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Summary

Real time expressive communication is important as it provides aspects of the

visual clues that are present in face-to-face interaction but not available in text-

based communications. In this Master thesis report, we propose a new text to

facial expression system (T2FE) which is capable of making real time expressive

communication based on short text.This text is in the form of conversational and

informal text which is used commonly by user of online messaging systems.

This system contains two main components: The first component is text pro-

cessing component. The task of this component is to analyze text-based messages

used in usual online messaging systems to detect the emotional sentences and

specify the type of emotions conveyed by these sentences. Second component is

the animation component and its task is to use detected emotional content to ren-

der relevant facial expressions. These animated facial expressions are presented

on a sample 3D face model as the output of the system.

The proposed system differs from existing T2FE systems by using fuzzy text

classification to enable rendering facial expressions for mixed emotions. To find

out if the rendered results are interesting and useful from the users point of view,

we performed a user study and the results are provided in this report.

In this report, first we study the main works done in the area of text classifi-

cation and facial expression synthesis. Advantages and disadvantages of different

techniques are presented to decide about the most suitable techniques for our

iv



T2FE system. The results of the two main components of this system as well as

a discussion on the results are provided separately in this report. Also the results

of the user study is presented . This user study is conducted to estimate if the

potential users of such system find rendered animations effective and useful.
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Chapter 1

Introduction

1.1 Motivation

One of the interesting challenges in the community of human-computer inter-

action today is how to make computers be more human-like for intelligent user

interfaces.

Emotion, one of the user affect, has been recognized as an important param-

eter for the quality of the daily communications. Given the importance of the

emotions, affective interfaces using the emotion of the human user are gradually

more desirable in intelligent user interfaces such as human-robot interactions.

Not only this is a more natural way for people to interact, but it is also believ-

able and friendly in human-machine interaction. In order for such an affective

user interface to make use of user emotions, the emotional state of the human

user should be recognized or sensed in many ways from diverse modality such as

facial expression, speech, and text. Among them, detecting the emotion within an

utterance in text is essential and important as the first step in the realization of

affective human-computer interfaces using natural language. This stage is defined

as perception step[11]. In this study, we mainly focus on short text for perception

and try to find out emotion conveyed through this kind of text. Although the
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methods provided in this report for perception are applicable to long text, we

do not extend our study to long text perception. This is basically because there

is a high chance of having variety of emotional words from different groups of

emotions in long text (for example having happy and sad emotional words in the

same text). This fact might cause different emotions to neutralize the effect of

each other which leads to get neutral faces as the output of the animation module

which is not exciting for the potential users of this system. Also, using short text

reduce the analysis time which is needed for online communication as the main

application of this T2FE system.

Another important domain in the area of human-computer interaction is gen-

eration step, regarding production of dynamic expressive visual and auditory

behaviors . For this research paper, we narrow the visual behaviors down to

facial expressions and auditory behaviors are not discussed.

In this report, at first we study the techniques widely used to reason about

emotions automatically from short conversational text as well as the methods

used in the computer animation area for expressing emotions on a 3D face. We

investigate the promising techniques and propose a new technique for our text

to facial-expression system. The performance of our system is measured using

machine learning measures.

It is important to note that one of the main characteristics our system is the

ability to show mixed emotions on face and not only the based emotions (we will

cover the definitions of basic and mixed emotions in section 1.3). Also, we present

the results of a user study performed to see if users of such system find watching

an animated face, which is animated using mixed emotions extracted from text

messages, useful and interesting.

As mentioned before, in our proposed system the sentences are analyzed and

the appropriate facial expressions are displayed automatically on a 3D head.

Figure 1.1 demonstrates the general idea of this system and Figure 1.2 shows
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mains components of our T2FE system.

Figure 1.1: The general idea of the system. A chat session between two persons
(A and B) is taking place utilizing T2FE system. Users of the system can watch
the extracted facial-expression animation as well as the original text message.

1.2 Facial Expressions

A facial expression is a visible manifestation of the affective state, cognitive ac-

tivity, intention, personality, and psychopathology of a person [26]. Facial ex-

pressions results from one or more motions or positions of the muscles of the face

and play several roles in communication and can be used to modify the meaning

of what is being said[69].
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Figure 1.2: Main components of our T2FE system.

Facial expression is also useful in controlling conversational flow. This can be

done with simple motions, such as using the direction of eye gaze to determine

who is being addressed.

One sub-category of facial expression which is related to non-verbal communi-

cation is emotional facial expressions which we will discuss more in the following

subsection.

1.2.1 Facial Expression of Emotion

Emotions are linked to facial expressions in some undetermined loose manner [41].

Emotional facial expressions are the facial changes in response to a person internal

emotional states, intentions, or social communications. Intuitively people look

for emotional signs in facial expressions. The face seems to be the most accessible

window into the mechanisms which govern our emotional behaviors [29].

Given their nature and function, facial expressions (in general), and emotional

facial expressions (in particular), play a central role in a communication context.

They are part of non-verbal communication and are strongly connected to daily

communications.
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1.3 Emotion

The most straightforward description of emotions is the use of emotion-denoting

words, or category labels [86]. Human languages have proven to be extremely

powerful in producing labels for emotional states: Lists of emotion-denoting ad-

jectives were compiled that include at least 107 items [86].It can be expected that

not all of these items are equally central. Therefore, for specific research aims, it

seems natural to select a subset fulfilling certain requirements.

In an overview chapter of his book, Robert Plutchik mentions the following ap-

proaches to proposing emotion lists: Evolutionary approaches, neural approaches,

a psychoanalytic approach, an autonomic approach, facial expression approaches,

empirical classification approaches, and developmental approaches [70]. Here, we

just focus on the facial expression approach and divide emotions into two main

categories, basic emotions and mixed emotions for more discussion.

1.3.1 Basic Emotions

There are different views on the relationship between emotions and facial activity.

The most popular one is the basic emotions view. This view assumes that there

is a small set of emotions that can be distinguished discretely from one another

by facial expressions. For example, when people are happy they smile and when

they are angry they frown.

These emotions are expected to be universally found in all humans. In the

area of facial expressions, the most accepted list is based on the work by Ekman

[28].

Ekman devised a list of basic emotions from cross-cultural research and con-

cluded that some emotions were basic or biologically universal to all humans . His

list contains these emotions: Sadness, Happiness, Anger, Fear, Disgust and

Surprise. These basic emotions are widely used for modeling facial expression

of emotions ([36, 96, 59, 8]) and are illustrated in Figure 1.3.
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Some psychologists have differentiated other emotions and their expressions

from those mentioned above. These other emotion or related expressions include

contempt, shame, and startle. In this paper, we use the Ekman set of basic

emotions because his set is widely accepted in the facial animation community.

Figure 1.3: Ekman six classes of emotion: Anger, Happiness, Disgust, Surprise,
Sadness and Fear from left to right.

1.3.2 Mixed Emotions

Although there is a small number of basic emotions, there are many other emo-

tions which humans use to convey their feelings. These emotions are mixed or

derivative states. It means that they occur as combinations, mixtures, or com-

pounds of the primary emotions. Some examples of this cateory are: blend of

happiness and surprise, blend of disgust and anger and blend of happiness and

fear.

Databases of naturally occurring emotions show that humans usually express

low-intensity rather than full blown emotions, and complex, mixed emotions

rather than mere basic emotions downsized to a low intensity [86]. The fact

motivated us to use these category of emotion for animating facial expressions.

For some sample illustrations of these category of emotions please refer to Figure

2.4 or the results of our animation system, Figure5.8.

1.4 Statement of Problem

We propose a new text to facial expression system which is capable of making

real time expressive communication based on short text.This text is in the form
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of conversational and informal text which is used commonly by user of online

messaging systems.

This system contains two main components: The first component is text

processing component. The task of this component is to analyze text-based

messages to detect the emotional sentences and specify the type and intensity

of emotions conveyed by these sentences. Second component is the animation

component and its task is to use detected emotional content to render relevant

facial expressions. Mixed classes of emotions are used in this system to provide

more realistic results for the user of the system.

The rendered facial expressions are animated on a sample 3D face model as

the output of the system.

1.5 Contribution

Existing T2FE systems ([37, 5, 14, 36, 97, 96, 90]) are composed of two main

components: The text processing component, to detect emotions from text, and

the graphic component which uses detected emotions to show relevant facial ex-

pressions on the face. Our studies show that for the graphic part, researchers use

basic classes of emotions and other types of emotions are ignored.

Our proposed T2FE system differs from existing T2FE systems by using fuzzy

text classification to enable rendering facial expressions for mixed emotions. The

user study conducted for this thesis show that most of the users of such systems

find the expressions of mixed classes of emotions a better choice for representing

the emotions in the text.

1.6 Applications

Synthesis of emotional facial expression based on text can be used in many ap-

plications. First of all, such system can add another dimension to understanding

7



on-line text based communications. Although these days technology has enriched

multi-modal communication, still many users prefer text based communication.

Detecting emotion from text and visualizing emotion can help in this aspect.

Secondly, this system can be a main component for development of other af-

fective interfaces in human-computer Interaction. For projects such as embodied

agents or talking heads, conveying emotional facial expressions are even more

important than verbal communication. These projects have important roles in

many different areas such as animation industry, affective tutoring on e-learning

system, virtual reality and web agents.

1.7 Organization of the Paper

Chapter 2 of this thesis covers the literature review and related works. In this

chapter significant works done in the area of text classification and facial ani-

mation systems are explained separately: Section 2.1 explains two well-known

approaches proposed for automatic emotional classification of text in the Nat-

ural Language Processing research community followed by a discussion of the

advantages and disadvantages of two approaches. Section 2.2 explains the main

approaches proposed for rendering emotional facial expressions.

Chapter 3 and chapter 4 explain our experiments of text classification using

two different approaches of text classification. For each experiment, the results

are presented followed by a discussion on the accuracy of the implemented text

classifier.

Chapter 5 explains the animation module of our T2FE system. This chapter

includes explanation of the animation module as well as some frames of rendered

animation for different mixed emotions. These results are followed by a discussion

on the validity and quality of the rendered facial expressions.

Chapter 6 presents a user survey conducted to find out if users find the results

of the implemented system interesting and useful. Finally, chapter 7 concludes

8



this paper with suggestions for the scope of future work and some concluding

remarks.
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Chapter 2

Existing Works

In this chapter, we overview significant existing works in the area of emotional

text classification and facial expression’s animation respectively.

2.1 Emotional Classification Through Text

Emotion classification is related to sentiment classification. The goal of senti-

ment classification is to classify text based on whether it expresses positive or

negative sentiment. The way to express positive or negative sentiment are often

the same as the one to express emotion. However emotion classification differs

from sentiment classification in that the classes are finer and hence it is more

difficult to distinguish between them.

In order to analyze and classify emotion communicated through text, re-

searchers in the area of natural language processing(NLP) proposed a variety of

approaches, methodologies and techniques. In this section we will see methods

of identifying this information in a written text.

Basically, there are two main techniques for sentiment classification: Lexi-

con based techniques(symbolic approach) and machine learning techniques. The

symbolic approach uses manually crafted rules and lexicons [65][64], where the
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machine learning approach uses unsupervised, weakly supervised or fully super-

vised learning to construct a model from a large training corpus [6][89].

2.1.1 Lexicon Based Technique(LBT)

In lexicon based techniques a text is considered as a collection of words without

considering any of the relations between the individual words. The main task

in this technique is to determine the sentiment of every word and combine these

values with some function (such as average or sum). There are different methods

to determine the sentiment of a single word which will discussed briefly in the

following tow subsections.

Using Web Search

Based on Hatzivassiloglou and Wiebe research [39], adjectives are good indicators

of subjective, evaluative sentences. Turney[83] applied this fact to propose a

context-dependent model for finding the emotional orientation of the word. To

clarify this context dependency, we can consider the adjective ”unpredictable”

which may have a negative orientation in an automotive review, in a phrase such

as ”unpredictable steering”, but it could have a positive orientation in a movie

review, in a phrase such as ”unpredictable plot”.

Therefore he used pairs consisting of adjectives combined with nouns and of

adverbs combined with verbs. To calculate the semantic orientation for a pair

Turney used the search engine Altavista. For every combination, he issues two

queries: one query that returns the number of documents that contain the pair

close (defined as ”within 10 words distance”) to the word ”excellent” and one

query that returns the number of documents that contain the pair close to the

word ”poor”. Based on this statistical issue, the pair is marked with positive

or negative label. The main problem here is the classification of text just into

two classes of positive and negative because finer classification requires a lot of
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computational resources.

This idea of using pairs of words, can be formulated using Pointwise Mutual

information (PMI). PMI is a measure of the degree of association between two

terms, and is defined as follow [66]:

PMI(t1, t2) = log
p(t1, t2)

p(t1)× p(t2)
(2.1)

PMI measure is symmetric (PMI(t1, t2) = PMI(t2, t1)). It is equal to zero

if t1 and t2 are independent and can take on both negative and positive values.

In text classification, PMI is often used to evaluate and select features from

text. It measures the amount of information that the value of a feature in a

text (e.g. the presence or absence of a word) gives about the class of the text.

Therefore, higher values of PMI present better candidates for features.

PMI-IR [82] is another measure that uses Information Retrieval to estimate

the probabilities needed for calculating the PMI using search engine hitcounts

from a very large corpus, namely the web. The measure thus becomes as it is

shown in the following equation:

PMI–IR(t1, t2) = log
hitCounts(t1, t2)

hitCounts(t1)× hitCounts(t2)
(2.2)

Using WordNet

Kamps and Marx used WordNet[34] to determine the orientation of a word.

In fact, they went beyond the simple positive-negative orientation, and used the

dimension of appraisal that gives a more fine-grained description of the emotional

content of a word. They developed an automatic method[45] using the lexical

database WordNet to determine the emotional content of a word. Kamps and

Marx defined a distance metric between the words in WordNet, called minimum

path-length (MPL). This distance metric is used to find the emotional weights for
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the words. Only a subset of the words in WordNet can be evaluated using MPL

technique, because for some words defining the connecting path is not possible.

Improving Lexicon Based Techniques

Lexicon based techniques have some important drawbacks mainly because they

do not consider any of the relations between the individual words. They can

often be more advantageous if they consider some relations between the words

in a sentence. Several methods are proposed to fulfill this need. We mention

here briefly Mulder and al.’s article [63], which discusses the successful use of an

affective grammar.

Mulder et al. in their paper [63] proposed a technique that uses affective and

grammar together to overcome the problem of ignoring relations between words

in lexicon based techniques. They noted that simply detecting emotion words

can tell whether a sentence is positive or negative oriented, but does not explain

towards what topic this sentiment is directed. In other words, what is ignored in

lexicon base technique is the relation between attitude and object.

The authors studied how this relation between attitude and object is formal-

ized and combined a lexical and grammatical approach:

• Lexical, because they believe that affect is primarily expressed through

affect words

• Grammatical, because affective meaning is intensified and propagated to-

wards a target through grammatical constructs.

2.1.2 Machine Learning Techniques (MLT)

In supervised method a classifier (e.g. Support Vector Machines (SVM), Naive

Bayes (NB), Maximum Entropy (ME)) is trained on the training data to learn the

sentiment recognition rules in text. By feeding a machine learning algorithm a

large training corpus of affectively annotated texts, it is possible for the system to
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not only learn the affective value of affect keywords as the job done with Lexicon

based techniques, but such a system can also take into account the valence of other

arbitrary keywords (like lexical affinity), punctuation, and word co-occurrence

frequencies [56].

The method that in the literature often yields the highest accuracy uses Sup-

port Vector Machine classifier[83]. The main drawback of these methods is that

they require a labeled corpus to learn the classifiers. This is not always available,

and it takes time to label a corpus of significant size. In the following subsections

we briefly explain some of the most important text classifiers:

Naive Bayes Classifier(NB)

One approach to text classification is to assign to a given document d the class

cls which is determined by cls = arg maxP (c|d). Here, c is any possible class

considered in the classification problem.Based on Bayes rule:

P (c|d) =
P (c)P (d|c)

P (d)
(2.3)

After detecting features (fi’s) from document based on the nature of the problem,

to estimate the term P (c|d), Naive Bayes assumes that fi’s are conditionally

independent given d’s. Therefor the training model will act based on the following

formula.

P (c|d) =
P (c)

∏k
i=1 P (fi|c)ni(d)

P (d)
(2.4)

Naive Bayes classifier simplifies the job by its conditional independence as-

sumption, which clearly does not hold in real-world situations. However, Naive

Bayes-based text categorization still tends to perform surprisingly well [52]. Domin-

gos and Pazzani [25] showed that Naive Bayes is optimal for certain problem

classes with highly dependent features.
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Maximum Entropy

Maximum entropy classification (ME) is another machine learning technique

which has proved effective in a number of natural language processing appli-

cations [12]. ME estimates P (c|d) based on the following formula:

P (c|d) =
1

Z(d)
exp(

∑

i

λi,c × Fi,c(d, c)) (2.5)

Fi,c is a feature/class function for feature fi and class c. The value of

Fi,c1(d, c2) is equal to 1 when ni(d) > 0 (meaning that feature fi exists in docu-

ment d) and c1 = c2. Otherwise it is set to 0.

Z(d) is a normalization function and is used to ensure a proper probability:

Z(d) =
∑

c

exp(
∑

i

λi,c × Fi,c(d, c)) (2.6)

The λi,c s are feature-weight parameters and are the parameters to be esti-

mated. A large λi,c means that fi is considered a strong indicator for class c. The

parameter values are set so as to maximize the entropy of the induced distribution

subject to the constraint that the expected values of the feature/class functions

with respect to the model are equal to their expected values with respect to the

training data: the underlying philosophy is that we should choose the model that

makes the fewest assumptions about the data while still remaining consistent

with it, which makes intuitive sense [66].

Unlike Naive Bayes, ME makes no assumptions about the relationships be-

tween features, and so might potentially performs better when conditional inde-

pendence assumptions are not met.It is shown that some times , but not always,

ME outperforms Naive Bayes at standard text classification [66].

Support Vector Machines

Support vector machines (SVMs) have been shown to be highly effective at tra-

ditional text categorization, generally outperforming NB [43]. They are large-
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margin, rather than probabilistic, classifiers, in contrast to NB and ME.

In the two-category case, the basic idea behind the training procedure is to

find a hyperplane, represented by vector −→w , that not only separates the document

vectors in one class from those in the other, but for which the separation, or

margin, is as large as possible (See Figure 2.1).

Figure 2.1: Linear separating hyperplanes (W , H1 and H2) for SVM classification.
Support vectors are circled.

This search corresponds to a constrained optimization problem. Letting cj ∈
{−1, 1} (corresponding to positive and negative) be the correct class of document
−→
dj , the solution can be written as the following equation:

−→w =
∑

i

γici
−→
di , γi > 0 (2.7)

where the γis are obtained by solving a dual optimization problem. For more

details please refer to Burges tutorial on SVM [18].

Those
−→
dj such that γi is greater than zero are called support vectors, since

they are the only document vectors contributing to −→w . Classification of test

instances consists simply of determining which side of −→w ’s hyperplane they fall

on.

Figure 2.1 is a classic example of a linear classifier, i.e., a classifier that sep-

arates a set of documents into their respective classes with a line. Most classi-

fication tasks, however, are not that simple, and often more complex structures

are needed in order to make an optimal separation. This situation is depicted in
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Figure 2.2.(a). Here, it is clear that a full separation of documents would require

a curve (which is more complex than a line).

Figure 2.2 shows the basic idea behind SVM.. In Figure 2.2.(b) we see the

original documents mapped, i.e., rearranged, using a set of mathematical func-

tions, known as kernels. The process of rearranging the objects is known as

mapping (transformation). Note that in this new setting, the mapped objects

are linearly separable and, thus, instead of constructing the complex curve (left

schematic), all we have to do is to find an optimal line that can separate mapped

documents.

(a) Original space. (b) Mapping of original space to linear-separable space.

Figure 2.2: SVM kernel concept.

There are non-linear extensions to the SVM, but Yang and Liu [92] found the

linear kernel to outperform non-linear kernels in text classification. Hence, we

only present linear SVM.

Multi-classification with SVM

So far, we explained SVM for binary classification but there are more than

two classes in the classification task. We call this a multi-classification problem.

Regarding SVM classifier, the dominating approach for multi-classification is to

reduce the single multiclass problem into multiple binary problems where each of

the problems yields a binary classifier. There are two common methods to build

such binary classifiers:
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1. One-versus-all: In this method each classifier distinguishes between one

of the labels to the rest. Classification of new instances for one-versus-all

case is done by a winner-takes-all strategy, in which the classifier with the

highest output function assigns the class.

2. One-versus-one: In this method each classifier distinguishes between ev-

ery pair of classes.For classification of a new instance, every classifier assigns

the instance to one of the two classes, then the vote for the assigned class

is increased by one vote, and finally the class with most votes determines

the instance classification.

2.1.3 Existing emotional Text Classification Systems

To complete the literature survey on the emotional text classification techniques,

here we present the list of existing systems proposed for affective text classification

(text classification based on the emotional content of the text) as well as the base

techniques used in the systems. This list is shown in Table 2.1.

In a different listing of the existing works on emotional text classification, Ta-

ble 2.2 shows the existing works based on text type(short or long) and the type

of emotions considered in the classification. Based on the importance of conver-

sational text in online communication and this table content, conversational text

is potentially a good area of research.
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System Technique System Technique
[36] LBT [67] ML (SVM,NB,ME)
[62] LBT (PMI) [72] LBT (PMI)
[80] LBT [35] LBT
[61] LBT [90] LBT
[14] LBT [74] LBT
[83] LBT (PMI) [54] ML(SVM)
[37] LBT [79] ML(NB,SVM)
[53] LBT(PMI) [23] ML(NB)
[65] LBT(with Grammer) [7] LBT
[50] ML(ME) [15] LBT
[56] LBT [91] ML(SVM)
[24] ML

Table 2.1: Existing emotional text classification systems and main techniques
used.

TEXT TYPE
Long(# of Sen >15) Short (# of Sen <15)

EMOTION

TYPE
Formal‡ Informal§ Formal Informal

NonDialogue Dialogue NonConv¶ Conv‖

Positive or

Negative

[83],[67],
[13],[15]

[13] - - [40],[61],
[62]

[23]

Ekman

emotions

[53],[54]
,[6]

- [24],[90],
[72],[74]
,[36]

[50],[14]
[35],[37]

[7],[79]
,[56]

[65]

Other

basic

emotions

[80] [91] - - - -

Table 2.2: Existing emotional text classification systems categorized by text type.

‡Formal text does not contain informal words/phrases.This group contains News, News
headlines and articles.

§Informal text contains informal words/phrases or emoticons. This group contains blogs,
film reviews, written conversations and stories.

¶Non conversational.
‖Conversational.
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2.2 Facial Expressions Synthesis

A facial expression is a visible manifestation of the affective state, cognitive ac-

tivity, intention, personality, and psychopathology of a person [26]; it plays an

important non-verbal communicative role in interpersonal relations.

Mehrabian [60] showed that facial expressions of the speaker contributes for 55

percent to the effect of the spoken message, while the verbal part (i.e., spoken

words) of a message contribute only for 7 percent to the effect of the message

as a whole and the vocal part (e.g., voice intonation) contributes for 38 percent.

As a consequence of the information that they carry, facial expressions play an

important role in communications.

Since facial expressions can be a very powerful form of communication, they

should be used in enhanced Human-Machine interfaces . Unfortunately, the syn-

thesis of proper conversational expressions is extremely challenging. One reason

for this is that humans are amazingly good at recognizing facial expressions and

can detect very small differences in both motion and meaning.

A second reason can be found in the subject matter itself: The physical

differences between an expression that is recognizable and one that is not can be

very subtle.

Facial expression generation has attracted many researchers since the early

1970s and many studies are published in this area. To have a more compact

presentation, in this study we only review those papers that are more related and

suited to T2FE systems.

Approaches to facial animation in general can be studied based on the meth-

ods applied to achieve animation: Traditional methods, Sample-based methods,

Parametric methods and Parameter control methods. Traditional methods are

based on image processing algorithms such as image warping and morphing to

synthesis facial movements while sample-based methods aim to generate facial

animation based on a large dataset of animations.
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Parameterized systems assign weighted vertices of the face mesh to every

parameter. During animations, the vertices are displaced according to the pa-

rameter value. Parameter control methods try to adopt a flexible model for shape

and grayscale attributes and animate the face based on the emotion vectors. In

the following subsections, we will describe these methods in more details.

In another categorization, as far as the output is concerned, it could be a 2D

image [57, 71, 84, 97] or a 3D surface model [68, 69, 95].

2.2.1 Traditional Methods

The traditional method of generating facial expressions is geometric warping-

based approaches which were proposed by Aizawa et al [4]. This method can

be used to animate 2D image or 3D wire-frame face model. In this method, the

parameters of face animation are extracted from facial expression image set first,

and then mapped to a new person’s face by using geometry-controlled image

warping [10, 55].

The main drawback of this approach is that it can only capture the facial fea-

ture’s geometric changes, completely ignore their illumination variations. Some

results generated using this approach are shown in Figure 2.3.

(a) Wire frame over the
source face.

(b) Wire frame over the des-
tination face.

(c) The warped image with
interpolated lines and wire
frame.

Figure 2.3: An example of traditional facial animation using warping techniques.
Results taken from [10]
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2.2.2 Sample-based Methods

In order to generate photo-realistic animation, many researchers have proposed

sample-based methods [69, 33, 16, 78]. In this kind of approaches, a large amount

of sample images are collected and stored at the training process, and then used

to synthesize expression images by using editing and morphing methods. For

example, Pighin et al. in [69] used a combination of several photos to generate

expression images. In their system, user can interact with computer to design the

expression he/she wants. Based on the input, the system can use different weight

to mix the training samples for synthesizing different expressions. Although the

sample-based approaches can obtain very realistic expressions, they are hard to

generate expressions for a new person.

Some results of this method are shown in Figure 2.4.

(a) A global blend between surprised (left)
and sad (center) produces a worried expres-
sion (right).

(b) Combining the upper part of a neutral
expression (left) with the lower part of a
happy expression (center) produces a fake
smile (right).

Figure 2.4: Examples of results generated by sample-based methods. The exam-
ples are taken from [69]

2.2.3 Parametric Methods

Synthesizing facial expression by means of parametric control methodology is also

very popular. Actually, there are many researches on this subject in recent years.

Here, we briefly explain two main systems designed using parametric approach:

Facial action coding system and MPEG4 animation.
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Facial Action Coding System

Ekman and Friesen [31][30] built a system for describing all visually distinguish-

able facial movements, called the Facial Action Coding System or FACS. It is

based on the enumeration of all action units(AUs) of a face that cause facial

movements. Some samples of AUs are shown in Figure 2.5.

There are 46 AUs in FACS that account for changes in facial expression.

The combination of these action units result in a large set of possible facial

expressions. AU combinations may be additive, in which case combination does

not change the appearance of the constituents, or non-additive, in which case

the appearance of the constituents changes. For example smile expression is

considered to be a combination of pulling lip corners (AU 12+13) and/or mouth

opening (AU 25+27) with upper lip raiser (AU 10) and bit of furrow deepening

(AU 11). However this is only one type of a smile; there are many variations of

the above motions, each having a different intensity of actuation.

Although the number of atomic action units is small, more than 7,000 com-

binations of action units have been observed.

FACS provides the necessary detail with which to describe facial expression.

Despite its limitations, this method is the most widely used method for measur-

ing human facial motion for both human and machine perception.

(a) AU#1: Inner
brow raiser.

(b) AU#4: Brow
lowerer.

(c) AU#20: Lip
stretcher.

Figure 2.5: Sample single facial action units
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MPEG-4 Animation

Aiming for efficiently representing facial expressions and animations, MPEG4-

SNHC (synthetic/natural hybrid coding), a sub-protocol of the MPEG4 standard

for video compression, contains two components: synthetic objects and natural

objects.

One of the standards within the first component, when combined with a 3D

human model, is to provide an efficient description for transferring the related

parameter information regarding body motions and facial expressions in a real-

time manner, thus increasing the associated compression ratio. These parameters

can be divided into two categories: facial expression-related and body motion-

related.

The first category, pertaining to this work, consists of two parts: FDPs (facial

definition parameters) and FAPs (facial animation parameters). Please refer to

Table 2.3 for some examples of FAPs and their description.

FDPs define the shape of the model while FAPs define the facial actions.

Given the shape of the model, the animation is obtained by specifying the FAP-

stream that is for each frame the values of FAPs (see Figure 2.6).

# FAP Name FAP Description
.... .... ....
3 open-jaw Vertical jaw displacement (does not affect mouth opening)
4 lower-t-midlip Vertical top middle inner lip displacement
5 raise-b-midlip Vertical bottom middle inner lip displacement
6 stretch-l-cornerlip Horizontal displacement of left inner lip corner
7 tretch-r-cornerlip Horizontal displacement of right inner lip corner
... .... ...

Table 2.3: Facial Animation Parameters.

In a FAP-stream, each frame has two lines of parameters. In the first line

the activation of a particular marker is indicated (0, 1) while in the second, the

target values, in terms of differences from the previous ones, are stored.
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Figure 2.6: Sample FAP stream.

Raouzaiou et al. [71] made use of this scheme for modeling facial expression

animations. They defined some control points on the face and used them with

FAP information to animate face. These control points are shown in appendix

C.

In fact, MPEG-4 standard has defined six basic expressions in its facial ani-

mation parameters (FAP), including happiness, sadness, surprise, anger, disgust

and fear. The value of each parameter indicates the ingredient of correspond-

ing expression embodied in the image, and can be used by user to simulate the

mixed expressions. For a complete illustration of FAPs and FAP groups refer to

appendix C.

Following this standard, many research groups have been actively developing

compatible facial animation systems with various implementations [51, 93, 17].

The main drawback of this approach is that it can only make cartoon-like an-

imation, while is difficult to generate very natural characteristic facial expression.
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Figure 2.7: Shape and grayscale variations for a facial expression. Examples
taken from [27].

Figure 2.8: Results of the model proposed by Du and Lin on a training set
entry(up) and on a new person(down)[27].

2.2.4 Parameter Control Model

Du and Lin [27] proposed a parameter control model to synthesize comprehensive

facial image. They adopted Flexible Model, proposed by Cootes and his colleague

[9],in their method. The model represents both shape and grayscale appearance

of an elastic object (Figure 2.7), and is built by performing a statistical analysis

over a training set of example images. They used JAFFE [58] as the database and

the attached corresponding evaluation scores of each image to train a mapping

function so that complicated expression can be manipulated by an emotion vector.

Some results of this method are shown in Figure 2.8.

2.2.5 Listing of Existing Facial Animation Systems

There are many works in the field of facial expression animation. For this master

thesis, we studied the systems which look promising for our T2FE system. Sys-

tems that generate natural expressions and are simple enough to be able to use

for his master study. These systems are presented in Table 2.4. Because one of
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the main attributes of the animation engine needed for our T2Fe system is the

real-time ability, we also consider this attribute in this table.

These systems are which look suitable Table 2.4 lists the existing systems and

their attributes in the area of facial animation.

System Control Parameters Facial Model Real
time

CSLU[1] system specific parametric yes
Chai03[22] system specific performance-based yes
BEAT[21] expressions - yes

Ezzat02[32] prototype images sample-based no
Wojdel’05[88] FACS param./sample-based yes
Albrecht02[5] expressions sample-based yes
Koch98[47] FACS sample-based yes

CharToon[75] system specific parametric yes
Kshirsagar03[49] MPEG-4 sample-based yes

Table 2.4: Existing facial expression animation systems
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Chapter 3

Experiments–Text Classification

with Lexicon-Based Techniques

As explained in earlier sections, our proposed system is composed of two main

parts: text processing part and animation part. In this section we focus on text

processing part and explain methods used for automatic sentence classification

into classes of emotion. We use Ekman classes of emotion in our classification

task including happiness(hp), sadness(sd), fear(fr), anger(ag), surprise(sp), dis-

gust(dg). Furthermore, we dedicate another class to neutral sentences to consider

sentences that do not convey any emotional content.

It is important to note that the aim of this text classification is not just

extracting the dominant emotion of a given sentence. In fact, we are interested

in finding probabilities of classifying a given sentence to each of the seven classes.

3.1 Overview of Lexicon-Based Text Classifier

In this section, the lexicon-based text classifier proposed for classifying text to

emotion classes is explained. Figure 3.1 shows the general idea of this system.

In this system, the Emotion Analysis module receives the input text and uses
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Affect database to analyze emotional content of the text and finds the emotional

weights (rates) of each class of emotion. These weights will be used in the anima-

tion module to render the relevant facial expressions. We will explain the details

of this text classification in next subsections.

Figure 3.1: Overview of Lexicon-based text classifier

3.2 Emotion Analysis Module

In this section we describe our emotion analysis model. This model is shown in

Figure 3.2 and is composed of 6 main components:

1. Input preprocessing module. The main job of this module is to split input

to sentences and words, remove stopwords and quotations.

2. Affect database. This component builds the affect core of the system. We

will explain it in more detail in the next subsection.

3. Word-level analysis module. This module is used to find the emotional

weights of each word or sign(in case of emoticons or abbreviations) using

affect database and transfer these values to the phrase-level analysis mod-

ule. For each word we refer to affect database to estimate the emotional

weights. In addition, some heuristic rules are employed to adjust these

weights which will be discussed in section 3.2.2.
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4. Phrase-level analysis module. This module is used to compute the phrase

level emotional weights. In this level, some heuristic rules are used to

adjust the weights given by word-level analysis which will be discussed in

subsection 3.2.3.

5. Sentence-level analysis module. This module is used to compute the sen-

tence level emotional weights.

6. Output module. Used for illustrating the emotional weights for the classes

of emotion as shown in Figure 3.3.

Figure 3.2: Proposed emotion analysis module.

Briefly speaking, the whole procedure of detecting emotion from text and

classifying the text into one of the six emotional categories are as follows: For a
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given input, the input preprocessing module is used to split the input to sentences

and words and send the words one by one to the word-level analysis modules and

the regarding sentence to the phrase-level analysis module.

In the word-level, at first we look for exclamation signs, question signs and

words written in uppercase since these factors intensify the affect of the whole

sentence. In the next step, for each word, we make a query to WordNet-Affect

database and emoticons-Abbreviation database to find the affect weights con-

veyed with each word for all the emotional categories. Also, searching the word

in modifiers-negations database returns the coefficients which will be used in the

phrase-level to adjust the phrase level emotional weights.

In phrase-level analysis, we use the weights obtained from the word-level and

the intensify-negation coefficients to compute the weights of the phrase which

compose a sentence. At the next module, sentence-level analysis module, the

whole emotional weights of the input are computed and sent to the output mod-

ule. We show these weights by weighti where iε{sd, hp, anger, fr, dg, sp, ne}. In

the output module, these weights will be normalized and written to the output

interface. The normalization is based on the following formula:

NormWeighti =
weighti∑

i αi × weighti
(3.1)

where iε{sd, hp, anger, fr, dg, sp, ne} and αi illustrates the overall effect on

each emotional category resulted from phrase-level analysis.

3.2.1 Affect Database

The affect database composes the main affect of our system and contains three

main databases: WordNet-Affect which contains 4698 affective words, emoticons-

abbreviations database containing 111 affect records ,intensity modifiers-negations

database.
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1. WordNet-Affect

For the source of affect lexicons, WordNetAffect [76, 19] was used to find

the affect meaning of each word. This dataset is a linguistic resource for

the lexical representation of affective knowledge which was created with the

aim to support applications relying on language recognition and generation.

Some examples of this dataset and their assigned emotional weights are

listed in Table 3.1. To view the full list please refer to WordNet Domains

web site [3].

Text General Weight hp sd ag fr dg sp
annoyed 1 0 0 0 0 0.266 0
casual 0.355 0 0 0 0 0 0.177
hard 0.085 0 0.038 0 0 0 0

Table 3.1: Some examples of records in WordNet Affect database.

2. Emoticons-abbreviations database

In today’s textual communication, people usually use emoticons, such as :-)

, :-0, : −(, and specific abbreviations, such as LOL, OMG, rofl, to clarify

the meanings and emotions of the sentences.

In order to support abbreviated language in our emotion model and inter-

pret the affective features of emoticons, a dataset containing 111 records

was created. Each record of this dataset contains the textual form of the

emoticon or abbreviation followed by the emotional values for each emo-

tional class. There is also a general weight field in this database that shows

the intensity of the emoticon/abbriviation. Some records of this database

are listed in Table 3.2 while the complete list is provided in appendix A.

3. Intensity modifiers and negations

In our daily conversation and written, we use adjectives and adverbs (e.g.

very, awfully, dreadfully, eminently, exceedingly) to change the intensity of
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Text General Weight hp sd ag fr dg sp
LOL 1 1.0 0.0 0.0 0.0 0.0 0.0
:-@ 1 0.0 0.0 1.0 0.0 0.5 0.0

WOW 1 0.0 0.0 0.0 0.0 0.0 1.0
:-) 1 1.0 0.0 0.0 0.0 0.0 0.0

Table 3.2: Some examples of records in Emoticons-abbreviations database

a specific word. In the proposed model a set of modifiers is collected and

ranked to handle the effect of intensity modifiers.

3.2.2 Word-level Analysis

After splitting the input to tokens, we refer to affect database to estimate the

emotional weights for the word. In addition, We employ some heuristic rules to

adjust these weights:

1. Words written in upper case: This is a sign of more intensive word.

2. The effect of the previous word:

• Previous word is an intensity modifier (e.g. ”extremely”) => Intensify

the emotional weights by multiplying the weight to modifier effect.

• Previous word is a negation word (e.g. no, not, don’t, don’t, haven’t,

weren’t, wasn’t, didn’t) => flip the weights of the affect word by

multiplying weights by -1.

3.2.3 Phrase-level Analysis

For phrase level analysis, some heuristic rules are used to find the overall emotion

of the sentence.

1. Number of exclamation signs in a sentence: the more exclamation signs the

higher emotional weights
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2. More emoticons with more emotional signs (e.g. :DDDD) intensifies the

emotional weights

3.3 Experiment

The proposed lexicon-based text classifier is implemented using Java. The pro-

gram can work in two modes: the interactive mode where user of the program can

enter arbitrary text. In this mode, the weights of each emotional category and

the dominant weight will be shown in the form of bar charts. A sample output

of this mode is shown in Figure 3.3.

Figure 3.3: The interactive interface of our implementation.

The second mode is the test mode, where we used a well-known publicly

available and labeled dataset to test the accuracy of our implementation. This

corpus and the test results are more described in the following subsections.

3.3.1 Corpus

For text classification part of our system, we use the a subset of corpus prepared

by Szpakowicz in [8]. This database contains of 173 blog posts containing a total

of 15205 sentences. The sentences were labeled with emotion category ( one of the

7 categories of happiness, sadness, fear, surprise, disgust, anger and no-emotion)
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and emotion intensity (high, medium and low) by four judges. In this paper

we just consider the emotion category independent and do not use the emotion

intensity.

Furthermore, we just select the sentences for which the annotators agreed on

the emotion category. This limitation narrows the number of the sentences down

to 4090 sentences. These sentences include conversation words and emoticons

which makes this dataset a good candidate for learning systems based on informal

conversations systems such as our system.

Table 3.3 and Table 3.4 show the distribution of the sentences based on the

emotion category and some sample sentences of this corpus respectively.

Sentence Class Frequency Percentage
No-emotion 2800 0.68
Happiness 536 0.13
Surprise 115 0.02
Disgust 172 0.04

Sad 173 0.04
Angry 179 0.04
Fear 115 0.02

Table 3.3: Sentence class distribution.

We can see from Table 3.3 that in this corpus most of the sentences are labeled

with no-emotion label and there is a high distribution skew, where other classes

are very small. This means that for these classes, we have a few samples to learn

from. In chapter 4, we will see how this skew can effect the classification task.

35



Sentence Class
WE WERE TOTALLY AWESOME!!!! hp
I don’t know what happened to my happiness, I woke up feeling down and
miserable and in fact it’s worse.

sd

Wow, I hardly ever have plans. sp
First off, it’s a hike to get up to this place, and I can’t see worth shit in the
dark.

dg

Sheldon and I told him to shut up. ag
The second day I went in and I was so paranoid. fr
See yaaaa tomarrow. ne

Table 3.4: Sample sentences of the corpus and their class labels.
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Table 3.4 shows some sample sentences from the corpus used for experiments.

We can see that the text contains many attributes of a conversational text such

as abbreviations (such as “it’s”) and conversational words (such as using “yaaa”

instead of “you”). Also, we can see that during text-based messaging people

might use words in capital letters to show higher level of emotion (first sentence).

3.3.2 Results and Discussion

The results of this test are shown in Table 3.5. In this table, the accuracy of the

classification task is provided for each class. The Accuracy measure showed in

this table, represents the number of sentences correctly classified.

Emotion Acuracy
ne 0.43
sp 0.32
hp 0.37
dg 0.34
sd 0.26
ag 0.32
fr 0.28

Table 3.5: Results of classifying text with lexicon-based text classifier.

The average accuracy of emotion analysis module implementation is 33.14

percent which is still better than a random classifier that provides an accuracy

of about 14 percent for 7 classes.

One reason for this low accuracy of this classifier, is the fact that there are

many cases that the emotion of a sentence is hidden in the content of the sentence

and not just the words that make a sentence. Therefore, searching emotional

words in an affect database might not be the best solution to classify a sentence

to one of the classes of emotion. Although, enriching the affect database might

help in this regard, we are never sure to be able to store all of the possible

emotional words in a database.

Another reason is that in lexicon-based technique, the input text is considered
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as a collection of words without considering any of the relations between the

individual words.

In the next chapter, we will focus on the machine learning techniques to

improve this accuracy.
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Chapter 4

Experiments–Text Classification

with Machine Learning

4.1 Overview of Text Classification System

In the previous chapter, we explained our lexicon-based text classifier and ex-

plained that in this classifier, the input text is considered as a collection of words

without considering any of the relations between the individual words. In fact, the

main task in this technique is to determine the sentiment of every word and com-

bine these values with some function. To cover this drawback,many researchers

proposed using machine learning techniques for text classification and reported

better results using this techniques (for more details please refer to section 2.1.2).

In this chapter we explain our experiments of emotional text classification using

machine learning techniques.

It is important to note that the aim of this text classification is not just

extracting the dominant emotion of a given sentence. In fact, we are interested

in finding probabilities of classifying a given sentence to each of the seven classes

and use these probabilities as the blending weights in the graphic module. In

other words we are looking for fuzzy classification of text and not the precise
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classification. To cover the need of fuzzy classification, we use fuzzy set theory

developed by Zadeh[94] that allows concepts that do not have well-defined sharp

boundaries.

In contrast to the classical set theory, in which any object should be classified

as a member or non-member of a specific set, an object in fuzzy theory can

partially belong to a fuzzy set. A membership function is used to measure the

degree to which an object belongs to a fuzzy set. This value is a number between

0 and 1.

Based on these definitions of fuzzy sets and membership functions, we can

define our fuzzy set(A) and membership functions (Mem) as follows:

A = corpus = {s1, s2, ..., sn} (4.1)

Memi(sk) =





prob(sk|i) , iε{hp, sd, fr, dg, sp, ag}

1−∑
σ prob(sk|σ) , i = ne, σε{hp, sd, fr, dg, sp, ag}

, 1 ≤ k ≤ n

(4.2)

After calculating the values of the member functions, these values will be used

to blend 3D face models for six classes of emotion together and generate the new

head. We will explain this in more details in chapter 5. In the following sections

we will explain our text classification experiment and the results.

An overview of the sentence classification task is shown in Figure 4.1. Briefly

speaking, we use a labeled corpus as our learning dataset. For short text clas-

sification, many researchers used different classifiers such as Naive Bayse (NB),

Decision Trees (DT), and Support Vector Machine (SVM).

In our work, SVM is selected as the classifier as it has been traditionally used

for text categorization with great success[42, 44]. SVM is well-suited for text

categorization because of the large feature sets involved and SVM’s ability to

project data into multiple dimensions to find the optimal hyperplane.

40



Figure 4.1: A simple representation of text processing task applied in our system.

In case of short-text classification, we refer to the experiments done by Khoo et

al. in [46] for short text and sentence classification. Their experiments show that

SVM classification algorithm generally outperforms other common algorithms.

The authors also analyzed different feature selection algorithm including Chi-

squared, Information Gain, Bi-Normal Seperation and Sentence Frequency. They

evaluated these various feature selection by inspecting the performance of classi-

fiers, and concluded that for sentence classification the results of different feature

selection algorithms are almost the same and a there is not a significant differ-

ence among the results. They suggest that for sentence classification, a cheap

and simple feature selection algorithm is enough and further processing might

lead to losing a large portion of features which is basically not useful for short

text classification.

Based on this discussion, we use SVM classifier for our text processing part,

with a linear kernel and One-versus-all scheme for multi-category classification.

The One-versus-all scheme helps us in fuzzy text classification by investigating

the results of classifying one sentence to all of the classes of emotions. We will

use these results as the probabilities while calculating membership functions in

equation 4.2. There are non-linear extensions to the SVM, but Yang and Liu

found the linear kernel to outperform non-linear kernels in text classification
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[92]. Hence, we only present linear SVM results.

The platform used for applying the classification algorithms is the machine

learning library WEKA [87].

For testing the classifiers, 10-fold cross validation procedure is used. With

this procedure all the labeled sentences are randomly divided to 10 sets of equal

size and training is done on 9 sets and the classifier is tested on 1 set. This

procedure is repeated for 10 times and the average accuracy is considered as the

accuracy of the classifier. We will explain the results in the following sections.

4.2 Data representation

Before explaining the details of the experiments and the results, we explain tech-

niques used for data representation and features extraction for sentences.

Data representation is a domain specific problem and the technique used for

this task should be selected based on the specific aims of the project. For example,

the best data representation used for the task of classifying text based on subject

(topic selection) might not be the best candidate for detecting emotions from

text. However, in this research to pay more attention to main contributions of

this paper we do not focus to find the best techniques for data representation

and use the well known and widely used techniques. For this experiment, we

use Bag-of-words (BoW) representation which is popular for its simplicity and

computational efficiency [20].

4.2.1 Bag-of-words (BoW)

In this technique, the whole corpus is broken into an ordered set of words and

each distinct word corresponds to one feature. If there are N number of distinct

words in the corpus, the bag will contain N members and each text is transformed

to a vector of N elements as < a1, a2, ...aN > where ak is the weight of the kth

word of the bag in that text. Different researchers propose different definitions
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to calculate these weights such as the frequency of the word in the text. In our

work, because we are dealing with short text, we use the binary weights which

shows the existence or absent of the specific word in that text.

To explain more about our BoW representation, suppose that our corpus

contains two sentences S1 and S2. S1 = “See yaaa tomorrow !!!” and S2 =“I’ll

talk to you tomorrow”. Processing S1 adds four words to BoW: “See”, “yaaa”,

“tomorrow” and “!!!” and the size of BoW will increase to four. S2 is tokenized

into five words: “I’ll”, “talk”. “to”, “you” and “tomorrow” and the first four

words will be added to BoW (“tomorrow” is already inside BoW). After this step

the BoW looks like this ordered set :

BoW = {See, yaaa, tomorrow, I ′ll, talk, to.you}

With this BoW, the first and the second sentence are converted to the follow-

ing binary representation respectively :

S1 =< 1, 1, 1, 0, 0, 0, 0 >

S2 =< 0, 0, 1, 1, 1, 1, 1 >

After this step, learning algorithms are applied on these representations to

build text classifier.

4.3 Feature selection

When we are using machine learning techniques, we are usually dealing with

large datasets leading to thousands or ten thousands of features for learning aims.

These large number of features put a very high load on the learning algorithms,

in our case the classification algorithms.

Using feature selection algorithms, we can sort and select the best features

and reduce the loads on the classification problem. Here we briefly explain Chi-

squared which is widely used as a feature selection algorithms for text classifica-

tion [46].
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4.3.1 Chi-squared (CHI)

This algorithms measures the independence of each possible feature from all of the

classes and ignores the features that show high independence [38]. For sentence

classification experiment, each word is considered as a candidate feature and the

independence from each of the classes of emotion is measured, the maximum

score is taken as CHI score and is used as selection criteria. Lower score means

better candidate.

In our case, CHI measures the independence of word w and each class Ci as

follow:

CHI(w,Ci) =
N × (α× δ − β × γ)2

(α + γ)× (α + β)× (β + γ)× (δ + γ)
(4.3)

where





α = #Occurrence w and Ci togeather

β = #Occurrence w without Ci

γ = #Occurrence Ci without w

δ = #Occurrence neither w nor Ci

, iε{ne, hp, sd, sp, fr, dg, ag}

4.4 Evaluation measures

To evaluate and compare the results of our experiments, we use three standard

measures used widely in classification algorithms: Precision, recall and Fmea-

sure[73]. In the task of classifying text into class Ci these measures are defined

as follows :

Precision =
tp

tp + fp
(4.4)

Recall =
tp

tp + fn
(4.5)

Fmeasure =
2× Precision×Recall

Precision + Recall
(4.6)
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where





tp = #sentences correctly classified into C

fp = #sentences incorrectly classified into C

fn = #sentences incorrectly not classified into class C

Cε{ne, hp, sd, sp, fr, dg, ag}

4.5 Results and Discussion

For this experiment, we used the same corpus used in the lexicon-based text

classification experiment (refer to section 3.3.1). Table 4.1 shows the summary

of the text classification results gained using best 200 features selected with Chi-

square feature selection methods out of 7970 features. These 7970 features are

in fact all the words existing in the corpus, ignoring the duplicates. Selected

features are listed in appendix B.

As we can see in table 4.1, the total number of instances used in the ex-

periment is 4090 and 79.58 percent of them are correctly classified into emotion.

This accuracy shows good progress compared to overall accuracy of 33.14% gained

from the works explained in subsection 3.3.2.

Total number of instances 4090
Number of correctly classified instances 3255
Number of incorrectly classified instances 835
Accuracy (percentage of correctly classified instances) 79.58%

Table 4.1: Summary of SVM sentence classification results.

To investigate the results in more details, we show class-by-class results in

Table 4.2. The values in this table show how well the each class was predicted in

terms of different measures: True Positive, False Positive, Precision, Recall, and

Fmeasure (please refer to section 4.4 for definition of these terms.).
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Class TP Rate FP Rate Precision Recall F-measure
ne 0.976 0.551 0.794 0.976 0.876
hp 0.487 0.017 0.813 0.487 0.609
sp 0.304 0.004 0.714 0.304 0.427
dg 0.413 0.006 0.755 0.413 0.534
sd 0.266 0.003 0.821 0.266 0.402
ag 0.335 0.003 0.845 0.335 0.480
fr 0.417 0.002 0.889 0.417 0.568

Weighted Avr. 0.796 0.380 0.798 0.796 0.768

Table 4.2: Results of SVM classifier-Detailed accuracy by class.

As shown in this table, Precision values of all of the classes are higher than

0.7, and the weighted average of total Precision is close to 0.80 which is a very

good precision value. Also, the False Positive values are very low for all of the

classes except ne class. This means that there is a high chance that a sentence

is classified in class ne while it is labeled as an sentence with emotional contents

by human judges. On the other hand, the low False Positive values for the other

classes show that if sentence is classified to a class, for example hp, there is a high

chance that this sentence is truly a hp sentence.

The analysis of results for True Positive measure show that all of the classes

except ne have a low True Positive rate. This low rate for classes of emotion

(hp,sp,dg,sd,sg,fr) and high rate for ne convey the fact that many sentences

which are labeled with emotional classes by judges, are classified into ne class by

classifier. In fact, our classifier is a bias classifier and is eager to classify sentences

into ne emotion class. However, in case of classifying sentence into one of the

emotional classes, the result of the classifier is highly accurate and the same as

the labels annotated using human judges.

To investigate this problem deeper, we refer to the distribution of data in our

training set. As it is shown in Table 3.3, 0.68 percent of the sentences of our

training corpus are labeled with ne and some classes are very small. This means

that for these small classes we have a very few positive examples to learn from.
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Researchers in the area of machine learning suggested some methods to over-

come the problem of bias classifier affected from highly skewed data [81, 85]. In

this experiment we do not focus on methods to solve this problem. Instead, we

try to estimate the accuracy of our classifier with better measures and use F-

measure, derived from Precision and Recall, to reflect the biased behavior of our

classifier. As reported in [46] using F-measure can avoid the misleading of Pre-

cision or Recall in classification problems.The values of F-measure are presented

in the last column of Table 4.2.
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Chapter 5

Experiments–Animation Module

5.1 Expression of Mixed emotions

In this section, we present a model for generating facial expression arising from

mixed emotions. Here, by mixed emotions we are referring to those emotions

which are a blend of two or more basic emotions (refer to section 1.3.2 for more

details).

We formulate our model at the level of facial expressions. In other words,

we do not build the expressions of mixed emotions from scratch. We use the

basic expressions of emotions and blend these expressions together to build new

expressions. This idea of blending some basic shaped together and generating

new shaped is called Shape Blending in computer animation and has a great

practical use [77] and can be categorized as a subset of sample-based approach

(section 2.2.2).

To be able to generate the expressions of mixed emotions for each frame, we

need two sets of parameters: basic shapes and the weights for blending the basic

shapes together.

• Basic shapes

Based on the needs of our system, we choose the facial expressions of basic
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classes of emotion as our basic shapes, these shapes are shown in Fig-

ure 5.1. We use the notation FACEσ to refer to these shapes, where

σε{hp, sd, fr, dg, sp, ag}. Each of these FACEs are made of vertices v1 to

vn and can be positioned in the space using their 3D coordinates as shown

in equation 5.1, where n is the number of vertices and k is the kth vertex

of FACEσ.

We consider the neutral face as the base face and use FACEnt to refer

to this for our next discussions. The goal of the animation module is to

animate this base face into a particular emotional face as specified with

weights gained from the text-processing module.

Figure 5.1: Basic shapes: Anger, Surprise, Happiness, Sadness, Fear and Disgust
from left to right.

• Weights

The weights are measured by processing the text to evaluate the classi-

fication weights based on the algorithm explained in chapter 4 and more

specifically with equation 4.2.

FACEσ =




vσ
1

.

vk

.

vσ
n




=




xmaxα
1 ymaxα

1 zmaxα
1

. . .

xmaxα
k ymaxα

k zmaxα
k

. . .

xmaxα
n ymaxα

n zmaxα
n




, FACEnt =




xnt
1 ynt

1 znt
1

. . .

xnt
k ynt

k znt
k

. . .

xnt
n ynt

n znt
n




(5.1)
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where σε{hp, sd, fr, dg, sp, ag}.

(a) Start frame - A sample triangle from Neu-
tral face.

(b) End frame - The same triangle in a happy
face

(c) Prototype Happiness frame - The same
triangle in the FACEhp

Figure 5.2: Illustration of linear interpolation used for generating interval frames.

Based on these two parameters (basic shapes and weights), the animation

module generates the faces for each frame of the animation.

To better explain this task, let us explain the whole work flow of animation

module using a triangle instead of the whole face model. Figure 5.2(a) shows

triangle ABC (representative of FACEnt) in the first frame of animation and

Figure 5.2(b) shows the same triangle in the last frame of animation. Given the

coordinates of these two triangles, we can interpolate the shape of frame in time

t using the following equations:
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x(t) = xnt + t× xhp−xnt

f

y(t) = ynt + t× yhp−ynt

f

, 0 ≤ t ≤ f (5.2)

Where f is the number of frames in the animation.

In our model, we always use the Neutral face as the start frame. In this

example we assume that the last frame shows the triangle in the happy face,

which is the reason we use xhp and yhp to refer to the coordinates of the points

in the last frame.

Now let us suppose that the change from neutral to happy face is originated

from the happiness weight of sentence s. Therefore, we can calculate the position

of the vertices of the triangle in the last frame by applying the following equation

on the positions of the vertices in FACEhp. In this equation Memhp is calculated

using equation 4.2 and xmaxhp is the x coordinate of vertex A in FACEhp.

xhp = xnt + Memhp(s)× (xmaxhp − xnt) (5.3)

In general, the last frame of the animation might be a blend of the all the

emotions. To blend all of the emotions together we sum Memhp(s)× (xmaxhp−
xnt over all of the six classes of emotions. In case of using a face model instead

of triangle, we can rewrite equation 5.3 for vertex kth in the following form:

xσ
k = xnt +

∑
σ

[
Memσ(s)× (xmaxσ

k − xnt
k )

]
, σε{hp, sd, fr, dg, sp, ag} (5.4)

Where xmaxσ
k and xnt

k are the x coordinate of kth vertex in FACEσ and

Neutral face respectively as shown in equation 5.1. Using the same approach, we

can write the following equations for y and z coordinates.

yσ
k = ynt +

∑
σ

[
Memσ(s)× (ymaxσ

k − ynt
k )

]
(5.5)
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zσ
k = znt +

∑
σ

[
Memσ(s)× (zmaxσ

k − znt
k )

]
(5.6)

Using equations 5.1, 5.2 and 5.4 to 5.6, we can generate NEWFace for tth

frame of the animation with respect to the emotional weights obtained by pro-

cessing sentence s.

NEWFace(t) = FACEnt +
1
f
× t×

∑
σ

[
Memσ(s)× (FACEσ − FACEnt)

]

(5.7)

where 0 ≤ t ≤ f, σε{hp, sd, fr, dg, sp, ag}, f = #frames in animation

5.2 Results and Discussion

The basic shapes used in our experiments (Figure 5.5, are rendered using FaceGen

Modeller software [2]. The neutral head which is used as the base face is shown

in figure 5.4.

(a) Skin. (b) Eyes, teeth, tongue and sock.

Figure 5.3: Static and dynamic parts of 3D face model.

52



Figure 5.4: Neutral face(FACEnt) used as the base face in the experiment.

(a) Fear(FACEfr). (b) Happiness(FACEhp). (c) Disgust(FACEdg).

(d) Sadness(FACEsd). (e) Anger(FACEag). (f) Surprise(FACEsp).

Figure 5.5: Basic shapes used for the experiment.

The head model is composed of 7 main parts: skin, eyes(left and right), sock,

tongue and teeth (upper and lower). The animation parameters (weights) are

applied to skin, teeth, sock and tongue whereas eyes are static. The whole model

is composed of 1802 triangles and 981 vertices. The model is shown in Figure

5.3.
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The interpolation of new faces are done based on equation 5.7. In Figure

5.6 and Figure 5.7 the results of interpolation algorithm are shown for surprise

and disgust emotions respectively. In these two figure, the rightmost and leftmost

faces are basic shaped and the three interval faces are rendered using our proposed

algorithm. The following sets of parameters are used to render these two sets of

images:

f = 90, t = {0, 25, 50, 75, 90}

,





Memsp = 1,Memσ = 0, σε{hp, sd, fr, dg, ag} Figure5.6

Memdg = 1, Memσ = 0, σε{hp, sd, fr, sp, ag} Figure5.7

Figure 5.6: Interpolation of Surprise face from neutral face(left) to maximum-
surprise-face(right).

Figure 5.7: Interpolation of Disgust face from neutral face(left) to maximum-
disgust-face(right).

Figure 5.8 shows the results of blending two basic shapes. For each set of

images, the first two faces show the basic shapes and the third face is the new
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face rendered using equation 5.7. For the image sets shown in this figure, the

following parameter are used respectively:

f = 90, t = 45,





Memfr = 0.5,Memhp = 0.5,Memσ = 0, σε{sd, dg, sp, ag}

Memdg = 0.5,Memhp = 0.5,Memσ = 0, σε{fr, sd, sp, ag}

Memsd = 0.5,Memsp = 0.5,Memσ = 0, σε{fr, dg, hp, ag}

Memhp = 0.5,Memsp = 0.5,Memσ = 0, σε{sd, dg, fr, ag}

The animation module works well in many cases. However, to investigate

more about the quality of the animations generated with this system, we tried

different parameters and we found out that this module might render deformed

images while using heavy blends. It means that, while rendering the new face, if

we blend many basic shapes (usually more than three basic shapes) together to

generate the new face, the results may not look very well. This deformation is

more obvious when the new face is generated with blending emotions that cause

very different effects on the face, for example blending happy, disgust and surprise

faces together. We call this problem over-animated face and some of the samples

are shown in Figure 5.9.
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(a) Fear. (b) Happiness. (c) Blend of fear and hap-
piness.

(d) Disgust. (e) Happiness. (f) Blend of happiness
and disgust.

(g) Sadness. (h) Surprise. (i) Blend of sadness and
surprise.

(j) Surprise. (k) Happiness. (l) Blend of happiness and
surprise.

Figure 5.8: Blending of basic faces.
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(a) Blending Happiness, Disgust and
Surprise

(b) Blending Happiness, Disgust, Sur-
prise, Fear and Sad

Figure 5.9: Over-animated faces. Some deformed results of animation module.
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Chapter 6

User study

In this chapter we explain the on-line user study performed to find out if people

find our T2FE interesting and useful. In this user study we examine if the

users choose animation of mixed emotion over basic emotion for a given text.

Here, we do not perform a test to study if showing facial animation from text

can be useful and interesting to potential users. Instead, we refer to Koda’s

comprehensive analysis of the effects of lifelike characters on computer-mediated

communication [48]. Her studies indicate that using life like avatars enhanced

with facial expressions, instead of text-only messages, improves user experiences

and build enthusiasm toward participation and friendliness in communication.

To find out user’s preference about animation of mixed emotions or basic

emotions we designed an experiment as follows:

Eight text messages are used for this experiment. All of these messaged convey

mixed emotions to the reader but they are different in the type and intensity of

the emotion which is hidden in the text.

For each text, we rendered two animations to show the emotional meaning of

the text. One of the animations, shows the dominant emotion of the text on a

sample head while the other one shows the mixed emotions which is a blend of

two dominant emotions hidden in that particular text.
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The participant in this study are asked to select the animation that better

represents the emotion of the text. Therefore, they can choose between the mixed-

emotion animation and basic-emotion animation. There is another choice that

users can choose if they do not feel any difference between the two animations.

In fact, the main goal here is to find out if users prefer to see mixed emotions on

the face or not.

Figure 6.1: A sample entry of user study.

A sample entry of this experiment is shown in Figure 6.1 in which the text

has a mixed emotion of Disgust and Surprise. In this figure, Anim1 illustrates

Surprise feeling (dominant emotion) where Anim2 illustrates mixture of Surprise

and Disgust feeling (mixed emotion). In the main user study, we randomize

the animations for mixed emotion and dominant emotion between Anim1 and

Anim2. This helps to avoid cases where user is eager to consistently select Anim1

(or Anim2) for the whole user study. The complete user study is presented in

appendix D.

This user study has 34 participant. Table 6.1 shows the selections of users for

each text as well as the emotion type hidden in text.

These results show that 51 percent of the total answers to this study, select

mixed emotion while 30 percent select dominant emotion as the better represen-
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Text# emotion mixed emotion basic-emotion No Difference
1 sd-sp 22 10 2
2 dg-hp 12 14 8
3 af-hp 22 8 4
4 sp-dg 10 16 8
5 dg-sd 22 8 4
6 fr-hp 18 8 8
7 sd-sp 18 10 6
8 sd-sp 16 8 10

Table 6.1: Results of user study

tations. The remaining 19 percent do not see any difference between basic and

mixed emotions. This study shows that majority of the participants pre-

fer expressions of the mixed emotions as the representation of emotion

in text.
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Chapter 7

Conclusion

This research report introduced the problem of facial expression’s animation

based on conversation text and its applications in the area of computer human

interaction. In this paper, this problem was divided to two main tasks: emo-

tional text classification and facial expression analysis. The significant works

done in both areas were discussed and the advantages and disadvantages of main

approaches were explained.

For emotional text classification we explored the lexicon based techniques and

machine learning techniques. Although lexicon-based techniques benefit from

their simplicity and begin free of learning data, their accuracy is not as good as

machine learning methods. Among different machine learning methods, the best

choice for text classification is proven to be Support Vector Machines (SVM)

which guarantees the best performance. Based on these statements and our

experiments of text classification techniques, in out T2FE system we used SVM

as the core of our text classification task. In our text classification experimetn,

the fuzzy classification concepts was merged with SVM to build a fuzzy text

classifier which is able to classify text into basic classes of emotion. The overall

accuracy of our text classifier is 79.58%.

Facial expression animation is also reviewed in this paper and different ap-

61



proaches based on the traditional methods, sample-based methods, parametric

methods and parameter control methods were discussed. Based on this survey,

many of the works done in the area of facial animation use standard techniques

such as MPEG4 animation and Facial Action Coding system to generate human-

like facial movement although the results are not very realistic. While reviewing

different facial animation systems, we noticed that most of the existing works

focus on animating basic facial animation and mixed-emotions animation are not

widely studied and doing experiments in the area of animating face using mixed

classes of emotion looks as an interesting and novel work.

We proposed a facial expression animation system for mixed emotions which

is able to render animations based on blending expressions of basic classes of

emotion. The implementation of this system and the results of this system were

fully described in the relevant chapter.

A user study is also conducted to estimate if the potential users of our T2FE

system find rendered animations effective and useful. This study was designed

with special attention to the difference between animation of basic and mixed

emotions. The results of this study showed that the majority of the

participants in this experiment selected the expression of mixed emo-

tions as a better choice for representation of emotion in the text.
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Appendix A

Emoticons and abbreviations
database

Text GW∗ hp sd ag fr dg sp Text GW∗ hp sd ag fr dg sp

:) 1 1 0 0 0 0 0 :-¡ 1 0 1 0 0 0 0
:-) 1 1 0 0 0 0 0 :P 1 0.5 0 0 0 0 0
=) 1 1 0 0 0 0 0 :-P 1 0.5 0 0 0 0 0
(: 1 1 0 0 0 0 0 :p 1 0.5 0 0 0 0 0
(-: 1 1 0 0 0 0 0 :-p 1 0.5 0 0 0 0 0
:D 1 1 0 0 0 0 0 :d 1 0.5 0 0 0 0 0
:-D 1 1 0 0 0 0 0 :’( 1 0 1 0 0 0 0
;) 1 1 0 0 0 0 0 :’-( 1 0 1 0 0 0 0
;-) 1 1 0 0 0 0 0 ;( 1 0 1 0 0 0 0
;D 1 1 0 0 0 0 0 ;-( 1 0 1 0 0 0 0
;-D 1 1 0 0 0 0 0 :c 1 0 1 0 0 0 0

>:D< 1 1 0 0 0 0 0 :-c 1 0 1 0 0 0 0
/:) 1 1 0 0 0 0 0 :-S 1 0 0 0 0.5 0.5 0
:)] 1 1 0 0 0 0 0 :S 1 0 0 0 0.5 0.5 0
:] 1 1 0 0 0 0 0 :-s 1 0 0 0 0.5 0.5 0
:-] 1 1 0 0 0 0 0 :s 1 0 0 0 0.5 0.5 0
;;) 1 1 0 0 0 0 0 :-/ 1 0 0 0 0.5 0.5 0
:* 1 1 0 0 0 0 0 :/ 1 0 0 0 0.5 0.5 0
:-* 1 1 0 0 0 0 0 :| 1 0 0 0 0.5 0.5 0
:x 1 1 0 0 0 0 0 x x 1 0 0 0 1 0.5 0
:-x 1 1 0 0 0 0 0 :O 1 0 0 0 0 0 1
:”> 1 0.5 0 0 0 0 0.5 :-O 1 0 0 0 0 0 1
:> 1 0.5 0 0 0 0 0 :0 1 0 0 0 0 0 1
B) 1 1 0 0 0 0 0 :-0 1 0 0 0 0 0 1
B-) 1 1 0 0 0 0 0 :! 1 0 0 0 0 0 1
8) 1 1 0 0 0 0 0 x( 1 0 1 1 0 0 0
8-) 1 1 0 0 0 0 0 xx( 1 0 1 1 0 0 0
8> 1 1 0 0 0 0 0 :-@ 1 0 0 1 0 0.5 0
8-> 1 1 0 0 0 0 0 :@ 1 0 0 1 0 0.5 0
O:-) 1 1 0 0 0 0 0 >:( 1 0 0.5 1 0 0.5 0
>:) 1 1 0 0.5 0 0 0 >:-( 1 0 0.5 1 0 0.5 0
>:-) 1 1 0 0.5 0 0 0 8o| 1 0 0 1 0 0.5 0

– Continue on the next page

∗General weight
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– Continued from previous page.

Text GW∗ hp sd ag fr dg sp Text GW∗ hp sd ag fr dg sp

I-) 1 0.5 0 0 0 0 0 >:0 1 0 0 1 0 0 1
@:-) 1 1 0 0 0 0 0 >:-0 1 0 0 1 0 0 1

@}->– 1 1 0 0 0 0 0 :& 1 0 0 0 0 0.5 0
@>–>– 1 1 0 0 0 0 0 :-& 1 0 0 0 0 0.5 0

(- -) 1 1 0 0 0 0 0 h8 1 1 0 0 0 0 0

(@@̂) 1 0 0 0 0 0 1 <3 1 1 0 0 0 0 0
(@ @) 1 0 0 0 0 0 1 ({) 1 1 0 0 0 0 0

.-) 1 1 0 0 0 0 0 omg 1 0 0 0 0 0 1
:O) 1 1 0 0 0 0 0 oic 1 0 0 0 0 0 1
8-} 1 1 0 0 0 0 0 |) 1 1 0 0 0 0 0

<:-P 1 1 0 0 0 0 0 |-) 1 1 0 0 0 0 0
=D> 1 1 0 0 0 0 0 |( 1 0 1 0 0.5 0.5 0
@-) 1 1 0 0 0 0 0 |-( 1 0 1 0 0.5 0.5 0
\m/ 1 1 0 0 0 0 0 ]:) 1 1 0 0 0 0 0
<):) 1 1 0 0 0 0 0 rofl 1 1 0 0 0 0 0

:̂) 1 1 0 0 0 0 0 lol 1 1 0 0 0 0 0
:( 1 0 1 0 0 0 0 :rofl: 1 1 0 0 0 0 0
:-( 1 0 1 0 0 0 0 :lol: 1 1 0 0 0 0 0
8( 1 0 1 0 0.5 0.5 0 wow 1 0 0 0 0 0 1
8-( 1 0 1 0 0.5 0.5 0 :wow: 1 0 0 0 0 0 1
=( 1 0 1 0 0 0 0 wow! 1 0 0 0 0 0 1
:< 1 0 1 0 0 0 0

∗General weight
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Appendix B

List of selected features for text
classification

! !! !!! !!!! :( :) :] :D :P :p ;) ;D ?) ?? .̂ˆ ˆ ˆ AAAHHH
AARRRGGHH adored afraid aggravated agitated agonized alarmed
amazed amused angry anguished annoyed anxious aroused ashamed
attracted awful awkward BAD bashful bitter bored brave calm
caring cautious cheerful comfortable compassionate concerned confused
contempting critical curious cynical damn DAMNNN delighted depressed
desired disappointed discouraged disgusted disliked dismayed distressed
disturbed doesn’t don’t down dreadful eager ecstatic edgy elated
embarrassed encouraged engagement enthused excited excited exhausted
exhausted exhilarated fatigued fearful fidgety fond frightened frustrated
funny furious glad gleeful gloomy greedy griefstricken guilty HAHAHA
happy hassled hateful helpless hesitant homesick hopeful hopeless
horrible humiliated hurt hysterical impatient indifferent infatuated
inferior insecure insulted irate irked irritated isolated jealous jittery
jolly joyous lazy leery liked loathe LOL lonely loved loved loving mad
mean melancholical mischievous miserable moody mortified neglected
nervous nice NOWAY numb optimistic overwhelmed panicky passionate
patient pessimistic pleased proud puzzled queasy rageful raptured
regretful rejected relieved reluctant restless ridiculous rushed sad safe
satisfied scared scornful secure sensitive shaky shocked shy silly sleepy
smile sorry stressed surprised suspicious tender tense terrified tired
tired troubled uncomfortable uneasy unhappy unsafe unsettled upset
victorious warm weary well why woeful wonderful worried wrathful
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Appendix C

Facial Action Coding (FAC)
System

Group # of FAPs
Visems and expressions 2
Jaw, Chin, inner lower lip, corner lips, middle lip 16
Eyeballs, pupils, eyelids 12
Eyebrow 8
Cheeks 4
Tongue 5
Head rotation 3
Outer lip positions 10
Nose 4
Ears 4

Table C.1: FAP groups.
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Figure C.1: Feature points defined in FAC system.
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Appendix D

User Study

76



77


