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Abstract

Traditional document image analysis relies on Optical Character Recognition (OCR)

to obtain textual information from scanned documents. However, as the development

of digitization technology, the current OCR technique is no longer sufficient for this

purpose.

With the increasing availability of high performance scanners, many projects have

been initiated to digitalize paper-based materials in bulk and build large multilingual

document image databases. Two inherent shortcomings, namely, language depen-

dency and slow speed, are the main obstacles for current OCR to fully access the

textual information of such databases. We address both problems for clean and

degraded scanned document images respectively. In particular, a word shape cod-

ing method has been proposed, which is 20 times faster than OCR. This method has

been successfully employed in language identification and document filtering for clean

scanned document image archives. Furthermore, a holistic word spotting method, in-

variant to geometric transformations of translation, scale, and rotation, is proposed

to facilitate fast retrieval for degraded scanned document images. This method is

optimized for the U.S. patent database, which have many degraded document images

with severe skew.

The rapid development of camera technology has also challenged current OCR

technique. The advancement of cameras has given people an alternative to traditional

scanning for text image acquisition. However, because the image plane in a camera

is not parallel to the document plane, camera-based images suffer from perspective

distortion, leading to a failure when OCR or other textual information techniques are

applied to them directly. In this thesis, this problem is addressed for camera-based

document images and real scene images respectively. For camera-based document

images, another word shape coding scheme, which is a variant of our holistic word

spotting method, is proposed for language identification and fast retrieval. This

method is Affine invariant, and thus is robust to moderate perspective deformation,
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which is sufficient for this image type. For real-scene images, which may have more

severe perspective deformation, we propose a character recognition method based on a

global descriptor called Cross Ratio Spectrum. With this descriptor, the perspective

deformation of a character is compressed into a stretching deformation, and thus

can be solved by Dynamic Time Warping. Besides characters, the method is also

applicable to multi-component planar symbols.
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Chapter 1

Introduction

The history of communication dates back to the earliest signs of life. Communication

can range from very subtle processes of exchange to full conversations and mass com-

munication. Human communication was revolutionized with speech about 200,000

years ago. Symbols were developed about 30,000 years ago, and writing about 7,000

years. Although it emerged latest, writing is the most efficient and reliable way to

communicate. Two aspects of writing are critically important in communication:

content and format. In the world of computer, the former is called text and the latter

is features other than text like color, size, and font.

Text is the core of writing. Many storage media have been used for writing in

the early stage: stone, bones, bronze implements, turtle shells, papyrus, clay tablets,

and bamboo pieces from the Warring States to Jing Dynasty in Chinese history. One

of the most exciting technological innovations, improving the quality of text conser-

vation, was the creation of paper by a Chinese inventor, Lun Cai, about 1800 years

ago. Another essential innovation of text storage media took place when digitization

devices came out into being since 1960.

Two types of digitized text can be found nowadays, namely, plain text and imaged

1



Introduction 2

Table 1.1: Categories of imaged text, classified by the acquisition method and content.

text. Plain text comprises of unformatted sequential code like ASCII. Many infor-

mation retrieval techniques have been established for managing plain text. On the

other hand, imaged text is stored as raw pixels. Table 1.1 shows several categories

of imaged text, divided by their acquisition method and content. Images in different

categories have their own characteristics and processing techniques.

Scanned document images are electronic images of documents produced by a

scanner or photocopier. It is the most predominant image medium by which textual

information is disseminated. The benefits of digitization are obvious. Information

stored electronically consumes less space, and is much easier to duplicate and de-

liver. Besides, convenience of access is not tied to the physical proximity of materials

any more. The content of graphics includes engineering drawings, maps, figures,

and so forth. Text in graphics often functions as annotations, legends, or captions.

It is particularly crucial, because it is useful for describing the semantic content of

graphics, and it can be easily extracted compared to other semantic contents. The

increasing availability of high performance, low-priced, portable digital imaging de-

vices has created a tremendous opportunity for supplementing traditional scanning

for document image acquisition. To differentiate from images captured by a scanner,
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we term images captured by a camera as camera-based images. A camera-based

document image is camera-based image whose content is a text document. In this

thesis, we use the term real-scene image to refer a scene photo which contains tex-

tual information such as a road sign. It worth noting that, cameras are also used to

capture graphics images and videos, however, both of them will not be included in

the scope of this thesis.

It is easy for humans to recognize textual information from images. However, with

variations in size, font, orientation, resolution, and decoration, it is quite a difficult

task for computers. In order to get machine-editable text from images, two steps

are necessary, namely, text location and extraction. Text Location basically answers

the question of where is the text present? Text Extraction is to extract content-

level information, for example the identity of language using in an imaged text, the

presence of a keyword in the image, or the exact text of the image.

For four types of text images introduced in table 1.1, scanned document images

processing and graphics processing have been extensively studied. In contrast, the

processing of images captured by cameras, including camera-based document images

and real-scene images is at a rather preliminary stage.

Because information retrieval techniques, developed for plain text, cannot be di-

rectly applied to imaged text, textual information extraction techniques have

been established to bridge the gap. Optical Character Recognition (usually ab-

breviated to OCR) is the predominant technique to translate images of typewritten

or handwritten text into machine-readable text character by character. The state of

the art commercial OCR software has been highly successful in recognizing standard

business documents produced by modern photocopiers or scanners. In addition, there
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are two complementary techniques, which outperform OCR under certain conditions.

One technique is Word Shape Coding, which maps the character set to a smaller

symbol set other than the real character identities. For methods in this category, a

word is represented by a sequence of symbols. These methods are much faster than

OCR, and thus often are employed in document image processing applications which

have critical time constraints. The other technique is Holistic Word Spotting.

Different from OCR which recognizes each individual character, this technique rec-

ognizes a word as a whole entity. In this approach, a word image is represented by

a feature vector of pixel-level features of the whole word image. Since no segmenta-

tion is needed, this technique is robust to the noise of poor-quality images, especially

touching or broken characters. Therefore, this approach is particularly useful in word

spotting application for degraded image documents.

1.1 Main Problem Statement

Many factors degrade the performance of textual information extraction techniques.

For scanned document images, salt and pepper noise, touching and broken characters,

and skew have long been the processing obstacles. For camera-based images, low

resolution, blur, warping, as well as perspective distortion [LDL05] are the major

challenges. Among these degradation factors, we are particular interested in geometric

deformations, i.e. skew and perspective distortion. Skew may be generated in a

scanned document image if the edge of the paper is not aligned correctly with the

scanner during scanning. Perspective deformation of a camera-based document image

is caused by the fact that the image plane in the camera is not parallel to the document

plane, and manifests as severe skew, unpredictable orientation, non-parallel text-lines,
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and variable character sizes.

Existing textual information extraction techniques show little tolerance to geomet-

ric transformation. Skew degrades the speed and accuracy, and perspective deforma-

tion, especially in real-scene images of a sparse text context, is almost inaccessible for

existing text extraction techniques. OCR, Word Shape Coding, and Holistic Word

Spotting are all developed and optimized for images captured by scanners, which are

produced from pseudo binary hardcopy paper manuscripts with a flatbed imaging

device. Therefore these extraction techniques assume that the image to be processed

is a parallel projection of the source document. However, the assumption does not

hold when it comes to images taken by cameras. Because camera-based images are

captured by a portable device in less constrained environments.

Given the presence of geometric deformation in a text image, a rectification step

is indispensable. Skew detection for scanned document images has been extensively

studied. On the contrary, the research on perspective rectification is at a preliminary

stage. Only a few methods have been proposed to remove the perspective deformation

of camera-based document images, and rectify the them into a fronto-parallel pose,

using clues of the text format. Real-scene images pose a even greater challenge to re-

certification, because their text content may be sparse and could be any unpredictable

format. To my knowledge, there is no rectification method generally applicable to

real-scene images. Anyway, once a rectification is taken, it will take extra processing

time and may cause errors which pass to downstream steps.

In view of this, a critical question is raised by us: how can we directly access

the content of a text image with geometric deformation without rectifica-

tion?
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1.2 Solutions in this Thesis

In order to answer this question, we have proposed several content access methods

for scanned document images, camera-based document images, and real scene images

respectively. These methods requires no rectification. The benefits are obvious: ex-

tra processing time is saved, and possible errors introduced by the rectification are

avoided. In particular, these methods are:

• A fast and reliable word shape coding method is proposed for clean document

images without deformation. It is more than 20 times faster than OCR and

thus is able to satisfy the requirement of time critical retrieval applications. It

is employed in language identification and document image filtering applications

for clean document images. This is a starting work for me to get familiar with

this area.

• A word shape coding method is proposed for camera-based document, dealing

with perspective deformation. It is invariant to affine deformation images, and

thus robust to weak perspective deformation introduced by a camera. Language

identification and document similarity estimation techniques are also established

based on the coding method.

• A word spotting method is proposed for degraded document images, invariant

to rotation transformation. This method is a variant of the word shape cod-

ing method for camera-based document images proposed above. It has been

employed in a fast word spotting program for viewing U.S. patent documents.
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• A character recognition technique, which is invariant to perspective deforma-

tion, is proposed. This method is also able to recognize more complex real-scene

symbols like traffic signs. In addition, the point-level correspondence, given by

this method concurrently when recognizing characters or symbols, can be used

for restoring the fronto-parallel view if necessary.

1.3 Thesis Preview

This thesis is organized as follows. In Chapter 1, a preview of the whole thesis has been

provided, including the scope of the thesis, the main problem and main contributions.

In Chapter 2, I will introduce the background knowledge about textual information

extraction, applications of text images, as well as linear geometric deformation theory.

In Chapter 3, I will present a word shape coding method, and explain how to integrate

it in language identification and document filtering for clean document image achieves.

In Chapter 4, I will introduce a word shape coding method, and detail the way to

employ it in language identification and document similarity estimation for camera-

based document image achieves. In Chapter 5, a variant of the word shape coding

method introduced in Chapter 4 is adapted to swiftly locate keywords in degraded

patent images, regardless of the skew angle. In addition, a clustering based method

to locate textual content in the drawings of patent documents will be present. In

Chapter 6, I will detail a symbol recognition technique which is resistant to severe

perspective deformation. Chapter 7 is a conclusion chapter.



Chapter 2

Background Knowledge

2.1 Textual Information Extraction Techniques for

Scanned Document Images

Textual information extraction techniques for scanned images are divided into three

categories: OCR, Word Shape Coding, and Holistic Word Spotting. The ultimate

goal of extracting textual information is for information retrieval. The output of the

extraction are passed to downstream retrieval applications.

First of all, I will make a very brief introduction about typical retrieval applica-

tions for scanned document images. Language identification is to determine which

language the document image is written in. It is an important pre-processing step

before document image indexing or retrieval can take place in a multilingual image

archive. Keyword spotting is to locate the occurrence of certain keywords in one

document image. It is a useful tool for viewing document images. Document image

retrieval is to retrieve document images relevant to a query from a document image

archive. Document image retrieval is further classified according to the query and the

output. The query of Boolean document image retrieval comprises of a few key-

words connected by Boolean operators. Keywords are considered to be either present

8
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or absent in a document and to provide equal evidence with respect to information

needs. A Boolean retrieval model does not have a built-in way of ranking matched

documents by some notion of relevance. On the contrary, ranked document image

retrieval, which also takes a few keywords as the query, ranks the retrieved result

according to their relevance to the query. The query of document image similarity

estimation is a document image.

OCR, Word Shape Coding and Holistic Word Spotting techniques have different

target applications that overlap a little. Table 2.1 is an overview of retrieval applica-

tions based on OCR, Word Shape Coding and Holistic Word Spotting respectively.

Table 2.1: An overview of applications that OCR, Word Shape Coding (WSC), and
Holistic Word Spotting (HWS) are applied to.

Technique Applications References
OCR Ranked Document Image Retrieval [CHTB94, TBC94]

[HCW97, TNB01b, TBC96]
[BSM95, OTA97, Tak97, OTA97]

Document Image Categorization [ILA95, TNB+01a, Vin05]
POS Tagging [Lin03]

WSC Language Identification [LT08, Spi97, NBSK97]
[Nak94, LT06b]

Document Similarity Estimation [LT04, THS+03]
Boolean Document Image Retrieval [SS97]
Fast Keyword Spotting [Spi94, LT04]

HWS Keyword Spotting in Degraded Images [RM03, MMS06, KJM07, HHS92]

From Table 2.1, we can see that OCR has been mainly employed in ranked docu-

ment image retrieval and document image categorization. Word Shape Coding tech-

nique has been mainly employed in language identification. Holistic Word Spotting

technique mainly works for keyword spotting in degraded images. An illustration of
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Figure 2.1: Textual information extraction techniques and document image retrieval
applications.

this relationship is shown in Figure 2.1. This is caused by the fact that OCR has

shortcomings of slow speed, language dependency, and fragility to degraded image

quality, and thus is not suitable for certain applications. Therefore, both complemen-

tary techniques are proposed as alternatives to OCR for these applications. I will

detail this point later in this section under topic “Why not OCR?”.

In the rest of this section, I will make a detailed explanation about these three

techniques and their retrieval applications.

2.1.1 Optical Character Recognition

OCR is the mechanical or electronic translation of images of handwritten, typewritten

or printed text (usually captured by a scanner) into machine-editable text. It is the
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dominant approach to extract character-level information from document images.

OCR is a fundamental step to bridge the gap between imaged text and modern

information retrieval technology. OCR is a complicated procedure, generally including

the steps below:

• Character segmentation, which identifies the bounding box for each character in

a document image. Touching characters lead to false bounding box detection,

and hence false recognition results.

• Feature extraction, which extracts features from character images. Features can

be divided into two groups: global features and local features. Global features

include the number of holes in the character, the number of concavities on the

contour, and the relative protrusion of character extremities. Local features

include relative positions of line endings, crossovers and corners.

• Character classification, which assigns each character image with a character

identity. A typical character classification based on the statistical classification

is described below. Character image patterns are represented by points in a

multidimensional feature space. A classifier partitions the feature space into

regions associating with each class, labeling an observed pattern according to

the class region into which it falls. Hence for each character class either a

prototype or a set of character samples must be known.

• Post processing, which employs language knowledge to correct errors in recog-

nition committed, for example, by comparing OCR output with a pre-defined

lexicon.
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The advantage of OCR is that, all information retrieval techniques designed for

clean text are theoretically applicable to the output of OCR. As shown in Figure 2.1,

the retrieval is conducted as the text level. However, errors may happen in each step

of OCR, and thus many efforts have been made to narrow the gap between noisy text

retrieval and traditional clean text retrieval.

Retrieval Applications based on OCR

Ranked Document Image Retrieval. Research on OCR text retrieval have blos-

somed since 1994. Many efforts have been made in preparation testing data. The

information Science Research Institute established at the University of Nevada1 has

been making many contributions. Consequently in 2000, a collection of OCR-error-

prone word images selected from testing images was published for researchers to get

insights into the strengths and weaknesses of current OCR systems [NNR00]. Mean-

while, the text retrieval conference TREC-4 and TREC-5 held confusion tracks, and

provided recognized text from scanning images in order to facilitate IR research on

OCR text. In an attempt to avoid the tedious process of scanning and OCR involved

in obtaining testing collection, Doermann et al. [DY95] developed a system which

could generate simulated noisy text, which simulates errors in OCR output for evalu-

ating the performance of various text analysis systems under varying, yet controlled

conditions. The system presented a set of symbols and page models which are used

to degrade an ideal text by introducing errors which typically occur during scanning,

decomposition and recognition of document images.

Several researchers made quantitative studies on the impact of OCR errors on text

retrieval performance. After experiments on simulated text, Croft et al. [CHTB94]

1http://www.isri.unlv.edu/ISRI
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showed that high quality OCR text has little effect on the accuracy of retrieval,

but short documents with low quality OCR significantly degrades result. Taghva et

al. [TBC94] experimented with actual OCR text. They found that, for a Boolean

system, the problem caused by OCR errors could be overcome by redundancy of the

document text. However, for a statistical model, the impact of OCR errors becomes

unimportant with insignificant retrieval performance degradation [TBC96, TNB01b].

Further, they observed that the ranking and feedback associated with IR models are

not robust to deal with OCR errors. Besides, the OCR errors and garbage strings

generated by the mistranslation of graphic objects increase the size of the index by a

wide margin. An important conclusion drawn by Doermann [Doe98] after a complete

review over applying text retrieval methods on OCR text is that: for OCR text whose

character accuracy is higher than 80%, the average precision and recall of IR is not

adversely affected by OCR errors; however, for character accuracy lower than 80%,

the average precision and recall fall drastically. According to this guideline, some

databases indexed OCR text for full text retrieval purpose. For example, in DIENST2

which is a searchable database developed by Cornell University, image documents are

transcribed into OCR text for indexing and full-text retrieval purpose. On the other

hand, because the quality of OCR text is not adequate for display purpose, they only

act as an invisible layer for search purpose. What users would see in their screens are

documents in image format. This framework was also adapted by JSTOR later.

Although IR systems seem to be robust to OCR errors to a certain level, meth-

ods are explored to enhance the performance to fulfill higher requirements. Three

important approaches are widely used, including query expansion [BSM95, OTA97],

2http://www.cs.cornell.edu/cdlrg/dienst/DienstOverview.htm
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approximate matching [Tak97, OTA97], as well as N-gram matching [HCW97].

Document Image Categorization. Besides OCR text retrieval, investigation

is carried on other retrieval-related applications including OCR text categorization,

document clustering and information extraction. Ittner et al. [ILA95] conducted a

categorization task to assign 63 overlapping categories to 1000 document images by

a Rocchio classifier. They found that categorization accuracy decreases when OCR

recognition accuracy decreases, and they also observed that the categorization per-

formance on OCR text was better when the classifier was trained on OCR text other

than noise-free text. A similar conclusion is drawn by Taghva et al. [TNB+01a]. In

addition, they also make some observations that dimensionality reduction improves

categorization, and that OCR errors may have little effect on the categorization per-

formance when OCR character accuracy is above 90%. Based on experiments on

simulated text corpus whose word accuracy of a document spans from 10% to 50%,

Vinciarelli [Vin05] observes that the categorization of noisy text has similar per-

formance when the recall is less than 20%, however, performance decreases rapidly

when a higher recall is required. Therefore, he proposed a new measure other than the

word accuracy called information gain recall and information gain precision, which

are expected to have a better linear relation between the noise estimation and the

performance of categorization.

POS Tagging. Text processing tasks like information extraction which involve

more complete access to the content of documents are more sensitive to OCR errors.

Lin [Lin03] analyzes the performance of both individual POS taggers and combi-

nation systems on imperfect text. Experimental results show that a POS tagger’s

accuracy decreases linearly with the character error rate and the slope indicates a
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tagger’s sensitivity to input text errors. Different from statistics-based applications

like document image retrieval and categorization, POS tagging performance degrades

linearly with the OCR accuracy.

Why not OCR?

After years of developing and improving, the state of the art commercial OCR software

can achieves a 99% or more character recognition accuracy on standard business

documents, and act as one necessary component of current imaged document retrieval

projects. However, it is still necessary to establish alternative techniques to access

content of document images. As a nutshell, current OCR techniques still have the

following drawbacks:

Language dependence. In OCR process, unknown characters are compared

with a set of trained templates. If the real identity of a character does not appear in

the template set, the process fails. Additionally, if the template set comprises of many

templates, the recognition speed will be slowed down. Therefore, in a general OCR

process, users are required to manually choose the language of the input document, or

the software itself assigns one or a few default languages to the document. However,

either human intervention or setting default language is inadequate for a multilingual

environment, and thus many language identification techniques are being developed.

Long execution time. Text generated by OCR is only suitable for a limited

range of applications. There are many applications related to document image re-

trieval, and each of them has different requirements in terms of accuracy, storage and

speed. Generally, the accuracy of OCR output is the most important aspect which

is of great concern. In order to get higher transcription accuracy, a typical OCR
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software integrates many steps, leading to a slow program. The execution time of

OCR makes it unacceptable for time-critical applications. For example, a document

filtering system sifts through a steam of incoming information to find documents rele-

vant to a set of user needs represented by profiles. This application emphasizes speed

as well as indexing methods that enable very fast processing of documents against

profiles. Besides, generally it takes tens of seconds to transcribe a document image by

OCR. The time complexity also makes OCR unsuitable to document image archives

of very large volume. For example, assuming it takes 20 seconds for an OCR software

to process an scanned image of a A4 paper on my own PC, configured with 2.33GHz

CPU and 3.25GB RAM. For a database with 5,000,000 images, it takes about 120

days to transcribe all images with 10 such PCs.

Susceptibility to images with poor quality, rare fonts. Current OCR soft-

ware is only suitable for a limited range of images. Because characters of the alphabet

are subject to many variations in terms of fonts, styles and size, OCR may fail when

encountering a rare font or style which is different from these character prototypes

employed in training. Furthermore, touching of adjacent characters, broken strokes

due to poor binarization and noise in a real image all contribute to OCR errors. In

fact, commercial OCR software work well on standard business documents generated

from modern printers. But the OCR accuracy degrades with scanning photocopies,

and small and highly stylized fonts such as those on business cards. When it comes

to typesetting pages from books or newspapers (which are target content of projects

like Google book Search and the Open Content Alliance), commercial OCR soft-

ware give unacceptable results. Therefore, almost in every document image project,

customization of OCR is inevitable.
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2.1.2 Word Shape Coding

Due to the language dependency and long execution time of OCR, Word Shape Cod-

ing technique has been proposed in previous work. Word shape coding methods

[Spi94, LLT08, THS+03, LT04] take an individual character as input, and map char-

acter objects to a smaller symbol set. For example, 6 codes are employed in Spitz’s

method [Spi94], namely ‘A’,‘x’,‘e’,‘g’,‘i’, and ‘j’. A word is represented by a code

string. For example, the word shape coding representation for the word “left” is

“AxAA” in Spitz’s coding method [Spi94]. Because the encoding (mapping) process

is based on a set of simple and universal image features, Word Shape Coding methods

are fast computable and language independent. Therefore, they are widely employed

in document image retrieval applications with speed constraints and language iden-

tification.

The detail of four important word shape coding methods [Spi94, LLT08, THS+03,

LT04] are introduced in Appendix A, with in an ascending order to the number of

symbols used in coding method. We have used these four methods as comparative

methods in our experiments in Chapters 3, 4, and 5. For simplicity, in the rest of this

thesis, they will be referred as TAN’s [THS+03], LU’s [LLT08], SPITZ’s [Spi94],

and LV’s [LT04] respectively. These four coding methods have been widely employed

in many retrieval applications, as shown in Table 2.2.

In word shape coding methods, each word maps uniquely to a corresponding

symbol string, but one symbol string may be mapped to several real words because

of the reduced symbol set, leading to ambiguity. The ambiguity is different from

method to method. It is an important retrieval performance indicator.
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Table 2.2: An overview of applications that these four coding schemes are applied to.

Coding Scheme Applications References
TAN’S Document similarity estimation [THS+03]

Language identification [LT06b, LT08]
LU’s Document similarity estimation [LLT08]

Keyword spotting [LLT08]
SPITZ’s Language identification [Spi94, Spi97, NBSK97, Nak94]
LV’s Document similarity estimation [LT04]

Keyword spotting [LT04]

Retrieval Applications based on Word Shape Coding

Fast Document Image Retrieval. Word Shape Coding techniques has been em-

ployed in the ranked document image retrieval. Based on SPITZ’s coding scheme,

Smeaton et al. [SS97] apply vector space retrieval model to code strings. They use

standard information retrieval steps of stopword removal and stemming to process

the query, and score each document based on the tf.idf weight of the processed query

term. However, their experiment shows that multiple matches between each word

shape surface form occurrences in the document text (i.e. ambiguity) and the skewed

distribution of these lead to poor performance. On the contrary, with little ambiguity,

LV’s method shows a good performance in Boolean document image retrieval [LT04].

Due to ambiguity, word shape coding methods are widely employed in document

similarity estimation, where they achieve a good performance. Because the query

of this application is a whole document image, which compensates for the effect

of ambiguity. Yu et al. [YT00] propose a character shape coding scheme. The

encoding is based on the vertical traverse density (VTD) and horizontal traverse

density (HTD) of the character object. HTD is a vector whose elements denote the
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numbers of line segments as scanning the character horizontally line by line from top

to bottom. Similarly, VTD is another vector obtained from vertical scanning from

left to right. After assigning each character object a code, they employe a N-gram

model to evaluate the similarity between vectors of two document images. Similar

works with different coding schemes could also been found in [LT04] (LV’s coding)

and [THS+03] (TAN’s coding). It has been proven in [LT04, THS+03, YT00] that

the document similarity estimation based on Word Shape Coding schemes is much

faster than that based on OCR results, from several to twenty times , without any

significant retrieval performance degradation.

Language Identification. Many methods have been reported for language iden-

tification of scanned document images. They are divided into three categories. The

first category is component based [LK95, HKKT97]. These methods are proven to

be accurate, but very slow and not training-free. The second category is texture

based [BBS05]. Methods in this category are sensitive to the layout of the docu-

ment image. A more detailed introduction of these two categories will be made in

Section 4.1 of Chapter 4. The third category is Word Shape Coding based, such

as [Spi97, Nak94, NBSK97] based on SPITZ’s coding and [LT06b, LT08] based on

TAN’s coding.

A typical language identification procedure based on Word Shape Coding tech-

nique is as follows. A list of the most frequently-used words in each language (often

stopwords) is encoded into some kind of word shape code strings. When a document

image comes in, it is also encoded. The encoded document is then compared with

the list. The language identity of the document is the one whose list has the most

agreement with the document. Word Shape Coding based methods are free from
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training and layout constraints.

A hybrid method, integrating word shape coding scheme and other features, is

presented by Tan et al. [TLH99], to identifying English, Chinese, Malay or Tamil

in imaged document. They distinguish Chinese, Latin, and Tamil based on two at-

tributes: bounding box elongation and the distribution of upward concavities. Then,

they distinguish English and Malay based on the statistics of the most frequent word

shape code strings. Finally, they choose AAx (the) and xxA for English and gxxg

(yang) and Axx (dan) Malay language as the most frequent word shape code strings.

Their experiment results show that word shape coding methods is the best way to

distinguish among languages that share a similar character set.

2.1.3 Holistic Word Spotting

Holistic Word Spotting [WZH00, CB93, TLH99] treats each word as a whole entity

and thus avoids the difficulty of character segmentation. This is different from the

character-level processing strategy taken by OCR and Word Shape Coding, and is

exactly why Holistic Word Spotting is robust to degraded image quality. In particular,

broken and touching characters are one of the major document image degradation

factors, and Holistic Word Spotting is naturally immune to them. Another important

reason why Holistic Word Spotting presents an attractive alternative, lies in its the

apparent similarity in the approach to how humans read text. Hull [Hul86] points

out the fact that according to psychological experiments, humans do not read text

character by character, rather they recognize words or even small groups of nearby

words while they are reading. Holistic word spotting approaches are widely employed

in keyword spotting application for degraded document images.
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Retrieval Applications based on Holistic Word Spotting

Keyword Spotting in Degraded Images. Both Word Shape Coding [LLT08,

LT04, Spi94], and Holistic Word Spotting [RM03, MMS06, KJM07, HHS92] tech-

niques are employed in the keyword spotting application. In addition, a few docu-

ment image retrieval systems [HHS90, YT00] take a hybrid approach, combining both

Word Shape Coding and Holistic Word Spotting techniques.

For the word shape coding approaches [LLT08, LT04, Spi94], document images

are firstly converted and stored as symbol strings. A query is translated into the same

symbol representation by means of a table lookup. The keyword is spotted by strings

matching. Particularly, word shape coding methods are employed mainly because of

their fast processing speed; however, the performance drops rapidly when image are

degraded. In contrast, Holistic Word Spotting is used for badly degraded images, such

as handwritten documents [RM03], historical documents [KJM07, MMS06] , scanned

images of envelopes [HHS90, HHS91, HHS92], and some document image archives in

rare languages for which OCR is not available.

In Holistic Word Spotting, document images are firstly converted and stored as

feature vectors. A word image synthesized from a set of character samples of various

fonts is generated for the query. Feature vectors of the query are then computed. The

matching is based on cosine similarity or more sophisticated classifiers. In particular, a

method to index modern printed documents on word-level was proposed in [MMS06].

Each component image is scaled to fit an 8× 10 grid, resulting in an 80-dimensional

feature vector after concatenating the pixel density values in each grid item. The char-

acters are then clustering by Self-Organizing Map (SOM). A word is represented by
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the cluster centroid of its character objects. Ho et al. [HHS90, HHS91, HHS92] pro-

posed a method to spot keywords in degraded images. There are 35 descriptors used

to represent the local features of a word image. The vector stores the normalized num-

ber of pixels belonging to four categories of strokes (east-west, northeast-southwest,

north-south, and northwest-south). The matching between two word images is done

by a nearest neighbor classifier. They applied the method on an image database of

city names extracted from address block images, and were able to achieve a spotting

accuracy at 90.57%. In [RML04], Fourier coefficients of upper and lower word profiles

and projection profile are employed as a feature to represent a word image, because

it is easy to get a fixed length representation.

2.2 Textual Information Extraction Techniques for

camera-based images

High-end digital cameras3 have long been used in large-scare book digitizing projects,

mainly for dealing with paper materials that cannot be flattened, like thick rare books,

fragile historical manuscripts or brittle paper [LDL05]. Document images produced

by high-quality cameras have comparable quality to those produced by scanners, and

thus the downstream processing are similar.

To date, there is a new trend that more and more low-end cameras, such as

customer-grade digital cameras, PDAs, PC cams and cellophane cameras, are also

employed as an acquisition tool to capture text images, because they are easy to carry

around. We are particular interested in these images captured by low-end cameras

with a casual manner (think about how a cashier uses a barcode scanner). In the

3http://www.4digitalbooks.com/scan2pages/Scan2Pages.htm



Background Knowledge 23

rest of this thesis, both camera-based document images and real-scene

images refer to images taken by low-end cameras.

Imaged text captured by low-end cameras may suffer from many degradations:

low resolution, uneven lighting, complex background4, and motion blur, as well as

various geometrical deformations: perspective distortion, warping, and wide angle

lens distortion.

Because of the complex background of camera-based images, locating text is non-

trivial. Figure 2.2 shows the text locating result of a real-scene image, where text

regions are marked by dashed boxes. Text locating is a extensively studied topic.

Text locating competitions were held in year 2003 [LPS+03] and 2005 [Luc05] by

ICDAR.

For a camera-based image, a geometrical normalization step [ZTF04, ZYT07,

MBLH05, CM04] to remove deformations is dispensable. Sometime an enhancement

step [CSB01] is also necessary to improve the degradation. As a matter of fact, the

prevailing research on camera-based image processing is to normalize and enhance

the image, in order to make it acceptable for existing textual information extraction

techniques. After these steps, the image is ready for textual information extraction.

As introduced in the last section, OCR, Word Shape Coding and Holistic Word

Spotting are three textual information extraction techniques for scanned images. On

the contrary, the only extraction technique that has been reported in literature for

camera-based images is OCR. Because camera-based image processing has differ-

ent downstream applications from scanned document image processing. For scanned

4More of the scene is imaged than the intended text.
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Figure 2.2: Locating text regions of a real scene image (the figure is from [LPS+03]).

images, textual information is extracted mainly for image archive management. How-

ever, for camera-based images, possible applications are much more diverse. Before

a camera-based image can be utilized in an application, typical three steps are con-

ducted, namely rectification, enhancement, and OCR.

Applications for Camera-base Image Processing

Low-end cameras are also employed to capture document images, for faxing, note

taking, etc. Because a camera can be conveniently carried anywhere by a user to

record interesting document pages instantly. A prototype based on PDA is presented5.

In order to recognize text of camera-based document images, many methods have been

proposed to remove the perspective distortion [Pil01, LCK05] and enhance the image

quality [PP02].

The applications for real-scene images processing is even more various. Traffic sign

recognition [dlEMSA97, LL95] is implemented in Driver Support Systems [ESS+94]

5http://www.hpl.hp.com/news/2002/apr-jun/translator.html
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to recognize the traffic signs put on the road e.g. “slow”, “school ahead”, or “turn

ahead”. The application improves road safety by informing the driver to go slow or

take a turn. Another one application is license plate recognition [CFGS95, CCCC04,

YMMN05], which is practically useful in parking lot billing, toll collecting monitoring,

road law enforcement, and security management. Cargo container code recognition

systems [LK95] are used in ports to automatically read cargo container codes for cargo

tracking and allocation. Sign recognition systems or translation cameras recognize

images of signs captured by a portable camera. They can help international tourists

to overcome language barrier [WOKT98, YGZ+01].

In these different applications, the degree of difficulty is reduced, because each

of them deals with a different subset of degradation and deformation and extra non-

shape information is available too. For example, traffic sign recognition makes use of a

full range of features including color, shape, and texture; license plate recognition and

cargo container recognition take the advantage of the limited alphabet as well as fixed

format. Sign recognition is the one application that suffers most from perspective

deformation, because shape is the only reliable feature. For this application, the

key difficulty is in the concise nature of signs: a sign is often comprised of only a

few words/characters. In the image processing phase, it will cause problems in sign

detection and character recognition, because the prevailing technologies are designed

for large text segments. More importantly, because of geographical constraints (such

as when the sign hang high above) and the close distance between a sign and the

camera, sign images often have a severe perspective distortion.
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2.3 Linear Geometric Deformation of Images

In this thesis, we are particularly interested in imaged text with geometric defor-

mations. When an image undergoes a geometric transformation, some or all of the

pixels within the source image are relocated from their original spatial coordinates to

a new position in the output image. In other words, the original image is distorted

in some way. It is pointed out in [LDL05] that, for camera-based images, even small

perspective distortion will cause significant trouble for OCR; and for flatbed scanners,

rotation (skew) is the primary problem.

In this section, I will introduce the challenges of geometric deformed images,

and existing rectification solutions, together with background knowledge of linear

geometric deformation theory.

A two-dimensional linear geometric deformation has a basic form:


x′

y′

1

 = T


x

y

1

 (2.3.1)

where (x, y) is the coordinate of a pixel in the source image, while (x′, y′) is the

coordinate of the pixel in the deformed image, and T is a transformation matrix.

2.3.1 Skew of Scanned Document Images

A transformation of the plane that preserves shapes is called a Euclidean transfor-

mation. Under this transformation, lines transform to lines, planes transform to

planes, circles transform to circles, and ellipsoids transform to ellipsoids. Euclidean

transformation E has a form as:
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Figure 2.3: Translation.

Figure 2.4: Rotation.

E =


scosθ ssinθ tx

−ssinθ scosθ ty

0 0 1

 (2.3.2)

Transformation E can be treated as an accumulation of a sequence of sub-transformations:

two translations along two axes by tx and ty respectively(Figure 2.3), a rotation by

θ (Figure 2.4), and an isotropic scale by a factor s (Figure 2.5). In these figures, the

dashed squares are transformed from the solid squares with corresponding parameters.

For a scanned document image, Euclidean deformation is caused when people fail

to align the paper properly in a scanner. In particular, the rotation deformation is

named as skew. Skew makes it more difficult to visualize of images by human users,

increases the complexity of any sort of automatic image recognition, and degrades

the performance of OCR tools, etc. A document image with skew is shown in Figure
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Figure 2.5: Scale.

5.5 (note that the text lines are not parallel to the edge of the image).

Skew Detection

The most popular strategy of handling skew is to remove it by skew detection methods.

Skew detection methods can be mainly categorized into five groups: the ones based

on Hough transformation, cross correlation, projection profile, Fourier transformation

and nearest neighbors clustering. For approaches based on Hough Transform [SG89,

Hin90, YJ96, AF00], the Hough Transform is computed at all angles between 0 and

180 degrees. A heuristic measures the rate of change in accumulator values at each

degree. The skew angle is set to the degree that maximizes the heuristic. Approaches

based on cross correlation [Yan93] use the cross correlation between the text lines at

a fixed distance which is based on the fact that the correlation between vertical lines

in an image is at a maximum for a skewed document. Approaches based on Fourier

transformation [Pos86] take the skew angle as the angle of the direction in which the

density of Fourier space is the maximum. For approaches based on projection profile

[CSD+88, SIR99], numbers of projections are obtained. The projection which has

the minimum entropy gives the skew angle. Approaches based on nearest neighbors

[YNF90] collect with a histogram the angle defined by two centroids of characters
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Figure 2.6: A document image with skew.

which are nearest neighbors, and the main peak of the histogram indicates the skew

angle.

2.3.2 Perspective Deformation of Camera-based Images

Affine transformations are generalizations of Euclidean transformations. An affine

transformation can be further decomposed into an Euclidean transformation E, a

shear k (Figure 2.7), and a non-isotropic scaling of one axis, which means that there

is no scaling of the other axis, by a scaling a factor b, as shown in Equation 2.3.3.
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Figure 2.7: Shear.

A = E


1/b −k/b 0

0 1 0

0 0 1

 (2.3.3)

Under an Euclidean transformation, the shape of a geometric object will not

change. Only the position and orientation of the object will change. Under an

affine transformation, however, a shape will change, i.e. a square to a diamond.

Because although parallelism6 is preserved under affine transformation, angles are

not preserved here.

Figure 2.8: A perspective transformation with center O, mapping the circle C1 on a
plane to the ellipse C2 on another plane.

6Parallelism means to map parallel lines to parallel lines.
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Figure 2.9: A document image with perspective deformation.

Perspective transformations, as shown in figure 2.8, are the most general linear

transformations, under which parallelism is not preserved. Theoretically there is

always a perspective transformation which can project one closed shape to another.

A perspective transformation matrix P can be further decomposed into an affine

transformation A and perspective foreshortening along the two axes lx, ly:

P = A


1 0 0

0 1 0

lx ly 1

 (2.3.4)

When lx and ly is small, such as when the distance between the object and the

camera is greater than the size of the object itself, the perspective transformation can

be approximated by an affine transformation.

Perspective deformation in a camera-based image is introduced in by the fact that

the image plane in a camera is not parallel to the object plane. It is one the major
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Figure 2.10: Perspective deformation in real scene images.

problems which prevents adapting existing textual information extraction techniques

for scanned images to camera-based images. As shown in Figure 2.9, if we consider

the deformation in a more straight forward way, the challenges of perspective trans-

formation for camera-based document image processing are as follows:

• The skew of a camera-based image is more severe and unpredictable than that

of a scanned image.

• Text lines in an image are no longer parallel to each other, and thus the skew

angle of each text line is different from each other.

• Characters within the same text-line no longer remain the same height, namely,

characters near the camera lens are larger than those further away.

For real scene images, the deformation become even worse. A character itself is

perspectively distorted. Some parts of the character expand, while some parts shrink,

as shown in Figure 2.10.
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Perspective Rectification

In order to resolve the problem of perspective deformation, a popular solution is to

reconstruct the fronto-parallel view, and then recognize symbols. This methodology

is often used for camera-based document images. Jelinek et al. [JT01] proposed

a rectification method making use of vanishing points to estimate the perspective

projection matrix, which has been widely adopted. In order to estimate the vanishing

point, methods of finding clues were proposed. Pilu [Pil01] proposed a method to find

the vanishing points based on illusory horizontal clues (i.e. text lines) and vertical

clues (i.e. column edges). Besides, Clark et al. [CM04] found that the quadrilateral

edges of the text area were also useful features to locate the vanishing points. In

Lu’s method [LCK05], tip points and the vertical stroke boundary of a character

were used. However, the presence of clues is highly application-dependent, and thus

these methods are difficult to be applied to imaged text other than denouements.

For example, these methods assume that the text body has sufficient number of

text lines and that the layout is highly formatted, and thus they are not suitable

for real-scene word recognition, whose text may comprise of only a few text lines,

or even only a few characters. For images with less text present, a solution is to

approximate the perspective transformation by an affine transformation, because an

affine transformation has fewer free parameters. Mayer et al. [MBLH05] proposed

a method to rectify individual text lines, assuming a weak perspective distortion in

the vertical direction. However, note that the approximation only holds when the

distance between the object and the camera is much greater than the size of the

object.

Besides slowing down speed and introducing errors, another disadvantage of the
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rectification strategy is its format dependence. For example, methods employed in

camera-based document image processing assume that the text body has sufficient

number of text lines and that the layout is highly formatted, and thus they are not

suitable for real-scene word recognition, whose text may comprise of only a few text

lines, or even only a few characters.



Chapter 3

A Word Shape Coding Scheme for
Scanned Document Images

Motivated by the rapid development of electronic information technologies, many

projects have been initiated to digitalize paper-based materials. For example, the

U.S. patent database 1 has scanned more than 4,000,000 imaged patent documents

in the period 1790-1975. The European patent database has scanned images from

patents before 1970, estimated to be several terabytes in size. Another category of

paper materials which draws interests is historical books and journals. ProQuest

Historical Newspapers (PQHN), which offers a full-image archive of the newspapers

New York Times (1851-2001), The Wall Street Journal (1889-1987), The Washington

Post (1887-1988), and The Christian Science Monitor (1908-1991). The Los Angeles

Times and Chicago Tribune are currently going through the digitization process.

JSTOR provides an interdisciplinary image-document archive of over 600 journals in

the arts, humanities, and social sciences. American Periodical Series Online (APS

Online) contains digitized images of the pages of American magazines and journals

that originated between 1741 and 1900. Early English Book Online (EEBO) stores

1http://www.uspto.gov/patft/help/contents.htm

35
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the full images of 125,000 early English books from 1475 to 1700. The benefits

are obvious: information stored electronically requires less space, and it is much

easier to be duplicated and delivered. Convenience of access is also not tied to the

physical proximity of materials any more. Consequently, document image indexing

and retrieval has become a growing and challenging problem, because traditional

full-text information retrieval techniques totally fails when documents are simply

presented as raw bit-maps.

One drawback of OCR is that it is computationally intensive, and thus is not

suitable when the application itself is time critical. Another drawback is that OCR

is language dependent, which makes it fail when the language is unknown. An alter-

native technique, namely Word Shape Coding, was proposed to fill up the deficiency.

In this chapter, I will introduce a word shape coding method, and then explain how

to employ it in language identification, Boolean document image retrieval, and docu-

ment image filtering applications respectively. Related work can be found in Section

2.1.2 of Chapter 2.

3.1 A Fast Word Shape Coding Scheme

In this section, we propose a word shape coding scheme which can be swiftly extracted

from scanned document images. The coding scheme is stroke-based, and has 8 codes

in total. A word image is firstly decomposed into a sequence of strokes. A shape code

is assigned to each stroke. The decomposition of word image into strokes depends on

the pixels lying on the middle line as shown in Figure 3.1(a). If a pixel on the middle

line is OFF, all pixels in the column are turned OFF, and otherwise pixels remain
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the same state. Figure 3.1(b) is an example where the phrase “keyword spotting”

is decomposed into strokes. Each stroke is separated by several blank columns. In

real applications, imperfect printing or scanning causes word images to have blurred

intersection, and therefore the strokes are too wide to be decomposed by pixels on

the middle line. In this case, we use a middle zone instead of the middle line. The

middle zone is defined as a rectangular zone lying on the middle line, with a width

equal to half an average vertical stroke width. Vertical stroke widths are collected by

horizontal run length analysis, and the average vertical stroke width is estimated by

finding the peak in the histogram.

In order to detect ascender and descender features, the top line, x-line, baseline

and bottom line (shown in Figure 3.1(a)) are extracted for each text line by examining

the horizontal projection. These four lines define the boundaries of three significant

zones on each text line. The area between the bottom and the baseline is the descender

zone; the area between the baseline and the x-line is the x-zone; and the area above

the x-line is the ascender zone. The coding of strokes is based on the presence of

straight vertical/non-straight vertical strokes, ascender and descender and the number

of components, as shown in Table 3.1 (“1+” in the column “Number of Components”

means “more than one component”). Examples of encoded strokes are shown in

Figure 1(b).

Each Latin character is represented by a code string. Table 3.2 shows a list of

Latin characters and their corresponding word shape code strings. It is worth noting

that, in different font character ‘g’ may have different code strings. For example,

character ‘g’ in Times New Roman is coded as 11, while ‘g’ in Arial it is coded as

14. Since no valid codes for any word contain 11 except words with character ‘g’ of
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Figure 3.1: (a) A word image showing the text line parameter positions: top, x-height,
baseline, and bottom, and the zones defined by them. (b) Decompose “keyword
spotting” into strokes and encoded them.

Roman, it will not affect the final coding performance. The code string for a word

comprise of code strings for each character in order. For example, the code string for

“keyword spotting” is “62212222222526 24226675514”.

3.1.1 Collision Rates

Since word shape coding methods maps characters to a reduced symbol set, ambiguity

occurs, which means that several words share the same word shape coding string.

SPITZ’s coding method fails in Boolean retrieval application, while LV’s method has

a good performance. The key is the ambiguity level of the coding method.

Here we quantify the ambiguity of a coding method by a measure called collision

rate developed by us. The collision rate is defined as the difference between the
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Table 3.1: The mapping of strokes to shape codes Codes.
Code Vertical Ascender Descender # of Components The example

straight in figure
1 NO YES NO 1+ (1)
2 NO NO NO 1+ (2)
3 NO NO YES 1+ (3)
4 YES YES NO 1 (4)
5 YES NO NO 1 (5)
6 YES NO YES 1 (6)
7 YES YES NO 2 (7)
8 YES YES YES 2 NA

number of words and the number of corresponding identical code strings over the

number of words as the formula below:

collision rate =
# of words−# of code strings

# of word strings
(3.1.1)

The collision rate of 4 Latin languages are shown in Tables 3.3 and 3.4. In par-

ticular, Table 3.3 is evaluated based on stops words of these 4 languages. Stop-word

lists are provided by CLEF2. The off-diagonal items of Table 3.3 show the pair-wise

“overlapping” between stop-word lists of these languages. It shows that collision rates

of different language pairs range from 0.2% to 5.0%. Note that language identifica-

tion methods based on word shape coding techniques identify the language identity

by checking the frequency of stop words of a specific language in the document.

Therefore, the result indicates that the coding scheme will work well for language

identification.

Table 3.4 is evaluated based on non-stop words, which are obtained from filtering

2http://www.unine.ch/info/clef
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Table 3.2: The codes for characters in Latin-1.
Characters Codes Characters Codes Characters Codes
a 25 h 65 H 66
ìı́ı̂ı 7 m 555 ceszYç 2
nu 55 d 26 CSZ 3
fltEFLPT 6 BDKR 63 p 42
M 6226 q 24 J 3
âä 37 r 5 w 222

N 626 GOQUXÔôéèê 33 W 2222

bk 62 j i OvAVÄ 22
g 14/11 USS 33 y 12
ûü 77

stop words away from a lexicon. Diagonal items of the table indicates the potential

performance of Boolean retrieval with the code scheme. The collision rates for these

4 languages lie between 1% and 4%. This ensures our word shape coding scheme is

to adequate for Boolean retrieval because it causes only a little ambiguity.

Table 3.3: The collision rate of the proposed word shape coding scheme between stop
words of the same and different languages.

English French German Italian
English (571 words) 0.0861 0.0566 0.0216 0.0164
French (463 words) 0.0566 0.1554 0.0117 0.0147
German (603 words) 0.0216 0.0117 0.0336 0.0029
Italian (430 words) 0.0164 0.0147 0.0029 0.0507

For comparison purpose, the collision rates for three other word shape coding

schemes, namely LV’s, TAN’s, and SPITZ’s are shown in Tabel 3.5. The inherited

ambiguity makes TAN’s and SPITZ’s coding schemes not suitable for Boolean re-

trieval. Our coding scheme has a collision rate of 0.0619%, and LV’s coding scheme
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Table 3.4: The collision rate of the proposed word shape coding scheme between
non-stop words of the same and different languages.

English French German Italian
English (55900 words) 0.0096 0.0255 0.0085 0.0045
French (34696 words) 0.0255 0.0418 0.0065 0.0145
German (72815 words) 0.0085 0.0065 0.0107 0.0025
Italian (9127 words) 0.0045 0.0145 0.0025 0.0115

has even lesser ambiguity.

Table 3.5: The collision rate for four word shape coding schemes.
Coding Stop Words Non Stop n times faster
Schemes (120) Words(54880) than OCR
TAN’s 0.4622 0.4231 2-6
SPITZ’s 0.4351 0.2366 2-3 orders

of magnitude
Ours 0.2304 0.0619 20-40
LV’s 0.0083 0.0023 3

3.2 Applications

3.2.1 Language identification

A template vector is built for each candidate language. When a new query document

image comes in, a query vector of the document image is created. We calculate the

similarity between the query and each template. The language identity of the query

is the one whose template has the highest similarity with it.
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In order to construct the template and query vector, a subset of the most frequently-

used 200 words of each language are chosen. The template and query vectors are built

in a way that each dimension of a vector represents a unique word shape code string,

and the value is the normalized string frequency. Language templates are trained on

40 documents. Similarity between the query and a template is defined as:

sim(Q, T ) =

∑200
i=1 Qi × Ti√∑200

i=1 Q2
i ×

√∑200
i=1 T 2

i

(3.2.1)

where Q represents the query vector, and T represents a template vector.

The performance of the proposed language identification method have been tested.

80 documents are prepared. We have documents in English, French, Italian and

German (20 documents for each). Each document contains at least 15 text lines each

and texts within them, and is printed in a font chosen from Arial, Roman, or Verdana,

which are popular fonts.

In our experiments, languages of all testing documents are correctly determined.

Table 3.6 shows the average similarity between document vectors and the template

vectors of the same and different languages. The similarities between the same lan-

guage (diagonal items) are much higher than those of different languages (off diagonal

items). For these 80 testing documents, three document set with image degradation

are created, namely Gaussian noise set (σ = 0.08), pepper-salt noise set (corruption

percentage = 0.06) and low scanning resolution set (150 ppi).We have gotten an iden-

tification accuracy of 97.50%, 90%, and 87.5% for the 3 sets respectively. Table 3.7

shows the encoding accuracy. Over 90% word images are correctly encoded in the

presence of various types of noise and document degradation.
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Table 3.6: The similarity between document vectors of same and different languages.
English French German Italian

English 0.8802 0.2728 0.2005 0.2148
French 0.3638 0.8233 0.1952 0.3501
German 0.2696 0.2454 0.8444 0.2146
Italian 0.3076 0.3273 0.2218 0.9181

Table 3.7: The coding accuracy of the proposed word shape with image degradation.
Gaussian Pepper-Salt Low Resolution
0.9527 0.9056 0.9224

3.2.2 Boolean Document Image Retrieval based on Single

Keyword Spotting

We found that encoding errors do occur when the text line is too short, which will

degrade the retrieval performance. In order to address this problem, a method to

estimate the similarity between two code strings based on an approximate matching

algorithm is proposed as below:

sim(query, str) = 1− MinEditDis(query, str)

10× lg(query.length)
>= δ (3.2.2)

where MinEditDis is the function to calculate Levenshtein distance [Gus97]. Lev-

enshtein distance between two strings is given by the minimum number of operations

needed to transform one string into the other, where an operation is an insertion, dele-

tion, or substitution of a single character. In our experiment, cost for each operation

equals to 1, and hence the return value of MinEditDis(query, str) is a non-negative



A Word Shape Coding Scheme for Scanned Document Images 44

integer. The formulation indicates that a higher δ allows smaller edit distance, which

means strings are more similar and vice versa.

The testing dataset has 300-dpi binary images scanned from 23 printed pages,

each of which has a randomly chosen character size from 10 to 18 points, and a font

chosen from Times New Roman, Arial, Dotum or Century Gothic. This experiment

demonstrates whether the coding scheme will work well on different fonts and sizes

under a controlled situation. Because the coding is sensitive to skew, images must

first be de-skewed. Manual zone information is provided. In case there are headlines,

footnotes or drawings zones, they are removed from the images. In each text zone,

word bounding boxes are extracted by examining the projection profile. Each query

will be translated into two code strings: all lowercase and capital initial.

There are 23 pages, having 174221 words in total. After all pages are tokenized,

the approximate matching algorithm is used to compare queries and strings in the

document. 50 keywords were generated, which appear at least 15 times in the dataset.

There are a total of 1845 appearances for all the keywords. The precision of spotting

one keyword is defined as the number of correctly detected words over the number of

detected words, while the recall of spotting one keyword is defined as the number of

correctly detected words over the number of actual keyword occurrence.

Table 3.8: Keyword spotting performance.
δ 0.7 0.88 0.9 0.92 1
Precision 0.3020 0.9294 0.9399 0.9622 0.9994
Recall 0.9601 0.9223 0.9133 0.9008 0.7205
F1 0.4100 0.9169 0.9173 0.9205 0.7612

The average recall and precision measure of the keyword spotting for several
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thresholds δ is shown in Table 3.8. It shows that the proposed word spotting method

achieves the best precision/recall value as 96.22%/90.08%. On the other hand, OCR

has a performance as 98.33%/96.08%. The result suggests that the proposed word

spotting is robust to different fonts and character sizes. Besides, the table also shows

it is very easy to adjust the precision/recall pair according to different application

requirements. A lower threshold brings high recall but low precision, because the cod-

ing scheme itself causes ambiguity between different words. Approximate matching

with a loose constraint will aggravate the situation. On the contrary, higher threshold

brings high precision but low recall. When δ is around 0.9, the average F1 achieves

the highest value. This may be because the threshold is low enough to compensate

coding mistake when the coding scheme assigned a stroke a wrong code, while high

enough to avoid bringing more ambiguity.

An important issue of keyword spotting is speed. As shown in Table 3.9, in the

experiments it took 0.73 seconds to encode all images, while a commercial OCR spent

3.06 seconds to transcript these images. Hence, the keyword spotting is more than

20 times faster than OCR.

Table 3.9: Running time comparison for OCR and coding.
Dataset # of pages OCR time Coding time
Self-prepared 23 3.06s 0.73s
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3.2.3 Document Image Filtering

We set up an experiment to simulate a real document filtering task as follows. 50

profiles are built, each of which comprises of 20 to 30 keywords connected by Boolean

operators. As the document stream proceeds, the incoming image is encoded by the

proposed word shape coding scheme, and a binary decision is made based on keyword

matching. If the keyword appears in a document, this document is considered as

relevant. Similarity estimation between code strings is shown in Equation 3.2.2.

The testing data is ISRI DOE2&3 collections. ISRI DOE2&3 are public image

collections from ISRI3, which contains 1670 scanned pages as well as the associated

ground truth text. These images are generated from various ways including directly

scanning from journal pages, scanning from first or later generation photocopies.

Therefore the dataset has unexpected fonts, character sizes, noise as well as skew.

Also, a preprocessing to remove skew is necessary.

The average recall and precision of the document image filtering task for several

thresholds δ is shown in table 3.10. The document filtering performance based on the

proposed method achieves the best precision/recall value at 91.00%/77.01%, while

the one based on OCR has a best performance at 93.7%/88%. The proposed method

archives comparable accuracy, yet is 20 times faster than OCR.

Two factors that may affect the keyword spotting performance are the ambiguity

and coding errors. The former means that a code string may map to several words

and the later means that a wrong code is assigned to a stroke. Ambiguity brings

higher recall but lower precision; on the contrary, encoding errors bring lower recall.

3http://www.isri.unlv.edu/ISRI
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Table 3.10: The document filtering performance based on keyword spotting for ISIR
DOE dataset.

δ 0.80 0.80 0.88 0.9 1
Precision 0.5928 0.8889 0.9100 1.0000 1.0000
Recall 0.8048 0.7804 0.7701 0.5612 0.5612
F1 0.6827 0.8289 0.8341 0.7189 0.7189

Table 3.11: Running time comparison for OCR and coding.
Dataset No. of pages OCR time Coding time
ISRI DOE 1245 62min 3min

In Table 3.10, when the performance (F1) is best, precision (91%) is much higher

than recall (77%). This phenomenon may indicate that the coding errors dominate

the performance other than ambiguity.

As shown in table 3.11, it took 3 minutes to process all document images by the

proposed method, while it took 62 minutes by OCR.

3.3 Summary

I have introduced a new word shape coding scheme in this chapter, which avoids the

difficulties of separating touching adjacent characters in a word image and extensive

computation during recognition. The experiment results show that it is very fast

and yet generates comparable accuracy to OCR. It is promising method to act as an

alternative to full-scale OCR in some document image retrieval applications.

However, there is still one issue which needs further exploration. It is the sensi-

tivity of skew. In the experiment, a deskew process was employed before encoding
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document image. Otherwise, it will be difficult to detect the baseline and topline.

Consequently, the position of the middle line will be wrong, and characters like ‘a’

and ‘e’ may have wrong code strings. In view of this, we proposed a word shape cod-

ing method which is invariant to rotation transformation. I will detail this method

in Chapter 4, and explain its application to camera-based document image retrieval,

where skew occurs more frequently than scanned document images.



Chapter 4

A Word Shape Coding for

Camera-based Document Images

Recently, we have seen an increasing interest in adapting digital cameras to tasks

related to document image analysis. Digital camcorders, digital cameras, PC-cams,

and even cell phone cameras are becoming increasingly popular and they have shown

their potential as an alternative imaging device. Although they cannot replace scan-

ners, they are small, light, easily integrated with various networks, and are more

suitable for many document capturing tasks in less constrained environments. These

advantages are leading to a natural extension of the document processing community

where cameras are used to image hardcopy documents, or natural scenes containing

textual content [DLL03]. Camera-based document image processing introduces many

new requirements that are not common with images acquired by scanner, including

dealing with perspective. Hence, document image processing techniques developed

specifically for scanned images may not work on camera-based images. In this thesis,

we are particularly interested in handling perspective deformation.

49
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One important strategy to deal with the perspective deformation is to recover the

fronto-parallel text plane by estimating the transformation matrix. A review about

the perspective rectification method has been made in Section 2.3.2 of Chapter 2.

However, the disadvantage of the rectification strategy is that it is very slow, taking

more time than text extraction itself, as well as being format-dependent.

In this chapter, I will introduce a word shape coding scheme proposed by us, which

directly accesses the textual information of a camera-based document image. This

method is invariant to affine transformation and thus is robust when the perspective

deformation is moderate. The coding scheme will be applied to script identification

and document image filtering respectively.

4.1 Related Work

A detailed review about language identification and fast document image retrieval

based on word shape coding methods, designed for scanned document images, has

been made in Section 2.1.2 of Chapter 2. Word shape coding methods are optimized

for images produced by a flat-bed scanner, and thus feature extraction steps are

based on an assumption that there is only Euclidean Transformation in an image. For

example, ascenders and descenders, as shown in Figure 4.1, are two important features

employed in many word shape coding methods, including TAN’s, LU’s, LV’s, and

SPITZ’s. They are detected by checking peaks and valley of a horizontal projection

profile of the text line. This method is only valid when parallelism is preserved.

However, due to the perspective deformation, text lines in a camera-based document

image may not be parallel to each other, and the sizes of characters in the same

text line may not be homogeneous. Therefore, it is difficult to detect both features.
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Figure 4.1: Ascender and descender.

Consequently, word shape coding methods based on these features will fail.

Besides word shape coding based methods, there are two other categories of lan-

guage identification methods, namely texture based [BBS05] and component based

[HKKT97]. In particular, Busch et al. [BBS05] investigated the use of texture like

gray-level co-occurrence, energy, and wavelets to differentiate languages. However,

since these features are not perspective invariant, it is obvious that the texture based

approaches fail for camera-based document images. Hochberg et al. [HKKT97] pro-

posed a method to identify the language by comparing characters of an unknown

image to an exhaustive list of characters of a certain language, which is gotten from

training document images by clustering. In this method, connected components were

first extracted, and were scaled to a 30 × 30 pixel size. A hierarchy clustering al-

gorithm, with Hamming distance as the distance measure, was employed to classify

component images into clusters. The template comprised of the centroid of all clus-

ters. The similarity between a template and a query was estimated by averaging the

smallest Hamming distance between each components in the query document and the

template. Based on a training process, Hochberg’s method may stand a chance to
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Figure 4.2: Signature generating process.

work, and thus it is employed as a benchmark in our script identification experiment.

4.2 A Word Coding Scheme for Camera-based Doc-

ument Images

Theoretically, when the size of the perceived object depth is much smaller than the dis-

tance between the camera lens and the object, the perspective transformation can be

approximated by an affine transformation. Now let’s look at how a document image is

captured by a camera. English characters printed on an A4 sheet is within a 2×2 mm2

bounding box. In order to take a photo of the whole sheet, the distance between the

camera and the projection center on the sheet is at least 30 mm. Because the image

is taken for reading purpose, the camera projection angle is nearly perpendicular to

the sheet plane, thus the object depth is very small. Hence, the affine assumption

holds in this case. In fact, a similar assumption has been employed for rectifying

camera-based document images under in previous studies [CM04, YMMN05].

The encoding process has two steps: signature generation and code assignment.

Signature Generation. Assume there is a component C, such as character ‘A’
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shown in Figure 4.2(a), and the pixel sequence of the convex hull of C is {p1, p2, ..., pn}

(shown as the dashed line in Figure 4.2(c)), where p1 is an arbitrary pixel on the

convex hull, and p2 is the anti-clock-wise neighbor pixel of p1, etc. The centroid of

the convex-image of C is denoted by o. The signature of C is constructed as follows:

1. The centroid o of the convex image of C and the convex hull pixel sequence are

first located. The skeleton of C, as shown in Figure 4.2(b), is obtained by a thinning

operation.

2. The line `1 defined by o and p1 is found, shown as the bar in Figure 4.2(c). There

are two intersections between `1 and the skeleton of C, denoted by i1 and i2. Of

course, there may be more than two intersections since p1 is arbitrary. For each pair

of these intersections, denoted by iu and iv, the length ratio λuv is calculated as:
λuv =

oiu
oiv

, iu and iv are at different sides of o

λuv = − oiu
oiv

, iu and iv are at the same side of o
(4.2.1)

where oiu and oiv are the Euclidean distances between o, iu, and iv respectively.

3. Repeat step 2 on the remaining pixels {p2, ..., pn}. Actually, the bar is rotated 360

degrees around o. Length ratios are collected in the meantime.

4. A histogram is constructed for C to record the number of occurrences of length

ratios λuv, if |λuv| > 1 . In the experiment, we used a histogram starting with -5 and

ending with 5, with n bins. In particular, bin i keeps a record of the number of length

ratios within the range (−5 + i× 10
n

,−5 + (i + 1)× 10
n

]. The signature of C is gotten

by normalizing the histogram.

Code Assignment. Training images are prepared, and signatures are extracted

and classified into clusters by a hierarchy clustering algorithm, with cosine distance

as the distance measure and a maximum radius of a cluster as clustering criterion.
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Figure 4.3: Examples of three languages: (a) English (b) Arabic (c) Chinese.

The distance can be empirically decided. The κ largest clusters are chosen. Each of

them is then assigned a representative code, and the centroids of chosen clusters are

referred as templates in the following paragraphs. Unknown characters are encoded

by comparing their signatures with each template. The codes for the characters are

given by the template which has the nearest distance with it.

According to affine geometry, the number of intersections defined by the projection

of `i and the projections of the skeleton keeps constant, and the length ratio of

line segments on a given line remains constant, when C is under affine distortion.

Also, it has been proved that the centroid of a convex polygon preserves under affine

transformation [GK07], namely, the affine projection of o remains the centroid of the

affine projection of the convex image. As a result, the variation of the signature under

different affine transformation becomes trivial.

4.3 Applications

4.3.1 Script Identification

In this subsection, I will explain how to apply our word shape coding method to

script identification. In order to further differentiate languages using the same script,
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a methodology that has been adapted by many language identification methods can

be employed in future. A typical language identification procedure based on Word

Shape Coding technique is as follows. A list of the most frequently-used words in each

language (often stopwords) is encoded into some kind of word shape code strings.

When a document image comes in, it is also encoded. The encoded document is then

compared with the list. The language identity of the document is the one whose list

has the most agreement with the document.

Script Template Generating and Script Identification

We believe that our signature is effective in differentiating different scripts, because

strokes of characters of different scripts have different complexity levels, which can

be quantified by the number of intersections. Assume there is a vertical line passing

thought the centroid of a character, and the number of intersections between the line

and strokes of the character is t. t of English characters, shown in Figure 4.3(a), often

ranges from 1 to 4; t of Arabic characters (Figure 4.3(b)) is often equal to 1; Chinese

characters (Figure 4.3(c)) often have a larger t.

One template is generated for each candidate script. The script template is a

frequency vector of signatures. For each script, a few training document images in

fronto-parallel view are prepared. When clustering, 0.02 is chosen as the maximum

radius of a cluster. A histogram of n = 20 bins is used. The κ = 30 biggest clusters are

chosen, and a template comprises of the centroid and the size of the chosen clusters

(the number of members in the cluster, denoted by freq ). Both thresholds used

here are empirically decided. An automatic learning procedure may be introduced in

future. The format of a template is as follows:
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Figure 4.4: These photos are taken in a very casual manner. Some of them are with
perspective deformation that is considered quite severe for this application. Our goal
is to show that our method is robust to these extreme conditions.

signature1 freq1

signature2 freq2

... ...

signature30 freq30


The similarity between a query document Q and a script template T is defined by:

sim(Q, T ) =
Σfreq(signaturei, Q)× freqi

Σfreqi

(4.3.1)

freq(signaturei, Q) is a function to find the frequency of signaturei in Q. It works

as follows: for each signature qj of Q, if signaturei is the nearest template signature

of qj, and the cosine distance between them is smaller than 0.02, the frequency of

signaturei in Q increases by 1. The script template which has the highest similarity

with Q gives its script identity.
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Experimental Setup

Ten scripts under study were 1: Arabic, 2: Chinese(simplified), 3: Cyrillic, 4: Greek,

5: Hebrew, 6: Japanese, 7: Korean, 8: Roman, 9: Thai, and 10: Bengali. These

scripts are the most widely used scripts in the world. In the training data set, ten

synthetic images in fronto-parallel view in each script were generated, in order to

show that the method provides possibilities to train on only frontal-parallel images

and construct a classifier which is able to identify the script of camera-based images.

In the testing data set, photos (3072×2304 pixels) of ten printed images in each script

were taken by a camera. Since it is natural that a printed paper has some warping,

this distortion was also kept in the photo. The criterion of taking the photos is that,

all characters in the photo should be recognizable to people. Examples of the testing

data is shown in Figure 4.4.

Script Identification Results

Tables 4.1(a) and (b) show the confusion matrices of script identification results of

our method and Hochberg’s [HKKT97] method, respectively. An item in either tables

is the number of documents in script i (ground truth) which were identified as script

j (output). Correctly identified documents are not shown in this table. The proposed

method was able to determine the scripts of testing images with 91% accuracy, while

the baseline method was not able to deal with many of these images. We found that

performance of Hochberg’s method highly depended on the skew: it worked good on

those images with small skew (within ±5◦), but failed on those with severe skew. The

performance of our method seems to be more independent of skew, but it made more

mistakes on certain pairs of scripts.
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The identification performance highly depends on the templates. If two templates

are similar to each other, it is very likely that documents in one script are mistaken

for another. Therefore, the similarity of templates are compared. Table 4.2 shows

the cosine distance between each pair of template i and j. A diagonal item is the

distance between a template and itself, thus equal to 0.

Table 4.2 shows that two groups of templates are similar to each other: the first

group is 2: Chinese and 6: Japanese; the second one is 5: Hebrew, 8: Roman, and

9: Thai. This explains why errors often occur within both groups. The table also

indicates that the performance can be improved by preparing more discriminating

templates of these scripts.

Although the templates in the second group are closer to each other than those in

the first group, errors occurred more frequently in the first group in the experiment.

A possible reason is that Chinese and Japanese both have thousands of frequently

used characters, and a template with 30 signatures is not enough to incorporate them.

Increasing the size of templates for Chinese and Japanese may help with this problem.

It is worth noting that the number of bins is an essential parameter for a better

performance. The binarization process may suffer from pixel quantization; the cen-

troid computation and skeletonizing steps may be affected by noise. Hence length

ratios may fluctuate accordingly. A signature with wide bins will be more tolerant

to the fluctuation, but consequently it may have less discriminating power among

characters. On the contrary, a signature with narrow bins is more discriminating, but

it is more susceptible to noise.
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4.3.2 Document Similarity Estimation

Document Image Representation

When an unknown document image is presented, each connected component in the

image is compared with the templates trained. A histogram of n = 20 bins and

κ = 23 biggest clusters are used. Its identity is assigned as the code of the most

similar template. In the experiment, components smaller than 50 pixels were thrown

away in order to avoid pixel quantization errors.

Word boundaries are found by Document-Spectrum analysis [O’G93]. Then “words”

comprising of code string are formed. Thereafter, traditional vector space model with

tf.idf representation is applied to those “words”. Similarity between two document

images is formulated as:

sim(Du, Dv) =

∑
Du,iDv,i√∑
D2

u,i

∑
D2

v,i

(4.3.2)

where Du and Dv are two documents, and i is the dimension index of the “word”

space.

Experimental Setup

In order to test the efficiency of the proposed method, the experiment was set as

follows: 100 pages were selected from 6 documents of the U.S. patent database. These

documents were in different categories assigned by the database. We assumed that

pages from the same document were similar to each other in content, and different

otherwise. These pages were printed out, and 2304 × 3072 pixel photos were taken

by a camera. Since it is natural that a printed paper has some warping distortion,
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this distortion was kept in these photos. We made sure that all characters in a image

were readable. Examples of the testing data are shown in Figure 4.5. 10 photos were

selected as queries. Each query was compared to other 90 photos by the proposed

method. When the similarity between the query and an image was greater than a

threshold θ, the image is retained, otherwise filtered. The training set comprised of

10 raw images from the same database.

Experiment Result

In the experiment, an average precision of 93.43% and an average recall of 94.22%

were achieved, with θ = 0.3. Table 4.3 shows the similarity across pages of the same

document and that of different documents. Scores were calculated by averaging the

similarity between each pair of pages from document i and j. Particularly, the cells

on the diagonal are the similarity of pages within the same document. These items

are much greater than those off-diagonal items.

An exhaustive study of this method will be done in the future. The high recall

and precision in our experiment indicate that the technique is also promising for

duplication detection.

4.4 Summary

I have presented a word shape coding method based on an affine invariant signature,

which is able to directly access textual information of camera-based document images.

To best of my knowledge, this method is the first to directly access the textual content

of camera-based document images without geometric rectification.

In this method, we make an assumption that the perspective deformation is weak



A Word Shape Coding for Camera-based Document Images 63

Figure 4.5: Samples of testing images.

Table 4.3: Similarity of the same and different documents. Items on the diagonal are
average similarity among pages of the same document.

Doc. 1 2 3 4 5 6
1 0.425 0.079 0.062 0.106 0.117 0.050
2 0.079 0.453 0.108 0.192 0.023 0.151
3 0.062 0.108 0.528 0.088 0.117 0.175
4 0.106 0.192 0.088 0.378 0.066 0.188
5 0.117 0.023 0.117 0.066 0.422 0.138
6 0.050 0.151 0.175 0.188 0.138 0.511

and can be approximated by an affine deformation, because the character size is

much smaller than the distance between the camera and the character. However, this

assumption will not hold, if the character size is comparable to the camera distance.

For example, people only take a small portion of the document. In this case, we

have proposed a method to recognize character or symbol under severe perspective

deformation. I will present this recognition method in Chapter 6.

Two issues have not been addressed by this thesis and remain open for this cod-

ing method. First, two parameters of the proposed method, namely κ and n were
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empirically decided to maximize the performance for diffident applications in our ex-

periments. The effect of both parameters on the performance of the proposed word

shape coding method needs further evaluation. Also, because the ambiguity of the

proposed method is unknown, we only employ the method in script identification and

document similarity estimation applications, which are resilient to high ambiguity. A

way to estimate the ambiguity may be further explored.



Chapter 5

Viewing Patent Images

In this chapter, I will present a fast rotation-invariant keyword spotting method and

a method to locate text content of drawing especially for, but not constrained to, the

U.S. patent database.

The U.S. patent database, maintained by the United States Patent and Trademark

Office(USPTO), stores both patent text and patent images separately. The Web

Patent Full-Text Database (PatFT) contains the full-text of over 3,000,000 patents

from 1976 to the present, plus limited bibliographic data for over 4,000,000 patents

from 1790 to 1975. The Web Patent Full-Page Images Database (PatImg) contains

over 70,000,000 images, including every page of over 7,000,000 patents from 1790 to

the most recent issue week. The Web Patent Databases now serves over 25,000,000

pages of text (over 150,000,000 hits) per month to over 350,000 customers each month.

The Web Patent Databases serve over 36,000,000 full-page images each month. In

order to facilitate better Intellectual Property managing, patents are divided into

many fields (metadata) which are listed in Figure 5.1. Full-text retrieval is allowed

for patents after 1976. However, due to unavailability of text version, patents from

1790 through 1975, whose total size is estimated at more than 20,000,000 pages, are

65
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Figure 5.1: The list of all fields for each patent used in the U.S. patent database. The
figure is taken from the homepage of the United States Patent and Trademark Office.

searchable only by Issue Date, Patent Number, and Current US Classification.

In the patent database, the format of a patent document is constrained: it is

divided into five sections, including abstract, drawing, description, claim and reference

sections, each of which occupies a few consecutive pages. For Each patent, except for

those before 1970, a text version and an image version are available. The text version

includes abstract, description, claim and reference sections, while the image version

has all five sections.

Drawing pages have two types of orientation, namely landscape and portrait, as
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Figure 5.2: Two drawing pages: (a) a landscape drawing page. (b) a portrait drawing
page.

shown in Figure 5.2. Figure 5.3 shows a typical drawing image. It has several figures,

each of which has a caption and many labels. A label represents a particular part

of the invention. An important characteristic of US patent database is that text

pages, including abstract, description, and claim sections, are almost in the same

font. However, the fonts of text content in the drawing parts are diverse, sometimes

even written by hand.
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Figure 5.3: A drawing image of a patent document with several figures. A typical
figure has a caption, drawings and several labels.

5.1 Problem Statement

Patents downloaded from almost all databases are not searchable, even for databases

like Google Patents, which provides free online keyword spotting functions. Because

the source of patents, namely the USPTO, maintains patent images and text sepa-

rately. However, no connecting information between images and text, i.e. the map-

ping between the word image and its correspond word, is kept. Getting the connecting

information by OCR is really expensive, and thus it is not publicly downloadable. This
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causes difficulty in local viewing for a user when he has downloaded the target patents

to his PC, and then tries to find useful information in these particular patents. The

local viewing step is also an essential step of the whole information retrieval process.

The predominant searching tool for viewing is keyword spotting functions embedded

in image viewing software, based on extra OCR programs. There are two common

problems which make the patent viewing step difficult for users:

• Many patent documents have more than 50 pages (the longest patent document

has as many as 3,000 pages), which leads to a very long OCR time. For example,

we tried a patent with 61 pages on a normal PC with 2.33GH CUP and 3.25

GB RAM using the OCR plug-in provided by Acrobat 8, it will take 6 minutes

to process it.

• The layout of patent images is not optimal for reading purpose. Firstly, all

figures in a patent document appear together in the drawing section before the

description section. Therefore, when a user is reading a description paragraph

and wants to refer to the relevant figures, he has to scroll back to the drawing

section. Secondly, in order to locate the exact sentences about a label, a user

may have to go through a whole description paragraph, which will definitely

slow down the reading speed.

Also, challenges of the poor image quality have to be overcome at the same time.

Except for drawing pages, patent documents after 1970 are of good quality, and a

sample is shown in Figure 5.4. However, those patents before 1970 may suffer from

touching and broken characters, salt and pepper noise, as well as skew. A page from

a patent document dated of 1911 is shown in Figure 5.5. In particular, skew appears
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Figure 5.4: A patent image dated on 29 Nov. 2007 from the USPTO database.
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Figure 5.5: A patent image dated on 8 Aug. 1911 from the USPTO database.
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frequently in almost every pages of patents before 1970, and drawing pages of patents

after 1970.

Retrieval of relevant information from degraded images poses a great challenge,

because direct application of OCR on these images returns very poor results. In

this chapter, a system which helps the user to view patent documents will be intro-

duced. The overview of this system is shown in Figure 5.6. Solutions to address these

problems mentioned above are provided:

• In order to facilitate faster keyword spotting in patent images, we propose a

holistic word spotting method called Radial Projection Profile, which is fast,

robust to touching and broken characters, as well as invariant to skew. In

Section 5.2, I will introduce the method and a keyword spotting system based

on it.

• In order to make textual content in the drawings searchable to users, we propose

a method to locate text content out of patent drawings, which will be introduced

in Section 5.3. The located content is then recognized by OCR, and linked to

the corresponding text description.

5.2 A Holistic Word Spotting Method for Skewed

Document Images

One strategy of handling skew is to remove it by skew detection methods. A review of

this can be found in Section 2.3.1 of Chapter 2. However, skew detection itself is very

time consuming. According to [CWL03], the average skew detection time per page is
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Figure 5.6: A system to help the user to browse a patent document.

at least one second per page, almost comparable to OCR. Therefore, it is better to

avoid this step.

Both Word Shape Coding [LLT08, LT04, Spi94], and Holistic Word Spotting

[RM03, MMS06, KJM07, HHS92] techniques are employed in the word spotting ap-

plication. A review can be found in Section 2.1.3 of Chapter 2. I will introduce in this

section a new holistic word spotting method, named Radial Projection Profile(RPP),

to locate keyword in patent documents. There should be a balance between speed

and robustness. Our holistic word spotting method has the following characteristics:

• Robust to skew and other noise.
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Figure 5.7: Radial projection profile.

Figure 5.8: The way to sample points.

• Fast computation speed.

5.2.1 Radial Projection Profile

The goal of our method is to locate the word effectively in a degraded document image.

Projection profile is a very important approach in pattern recognition area. However,

when skew appears, this method fails. Therefore, we propose a radial projection

method, which projects from a single point in contrast to a specific direction as usual

projection methods do.

Assume there are a word W and k lines {li, i = 1 : k} across the mass centroid,

denoted by o, of W . An example of word “increase” and several lines are shown

in Figure 5.7. l1 is the line coincides with the major axis of the ellipse. k lines are

sampled as follows. The ellipse which has the same normalized second central moment

as the word region is found, and the sample points are found on the ellipse. l1 is the
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line which coincides with the major axis of the ellipse. Suppose the total area of two

sectors defined by li and li+1 is area(i, i + 1), such as the shaded area labeled shadow

in Figure 5.8. Lines are sampled in a way that all area(i, i + 1) have the same value.

Then, the number of transitions on each line is collected by a histogram hist, and the

ith bin of the histogram, namely hist(i), records the number of transitions on line li.

We sample lines in this way instead of sampling it on an equal-distance manner

as we employed in Chapter 4 (signature invariant to affine transformation), because

transitions are denser near l1. The benefit of this sampling method is to capture the

variation of transition numbers as much as possible. Since the ellipse just evaluates

the orientation of the word approximately, it is not accurate to align hist11 with

hist21, because the major axis of the ellipse may change due to noise. To address

this problem, the comparison of two histograms hist1 and hist2 is formulated as:

Score(hist1, hist2) = argmax
t

∑
j=(i+t)

(hist1(i)− hist2(j)) (5.2.1)

t = [1 : α]
⋃

[k − α : k] (5.2.2)

where α is a threshold to control the degree of variation. As a matter of fact, this

is to search the smallest Manhattan distance between hist1 and hist2, by circularly

shifting the values in hist2 by t elements. This idea is inspired by the fact that:

when people trying to pick up keywords in a text, the word length is an important

feature for us to detect the word. Table 5.11 is a breakdown of 3058 frequently-used

English words by their length. It is easy to see that at least 80% words of a document

will be eliminated if word length is employed as filtering criterion. Although word

1The data is from http://www.usingenglish.com/profiles/tdol/archives/000085.html.
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Figure 5.9: The radial projection profiles of three pairs of words.

length method is efficient and straightforward, it becomes difficult when there are

broken and touching characters. The main purpose of our radial projection profile

is to capture the length of a word in a way that it be hardly affected by character

size, condition of touching and broken characters, or even font. Figure 5.9 shows the

histograms of four pairs of words. The histograms of different words are labeled with

the different makers, namely star (boiler), circle(adapted), and square (effectiveness).

As shown in this figure, shorter words have flatter histograms, while longer words

have histograms with higher peaks.

5.2.2 Experiment Results

Four other methods are employed for comparison in our experiment, namely, LU’s,

LV’s, Ho’s [HHS92], and Marinai’s [MMS06]. Since Marinai’s system is very complex,

we didn’t implement the system. The results shown in Tables 5.2 and 5.3 is summa-

rized from the result of [MMS06] with the best recall and precision. We implement
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Table 5.1: The breakdown of 3058 frequently-used English words by length.

1 letter words 93 3.0% 2 letter words 474 15.5%
3 letter words 612 20.0% 4 letter words 510 16.7%
5 letter words 397 13.0% 6 letter words 266 8.7%
7 letter words 236 7.7% 8 letter words 193 6.3%
9 letter words 115 3.8% 10 letter words 72 2.4%
11 letter words 37 1.2% 12 letter words 22 0.7%
13 letter words 22 0.7% 14 letter words 5 0.2%
15 letter words 3 0.1%

LU’s, LV’s and Ho’s methods with C++. The line finding, baseline fitting and word

segmentation functions is provided by Tersseract.

Two testing datasets were prepared: Dataset I comprises of 20 pages in Times

New Roman font from the synthetic image set of UWI, which have very good quality;

Dataset II comprises of 20 pages in Times New Roman font from the real image set of

UWI, which suffer from diverse degradation such as: dark or light printing, touching

characters, broken characters, warping at the edge of page, and slight skew.

We randomly selected 100 words from a word list which have a length of 4 to 10

characters. They have 532 occurrences in both datasets in total. The parameters are

set as k = 60, α = 5 corresponding to a ±5◦ searching range.

From Tables 5.2 and 5.3, it is found that both ours and Ho’s method are robust

to image degradation, the recall and precision change slightly when the image quality

become bad. However, Ho’s method is more than 4 times slower than our method.

LV’s and LU’s methods work fast and accurate when the document image is clean,

but the performance drops quickly when noise appears. In particular, LV’s method

requires a deskew process in his original paper, but it is not implemented in our exper-

iment. Marinai’s system have the best performance in terms of recall and precision.
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Table 5.2: Word spotting results (Set I).

Recall Precision Processing Time Retrieval Time
(100 pages) (100 pages)

Ours 100% 57.86% 48.76 0.03
Ho’s 96.67% 84.23% 210.21 0.05
LU’s 92.48% 90.53% 42.01 0.15
LV’s 97.33% 84.64% 46.63 0.41
Marinai’s 100% 92% Training needed 9.6

Indexing needed

Table 5.3: Word spotting results (Set II).

Recall Precision Processing Time Retrieval Time
(100 pages) (100 pages)

Ours 97.43% 52.54% 50.06 0.03
Ho 93.54% 76.43% 213.87 0.05
LU 65.48% 72.53% 45.67 0.15
LV 67.33% 60.64% 48.79 0.41
Marinai 100% 87% Training needed 9.6

Indexing needed

However, this method needs extra training and indexing; also the comparison is very

slow. When document image is degraded, the processing of all methods slow down,

mainly due to the line finding and baseline fitting processing.

From Tables 5.2 and 5.3, it is also found that the recall of the proposed method

is higher than 95% even when the document images suffer from severe degradation.

However, the precision is not satisfactory, because the radial projection method only

capture the length of the word, and many words will share the same length.

In our experiment, several features are tested, including maximum length of white

strokes, total number of black pixels, maximum length of black strokes, and the
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Figure 5.10: When the centroid moves, our method still works.

Figure 5.11: An example where OCR fails and our method still detects.

number of transitions. The number of transitions is the most reliable feature, which

is robust to font, size, dark and light print, as well as the location of centroid. The

radial projection profile remains almost the same when the centroid is moving in a

small range as shown in Figure 5.10.

Figure 5.14 shows that this method is tolerant to skew, touching and broken

characters, and slight variation of fonts. Figure 5.11 shows some characters which

cannot be correctly recognized by OCR but still can be retrieved by our method.

Figure 5.12 shows an example of retrieving a word “management” on a warping

surface, which frequently happens when a thick-bound book is scanned.

The number of transitions is employed as the feature of the projection in our
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Figure 5.12: Spotting words on a warping surface.

method. In fact, several other possible features are also tried, including maximum

length of white strokes, total number of black pixels, maximum length of black strokes,

and the number of transitions. We found that the number of transitions is the most

reliable feature, which is robust to many variations such as character size and bold

style. In particular, the centroid of different word instances of the same identity

often vary within a certain range due to noise. However, the radial projection profiles

remain almost invariant under such variation. An example is shown in Figure 5.10.

Figure 5.10(a) shows a query with the centroid and sample lines, and Figure 5.10(b)

is a word retrieved by our method. The location of centroid are slightly different but

our method is still able to find the word correctly.

5.2.3 Fast Keyword Spotting in Imaged Patent Documents

In this section, I will detail a keyword spotting system based on RPP. As shown

in Figure 5.13, when a query comes in, word blobs are extracted by the XY-cut

algorithm. Word blobs in the document which have similar ratio to the query are

selected as the initial candidates. The ratio of a word is defined as the eccentricity
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Figure 5.13: The workflow of the real time word spotting system.

of the ellipse that has the same second-moments as the word region. If the ratio of

a word blob is within 0.5 to 1.5 times of the ratio of the query, it is selected as an

initial candidate. The range is set wide, because we want to avoid false negative in

this step. Then, the radial projection profiles of these candidates are compared with

the that of the query, and candidates within a certain distance (dist = 0.2) from the

query are remained otherwise filtered out. In our experiment, parameters of RPP are

set as k = 90, α = 90. It means that the maximum skew angle can be detected is

±180◦, the minimum skew angle can be detected is 1◦. 1◦ is accepted for most OCR

software. In the final step, an OCR is applied to the remaining candidates. The skew

angle t detected by our method is used as an input of OCR program. The query is
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Figure 5.14: Some words retrieved by our method.

Table 5.4: Word spotting results in three 50-pages patent documents.
Recall Precision Time spent Time spent

in the first retrieval (s) in other retrievals (s)
Tesseract 89.54% 84.15% 697.31 0.04
Our system 88.45% 83.53% 13.05 3.01

only compared with the output of OCR. The OCR used in our system is Tesseract

V2.03(with deskewing function from OCRopus, but no other preprocessing).

Three patent documents with at least 50 text pages (drawing pages are removed)

are selected as testing data. We only used the first 50 pages of these documents,

because this makes it easier to compare the results. 100 keywords are searched in

each document respectively.

The average precision, recall, and speed for our system and the Tesseract system

alone are shown in Table 5.4. The speed measure is divided into two parts, namely the

first retrieval and others. During the first retrieval, processing steps like layout anal-

ysis, word boundary extraction, and recognition are conducted. It also includes the

time for comparing query against the stored data. The time for other retrievals only

contains the time of comparison. Figure 5.14 shows some word examples retrieved by

our method in the patent dataset.
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The experiment shows that our system was more than 50 times faster than the

original OCR program, and yet has comparable accuracy. However, it takes much

longer than OCR system to process queries other than the first one, because we still

need OCR to in the “other retrieval” process. However, with the help of better OCR

program, we may be able to make this time shorter. The precision and recall of our

system is not very impressive. Because the recognition accuracy of Tesseract employed

in our system is not optimal for patent collections. In a nutshell, one drawback of our

system is that the speed and accuracy is bounded by the OCR program employed.

Although it took 7.56 seconds to process a document using radial projection profile

alone, compared to 697.31 seconds to use OCR alone, we have to take relatively

longer time to recognize these word candidates identified by the radial projection

profile method.

5.3 Textual Information Extraction from Graphics

Text content in a drawing plays an essential role in helping users to understand the

drawing. In this section, a system to extract and recognize captions and labels in

drawings is introduced. To make the extracted captions and labels searchable, they

are recognized and linked with the corresponding descriptions by HTML functions

in our patent viewing system. Users thereafter are able to efficiently jump to the

relevant description by clicking the captions or labels, or vice versa.
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5.3.1 System Description

The workflow of the system is illustrated in Figure 5.15. Firstly, drawing pages (the

drawing section) are separated from text pages (the other sections). The next step

is to rectify rotated pages. A rotated page, such as Figure 5.2(b), is a page whose

caption and labels are vertically positioned (that of typical pages are horizontally

posed). Thirdly, bounding boxes of the captions and labels are located in figures.

Then, the content in the target bounding boxes are recognized by an OCR software.

Subsequently, a post processing step is employed to filter out errors and words that

are out of our interests. Finally, captions and labels are linked to the description by

HTML functions. Users are able to swiftly search a caption or label in the description

by clicking the caption or label in the figure. A browsing interface of the system is

shown in Figure 5.23.

5.3.2 Drawing/Text Page Separation

The first task is to separate graphic pages from text pages. The heuristic is that, in

a text page, black pixels spread all over the page uniformly, while in a drawing page,

the distribution of black pixels is very uneven. A page is divided into N k×k blocks.

The black pixel density of block i, is obtained by:

s(i) =
1

k × k

∑
k×k

g(t) (5.3.1)

where t is the pixel index of block i; g(t) = 1 if t is a black pixel, otherwise g(t) = 0.

The black pixel density of the whole page is defined as:

mean =
1

N

∑
N

s(i) (5.3.2)
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Figure 5.15: The workflow of the drawing image processing system.

The black pixel standard deviation of the whole page is defined as:

dev =

√
1

N

∑
N

(s(i)−mean)2 (5.3.3)

Because the layout of patent documents are quite homogeneous in the database,

mean and dev are very consistent for text pages (except the last page). Therefore,

a simple threshold is employed to distinguish drawing pages from text pages. In the

experiments, if mean ∈ [0.04, 0.06] and dev ∈ [0.085, 0.1], the page is a text page,
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otherwise, drawing page.

5.3.3 Landscape Page Rectification

In a landscape drawing page, the orientation of the head is perpendicular to that

of the content text. The landscape page detection is based on the text components

(characters) obtained by a preliminary classification method. After all connected

components are extracted, each component is then classified as either a text com-

ponent or a drawing component according to the width, height, width/height ratio

(denoted by “ratio” in Table 5.5), area, and black pixel density. The decision rule is

shown in Table 5.5. If a parameter of a component is within the suggested range, it

is classified as a text component, otherwise a drawing component.

This rectification method is similar to Document-Spectrum analysis [O’G93]. The

nearest neighbor character of a character is found, and the central line defined by the

centroids of both characters is computed. Angles of central lines are collected. The

dominant angle decides whether the page is rotated or not.

5.3.4 Caption/Label Detection

Many works have been reported to address the drawing/text separation problem. The

drawing/text separation approaches can be divided into run-length analysis [LTW95]

Table 5.5: Preliminary component classification criteria.

Width Height Ratio Area BPD
Upper bound 100 100 10 1500 0.9
Lower bound 5 5 1 900 0.2
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Figure 5.16: A figure of a flow chart, where the caption, labels and explanations are
of different character sizes.

Figure 5.17: DNA sequences in a figure.
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and connected component analysis [GTLT95, TTP+02, FK88, HA96]. The former has

been widely used in processing text-rich document, while the latter is more frequently

employed in processing drawing-rich document. As for component-based approaches,

Gao [GTLT95] made use of a histogram of component size to detect the possible

size of text components; Fletcher [FK88] employed a histogram of component area

to find an appropriate area threshold in order to identify text components; Tombre

[TTP+02] proposed a similar but further improved method to detect text components

which are not horizontally or vertically posed. He [HA96] proposed a clustering-based

approach making use of the radii of components2. All these approaches mentioned

above assumed that the text components are of uniform or similar size, and text

components are the majority of components. However, it is not true in patent figures.

After manually checking with hundreds of patent images, we found that:

• Text in a patent image may include heads, labels, captions, and others (expla-

nations in flow charts, DNA sequence, legends, and etc). We are only interested

in labels and captions.

• Text in different patents are of sizes. Generally, the height of labels consistently

ranges from 30 to 50 pixels, while the height of captions ranges from 50 to 400

pixels.

• Text in different patents are printed of diverse fonts, while some are handwrit-

ten, especially in patents before 1970.

• Different types of text may be of quite different size and fonts in the same

document. The labels may not be the majority of the text. An example is

2The radius of a component is defined as the maximum Euclidean distance between the mass
centroid of the component and a pixel on the out contour of the component.
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shown in Figure 5.16.

• Many patent images, especially old ones, suffer from noise such as skew, salt and

pepper noise, and touching/broken characters. In particular, touching/broken

characters are quite common, making the size of components an unstable indi-

cator of their identity. An example of severe touching characters is shown in

Figure 5.17, where several ‘T’ are touching each others.

Because of these reasons, previous methods may not work on the patent archive,

and hence we propose a new unsupervised-clustering-based method to detect text

components (characters) in complex drawing in a general case. One merit of un-

supervised clustering is that it avoids the training process, which is impractical for

the current task due to the huge number of patents to be processed. The detection

method includes two steps: detecting characters and grouping characters into words.

This character detection method is based on three observations:

• Height: Labels and captions are of the same heights and fonts in the same

document.

• Pattern: comprising of ten digits and tens of English characters, the pattern of

each character repeats several times in a patent.

• Neighborhood: the nearest neighbor of a character is often a character.

Each component ci is given a score s(ci), which indicates the likelihood of being

a character, based on the three pieces of information. The detection method is as

follows:



Viewing Patent Images 90

1: Noise Filtering. Components with an area smaller than 50 pixels or a solidity3

greater than 0.8 are filtered out. This step will remove spots and short lines in the

image, which occur very frequently. The remaining components are denoted by γ.

Character ’1’ may be removed too, but they will be recovered in later steps.

2: Find the initial candidate set using pattern information. Components in γ are

resized to 30× 30 pixels. A hierarchical clustering algorithm [DH73], with Hamming

distance as the distance measure, is applied to γ. If two components have less than

T1 pixels disagreement, they are classified into the same cluster. If a cluster has more

than t members (components), its members are initial character candidates, otherwise

they are removed from γ. t is set as the number of drawing pages in a document, in

order to guarantee that the characters of captions can be found in this step. Because

in an extreme case, one drawing page contains only one figure. The results of this

step are shown in Figure 5.18(a).

3: Clustering initial candidates by their heights. Similar to step 2, components

in γ are clustered by their heights into K2. If the height difference between two

components is smaller than T2, they are classified into the same cluster. The centroid

of each cluster k2j , denoted by k2j.centroid, is recorded.

4: Expand γ using height information. Check all components in the image, if the

height difference between a component and a centroid k2j.centroid is smaller than T2,

the components is classified into cluster k2j. The score of the components is assigned

as the number of initial candidates in this cluster. The results of step 3 and 4 are

illustrated in Figure 5.18(b).

3Solidity is a scalar specifying the proportion of the pixels in the convex hull that are also in the
region.
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5: Filter out undesirable candidates using neighborhood information. There is a

link between component ci ∈ γ and component cj ∈ γ, if cj is one of the n nearest

neighbors of ci over all components. Based on a one-degree propagation algorithm,

scores propagate among components through links, as follows:

p(ci, cj) = score(ci) + score(cj) ∗ ω(ci, cj) (5.3.4)

ω(ci, cj) =
min(ci.bottom− cj.top, j.bottom− i.top, 0)

i.height + j.height
(5.3.5)

where min(i.bottom− j.top, j.bottom− i.top, 0) is the overlapping part of both com-

ponents in the vertical direction.

The purpose of step 5 is twofold. Firstly, characters of captions repeat less fre-

quently than those of labels. However, captions are of longer strings, thus the propa-

gation will give characters of captions higher scores. Secondly, noise, surrounded by

an unpredictable complex graphical context, is not likely to receive such extra credit.

The results of this step are shown in Figure 5.18(c).

6: Components with scores greater than T3 are considered as characters.

Three thresholds, namely T1, T2, and T3, can be adjusted to achieve better perfor-

mance in this algorithm. T1 defines the maximum radius of a cluster in the pattern-

based clustering. A larger T1 value allows components of more different shape to be

categorized into the same cluster. T2 defines the maximum radius of a cluster in the

height-based clustering. A larger T2 value allows components in a cluster to have a

wider variance in term of heights. Text of handwritten or text suffering from severe

noise, which leads to large difference in appearance among characters of the same

identity, should have larger T1 and T2. T3 is a threshold to adjust the compromise

between precision and recall. A larger T3 value brings higher precision, otherwise
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Figure 5.18: Caption/label detection results in a figure.
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higher recall. T3 is set as the number of graphic pages for each patent, in order to

guarantee that the captions can always be found. The pseudo-code of the algorithm

is shown as follows.

1: for all {ci|ci ∈ C, ci.solidity > 0.8, ci.area < 50}
2: γ ← ci

3: end

4: K = cluster(γ, pattern, T1)
5: for all ki ∈ K
6: if ki.size < t
7: remove members of ki from γ
8: remove ki from K
9: end
10: end

11: K2 = cluster(γ, height, T2)
12: for all ci ∈ C
13: for all k2j ∈ K2
14: if ci.height ∈ [k2j.centroid− t2, k2j.centroid + T2]
15: k2j ← ci, γ ← ci

16: score(ci)← the original k2j.size
17: end
18: end
19: end

20: for all ci ∈ γ
21: for all cj of n nearest neighbors of ci

22: if cj ∈ γ
23: score(ci)← score(ci) + p(ci, cj)
24: end
25: end
26: end

27: for all ci ∈ γ
28: if score(ci) < T3
29: remove ci from γ
30: end
31: end
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Since we are only interested in captions and labels, which are always in the same

text line, the grouping task is quite simple. Text components are grouped into words

or phrases by the grouping function:

f(ci, cj) =

√
kcicj

ci + cj

(5.3.6)

where ci and cj are the areas of two components; the coefficient k is a constant

value, which can be adjusted by the batch of samples in use (k = 20 in our experi-

ment). ci and cj are considered as in the same group (a word), if they satisfy both

conditions: Euclidian distance(ci, cj) < f(ci, cj) and ω(ci, cj) > 0.5.

5.3.5 Post processing

Bounding box detection step may generate false boxes which have no text information.

Also, a figure may contain text description other than labels or captions. In addition,

OCR process introduces recognition errors too. Therefore many undesirable contents

appear in the OCR output. This step is used to pick up valid captions and labels

from the OCR output. A valid label is a string comprising of n consecutive digits

(n < 3). A valid caption may have two different patterns: “Fig *” and “Figure *”

regardless of uppercase or lowercase. For example, both “FIG.1” and “figure.1 (a)”

are valid captions. In this step, OCR output which do not comply with these three

pattern are filtered out.

5.3.6 Experimental Results and Discussion

The system was tested on two patent sets. These patents were deliberately chosen

from patent archives of different years. Set I comprises of 60 pages of patents (24
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Table 5.6: Experimental results on Set I.

Detection Accuracy Recognition Accuracy

Formula correctly detected items
ground−truth items

correctly recognised items
ground−truth items

Labels 96.12% 96.12%
Captions 95.21% 93.10%

Table 5.7: Experimental results on Set II.

Detection Accuracy Recognition Accuracy

Formula correctly detected items
ground−truth items

correctly recognised items
ground−truth items

Labels 92.12% 85.12%
Captions 83.08% 62.30%

documents) after 1975. These patent images are usually well printed. Set II comprises

of 40 pages (27 documents) from 1867 to 1975. Comparing with Set I, images of Set

II suffer from image quality degradations such as salt and pepper noise, skew, and

shadow. Besides, most text of these patents are handwritten, and thus characters of

the same identity may have very different appearances.

In the experiment, in the drawing/text page separation step and the rotated page

rectification step, we achieved 100% accuracy. The results of the caption/label de-

tection on Sets I and II are shown in Table 5.6 with T1 = 20, and T2 = 4, and Table

5.7 with T1 = 40, and T2 = 8 respectively. The guideline of tuning parameter is to

make the recall as high as possible, while to keep the precision to a reasonable level,

because recognition results of drawing components almost are invalid strings.

Table 5.6 shows that the detection method located 96.12% of labels and 95.21% of

captions in testing data set I. The main reason which caused errors in label detection

was that a few labels were touching the drawing, such as label 69 in Figure 5.19.
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Those labels cannot be detected and are then missed in the final output. Table

5.6 also shows that all detected labels are correctly recognized by OCR, but several

detected captions were wrongly recognized. These captions, such as those shown in

Figure 5.20, are handwritten, which cannot be recognized by OCR. It should be noted

that, although the detection method may falsely classify some drawing components

as text components, the recognition results of these components were invalid strings,

which would be filtered out in the post-processing step.

Figure 5.19: Because label 69 is connected to the drawing, it is classified as graphic
component.

Figure 5.20: Handwritten captions in Set I.

Table 5.7 shows that the detection method located 92.12% of labels and 83.08%

of captions in testing data set II. However, about 7% of detected labels and 20% of
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Figure 5.21: Labels appear on top of the drawing, making it difficult to detect them.

detected captions could not be recognized. The reasons for detection errors of Set II

are more diverse. In early patents, labels may appear on top of the drawing such as

shown in Figure 5.21, making the detection extremely difficult. Furthermore, hand-

written labels and captions of varying appearances cause the pattern-based clustering

step fail badly, as the template matching measure employed in this step is sensitive to

handwritten variation. The component bounding box may change largely due to the

stretching of one stroke. For example, in Figure 5.22, captions in the same document

cannot be grouped into the same cluster due to handwritten variation. In this case,

setting a higher T1 will help. The reason for recognition errors is similar to that of

Set I.

Besides labels and captions, there is some other text content in figures. In this



Viewing Patent Images 98

Figure 5.22: Handwritten captions in Set II have very different appearances, and
cause the pattern-based clustering to fail.

experiment, we did not calculate the detection and recognition accuracy for them.

However, after manually checking the output, we knew that the recall of detection

was more than 90%, even for those DNA sequences shown in Figure 5.17 which have

severe amount of consecutive characters touching.

5.3.7 User Interface Demo

In order to show the extraction result, the system provides a spotting function for

captions and labels across the description, if a user clicks the corresponding areas in

the figure. A snapshot of the preliminary user interface of our system is shown in

Figure 5.23. The left part of the interface is a window displaying the text version of

the patent, and the right part is a window display the drawing pages of the patent.

Drawing pages are shown in order. When a label is clicked, the corresponding label

occurrences in the text window are located and highlighted. Figure 5.23 shows when

label 23 was clicked.
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Figure 5.23: A snapshot of the system interface. The left part of the interface is a
window displaying the text version of a patent, and the right part is a window display
the drawing images of the patent.

5.4 Summary

In this chapter, I introduced a prototype of a patent viewing system. Particularly,

we have implemented two core components of this system, namely, the word spotting

module and the graphics viewing module. In the word spotting module, we proposed a

fast keyword spotting method for patent document images based on Radial Projection

Profile. This method avoids unnecessary OCR processing and thus expedites the

spotting speed for lengthy patent documents. In the graphics viewing module, we

proposed a method to extract captions and labels from diverse drawings of patents,

and connected them with their corresponding occurrences in the patent text. This
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system is a better tool for users to efficiently browse patents than other software

available.



Chapter 6

Character/Symbol Recognition in

Real Scene Images

With the advancement of camera technology, recognition of characters and symbols

in real scene images becomes an extremely important issue, as it is a foundation of

many applications. Real scene character/symbol recognition is a broad research topic,

aiming at recognizing characters or symbols in real scene images and overcoming all

difficulties encountered. Existing rectification methods are not applicable to real-

scene images, because they are proposed mainly for camera-based document images.

Also, as introduced in Section 2.2 of Chapter 2, some sub-fields of robust recognition

have been extensively studied, employing context information specific to this sub-

field. However, there is no satisfactory resolution of the more general case. In this

chapter, we will tackle this problem by proposing a recognition method resilient to

perspective deformation, which is applicable to characters and symbols.

The essence of our method is a global descriptor called Cross Ratio Spectrum

proposed by us. The attractive characteristics of the proposed recognition method

101
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includes:

• Perspective invariant. This is the only perspective invariant recognition method

applicable to simple structure shapes.

• No binarization process is needed. This method works directly on edge images.

Signs and symbols are hard to register and binarize properly from the real scene.

• The point level correspondence achieved by our method is helpful to restore the

fronto-parallel view of a perspectively deformed image.

In the rest of this chapter, the notation Q refers to the query character/symbol.

Similarly, T refers to a template character/symbol:

• Compute a cross ratio spectrum for each sample point on the convex hull of

both T and Q.

• Estimate distances between each pair of sample points of T and Q.

• Find the point-level correspondence of Q and T , and estimate the similarity

between Q and T .

Since I have introduced the perspective rectification methods in Section 2.3.2,

I will only present methods which directly access the content of real scene images

in Section 6.1. I will explain our methodology in Sections 6.2 and 6.3. The speed

issue will be discussed in Sections 6.5 and 6.6. I will show the experiment results for

synthetic character recognition, real scene character recognition, real scene compound

symbol recognition in Sections 6.4, 6.7 and 6.8 respectively.



Character/Symbol Recognition in Real Scene Images 103

6.1 Related Work

Shape description is a core issue of planar symbol recognition. Many shape description

techniques have been developed and reported in the past. A detailed review of shape

description techniques can be found in [ZL04]. These shape representation approaches

can be divided into two categories: contour based and region based. In region-based

approaches, all points within a shape region are taken into account to obtain the

shape representation. While in contour-based approaches, the exterior or interior

boundary is exploited. It is claimed that, making use of all information of a shape,

region-based approaches are more robust to minor boundary noise and deformation,

to which contour-based approaches are sensitive to, often at expense of slower speed.

However, due to the fact that humans can recognize object solely from its shape, the

contour of a shape carries more semantics than the interior region. More importantly,

almost all perspective-invariant techniques are contour based, except [SF04]. In this

paper [SF04], a way to generate projective moment invariants with a form of infinite

series is proposed, however, leaving the discriminating power and convergence problem

open.

Followed by the classification in [ZL04], contour-based approaches may be further

divided into two sub-categories: structural based, which divides the shape into a se-

quence of shape primitive, and global based, which represents the shape by a numeric

feature vector. Many structure primitives (such as hole, intersection, and concavity)

are invariant to perspective deformation. In [LT06a], structural invariants, namely,

ascender and descender, vertical runs, and water reservoirs were employed to clas-

sify English characters into a reduced symbol set. Nevertheless, structural invariants
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alone are not discriminating enough to differentiate structure similar shape, such as

o and 0. Therefore algebraic invariants drawing from structural primitives are more

frequently used than structure primitives, and these methods fall into global based

sub-category. A model-based recognition system, called LEWIS [RZFM95], made use

of algebraic invariants computed from three primitive sets respectively: five lines, a

pair of conics, and a conic and two lines extracted by polygon approximation. Orrite

et al. [OH04] used bitangent points in a shape to estimate a transformation between

the viewed object and the model object. A drawback of these approaches is that

desirable structure primitives are not always present in the shape.

Some methods are structure-independent and thus are more generally applicable.

The first one is MPEG-7 visual contour shape descriptors (CSS) [Bob01], which is a

global descriptor based on curvature scale space. It represents a shape by features

of their curvature scale space image, such as the number of peaks, the height of the

highest peaks, and the positions of the remaining peaks. The second one is Scale

Invariant Feature Transform (SIFT) [Low04]. SIFT descriptor is a local descriptor

based on intensity information. It is a 128-dimensional vector, describing the neigh-

borhood information of a key point. Key points are extracted from an object, as

maxima or minima of the DoG images across scales. SIFT descriptor is distinctive,

robust to occlusion, and does not require segmentation. A comparative evaluation of

local descriptors in [MS05] showed that SIFT descriptor performs significantly bet-

ter than many other local descriptors proposed in the literature. CSS and SIFT are

widely employed in applications where perspective deformation is involved. However,

both methods presuppose that the object which needs to be identified is a complex

object with great variation in intensity. This assumption might not be applicable to
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symbols, because they have very simple structure. This point will be explained in the

experiment part in detail. Another important descriptor is Shape Context [BMP02],

which shows a good ability to handle moderate perspective deformation in [MS05].

More importantly, it shows discriminating ability to recognize symbols with non-rigid

transformation in [BMP02]. In the shape context method, each sample point on the

shape contour is represented by the distribution of the remaining points relative to it,

and a point-to-point correspondence between the query and a template is solved by a

bipartite graph matching. After that, a Thin Plate Spline model-based transforma-

tion is estimated for a better alignment between two shapes. The distance between

two shapes is given by a weighted sum of shape context distance, image appearance

distance and bending energy. Iterations are employed for better recognition result.

The last method, proposed by Suk [SF04], is a way to generate projective moment in-

variants with a form of infinite series. However, discriminating power and convergence

problems were left open, and was later challenged by [XL07].

In our experiment, CSS, SIFT, and Shape Context methods will be employed for

comparison.

6.2 Cross ratio spectrum

Cross Ratio is a fundamental invariant for perspective transformation [MZ92]. The

cross ratio of four collinear points (P1, P2, P3, P4) displaying in order, as shown in

Figure 6.1, is defined as:

cross ratio(P1, P2, P3, P4) =
P1P3

P2P3

/
P1P4

P2P4

(6.2.1)

where PiPj denotes the distance between Pi and Pj. cross ratio(P1, P2, P3, P4)
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Figure 6.1: Four collinear points.

Figure 6.2: Character ’H’ in the fronto-parallel view and a perspective view.

remains constant under any projective transformation.

6.2.1 Cross Ratio Spectrum

Figure 6.2 shows a character ‘H’ under a fronto-parallel view (H) and a perspective

view (H ′). Suppose pixels P1 ∈ H and Pk ∈ H have mapping pixels P ′
1 ∈ H ′

and P ′
k ∈ H ′, respectively. Then I1 and I2 (intersections of the strokes and line

P1Pk) have mapping pixels I ′1 and I ′2 (intersections of the strokes and the line P ′
1P

′
k).

Consequently, the following equation holds:

cross ratio(P1, I1, I2, Pk) = cross ratio(P ′
1, I

′
1, I

′
2, P

′
k) (6.2.2)

For simplicity, we rewrite the cross ratio notation and leave out intersections as

CR(P1, Pk) = cross ratio(P1, I1, I2, Pk). When there are more than two intersections
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Figure 6.3: Cross Ratio Spectra of mapping points P1, P ′
1 and P ′′

1 .
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between two points, such as P1 and Pn shown in Figure 6.2, only the first two intersec-

tions (near P1) are used. The hypothesis is that, symbols have very simple structures,

and the shapes comprising of the first two intersections already give enough informa-

tion to differentiate them. Some information of the inner structure of a symbol is lost

using this method. However, even if the shape comprising of the first two intersec-

tions is not distinctive enough, in theory we still can extend our method to employ

other intersections in the same manner. Note that intersections at the convex hull

itself are ignored in our implementation of the method, to prevent noise from being

introduced by a jagged outer contour. If the number of intersections is 0 or 1 and

thus no cross ratio value can be computed, the pseudo-cross ratio value (because we

can not calculate a cross ratio from only two or three points) is assigned as -1 and 0

respectively. These two values are chosen because cross ratio values range from 1 to

∞. This assignment is to guarantee that both pseudo-cross ratios are distinct from a

real one. A cross ratio spectrum is a sequence of cross ratios. The sequence exhibits a

wavelet-like form when plotted shown in Figure , and thus we call it “cross ratio spec-

trum”. Suppose the sample point sequence of the convex hull of H is {Ps, s = [1 : S]},

where P2 is the anti-clock-wise neighbor pixels of P1, and so forth. The Cross Ratio

Spectrum (CRS) of a pixel Pi is defined as:

CRS(Pi) = {CR(Pi, Pi+1), ..., CR(Pi, Pn), CR(Pi, P1), ..., CR(Pi, Pi−1)} (6.2.3)

Examples of cross ratio spectra are shown in Figure 6.2.1.
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Figure 6.4: A new point Pk is added between Pi and Pi+1.

6.2.2 Modeling the Perspective Deformation in a Cross Ratio

Spectrum

It is easy to know that the spectrum is intrinsically translation and rotation invariant,

given the starting point. Because cross ratio values are collected along the convex

contour with respect to the starting point. An example of character ‘H’ is shown in

Figure 6.2.1(a), and its variances are shown in Figures 6.2.1(b)(perspective) and 6.2.1

(c) (scaling) respectively. The cross ratio spectra of three mapping pixels P1, P ′
1 and

P ′′
1 are also shown in Figures 6.2.1(a), (b), and (c) respectively, where the x-axis is

the pixel index and the y-axis is the cross ratio value. The pixels corresponding to

the peaks shown in the spectrum curves (labeled with Greek characters) are shown.

Our observations are:

• Visually, three spectra are quite similar to each other, but compared to spectrum

a, spectrum b has a certain fluctuation on the x-axis, while spectrum c is scaled

along x-axis.

• The value of peaks β, β′, β′′ are quite different.

• There is a abnormal peak between α′ and β′.
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The following explains how the first observation happens. Suppose there are two

neighboring pixels Pi ∈ P and Pi+1 ∈ P , where P is a fronto-parallel character, as

shown in Figure 6.4. Ii,1, Ii,2, Ii+1,1, and Ii+1,2 are the intersections between pixel

P1 ∈ P and the other two pixels. It is assumed that P1, Pi and Pi+1 are on the

smooth part of the convex hull (not at the corner), where the stroke width does

not change or changes slowly in the neighborhood. Hence Ii,1 and Ii+1,1, Ii,2 and

Ii+1,2 are near to each other, thus CR(P1, Pi) ≈ CR(P1, Pi+1). After perspective

projection, the segment, to which Pi and Pi+1 belong, is elongated, new pixels are

added between them. Suppose only one pixel Pk is added between Pi and Pi+1 at

the beginning. Similarly, we find CR(P1, Pk) ≈ CR(P1, Pi). More pixels could be

added in the same manner. In short, the cross ratios of those newly added pixels can

be approximated by that of the original pixels. Because the number of pixels on the

smooth part always dominates, pixels at corners are statistically unimportant. In a

nutshell, under perspective transformation, some parts of a character expand, while

some parts shrink, which leads to the increase or decrease of the number of pixels on

certain parts of the convex hull. As a result, some segments of the spectrum curve

are elongated, while others are shortened. Therefore, the perspective deformation in

an image can be modeled as an uneven stretching deformation in our spectrum.

The following explains how the second and third observations happen. Following

Equation 6.2.2, suppose s1 = P1P2, s2 = P2P3, s3 = P3P4, thus

cross ratio(P1, P2, P3, P4) =
s1

s2
+ 1

s1

s2+s3
+ 1

(6.2.4)

which is an increasing function of variable s2. s2 becomes quite short when the line at

P1 passes through a corner, such as at location β, β′, and β′′, leading to peaks. β, β′,

and β′′ are different due to quantization errors. The reason accounting for abnormal
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Figure 6.5: False intersections on a jagged inner contour.

impulses in Figure 6.2.1(b) is a jagged inner contour. As shown in Figure 6.5, there

should be only one intersection between P ′
1 and P ′

n, but because of the jagged inner

contour, false intersections are detected, leading to a very short s2. A cost function

(Equation 6.2.9) is chosen to minimize the impact of this noise.

6.2.3 Comparing Cross Ratio Spectra

In our method, spectrum b is modeled as an uneven stretching deformation of spec-

trum a. Hence, we use Dynamic Time Warping (DTW) to compare the similarity

between spectrum a and b.

DTW is widely used in speech recognition to eliminate the time-axis fluctuation

between the given word and a template [WG97], which is similar to the uneven

stretching effect in a spectrum.

Suppose that two sequences f(i), i = 1 : m and g(j), j = 1 : n characterize two

signal f and g. The best match between f and g is given by:

arg min
∑

w

cost(f(i), g(j)) (6.2.5)

where cost(., .) is a cost function, and w(.) is a warping path between (1, 1) and (m, n)
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in a two-dimensional square lattice, given by:

w = (wk, k = [1 : K]) max(m, n) ≤ K ≤ m + n− 1 (6.2.6)

wk = (i, j) (6.2.7)

The warping path is subjected to several constraints, which are intrinsically posed

by the DTW:

• Boundary Condition: w1 = (1, 1) and wK=(m,n).

• Continuity and Monotonicity: given wk = (i, j) and wk−1 = (i′, j′), 0 ≤ i′−i ≤ 1

and 0 ≤ j′ − j ≤ 1.

The notation of CRS(Qi) given in Equation 6.2.3 is rewritten as CRS(Qi) =

{qu, u = 1 : M − 1} for simplicity. Similarly, CRS(Tj) = {tv, v = 1 : N − 1}. The

comparison between Qi and Tj is formulated as:

DTW (u, v) = min


DTW (u− 1, v − 1) + c(u, v)

DTW (u− 1, v) + c(u, v)

DTW (u, v − 1) + c(u, v)

(6.2.8)

c(u, v) =
abs(log(CR(Qi, Qu))− log(CR(Tj, Tv))

log(CR(Qi, Qu)) + log(CR(Tj, Tv))
(6.2.9)

It is observed that large cross ratios are unstable. Also, we found that most cross

ratios of symbols are within the range of (1, 2]. The log(CR(·, ·)) representation is

used in the cost function c(·, ·), in order to reduce the weight of unstable cross ratios

and to differentiate common cross ratios within the range of (1, 2] better. If CR(·, ·)

is -1 or 0, log(CR(·, ·)) is assigned as -1 and -0.5 respectively. The cost function
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(a) The DTW-distance-table

Q1 ... QM Q1 ... QM

TN

...
T1

(b) A sub-table compris-
ing of column {1, ...,M}

Q1 ... QM

TN

...
T1

Table 6.1: Planar symbol recognition.

c(·, ·) is chosen to minimize the effect of noise, and to maximize the penalty when a

pseudo-cross-ratio is misaligned with a real one. The distance between points Qi and

Tj is given by the last item:

DTW dist(Qi, Tj) = DTW (M − 1, N − 1) (6.2.10)

6.3 Planar Symbol Recognition

Having introduced the concept of cross ratio spectrum and the comparison method, we

will explain in this section how to compare the similarity of two symbols using cross ra-

tio spectra. For Q, the spectrum sequence is defined as SS(Q) = {CRS(Q1), CRS(Q2),

..., CRS(QM)}. Similarly, SS(T ) = {CRS(T1), CRS(T2), ..., CRS(TN)}.

The distance between Q and T can be formulated as:

SS dist(Q, T ) = arg min
∑

w global

DTW dist(Qi, Tj) (6.3.1)
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where w global is the global warping path between (Q1, T1) and (QM , TN), as well

as the correspondence between Q and T . Our strategy to solve this equation is as

follows. An arbitrary sample point of T is chosen as the starting point T1. T1 is then

aligned with each Qi as the boundary condition. In particular, DTW comparisons are

conducted between each pair of Qi and Tj, and a DTW distance table is constructed

in the manner given by Table 6.1(a). Cells in the table denote the distances of

corresponding pixel pairs. Each time, a DTW is applied to a sub-table comprising

of column {~, ~ + 1, ..., ~ + M − 1} of the table, to align T1 with Q~ and TN with

Q~+M−1 as the boundary condition. Table 6.1(b) illustrates a subtable when ~ = 1.

The comparison is formulated as follows:

DTW (i, j) = min


DTW (i− 1, j − 1) + c(i, j)

DTW (i− 1, j) + c(i, j)

DTW (i, j − 1) + c(i, j)

(6.3.2)

c(i, j) = DTW dist table(~ + i− 1, j) (6.3.3)

where i = 1 : M and j = 1 : N . A candidate distance between Q and T is given by

DTW (M, N). M DTW comparisons are conducted. Among M candidate distances,

the smallest one gives the desired global distance.

6.3.1 Character/Symbol Recognition

The proposed recognition method falls into the category of prototype-based recogni-

tion, which represents a category by ideal prototypes (templates). In all experiments

in this chapter, we took a nearest neighbor recognition strategy: a query is compared

with all templates, and the template which has the smallest distance with the query

gives the identity of the query. The recognition algorithm is shown in Table 6.2.
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Algorithm:Recognizing(Q)
1. best so far = inf
2. for all templates T i

3. true dist = ss DTW (Q, T i)
4. if true dist < best so far
5. best so far = true dist
8. index of best match = i
6. end
7. end

Table 6.2: Scan the prototype set.

6.4 Synthetic Image Testing

In this section, the ability of handling perspective deformation of the proposed method

will be illustrated with a well defined synthetic image set. Scale Invariant Feature

Transforms (SIFT) with Harris-Affine detector1, Shape Context2, MPEG7 contour

shape space descriptor (CSS)3 and a widely used commercial OCR called Scansoft

OmniPage Pro 14.0 (OCR) are employed as comparative methods.

Shape context is a global descriptor, in which each sample point on the shape

contour is represented by the distribution of the remaining points relative to it, and

a point-to-point correspondence between the query and a template is solved by a

bipartite graph matching. After that, a Thin Plate Spline model-based transformation

is estimated for a better alignment between two shapes. The distance between two

shapes is given by a sum of shape context distances. Iterations are employed for

better recognition result. Our experiment follows the same process as introduced in

1http://www.robots.ox.ac.uk/˜vgg/research/affine/index.html
2http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc digits.html
3http://mpeg7.doc.gold.ac.uk
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[BMP02].

CSS is also a global descriptor. It represents a shape by features of its curvature

scale space image, such as the number of peaks, the height of the highest peaks, and

the positions of the remaining peaks. The identity of Q is given by the template

which has the minimum CSS score with Q.

SIFT is an local affine-invariant descriptor which describes a local region around

a key point. SIFT descriptor is robust to occlusion, and does not require segmen-

tation. A foreseeable problem of applying SIFT descriptor to symbols is the lack of

discriminating power. First, many symbols share similar structural primitives, like

concavities of ‘N’, ‘Z’, ‘M’, ‘V’, which are difficult to distinguish using SIFT. Further-

more, the symmetry of a symbol itself causes ambiguity. False matches may happen

among symmetric structural primitives of the same symbol. For example, key points

at the left bottom of character ‘A’ may be matched to points at the right bottom of

‘A’. In order to solve the structural ambiguity and maximize the recognition strength

of SIFT descriptor, the recognition process is designed as follows. A Harris-Affine

detector is used to detect Affine-invariant key points. For each key point of Q, its

first 20 nearest neighbors are found in the training set. If the distance is less than a

threshold (200 in the experiment), the neighbor is kept, otherwise is thrown away. The

RANSAC fitting algorithm [FP03] is then used to further filter false matches. False

matches (outliers) is removed by checking for agreement, between each match and

the perspective transformation model (8 degrees of freedom) generated by RANSAC.

The identity of Q is given by the template which has the maximum number of correct

matches with Q.

Because the Ominipage OCR assumes that the character ready for recognizing
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Figure 6.6: Samples of synthetic character images.

should be in a correct orientation, only a slight skew is acceptable. A query image is

rotated the azimuth angle backward to tentatively remove the skew.

6.4.1 Experimental Setup

A template set is trained on synthetic fronto-parallel images of 62 characters, namely

26 uppercase English characters, 26 lowercase English characters, and 10 digits, of

Arial font and bold style. 18 testing datasets are generated by Matlab using var-

ious perspective parameters. Characters ‘l’ and ‘I’ are considered the same in our

experiment.

The perspective images are generated by setting the target point at a specific

point o′, and setting the perspective viewing angle as 25◦ (to model a general cam-

era lens), while changing the azimuth (az) and elevation (el) angles gradually. o′ is

at the same horizontal line as the center of a character, denoted by o, with a dis-

tance of n × h, where n is a positive integer and h is the height of the character.

An illustration is shown in Figure 6.6(a). Generally, the larger the n is, the greater

the deformation is. For each testing set, n and el are predefined, and az is set as

{30◦, 90◦, 150◦, 210◦, 270◦, 330◦} respectively. Therefore, each testing set comprises of
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(a) Spectrum Sequence

el= 5◦ 10◦ 30◦ 50◦ 70◦ 90◦

n = 0 96.77 97.31 97.04 100 100 100
n = 50 96.23 97.04 97.04 100 100 100
n = 100 96.23 97.04 97.04 97.84 97.84 100

(b) SIFT

el= 5◦ 10◦ 30◦ 50◦ 70◦ 90◦

n = 0 39.24 45.16 55.91 59.67 67.74 81.18
n = 50 11.02 13.70 16.12 17.47 18.81 75.26
n = 100 11.55 10.21 11.02 9.94 8.60 65.05

(c) Shape Context

el= 5◦ 10◦ 30◦ 50◦ 70◦ 90◦

n = 0 64.24 67.47 68.27 71.50 73.92 96.23
n = 50 15.86 16.93 20.43 18.01 54.03 66.39
n = 100 15.32 13.44 15.05 14.51 50.00 68.27

(d) OCR

el= 5◦ 10◦ 30◦ 50◦ 70◦ 90◦

n = 0 92.47 92.47 97.84 97.84 100 100
n = 50 0 0 2.68 3.22 3.49 98.65
n = 100 0 0 0 0 2.41 98.11

Table 6.3: Recognition accuracy of synthetic images.

6×62 = 372 characters. Examples of the character ‘H’ under different perspective pa-

rameters are shown in Figures 6.6(b) and (c). We found that perspective deformation

varies greatly along with the elevation angle when the target point is at the center of

the character. In contrast, when the target point is far away from the character, the

variation tends to be small.
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6.4.2 Experiment Results

Tables 6.2(a), 6.2(a), 6.2(c), and 6.2(d) show the recognition accuracy using our

method Spectrum Sequence, SIFT, Shape Context, and OCR methods respectively,

where accuracy is the number of correctly recognized characters over the total number

of query characters. The accuracy in each cell is based on a testing set comprising

of 372 characters generated with corresponding perspective parameters. The result

of CSS is not tabulated, simply because it cannot distinguish simple symbols. CSS

descriptor gave the best score to about 10 to 20 templates in each run. However it

still showed a certain resistance to moderate perspective deformation.

It is easy to see that when characters are deformed by perspective projection, our

method has a better recognition accuracy than other methods. Generally, when n

increases or el decreases, the deformation becomes more severe. Table 6.2(a) shows

that the performance of our method degraded only a little with increasing deforma-

tion. In particular, the character pair ‘O’ and ‘D’ are responsible for most errors

due to the high similarity between both characters. It is worth noting that, the pro-

posed method gave small distances to visually similar characters like ‘W’ and ‘w’

but made few mistakes in differentiating them. For the performance of SIFT de-

scriptor shown in Table 6.2(b), when the perspective deformation is small, such as

n = 0 or el = 90◦, errors are mainly caused by the structural similarity of charac-

ters. However, when the deformation is more severe, the descriptor is less resistant to

the deformation. An illustration can also be found in Figures 6.7(c) and (d), where

SIFT fails to find correct corresponding points between two characters under severe

perspective deformation. Table 6.2(c) shows that Shape Context is not that robust

to severe perspective deformation too. One possible reason is that both SIFT and
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Shape Context descriptors are statistics based, but the expansion/shrinking effect in

perspective deformation obviously will affect the statistics. Table 6.36.2(d) shows the

recognition result gotten by OCR. With necessary preprocessing, OCR achieved an

accuracy as high as above 92%, when the deformation is moderate. In particular, ‘O’

is mis-recognized as ‘0’ for almost all testing datasets with perspective deformation.

However, when the deformation became more severe, the performance of OCR drops

rapidly. One reason for the rapid degradation is that rotating az degree backward

may not turn the character into a right position. In this case, only a few characters

can be recognized.

Figure 6.7 shows the pixel-level correspondence, between a query (az = 30◦, el =

5◦, n = 100) and a template, achieved by our method Spectrum Sequence, Shape

Context and SIFT respectively. Both Shape Context and SIFT methods fail, due

to the severe perspective deformation as well as structural similarity of characters.

Thanks to the flexibility of DTW comparison, our method is tolerant to image defects

to a certain extent. Figure 6.8 shows the correspondence using our method when the

character image is impaired in different ways: the bottom part of the character is

truncated in Figure 6.8(a); the interior contour of the character is breached in Figure

6.8(b); the exterior contour of the character is eroded in Figure 6.8(c). Although the

alignment is not as accurate as that shown in Figure 6.7, Spectrum Sequence method

is still robust to such impairments and is able to align two images accurately.

To compare a query with one template, each of which has 100 sample points, it

took 2.62 seconds for our method implemented in Java, on a PC configured with

Pentium 4 CPU 3GHz, 0.99GB of RAM. We also implemented the method in Matlab

to compare it with other methods. It took 10.23 seconds for our method (Matlab,
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Figure 6.7: Pixel level correspondence of a template and a query generated by (a)
our method, (b) Shape context, (c) SIFT, (d) SIFT with RANSAC.

100 sample points), 6.86 seconds for Shape Context(Matlab, 100 sample points), 6.61

seconds for Harris/SIFT/RANSAC (Linux/Matlab), 0.06 seconds for Contour Shape

Space (C++) methods, and 0.26 seconds for OCR.

6.5 Speed Issue Discussion

The main drawback of the proposed method is the speed. A query Q has to be

compared against a whole set of templates. Also, when Q is compared with a template

T , comparisons between each pair of Ti and Qj are needed. Constructing the DTW-

distance-table needs M × N DTW comparisons. Moreover, searching the optimal

warping path in the table takes M DTW comparisons. The time complexity of a

single DTW comparison is O(M ×N). Therefore, the time complexity for comparing
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Figure 6.8: Pixel level correspondence of a template and impaired queries.

Q and T is O(M2 ×N2).

An important observation is that many neighboring points have similar spectra.

An example is shown in Figure 6.9. Two groups of neighboring points are labeled

with ∗ or ◦ marker respectively, and spectra of points are labeled with the same

markers. Spectra of the same group are similar to each other, by x-axis shifting. On

the contrary, spectra of different groups are different. This phenomenon indicates two

possible solutions to the speed problem, namely, reducing the number of sample points

for each character and indexing templates by grouping neighboring points together.

6.5.1 Effect of the Number of Sample Points

It is easy to see that the essential factor which affects the speed is the number of points

sampled on the convex contour of a character. In this subsection, this issue will be dis-

cussed. The recognition accuracy and speed of sampling k = {5, 10, 15, 20, 25, 30, 35, 40,
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Figure 6.9: Neighboring points having similar spectra.

60, 80, 100} points on each character (both template and query) are shown in Figure

6.10. The speed for different k is shown as a ratio to the speed when k = 100(2.62

seconds). The result is based on one synthetic dataset (372 queries with parameters

el = 5, n = 100). When k is greater than 60, the recognition accuracy remains very

close to 96.23%.

We also run the same experiment for another 10 times, randomly changing the

starting point of the sample points, and this has little impact on the final recognition

accuracy when the number of points is larger than 40. When the number of sample

points is less than 20, the recognition accuracy varies more than 10% as the starting

point changes. A possible reason is that the sample points are too sparse to capture

the shape of a character.

Furthermore, we scale characters in the testing dataset by 2, 4, and 8 times re-

spectively, and use the scaled dataset as input. Because scaling will also affect the

distribution of sample points. The results show that the size of query will not affect

the recognition accuracy, too. In a nutshell, although the speed is bi-quadratic to the

number of sample points N , N is nearly fixed in a character recognition application
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Figure 6.10: The recognition accuracy and speed with different number of sample
points.

for all sizes of characters. Further, an appropriate N could be estimated by a training

process, given that all templates are available.

6.5.2 Improving Accuracy by Iteration

In this experiment, errors happen within character pairs which are similar to each

other, for example ‘d’ and ‘p’, ‘w’ and ‘W’, and ‘9’ and ‘6’. Although these errors could

be addressed by considering context information, it is also possible to increase the

accuracy using information generated by our Spectrum Sequence method. The way to

increase the recognition accuracy by interaction with the point-level correspondence

information generated by our Spectrum Sequence method is as follows: if the ratio of

distances for Q to the nearest and the second-nearest templates is greater than 95%,

an iterative comparison takes place. The perspective transformation matrix M with

8 degree freedom is estimated by Least Squares Fitting, taking all correspondences
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as input. A temporary template image is generated with M , and it is compared to Q

again. With one additional iteration, we were able to improve the accuracy to 98.38%

for the dataset (el = 5 and n = 100).

6.6 Indexing Templates

Indexing and searching time series has been extensively studied, and many speed

optimization techniques have been proposed. A short review of these expedition

techniques is made as follows, and the reason why they are not suitable for our

method are explained too.

Constraints: limits the number of cells that evaluated in the cost matrix [Ita75,

SC78]. It can be formulated as: given wk = (i, j) and wk−1 = (i′, j′), i − i′ ≤ G and

j− j′ ≤ G. Global constraints will slightly speed up the DTW comparison, and more

importantly, it will prevent over-fitting, where a small section of one spectrum maps

onto a large section of another. In the experiment, G is set as 0.3M , which is a loose

constraint, because the perspective deformation may be quite severe.

Data abstraction: performs DTW on a reduced representation of time series

[KP00]. A very important algorithm toward faster DTW algorithm based on itera-

tive data abstraction, named FastDTW, was proposed in [SC07]. It is an accurate

approximation of DTW, which has a linear time and space complexity. This algorithm

uses a multilevel approach that recursively projects a solution from a coarser resolu-

tion and refines the projected solution. However, when the length of the time series

in less than 1000, the running time is almost the same as a normal DTW algorithm

[SC07]. In our experiment, a cross ratio spectrum has a length around 100.
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Lower Bound Indexing: reduces the number of candidate templates. Index-

ing time-series is aiming to reduce the number of times to conduct DTW. Many

methods have been proposed to index time series in sound databases. An effi-

cient indexing, retrieval and visualization framework for large scale of time series

can be found in [FL95]. An survey about data indexing and retrieval in time se-

ries databases is presented in [KK04]. The dominant approach of indexing time

series is based on a lower bound technique. Lower bound function estimation is an

essential technique in Time Series Indexing, which is used to eliminate undesirable

template candidates efficiently. Lower bound function LB(·, ·) provides an estimation

of LB(Qi, Tj) < DTW dist(Qi, Tj), that is, the possible minimum distance between

Qi and Tj. Two important lower bounding functions are proposed in [GP95] and

[YJF98]. The first method extract a vector comprising of 4 elements, namely, the

first, the last, minimum, and maximum elements of the sequence. The bounding

function is given by the sum of distance between each corresponding elements of both

sequences. The second method takes advantage of the observation that all the points

in one sequence, that are larger (smaller) than the maximum (minimum) of the other

sequence, must contribute at least the squared difference of their value and the max-

imum (minimum) value of the other sequence to the final DTW distance. However,

both lower boundary functions provided by [GP95] and [YJF98] give too loose lower

boundaries for our application, and gives almost no optimization on the speed when

applied, because of the simple and similar structures of the symbols.
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6.6.1 Optimized Recognition Method with Indexing

In view of the above, we propose a clustering based indexing method in the rest of

this section, which indexes points of templates which have similar CRS.

K-means clustering algorithm was selected because it can specify the number of

clusters we would like to have. After importing all the CRS information of template

images, DTW is performed between each pair of CRS to determine their mutual

distance. This is an expensive operation too, but since it is a one-time operation

and can be treated as the training process, its complexity does not affect our actual

recognition speed. The centroids of each cluster were chosen to be the one with

minimum DTW distance to the rest of spectra in the cluster.

Suppose the number of clusters is S, and we denote the centroid of clusters as

{Cs, s = 1 : S}; the number of templates is R, and we denote the templates as

{Tr, r = 1 : R}; remember that the number of sample points for a template image is

N and for a query image is M . During training, a cluster index table is built with

dimension of (N × R) as shown in Figure 6.11 (b). For example, for template “A”,

its first sample point falls into cluster C2, the second sample point falls into cluster

C1, etc. When a query comes in, the first step is to calculate the DTW distances

between points of the query {Qi, i = 1 : M} and clusters {Cs, s = 1 : S}. The results

are stored in a temporary table as shown in Figure 6.11(a). For instance, the DTW

distance between Q1 and C2 is 0.4728. When a query is evaluated, a DTW distance

table must be built, such as Figure 6.11(c). This time, the table can be filled directly

by reading results from the cluster index table and the temporary table. For example,

if we wish to get the DTW between Q1 and A1, the cluster index table will tell us that

A1 belongs to cluster C2, and then by using DTW result table, the DTW comparison



Character/Symbol Recognition in Real Scene Images 128

Figure 6.11: Tables used in the optimized method: (a) Temporary table (b) Cluster
index table (c) DTW distance table.
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Table 6.4: Average recognition speed and accuracy per query.

Clusters 140 120 100 80 60
Time(s) 2.88 2.23 1.58 1.13 0.72
Accuracy(%) 93.81 92.20 91.67 76.61 55.10

result of Q1 and C2 can be retrieved directly and propagated into the corresponding

cell of DTW distance table. Originally, if each query is compared with R templates,

each time a DTW distance table is formed by performing (N×M) DTW comparisons,

followed by DTW comparisons for M sub-tables. After clustering, (M × C) DTW

comparisons are needed to construct the DTW result table, and for each template,

M comparisons are to be made without any other overheads. Thus, the number of

DTW operations needed is reduced drastically from R×M× (N +1) to (C +R)×M .

6.6.2 Experiment Results

Two experiments are designed and conducted in order to examine the proposed

method. The first experiment aims to show how the number of clusters will af-

fect the speed and accuracy. The second experiment is to show speed improvement

by clustering; and the second one is designed to show how the degree of perspective

deformation will affect the accuracy.

First, we would like to examine how the selection of number of clusters will

affect the recognition speed and accuracy. In this experiment, the dataset with

parameters{n = 100, el = 10} is used, which has the most severe perspective dis-

tortion. Various numbers of clusters from 60 to 140 are selected as shown in Table

6.4. Each time, k-means clustering is performed with a specific number of clusters
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on the CRS of all template sample points. The centroids are saved and stored into

a table so that during the actual recognition process, the system can directly read

in the table and process it accordingly. Both methods are implemented in Java, and

run on a PC configured with Pentium 4 CPU 3GHz, 0.99GB of RAM. 60 points are

sampled on each character.

The original method takes 70.43 seconds to process a query (comparing against 62

templates). Table 6.4 shows the effect of number of clusters on both the recognition

speed and accuracy. We can observe that by decreasing the number of clusters, the

recognition time is further reduced. At the same time, the accuracy has been tradeoff

to a certain extent as well. We also find that the execution time decreases almost

linearly when the number of clusters decreases. However, the accuracy drops suddenly

from 100 clusters to 80 clusters, and thus in the following experiment, the number of

clusters is set as 100. This expedites the recognition process by up to 40 times. With

100 clusters, the total number of DTW comparisons needed is reduced to 4.2% of the

original algorithm. Also, the index will largely reduce computational overhead of the

original algorithm when implemented.

In the second experiment, all 12 testing datasets are used for both the original

method and the optimized method. For clustering optimization, all the 62 templates

are preprocessed by performing a k-means clustering algorithm on all the CRS of

template sample points. Tables 6.5(a) and 6.5(b) show the time and accuracy com-

parison of the two methods. We can observe that with 100 clusters to represent all

the CRS patterns, the accuracy drop with a reasonable limit of 6 percent but the

recognition speed has been improved by 40 times. Errors often occur within char-

acters with similar shape, like ‘b’ and ‘q’. Another important finding is that, even
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Table 6.5: Average recognition accuracy per query for the original method and the
optimized method.

(a) the original method

el= 10◦ 30◦ 50◦ 70◦

n = 0 97.31 97.04 100 100
n = 50 97.04 97.04 100 100
n = 100 97.04 97.04 97.84 97.84

(b) the optimized method

el= 10◦ 30◦ 50◦ 70◦

n = 0 93.27 93.81 94.35 100
n = 50 91.93 93.27 94.08 100
n = 100 91.39 93.27 91.93 93.81

though the recognition result might not be correct, it is most likely that the top 3

templates contain the answer.

6.6.3 Coarse to Fine Matching

Although indexing templates by grouping similar CRS will reduce the recognition

speed largely, about 5% accuracy is lost consequently, mainly due to some similar

characters. Therefore, we employ a two level coarse-to-fine matching scheme to fur-

ther enhance the recognition accuracy, which still maintains the original quick speed.

Firstly, n nearest templates of Q are identified by the optimized algorithm, and then

these n templates are re-ranked by the original comparison algorithm.

6.7 Real-Scene Character Recognition

Robust character recognition is a broad research topic. It aims to recognize characters

in real scene images and solve various difficulties encountered in recognition, including
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Figure 6.12: Examples of sign boards in real scene.

uneven illumination, occlusion, blur, highly decorated fonts, as well as perspective

deformation. In this section, we will try to tackle this problem partially by handling

severe perspective deformation, while keeping the other difficulties mentioned at a

moderate level.

In this experiment, 100 sign boards are chosen. For each signboard, 4 photos are

taken from different angle and distance, leading to 400 photos in total. Examples

of these photos are shown in Figure 6.12. These photos are divided into training

and testing datasets. Training dataset has 1 photo of each signboard, which are

clear and nearly fronto parallel. Testing dataset has the other 3, which have more

severe perspective deformation. Words are extracted by the method proposed by

Chen [CY]. In order to avoid errors introduced by the extraction algorithm, non-

character elements (here a character means either an English character or a digit)

are manually eliminated in both training and testing datasets. Then the edge of a

character is extracted by the Canny algorithm [CG86]. In order to remove undesirable

edges caused by shadows or dusts on signboards, edges with a length shorter than

e = 0.02×
√

s are removed, where s is the area of the character bounding box.
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We have gotten more than 1000 training characters in a few fonts from the training

set. Many characters share the same font. To remove duplicate characters with the

same font, a template set is trained from the training set as follows. The template set

Γ is initialized with 62 synthetic characters described in Section IV. If a character of

the training set could not be recognized correctly, the character is added to Γ. After

running this for all characters, a template set, comprising of 182 characters, is ready

for use. It is necessary to supplement the synthetic template set because of the wide

variance of fonts used in real scenes. Also, the usage of a noise-free synthetic template

as initial set has been proven to be helpful to improve the recognition accuracy.

A clustering based indexing is applied on the template set. In recognition, after

identifying the first n = 5 candidates, the full comparison is used on these candidates.

The testing set is further divided into three sub-sets. Set I has 923 characters,

which can fit into a bounding box of 50 pixels; Set II has 1296 characters smaller

than 100 pixels; Set III has the remaining 1026 characters. The result shows that

the proposed method achieved an recognition accuracy as 70.53% in the testing Set I,

91.04% for Set II, and 92.69% for Set III. The recognition performance degrades when

the character size gets smaller. Because when the character is small, it is very likely

that the edge detected will be broken or connected to edges of background objects.

For example, when a signboard is far away and there happens to be an object near

it, the edge detector may not be able to generate a correct edge of the characters on

the signboard, such as shown in Figure 6.13(b). However, when we used a threshold

method to extract the word as shown in Figure 6.13(c), it is correctly recognized.

With this matching scheme (60 points, 150 indexing clusters, 5 nearest neighbors),

it took 7.52 seconds to process a query over 182 templates on average.
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Figure 6.13: (a)Difficult testing photos in real scene.(b)The edge detection result of
(a). (c) The binarization result of (a).

6.8 Real Scene Compound Symbol Recognition

Traffic signs, were selected in our experiments representatives of compound symbol

comprising of several components. Traffic sign recognition is an extensively studied

area, and has been implemented in Driver Support Systems, making use of a full range

of features including color, shape, and texture. Traffic sign recognition generally

emphasizes on fast recognition speed and robustness to motion blur. Perspective

deformation normally is not a main problem addressed, because the camera on a

vehicle is often far from the traffic sign. However, we chose traffic signs for our study

here for ease of symbol detection and availability of a comprehensive template set.

A subset of a standard traffic sign database4(45 signs with red or blue frames) is

employed as the template set. Both SIFT and Shape Context, with the same setting

in Section IV, are employed for comparison, considering that road signs are more

distinctive to each other than characters.

For a compound symbol with several components, a recognition strategy is to dis-

assemble the symbol into components and then recognizing them separately. However,

this strategy is not employed here, because many traffic sign segmentation algorithms

4http://en.wikipedia.org/wiki/Road signs in Singapore, last modified on 26 Nov. 2008
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Our method SIFT Shape Context
SetI 94.79 72.26 87.89
SetII 92.18 72.39 81.25

Table 6.6: The recognition accuracy of traffic symbols.

such as [dlEMSA97] are already available. We do recommend using an extra segmen-

tation step for multiple-component symbols in order to increase the distinctiveness

of symbols. In particular, although the distance is not directly related to the number

of components in a symbol, more components often lead to greater curvature in a

symbol, and thus traffic signs often have greater average distance as well as greater

distance range among each other than characters.

These 3 photos for each of 100 traffic boards are taken, and examples are shown

in Figure 6.14. Many of them have elevation angles smaller than 20◦, leading to

severe perspective distortion of the traffic boards. In the experiment, we employ a

simple yet effective color thresholding method proposed in [dlEMSA97] to detect signs

with red and blue frames, with hardcoded color boundaries. Desirable traffic signs,

415 in total, are extracted, because some photos have more than one traffic signs.

Then the edge is extracted by Canny algorithm, too. Edges with a length shorter

than e = 0.01 ×
√

s5 are removed, where s is the area of the bounding box. The

parameters used in this experiment are 80 sampled points, 100 indexing clusters, and

3 nearest neighbors, based on a preliminary experiment on synthetic traffic symbols.

The testing dataset comprising of 300 photos is divided into two sets: Set I com-

prising of 256 signs whose sizes are within a 80 × 80 pixel bounding box, while Set

II comprises of the remaining 192 signs. Table 6.6 shows the recognition results for

our method, SIFT, and Shape Context respectively. The recognition performance of

5The setting is changed because usually traffic signs have larger size than real scene characters.
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Figure 6.14: Samples of testing data.

our method is slightly better than character recognition. Two reasons may account

for this. First, traffic signs are more distinctive from each other. Second, traffic signs

used in the experiment have larger size and are more distinct from the white back-

ground, which is good for edge detection. Both SIFT and Shape Context methods

give much better recognition results in this experiment than in the synthetic image

experiment. One possible reason is the distinctiveness of traffic symbols. Another

possible reason is that the perspective deformation appearing in most photos in this

dataset is not as severe as those used in Section IV. In Section IV, characters with

different perspective deformations are evenly distributed. However, due to physical

constrains in real scene, traffic signs with severe perspective deformation are only a

small fraction of the testing data. Figure 6.15 shows the results of rectifying two sym-

bols by our method, SIFT, and Shape Context respectively, using the Least Squares

method to evaluate a transformation model based on the correspondences achieved

by these three methods.

The major noise is caused by edges of shadows and other objects on the traffic

board. For example, Figure 6.16 shows the alignment of a deformed symbol. Short
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Figure 6.15: Rectify photos by the correspondence given by different methods, recti-
fied images are scaled for better viewing purpose. (a) a real-scene symbol (b) by our
method (c) by SIFT (d) by Shape Context (e) the template.

Figure 6.16: Pixel-level correspondence of a template and a deformed query.

edges produced by the shadow and rain drops remain after the preprocessing. In order

to improve the accuracy, a better way to remove this noise should be included. Also,

some part of the contour of the symbol is missing due to low contrast. However, our

method is still able to give a correct alignment. The proposed method is also capable

of giving a correct alignment between similar symbols. An example is shown in Figure

6.17, where the parts beneath the person are different between the two signs. In the

experiment, it took 2.64 seconds to process each query over 45 templates on average.
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Figure 6.17: Pixel-level correspondence of two similar, but not identical, symbols.

6.9 Summary

In this chapter, I have presented a planar character/symbol recognition method based

on a descriptor named Cross Ratio Spectrum proposed by us. In a cross ratio

spectrum, the 3-Dimensional perspective deformation is mapped into 1-Dimensional

stretching deformation, and thus can be solved by Dynamic Time Warping technique.

This method also gives a point-level correspondence between a symbol and its per-

spective form, and thus helps to recover the transform matrix. We have also proposed

a clustering based indexing method to expedite the recognition process. However, one

issue that has not been addressed in this thesis is occlusion. It is a common problem

for all global descriptors, we will address in the future, by exploring to apply the cross

ratio spectrum on a local image patch instead of a whole symbol.
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Conclusion

7.1 Contributions

The main contribution of this thesis is to propose two methods to directly access the

content of imaged text captured by cameras. In contrast to existing textual informa-

tion extraction techniques, both methods totally avoid the perspective rectification

step which takes extra time, causes errors, and fails in the absence of certain text

layout.

In particular, we have proposed a character/symbol recognition technique applica-

ble to real scene images with severe perspective deformation. This method is the first

time to propose a truly perspective invariant solution to shape description. Existing

solutions reduce the degree of difficulty by approximating with an affine deformation.

It is an extremely difficult problem in this field. On one hand, traditional extraction

methods fail to handle perspective deformation. On the other hand, the popular

Affine-invariant descriptors have inadequate discriminating ability for characters and

symbols with simple structures. Although effort has been made to remove perspective

139
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effect from camera-based document images, few solutions can be applied to real-scene

images. Our character/symbol recognition method is capable of directly recognizing

characters with severe perspective deformation. It also manifests robustness to im-

age noise, tolerance to font variation as well as strong discriminating ability among

similar characters. Another significant advantage of this method is its flexibility. By

using universal features, it can be easily extended to other planar symbol set regard-

less of component cardinality. In addition, rectification techniques can be developed

based on the correspondence output by this method. This work should facilitate those

applications of camera-based image processing, which have to deal with severe per-

spective distortion, such as Sign Recognition, Mobile Phone Translator, and Speech

Generator for the visually impaired.

For camera-based document images, we have proposed a word shape coding method,

which is robust to perspective deformation. It is robust to different character styles

and is also resilient to certain font variation. Based on this word shape coding method,

a language identification technique for camera-based document images is developed.

It is an essential step before other retrieval applications can be applied to camera-

based document images in a multi-lingual environment. In addition, when there is no

reliable OCR is available for camera-based document image, this method can be em-

ployed as the alternative of OCR for certain retrieval applications, such as duplicate

detection. It is an application of finding similar or equivalent document images with

camera-based document images as queries. It is as an important task for realizing

digital desk environment.

Another practical contribution of this thesis is to propose methods and construct

tools for the users of the U.S. patent database, providing them with a better patent
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viewing system. In particular, we have proposed a fast word spotting method for

the word spotting module. It is invariant to Euclidean deformation as well as robust

to noises like broken and touching characters. This module will solve the problem

bothering many patent users that they have to wait for a long time before they can

first search within a lengthy patent. Our method speeds up the keyword spotting

by about 30 times than OCR alone, it will give patent users a faster and smoother

keyword spotting experience. Since this method is language independent, it can be

easily adapted to patents in different languages, especially suitable for databases like

the European Patent database with multi-lingual patents. Another advantage of

this method is that it able to estimate the skew angle at word level concurrently

with spotting. Therefore, it may be used for rectifying the image if necessary. More

importantly, it is a promising technique for skew detection for images with sparse text.

In addition, for the U.S. patent database, we have also developed a graphics viewing

system, to connect the captions and labels of figures in the drawing section to their

relevant text description. With the help of this system, a patent user can conveniently

jump from a figure to relevant text or vice versa by clicking corresponding captions

and labels.

7.2 Limitations and Future Work

In this section, I will examine the limitations of the techniques proposed in this thesis,

and make recommendations for further research.

The character/symbol recognition method proposed in Chapter 6 goes some dis-

tance in real-scene character/symbol recognition. However, this method is only ca-

pable to match a real scene symbol or character with its corresponding template or
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at least a visually similar template, thus presenting the limitation that this method

may mis-match symbols with identical identities which have visually diffident ap-

pearances. This happens frequently in character recognition. The appearance of a

character may vary according to different fonts and styles. Widely different fonts

may fail the recognition. For example, we found that Calibri (non-serif) characters

can be correctly recognized if templates are in Arial (non-serif), but may not be

correctly recognized when templates are in Times New Roman (non-serif). Addition-

ally, different styles (Bold and Italic) also put obstacles for recognition. However,

this shortcoming can be overcome by employing more templates. By the clustering

based indexing method presented in Section 6.6, the computational burden increased

by adding more templates can be relieved. In a nutshell, for character recognition,

this method is applicable to scenarios where the perspective deformation is the main

recognition obstacle, the number of characters is relatively small, and the font of text

are already known. For this method, two important issues that leave open by this

thesis is the clustering (multi-component) and occlusion condition. In Chapter 6,

we assumed that the correct segmentation of a multi-component character/symbol is

known. Therefore, the performance of this recognition method is bounded by the seg-

mentation step. However, because of the flexibility of our method, the segmentation

step can be avoided by disassembling a multi-component symbol into components

and then recognizing them separately. Another issue is that our method may not

able to work when the character/symbol is partially occluded. This issue could be

addressed by adapting the global descriptor Cross Ratio Spectrum to a local image

patch. Then we will develop techniques for 3-Dimensional object recognition based

on the optimized descriptor.
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Our word shape coding method presented in Chapter 4 and the holistic word

spotting method introduced in Chapter 5 are widely applicable to document images

retrieval applications, when a fast speed is desired and the exact word information is

not necessary, otherwise OCR is recommended. For these two methods, two issues

should be further investigated. The first issue is to quantitatively assess the ambiguity.

The ambiguity is an important performance indicator of a word shape coding method

or a holistic word spotting method, which indicates the performance boundary of the

method for a specific application. This issue has been left open. A quantitative study

of the ambiguity of both methods will be done. The second issue is the parameter

tuning. Two parameters, namely κ and n, are empirically decided to maximize the

performance in this thesis. Adaptive methods to automatically tune both parameters

will be included.

For the patent viewing system stated in Chapter 5, two essential parts of this

system, namely the word spotting module and the graphics viewing module, have

been implemented. Our immediate aim is to integrate these two modules into one

system. Further work to enhance these two modules will also be done. In particular,

a technique to recognize text content in drawings will be developed. In our current

work, only labels and captions are extracted and recognized. However, other text

content such as DNA sequences and flow charts, which are also essential for indexing

and retrieving drawings, are thrown away. As introduced before, drawing pages of

patents suffer from even more severe skew than text pages. Due to the sparse text

available, existing de-skewing methods cannot be applied to these drawings. However,

our holistic word spotting method is capable of predicating the skew angle at a word

level, and thus it is a promising technique to address this problem.



Appendix A

Four Word Shape Coding Methods

In this appendix, four word shape coding schemes are introduced, in an ascending

order to the number of symbols used in coding method.

A.1 TAN’s method

TAN’s method [THS+03] is based on the vertical bar pattern, and 3 codes are em-

ployed in total. Vertical bars are extracted by pairing up local minimum and local

maximum pixels located on the contour of the word. The mathematic definitions for

the local maximum and minimum is as below:

Given an arbitrary curve f(x), and two open intervals on the curve (a, c) and (c, b)

If f ′(x) < 0 on (a, c), and f ′(x) > 0 on (c, b) then f has a local minimum at

x = c.

If f ′(x) > 0 on (a, c), and f ′(x) < 0 on (c, b) then f has a local maximum at

x = c.

The local maximum and minimum pixels are detected by keeping track of the
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increasing and decreasing trends of the first and the last black pixels in each column.

After that, vertical bars are determined by pairing a minimum pixel and a maximum

pixel, when the x-distance between them is smaller than a threshold T. Further, verti-

cal bars are classified into three categories depending on whether they have ascenders

or descenders. Bars protruding into neither descender nor ascender zones are coded

as ‘m’; bars protruding into only descender zones are coded as ‘q’; bars protruding

into only ascender zones are coded as ‘b’. As shown in Figure A.1, the word “huge” is

converted into vertical bar pattern “dmmmqqm”. Because glitches may appear along

a horizontal stroke edge, some edge smoothing is required before coding. Thus there

are three symbols used in this scheme.

Figure A.1: Extracting the vertical bars from the word “huge” in TAN’s method (the
figure is from [THS+03]).

A.2 LU’s method

LU’s method [LLT08] has 5 codes, namely, hole, ascender, descender, leftward water-

reservoir (leftward WR), and rightward water-reservoir (rightward WR), encoded as
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1, 2, 3, 4, and 5 respectively. For a character, if its code string are unique, the code

string will be further encoded as shown in Figure A.2. For example the code string of

‘a’ is ‘43’, which will be further encoded as ‘a’. For document images suffering from

various types of document degradation, there may exist a large number of character

segmentation errors. In particular, most character segmentation errors result from

the serif text font, which causes problems of touching between characters at the x-line

or baseline positions of text. For example, adjacent characters “rt”, “rf”, and “rn”

are frequently touching at the x-line and baseline position. Touching will produce an

undesirable upward or downward water reservoir, but will not generate any leftward

or rightward reservoirs. The order of feature codes depends on the location of the

feature. Generally, a feature in the left is encoded before one in the right, and a

feature in the top is encoded before one in the bottom. For example, the code string

of the word “shape” is “sIanoe”. The set of code strings for alphabets in English is

shown in Table A.1.

Figure A.2: Features employed in the word shape coding of LU’s (the figure is from
[LLT08]).
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Table A.1: Codes of 52 Roman Letters and digits by using LU’s method.

Characters Codes Characters Codes Characters Codes Characters Codes
a a b lo c c d ol
e e f f g g hlIJLT17 l
i i j j ktK lc mnruvw Nil
p no q on s s o o
y y z z A A xX ic
CG C DO04 O E E B8 B
HMNUVWY ll P P Q Q F F
S S Z Z 2 2 R R
5 5 6 6 9 9 3 3

A.3 SPITZ’s method

SPITZ’s method [Spi94] has 6 codes in total, and is character based, which means it

has a one to one mapping from real English characters to the shape codes. In this

method, character cells are firstly detected by connected component analysis. Each

character cell is then classified by the presence of features like ascender/descender, the

number of components and deep eastward concavity, which is shown in Table A.2.

The feature extraction is based on x-line/baseline detection and concavity feature

detection.

A.4 LV’s method

LV’s method [LT04] is stroke-based too, but has a much more complex code set which

has 29 codes. Firstly, straight strokes and traversal strokes from the word image are

extracted by maximum run-length analysis. Strokes lying in vertical or diagonal
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Table A.2: Mapping of character image to shape codes by SPITZ’s method.
Shape Characters Number of Ascender Descender Deep Eastward
Code Components Concavity
A A-Zbdfhklt 1 YES NO NO
x amnorsuvwxz 1 NO NO NO
e ce 1 NO NO YES
g gpqy 1 NO YES NO
i i 2 YES NO NO
j j 2 YES NO NO

directions are considered as straight strokes, and the residues are traversal strokes as

shown in Figure A.3.

Each stroke is described by a two-tuple (σ, $) , where σ is based on ascen-

der/descender attribute as shown in Table A.3, and $ is based on the shape of

the stroke. For the straight stroke, possible codes for $ are list below:

‘l’: vertical straight stroke line, such as that in the characters ‘l’, ‘d’.

‘w’: left-down diagonal straight stroke line, such as that in the characters

‘v’, ‘w’. ‘x’: one left-down diagonal straight stroke line crosses one

right-down diagonal straight stroke line.

Table A.3: The value of coding for strokes in LV’s method.
Shape Code Ascender X-line Descender
x NO YES NO
a YES NO NO
A YES YES NO
D NO YES YES
Q YES YES YES
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Figure A.3: Primitive string extraction (a) straight line stroke, (b) traversal strokes
(c) traversal TN = 2, (d) traversal TN = 4, (e) traversal TN = 6 (the figure is from
[LT04]).

‘y’: one left-down diagonal straight stroke line meets one right-down di-

agonal straight stroke line at its middle point.

‘Y’: one left-down diagonal stroke line, one right-down diagonal stroke line

and one vertical stroke line cross in one point, like character ‘Y’.

‘k’: one left-down diagonal stroke line, one right-down diagonal stroke line

and one vertical stroke line meet in one point, like character ‘k’.

For traversal strokes, possible codes for $ are based on TN ,namely, the number

of transitions from a black pixel to a white pixel or vice versa:

If TN = 2, two parameters are utilized to assign it a feature code. One is the

ratio of its black pixel number to x-height, κ . The other is its relative position with

respect to the x-line and the base line, ξ = Dm/Db, where Dm is the distance from
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the topmost stroke pixel in the column to the x-line and Db is the distance from the

bottommost stroke pixel to the baseline.

‘n’: κ < 0.2 and ξ < 0.3

‘u’: κ < 0.2 and ξ > 0.3

‘c’: κ > 0.5 and 0.5 < ξ > 1.5

If TN > 2, the feature code is assigned as:

‘o’:TN = 4

‘e’:TN = 6

‘g’:TN = 8

There are only 29 possible combinations of σ and $ in English, and hence each

of the 29 possible two-tuples (σ, $) is represented by a code. The code string for

English characters are shown in Table A.4.
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Table A.4: Primitive code strings of characters in LV’s method.
Ch Code String Ch Code String
a (o,x)(e,x)(l,x) A (w,A)(v,A)
b (lA)(o,x)(c,x) B (l,A)(e,A)(o,A)
c (c,x)(o,x) C (c.A)(o.A)
d (c,x)(o,x)(l,A) D (l,A)(o,A)(c,A)
e (c,x)(e,x)(o,x) E (l,A)(e,A)
f (n,x)(l,A)(u,a) F (l,A)(o,A)(u,a)
g (g,D)(e,D) G (c,A)(o,A)(e,Q)(o,A)
h (l,A)(n,x)(l,x) H (l,A)(n,x)(l,A)
i (l,A) I (l,A)
j (l,Q) J (u,x)(l,A)
k (k,x) K (k,A)
l (l,A) L (l,A)(u,x)
m (l,x)(n,x)(l,x)(n,x)(l,x) M (l,A)(v,A)(w,A)(l,A)
n (l,x)(n,x)(l,x) N (l,A)(v,A)(l,A)
o (c,x)(o,x)(c,x) 0 (c,A)(o,A)(c,A)
p (l,D)(o,x)(c,x) P (l,A)(o.A)(c,A)
y (c,x)(o,x)(cD) Q (c,A)(o,A)(e,Q)(o,D)
r (l,x)(n.x) R (l,A)(o,A)(e,A)(o,A)
s (o,x)(e,x)(o,x) S (o.A)(e,A)(o,A)
t (n,x)(l,A)(o,x) T (u,a)(l,A)(u,a)
u (l, x)( u,x)(l,x) U (l,A)(u,x)(l,A)
v (v,x)(w,x) V (v,A)(w,A)
w (v, x)(w,x)(v,x)(w,x) W (v,A)(w,A)(v,A)(w,A)
x (x,x) X (x,A)
y (y,D) Y (Y,A)
z (z,x) Z (z,A)
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