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Summary

Due to an increasing emphasis on information technology and the availability of
larger storage devices, the amount of data collected in various industries has
snowballed to a size that is unmanageable by human analysis. This phenomenon has
created a greater reliance on the use of automated systems as a more cost effective
technique for data analysis. Therefore, the field of automated data analysis has
emerged as an important area of applied research in recent years.

Computational Intelligence (CI) being a branch of Artificial Intelligence (Al) is a
relatively new paradigm which has been gaining increasing interest from researchers.
CI techniques consist of algorithms like, Neural Networks (NN), Evolutionary
Computation (EC), Fuzzy Systems (FS), etc. Currently, CI techniques are only used to
complement human decisions or activities; however, there are visions that over time,
it would be able to take on a greater role.

The main contribution of this thesis is to illustrate the use of CI techniques for
data analysis, focusing particularly on identifying the existing issues and proposing
new and effective algorithms. The CI techniques studied in this thesis can be largely
classified into two main approaches, namely non-rule-based approach and rule-based
approach. The issues and different aspects of the approaches, in terms of
implementation, algorithm designs, etc., are actively discussed throughout, giving a
comprehensive illustration on the problems identified and the proposed solutions.

The first chapter of this thesis serves as an introductory chapter which includes the

motivations behind the proposed work, a comprehensive survey of the current state-

X



Summary

of-the-art methodologies in literature, the necessary technical background information,
and the key concepts required to appreciate this thesis.

Chapter 2 and Chapter 3 then discuss the architectural design issues of NN for
classification. In particular, Chapter 2 addresses the problem of the lack of
segregation of the input feature space during conventional NN training which often
causes interference within the network. In Chapter 3, a novel evolutionary approach,
which uses a growth probability, is proposed to optimize the weights and architecture
of NN.

Chapter 4 and Chapter 5 then illustrate the rule-based algorithms. In Chapter 4, an
Evolutionary Memetic Algorithm (EMA) which uses two different local search
schemes to complement the global search capability of Evolutionary Algorithms (EA)
is proposed for rule extraction to discover knowledge from data sets. Subsequently, in
Chapter 5, a Multi-Objective Rule-Based Technique (MORBT) for time series
forecasting is proposed.

Last but not least, Chapter 6 concludes on the work presented in this thesis. As
several possible areas of exploration within the field are still promising and useful,

future directions are also given.
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Chapter 1

Introduction

The use of automated systems for data analysis is an efficient method which
reduces cost and provides prompt analysis. The information derived from automated
systems is particularly useful to compliment and expedite human decisions.

Several automated and statistical techniques for data analysis have been studied in
the literature, which includes K-Nearest Neighbor (KNN) [94], Discriminant Analysis
(DA), Decision Trees (DT) [188] and Computational Intelligence (CI) techniques like
the Neural Networks (NN), Evolutionary Algorithms (EA) [19][161][162] and Fuzzy
Systems (FS) [12][106]. This thesis focus on some of the biologically inspired
methodologies of CI techniques and displays the different approaches for data
analysis. The proposed algorithms in this thesis are used for classification and time
series forecasting. Classification is about making decisions and is evident in our daily
life, e.g., to a doctor, the decision is to decide if a patient has an illness and to a
financial trader, the decision might be to buy, sell or hold an equity. To solve the
problem of classification, an algorithm aims to classify instances of data sets into
different output classes. On the other hand, time series forecasting is to predict future
values based on past values.

Due to the high predictive accuracy and parallel processing capability of NN, it
has  been  widely used for classification in  various domains
[1][61][120][135][146][173]. However, the classical method of training NN is to

present all input features together without any input space segregation. Chapter 2



Chapter 1 Introduction

shows that training conflicting features together would cause interference and
deteriorate network performance. An improved NN architecture with reduced
interference in the input space is being proposed.

Another disadvantage of the classical method of training NN is the higher
probability of getting trapped in local optima due to the gradient-based search
techniques employed for weights update. On the other hand, EA due to their global
search capability are less likely to get trapped in local optima. Therefore, EA seems to
be an excellent candidate to be hybridized with NN [5][50][78][100][186] to improve
NN overall performance. While the back bone of classification process follows the
working mechanism of NN, the weights and architecture of the NN are optimized by
the EA. Chapter 3 proposes a novel evolutionary approach, which incorporated a
growth probability, to evolve the near optimal weights and architecture of NN.

Neural networks are often used as non-rule-based classification systems. Though
users are able to read the inputs and know the end results, they are not able to extract
any linguistic information from the procedure. They are often seen as a “black box”
for data analysis as there is no output of any comprehensible information and this has
been considered as one of the major drawbacks. With the development of rule
extraction (decompositional or pedagogical) from trained NN [109][140][170][172],
this has opened up new perspectives as they have the ability of explaining the
classification process giving new insights to the data and provide a better
understanding of the problem to improve the quality of decisions made. However, rule
extraction from NN is a two step process, the first step is to train the NN and the
second step is to extract the rules. When the results are not satisfactory, several
implications are often involved, e.g., whether the NN is being trained well or whether

the rules extracted are representative of the network.
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On the other hand, rule-based algorithms like C4.5 [132], DT, FS and EA
[19][161][162] exhibit tremendous advantages over black box methods as they
represent solutions in the form of high level linguistic rules. Information extracted
from databases is only useful if it can be presented in the form of explicit knowledge,
like high level linguistic rules, which clearly interprets the data. EA stand out as a
promising search algorithm among these rule-based techniques in various fields due
to their easy implementation using chromosome structure representation and its
population-based global search optimization capability. The ease of representing the
rules using chromosome structure for a given problem provides additional flexibility
and adaptability. The genotype representation of EA in terms of chromosome
structure encodes a set of parameters of the problem to be optimized which allows
flexibility in designing the problem representation. Ideally, the representation should
clearly reflect the parameters to be optimized, be easy to implement, comprehend and
manipulate in order to explore the different issues of the problem well. In addition,
EA are able to perform multiple searches concurrently in a stochastic manner,
allowing it to converge promptly towards the global optimum. Hence, this non-
mathematical complex optimization method has been widely accepted by various
researchers as an alternative to classical methodologies.

Therefore in Chapter 4, an Evolutionary Memetic Algorithm (EMA) is proposed
for linguistic rule extraction to discover knowledge from data sets. Two local search
schemes are used, of which one is inspired by Artificial Immune Systems (AIS),
where the concept of clonal selection principle is used. Following Chapter 4, Chapter
5 proposes a Multi-Objective Rule-Based Technique (MORBT) for Time Series

Forecasting (TSF).
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Last but not least, conclusions together with possible future work and directions
are given in Chapter 6.
The following sections in this chapter will introduce the fundamental concepts and

relevant materials required to appreciate the work proposed in this thesis.

1.1 Artificial Neural Networks

The principles of artificial neural networks (also commonly known as neural
networks in short) follow the working mechanisms of the human brain which is a part
of the central nervous systems. The human brain is highly complex and has the ability
to compute very difficult problems. Neural networks through the use of connection
weights and hidden units (the term hidden units are used interchangeably with hidden
neurons in this thesis) mimic the synapses and neurons of the human brain. Neural
networks are able to acquire knowledge through learning. The knowledge learnt is

stored in the inter-neuron connection weights [72].

1.1.1 Neural Network Architecture

Several types of NN are presented in the literature, these includes Multi-Layer
Perceptrons (MLP), Radial Basis Functions (RBF), Support Vector Machines (SVM),
Self-Organizing Maps (SOM), etc [72][84][89][143]. Different types of NN are
suitable for different applications. This thesis considers the MLP which represents one
of the most widely used and effective NN for classification.

The basic building block of the MLP is the neuron (Figure 1.1). A value, which
equals to the weighted sum of all the inputs and a bias, is passed through an activation

function to produce the output.
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Figure 1.1: A neuron

In Figure 1.1, x,, i € {1,n}, is the ith input and # is the total number of inputs. w,
is the weight factor corresponding to the ith input, v is the weighted sum of all the
inputs plus bias, #(.) is the activation function and y is the output value. The
common types of activation functions used are the linear, threshold and the sigmoid

functions, given in Equations 1.1, 1.2 and 1.3, respectively. For the linear function,

the output would simply be the weighted sum of inputs plus bias.

p(v)=v, Vv=2R (1.1)
B I, ifv>0 (12)
P)=10, it v<o '
p(v)=—pr (1.3)
l+e

where a 1s a constant.

The MLP is made up of one or several layers of neurons (Figure 1.2). These layers
of neurons are commonly known as hidden layers as the computation of the weights
are usually hidden from the users. What the users see are the inputs and the end

results only.
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Input N Hidden

Output
Layer Layers Layer

Figure 1.2: Multi-layer perceptrons

1.1.2 Neural Network Training

The inputs are first multiplied by the weight vector and summed with the bias.

The weighted sum of the jth neuron in hidden layer 1, vi- , 18 given in Equation 1.4.

Vi=D xwy +b; (1.4)
i=1

This is done for all the neurons in layer 1 and the outputs of the neurons in layer 1
are fed as inputs to the neurons in layer 2. This process is repeated as it propagates
through the layers. Eventually, the outputs of the neurons in the last hidden layer are
used as inputs to the output units. This process is called the forward pass of the

training phase. At the output unit, the resulting error of the network is calculated as

e,=(d,-y,) (1.5)
where e, is the error, d, is the desired output value and y, is the network output for

the oth output unit. This error is calculated for all output units and adjustments are
made to the weights to minimize the error. There are two methods of updating the

weights of the network. One is the batch mode, where updating of the weights is made
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after all the input samples are presented. The other method is the sequential mode
where updating of the weights is done after every input sample is presented.
This section has provided a brief explanation on the NN training, for a more

comprehensive understanding of the NN training process, please refer to [72].

1.1.3 Applications

The uses of MLP [96][98][137][152] can be seen for function approximation,
classification, feature selection, etc. Function approximation includes time series
forecasting and regression problems.

Depending on the application and the domain, the NN architecture is usually
modified to suit the problem. For a time series forecasting problem, the number of
input units would usually correspond to the sliding window length, and there would
only be one output unit. For a classification problem, the inputs of the NN are the
input features and the number of input units would depend on the number of features
in the data set. The output units would depend on the number of classes of the
problem. If it is a binary class problem, only one output unit is required. The output
unit can use the threshold function as given in Equation 1.2 and assign a value to each
class. For a multi-class problem, the number of output units can correspond to the
number of output classes and a winner-take-all strategy is then used, i.e., the output
class is decided on the output unit that has the highest value. These examples are just

some of the possible NN representations.

1.2 Evolutionary Algorithms

Evolutionary Algorithms are part of Evolutionary Computation (EC) and it

consists of Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary
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Strategies (ES) and Evolutionary Programming (EP)
[17][37][74][142][174][183][185]. EA follow the natural biological evolution of
offspring creation, modification processes and selection procedures to improve the
overall fitness of the population over the generations. Operators like the mutation is
required to create diversity within the population to escape from local optima.
Selection of offspring for next generation is based on the principle of survival of the
fittest. Through the use of these simple procedures, EA are able to evolve near
optimal solutions for many optimization problems. The flowchart of a typical EA is
shown in Figure 1.3.

Evolutionary algorithms are mainly used for optimization problems and more
recently, Multi-Objective Evolutionary Algorithms (MOEA) [22][33] are used to

optimize several objectives which are often conflicting.

Initialization

Parent population <

v

Offspring creation
and modifications

v

Evaluation and selection

Stopping criterion met?

Figure 1.3: Flow chart of a typical evolutionary algorithm
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1.3 Rule-Based Knowledge

In order for the users to easily understand the knowledge extracted from data, one
method used by EA is to present the extracted information using rules. There are
basically two types of rule encoding schemes employed by EA. The encoding of
chromosomes to represent a single rule is known as the Michigan encoding. An

example of a rule is given as [113][159][162],
IfA;and Azand ... A, then C.

where A, Vi € {1, 2,..., n}, is the antecedent of the rule for the ith input and # is the
total number of inputs. C is the consequence or the prediction of the rule. The
antecedents are seen as the independent variables while the consequences are the
dependent variables. This type of rule is interpreted as samples having inputs that
match the antecedents would have the following consequence. In a population of
Michigan rules, rules are seen as autonomous entities, where each rule classifies the
samples independently without being affected by other rules [162]. The insertion or
deletion of rules do not influence other rules within the population but would only
affect the overall performance of the population. Individual rule within the population
is only able to predict a particular class. For a multi-class problem, the coverage of all
the output classes would be a collective effort of all the rules.

Another chromosome encoding method (Pittsburgh encoding) to represent the
discovered knowledge is in terms of rule sets. A rule set is made up of a variety of

different rules and is represented as follows:



Chapter 1 Introduction

If Ay and Az and ... Ay then Cy
else ifAn and A, and .... Ay then C,

€ZS e Cgeneral

where A;;, V j € {1, 2,..., m}, is the antecedent part of the jth rule and m is the
maximum number of rules in the rule set. C;is the consequence of the jth rule. A rule
set is different from a single rule in several aspects. Firstly, a rule set is made up of
several individual rules, hence it is longer and more complex than a single rule.
Secondly, each rule set is able to predict several classes of a problem. Thirdly, the
ordering of rules in a rule set is important as it affects the overall performance of a
rule set.

When an instance is presented, the first rule of the rule set would be used to
classify this instance. If the first rule is not able to classify the instance, i.e., the rule’s
antecedents do not fit the instance, subsequent rules would be used in the specified
order until the instance is classified. If there are no rules that are able to classify the
instance, a general class is assigned. When a new instance is being classified by a rule
on top, rules at the bottom of the rule set would not have the chance to classify it, thus
it is important that rules at the top of the rule sets are good rules.

Both the Michigan and Pittsburgh encoding have their own advantages and
disadvantages. The Michigan approach presents a clear and simple rule encoding
technique which targets covering a specific region of the search space. Since the
search is confined to finding good solutions for a particular class, the search space is
much smaller as compared to the Pittsburgh approach. Typically, this results in faster
convergence of the EA and higher training fitness for each rule. On the other hand,

Pittsburgh encoding results in a more complex interpretation as the rule set is

10
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supposed to cover several possible outcomes. The search space of the Pittsburgh
approach is not only enlarged due to finding the overall solution to the problem but
also to discover an optimal combination and sequence of the individual rules.
However, the consideration of the rule components within the rule set inherently
allows Pittsburgh encoding to consider rule interaction, which is its main advantage.
This rule interaction is absent in Michigan encoding scheme as individual rule actions

and feedback are independent of the rest of the rules in the population [53][79][122].

1.4 Types of Data Analysis

Two types of data are used in this thesis. The first type is the classification data
while the second type is the time series data. The main aim of classification is to
predict the output classes based on the given inputs. Algorithms for classification are
presented in Chapter 2, Chapter 3 and Chapter 4. On the other hand, time series
forecasting aims to predict the future values based on previous observations. Chapter

5 presents the algorithm for time series forecasting.

1.4.1 Classification
This section presents the overview of classification and the data sets used in this

thesis.

1.4.1.1 Overview

Classification is part of the Knowledge Discovery in Databases (KDD) process
[115][133]. The whole process of KDD starts from the collection of raw data to
extraction of the knowledge. Raw data is collected by measurements and these data

are then preprocessed before introducing into the data mining algorithms. In some

11
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cases, as not all the data collected are useful for the specific purpose, data reduction in
terms of feature selection is done. Projection to lower dimension can also be done to
reduce the input complexity. These data are passed through data mining algorithms
for data analysis. Different types of analysis are done depending on the nature of the
data. The analysis is then evaluated and the given knowledge is able to assist expert

decisions. The flowchart is given Figure 1.4.
Trend &

. Reduction and
Preprocessing L.
projection
deviation

Classification detection

Sequential o
O Summarization
pattern mining
Association
pattern mining

Data Knowledge

mining

Data
collection

|

Figure 1.4: Knowledge discovery process

1.4.1.2 Classification Data Sets

These data sets are taken from the University of California, Irvine (UCI) machine
learning repository [18] benchmark collection. The data are collected from real-world
problems. Some of the data sets are pre-processed by PROBENI benchmark

collection [130]. The details of the data sets are given below:

Cancer Data Set: The objective of the cancer problem is to diagnose breast cancer in
patients by classifying a tumor as benign or malignant. The “Breast Cancer
Wisconsin” problem data set was originally collected in the University of Wisconsin
Hospitals, Madison, by Dr. William H. Wolberg [108]. 458(65.5%) of the samples in

the data set are benign while 241(34.5%) of the samples are malignant. There are nine

12
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attributes as given in Table 1.1.

Table 1.1: Attribute descriptions — cancer

Z
©

Attribute descriptions

Clump thickness
Uniformity of cell size
Uniformity of cell shape
Marginal adhesion
Single epithelial cell size
Bare nuclei
Bland chromatin

Normal nucleoli

O 0 9 N LD AW N~

Mitoses

Card Data Set: This data set in PROBENI benchmark collection contains data
collected for credit card applications. The problem is to decide whether approval
should be given to a credit card application. The “crx” data of the credit screening
problem in the UCI machine learning repository was used to create this data set.
Description for each attribute is not disclosed, for confidentiality reasons, in the
original data set. There are a total of 15 attributes, 2 outputs and 690 instances. The
class distribution is 44.5% (307 out of 690 instances) of applications are granted

approval and 55.5% (383 out of 690 instances) denied.

Diabetes Data Set: The diabetes problem is to diagnose a Pima Indian individual
based on personal data and medical examination for diabetes. For this data set, 500
(65.1%) samples do not have diabetes. There are eight attributes and two output

classes. The descriptions of the attributes are shown in Table 1.2.

13
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Table 1.2: Attribute descriptions — diabetes
Attribute descriptions

Z
©

Number of times pregnant
Plasma glucose concentration
Diastolic blood pressure
Triceps skin fold thickness
2-Hour serum insulin
Body mass index
Diabetes pedigree function
Age

0 N N R WND

Glass Data Set: Glass classification is extremely useful in criminological
investigation, as the glass left behind at the crime scene could be used as criminal
evidence if they are correctly classified. The problem is to classify glasses into one of
the six different glass types based on chemical properties content. The input attributes
for this problem are shown in Table 1.3.

Table 1.3: Attribute descriptions — glass
No. Attribute descriptions

Refractive index
Na: Sodium
Mg: Magnesium
Al: Aluminum
Si: Silicon
K: Potassium
Ca: Calcium
Ba: Barium

O 0 9 N Li AW N~

Fe: Iron

Heart Data Set: The heart problem data was collected from the Cleveland Clinic
Foundation by principle investigator Andras Janosi, M. D., Hungarian Institute of
Cardiology, Budapest. There are 13 attributes in this problem and the goal is to
determine if heart disease is present in a patient. 54.1% (164) of the examples do not
have heart disease, while 45.9% (139) of the examples show presence of heart

disease. The descriptions of the attributes are shown in Table 1.4.

14



Chapter 1 Introduction

Table 1.4: Attribute descriptions — heart
Attribute descriptions
Age
Sex

Z
e

Chest pain type
Resting blood pressure
Serum cholesterol
Fasting blood sugar
Electrocardiographic results
Maximum heart rate

O 0 3 N Li A W N —

Exercised induced angina

—
(e}

ST depression

—
—

Peak ST segment slope

—
\S]

No. of major vessels
Thal

—
W

Iris Data Set: The iris data set is a multi-class botanical problem and has been one of
the most widely used data set in the pattern recognition literature [44]. Among the
three classes, one class is linearly separable from the other two classes while these
two classes are non-linearly separable. The three different types of iris plant to be

identified are the iris setosa, versicolour and virginica.

Table 1.5: Attribute descriptions — iris

No. Attribute descriptions
1 Sepal length
2 Sepal width
3 Petal length
4 Petal width

Soybean Data Set: This data set aims to identify 19 different diseases of soybean
based on bean and plant physical descriptions and information regarding plant’s life
history. There are 35 input features, 19 output features and 683 examples. This data
set has the largest number of classes in PROBENI benchmark collection [130]. As
there are too many features, the details are not listed here. For details of the data set,

please refer to [130].
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1.4.2 Time Series Forecasting
This section presents the overview of time series forecasting and the type of time

series used in this thesis.

1.4.2.1 Overview

Patterns of time series data are often categorized as trend or seasonal. Trend
patterns do not have patterns repeating within the observed time period, while
seasonal patterns would have similar patterns for some period within the observations.
Typically, time series data are often erroneous, noisy and filled with outliers. Simple
techniques, like the moving average with a predefined averaging window size [21],
are used for filtering.

A time series is represented by X =[x,,x,,...,x,], where n is the number of
observations and [x;,x;,,] is equally spaced observations in time, Vi =1,...,n—1. The

basic working mechanism of TSF lies in the assumption that a consecutive sequence
of observations in time is representative of the successive observations. In this case,
the primary objective of TSF techniques is to first derive the relationship of the
current observations, then based on the identified relationship, predict the future

output values. Mathematically, using [x,,x,, ,] observations to predict x

i+w-l+g °
where w is the sliding window length (i.e., number of time steps used for prediction)

and ¢ is the number of steps ahead to predict.

1.4.2.2 Financial Time Series
Stock market indices, being one of the main indicators of stock valuation and
consumers’ sentiments of companies, could be largely fluctuating as it is highly

responsive to the current economic outlook. Amidst the large movements and often

16



Chapter 1 Introduction

unexpected changes, there lie substantial opportunities for investors to gain from the
market. Several studies have started in this field, this includes trading strategies,
financial time series forecasting and portfolio optimization
[14][32][43][86][126][141][151]. The use of mathematical models and intelligent
systems would be able to provide prompt and better understanding of the market trend
[55].

In Financial Time Series Forecasting (FTSF), technical analysts hope to derive
some relationship among past and current market data and present it for future uses
and gains. The ability to predict the future prices of equities and market indices is
pertinent for fund managers to make sound decisions. However, numerous factors
could affect the market indices, with large capital flows exchanged between different
institutions, banks and retailers in day to day trading activities. With these activities,
huge amount of data are accumulated to be analyzed. The area of financial index
prediction has always been a sought after research area and in recent years it is
gaining significant attention from researchers in the field of TSF.

The data sets used in this thesis are the main indexes in the London and United
States stock exchange markets. The algorithm in Chapter 5 is applied on the Financial
Times Stock Exchange (FTSE) index, Standard & Poor’s 500 (S&P 500) index and
the National Association of Securities Dealers Automated Quotations (NASDAQ)
index. The FTSE represents the index for the most highly capitalized companies on
the London stock exchange, while the S&P 500 consists of 500 large market

capitalization corporations in the United States market.
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1.5 Contributions

The main contribution of this thesis is to illustrate the use of CI techniques for
data analysis, focusing particularly on identifying the current issues and proposing
new and effective algorithms. The techniques studied can be broadly grouped into
non-rule-based and rule-based approaches.

For non-rule-based approach, the architectural design issues of NN are discussed.
In Chapter 2, the lack of partitioning of the input space in conventional NN training is
investigated. An improved NN architecture with reduced interference in the input
space is then proposed. In Chapter 3, a novel EA, which uses a growth probability, is
proposed to optimize the architecture and weights of NN.

For rule-based approach, Chapter 4 proposed an Evolutionary Memetic Algorithm
(EMA) for rule extraction to discover knowledge from data sets. In EMA, two
different local search schemes are used to complement the global search capability of
EA. In Chapter 5, a multi-objective optimization algorithm, incorporated within a dual
phase framework, is proposed to evolve rules for TSF.

In general, the proposed algorithms have shown to be effective for data sets that
spread over a variety of fields. The algorithms produced results that are generally
good and comparable to those in existing literature.

The contributions and motivation for each proposed algorithm will be given in

further details in the respective chapters.
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Interference-Less Neural Network

Training

In classical methods of NN training, all the input attributes are connected to the
same hidden neurons and these attributes are introduced together to the network for
training concurrently. However, these input attributes have different levels of
classification abilities with some having higher discrimination factor. In addition,
different attributes have different classification criteria and attributes will interfere in
the decision making of others if all attributes are trained in the same batch
concurrently. Interference among attributes leading to poor accuracy might arise
because attributes under training are affected by the decisions of other attributes that
are inconsistent with theirs. Many real-world data consist of conflicting information
[85], causing the network to take a long time to decide its direction and thus affecting
the accuracy of output results. It is important to ensure learning by some input
attributes is not undone by other attributes [181].

The performance of NN could be influenced by several factors like network
architecture, training algorithm, etc. In particular, the input space architecture is of
great importance [62][63][64][65][66][76][128]. For neuro-fuzzy networks
approaches [90], grid partitioning is applied to the input data of the data set in order to
generate an initial fuzzy inference system. Recursive partitioning in input space is
applied to overcome the limitations of conventional neuro-fuzzy systems [175]. [148]

partitions the input space into different regions and applies differential weighting for
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different regions so that they have different agents that are specialized in local
regions. These works however do not investigate the interference that exists in the
networks and the interference among the attributes constitutes a major setback to the
classification ability of the NN.

Weaver et al. [181] mitigates the interference (learning in one part of the network
causing unlearning in the other part) effect by reduction of a bi-objective cost function
that combines the approximation error and a term that measures interference to adjust
the weights of an arbitrary, non-linearly parameterized network. [88] investigates the
interference (learning due to new samples causing unlearning of the old samples)
caused by training NN when data are presented incrementally, i.e., data samples are
shown sequentially. A Long Term Memory (LTM) is incorporated into Resource
Allocation Network (RAN), i.e., the network will train all the new data and part of the
old data. Though these works investigated the interference, they do not deal directly
with the input space as previously discussed as an important factor affecting network
performance. They do not determine the interference between the input attributes and
devise an attribute partitioning algorithm to avoid interference.

In this chapter, Interference-Less Neural Network Training (ILNNT) algorithm
which determines the interfering relationship between input attributes, and partitions
them accordingly to this relationship, is studied in detail. Two attributes are first
analyzed for interference. Using the partitioning algorithm, mutually benefiting
attributes are grouped together to maximize the information contained in them while
interfering attributes are separated and trained under different sub-networks. It is
usually difficult to decide which batch a particular attribute should belong to, as an
attribute can belong to several batches. The algorithm proposed in this chapter tries to

make grouping as comprehensive as possible. The architecture of ILNNT is built
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upon an incremental NN as this network construction technique is suitable for the
application of the interference-less algorithm. There are several incremental NN
available in the literature [61][66][147] and the architecture of ILNNT is built upon
ILIA (Incremental Learning in terms of Input Attributes) [61].

This chapter is divided into 6 sections. The next section states the Constructive
Backpropagation (CBP) Learning Algorithm and Section 2.2 describes the
incremental NN used for ILNNT. In Section 2.3, the details of ILNNT are presented.
Section 2.4 states the experimental setup and data sets used. The experimental results
of different data sets are given and analyzed in Section 2.5. Finally, the conclusions

are given in Section 2.6.

2.1 Constructive Backpropagation Learning Algorithm

The architecture of ILNNT is built upon ILIA [61] and the incremental algorithm
adopted the constructive backpropagation learning algorithm [93] to train the weights
and to determine the number of hidden neurons needed for each of its sub-network.

The CBP learning algorithm can be briefly described in the following steps:

Step 1: Apply direct connections from the input units to the output units, and
initialize this network with bias weights. Training of the weights is by
minimizing the sum of squared error (Equation 2.1). Values of the weights at
the end of training are then fixed. No hidden units (hidden neurons) are

installed in this initial network.
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Step 2:

Step 3:

Step 4:

Error = ;;(% -d,)’ (2.1)
where m = total number of training examples, o = number of outputs for the
problem, a; = actual network jth output unit value for the ith training
example, and dj; = desired network jth output unit value for the ith training
example.

Add a new hidden unit to the network (nth unit, » > 0). Connect the input
units and output units to this new hidden unit. Training of the weights
connected to the new hidden unit then uses the modified sum of squared
error.
m o n—1 2
ModifiedError, = (di/. - Z uhy, — urg/'hm'j (2.2)
=1 0

i=1 j=1 k=

where uy; = connection from the kth hidden unit to the jth output unit, Ay =
output of the kAth hidden unit for the ith training example (k = 0 represents
step 1), u,; = connection from the nth hidden unit to the jth output unit, and
h,; = output of the nth hidden unit for the ith training example.

Fix the weights obtained in step 2.

Evaluate the performance of the network. If the performance of the network

is acceptable, stop adding more hidden units, else repeat step 2.

2.2 Incremental Neural Networks

Incremental Learning in terms of Input Attributes (ILIA) [61] is a type of

constructive NN that is concern with new incoming attributes to the existing pool of

attributes. When additional input attributes are to be considered, ILIA expand its input
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dimension to accommodate these new attributes while fixing its existing architecture.
Learning is done only for the new sub-network formed for the new attributes. ILIA
used the CBP learning algorithm and applied the method of early stopping using a
validation data set to prevent overfitting [130]. Details of ILIA can be found in [61]

while a brief description is given in the following sub-sections.

2.2.1 Incremental Learning in terms of Input Attributes 1

Existing available attributes are first presented to the NN as shown in Figure 2.1.
This network consists of direct connections from all the input units to all the output
units. All the input units are also connected to the same hidden units and eventually
the hidden units are connected to all the output units. The CBP learning algorithm
[93] is used to train the weights and to determine the number of hidden neurons

needed. The weights are fixed when the network is fully trained.

T

A

Hidden layer

"""" Input layer

@ : Output units Q : Hidden units

A : An attribute T : A bundle of interconnections

Figure 2.1: Initial network

When there are new attributes to be considered, increase the input dimension to

accommodate the new attributes. This is done by adding a new sub-network (in terms
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of new direct connections and new hidden units) to the existing network. Figure 2.2
shows the new NN architecture. There are direct connections from all the new input
units to all the output units and all the new hidden units. The new hidden units are
also connected to all the output units. There are no connections between the new input
units and the hidden units of the initial network. The NN obtained here is a single
hidden layer feedforward NN. The process of training the weights and installing new

hidden units is only done for the new sub-network.

- Output layer

Hidden layer

A, ...Ay :Existing attributes
Bi...Bum :New attributes

Figure 2.2: Architecture of ILIA1

2.2.2 Incremental Learning in terms of Input Attributes 2

ILIA2 (Figure 2.3) extends ILIA1 by adding a new output layer to the network
obtained in ILIA1. The number of new output units added is equal to the number of
output units in ILIA1. Thus, the old output layer in ILIA1 is effectively collapsed and
becomes a new hidden layer. New connections are created from all input units and
new hidden units (previous output units) to the new output units. Eventually, all the
newly added connection weights are adjusted. The motivation for ILIA2 is to obtain

more information than ILIA1 as it collapses the original output layer, therefore it has
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the potential to grasp higher-order information and to ‘update’ or ‘improve’ the
existing network via the added connections between the new output units and the

collapsed output units.

Output layer

New hidden
layer

Hidden layer

Input layer

Figure 2.3: Architecture of ILIA2

2.3 Details of Interference-Less Neural Network Training

The ILNNT consists of three main steps; the interference table formulation,
interference-less grouping using the partitioning algorithm and training the network in

batches. The details of each step are given in the following sub-sections.

2.3.1 Interference Table Formulation

The interference table consists of two main components; the Individual
Discrimination Ability (IDA) of an attribute [67] (error of that particular attribute
when other attributes are absent from the NN training), and Co-Discrimination Ability
(CDA) of any two attributes (error of those two attributes when other attributes are

absent from the NN training).
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2.3.1.1 Individual Discrimination Ability Evaluation

Figure 2.4 shows the network used to evaluate IDA [67]. The learning algorithm
used for this network is the CBP learning algorithm. This NN only has one attribute
in the input space. The lower the error attained by the NN, the higher is the

discrimination ability of the attribute used by the NN.

Output layer

Hidden layer

A Input layer

Figure 2.4: Network used to evaluate individual discrimination ability

2.3.1.2 Co-Discrimination Ability Evaluation

Figure 2.5 shows the network used to evaluate the CDA of any two attributes, i.e.,
error resulting from training the two attributes in the same batch. The input layer will
only consist of those two attributes to be tested. All inputs will have direct

connections to the output units and to the same hidden units.
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Hidden layer

Input layer

A
A

, ‘Istattribute

, :2nd attribute

Figure 2.5: Network used to evaluate co-discrimination ability

2.3.1.3 Interference Table

Table 2.1 shows a generic interference table. I; or I; represents the IDA and Ej;
represents the error arising from training attribute i/ and attribute j together. If (E;; > I;
or E; > I;), then attribute 7 and attribute j are interfering, else if (Ej; < I; and E; < I)),

they are non-interfering.

Table 2.1: Interference table

Attribute 1 2 3 4 5 1 N
1 I
2 E; L
3 Eis Ea; L
4 Eu Eo Es4 14
5 Eis Eas Ess Ess Is
6 Ei6 Ex Es6 Eus Es¢ Is
N Eix Exx Esx Ex Esx Eon | oo In
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To illustrate the concept, Table 2.2 shows the interference table of the diabetes
problem. There is interference among some of the attributes. Attribute 4 has
significant interference, interfering with half of the other attributes, e.g., attribute 6
IDA is 21.68%, but when trained with attribute 4, it increases to 21.72%. Also from
the table, information regarding attributes that are beneficial to other attributes can be
determined. Attribute 1 does not interfere with any other attributes, e.g., when trained

with attribute 6, error decreases to 20.50% which is lower compared to their IDA.

Table 2.2: Interference table - diabetes

:/r(')ror 1 2 3 4 5 6 7 8

1 21.74

2 16.25 17.08

3 21.73 16.90 23.27

4 21.64 17.14 23.09 23.14

5 21.12 17.01 22.87 22.95 22.92

6 20.50 16.84 21.51 21.72 21.49 21.68

7 21.18 17.09 22.67 22.57 22.49 21.27 22.73

8 19.61 15.04 19.85 20.05 20.11 19.37 20.20 20.02

Table 2.3: Summary of the interference table - diabetes

Attribute Does not interfere with Interfere with
1 2345678 -

2 13568 47

3 1245678 -

4 137 2568

5 12367 48

6 123578 4

7 13456 28

8 1236 457

Notes: The column ‘Does not interfere with’ contains attributes that have no interference with the
attribute in the ‘Attribute’ column.
The column ‘Interfere with’ contains attributes that interfere with the attribute in the
‘Attribute’ column.
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2.3.2 Interference-Less Partitioning Algorithm Formulation

Following the determination of interference among the attributes, the interference-

less partitioning algorithm is able to draw on this information and make groupings

that reduce interference among the attributes while maximizing attributes’ co-benefits.

In this case, not only the interference among attributes is reduced but the performance

of individual attribute can also be boosted by allowing other attributes that will assist

it to be trained together. The algorithm is recursive in nature, trying to group as many

mutually beneficial attributes together.

2.3.2.1 Partitioning Algorithm

(A)

(B)

Choose a starting attribute. Set starting attribute as reference attribute, split
attributes into 2 batches; interfering and non-interfering. The interfering batch
has all the attributes that interfere with the reference attribute while the non-
interfering batch has all the attributes that do not interfere. To have a more
comprehensive partitioning, every attribute should be used once as the starting
attribute after each round. With different starting attribute, different possible
partitioning can be achieved. From the different possible partitioning, the
network that performs best in the training phase could be applied on unseen data.
Use next attribute in sequence as the reference attribute. Distinguish the batch
the reference attribute belongs to. Identify if there are any interfering attributes
within the batch. If there are no interfering attributes, terminate step B, else
identify the number of interfering attributes with the reference attribute and
group them as follows:

e If the number of interfering attributes is greater than the number of non-

interfering attributes, take out the reference attribute.
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e If the number of interfering attributes is less than or equal to the number of
non-interfering attributes, take out the interfering attributes to form a new
batch.

Apart from the sequence mentioned, there are other possible sequences to choose

the next attribute as the reference attribute, e.g., the attributes could be arranged in

order of number of attributes that they interfere with, and the partitioning
sequence could be tried for this ordering.

(C) Repeat step B until the reference attribute selection is back to the starting
attribute.

(D) Retain the largest batch and group all attributes in the smaller batches together.
Nothing is to be done for the largest batch and a new batch is formed from the
combination of the smaller batches.

(E) Perform step A to step C to the newly formed batch.

(F) Repeat steps D and E until no new partitioning is achieved.

The flow chart for the algorithm is given in Figure 2.6.

Elimination of interference is done by separating attributes that do not give good
accuracy when being grouped together. They produce worse results when compared
to individual attributes that are trained alone. The cooperation among attributes is
enhanced by grouping those attributes that are mutually beneficial. The algorithm
does not separate those attributes whose co-relation is favorable for better
classification. When an attribute is beneficial to other attributes in the batch, they are
retained. Attributes are only taken out from a batch if there are more interfering
attributes than non-interfering attributes. Since the algorithm starts with all attributes
in a batch, cooperation is maintained when mutually beneficial attributes are allowed

to remain within a batch. In addition, instead of ending the algorithm after one round
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of partitioning, the smaller batches are grouped together and the partitioning
algorithm is applied again on the newly grouped attributes. This has the effect of
forming larger groups for mutually beneficial attributes.

The interference table computation takes into consideration the interference
relationship of two attributes. The interference relationship between more attributes
taken together could be similarly achieved, but at the expense of higher computational
cost. Interference computation could be done intensively for all possible combination
of attributes, which in this case would be extremely large and eventually would not
need any partitioning algorithm since the grouping is so comprehensive that all
possibilities are tested. The algorithm presented in this chapter provides a trade-off
between the computation complexity and accuracy, hence termed interference-less

rather than interference-free.
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New grouping

Perform the fundamental
algorithm (dotted box) to
the new batch.

?

> Group all attributes in the
smaller batches together.

A

Choose a starting attribute.

!

Set starting attribute as reference attribute. Spilt
attributes into 2 batches: interfering and non-interfering.

A

Use next attribute in sequence as the

reference attribute.

Reference attribute =

Starting attribute?

Distinguish the batch that reference
attribute belongs to.

Any intering attribute No

within batch?

No. of interfering attributes >
No. of non-interfering attributes?

Yes
No
Take out reference Take out interfering
attribute. attribute/s to form a

new batch.

Figure 2.6: Flowchart of interference-less partitioning algorithm
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2.3.2.2 An Example — Diabetes Data Set

The diabetes data set contains 8 attributes. Each trial represents the partitioning

result when an attribute is used. If there are n attributes, a complete fundamental

round will consist of # trials. Using Table 2.2 or 2.3, the partitioning algorithm

proceeds as follows:

Trial 1: As an example, choose attribute 5 as the starting attribute. Using attribute 5

Trial 2:

Trial 3:

Trial 4:

as the reference attribute, split attributes into 2 batches, interfering and non-
interfering. The non-interfering batch in this case is (1 2 3 5 6 7) and the
interfering batch is (4 8).

Use the next attribute in sequence, i.e., attribute 6 as the reference attribute
now. Distinguish the batch that attribute 6 belongs to. Attribute 6 belongs to
the batch (1 2 3 5 6 7). Since there are no interfering attributes within the
batch, nothing needs to be done. Though attribute 6 interferes with attribute
4, attribute 4 belongs to another batch, thus it is not a concern here. At the
end of trial 2, the partitioning remains at (1 23 56 7) (4 8).

Use attribute 7 as the reference attribute. Attribute 7 belongs to the batch (1
2356 7). Attribute 2 is identified as an interfering attribute within the same
batch as attribute 7. Within the batch (1 2 3 5 6 7), the number of interfering
attributes with attribute 7 is one, whereas the number of non-interfering
attributes with attribute 7 is four. The number of interfering attributes is less
than the number of non-interfering attributes. Attribute 2 is taken out from
the batch. The new grouping is (1 356 7) (2) (4 8).

Use attribute 8 as the reference attribute. Note that attribute 8 belongs to the
batch (4 8). Attribute 4 interferes with attribute 8 and the number of

interfering attributes is greater than number of non-interfering attributes.
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Attribute 8 is taken out from the batch. The new grouping is (1 3 5 6 7) (2)
4 (8).

Trial 5: Attribute 1 is considered as the next attribute in sequence. Since attribute 1
does not interfere with any attributes within its batch, nothing is to be done.

Trial 6: Attribute 2 is used as the reference attribute. Attribute 2 is a standalone batch
by itself, i.e., does not interfere with any attributes within its batch, nothing
needs to be done. Grouping remains at (1 3 56 7) (2) (4) (8).

Trial 7: Attribute 3 is the reference attribute and since it does not interfere with any
attributes within its batch, nothing needs to be done.

Trial 8: Attribute 4 is used as the reference attribute. Attribute 4 is a standalone
batch by itself, i.e., does not interfere with any attributes within its batch,
nothing needs to be done. Grouping remains at (13 5 6 7) (2) (4) (8).

Since attribute 5 is the starting attribute, one fundamental partitioning round is
over. Use different starting attribute for different rounds to get different possible input
space partitioning.

A sub-round starts after one fundamental partitioning round ends. Group all the
smaller batches together; batch (2) (4) (8) will effectively become (2 4 8). The
aforementioned partitioning is applied, and the resulting groups will be (2 8) (4).
Since no new partitioning can be derived from here on. The final grouping is (1 3 5 6
7) (2 8) (4). If the algorithm had stopped at only one round, mutually benefiting
attributes 2 and 8 would not be grouped together. However, due to the recursive

nature of the algorithm, this is made possible.
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2.3.3 Architecture of Interference-Less Neural Network Training

The incremental learning architecture of ILIA [61] fits the requirement of ILNNT

by providing separated training for different batches of attributes. ILNNT aims to

have separated training for different batches categorized by interference. The

incorporation of ILIA into ILNNT is described below:

Step 1:

Step 2:

Step 3:

Begin training for the first batch of attributes, i.e., this forms the first sub-
network. The chosen first batch of attributes depends on user’s batch
ordering. The ordering used in this chapter is the numeric ordering where the
batch that contains the attribute with the smallest index would be trained
first. This numerical ordering is used for convenience. Other ordering could
also be tried and tested, e.g., ordering which is based on larger batches in-
front of the queue. This would mean increasing the convergence rate in the
early training period and smaller batches would be used for fine-tuning in
the late training stage. When the sub-network is fully trained, all the weights
are fixed.

Introduce the next batch of attributes (based on ordering in step 1) by
forming a new sub-network. Training of the weights is only done for this
new sub-network. Once again, when the sub-network is fully trained, all the
weights are fixed.

Repeat step 2 until there are no more batches of attributes not used to train

the NN.

The final output of the NN is determined using the winner-take-all strategy, i.e.,

the decided class goes to the output neuron with the highest output value. The overall

architecture of ILNNT]1 is shown in Figure 2.7.
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Figure 2.8 illustrates an example of ILNNT1 using the resulting partition (1 3 5 6
7) (2 8) (4) of the diabetes data set. The algorithm identifies three batches, which
means there will be three sub-networks. Batch 1 consisting of 5 attributes will be train
first. After training, the weights are fixed. It is then followed by training batch two (2
attributes) and finally, the last batch.

ILNNT2 extends ILNNT1 by collapsing the output units and adding a new output
layer. Thus, the previous output units have effectively become the hidden units in

ILNNT?2. It is an attempt to improve ILNNT1 for better classification accuracy.

Output
layer

Hidden
layer

Input
layer

E . § -Represents one batch of mutually

non-interfering attributes

....................

Figure 2.7: ILNNTI1 (ILIA1) architecture

36



Chapter 2 Interference-Less Neural Network Training

Output layer

Hidden layer

Input layer

Figure 2.8: ILNNT]1 for the diabetes problem

Output
layer

Collapsed

output layer

Hidden
layer

Input
layer

Figure 2.9: ILNNT?2 (ILIA2) architecture

2.4 Experimental Setup and Data Sets

2.4.1 Experimental Setup

The NN were randomly initialized with values [-0.25...0.25]. 50% of the total
examples in each data set is used as training data, 25% as validation data and the
remaining 25% as testing data.

The method of early stopping using a validation data set is used to prevent

overfitting. The network that obtains the lowest validation data set error will be
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applied on the testing data. The testing data is not used in any training or partitioning

process but presented to the trained NN to evaluate its generalization accuracy.

2.4.2 Data Sets

The data sets chosen are the diabetes, heart, glass and soybean data sets. The
diabetes and heart data sets are binary class problems whereas the glass and soybean
are multi-class problems. The soybean problem is a much larger data set in terms of
higher number of input attributes and output classes compared to the other problems.
This data set serves as an additional indicator to ILNNT performance for data sets
with larger dimension. These data sets are chosen such that they are spread across
different domains, i.e., from medical [11][70][71][121][127], agricultural [45][138] to
criminal investigation [120][178], as such, this would show how well ILNNT

performs generally in different fields rather than just in a particular field.

2.5 Experimental Results and Analysis

This section presents the results and findings of the ILNNT.
2.5.1 Interference and Partitioning
Examples of the interference table and resulting partitioning of the different data

sets are given in this section.

Diabetes Data Set: The groupings resulting from the partitioning algorithm using

different starting attributes are shown in Table 2.4.
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Table 2.4: Partitioning obtained - diabetes

Starting attribute used by algorithm

Resulting attribute grouping

1,2

(12356)(47)(8)

3,4,7

(1347)(256)(8)
(1347)(268)(5)

5,6

(13567)(28) (@)

8

(12368)(47)(5)
(12368)(4)(57)

Heart Data Set: An example of the interference table shows that attribute 6 (fasting

blood sugar) interferes with most of the other attributes. As the other attributes have

no interference among each other, there are only two possible partitions.

Table 2.5: Interference table - heart

1 2 3 4 5 6 7 8 9 10 11 12 13
1 | 23.04
2 | 21.77 | 23.36
3 | 13.95 | 14.68 | 14.68
4 | 2274 | 2250 | 14.13 | 23.42
5 | 2283 | 22.25 | 14.24 | 22.95 | 23.86
6 | 2342 | 23.33 | 15.07 | 24.07 | 24.22 | 24.49
7 | 22.07 | 21.59 | 14.09 | 22.47 | 22.60 | 23.31 | 22.94
8 | 2066 | 20.63 | 14.05 | 20.28 | 20.64 | 21.41 | 20.53 | 20.95
9 | 17.41 | 18.26 | 12.95 | 18.04 | 18.08 | 18.68 | 17.50 | 17.11 | 18.45
10 | 16.98 | 17.10 | 11.78 | 17.0 | 17.04 | 17.79 | 17.00 | 16.28 | 14.51 | 17.38
11 | 18.94 | 18.66 | 11.97 | 19.21 | 19.25 | 19.41 | 19.53 | 18.44 | 15.84 | 16.40 | 19.73
12 | 17.40 | 16.48 | 11.47 | 16.90 | 17.36 | 17.58 | 17.08 | 16.37 | 14.22 | 13.71 | 14.49 | 17.50
13 | 18.21 | 18.49 | 12.97 | 18.74 | 18.62 | 18.73 | 17.35 | 16.77 | 16.18 | 14.92 | 16.19 | 14.59 | 18.88
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Table 2.6: Summary of the interference table - heart

Attribute Do not interfere with Interfere with

1 234578910111213 6

2 13456789101112 13 -

3 1245789101112 13 6

4 123578910111213 6

5 123478910111213 6

6 21113 13457891012

7 123458910111213 6

8 1234579101112 13 6

9 123457810111213 6

10 12345789111213 6

11 123456789101213 -

12 12345789101113 6

13 1234567891011 12 -

Table 2.7: Partitioning obtained - heart

Starting attribute used by algorithm Resulting attribute grouping
1,2,3,4,5,7,8,9,10, 11, 12, 13 (123457891011 12 13) (6)
6 (13457891012) (2611 13)

Glass Data Set: There are several interference detected among the attributes. A
summary of attribute interference is presented in Table 2.9 and the resulting partitions
that uses different starting attribute are shown in Table 2.10. With several interference

detected, the algorithm gave a few grouping for the input attributes.
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Table 2.8: Interference table — glass

1 2 3 4 5 6 7 8 9
1 |12.273
2 | 10.638 | 11.043
3 19567 |9.428 | 11.858
4 | 10.581 | 9.985 | 9.511 | 10.543
5 | 12.063 | 10.535 | 10.053 | 10.540 | 12.270
6 | 10.409 | 10.897 | 9.887 | 10.257 | 10.949 | 11.328
7 | 11.248 | 10.450 | 9.033 | 10.110 | 11.936 | 10.763 | 11.858
8 |9.958 |10.023 | 9.170 | 9.527 9.905 | 9.635 |9.305 | 9.994
9 | 12.129 | 10.889 | 10.267 | 10.399 | 12.241 | 11.423 | 11.893 | 10.091 | 12.262

Table 2.9: Summary of the interference table — glass

Attribute Does not interfere with Interfere with
1 2356789 4

2 1345679 8

3 12456789 -

4 2356789 1

5 1234689 7

6 1234578 9

7 123468 59

8 134567 29

9 12345 678

Table 2.10: Partitioning obtained - glass

Starting attribute used by algorithm

Resulting attribute grouping

1 (12356)(478)(9)
2 (178)(23456)(9)
w (127)(34568)(9)

(129)(34568)(7)

(13568)(247)(9)

%8 (13568)(249)(7)
6,7 (13678)(2459)
9 (12359)(4678)
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Soybean Data Set: As the soybean interference table is too large to be presented

here, only a summary of the interference table and the partitioning obtained are

shown.
Table 2.11: Summary of the interference table — soybean
Attribute Does not interfere with Interfere with
1-4, 6, 11-14, 16-19, 21-35 1-35 -
5 1-7,9, 11-35 810
7 1-14, 16-35 15
8 1-4, 6-9, 11-35 510
9 1-9, 11-35 10
10 1-4, 6-7, 10-19, 21-35 58920
15 1-6, 8-35 7
20 1-9, 11-35 10

Table 2.12: Partitioning obtained - soybean

Starting attribute used by algorithm Resulting attribute grouping
(1-7,9, 11-14, 16-35) (8 15) (10)

-5, 16-35 (1-7,9, 11-14, 16-35) (8) (10 15)
. (1-4, 6-9, 11-14, 16-35) (5 15) (10)
(1-4, 6-9, 11-14, 16-35) (10 15) (5)
g (1-4, 6, 8-9, 11-35) (5 7) (10)
(1-4, 6, 8-9, 11-35) (5) (7 10)
1-6, 9, 11- 1
6.5 1139010y (5
0 (1-4, 6, 10-19, 21-35) (5 7 9 20) (8)

(1-4, 6, 10-19, 21-35) (7 8 9 20) (5)

2.5.2 Results Comparison

Comparisons are made with conventional NN training, i.e., all the input attributes
are introduced together at the same time into the NN for training. In order for the
basis of comparison to be consistent, both the conventional method and the ILNNT

use the CBP learning algorithm [93] for network learning.
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The results of the final architecture of ILNNT is derived after several stages like
the formulation of individual discrimination ability, interference of any two attributes,
the partitioning algorithm, etc. Therefore, the computational complexity of the
algorithm would only be accurate if all the preprocessing steps are included in the
calculation. However, it is hard to track the computational complexity of all these
preprocessing steps, e.g., it is hard to quantify the computation of the interference
table and the partitioning process. In addition, as classification is commonly done
offline rather than online, only the generalization accuracy acts as the major

evaluation metric in this chapter.

2.5.2.1 Diabetes Data Set

Table 2.13: ILNNT results comparison with the conventional algorithm — diabetes

Algorithm Mean error (%) Maximum error (%) Minimum error (%) SD
ILNNT 23.83 29.69 18.75 0.959
Conventional 24.32 27.08 19.27 1.05

The mean error of ILNNT (23.83%) is lower than the conventional method
(24.32%). The lower mean error shows that it is important to have partitioning in the
input space for problems with interference among the input attributes. In addition,
ILNNT has a smaller standard deviation. One would like to have a small standard

deviation so as to achieve consistent and reliable results.

2.5.2.2 Heart Data Set

The ILNNT has achieved a lower mean error on the heart data set as compared to

the conventional method. Partitioning is needed for this problem as the attributes
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show signs of interference. The ILNNT also has lower standard deviation as

compared to the conventional method.

Table 2.14: ILNNT results comparison with the conventional algorithm — heart

Algorithm Mean error (%) Maximum error (%) Minimum error (%) SD
ILNNT 20.99 26.32 15.79 1.64
Conventional 21.56 26.67 14.47 2.18

2.5.2.3 Glass Data Set

The mean error result obtained by ILNNT (35.71%) has outperformed the
conventional method (37.10%). The ILNNT is also a more consistent algorithm as it
has a smaller standard deviation. By lowering the interference, NN training is able to
achieve better performance. The conventional method could not handle a multi-class

problem like the glass problem with many interfering attributes.

Table 2.15: ILNNT results comparison with the conventional algorithm — glass

Algorithm Mean error (%) Maximum error (%) Minimum error (%) SD
ILNNT 35.71 44.44 27.78 3.66
Conventional 37.10 47.17 24.53 4.54

2.5.2.4 Soybean Data Set

ILNNT mean error is about 11% (((7.71-6.86)/7.71)x100%) lower than the
conventional method. The maximum and minimum errors are also lower. ILNNT is
able to perform well for data sets with high input and output dimensions. Among all
data sets, ILNNT has the best performance for the soybean data set in terms of

percentage improvement over conventional method.
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Table 2.16: ILNNT results comparison with the conventional algorithm — soybean

Algorithm Mean error (%) Maximum error (%) Minimum error (%) SD

ILNNT 6.86 11.18 2.34 1.00

Conventional 771 11.77 2.92 1.10
2.5.3 T-Test

The t-test [131][162] has been used as an additional indicator for the performance
of the algorithms besides just comparing the mean results and standard deviations.
The #-test is used when there are some relationships between members of each
sample. The P-values against the conventional method for all data sets show

significance, meaning that ILNNT has outperformed the conventional algorithm with

confidence.
Table 2.17: Results of ¢-test
Diabetes Heart Glass Soybean
P-values 0.017674 0.046062 0.044871 2.56x10°°

2.6 Conclusions

An effective way of grouping the input space of NN to reduce interference among
the attributes for NN training is being proposed and discussed in detail in this chapter.
By separating and training interfering attributes under different sub-networks,
interference among attributes is effectively reduced. In addition, those attributes that
are beneficial to each other are grouped together; implicitly established when
beneficial attributes are not taken out from the batch and by the recursive effort of the
partitioning algorithm to group the remaining non-interfering attributes together after

each fundamental round. From the experimental results, ILNNT is able to work well
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for problems with varying degrees of attribute interference. NN are able to perform

better if the correct partitioning and grouping methods are applied.
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Chapter 3

Training Neural Networks using

Growth Probability-Based Evolution

Gradient descent-based learning algorithms like the Backpropagation (BP)
[271[29][57][114][136][ 149] for NN training require the number of hidden neurons to
be predefined and fixed throughout the training process. This prevents the structure of
the network from adapting to the problem during learning. In many instances, some
previous information and knowledge are necessary or a trial and error process is
carried out. The former method is not suitable when a new task is given and the latter
method is time consuming and tedious. Adaptive and automated algorithms are
needed to address these issues. These concerns have been looked into by several
researchers and among them the more significant ones are the constructive learning
algorithms. There are several well-known constructive learning algorithms for the NN,
i.e., Dynamic Node Creation (DNC) [10], Cascade-Correlation (CC) Algorithm [46]
and Constructive Backpropagation (CBP) [93] which is inspired by CC. In CBP, a
network is initialized with direct links from the input units to the output units. Hidden
neurons are then added one at a time until the overall stopping criterion is met. When
a new hidden neuron is added to the network, previous trained weights are freezed.
Recently, there are attempts of building constructive one-hidden-layer NN based on
using different activation functions for each hidden neuron within the networks [105]
and having separate training for the input side and output side within the incremental

constructive NN [104]. As the constructive methods use gradient-based approaches,
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they are restricted to using neurons with differentiable functions. One of the
advantages of hybridizing EA and NN is being able to use neurons which are non-
differentiable. In addition, as EA possess global search capability, Evolutionary
Neural Networks (ENN) [13][169] are likely to find an optimum or near optimum
solutions. However, one of the drawbacks of EA approach is the high computational
complexity since it is a population-based method, where a population of individuals is
being initialized and evaluated at each generation. As compared to EA approach,
gradient-based methods, like the conjugate gradient, Levenberg-Marquardt, etc.,
[15][16][69][150] are generally less computational exhaustive as they are single point
techniques.

Due to the great potential of hybridizing EA and NN, this area of research has
attracted the interests of many researchers. There are several studies on how EA can
be used to train the weights of NN, optimize NN structure, combine with local
optimizers and to select salient features for NN training [23]. The use of EA includes
evolution strategies, genetic and evolution programming, and the simplest and more
commonly used genetic algorithms. Palmes et al. [125] uses mutation strategies to
address the issue of high computer-intensive operation of using gradient descent-
based BP in ENN. Yao and Liu [189] use evolutionary programming to evolve both
the weights and the architecture of NN. Abbass [2] illustrates an EA that optimizes
the architecture of NN consisting of one hidden layer. It uses a vector which acts as a
switch to represent whether a hidden neuron is active. While the maximum number of
hidden neurons that can exist is predefined, the number of activated hidden neurons
decreases or increases.

Verma and Ghosh [176] use genetic algorithms and linear least square method to

train the hidden layer and the output layer, respectively. The training process starts
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with a small number of hidden neurons and at the end of each training round, one
hidden neuron is added and tested again. In this way, the number of hidden neurons is
found by consistently referring to the evaluation metric at each round. In [191], while
there are unresolved regions defined by the training examples, one hidden neuron
(generated using genetic search) is added to the hidden layer. This is repeated until all
regions defined by the training examples are resolved. Leung et al. [95] use GA to
tune the network structure and parameters. Hidden neurons are incremented manually
from a small number till the fitness criterion is satisfied.

Though there are several works on ENN, this chapter serves to provide a new
perspective of hybridizing NN with EA in particular for classification. Classification
is an important task in many domains and though there are several methods that can
be used to find the relationship between the input and output space [3], among the
different works, ENN stand out as one of the most promising methods. Earlier works
used EA solely to train the weights of NN, and later works allow the structure to vary
as the number of hidden neurons increases or decreases while the maximum number
of hidden neurons is fixed (this is restrictive and might create a problem if the
required number of neurons is larger than the maximum allowed).

The algorithm proposed in this chapter evolves both the structure and weights
simultaneously and places no restrictions on the number of hidden neurons that can be
encoded by the chromosome while overfitting is solved by using a validation data set.
As compared to recent works, the algorithm uses a new operator, i.e., growth
probability (Pg) to determine whether hidden neurons should be increased. Overall the
training process is made simpler and more elegant without the need of numerous
checks and many predefined constraints. Presented works in literature often require

several operators to vary the connections and neurons. Different operators are
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typically used to insert or delete a connection or a neuron, and doing so requires
numerous checks on the operability of the networks for broken links or dangling
neurons. In addition, this chapter also managed to evolve NN that is able to obtain
competitive classification accuracy while keeping the network complexity low.

Two versions of training algorithms are proposed in this chapter. The first
algorithm evolves NN using growth probability-based evolutionary technique (NN-

GP) and applies the same P, on the whole population, ie., the probability of

increasing the number of hidden neurons for each NN in the population is the same.

Given a P,, (P, 100 )% of the chromosomes (a representation of the number of

hidden neurons and connection weights) in the offspring population will undergo
growing in terms of lengthening, thus representing more hidden neurons. The second
algorithm presented in this chapter is the self-adaptive version of NN-GP (NN-SAGP),

which evolves the parameter P, together with the NN architecture and weights. A
NN is allowed to increase its number of hidden neurons depending on own P,

The algorithms proposed in this chapter are evaluated based on several criteria,
namely, the classification accuracy on training data set, generalization accuracy,
computational complexity of evolved networks and the training time. The objectives
of the algorithms are to evolve a network with high accuracy and with optimal
architecture.

This chapter is divided into 6 sections. The next section illustrates the NN that is
being modeled and the stopping criterion used. In Section 3.2, an overview of the NN-
GP with detailed descriptions of the various operators will be explained. Section 3.3
gives the NN-SAGP algorithm. The experimental setup and data sets used are

presented in Section 3.4. Results of experiments using several benchmark problems
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are presented, analyzed and compared with other existing works in literature in

Section 3.5. The conclusions for this research are given in Section 3.6.

3.1 Neural Network Modeled and Stopping Criterion
The architecture of the Multi-Layer Perceptrons (MLP) which is being evolved

and the stopping criterion used are presented in the following sections.

3.1.1 Neural Network Architecture

The NN architecture modeled by the growth probability-based evolutionary
technique is a fully connected NN consisting of an input layer, a hidden layer and an
output layer. As it is well-known that a single hidden layer is sufficient for a MLP to
compute a uniform approximation for any given training data (universal
approximation theorem) [72], the number of hidden layers is fixed at one. Using more
hidden layers increases the network complexity, however does not guarantee better

results.
Given an input-output data set (x.",y?) where x, € R m is the number of

inputs, i={1,2,.....,N}, N is the number of patterns in the data set,y, € R, o is the

number of outputs, the input layer will consist of m number of input units each
representing the individual input from the data set. The output layer will consist of o
number of output neurons which represent the outputs. All bias input values are set to
1. The hidden neurons use sigmodal activation function while the output neurons use
linear summing function. Determination of output class for a presented input pattern
is decided by the winner-take-all strategy, i.e., decided class by the network is the
corresponding output neuron with the highest output value. The NN modeled is

shown in Figure 3.1.
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Input layer Hidden layer Output layer
Figure 3.1: Neural network modeled

where w}m is the weight for connection between the mth input unit and the jth hidden
neuron, b]’.’ is bias weight of the jth hidden neuron, wfj is the weight for the connection

between the jth hidden neuron and the oth output unit and 5" is bias weight of the oth

output unit.

3.1.2 Overall Stopping Criterion

Neural networks that are under-trained will not be able to learn the problem well.
On the other hand, over-training might cause overfitting (a network with larger
training error could be better than one with lower error as the latter has concentrated
on the peculiarities while losing the regularities needed for good generalization
accuracy [56]). One of the well-known methods in addressing this issue is to use a
validation data set. The validation data set is used as a pseudo testing data set.
Training stops when maximum validation accuracy (minimum validation error) is

reached and the current network state is used on the testing data set. However, as
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there are many local optima in the validation data set, there are some issues when
using it. Firstly, during the initial phase of training, the error on validation data set
will be oscillatory and secondly, in order to recognize an optimum, training has to
proceed until the accuracy decreases [48][92][117][130]. Hence, the overall stopping
criterion is defined as follow:

To avoid the initial oscillation phase, Condition 3.1 has to be satisfied before
proceeding to next stage.

% SA4G)- SA4a4)<TS Condition 3.1

i=g—t+1 i=g—2t+1

where g is the current generation number, ¢ = training generation length (number of
generations over which training accuracy is averaged), A,i) = average training
accuracy of parent population and 7S = training stop threshold. When Condition 3.1 is
fulfilled, testing for Condition 3.2 is carried out. Accuracy on the validation data set is
measured every generation and training is stopped as soon as Condition 3.2 is fulfilled.
Generalization accuracy is then computed for that state of network which has the
highest validation accuracy.

A,@1")-4, >0, Condition 3.2

1
A ==Y A,(),Vie[i'+],i'+]
A4

where i’ is the generation that obtain the highest validation accuracy, 4,, = average
validation accuracy of parent population and v = validation generation length (number

of subsequent generations compared to the generation with highest accuracy).
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3.2 Growth Probability-Based Neural Networks Evolution

Without any growing phase, the network is not able to expand and will be
stagnant. Fixing the number of hidden neurons in advance without giving the network
an opportunity to find the appropriate number of neurons is not recommended. It is
thus necessary for an algorithm to be in place to grow the number of hidden neurons

in order to obtain a network with appropriate size.

3.2.1 Overview
In this sub-section, an overview of the algorithm (NN-GP) is described using a
step by step illustration. More detailed descriptions of the operators are given in the

subsequent sub-sections.

Step1: Initialization

Initialize an initial chromosome population of size x (parent population size) with
each individual representing a NN with one hidden neuron. The networks in the
parent population will represent a pool of individuals with high fitness at every
generation. The genotype representation that is being initialized at the start of the

evolutionary process is shown in Figure 3.2.

by, w

t t
(bou bI¥ S W W g o ees Wy s B s W s Wop oo veees

t 1 1 1 h 2 2 2
L ,.....,bgu Wl)

Figure 3.2: A chromosome representing a neural network with one hidden neuron

b is the bias weight of the oth output unit. w, is the weight for connection

between the mth input unit and the first hidden neuron. 4" is the bias weight of the
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first hidden neuron. w? is the weight for connection between the first hidden neuron
ol g

and the oth output unit.

The weights are assigned random values in the range [-0.5,..,0.5]. The weights of
output bias ( pOUt ) are situated at the front end of the chromosome and this

representation serves two purposes. Firstly, the growing process can be easily carried
out as the addition of hidden neuron weights can be directly appended at the end of
the chromosome string. Secondly, it minimizes interruption to the weights connected
to the hidden neurons. This set of weights is not connected to the hidden neurons, but
connected to the output units, thus should be separated from the rest of the weights in

the chromosome.

Step 2: Selection of Parents for Offspring Creation

Selection of parents for offspring creation uses the tournament selection (size
three and with replacement). In tournament selection, three NN are randomly selected
from the parent population. The network with the highest fitness level, i.e., highest
classification accuracy on the training data set (the validation data set should not be
used to guide the improvement of the fitness of the chromosomes since it acts as a
“pseudo testing data set”), will be taken as a snapshot for offspring creation process.
The three chromosomes are then replaced back into the parent population. The
selection of second parent follows the same procedure used to select the first parent.

Fitness evaluation of a chromosome is given in Equation 3.1.

fi= %-100% 3.1)
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fx 1s the fitness of chromosome & , &= (1, 2...L), L is the number of chromosomes to be
evaluated. C; is the number of correctly classified patterns by chromosome & and N is

the total number of patterns in the training data set, i.e., (Cy<N).

Step 3: Offspring Creation

The two methods for offspring creation are either the crossover or replicate
operation. The crossover and replication operations are mutually exclusive events. If
the two selected parents are of the same length, crossover is done else replicate
operation is carried out. Mutation is carried out only after crossover or replicate
operation.
e Crossover Operation

If the two parent chromosomes selected are the same length, then crossover as
described in Section 3.2.2 is applied.
e Replicate Operation

Since chromosomes grow at different rates, length of chromosomes in the
population may differ. If the two parents chosen are different in length, they will be
replicated or in another word ‘cloned’ to create the new offspring in this current
generation. Each parent will replicate once, and correspondingly two offspring are
created. The motivation behind this operation is because parents emerging from
tournament selections are the fitter chromosomes compared to their peers and
therefore worthy of ‘cloning’ which is a process done to replicate good individuals.

For different length chromosomes, crossover is still possible while maintaining
workable NN (NN with no broken links or missing node). However, no crossover is
done here as the architecture of each NN is to be preserved apart from being affected

by the growth probability. In the study of growing the number of hidden neurons
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using growth probability, disruption to the network architecture by other influences
should be avoided.
Step 2 and step 3 are repeated until 4 (children population size) offspring are

created.

Step 4: Mutation

The probability that an allele of a chromosome will be mutated is based on the
mutation probability, P,. By using the mutation operator, the algorithm is able to
explore new areas of search space not visited before. Mutation operator used is real-
value mutation. A random value between [-0.2,...,0.2] is added to the allele. At any
one time, if the value of the allele that undergoes mutation exceeds the range [-1, 1],
boundary conditions are enforced as biases should not be created. Boundary

conditions are given in Equation 3.2.
1, if Vg >1
Vg™ _ (3.2)

where v, = mutated value of allele occupying the gth position of the chromosome

Step 5: Growing Operation

This step is one of the key steps in structuring the architecture of the NN. The
growing phase allows a chromosome to represent more hidden neurons. With more
hidden neurons, the NN may be able to classify the training patterns better as more
hyper-planes are formed to separate the different classes. However, it should be noted
that a larger NN might perform well on the training data set but badly on the testing
data set, in this case overfitting has occurred. The growing operation is described in

detail in Section 3.2.3.
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Step 6: Selection of Children
Selection of children is to bring forward children with better fitness in the current
generation to the next generation to form the parent population. Selection of u
children as parents for next generation is based on selecting the best x individuals
from A (children population size) offspring, i.e., (u« , 4 ) strategy. The best individuals
are evaluated using the fitness function given in Equation 3.1.
Elitism (size 2) is also used in NN-GP. Step 2 to step 6 are repeated until the

overall stopping criterion is satisfied.

3.2.2 Crossover Operator

The encoding method used for all the genotype representation is the same and it
allows any point to be crossover while maintaining the structure of NN. In NN-GP,
two crossover points are selected. First crossover point is situated where the encoding
of the bias weights for the output neurons ends and the second crossover point is in
the middle of the remaining string. The reason behind choosing the first point is the
fact that the bias weights of the output neurons are not connected to the hidden
neurons, hence alleles representing these biases are to be grouped, and should be
separated from the rest of the alleles that represent weights of the hidden neurons. The
second point is chosen to facilitate exchange of useful structural neuronal information
between the networks.

When two crossover points are selected, a parent chromosome is split into three
sections. The crossover process is then carried out as follows; the first section of
offspring 1 will carry genes from the first section of parent 1. The second section of

this offspring will be determined by a random number, x €[0,1]. If x> 0.5 the second

section of parent 2 will be concatenated to offspring 1, else if x <0.5the second
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section of parent 1 will be used. If the second section of offspring 1 comes from
parent 1, the third section will be from parent 2. The same principles apply to the

creation of offspring 2.

Parent 1 Offspring 1
P11 P12 P13 P11 B P13
P21 P22 P23 P21 P12 P23
Parent 2 (a) Offspring 2
Parent 1 Offspring 1
P P2 P P11 P12 P23
P21 P22 P23 P21 P22 P13
Parent 2 (b) Offspring 2

Figure 3.3: (a) Crossover operation for x > 0.5 (b) Crossover operation for x < 0.5

3.2.3 Growing Operator

The probability of growth is the core parameter used in the growing process of the
NN. Motivation for this step is to increase the number of hidden neurons together
with its associated connection weights concurrently and probabilistically. By using
this operator, a NN is able to change its structure and hence might be able to improve
its overall performance. It differentiates itself from the probability of crossover (P,)
and mutation (P,) in the sense that, P. governs the chance of any two existing
networks coming together to form new structures while retaining full information
from the old networks. No new information is introduced in this case. The mutation

probability (P,) governs the chance of mutation. Mutation is usually characterized by
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small changes in the network structure and not by any drastic changes. If mutation is
carried out with drastic changes, the whole process will emerge as random search for
a NN that performs well. Random search does not guarantee optimal solutions within
a reasonable time and in worst case, no solutions near optimal are ever found. On the

other hand, P, works on increasing the number of hidden neurons with its associated

weights. The newly created NN has the new neurons and weights but at the same time
retains its old neurons and weights.

In NN-GP, the value of P, is fixed and all the NN depend on the fixed P, to
determine whether new neurons should be added at each generation. Since P, is
consistent and applied throughout the whole population, (P, ® 2 ) number of children

in a children population of size A will have new hidden neurons added. There will be
two groups of chromosomes within the children population. In one group, the number
of hidden neurons is increased while the other group retains its existing network
structure. Children that are fitter after growing will have higher chances to proceed to
the next generation while those that turn weaker will have lower chances. If
lengthening the chromosomes produces better fitness, the parent population in the
next generation will have more chromosomes that are grown, representing more
neurons than the parent population in the previous generation. If the lengthened
(grown) children chromosomes do not have better fitness than those chromosomes
that did not undergo growing, the parent population in the next generation will have
an average population of chromosome length that is maintained at the same length as
the parent population of the previous generation. The evolution principles together
with the growing mechanism automatically determine the near optimal number of

neurons needed for the NN.
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It is normal that the growing of hidden neurons and connection weights might not
be useful all the times and there could be instances that the growing will introduce
noise. It is part and parcel of EA that noise are introduced in various manners, e.g.,
through mutation, crossover, etc. There would also be many instances that the
growing process is very useful (newly explored good solution space or good solutions
obtained by growing). Evolutionary techniques are more interested in these successful
attempts than those unsuccessful attempts. The poorer networks will eventually be
filtered out by the evolution process, while the better networks would be brought
forward to later generations and made stronger.

The growth rate which determines how many neurons are to be added is
determined by the Gaussian distribution. This process is described in detail in Section
3.24.

To illustrate the process of growing hidden neurons, Figure 3.4 shows how an
extra hidden neuron can be added to a chromosome representing one hidden neuron in
the genotype space. The newly created chromosome represents the weight values of a
two hidden neuron network. The appending of the new alleles takes place at the end
of the chromosome string. Appendages takes place in blocks, with each block
representing one hidden neuron. Any number of blocks can be appended without
disrupting those alleles that initially existed. In the phenotype space, another example
illustrating the addition of two hidden neurons to an existing NN containing three
hidden neurons is shown in Figure 3.5. Figure 3.6 gives the representation for an

arbitrary length chromosome.
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< Existing alleles >&  Newly created hidden neuron >

Figure 3.4: Growing of an addition hidden neuron

Input layer Hidden layer Output layer

Figure 3.5: Addition of two hidden neurons to existing neural network structure

The dotted lines and neurons are newly introduced into the existing neural network

structure which is represented by the solid lines. wl

vd represents weight connecting

the dth input unit to the yth hidden neuron. wgy represents weight connecting the yth

hidden neuron to the zth output unit.
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(5", 81w s W 5b

L ho2 2 L2 2 L ph 2

1 2
Lo Moo W e o 2,le,...,Woz,......,le,...,ij, j’le""’Woj)

Figure 3.6: General representation for an arbitrary length genotype representation
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3.2.4 Determination of Growth Rate

Using Gaussian distribution [97][99] to determine the growth rate (number of
neurons to be added each time) mimics the nature where creatures grow at different
speeds, some faster while some slower but the majority growth rate still falls within a
certain acceptable range. This is reflected by the Gaussian distribution graph which
has higher distribution centered about the mean. To do this, a random number based
on a Gaussian distribution is generated and depending on the range it falls in, the
corresponding number of neurons is grown.

The optimal number of hidden neurons for a network might be a few neurons more
than what it represents now. If this solution is far from its current location, NN has to
increase the number of hidden neurons not just by one or two. Therefore insertion is
not restricted to one hidden neuron at a time and by adding different number of
hidden neurons, it provides a mechanism to move from a neighborhood search to
explore a larger search space (global search), thus escaping from local optima.

It should be noted that growing too many neurons can have adverse effects on the
networks as it might cause too much disruption to the network. Hence, the Gaussian
distribution mean is set to 0 and variance 1. If the mean and variance is set too large,
the network would be growing too many neurons at a time. The illustration on

determination of growth rate is shown in Figure 3.7.

L HN: Hidden Neurons i

- Add Ad Add Add dd Add .
3 HN 2 HN 1 HN 1 HN 2 HN 3 HN

-5 ) 3 2 . 2 3 4 5

Figure 3.7: Growth rate based on Gaussian distribution
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3.3 Self-Adaptive Growth Probability-Based Neural

Networks Evolution

Both the NN-GP and NN-SAGP need to set parameters like the population size

and mutation probability. In addition, the NN-GP needs to set the P,. The main
parameter P, proposed here would naturally raise the question of what is a suitable

value to be used for each specific problem. The earlier described NN-GP depends on

a user input P, and this value is fixed throughout the whole evolution process.

Typically, different values for this parameter are tried before a suitable value for a
particular problem is obtained. Self-adaptive growth probability-based NN evolution

(NN-SAGP) is proposed here to address the aforementioned issue.

3.3.1 Probability of Growth

The probability of growth at the initial stage should be higher than the later stage
of NN training. There is high pressure to grow the networks in order to increase the
accuracy at the start of the training process. More initiated increase of neurons should
be done at the initial stage to speed up the process of finding a near optimum solution.
Not only a network that is appropriate in size is to be found, there is a need to evolve
the network within a reasonable time too. An algorithm making large jumps in the
search space at the beginning of the evolution process relates to having global search
for suitable NN architectures and when it has reached a more steady position, it

narrows down to fine-tuning and a more local search by using a smaller P, .
The initial value of P, is not carefully set but randomly generated for each

individual in the population. This parameter is then evolved through the generations.

In this case, there are some chromosomes with P, greater than 0.5 and others that are
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lower. Though P, should be higher in the initial generations, there should not be too

many chromosomes having a high value too. The population is to have a mix of

chromosomes with different P,. During training, P, is naturally evolved to follow

the need of growing hidden neurons.

3.3.2 Self-Adaptive Method
The general algorithm framework used to evolve NN in NN-SAGP is similar to
NN-GP. The different steps between these two algorithms are highlighted below:

Step 1: An additional parameter (P, ) is assigned to each chromosome. In NN-
SAGP, each network’s chance of growing neurons depends on own P,

rather than the P, that is used for the whole population.
Step 2: Same as NN-GP.
Step 3: Same as NN-GP.
Step 4: Same as NN-GP.
Step 5: This step is executed at every five generations instead of every generation.

Networks with higher P, will have larger probability of structural change
compared to those networks with lower P,. During the fitness evaluation

process, those networks without any changes in their structure will have
higher chances of survival since their entire network are trained as compared
to those networks with newly grown neurons where their structures are only
partially trained. This will have the effect of eliminating networks with high

P, during the evolution process and those networks with a low P, will be
able to survive better than those with higher P, . By doing interval

generation growing, networks are given a greater chance to learn and
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stabilize their structure before the next growing cycle starts. For the NN-GP,

this problem does not exist since all networks depend on the same P, value.

Step 6: Same as NN-GP.

Before the execution of the growing process, the parameter P, is mutated.

Mutation takes the form of real-value mutation where a value between [-0.2,...,0.2] is
randomly generated and added to the P,. Mutation is done before the growing and
fitness evaluation process. The rationale behind this ordering is based on the
principles of evolution strategies. The primary evaluation states that a NN after
growing is good if it performs well for classification. The secondary evaluation states

that the parameter P, is good if the NN it created performs well.

3.4 Experimental Setup and Data Sets

The three data sets used are the cancer, the diabetes and the card data sets. The
parent population size (1), children population size (1), mutation probability ( £, ) and
tournament size used in NN-GP are 25, 150, 0.15 and 3, respectively. The growth
probabilities used are 0.2, 0.4, 0.6 and 0.8. These parameters settings are the same for
NN-SAGP except the growth probability is not fixed. Results for mutation probability
(P,) = 0.3 is also presented for NN-SAGP. The stopping criterion parameters are ¢
(training generation length) = 7, 7S (training stop threshold) = 0.1 and v (validation
generation length) = 7. The parameters for Gaussian distribution are mean = 0,

variance (c°) and standard deviation (c) = 1.
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3.5 Experimental Results and Analysis

All algorithms are evaluated based on classification accuracy on the training data
set, generalization accuracy on the testing data set and the complexity of the trained
NN. Comparisons are made with NN trained by normal EA without growth
probability (EANN) and gradient descent-based backpropagation (BPNN). The
EANN and BPNN have fixed architecture with different number of hidden neurons.
For fair comparison, the settings used are as explained below:

e The parent population size («), children population size (4), mutation probability

(P,) and tournament size used in EANN and NN-GP/SAGP (P, = 0.15) are the

same. The representation and variation operators are also similar for both EANN
and NN-GP/SAGP.
e The number of generations for EANN is taken to be estimated around the average

number of generations used for NN-GP (P,=0.2t00.8) and NN-SAGP

(P,=0.15and 0.3). Since BPNN is not generation-based, but depends on the

number of epochs (one evaluation for each epoch), the number of evaluations
(stopping criterion) used for BPNN is estimated to be around the average number
of evaluations used for NN-GP/SAGP.
e The NN architecture for BPNN and EANN is similar to NN-GP/SAGP, i.e., only a
single hidden layer is used.
In addition, other relevant existing works in literature that managed to get good
generalization results are also compared. The comparisons are not intended to be
exhaustive. Instead, they are used as a guide to assess how the proposed algorithms

perform. The experimental results are also analyzed statistically.
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The actual training time of NN is highly dependent on the programming language,
efficiency of the code, speed of the computer, etc. Apart from the training time being
presented, the number of evaluations (based on the number of times the training data
set is being evaluated) which gives a more accurate measurement of computational

complexity of the proposed algorithms is also given.

3.5.1 Cancer Problem
The results of NN-GP and NN-SAGP on the cancer problem are presented in the

following sub-sections.

3.5.1.1 Results on Training Data Set
NN-GP: During the initial stage, the average classification accuracy of the parent
population increases as the number of generations increases. This increase is slow

after the fifth generation. Populations using P, = 0.8 converges slightly slower and is
more oscillatory. When P, is large, a large number of networks is being grown.

Searching in the objective space is now longer and leads to the slower convergence
rate. Overall, the graph presented has a relatively smooth surface rather than a
fluctuating one which shows NN evolved using growth probability are stable in
improving the classification accuracy.

NN-SAGP: The classification accuracy shows an overall increasing trend. The
increase is rapid during the first few generations and converges after that (these
observations were consistent with NN-GP trends). The dip at every five generations is
due to the growing of neurons. When there is a new neuron, this new neuron which
has not been trained leads to a decrease in accuracy. After a training round, accuracy

increases again.
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Figure 3.8: Classification accuracy on cancer training data set using (a) NN-GP (b)
NN-SAGP

The value of P, fluctuates about the value 0.5 for the first few generations and
followed by a decreasing trend. This could relate to the NN training which shows that
during the initial generations, the classification accuracy is low and hence there is a
pressure to increase the number of hidden neurons for better classification accuracy.
After some generations, it becomes difficult to increase classification accuracy even

with more hyper-planes, thus P, decreases steadily. Eventually, classification

accuracy has converged and the parameter P, starts to decline.
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Figure 3.9: Value of growth probability over the generations for cancer training data
set (NN-SAGP)
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3.5.1.2 Different Values of Growth Probability on Testing Data Set

NN-GP: The best mean generalization accuracy is achieved when P, = 0.8 and worst
mean accuracy is obtained if a P,= 0.4 is used. Though, P, = 0.8 has the highest

accuracy it requires a large number of hidden neurons, thus using P, = 0.2 would be a

better choice (with a small trade-off in accuracy, the number of neurons is greatly

decreased). The box plots are also shown. The median (accuracy) for P, = 0.2 (at the

upper quartile) is also higher than the median for P, =0.8.
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Figure 3.10: (a) Classification accuracy on cancer testing data set (b) No. of neurons
used by the networks — (NN-GP)

The numbers in Table 3.1 are the average for the best performing NN of each

training run and applied on the testing data set. As P, increases the time taken also

increases and this could be explained by the observations made earlier. As P,

increases, the number of hidden neurons in a network increases, thus with larger
number of hidden neurons, complexity of networks increases and correspondingly the

computational time and evaluations are higher.
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It has been noted that the time taken for NN-SAGP to evolve the NN are 218.58s

and 656.71s when using P, = 0.15 and 0.3, respectively, while the average number of

generations are 43.6 and 56 for P, = 0.15 and 0.3, respectively.

Table 3.1: Accuracy, time taken, number of generations and evaluations - cancer

Probability of growth
Cancer
0.2 0.4 0.6 0.8
Accuracy (%) 98.35 98.20 98.35 98.42
Time (s) 249 366.2 529.4 1404.4
Generations 48.5 46.6 59.4 72.3
Evaluations 8488 8155 10395 12653

3.5.1.3 Comparison

Apart from EANN and BPNN, results of NN-GP and NN-SAGP are compared to
Mutation-based Genetic Neural Network (MGNN) [125], Memetic Pareto Artificial
Neural Network (MPANN) and SPANN [2]. MGNN uses evolutionary programming
for weights learning. MPANN uses EA to optimize both the weights and architecture

of the NN while SPANN is the self-adaptive version of MPANN.

Table 3.2: Comparison of results - cancer

Algorithm Test accuracy (%) No. of hidden neurons
NN-GP (P, =0.2) 98.35+ 0.5923 2.5+ 1.2693
NN-SAGP(P, =0.15) 98.35+0.6825 1.1+ 0.3162
NN-SAGP(P, =0.3) 98.42+ 0.8168 1.70+ 0.8233
MGNN 96.86 -
MPANN 98.1+ 0.5 4.125+1.360
SPANN 98.3+ 4.60 5.933+0.961
EANNI1 97.93+ 0.9788 2
EANN2 98.07+1.0675 7
BPNNI1 97.07+1.324 2
BPNN2 96.5+1.595 7
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The results presented in Table 3.2 show that NN-GP is able to obtain 98.35%

generalization accuracy using P, = 0.2 and NN-SAGP has obtained 98.42%

generalization accuracy. Both have outperformed all other algorithms in this aspect.
The smallest network evolved is by NN-SAGP giving 1.1 hidden neurons, which is
about 73% and 81% less than what MPANN and SPANN used, respectively.
Compared to EANN and BPNN, NN-GP and NN-SAGP have higher accuracy with
lower standard deviation. The algorithms proposed are efficient and effective for the
cancer problem giving high classification accuracy on unseen data while using small

NN sizes.

Paired #-test has been performed using the best performing P, parameter setting

and the best NN-SAGP result against all other settings. The P-values show close
match among NN-GP and NN-SAGP results suggesting there are a few good
solutions in the search space and the proposed algorithms are able to find them. NN-

GP and NN-SAGP have also managed to outperform the BPNN with confidence.

Table 3.3: P-values of the paired #-test - cancer
NN-GP NN-SAGP EANN BPNN

0.2 0.4 0.6 0.8 0.15 0.3 2HN THN 2HN THN

0.3392 | 0.5000 | 0.3988 | 0.4999 | 0.4110 | 0.1364 | 0.2093 | 0.0184 | 0.0036

0.4110 | 0.2480 | 0.4266 0.5 0.4158 - 0.1183 | 0.2139 | 0.0197 | 0.0066

3.5.2 Diabetes Problem
The results of NN-GP and NN-SAGP on the diabetes problem are presented in the

following sub-sections.
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3.5.2.1 Results on Training Data Set

NN-GP: The best performance is obtained using P, = 0.2. The performance on
training data set deteriorates as P, increases. The graph presented a rather smooth
plot for lower P, and a fluctuating one for larger P,. More NN are being grown for
larger P, , thus greater diversity in structures among the networks of the population.

NN-SAGP: It seems that the results on classification accuracy are rather fluctuating
though the overall trend shows increasing classification accuracy. Similar to the

cancer problem, there is a dip in accuracy every five generations due to the insertion

of new neurons.
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Figure 3.11: Classification accuracy on diabetes training data set using (a) NN-GP (b)
NN-SAGP
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Figure 3.12: Value of growth probability over the generations for diabetes training
data set (NN-SAGP)
3.5.2.2 Different Values of Growth Probability on Testing Data Set

The best performance for mean accuracy on the testing data set is obtained using

P, = 0.2. Using larger number of hidden neurons does not necessary mean an

increase in generalization accuracy.

From Figure 3.13b and Table 3.4, it can be deduced that the probability of growth
has greater influence on the number of hidden neurons while the number of
generations used has negligible effect. If the number of neurons is to be pegged to the

generation number, it would most probably be a number that is consistent for all P,.

This is noteworthy because NN that increases hidden neurons based on generation
number will cause the number of hidden neurons used to become uncontrollable large

when large number of generations is needed.

74



Chapter 3 Training Neural Networks using Growth Probability-Based Evolution

a
o
T

80r

T T
| 1
| T : . |
L |
78 ‘ 20 |
e \ ‘
| | 35 |
78 | | g }
2 | | 30+
< . ! ! 3 !
el ‘ \ | | Z 25 }
5 ‘ ) 5
| 201
Q pass B k]
2 72 L = T % 15

~
o

.
N\

}
%{

o
®

%
'+

I I I
0.2 0.4 0.6 0.8
Growth Probability

02 04 0.6 08
Growth Probability

(a) (b)

Figure 3.13: (a) Classification accuracy on diabetes testing data set (b) Number of
neurons used by the network — (NN-GP)

The time taken to train the network that gives the best generalization accuracy
uses the shortest time (417.5s). Longer training time does not correspond to higher

generalization accuracy. It has been noted that the time taken for NN-SAGP to evolve

the NN are 232.7s and 550.6s when using P, = 0.15 and 0.3, respectively, while the

average number of generations are 58.4 and 66.3 for P, =0.15 and 0.3, respectively.

Table 3.4: Accuracy, time taken, number of generations and evaluations - diabetes

Probability of growth
Diabetes
0.2 0.4 0.6 0.8
Accuracy (%) 75.58 72.53 72.34 74.55
Time (s) 417.5 652.8 630.8 1764.9
Generations 74.0 68.1 64.3 76.9
Evaluations 12950 11917 11253 13458

3.5.2.3 Comparison
NN-GP and NN-SAGP have outperformed all other algorithms in terms of
generalization accuracy. Compared to SPANN with a classification accuracy of

70.7%, NN-GP has a notable 17% ((29.3-24.4)/29.3 x 100%) lower percentage error,
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while NN-SAGP (P, = 0.3) attained 18% lower percentage error. Comparing the

number of hidden neurons required, NN-SAGP uses the least number of hidden
neurons, i.e., 1.4 compared to other algorithms. MPANN and SPANN use about 4.7
and 5.1 times more number of hidden neurons. Using larger number of neurons
improved accuracy for both EANN and BPNN; however, this improvement increases
too much complexity. The standard deviations of NN-SAGP are also much smaller
than MPANN and SPANN. Once again the performance of both algorithms proposed

in this chapter is very competitive to each other.

Table 3.5: Comparison of results - diabetes

Algorithm Test accuracy (%) No. of hidden neurons
NN-GP(P, =0.2) 75.58+2.7584 2.60+1.5776
NN-SAGP(P, =0.15) 75+ 3.6509 1.80+1.3166
NN-SAGP(P, =0.3) 75.84+2.5757 1.40+ 0.6992
MPANN 74.9+6.2 6.6+ 1.505
SPANN 70.7+5.00 7.166+2.208
EANNI 73.57+2.687 2

EANN2 74.16+2.026 7

BPNNI1 73.90+2.072 2

BPNN2 74.42+2.355 7

The P-values of the paired #-test on diabetes data set show that using P, = 0.2

outperform P, =0.4 and P, = 0.6 with confidence.

Table 3.6: P-values of the paired #-test - diabetes

NN-GP NN-SAGP EANN BPNN

0.2 0.4 0.6 0.8 0.15 0.3 2 HN 7 HN 2 HN 7 HN

0.0367 | 0.0433 | 0.2669 | 0.2890 | 0.4184 | 0.0459 | 0.0654 | 0.1070 | 0.1677

0.4184 | 0.0094 | 0.0169 | 0.1724 | 0.2671 - 0.0670 | 0.0506 | 0.0569 | 0.0829
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3.5.3 Card Problem

The credit card application problem is a larger data set in terms of larger number
of input attributes compared to the previous two problems. This data set serves as an
additional indicator to the performance of NN-GP and NN-SAGP. The results on the

training and testing data sets are presented in the following sub-sections.

3.5.3.1 Results on Training Data Set
NN-GP: A random initialization of the weights for NN with one hidden neuron
obtained an accuracy of about 55% on the training data set. As evolution takes place,

classification accuracy increases. Lower P, obtained better classification accuracy
compared to higher P,. Convergence rate is also faster for lower P, compared to
higher P, . Higher P, causes large variation of network sizes in the population,

leading to greater disparity in the performance of the different networks and larger
diversity in the population. The performance spread of the networks is wider rather
than crowding at certain areas of the solution space.

NN-SAGP: NN-SAGP steadily increases the average classification accuracy of the
parent population on the training data set. The growth probability as shown in Figure

3.15 decreases over the generations (as the P, shown is averaged over the runs, and

different run uses different number of generations, the sharp increase at the end is due

to the P, for the run with the longest generation).
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Figure 3.14: Classification accuracy on card training data set using (a) NN-GP (b)
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Figure 3.15: Value of growth probability over the generations for card training data
set (NN-SAGP)

3.5.3.2 Different Values of Growth Probability on Testing Data Set

The best mean accuracy is achieved when P, = 0.6 is used while the worse mean
accuracy is caused by using P, = 0.8. From the box plots, it can be seen that the

distribution of the results for P, = 0.6 is more concentrated compared to the others.

The corresponding number of hidden neurons required to obtain the generalization
accuracy shown in Figure 3.16(a) is presented in Figure 3.16(b). To obtain the best

generalization accuracy, NN-GP uses an average number of 11 neurons. This is three
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times more than the number of neurons when using P, = 0.4, however, without any

significant increase in accuracy.
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Figure 3.16: (a) Classification accuracy on card testing data set (b) Number of
neurons used by the network — (NN-GP)

The average time taken to train the NN using P, = 0.4 is 1164s, which is much

faster than the time taken to train larger networks that do not guarantee better
generalization accuracy.

It has been noted that the time taken for NN-SAGP to evolve the NN are 451.27s
and 535.14s when using P, = 0.15 and 0.3, respectively, which are faster than NN-
GP, while the average number of generations are 70.4 and 81.5 for P, =0.15 and 0.3,

respectively.

Table 3.7: Accuracy, time taken, number of generations and evaluations - card

Probability of growth
Card
0.2 0.4 0.6 0.8
Accuracy (%) 87.17 87.32 87.61 86.81
Time (s) 998 1164 3693 14434
Generations 80.6 84 105.8 162.2
Evaluations 14105 14700 18515 28385
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3.5.3.3 Comparison

In terms of generalization accuracy, the results obtained by NN-GP and NN-
SAGP are better than the results reported for all other algorithms and the number of
hidden neurons used by the evolved networks is much smaller. SPANN utilized 70%
more hidden neurons compared to NN-GP and about 5.5 times more than what is used
in NN-SAGP. The proposed methods in this chapter produce networks with lower
complexity yet better generalization accuracy. In addition, judging from the small
standard deviation of the accuracy, both the algorithms are indeed the more reliable
algorithms to be used for the card data set. The results produced by BPNN and EANN
are not able to attain the kind of performance of the proposed algorithms. NN-SAGP

(P, = 0.15) has slightly better performance than NN-GP for this problem. It obtains

higher classification accuracy by using a less complex network structure.

Table 3.8: Comparison of results - card

Algorithm Test accuracy (%) No. of hidden neurons
NN-GP(P, =0.4) 87.32+1.2895 3.50+3.100
NN-SAGP(P, =0.15) 87.54+1.7684 1.10£0.3162
NN-SAGP(P, =0.3) 86.81+1.3142 1.50+1.2693
MPANN 86.4+4.5 5.00+1.943
SPANN 86.9+4.6 6.0+ 1.825
EANNI1 85.07+1.241 2

EANN2 85.65+1.269 7

BPNNI1 84.86+2.199 2

BPNN2 84.28+ 1.841 7

The results in Table 3.9 might suggest that evolution that uses other P, apart from

0.4 is able to obtain similar good performance. In addition, the P-values against
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EANN and BPNN show that both NN-GP and NN-SAGP are able to outperform

EANN and BPNN with confidence.

Table 3.9: P-values of the paired ¢-test - card

NN-GP NN-SAGP EANN BPNN
0.2 0.4 0.6 0.8 0.15 0.3 2 HN 7 HN 2HN | 7HN
0.3968 - 0.3212 | 0.2874 | 0.3023 | 0.2031 | 8.74x10™ | 0.0109 | 0.0089 | 0.0023
0.3284 | 0.3023 | 0.4648 | 0.2451 - 0.1222 | 0.0018 0.0132 | 0.0087 | 0.0041

3.6 Conclusions

Training NN using growth probability-based evolutionary technique (NN-GP) has
been proposed as a new algorithm to evolve the near optimal number of hidden
neurons and weights required by NN for good classification accuracy. In addition, the
self-adaptive version of NN-GP is applied to automate the process of finding a

suitable P, through the generations. The performance of the algorithms is enhanced

by growing the NN at different rates based on a Gaussian distribution thus avoiding
being trapped in local optima.

The algorithms are tested with real-world problems and results from experiments
show that NN-GP and NN-SAGP are able to evolve networks with high classification
accuracy and low complexity for all problems. The performance of both algorithms
are comparable to each other, however the self-adaptive version has the advantage of
not requiring the value of growth probability to be determined beforehand. An
interesting finding from the experimental results showed that although chromosomes
are grown at every generation, it is the growth probability rather than the generation

number that has a greater influence on the number of hidden neurons. This prevents
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the number of hidden neurons to grow too large when a large number of generations

1s used.
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Chapter 4

An Evolutionary Memetic Algorithm

for Rule Extraction

One of the strengths of evolutionary algorithms lies in its inherent global search
capability which is able to identify several good regions of the solution space
simultaneously. However, when regions of the solution space are being identified, the
algorithm continues searching in a stochastic manner while relying on Darwin’s
survival of the fittest strategy to guide the process. No schemes are used to
satisfactorily exploit those identified regions and explore the local landscape
thoroughly. In order to overcome this lack of exploitation, a Local Search (LS)
technique is often incorporated within EA to complement its search ability. This
hybridized scheme is termed memetic algorithms. Memetic algorithms have proved to
be successful in several applications in the literature [87][111][118][124][163][187].

With these in mind, this chapter proposes an Evolutionary Memetic Algorithm
(EMA) for rule extraction. The main EA evolves the architecture of the rule set while
the LS is applied at every generation to fine-tune the rule parameters. This scheme is
made achievable by the use of variable length chromosome representation which
gives flexibility in the representation of the rule sets and allows easy manipulations by
the advanced variation operators, i.e., structural mutation and structural crossover
[153]. Two local improvement search algorithms are used in this chapter. The first
scheme uses a Micro-Genetic Algorithm (uGA). This simple method provides

efficient and guided improvements over the generations. The second scheme
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incorporates  some ideas from  Artificial Immune  Systems = (AIS)
[6][38][83][123][154][165][166]. AIS framework have been applied in several tasks
in literature. [39] shows the immune principles can be used to solve complex
engineering tasks. Several simplifications of the clonal selection principles are made
and CLONAG is given as an algorithm to solve pattern recognition task. In addition,
modifications to CLONAG are also given to show how it can be used for optimization
problems. AIS for data analysis could be seen in unsupervised machine learning
algorithms [167][168]. Watkins and Boggress built on further and developed
Artificial Immune Recognition Systems (AIRS) [179] as a supervised classifier and
these systems follow a k-nearest neighbor scheme. AIRS as a classification tool has
shown to be very competitive to other existing algorithms in the literature
[54][60][180].

The major evaluation metric for classification rule sets in the literature has been
classification accuracy. However, there are other aspects which are equally important
when considering the performance of rule sets. Apart from how accurate the rule sets
are able to classify a data set, the coverage on the data set is also important. The ideas
of support and confidence level borrowed from association rule mining
[77][139][182] are incorporated into the fitness evaluation function. The effects of
these two factors are analyzed and discussed.

In Section 4.1, a brief introduction of AIS is given. The details of the proposed
features and operators of EMA are described in Section 4.2 while the algorithm
overview is given in Section 4.3. Section 4.4 presents the local search algorithms.
Experimental setup and data sets used are described in Section 4.5. Results from
experiments on real-world benchmarking data sets are given and analyzed in Section

4.6. Conclusions are subsequently drawn in Section 4.7.
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4.1 Artificial Immune Systems

Artificial immune systems [38][102] are based on the working mechanisms of the
human immune system. Basically, the human immune system is built upon an innate
immune system and an adaptive immune system [154]. The innate immune system
does not target any specific antigenic stimulus but is activated upon encountering a
general stimulus. On the other hand, the adaptive immune system is targeted at
specific antigenic stimulus with cells that fit the antigens producing antibodies to
eliminate them.

The clonal selection principle [34][38][39][54][154] is used to describe the way
the adaptive immune system works. It is interested in modeling the adaptive immune
system as it has a memory capability to store information after its primary encounter.
Hence, it is able to response faster and more efficiently for the next encounter, this
provides immunity for the body against the same infection.

Basically, the adaptive immune system consists of the lymphocytes which are
made up of the B-cells and the T-cells. The T-cells are known as the accessory cells,
secreting lymphokines which act as stimulus causing the B-cells to proliferate. The B-
cells are the antibodies producing cells. When the B-cells receive stimulus from the T-
cells, the B-cells having its receptors that fit to the antigens will be selected to
proliferate by a cloning process where replica of the cells are made. These cloned
cells will differentiate and mature into plasma cells or terminal antibody secreting
cells. These cells are non-dividing and will produce the antibodies to combat the
antigens. In addition, a portion of the B-cells will become long lived B-memory-cells.
These cells will multiply quickly during secondary response upon the same antigenic

stimulus encountered in the primary response to produce antibodies with high affinity.
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4.2 Algorithm Features and Operators

The various features and operators of the algorithm are given in the following

sections.

4.2.1 Variable Length Chromosome

In this chapter, Pittsburgh encoding is applied and the encoding of a rule set
would be much longer than that of the Michigan approach. With more parameters
within a chromosome, the search space is inevitably enlarged and the time taken for
the Pittsburgh approach to find a good solution is also lengthened. Appropriate
representation and specific variation operators are required to ease the
implementation.

The rule set chromosome structure representation often used in the literature is the
fixed length structure representation. Fixed length representation is not suitable for
design problems where various parameters are to be concurrently evolved as the use
of it might cause invalid solutions after the variation operators are applied, and the
representation itself inherently presents several constraints and limitations.

This chapter proposes the use of variable length chromosome representation [153]
to represent the rule set topology. This representation is efficient and simple for the
application of the variation operators and it provides the additional flexibility required
for the concurrent evolution of the various parameters like the number of rules within
a rule set, the boundary conditions for each feature, the masking string, the operator
string and the predicted outcome. Each chromosome within the population represents
a rule set which is made up of different number of rules. Larger number of rules
within a rule set means higher complexity. Each rule within the rule set is seen as a

block unit which consists of four allele strings (details of the allele strings are given in
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the following sub-sections), this provides an efficient manner for deletion or addition

of the rules.

4.2.1.1 Boundary String

The first string encodes the boundary values for each input feature of the data set.
The lower boundary for the ith input feature is denoted by L; while the upper
boundary is denoted by U;. This boundary value gives the numeric threshold for the
input feature and is to be used concurrently with the operator string. The length of this
string and also the masking and operator strings depend on the number of input

features of the given problem.

4.2.1.2 Masking String

The masking string has the effect of feature selection as not all the features
presented in the data set are necessary for good classification results. Though several
features are present in a data set, very often only a fraction of these features are useful
for good classification accuracy [30]. The inclusion of all the features may even
deteriorate the classification performance as they may mislead or interfere with the
good features. The masking allele is a binary bit string indicating whether a given
input feature should appear in the rule. A bit 0 at the ith position indicates exclusion
of feature i, and the corresponding operator and boundary conditions would be

excluded too. Similarly, a bit 1 indicates inclusion of the feature.

4.2.1.3 Operator String

The operator string indicates the inequality and equality operators to be applied on

the boundary string. The four operators encoded are namely, greater than or equal

87



Chapter 4 An Evolutionary Memetic Algorithm for Rule Extraction

“2”_less than or equal “<”, within a range of “< =<” and less than or greater than “=
2” givenby x> L, x < U, L<x < Uand (x < L or x > U), respectively, where x is a

given numeric attribute.

4.2.1.4 Class String

If any of the rules is able to cover or capture the instance, the instance would be
classified as the corresponding class else it would be classified as the general class.
There are several methods used to determine the general class. Some methods for
example are the majority class given in the training data set, random assignment,
evolved using EA, etc. [160][161][162].

Figure 4.1 illustrates a variable length chromosome representation of a rule set

with m number of rules for a data set with » number of input features.
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Figure 4.1: Variable length chromosome representation of a rule set
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4.2.2 Fitness Evaluation

Several different evaluation metrics for rule evaluation are presented in the
literature and the most commonly used metric is the classification accuracy, which
has a more direct relation to the generalization accuracy. Sensitivity and specificity
[119][134] which are statistical tests for binary classification are also often used;
however, these are only applicable for Michigan rules. The less commonly considered
metrics are comprehensibility and interestingness. The comprehensibility metric is a
subjective measure on how clear and easy a rule is interpretable by humans. Generally,
rules that are incomprehensible to humans are often useless in data mining or
knowledge discovery because such rules are not beneficial to the users.
Interestingness is a measure of how common a rule is. A common rule is deemed less
interesting than an uncommon rule.

In this chapter, the fitness function used to evaluate the rule sets comprises of the
classification accuracy being the major metric and in addition, ideas borrowed from
the evaluation of the association rules [4] are also used. Association rules are rules
that attempt to find interesting relationships among variables in a database. These
rules are often used for databases that would present some trends within the variables,
e.g., supermarket database, earthquake database, etc. In a supermarket database, an
association rule may look like, <if a customer buys flour and egg, the customer would
buy sugar too>. The common metrics for association rules are the support and
confidence level [139]. Support of 4 or sup(4) is a measure of the number of
transactions that contain the item set within the database whereas confidence of an

association rule is:
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sup(AUC)

confidence(R) =
sup(4)

(4.1)

where sup (AU C) is the item set containing 4(antecedent) as well as C (consequent).
In the context of this chapter, instead of using support and confidence level for a

rule, it is applied on a Pittsburgh rule set. The support would then be modified as

measuring the coverage of the entire rule set, which is the ratio of the number of

instances covered by the rule set to the total number of instances in the data set:
B.
sup(RS,)) = Wl *100% (4.2)

RS; is the ith rule set, iV[1l,..M ]where M is the number of rule sets to be evaluated.

B, is the number of instances covered by the rule set and N is the total number of

stances.
The confidence factor will measure how accurate a rule set is on those instances

that are covered.

confidence (RS,) = w

1

¢100% (4.3)

where (B;UCR,) is the number of instances covered and correctly classified by the

rule set.

The support factor and confidence factor will provide additional indicators for the
performance of the rule set.

Classification accuracy is the major component used in the fitness function as
eventually it is the generalization accuracy which is of significant importance. This

classification accuracy measure is given as:
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CA(RS) = Tc *100% (4.4)
N
TC; 1s the total number of correctly classified instances and N is the total number of
instances in the training data set, i.e., (7C;< N).
In order to integrate the three components as a fitness function, a weighted
approach is used. Depending on the user’s priority, the weights are set accordingly.
The Modified Weighted Fitness Function (MWFF) is given in Equation 4.5. In this

chapter, the classification accuracy is considered the most important component. w; is

set as 1 whilew, =w; =0.2.

MWEFF = w, e CA +w, e Support -+ w; ® Confidence 4.5)

4.2.3 Tournament Selection

Offspring are created using structural crossover of the parents. Parents with higher
fitness are selected for crossover process and this is done using binary tournament
selection with replacement. In binary tournament selection, two parents are randomly
selected and the parent with higher fitness would be taken as a snapshot for offspring
creation process. The two parent chromosomes are then replaced back into the parent
population pool. The selection of the second parent for crossover follows the same

procedure.
4.2.4 Structural Crossover

Crossover process is required so that useful information is exchanged between

parents and passed to the offspring. Since the standard chromosome representation is
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not used, application of standard genetic operators might not be suitable. A problem
specific crossover operator is applied.

Firstly, crossover points are only allowed at the junctions between each rule,
hence crossover is carried out in terms of rule blocks. The crossover point should not
occur in between each rule which would break up the rule’s strings. Secondly, the
crossover process is done in a shuffled manner. This shuffled crossover process starts
with combining the rules of both selected parents into a common pool. The first
selected rule will be assigned to the first child while the second selected rule to the
second child. The remaining rules are then distributed randomly between the two
children. Since rules are considered sequentially within a rule set, rules at the bottom
might not have a chance to be considered even though they are good rules as those
rules on top would have already classified the instance. One major advantage and
necessity of doing structural shuffling crossover is to bring those rules that are at the
bottom to the top of the rule set, therefore having the opportunity of classifying the
instances. Figure 4.2 shows an example of the crossover process. It can be seen that
after the crossover process, the rules are randomly ordered and the number of rules of

a rule set may vary too.
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Figure 4.2: Structural crossover process

4.2.5 Structural Mutation

The mutation operator provides a mechanism for solutions to escape from local
regions and to increase diversity. The encoding of Pittsburgh rule sets results in higher
complexity than in Michigan approach, hence dedicated variation operators are
needed when applying crossover and mutation. The structural mutation is applied
based on the probability of structural mutation, Py,. Structural mutation involves the
addition or deletion of rules. With this insertion and deletion, the resulting rule set
could translate into a very different rule set, ensuring that new areas of the search
space are constantly being explored. Figure 4.3a shows an example of rule addition
while Figure 4.3b shows an example of rule deletion. The positions of insertion and
deletion of the rules are randomly chosen.

The number of rules to be added or deleted is based on a Gaussian distribution [7].
Using the Gaussian distribution has the advantage of allowing more flexibility on the
number of rules to be added or deleted. Figure 4.4 shows the decisions based on the

Gaussian distribution.
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Figure 4.4: Gaussian distribution for structural mutation

4.2.6 Probability of Structural Mutation

The probability of mutation plays an important role in the mutation process. If the
mutation probability is small, there would be too many similar chromosomes. On the
other hand, having a large mutation probability directs the search towards random
search and increases the possibility of disrupting the chromosomes that may carry
good solutions. Researchers have acknowledged the importance of this parameter and
many works have been done. Generally, research papers have showed that using a

fixed mutation probability throughout the whole evolution process is not optimal and
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efficient, and several works are done using varying mutation probability
[49][144][155][164]. [49] investigated the use of varying mutation probability and
showed its effectiveness over fixed mutation probability. Similarly in [155], the
algorithm uses a mutation probability with high value during the initial generations
and with a drastic drop in value for the later generations. This translates to exploration
in the initial phase and exploitation in the later phase. This mutation scheme is
different from the other adaptive mutation schemes where the mutation probability
decreases proportionally or gradually as the generation increases.

In this chapter, the probability of structural mutation Py, changes based on the
scheme of [155], however it is modified to suit the problem discussed. The equation

used in this chapter is given in Equation 4.6.

2
0.7{1(Lj }, 0<n<0.2egenNum,
genNum
"= (4.6)
N 2
0.2(wj +0.05, 0.2e genNum < n < genNum,
genNum

where 7 is the current generation of the evolution process, genNum is the maximum
generation number.

Figure 4.5 shows the values of the structural mutation probability as the evolution
proceeds through the generations. This ensures that during the initial stage of
evolution, there are large jumps in the search space while at the later stage, it narrows

down to searching within the neighborhood.
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Figure 4.5: Mutation scheme

4.2.7 General class

The general class used in this chapter is the major class of the training data set.
However, from the experimental results provided in the later sections of this chapter,
what is used as the general class is not an issue as the support for the rule sets evolved

is able to achieve almost 100% coverage for both the training and testing data sets.

4.2.8 Elitism and Archiving

Elitism is required so that good solutions would not be lost and could be
propagated through the generations. In addition, elitism has the effect of improving
convergence speed.

The archive acts as candidates for the parents in the next generation. The
chromosomes in the archive go through local search with the tuned chromosomes
emerging as the parents for the next generation. The size of the archive is set as the

size of the parent population.
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4.3 Evolutionary Memetic Algorithm Overview

This section presents the synchronization of all the different variation operators

for the overall rule extraction algorithm.

4.3.1 Training Phase Overview

The objective of the training phase is to have an algorithm that is capable of
optimizing the architecture of rule sets and parameters of the rules concurrently. A
few features, such as variable length chromosome representation, specialized genetic
operators in the form of structural mutation and crossover, and local exploitation
scheme are incorporated so as to achieve the objective. The rules evolved should be
high in support and confidence level, and most importantly produce good
classification accuracy.

Figure 4.6 shows the flowchart of EMA for rule extraction. The algorithm first
initializes a population of rule sets and evaluates their fitness. These rule sets act as
the initial parent population for offspring creation and the population goes through a
series of binary tournament selection and structural crossover based on Py (structural
crossover probability) to exchange good information to pass on to the children. These
newly created offspring would undergo structural mutation based on Py, (structural
mutation probability) in order to vary the number of rules in a rule set. The archive
size selected is the same as the parent size (f), i.e., the fittest f chromosomes in the
children population are archived. These archived individuals would undergo either of
the two local search operators presented in this chapter, i.e., the #GA or the AIS
inspired local search. The fitter individuals emerging from the local search would be

brought forward to the next generation as parent chromosomes. This process
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continues until the overall stopping criterion, which is the maximum number of

generations allowed, is met.
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Figure 4.6: EMA overview

4.3.2 Testing Phase

The rule set that has the highest fitness on the training data set would be applied
on the testing data set. Each instance in the testing data set would be presented to the
rule set for classification. If the first rule does not capture the instance, this instance

will be considered by the subsequent rules. If none of the rules is able to classify this
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instance, the class will be stated as the general class. It is important that rule sets have
high support level during the training phase, as high support level on the training data

set would most probably translate to higher coverage on the testing data set.

4.4 Local Search Algorithms

LS algorithms are used to complement the global search capability of the EA by
fine-tuning the parameters of the rules. This section introduces two variants of LS
algorithms that are incorporated into the main rule extraction algorithm. The main
differences between both the LS algorithms lie firstly, in the AIS inspired LS, cell
replicates quickly by cloning to form a large pool of cells which are the same as the
original cell. In uGA the offspring created are different from the parents and among
themselves. Secondly, both crossover and mutation are used in uGA while only
mutation is used in AIS inspired LS. Thirdly, the basic conceptual frameworks of both
the algorithms are different.

As the AIS inspired LS here does not aim at emulating any specific AIS
algorithms but rather to use some of the basic principles to create another version of
the LS for comparison, the AIS inspired LS here would not be too different from the

1GA LS apart from those points as highlighted.

4.4.1 Micro-Genetic Algorithm Local Search

The framework of the first LS, 4GA, is similar to a normal evolution process;
however, it differs in its purpose, implementation and operation. The target of the
main EA is to optimize the structure of a rule set and exchange good rules among the
rule sets through the use of structural mutation and structural crossover. In micro-

genetic algorithm local search, the structure of the rule sets is maintained throughout
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the evolution process while the parameters of the rules are being exchanged and
mutated. In this manner, the parameter values are optimized to fit the rule set structure.

Figure 4.7 shows the overview of the #GA LS. Each individual from the archive
of the main algorithm would go through one round of LS process. A parent goes
through LS crossover to produce the children population. After the crossover process,
all the children undergo LS mutation. These mutated children are evaluated and the
fittest child is selected as the parent to be used for crossover process in the next
generation. This process is repeated until the overall stopping criterion, which is the
maximum number of generations of the LS, is met. When the LS process ends, the
fittest child would be returned to the main algorithm to be the parent for the next

generation.
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Figure 4.7: Micro-genetic algorithm local search overview
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4.4.1.1 Local Search Crossover

The LS crossover is done among the rules of a rule set as depicted in Figure 4.8.
Using one rule set, it is able to create multiple different children by choosing different
rules and different crossover points. In exceptional cases, where the chosen rule set
contains only one rule, no crossover can be done and it is replaced by the AIS inspired
LS. If the chosen rule set contains two rules, different children are created by
choosing random points for crossover among the two parent rules. The allowed
crossover points of the boundary strings are at the intersection of each attribute to
prevent separating the lower and upper boundaries of an attribute. This constraint is
applied to avoid any infeasible solution after the crossover.

For rule sets with three or more rules, two random rules and one crossover point
are chosen to create a child. This process is repeated to create different children. Once
a crossover point is selected, this point is consistent for both the rules. Figure 4.8
shows a rule set containing three rules for a four input feature problem. Rules 1 and 3
are selected for crossover process and the selected crossover point is between feature

1 and feature 2. No change is made to the class field of each rule.
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Figure 4.8: Local search crossover process

4.4.1.2 Local Search Mutation

By using the mutation operator, the algorithm is able to explore new areas of the
search space and has the possibility of getting a better solution. Each rule consists of
four fields, namely the boundary, masking, operator and class. The LS mutation used
is field specific and due to the limitations of each field, constraints are also applied

accordingly. The probability that an allele will be mutated is based on the LS
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mutation probability Pj,. This mutation probability is generation/iteration-based;
however, it is different from the structural mutation probability. As the number of
generations/iterations used in the local search is smaller than in the main algorithm,
the structural mutation probability does not seem suitable. The LS mutation scheme

used here is given in Equation 4.7.

Ism

P, = 0.2-@} +0.05 ,{geZ, :[L,gNum]} (4.7)
g

where g is the current generation/iteration number and gNum is the maximum number
of generations/iterations allowed.

The mutation details for each string are given as:
Boundary String: Real-value mutation is used to change the values of the boundary
conditions. A random value between [-0.1,0.1] is added to the allele. If the value of
the allele exceeds the range [0, 1] after undergoing mutation, boundary conditions

given in Equation 4.8 are enforced.

1, iqu>1 438
Y4770, if v, <0 (4.8)

where v, = mutated value of allele occupying the gth position of the string.

Masking String: The mutation of the masking string takes the form of a bit flip
operator. A bit 1 is mutated to be bit 0 and vice versa.

Operator String: Mutation on an operator allele would cause that allele to take any of
the other three types of operators.

Class String: The number of possible mutations is dependent on the number of output
classes in the problem. A random class would be used to replace the existing class in

mutation.
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4.4.2 Artificial Inmune Systems Inspired Local Search

Though AIS are widely used for classification, they are seldom used to provide
high level linguistic rules. A number of works, including Carvalho and Freitas
[24][25], use immological algorithm to classify examples belonging to small
disjuncts. The set of small disjuncts would then be able to cover a large set of
examples. In [167], an AIS is used to discover fuzzy classification rules whereas in
[26] an antibody represents a set of fuzzy classification rules. In addition, AIS are
usually used as main algorithms for classification. The construction of an AIS
inspired LS algorithm to fine-tune the rules in a rule set would open up new
interesting avenues on the hybridization of EA with AIS.

The LS algorithm incorporates the characteristics of the clonal selection principles
which includes hyper-mutation, affinity selection and clonal expansion. The algorithm
is a simple one which would not cover all aspects of the clonal selection principles,
however it is one that follows its general framework. The analogous of the antibodies
of the natural immune systems is the solution to the problem, i.e., the rule sets. The
antigen is the optimal solution of the problem in terms of accuracy. The affinity
measure is a measure of the Euclidean distance of the antibodies and the antigens in
the solution space, i.e., an error measurement. The higher the accuracy of the
antibodies the closer it is to the antigen, therefore higher affinity. Proliferation of the
B-cells takes place by exact cloning of the antibody that has the highest affinity.
Hyper-mutation takes the form of LS mutation. The memory cell of the proliferated
B-cells is the best antibody solution from the cloned cell, which is also the antibody
selected for cloning.

The LS starts with getting an antibody from the archive of the main algorithm.

The archive of the main algorithm stores a selected pool of chromosomes with better
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fitness from the children population. This antibody proliferates by cloning based on a
clone rate. The cloned cells then go through diversification and maturation through a
LS mutation process. Each of the cloned cell is evaluated based on its affinity with the
antigen, which in this case is the optimal solution. The cell with the highest affinity
(lowest error) is selected as the antibody or as the memory cell for secondary
response. This process is repeated over several times. The flow chart of the LS which

is inspired by the AIS is given in Figure 4.9.
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Figure 4.9: AIS inspired local search algorithm

4.5 Experimental Setup and Data Sets

This section states the experimental setup and data sets used. The parameter

settings used are also justified in this section.
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4.5.1 Experimental Setup

EMA is implemented using the MATLAB technical computing platform and the
corresponding experiments are performed on Intel Pentium 4 2.8 GHz computers.
Twenty independent runs are performed for each data set using the corresponding
experimental setup.

As different data sets have different characteristics with different convergence
rates and requirements, specific settings that suit each data set are required. Whether a
sample data can be easily classified depends on several factors both in the input space
and the output space. Generally, problems with larger input and output dimensions
have higher complexity, and problems that require more linearly separable hyper-
planes to correctly classify the inputs are also more difficult problems. These
aforementioned issues imply that there is no one for all optimal settings to be used for
the algorithms to be applied on all the data sets.

The parameter settings used for the main algorithm and the LS are tabulated in
Table 4.1 and Table 4.2, respectively. As shown in Table 4.1, the settings for all the
data sets are generally consistent apart from the parent size, offspring size and number
of generations. The number of generations used depends on whether the EMA
algorithm has converged in the training data set. The diabetes data set requires greater
number of generations to converge as compared to the other two data sets (this will be
evident later in the results section). In terms of number of evaluations per generation,
the diabetes requires 175 (parent: 25 + offspring: 150) evaluations which is also
higher than the cancer and iris data sets which requires only 150 evaluations. The
structural crossover probability used is 0.7 which is consistently applied across all
generations. This probability is required to maintain constant exchange of useful

information among the chromosomes. Unlike the structural crossover probability, the
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structural mutation probability declines over the generations as small changes is

preferred over large changes at the end of the training generations.

Table 4.1: Parameter settings for EMA

Cancer Diabetes Iris
) Parent: 30 Parent: 25 Parent: 30
Populations
Offspring: 120 Offspring: 150 Offspring: 120
Archive size 30 25 30
Structural crossover 0.7 0.7 0.7
probability
Crossover type Chromosome Chromosome Chromosome
Generations 50 100 50
Structu.ral mutation Generational Generational Generational
probability
Mutation type Structural Structural Structural

As LS is performed on each chromosome in the archive, the parent/antibody size
in the LS is 1 in each round. LS focus mainly on local fine-tuning, therefore the
number of iterations and offspring creation are lesser than the main algorithm. The
1GA LS uses a crossover probability of 0.9 among the rules of the rule set whereas
the AIS inspired LS uses cloning only. Since the number of generations/iterations
used for LS is only 10, the type of generation/iteration-based mutation between the
main algorithm and LS is different. The difference between the crossover operators
for the main algorithm and #GA LS lies in the former uses chromosome-based,
meaning it is done between two chromosomes, while the latter uses rule-based, which

is done among the rules in each rule set.
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Table 4.2: Parameter settings for local search

UGA AIS
Populations Parent: 1 Antibody: 1
Offspring: 5 Clone rate: 5
LS crossover probability 0.9 No
Crossover type Rule No
Generations/Iterations 10 10
Cloning No Yes
LS mutation probability LS generational LS iterational
Mutation type LS mutation LS mutation

4.5.2 Data Sets

Data sets from the medical and botanical fields are being used to validate the
proposed algorithms. The cancer, diabetes and iris data sets represent both binary and
multi-class classification problems. The selection of these data sets would be able to
verify how the algorithms perform on problems with different number of inputs and
outputs. For each data set, 75% of the data is used as training set while the remaining

25% is used as testing set. Values of the data sets are normalized in the range of [0,1].

4.6 Experimental Results and Analysis

In this section, the experimental results are presented and discussed. Comparisons
are made against rule extraction without local search (No LS) and a well-known rule-
based algorithm in the literature, i.e., PART [52]. The parameter settings and
operators used for No LS are similar to EMA with the exception that there is no fine-
tuning of the parameters by LS. The comparisons are not meant to be exhaustive but
rather it provides an indication of how EMA performs in addition to the advantage of

being able to generate high level comprehensible linguistic rules.
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4.6.1 Training Phase
Figures 4.10 to 4.12 show the fitness level, classification accuracy, support level
and confidence level achieve when using EMA-uGA, EMA-AIS and No LS on the

cancer, diabetes and iris training data sets.

Cancer Data Set: From Figure 4.10, it can be seen that the fitness from all the
algorithms has converged at the end of 50 generations. All the algorithms presented a
rather smooth convergence curve rather than a fluctuating and noisy one, meaning the
algorithm is able to improve the classification accuracy on the training data set
gradually and steadily, with each generation getter fitter. Compared to No LS, both
EMA-uGA and EMA-AIS are able to obtain higher fitness values on the training data
set, while both of them have very similar performance. Using LS converges quickly
after a few generations. The first generation accuracy is also higher for EMA-uGA
and EMA-AIS due to the presence of LS.

The highest classification accuracies obtained by EMA-uGA and EMA-AIS are
around 97.6% while that of No LS is around 95.7%. Since the support on the data set
is about 100%, this classification accuracy performance is very much solely due to the
performance of the rule sets evolved rather than dependent on using the general class.
In addition, when the support is almost 100%, the confidence level is reflective of the
accuracy of the rule sets on the entire data set, and the fitness, accuracy and
confidence graphs would look similar with the only difference in the scaling.

The support level for the LS algorithms started off with having around 97%
coverage and reaches 100% coverage, after which it remains consistent. Without
using LS the support is also able to obtain 100% at the end of the 50 generations. This

implies that the incorporation of the support factor into the weighted fitness function
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is effective in improving the support level to obtain almost 100% on the training data

set.

Diabetes Data Set: Figure 4.11 shows that the algorithms, when applied on the
diabetes data set require a larger number of generations for convergence. The
convergence rate is also slower than that for the cancer data set. Once again, all the
algorithms presented a smooth graph that has fitness getting better as the generation
increases. The classification accuracies obtained by both EMA-uGA and EMA-AIS at
the end of the generations are about 82% while No LS gave 77.8%. Incorporation of
the LS is required for the algorithm to perform well on the training data set. The
support on training data set increases sharply to 100% during the initial generations
which implies that most of the search effort after the initial phase of the algorithm is

concentrated on increasing the confidence and accuracy level.

Iris Data Set: The fitness level for the algorithms with LS are always higher than No
LS. The classification accuracies of both EMA-uGA and EMA-ALIS rises from 90% to
around 98.9% at the end of the generations. No LS algorithm rises from 70% to
94.2%. The performance of No LS in terms of fitness and classification accuracy
could not match both the EMA LS algorithms, while both the EMA-uGA and EMA-
AIS have comparable performance. This shows that LS is important in improving the
results on training data set. The support on the iris data set reaches 100% after the
initial phase of training. The observations made from the iris data set shows similar

trends with cancer and diabetes data sets.

Generally, different data sets require different number of generations for

convergence. In addition, the algorithms are able to improve the support on the
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training data set rapidly, showing confidence that the accuracy is solely due to

decisions of the rule sets rather than the general class rule.
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Figure 4.10. Training results for the cancer data set
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Figure 4.12. Training results for the iris data set

4.6.2 Rule Set Generated

The parent population rule sets are of different lengths and use different number
of features within each rule due to the masking operator. Rule sets with larger number
of rules do not guarantee better results than shorter rule sets. An appropriate number
of rules within a rule set is required for good classification of the data sets.

An example of the rule set generated for the iris data set is given in Figure 4.13.
Each rule contains different number of features. e.g., the first rule uses only the petal
length while the second rule contains the sepal length, petal length and width. Each of

these individual rules predicts a class and they collectively make up the whole rule set
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and all the three classes of the iris problem are predicted. Only rule sets that predict
all the classes of the problem are useful. If a rule set does not cover all the classes of
the problem, some classes will be left unidentified. Further observations on the rule
set show that not all the input features are required for decision making. The sepal
width did not appear in the antecedent of any rules. This leads to the field of feature
selection [30] which states that not all the given features of a data set are required for
good classification. In fact, very often only a subset is required. The inclusion of all
features might even deteriorate the performance of the algorithm as some features are
detrimental and might interfere with the decision of the other features. This might

imply that the sepal width is not required for good classification for the iris problem.

if petal length < 2.9575 then class is Setosa

else if (sepal length <5.7553 or sepal length > 5.9491) then class is Virginica
and (petal length > 4.1471) and
(petal width < 1.0625 or petal width > 1.6954)

else if petal length >4.9726 then class is Virginica

else if (4.7692 < sepal length < 6.6939) and then class is Setosa
(petal width > 1.9455)

else if 2.8685< petal length <5.2774 then class is Versicolour

else class is Versicolour

Figure 4.13: A rule set example for the iris data set

The number of rules generated by the algorithms over the runs are shown as box
plots in Figure 4.14. Box plots [116][177] are used to present the median (line within

the box), the lower quartile and upper quartile (given by the lower and upper
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boundaries of the box) of groups of given data. The smallest and largest observations
are also given in a box plot, with possible outliers marked by a cross.

EMA-uGA and EMA-AIS have fewer rules in a rule set for all problems
compared to No LS. An appropriate number of rules is required rather than having a
large rule set that does not guarantee better classification abilities. Without using LS,
outliers are evident for all the three data sets. The differences between the median
number of rules for EMA-uGA and EMA-AIS are not very great; 13.25 vs 12, 21.8 vs
21 and 7.15 vs 7.8 for the cancer, diabetes and iris data sets, respectively. Both EMA-
1GA and EMA-AIS evolve rule sets with approximately similar complexity for all the
data sets. The maximum and minimum number of rules within a rule set is smaller for
EMA-uGA and EMA-AIS as compared to No LS. The incorporation of LS within the

algorithm resulted in lower complexity rule sets yet achieving better performance.
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Fig 4.14: Average number of rules in a rule set (a) cancer (b) diabetes (c) iris

4.6.3 Results on Testing Data Sets
In this section, the support and generalization performance on the testing data sets
are given. In addition, comparison of generalization accuracy is made with PART a

rule-based algorithm in the literature [52].

4.6.3.1 Support on Testing Data Sets
The best training rule set is applied on the testing data set and Table 4.3 shows
that the support on the testing data set is close to 100% for both the cancer and

diabetes problems, and it is able to cover 100% of the instances for the iris problem.
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The deviation on the number of instances that are supported is very small or zero. For
every run, there is high confidence that the rule set evolved during the training phase
is able to cover most of the testing data set instances and probably only one or two
instances of the testing data set do not fit the rule set antecedents. When one rule set is
able to support a high percentage of the testing data set, this requires only one rule set
to be selected from the training phase. If each rule set has low support, several rule

sets are needed to cover the entire testing data set.

Table 4.3: Support for testing data sets

Mean support (%) Standard deviation
Cancer EMA - uGA 99.71 0.659
EMA — AIS 99.86 0.255
No LS 99.60 0.497
Diabetes EMA - uGA 99.87 0.373
EMA — AIS 99.95 0.160
No LS 99.84 0.382
Iris EMA - uGA 100 0.00
EMA - AIS 100 0.00
No LS 100 0.00

4.6.3.2 Generalization Accuracy

Since the support on the testing data set is almost 100%, in Table 4.4 which shows
the generalization accuracy, it is certain that the generalization accuracy figures truly
reflect the performance of the rule sets and the accuracy is also reflective of the

confidence level.

Cancer Data Set: EMA-uGA and EMA-AIS obtained 97.4% and 97.6% mean
generalization accuracy, respectively, and are the highest among the algorithms. All

the algorithms proposed in this chapter are able to outperform PART in terms of mean
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accuracy. EMA-uGA, EMA-AIS and No LS have the same maximum accuracy while
No LS has lower minimum accuracy. No LS has higher standard deviation as
compared to using LS. Though PART has the lowest standard deviation among all
presented algorithms, it should be noted that the minimum accuracies for EMA-uGA
and EMA-AIS are still higher than the mean accuracy of PART. Hence, for EMA-
UGA and EMA-AIS, the deviation from the mean accuracy will not give results that

are lower than PART.

Diabetes Data Set: PART obtained higher mean accuracy than No LS and has the
lowest standard deviation. The algorithms proposed in this chapter have rather large
standard deviations. The best algorithm among those proposed in this chapter is
EMA-AIS, which has the highest mean accuracy yet lowest standard deviation. EMA-
1GA is able to achieve the highest maximum accuracy at 80.2% which is a large

difference from the mean accuracy of the rest of the algorithms.

Iris Data Set: The best algorithm on the iris data set is EMA-uGA where it obtained
the highest mean, maximum and minimum accuracies. It also has lower standard
deviation compared to No LS and PART. Both EMA-uGA and EMA-AIS have
outperformed PART since they have higher mean accuracies with lower standard
deviations.

Generally, across all data sets, the following observations are made:

e No LS has the lowest minimum accuracies and large standard deviations,

hence LS is important for a more robust algorithm.

e EMA-uGA and EMA-AIS have the best mean accuracies.
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Table 4.4: Generalization accuracy
Mean Maximum Minimum  Standard

accuracy (%) accuracy (%) accuracy (%) deviation

Cancer EMA —uGA 97.414 99.425 95.402 0.942
EMA — AIS 97.557 99.425 95.402 1.002
No LS 96.236 99.425 93.678 1.532
PART 94.9 - - 0.4

Diabetes EMA — uGA 75.052 80.208 71.875 2.292
EMA — AIS 75.235 77.604 72.396 1.439
No LS 73.229 77.083 68.75 2.133
PART 74.0 - - 0.5

Iris EMA - uGA 97.297 100 94.595 0.877
EMA - AIS 97.027 97.297 94.595 0.832
No LS 94.595 100 83.784 3.921
PART 93.7 - - 1.6

4.7 Conclusions

A novel way of incorporating LS into EA for rule extraction is proposed in this
chapter. Two LS algorithms, namely uGA LS and AIS inspired LS, are investigated
and the results are analyzed and discussed in detail. The memetic algorithm is
complimented by the use of variable length chromosome which naturally represents
the rules for the problems to be solved. Several advanced variation operators are used
to improve the algorithms. The algorithms are applied on real-world benchmarking
problems and results show that both EMA-uGA and EMA-AIS have comparable
performance. The results also show that LS is generally important for better efficiency
as No LS is not able to attain the same level of performance as EMA-uGA and EMA-
AIS. All the algorithms proposed in this chapter managed to get near 100% support

level on the data sets.
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Chapter 5

A Multi-Objective Rule-Based

Technique for Time Series Forecasting

Classical methods like the exponential smoothing have been used as a simple
method for Time Series Forecasting (TSF) [20][68][80][107][129]. Numerous
statistical methods including the Box-Jenkins models, i.e., Autoregressive Moving
Average (ARMA) model [28][75] have also been widely used. Though statistical
methods provide satisfactory results, they are usually mathematically complex and
cannot be easily applied by non-technical experts.

With the emergence of intelligent systems, computational intelligence techniques,
like NN and EA, have gained much popularity in TSF. These techniques have been
used extensively and also hybridized with classical and statistical methods to achieve
improved results [8][82]. [171] proposed two enhancement factors, namely, density
factor and distortion factor to the evolution process for financial time series
segmentation. [35] uses a meta-level genetic algorithm for selecting the best ARMA
model and a low-level GA for parameter optimization. The advantages of using NN
for TSF lie firstly in its inherent ability to predict and model without the need of
knowing the explicit details or underlying mechanism of the problem. Secondly, it is
able to learn through repeated presentation of examples and handle non-linearity.
However, the limitations of classical NN training lie in the use of gradient-based
techniques which are more likely to get trapped in local optima [7].

In early Evolutionary Neural Networks (ENN) research, EA have been used to
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evolve the weights and architectures of NN in TSF. More recently, there are other
interesting works on ENN for TSF that consider other aspects [31][36][110]. [47]
hybridized a NN and a modified GA, where the evolutionary process searches for the
required minimum time lags in representing the series. Other interesting aspects of
EA and its hybrids for TSF also surface in view of the great potential. These works
are orientated towards using rules within an evolutionary framework for TSF
[42][103][112]. Apart from these works on extracting knowledge from TSF, there are
rarely any prominent works.

This chapter proposes a Multi-Objective Rule-Based Technique (MORBT) which
intends to add on to the limited number of works in the literature on evolving rules for
TSF, opening up new avenues and interesting possibilities on applications of EA. A
dual phase approach is adopted, with phase I concentrated on evolving a population of
general regression coefficients for the data set. The coefficients are optimized by the
use of EA instead of being calculated, e.g., by statistical methods like Least-Squares
Analysis (LSA). LSA requires several statistical assumptions, involves highly
complex mathematics and is not suitable in all cases, e.g., in the presence of singular
matrices whose inverse cannot be calculated accurately. Therefore, the use of EA is
less restrictive in these cases. In phase II, a rule-based approach is used to locate the
optimal regions of the series, for which each regression coefficient string is suited.
Instead of using a set of general regression coefficients throughout, several sets of
regression coefficients are identified. In phase II, each chromosome is coupled with a
boundary, operator and regression coefficient string. The motivation behind the dual
phase approach is to break down the otherwise large search space of the difficult
combinatorial optimization problem of searching for both the optimal set of

regression coefficients and rule parameters.
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The two important aspects in evolving a rule are to obtain a low predictive error
and a high coverage in the objective space. However, these two conflicting objectives
are rarely handled well. Multi-Objective Evolutionary Algorithms (MOEA) are able
to present solutions to a problem with several objectives in the form of alternate trade-
offs and are able to evolve multiple Pareto solutions concurrently and obtain a Pareto
optimal set in a single run [58][73][91][155][190]. MOEA would act as a suitable
method to evolve solutions with low error and high rule coverage. With these in mind,
phase II of the proposed algorithm uses MOEA and the concept of Pareto dominance
to optimize the two objectives of low error and high coverage simultaneously.

Section 5.1 presents the basics of multi-objective optimization. The details of the
proposed features and operators of the MORBT are described in Section 5.2 while the
MORBT overview is given in Section 5.3. Experimental setup and data sets used are
described in Section 5.4. Studies upon financial time series data sets are conducted in

Section 5.5. Conclusions are subsequently drawn in Section 5.6.

5.1 Multi-Objective Optimization

Multi-Objective (MO) problems refer to problems with more than one objective to
be optimized. Taking a multi-objective minimization problem as an example, the aim

is to minimize the objective set, O(X), where O(.) = {0,,0, ....,0,} are the n objectives

and X = {x,x,,....,x,, } is the m dimensional parameter vector [157][158].

Real-world optimization problems often entail optimizing simultaneously various
objectives which are usually conflicting and non-commensurable. Most existing
literature concentrates on one objective and ignores the other, or considers them
concurrently using a weighted sum approach. However, the objectives to be

considered are very often non-commensurable to be placed on the same platform.
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Moreover, if the objectives are conflicting, it is not acceptable to present solutions in a
single-objective manner, but should be in a form of trade-offs [51][81][155].

Solutions to multi-objective optimization can be casted in a Pareto optimal set.
Figure 5.1 illustrates an example of the solutions obtained for a two-objective
minimization problem. The Pareto optimal set (marked by cross) is the set of non-
dominated solutions representing the tradeoffs between the objectives. When a
solution is not dominated it means there is no other solution that has better
performance in both the objectives or there is no other solution that is better in one
objective and equal performance for the other objective. Within the Pareto optimal set,
when a solution point is identified, in order to pick another solution that can improve
in one of the objectives, this has to be done at the expense of the other objective
[41][51][145][155][157]. Let A=[a,,a,] and B =[b,,b,]be two solutions of a two-
objective minimization problem. Table 5.1 shows the dominance relationships

between them.

Table 5.1: Dominance relationships

Objective 1 Objective 2 Outcome
a, <b a, <b, A strongly dominates B
a, <b a,<b, A weakly dominates B
a, < b a, <b, A weakly dominates B
a, > b a, <b, Equal dominance
a, <b a,>b, Equal dominance
a, =b a,=b, Equal dominance
a, > b a,>b, B strongly dominates A4
a, 2 b a,>b, B weakly dominates A4
a, > b a,=b, B weakly dominates 4

To find the Pareto optimal set, MOEA are often deemed as a promising

methodology due to its global search capability. It evaluates several candidate
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solutions simultaneously within a generation and through the use of a combination of
guided (fitness selection) and stochastic search (variation operator) processes, it is
able to locate the global optimum. This intrinsic property enables a macro-view of the

problem, allowing the algorithm to find a diverse set of solutions that is close to the

optimal Pareto front [59].
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Figure 5.1: Pareto front

5.2 Details of the Multi-Objective Rule-Based Technique

The following sections will present the features and operators for MORBT.

5.2.1 Initialization and Chromosome Representation

A population of real-value regression coefficients is being initialized in phase I
and the values of the coefficients are randomly generated in the range of [-0.5...0.5].
The length of the coefficient chromosomes is fixed and reflects the sliding window
length.

In phase II, the regression coefficient strings are integrated with the boundary and

operator strings. Each chromosome consists of three strings of genes (Figure 5.2)
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which uses the Michigan encoding scheme. The first string encodes the boundary
conditions for each independent input observation within the sliding window and is
represented by two real-value coded genes. One encodes the lower boundary while
the other encodes the upper boundary. The lower boundary for the ith observation is
denoted by L; while the upper boundary is denoted by U,. This boundary value gives
the numeric threshold for the observation and is to be used concurrently with the
operator string. The second string encodes the operators which indicate the equality
and inequality operators to be applied on the boundary string. The four operators
encoded are namely, greater than or equal “=”, less than or equal “=<”, within a range
of “< =<”_ and less than or greater than“< 2" givenby x> L, x< U, L<x < Uand (x
< L or x > U), respectively, where x is the data set numeric value. The third string
encodes the regression coefficients.

The length of a chromosome in phase II is also determined by the sliding window
length, w. The whole chromosome would be interpreted as samples that fit the
antecedents of the rule would have its output determined by the associated regression

coefficients.

— L U, L, U, | s L, U,
R [ c)1 02 ””””””””” Ow
[] C1 C2 ””””””””” Cw

Figure 5.2: Genotype representation of a chromosome

5.2.2 Error Function
The common evaluation metric for TSF algorithms would be the difference

between the actual and forecasted observations, i.e., the error term E, and the
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objective would be to minimize E. Several variants of the error term are given and

studied in the literature [9]. The more common ones are stated as:

N
SSE =Y (d,-%,)’ (5.1)
t=1
1 Y .2
MSSE =—>"(d, - %,) (5.2)
NS
1 .
RMSE = NZ(dt—xt) (5.3)

where SSE = Sum of Squared Error, MSSE = Mean Sum of Squared Error and RMSE

= Root Mean Squared Error, d, is the actual observation, , is the predicted value and
is calculated as % =XeC' , X=[x,_,...x,_,] are the input values

andC =[c, ¢, .....c, ] are the regression coefficients. N is the total number of values

to be forecast.

5.2.3 Tournament Selection

Binary tournament selection with replacement is used for selection of parents for
offspring creation in phase I. Two parents are randomly selected and the parent with
the higher fitness level would be taken as a snapshot for offspring creation. The two
parents are then replaced back into the population. The selection of the second parent
would then follow the same procedure. After the two parents are selected, crossover is

carried out.
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5.2.4 Crossover

A single random point crossover operation is applied in phase I on the coefficient
strings. The crossover operator allows parent chromosomes to exchange useful
information between them in order to create new chromosomes. The crossover
operation also allows new solution space to be explored with the creation of new

chromosomes. An example of the crossover operation is shown in Figure 5.3.

crossover crossover
J point point
Cll C12 C13 C14 C15 C21 C22 C23 C24 C25
Cll C12 C13 C24 C25 C21 C22 C23 C14 C15

Figure 5.3: Single random point crossover

5.2.5 Mutation

The mutation operator ensures that new areas in the search space are being
explored. The probability of mutation is important in the evolution process. If the
mutation probability is small, the mutated chromosome would not be very different
from its original structure, and is less likely to escape from local optima. On the other
hand, having large mutation probability directs the search towards random search and
increases the possibility of disrupting the structure of chromosomes that may carry
good solutions.

Phase I mutation takes place on the coefficient string while in phase 11, mutation is
applied to the boundary and operator strings as well. Real-value mutation is used and
a random value between + 10% of the original value is added to the alleles of the

boundary strings. Constraints are set on the boundary strings and at any time if the
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value of the lower boundary is higher than the value of the upper boundary after

mutation, these two values are swapped.

5.2.6 Multi-Objective Pareto Ranking

Before the use of multi-objective optimization algorithms, multi-objective
problems are usually translated into single-objective optimization problems [145],
which makes the problem simple and easy to handle. However, such techniques like
weighted average of the different objectives are not natural and often compromise
certain properties of the various objectives. In addition, the use of the weighted
averaging introduces other issues like the assignment of the weights which is related
to the scaling of the different objectives.

The two objectives to be optimized in this chapter are conflicting. Rules with
higher coverage are able to capture more time series sequences. Higher coverage rules
are more general rules compared to lower coverage rules. Lower coverage rules are
specific rules that cater to a limited number of time series sequences, therefore they
are expected to have lower mean error than the more general rules. The formalization

of these two objectives is given as:

flznﬁn{\/li(dj_)el_f}, nzizl. (5.4)

n
fr= max{ﬁ} (5.5)

The first objective function f; is to minimize the RMSE, where n is the total
number of samples that fits the rule and N is the total number of samples in the data
set. Z; = 1 if the rule covers the sample at time #; and Z;= 0 if it does not. The second

objective f> is to maximize the coverage (number of samples that fit the antecedents of
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the rule).

The multi-objective rule optimization problem lies in finding solutions that fit the
conflicting objectives of maximizing the rule coverage and minimizing the error.
Figure 5.4 shows an example solution for optimizing these two conflicting objectives.
When the rule coverage is increased, the error is increased. The solutions indicated by
the crosses form the Pareto optimal set while those indicated by triangles are the
dominated solutions.

There are several types of Pareto ranking schemes available in the literature and

the one used in this chapter is given as:

i =l+d, (5.6)

where i, 1s the rank of the ith solution and d; is the number of solutions that

rank
dominates the ith solution. This equation results in all non-dominated solutions having

the rank 1 and there might be some ranks not being occupied [51][59][156][157].
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Figure 5.4: Tradeoffs between training error and coverage
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Apart from optimizing the various objectives of the problems, MOEA would also
want the Pareto optimal set to be as wide-spread and well-distributed as possible. This
ensures that crowding would not occur and a diverse set of solutions can be obtained
to provide a wider selection choice for the users [40].

In the context of this chapter, the solutions can only occupy certain positions on
the Pareto front. This is because the coverage function is based on the number of
samples covered by the rule which would give a limited number of values. Crowding
of the values has much lower possibility unlike in the case of real-value solutions,
where solutions can occupy infinite positions. Hence, the diversity issue is not a
problem here (the experimental results in later section will illustrate this point

clearer).

5.2.7 Fine-Tuning

The coefficients of the rules are fine-tuned at every 7 generations. Since the
coverage is not affected by this process, the effect of fine-tuning is to lower the
prediction error and push the Pareto front downwards (Figure 5.5). This fine-tuning
process is only applied to the rank 1 solutions. Each rank 1 chromosome is first
replicated to create a population of offspring which would undergo real-value
mutation. The chromosome with the lowest error would emerge as the parent. This

process repeats for a predefined number of iterations.
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Figure 5.5: Resulting Pareto front from fine-tuning

5.2.8 Elitism

In phase I, elitism is implemented by combining the parent and offspring
population and choosing the better chromosomes to be the parents for the next
generation. In phase II, the process is implemented by combining the parents and
offspring together and selecting the non-dominated solutions. The size of elitism is
dependent on the number of non-dominated solutions distributed along the front.

Elitism has the effect of improving convergence speed.

5.3 Multi-Objective Rule-Based Technique Overview

The overall training process is separated into two stages to breakdown the task of
optimizing both the coefficients and rule parameters together. The pool of optimized
regression coefficients from phase I is smoothly transited to phase II to combine with
the rule parameters. The overviews of phase I and II are given in Sections 5.3.1 and

5.3.2.
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5.3.1 Phase I: Algorithm Overview

The design process begins with random initialization of a population of
chromosomes representing the forecasting regression coefficients. Binary tournament
selection is used to select parents for crossover. Offspring creation using crossover
based on P, (crossover probability) is carried out on the parents. The newly created
children undergo real-value mutation based on P,, (mutation probability) in order to
introduce diversity within the population. The fitter chromosomes among the children
and parent populations are brought over to the next generation as the new parents. The
training continues until the maximum generation is reached. At the end of phase I, a
set of general regression coefficients for the training data set is obtained. The
coefficient string is now near optimal for general prediction. The flow chart of phase I
is given in Figure 5.6.

The aim of phase I is to evolve the regression coefficients instead of calculating it
using statistical techniques. Using EA to evolve the coefficients has the advantage of
being more flexible and not requiring complex mathematical technicalities. There are
not many constraints and assumptions that EA needs to adhere. For example, when
using least-squares analysis, a linear regression problem can be represented in the

form of Y = X +¢, where Y is the dependent variable vector, X is the independent
variable matrix, £ is the coefficient vector and ¢ is the error vector. If it satisfies the

Gauss-Markov ~ assumptions, then the parameter S is calculated as

B=(X"X)"X"Y, however this requires matrix (X X) to be non-singular.
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Figure 5.6: Flow chart of phase I

5.3.2 Phase II: Algorithm Overview

Based on the pool of chromosomes with coefficients optimized, the boundary
conditions and operators are evolved in phase II together with the incorporated
coefficients. Each chromosome within the population represents a rule which covers a
predefined interval of the time series. Benefiting from the already evolved general
coefficients from phase I, the initial large search space of phase II is narrowed. If the
boundary conditions, operators and coefficients are evolved simultaneously from
initialization, the search space would be extremely large and multi-modal.

The first step in phase II is to initialize a population of boundary conditions and
operators. These chromosomes are evaluated and Pareto ranked. Since the rank 1

chromosomes are the best solutions obtained, these are taken as the parent population.
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These rank 1 chromosomes are replicated to create a pool of offspring. Though the
replication of the rank 1 chromosomes is similar to the process of Multi-Objective
Artificial Immune Systems (MOAIS) [34][101][102] method of proliferation, it is
viewed as a simple and efficient method to create offspring rather than to emulate
MOAIS. The associated rule boundary, operator and coefficient strings of the
offspring are then mutated. The mutated offspring are evaluated based on the two
objective functions, i.e., coverage and normalized RMSE. The parent population is
combined with the offspring population and the solutions in the combined population
are re-ranked based on their dominance relationship. Ranked 1 chromosomes would
be used as parent chromosomes for the next generation. If there are more parents than
the predefined front limit, truncation process would be carried out. Chromosomes
with the lowest error are selected and the rest are discarded. Therefore, the size of the
parent population is dependent on the number of individuals distributed along the
Pareto front as well as the front limit. The coefficients of the parents go through fine-
tuning at every 7 generations (7' =5 is used). The overall process continues until the
stopping criterion, which is the maximum number of generations, is reached.
Evolution starts from limited points in the search space and expands to cover an
increasingly wider area. Specific rules cover fewer samples and are more accurate; on
the other hand, general rules cover larger number of samples at the expense of lower
training accuracy but are important as they increase the possibility of covering a
larger solution space of the testing data set. If all the rules are specific, there are high
chances that they would only fit the observations of the training data set and most of
the test data would not be captured by the rule. The flowchart of phase II is shown in
Figure 5.7. At the end of the evolution process, there might be some samples of the

training data set which are not covered by the training rules and general coefficient
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string would be used on these samples.

5.3.3 Testing Phase

At the end of the training process, all parent chromosomes are arranged in
ascending order according to error, to be applied on the testing data set. The first rule
that is able to cover the presented sample will be used for prediction. If there are no
rules that are able to cover this sample, the general coefficient string from phase I will

be used.
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5.4 Experimental Setup and Data Sets

MORBT is implemented using the MATLAB technical computing platform and
the corresponding experiments are performed on Intel Pentium 4 2.8 GHz computers.
The parameter settings for MORBT and the details of the data sets used are given in

the following sections.

5.4.1 Experimental Setup

The number of generations in phase I is only half of phase II and the parent to
offspring ratio is also smaller. In phase I, for every 1 parent there are 6 offspring but
in phase II, for every 1 parent there are 10 offspring. This is because the motivation of
phase I is to find an initial pool of good regression coefficients without requiring them
to be fully optimized. In phase II, these coefficients would be further evolved
concurrently with the rule parameters. In addition, there is only one parameter in
phase I, which is the regression coefficient string, to be optimized, while in phase 11
there are three parameters - the regression coefficient, the boundary and the operator
strings. Apart from having more parameters to be optimized in phase II, there is an
additional objective, which is the coverage, to be considered.

As the Front Limit (FL) is a crucial parameter for the coverage on the training
data sets, two front limit sizes are given in phase II as different experimental setups to
investigate the effects of the FL sizes on the algorithms. One setting limits the number
of individuals allowed on the Pareto front to be 50 while the other doubles the value
to 100 individuals. Both phases use the same mutation probability and mutation size
for the regression coefficients. These parameter settings are used for all the data sets

in this experiment.
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Table 5.2: Parameter settings for MORBT

Phase I Phase 11
) Parent: 10 Parent: Rank 1
Populations . )
Offspring: 60 Offspring: x10
Chromosome type Real-number Rule-based
representation
Selection for parent Fitter chromosomes Rank 1 individuals
Generations 30 60
Mutation probability 0.6 0.6
Mutation Real-value Real-value and randomly
generated operators
Front limit N.A. 50, 100

The MORBT is compared to algorithms that use only a single phase.
GA: Comparisons are made with genetic algorithms that involves phase I of the
MORBT only, i.e., the algorithm uses the coefficients only and not the rules.
SP-MORBT: Comparisons are made with an algorithm that uses only phase II of the
MORBT. This algorithm evolves all the parameters together without using an initial
pool of good coefficients. It is termed Single Phase MORBT (SP-MORBT).

These comparisons are necessary to show the importance of having a rule-based
and dual phase approach. The number of generations for the single phase algorithms
are more than the MORBT to compensate for the lack of dual phase. The parent and
offspring populations are also larger for GA as compared to Phase I of the MORBT.
For the comparisons to be consistent, other parameter settings of these two algorithms

are the same as MORBT.
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Table 5.3: Parameter settings for GA

GA
‘ Parent: 30
Populations .
Offspring: 150
Chromosome type Real-number representation
Selection for parent Fitter chromosomes
Generations 150
Mutation probability 0.6
Mutation Real-value
Table 5.4: Parameter settings for SP-MORBT
SP-MORBT
‘ Parent: Rank 1
Populations .
Offspring: x10
Chromosome type Rule-based
Selection for parent Rank 1 individuals
Generations 100
Mutation probability 0.6
Mutation Real-value and randomly generated operators
Front limit 100

5.4.2 Data Sets

The Financial Times Stock Exchange (FTSE) of the London stock exchange, the
Standard and Poor’s 500 (S&P 500) and the National Association of Securities
Dealers Automated Quotations (NASDAQ) of the United States market are used. For
each index, weekly data for a ten-year period is used [184]. These are actual real-
world data collected from the last day closing index of the trading week. 70% of the
data are used as training data set while the remaining 30% are used as the testing data

set.
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These data sets are normalized in the range of [0,1] for training purposes. The

normalization method used is:

X . = i~ ““min (57)

max min

where x . is the normalized ith data, x;is the ith data to be normalized, x_, and x

min

are the maximum and minimum values, respectively, in the training data set.

5.5 Experimental Results and Analysis

The experimental results showcasing the different aspects of findings are studied

in detail in the following sections.

5.5.1 A Rule Example

Figure 5.8 shows an example of the rule evolved for the FTSE. The values shown
are the normalized values extracted from the training phase. Different operators are
used for the input observations. As the values of the data sets are highly fluctuating,
there are large differences among the input observation boundaries. The coefficients
reveal the relative importance of each input observation to forecast the output value.
Those with larger coefficients have higher importance while those with smaller
coefficients are of lower importance. This rule shows that the later observations
(observations closer to the value to be predicted) have larger coefficients. This
observation is logically intuitive as one would expect the more recent values being

more indicative of the future values.
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if  0.096<x, <0.53375and 0.29236 < x,, <land (0.22255> x,, or x,, > 0.8699)
and (0.3447 > x,, or x,, > 0.5396) and (x,; > 0.36038)

then 3, =-0.043895x, +0.12684x,, —0.072595x , + 0.20471x,, +0.2120x,,

where x;; is the jth input observation value for the ith sample and y; is the predicted

output value for the ith sample.

Figure 5.8: A rule example for the FTSE

5.5.2 Algorithm Coverage

The coverage of the rules evolved on the training and testing data sets are
presented in this section. Table 5.5 and Table 5.6 present the results of MORBT using
FL = 100 and FL = 50, respectively. When front limit of 100 is used, the mean
coverage for all training data sets is over 99%. This shows that only a few samples are
not covered by the evolved rules. From the maximum and minimum coverage, the
deviation of samples being covered is low, with less than 5% deviation; this is also
supported by standard deviation results. In addition, the mean, maximum and
minimum coverage on all testing data sets for all runs are 100%, and hence the
standard deviation is 0. Since the coverage of the samples is high, the error results
presented in the following sections (using FL = 100) would be reflective of the rule
performance, i.e., the samples use coefficients assigned by the rules rather than the
general coefficient from phase I.

The mean coverage of MORBT on the training data set has dropped when the FL
is reduced to 50. The drop in mean coverage is most significant for the NASDAQ
problem. This indicates that a FL. of 50 would not be adequate to cover all samples.
Though the maximum coverage across the runs on the FTSE and S&P 500 managed
to maintain at 100%, the minimum coverage has decreased. There are large

fluctuations on the rule coverage causing large standard deviations. The same
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observations are seen on the testing data set. MORBT, with FL. = 50, on the
NASDAQ testing data set has the lowest mean, maximum and minimum coverage,

and the largest SD.

Table 5.5: Rule coverage - MORBT with FL = 100

Coverage on training data Coverage on testing data
Mean Max Min 3D Mean  Max Min D
() () (%) () () ()

FTSE 99.92 100 99.17  0.264 100 100 100 0
S&P 500 9936 100 96.67 1.032 100 100 100 0
NASDAQ 99.28 100 96.67 1.008 100 100 100 0

Table 5.6: Rule coverage - MORBT with FL = 50

Coverage on training data Coverage on testing data
Mean Max  Min 3D Mean  Max Min 3D
() (%) () () (%) (%0)

FTSE 87.25 100 53.89 19.78 90.45 100 63.69 15.50
S&P 500 90.72 100 77.22  7.20  98.21 100 93.59 243
NASDAQ 7397 825 6556 560 7866 9936 33.12 2252

Table 5.7 presents the rule coverage results for SP-MORBT with FL = 100. With
the use of single phase approach, the algorithm is still able to obtain more than 90%
coverage on the training data set and a consistent 100% coverage on the testing data
set. The results have very low standard deviation on the training data set and zero
standard deviation on the testing data set. It is concluded that the FL has a large effect
on the coverage of the training samples, which in turn affects the coverage on the

testing samples.

142



Chapter 5 A Multi-Objective Rule-Based Technique for Time Series Forecasting

Table 5.7: Rule coverage - SP-MORBT with FL. = 100

Coverage on training data Coverage on testing data
Mean Max Min 3D Mean  Max Min D
()  (B) (%) () (%) (%0)
FTSE 100 100 100 0 100 100 100 0

S&P 500 99.89 100 98.89 03514 100 100 100 0
NASDAQ 98.61 100 9472 1.5876 100 100 100 0

5.5.3 Pareto Front

Figures 5.9 and 5.10 show the non-dominated Pareto front evolved by phase II of
the MOBRT using FL = 100 and FL = 50, respectively. Both figures show relatively
well-spread fronts rather than fronts that crowd at particular points of the solution
space. The number of points show that there are many solutions being evolved for
each problem and MORBT is also able to find many diverse rules. By decreasing the
front limit, the number of solutions is sparser over the front. Figure 5.11 shows the
front obtained using SP-MORBT. Results show well-spread fronts with many

solutions.
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Figure 5.11: Rank 1 Pareto front - SP-MORBT with FL = 100

5.5.4 Actual and Predicted Values

Even though the stock indexes manifest itself as highly fluctuating and

unpredictable (Figures 5.12 — 5.14), the MORBT is still able to predict quite closely

on the training and testing data sets. As shown in the figures, the training data set

spreads over a larger range than the testing data set, meaning there is a possibility that

only a portion of the rules of the training data set is being used on the testing data set.

From the figures, it is hard to see which algorithm actually performs better. Closer

examinations would be made in the next section.
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5.5.5 Generalization Error

The results presented in Table 5.8 and Table 5.9 show the actual value (not
normalized) of the generalization RMSE. The mean results obtained by averaging
across all runs show that MORBT (FL=100) has lower RMSE than MORBT (FL=50)
for all data sets. In addition, MORBT (FL=100) has lower maximum error and
smaller standard deviation than MORBT (FL=50) for the FTSE and NASDAQ. The
poorer results of MORBT (FL=50) could be due to the lack of coverage. Therefore, it

is important for most of the samples to be covered by the rules.
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Table 5.8: Generalization error - MORBT with FL = 100
MORBT (FL = 100)

RMSE

Mean Max Min SD

FTSE 74.0657  77.8578  72.6028  1.6240
S&P 500 17.0233 17.3281 16.8254  0.1573

NASDAQ 42.9483 43.6427  42.5009 0.4475

Table 5.9: Generalization error - MORBT with FL = 50
MORBT (FL = 50)

RMSE

Mean Max Min SD

FTSE 74.7628  80.1057  72.8002  2.0480
S&P 500 17.0701 17.3031 16.8548  0.1572

NASDAQ  43.0834  44.2979  42.0798  0.5801

Results of the single phase algorithms are given in Table 5.10 and Table 5.11. The
MORBT (FL=100) managed to obtain lower error than GA for all indexes. This
shows that using different coefficients for the financial time series is important. The
minimum RMSE are lower for MORBT across all data sets as compared to GA,
however the maximum RMSE are higher. This translates to higher standard deviations
of MORBT as compared to GA. This is most probably due to MORBT using different
regression coefficient strings but in GA, only a single coefficient string is used. As

compared to SP-MORBT, MORBT obtained lower mean errors for all the data sets.
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Table 5.10: Generalization error - GA
GA

RMSE

Mean Max Min SD

FTSE 75.1645  75.3337 749644  0.1098
S&P 500 17.1027  17.1365  17.0828  0.0195

NASDAQ  43.0546  43.0897 429867  0.0324

Table 5.11: Generalization error - SP-MORBT with FL = 100
SP-MORBT (FL = 100)

RMSE

Mean Max Min SD

FTSE 74.9288  76.5860  72.7519  1.1113
S&P 500 17.1906  18.0985  16.8381  0.4053

NASDAQ  43.1199  44.2465  42.4851  0.5078

5.6 Conclusions

Different from existing approaches for TSF, a novel way of evolving rules to
match regression coefficients to different zones of the time series in a multi-objective
framework is proposed. Based on Pareto optimality, two conflicting objectives of
minimizing error and maximizing rule coverage are considered. The minimization of
error is required for good prediction while increasing coverage is mundane to cover a
larger solution space. Experimental results show that the proposed approach is

effective as a practical forecasting tool.
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Conclusions and Future Work

Automated intelligent systems are widely used in several industries for different
applications as they are able to provide efficient solutions at lower cost in the long run.
The uses of automated intelligent systems are once deemed only to replace human in
manual work in order to allow experts to concentrate on more cognitive tasks.
However, with the advance in artificial intelligence research, these systems are taking
on a greater role in tasks that requires decision making. This thesis considered the
shift in paradigm, presenting Computational Intelligence (CI) techniques for data
analysis. As large amount of data is being collected, manual analysis would be
inefficient. CI techniques for data analysis would be useful to complement and
expedite human decisions.

Section 6.1 will conclude the work presented in this thesis. Section 6.2 will then

suggest the possible future work and the general directions for this area of research.

6.1 Conclusions

This thesis has studied the use of CI techniques as automated systems for data
analysis, in particular for classification and time series forecasting.

In Chapter 2, input features of classification problems are shown to exhibit certain
degree of interference among each other. The Interference-Less Neural Network
Training (ILNNT) method is proposed to reduce interference among input attributes

by identifying those attributes that interfere with one another and separating them,
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while attributes that are mutually beneficial are grouped together. Separated attributes
in different batches do not share the same hidden neurons while attributes within a
batch are connected to the same hidden neurons. With reduced interference, the
networks are able to give better classification accuracy.

Chapter 3 then proposed a novel algorithm which uses EA with a newly

formulated parameter, ie., growth probability ( P, ), to evolve the near optimal

weights and the number of hidden neurons in NN. Training NN with growth
probability-based evolution (NN-GP) initializes networks with only one hidden
neuron and the networks are allowed to grow until a suitable size. Growth rate is
based on Gaussian distribution thus providing a way to escape local optima. A self-
adaptive version (NN-SAGP) with the aim of evolving the growth probability
concurrently with NN during each generation is also proposed. The resultant networks
are able to achieve high accuracy while using a small number of hidden neurons.

Subsequently in Chapter 4, a novel Evolutionary Memetic Algorithm (EMA) is
proposed as a rule extraction mechanism. Two schemes for local search are studied,
namely a Micro-Genetic Algorithm (¢GA) local search, and an Artificial Immune
System (AIS) inspired local search. EMA is complemented by the use of a variable
length chromosome structure, which allows the flexibility to model the number of
rules required.

Chapter 5 proposed a Multi-Objective Rule-Based Technique (MORBT) for time
series forecasting. Dual phase is used in the algorithm, in phase I, the regression
coefficients which are used to forecast the entire training output space are optimized.
In phase II, rules are being evolved to localize the regression coefficients in a multi-
objective framework. Phase II incorporates the concept of Pareto optimality to

generate rules that are low in error and high in coverage. The staggered dual phase
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approach adopted has the advantage of fragmenting the problem to promote better
convergence, which is not achievable in a single phase due to the extremely large
search space of such combinatorial optimization problem. The algorithm is applied on
financial time series and has shown to produce good results. Therefore, Chapter 4 and
Chapter 5 have shown that by having a good grasp of evolutionary rule techniques,

the same fundamentals can be applied on different domains efficiently.

6.2 Future Work

Though several works considering different aspects of data analysis have been
presented, however, this area is simply too vast to be fully encompassed in this thesis.
The rest of this thesis would consider some possible future work to further improve on
each of the proposed algorithm as well as to include an even more comprehensive
research on computation intelligence techniques for data analysis.

The proposed future work for each chapter is first given in Section 6.2.1. Section
6.2.2 then states the general future directions of research work in this field that could

be done.

6.2.1 Future Directions for Each Chapter
In Chapter 2, ILNNT could be applied to problems with any number of attributes,

however the complexity scales up with the increase in the number of attributes due to
the computation of interference table, as it requires C, evaluations. For larger

problems, a new and more efficient algorithm could be better though it is possible for
the current algorithm to perform the task too. As this is a new area of research and
there are plenty of possible avenues for improvements, its weakness can be remedied

by some shortcut computation or distributed processing techniques. This could
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include the use of divide-and-conquer techniques for the input space, etc. Hence,
future work could be concentrated on formulating an efficient and faster algorithm for
larger problems.

In Chapter 3, other types of evolutionary computation techniques could be used to
evolve the NN architecture in a similar manner as proposed. It would be challenging
and interesting to analyze and compare the different types of evolutionary
computation techniques for this application.

Data in real life are often filled with noise and outliers. Proposing and
incorporation of dedicated local search operators in Chapter 4 that are able to handle
or filter out the noise and outliers would be extremely advantages.

In Chapter 5, the length of the sliding window could be a factor affecting the
performance of the algorithm for time series forecasting. In the current MORBT
version, the sliding window length is fixed throughout the evolution process, and
hence varying this parameter might further improve the results. However, with the
inclusion of sliding window length into the rules, the complexity and computational
cost of the algorithm would inevitably increase. Therefore, the work would also
include finding a solution that could incorporate an additional factor yet does not

increase the cost significantly.

6.2.2 General Future Directions

As shown in Chapter 2, by using interference-less input space partitioning for NN,
classification accuracy is improved. One possible direction of combining and
complementing the different works in this thesis is to incorporate the partitioning
within NN-GP/NN-SAGP presented in Chapter 3. This would again offer a myriad of

possibilities for investigations. With the partitioning of the input space of NN-
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GP/NN-SAGP, it is hoped that the performance of the network would be able to
obtain higher generalization accuracy. In Chapter 3, the individual network evolved
for each data set is near minimal, as the implementation of the partitioning would
create a few sub-networks, this would pose a challenge of keeping the overall network
size of NN-GP/NN-SAGP small.

The algorithms explored for classification has been restricted to static problems.
In the real-world, there are frequent addition and deletion of features. The algorithms
presented in this thesis could be modified as dynamic NN or dynamic evolutionary
rule extraction algorithms where the number of input attributes or output classes can
be subjected to changes. It would be meaningful and challenging to formulate and
improve the algorithms to be suitable for such situations. The focus would be on
modifying the existing algorithms and leverage upon what has been built. In order to
form dynamic algorithms, it is inevitable to delete or add modules, e.g., sub-networks
for NN or rules in the case of EA. The adaptability of the algorithms manifest in the
consistent changes of its sub-modules and the difficulties would be in retaining the
accuracy while making modifications.

Most of the algorithms presented in this thesis are used for classification, while
only Chapter 5 shows application on time series forecasting. Future research on using
CI techniques for time series forecasting could be carried out. Other aspects of time
series forecasting could be studied.

Last but not least, more types of data analysis could be considered.
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