all influenza A proteins. The data collection and cleaning process was 

largely automated by the Aggregator of Biological Knowledge (ABK) tool, as described in 

Chapter 3. 
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For each of the eleven influenza proteins, a master multiple sequence alignment (MSA) 

was constructed using the MUSCLE 3.6 (Edgar, 2004) software, and manually inspected and 

corrected where required. Multiple subset alignments, to be used in comparative analyses, 

were extracted from the master alignments, based on metadata values. The extraction of 

subsets from the master set, without realignment, allowed the direct comparisons of residue 

statistics at each alignment site. Subsets were extracted using the metadata-enabled Antigenic 

Variability Analyzer (AVANA) tool (Miotto et al., 2007c), developed by our team to support 

information-theoretical analysis tasks. AVANA was also used to conduct all comparative 

analysis described in this paper. 

 

 

 

Figure 6-2: Human Influenza A reassortment events of the 20th Century. 
This figure (adapted from Webster et al. (1992)) describes the reassortment events associated 
with human pandemics in the 20th Century. A full complement of eight gene segments of 
zoonotic origin causes the 1918 Spanish flu. In 1957, the H2N2 Asian flu pandemic replaced 
the HA, NA and PB1 segments, and in 1968 the H3N2 Hong Kong pandemic replaced the 
HA and PB1 segments only (Scholtissek et al. 1978). In both cases, the new subtype fully 
replaced the subtypes previously circulating amongst humans. The Russian pandemic of 1977 
introduced an H1N1 strain almost identical to that circulating prior to 1957, and may have 
been caused by the release of 20-year old frozen viruses (Kendal et al. 1978). The H1N1 and 
HxN2 lineages have since co-circulated in the human population; recently, their reassortment 
has given rise to human strains of H1N2 subtype. 
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6.2.2 Subset Selection 

The objective of our study was to identify sites where characteristic mutations are observed in 

the large majority of human influenza viruses. There are currently two major co-circulating 

lineages of human influenza: one predominantly of subtype H3N2, and another of subtype 

H1N1. The two lineages are thought to have emerged as a result of various pandemic events, 

as summarized in Figure 6-2 (Webster et al., 1992). Although both lineages have descended 

from the 1918 Spanish influenza strains, their internal protein constellations have evolved 

separately, following the disappearance of H1N1 in 1957 and it subsequent reintroduction in 

1977 (Kendal et al. 1978). Thus, when analyzing internal proteins, we distinguish the HxN2 

lineage (comprising human sequences of subtypes H2N2, H3N2 and H1N2), and the H1N1 

lineage. For each of the nine internal proteins, the following three subsets were therefore 

extracted: A2A (all avian sequences, except for H1N1, H2N2, H1N2, H3N2 and H5N1 

subtypes), H1N1H (all H1N1 human sequences) and HxN2H (all human sequences of 

subtypes H2N2, H1N2 and H3N2). Since true adaptive mutations are expected to be present 

in both lineages, we analyzed each lineage separately, discarding sites that are not shared by 

both human influenza lineages. Subtype H5N1 was removed from both avian and human 

subsets because of its pronounced ability to jump the species barrier, and was analyzed as a 

separate subset. We collected subsets of avian H5N1 (H5N1A) and human H5N1 (H5N1H) 

to analyze their adaptation signatures. Table 6-1 shows counts of the sequences included in 

each of the extracted datasets. 

When grouping the HA and NA proteins by lineage, the high genetic divergence between 

different subtypes tends to mask adaptive mutations in statistical analyses. We therefore 

conducted separate comparisons of avian and human sequences for each subtype that 

circulates amongst humans: H1, H2 and H3 subtypes of the HA protein, and N1 and N2 

subtypes of NA. Table 6-2 shows the number of sequences included in each HA subset, and 

Table 6-3 shows the subset sizes for the NA proteins. 
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A2A H1N1H HxN2H H5N1A H5N1H Total
M1 1047 300 1521 458 105 3431
M2 736 286 1517 289 95 2923
NP 884 316 1645 420 114 3379

NS1 1123 303 1448 457 95 3426
NS2 810 292 1419 288 81 2890
PA 701 279 1362 402 102 2846

PB1 716 303 1385 400 101 2905
PB2 719 281 1369 404 97 2870

PB1-F2 352 262 1280 - - 1894
Total 7088 2622 12946 3118 790 26564  

 

Table 6-1: Count of influenza A internal protein sequences used in the current study.  
Characteristic site analysis was conducted using the A2A, H1N1H and HxN2H sets. The 
H5N1A and H5N1H sets were used for sequence signature analysis. 
 
 
 
 
 
 

Avian Human Total
H1 48 768 816
H2 80 75 155
H3 115 3105 3220

Total 243 3948 4191  
 

Table 6-2: Count of influenza A hemagglutinin protein sequences used in the current 
study.  
 
 
 
 
 
 
 

Avian Human Total
N1 717 360 1077
N2 439 1801 2240

Total 1156 2161 3317  
 

Table 6-3: Count of influenza A neuraminidase protein sequences used in the current 
study.  
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6.2.3 Identification of characteristic sites and variants 

Characteristic sites were identified using the method described in Section 5.2. All 

comparisons were performed using the AVANA tool, applying a statistical correction for set 

size bias to all comparative analyses in this study (described in Section 5.2.2), based on 200 

resampling iterations. Characteristic sites and their characteristic variants (mutations) were 

selected based on the criteria detailed in Section 5.2.1, as follows: 

• MImin = 0.4. This threshold was determined by an analysis of medium-MI sites in all 

internal proteins of influenza, which indicated that avian and human sequences 

converge to the same consensus amino acids as MI falls below 0.4. 

• rmin = 4. To determine this value, we analyzed the probability ratio r(v,s) for all 

variants at each position in selected protein alignments, discarding variants with 

>99% conservation, or probabilities below 1%. For PB2, the standard deviation of 

log10r(v,s) was 0.52, corresponding to a ratio of 3.29 (log transformation was applied 

so that ratios could be compared on a linear scale). An identical analysis of an 

alignment of NS1 protein sequences produced a consistent ratio of 3.26, although 

NS1 is the most variable internal influenza A protein. A slightly more conservative 

threshold ratio of 4 was chosen for our analysis. Post-analysis verification confirmed 

that no H2H characteristic variant presented ratios lower than 9.65, while the highest 

ratio among H2H non-characteristic variants was 1.45. 

• pcmin = 0.02. In our dataset, this translates to a minimum support of approximately 30 

sequences for H2H characteristic variants. Post-analysis verification for the PB2 

protein showed that the lowest support for characteristic variants was 65 sequences 

(residue M at site 105), indicating that no important characteristic variant was omitted 

by our choice of threshold. 

• pc'max(S) = 0.052. This parameter was not applied manually; rather, we manually 

inspected all sites where avian variants accounted for more than 2% of sequences in 

at least one of the two human lineages (H1N1 and HxN2). All accepted characteristic 
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sites had less than 5.2% contamination from avian variants (average contamination at 

characteristic sites was 0.71%).  

6.2.4 Reconstruction of adaptation signatures 

The variants that distinguish H2H from A2A sequences at characteristic sites form a 

characteristic variant pattern, a summary of the significant differences between the two sets 

of sequences across the whole genome. This pattern was used to construct the adaptation 

signatures of several influenza genomes, by discarding all residues except those at 

characteristic sites. Residues forming the signatures were tagged as A2A-like (i.e. a 

characteristic variant of the A2A subset), H2H-like (an H2H characteristic variant), or as non-

characteristic. The resulting signatures thus provide a succinct summary of the H2H adaptive 

mutations contained in the sequences represented. To facilitate the evaluation of the adaptive 

characteristics of multiple isolates, we developed a software program to graphically display 

selected signatures along a timeline, using a contrasting colour scheme to distinguish between 

A2A-like and H2H-like residues. 

6.3 Results 

This study comprised two major analysis tasks. First, we performed MI-based comparative 

analysis of avian and human influenza A sequences, considering each protein separately, to 

identify characteristic sites across the whole genome.  Second, we used the full catalogue of 

characteristic sites to produce genomic adaptive signatures for all human and avian isolates. 

Human signatures were utilized to reconstruct the history of the emergence of H2H 

characteristic mutations, while avian signatures were assessed for the presence of human 

adaptive mutations. 

6.3.1 Catalogue of characteristic sites 

Our analysis produced a catalogue of 70 characteristic sites that met the selection criteria set  

in Sections 5.2.1 and 6.2.3(Table 6-4). Characteristic sites were found in eight of the nine 
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internal influenza proteins, suggesting that adaptation to humans requires the participation of 

most products encoded by the viral genome. The location of all characteristic sites found 

within internal proteins is shown in Figures 6-3 to 6-5, alongside the mapping of known 

functional domains in these proteins. As shown in Figure 6-3, the three internal proteins 

found to contain the highest number of characteristic sites were the polymerases PB2 (17 

sites) and PA (17 sites), and the nucleoprotein NP (12 sites). These three proteins are 

components of the RNP complex, which encases each of the 8 RNA segments packaged 

within the influenza virion, and are therefore known to bind to each other and also to the viral 

RNA. However, the remaining RNP component, the PB1 polymerase, was found to contain 

only a single characteristic site. The PB1 protein is encoded by an RNA segment that was 

replaced by two subsequent pandemics (Figure 6-2). As a result, the two lineages of PB1 (and 

those of PB1-F2, which is encoded by the same RNA segment) are more substantially 

divergent than those of other internal proteins, because their more remote common ancestry. 

Therefore, adaptive mutations found in PB1 and PB1-F2 are lineage-specific, with one 

notable exception: a single PB1 site has produced the same adaptive mutation (V336I) in both 

H1N1 and HxN2 lineages independently (Figure 6-4). All remaining internal proteins were 

found to contain multiple characteristic sites: M1 (3 sites), M2 (9 sites), NS1 (8 sites) and 

NS2 (8 sites), as shown in Figure 6-5. The M2 protein contained the highest density of 

characteristic sites (almost 1 every 10 residues), including three sites within the M2e 

extracellular region, which has recently been proposed as a universal vaccine target 

(Tompkins et al. 2007). The analysis of the external HA and NA glycoproteins revealed a 

large number of subtype-specific adaptive mutations, as shown in Figure 6-6. A small number 

of HA mutations were found to occur at the same position in multiple subtypes. However, 

different subtypes present different residues at these sites for both avian and human isolates, 

making it impossible to determine whether mutations in multiple human lineages were truly 

equivalent adaptations. We were unable to confidently identify any adaptive mutation in the 

HA and NA proteins as universal in all human-transmissible strains. 
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(Facing page) 

Table 6-4: Full catalogue of identified characteristic sites for H2H transmission of 
influenza A. 
The 70 characteristic sites identified by this study are shown in this table, grouped by protein. 
Each row represents a site, with the columns detailing the following: the protein name; the 
site position within the protein sequence; the A2A characteristic variant(s) and their 
conservation in the A2A subset; the H2H characteristic variant(s), their conservation in the 
H2H subset, and the contamination with avian variants observed in the H2H subset; the 
characteristic variant(s) observed in the H1N1 subset alone; and the characteristic variant(s) 
observed in the HxN2 subset alone. . 
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CV Cons CV Cons X-pres
M1 115 V 99.70% I 99.39% 0.61% I I

121 T 94.94% A 99.89% 0.11% A A
137 T 99.60% A 99.23% 0.77% A A

M2 11 T 97.28% I 96.89% 3.11% I I
14 G 95.99% E 98.28% 1.72% E E
20 S 97.14% N 97.94% 2.06% N N
28 I 76.36% V 97.72% 2.11% V V
54 R 98.91% LIF 98.94% 0.61% IL LF
55 L 79.18% F 99.33% 0.67% F F
57 Y 99.59% H 97.38% 2.18% H H
78 Q 99.72% KE 99.26% 0.28% EK K
86 V 99.84% A 99.21% 0.45% A A

NP 16 GS 99.16% D 99.49% 0.51% D D
33 V 99.76% I 98.97% 1.03% I I
61 I 98.36% L 99.43% 0.57% L L

100 R 99.65% VI 99.71% 0.06% V VI
136 L 85.41% MI 99.77% 0.11% I MI
214 R 96.64% K 99.32% 0.68% K K
283 L 100.00% P 99.48% 0.47% P P
305 R 99.17% K 99.33% 0.67% K K
313 F 99.31% Y 99.48% 0.52% Y Y
357 Q 98.43% KR 99.90% 0.10% KR K
375 DN 96.93% GEV 99.34% 0.56% V GE
423 A 97.06% STP 98.88% 1.00% T SP

NS1 22 FL 97.07% V 98.21% 0.40% V V
60 AE 97.59% V 99.20% 0.69% V V
81 I 98.66% M 99.08% 0.69% M M
84 VS 96.08% TA 99.20% 0.80% A TA

114 SG 94.84% P 99.54% 0.46% P P
171 DTA 91.79% IN 99.20% 0.69% N I
215 PSA 99.24% T 99.37% 0.63% T T
227 E 98.87% R 99.53% 0.06% R R

NS2 60 S 76.77% NH 98.89% 0.82% H N
70 S 97.46% G 99.88% 0.12% G G

107 L 99.60% F 98.77% 1.17% F F
PA 28 P 100.00% L 99.14% 0.67% L L

55 D 99.69% N 99.63% 0.37% N N
57 R 96.61% Q 98.72% 0.79% Q Q
65 SF 99.08% LP 99.63% 0.37% PL L
66 GS 99.69% DE 98.84% 1.10% ED D

100 V 96.15% A 99.27% 0.37% A A
225 S 98.61% C 99.39% 0.61% C C
268 L 98.84% I 99.14% 0.73% I I
321 NK 97.35% YST 97.30% 0.74% STY Y
337 AT 99.34% S 99.75% 0.25% S S
356 K 98.51% R 99.26% 0.74% R R
382 E 94.34% D 97.37% 2.45% D D
400 PSQ 89.32% L 99.45% 0.31% L L
404 A 99.48% S 99.39% 0.55% S S
409 S 91.49% N 99.45% 0.49% N N
421 S 98.91% IV 97.79% 0.55% I IV
552 T 99.81% S 99.75% 0.12% S S

PB1 336 V 96.66% I 95.98% 4.02% I I
PB2 9 DE 98.57% NT 99.33% 0.49% N NT

44 A 96.82% S 99.27% 0.61% S S
64 M 97.29% T 99.58% 0.30% T T
81 T 97.93% MV 99.27% 0.30% VM M

105 TA 98.41% VM 99.45% 0.36% VM VM
199 A 99.47% S 99.76% 0.24% S S
271 TI 98.59% A 99.51% 0.37% A A
292 IV 95.54% T 99.15% 0.67% T T
368 R 98.12% K 99.33% 0.67% K K
475 L 99.66% M 99.76% 0.24% M M
567 DE 98.28% N 99.39% 0.55% N N
588 AV 98.45% I 99.63% 0.31% I I
613 VA 98.28% T 96.82% 0.61% TI T
627 E 99.31% K 99.76% 0.12% K K
661 A 86.72% T 99.39% 0.43% T T
674 AS 95.69% T 99.63% 0.18% T T
702 K 89.70% R 99.39% 0.49% R R

H1N1 
CV

HxN2 
CVProtein Position A2A H2H
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Our catalogue of characteristic sites is considerably more extensive than those produced 

by earlier related work. In the most comprehensive previous study, researchers at St. Jude 

Children’s Research Hospital identified 32 of the 70 characteristic sites, also found in our 

study, using a large-scale dataset comparable in size to ours (Finkelstein et al. 2007). The 

greater coverage of our catalogue indicates that MI is a more sensitive measure of association 

than the statistical tests employed in the St. Jude study. In addition, stringent thresholds may 

have caused Finkelstein et al. to discard several characteristic sites as false negatives, as 

discussed by the authors themselves. Our catalogue also compares favourably with the results 

of a study by Chen et al. (2006), who identified 52 sites in ten proteins. Of these, 38 were 

included in our catalogue, while 12 were discarded as representative of a single lineage. Chen 

et al. listed two characteristic sites in the HA protein, which we were unable to identify. 
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Figure 6-3: Characteristic sites identified in components of the RNP assembly of 
influenza A (PB2, PA, NP proteins). 
Circular markers, indicating the position of characteristic sites, are placed along the sequence 
length of the PB2 (A), PA (B) and NP (C) proteins of influenza A. Avian (A2A) variants are 
indicated above each marker, while human (H2H) variants are indicated below the markers. 
Where multiple characteristic variants are present, they are shown in decreasing order of 
frequency. In the upper part of each figure, coloured lines show reported functional domains 
of PB2 (Mukaigawa and Nayak 1991; Poole et al. 2004; Honda et al. 1999; Fechter et al. 
2003), PA (Nieto et al. 1994; Ohtsu et al. 2002; Sanz-Ezquerro et al. 1996) and NP (Ozawa et 
al. 2007). 
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Figure 6-4: Characteristic sites identified in the PB1 (A) and PB1-F2 (B) proteins of 
influenza A. 
RNA segment 2, which encodes both the PB1 and PB1-F2 proteins, has been replaced at the 
onset of the 1957 and 1968 pandemics (see Figure 6-2). As a result, the H1N1 and HxN2 
lineages do not share a recent common origin for this segment. Characteristic mutations are 
therefore shown separately for the two lineages, in the lower part of each diagram, using blue 
(H1N1) and green (HxN2) circles. Known functional sites for PB1 (Ohtsu et al. 2002; Jones 
et al. 1986; Jung and Brownlee 2006; Gonzalez and Ortin 1999) and PB1-F2 (Yamada et al. 
2004) are also indicated by coloured lines in the upper part of each figure. 
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Figure 6-5: Characteristic sites identified in the matrix proteins M1 (A) and M2 (B) and 
non-structural proteins NS1 (C) and NS2 (D) of influenza A. 
The identified characteristic sites are mapped against known functional domains of M1 
(Baudin et al. 2001; Hui et al. 2003), M2 (Lamb et al. 1985), NS1 (Greenspan et al. 1988; Li 
et al. 1998; Qian et al. 1995) and NS2 (Iwatsuki-Horimoto et al. 2004; Akarsu et al. 2003), 
using the notation used in Figure 6-3. 
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Figure 6-6: Characteristic sites identified in the HA (A) and NA (B) glycoproteins of 
influenza A. 
We have shown the characteristic mutations identified for each of the subtypes present in 
humans: H1 (blue circles), H2 (green circles), H3 (orange circles) for HA; and N1 (blue 
circles), N2 (green circles) for NA. Known domains of these two proteins are indicated by 
coloured lines in the upper part of each figure. 
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6.3.2 Emergence of H2H adaptive mutations 

To assess the stability of H2H characteristic mutations, and reconstruct the timeline of their 

emergence in human strains, we produced genomic adaptation signatures for all available 

virus genomes isolated in humans. Figure 6-7 shows the chronological display of signatures 

from viruses isolated between 1918 and 1972, a period spanning the three major 20th Century 

pandemics. In this figure, A2A and H2H characteristic residues are shown on contrasting 

backgrounds, making it easy to discern visually the evolutionary pattern of their emergence. 

A 1918 Spanish influenza pandemic isolate (A/BrevigMission/1/1918 (H1N1)), placed at the 

start of the timeline, is the oldest genome available. Although this strain had a primarily avian 

signature, it contained 23 out of 70 H2H characteristic mutations (33%), distributed in all 

proteins except for PB1 and NS1. This number of H2H mutations is far higher than that of 

other avian strains in our dataset, all of which contain no more than eight H2H mutations. The 

1918 H2H mutations were conserved in later human strains, which gradually accumulated 

additional adaptive changes throughout the 1930s and 1940s. By 1950, the first signature 

without avian characteristic variants was observed (A/FW/50 (H1N1), a progenitor of the 

current H1N1 lineage). Both the 1957 and 1968 pandemics (indicated by red lines) left the 

internal protein constellation practically unchanged, except for the replacement of the PB1 

segment, which removed from circulation the V336I mutation developed in the 1950s by the 

H1N1 strains. However, this mutation re-emerged shortly after the 1968 pandemic: by 1972, 

the HxN2 lineage genome possessed a full H2H signature. Five years later, a new pandemic 

introduced a human-adapted H1N1 strain, whose signature was identical to that of pre-1957 

H1N1 strains (not shown). This new strain produced a separate lineage, with a different 

signature from that of HxN2. Both lineages are still co-circulating today, and their signatures 

have remained distinct and highly conserved throughout the intervening half-century. A 

comparison of all H1N1 and HxN2 signatures over this period revealed that reassortments are 

infrequent between the two lineages, and there is no evidence that any stable reassorted 

lineages has emerged over the past 90 years(data not shown). In both lineages, A2A mutations 



           157 

are only observed in isolates from reported infections of zoonotic origin, usually from swine 

(see A/Victoria/1968 in Figure 6-7) or avian hosts (for example, human-infecting H5N1). We 

found no evidence that any of these sporadic events has ever established a stable H2H 

transmissible lineage. 

6.3.3 Assessment of avian strains for H2H adaptive mutations 

We investigated the presence of adaptive mutations in avian strains by constructing 

adaptation signatures for all avian sequences analyzed in this study. The vast majority of 

avian signatures (77%) contained no H2H mutations at all. Although this high percentage 

may be an overestimate (many of these signatures were incomplete due to partial sequencing 

of the genome), it is clear that H2H variants are very rare in the avian influenza population. In 

contrast, we found that human-infecting H5N1 strains had an unusually high number of H2H 

mutation. Figure 6-8 shows a timeline of human-infecting H5N1 sequences, arranged 

chronologically with a red line separating two major "waves": the 1997/98 Hong Kong cases, 

and the later South-East Asian infections, starting in 2003. The earlier Hong Kong isolates 

present up to ten H2H mutations spread over five internal proteins (see A/Hong Kong/532/97 

(H5N1)), more than any other avian strains in our dataset. Later South-East Asian strains also 

contain a relatively high number of H2H variants (between 3 and 5), but their number is 

considerably lower than in the previous wave, and they are present in only three proteins. 

Only a single mutation is present in both H5N1 waves: Ile→Val at position 28 in the 

transmembrane region of the M2 protein. As expected, the signatures of avian H5N1 isolates 

from the 1997 Hong Kong wave presented a similar number of H2H mutations as their 

human-infecting counterparts (up to eight, the highest number observed in avian isolates).  

In addition, we found several sequences with a high numbers of adaptive mutations, from 

other avian subtypes. Figure 6-9 shows the signatures of a number of isolates that contained 5 

or more H2H mutations. Most of these viruses (shown above the red line) were isolated in 

Asia over the past decade, and belong predominantly to three subtypes (H5N1, H9N2 and 

H6N1). The presence of shared H2H mutations suggests that reassortments of multiple 



           158 

internal proteins have occurred between these three subtypes. Isolates of other subtypes were 

found to contain high numbers of adaptive mutations (shown below the red line), but their 

mutation repertoire seem to bear little relationship to that of the Asian group of isolates. These 

viruses belong to subtypes that are poorly represented in public databases; they were all 

isolated from Charadriiformes (gulls and shorebirds), a class of birds which accounts for only 

7.5% of all avian sequences in our dataset (see Table 6-5). The presence of isolates with 

multiple H2H adaptive mutations in this underrepresented group of hosts suggests that 

lineages rich in H2H mutations may be circulating in the wild bird population, practically 

undetected. Although it is understandable that influenza research focuses primarily on 

reservoir populations and economically important domestic species, it appears that by 

ignoring other bird populations we may fail to identify strains that are potentially 

transmissible to humans.  

 

 

 

 

 

 

 

 

 
 
 
(Facing page) 

Figure 6-7: Timeline of adaptation to H2H transmission for the influenza A proteome. 
Genomic adaptation signatures for human isolates between 1918 and 1972 are arranged in 
chronological order. Subtype, year and country of isolation, and isolate name are shown in the 
first column. The remaining columns show residues at all characteristic sites, in the same 
order as that given in Table 6-4. A2A characteristic mutations are shown on a dark blue 
background, H2H mutations on a yellow background, while all other variants are on white. 
Blank cells represent unknown residues in incompletely sequenced proteomes. Consensus 
signatures for A2A and H2H proteomes are shown in the first and last row, respectively. Red 
horizontal lines indicate the start of the 1957 and 1968 pandemics, which introduced the 
H2N2 and H3N2 subtypes respectively. 
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(Facing page) 

Figure 6-8: Adaptation signatures of human-isolated H5N1 influenza A proteomes. 
Adaptation signatures of H5N1 sequences that infected humans in the period 1997-2006 are 
shown. For display clarity and conciseness, a number of identical signatures were removed 
from this set. The same colouring scheme was used as in Figure 6-7. The red horizontal line 
separates the early wave of infections in Hong Kong (1997-8) from more recent South-East 
Asian infections (since 2003). 
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(Facing page) 

Figure 6-9: Adaptation signatures of selected avian influenza A proteomes containing 
multiple H2H mutations. 
In this figure, we show selected signatures of avian proteomes that were found to contain 5 or 
more H2H mutations. For conciseness, a number of similar signatures were removed from 
this set.  Subtype, year and country of isolation, host (for avian viruses isolated in humans) 
and isolate name are shown in the first column, while the second columns shows the number 
of H2H mutations. The remaining columns show the signature residues, using the same 
colouring scheme as in Figure 6-7. Asian strains of subtypes H5N1, H9N2 and H6N1 are 
placed above the red horizontal line, while signatures sampled from gulls and shorebirds are 
shown below the red line. 
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Order Count %

Anseriformes 6734 45.7

Charadriiformes 1099 7.5

Ciconiiformes 57 0.4

Columbiformes 152 1.0

Coraciiformes 6 0.04

Falconiformes 23 0.2

Galliformes    

 Chicken 4772 32.4

 Turkey 716 4.9

 Other 676 4.6

Passeriformes 143 1.0

Podicipediformes 43 0.3

Procellariiformes 65 0.4

Psittaciformes 46 0.3

Struthioniformes 46 0.3

Unspecified 150 1.0

Total 14728  

 

Table 6-5: Distribution of influenza A protein sequences among avian orders.  
Sequence count and percentage is shown for every order of birds for which sequences were 
available in our dataset. Anseriformes sequences include domestic as well as wild waterfowl 
isolates. 

 
 

In summary, a novel, sensitive method based on MI enabled us to construct a 

comprehensive catalogue of characteristic mutations, based on sequence data spanning a 

period of nearly a century. By applying this catalogue to the construction of adaptive 

signatures, we were able to reveal a number of previously unseen patterns. First, the two 

human lineages have stable, highly conserved constellations of internal proteins, unlikely to 

reassort. Second, the ability of H5N1 viruses to infect humans correlates with an unusually 

high level of H2H mutations. Third, there are other subtypes that circulate in avian 

populations with similarly high levels of adaptive mutations, which may indicate their 

potential to infect humans. 
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6.4 Discussion 

6.4.1 Characteristic sites catalogue 

The analysis described in Chapter 6 produced the most complete catalogue of H2H adaptive 

mutations published to date. This catalogue describes a complex landscape of adaptations, 

involving a greater number of proteins than reported by any of the previous studies. The 

presence of characteristic sites in eight of the nine internal influenza proteins indicates that 

host adaptation is highly complex and systemic in nature, requiring the participation of the 

whole genomic ensemble. The gradual emergence of H2H mutations in the three decades after 

the Spanish influenza pandemic suggests that many of these adaptive mutations are not 

essential individually. However, their high level of conservation over the following decades 

strongly implies their important role in adapting to human hosts. A plausible explanation is 

that the 1918 H1N1 genome contained a non-optimal set of essential components for human 

transmission, which has been refined over time to improve equilibrium between the virus and 

the host. This model does not imply that any of the 1918 mutations are individually sufficient, 

or even necessary, for human-to-human transmission; nor does it imply that there is only a 

single set of mutations capable of conferring the necessary properties to the virus. Rather, 

several combinations of concurrent H2H mutations may be capable of enabling sufficiently 

efficient infection and transmission in humans to allow the gradual refinement of the adaptive 

mutation repertoire. Our catalogue of characteristic sites, derived from the analysis of 90 

years of refinements in human lineages, can therefore be a valuable tool for assessing the 

potential of zoonotic viruses to infect and circulate amongst humans.  

It is unlikely that all characteristic sites identified in our catalogue play independent 

roles. The presence of several H2H characteristic sites in putative protein-binding domains 

(particularly within the RNP complex) suggests that some mutations may have co-evolved as 

a result of preferred structural interactions. Unfortunately, we are currently unable to identify 

these interactions: the structural information obtainable for the internal proteins is insufficient 

to map these domains accurately, and too few genomic sequences prior to 1950 are available 
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for the statistical identification of co-evolving residues. Even so, our data clearly indicates 

that (a) internal protein constellations form stable lineages in humans, and (b) these lineages 

do not readily reassort. Such lack of reassortments is remarkable in view of the genetic 

similarity and overlapping geographical spread of the two lineages, and suggests a very strong 

interdependency between the specific elements of the constellation. Internal proteins 

participate in various cellular processes, such as nuclear transport, replication and virion 

assembly, each of which may require adaptation to the host organism. The location of 

characteristic sites within putative nuclear localization signals (NLS) of various SNP 

components supports this proposition. These findings indicate that more attention must be 

paid to the host adaptation of cellular mechanisms involving internal influenza proteins. 

Although the external HA and NA proteins are known to contain important host range 

determinants, such as domains that conform to human cellular receptors (Chandrasekaran et 

al. 2008), it has been shown that efficient human-to-human transmission cannot be achieved 

through mutations in the glycoproteins alone (Maines et al. 2006). Our results support the 

hypothesis that concurrent mutations in the internal protein constellation are a requirement for 

transmissibility amongst humans, although their role in host range adaptation is still poorly 

understood. In this context, the reassortments of the PB1 segment in multiple pandemic 

events may indicate that stable PB1 mutations are not required for human host adaptation. 

Recent research has proposed a critical role of the PB1 gene in the high virulence of the 1918 

pandemic (Pappas et al. 2008), and it appear likely possible that the replacement of this 

segment plays a role in the acquisition of a novel hemagglutinin type. In spite of repeated 

segment replacements, the PB1 V336I mutation has emerged in both human-transmissible 

lineages, and has subsequently been highly conserved, suggesting the possibility that this 

mutation plays an important adaptive role that should be further investigated. 

The unusually high density of characteristic sites in the M2 protein may be explained by 

its physical arrangement in the virion assembly: M2 is a transmembrane protein, thought to 

interact both with the internal proteins and with the host immune system. Much attention has 

been focused on the M2e extracellular region of this protein, which was observed to be 
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conserved in humans, and thus proposed as a candidate vaccine (Neirynck et al. 1999). 

Recently, further studies have claimed that M2e-based vaccines may confer immune 

protection against zoonotic strains (Tompkins et al. 2007). Our results suggest that the M2e 

domain, and possibly the whole of M2, is prone to developing adaptive mutations, and its 

conservation in the two human lineages cannot be used as an indicator of its conservation in 

avian viruses. In view of our incomplete knowledge of avian influenza diversity, claims of 

universal protection against avian strains should be regarded with caution, especially because 

of the ease with which reassortments occur in these viruses. 

6.4.2 Assessment of avian influenza viruses 

In our analysis of avian influenza A sequences, the signatures from H5N1 isolates stood out 

as the richest in H2H mutations. This result was not expected, and it strongly supports the 

utility of our characteristic site catalogue as a useful assessment tool. The comparison of 1997 

Hong Kong H5N1 signatures against those of contemporary H9N2 and H6N1 isolates from 

the same geographical region reveals a dynamic interplay between these three subtypes, in 

which viral segments appear to have been transferred through reassortments (shown in Figure 

6-9). This observation is supported by results of previous studies, which have proposed that 

the 1997 Hong Kong H5N1 epidemic followed the reassortment of H5N1 and H9N2 viruses 

(Guan et al. 1999), and that H6N1 viruses were also involved (Hoffmann et al. 2000). In 

addition, our results suggest that these reassortments may have been instrumental for the 

build-up of the H5N1 adaptive mutation repertoire, a hypothesis that is further corroborated 

by the signature of an earlier H5N1 isolate (A/duck/Minnesota/1525/1981) which contained 

no H2H mutations at all. Such highly dynamic composition of the avian influenza genome 

puts into question the validity of labeling influenza isolates exclusively by their HA and NA 

subtypes. H5N1 isolates of 1981, 1997 and 2004 clearly present distinct internal protein 

constellations, and grouping them into a homogeneous set reveals little about their ability to 

adapt to humans. In addition, an excessive focus on the HA/NA subtype deviates attention 

from the analysis of co-circulating strains with a potential for reassortment, impairing 
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effective surveillance of the potential for human infectivity and transmissibility. This does not 

mean, of course, that we should disregard the important roles played by the glycoproteins in 

adapting to human receptors. On the contrary, they should be considered important 

components of a much larger systemic ensemble of adaptations, some of which can only be 

modeled by new approaches that transcend current subtype definitions. 

The second wave of human-infecting H5N1 viruses presents a strikingly lower number 

of H2H mutations than that of the 1997 Hong Kong wave, though higher than average for 

avian strains. Most remarkably, the two waves only share one conserved H2H mutation (M2 

I28V), while all other mutations involved in the 1997 waves have been replaced by avian 

variants. Thus, it appears that H5N1 viruses are not only acquiring, but also losing H2H 

mutations through reassortments. In addition, the adaptive mutations do not appear to be 

particularly stable, as evidenced by the loss of the PB2 E627K mutation, implicated in 

replication in humans (Subbarao et al. 1993) and high virulence of human H5N1 infections 

(Hatta et al. 2001). Overall, there is no evidence of a trend of gradual accumulation of H2H 

mutations, and this may indicate that H5N1, in its current form, poses relatively a low 

pandemic risk. On the other hand, the abundant evidence of H5N1 reassortments raises the 

concern that these avian viruses may reassort with a human lineage, combining a human-

adapted internal protein constellation with an immunologically novel set of glycoproteins. 

Such reassortants have been produced under laboratory conditions, using human H3N2 

viruses, but have failed to propagate amongst mammal models (Maines et al. 2006). Even if 

reassortants acquired the ability to circulate efficiently among humans, it is impossible to 

predict whether they would retain the extreme pathogenicity that has characterized human 

H5N1 infections: like transmissibility, pathogenicity appears to be systemically determined, 

and may likely be affected by the replacement of internal proteins. The introduction of 

avian/human reassortants triggered the pandemics of 1957 and 1968, both of which had much 

lower mortality than the 1918 pandemic. Although advances in disease control may be 

partially responsible for this decrease in severity, it is plausible that the presence of an 

established and well-adapted internal protein constellation may mitigate the overall 
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pathogenicity of the pandemic strains. 

While influenza researchers focus their efforts on the threats of H5N1 viruses, the avian 

population could be harbouring other potential threats, which may currently go undetected. 

Our analysis revealed four isolates with a high number of H2H mutations, which appear to be 

unrelated to the human-infecting Asian strains. These four isolates belonged to less common 

subtypes, and were all sampled from Charadriiformes, an order of birds that is relatively 

understudied as influenza hosts. It is likely that much of the diversity of influenza viruses in 

gulls and shorebirds is as yet undiscovered: the H16 subtype was only recently identified in 

the gull population (Fouchier et al. 2005). Therefore, strains containing internal protein 

constellations with numerous H2H mutations could be grossly underrepresented in public 

databases, and hence in our dataset. Although human interactions with seabirds are less 

extensive than those with poultry, our focus on strains that affect domestic birds may 

engender a skewed perception of avian influenza epidemiology. It is necessary that large-

scale influenza surveillance projects sample extensively bird groups that are currently 

neglected, including infected individuals that appear healthy. The catalogue of characteristic 

sites should provide a useful tool for characterizing new lineages as they are newly 

sequenced.  

6.5 Conclusions 

The biological knowledge mining application described in this chapter constitutes an end-to-

end example of “second-generation” bioinformatics process: it used a large-scale dataset, 

comprising over 40,000 sequences and their metadata, aggregated using the ABK approach 

described in Chapter 3; it employed scalable analysis methods based on mutual information, 

that enabled thousands of sequences to be processed on standard office computers; it 

integrated metadata in the analysis task, allowing comparisons to be made between groups of 

sequences selected rationally according to a model of co-circulation of strains; it was 

developed to be “biologist-friendly” in that it allowed biomedical researchers to deploy the 

most appropriate conceptual model to the task in hand, by organizing groups of sequences 
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data using the metadata of their choice. Furthermore, the AVANA tool demonstrated that the 

knowledge produced as a result of analysis (the catalogue of characteristic sites) can be 

integrated in further analysis of the dataset, generating further knowledge (the adaptive 

signatures in this case). 

The results of this application were a resounding affirmation of the value and resolving 

power of “second-generation” bioinformatics. The catalogue of characteristic sites is twice as 

extensive as the best previous attempt, and provides virologists with valuable insights into the 

adaptation mechanisms of influenza A. Adaptation to transmissibility among humans is 

complex, systemic, and gradually acquired through an evolutionary refinement process. The 

high number of sites found by our analysis permitted a “high resolution” view of adaptive 

mutations, through the generation of adaptive signatures, which reflect the adaptive potential 

of specific strains and support the tracking and evaluation of emerging adaptations in zoonotic 

viruses. In summary, this biological knowledge mining application made significant 

contributions to the field of influenza virology and answered research questions of great 

current importance, while demonstrating the feasibility and utility of our knowledge mining 

approach. 
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7. IDENTIFICATION OF TARGETS FOR EPITOPE-BASED 
VACCINES  

In Chapter 6, we demonstrated that the combination of the large metadata-enriched datasets 

produced by knowledge aggregation, combined with a scalable analysis method based on 

mutual information, can lead to the significant biomedical discoveries. In this chapter, we 

show that an equivalent biological knowledge mining pipeline can be applied to a different 

type of problem, producing comparable benefits. The application described in this chapter 

analysed large-scale sequence datasets, such as the one created in Chapter 3, Section 3.4, 

using a method based on peptide entropy analysis (see Chapter 5, Section 5.1), to identify 

peptides that are conserved in multiple populations. This conservation analysis was conducted 

as the first stage in the identification of potentially immunogenic conserved peptides, an 

essential step in the rational identification of components of epitope-based vaccines (Sette et 

al. 2001; Brusic and August 2004).  

The work described in this chapter was a collaboration between several researchers. The 

author of this thesis designed the knowledge aggregation and conservation analysis tasks, 

constructed the tools for supporting these tasks (incorporated in the ABK and AVANA tools), 

and contributed to the definition of the overall analysis pipeline (Khan et al. 2006, see 

Appendix A). The process was applied to the study of influenza A virus by AT Heiny (Heiny 

et al. 2007, see Appendix B), and of dengue virus by AM Khan (Khan et al. 2008, see 

Appendix C), demonstrating the generality of this application. Since this chapter describes 

primarily work contributed by this author, detailed results contributed by collaborators are 

omitted, and may be found in the relevant appendices. 

7.1 Background 

Epitope-based vaccines contain antigenic peptides (epitopes) capable of triggering a T cell-

mediated immune response, inducing immune memory (Esser et al. 2003; Zinkernagel and 

Hengartner 2004). T cell responses may be triggered by fragments of any non-self protein, 
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and epitopes may therefore be selected within any protein in a pathogen's proteome. Since 

full-proteome experimental of epitope identification is prohibitively expensive, rational 

computational methods can be applied to reduce the number of potential targets (Sette et al. 

2001). A good approach is to identify pathogen peptides that are predicted to bind to human 

leukocyte antigen (HLA) molecules, a prerequisite for triggering a T cell response. Because 

many pathogens mutate rapidly, causing the emergence of new genetic variants, it is 

important to choose highly conserved peptide sequences, unlikely to mutate without detriment 

to the pathogen. In addition, since HLA polymorphism restricts the proportion of the human 

population that will respond to a particular antigen (Brusic and August 2004; Ovsyannikova 

et al. 2004), promiscuous epitopes capable of binding to several HLA alleles supertypes 

(Sette and Sidney 1999) should be selected. 

7.2 Methodology Overview 

The method detailed in Khan et al. (2006) provides a strategy for scanning full pathogen 

proteomes, to identify highly conserved peptide sequences that are predicted to bind to 

promiscuous HLA molecules. The high conservation is an indicator of the peptide's stability 

over time, while promiscuous binding is likely to increases vaccine coverage within the 

human population. The method, modelled as a Knowledge Mining process, is shown in 

Figure 7-2. Its first step is a knowledge aggregation task, performed by the ABK tool 

described in Chapter 3, which creates a large-scale dataset of protein sequences with 

annotation metadata. From this master dataset, major sequence groups of interest (such as co-

circulating lineages or serotypes) are selected by the AVANA tool based on metadata, and 

analyzed for conservation. By separating groups, and finding consensus conserved regions 

(Novitsky et al. 2002), equal weighting is given to each group, thus overcoming dataset 

sampling biases. The definition of “group” is dependent on the pathogen under study, and 

may correspond to a clade, serotype or subtype. As a result, the selection of metadata to be 

aggregated during data collection is also pathogen-specific, as it depends on the choice of 

group to be analyzed. 
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The conservation analysis task identifies protein stretches that meet certain conservation 

criteria and are as long as possible, with a minimum length of nine amino acids. We begin by 

selecting those 9-mer peptides that meet the conservation criteria, and then gradually extend 

them to neighbouring residues, until they no longer meet these criteria. Overlapping 

conserved regions are merged only if the resulting region meets the conservation criteria. 

Otherwise, each is considered separately. Conservation analysis is conducted in two stages, 

using two different criteria: 

1. Conserved regions are identified based on an identical peptide variant being 

observed in a proportion ≥pcmin of sequences (typically, pcmin=80%).  

2. Low-diversity regions are identified based on peptide entropy being lower than a 

threshold Hcmin (typically, Hcmin=1.0 for 9-mer peptide entropy), using peptide 

entropy as described in Section 5.1. 

Only regions that meet both conservation and low-diversity criteria are selected. The purpose 

of low-diversity screening is to discards regions with potential for change (and thus likely to 

be unstable in the future) that appear to be conserved because of uneven sampling. All 

conservation analysis computations were performed by the AVANA tools (Section 5.3). 

The immunological potential of the conserved regions is further assessed by 

bioinformatics methods that are outside the scope of this work, and are detailed in Khan et al. 

(2006). The process is generic and applicable to a wide variety of pathogens, as demonstrated 

by the results for two important pathogens, influenza A and dengue viruses, detailed in 

Appendices B and C. 
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Figure 7-2: Model of the process of identification of epitope-based vaccine targets  
Stages above the dotted line were performed using the entropy-based conservation analysis 
method described herein. The master alignments, aggregated using the ABK tool, were 
subdivided into co-circulating lineages by the AVANA tool, based on descriptive metadata.  
AVANA then identified consensus conserved regions. Downstream tasks (below the dotted 
line) constitute work separate from this thesis that assessed identified conserved regions for 
their antigenic potential and likelihood to cause altered ligands effects. See Khan (2006 and 
2008) and Heiny (2007) in Appendices A, B and C for details of these downstream stages. 

Epitope 
Vaccine 

Candidates

Epitope 
Vaccine 

Candidates

Conserved
Peptides

HLA Binding
Prediction
Analysis

Select likely 
HLA binding

peptides

Select likely 
HLA binding

peptides

HLA Allele
Information
HLA Allele
Information

Similarity
Search

Discard Peptides 
that may cause 
Altered Ligand 

effects

Discard Peptides 
that may cause 
Altered Ligand 

effects

Public Database 
Records

Public Database 
Records

Candidate
Conserved Binders

Evidence of 
Co-circulating 

Strains

Evidence of 
Co-circulating 

Strains

Select 
Common 

Conserved 
Regions

Construct Master 
Alignments for 

Measuring Diversity

Construct Master 
Alignments for 

Measuring Diversity

Divide according to  
Subtypes for 
Comparisons 

Divide according to  
Subtypes for 
Comparisons 

Curator's 
Knowledge
Curator's 

KnowledgeSequence DataSequence Data

(from knowledge 
aggregation tasks)

Select Subset 
Alignments

Curator's 
Knowledge
Curator's 

Knowledge
Sequence 
Descriptive 
Metadata

Sequence 
Descriptive 
Metadata

(from knowledge 
aggregation tasks)

Align 
Homologous 
Sequences

Identify 
Evolutionarily Stable 

Regions Across 
Subgroups

Identify 
Evolutionarily Stable 

Regions Across 
Subgroups

Master alignments

Subset alignments
(by subtype and/or 
historical period)

Proteome
Organization

Proteome
Organization

Epitope 
Vaccine 

Candidates

Epitope 
Vaccine 

Candidates

Conserved
Peptides

HLA Binding
Prediction
Analysis

Select likely 
HLA binding

peptides

Select likely 
HLA binding

peptides

HLA Allele
Information
HLA Allele
Information

Similarity
Search

Discard Peptides 
that may cause 
Altered Ligand 

effects

Discard Peptides 
that may cause 
Altered Ligand 

effects

Public Database 
Records

Public Database 
Records

Candidate
Conserved Binders

Evidence of 
Co-circulating 

Strains

Evidence of 
Co-circulating 

Strains

Select 
Common 

Conserved 
Regions

Construct Master 
Alignments for 

Measuring Diversity

Construct Master 
Alignments for 

Measuring Diversity

Divide according to  
Subtypes for 
Comparisons 

Divide according to  
Subtypes for 
Comparisons 

Curator's 
Knowledge
Curator's 

KnowledgeSequence DataSequence Data

(from knowledge 
aggregation tasks)

Select Subset 
Alignments

Curator's 
Knowledge
Curator's 

Knowledge
Sequence 
Descriptive 
Metadata

Sequence 
Descriptive 
Metadata

(from knowledge 
aggregation tasks)

Align 
Homologous 
Sequences

Identify 
Evolutionarily Stable 

Regions Across 
Subgroups

Identify 
Evolutionarily Stable 

Regions Across 
Subgroups

Master alignments

Subset alignments
(by subtype and/or 
historical period)

Proteome
Organization

Proteome
Organization



           175 

7.3 Applications: Influenza virus and Dengue virus 

Conservation analysis was conducted by AT Heiny (2007) on the large-scale influenza A 

dataset (described in Chapter 3, Section 3.4), using a total of 36,343 protein human and avian 

sequences isolated in the last 30 years. Consensus conservation analysis was conducted on six 

subsets, selected based on metadata values: Human H3N2, Human H1N1, Human H1N2, 

Human H5N1, Avian H5N1, and other Avian. These subsets represent important currently 

circulating lineages. This analysis found 55 sequences of nine or more amino acids that were 

conserved in at least 80% in each of the subsets. Influenza polymerases (PB2, PB1, and PA), 

nucleoprotein (NP), and matrix (M1) proteins were particularly rich in conserved regions. Of 

these conserved sequences, 50 were also found to contain putative supertype HLA epitopes, 

and have been shortlisted for experimental validation.  

In a study with similar objectives, AM Khan (2008) analyzed a dataset of 12,404 dengue 

virus protein sequences, aggregated using the ABK tool from GenBank and GenPept. The 

master alignments were subdivided into the four dengue virus serotypes (DV1 to DV4), and 

consensus conservation analysis was conducted using the AVANA tool. This analysis 

identified 44 sequences conserved in at least 80% of sequences across all serotypes. Most of 

the conserved peptides were found in nonstructural proteins, and a large proportion (34) 

exhibited extremely high (> 95%) conservation. Several conserved sequences were predicted 

to be immunologically relevant: 34 peptides contained predicted HLA supertype-restricted 

binding sequences, and are therefore candidates for further experimental studies. 

7.4 Conclusion 

In this chapter we have reviewed two studies, conducted by two different researchers, who 

applied a rational method for identifying conserved candidate epitopes in two different 

viruses: influenza A and dengue. Both studies were supported by a biological knowledge 

mining pipeline that performed knowledge aggregation methods using the ABK tool, as 

detailed in Chapter 3, and analyzed conservation in thousands of protein sequences, thanks to 
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the highly scalable peptide entropy method defined in Chapter 5, and implemented by the 

AVANA tool. Just as in the application described in Chapter 6, the use of aggregated 

metadata and of a knowledge-enabled tool was critical in the analysis of subsets according to 

an epidemiologically significant model. Without leveraging on metadata, the same task would 

require lengthy preparations of multiple datasets, introducing inflexibility in the conceptual 

model. For example, introducing a new epidemiologically meaningful group in the absence of 

metadata support would require a major rework of the datasets, while AVANA can reorganize 

sequence data using descriptive metadata, rapidly and efficiently. 

The significant results obtained by AM Khan and AT Heiny in their studies have 

therefore provided independent evidence that the knowledge mining approach and 

information-theoretical measures defined in this thesis are applicable to a variety of analysis 

pipelines, and to a range of pathogens subjects. The immunological problem addressed in 

these studies – the identification of potential vaccine target – was significantly different from 

the virological questions that drove the study detailed in Chapter 6. However, both of these 

studies presented the hallmarks of second-generation bioinformatics: the use of large datasets 

to provide statistically significant results; the reliance on analysis metrics capable of handling 

thousands of sequences; and the use of metadata for modeling and organizing sequence data. 

The successful application to such different questions is clear evidence of the generality of the 

methods and tools described in this thesis. 
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8. TEXT MINING OF LITERATURE SOURCES FOR THE 
CURATION OF ALLERGEN DATABASES 

Our final application, presented in this chapter, is profoundly different from the applications 

described in Chapters 6 and 7. It is an allergy application, related to the discovery of allergen 

cross-reactivity information for inclusion in an allergen database. However, it analyzes a 

completely different type of dataset, which consists of biomedical text documents   rather than 

sequence data. This departure from the analysis of sequences is intentional: this application 

shows that the principles that govern “second-generation” bioinformatics are not exclusively 

applicable to specific types of data and analysis tasks, but rather generic and reusable. The 

study presented in this chapter therefore uses our biological knowledge mining approach, 

albeit with some differences. The upstream knowledge aggregation task is conducted by the 

ABK tool, which even in this case handles tens of thousands of records. As in previous 

applications, metadata is used to form a model, but in this case the model is constituted by 

text features, such as keywords, text patterns or sentences. Several sources of metadata are 

therefore used to annotate the records: metadata extracted from the source records (such as 

title, journal name); metadata generated by text analysis tasks (such as the identification of 

terms specified by the user); and annotation metadata, entered by the user. To enable 

knowledge transfer between analysis tools, these were implemented as ABK plug-ins so that 

metadata could be managed and augmented within the Data Management component of ABK 

(see Chapter 3, Section 3.3). The results of the analysis pipeline is the selection of biomedical 

document that are most predicted to contain the desired information. Simple user interfaces 

allow rapid inspection of the document, and allow the expert user to classify documents, thus 

augmenting the descriptive metadata. As a result, important additions to the metadata from 

the user occur during the analysis stage; this “knowledge feedback” – known as active 

learning – gradually improves the performance of the analysis tasks. Finally, our text mining 

approach is “biologist-friendly” in that every aspect of the analysis task is either controlled by 

the user through simple interfaces (e.g. the definition of text patterns, relevant vocabulary, 
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and search terms) or automated (e.g. the selection of metadata features, and machine learning 

classification tasks). This sets apart this from other text mining approaches, which invariably 

require domain knowledge to be embedded in the analysis code, and can therefore only be 

controlled by text mining experts. 

Our text mining application has therefore demonstrated that the biological knowledge 

mining framework developed in this thesis can be applied to a variety of application and 

problem spaces. Although this study was intended as a proof-of-concept demonstration of the 

generality of our approaches, the results presented in this chapter strongly indicates that this 

text mining approach is viable, and can produce valuable savings of time and effort in real-life 

database curation tasks. 

8.1 Background 

Biological research groups around the world share their data through thousands of specialized 

data repositories, which focus on particular molecules, organisms or diseases. In marked 

contrast with large primary sequence databases such as GenBank, these "boutique" databases 

usually offer smaller, focused sets of richly annotated records. To ensure data content of the 

highest quality, these databases generally follow a manual data entry and curation 

(annotation) process (Fredman et al. 2002). Manual curation is performed by domain experts– 

knowledgeable scientists who are valuable and often scarce resources for their organizations. 

Their primary source of data is scientific literature, usually peer-reviewed journal articles. 

Database curators search biomedical research literature for facts of interest, and manually 

transfer knowledge from published papers to the database. Recently, widespread online 

publication of journals has dramatically improved the availability of literature (Markovitz 

2000) and the automation of search operations, both of which are essential for curators. 

However, electronic publishing has also caused an increase in the volume of literature, which 

is compounded by the continuous rapid expansion of biological knowledge. As a result, the 

manual curation process remains a time-consuming, expensive process that is prone to 

omissions and inconsistencies (Rebholz-Schuhmann et al. 2005). This knowledge transfer 
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bottleneck slows down the pace of research, and therefore there is considerable interest in 

technological solutions that minimize the curators’ involvement, or replace them altogether. 

In particular, text mining techniques enable various degrees of automation of the analysis of 

scientific literature, such as: the identification of named entities; the classification of 

documents; and the extraction of relevant facts (Cohen and Hersh 2005). Although they are 

still not capable of fully automated extraction of correct information from texts, these 

approaches keep improving. Yet, their adoption is very limited, for a variety of reasons. 

Firstly, the development of text mining tools requires technological know-how and 

infrastructure which are only available only to a few database curators, and not at all to 

average scientists. Biologists often need to work with data mining experts, who typically 

know little about the scientific concepts involved. Furthermore, most text mining solutions 

are specially designed for the task in hand, and this impair the reuse of existing software to 

address new tasks. This lack of reuse increases the financial and manpower cost of text 

mining, and delays the deployment of this technology on new problems. Finally, the usage, 

maintenance and customization of text mining tools are typically complex, and their 

performance is difficult to evaluate for researchers without data mining expertise. 

8.2 Text Mining Requirements of Database Curation Processes 

Curators face major challenges in all stages of the conversion from unstructured scientific 

literature to structured data e.g. database records. Scientific articles are highly specialized and 

often hard to understand even for experts in the area, making it difficult to identify all the 

interesting facts at the knowledge extraction stage. The variety of writing styles compounds 

this problem, since facts are not always clearly stated. Analyzing a paper is a lengthy exercise 

involving significant effort, particularly when the paper is rejected from inclusion in the 

database after assessment. The waste of effort can be minimized by effective selection and 

filtering of documents. Scientific abstracts are very valuable for evaluating the content of a 

paper: they provide more condensed information than the full paper text, but are information-

rich, and usually summarize the main results. Although some repositories base their curation 
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process on scanning all abstracts from a range of scientific publications (Alfarano et al. 

2005), this approach is impractical both for smaller projects and for broad research topics, so 

pre-selection of abstracts is highly desirable. 

Recently, the use of text mining algorithms has been proposed for streamlining various 

aspects of the curation process. The phrase text mining loosely denotes the analysis of text 

documents by machine learning and natural language processing (NLP) algorithms. 

Although earlier definitions of text mining assume the automatic extraction of knowledge 

from text (Hearst 1999), many current implementations pragmatically aim at assisting the 

recovery of information from text. The text mining process has four stages (de Bruijn and 

Martin 2002), ordered by increasing complexity: 

a) document categorization identifies documents relevant to given topics 

b) named entity tagging isolates concepts and names important to the problem space 

c) fact extraction extracts items of meaningful knowledge 

d) collection-wide extraction discovers new knowledge by correlating facts from 

multiple documents.  

Fact extraction systems are suitable for automating the annotation of database entries. 

Recent promising results include the successful annotation of genes and proteins, and 

extraction of biological interactions (de Bruijn and Martin 2002; Hofmann and Schomburg 

2005). However, even the best state-of-the-art systems are not as accurate as human curators. 

Automatic maintenance of high-quality databases demands high precision (high proportion of 

true positives), which usually comes at the expense of lower recall (capturing a smaller 

portion of all published knowledge). This trade-off is evident in a study of automated 

annotation of enzymes (Hofmann and Schomburg 2005), which deemed 92% precision and 

50% recall as “sufficient for inclusion in a high-quality database”. Indeed, a high precision is 

necessary if the data in the repository is to be trusted, but 50% recall omits half of all 

available knowledge, which is an unacceptable trade-off for most human curators. These 

findings suggest that curators are still necessary mediators between published literature and 

databases.  
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We propose that the curatorial work can be effectively supported by document 

categorization systems that select and filter documents, reducing the workload but not the 

quality of results. A key factor is to leverage on the curator’s tolerance of classification errors. 

Current classifier algorithms are capable of relatively high recall, at the cost of reduced 

precision; in other words, they can find a high percentage of all available knowledge, if one 

can accept somewhat “noisy” results. Since human curators are highly effective as quality 

filters, it is often acceptable to relax precision requirements to achieve higher recall. 

Supported by text mining systems, curators can then rapidly inspect and discard irrelevant 

documents, thus significantly improving annotation speed.  

The most common approaches to document categorization involve machine-learning 

classifiers, trained with manually-annotated sets of documents that contain both documents of 

interest (positives) and other documents (negatives). The best results to date have been 

obtained as a result of laborious choices of algorithms and document features, to suit the 

specifics of a particular problem. One prize-winning system, for example, used a combination 

of sophisticated techniques, and non-obvious document features (figure captions), which are 

difficult to extract (Regev et al. 2003). Such powerful systems are clearly hard to reuse in 

different contexts, and can only be developed by highly-specialized programmers, often with 

NLP expertise in natural language processing. Surprisingly, very little research has addressed 

the need for text mining systems that can be used for a variety of diverse tasks, by curators 

with limited programming and linguistic expertise. Cohen and Hersh (2005) have stated that 

current text mining research is biased towards “evaluations based on system output 

independent of user needs”. They have identified the major challenge in this field: bridging 

the gap between text mining researchers and database curators, thus “helping biomedical 

researchers to solve real-world problems that are inhibiting the pace of research”. They 

highlighted the need for improvement in: a) access to full text articles rather than abstracts, b) 

identification of the features for analyzing text, c) measurement of true value to users, d) 

cooperation between end users and text mining researchers. We have identified usability and 

reusability of text mining tools as additional areas for improvement. Currently, even the most 
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accurate algorithms cannot benefit database curators, unless text mining experts are available 

for tools development. Of the thousands of specialized databases currently online, very few 

such as BIND (Alfarano et al., 2005) can count on the availability of such experts. Curators 

need reusable, configurable and customizable tools that serve their needs, without requiring 

them to become skilled programmers. 

Limited access and availability of full text articles are serious barriers to effective text 

mining. Even when the full text of a research paper is available, the need for subscription 

limits the application of automated data mining tools. For the time being, most biomedical 

discovery from text is likely to remain strongly reliant on journal abstracts, which are freely 

available from large repositories. PubMed contains abstracts of articles published in a large 

number of biomedical journals (over 17 million abstracts as of December 2007). Even when 

high-coverage full-text indexing becomes available, it is likely that searches on abstracts will 

still represent a key preliminary analysis. 

8.3 Reusable Text Mining based on Active Learning  

We propose to meet the needs of curators with a new class of document categorization 

systems, whose characteristics can be summarized as follows: 

• Single, intuitive user interface, not requiring programming or linguistic abilities 

• Ability to connect to major databases (e.g. PubMed) and retrieve documents 

transparently, from simple user-driven query mechanisms 

• Simple user interface for rapid curator annotation of positives and negatives 

• Simple mechanisms for capturing user knowledge where required (e.g. dictionaries of 

named entities) 

• Ability to learn gradually, incrementally and interactively from curator’s annotations, 

without requiring a large initial training corpus 

• Ability to automate key classification decisions, such as feature selection, classifier 

parameter and so on, so that technological complexity is hidden from the user 
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We combined these characteristics into a multi-stage knowledge mining process, shown in 

Figure 8-1. The source data, in the form of plain-text biomedical abstracts, is retrieved by the 

Knowledge Aggregation system presented in Chapter 3. To enhance the specificity of 

document retrieval, the system performs post-retrieval filtering of documents returned as a 

result of a broad query. The abstracts are broken down lexically, and then filtered based on 

the recognition of keywords or patterns. The systems can support complex selection criteria 

that are impractical to specify as search queries, such as “all documents which contain the 

name of an influenza protein and two different geographical location names”. The user can 

supply and control the needed keyword vocabularies and patterns. The filtered documents are 

subsequently passed to a classification process, in which a trained classifier ranks them by 

relevance. The process of feature selection and ranking is statistical and fully automated, and 

may include the use of multiple classifiers, which are automatically evaluated by the system. 

Following ranking, the curator reads top-ranked documents to extract the desired knowledge. 

The abstract-reading interface allows the curator to mark the viewed documents as 

positive or negatives, thus augmenting the corpus of annotated documents. This simple 

mechanism enables an important feature not seen in previous applications: a feedback loop 

that injects user-generated knowledge (the document annotations) into the classification 

process. This feedback process, known as active learning (Cohn et al. 1994), enables 

prediction accuracy to improve with time, as the user annotates more documents. The active 

learning approach has been successfully applied to text classification tasks (Tong and Koller 

2001). The corpus of annotated documents is used to perform two functions: to identify which 

document features (such as words, phrases etc) are to be used for classification, and to train 

the classifier for subsequent re-ranking of the remaining documents.  
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Figure 8-1: Knowledge Mining Model for the Reusable Text Mining Workflow 
 

8.4 Materials and Methods 

We developed a proof-of-concept system, based on the ABK system, to demonstrate the 

utility of our method on a specific real-world curation task, and measure its performance. In 
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particular, we aimed to demonstrate that standard off-the-shelf algorithm, combined with a 

choice of document features that is generic and reusable, could deliver an appropriate level of 

classification performance to support the manual curation task. We did not aim to produce a 

complete working system, and did not address the active learning process, which will be the 

subject of further research.  

In this study, we compared two commonly used generic machine learning classifiers. 

Documents were pre-filtered by user queries, and ranked using statistically selected features. 

We compared the use of two types of features, and four scoring functions, to investigate 

which combination therein offered classification performance advantages. 

8.4.1 Curation Task Overview 

As a case study for our method, we addressed the curation needs of the ALLERDB database 

(Zhang et al., 2006). ALLERDB contains records of human allergen proteins, extracted from 

literature and enriched with annotations on the biochemical properties of these allergens. We 

focused on the specific task of identifying information on allergen cross-reactivity. Cross-

reactive allergens share structural similarities at molecular level, causing the immune system 

of certain individuals to react to multiple allergens (Brusic, Petrovsky et al. 2003). 

ALLERDB stores cross-reactivity information, used for allergen avoidance in patients with 

severe allergies. 

Our document categorization task was to identify all relevant PubMed abstracts that 

report allergen cross-reactivity. This information generally involves two named allergens, and 

a statement describing cross-reactive properties. Cross-reactivity statements are not expressed 

consistently – some abstracts contain a clear sentence with the words “cross” and “reactivity” 

(or derivatives), but others imply cross-reactivity indirectly. The identification of named 

entities was supported by the WHO/IUIS Allergen Nomenclature (Hoffman et al. 1994), a 

naming standard for allergens. Allergen identifiers consist of a capitalized 3-letter word, 

followed by one lowercase letter and an integer (e.g. “Mal d 1”). The standard allows some 

variations (such as “Mala f 1” and “Pru av 3”). The IUIS nomenclature also provides an 
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“official list” of over 600 allergens, which we adapted for use as an ontology. The IUIS 

nomenclature was not in use before 1994 and has being gradually adopted since (Fig. 8-2). 

Figure 8-2: Percentage of abstracts that use IUIS allergen identifiers (triangles) and 
total number of abstract in the corpus (circles) for each year since 1990. 
Usage of standard identifiers became widespread from 1994, and is currently around 20%. 
Many abstracts in the corpus have no mention of specific allergens. 
 

8.4.2 Corpus Collection and Annotation 

Our system uses the Aggregator of Biological Knowledge (ABK), detailed in Chapter 3. In 

this study study, the ABK mediator framework delivered user queries to PubMed, retrieving 

results as XML documents. We defined rules for extracting the abstract text, title, journal 

name and year of publication. We developed a number of reusable text analysis tools, to form 

a simple literature analysis workbench for conducting our study.  

ABK collected 26,997 PubMed abstracts containing the word “allergen”, and 

automatically extracted their abstract text. Named entities were identified by an ABK plug-in 

(the Text Analyzer Tool) which performed generic text analysis tasks, such as identifying 

sentences, and matching regular expressions and keywords from user-supplied lists. The tool 

was configured to find keywords such as “cross” and “reactive”. It also found identifiers, both 
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from the IUIS “official list”, and by matching the IUIS nomenclature pattern with a regular 

expression. This basic analysis uncovered 71 identifiers used in literature but not included in 

the IUIS official list, showing it lags behind current usage. We finally filtered documents that 

contained at least two different named allergen identifiers, forming a corpus of 584 abstracts. 

The corpus was manually annotated by a curator, to separate positives and negatives (a 

positive is defined as an abstract that contains information on cross-reactivity between 

allergens). The annotation process was supported by the Corpus Annotator Tool, an ABK 

plug-in (Fig. 8-3). This tool displays the abstract text, highlighting the named entity features 

discovered by prior steps. Highlighting helps focus the curator’s attention to key terms, and 

speeds up annotation.   

Figure 8-3: Screenshot of the ABK Corpus Annotator Tool.  
Features highlighted include: IUIS allergen identifiers (yellow), other allergen identifiers 
(pink), cross-reactivity keywords (green), and sentences containing at least two identifiers 
(light blue). 
 
 

Annotation of each abstract is a straightforward task: a button click determines if the 

abstract is a positive or negative, while a double click on the text selects key sentences– those 

sentences which capture the cross-reactivity information. Annotation of the full corpus by an 

expert identified 73 positives and 511 negatives. Only 39 positives captured cross-reactivity 

information in a single key sentence, while 28 required two key sentences, and the remaining 
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6 contained three or four key sentences. A higher number of key sentences indicate that the 

abstract is vaguely worded, which was sometimes hard to interpret even for the curator. Six 

positives did not contain the words “cross” and/or “reactive” (or their derivatives). We 

collected statistics on the position of key sentences within the abstracts, with the intent of 

investigating if this information can be used bias score features. Key sentences were 

significantly more likely to be found in the last third of the abstract than in the rest (Fig. 8-4). 

Figure 8-4: Key sentence occurrences in different parts of abstracts.  
Each abstract was divided into 100 bins, and a value of 1 was assigned to each bin that 
overlapped with a key sentence. 
 

8.4.3 Feature Selection and Scoring 

To train classifiers, we compared two types of features: single-word and composite features, 

the latter consisting of group of words that co-occur frequently in sentences. This comparison 

aimed at testing whether the widely used bag-of-words approach (Joachims, 1998) has 

inherent weaknesses. The presence of a phrase such as “high blood pressure” in an abstract is 

clearly more informative than the presence of each constituent word. The identification of 

such word combinations usually demands linguistic analysis. However, commonly available 

statistical algorithms are able to identify sets of frequently co-occurring words, known as 
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frequent itemsets (Agrawal et al. 1993), without linguistic analysis. Frequent itemsets can be 

used as composite features (Deshpande and Karypis 2002). 

The Text Analyzer Tool split each abstract sentence into words, discarding stop words 

and words beginning with digits. The remaining words were stemmed by the Porter stemmer 

algorithm (Porter 1980), reducing term variants (e.g. “analysis”, “analyses”, and “analyze”) to 

their common roots. For each abstract sentence, the Sentence Transaction Tool (an ABK 

plug-in) produced a transaction record, consisting of all stemmed words, without repetitions. 

Separate positive and negative transaction files were produced; only key sentence transactions 

were included for positives. The transactions were analyzed by the Apriori algorithm 

(Agrawal et al. 1993). In positive examples, 1547 itemsets (chiefly combinations of the most 

frequent words) had at least 5% statistical support; negatives were more heterogeneous (623 

itemsets with support of 1% or above). To increase generality, the feature lists were reduced 

by excluding 58 words specific to major sources of human allergens (such as “dog”, “dust” 

and “cockroach”), based on the assumption that they were irrelevant towards cross-reactivity 

classification. This exclusion list is problem-specific and cannot be automated; however, it 

can be easily carried out by a curator, given a sufficiently intuitive user interface. 

To select the most informative features, we generated feature score vectors using the 

Abstract Statistics Tool plug-in. Each vector comprised an abstract class tag (negative or 

positive) and a value for each frequent itemset: 1 if the itemset could be found in the abstract, 

0 otherwise. The feature vectors were used to measure the information gain of each itemset 

and, as a result, we selected the top 64 features (following the heuristics of using 

approximately ten training examples for each feature). We used the same process to identify 

single-word features, by configuring Apriori to identify frequent itemsets of length one.  

The selected features were used to produce data files for training and testing the 

classifiers. Each record consisted of a vector containing a score for each feature, and a class 

identifier. We experimented with four different score functions: 

1. PRESENCE. Score is 1 if the feature is found in the abstract, 0 otherwise. 

2. COUNT. Score is the number of times the feature is found in the abstract. 
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3. POSITION. Same as COUNT, but score is doubled for occurrences in the last 35% of 

the abstract (based on results shown in Fig. 3). 

4. COLOCATION. Same as COUNT, but score is doubled in sentences that contain one 

allergen identifier, and quadrupled in those with two or more. 

8.4.4 Document Classification 

We used the resulting data files to train and test two types of classifiers, which are 

representative of highly diverse approaches to machine learning: 

1. Artificial Neural Network (ANN). We chose an ANN based on a Probabilistic Neural 

Network (PNN) architecture, using a genetic algorithm for determining appropriate 

feature smoothing factors. This ANN is available in the commercial Neuroshell 2 

suite (http://www.wardsystems.com/neuroshell2.asp) 

2. Decision Tree (CART). We included a decision tree classifier, using the CART 5.0 

package (http://www.salford-systems.com/cart.php). A cost of 4.0 was assigned to 

misclassified positives. 

Classifier performance was assessed in terms of recall (R) and precision (P), using a test set 

consisting of 30% of the examples, randomly chosen by the classifier. As we previously 

stated, our main objective is to pre-select documents before manual curation, and the 

intervention of a human curator allows the precision requirements to be relaxed, privileging 

higher recall. We set performance targets to R > 75% and P > 40%, which was deemed to be a 

reasonable trade-off, when accounting for the time necessary for a curator to visually discard 

false positives.  

 

8.5 Results and Discussion 

We observed that CART builds its decision tree almost solely on features derived from 

positives, while the ANN classifier also recognizes patterns in negatives. These differences 

account for several of the variations in classifier performances, which are shown in Table 8-1. 
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The most important result is that both types of classifiers exceeded our performance criteria 

when used with both single-word and composite features, without using any special scoring 

functions. Fig. 8-5 shows that ANN classifiers are considerably more precise than CART 

classifiers. However, lowering the precision threshold (and forcing the human curator to 

manually discard more false positives) permits the use of CART classifiers, which increased 

the recall by about 10%. The means that an additional 10% of knowledge is incorporated in 

the database: there is a clear trade-off between human effort and database coverage. CART’s 

lower precision is largely due to its dependence on recognizing positives. On the other hand, 

ANN shows higher precision when using single-word features, many of which were derived 

from negatives. Although systematic reliance on negative features can actually decrease 

performance (e.g. when classifying diverse documents), we found that our corpus was 

representative of allergen-related PubMed abstracts. 

The use of different scoring function showed varied impact, and in some case they 

impacted classification negatively. The COUNT function presented no performance 

advantage over PRESENCE. Interestingly, both POSITION and COLOCATION boosted the 

performance of CART classifiers, but brought no benefit to ANN– probably because these 

functions primarily boost recognition of positives. The high impact of POSITION when using 

single-word features with CART indicates that the presence of certain words in the last third 

of the abstract is a stronger indicator that the presence of positive-related phrases. Overall, the 

performance of ANN classifiers is appropriate to support curation tasks. Although ANN 

performed best without applying composite features, the highest recall figures were obtained 

applying COLOCATION to the CART classifier.This indicates that combinations of 

classifiers could yield even higher performance, a hypothesis that will be explored further. 
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Table 8-1: Classifier performances.  
Results were obtained using composite features (A), and single-word features (B). Recall and 
precision against a random test dataset are shown for each scoring function. The best 
performance figures are circled. 
 

Figure 8-5: Plot comparing classifier performance figures as reported in Table 1.  
ANN classifiers are represented by circles, and CART by squares. Solid markers show use of 
single-word features, and unfilled markers denote composite features. The dotted lines show 
the predetermined performance targets for our classifiers. 
 

Finally, we investigated whether our results were biased by the selection of our pre-
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filtering technique (i.e. selection based on IUIS identifiers), by applying the three top-

performing ANN classifiers to the full set of 26,997 retrieved PubMed abstracts, which 

includes positives that do not use the IUIS standard. We then compared the classifiers’ 

prediction against a list of abstracts that do not use the IUIS nomenclature, previously 

identified during manual curation of the ALLERGEN database. We found that ANN 

classifiers could identify 91% of these abstracts, indicating that pre-filtering bias was not a 

significant issue. 

8.6 Conclusion 

In this chapter, we have designed a biological knowledge mining pipeline for generic and 

reusable text mining in support of biological database curation, and implemented it as a proof-

of-concept on the ABK knowledge aggregation platform. The knowledge flow through the 

pipeline was supported by the ABK metadata management system, which made it possible to 

augment the metadata with user annotations. 

Our results show that our metadata-enabled approach is able to produce the desired level 

of performance using generic data mining algorithms, without any task-specific customization 

of the analysis task. This achievement sets our approach apart from most current text mining 

implementations, which are generally assumed to require domain-specific knowledge to be 

built into the analysis software, and therefore place text mining solutions out of the reach of 

the average biomedical research. The work presented here, on the other hand, shows that 

models based on user-contributed expert knowledge are able to produce substantial time and 

effort savings, providing further evidence that bioinformatics needs to put expert users in 

control of the analysis pipeline. Our knowledge mining framework represents a significant 

contribution in that direction. 
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9. CONCLUSION 

At the onset of this work, we declared the intention to define a direction for "second-

generation" bioinformatics, and to show that knowledge-enabled analysis pipelines can 

discover important new knowledge in large-scale datasets. Our aim was to provide a new 

class of analysis methods, suited for the analysis of the growing quantities of biological data 

made available by advances in biotechnology. We proposed that these methods could 

empower biomedical researchers if presented via biologist-friendly interfaces that hide 

computing complexities. In the following sections, we review the results and contributions 

made in this thesis, and assess them against our original aims. 

9.1 Review of results 

9.1.1 Biological Knowledge Mining 

In Chapter 2, we have described a novel conceptual biological knowledge mining framework 

for describing multi-stage bioinformatics pipelines, and introduced a notation which simply 

but effectively captures knowledge flow through the analysis process. In this framework, 

knowledge is not assumed to emerge from data alone, but as a result of combining data with 

other knowledge (such as descriptive metadata, or analysis results from analysis tasks). Since 

knowledge flow and task composition are key aspects of multi-stage analysis, our framework 

is a contribution towards the design and formalization of large-scale bioinformatics projects.  

9.1.2 Knowledge flow and Knowledge-enabled tools 

The term knowledge flow implies that knowledge is seamlessly transferred from one task to 

the next. This is in stark contrast with most of today's analysis tools, which require specific 

input data formats, and often can only process a single type of data, making the construction 

of analysis pipelines a challenging proposition. In Chapter 4, we have proposed semantic 

technologies as a suitable platform for representing knowledge along the analysis pipeline. 
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We have shown that powerful reasoning and structuring tasks can be easily performed with 

standard tools, and produce real, quantifiable benefits when applied to our influenza A 

dataset. Our results make a supporting case for proposing that analysis tools should be 

enhanced with semantic technologies, so that they can augment knowledge with analysis 

results and expert user input as it flows through the analysis pipeline.  

Although knowledge-enabled analysis tools are not yet available, we demonstrated their 

power by adding relatively simple metadata integration to the AVANA tool, presented in 

Chapter 5, Section 5.3. AVANA is metadata-agnostic, in that it provides a generic interface 

for selecting sequence subsets based on user-provided metadata, rather than demand specific 

data fields. This powerful approach allows users to control at will the partitioning of the data 

during comparative analyses and meta-analyses, leading to rapid and flexible testing of 

hypotheses. In contrast, current analysis tools normally demand the construction of new 

datasets for different analysis tasks. The addition of metadata capabilities to AVANA has 

produced results of considerable biomedical importance, when applied to comparative 

analysis of influenza A proteins (Chapter 6), and to conservation meta-analyses of viral 

proteins (Chapter 7). Therefore, this work has successfully pioneered a new class of tools able 

to leverage on knowledge in complex analysis. 

9.1.3 Rule-based Biological Knowledge Aggregation 

Effective aggregation of data and descriptive metadata is arguably the hardest task in large-

scale analysis projects, because of system and information heterogeneities. The approach 

proposed in Chapter 3 this thesis, and implemented by the ABK platform (Section 3.3) 

combined multiple strategies that address simultaneously all important heterogeneities: 

• System heterogeneity is handled by a mediator architecture, whose wrappers isolate 

users from the technical complexities of delivering queries and gathering results. 

Although mediator architectures are in common use, our approach is unique in that it 

does not demand data structural mapping to be built into the wrappers, a requirement 

of most mediator implementations. This key feature offers two important advantages: 
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it simplifies the development of new wrappers, and it makes the selection of desirable 

source data a choice of the end user, rather than the wrapper developer. 

• Structural heterogeneity is addressed by user-specified structural rules for the 

extraction of source data. This approach is novel, since it does not require end users 

to possess detailed knowledge of the source data structure. Rather, they are presented 

with source records, and specify extraction rules by example, using point-and-click 

gestures. This mechanism was possible thanks to (a) the versatile XML standard, 

which allows structural paths to be specified independently of the actual language 

used by the database, and (b) an innovative user interface component for simplifying 

the visualization of XML documents, which is a further contribution of this work. 

• Syntactic heterogeneity is tackled by text filters, which use regular expressions or 

user-defined dictionaries. User-defined dictionaries enable user control over the 

extraction of values, to suit the content of the source data and the requirements of task 

in hand. As a result, this approach is easily customizable to handle dataset-specific 

values, which would not be feasible if rules were predefined. 

• Semantic heterogeneity is addressed by allowing contributions from documents 

extracted from multiple sources, and from multiple rules within each document, while 

controlling the priority of these rules. Our approach finds values, and highlights value 

conflicts to the user, providing facilities for their resolution. 

These approaches were put to the test on a real-life large-scale aggregation task involving tens 

of thousands of records. The results reported in Chapter 3, Section 3.4, have shown that such 

an aggregation task is extremely challenging, because of high information heterogeneity. 

However, the biologist-friendly ABK tool provided a high degree of automation, making this 

task manageable with limited manpower and short timescales. The curated datasets provided 

the starting point of important discovery tasks, leading to a better understanding of 

immunological and virological aspects of the influenza A virus, whose results were published 

on peer-reviewed international journals.  
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9.1.4 Bioinformatics for applied biomedical research 

Bioinformatics should serve biomedical discovery, and therefore biomedical researchers must 

be empowered to control bioinformatics analyses autonomously. The usability of 

bioinformatics analysis was a common thread throughout this work, and a key perspective 

from which to evaluate the contributions made. This emphasis on usability is in line with 

current thinking by leading bioinformatics tool developers (Kumar et al. 2008), and backed 

by evidence that biomedical researchers favour “biologist-friendly” tools (Kumar and Dudley 

2007). However, no biologist-friendly tools are currently available for user-driven knowledge 

aggregation and metadata management. Although system and information integration issues 

have been intensely studied in computer science, all solutions proposed to date for integrating 

biological systems have required in-depth technical knowledge of the source databases, 

programming knowledge, specialized software and hardware infrastructure, or a combination 

of these. Therefore, our knowledge aggregation method is the first step towards allowing life 

scientists to aggregate data from multiple, heterogeneous data sources without having to 

perform any form of sophisticated data modelling or mapping. 

The tools and methods described in the present thesis have shown that highly complex 

tasks, such as knowledge aggregation, meta-analyses and text mining, can indeed be 

controlled by users who have domain knowledge but no programming expertise. Thus, the 

“biologist-friendly” approaches presented in Chapters 3, 5 and 8 (namely: point-and-click 

specification of structural rules; user-driven rule prioritization; simplified visualization of 

XML documents; simple value conflict management; user-specified value dictionaries; 

simplified metadata value selection) have contributed a “palette” of techniques for increasing 

accessibility of biomedical researchers to the growing volumes of biological data. 

9.1.5 Information-theoretical algorithms 

In Chapter 5, we presented two novel information theoretical sequence analysis methods. 

Information theory was selected because of its power to transform multiple variability aspects 
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into simple metrics, and because of its efficiency of in terms of execution time and memory 

resources. When these methods were built into the AVANA tool, alignments of thousands of 

sequences could be processed in real time, using standard-configuration desktop systems.  

In one method (Chapter 5, Section 5.2), we defined a novel use of mutual information 

(MI) for measuring the association between a mutation and a specific set of sequences. In 

Chapter 6, we have shown that this measure is the most sensitive used to date for identifying 

adaptive mutations in human influenza. The catalogue of 70 characteristic sites produced by 

our analysis contained approximately twice as many sites as previous leading studies. In this 

study, descriptive metadata was used by the AVANA tool to form and compare sequence 

subsets rapidly and accurately. The characteristic sites catalogue has significant impact on our 

understanding of influenza A biology, revealing a new picture of human host adaptation of 

this virus, systemically more complex than previously thought, in which constellations of 

mutually-adapted internal proteins play a major role. Furthermore, the catalogue of adaptive 

mutations was used as additional metadata to extract adaptive signatures of influenza strains, 

a novel visualization of the level of adaptation of the virus. The analysis of adaptive 

signatures suggested insights into the evolution of human-infecting influenza viruses, and 

provided a new tool for the assessment of the host-jumping potential of avian strains. All 

these findings constitute significant contributions to the field of influenza virology, at a time 

when the pandemic potential of this virus is of great concern to the scientific community. The 

importance of these results is a testimony of the power of knowledge-enabled bioinformatics. 

The second method (Chapter 5, Section 5.1) introduced peptide entropy, a novel measure 

of the diversity of short potentially immunogenic peptides, which accounts for combinatorial 

complexity deriving from neighbouring residue mutations. Peptide entropy thus provides an 

immunologically meaningful measure of variability. In Chapter 7, it was shown to be useful 

for identifying conserved potential epitopes for vaccine formulation. The combination of 

large-scale dataset construction using ABK with metadata-enabled peptide conservation meta-

analysis, detailed in Chapter 5, provided a robust pipeline for immunological conservation 

studies, reusable for the analysis of a variety of viruses. The results of conservation analyses 
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by AM Khan and AT Heiny, summarized in Chapter 7, Section 7.3, have shown that both 

influenza A and dengue virus proteomes contain a high number of highly conserved peptides 

distributed across a several viral proteins, several of which are potential T-cell epitopes. 

These results have illustrated the importance and utility, as well as the generality, of the 

knowledge aggregation method and of large-scale information theory analysis. 

9.1.6 Reusable active text mining 

The text mining application discussed in Chapter 8 is different from the other applications 

reported in this thesis, and as such it demonstrated clearly that the principles proposed in this 

thesis are applicable to a broad range of applications, and not limited to the viral sequence 

analysis. The text mining application uses the ABK platform for the query and retrieval, and 

allows text analysis tools to augment metadata with new knowledge about text features, such 

as allergen identifiers. User annotations, entered through a simple graphical tool, are also 

integrated with metadata, and exploited by machine learning algorithms to enhance 

classification performance. The text mining plug-ins described in Chapter 8 are further 

examples of metadata-enabled tools, capable of integrating newly derived knowledge with 

existing knowledge, which use ABK as a platform for managing knowledge flow.  

Although biological text mining is currently an active research area, it is predominantly 

the domain of computer scientists and linguists. Therefore, it is a key achievement of this 

study to make this technology available to biomedical researchers, through an interface that 

they can understand and control, and without embedding domain knowledge into the software 

code. Our results demonstrated that generic, mainstream machine learning software can 

produce substantial curation effort savings, when expert knowledge is channeled into the 

analysis task. 

9.2 Future work 

Work in the field of biological knowledge mining has just begun. This thesis has identified 

key objectives and directions, but the technologies and methods proposed must be considered 
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research prototypes. It is likely that industrial-strength tools capable of supporting multi-stage 

knowledge-enabled bioinformatics analyses will only emerge over the next 5 to 10 years, and 

early implementations may not necessarily be biologist-friendly. Meanwhile, however, the 

tools and methods developed in the course of this thesis will continue to be improved and 

applied to new problems, through the many collaborations initiated during their development. 

In this final section, we review the opportunities for the field and for our work in particular. 

Knowledge flow through the analysis pipeline is arguably the most difficult issue in 

biological knowledge mining at present. Although semantic technologies are strong 

candidates for supporting knowledge flow, there are still a number of obstacles to their 

adoptions, which were discussed in Chapter 4. While the knowledge representation 

infrastructure (XML, RDF and OWL) is ready for broad adoption, much work will be needed 

before an agreement is reached on the set of ontologies to be used for labeling and 

interpreting biological knowledge. However, one advantage of RDF is that tool support can 

be added support without committing to specific ontologies, and further research may find 

generic user-friendly ways of selecting, translating or mapping RDF-encoded knowledge. The 

composition and orchestration of analysis tasks into complex pipelines will require analysis 

tools to be self-descriptive, so that their knowledge inputs and outputs can be automatically 

matched. In this area, progress has been made with Semantic Web Services, which are 

gaining some industry acceptance. However, usability remains a significant stumbling block: 

current solutions are too technically oriented, and likely to alienate life scientists. Innovative 

approaches will be needed if bioinformatics is to be controlled by those who need to benefit 

from it. Michalski’s own vision (Kaufman and Michalski 2005) is that of intelligent agents 

capable of applying reasoning on the outcome of analysis tasks, making decisions on 

subsequent tasks, and thus creating dynamic and optimized pipelines. Although this vision is 

unlikely to be realized in a near future, it encourages us to address important gaps, such as the 

lack of languages for expressing user goals, intentions and expectations in machine-

understandable forms. 

There are several opportunities for extension and improvement of the methods and tools 
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presented in this thesis. These are some of the research areas that have been identified for the 

ABK system: (a) improved dictionary management, based on point-and-click mechanisms 

during source record inspection; (b) automated prioritization of structural rules, based on 

estimated accuracy after manual curation; (c) alternative mechanisms for determining the 

winning value from multiple rules, such as weighted consensus; (d) establishment of multiple 

levels of conflict, determined by the priority of conflicting rules, so that verification can be 

prioritized; (e) improved usability of the spreadsheet interface to facilitate curation; and (f) 

extraction of values from interlinked external documents. Each of these areas presents 

significant challenges, but has the potential to further improve the knowledge aggregation 

process. Similarly, important expansion opportunities have been identified for the AVANA 

software, including: (a) multi-subset comparative analysis; (b) detection of epitope gain/loss 

due to characteristic mutations; (c) combination of mutual information and genetic distance to 

estimate the significance of mutations; (d) comparative diversity analysis of DNA sequences 

and their protein products; and (e) use of adaptive signatures as a tool for genotyping 

sequences. While researching these improvements, we will be applying the current 

implementations to further work on pathogens: current project include serotype-specific 

conservation analysis of dengue, and host adaptation analysis of rabies virus. Finally, a 

project has been initiated to implement the active learning method described in Chapter 8 into 

standalone desktop-based tool. This tool, named Reusable Active Text Mining Annotation 

Tool (RATMAT), will support classification using multiple machine learning algorithms, and 

automated optimization of the classification process. 

Nobel Laureate George Wald said: “Science goes from question to question; big 

questions, and little, tentative answers” (Wald 1967). In this thesis we have asked a “big” 

question: how must bioinformatics change to empower biomedical researchers to effectively 

use the growing volume of biological data for high-value discovery? Put simply, our 

“tentative” answer was: integrate knowledge into the analysis process. Far from removing all 

possible obstacles from the path towards “second-generation” bioinformatics, our 

contributions have focused on specific aspects that we deemed particularly important: 
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knowledge aggregation, knowledge enabled analysis tools, and biologist-friendly 

mechanisms. However, the results we obtained from applying our approaches to real-life 

biomedical research problems are not “tentative” at all: they present clear and unmistakable 

evidence that knowledge-enabled bioinformatics can produce important results that will 

advance biomedical research. We are therefore confident that the approaches we developed in 

this thesis are important first steps in a new direction, with the potential to grow into tools that 

will shape the biomedicine of tomorrow. 
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List of Abbreviations 

The following abbreviations are used in this thesis: 

A2A Avian-to-avian trasmissible (opposed to H2H). 

ABK Aggregator of Biological Knowledge, a software system developed in this 
thesis. 

ANN Artificial Neural Network. 

AVANA Antigenic Variability ANAlyzer, a software system developed in this thesis. 

CDM Common Data Model. 

CPU Central Processing Unit 

CSV Comma-Separated Values a computer encoding format.  

DBMS Database Management Systems. 

DNA Deoxyribonucleic acid. 

DOM Domain Object Model, a component technology of XML. 

EBI European Bioinformatics Institute. 

GIS Geographical Information Systems. 

H2H Human-to-human trasmissible. 

HA Hemagglutinin, an influenza A viral protein 

HIV Human immunodeficiency virus. 

HLA Human Leukocyte Antigen. 

HTML HyperText Markup Language, a computer encoding standard for the Web. 

HTTP HyperText Transfer Protocol, a data protocol for the Web. 

IT Information Technology 

IUIS International Union of Immunological Societies. 

KDD Knowledge Discovery in Data, a branch of computing. 

M1 Matrix Protein 1, an influenza A viral protein 

M2 Matrix Protein 2, an influenza A viral protein 

MI Mutual Information 

MSA Multiple Sequence Alignment. 

NA Neuraminidase, an influenza A viral protein 
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RDBMS Relational Database Management Systems. 
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RNA Ribonucleic acid. 
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SOA Service Oriented Architecture, a computing model. 

SQL Structured Query Language, a language for RDBMS systems. 

SVM Support Vector Machine, a computing algorithm. 
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WHO World Health Organization. 
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Abstract

Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical
requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current
methodologies for the selection process, with dengue virus as a model system. A combination of publicly available bioinformatics algo-
rithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertype human leukocyte
antigen (HLA) alleles. The selected sequences are tested for biological function by their activation of T-cells of HLA transgenic mice and
of pathogen infected subjects. This approach provides an experimental basis for the design of pathogen specific, T-cell epitope-based
vaccines that are targeted to majority of the genetic variants of the pathogen, and are effective for a broad range of differences in human
leukocyte antigens among the global human population.
� 2007 Elsevier Inc. All rights reserved.
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logical hotspots; Altered-ligand effect; Supertypes
1. Introduction

New developments in immunoinformatics and other
computational methodologies, combined with the broad
versatility in the design and synthesis of genetic (DNA)
vaccines, underlay new strategies for the novel design of
antigen-specific, epitope-based vaccines against the many
0008-8749/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.cellimm.2007.02.005
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pathogens that currently have proven refractive to conven-
tional vaccine therapy [1,2]. Early studies of epitope-based
vaccines for human immunodeficiency virus (HIV)1,
malaria and tuberculosis have produced promising results
[3,4], supporting the protective and therapeutic uses of
these vaccines. T-cell epitopes, important for cytolytic
and regulatory responses to pathogens [5–7], are necessary
1 Abbreviations used: HIV, human immunodeficiency virus; HLA,
human leukocyte antigen.
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elements of these vaccines. The rational selection of protein
antigen sequences that function as T-cell epitopes in vac-
cine formulations is therefore crucial for successful applica-
tion of this vaccination strategy [2,8].

This selection of pathogen antigen sequences to be
included in epitope-based vaccines must address several
determinative issues. The goal is to identify relevant T-cell
epitopes, both HLA class I and II, that are both effective
and sufficient in vaccine protection against pathogen chal-
lenge. A major question is the degree of protection that can
be achieved without the concomitant administration of
neutralizing antibody epitopes. Vaccines must also protect
a broad spectrum of human population against as wide a
variety of pathogenic strains as possible; this presents fur-
ther challenges. Many pathogens exhibit high mutation
rates, with selection of new genetic variants that are resis-
tant to an existing immune response to earlier pathogen
subtypes, or may subvert the immune response by the
altered peptide ligand phenomena [9–11]. It is therefore
important to choose epitopes derived from conserved pep-
tide sequences. Also, the extreme polymorphism that char-
acterizes human leukocyte antigens (HLAs) restricts the
proportion of the human population that will respond to
a particular antigen [8,12]. Thus, it is advantageous to
select promiscuous T-cell epitopes that bind to several
alleles of HLA supertypes for maximal population cover-
age [13]. The focus is on a bioinformatics-based approach
as a means to enhance the optimal selection of potential
targets of immune response that can then be validated by
Fig. 1. Steps involved in determining sequence fragments conserved across
approach. (A) The consensus sequence for NS3 protein is derived for each se
residue in the consensus sequence represents the predominant residue at that
consensus sequences of NS3 protein (one from each serotype) are aligned to rev
across the four consensus sequences.
experiments that test the biological function of these anti-
gen sequences in immune-system based assays.

In this report, we describe a combined immunoinfor-
matics and molecular strategy for vaccine development.
Based upon the growing number of bioinformatics tools
and antigen sequences available in public databases [14]
for identifying pathogen peptides, the in silico prediction
of T-cell epitopes can greatly reduce the list of candidate
epitopes. Such a shortlist is then the starting point for
molecular experiments that can validate the vaccine targets
based on the biological function of the selected antigen
sequences.

2. Methodology and results

2.1. Data collection and preparation

Predictions about future mutations are derived from
past evolutionary history. It is therefore important to col-
lect sequences that are as representative as possible of the
genetic variants of the pathogen, over extended periods
of time and broad geographical ranges. Ideally, all avail-
able protein sequences pertaining to the pathogen should
be collected from major public databases, such as the
NCBI Entrez protein database (www.ncbi.nlm.nih.gov/
entrez). Since public databases often contain errors, dis-
crepancies and duplicate entries, a data cleaning process
is needed to correct such anomalies [15]. For example,
annotation errors and discrepancies in 17 dengue virus
the four serotypes for NS3 protein using a consensus-sequence-based
rotype (DV1–4) from their respective multiple sequence alignment. Each
position in the corresponding multiple sequence alignment. (B) The four
eal sequence fragments that are at least nine amino acids long and identical

http://www.ncbi.nlm.nih.gov/entrez
http://www.ncbi.nlm.nih.gov/entrez


Protein Pan-serotype sequence Percentage conservation ( )

46FHTMWHVTRG55

148GLYGNGVVT156

189LTIMDLHPG197

256EIVDLMCHATFT267

284MDEAHFTDP292

296AARGYISTRV305

313IFMTATPPG321

357GKTVWFVPSIK367

383VIQLSRKTFD392

406VVTTDISEMGANF418

491EAKMLLDNI499

537LMRRGDLPVWL547

DV1 DV2
DV3 DV4

10080 90
NS3

Fig. 2. Dengue pan-serotype conserved sequences of the NS3 protein and
their intra-serotype percentage representation (conservation). The amino
acid positions are numbered according to the aligned sequences of dengue
proteins from all four serotypes.
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Fig. 3. Peptide entropy plots for intra- and pan-serotype alignments of
dengue virus (DV) NS3 protein (intra-serotype: DV1, DV2, DV3, DV4;
pan-serotype: DV). The peptide entropy value at each position is based on
the frequency of nonamer peptide variants present at that position in the
protein’s alignment. All 12 identified pan-serotype conserved sequences of
NS3 protein were found to be localized in the pan-serotype conserved
antigenic regions of the protein (m), with entropy values ranging from 0 to
0.4, indicating the high probability that these sequences will remain
conserved in the future.
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records were identified and corrected prior to analysis [16].
While several methods are available, we found the ABK
structural rule-based approach [17] well suited to this type
of task, allowing fully annotated sets of over 40,000 influ-
enza protein sequences to be cleaned and independently
verified in two weeks.

2.2. Identification of conserved sequences

The identification of conserved sequences is an initial
step to overcome pathogen genomic variation that in some
cases is extensive, such as HIV, influenza A viruses and
dengue viruses. Multiple sequence alignments of pathogen
proteins are examined by a consensus-sequence based
approach [18] for the selection of sequences conserved in
the large majority of variants. For pathogens with multiple
groups (clades, serotypes or subtypes), pan-group consen-
sus sequences are obtained by aligning consensus sequences
derived from each of the different groups (Fig. 1), rather
than by analyzing pan-group alignments that combine
sequences from all groups. This prevents over-represented
groups from biasing the derived consensus sequence. Iden-
tification of conserved alignment sites is based on the rep-
resentation (frequency) of the consensus residue among all
sequences in the alignment. Depending on the variability
exhibited by different pathogen groups, the cut-off intra-
group representation for conserved sequences may be set
between 50% and 100%. For example, in our dengue virus
analysis we only selected conserved sites common across
the four serotypes, exhibiting at least 80% representation
in each of the four serotypes (Fig. 2). For immunological
applications, a minimum conserved sequence length of nine
amino acids is required because this represents the typical
length of peptides that bind to HLA molecules [19].

2.3. Entropy-based analysis of conserved sequence variability

Consensus-based methods consider each alignment site
independently. However, vaccine targets are short peptides,
typically 9-mers, whose combinatorial composition can
produce great diversity even when adjacent sites have
highly conserved residues. A more robust method based
on information entropy [20] can measure the degree of var-
iability of peptides of any length, and support inferences on
their evolutionary stability. Entropy, H, representing the
variability of nonamer peptides (9-mers) centered at any
given alignment site, is computed from the probability, pa

of each nonamer peptide a occurring at that site:

H ¼ �
X

a

palog2ðpaÞ

Peptides centered at any given position partially overlap
peptides centered at neighbouring positions. Low entropy
characterizes stable peptides, and an entropy value of 0
indicates a 100% conserved nonamer. Entropy rises with
increasing variability of a site, and is affected both by the
number of variants at that site, and by their respective fre-
quency. The ABK-AVANA antigenic variability analyzer
tool (O.M. et al., manuscript in preparation) can perform
peptide entropy analysis. Fig. 3 shows intra- and pan-sero-



Fig. 4. Molecular location of dengue NS3 pan-serotype conserved sequences (148GLYGNGVVT156 and 189LTIMDLHPG197) on the protein’s 3-D
structure. (A) A major portion of 148GLYGNGVVT156 conserved sequence (in red) is localized in the buried regions of the 3-D structure. (B) Most of the

189LTIMDLHPG197 conserved sequence (in red) is localized in the exposed region of the 3-D structure. This suggests that the conserved sequence

148GLYGNGVVT156 is less likely to mutate compared to 189LTIMDLHPG197, though both share identical level of intra-serotype percentage
representation.

144 A.M. Khan et al. / Cellular Immunology 244 (2006) 141–147
type peptide entropy plots for dengue virus NS3 protein.
The data shows that each of the four serotypes has distinct
patterns of highly conserved and variable regions. Thus,
the pan-serotype low entropy regions were restricted to dis-
crete short regions, which corresponded to the conserved
sequences selected by consensus-sequence method.

2.4. Functional and structural correlates of the conserved

sequences

It is generally recognized that conserved protein
sequences represent important functional domains [21],
for which mutations would be detrimental to the survival
of the pathogen. The functions of conserved sequences
can be elucidated by databases that comprise data on pro-
tein families, domains and functional sites, such as the
Pfam database [22] (www.sanger.ac.uk/Software/Pfam).
Mapping the location of a conserved sequence on the 3-
D structure of the protein may also provide relevant infor-
mation (Fig. 4). Many such 3-D structures are available in
the PDB database [23] (www.pdb.org).

2.5. Distribution of conserved sequences in nature

Potential vaccine targets should be analyzed for specific-
ity to the target pathogen. In vaccine design, epitopes com-
mon to other pathogens could either be useful by inducing
cross-protection, or detrimental by inducing altered-ligand
effect [9–11]. Identified conserved sequences should there-
fore be submitted to a BLAST search against all protein
sequences at NCBI, excluding the target pathogen. If the
sequences are found in other pathogens, the extent of their
representation should be analyzed. For example, many
dengue virus conserved sequences are found widely present
in other Flaviviruses.

2.6. Characterization of candidate promiscuous T-cell

epitopes

2.6.1. Algorithms for prediction of HLA binding peptides
Dedicated algorithms based on distinct prediction mod-

els are used to locate putative promiscuous T-cell epitopes
for HLA class I or II supertypes within conserved
sequences. Computational epitope prediction systems, such
as NetCTL [24] (www.cbs.dtu.dk/services/NetCTL), MUL-
TIPRED [25] (research.i2r.a-star.edu.sg/multipred) and
TEPITOPE [26] have been proven to be effective in accu-
rately mapping T-cell epitopes. When selecting peptides
for experimental validation, putative epitopes predicted by
multiple models are chosen, since consensus predictions
from a combination of models have been shown to be more
accurate than individual model predictions [24,27].

In addition to being promiscuous with respect to multi-
ple alleles of an HLA supertype, some putative T-cell
epitopes exhibit multiple-supertype promiscuity. This addi-
tional form of promiscuity has been observed in several
viruses, such as dengue [28] and HIV [3]. T-cell epitopes spe-
cific to multiple HLA supertypes are advantageous for vac-
cine design because they effectively increase the numbers of
epitopes to which an individual can respond, and provide
much more extensive coverage of the population [3].

2.6.2. Immunological hotspots

Putative promiscuous T-cell epitopes may be localized in
clusters, as reported in studies of HIV-1 [29–32] and the
outer membrane of Chlamydia trachomatis [33], among
others [34,35]. The clusters are also ideal for developing
epitope-based vaccines because they contain multiple pro-
miscuous epitopes. MULTIPRED [25] can be used to pre-
dict immunological hotspots.

2.6.3. HLA distribution analysis

The percentage of individuals in the population pre-
dicted to respond to the putative conserved promiscuous
T-cell epitopes is predicted by the population coverage
analysis tool of the Immune Epitope Database [36]
(www.immuneepitope.org/tools/population). The tool pro-
vides allele frequencies for 78 populations grouped into 11
different geographical areas.

2.7. Probability of altered-ligand effect

The genotypic differences between primary and second-
ary pathogens, or between the vaccine and challenge infec-

http://www.sanger.ac.uk/Software/Pfam
http://www.pdb.org
http://www.cbs.dtu.dk/services/NetCTL
http://www.immuneepitope.org/tools/population
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tion, constitute a critical consideration for protective and,
in some cases, pathologic immunity [11]. Because of intra-
and inter-group sequence variability, most T-cell epitope
sequences may contain single or multiple amino acid differ-
ences within and between the groups. Variants of the puta-
tive promiscuous T-cell epitopes are identified among the
reported sequences in the pathogen groups, and their rep-
resentation within the group and across groups is observed.
Variants of a putative epitope at a given alignment position
comprise all nonamers at that site that possess at least one
amino acid difference. Putative epitopes with no or low var-
iant representation (�100% conserved) are potentially
advantageous in avoiding altered peptide ligands.
2.8. Experimental validation

2.8.1. Survey of reported human T-cell epitopes in the

conserved sequences

Predictions of T-cell epitopes of the conserved sequences
can in many cases be conformed (commonly without iden-
tification of the specific allele, however) by reports of
experimentally confirmed T-cell epitopes. Therefore, search
against both extant literature and the Immune Epitope
Database (www.immuneepitope.org) is performed for
reported human T-cell epitopes (both class I and II) that
fully or partially overlap with identified conserved
Table 1
Reported human T-cell epitopes in dengue virus NS3 pan-serotype
conserved sequences

Protein Pan-serotype sequence Reported T-cell epitopes
Reference(s)

NS3 46FHTMWHVTRG55 [39]

148GLYGNGVVT156 [39,40]

189LTIMDLHPG197 [41]

256EIVDLMCHATFT267 [39,42,43]

313IFMTATPPG321 [39]

357GKTVWFVPSIK367 [44,45]

383VIQLSRKTFD392 [39]

406VVTTDISEMGANF418 [39]

537LMRRGDLPVWL547 [39]

The amino acid positions are numbered according to the aligned sequences
of dengue proteins from all four serotypes.

Table 2
IFN-gamma ELISpot responses of CD8-depleted splenocytes from HLA tran
serotype conserved sequences

Pan-serotype sequence Predicted DR-2, -3, -4 ELISpot

12ELKCGSGIF20 DR-2 DR-2

25VHTWTEQYKFQ35 DR-4 DR-3 an

193AVHADMGYWIES204 DR-2 and -3 None

229HTLWSNGVLES239 DR-3 and -4 DR-3 an

266GPWHLGKLE274 None DR-3 an

294RGPSLRTTT302 None DR-4

325GEDGCWYGMEIRP337 None None

The amino acid positions are numbered according to the aligned sequences o
performed by use of MULTIPRED [25], TEPITOPE [26] and ARB [46]. The E
ELISpot activation peptides are the actual peptides used to test the ELISpot.
sequences. For example, eight reported human NS3 T-cell
epitopes of dengue virus corresponded to the predicted
promiscuous T-cell epitopes in the NS3 conserved
sequences (Table 1).
2.8.2. Experimental measurements to validate predictions

Experimental measurements for validation of computa-
tional predictions are necessary for accurate interpretation
of results. Such measurements currently include HLA bind-
ing assays [37], immunization of HLA transgenic mice and
ELISpot assay for peptide-specific T-cell activation [38]
and of pathogen infected human subjects. We performed
functional assessment of the dengue virus NS1 conserved
sequences: four were predicted to contain HLA-DR epi-
topes and three of these four were confirmed by ELISpot
assay with T-cell activation peptides that closely mimic
the conserved sequences (Table 2). An additional two that
were also ELISpot positive were not predicted to bind to
DR molecules. In summary, of seven conserved NS1
sequences, five contained HLA-DR T-cell epitopes and at
least three are promiscuous for multiple HLA-DR alleles.
The predictive models are helpful in selecting antigen
sequences for additional study of immune responses, espe-
cially for sequences predicted by multiple algorithms.
3. Conclusion

The bioinformatics approach presented in this paper
proved generic as it was successfully applied to several
viruses, such as dengue virus (A.M.K. et al., manuscript
in preparation), influenza (A.T.H. et al., manuscript in
preparation) and HIV (K.N.S et al., manuscript in prepa-
ration). Thus, the approach can be used as a template for
the analysis of other pathogens, providing a novel and
generalized approach to the formulation of epitope-based
vaccines that are effective against broad diversity of patho-
gens and applicable to the human population at large. This
new methodology enables the systematic screening of path-
ogen data which would otherwise be impossible to carry
out experimentally, due to too many pathogen sequences
(high viral diversity) and variations in immune system
among individuals (extensive polymorphism of HLA). It
sgenic mice immunized with peptides overlapping dengue virus NS1 pan-

positive HLA transgenic mouse ELISpot activation peptide

13LKCGSGIFVTNEVHT27

d -4 25VHTWTEQYKFQADSP39

193AVHADMGYWIESQKN207

d -4 229HTLWSNGVLESDMII243

d -4 265AGPWHLGKLELDFNY279

293TRGPSLRTTTVSGKL307

325GEDGCWYGMEIRPIS339

f dengue proteins from all four serotypes. Prediction for DR alleles was
LISpot assays were performed for DR-2, DR-3 and DR-4 transgenic mice.

http://www.immuneepitope.org


146 A.M. Khan et al. / Cellular Immunology 244 (2006) 141–147
therefore significantly reduces the efforts and cost of exper-
imentation, while providing for systematic screening.
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Background. Influenza A viruses generate an extreme genetic diversity through point mutation and gene segment exchange,
resulting in many new strains that emerge from the animal reservoirs, among which was the recent highly pathogenic H5N1
virus. This genetic diversity also endows these viruses with a dynamic adaptability to their habitats, one result being the rapid
selection of genomic variants that resist the immune responses of infected hosts. With the possibility of an influenza A
pandemic, a critical need is a vaccine that will recognize and protect against any influenza A pathogen. One feasible approach
is a vaccine containing conserved immunogenic protein sequences that represent the genotypic diversity of all current and
future avian and human influenza viruses as an alternative to current vaccines that address only the known circulating virus
strains. Methodology/Principal Findings. Methodologies for large-scale analysis of the evolutionary variability of the
influenza A virus proteins recorded in public databases were developed and used to elucidate the amino acid sequence
diversity and conservation of 36,343 sequences of the 11 viral proteins of the recorded virus isolates of the past 30 years.
Technologies were also applied to identify the conserved amino acid sequences from isolates of the past decade, and to
evaluate the predicted human lymphocyte antigen (HLA) supertype-restricted class I and II T-cell epitopes of the conserved
sequences. Fifty-five (55) sequences of 9 or more amino acids of the polymerases (PB2, PB1, and PA), nucleoprotein (NP), and
matrix 1 (M1) proteins were completely conserved in at least 80%, many in 95 to 100%, of the avian and human influenza A
virus isolates despite the marked evolutionary variability of the viruses. Almost all (50) of these conserved sequences
contained putative supertype HLA class I or class II epitopes as predicted by 4 peptide-HLA binding algorithms. Additionally,
data of the Immune Epitope Database (IEDB) include 29 experimentally identified HLA class I and II T-cell epitopes present in
14 of the conserved sequences. Conclusions/Significance. This study of all reported influenza A virus protein sequences,
avian and human, has identified 55 highly conserved sequences, most of which are predicted to have immune relevance as T-
cell epitopes. This is a necessary first step in the design and analysis of a polyepitope, pan-influenza A vaccine. In addition to
the application described herein, these technologies can be applied to other pathogens and to other therapeutic modalities
designed to attack DNA, RNA, or protein sequences critical to pathogen function.

Citation: Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, et al (2007) Evolutionarily Conserved Protein Sequences of Influenza A Viruses, Avian
and Human, as Vaccine Targets. PLoS ONE 2(11): e1190. doi:10.1371/journal.pone.0001190

INTRODUCTION
One of the most important threats to human health is infection by

avian influenza A viruses [1-3]. While global influenza pandemics

have occurred only a few times in the past century, the H1N1

pandemic of 1918–1919 caused 20–50 million deaths and was one

of the most serious disease outbreaks in recorded history. The

recent evolution of the highly lethal avian H5N1 virus, while not

transmissible in humans, has emphasized the continued threat of

influenza viruses on a global scale. It is widely predicted, given the

increased human population and density, that a new pandemic on

the scale of the H1N1 infection would have a devastating effect

world-wide.

The two currently approved vaccines against influenza viruses

are designed specifically to mimic the most recently recognized

circulating forms listed in the 2006–2007 influenza prevention and

control recommendations (http://www.cdc.gov/mmwr/preview/

mmwrhtml/rr5510a1.htm). Both vaccines contain three recently

isolated human strains and are subject to possible annual revision

of their virus composition. The rapid mutation of the viral HA and

NA proteins facilitates the selective replication of new virus strains

not subject to immunity based on previous vaccination and is

a serious obstacle to the effectiveness of these vaccines [4–5].

Alternative vaccine strategies that overcome the problem of rapid

viral mutation, can be applied to global populations, and provide

for easy production are suggested goals [6–8].

The design of a vaccine that guarantees antibody-mediated

immunity to new influenza viruses is not currently feasible because

the structural determinants of B-cell immunity are highly complex

and there is no effective means for predicting the antibody epitope
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structure of target pathogens. Cell-mediated immunity, in

contrast, is based upon the binding of short sequences of antigen

proteins, termed T-cell epitopes, to specialized cellular proteins,

known as human leukocyte antigens (HLAs), class I (HLA I) and

class II (HLA II), that facilitate the presentation of the epitopes to

T-cells of the immune system [9–14]. The chemical and structural

determinants of HLA-peptide binding have been defined for

a number of HLA alleles [15–19]. Of particular relevance for

vaccine design are supertype groupings of similar HLA alleles that

display overlapping peptide-binding capacities. The supertypes

cover a large fraction of the HLA diversity in the human

population and antigen epitopes that bind to the supertypes are

considered prime candidates for vaccine formulations [20–24].

Supertype-binding motifs and quantitative matrices have been

incorporated into several computational prediction algorithms and

it is now possible to identify, in silico, candidate HLA-restricted T-

cell epitopes of protein sequences, allowing large-scale analysis of

potential vaccine targets [24–27]. Moreover, increasing attention

is being given to T-cell-based vaccines because they can be

designed as genetic formulations to include selected regions of the

viral antigens [28–31], and have the many other desirable

properties associated with DNA vaccines in general. Studies have

demonstrated that epitope-specific T cell responses elicited by

immunization with DNA or peptide, and adoptive transfer of

epitope-specific T cell clones, could mediate protective immunity,

in some cases with single CTL epitopes, against various pathogens

in murine experimental models [32–42]. Additionally, recent

studies have shown that immunization of HLA-A2 transgenic mice

against single HLA-A2-restricted T-cell epitopes conferred pro-

tection against lethal infection with influenza A virus, vaccinia

virus, or LCMV [43–45]. Human clinical trials with epitope-based

DNA vaccines against HIV [46] and malaria [47] were found to

be safe and immunogenic for effector T-cell immune responses but

in these first generation studies, failed to achieve the desired

clinical goals in the vaccination of healthy volunteers.

Cellular immune responses are recognized to play a role in

influenza immunity (for reviews see [48–51] and the application of

T-cell epitopes has been extensively studied as an alternative to

vaccines designed for humoral immunity [52–62]. Mouse

immunization with DNA encoding NP elicited CTL, IFN-c and

IL-2 responses, with cross-strain protection against virus challenge,

and evidence from adoptive transfer, indicated that both types of

T cells act as effectors in protective immunity [54–55]. Similarly,

DNA immunization with H1N1 NP or H5N1 NP or M proteins

was found to protect mice against lethal challenge [56–58].

However, some influenza vaccine formulations were not successful

[59–62] and there remain multiple issues for the development of

a human T-cell epitope-based vaccines, including epitope

selection, delivery systems, epitope processing and presentation,

and undoubtedly others.

This study was focused on the large-scale analysis of all

influenza A virus protein sequence data of the past 30 years that is

recorded in public databases. Information entropy and consensus

sequence methodologies were combined to identify sequences of 9

amino acids or longer with a history of complete conservation in

80% or more of both avian and human virus strains. These

conserved sequences were further analyzed to identify targets for

candidate epitope-based T-cell vaccine formulations against all

current and possibly future influenza A pathogens of avian or

human origin.

METHODS

Methodology overview
A general overview of the methodology is depicted in Figure 1.

The details and rationale for the systematic approach adopted by

this study have been previously published [63]. The primary goal

was to identify viral protein sequences that have been conserved

over long periods of time, and to select those sequences that have

the highest potential for HLA-restricted immunogenicity in a broad

spectrum of the human population. The process includes three

major steps: i) extraction of all influenza A protein sequence data,

processing and definition of data sets comprising relevant human

and avian virus groups; ii) entropy analysis of sequence variability

and identification of conserved peptide sequences of 9 amino acids

or longer; and iii) prediction of supertype-restricted, HLA-binding

sequences. Two complementary methods for the identification of

conserved sequences were applied: a statistical entropy-based

method that takes into account the combinatorial diversity of peptide

epitopes and was used to elucidate the variability for different

influenza subtypes, and a consensus method, which is robust against

sampling biases (such as the predominance of certain influenza

subtypes in the dataset), to confirm the conserved sequences. The

conserved sequences were then submitted to several epitope

prediction programs, whose results are combined. Sequences

predicted, and in some cases demonstrated, to contain epitopes to

Figure 1. An overview of the methodology of this study.
doi:10.1371/journal.pone.0001190.g001
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several HLA supertypes are proposed as vaccine epitope candidates

because of their wide human population coverage.

Influenza A virus sequence data collection and

processing
A dataset of influenza A protein sequences annotated with isolate

name, country and year of isolation, host organism, subtype, and

protein name, was derived from all available sequences (as of

September 2006) from the NCBI GenBank and GenPept

databases, including entries mirrored from the UniProt database.

Collection and cleaning of a total of 85,873 records was performed

the Aggregator of Biological Knowledge (ABK) [64], which

applied structural and semantic rules to automate the aggregation

and annotation task. The final set of 36,343 protein sequences was

manually verified by two independent curators. Most human

influenza subtypes were represented by more than 100 sequences

of each viral protein, the count varying depending on the protein.

The H1N2 subtype had a lower number of sequences (ranging

from 22 to 66) because of its recent emergence [65]. Separate

multiple sequence alignments of the 11 proteins were carried out

with MUSCLE 3.6 [66]. Because of the great variability exhibited

by the HA and NA proteins, separate alignments were obtained

for each subtype (16 subtypes for HA and 9 for NA). The subtype

alignments were subsequently merged using the MUSCLE tool, to

obtain the final HA and NA alignments. The introduction of gaps

in the resulting alignments was minimized by merging sequences

based on sequence similarity between subtypes, as reported in

phylogenetic studies [5,67]. The in-house developed Antigenic

Variability Analyser tool (AVANA) was subsequently used to

extract alignments of several subsets of the collected sequences,

based on annotation values, such as viral subtype, host, and year of

isolation.

Information entropy analysis
The diversity of the influenza A virus proteome was studied by

creating subsets of the influenza A protein sequence alignments,

comprising (1) avian sequences, subdivided into 3 decades (1977–

1986, 1987–1996, and 1997–2006); (2) H5N1 viruses, subdivided

into avian and human isolates; (3) circulating human subtypes,

namely H1N1, H3N2, and H1N2. Assuming that each sequence

represents an independent isolate, the information entropy method-

ology [68] was used to measure the variability of influenza A virus

proteomes in the context of overlapping nine-amino acid peptides

spanning the length of each influenza A protein. The rationale of this

selection was the length of peptides that are bound by HLA

molecules for presentation to T-cell receptors, typically from 8–20

amino acids, with nine amino acids being the predominant length of

class I peptides and the core of class II peptides [69]. Applying

Shannon’s formula [68], the nonamer peptide entropy H(x) at any

given position x in the alignment is computed by

H(x)~{
Xn(x)

i~1

p(i,x) log2 p(i,x)

where p(i,x) is the probability of a particular nonamer variant i being

centered at position x. The entropy value increases with n(x), the total

number of variants observed at position x; it is also sensitive to the

relative frequency of the variants, such that it decreases when one

variant is clearly dominant (i.e. the position is conserved). Only

sequences that contain a valid amino acid at position x were used for

the entropy computation, and alignment gaps were ignored.

Although gaps tend to occur in high-diversity regions, proteins that

have a high fraction of gaps have reduced statistical support, yielding

an artificially low entropy value; for this reason, positions where

more than 50% of sequences contained a gap were discarded.

Because of the statistical nature of the entropy measure, both

complete protein sequences and shorter fragments were used in this

computation.

In theory, nonamer entropy values can range from 0,

a completely conserved nonamer sequence in all proteins

analyzed, to 29; in practice, however, the upper bound is very

much lower for alignments of closely related sequences. For finite-

size sets of sequences, entropy computations are affected by the

sequence count in the alignment. The effects of alignment size bias

are especially noticeable for alignments containing fewer than

about 100 sequences, and must be accounted for when making

direct comparisons between sequence alignments of different sizes.

It has been shown that, for an alignment of N sequences,

alignment size bias is proportional to 1/N [70]. This relationship

allows a correction for size bias by applying to each alignment

a statistical adjustment that estimates entropy values for an

infinitely-sized alignment with analogous variant distribution. To

obtain such estimate, the alignment was repeatedly randomly

sampled to create smaller alignments of varying size, whose

entropy was measured. At each alignment position, the entropy of

these subset alignments of size N was plotted against 1/N, using

a linear regression to extrapolate the entropy estimate for NR‘.

The regression’s coefficient of determination (r2) was used as

a goodness-of-fit of the resulting estimate, confirming the validity

of our method (r2.0.9 in most cases). In this study, size bias

correction was applied to all entropy calculations, so that

alignment sequence counts could be ignored in comparisons. All

entropy values reported are therefore infinite-size set estimates,

rather than the values directly computed from the alignments.

Conserved influenza A virus sequences
Collected and cleaned influenza A virus records were grouped

based on (a) subtype: the circulating human subtypes (H1N1,

H3N2, H1N2), H5N1, and other subtypes in avian reservoir; (b)

host: human and avian; and (c) year of isolation. The method gave

equal weight to all groups and obviated the problem of particular

groups being over-represented (such as human H3N2). Six

subgroups were derived: (1) human H1N1, (2) human H3N2, (3)

human H1N2, (4) human H5N1, (5) avian H5N1, and (6) other

avian subtypes. The eleven influenza A proteins of each subgroups

were individually aligned using MUSCLE 3.6 [66]. The AVANA

tool was used to select nonamers with conservation of $80% in

each alignment. The minimum length of a conserved sequence

was nine amino acids and conserved contiguous nonamers were

joined as a single sequence. A consensus sequence (the most

frequent sequence) for each conserved sequence in the alignments

was generated for each of the 6 subgroups. Corresponding

consensus sequences of the subgroups were then aligned and those

sequences that were identical in each of the six subgroups and

present in at least 80% of all recorded viruses were selected as the

highly conserved sequences.

HLA supertype-restricted T-cell epitopes
The in silico prediction of HLA supertype-restricted HLA class I

and class II T-cell epitope sequences in the conserved regions was

performed through four computational systems: NetCTL MUL-

TIPRED, ARB, and TEPITOPE. The NetCTL 1.2 algorithm

[25] (http://www.cbs.dtu.dk/services/NetCTL/) predicts pep-

tides restricted to 12 HLA class I supertypes (A1, A2, A3, A24,

A26, B7, B8, B27, B39, B44, B58 and B62), integrated with
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predictions of HLA binding, proteasomal C-terminal cleavage and

transport efficiency by the transporter associated with antigen

processing (TAP) molecules. HLA binding and proteasomal

cleavage predictions are performed by an artificial neural networks

(ANN) method and TAP transport efficiency is predicted using

a weight matrix method. The parameters used for NetCTL

prediction were: 0.15 weight on C terminal cleavage (default), 0.05

weight on TAP transport efficiency (default), and 0.5 threshold for

HLA supertype binding.

The Average Relative Binding (ARB) matrix binding prediction

method (http://epitope.liai.org:8080/matrix/matrix_prediction.

jsp) [27] is allele specific and estimates a matrix of coefficients

based upon the association of each of the 20 amino acids at each

possible position along the peptide sequence. In this study the data

were selected for representative alleles within studied supertypes

and predictions are shown for 8 HLA class I alleles of the

supertypes A1 (A*0101), A2 (A*0201), A3 (A*0301), A24 (A*2402),

A26 (A*2601), B7 (B*0702), and B44 (B*4402, B*4403).

MULTIPRED (http://research.i2r.a-star.edu.sg/multipred/)

[26] predicts peptides that bind to HLA class I supertypes A2

(A*0201, *0202, *0203, *0204, *0205, *0206, *0207 and *0209)

and A3 (A*0301, *0302, *1101, *1102, *3101, *3301 and

*6801)and class II HLA-DR supertype (DRB1*0101, *0401,

*1501, *0701, *0901, *1302 and DRB5*0101). Hidden Markov

model (HMM) and ANN methods are the predictive engines with

sum thresholds of: A2, 31.33 (ANN; SN = 0.80 and SP = 0.83) and

47.08 (HMM; SN = 0.80 and SP = 0.78); A3, 24.53 (ANN;

SN = 0.90 and SP = 0.95) and 37.58 (HMM; SN = 0.80 and

SP = 0.87); and DR, 23.42 (ANN; SN = 0.90 and SP = 0.92) and

51.08 (HMM; SN = 0.90 and SP = 1.00). TEPITOPE predicts 25

HLA class II (DR) alleles are HLA allele-specific; however,

sequences predicted to bind to $5 alleles were considered

supertypic.

The TEPITOPE software [24] (2000 beta version; obtained by

the courtesy of J. Hammer) utilizes quantitative matrix-based

motifs, obtained from experimental scanning of the binding of P1-

anchored designer peptides to soluble HLA-DR molecules in in-

vitro competition assays, to predict peptides binding to 25 common

HLA-DR alleles (DRB1*0101, *0102, *0301, *0401, *0402,

*0404, *0405, *0410, *0421, *0701, *0801, *0802, *0804, *0806,

*1101, *1104, *1106, *1107, *1305, *1307, *1311, *1321, *1501,

*1502 and DRB5*0101). The parameters for TEPITOPE

predictions were: 5% quantitative threshold and putative determi-

nants with a 10-fold inhibitory residue excluded. Predictions were

performed for all 25 HLA-DR alleles and nonamer core peptides

predicted to bind .5 HLA-DR alleles were selected as supertype-

restricted.

Experimentally identified influenza A T-cell epitopes
T-cell epitope sequences within the conserved sequences were

identified by matching the highly conserved sequences and the

curated influenza epitope sequences obtained from the Immune

Epitope Database and Analysis Resource (www.immuneepitope.

org/) [71,72]. These epitope sequences data were derived from

reported HLA binding assays (IC50#500 nM) or T-cell assays

that included 51Cr release, HLA tetramer staining, and ELISPOT

assays. Only epitope data from unique sequences and containing

HLA restriction information were included.

RESULTS

Avian and human influenza A virus isolates
The collected and cleaned influenza A virus protein sequences

were catalogued in two groups. The recently circulating (1997–

2006) influenza A viruses, both avian and human comprising

25,812 sequences of the 11 influenza proteins, both full- and

partial-length, from human H1N1 (2,466 sequences), H3N2

(12,199), H1N2 (405), H5N1 (1,055), avian H5N1 (4,361), and

all other avian subtypes except H5N1 (5,326) (Table 1). There

were over 100 sequences of each protein of every virus with

exceptions for the most recent human viruses, H1N2 and H5N1,

and the PB1-F2 protein. The second group comprised an

additional 10,531 sequences of human H1N1 and H3N2 isolated

prior to 1997, and all avian viruses isolated from 1977 to 1986,

and 1987 to 1996 (Table 2). The H1N2 sequences before 1997

were excluded because the number of sequences that were

available for analysis was insufficient.

Diversity of influenza A virus proteins
The diversity in the protein sequences of influenza A viruses was

examined by application of the information entropy methodology

to each 9 amino acid sequence of the viral proteins. Data of the

Table 1. Influenza types A virus protein sequences from the past decade (1997–2006).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protein Human H1N1 Human H3N2 Human H1N2 Human H5N1 Avian H5N1a Other Avianb Total

PB2 189 970 33 97 404 401 2,094

PB1 202 984 32 101 400 399 2,118

PB1-F2 183 955 22 47 10 74 1,291

PA 190 970 29 102 402 390 2,083

HA 517 2,032 66 106 657 976 4,354

NP 191 1,012 39 114 420 518 2,294

NA 230 1,245 49 112 577 570 2,783

M1 192 1,024 40 105 458 617 2,436

M2 192 1,045 31 95 289 335 1,987

NS1 190 984 36 95 456 662 2,423

NS2 190 978 28 81 288 384 1,949

Total 2,466 12,199 405 1,055 4,361 5,326 25,812

aAll available sequences in the database, mainly from the past decade (1997–2006).
bOther avian subtypes except H5N1, from 1997 to 2006.
doi:10.1371/journal.pone.0001190.t001..
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past 30 years comprised 9,640 avian influenza A subtype

sequences (1977–1986, 2,543 sequences; 1987–1996, 1,711;

1997–2006, 5,326 (Table 1 and 2, Figure 2). The gross patterns

of protein variability of the avian viruses from each of the past 3

decades were very similar in the context of the relative diversity of

the proteins. The viral surface glycoproteins, HA and NA, showed

extreme sequence diversity, illustrative of the reassortment of the

genome segments among the many subtypes of the avian group A

viruses as well as the rapid rate of point mutation, with multiple

amino acids at virtually every position (entropy .2.0) except at

a single region in HA that has remained remarkably conserved

despite the extreme sequence modification of every other nonamer

of the protein. The PB1-F2, NS1 and NS2, and to a lesser extent

M2, also showed a history of high variability. In contrast, the

polymerase proteins (PB2, PB1, and PA), as well as the NP and

M1, contained many historically highly conserved regions (entropy

,1.0). The overall gradual increase in entropy over the three

decades in many of the protein sequences, most apparent in the

highly conserved sequences, is an indication of the continuing

genetic evolution of the viruses as well as improved screening of

sequence variants. However, these changes do not distort the

overall pattern of highly conserved and highly variable sequences.

H5N1 protein entropy patterns of the 1997 to 2006 isolates

from humans (1,055 sequences) and birds (4,361) were grossly

similar and reflect the high mutational variability in amino acid

composition of proteins of even a single subtype influenza A virus

(Figure 3). Of the eleven known influenza A proteins, only the

short PB1-F2 protein, the product of an alternative ORF of the

PB1 RNA segment [73] showed notable differences when comparing

the diversity profiles of the two groups. There is evidence that PB1-

F2 is involved in the apoptosis of host immune cells, increased viral

virulence in a mouse model, and destruction of alveolar macro-

phages [74], and the limited diversity of this protein in human

isolates may have relevance to H5N1 virulence and pathogenicity. In

the context of the remaining proteins, the similarity of human and

avian H5N1 entropy patterns is consistent with the observations that,

to date, all human H5N1 isolates represent avian to human

transmission from isolated clusters of avian infection. Moreover,

detailed analyses of mutations associated with human-to-human

transmission have shown that all human H5N1 virus isolates have

a predominant avian footprint [75]

Entropy of the protein sequences of each of the three circulating

human viruses isolated between 1918 and 2006 (H1N1, 3,850

sequences; H3N2, 17,092; and H1N2, 414 [including 9 sequences

before 1997]) reflect different patterns of sequence evolution

(Figure 4). The complex protein sequence diversity pattern of the

human H1N1 reflects its mutational evolution from its avian

characteristics at the time of human transmission in 1918 to

a sequence characteristic of human H1N1, with the greatest

evolutionary diversity in the HA, NA, PB1-F2, NS1 and NS2, and

to a lesser extent M2, similar to the diversity of the viruses in the

avian host. There subsequently was further evolution of the

Table 2. Influenza A virus protein sequences from virus
isolates before 1997.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protein Human H1N1 Human H3N2 Other Aviana Total

1977–1986 1987–1996

PB2 98 337 200 133 768

PB1 106 342 200 134 782

PB1-F2 81 301 181 95 658

PA 96 334 190 135 755

HA 266 1,071 326 252 1,915

NP 133 544 220 153 1,050

NA 142 443 242 145 972

M1 122 398 264 163 947

M2 106 389 258 130 883

NS1 123 373 240 198 934

NS2 111 361 222 173 867

Total 1,384 4,893 2,543 1,711 10,531

aOther avian subtypes of influenza A viruses except H5N1.
doi:10.1371/journal.pone.0001190.t002..
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Figure 2. Entropy plots of avian influenza A viruses, excluding H5N1 subtype, for each of three decades: 1977–1986, 1987–1996, 1997–2006
(data as of September 30, 2006).
doi:10.1371/journal.pone.0001190.g002

Influenza A Conservation

PLoS ONE | www.plosone.org 5 November 2007 | Issue 11 | e1190



human subtypes by gene segment exchange, resulting in H2N2 in

1957, H3N2 in 1968, and H1N2 in 1988. The continuing

mutational modification of H1N2 and H3N2 have resulted in

entropy patterns distinctive of the human transmitted influenza A

viruses with a large number of amino acid sequence patterns that

differ from those of the avian to avian counterpart. In contrast, the

most recent H1N2 human subtype that appeared in 1988 (www.

cdc.gov/flu/about/h1n2.htm) continues to exhibit limited evolu-

tionary variability with many identical or highly conserved

sequences regions in all of the few (22 to 66) recorded individual

protein sequences (see Table 1). It is likely that the human H1N2

virus evolved from a very limited, perhaps single reassortment of

the HA gene segment in the case of an individual infected with

both of the human transmitted H1N1 and H3N2 viruses.

The nature of the entropy distribution of the conserved

sequences is not demonstrated in these data as entropy is not

a linear function but is defined both by the number of sites and

frequency of variability. A given entropy value can be related to

a high fraction of different amino acids at one site and limited

variability at other amino acid sites, or to limited variability at

a large number of amino acid sites. This absence of a direct

correlation of entropy to the degree of sequence conservation is

seen in the markedly diverse nonamer entropy values (,0.7 to 1.5)

of the collected sequences with 80% conservation (Figure 5). A

more limited range of entropy values can be associated with

sequence conservation of 90–100%.

We concluded that the PB2, PB1, PA, NP, and M1 proteins of all

recorded influenza A viruses, both avian and human, contain

sequences of low variability and high conservation despite differences

in evolutionary pathway, subtypes, and host species. These

sequences with a history and predicted future of low variability are

prime targets for epitope-based T-cell vaccine formulations.

Amino acid composition of the highly conserved

sequences
A total of 55 peptide sequences, ranging from 9 to 58 amino acids

in length, and containing a total of 965 amino acids, ,21% of the

total proteome (Table 3), were completely conserved in 80%

to100% of the human and avian type A viruses recorded in the

past decade (Figure 6, Table S1). Twenty-six (26) were present in

90% to100% of the viruses. The majority of the conserved

sequences were in the nonstructural (NS) proteins. PB2 was the

most conserved with 23 sequences, comprising 50% of the protein,

conserved in 80% to 100% of the documented viruses (Table 3).

PB1 was also highly conserved (11 sequences, 36%) and the PA,

NP, and M1 proteins contained significant fractions (16% to 27%)

of conserved sequences. HA contained one sequence, FGAIAG-

FIE, that was conserved in all type A viruses despite the extreme

variability of all other HA amino acids (see Figure 2). There were

no sequences in the PB1-F2, NA, M2, NS1 or NS2 proteins that

were completely conserved in at least 80% of the viruses.

Figure 3. Entropy plots of the sequence alignments of recorded H5N1 viruses isolated from avian and human hosts (data as of September 30,
2006).
doi:10.1371/journal.pone.0001190.g003
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The H1N1, H3N2, and H1N2 viruses circulating in humans

had the highest representation of conserved sequences, with almost

all of the 55 sequences present in 95% to 100% of the isolates of

each virus. All but one (22 of 23) of the H1N2 PB2 conserved

sequences were identical in each of the virus isolates. By

comparison, only 62% to 76% of the conserved sequences of the

avian and human H5N1 subgroups, respectively, and only 33% of

the conserved sequences of all other avian subtypes were found in

95–100% of the isolates. The greater proportion of conserved

sequences in the human isolates can be attributed to the more

recent history and limited rate of evolution the influenza viruses

transmitted by humans. This is especially true of the human H1N2

virus, the most recent human influenza A virus.

HLA-restricted T-cell epitopes
The association of conserved sequences and T-cell epitopes was

examined by (a) in silico prediction of HLA-restricted binding

sequences corresponding to supertype alleles by TEPITOPE [24],

NetCTL [25], MULTIPRED [26] and ARB [27] algorithms; and

(b) reported experimental HLA-binding and T-cell assay data.

Most of the peptides representing the conserved sequences (50 of

55) were predicted to contain class I and/or class II binding

sequences (Figure 7). There was no significant difference in the

density of predicted epitopes in the conserved as compared to non-

conserved sequences (data not shown). The detailed listing of

nonamer sequences of the conserved regions and the predicted

supertypes of these specific nonamers in shown as a supplement

(Table S2). For example over 500 HLA class I and over 100 class

II HLA binding sequences of supertype alleles were predicted,

with many of the nonamer sequences predicted to bind to multiple

(2 to 9) individual class I alleles. Similarly, all of the DR binding

predictions were selected as supertypes on the basis of predicted

binding to multiple DR-alleles (individual predictions not shown).

The consistency of class I predictions by the different algorithms

ranged from 31% to 66% in those supertypes (A1, A2, A3, A24,

A26, B7, B44) where more than one computational system was

available. The highest consistency of binding sequences cross-

predicted by more than one system was observed with A2 (57%),

A3 (66%), and DR (56%).

Fourteen (14) of the 55 conserved regions contained a total of 29

reported T-cell epitopes based on T-cell assay and/or HLA-

binding data entered into the Immune Epitope Database and

Analysis Resource (www.immuneepitope.org/) (Figure 8). These

14 experimentally derived sequences included all of the predicted

HLA supertypes of the M1 protein, and 5 of the 11 predicted PB1

supertypes. The majority, 22 of the 29 reported T-cell epitopes,

were present as clusters (hotspots) of 2 or more overlapping or

closely associated reported epitopes; for example, PB1 518-575

contains 5 epitope sequences (9–10 amino acids) between position

537 and 574. Some of the sequences were promiscuous in their

association with multiple supertype alleles, for example, the PA 29-

54 sequence containing the nonamer FMYSDFHFI that was

experimentally shown to bind to at least 5 class I supertype alleles

(A*0201, A*0203, A*0206, A*0202, and A*6802).

Figure 4. Entropy plots of recorded human influenza A subtypes H1N1, H3N2, and H1N2 from 1918–2006 (data as of September 30, 2006).
doi:10.1371/journal.pone.0001190.g004
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All but one of these 29 unique influenza A HLA epitopes

reported in the IEDB and located in the conserved sequences are

class I. This HLA distribution differs markedly from the

corresponding total IEDB reported influenza A epitopes repre-

senting the complete viral proteome, which show a much greater

representation, almost 50%, of class II epitopes: 225 class I and 95

class II. Because the conserved sequences represent ,21% of the

total proteome, if there were a random distribution of T-cell

epitopes in the viral proteins, one could expect about 45 class I and

20 class II epitopes in the conserved sequences, as compared to the

observed 28:1. These data are consistent with the conventional

model that T-cell epitopes derived from the PB2, PB1, PA, NP,

and M1 nonstructural proteins that contain the conserved

sequences would be processed primarily in the cytoplasmic

proteosomal class I pathway.

DISCUSSION
The marked variability of influenza A virus surface proteins, the

major targets of the neutralizing antibodies, have posed a serious

obstacle in the development of effective and long-lasting influenza

vaccines. As a possible solution, we have identified virus protein

sequences that are completely conserved in the majority of all

recorded genomic variants that have evolve from avian reservoirs,

both avian and human. The information entropy methodology for

analysis of protein variability was modified to examine sequences

of 9 amino acids or longer, instead of the more common

application to single residues, as a means to relate the conserved

sequences to the immune function of HLA-restricted peptides.

This use of entropy methodology for the identification of highly

conserved protein sequences ushers a new experimental strategy in

Figure 5. Entropy-sequence conservation relationship, plotted from data in this study (see Figure 2–4). The boxed region indicates area whereby
conservation of $90% correlates to entropy of 0.8 or less.
doi:10.1371/journal.pone.0001190.g005

Table 3. The influenza A virus proteins, their length, the
number of conserved sequences, and the combined length of
the conserved sequences of each protein

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protein
Length
(aa)a

Number of highly
conserved sequencesb

Total length of conserved
sequences (aa)c

PB2 759 23 379 (50%)

PB1 757 11 271 (36%)

PB1-F2 90 0 0

PA 716 7 111 (16%)

HA 568 1 9 (2%)

NP 498 9 126 (25%)

NA 469 0 0

M1 252 4 69 (27%)

M2 97 0 0

NS1 230 0 0

NS2 121 0 0

Total 4,557 55 965 (21%)d

aBased on the complete genome sequences of A/Goose/Guangdong/1/96
(H5N1), Taxonomy ID: 93838.

bNumber of high conserved sequences with sequence and nonamer
conservation of $80% in influenza A virus sequences from 1997 to 2006
(human H1N1, human H3N2, human H1N2, human H5N1, avian H5N1, and
other avian subtypes) in each of the 11 proteins.

cThe sum of highly conserved sequences length in each of the 11 proteins. The
numbers in parentheses indicate the percentage of highly conserved
sequences length over the total protein length.

dThe percentage of total highly conserved sequences length over total
influenza A proteome length.

doi:10.1371/journal.pone.0001190.t003..
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Figure 6. Highly conserved sequences of influenza A viruses in human H1N1, H3N2, H1N2, H5N1, avian H5N1, and other avian subtypes circulating
between 1997 and 2006. A region in the viral proteome is considered as highly conserved when it has identical sequence conservation of at least 9 contiguous
amino acids in 80% or more of the protein sequences of the analyzed dataset. The index of virus colored symbol is as shown at the top of the figure.
doi:10.1371/journal.pone.0001190.g006
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Figure 7. Highly conserved sequences of influenza A viruses and their predicted HLA class I and II supertype-restricted T-cell epitopes by
NetCTL, ARB, TEPITOPE, and MULTIPRED systems. The color symbols corresponding to the prediction systems are as shown at the top of the figure.
Only conserved sequences containing predicted alleles are shown. NetCTL predicts all of the listed class I supertypes; MULTIPRED predictions cover
A2 and A3; and ARB predicts each of the class I except B8, B27, B39, B58, and B62. Predictions of HLA class II supertypes by MULTIPRED AND TEPITOPE
is described in Materials and Methods.
doi:10.1371/journal.pone.0001190.g007
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Figure 8. Highly conserved sequences of influenza A viruses and their associated HLA-restricted T-cell epitope based on data obtained from
IEDB (www.immuneepitope.org/). Only sequences with identified sites are included. The first amino acid of each identified allele is shown in bold.
doi:10.1371/journal.pone.0001190.g008
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the development of vaccines for pathogens with high rates of

mutation. The comprehensive analysis of conserved sequences

may also have other applications to pathogen diagnosis or therapy.

These sequences are known or can be presumed to have critical

roles in viral survival and thus are choice targets for the

development of antiviral agents.

Many reports, particularly with respect to the human

immunodeficiency virus type 1 (HIV-1) have described a strategic

advantage in the use of computational analysis and conserved

sequences for vaccine design [76–83]. Additionally, the analysis of

sequence and immunology databases for the relationship between

amino acid sequences and CTL epitope distributions indicate

a localization of CTL epitopes in conserved regions of proteins [84].

In contrast, the highly variable regions that lacked epitopes showed

evidence of past immune escape with an enrichment of amino acids

that do not serve as C-terminal anchor residues and a paucity of

predicted proteasome processing sites [85–86]. Likewise, the high

genetic variability with continually evolving variants of influenza

viruses favors sequence modifications at all sites that result in

enhanced virus propagation or survival by adaptation to the host cell

immune response. Therefore, a vaccine based upon sequences that

are naturally highly conserved in all influenza A viruses may greatly

restrict the range of possible mutants that could selectively overcome

immune suppression. Such a vaccine would have significant strategic

advantage provided the sequences have immune function capability,

the design of the immunogen is compatible with the requirements for

appropriate immune processing and presentation of the protein, and

the epitopes have sufficient HLA-representation to cover the global

distribution of HLA genotypes. It appears that these requirements

can be satisfied given the large number of predicted supertype MHC

binding sequences in the conserved regions of the influenza proteins,

the experimental reports of T-cell epitopes of the conserved

sequences, and our findings of T-cell responses by HLA transgenic

mice to almost all conserved sequences of West Nile virus

(unpublished data).

A question, however, is why influenza A differs from other

pathogens that elicit immune responses to natural infection or

vaccination that prevent repeated infection. It is evident that the

mechanisms involved in the immune response to influenza A virus

infection are in some manner more complex. A discerning report

[87] addresses the ecological and immunological determinants of

influenza evolution in relation to several of the characteristic

features of influenza infection; i.e., the marked replacement of

existing strains during a pandemic caused by antigenic shift, the

short-lived viral sublineages that characterize influenza A infection

and evolution, and the marked seasonality of influenza incidence.

A proposed model [86] to address these characteristic features of

influenza infection and evolution was that the host immune system

responds in a manner that inhibits immediate re-infection but is

short-lived with a time scale of weeks to months and is nonspecific

to intra- and inter-subtypes. This pattern of short-lived, cross-

reactive immunity points to an initial cytotoxic T-lymphocyte

(CTL) response that does not persist. We attribute this to the

extreme variability of the structural proteins of influenza A viruses,

especially that of the HA and NA proteins. Studies of mice and

model pathogens suggest that the initial response of naive CD8+

T-cells to antigen requires only a brief stimulation with antigen

early in the immune response, in a matter of hours, for the cells to

become activated, divide, and differentiate into short lived effector

cells [88–90]. This initial activation can occur in the absence of T-

cell help, but without the CD4+ response, the quality of the

cytotoxic response to antigen challenge after priming gradually

decreases and fails to respond effectively to secondary encounters

with antigen. Data of several studies indicate that generation of

long term CD8+ T-cell immune memory requires the concurrent

function of professional antigen presenting cells for class II antigen

processing and presentation to CD4+ helper T-cells during the

initial antigen priming period [91–93]. It is likely that the major

sources of T-cell epitopes, both class I and II, early after influenza

infection are those proteins delivered to the immune system by the

virus, including the highly variable structural proteins, HA and

NA. Thus, this initial response, and the memory T-cells elicited by

this response, may lack the highly conserved epitope sequences of

the non-structural proteins that would be synthesized at a later

stage of infection and, as cytoplasmic proteins, function primarily

as endogenous class I epitopes. In this context, it is noteworthy that

of the 29 reported influenza T-cell epitopes found in conserved

sequences, there was only a single class II epitope, further

suggesting that following natural infection, the conserved

sequences elicit primarily cytotoxic T-cell responses.

We suggest that a vaccine composed of conserved influenza A

virus sequences may provide a memory immunity to non-

structural proteins of all viral variants as a means for augmenting

the natural response to the virus structural proteins and to provide

an enhanced and augmented immune response to any newly

emerging avian influenza A pathogen, as well as to the persistence

of mutant forms of human transmitted influenza A. This study

establishes the identity of all the highly conserved sequences of

both human and avian influenza proteomes as the first step in the

selection of these sequences for the synthesis of a supertype,

epitope-based genetic vaccine.

SUPPORTING INFORMATION

Table S1 Highly conserved sequences of influenza A viruses and

their occurrence in each subgroup. a Highly conserved sequences

refer to sequences with >80% conservation in each of the six

groups that were analyzed. b The percentage conservation

(rounded down as whole numbers) was calculated as the number

of sequences that are identical to the highly conserved sequences

divided by the total number of sequences in the same position. The

numbers in square brackets indicate the total number of unique

sequences at the considered position, inclusive of the highly

conserved sequences. c The total number of human H1N1

sequences ranged from 187 to 242. d The total number of human

H3N2 sequences ranged from 969 to 1141. e The total number of

human H1N2 sequences ranged from 24 to 40. f The total number

of human H5N1 sequences ranged from 82 to 106. g The total

number of avian H5N1 sequences ranged from 217 to 648. h The

total number of avian influenza A subtypes sequences ranged from

210 to 633.

Found at: doi:10.1371/journal.pone.0001190.s001 (0.26 MB

DOC)

Table S2 Potential HLA-restricted binding sequences in the

highly conserved sequences of influenza A virus that are predicted

by the NetCTL, ARB, TEPITOPE, and MULTIPRED systems.
a Highly conserved sequences of influenza A viruses (Figure 4) and

nonameric binding sequences predicted by NetCTL, ARB,

TEPITOPE, and/or MULTIPRED algorithms. The numbers in

parentheses indicate the number of nonameric binding sequences

in a highly conserved sequence that was predicted by at least one

algorithm. b Nonamers that bind to HLA class I were predicted

using NetCTL, ARB, and MULTIPRED. NetCTL 1.2 Server

predicts for T cell epitopes that bind to 12 MHC I supertypes, by

integrating MHC binding, proteasomal C terminal cleavage, and

TAP transport efficiency. MULTIPRED predicts for potential

HLA supertype-restricted nonameric sequences that bind to two

HLA class I (A2 and A3) supertypes. Only sequences that were
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predicted by both artificial neural network (ANN) and hidden

markov model (HMM) are included. ARB predicts for T-cell

epitopes that bind to 30 MHC class I alleles and 12 class II alleles.

This study focused on class I alleles that are the most common in

each supertype (according to Lund et al., 2004), namely class I

A*0101 in A1 supertype, A*0201 in A2 supertype, A*0301 in A3

supertype, A*2402 in A24 supertype, A*2601 in A26 supertype,

B*0702 in B7 supertype, B*4402 and B*4403 in B44 supertype.

Only sequences, 9aa for class I that were predicted to bind to these

common alleles are listed. Nonamers that were predicted to bind

in any one of the three systems are listed. c Nonamers that bind to

HLA class II were predicted using TEPITOPE and MULTI-

PRED. TEPITOPE predicts for T cell epitopes that bind to 25

MHC II alleles. Only promiscuous nonameric sequences that were

predicted to bind to at least 5 alleles by TEPITOPE system were

listed and indicated as ‘‘DR’’. MULTIPRED predicts for potential

HLA supertype-restricted nonameric sequences that bind to 8

HLA DRB1 alleles. Only sequences that were predicted by both

artificial neural network (ANN) and hidden markov model (HMM)

are included. Nonamers that were predicted to bind in any one of

the two systems are listed.

Found at: doi:10.1371/journal.pone.0001190.s002 (0.55 MB

DOC)
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Abstract

Background: Genetic variation and rapid evolution are hallmarks of RNA viruses, the result of high mutation rates in RNA
replication and selection of mutants that enhance viral adaptation, including the escape from host immune responses.
Variability is uneven across the genome because mutations resulting in a deleterious effect on viral fitness are restricted.
RNA viruses are thus marked by protein sites permissive to multiple mutations and sites critical to viral structure-function
that are evolutionarily robust and highly conserved. Identification and characterization of the historical dynamics of the
conserved sites have relevance to multiple applications, including potential targets for diagnosis, and prophylactic and
therapeutic purposes.

Methodology/Principal Findings: We describe a large-scale identification and analysis of evolutionarily highly conserved
amino acid sequences of the entire dengue virus (DENV) proteome, with a focus on sequences of 9 amino acids or more,
and thus immune-relevant as potential T-cell determinants. DENV protein sequence data were collected from the NCBI
Entrez protein database in 2005 (9,512 sequences) and again in 2007 (12,404 sequences). Forty-four (44) sequences (pan-
DENV sequences), mainly those of nonstructural proteins and representing ,15% of the DENV polyprotein length, were
identical in 80% or more of all recorded DENV sequences. Of these 44 sequences, 34 (,77%) were present in $95% of
sequences of each DENV type, and 27 (,61%) were conserved in other Flaviviruses. The frequencies of variants of the pan-
DENV sequences were low (0 to ,5%), as compared to variant frequencies of ,60 to ,85% in the non pan-DENV sequence
regions. We further showed that the majority of the conserved sequences were immunologically relevant: 34 contained
numerous predicted human leukocyte antigen (HLA) supertype-restricted peptide sequences, and 26 contained T-cell
determinants identified by studies with HLA-transgenic mice and/or reported to be immunogenic in humans.

Conclusions/Significance: Forty-four (44) pan-DENV sequences of at least 9 amino acids were highly conserved and
identical in 80% or more of all recorded DENV sequences, and the majority were found to be immune-relevant by their
correspondence to known or putative HLA-restricted T-cell determinants. The conservation of these sequences through the
entire recorded DENV genetic history supports their possible value for diagnosis, prophylactic and/or therapeutic
applications. The combination of bioinformatics and experimental approaches applied herein provides a framework for
large-scale and systematic analysis of conserved and variable sequences of other pathogens, in particular, for rapidly
mutating viruses, such as influenza A virus and HIV.
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Introduction

Dengue viruses (DENVs) are mosquito-borne pathogens of the

family Flaviviridae, genus Flavivirus, which are phylogenetically

related to other important human pathogens, such as Yellow fever

(YFV), Japanese encephalitis (JEV), and West Nile (WNV) viruses,

among others. DENVs are enveloped, single-stranded RNA (+)

viruses coding for a polyprotein precursor of approximately 3,400

amino acids, which is cleaved into three structural (capsid, C;

precursor membrane and membrane, prM/M; envelope, E) and

seven nonstructural proteins (NS1, 2a, 2b, 3, 4a, 4b and 5). Viral

replication occurs in the cytoplasm in association with virus-

induced membrane structures and involves the NS proteins. There

are 4 genetically distinct DENV types, referred to as DENV-1 to -

4, with multiple genotypic variants [1,2]. DENVs are transmitted

to humans primarily by Aedes aegypti mosquitoes and cause a wide

range of symptoms from an unapparent or mild dengue fever (DF)

to severe dengue hemorrhagic fever (DHF)/dengue shock
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syndrome (DSS) that may be fatal. It is estimated that more than

100 million people are infected each year, with up to several

hundred thousand DHF/DSS cases [3]. To date, there is no

licensed prophylactic vaccine and no specific therapeutic formu-

lation available.

Adaptive immune responses include cellular responses to short

peptides derived from self and foreign proteins by proteolysis. The

peptides are presented to T-cell receptors (TCRs) by major

histocompatibility complex (MHC) molecules, referred to as

human leukocyte antigen (HLA) molecules in humans. HLA class

I and class II molecules bind and present peptides to CD8 and

CD4 T-cells, respectively, that play a critical role in antigen (Ag)-

specific cytotoxic responses and the induction and maintenance of

Ag-specific memory responses [4–6]. Peptides that are recognized

by the T cells and trigger an immune response are referred to as

T-cell determinants. One problem in developing a tetravalent

DENV vaccine is the viral diversity [7], with rather low intra-type,

but high inter-type variability, resulting in type-specific and type

cross-reactive T-cell determinants [8]. This variability of related

structures gives rise to a large number of variant peptide sequences

with one or more amino acid differences that may function as

alternative determinants, or altered peptide ligands [9], and affect

anti-DENV host immunity [10,11]. There is abundant evidence

that interactions of memory T cells with peptide ligands bearing

amino acid substitutions at TCR contact residues may alter T-cell

activation and effector function [9,12–15]. Even a single amino

acid substitution can impair the function of T cells in a variety of

ways, producing profoundly different phenotypes that range from

modified stimulatory function to complete inhibition [14]. These

findings suggest that infection or immunization with multiple

DENV types, as is the case with some tetravalent vaccines, may

lead to T-cell responses to variant peptides that might be

deleterious. There is also the possibility that the altered-ligand

phenomenon and cross-reactive T-cell responses, referred to as

original antigenic sin, may play a role in DHF/DSS [7,11,16,17].

Although the etiology of DHF and DSS is only partially

understood, this consideration may have profound implications

for the safety and efficiency of candidate vaccines.

The objective of this study was to search for sequence regions

conserved across the majority of DENVs and representing potential

immune targets [18]. Bioinformatics-based approaches were used to

(a) extract all DENV sequences available in public databases, (b)

identify and examine the structure-function relationship and

distribution in nature of sequences that are highly conserved in

the majority of DENVs (referred to as pan-DENV sequences), (c)

analyze the variability of DENV sequences, and (d) examine the

immune relevance of the conserved sequences as potential T-cell

determinants that would be applicable to the majority of the human

population worldwide [19]. We have also correlated the conserved

DENV sequences to previously reported T-cell determinants and

further identified novel candidate T-cell determinants by analyzing

HLA-restricted immune responses in HLA transgenic mice.

Methods

Methodology overview
The bioinformatics approaches and rationale for the method-

ology adopted in this study have been previously described [20]

and are summarized in Figure 1.

Data collection and sequence organization
DENV protein sequences were retrieved from the NCBI Entrez

protein database in December 2005, and again in December 2007

for validation purposes, by use of a taxonomy ID search via the

NCBI taxonomy browser [21]. The taxonomy IDs for DENV-1 to

-4 were 11053, 11060, 11069 and 11070, respectively. The data

for 2007 were processed separately from the 2005 dataset, but

using identical procedures.

The sequences of the DENV proteins C, prM, E, NS1, NS2a,

NS2b, NS3, NS4a, NS4b and NS5 were extracted from the

database records (Dataset S1) by multiple sequence alignments,

and application of the known cleavage sites obtained from the

annotation of the GenPept [21] reference polyprotein sequences of

DENV-1 to -4 (AAF59976, P14340, AAM51537, AAG45437,

respectively), and from the literature [22]. Grouping of the

sequences of each DENV type was performed by BLAST [23]

followed by CLUSTALX 1.83 [24] multiple sequence alignments.

Both full-length and partial sequences of each DENV protein were

used for analysis, and identical sequences were not removed from

datasets, unless otherwise indicated. All multiple sequence align-

ments were manually inspected and corrected for misalignments.

Identification of pan-DENV sequences
The DENV protein sequences were examined by a consensus-

sequence based approach [25] to identify sequence fragments that

were common across the 4 types. The consensus sequences for the

proteins of each type (intra-type consensus) were first derived by

multiple sequence alignments to select the predominant residue at

each amino acid position. The 4 intra-type consensus sequences

for a given protein (one from each type) were then aligned to

reveal sequence fragments identical across each of the types that

were at least 9 amino acids long. This minimum length was chosen

because it represents the binding core length of a majority of HLA-

restricted T-cell determinants [26]. Only sequence fragments that

were identical in at least 80% of the sequences of each of the 4

types were retained for further analyses. Peptides with residue X in

the alignment were ignored from the percentage representation

(i.e. frequency) computation. The 80% intra-type representation

cut-off was chosen because 44 of the 46 sequence fragments that

were common across the 4 DENV types exhibited intra-type

representation of $81%, and those two that did not had

significantly lower representation (,56–67%) in one of the 4 types.

Information entropy analysis of pan-DENV sequences
Shannon information entropy [20,27] was used to study the

diversity of DENV protein sequences within each type (intra-type

Author Summary

Dengue viruses (DENVs) circulate in nature as a population
of 4 distinct types, each with multiple genotypes and
variants, and represent an increasing global public health
issue with no prophylactic and therapeutic formulations
currently available. Viral genomes contain sites that are
evolutionarily stable and therefore highly conserved,
presumably because changes in these sites have delete-
rious effects on viral fitness and survival. The identification
and characterization of the historical dynamics of these
sites in DENV have relevance to several applications such
as diagnosis and drug and vaccine development. In this
study, we have identified sequence fragments that were
conserved across the majority of available DENV sequenc-
es, analyzed their historical dynamics, and evaluated their
relevance as candidate vaccine targets, using various
bioinformatics-based methods and immune assay in
human leukocyte antigen (HLA) transgenic mice. This
approach provides a framework for large-scale and
systematic analysis of other human pathogens.
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diversity) and across all DENVs (pan-DENV diversity) and to

assess the predicted evolutionary stability of the identified pan-

DENV sequences. All entropy analyses were carried out by using

the in-house developed Antigenic Variability Analyser tool

(AVANA) [28]. For immunological applications, the entropy

measure for antigenic sequences was based on nonamer peptides

[26], centered at any given position in the alignment. Applying

Shannon’s formula, the nonamer peptide entropy H(x) at any

given position x in the alignment was computed by

H(x)~{
Xn(x)

i~1

p(i, x) log2 p(i, x)

where p(i, x) is the probability of a particular nonamer peptide i

being centered at position x. The entropy value increases with n(x),

the total number of peptides observed at position x; it is also

sensitive to the relative frequency of the peptides; such that it

decreases when one peptide is clearly dominant (i.e. the position is

conserved). Only sequences that contain a valid amino acid at

position x were used for the entropy computation, and the

alignment gaps were ignored. Although gaps tend to occur in high-

diversity regions, proteins that have a high fraction of gaps have

reduced statistical support, yielding an artificially low entropy

value; for this reason, positions where more than 50% of sequences

contained a gap were discarded. Because of the statistical nature of

the entropy measure, both complete protein and shorter fragment

sequences were used in this computation. The first and last 4

positions in the alignment of each protein were not assigned any

peptide entropy value as they cannot be the center of a nonamer.

In theory, nonamer entropy values can range from 0, for a

completely conserved nonamer peptide in all sequences analyzed,

to 39 (log2 209); in practice, however, the upper bound is very

much lower for alignments of closely related sequences. For

finite-size sets of sequences, entropy computations are affected by

the sequence count in the alignment. For an alignment of N

sequences, alignment size bias is proportional to 1/N [29]. This

relationship allows a correction for size bias by applying to each

alignment a statistical adjustment that estimates entropy values

for an infinitely-sized alignment with analogous peptide distribu-

tion. To obtain such an estimate, the alignment was repeatedly

randomly sampled to create smaller alignments of varying size,

whose entropy was measured. At each alignment position, the

entropy of these subset alignments of size N was plotted against

1/N, using a linear regression to extrapolate the entropy estimate

for NR‘. The regression’s coefficient of determination (r2) was

used as a goodness-of-fit of the resulting estimate. In this study,

size bias correction was applied to all entropy calculations, so

that alignment sequence counts could be ignored in comparisons.

All entropy values reported are therefore infinite-size set

estimates, rather than the values directly computed from the

alignments.

Figure 1. Overview of the bioinformatics and experimental approaches employed for the identification and analysis of the pan-
DENV sequences.
doi:10.1371/journal.pntd.0000272.g001
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Nonamer variant analysis of pan-DENV sequences
Data from information entropy analysis were used to study the

distribution of the representation of nonamer variant peptides in

DENV sequences, within and across the types. For any given

position x in the alignment, the combined representation of all

nonamers, excluding the predominant peptide, was computed.

The predominant nonamer was the peptide that was contained in

the majority of the sequences at the position in the alignment. All

the other peptides that differed by at least one amino acid from the

predominant nonamer were defined as variants.

Functional and structural analyses of pan-DENV
sequences

The known and putative structural and functional properties of

pan-DENV sequences were searched in the literature and by use of

the Prosite [30], via ScanProsite [31], and Pfam [32] databases.

When possible, the sequences were mapped on the three-dimensional

(3-D) structures of available DENV Ag in the PDB database [33] by

use of ICM-Browser version 3.3 (www.molsoft.com). X-ray diffrac-

tion 3-D structures were visualized by use of the Corey, Pauling and

Koltun (cpk) representation in the ICM-Browser.

Identification of pan-DENV sequences common to other
viruses and organisms

Pan-DENV sequences that overlapped at least 9 consecutive

amino acid sequences of other viruses and organisms were

identified by performing BLAST search against viral protein

sequences reported at NCBI (as of July 2007), excluding DENV

sequences (parameters set: limit by Entrez query ‘‘txid10239[Or-

ganism:exp] NOT txid12637[Organism:exp]’’; automatically ad-

just parameters for short sequences option enabled; low-complex-

ity filter disabled; alignments: 20,000), and against protein

sequences of all organisms excluding viruses (parameters set: limit

by Entrez query ‘‘Root[ORGN] NOT Viruses[ORGN] NOT

txid81077[ORGN]’’; automatically adjust parameters for short

sequences option enabled; low-complexity filter disabled; align-

ments: 20,000). The keyword ‘‘NOT txid81077 [ORGN]’’ was

used to remove artificial sequence hits.

Identification of known and predicted pan-DENV HLA
supertype binding sequences

Both literature search and query against the Immune Epitope

Database [34] (www.immuneepitope.org) were performed to detect

reported immunogenic, human T-cell determinants (both class I

and II) of DENV that either fully or partially overlapped with the

pan-DENV sequences. In addition, dedicated algorithms based on

several prediction models were used to identify candidate putative

HLA-binding sequences to multiple HLA class I and II supertype

alleles within the pan-DENV sequences. Putative HLA supertypes

class I-restricted peptides were identified by use of NetCTL [35],

Multipred [36], ARB [37], and class II-restricted peptides by

Multipred and TEPITOPE [38]. Further, the intra-type represen-

tation of the putative T-cell determinants was analyzed.

The NetCTL 1.2 algorithm (www.cbs.dtu.dk/services/

NetCTL/) predicts peptides restricted by 12 HLA class I

supertypes (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58

and B62). The algorithm integrates the predictions of HLA

binding, proteasomal C-terminal cleavage and transport efficiency

by the transporter associated with antigen processing (TAP)

molecules. HLA binding and proteasomal cleavage predictions are

performed by an artificial neural networks (ANN) method, while

TAP transport efficiency is predicted using a weight matrix

method. The parameters used for NetCTL prediction were: 0.15

weight on C terminal cleavage (default), 0.05 weight on TAP

transport efficiency (default), and 0.5 threshold for HLA supertype

binding, which was reported to be optimal (sensitivity (SN), 0.89

and specificity (SP), 0.94) in a large benchmark study containing

more than 800 known class I T-cell determinants [35].

The TEPITOPE software (2000 beta version; courtesy of J.

Hammer) utilizes quantitative matrix-based motifs, obtained from

experimental scanning of the binding of P1-anchored designer

peptides to soluble HLA-DR molecules in in-vitro competition

assays, to predict peptides binding to 25 common HLA-DR alleles

(DRB1*0101, *0102, *0301, *0401, *0402, *0404, *0405, *0410,

*0421, *0701, *0801, *0802, *0804, *0806, *1101, *1104, *1106,

*1107, *1305, *1307, *1311, *1321, *1501, *1502, and

DRB5*0101) [38,39]. The parameters for TEPITOPE predictions

were: 5% quantitative threshold and putative determinants with a

10-fold inhibitory residue included. Nonamer peptides predicted

to bind at least 10 out of the 25 HLA-DR alleles were selected as

putative supertype-restricted determinants.

Multipred (research.i2r.a-star.edu.sg/multipred/) is a computa-

tional system for the prediction of peptides that bind to HLA class I

supertypes A2 and A3 and class II HLA-DR supertype [36]. The

HLA alleles selected to represent these supertypes by Multipred were

as follows: A2 supertype, A*0201, *0202, *0203, *0204, *0205,

*0206, *0207 and *0209; A3 supertype, A*0301, *0302, *1101,

*1102, *3101, *3301 and *6801; DR supertype, DRB1*0101, *0301,

*0401, *0701, *0801, *1101, *1301, and *1501. Hidden Markov

model (HMM) and ANN methods are the predictive models of

Multipred; both have been optimized and show similar performances

[36]. The sum thresholds used for prediction of peptides restricted to

the three HLA supertypes by ANN and HMM methods were: A2,

31.33 (ANN; SN = 0.80 and SP = 0.83) and 47.08 (HMM; SN = 0.80

and SP = 0.78); A3, 24.53 (ANN; SN = 0.90 and SP = 0.95) and

37.58 (HMM; SN = 0.80 and SP = 0.87); and DR, 23.42 (ANN;

SN = 0.90 and SP = 0.92) and 51.08 (HMM; SN = 0.90 and

SP = 1.00). Consensus predictions of the two methods were taken

as final predictions for each HLA supertype.

The ARB matrix method (epitope.liai.org:8080/matrix/matrix_-

prediction.jsp) is based on a matrix of coefficients to predict IC50

values [37]. The HLA class I alleles predicted by ARB were grouped

according to the current supertype classification [19,40] and

supertypes containing more than two alleles were selected, namely

A2 (A*0201, *0202, *0203, *0206, and *6802), A3 (A*0301, *1101,

*3101, *3301 and *6801), B7 (B*0702, A*3501, *5101, *5301, and

*5401), and B44 supertypes (B*4001, *4002, *4402, *4403, and

*4501). The prediction threshold value chosen for optimum

sensitivity and specificity was IC50#1000 nM and nonamer peptides

predicted to bind 3 or more alleles of the supertype were considered

as putative promiscuous HLA supertype-restricted determinants.

ELISpot analysis of HLA-DR restricted determinants in
pan-DENV sequences

All experiments were approved by the Johns Hopkins University

Institutional Animal Care and Use Committee. Murine H-2 class II-

deficient, HLA-DR2 [41], HLA-DR3 [42,43], HLA-DR4 (referred

to as DR4/IE) [44] and HLA-DR4/human CD4 (huCD4) [45,46]

Tg mice were used, bred and maintained in the Johns Hopkins

University School of Medicine Animal Facility. Specific pathogen-

free (SFP) colonies were maintained in a helicobacter-negative mice

facility. The HLA-DR expression of the experimental transgenic

mice was evaluated by flow cytometry.

Mice were immunized subcutaneously at the base of the tail,

twice at two weeks interval, with pools of overlapping peptides

covering the DENV-3 protein (15–17 aa, overlapping by 10–11

aa) (Schafer-N Inc., Copenhagen, Denmark; BEI Resources,

Conserved Sequences of Dengue Viruses
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Manassas, VA). Peptide pools (73–155 peptides per pool)

contained 1 mg of each peptide and were emulsified (1:1) in

TiterMax adjuvant (TiterMax USA, Inc.). An aqueous prepara-

tion of TiterMax (1:1) was used as a negative control. Two weeks

after the second immunization, the mice were sacrificed and HLA-

DR-restricted CD4 T cell reponses were assessed by ex vivo IFN-c
ELISpot assay using CD8-depleted splenocytes. Each target

peptide was tested in duplicate. Spot-forming cell (SFC) counts

were normalized to 106 cells. The results were considered

significant when the average SFC minus two standard deviations

(SD) was greater than the average of the background plus two SD;

and the average values were greater than 10 SFC per 106

splenocytes. The initial screening assays were performed with

peptide matrices [47], followed by assays with the relevant

individual peptides (Nascimento et al., manuscript in preparation).

Results

Dengue virus type protein datasets
A total of 9,512 and 12,404 complete and partial DENV protein

sequences were collected from the NCBI Entrez protein database

of December 2005 and 2007, respectively, representing an

increase of approximately 30% (2892 sequences) in the 24-months

interval (Table 1). The total number of sequences (2007) varied

from 4,011 for DENV-2 to 1,415 for DENV-4 and from 3,845 for

E to 523 for NS4a proteins. Most of the individual protein

sequences originated from DENV strains that were unique

variants with respect to the entire polyprotein, but were identical

to other strains with respect to individual proteins [48].

Conserved pan-DENV sequences
The consensus-sequence approach [20,25] identified a total of 44

pan-DENV sequences of at least 9 amino acids that were present in

$80% of all sequences of each DENV type for both 2005 and 2007

datasets (Figure 2; Table S1). Strikingly, 34 of the 44 (,77%) were

conserved in $95% of all reported DENV sequences. The size of the

pan-DENV sequences ranged from 9 to 22 amino acids, with a

combined size of 514 residues, corresponding approximately to 15%

of the complete DENV polyprotein (,3390 amino acids) (Table 2).

The vast majority (42/44) of the pan-DENV sequences were

localized in the NS proteins, with 17, 12, 7 and 5 sequences found

in NS5, NS3, NS1 and NS4b, respectively, and 1 in the NS4a

protein. Notably, the remaining two pan-DENV sequences were

localized in the E protein. No region of at least 9 amino acids and

conserved in $80% of the sequences of each DENV type was found

in the C, prM, NS2a and NS2b proteins. The largest size of the

combined pan-DENV sequences was in the NS5 protein, represent-

ing a total of 215 amino acid positions covering ,24% of the protein,

followed by NS3, NS1 and NS4b with 122, 74 and 69 amino acid

positions covering ,20, ,21 and ,28% of the corresponding

proteins, respectively. The two pan-DENV sequences in the E

protein had a combined size of only 25 amino acids, corresponding to

,5% of the protein.

In large-scale genomic analyses such as this study, biases may

result from the collection of completely or partially overlapping

redundant sequences, corresponding to identical or highly similar

circulating DENV isolates sequenced by various dengue surveil-

lance programs in different countries. Although to some extent this

redundancy may be accepted as a reflection of the incidence of the

corresponding DENV isolates in nature, we assessed its potential

bias effect by repeating the analysis of conservation after discarding

duplicate sequences from the datasets. The analysis of unique

sequences identified all the pan-DENV sequences that were

identified when including duplicates (Figure 2), except for

NS112–20, NS125–35 and NS5597–616. Therefore, the presence of

duplicates in the DENV datasets did not significantly affect the

results. Although the removal of duplicates does not fully

compensate for biases in the datasets, the removal of highly similar

sequences, which may have been generated from relatively large

sequencing efforts in single outbreaks, was deemed undesirable,

since such arbitrary selection would introduce additional biases.

Evolutionary diversity of DENV protein nonamer peptide
sequences

The evolutionary diversity of each DENV type, and the 4 types

combined, was studied by use of Shannon information entropy

Table 1. Number and distribution of reported DENV protein sequences.

DENV
proteinb No. of sequencesa

DENV-1 DENV-2 DENV-3 DENV-4 Total

2005 2007 2005 2007 2005 2007 2005 2007 2005 2007 Increase

C 194 298 266 311 414 547 117 122 991 1278 287

prM 206 311 353 404 458 590 207 225 1224 1530 306

E 852 1051 1277 1518 716 910 338 366 3183 3845 662

NS1 410 565 640 752 201 308 142 159 1393 1784 391

NS2a 150 238 132 173 90 169 121 125 493 705 212

NS2b 136 224 130 163 104 183 40 44 410 614 204

NS3 98 186 145 178 216 297 30 34 489 695 206

NS4a 91 178 128 162 70 151 28 32 317 523 206

NS4b 89 176 129 163 70 150 109 113 397 602 205

NS5 92 179 151 187 181 267 191 195 615 828 213

Total 2318 3406 3351 4011 2520 3572 1323 1415 9512 12404 2892

aCollected from the NCBI Entrez protein database
bManually processed after multiple sequence alignments and use of the known DENV cleavage sites
doi:10.1371/journal.pntd.0000272.t001
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Figure 2. Pan-DENV sequences and their representations in the 4 DENV types. The 44 pan-DENV sequences of at least 9 amino acids that
were found present in $80% of the recorded sequences of each DENV type are shown. The representation values are shown for the 2005 dataset; see
Table S1 for values of both 2005 and 2007 datasets. Amino acid positions were numbered according to the sequence alignments of the 4 DENV types.
The corresponding proteins are indicated on the left.
doi:10.1371/journal.pntd.0000272.g002
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[27], modified to examine the variability of nonamer peptide

sequences, as described in the Methods. The entropy of the

proteome of the recorded viruses of each type showed numerous

long regions of low entropy (#1), reflecting the relatively high

degree of intra-type sequence conservation, in particular in the

NS3, NS4b and NS5 proteins (Figure 3A–D). Overall, the

average intra-type nonamer entropy values of the individual

protein sequences of DENV-1, -2, -3 and -4 ranged from 0.2 for

the DENV-4 NS4b to 1.0 for DENV-2 prM (Figure S1). Of note,

however, were the marked differences in the relative degree of

entropy of each protein between the 4 DENV types. For example,

NS4b had the least diversity of the proteins of 3 types, but was

replaced in DENV-2 by NS2b, which was the second most

variable in DENV-3. The consequence of the differences in the

sequences of each protein between the 4 types was a marked

increase in the peptide entropy across the DENV 1-4 proteomes

(Figure 3E), with average peptide entropy ranging from 1.6 for

NS3 to 2.6 for NS2a (Figure S1), except for 44 sharply defined

regions of low nonamer entropy (#0.5) where the sequences were

highly conserved in all DENVs (Figure 3E), with no significant

difference between the 2005 and 2007 datasets (Table S2).

Majority of the pan-DENV sequences had entropy values of #0.3,

corresponding to the intra-type representation of $90%. Thus,

the congruent consensus- and entropy-based analyses of the

DENV nonamer peptides revealed highly conserved and evolu-

tionarily stable pan-DENV sequences distributed in several viral

proteins, despite the marked viral diversity defining multiple

DENV types, genotypes and variants [49].

Representation of DENV variant nonamer peptide
sequences

The combined representation of variant peptides that differed by

at least one amino acid from the predominant peptide was also

Table 2. Distribution and size of the pan-DENV sequences.

DENV
protein Size (aa) Pan-DENV sequencesa

No. Sizeb % of proteinc

C 113–115 0 0 0

prM 166 0 0 0

E 493–495 2 25 5

NS1 352 7 74 21

NS2a 218 0 0 0

NS2b 130 0 0 0

NS3 618–619 12 122 20

NS4a 150 1 9 6

NS4b 245–249 5 69 28

NS5 900–904 17 215 24

Total 3387–3398 44 514 15

aSequences of at least 9 amino acids that were represented in $80% of all
DENV sequences of each type

bCombined amino acid size of all pan-DENV sequences in the protein
cPercentage of the combined pan-DENV sequence size over that of the
corresponding protein size

doi:10.1371/journal.pntd.0000272.t002

Figure 3. Shannon entropy of nonamer peptides within and across DENV types sequences. The entropy values were computed from the
alignments of DENV sequences using the Antigenic Variability Analyzer software, as described in the Methods. Values were plotted for DENV-1 (A),
DENV-2 (B), DENV-3 (C), DENV-4 (D), and all 4 DENV types (E) sequences (2005 dataset). Entropy values around protein cleavage sites are non
significant, since the corresponding positions cannot be the center of a nonamer (see Methods). The triangles below indicate the locations of the pan-
DENV sequences in the corresponding proteins.
doi:10.1371/journal.pntd.0000272.g003
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analyzed at each nonamer position. Examples of this analysis for

DENV-3 proteins are shown in Table 3. Nonamers that lack

entropy (zero entropy) have one sequence in all of the recorded virus

isolates, and therefore have no variants. Positions with high entropy

can contain many different variant peptides, each at lesser (or equal)

frequency than the predominant peptide. The combined represen-

tation of variant peptides at each nonamer position across the

proteome of each individual DENV type was generally low,

representing less than 10% of the corresponding sequences, except

for some positions where it was more than 50% (Figure 4A–D).

Notably, the nonamer position with the highest combined variant

representation for each DENV type was found in the nonstructural

proteins and not the structural ones, with representation values

ranging from ,61 to ,78% (DENV-1 NS5, DENV-2 NS5, DENV-

3 NS2a, and DENV-4 NS1 and NS3 proteins). When representations

of variants across all DENVs were calculated, the majority of all

nonamer sites contained variants that together represented ,60–

85% of the total DENV sequences at that site (the highest

representation of ,85% was in the NS1 protein) (Figure 4E). This

was in striking contrast to the 0 to ,5% combined representation of

variants at each nonamer position in the pan-DENV sequences, with

no significant difference between the 2005 and 2007 datasets (Table
S2). The majority of all nonamer sites in the pan-DENV sequences

lacked variant or contained variants that together represented ,1%

of all recorded DENVs. These data further illustrate the extremely

high genetic stability of the 44 pan-DENV sequences, among all

recorded DENV sequences and demonstrate that irrespective of the

high variability between the sequences of the 4 DENV types, the

representation of variants in the pan-DENV sequences was almost

negligible.

Functional and structural correlates of the pan-DENV
sequences

Highly conserved protein sequences are likely to represent critical

sites and domains [50]. A search of the literature and the Prosite and

Pfam databases [30,32] revealed that 27 of the 44 pan-DENV

sequences were associated with biological activities (Table S3); the

functional significance of the remaining 17 pan-DENV sequences

was not known. The two pan-DENV sequences in the E protein

corresponded to the fusion peptide (positions 98 to 110) and

dimerisation domain [51,52]. In NS3, one pan-DENV sequence

corresponded to the peptidase family S7 (Flavivirus serine protease)

domain and comprised the His-51 catalytic residue [53], 3 sequences

corresponded to known/putative Flavivirus Asp-Glu-Ala-Asp/His

(DEAD/H) domain associated with ATP-dependent helicase activity

[54], and two sequences were predicted to be required for cell

attachment and targeting signal for microbodies. In NS5, one pan-

DENV sequence corresponded to the conserved methyltransferase

(MTase) S-adenosyl-L-methionine binding motif I (positons 77–86)

involved in viral RNA capping [55], and two sequences corresponded

to RNA dependent RNA polymerase (RdRp) domain [56].

Furthermore, 6 of the 27 pan-DENV sequences were predicted to

exhibit post-translational modification(s), including N-glycosylation,

protein kinase C and casein kinase II phosphorylation, N-

myristoylation and/or amidation (Table S3).

It is generally recognized that amino acids buried inside proteins

are subject to greater interactions and packing constraints [57]

than those exposed on the outer surface. Although none of the

DENV protein structures in the protein data bank (PDB) [33] was

full-length, 19 of the 44 pan-DENV sequences could be mapped

on the available crystallographic models of the E ectodomain

(Accession No. 1OAN; 394 out of 493–495 residues), NS3 (1BEF

and 2BMF, 181 and 451 out of 618–619 residues, respectively) and

NS5 fragments (1R6A, 295 out of 900–904 residues). Eleven of the

19 pan-DENV sequences were buried, 2 partially exposed and 6

exposed at the surface of the corresponding structures (Figure
S2). However, these results should be considered preliminary until

full-length 3-D structures are available.

Distribution of pan-DENV sequences in nature
Twenty-seven (27) of the 44 pan-DENV sequences overlapped at

least 9 amino acid sequences of as many as 64 other viruses of the

family Flaviviridae, genus Flavivirus (Figure 5). Zika virus shared 22 of

the 27 sequences; Ilheus and Kedougou viruses, 18; and representatives

of some of the significant human pathogens, West Nile, St. Louis

encephalitis, Japanese encephalitis, Yellow fever and Tick-borne encephalitis

viruses, shared from 16 to 9 pan-DENV sequences. Thirteen (13) of

the 27 sequences represented NS5, of which 9 were present in at least

Table 3. Examples of the distribution of variant nonamer peptides in DENV-3.

DENV-3 protein
Nonamer
position

No. of
sequences

Nonamer
peptidesa

Representation of
peptides

Combined % representation
of variantsb

Nonamer
entropyc

E 14 479 DFVEGLSGA 479 (100%) 0 0

NS2a 176 64 LAGISLLPV 25 (39%) 61 2.4

LAGVSLLPV 11 (17%)

LAGVSLLPL 9 (14%)

LAVISLLPV 9 (14%)

LAGISLLPL 6 (9%)

LAGISLFPV 2 (3%)

LAGISLMPV 2 (3%)

NS4a 86 68 SIGLICVVA 39 (57%) 43 1.5

SIGLICVIA 19 (28%)

SIGLICVIV 8 (13%)

SIGLICVAA 2 (3%)

aThe predominant peptide is underlined
bVariants include all the peptides at the position, except the predominant
cEntropy value of all the peptides at the position (predominant peptide included)
doi:10.1371/journal.pntd.0000272.t003
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Figure 4. Percentage representations of variant nonamer peptides within and across DENV types sequences. The percentage of
sequences that contained variant peptides at each nonamer position are shown for DENV-1 (A), DENV-2 (B), DENV-3 (C), DENV-4 (D), and all 4 DENV
types (E) (2005 dataset). Values around protein cleavage sites are non significant (see Figure 3). The triangles below indicate the locations of the pan-
DENV sequences in the corresponding proteins.
doi:10.1371/journal.pntd.0000272.g004

Figure 5. Number of pan-DENV sequences conserved in the different Flaviviruses.
doi:10.1371/journal.pntd.0000272.g005
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27 Flavivirus species; 9 represented NS3, of which two were found in

35 and 23 species; one E sequence was found in 19 species; and the

remaining were in NS1 and NS4b (Figure 6; Table S4). Five (5) of

the 27 were associated with known biological activities (NS579–90

MTase, NS5658–670 RdRp, NS346–55 peptidase S7, NS3284–292

DEAD/H and E97–111 dimerisation/fusion domains). Interestingly,

two sequences, NS3406–418 and NS5597–616, overlapped 9 amino acid

sequences of the cell fusing agent virus polyprotein-like protein from

the mosquito Aedes albopictus [58], and the phage-related tail fibre

protein-like protein from the bacteria Chromohalobacter salexigens DSM

3043, respectively.

The representation of many of the pan-DENV sequences was

high among known sequences of several of the highly studied

Flaviviruses (Table S4): St. Louis encephalitis, West Nile, Japanese

encephalitis, Murray Valley encephalitis, Usutu, Kokobera, Ilheus, Tick-borne

encephalitis, Langat, Omsk hemorrhagic fever, Louping ill, Powassan,

Kyasanur forest disease and Yellow fever viruses. Protein sequence data

for the rest of the Flaviviruses that shared pan-DENV sequences was

limited (,10 sequences) in the public database. Seven of the 27

pan-DENV sequences, NS112–20, NS3256–267, NS3383–392, NS3491–

499, NS4b223–236, NS56–14 and NS5302–310, were present in a few

species with less than 10 reported total sequences (Table S4).

Known and predicted HLA supertype-restricted, pan-
DENV T-cell determinants

Literature survey and database search revealed that 10 of the

pan-DENV sequences (9 in NS3, one in E) overlapped at least 9

amino acids of 15 previously reported DENV T-cell determinants

immunogenic in human, with their HLA restriction, when known,

showed both class II (DR*15, DPw2) and class I (A*11) specificities

(Table 4). Further evaluation of the immune-relevance of the

pan-DENV sequences included a search for candidate putative

promiscuous HLA supertype-restricted T-cell determinants within

these regions by use of several computational algorithms: NetCTL

[35], Multipred [36], ARB [37] and TEPITOPE [38]. Overall, 34

of 44 (,77%) pan-DENV sequences (Figure 7), identified in the

NS5, NS3, NS1, E and NS4a proteins were predicted to contain

100 supertype-restricted binding nonamers (Table S5). The

majority (88/100) of the predicted promiscuous HLA-binding

nonamers were present in $95% of the sequences of each DENV

type (Table S6). Thirty-one (,91%) of the 34 putative supertype

pan-DENV sequences contained HLA-binding nonamers for

multiple HLA supertypes. Clusters (hotspots) of two or more

overlapping HLA-binder nonamer core peptides were present in

27 (,79%) of the 34 putative supertype pan-DENV sequences.

About half (14/27) of these clusters contained three or more

nonamer binders overlapping by 8 amino acids, covering most or

the entire corresponding conserved region.

Immunogenicity of HLA-DR-restricted pan-DENV
sequences in HLA Tg mice

The immunogenicity of the pan-DENV sequences was also

analyzed by assay of peptide-specific HLA-restricted T-cell responses

in murine H-2 class II-deficient, HLA-DR Tg mice expressing 3

prototypic HLA-DR alleles, corresponding to the divergent sub-

groups HLA-DR2 (DRB1*1501), HLA-DR3 (DRB1*0301), and

HLA-DR4 (DRB1*0401). Mice were immunized with pools of

overlapping peptides covering the sequences of the E, NS1, NS3, and

NS5 proteins of DENV-3, and HLA-DR-restricted CD4 T-cell

responses were assessed by IFN-c ELISpot assays using CD8-

depleted splenocytes. Thirty peptides eliciting positive T-cell

responses in the HLA Tg mice contained 9 or more consecutive

amino acids of 22 pan-DENV sequences, that were localized in the

NS5 (11), NS3 (6), NS1 (4), and E proteins (one) (Table 5). Overall, 9,

10 and 18 peptides elicited positive responses in HLA-DR2, -DR3,

and/or -DR4 Tg mice, respectively; 20 corresponded to sequences of

NS5, 10 of NS3, 6 of NS1, and one of E. Furthermore, at least 7 of

the pan-DENV sequences, all localized in the NS5 and NS1 proteins,

contained promiscuous T-cell determinants for multiple HLA-DR

alleles (Table 5). These data, together with those previously reported

(Table 4), showed that a minimum of 26 of the 44 pan-DENV

sequences, distributed predominantly in the NS5 and NS3 proteins,

and to a lesser extent in NS1 and E, contained numerous HLA-

restricted class II and/or class I determinants demonstrated by assays

of T-cell responses in vivo.

Discussion

In this study, we identified and characterized pan-DENV

sequences that were highly conserved in all recorded DENV

Figure 6. Number of Flaviviruses shared by the pan-DENV sequences.
doi:10.1371/journal.pntd.0000272.g006
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isolates. The large number of sequences analyzed (12,404 as of

December 2007), and their wide distribution in terms of

geography and time (1945–2007) (data not shown), offered

information for a broad survey of DENV protein diversity in

nature. The 44 pan-DENV protein sequences of at least 9 aa,

covering 514 aa or about 15% of the complete DENV polyprotein

of ,3390 aa, were conserved in at least 80% of all recorded

DENV sequences, and 34 of the 44 (,77%) were conserved in

$95% of DENV sequences. All the 44 were in the non-structural

proteins except for the two E sequences. These conserved

sequences have shown remarkable stability over the entire history

of DENV sequences deposited in the NCBI Entrez protein

database, as illustrated by their low peptide entropy values and

variant frequencies. In addition, 27 of the pan-DENV sequences

were conserved in 64 other Flaviviruses, as further evidence of

prolonged evolutionary stability within this genus, as previously

discussed [59–61]. Two are also present in the proteomes of the

Aedes albopictus mosquito and the bacteria Chromohalobacter salexigens,

possibly in keeping with recent reports of the genetic recombina-

tion between phyla [58]. It is likely that these pan-DENV

sequences have been under selection pressure to fulfill critical

biological and/or structural properties, some of which have been

identified for the E (fusion peptide, dimerization domain), NS3

(peptidase S7, DEAD/H domains) and NS5 proteins (MTPase,

RdRp domains) [51–56]. Hence, these conserved sequences are

unlikely to significantly diverge in newly emerging DENV isolates

in the future, and represent attractive targets for the development

of specific anti-viral compounds and vaccine candidates.

There also is evidence that many of the conserved sequences are

immunologically relevant. A majority (26/44) contained at least 9

amino acids overlapping with a total of 45 peptides that have been

reported to be immunogenic in humans and/or HLA-DR Tg

mice. In addition, putative T-cell determinants for 12 major HLA

class I supertypes and for class II DR supertype, with broad

application to the immune responses of human population

worldwide, were predicted by computational analysis. Some of

the putative T-cell determinants were predicted to be promiscuous

to multiple HLA supertypes, in addition to multiple alleles of a

given HLA supertype. Such a degree of promiscuity has previously

been observed for DENV [62] and HIV peptides [63], among

others. The existence of conserved T-cell determinants specific for

multiple HLA supertypes further supports their evaluation as

vaccine targets, since they would provide broader population

coverage [63]. Many of the predicted HLA binding nonamers

were localized in clusters, as we have also observed in HLA Tg

mice immunized with WNV proteins and DNA encoding the

SARS coronavirus N protein [64], and has been reported in

studies of human immunodeficiency virus (HIV) type 1 proteins [65–68],

the outer membrane protein of Chlamydia trachomatis [69], and

other antigens [64].

The significant sequence variations between the proteins of the

4 DENV types represent a cardinal issue for the development of a

tetravalent DENV vaccine that provides robust protection against

each DENV type. Subtle amino acid substitutions within T-cell

determinants restricted by a given HLA allomorph, such as in the

event of sequential heterologous infections, or between a vaccine

formulation and a subsequent natural infection [7], can dramat-

ically alter the phenotype of the specific T cells, resulting in a wide

range of effects from agonism to antagonism [9,12–15]. Because of

the extent of intra-type (1 to 21%) and inter-type (14 to 67%)

amino acid variability among DENV isolates [48], many nonamer

T-cell determinants contain single or multiple amino acid

difference(s). When the 4 DENV types were analyzed together, a

majority of the nonamer positions across the full proteome

exhibited variants that together were present in ,60 to ,85% of

all sequences. The frequencies of variant peptides across the 4

DENV types suggest that vaccine strategies incorporating whole

DENV immunogens, such as inactivated and recombinant subunit

Table 4. Reported human T-cell determinants in the pan-DENV sequences.

DENV
protein Pan-DENV sequencea Immunogenic T-cell determinantsb

Sequencec T subset HLA Ag Reference(s)

E 252VLGSQEGAMH261 KKQDVVVLGSQEGAM - - [76]

NS3 46FHTMWHVTRG55 TFHTMWHVTRGAVLM CD4 - [76]

148GLYGNGVVT156 KVVGLYGNGVVTRSG CD4 DR*15 [76]

189LTIMDLHPG197 KRLTIMDLHPGAGKT CD4 - [72]

RKLTIMDLHPGSGKT CD4 - [72]

RKLTIMDLHPGAGKT CD4 - [72]

RNLTIMDLHPGSGKT CD4 - [72]

256EIVDLMCHATFT267 EHTGREIVDLMCHAT CD4 - [76]

EIVDLMCHATFTMRL CD4 - [76]

EIVDLMCHAT CD4 DPw2 [77,78]

284MDEAHFTDP292 LIIMDEAHFTDPASI - - [76]

313IFMTATPPG321 AGIFMTATPPGSRDP - - [76]

357GKTVWFVPSIK367 TVWFVPSIK CD8 A*11 [16]

383VIQLSRKTFD392 KKVIQLSRKTFDSEY - - [76]

406VVTTDISEMGANF418 NDWDFVVTTDISEMG - - [76]

aAmino acid positions numbered according to the sequence alignments of the 4 DENV types
bDashes, not determined
cSequences present in the pan-DENV sequences are underlined
doi:10.1371/journal.pntd.0000272.t004
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vaccines, live attenuated viruses, or chimeric viruses expressing

structural DENV genes, are likely to elicit T-cell responses to

altered peptide ligands. This phenomenon is also likely to occur in

individuals exposed to several Flaviviruses, such as DENV, JEV and

YFV that are co-circulating in regions of Asia, India or South

America, or following vaccination [70].

While the immune correlates of DENV protection remain

poorly documented, there is evidence that both neutralizing

antibody and specific T-cell responses are required [7,71]. The

incorporation of defined HLA-restricted T-cell determinants

within DENV vaccine candidates might improve vaccine efficien-

cy by increasing T-cell help to sustain a robust, long-lived

Figure 7. Candidate putative HLA supertype-restricted, pan-DENV T-cell determinants predicted by computational algorithms.
Amino acid positions of the pan-DENV sequences are numbered according to the sequence alignments of the 4 DENV types; the corresponding DENV
proteins are indicated on the left. Predicted HLA-restricted T-cell determinants were identified using NetCTL, Multipred, ARB and TEPITOPE algorithms
(see Methods).
doi:10.1371/journal.pntd.0000272.g007
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immunity, and possibly through direct cytostatic and cytotoxic

effects on infected cells. For tetravalent formulations, it may be

relevant to focus primarily on sequences that are conserved in all

4 DENV types and to avoid the regions of T-cell immunity that

are highly variable, unless they are strictly type-specific [17,72].

The two pan-DENV E sequences (positions 97–111 and 252–

261) and the exposed domain III of the E antigen (positions 300–

400) [73,74], are also candidate sequences for neutralizing

antibody responses. An additional criterion for the selection of

T-cell targets is the need for determinants with broad HLA

representation, as it has been emphasized in the recognition of

HLA supertypes [18–20]. Further investigations are needed to

validate the immunogenicity of the candidate T-cell determinants

in human subjects, and to identify sequences associated with

deleterious T-cell responses.

The global approach described herein provides a framework and

methodology for large-scale and systematic analysis of conserved

sequences of other pathogens, in particular for rapidly evolving

viruses such as influenza A virus [75] and HIV [63]. These studies

will offer insights into their diversity and evolutionary history,

together with providing critical data for rational vaccine develop-

ment, structure-based design of candidate inhibitory compounds,

and improvement of the current diagnostic methods.

Supporting Information

Figure S1 Average nonamer peptide entropy for each protein of

each DENV type and all the four types combined. The values are

shown for the 2005 dataset.

Found at: doi:10.1371/journal.pntd.0000272.s001 (0.70 MB TIF)

Table 5. Immunogenicity of the pan-DENV sequences in HLA-DR transgenic mice.

DENV protein Pan-DENV sequenceb Ag-specific CD4 T-cell responsesa

Peptide sequences (DENV-3)c IFN-c-SFC/106splenocytes6SDd

DR2 DR3 DR4

E 252VLGSQEGAMH261 PEVVVLGSQEGAMHT - - 88634

NS1 193AVHADMGYWIES204 AVHADMGYWIESQKN - 1761 -

229HTLWSNGVLES239 WPKSHTLWSNGVLES - 12963* -

HTLWSNGVLESDMII - 1316103 3763

266GPWHLGKLE274 HTQTAGPWHLGKLE - 33366 -

294RGPSLRTTT302 TRGPSLRTTTVSGKL - - 1164

NS3 189LTIMDLHPG197 KKRNLTIMDLHPGSG - - 50616

296AARGYISTRV305 ASIAARGYISTRVGM 40614 - -

ARGYISTRVGMGEAA 964 - -

313IFMTATPPG321 EAAAIFMTATPPGTA - - 4746116

IFMTATPPGTADAFP - - 3236287

357GKTVWFVPSIK367 TDFAGKTVWFVPSIK 48615 - -

GKTVWFVPSIKAGND 396614 - -

383VIQLSRKTFD392 KKVIQLSRKTFDTEY - 2163 -

406VVTTDISEMGANF418 FVVTTDISEMGANFK - - 4086104

TDISEMGANFKADRV - 152633 -

NS5 302TWAYHGSYE310 DENPYKTWAYHGSYEVK 126610* - 1465

TWAYHGSYEVKATGSA 161620* - 63617

342AMTDTTPFGQQRVFKEKVDTRT363 MVTQMAMTDTTPFGQQR - - 2860*

450CVYNMMGKREKKLGEFG466 GSCVYNMMGKREKKLGE - - 1362

505SGVEGEGLH513 NSYSGVEGEGLHKLGYI - - 184615

531YADDTAGWDTRIT543 KIPGGAMYADDTAGWDT - - 4663

568IFKLTYQNKVV578 ANAIFKLTYQNKVVKVQ 5776384 - 2469*

597DQRGSGQVGTYGLNTFTNME616 VMDIISRKDQRGSGQVG - 8861 -

658RMAISGDDCVVKP670 VERLKRMAISGDDCVVK - 159624 1666

MAISGDDCVVKPIDDRF - 249639 -

707VPFCSHHFH715 DWQQVPFCSHHFHELIM 3268* 34611 -

765LMYFHRRDLRLA776 MYFHRRDLRLASNAI 75616* - 3369

790PTSRTTWSIHA800 VHWVPTSRTTWSIHAHH - - 8361

SRTTWSIHAHHQWMTTE - - 122646

aAssessed by IFN-c ELISpot assay in HLA-DR2 (DRB1*1501), HLA-DR3 (DRB1*0301) and HLA-DR4 (DRB1*0401) Tg mice immunized with DENV-3 peptides (see Methods)
bAmino acid positions numbered according to the sequence alignments of the 4 DENV types
cSequences present in the pan-DENV sequences are underlined
dSFC, spot-forming cells; SD, standard deviation. Representative results from at least two immunized Tg mice are shown, except when indicated by an asterisk
doi:10.1371/journal.pntd.0000272.t005
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Figure S2 Molecular location of 19 pan-DENV sequences (in red)

on the protein’s 3-D structure. These sequences were mapped on the

available crystallographic models of the E ectodomain (PDB

Accession No. 1OAN; 394 out of 493-495 residues), NS3 (1BEF

and 2BMF, 181 and 451 out of 618-619 residues, respectively) and

NS5 fragments (1R6A, 295 out of 900-904 residues). The major

portions of eleven of the 19 pan-DENV sequences were buried

(NS3-148GLYGNGVVT156, 256EIVDLMCHATFT267,

284MDEAHFTDP292, 296AARGYISTRV305, 313IFMTATPPG321,

357GKTVWFVPSIK367, 406VVTTDISEMGANF418, and

491EAKMLLDNI499; NS5-79DLGCGRGGWSYY90,

141DTLLCDIGESS151 and 209PLSRNSTHEMYW220), 2 were

partially buried/exposed (NS3-46FHTMWHVTRG55 and

537LMRRGDLPVWL547) and the remaining 6 were exposed

(E-97VDRGWGNGCGLFGKG111 and 252VLGSQEGAMH261;

NS3-189LTIMDLHPG197 and 383VIQLSRKTFD392; NS5-6GETL-

GEKWK14 and 104TKGGPGHEEP113) at the surface of the

corresponding structures.

Found at: doi:10.1371/journal.pntd.0000272.s002 (9.65 MB

DOC)

Table S1 The intra-type percentage representation of pan-

DENV sequences.

Found at: doi:10.1371/journal.pntd.0000272.s003 (0.10 MB

DOC)

Table S2 Pan-DENV sequences, entropy and representation of

variants.

Found at: doi:10.1371/journal.pntd.0000272.s004 (0.08 MB

DOC)

Table S3 Functional and structural properties of pan-DENV

sequences.

Found at: doi:10.1371/journal.pntd.0000272.s005 (0.06 MB

DOC)

Table S4 Distribution of pan-DENV sequences in nature.

Found at: doi:10.1371/journal.pntd.0000272.s006 (0.12 MB

DOC)

Table S5 Candidate putative HLA supertype-restricted binding

nonamer peptides in pan-DENV sequences, predicted by

immunoinformatic algorithms.

Found at: doi:10.1371/journal.pntd.0000272.s007 (0.20 MB

DOC)

Table S6 Intra-type representation of candidate putative HLA

supertype-restricted nonamer peptides predicted by immunoinfor-

matics algorithms.

Found at: doi:10.1371/journal.pntd.0000272.s008 (0.22 MB

DOC)

Dataset S1 GI numbers.

Found at: doi:10.1371/journal.pntd.0000272.s009 (0.86 MB XLS)

Alternative Language Abstract S1 Translation of the abstract

into Chinese by Guang Lan Zhang.

Found at: doi:10.1371/journal.pntd.0000272.s010 (0.06 MB PDF)
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