
DEVELOPMENT OF A VIRTUAL REALITY BASED

MICROSURGERY TRAINER

WANG FEI

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48634087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DEVELOPMENT OF A VIRTUAL REALITY BASED

MICROSURGERY TRAINER

WANG FEI

(B.Eng, Shanghai Jiao Tong University)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004



Acknowledgements

I wish to express my sincerely gratitude and appreciation to my two supervisors,

Dr. TEO Chee Leong and Dr. ETIENNE Burdet for their continuous supervision

and personal encouragement along my research. I greatly respect their inspiration,

professional dedication and attitude on teaching and research.

I would like to thank Dr. LIM Kian Meng, Dr. Tim Poston, Dr. LIM Beng Hai,

Ankur DHANIK, James RAPPEL, Roger GASSERT, TEE Keng Peng and TEO

Cheng Yong William for their collaboration and help on the micromanipulation

learning project.

My gratitude also goes to Mr. Yee, Mrs. Ooi, Ms. Tshin and all the stuff in

Control and Mechantronics Laboratory for the helps on facility support.

I gratefully acknowledge the financial support provided by the National Uni-

versity of Singapore through Research Scholarship and project funding that makes

it possible for me to study and progress my research.

ii



Table of contents

Acknowledgements ii

Summary v

List of Figures viii

1 Introduction 1

1.1 Microsurgery Training . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Decomposition of complex tasks 6

2.1 Multisensory learning cues . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dexterity primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Soft-tissue deformation simulation 11

3.1 Review of related works . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Multi-scale FEM for soft tissue simulation . . . . . . . . . . . . . . 13

3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Analysis of accuracy . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Analysis of speed . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Needle maneuvering simulation 27

4.1 Review of related works . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Fast algorithm for torus-arc distance . . . . . . . . . . . . . . . . . 30

4.2.1 Principle of the algorithm . . . . . . . . . . . . . . . . . . . 30

4.2.2 Lift the torus to S3 . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Lift the needle to S3 . . . . . . . . . . . . . . . . . . . . . . 33

4.2.4 Computing the distance . . . . . . . . . . . . . . . . . . . . 36

4.3 Performance and Comparison . . . . . . . . . . . . . . . . . . . . . 39

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Real-time knot-tying simulation 42

5.1 Review of related works . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



5.2 Thread dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Application and results . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion 56

References 58

Appendices 61

A Navier’s Series Solution Formulation 62

B Relations between R, r and α 65

iv



Summary

This thesis describes the development of a Virtual Reality (VR) based training sys-

tem for micromanipulation in collaboration with the National University Hospital

in Singapore. Microsurgery is currently trained on mocks, animals or cadavers,

and by observing and assisting experienced colleagues. If the training is inefficient

it is hard to identify problems; for safety, cost and ethical reasons (less training

with animals), one cannot try all possible strategies. It is expected that VR system

will enable more effective and systematic training, and to test the future surgeons.

While conventional approaches judge a virtual environment by its resemblance

to the real environment, we address only efficiency in learning. We train simple

dexterity primitives corresponding to selected features of the complex task, and

develop fast algorithms to systematically investigate suitable multisensory learning

cues.

For the modelling of soft tissue mechanics, we described a multi-scale FEM al-

gorithm which uses elements from multiple levels in a hierarchy of mesh similar to

the progressive mesh. We show that this algorithm computes fast compared to the

traditional FEM algorithm with low loss of accuracy. For the needle maneuvering

simulation, we introduced a method using stereographic projection to compute

the distance between the curved needle and a curved vessel. This analytical algo-

rithm was shown to be faster by orders of magnitude than numerical ones and the

computation time barely increases with increasing precision. For the knot-tying

simulation, we presented a physics-based thread simulator that enable realistic

knot tying intersection in haptic rendering rate. It has considered most of the

v



properties of the real thread and behaves naturally. Further work should involve

the development of other training primitives and evaluation of the performance

on real subjects.

vi



List of Figures

1.1 Microsurgery learning of rats (left) may be reduced by virtual train-
ing on a workstation (right). . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A simulation workstation with 3D view and haptic response . . . . 4

2.1 Training in unstable dynamics . . . . . . . . . . . . . . . . . . . . . 7

2.2 Major tasks of microvascular surgery . . . . . . . . . . . . . . . . . 8

3.1 Multi-scale mesh generation shows the mesh preparation from fine
(top left) to coarse (bottom middle) and the last one with assump-
tion of suffering a line pressure. . . . . . . . . . . . . . . . . . . . . 14

3.2 Fine mesh FEM and multi-scale mesh FEM . . . . . . . . . . . . . 15

3.3 Simulation of a line force and point force applied on a rectangular
soft domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Deformation and forces acting of the 2D domain . . . . . . . . . . . 21

3.5 Comparison of calculated line force . . . . . . . . . . . . . . . . . . 22

3.6 RMS(Root Mean Square) Error, by mesh level count . . . . . . . . 23

3.7 CPU time for multi-scale and fine mesh, by mesh level count. . . . . 24

3.8 Speed up factor, by mesh level count . . . . . . . . . . . . . . . . . 25

3.9 A suture simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Manipulating a geometric ’suture needle’ . . . . . . . . . . . . . . . 28

4.2 Sliding an arc along a circular path . . . . . . . . . . . . . . . . . . 28

4.3 Three types of method to detect collision between a surface and a
needle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 To detect the intersection of a torus with the needle (circle arc) . . 32

4.5 The analytical algorithm enables fast computation of the separation
of needle and torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Computation time for torus-needle separation for the analytic method
versus two numerical ones. . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Structure of the thread . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Bending force at node Ni. . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 The thread with high bending (left) and without bending (right) . . 46

5.4 Twisting effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 The twisting thread model . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Reaction force in self-collision . . . . . . . . . . . . . . . . . . . . . 48

5.7 Key steps in the tying of a double overhand knot . . . . . . . . . . 53

vii



5.8 Compare the dynamic behavior the geometry-based approach (left)
to the physics-based approach (right) . . . . . . . . . . . . . . . . . 54

A.1 Force value along the bar . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



Chapter 1

Introduction

1.1 Microsurgery Training

Micro-reconstructions due to accidents are relatively frequent. In Singapore for

example there is about one case for 10’000 people every year [1]. When the patient

arrives at the hospital, a primary task consists of restoring vessels (i.e., arteries,

veins) and nerves that have been severed during trauma. This includes trimming

the vessels (with typical diameter of 1mm) and anastomosing them together using

a microscope with magnification of 10 to 20. Fine manipulation under an optical

microscope requires significant learning. This is done by observing experimented

surgeons, participating in case, and by practicing on cadavers and animal. This

traditional training is expensive (A 40 hours basic micro vascular surgery train-

ing course costs on average $1500 [2]), inflexible (a student experimenting freely

increases costs), and the learning process is hard to quantify. In contrast, vir-

tual reality setups can create computer-controlled environments with which the

trainee can interact and train a task, with negligible costs for disposables and close

tracking of the performance and learning [3, 4].

1



1.2 Motivation

As autonomous robots can perform only highly stereotyped manipulations, most

manipulation tasks must be carried out by humans. Micromanipulation is critical

to many growing technologies, such as Microsurgery, Micro-electronics, MEMS,

Life Sciences, and Nanotechnology, with corresponding needs for skilled manpower.

Humans have excellent inference and sensorimotor capabilities, are very versatile

and cost less than highly complex robotic systems. However, a human requires

significant learning to manipulate objects skillfully under a microscope, for various

reasons:

• The operator neither feels nor hears a tool interact with its target, and must

rely entirely on visual input and proprioception to control motor activity.

The force involved is generally very small, so that haptic feedback is limited.

• The micro world requires greatly modified visuomotor coordination. The

image from the microscope is not only larger than the hands’ environment,

but also differently oriented, and has less depth of field than normal vision.

• The operator must operate indirectly, not with fingers but via tools such as

forceps, scalpel, laser, and micropipette.

• For accurate control, the trainee must develop new motor strategies involving

only the fine motion of the fingers. Arm movements induce too much tremor.

Currently trainees typically learn micromanipulation directly on the task, or

with real material. For example, microsurgery is learned on latex sheet and then on

rats (Fig. 1.1, left). One must simultaneously control tremor, find a new position

for the arms, adapt to the microscope image, recognize the rat’s anatomy, etc.

If the learning is inefficient it is hard for the instructor to identify problems; for

safety, cost and ethical (less training with animals) reasons, one cannot try all

possible strategies.

2



Figure 1.1: Microsurgery learning of rats (left) may be reduced by virtual training
on a workstation (right).

1.3 Methodology

We are developing a Virtual Reality based training system (Fig. 1.2) as a tool

for hand microsurgeons at the National University Hospital. In contrast to many

Virtual Reality trainers aiming at realistic emulation [5, 6], we are only concerned

with efficiency in learning. Our approach [7] is to extract and train simple dexter-

ity primitives corresponding to basic movements complex tasks are composed of.

Studies suggest [8] that humans may form internal models of these primitives which

they can combine in more complex tasks, so that when this task is decomposed

and learned in simple steps than all at once, learning a complex task can be faster

and performance better. This confirms practice in (for instance) typing courses,

which address subtasks of keyboard use asdf before whole words are typed. The

virtual environment corresponding to real micromanipulation would be purely vi-

sual [9, 10], as the interaction forces are generally negligible with no ’natural’

haptic or audio component. In virtual training, however, we can create additional

haptic or audio cues to help acquiring a skill. We are using multi-sensory learning

3



 
monitor  

mirror  

3D glasses  

Delta 
 haptic 
device  

Delta 
 haptic   

controller  

computer  

adjustable 
armrest 
platform  

rigid housing 
structure  

 

Figure 1.2: A simulation workstation with 3D view and haptic response provides
intuitive manipulation and real-time interaction with virtual objects.

cues stemming from neuroscience results. In particular, recent study has shown

that motion and path guidance can facilitate learning hand motion for Chinese

handwriting [11] and for object handling [12].

1.4 Organization

In this thesis, we focus on the development of the tools for our VR based micro-

surgery trainer. The thesis is organized as follows: in Chapter 2, we investigate the

methodology of how to decompose the typical microsurgery training task to some

primitive ones and investigate the principles behind; in Chapter 3, We present a

multi-scale FEM algorithms to simulate the soft-tissue deformation; in Chapter 4,

we introduce an analytical collision detection algorithm to measure the distance

and detect collisions between a needle and a vessel; in Chapter 5, we describe

4



a physics based model to simulate the real-time knot-tying and we conclude the

thesis in Chapter 6.

5



Chapter 2

Decomposition of complex tasks

Conventional VR judges a virtual environment by its resemblance to the real

environment. In contrast, we address only efficiency in learning. We train simple

dexterity primitives corresponding to selected features of the complex task, and

systematically investigate suitable multisensory learning cues.

2.1 Multisensory learning cues

Many Virtual Reality trainers aim at realistic emulation, e.g., laparoscopic surgery

trainers that display the current position of the tool and shape of the organ so that

the apprentice surgeon can operate virtually and feel somewhat realistic interaction

forces. The virtual environment corresponding to real micromanipulation would

be purely visual [9, 10], as the interaction forces are generally negligible with no

‘natural’ haptic or audio component. In virtual training, however, we can create

additional haptic or audio cues to help acquiring a skill. These cues may be

pseudo-realistic (the sound or the impact force when the tool hits a narrow tube

around the intended path), or iconic (highlighting, the click of a Geiger counter,

etc.) [13, 14].

As the success of a manipulation task depends on neuromechanical control

of the arm during the whole motion, we propose using haptic cues in the form

6



Figure 2.1: (a) By training in unstable dynamics, Burdet et. al. have found that
humans adapt the feedforward motor command to decrease motion deviation [15].
Similarly, we will train micromanipulation dexterity using a divergent force field
along the movement (b). Another haptic cue will be a convergent field guiding
motion (c).

of movement conditions. In particular, recent study has shown that motion and

path guidance can facilitate learning hand motion for Chinese handwriting [11]

and for object handling [12, 16]. Burdet et. al. have also discovered [15] that

humans respond to unstable dynamics with neural strategies for improved accuracy

(Fig. 2.1a). We will test how these haptic cues, as well as amplified tremor, can

help micromanipulation learning. Audio signals related to trajectory error relative

to a desired movement will be used as audio cues.

The trainee learning a task acquires a memory or internal model [17] of this task

and the conditions under which it must be performed. This internal model persists

[18] even in the absence of learning cues, enabling skill transfer to a real task. This

results in feedforward control, free from the long delay of visual control [3, 19],

similar to the mechanisms in [15]. Neuroscience studies suggest that learning

this internal model requires compensating for the delay of the motor-sensory loop

[20]. As the visual loop has a particularly long delay of 200ms or more [21], the

predictive visual cues may compensate for this delay. In one such case, we will

extrapolate the error at the end of a movement from the past and present states

and signal it to the trainee, allowing early correction. Could prediction made

7



   
 

 
(c) needle 
maneuvering  
 

 

 
 

 

 

 
(d) grasping  

   

 

      

                                                                     

         

 

  Primitives to learn accurate motion  

 (b) accurate maneuvers  

   
 

 
(e) control  twisty             
     flexible nylon  

 

 
(f) incorrect knot  
        topology   

   

     Tasks 

  (A) suture 
needle insertion  

  (B) knot tying  
 

  Knot tyi ng    
primitives  

Needle insertion
primitives

 

 

 

(c) needle
maneuvering

(d) grasping

(B) knot tying

(e) control
twisty flexible

nylon

Knot tying
primitives

(f) incorrect
knot topology

(b) accurate maneuvers

Primitives to learn accurate motion

(a) tremor control

Figure 2.2: Major tasks of microvascular surgery (A,B) and underlying primitive
skills (a-f).

apparent by a visual or acoustic signal be as efficient as haptic cues? As haptic

feedback is relatively costly to provide, such questions are critical to the design

and test of micromanipulation trainers.

2.2 Dexterity primitives

We have studied typical tasks from microassembly [22] and microsurgery and se-

lected representative micromanipulation tasks, which require correct perception of

position, orientation and also of topology (inside, outside, loop, etc.) in 3D, and

have both motor and cognitive aspects. Fig. 2.2 shows two of the major tasks typ-

ical of microsurgery. In suture, a curved needle suturing together two membrane

edges, must pass through at carefully planned places. Knot tying is a bi-manual

task requiring skillful control of the nylon and knowledge of the correct topology.

• Identify two major tasks of microvascular surgery

8



– Suture needle insertion

A curved needle, suturing together two membranes, must pass through

at carefully planned places (Fig. 2.2A).

– knot tying

A bi-manual task requiring skillful control of the nylon and knowledge

of the correct topology (Fig. 2.2B).

• Dexterity primitives for training these two tasks

– Tremor control

While tremor probably cannot be reduced consciously, feedback lets

the trainee learn a steady grip using the fine motorics of the fingers to

reduce tremor (Fig. 2.2a).

– Accurate maneuvering of a held object

The trainee must pass a loop accurately along a wire in straight and

turning motions, in several orientations (Fig. 2.2b).

– Needle maneuvering along a curved tube

During needle maneuvering, position and orientation change simulta-

neously, in six-degree-of-freedom motion (Fig. 2.2c).

– Grasping

If the jaws of a pair of forceps align poorly with the object they close

on, it rotates during the grasping (Fig. 2.2d).

– Control of a flexible nylon

The trainee must grasp the nylon and create a loop matching a visual

target (Fig. 2.2e).

– Memorize correct knot topology

Differentiating a topologically correct surgical knot from incorrect ones

can be learned separately (Fig. 2.2f).

– Knot placement

Microsurgeons place knots evenly around the whole section, at a con-

9



stant distance from the end. Misplaced knots risk poor or no blood

circulation, or blood leak.

From these complex tasks we have extracted simple dexterity primitives cor-

responding to basic movements they are composed of. Studies suggest [8] that

humans may form internal models of these primitives which they can combine in

more complex tasks, so that when this task is decomposed and learned in simple

steps than all at once, learning a complex task can be faster and performance

better. This confirms practice in (for instance) typing courses, which address sub-

tasks of keyboard use before whole words are typed. We in particular want to

train motorics separately from cognition, and simple motions one at a time. In

following chapters we will present some fast algorithms, which are the tools to

train the subtasks separately.

10



Chapter 3

Soft-tissue deformation

simulation

There are several key problems in the development of a VR based surgical trainer.

First, there is a need for some visual-realism. The geometric and physical models

of anatomical structures must be well defined. Moreover, since all the organs in

the human body are not rigid, their shape may change during an operation. The

realism can be enhanced by the introduction of devices, which allows for a better

immersion in the virtual world. Secondly, real-time interactions are essential. To

support the user with visual feedback, a deformable model need to be updated

in 30Hz. To support haptic feedback, the interaction dynamics with tissues and

organs must be computed at a frequency of at least 1kHz. The different update

rates are achieved in multi-threads programming environment, where visual thread

run in 30Hz and haptic thread run in 1kHz. This chapter investigates the use of

multi-scale FEM to compute the dynamics of soft tissues fast and accurately.

3.1 Review of related works

The modelling of soft tissue mechanics has become an important research topic in

robot-assisted surgery and surgical simulation. Much effort has aimed at the devel-

11



opment of real-time simulation of the physical behaviour of deformable tissue and

the integration of these methods into simulators [23–27]. However, computation

speed has always been a major barrier to accurate real-time tissue models for hap-

tic feedback, whether with quasi-static [28, 29] or dynamic [30–32] models. Early

developments often simulated deformable bodies using mass-spring systems, for

simplicity of implementation and the low computation compared to more realistic

stress-strain relations. The body is represented by a set point masses connected

by elastic links and the equation of motion is written for each point mass. How-

ever, the mass and spring constants to be used in the model cannot be derived

from measured properties like the shear modulus, and thus the models do not

capture underlying physics properly. Moreover, since the constants are assigned

heuristically, varying the level of detail (essential to adequate speed) is hard to

systematize.

Realistic elasticity calculations often use the finite element method (FEM).

However, it is seldom used in real-time simulation [33–35], due to its complex

implementation and expensive computation. It provides more accurate description

of deformation mechanics than mass-spring models, but for real-time work it needs

modification for adequate accuracy while reducing the computation time.

Several fast algorithms [36–40] have recently been the focus of research in real-

time simulation, especially with the need for haptic feedback whose sampling rate

is much higher than that needed for visual display. Bro-Nielsen and Cotin [37]

used a condensation method to reduce the number of unknowns to only the sur-

face degrees of freedom. Others use an adaptive mesh to reduce the number of

unknowns. DiMaio and Salcudean [39] used a real-time mesh refinement technique

to generate a multi-grid, with distinct fine and coarse grids, for their needle inser-

tion simulation. Wu et. al. [40] proposed a dynamic progressive mesh which is an

extension of the progressive mesh concept. The idea is to generate a hierarchy of

meshes off-line by collapsing mesh edges recursively, starting from of a fine mesh,

and then using elements from the different meshes in the final computation. They

12



presented simulation results for a two levels mesh, but the technique to combine

elements from multiple levels in the hierarchy need to be developed.

In this chapter, we describe a multi-scale FEM algorithm [41] which uses ele-

ments from multiple levels in a hierarchy of mesh similar to the progressive mesh.

We show that this algorithm computes fast compared to the traditional FEM al-

gorithm with low loss of accuracy. This algorithm has been integrated with a

visual/haptic feedback workstation as shown in Fig. 2.

3.2 Multi-scale FEM for soft tissue simulation

The main idea of our multi-scale FEM is to dynamically use different levels of

mesh, at different places (not uniformly progressing from ’coarse all over’ to ’fine

all over’, as in multi-grid detailed solutions). We create a fine mesh in the domain

and then generate coarser elements at various levels by recursively combining

adjacent elements. The final mesh used to the computation is formed by choosing

elements from different levels, with small elements near an area of interest (for

example, where a force is applied or bending is high) and progressively coarser

elements as we move away from the region of interest. Fig. 3.1 shows levels of

the mesh for a rectangular domain, starting from fine (top left) to coarse (bottom

middle). The properties of these 5 levels of mesh are precomputed in the beginning

of the simulation and saved in memory. The multi-scale mesh for an applied line

force (for example, bottom right) combines elements from the different levels.

Such a multi-scale mesh especially suits the application of surgical simulation,

as the surgical tool usually applies a force on the tissues/organs only in a localized

region around it. Hence small elements are placed around the contact region, as

haptic feedback needs accurate deformation and force here accurately, and they

can capture the large displacement gradient in that region. Progressively larger

elements suffice as we move away from the tool, for the accuracy needed for the

results for visual display. This multi-scale mesh is formed in real-time as the

13



 

Figure 3.1: Multi-scale mesh generation shows the mesh preparation from fine
(top left) to coarse (bottom middle) and the last one with assumption of suffering
a line pressure.

surgical tool moves over the domain by choosing the correct elements from the

various mesh levels. The stiffness matrices of the elements of each level are pre-

calculated and stored at the beginning of the simulation. They are assembled in

real-time to form the global stiffness matrix for the multi-scale mesh during the

simulation.

Such a mesh greatly decreases the model’s DOF compared to the fine mesh,

and so reduces the computational time. In the example of Fig. 3.2 the fine mesh

model has 961DOF which is reduced to 138DOF in the multi-mesh.

We implemented the method for the simple case of 2D out-of-plane or anti-

plane strain problem. Three-dimensional motion with bending and stretching will

be more complex, but can be handled by the same mesh logic.

The governing equation, with applied pressure P (in this case, is the known

value of the force in right hand column of 3.7), is

∇(G∇w) + P = 0 (3.1)

where G is shear modulus, ∇ Nabla-Operator and w out-of-plane displacement.

The force applied by the haptic device is modeled by a line load on the 2D

domain. The case of a concentrated point force has been studied in [42], and a

singularity in the deformation was observed. Such singularity does not arise with

14



 

 
Figure 3.2: Fine mesh FEM and multi-scale mesh FEM

a line force. A line force also allows us to derive torque even for the scalar out-of-

plane deformation case, around horizontal though not vertical axes, and display

it using our 6DOF haptic device. The algorithm is developed to accept any input

of shapes in real-time but not only restricted to a point or a line. Here we use

the line force so as to compare the multi-scale method’s accuracy to that of the

Navier’s serious solution (See Appendix for details).

With a line load applied at y=y1 and between x=x1 to x=x2, the pressure

term takes the form

P (x, y) = F∂

∏
(x, x1, x2)δ(y − y1) (3.2)

where

∏
=





1 x1 < x < x2

0 otherwise
(3.3)

δ = Dirac delta function

15



In the FEM formulation, the displacement in an element is approximated by

w(x, y) =

3∑

i=1

N (i)w(i) (3.4)

Where w(i)is the nodal displacement and N (i) is the shape function associated with

node i. The weak form of 3.1 is

∫∫

Ω

N (i)∇(G∇w)dΩ +

∫∫

Ω

N (i)PdΩ = 0 (3.5)

with the shape functions used as weights in the domain integral. This gives a

system of algebraic equations of the form

[K]{U} = {F} (3.6)

where {U} is the vector of nodal displacements, {F} represents the applied force,

and [K] is the stiffness matrix of the system.

Our current implementation treats a square domain fixed so that its edges

have zero displacement. We need to determine (1) the reaction force at the haptic

device and (2) the displacements elsewhere given the displacement of the haptic

device.

Here we describe the case with two control points, the cases of multi control

points are extended in the same way. Given a linear system [K]{u} = {F}, the

16



matrix form can be written as:




K11 K12 · · · K1m

...
...

. . .
...

Ki1 Ki2 · · · Kim

...
...

. . .
...

Kj1 Kj2 · · · Kjm

...
...

. . .
...

Km1 Km2 · · · Kmm








u1

u2

...

ui−1

Ui

ui+1

...

uj−1

Uj

uj+1

...

um





=





0

0

...

0

fi

0

...

0

fj

0

...

0





(3.7)

Where Ui and Uj are the prescribed displacement at node i and j. The other

displacements (u1, u2, · · · , ui−1, ui+1, · · · , uj−1, uj+1, · · · , um) and the force fi, fj

applied at node i and j are unknown. Neglecting the ith and jth row in equation

3.7 yields:




K11 K12 · · · K1m

...
...

. . .
...

K(i−1)1 K(i−1)2 · · · K(i−1)m

K(i+1)1 K(i+1)2 · · · K(i+1)m

...
...

. . .
...

K(j−1)1 K(j−1)2 · · · K(j−1)m

K(j+1)1 K(j+1)2 · · · K(j+1)m

...
...

. . .
...

Km1 Km2 · · · Kmm








u1

u2

...

ui−1

Ui

ui+1

...

uj−1

Uj

uj+1

...

um





=





0

0

...

0

0

...

0

0

...

0





(3.8)

17



Equation 3.8 can be written as:




K11 K12 · · · K1m

...
...

. . .
...

K(i−1)1 K(i−1)2 · · · K(i−1)m

K(i+1)1 K(i+1)2 · · · K(i+1)m

...
...

. . .
...

K(j−1)1 K(j−1)2 · · · K(j−1)m

K(j+1)1 K(j+1)2 · · · K(j+1)m

...
...

. . .
...

Km1 Km2 · · · Kmm












u1

u2

...

ui−1

0

ui+1

...

uj−1

0

uj+1

...

um





+





0

0

...

0

Ui

0

...

0

Uj

0

...

0









=





0

0

...

0

0

...

0

0

...

0





(3.9)




K11 K12 · · · K1m

...
...

. . .
...

K(i−1)1 K(i−1)2 · · · K(i−1)m

K(i+1)1 K(i+1)2 · · · K(i+1)m

...
...

. . .
...

K(j−1)1 K(j−1)2 · · · K(j−1)m

K(j+1)1 K(j+1)2 · · · K(j+1)m

...
...

. . .
...

Km1 Km2 · · · Kmm








u1

u2

...

ui−1

0

ui+1

...

uj−1

0

uj+1

...

um





= −




Ui





K1i

K2i

...

K(i−1)i

K(i+1)i

...

K(j−1)i

K(j+1)i

...

Kmi





+ Uj





K1j

K2j

...

K(i−1)j

K(i+1)j

...

K(j−1)j

K(j+1)j

...

Kmj








(3.10)

18



Neglecting the ith and jth column of [K] in equation 3.10 yields:




K11 · · · K1(i−1) K1(i+1) · · · K1(j−1) K1(j+1) · · · K1m

...
...

...
...

...
...

K(i−1)1 · · · K(i−1)(i−1) K(i−1)(i+1) · · · K(i−1)(j−1) K(i−1)(j+1) · · · K(i−1)m

K(i+1)1 · · · K(i+1)(i−1) K(i+1)(i+1) · · · K(i+1)(j−1) K(i+1)(j+1) · · · K(i+1)m

...
...

...
. . .

...
...

. . .
...

K(j−1)1 · · · K(j−1)(i−1) K(j−1)(i+1) · · · K(j−1)(j−1) K(j−1)(j+1) · · · K(j−1)m

K(j+1)1 · · · K(j+1)(i−1) K(j+1)(i+1) · · · K(j+1)(j−1) K(j+1)(j+1) · · · K(j+1)m

...
...

...
. . .

...
...

. . .
...

Km1 · · · Km(i−1) Km(i+1) · · · Km(j−1) Km(j+1) · · · Kmm








u1

u2

...

ui−1

ui+1

...

uj−1

uj+1

...

um





= −




Ui





K1i

K2i

...

K(i−1)i

K(i+1)i

...

K(j−1)i

K(j+1)i

...

Kmi





+ Uj





K1jK2j

...

K(i−1)j

K(i+1)j

...

K(j−1)j

K(j+1)j

...

Kmj








(3.11)

Then the displacements vector (u1, u2, · · · , ui−1, ui+1, · · · , uj−1, uj+1, · · · , um) can

be solved. Let us consider the ith row and jth of equation 3.7, we can solve the

19



force fi and fj applied at node i and j separately:

[Ki1 Ki2 · · · Kim]





u1

u2

...

ui−1

Ui

ui+1

...

uj−1

Uj

uj+1

...

um





= fi, [Kj1 Kj2 · · · Kjm]





u1

u2

...

ui−1

Ui

ui+1

...

uj−1

Uj

uj+1

...

um





= fj (3.12)

3.3 Simulation results

 

Figure 3.3: Simulation of a line force and point force applied on a rectangular soft
domain

We implemented the multi-scale FEM algorithm to study its accuracy and

speed. Fig. 3.3 shows four deformation states of a rectangular soft domain (blue

mesh) deformed out of plane. The horizontal line and point are analogous to

20



microsurgery tools in contact with soft tissue, which effectively apply a line load

and a concentrated force on the soft tissue. The vertical bars at right show the

values and directions of the forces along the contacting area.

3.3.1 Analysis of accuracy

We compare our FEM results with Navier’s series solution (See Appendix for

details) to test their accuracy. The series solution is known to converge rapidly

to the exact solution for a rectangular domain. We considered a 20x20cm domain

pressed down 1cm by a 10cm bar, as shown in Fig. 3.4. The shear module G is

1N/cm2.

 

Figure 3.4: Deformation and forces acting of the 2D domain

Comparison of the calculated line force

Fig. 3.5 shows the distributed force acting along the bar obtained from the fine

mesh FEM and multi-scale FEM and Navier’s series solution. Forty terms are used

in Navier’s method to give a converged solution, the FEM results also converge

to the series solution when enough levels are used. The results for the fine-mesh

and multi-scale FEM are indistinguishable. The current model problem needs at

least four levels for a good result. With four levels the resultant force found with

21



Figure 3.5: Comparison of calculated line force among analytic method, fine mesh
FEM and multi-scale FEM at different levels.

the fine versus multi-scale meshes differ by only 4%.

Comparison of RMS error

Fig. 3.6 shows the Root Mean Square (RMS) error of the fine and multiscale FEMs

compared to the Navier solution for two loading condition: (G1) with the bar at

the center of the mesh, and (G2) with the bar near the border. The RMS errors

decrease dramatically with more levels and degrees of freedom. For (G1), the

multi-scale result is as good as the fine scale for up to 5 levels. For (G2), with

the bar near the edge, the multi-scale mesh fails to match the accuracy of the fine

mesh beyond level 4, due to the larger elements used further away from the bar.

Nevertheless, the accuracy of the multi-scale mesh at these levels is about 1% to

5% of the Navier solution, normally acceptable for virtual-reality simulation where

22



Figure 3.6: RMS(Root Mean Square) Error, by mesh level count

stability and speed outweigh high accuracy.

3.3.2 Analysis of speed

Fig. 3.7 compares CPU time using the multi-scale and fine meshes, with the count

of mesh levels used. Three different cases of load position and orientation were

used for multi-scale FEM method. For each case, the multi-scale FEM uses a

different set of elements with a different number of degrees of freedom. This gives

slightly different timing in each case. The computation time for the fine mesh FEM

(included for comparison) does not change with loading case, since the number of

degrees of freedom in the model is fixed.

The results show that CPU time scales roughly as O(N 2) for both the fine

and multi-scale mesh, where N is the number of nodes in each of the mesh. The

complexity of the solution process is the same in both cases as the same iterative

23



Figure 3.7: CPU time for multi-scale and fine mesh, by mesh level count.

conjugate gradient solver is used. Here, the major gain in efficiency of the multi-

scale mesh is the great reduction in the number of nodal unknowns to be solved

while maintaining good accuracy. The number of unknowns N in the multi-scale

mesh is about 15% of that in the fine mesh. The actual number of unknowns

in the multi-scale mesh compared to the fine scale mesh is difficult to predict as

it depends on the location and orientation of the haptic device. Based on our

study on one-dimensional rod [42], the number of unknowns in the multi-scale

mesh is expected to be of the order of the logarithm of the number of unknowns,

O(log N), in the fine mesh. Even with the extra time taken to assemble the global

stiffness matrix in real-time, the multi-scale FEM is still about an order faster

than fine-scale FEM.

For better comparison of the three cases, Fig. 3.8 shows the speed up factor of

the multi-scale mesh over fine mesh FEM, defined as the ratio of their computation

times. The multi-scale FEM improves the speed by 6 to 7 times at higher mesh

24



Figure 3.8: Speed up factor(Fine / MS FEM time/ in three cases, by mesh level
count.)

levels.

3.4 Discussion

These results show that a major speed up in computation can be achieved using

multi-scale FEM, especially at higher mesh levels with more degrees of freedom.

These are necessary for more accurate solutions, within say 5% of the ’exact’

one. Even with the slight accuracy loss in the multi-scale mesh compared to fine

(from 0.1% to 1.5% at level 6), the ’absolute’ accuracy of the multi-scale mesh is

sufficient for haptic simulation. The 6-to-7-fold speed up is critical for simulation

in real-time.

In our implementation (Fig. 3.9) of multi-scale FEM on a Xeon 2.66 GHz CPU

with 1 GB RAM, a level 4 simulation (with about 8% accuracy) takes 1ms to

25



complete [41]. This was just enough to provide the refresh rate of 1 kHz required

for haptic feedback. The corresponding fine scale FEM (with about 5% accuracy)

cannot meet this criterion. The multi-scale FEM provides a good trade-off between

a major gain in speed against a slight loss in accuracy, essential for real-time

simulation.

Figure 3.9: A suture simulation: intial state (left) and penetrating state (right)

In conclusion, spatially varying mesh detail in surface modeling can support

large global deformation at the speeds necessary to provide visual and haptic

feedback in surgical training, by a high time saving vis-á-vis traditional FEM. It

can be extended for non-linear deformation of 3D bodies, and other systems of

mesh mechanics. Our ultimate goal in applying it is to model human tissue. It

shows great potential to realize a real-time haptic simulation system.

26



Chapter 4

Needle maneuvering simulation

In this chapter we focus on the modeling of suturing such as blood vessel anasto-

mosis, performed under 5 to 20 times magnification. Although haptic feedback is

negligible in real surgery, we are investigating its potential as a hyper-real cue in

learning. The use of haptics implies a need for haptic speeds, so every part of the

application must be tuned to take the least time possible.

To microsurgeon, needle maneuvering is a task requiring very fine control. Both

position and orientation must change simultaneously, in six-degree-of-freedom mo-

tion. One dexterity skill which will be used to train this task consists of moving

a curved needle precisely along its own form, so that as it passes through tissue

at two points (Fig. 4.1), it does not waver at these points and tear it. This sub-

skill is well represented by the non-surgical task of moving a curved needle along a

curved tube of the same radius, without touching the wall (Fig. 4.2). This presents

a more complete test of the required motor skill than does a two-point penetra-

tion. By testing the motion all along the length of the needle, it adds situational

hyper-reality to the learning of the subtask.

This will be trained with multisensory cues. For example, if the curved needle

is going to touch the tube, an audio warning cue may help the trainee correct the

motion trajectory, with volume or pitch rising as distance to the tube decreases.

(Time discrimination in hearing is acute, so that like haptics this requires fast

27



Virtual Tissue 
Membrane

Virtual Needle

Entry PointExit Point

Figure 4.1: Manipulating a geometric ’suture needle’ with small movements of the
hand, visually displayed as large, as in a microscope.

 

Figure 4.2: Sliding an arc along a circular path is one of the dexterity primitives
we use to learn maneuvering a needle in microsurgery

computation.) A needle that touches the virtual tube causes an error signal.

Other cues that will be investigated include:

• visual cues: display of the path, or limits to motion, display of deviation;

• audio cues: contact with virtual objects; error;

• haptic cues: motion guidance, path guidance, destabilization from the in-

tended path.

The implementation of all these cues requires computation of the distance

between the needle, modelled as an arc circle, and the vessel, modelled as a portion

28



of a torus. This computation must be very fast, in order to save CPU cycles for

the implementation of the cues.

4.1 Review of related works

The problem of intersection computation between surfaces and curves is funda-

mental in computer graphics and geometric modelling. For low degree algebraic

surfaces such as quadrics, a number of applications and specialized algorithms

have been developed for intersection computations by analytic methods [43–46].

An arc-shaped needle touching a plane is simple. More complex case is to touch

or approach a curved surface with needle.

(a) (b) (c)

Figure 4.3: Three types of method to detect collision between a surface and a
needle : (a) distance computation to many surface points for each needle point;
(b) For an implicitly defined surface, the iteration can be reduced to the one-
dimensional needle; (c) For algebraically simple surface and needle, the distance
can be computed analytically.

If both needle and surface have complex shapes, the objects can be decomposed

into triangles and the distance can be computed from all the distances between the

triangles approximating these two objects (Fig. 4.3a). If the surface is describable

by an equation f (x, y, z) = c for a rapidly computable f such as a polynomial,

a trivial algorithm evaluates f (·) − c for regularly spaced points on the needle

(Fig. 4.3b) and tests for proximity to 0 (or for a change of sign, which implies

crossing 0). Finally, if both surface and needle have tractable shapes, the relative

distance can be computed analytically (Fig. 4.3c). This approach is the least

general, depending on the specific shapes involved, but (analogously to assembly

29



programming for critical tasks) allows the highest speeds. This section develops

such a method [7], and compares the three approaches.

4.2 Fast algorithm for torus-arc distance

4.2.1 Principle of the algorithm

To train in maneuvering an arc needle along the circle C it lies on, we surround

the radius-R circle in the (x, y)-plane by a piece of regular torus. (This will be

rotated into various world coordinates, varying the muscular patterns involved in

the required hand motion.) There are various ways to describe this by an implicit

equation. A torus uniformly r from the circle is given by the fourth degree equation

g (x, y, z) =
(
x2 + y2 +R2 + z2 − r2

)2 − 4
(
x2 + y2

)
R2 = 0 (4.1)

which leads to unhandy algebra: quartic equations do have closed form solutions,

but they are rarely used and involve roots of various orders. To make the distance

analytically tractable, we use a stereographic projection and lift this torus to S3,

where it becomes a cone described by a single second order equation. Solving a

quadratic is a high school problem, and requires only square roots.

Stereographic projection (SP ) is a correspondence between spherical and flat

geometry, known to geographers since ancient Greek times and widely used in

mathematics: a point on a plane tangent to the sphere at its South Pole corre-

sponds to a point on the sphere if the line passes through the North Pole. It

has the useful property that circles in the sphere project to circles in the flat do-

main, and vice versa (except that circles through the North Pole correspond to

straight lines, ‘circles through ∞’) [47]. The same property follows for the projec-

tion P one dimension higher, between the sphere S3 of quadruples (l, m, p, q) with

l2 + m2 + p2 + q2 = 1 to flat coordinates (x, y, z) in flat three-dimensional space

R
3 — where our tube exists — though the centers of the spherical circles do not

30



map to the centers of the circles in R
3. Setting ρ2 ≡ x2 + y2 + z2,

P (l, m, p, q) =

(
l

1 − q
,
m

1 − q
,

p

1 − q

)
(4.2)

P−1 (x, y, z) =

(
2x

ρ2 + 1
,

2y

ρ2 + 1
,

2z

ρ2 + 1
,
ρ2 − 1

ρ2 + 1

)
. (4.3)

Using the stereographic projection, the distance between the needle and the torus

can be computed with the following steps:

• Lift the torus g = 0 of Equ.4.1 to S3 where it is the intersection with a

quadratic cone G = 0, around the unit (l, m)-plane circle (§4.2.2).

• The circle C lifts to a circle Ĉ in S3. Work in the plane π containing Ĉ

(§4.2.3).

• The torus equation restricts to an inhomogeneous quadratic on π, which

vanishes on Ĉ where Ĉ meets T (§4.2.4).

4.2.2 Lift the torus to S3

Define a toroidal tube in S3 by the quadratic equation

α2
(
l2 +m2

)
−
(
p2 + q2

)
= 0 (4.4)

Setting α = 0 giving the degenerate case of the unit circle in the (l, m)-plane,

which projects to the unit circle U in the (x, y)-plane: α > 0 thickens it. (See

Appendix for details.) Tori and their circular cross-sections go by P to tori and to

circles around (but not centred) on U. Tori are best parametrized in S3 coordinates

(φ, ψ, α), setting

(l, m, p, q) = (cosφ, sinφ, α cosψ, α sinψ) . (4.5)

31



(a)

(b)

(c)

S

R

l  - q  = 0

l

q

x
1

1

2 2

l

x

y

m

q

l  + m  - q  = 0

R

S

2

2

2            2         2

K

k

Figure 4.4: To detect the intersection of a torus with the needle (circle arc), we lift
to S3 and consider the intersection between the (quadratic) cone corresponding to
the torus and the plane defined by the circle on S3 (§4.2.1). As it is difficult to
represent this in 4 dimensions, this figure illustrates this algorithm in one dimen-
sion (a) and two dimensions (b,c), with the stereographic projection is onto S2.
The detail in (c) shows the correspondence between the intersection k of an arc
(needle) with the projected quadric (torus), and the intersection K of its lift with
the quadric set in S3.

For drawing, a torus or piece of torus is easily triangulated in these coordinates,

and the mesh projected by P to R
3.

To visualize this, consider the analogues in lower dimensions. Fig. 4.4a shows

stereographic projection from the circle S1 to the line R
1. The restriction l2 − q2

of the quadratic (4.4) with α = 1 divides the circle into positive regions (blue)

and negative (red), vanishing on four boundary points, corresponding to points

(not where l2 − q2 = 0) also marked green in R
1. Moving to projection from the

sphere S2 to the line R
2 (Fig. 4.4 b) spins the first figure, with pairs of points where

l2 − q2 = 0 becoming circles where l2 + m2 − q2 = 0. Going to (4.4) spins the

picture in the (p, q) plane, so that the pair of circles becomes one torus: each pair

32



of points with the same (l, m) and opposite q becomes a (p, q) circle with fixed

(l, m).

A typical circle (brown in Fig. 4.4b) in the plane R
2 crosses one of the green

circles if and only if the corresponding circle meets l2 + m2 − q2 = 0, which is

a quadratic calculation also usable for an arc, modelling a needle in the plane.

Similar principles apply in R
3.

4.2.3 Lift the needle to S3

By convention, the following developments use bold vector v and bold capital

matrices M. To detect intersections in R
3, we lift a circle to the corresponding

circle in S3, and look for intersections with (4.4). Explicitly, a circle in S3 is the

intersection of some plane π with S3, which we first find. Let the needle arc in R
3

be given in needle-model coordinates by (r cos s, r sin s, 0) from s = 0 to s = S.

Name the start point g1 = (r, 0, 0), the end point g2 = (r cosS, r sinS) and the

mid-point g3 =
(
r cos S

2
, r sin S

2

)
. Using homogeneous coordinates, the needle arc

is mapped into R
3 by a 4×4 position matrix

L =




l11 l12 l13 l14

l21 l22 l23 l24

l31 l32 l33 l34

0 0 0 1




(4.6)

which takes the three points to

f1 = Lg1 =

[
l14 + rl11 l24 + rl21 l34 + rl31 1

]T

and similarly for f2 = Lg2 and f3 = Lg3. Write their coordinates as (l1, m1, p1, q1),

(l2, m2, p2, q2) and (l3, m3, p3, q3) respectively by applying P to f1, f2 and f3. These

33



define the hyperplane

[
h1 h2 h3 h4

]




l

m

p

q




= 0 , where

h1 =

∣∣∣∣∣∣∣∣∣∣

m1 m2 m3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣∣∣∣

, h2 = −

∣∣∣∣∣∣∣∣∣∣

l1 l2 l3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣∣∣∣

,

h3 =

∣∣∣∣∣∣∣∣∣∣

l1 l2 l3

m1 m2 m3

q1 q2 q3

∣∣∣∣∣∣∣∣∣∣

, h4 = −

∣∣∣∣∣∣∣∣∣∣

l1 l2 l3

m1 m2 m3

p1 p2 p3

∣∣∣∣∣∣∣∣∣∣

.

i.e., (h1, h2, h3, h4) is the triple cross-product of (l1, m1, p1, q1) × (l2, m2, p2, q2) ×

(l3, m3, p3, q3). A vector through the lifted circle’s centre is given by the triple

cross-product

k = (h1, h2, h3, h4) × (f2 − f1) × (f3 − f1). (4.7)

We adjust the length of k to get the centre in R
4 of the lifted circle Ĉ

c = (c1, c2, c3, c4) =
k · (l1, m1, p1, q1)

k · k k (4.8)

The squared radius of Ĉ is

R2 = ((l1, m1, p1, q1) − c) · ((l1, m1, p1, q1) − c) . (4.9)

In the plane of Ĉ we choose a first unit basis vector

bx =
1

R
((l1, m1, p1, q1) − c) , (4.10)

34



with coordinates (bxl, bxm, bxp, bxq). Orthogonal to this and in the plane π of Ĉ is

the triple cross-product

b?
y = −bx × c × (h1, h2, h3, h4) , (4.11)

giving us our second basis vector

(byl, bym, byp, byq) = by ≡ 1√
b?

y · b?
y

b?
y . (4.12)

A general point (x, y) in π is then

c + xbx + y by =




c1 + x blx + y bly

c2 + x bmx + y bmy

c3 + x bpx + y bpy

c4 + x bqx + y bqy




(4.13)

in R
4 coordinates. If we parametrize the lifted circle by (R cos θ, R sin θ) the lifted

arc still starts (by construction) at θ = 0, but the end angle θω needs not be equal

to S. To find it we need to use

θω = arctan2

(
(f2 − c) · by

R
,
(f2 − c) · bx

R

)
(4.14)

35



In the plane of Ĉ, the torus (4.4) becomes

0 = ax2 + bxy + cy2 + dx + ey + f (4.15)

with

a = α2
(
b2lx + b2mx

)
− b2qx − b2px

b = α2 (2blxbly + 2bmxbmy) − 2bqxbqy − 2bpxbpy

c = α2
(
b2ly + b2my

)
− b2qy − b2py

d = α2 (2c1blx + 2c2bmx) − 2c4bqx − 2c3bpx

e = α2 (2c1bly + 2c2bmy) − 2c4bqy − 2c3bpy

f = α2
(
c21 + c22

)
− c24 − c23

4.2.4 Computing the distance

In the lifted circle plane coordinates above, common tangents for contours of

T (x, y) = ax2 + bxy + cy2 + dx+ ey + f (4.16)

C(x, y) = x2 + y2

occur at the vanishing points

1

2




∂
∂x
T (x, y)

∂
∂y
T (x, y)


×




∂
∂x
C(x, y)

∂
∂y
C(x, y)


 = 0

1

2




2ax + by + d

bx + 2cy + e


×




2x

2y


 = 0

b
(
x2 − y2

)
+ 2 (c− a)xy + ex− dy = 0 (4.17)

Look first at the homogeneous zeroes of

b
(
x2 − y2

)
+ (c− a) 2xy = 0 (4.18)

36



Substituting new (u, v) coordinates into this equation and abbreviating one coef-

ficient to c− a = g yields

0 = b
(
x2 − y2

)
+ g (2xy) ,

x = u cosψ − v sinψ, (4.19)

y = u sinψ + v cosψ

yields

(
u2 − v2

)
(b cos 2ψ + g sin 2ψ) + 2vu (g cos 2ψ − b sin 2ψ) = 0 (4.20)

If we set

0 ≡ b cos 2ψ + g sin 2ψ ,

ψ ≡ −1

2
arctan

b

d
, (4.21)

(4.20) becomes

2 (d cos 2ψ − b sin 2ψ)uv = 0 (4.22)

and the inhomogeneous quadratic for the torus

ax2 + bxy + cy2 + dx+ ey + f = 0

becomes

βuv + γu+ δv = 0 (4.23)

where

β ≡ 2 (g cos 2ψ − b sin 2ψ)

γ ≡ d cosψ + e sinψ

δ ≡ e cosψ − d sinψ

37



This gives (unless β = δ = 0, which reduces (4.23) to u = 0 and we’re done)

v (βu+ δ) + γu = 0 (4.24)

−γu
βu+ δ

= v (4.25)

while x2 + y2 = R2 rotates to u2 + v2 = R2, so

R2 = u2 +

( −γu
βu+ δ

)2

0 = u2
(
β2u2 + 2βuδ + δ2 + γ2

)
−R2 (βu+ δ)2 (4.26)

0 = β2u4 + 2βδu3 +
(
γ2 + δ2 − β2R2

)
u2 − 2βδR2u− δ2R2

Get the real roots between ±R of (4.26) numerically or with a standard routine

[48], plug in to (4.25), put u and v into (4.19) and we have the points at which

(4.16) has its extrema1 on the radius-R circle. We find the θ values of these points

in the standard parametrisation (R cos θ, R sin θ) of the circle.

From this we can determine whether an arc from θ1 to θ2 of the radius-R circle

meets the set

ax2 + bxy + cy2 + dx+ ey + f = 0 . (4.27)

Writing

φ (θ) = aR2 (cθ)2 + bR2 (cθ) (sθ) +R2c (sθ)2 +Rd (cθ) +Re (sθ) + f (4.28)

with cθ ≡ cos θ, sθ ≡ sin θ, we find φ (0) and φ (θω). If there is no maximum or

minimum between θα and θω, we have an intersection with (4.27) if and only if 0 is

between φ (0) and φ (θω). If the arc contains n extrema θ1, . . . , θn (for 1 < n ≤ 4),

there is an intersection if 0 is between φ (0) and φ (θ1), or between φ (θ1) and

φ (θ2) or . . . or between φ (θn) and φ (θω).

1Which are minima and which are maxima appears easily, by inspecting the values. If there
are two solutions, the greater and lesser are the unique maximum and minimum. If there are
four, both maxima are above both minima. However, we do not need this information.

38



Also, the θ of the smallest absolute value of φ (θ) between φ (0) and φ (θω) can

be used to find the point of the needle arc which is nearest (in the sense of lowest

G) to the surface of the curved tube in R
3. Put (R cos θ, R sin θ) to (4.13), we get

the coordinate of the nearest point in π. Then use (4.3) to get the coordinate in

R
3. Computing the distance between the nearest point and the core curve of torus

decides how far the arc and tube are from collision and whether inside (G < R)

or outside (G > R). The distance can be used for warning signals such as force,

sounds or color gradients, useful in training.

The discussion above applies to the whole torus, to simplify the first reading

and checking. For a segment of torus, contained between the planes {(x, y, z), x = 0}

and {(x, y, z), (cos Ω) x+ (sin Ω) y = 0}, it is straightforward to find the part of

the needle arc that also lies between the two planes, and test that rather than the

whole arc for collision with the torus.

4.3 Performance and Comparison

Figure 4.5: The analytical algorithm enables fast computation of the separation
of needle and torus.

We implemented the SP algorithm of section 4.2 (on a Dell PC with 2.4GHz

Pentium CPU, 256 MB) to detect collision between a circular needle and a toroidal

blood vessel (Fig. 4.5). We measured the computation time as a function of the

accuracy, defined as the end criterion of the Newton algorithm used to solve the

fourth order equation (4.26). We see in Fig. 4.6 that the computation time is as

39



low as 0.015ms and does not increase with accuracy, an important property to

simulate the microworld [7].

The SP algorithm was first compared with a general detection algorithm, the

RAPID interference detection system [49]. For a fair comparison we excluded the

set-up time of this algorithm, as well as the visualization effort which common

to all the algorithms. The precision of RAPID depends on the diameter of the

largest triangle. This is a slightly different measure of precision than for SP ,

however the computation time is order of magnitudes larger than with SP , so

this difference is inessential. Similarly, the algorithm of discretizing the needle

and computing the distance to the torus for all these discrete points (Fig. 4.3b)

requires computation time growing proportionally with the precision. In that case

the precision corresponds to the discretization step.

Figure 4.6: Computation time for torus-needle separation for the analytic method
versus two numerical ones, comparing to the other two approaches. The shaded
area corresponds to the precision required in the actual task to learn microsurgery.

With this algorithm, a good collision detection and distance computation re-

quires to discretize the needle with at least a hundred points. At such precision,

the SP algorithm is orders of magnitude faster than numerical approaches at ac-

curacies below 10−2, and can be used to implement all audio, visual and haptic

cues of section 4.

40



4.4 Discussion

To microsurgeon, needle maneuvering is a task requiring very fine control. In su-

ture, a curved needle suturing together two membrane edges, must pass through

at carefully planned places. Both position and orientation must change simulta-

neously, in six-degree-of-freedom motion.

For the needle maneuvering skill, we introduced a method using stereographic

projection to compute the distance between the curved needle and a curved ves-

sel. This analytical algorithm was shown to be faster by orders of magnitude than

numerical ones. Furthermore the computation time barely increases with increas-

ing precision, a critical condition to simulate the microworld. We used geometric

properties specific to the shapes involved, such as the circularity of the arc al-

lowing it to lift to a planar circle in S3, as an ellipse for instance does not. This

limits the generality of the specific algebra used, but still shows that geometrically

special coding can be as powerful as is rewriting an algorithm in system-specific

assembler.

41



Chapter 5

Real-time knot-tying simulation

Knot tying is a bi-manual task requiring skillful control of the nylon and knowl-

edge of the correct topology, which will be trained using two dexterity primitives.

Probably the most obvious component of knot tying is to realize correct knot

topology. Whether a knot is going to be correct or not depends on its topol-

ogy. The suturing process consists of creating a loop, maneuvering one end of the

thread, and then pulling the other end through this loop. The creation of this

loop and then pulling the other end across from the right direction is the criterion

which decides the correctness of the knot. A less obvious critical component of

knot tying consists of skillful manipulation of the nylon. Both in our experience

as trainee and according to experimented surgeons experience) this component is

more difficult to acquire. In this chapter, we focus on the modelling of a real-time

thread simulator, which is developed to train the above subskill.

5.1 Review of related works

While a kinematic scheme such as ”follow the leader” [10] may be used to visualize

knot tying in real time, however it cannot give an idea of the dynamics involved

in manipulation of real nylon threads. Bending and twisting are essential compo-

nents of nylon thread manipulation, which cannot be realized using ”follow the

42



leader” scheme. Further, while the typical force level in microsurgery is below

perception, experiencing the tread dynamics using feedback of scaled force may

help learning. ”Follow the leader” scheme is based on geometry and is not suitable

for our application, as we wish to analyze the effect of haptic cues in the learning

process. All of this requires computation of the nylon thread dynamics. In [50], a

spline of linear springs with control points at their extremities was used for knot

tying simulation. The focus was on dealing with self-collisions when the knot is be-

ing pulled and tied, while conserving energy, mass and momentum of the system.

The authors realize the limitation of their model as they do not model bending

or twisting. Moreover, it’s not a real-time simulation. According to surgeons,

in microsurgery twisting the thread plays an extremely important role. In this

chapter we present a scheme for modelling nylon thread dynamics, which includes

modelling of stretching, bending and twisting of thread in real time. Forces are

modelled and we have done experiments with Phantom device, which show that

we have obtained sufficient visual, haptic and dynamic realism.

5.2 Thread dynamics

0

.  .  .  .  .  .l1

1
2 K-2

K-1

K

l2

lk-1 lk

u1

u2

uk-1 uk
i

qi
Figure 5.1: Structure of the thread

The topological structure of the thread is represented by a list of k + 1 nodes

Ni, i ∈ {0, 1, · · · , k} at positions xi with torsion angle qi connected by k links

Li, i ∈ {1, 2, · · · , k}. Let ui, i = 1, · · · , k represent the vectors pointing from

node Ni−1 to Ni.

43



The dynamics structure is realized by attaching a mass mi and an inertia

momentum Ii to each node Ni, and a group of (massless) springs to each link Li.

This means that the links produce stretching, compressing, bending and twisting

between and on the nodes. The dynamics of each node Ni is determined by:

Fi = mi · ẍi

τi = Ii · q̈i (5.1)

where Fi is the sum of external forces applied on mass mi and τi the torsion force

applied along the thread.

The velocity (ẋi, q̇i) and position (xi, qi) of each node are numerically (Euler)

integrated with

ẋi(t + dt) = ẋi(t) + ẍi · dt

q̇i(t + dt) = q̇i(t) + q̈i · dt

xi(t+ dt) = xi(t) + ẋi(t+ dt) · dt

qi(t+ dt) = qi(t) + q̇i(t+ dt) · dt (5.2)

In Equ.(5.1), Fi is the sum of external forces applied on mass mi:

Fi = Fs
i + Fb

i + Ft
i + Fr

i + Fc
i +mi g (5.3)

where Fs
i is the force resulting from stretching and compression of the links con-

nected to node Ni, Fb
i is the force resulting from bending the link, Ft

i is the force

resulting from twisting of the link, Fr
i corresponds to friction, Fc

i is the reaction

force when two links are in contact, and mi g the gravity force.

44



Stretching and compression force F s

All nodes (except the first and last) experience stretching and compression of the

springs bounded to them according to:

Fs
i = −κs

i · ∆i · ui − κs
i−1 · ∆i−1 · ui−1 (5.4)

where ∆i = li − ri is the difference between the current length of the link and its

resting length, and κs
i is the stiffness constant of spring link.

In microsurgery the minute force when pulling the suture can be ignored, how-

ever a relatively strong force can be felt when a knot is tightened or the suture is

stretched. Therefore the nodes mass is set to be low and the stiffness constant is

set to be high.

Bending force F b

Ni-1

Ni

Ni+1

ai-1

ai+1

Fai-1

Fai+1

Li
Li+1

Li-1
Li+2

Ni-2 Ni+2

ai

Figure 5.2: Bending force at node Ni.

Fig.5.2 illustrates how the bending force Fαi−1
and Fαi+1

applied on mass mi is

computed using the bending angles αi−1 and αi+1. The bending force is computed

45



as

Fαi−1
= −κb

i−1 · (π − αi−1) · ui−1 × (ui−2 × ui−1)

Fαi+1
= −κb

i+1 · (π − αi+1) · ui × (ui+1 × ui)

Fb
i = Fαi−1

+ Fαi+1
(5.5)

where κb
i−1 is the stiffness constant of the angular spring, the bending angle is

measured by (π − αi−1), and the orientation of the bending force is specified by

ui−1 × (ui−2 × ui−1). Fig.5.3 shows the difference of a thread with(out) high

bending property.

Figure 5.3: The thread with high bending (left) and without bending (right)

Twisting force F t

An angular spring is associated to each spring link, which produce the torsion

torque (5.1)

τi−1 = κd
i−1 · (qi − qi−1) (5.6)

The torsion angle qi is propagated from the grasping node to its connected nodes

iteratively using (5.2) and (5.6). Torsion of link Li−1 produces a twisting force Ft
i

46



Ni-2

Ni-1

ai-1

Fti

Li-1

Ni

Li

ßi-2

ßi
 ßi-1

Figure 5.4: Twisting effect

on the mass mi given by

Ft
i = −κt

i−1 · (βi−2 − βi−1) · sin(π − αi−1) · (ui−2 × ui−1) (5.7)

where κt
i−1 is the stiffness constant of the angular spring, (βi−2−βi−1) is the torsion

angle of spring link Li−1 and (ui−2 × ui−1) gives out the orientation vector of the

twisting force. Fig.5.5 shows the twisting thread model.

Figure 5.5: The twisting thread model

Damping (F r,τ r)

Damping is brought to the system using friction force

Fr
i = (κfx + κc) · ẋi(t)

τ r
i = κfq · q̇i(t) (5.8)

47



Damping corresponding to internal dynamics is realized trough κfx and κfq (’f’

stands for free), and κc is used to realize contact with the environment. Realistic

viscous effect is achieved using high κfx and κfq.

Contact force F c
i

Figure 5.6: Reaction force in self-collision

The contact of the thread with itself or other objects such as surgery tools or

skin is handled through the force Fc
i . Here we describe in particular the force for

self-collision. Each link is bounded with a sphere to represent the volume (Fig.5.6).

The reaction force between two colliding links, acting on the four neighboring

nodes, is computed as

Fc = −κce−κod · ui × (ui × uj) (5.9)

The parameter κo must be set carefully. A too larger reaction force will let the

links bounce off too far away such that the knots can not be tightened. Too

small reaction force will not prevent the links from passing through each other.

48



The complete treatment of collision is described in section 5.3. For collision with

objects d is determined from the penetration of the sphere associated with the

link into the object.

Gravity

In microsurgery, the suture is very light and usually in viscous environment, and

the motion of the suture is only slightly affected by gravity. However, the gravity

can still be observed in suture’s dynamics i.e. without it the thread simulation is

not realistic. In the simulation m of Equ.(5.3) needs to be adjusted to a small

value.

5.3 Collision detection

In microsurgery simulation, a suture often collides with itself and with other ob-

jects (surgery tools, organs). All collisions must be detected completely at every

loop and then the reaction force (5.9) can be correctly set to prevent the thread

particles from passing through obstacles or through each other.

Collision detection is a particular important problem in 3D VR simulation.

Extensive research has been devoted to checking collisions between rigid objects.

However, less effort has been spent on collision detection between deformable

objects, especially self-collisions in a deformable object.

Possible methods to detect self-collision in a thread have been compared in

[10]. The ”grid method” decomposes a deformable object to large groups of small

rigid pieces, then defines a uniform grid of cubes over the 3D workspace, computes

the intersection between each piece and the cube, and records the results to a hash

table. At each simulation loop, the hash table is refreshed, and self-collisions are

found by checking every intersected cube which contain two or more pieces. If all

its pieces have the same size and the centers of the minimum enclosing spheres of

49



any two pieces cannot come closer than some absolute constant, the grid method

always takes O(n) time at each loop, which is optimal in the worst case. The

bounding-volume hierarchy method (BV H) constructs a hierarchical bounding

representation based on spheres. The key to efficiency is a simple search routine

that uses the bounding representation to ignore most of the possible pairs of

components. A BVH is best at representing geometric proximity inside an object

at various levels of detail. However the geometric proximity is not invariant in

a deforming object, and constant rebuilding of a BV H to maintain geometric

proximity can be very costly. On the other hand, the sequence of the links of our

thread model is fixed, which lead us to build a BV H for the thread that has an

invariant topology, meaning that when the thread deforms we only need to update

the locations and volumes of each bounding sphere.

As we have mentioned in 5.2, minimum spheres are used to enclose each link

(with two nodes) and represent the volume of the thread pieces. The spheres

are then filled to the BVH as the leaves (in lowest level), after which the BVH

can be built from bottom to up by bounding pairs of successive spheres to new

spheres to form each of higher level. Hence the resulting BV H is a balanced

binary tree. Each intermediate sphere tightly bounds its two children and also

encloses all the leaf spheres below it. The root sphere encloses the entire thread

and all the bounding spheres. To find the collision between root spheres T1 and

T2, a recursive algorithm is defined:

Algorithm FindCollision (T1, T2)

If (T1 and T2 have null intersection)

Return;

Else

If (T1 and T2 are both leaf spheres)

If (T1 and T2 are neither same one nor neighbor)

Save T1 and T2 as a collision pair;

50



Return;

If (T1’s level higher than T2’s)

Switch T1 and T2;

FindCollision (T1, T2→left item);

FindCollision (T1, T2→right item);

Return;

To find self-collision in T, we use function FindCollision(T, T) after update

the BV H tree. Then all the collision pairs are stored into a list, which will be

used to set the reaction force as described in 5.2. The topology structure of BVH

is pre-computed once at the beginning of the simulation and then remained fixed.

During the simulation, only the position and radius of the bounding spheres are

updated in each loop, since the update is done bottom up, totally only (2n − 1)

update for each loop. It’s shown that the BV H method is only slightly less

efficient in the worst case than the grid method in detecting self-collisions; it is

very efficient in the average case, especially when other objects are involved.

5.4 Simulation algorithm

We have developed a real-time thread simulator. Assume the node C is the control

node, which is grasped by surgery tool (here we used keyboard or haptic device

to simulate the tool). The simulator supports one or more control nodes. The C

is usually set to be two nodes since suture is a bimanual task in microsurgery.

The positions of the control nodes are obtained in high frequency (500 ∼

1000Hz) by reading the positions/orientations of the tracking devices. From the

current position of each node, we will be able to calculate the total external force

from (5.3). This external force will be applied to the each of the nodes in the next

loop with the period of time step dt. Because the dt is very small, we assume the

system is continuous. During each simulation loop, all the links are updated using

51



(5.2).

Algorithm Flow:

1. Read the positions of all the control nodes C;

2. For each node, calculate the total external force applied on the node with

(5.3);

3. Read the time step dt between the two consecutive loops;

4. Update the new position of each node by using (5.2).

The simulator has considered most of the physical properties and achieved

realistic dynamic effect. Most of the parameters are related to each others and

also depending on the computational power of the workstation. They must be

set very carefully to make sure the system is stable, especially in simulating the

knot tying. The safe bound of the parameters are found by trial and error. By

modifying the stiffness constants and damping factors, the simulator can simulate

the dynamic behaviors of different types of threads, from soft necklace to stiff

nylon.

5.5 Application and results

We have implemented our thread simulator to a real-time knot tying simula-

tion (Fig.5.7). Our physics-based thread model has essential advantages over the

geometry-based model of [10]. In Joel’s simulation, a considerable attention has

been given to collision management. When a knot has been done, it is firstly iden-

tified and then moves as a single rigid cluster according to the grasping nodes. Our

dynamics based simulation is free from such considerations. And we do not need to

consider special tricks for special scenarios. The collision management is simplified

by setting appropriate reaction forces (5.9), such that it is no longer necessary to

consider the geometry when a knot is tightened. The reaction forces, bending and

52



Figure 5.7: Key steps in the tying of a double overhand knot

twisting make them bounce away from their neighbors while being pulled back by

the connected springs at the same time. Every piece of the thread follows New-

ton’s physical law and so behaves naturally. Even the details of the motion could

be simulated, such as a sudden pull of the thread resulting in the rest of the parts

swinging and bouncing very quickly and then resting. Also, gravity and friction

were added in a very simple and natural way. In contrast, geometry-based model

will only produce stiff motion. As shown in Fig.5.8, we compare the motion of

the geometry-based approach to our physics-based approach. In geometry-based

approach, we take use of FTL (Follow The Leader) algorithm [10]. Each figure

shows 4 different sates, which we swing the thread up and down rhythmically.

Apparently, the motion of FTL is bounded inside an envelop no matter how we

increase the acceleration, which is not as realistic as the physics-based one.

For our initial experiment, 65 nodes with 64 links are used to model the thread.

This number of links is sufficiently long enough to make 6 overhand knots and

can be computed at haptic speed. Usually we only need a double-overhand knot

in microsurgery simulation. More links can be used for a pure visual realistic

simulation. Users can easily tied different kinds of knot.

The Phantom device is used to simulate the surgery tool to control the thread.

53



Figure 5.8: Compare the dynamic behavior the geometry-based approach (left) to
the physics-based approach (right)

Any nodes of the thread can be grasped. As soon as the control node is grasped,

set the motion of the control node follow the phantom, and also transfer the force

which is applied on the control node to the phantom at each loop.

The simulator runs on a DELL workstation with dual 2.6G XEON processors.

The graphics rendering is run at 30Hz. A stereo glasses is used to provide the

true binocular display, with the shadow projected on the surface of the skin, a

realistic stereographic effect is realized. Users report that they have no difficult to

distinguish the depth. The simulation process with haptic rendering is run at 500

to 1000Hz, depending on the number of (self)-collisions. We sample the position of

the control node, solve dynamics, and update the position of the rest of the nodes.

And then we sample next position of control node. If solving dynamics takes too

much time, the next position sampled could be at quite a distance from previous

position if we doing fast manipulation. This will lead to lag in motion display and

force rendering. Because our thread simulator run at very high frequency, there

is no lag found while manipulating the phantom device.

54



5.6 Discussion

This chapter represents a physics-based thread simulator that enable realistic knot

tying intersection in haptic rendering rate. The model follows Newton’s law and

behaves naturally. It has considered most of the properties of the real thread,

such as stretching, compressing, bending and twisting by assuming the thread will

retrieve to its nature state either quickly or slowly. The structure of the system

has essential advantages over geometrically based models. Compared with the

geometrically based method of [10], our simulator starts with a different thread

configuration, similar collision detection methods and simplified collision manage-

ment; it easily overcomes some of the limitation of non-physical simulation system

while provides more realistic effect both in visual and haptic aspects. Moreover,

in micro-world simulation, details cannot be ignored. Even in real world, a thread

needs to take some time to rest after you stop pulling it. Simply using damping

factor to affect the motion of the thread in non-physical system is not able to

reproduce the swinging and bouncing effects which can be observed in the motion

of real thread. Knot identification could be added in the same way than was done

in [10].

However, not all the dynamic behaviors of the suture in microsurgery can

be realistically modelled, such as ”snap”, which often happens in microsurgery

environment. Such a sudden jump is possible to be simulated till we investigate

higher order energy-based models [51].

55



Chapter 6

Conclusion

We are developing a virtual Reality micromanipulation learning system to train

microsurgeon, implemented on the dedicated workstation, with collocated visual

and haptic workspaces. Conventional approaches judge a virtual environment

by its resemblance to the real environment, and often the ”sense of immersion”

or ”presence”. In contrast, we are only concerned with efficiency in learning. We

train simple dexterity primitives corresponding to selected features of the complex

task, and also investigate suitable multisensory learning cues systematically. To

this end we use simple environments with only selected features of the complex

tasks, and develop fast algorithms to investigate the learning of these dexterity

primitives with various multi-sensory cues.

For the modelling of soft tissue mechanics, we described a multi-scale FEM

algorithm which uses elements from multiple levels in a hierarchy of mesh similar

to the progressive mesh. We show that this algorithm computes fast compared

to the traditional FEM algorithm with low loss of accuracy. For the needle ma-

neuvering simulation, we introduced a method using stereographic projection to

compute the distance between the curved needle and a curved vessel. This analyt-

ical algorithm was shown to be faster by orders of magnitude than numerical ones.

Furthermore the computation time barely increases with increasing precision, a

critical condition to simulate the microworld. For the knot-tying simulation, we

56



presented a physics-based thread simulator that enable realistic knot tying inter-

section in haptic rendering rate. The model follows Newton’s law and behaves

naturally. It has considered most of the properties of the real thread, such as

stretching, compressing, bending and twisting. The effects of gravity and friction

are also added in very simple way.

Overall, the contributions of this work are two-fold: for human learning as-

pects, we investigate the possibilities of using the primitives to train the subskills

separately to achieve better training efficiency, which is different to conventional

approaches; for VR simulation aspects, we developed some novel algorithms to

speed up the real-time simulation, which makes the haptic rendering possible.

For future work, we might fulfill the VR microsurgery trainer to provide other

primitive training tasks and evaluate its performance on real subjects.

57



References

[1] Singapore ministry of health statistics, http://app.moh.gov.sg.

[2] Microsurgery training programme, indiana university,
http://www.iupui.edu/,micrsurg.

[3] RS Johansson et al. Eye-hand coordination in object manipulation. Journal
of Neuroscience, 21:6917–6932, 2001.

[4] D. Ota, B. Loftin, T. Saito, R. Lea, and J. Keller. Virtual reality in surgical
education, computers in biology and medicine. computers in Biology and
Medicine, 25(2):127–137, 1995.

[5] E. Erel, B. Aiyenibe, and P.E.M. Butler. Microsurgery simulators in virtual
reality: Review. Journal of Microsurgery, 23(2):147–152, 2000.

[6] RV O’Toole, RR Playter, et al. Measuring and developing suturing technique
with a virtual reality surgical simulator. Journal of American College of
Surgeons, 189:114–127, 1999.

[7] F. Wang, T. Poston, C.L. Teo, K.M. Lim, and E. Burdet. Multisensory
learning cues using analytical collision detection between a needle and a tube.
In Proceedings of IEEE VR 04, Haptic Symposum, pages 339–346, 2004.

[8] M. Haruno, D.M. Wolpert, and M. Kawato. Mosaic model for sensorimotor
learning and control. Neural Computation, 13:2201–2220, 2001.

[9] J. Brown, K. Montgomery, J-C Latombe, and M. Stephanides. A microsurgery
simulation system. In Medical Image Computing and Computer-Assisted In-
tervention (MICCAI), 2001.

[10] J. Brown, J-C Latombe, and K. Montgomery. Real-time knot tying simula-
tion. In Dimacs Workshop on Medical Applications in Computational Geom-
etry, 2003.

[11] E. Burdet, C.L. Teo, and H.P. Lim. A robotic teacher for chinese ideograms. In
Proceedings of 10th Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, page 335, 2002.

[12] E.S. Boy, E. Burdet, C.L. Teo, and J.E. Colgate. Experimental evaluation of
the learning cobot. In Proceedings of Eurohaptics 2003, 2003.

[13] R.D. Shilling and B.G. Shinn-Cunningham. Virtual auditory displays. In
Handbook of Virtual Environment Technology, 2001.

58



[14] S. Smith, RM Pickett, and MG Williams. Environments for exploring audi-
tory representations of multidimensional data. In Kramer G, editor, Auditory
Display: Sonification, Audification and Auditory Interfaces. SFI Studies in
the Sciences of Complexity., volume XVIII. Addison Wesley, 1994.

[15] E. Burdet, R. Osu, DW. Franklin, T. Milner, and M. Kawato. The central
nervous system stabilizes unstable dynamics by learning optimal impedance.
Nature, 414:446–449, 2001.

[16] E. Burdet, R. Gassert, F. Mani, F. Wang, Teo. C.L., and H. Bleuler. Design
of a haptic forceps for microsurgery training. In Proceedings of Eurohaptics
2004, 2004.

[17] M. Kawato. Internal models for motor control and trajectory planning. Cur-
rent Opinion in Neurobiology, 9:718–727, 1999.

[18] HD Zimmer et al. Memory for action: A distinct form of episodic memory?
In Counterpoints. Oxford University Press, 2000.

[19] RN. Lemon, RS. Johansson, and G. Westling. Corticospinal control during
reach, grasp, and precision lift in man. Journal of Neuroscience, 15:6145–
6156, 1995.

[20] R. Bhushan, N.and Shadmehr. Computational nature of human adaptive
control during learning of reaching movements in force fields. Biological Cy-
bernetics, 81(1):39–60, 1999.

[21] T. Flash and E. Henis. Arm trajectory modifications during reaching toward
visual targets. Journal of cognitive Neuroscience, 3(3):220–230, 1991.

[22] H. Zhang, E. Burdet, et al. Robotic micro-assembly of a scaffold/cell con-
structs with a shape memory alloy gripper. In Proceeding of IEEE Interna-
tional Conference on Robotics and Automation, 2002.

[23] F. Tendick, M. Downes, T. Goktekin, et al. A virtual environment testbed
for training laparoscopic surgical skills. Presence, 9(3):236–255, June 2000.

[24] R. Alterovitz, J. Pouliot, et al. Simulating needle insertion and radioactive
seed implantation for prostate brachytherapy. In J.D. Westwood et al, edi-
tor, Medicine Meets Virtual Reality 11 (MMVR11), pages 19–25. IOS Press,
January 2003.

[25] M. Mahvash and V. Hayward. Haptic simulation of a tool in contact with a
nonlinear deformable body. In H. Delingette N. Ayache, editor, International
Symposium on Surgery Simulation and Soft Tissue Modelling, IS4TM, Lec-
ture Notes in Computer Science, Juan-Les-Pins, France, June 2003. Springer
Verlag.

[26] D. Simone and A.M. Okamura. Haptic modeling of needle insertion for robot-
assisted percutaneous therapy. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 2085–2091, 2002.

59



[27] C.W. Kennedy, T. Hu, J.P. Desai, A.S. Wechsler, and J.Y. Kresh. A novel
approach to robotic cardiac surgery using haptics and vision. Cardiovascular
Engineering: An International Journal, 2002.

[28] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable
models. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, pages 205–214, Anacheim, California, 1987.

[29] JP. Gourret, N.M. Thalmann, and D. Thalman. Simulation of object and
human skin de-formations in a grasping task. In Proceedings of the 16th
annual conference on Computer graphics and interactive techniques, pages
21–30, 1989.

[30] R. Baumann and D. Glauser. Force feedback for virtual reality based mini-
mally invasive surgery simulator. In Medicine meets virtual reality, San Diego
CA, 1996.

[31] P. Meseure and C. Chaillou. Deformable body simulation with adaptive sub-
division and cuttings. In Proceedings of the WSCG’97, pages 361–370, 1997.

[32] UG. Kuehnapfel and B. Neisius. Cad-based graphical computer simultaion
in endoscopic surgery. End. Surg, 1:181–184, 1993.

[33] M. Sagar, D. Bullivant, G. Mallinson, and P. Hunter. A virtual environ-
ment and model of the eye for surgical simulation. In Computer Graphics
Proceedings, Annual Conference Series, pages 205–212, 1994.

[34] E. Keeve, S. Girod, P. Pfeifle, and B. Girod. Anatomy-based facial tissue
modeling using the finite element method. In IEEE Visualization 96, pages
21–28, 1996.

[35] S. Peiper, J. Rosen, and D. Zeltzer. Interactive graphics for plastic surgery:
A task-level analysis and implementation. In Symposium on Interactive 3D
Graphics, 1992.

[36] O.R. Astley and V. Hayward. Multirate haptic simulation achived by coupling
finite element meshes through norton equivalents. In Internal conference on
Robotics and Automation, 1998.

[37] M. Bro-Nielsen and S. Cotin. Real-time volumetric deformable models for
surgery simulation using finite elements and condensation. In Proceedings of
Eurographics, volume 15 of 3, pages 57–66, 1996.

[38] S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model allowing
real-time cutting, deformations and force-feedback for surgery training and
simulation. The Visual Computer, 16(8):437–452, 2000.

[39] S.P. DiMaio and S.E. Salcudean. Simulated interactive needle insertion. In
Haptic Symposium, IEEE Int. Conference on Virtual Reality, 2002.

[40] X. Wu and M.S. Downes. A adaptive nonlinear finite elements for deformable
body simulation using dynamic progressive meshes. In Eurographics, vol-
ume 20, pages 349–358, September 2001.

60



[41] K.M. Lim, F. Wang, T. Poston, L. Zhang, C.L. Teo, and E. Burdet. Multi-
scale simulation for microsurgery trainer. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2004.

[42] K.M. Lim, T. Poston, L. Zhang, B.F. Liu, C.L. Teo, and E. Burdet. Multi-
scale simulation for a robotic surgical trainer. In ICBME, 2002.

[43] C. Shene and J. Johnstone. On the planar intersection of natural quadrics.
In Proceedings of ACM Solid Modeling, pages 234–244, 1991.

[44] J.R. Miller. Geometric approach to nonplanar quadric surface intersection
curves. ACM Transactions on Graphics, 6(4):274–307, 1987.

[45] L. Piegl. Geometric method of intersecting natural quadrics represented in
trimmed surface form. Comput. Aided Des., 21(4):201–212, 1989.

[46] RT Farouki, CA Neff, and M. O’Connor. Automatic parsing of degenerate
quadric-surface intersections. ACM Transactions on Graphics, 8:174–203,
1989.

[47] LV Ahlfors. Complex Analysis - An Introduction to theTheory of Analytic
Functions of One Complex Variable. McGraw Hill, 1979.

[48] http://www.uni-koeln.de/math-nat-fak/phchem/deiters/quartic/quartic.html.

[49] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A hierarchical structure
for rapid interference detection. In Proc. ACM Siggraph’96, pages 171–180,
1996.

[50] J. Phillips, A. Ladd, and L.E. Kavraki. Simulated knot tying. In Proc.
IEEE International Conference on Robotics and Automation, pages 841–846,
Washington, DC, May 2002. IEEE Press.

[51] A. Dhanik, T. Poston, K.M. Lim, C.L. Teo, and E. Burdet. Virtual nylon
thread manipulation for a haptic microsurgery training environment (submit-
ted). 2004.

61



Appendix A

Navier’s Series Solution

Formulation

The governing equation of anti-plane elasticity problem is:

∇(G∇w) + P = 0 (A.1)

A series solution for LxB rectangular region may be found by Fourier expansion

of the load and deflection

p(x, y) =
∞∑

m=1

∞∑

n=1

Pmnsin
mπx

L
sin

nπy

B
(A.2)

w(x, y) =
∞∑

m=1

∞∑

n=1

Wmnsin
mπx

L
sin

nπy

B
(A.3)

The coefficients of this double Fourier expansion are given by:

Pmn =
4

LB

∫ L

0

∫ B

0

p(x, y)sin
mπx

L
sin

nπy

B
dydx (A.4)

For a line force,

P (x, y) = F
∏

(x, x1, x2)δ(y − y1) (A.5)

62



Pmn =
4

LB

∫ L

0

∫ B

0

F
∏

(x, x1, x2)δ(y − y1)sin
mπx

L
sin

nπy

B
dydx

=
4F

mπb
sin

nπy1

B

[
cos

mπx1

L
− cos

mπx2

L

]
(A.6)

From equation A.3,

∇(G∇w) = G

∞∑

m=1

∞∑

n=1

−Wmn

[(mπ
L

)2

+
(nπ
L

)2
]
sin

mπx

L
sin

nπy

B
(A.7)

Substituting this into A.1 gives:

∞∑

m=1

∞∑

n=1

{
−Wmn

[(mπ
L

)2

+
(nπ
L

)2
]

+
Pmn

G

}
sin

mπx

L
sin

nπy

B
= 0 (A.8)

The coefficients of this equation are identically zero,

Wmn

[(mπ
L

)2

+
(nπ
L

)2
]
− Pmn

G
= 0 (A.9)

This gives:

Wmn =
Pmn

G

1
(

mπ
L

)2
+
(

nπ
L

)2 (A.10)

Inserting equation A.6 and A.10 into equation A.3,

w(x, y) =

∞∑

m=1

∞∑

n=1

4Fsinnπy1

B

[
cosmπx1

L
− cosmπx2

L

]
sinmπx

L
sinnπy

B

GBmπ3
[(

m
L

)2
+
(

n
L

)2] (A.11)

The above series solution for the anti-plane elasticity problem is used to check the

accuracy of our FEM results. Fig.A.1 shows the force values along the bar using

the Navier’s solution with different number of terms m, and the results converge

rapidly as m increases.

63



Figure A.1: Force value along the bar

64



Appendix B

Relations between R, r and α

To connect the torus form (4.1) with the projected α version, we substitute

l =
2x

x2 + y2 + z2 + 1
m =

2y

x2 + y2 + z2 + 1

p =
2z

x2 + y2 + z2 + 1
q =

x2 + y2 + z2 − 1

x2 + y2 + z2 + 1

from (4.3) into (4.4). We have α2 (l2 +m2) − (p2 + q2) = 0 exactly at the zeroes

of ε (x2 + y2 + z2 + 1)
2
(α2 (l2 +m2) − (p2 + q2)) where ε is an arbitrary constant.

We want to choose R and r such that

(
ρ2 −D2

)2 − 4
(
x2 + y2

)
R2 = C

((
ρ2 + 1

)2 (
α2
(
l2 +m2

)
−
(
p2 + q2

)))

where ρ2 = x2 + y2 + z2, D2 = R2 − r2. But then

ρ4 − 2ρ2D2 +D4 − 4
(
x2 + y2

)
R2 − C

(
α2
(
4x2 + 4y2

)
− 4z2 −

(
ρ2 − 1

))

vanishes at infinitely many points, which is only true if the coefficients of xn, yn,

zn vanish identically. Comparing the coefficients of ρ4, we want ε = −1, i.e.,

(
2D2 − 4R2 + 2 + 4α2

)
x2 +

(
2D2 − 4R2 + 2 + 4α2

)
y2+

(
2D2 − 2

)
z2 +D4−1 = 0

65



The vanishing of coefficients reduces to

D4 − 1 = 0 (B.1)

2D2 − 2 = 0

2D2 − 4R2 + 2 + 4α2 = 0

We want a torus with R > r, so we choose

R2 − r2 = 1. (B.2)

It then follows that

4R2 − 4α2 = 4 (B.3)

R2 − α2 = 1

r = α

For small values of α we get a thin torus containing the unit circle x2 + y2 = 1 in

the z = 0 plane but centred on x2 + y2 = 1 + α2. For large values we get a fat

torus, with a z-axis hole of throat radius

√
1 + α2 − α = α

(√
1 +

1

α2
− 1

)
(B.4)

= α

((
1 +

1

2α2
+ . . .

)
− 1

)

≈ 1

2α

and outside radius approximately α.

Note that (B.2) forces r =
√
R2 − 1, regardless of α. To get a general torus,

with arbitrary R̃ and r̃, define their ratio β = r̃/R̃. We produce a torus with this

66



ratio by setting

β2 =
α2

1 + α2
(B.5)

α2 =
β2

1 − β2
,

which gives R2 = 1/ (1 − β2). If this is not the value R̃ needed, scale (x, y, z)

by the factor R̃/
√

1 − β2 =
√
R̃2 − r̃2. For instance, if R̃ = 5 and r̃ = 3,

giving β = 3/5, we want to draw the α2 = 9/16 torus (which unscaled would

have R =
√

1 + 9/16 = 5/4 and r =
√

9/16 = 3/4 ) enlarged by the factor
√

52 − 32 = 4.

67


