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Summary

Microarray data has been used in a large number of studies covering a broad range of

areas in biology. Missing values are often encountered when analyzing microarray gene

expression data. However, in many microarray data mining methods, a complete data

matrix is required. It is essential that the estimates for the missing gene expression values

are accurate to make the subsequent analysis as informative as possible.

Although numerous imputation algorithms have been proposed to estimate the miss-

ing values, many of them have limitations. Some algorithms perform well only when

strong local correlation exists, while some provide better performance when data is dom-

inated by global structure. In this study, we first develop nonparametric regression ap-

proach (NPRA) for imputation, which can capture both linear and non-linear relations

between genes. NPRA serves the purpose of exploiting local gene-wise relationships.

The study is further extended to take advantage of relations between arrays to improve

imputation accuracy. Moreover, one drawback of the existing imputation methods is

their lack of robustness in case of outliers in microarray. In order to deal with outliers in

microarray, we employ robust regression based on array components. Robust principal

component analysis (RPCA) imputation method serves the purpose of utilizing global

array-wise relationships.

Furthermore, we construct a missing value imputation framework, which makes use

of the gene-wise correlation by means of nonparametric regression on the one hand, and

vi



Summary vii

exploits the array-wise correlation by virtue of robust regression with array components

on the other hand. By combining the estimates from NPRA and RPCA respectively, we

propose a heuristic algorithm to determine the weighted coefficient for different estimates.

As such, we borrow strength from each method and avoid particular types of systematic

errors.

Finally, most of the imputation algorithms have been evaluated in terms of prediction

error between imputed value and true value, such as normalized root mean squared error

(NRMSE), which does not fully demonstrate the impact of missing values and imputation

on subsequent data analysis. In this study, we focus on investigating the impact on

gene clustering analysis, and justify that clustering accuracy is also a measure to assess

imputation methods.
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Chapter 1

Introduction

A worldwide data explosion is just beginning. Driven by rapid progress of process ability,

the proliferation of data devices, the amount of data in our lives seems to be increasing.

In such a fast changing world, the current convenience and affordability of data storage

solutions coupled with the industry awareness have given rise to dealing with more data.

As a result of the Human Genome Project, there has been an explosion in the amount

of information available about the DNA sequence of the human genome. The emergence of

DNA microarray technology facilitates the identification and classification of this DNA

sequence information and the assignment of functions to these new genes in the past

decade. DNA Microarray allows the collection of data about the expression levels of

thousands of genes simultaneously.

1.1 The Missing Value Problem in Microarray

The explosion in the amount of microarray data confronts the community with new

questions, since these static data alone do not give insight into how genes interact with

each other. Numerous applications based on gene expression data have been developed in

a broad range of areas in biology. For example, regulatory pathway inferring [16, 18, 86]

1



CHAPTER 1. INTRODUCTION 2

provides insights into gene regulations and functions in order to gain an understanding

of the underlying mechanisms of genetic regulation. Another example is functional gene

finding in which the detection of differentially expressed genes is of more interest [69].

There are three main types of microarray data mining for biomedical applications:

Clustering

Gene clustering, the process of grouping related genes in the same cluster,

is at the foundation of different genomic studies that aim at analyzing the

function of genes. Gene clustering methods serve the purpose of interpreting

knowledge extracted from microarray datasets in a meaningful way. However,

the interpretation of co-expressed genes and coherent patterns depends on the

domain knowledge (see for example [23, 25, 44]).

Gene Selection

The selection of significant gene via expression pattern in microarray has

brought community challenges, due to small sample size and large number

of variables (genes). Given a series of microarray experiments for a specific

tissue under different conditions, gene selection serves the purpose of finding

the genes most likely differentially expressed under these conditions. In other

words, we want to figure out which genes best discriminate among the classes

(see for example [20, 67, 90]).

Classification

Microarray sample classification serves the purpose of classifying diseases or

predicting outcomes based on gene expression patterns, and then identifying

the best treatment. Classification of microarray data is an extremely chal-

lenging problem because it usually involves a small number of samples in large

dimension (see for example [31, 32, 46, 56]).
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One hard problem in microarray data mining is the occurrence of missing values in

microarray dataset. This problem may be due to many reasons when certain values in the

datasets are not observed in the data collection process. Many microarray data mining

algorithms for the downstream analyses cannot be applied to data that include missing

values. Many methods for dealing with missing values have been developed so far.

1.2 Background

The data generated in microarray experiments are usually represented by a matrix with

genes in rows and different experimental conditions in columns. Unfortunately, these

matrices often contain missing values (MVs) due to various reasons. For example, the

background and the signal may have similar intensities; the surface of the chip may not

be planar; there may be dust on the slides; the probe may not be properly fixed on the

chip or washed properly; the hybridization step may not work properly.

These above mentioned imperfections in the experimental steps create suspicious val-

ues that are usually thrown away and set as missing [3]. However, many available mi-

croarray analysis algorithms require the dataset to be complete without missing value

[97], as the underlying statistical methodology is based on balanced data [69].

Obviously, one solution to the missing data is to repeat the experiments, but it is costly

and time-consuming. Another one is to remove genes (rows) or experiments (columns)

until no missing value exists. By this way, all the observed values in the corresponding

row have to be discarded for a gene with only a small number of missing values.

For the subsequent analysis, it is important that the estimates for the missing gene

expression values are accurate. Even a small number of badly estimated missing data

may lead to misleading results for methods such as hierarchical clustering [25], k-means

clustering [84], and principal component analysis [66].
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The drawbacks of these simple solutions have stimulated the development of more

refined approaches. It has been proven that if the correlations between genes are taken

into consideration, then missing value prediction error can be reduced significantly [8, 47,

59, 75, 87]. A detailed review of these sophisticated imputation methods will be exhibited

in Chapter 3.

1.3 Statement of the Problem

As we have described in previous section, many methods to deal with missing values

have been developed. Currently many approaches have been developed to recover missing

values, such as k-nearest neighbour (KNN) [87], Bayesian PCA (BPCA) [59], least squares

imputation (LSimpute) [8], local least squares imputation (LLSimpute) [47] and collateral

missing value estimation (CMVE) [75].

Troyanskaya et al. [87] were the pioneers in dealing with missing values in microarray,

by proposing a method called k-nearest neighbour imputation (KNNimpute) in which

the missing values are imputed using the weighted mean values of k most similar genes.

LLSimpute, LSimpute and CMVE methods can be considered as parameter regression

based imputation methods. All of them assume that the relations between predictor gene

and target genes are linear, but actually it is impossible to know exactly whether they are

linear or not. Although many works have been devoted to the missing value imputation,

few studies have been done by employing the property of nonparametric regression. In

our work, we will propose a novel nonparametric regression approach which utilizes both

linear and non-linear relations between genes.

Nonparametric regression approach (NPRA) only takes gene-wise relationships into

consideration. Another problem immediately emerges: how to improve prediction accu-

racy by using array-wise relationships. Only very few studies have considered array-wise

relationships when imputing missing values. Moreover, one drawback of the existing im-
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putation methods is their lack of robustness in case of outliers in microarray. In order to

deal with outliers in microarray, we further exploit array-wise relationships and employ

quantile regression to expect a robust and accurate imputation performance.

Once missing value estimations are done, the next issue is how to assess the per-

formance of different imputation methods. Most imputation methods are evaluated by

measures in terms of prediction error between imputed value and true value, such as

normalized root mean squared error (NRMSE) [10, 48]. Although NRMSE gives an im-

portant measure of performance, it does not fully elucidate the impact of missing values

and imputation methods on subsequent analysis of microarray, such as gene clustering,

classification and significant gene selection. This has attracted researchers’ attention, but

only a few papers devoted to the isssue can be found [21, 60, 69]. In this study, further

investigation of imputation methods’ impact on downstream analysis will be performed.

1.4 Objectives

In Section 1.3, we observed that existing imputation methods have some limitations and

the impact of imputation method on the downstream analysis has not been completely

investigated. The purpose of this study is as follows:

1. To develop nonparametric regression approach by taking advantage of gene-wise re-

lationships, which suggests that only information of the nearest neighbours should

be utilized when imputing a missing entry. Least squares methods and least absolute

deviation method have been successfully employed to capture gene relationships.

This kind of relationships could also be exploited by virtue of nonparametric re-

gression, which captures both linear and non-linear relationships, and may improve

the accuracy of estimates on missing data.

2. To further utilize the array-wise relationships in order to improve prediction accu-

racy, and construct missing value imputation framework by considering both gene-
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and array-wise relationships to achieve maximum accuracy of imputation. The in-

fluence of outliers will also be taken into consideration when dealing with missing

values.

3. To conduct test on the influence in prediction accuracy of factors, such as methods’

parameter, missing rate and pattern, and type of experiment (time series (TS), non-

time series (NTS), or mixed (MIX)). More attention should be paid to the factors

which affect the performance of imputation method most, whereas little will be

focused on the factors to which imputation method is insensitive.

4. To compare our proposed methods with other existing imputation methods, with

regard to different datasets, various missing rates and missing patterns. Different

datasets consist of time series, non-time series and mixed dataset and missing rate

will take value on 5%, 10%, 15%, 20% respectively. However, high missing rate

remains beyond the scope of this research. The missing pattern of both missing at

random (MAR) and missing not at random (MNAR) will be taken into account in

our experimental study.

5. To study the impact of estimation on downstream analysis, such as gene cluster-

ing, classification and statistical algorithms for significance analysis of microarrays

(SAM), prediction analysis for microarrays (PAM) and microarray analysis of vari-

ance (MAANOVA).

The insights from this thesis may help to deal with missing values accurately and

efficiently. The proposed solutions to missing value imputation would hopefully benefit

the bioinformatics community.

1.5 Organization

This thesis contains 7 chapters. In Chapter 2, the missing value problem will be fully

described, in terms of types of microarray, concepts of microarray and the classification
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of missing values. It would present a brief summary of the reasons for missing values and

argue the need for accurate estimates.

In Chapter 3, literature related to this study will be reviewed. This includes the state-

of-the-art work in missing value imputation. Different imputation methods are introduced

and assessed with respect to advantages and drawbacks. The topics in the literature

review also include various evaluation criteria, both theoretical and experimental.

Chapter 4 presents an approach by exploiting the local relationships between genes.

On the basis of KNNimpute, we employ nonparametric regression to capture both linear

and non-linear relations between genes. The factors studied include the type of missing

pattern, different missing rates, and the number of k nearest neighbour genes. Optimal

k is recommended across different types of dataset, which will be subsequently used in

the following chapters.

Chapter 5 proposes a novel method by taking global array-wise relationships into

consideration. Through a dimension reduction scheme known as principal component

analysis, it retrieves some significant array components to represent the whole dataset.

In order to reduce the influence of outliers, robust regression is employed for missing

value estimation. The choice of the optimal number of significant components was stud-

ied, and an evaluation design is recommended in the following chapter. Other factors

studied include the influence of the initial estimate, the robustness to noisy data, and

computational efficiency.

Chapter 6 outlines the construction of missing value imputation framework by taking

into account both gene- and array-wise relationships, and setting up the weight for two

estimates which come from utilizing different relationships. A heuristic algorithm for

determining the weight is proposed. To ensure the validity of this framework, the impact

of missing values and imputation method on gene clustering analysis is also studied.
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Chapter 7 summarizes the studies in this thesis, and suggests some directions for

future work.



Chapter 2

The Missing Value Problem in

Microarray

“Among the many small problems that have yet to be addressed in microarray

analysis, missing data methods stand out in my mind as one of the more press-

ing.” –Gary A. Churchill

With the development of advanced bio-technology, there is an explosive growth in

high-throughput genomic and proteomic data such as DNA microarrays. DNA microar-

rays allow the collection of data about the expression levels of thousands of genes simul-

taneously in particular cells or tissues, giving a global view of gene expression for the

first time [54, 70, 72]. In the past decade, gene expression profile has become a useful

biological resource. This allows for a quantitative readout of gene expression on a gene-

by-gene basis. One-chip microarrays measure expression of up to tens of thousands of

genes, covering most of the human genome.

2.1 Microarray

Microarrays have opened the door of constructing large-scale datasets of molecular infor-

mation. There are many different types of microarrays (called platforms) in use, but all

9
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have a high density and number of biomolecules fixed onto a well-defined surface. In this

section, we will discuss two most commonly used types of microarray and give a brief

description of basic aspects of microarray.

2.1.1 Types of microarray

Different technologies for measuring mRNA expression levels are employed for differ-

ent types of microarray, among which Affymetrix GeneChips and the spotted cDNA (or

oligonucleotide) microarrays are the two most commonly used types of microarray tech-

nology. Microarray in the type of GeneChip is a silicon chip that can measure the ex-

pression levels of thousands of genes simultaneously. This is done by hybridization which

is detected using a fluorescent dye and a optical scanner that can record fluorescence-

intensities values. The scanners and associated software perform various forms of image

analysis to measure and report raw gene expression values. The redundancy in design

used in a GeneChip (i.e., a gene is represented by a set of approximately 20 probe pairs)

prevents the existence of MVs [10].

Spotted cDNA microarrays are microchips with more than ten thousands of spots

where usually each spot corresponds to a unique gene per condition due to cost and

design constraints of spotted cDNA microarray experiments [42]. Thus, the loss at a

spot usually results in the loss of information for a gene, and then leads to a MV in

the gene expression data matrix. There is an exception that double to quadruple spots

are assigned to a particular gene. In our work, we concentrate on cDNA microarrays,

considering the estimation of MVs in gene expression data.

2.1.2 Basic aspects of microarray

In general, there are five basic aspects of microarrays:

1. Preparing DNA chip using the chosen target DNAs;
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2. Generating a hybridization solution containing a mixture of fluorescently labeled

cDNAs;

3. Incubating the hybridization mixture containing fluorescently labeled cDNAs with

DNA chip;

4. Detecting bound cDNA using laser technology and storing data in a computer;

5. Analyzing data using computational methods.

We are obviously interested in 5, but without some knowledge of 1 to 4, we would be in

danger.

2.2 Biological Background

The genome of an organism plays a central role in the control of cellular processes.

All organisms on Earth except viruses consist of cells. For instance, yeast has one cell

whereas human beings have trillions of cells. All cells have a nucleus and there is a

deoxyribonucleic acid (DNA) inside it. With few exceptions, almost every cell in the

body of an organism has the same DNA. DNA has coding segments which are called

genes, and non-coding segments. Genes code for proteins or (less commonly) other large

molecules that do the essential work in every organism.

2.2.1 DNA and gene

DNA is composed of four basic molecules called nucleotides, which are identical except

that each contains a different nitrogen base. Each nucleotide consists of phosphate, sugar

and one of the four bases: Adenine, Guanine, Cytosine, and Thymine (denoted by A,

G, C, and T). The structure of DNA is a double helix, where A forms two hydrogen

bonds with T on the opposite strand, while G forms three hydrogen bonds with C on

the opposite strand. A gene is a region of DNA that controls a discrete hereditary

characteristic, such as birth, growth and so on, usually corresponding to a single mRNA
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Figure 2.1: The central dogma of molecular biology. Information flows from DNA to
RNA by transcription process, and from RNA to protein by translation

carrying the information for constructing a protein. All cells in the same organism have

the same genes, but these genes can be expressed differently at different times and under

different conditions.

2.2.2 The central dogma of molecular biology

The mechanism by which proteins are produced from their corresponding genes is a two-

step process. The first step is the transcription of a gene from DNA into a temporary

molecule known as RNA (ribonucleic acid) which is a long chain of DNA as defined

in biology dictionary. During the second step, translation, cellular machinery builds a

protein using the RNA information as a blueprint. Although there are exceptions to this

process, these steps (along with DNA replication) are known as the central dogma of

molecular biology.

A segment of DNA is copied into a complementary strand of RNA. The process of

transcription is catalyzed by the enzyme called RNA polymerase. Near most of the

genes lies a special DNA pattern called promoter, located upstream of the transcription

start site, which informs the RNA polymerase where to begin the transcription. This is
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achieved with the help of transcriptional factors that recognize the promoter sequence

and bind to it.

Messenger RNA (mRNA) is a kind of RNA molecule that transfers the coding infor-

mation for protein synthesis from chromosomes to ribosomes. Chromosomes are compact

spools of DNA and the set of chromosomes within a cell makes up a genome. These

chromosomes are duplicated before cells divide, in a process called DNA replication. Ri-

bosomes are the center of protein synthesis. They accept mRNA and use transfer RNA

(tRNA) to translate genes into proteins.

Translation occurs after the transcription of DNA to mRNA. The translation of

mRNA into protein depends on adaptor molecules that recognize both an amino acid

and a triplet of nucleotides. These adaptors consist of a set of small RNA molecules

known as tRNA, each about 80 nucleotides in length. The ribosome is a complex of more

than 50 different proteins associated with several structural rRNA molecules. rRNA is

a machinery for synthesizing proteins by translating mRNA. Each ribosome is a large

protein synthesizing machine, on which tRNA molecules position themselves for reading

the genetic message encoded in an mRNA molecule.

When a protein is synthesized, a genetic template is limited to 20 amino acids. Many

proteins, once synthesized, may undergo posttranslational modification. Judging from the

name, this process occurs after translation. In biology dictionary, the process is defined

as follows: a number of proteins are synthesized in an inactive form. They can then be

activated by another protein, a protease, which cuts the inactive protein at specific sites.

This liberates a smaller part of the protein which is now active.
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2.3 Standard Form of Microarray

The microarray dataset is considered in the format of a matrix X = (xij) with m genes

(rows) and n array hybridisations or experimental conditions (columns), with m >> n,

that may contain missing entries. Each row of X represents the expression levels of a

given gene along the n hybridisations and xij represents the expression level of gene i

in array j. Some entry in X may be missing and this is denoted by an addition matrix

M = (Mij) where Mij = 0 if the entry is missing and Mij = 1, otherwise. A particular

gene with MVs to be estimated is called the target gene, whereas the set of genes with

available information for estimating the target gene’s MVs is the set of candidate genes.

2.4 Missing Values

Missing values create much difficulty in scientific research since most data analysis proce-

dures are not designed for them. There have been several published articles focusing on

estimation of missing value for microarray data since 2001, whereas much work has been

devoted to similar problems in many other fields with varying degrees of sophistication.

The question has been studied in the context of non-response issues in sample surveys

and missing data in experiments by Little and Rubin [64]. The rows with missing values

can be utilized for further analyses after the imputation of the missing values.

There are many different algorithms for imputation: hot deck imputation and mean

imputation [64], regression imputation [80], cluster-based imputation [7], and tree-based

imputation [49], maximum likelihood estimation (MLE) [19], and multiple imputations

(MI) [41]. Statisticians and other researchers not only have invented numerous methods

for handling missing data, but also have invented many forms of missing data. In the next

section, we will elaborate on the classification of missing values. Many researchers have

been devoted to better understanding and modeling of real-life missing data mechanisms.

As far as microarray is concerned, the presence of missing values constitutes a problem
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of crucial importance for downstream data analyses, since many employed methods re-

quire complete matrices. The downstream processing methods which include supervised

learning algorithms [12, 31] and unsupervised approaches, such as clustering methods

with the Hierarchical Clustering (HC) [21], the k-means [34] and the Self-Organizing

Map (SOM) [82, 84], have been applied to the analysis of gene expression data as well.

Other statistical analysis methods applied to microarray are principal component analysis

(PCA) [30], independent component analysis (ICA) [68] and singular value decomposition

(SVD) [4].

2.5 Statistical Classification of Missing Values

Missing values are certain values in microarray datasets that are not observed. It occurrs

in the phase of data collecting for various reasons, such as administrative error, defective

technique, or technology failure. For example, an intended replication may be omitted, a

feature of the robotic apparatus may fail, a scanner may have insufficient resolution, or

an image may be corrupted [51].

It is beneficial to classify missing values on the basis of the mechanism that produces

them. Roughly all of the causes of missing values can be classified by the following

classification system, which is based on the relationship between the missing values and

data points that have been observed [64].

Missing Completely at Random(MCAR)

MCAR means that missingness is independent of their own unobserved values

and the observed data. That is to say, it arises from chance events that are

unrelated to the nature of the investigation. For instance, a spot in microarray

is obscured accidentally by a dust particle.

Missing at Random(MAR)
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Missingness does not depend on their own unobserved value but does depend

on the observed data. This class requires that the cause of the missing data

be unrelated to the missing values, but may be related to the observed values.

MAR represents a weakening of the assumptions of MCAR.

Missing not at Random(MNAR)

In this class, the missing data mechanism is related to the missing values.

Missingness depends on their own unobserved values. It usually occurs when

the raw intensity values are zero or small. For example, spots show no fluo-

rescence or have undefined log-intensities because their background-corrected

intensities are negative.

Some researchers reported that the proportion of MVs in some microarray dataset

is very severe. For example, Brevern et at. [21] pointed out that the percentage of

gene profiles with at least one MV can be higher than 85%. Since most microarray

data analyses only accept complete expression values, the gene expression levels have to

be preprocessed in order to impute the missing values before the data analysis. In the

following chapter, I will give an overview of the techniques of missing value imputation

in microarray. I will also analyse the advantages and disadvantages of each imputation

method to facilitate the understanding.



Chapter 3

Literature Review

In the past decade, statisticians and biologists have invented more than a dozen of meth-

ods for dealing with missing values in microarray. This chapter overviews the techniques

of missing value imputation in microarray which could be categorized based on the level

of complexity.

Simple approaches

Simple approaches to deal with missing values mainly include leaving out the

genes containing missing values from further analysis although it will usually

lose too much useful information, repeating the experiments although this

strategy can be expensive and time-consuming, and imputing the missing

values by zero or row average although it might lead to high estimation errors

[87] due to not taking the gene (or array) correlations into consideration.

Sophisticated approaches

It has been proven that if the correlations between genes are considered, then

missing value prediction error can be reduced significantly [8]. Generally,

missing value estimation problem has two parts: selection of genes for esti-

mation and design of an imputation rule. Currently many approaches have

17
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Table 3.1: Classification of sophisticated imputation methods

Category Imputation methods Time of proposal
Cluster-based methods KNNimpute [87] 2001

SKNN [48] 2004
WeNNI [45] 2004
GMCimpute [60] 2004
Multi-stage approach [98] 2007

Regression-based methods SVDimpute [87] 2001
LSimpute [8] 2004
LLSimpute [47] 2005
CMVE [75] 2005
PLSimpute [58] 2004
SVRimpute [95] 2006
LADimpute [14] 2006

Bayesian methods BPCA [59] 2003
Bayesian gene selection [103] 2003

Iterative methods IKNNimpute [10] 2007
ILLSimpute [13] 2006
IPLSimpute [9] 2006

External biological knowledge GOimpute [88] 2006
incorporated POCSimpute [28] 2006

iMISS [37] 2006
Others LinCmb [43] 2005

SEQimpute [92] 2007
Meta [42] 2007
FRAA [27] 2006
IFRAA [26] 2006
LinImp [69] 2005

been developed to recover missing values. Depending on the gene selection

process and characteristic of the imputation rule, sophisticated imputation

approaches can be differentiated into several classes, as shown in Table 3.1.

3.1 Classification of Imputation Methods

Since there are voluminous sophisticated research works in dealing with missing values

in microarray, it is useful to provide a classification table for better understanding and
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comparison. Table 3.1 puts imputation methods into six groups and describes the papers

that will be reviewed in the following sections.

3.2 Methods for Dealing with Missing Values in Mi-

croarray

Owing to the high number of genes and arrays involved with missing values, we need to

use some method to impute the missing values as accurately as possible before continuing

subsequent microarray data mining.

3.2.1 Cluster-based imputation methods

k-nearest Neighbor Imputation

Troyanskaya et al. [87] were the pioneer in dealing with missing values in microarray

data by proposing KNNimpute and SVDimpute. KNNimpute method can be regarded

as an improved hot deck imputation method [40] that uses the weighted average val-

ues of most similar genes for estimating missing values. Measures for gene similarity in

KNNimpute method include Euclidean distance, Pearson correlation and variance min-

imization. Although both Pearson correlation coefficients and Euclidean distance are

likely to be influenced by outliers, they concluded that the latter measure is adequate

based on their experiments since log-transforming the data reduces the effect of outliers

on gene similarity determination.

Given target gene xT
t , k-nearest neighbor genes xT

si
(i = 1 . . . k) are first taken from

matrix X except any genes that have the same missing position with xT
t . The distance

between target gene xT
t and neighboring gene xT

si
is defined as:

dtsi
= D(xT

t ,xT
si
) = { 1

ntsi

n∑
j=1

[xtj − xsij]
2mtjmsij}1/2, i = 1 . . . k, (3.1)



CHAPTER 3. LITERATURE REVIEW 20

where ntsi
=

∑n
j=1 mtjmsij is the number of jointly available values between xT

t and xT
si
,

mtj and msij are missingness values for xtj and xsij respectively. The weight of gene xT
si

for estimation is calculated as follows

wsi
=

1
dsi

k∑
i=1

1
dsi

, i = 1 . . . k. (3.2)

Equations (3.1) and (3.2) show that contribution of each neighboring gene is weighted by

the distance of its expression to that of target gene xT
i .

Currently, there is no absolutely golden rule for the selection of k. A small k will

overemphasize a few dominant genes in estimating the missing values, whereas a large

k leads to including the genes that have little or even no correlation with target gene.

Troyanskaya et al. suggest that KNNimpute is relatively insensitive to the exact value

of k within the range of 10-20 neighbors [87]. The rationale behind KNNimpute is that

those genes closest to the target gene are the most informative, since the missing values in

target gene are more likely to behave similarly to that of the neighbor genes. KNNimpute

performs well especially when the local correlation is strong. Even though KNNimpute

might miss considering negative correlations between genes, which could lead to estima-

tion error [75], it is still the most widely used imputation method due to its simplicity,

efficiency and availability. It is the only imputation method implemented in SAM, PAM

and MAANOVA [69].

One more issue to clarify is that some authors [51, 60] describe KNNimpute where

neighbor genes are not allowed to have any missing values. This might result in a problem,

especially in datasets with many missing values, because only a few or no neighbors are

free of missing values and the imputation will become poor or impossible in the worst

case.

Brás et al. [9] proposed a new version of KNNimpute, which takes advantage of

array-wise relationships rather than gene-wise relationships. In their method, the gene
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expression matrix X is first transposed before implementing the available KNNimpute

software. They call their proposed method KNNarray in the sense that a missing value

xij in X is estimated by a weighted average of the corresponding ith position of the k

similar arrays.

Sequential k-nearest Neighbor Imputation

Kim et al. [48] developed a cluster-based imputation method called SKNN whose main

characteristic is to utilize previously imputed values for later imputation. SKNN method

imputes the missing values sequentially from the gene having least missing entries after

sorting the genes according to the missing rate. During each iteration, the gene containing

the least number of missing values is chosen as the target gene, and KNNimpute is

applied to estimate the missing values in this target gene where only those genes who

have no missing values or whose missing values have already been imputed are regarded

as candidate genes. Although it uses the imputed values for later imputation, it exhibits

practical usefulness in resuming the data originating from microarray experiments which

have high missing rate.

Weighted nearest neighbors imputation method

WeNNI includes a measure of spot quality to improve the accuracy of the missing

value imputation. WeNNI differentiates itself from other imputation methods in that

it adopts continuous spot quality weight, whereas most traditional missing imputation

methods consider spots to be of binary value, either missing or present, depending on a

cutoff separating poor spots from good spots [45]. However, WeNNI can only outperform

KNNimpute and row average. The main contribution of Johansson et al. [45] is that

they bring the idea of spot quality to the community, which could be generalized in other

methods.

GMC Imputation

Ouyang et al. [60] introduced an imputation method based on Gaussian mixture
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clustering (GMC) and model averaging that has smaller RMSE than KNNimpute and

SVDimpute. The assumption for GMCimpute is that microarray data are generated by

a Gaussian mixture of some number of components. For each missing value, an estimate

is first made from each of the components in the mixture, and then the estimate by

the mixture is a linear combination of the component-wise estimates, weighted by the

probabilities that the gene belongs to the components. The final estimate by GMCimpute

is the average of the estimates by several mixtures.

The main contribution of Ouyang et al. [60] is that they examined the bias introduced

by imputation to clustering by means of calculating the number of mis-clustered genes.

This measures the difference between clustering with true values and that with imputed

values, providing another evaluation metric besides root mean squared error. Their paper

is one of the few papers that study the impact of missing value on subsequent microarray

analysis, such as clustering.

A Multi-stage Approach to Clustering and Imputation

Wong et al. [29] described an alternative approach to the clustering of microarray

data, leading to an associated imputation method. This method is motivated by Godfrey’s

work where two-stage clustering has been successfully used in genotype-by-environment

analyses with missing data.

3.2.2 Regression-based imputation methods

In this section, a survey of the major regression-based imputation methods is given.

There are numerous regression-based imputation methods based on different regression

rules, i.e., PCA regression, linear regression, partial least squares regression, etc. A brief

description of each method follows.

Singular Value Decomposition Imputation

One of the important characteristics of SVDimpute is that it attempts to utilize the
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global information in the entire matrix when predicting the missing values, in contrast

to the KNNimpute which takes advantage of the local pairwise relations between genes.

The basic idea underlying this method is to find the dominant components, which in

this case is identical to principle components of the whole gene expression matrix, and

then to predict the missing values in target genes by regressing against these dominant

components.

If we perform singular value decomposition [96] to the m × n matrix X, m > n, X

will be expressed as the product of three matrices,

Xm×n = Um×mΣm×nV
T
n×n , (3.3)

where the m×m matrix U and the n×n matrix V are orthogonal matrices, and matrix

VT now contains n eigengenes, and Σ is an m× n matrix that contains all zeros except

for the diagonal σi,i, i = 1, · · · , n. Holter et al. [36] concluded that the product of the

first two or three columns of UΣ and the corresponding rows of VT can capture the

fundamental patterns in cell cycle data.

As just mentioned, there are n eigenvalues on the diagonal of matrix Σ corresponding

to eigengenes in VT . In SVDimpute, once these diagonal elements are rank-ordered

and the k most significant eigengenes are selected, the missing value is estimated by

first regressing gene i against these k eigengenes, and then using the coefficients of the

regression to reconstruct xij from a linear combination of the k eigengenes [87].

SVDimpute requires a complete data matrix without missing values, and therefore

missing values need to be given initial estimates by other methods, such as row average,

before applying SVDimpute. Then SVDimpute repeatedly performs SVD on the imputed

matrix, until the root mean squared error between two consecutive imputed matrices falls

below a given threshold, such as 0.01.

SVDimpute is the pioneer method using global information. Further development
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based on global information includes the introduction of Bayesian estimation into prin-

cipal component analysis [59], partial least squares [58], a covariance-based method to

rank genes [76] and support vector regression [95]. Thus, SVDimpute performs well when

global structure exists in the expression data.

Least Square Imputation

Hellem et al. [8] proposed regression-based method LSimpute which is based on the

least squares principle and utilizes correlations between genes or arrays. The least squares

principle is based on minimizing the sum of squared errors of a regression model. Missing

values are imputed as the weighted average of the predicted values from the regression

of genes with missing values against each highly correlated gene. The highly correlated

genes are selected based on the absolute Pearson correlation, and the weight assigned to

each similar gene is as follows,

wi = (
r2
yxi

1− r2
yxi

+ ε
)2 , (3.4)

where ε=10−6, ryxi
is the Pearson correlation coefficient between target gene and neigh-

bour gene.

LSimpute performs best when data have a strong local correlation structure as demon-

strated by three example datasets [8]. Although it differentiates from KNNimpute in the

sense that they have two different ways to choose the nearest neighbours, it has the same

order of computational complexity as KNNimpute.

Local Least Square Imputation

LLSimpute method [47] is also a least squares based imputation method, where a tar-

get gene that has missing values is represented as a linear combination of similar genes.

However, it should be noticed that LLSimpute and LSimpute use different approaches

for imputation, although both are least squares related. LSimpute method explores uni-



CHAPTER 3. LITERATURE REVIEW 25

variate linear regression, while LLSimpute method employs multivariate linear regression

using all k nearest neighbours.

The missing values are imputed on the basis of the least square estimates, determined

by the pseudoinverse of the k nearest neighbours expression matrix [47]. When the miss-

ing rate is relatively small, the neighbour genes with MVs will be excluded from the least

squares system. If the percentage of MVs is high, MVs are initially estimated by the

row average. The main contribution of Kim and his colleagues is that they proposed a

heuristic algorithm for estimating parameter k which makes LLSimpute look like a non-

parametric missing value estimation method, such as BPCA. A drawback of LLSimpute

is that when the patterns of gene expression are highly correlated, multi-collinearity is

probably the main cause for its poor performance.

Collateral Missing Value Estimation

CMVE employs covariance function to capture both positive and negative correlation

between genes, and introduces multiple parallel estimates of missing values. The final

imputed value is a weighted average of three estimates for the missing values [75],

χ = ρ · Φ1 + ∆ · Φ2 + Λ · Φ3 ,

where ρ = ∆ = Λ = 0.03 ensures an equal weight to the respective estimates Φ1, Φ2

and Φ3. These estimates are calculated using the k genes with highest covariance to the

target gene through least square regression and linear programming methods.

Partial Least Square Imputation

Nguyen et al. [58] employed partial least squares to impute the missing values. Since

the number of samples is much smaller than the number of genes in the training data,

dimension reduction is necessary. PLSimpute first selects linear combinations of genes

(referred to as components), showing high covariance with the gene having MVs. The
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first linear combination has the highest covariance with the target gene, and subsequent

steps seek the strongest mode of candidate and target gene covariation in a direction

orthogonal to the previously selected components until a total number of Kp components

are selected. The missing values are estimated by regressing the target gene against the

Kp PLS gene components. In practice, MVs are first imputed by initial estimates from

KNNimpute since XA
−j is required to be complete. Their results showed that PLSimpute

provides improvement in accuracy over some ranges of expression values where KNNim-

pute did not perform well.

SVRimpute

Wang et al. [95] proposed a method based on the support vector regression (SVR) to

estimate the missing values and use orthogonal input coding scheme to address the issue

of multiple missing entries in one row of certain expression profile. Because the SVR can

estimate only one missing value in a row at one time, in the case of more than one missing

entry in one row, they successfully employed orthogonal input coding scheme. Their idea

is novel in the sense that it utilizes multi-missing values in one row of a certain gene

expression profile and imputes the missing value into a much higher dimensional space,

in order to obtain better performance.

Least Absolute Deviation Imputation

Cao and Poh [14] proposed a novel imputation method employing least absolute devi-

ation estimate, referred to as LADimpute, to impute missing entries in microarray. The

proposed LADimpute method also takes into consideration the local similarity structures

in addition to employment of least absolute deviation estimate. Once those genes similar

to the target gene with missing values are selected based on Euclidean distance or Pearson

correlation coefficient metric, all missing values in the target gene can be estimated by the

linear combination of the similar genes simultaneously. The experimental results show

that LADimpute exhibits its robust performance over some datasets with high missing



CHAPTER 3. LITERATURE REVIEW 27

rate or noise level.

3.2.3 Bayesian imputation methods

Bayesian PCA imputation

BPCA method consists of three elementary processes that are principal component

(PC) regression, Bayesian estimation and expectation maximization (EM)-like repetitive

algorithm. In PC regression, missing values Gmiss in G are estimated from those genes

having no missing value Gobs by using the PCA result. Bayesian estimation obtains the

posterior distribution of θ and X by Bayes theorem:

p(θ,X|G) ∝ p(G,X|θ)p(θ) , (3.5)

where p(θ) is a prior distribution.

Variational Bayes (VB) algorithm, which is similar to the EM algorithm, is used to

execute Bayesian estimation for both model parameter θ and missing values Gmiss. It

obtains the posterior distribution for θ and Gmiss, q(θ) and q(Gmiss) respectively. Finally,

the missing values in the expression matrix G are estimated to the expectation with

respect to the estimated posterior distribution [59]:

Ĝmiss =

∫
Gmissq(Gmiss)dGmiss , (3.6)

q(Gmiss) = p(Gmiss|Gobs, θtrue) . (3.7)

BPCA also depends on the number of principal axes (eigenvectors) k, similar to KN-

Nimpute. But Oba et al. [59] proposed a formula to calculate the value of k, which is

k = n − 1, where n is the number of samples. A slight drawback of BPCA is that the
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convergence rate can be so slow that the computation process may take hours. Moreover,

BPCA might not be very accurate if genes have dominant local similarity structures due

to the assumption of only a global covariance structure.

Bayesian Gene Selection

Zhou et al. [103] proposed a missing value estimation method from the viewpoint of

linear or nonlinear regression with Bayesian variable selection. They pointed out that

the genes selected by KNNimpute are not necessarily among the best choices for linear

prediction of the target gene because the gene selection and missing value estimation

are treated as two independent procedures, namely using two different models. On the

basis of this motivation, in their study they formulated the gene selection problem as a

linear or nonlinear regression with Bayesian variable selection [50, 79], and then devised a

Gibbs sampler to solve it. They aimed at the auto-selection of the number of the nearest

neighbor genes, and then both linear and nonlinear regression are used for the estimation

rule. The procedure for the fast implementation has been developed for the essential

steps of the algorithm.

3.2.4 Iterative imputation methods

With similar modifications to KNNimpute, LLSimpute and PLSimpute, some imputation

methods implement iterated imputation intending to improve the quality stepwise. The

iterative procedure reimputes the missing values using the imputation results from the

last iteration for a given number of iterations or until the imputed values converge.

In ILLSimpute, Cai et al. [13] found that it is not wise to set a uniform number

of similar genes for all target genes, regardless of the quality difference for different

target genes. Instead, they proposed to set up a distance ratio threshold to cut off

dissimilar genes. Only candidate genes whose distances to target gene lie within the

threshold are considered as similar genes. A limitation of the ILLSimpute method is that
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its implementation produces inconsistent results in some cases, which result in a large

variation among the replicate datasets [89].

With the aim of improving the MVs estimates, Brás et al. [9] proposed IPLSimpute

by employing an iterative procedure to PLSimpute, and concluded that the use of iter-

ation can refine the MV estimates in the presence of high proportion of missing entries,

since it minimises the bias incurred by the initial estimates. Later, they also extended

KNNimpute method to IKNNimpute, and studied the effect of missing value estimates

on the subsequent analysis, i.e., the differential analysis of gene expression, in addition

to using normalized root mean squared errors measure.

3.2.5 External biological knowledge incorporated methods

All of the above imputation methods are solely based on the gene expression datasets

themselves and make no use of domain knowledge.

GOimpute [88] is the first algorithm that utilizes external information on functional

similarities embedded in the Gene Ontology (GO) databases, in addition to expression

data similarity, to facilitate the missing value estimation. GOimpute method is generic

in the sense that it describes an imputation framework, with emphasis on the selection of

neighbor genes. It outperforms KNNimpute especially in the case of limited number of

arrays or at high missing percentage. However, GOimpute failed to improve LLSimpute,

due to the limitation on the number and accuracy of the gene functions annotated in

gene ontology databases.

Integrative Missing Value Estimation method (iMISS) [37] incorporates information

from multiple reference microarray datasets to improve missing value estimation. This ap-

proach takes advantage of the conserved gene expression patterns among multiple datasets

to enhance the neighbor gene selection. However, it is difficult to find a set of genes that

shows consistent expression similarity to the target gene over multiple datasets.
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Unlike GOimpute and iMISS which mainly improve neighbor gene selection through

external information, POCSimpute [28] exploits the biological phenomenon of synchro-

nization loss in microarray experiments, which is a common phenomenon in cyclic sys-

tems. However, the convex sets based on cyclic loss property are only applied well for time

series microarray dataset and degenerate for a dataset without cyclic loss phenomenon.

3.2.6 Others

The literature focusing on missing values in microarray and algorithms to recover them

have been increasing in the last several years. There are some imputation methods which

are not put in the above five categories, e.g., LinCmb [43], FRAA [27], Meta [42], LinImp

[69] and SEQimpute [92]. The increasing number of papers suggests the importance

of estimating missing values, which has drawn a lot of attention from the community.

Among these imputation methods, how do researchers determine the best method to

use for imputing missing values? The following section details this further from the

perspective of evaluation criteria.

3.3 A Review on Evaluation Criteria

This section summarizes the evaluation criteria for the above algorithms, based on both

theoretical and experimental foundations.

3.3.1 Theoretical evaluation

Missing value imputation methods can be evaluated on the following criteria:

1. accuracy,

2. robustness,

3. real impact on subsequent analysis,
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4. computational cost.

Accuracy is tested by calculating prediction error between actual values and imputed

values after missing values are estimated. It reflects the degree of recovering the missing

values. The smaller the prediction error, the better the imputation method. Robustness

means whether the imputation method is sensitive to different types of datasets, various

missing rates, or different missing patterns.

After imputation, what attracts our interest is the impact on subsequent microarray

data mining process. Lastly, we have to mention computational cost, also called compu-

tational burden. How much time does it take to finish imputation? For example, iterative

methods are normally taking more time to impute missing values than non-iterative meth-

ods. The smaller the computation time, the more preferable the method. Currently with

the advanced computer hardware, computational cost is not a top priority in terms of

evaluation criteria. That is the reason why we put it last in the list of evaluation criteria.

In order to evaluate the performance of imputation methods, a portion of missing val-

ues are introduced by knocking out values in the complete dataset in the pattern of MAR

or MNAR, introduced in Section 2.5. Hence, we know yreal because the missing entries

are artificial, and the procedure of producing artificial missing entries will be described

in detail in Section 3.3.2. Specifically, accuracy can be calculated in the following ways:

Normalized Root Mean Squared Error(NRMSE)

NRMSE =

√
mean[(yguess − yreal)2]

V ar(yreal)
, (3.8)

where yguess and yreal are estimated values and actual values respectively. The

mean and the variance are calculated over missing entries in the complete

matrix. Note that when the expression matrix is given, V ar(yreal) is given as

a constant. Thus according to the definition of NRMSE, a smaller NRMSE
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value indicates a better imputation quality.

Most of the existing methods use this measure to evaluate the accuracy of

the imputation methods, as in BPCA and LLSimpute, which allows direct

comparisons of imputation accuracy across different datasets. Troyanskaya et

al. [87] normalize the RMSE in a different way, dividing it by the average data

value in the complete dataset. Ouyang et al. [60] normalize the RMSE by

dividing it by the root mean square of all the values in the complete dataset,

while Bφ et al. [8] do not normalize, and just take RMSE as evaluating

measure.

Robust Normalized Squared Error(RNSE)

RNSE =

√
median[(yreal − yguess)2]

mad(yreal)
, (3.9)

where yreal and yguess are the vectors of actual and estimated values, respec-

tively and mad is defined as

mad(yreal) =
median|yreal −median(yreal)|

0.6745
.

Squared Pearson Correlation Coefficients(R2)

Besides NRMSE and RNSE, Pearson correlation coefficients are used to eval-

uate imputation methods. NRMSE provides the accuracy on average, but

the accuracy across each array is unlikely to be uniform and this is revealed

by Pearson correlation coefficients. Pearson correlation coefficients are calcu-

lated between imputed data and complete data for each array, as shown in

[48] and [10]. From this evaluation, we could assess how the data structure of

each array will be preserved after imputation.
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Paired T-test

The performance of two different imputation methods (or the same imputation

method with different parameters) can be compared using t-test. The purpose

of using t-test is to test whether the prediction errors obtained by method A

are significantly smaller on average compared to the prediction errors obtained

by method B, assuming that method A leads to more accurate results than

method B. Considering the residual from two methods εA = yreal − yA
guess

and εB = yreal − yB
guess, where yA

guess and yB
guess are the estimated values using

method A and method B respectively, εA and εB are the prediction errors

for two methods. By taking the difference di = |εA
i | − |εB

i | for each missing

value (i = 1, 2, · · · , N , where N is the number of missing values), we can test

whether the average difference in terms of prediction error

d̄ =
1

N

N∑
i=1

di

is significantly larger than zero [8].

Wilcoxon Signed Rank Test

This measure is to test the bias on the imputation method, whether it gives

a consistent underestimation or overestimation of the true values. Consider-

ing the residuals ε = yreal − yguess of a given imputation method, the null

hypothesis (H0) states that negative and positive residuals are equally likely

[78].

Wilcoxon signed rank test is a nonparametric alternative to the paired t-

test, which is similar to the Fisher sign test. This test assumes that there is

information in the magnitudes of the differences between actual (yreal) and

imputed (yguess) values, as well as the signs. One can get the statistic by means

of taking the paired yreal and yguess, calculating the differences ε, ranking them
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from smallest to largest by absolute value, and then adding all the ranks

associated with positive differences. Finally, the p-value associated with this

statistic is found from an appropriate table.

3.3.2 Experimental evaluation

To evaluate the performance of imputation methods, we need a complete dataset on which

simulation study can be conducted. The original dataset always has missing values. In

order to compare and validate imputation methods, a clean dataset without missing

values is formed by discarding those genes with missing values from the original dataset.

In some cases, when the missing percentage in one particular array is too high, that array

is deleted before removing the genes with missing values [47]. After having the complete

data, a specific percentage of the entries will be labeled as missing in the complete dataset,

pretending that they are missing. Finally, we recover these missing values by applying

imputation method. The whole experimental evaluation workflow can be demonstrated

in Figure 3.1.

There are various missing data patterns, including missing completely at random

(MCAR), missing at random (MAR), and missing not at random (MNAR), which are

illustrated in detail in Section 2.5. MAR pattern applies well in the cases in which missing

entries are caused by effects such as irregularities in the spot production, hybridization

failure, dust on the chip, etc., and they will have random distribution. Each of the

existing imputation methods dealing with missing values in microarray considers missing

at random (MAR) pattern, while only a few papers test the performance of imputation

method in terms of MNAR pattern [9, 10, 75], since missing not at random is the most

complicated situation.

In this situation, the missingness depends on the expression value that are not ob-

served. If the signal is too low, or the image processing software used for spotted cDNA

microarrays flags out signals that cannot be distinguished from the background, missing
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Figure 3.1: The workflow of experimental evaluation on imputation method
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entries are not introduced randomly in such cases, but instead missing pattern depends

on the signal intensity, leading to MNAR scenario. That is to say, randomly introduced

missing values may not truly reflect the nature of actual microarray data missing pattern.

Sehgal et al. [75] tried to retain the same distribution of missing values as in original

dataset by proposing a delay function. Brás et al. [10] considered a mixture pattern of

missing at random and not at random which appears to be close to the realistic missing

data patterns, i.e., an abnormally high frequency of missing values in some arrays. There

are complex statistical issues associated with MNAR, but how to reflect the actual missing

pattern in the simulation study still remains open. More methods or procedures need to

be proposed and investigated.



Chapter 4

Nonparametric Regression Approach

for Imputation Based on Gene-wise

Relationships

Chapter 4 focuses on proposing a nonparametric regression approach (NPRA) to ad-

dress the missing value problem. This method takes into consideration non-parametric

regression as well as k-nearest neighbour method. In Section 4.1, very basic knowledge

about nonparametric regression is introduced and important attention is given to kernel

regression. Section 4.2 presents the rationale behind NPRA and Section 4.3 provides

the notations used and describes the algorithm of NPRA in detail, demonstrating the

case of both single missing entry and multiple missing entries in a gene. In Section 4.4

and Section 4.5, a comprehensive comparison of NPRA and other existing imputation

methods is conducted under different scenarios and then results are analyzed by means

of different evaluation metrics. Section 4.6 concludes this chapter with a summary.

37
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4.1 Introduction

Many approaches have been developed to recover missing values, such as least square im-

putation (LSimpute) [8], local least squares imputation (LLSimpute) [47] and collateral

missing value estimation (CMVE) [75]. These three typical regression-based methods

exploit the local similarity of structure between genes. All of them are based on the as-

sumption of linear relations between genes. However, the cold stress response experiment

clearly shows a non-linear behaviour in gene expression data [71]. Zhou et al. [102] also

found some genes showing a strong nonlinear property and employed non-linear models

to impute missing values by means of Bayesian variable selection [103].

This chapter focuses on the employment of nonparametric regression model to cap-

ture both the linear and non-linear relations between genes [55]. Regression analysis is

perhaps the most widely used tool in data analysis. We first briefly outline paramet-

ric regression and then move quickly to nonparametric regression. The most popular

parametric regression model so far is the linear regression model [65] given by

yi = β0 + X ′
iβ + ei , i = 1, · · · , n , (4.1)

where Xi ∈ Rq, and β is a q × 1 vector of unknown parameters, whereas a more general

nonlinear regression model is described as follows

yi = f(Xi, β) + ei , i = 1, · · · , n , (4.2)

where f(·, ·) has a known functional form with β again being a vector of unknown parame-

ters. For example, Zhou et al. [102] posit a model of the form f(x, β) = exp(x′β). Having

specified the functional form of the regression model up to a finite number of unknown

parameters, methods such as ordinary least squares or nonlinear least squares could then

be used to estimate the unknown parameter vector β in (4.1) or (4.2) respectively.
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Since parametric methods require practitioners to specify the exact parametric form

of the model prior to estimation, one must confront the case that the model may not

be consistent with the data. Nonparametric regression models allow one to analyze data

without any prior knowledge about the data. In Section 4.1.1, we will introduce the

theory of nonparametric regression.

4.1.1 Nonparametric regression

One of the main aims of nonparametric regression is to reflect an important structure

in the data without any assumption about the data. Rather than presume one knows

the exact functional form of the model, one assumes the model satisfies some regularity

conditions such as smoothness and moment conditions. One important characteristic of

nonparametric regression is the need to have more data to achieve the same degree of

precision as a parametric regression model.

The general nonparametric regression model is written in the following manner

yi = f(X ′
i) + ei = f(xi1, xi2, . . . , xiq) + ei , i = 1, . . . , n , (4.3)

where f(·) is a smooth and continuous but unspecified function and ei is the normally

distributed error with mean 0 and variance σ2. Moreover, the objective of non-parametric

regression is to estimate the regression function f(·) directly rather than to estimate

parameters. In simple words, one assumes that yi has relation with X ′
i. The relation

might be linear or non-linear, but we do not know it exactly.

An important special case of the general model is nonparametric simple regression,

where there is only one predictor

yi = f(xi) + ei , i = 1, . . . , n . (4.4)
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If f(·) is a smooth function, then one can estimate f(·) with f̂(·) nonparametrically using

kernel methods [24].

4.1.2 Kernel estimator

In (4.4), there is single regressor and kernel regression can be employed to estimate

function f(·). Very similar to parametric regression, a weighted sum of the yi is used to

obtain the fitted values as the following,

ŷi(ker) =
n∑

j=1

wij(ker)yj , (4.5)

and

wij(ker) =
K[(xi − xj)/h]

n∑
j=1

K[(xi − xj)/h]
, (4.6)

where K(u) is called kernel function and h > 0 is called bandwidth.

Note that equation (4.5) can be thought of as calculating f̂(xi) for i = 1, . . . , n. Each

of the n data points is assigned a distinct weight wij(ker), j = 1, . . . , n, for any point

of xi. K(u), the kernel function, is a decreasing function of ‖u‖. A close examination

of the equation (4.6) lends some insight into the weighting scenario, that is, the points

closest to xi receive more weight than those more remote from xi. The kernel function

should be symmetric and the bandwidth, h, is a smoothing parameter, which determines

how fast the weights decrease as the distance from xi increases. The rate at which the

weights decrease relative to the locations of the x′is, in turn, controls the smoothness of

the resulting estimate of f .

There are many commonly used forms of the kernel function, such as the Gaussian ker-

nel and uniform kernel. Gaussian kernel is a widely used kernel function of the following

form:

K(u) = (2π)−1/2e−u2/2 . (4.7)
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It has been pointed out that it is not the choice of kernel function but the choice of band-

width, that is critical to the performance of the nonparametric regression. Small values

of h would make the resulting fit undersmoothed or overfit and possess high variance,

whereas large values of h would lead to oversmoothed, or underfit with high bias.

Currently, there is no generally accepted method for choosing the bandwidth h for the

estimation of the unknown regression function f(·) by kernel estimator given by (4.6).

Methods that are available consist of subjective choice and automatic methods such as

plug-in, cross-validation, and modified AIC procedure [52].

4.2 Basic Idea of Nonparametric Regression Approach

The rationale behind nonparametric regression approach (NPRA) is to take into consider-

ation gene-wise information. It is almost impossible to know exactly the relations between

genes. Under such circumstances, the use of nonparametric regression model is explored,

since it detects either linear or non-linear relationship among genes. It is beneficial to

use non-parametric regression model [15] when the relationship between predictor gene

and target gene is unknown. In our previous work, we only chose the nearest neighbour

gene for target gene to impute missing values. In this study, we will extend the previous

work to consider k-nearest neighbour genes in non-parametric regression.

We have seen that almost all of the imputation algorithms make use of the informa-

tion between genes for missing value imputation. Gene-wise information can be classified

as local or global. Local means that only a subset of nearest genes are taken into consid-

eration, such as KNNimpute [87] or LSimpute [8], whereas global means that all genes in

the dataset are considered, such as SVDimpute [87] or BPCA [59].

Local information is preferred over global information, since only a small number of

genes are in a cluster and are strongly correlated, which may be a consequence of the
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characteristic of gene co-expression network. Agrawal et al. [2] and Noort et al. [91]

pointed out that the gene co-expression network is a small world and scale free network.

In such a network, there could be many nodes but the network is sparse. That leads to

the result that many nodes have few connections and only a small number of nodes have

many interactions.

NPRA mainly exploits the local similarity structure among genes, and it begins by

selecting a set of genes closest to the gene with missing values. The number of the

selected nearest genes appears to be an issue, because selecting too many genes will bring

deviation to imputation process, while one may miss some important genes if the number

is too little. It is also a relevant problem for KNNimpute, LSimpute and LLSimpute to

choose the number of nearest neighbours k, and all have given suggestions from their own

perspectives.

4.3 Nonparametric Regression Approach for Impu-

tation

In microarray data mining, relations are usually captured in a gene-wise fashion, since

genes that have close biological function would express very similarly. This is based on

the fact that there is a connection between the function of a gene and its expression

pattern. Genes involved in specific cellular processes are co-regulated and co-expressed.

But only a small number of genes would co-express similarly and using a small set of

genes for missing value imputation has led to good performance [10, 8, 47].
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4.3.1 Notation

Recall Section 2.3 in Chapter 2, a microarray dataset is denoted by an m × n matrix

X = (xij), where m is the number of genes (rows) and n is the number of arrays.

X =




gT
1

...

gT
m




=




x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn



∈ Rm×n

In the matrix X, a row gT
i ∈ R1×n represents expression of the ith gene in n experiments

(where the superscript T denotes transpose).

Some entry in X may be missing and is denoted by an addition matrix M = (Mij)

M =




M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mm1 Mm2 · · · Mmn



∈ Rm×n ,

where Mij = 0 if the entry is missing and Mij = 1, otherwise.

4.3.2 Single missing entry in a gene

Without loss of generality, we suppose that target gene vector gT
t has a missing value at

the first array, denoted by α. For the k selected nearest genes, let gsi
be the ith selected

gene with its first element γsi
, where si denotes the index for representing k selected

nearest genes for i = 1, · · · , k. The selected genes have complete values without missing
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entries. Then we get the following matrix,




gT
t

gT
s1

gT
s2

...

gT
sk




=




α xt,2 xt,3 · · · xt,n

γs1 xs1,2 xs1,3 · · · xs1,n

...
...

...
. . .

...

γsk
xsk,2 xsk,3 · · · xsk,n




=




α yT
t

γs1 xT
s1

...
...

γsk
xT

sk



∈ R(k+1)×n ,

where yt = [xt,2, xt,3, · · · , xt,n]T is a subvector of gt excluding the missing value α.

NPRA is summarized as three parts:

1. selection of k similar genes,

2. nonparametric regression with the k similar genes,

3. weighted average of the k estimates.

STEP 1: Selection of k similar genes

NPRA first selects the k-nearest genes from X, where k is a pre-determined

number. We use L2-norm (Euclidean distance) as a distance measure to select

the k nearest genes for imputing the missing value α as follows,

dsin(gt,gsi
) = { 1

n− 1

n∑
j=2

[xt,j − xsi,j]
2}1/2 . (4.8)

STEP 2: Nonparametric regression with the k similar genes

Based on the k nearest genes, we consider yt as the response variable and xsi

as predictor variable to conduct nonparametric simple regression,

yt = fsi
(xsi

) . (4.9)
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For example, we assume that there is a relation between gT
t and gT

s1
, and

estimate the unknown function fs1(·) by f̂s1(·) on the basis of (4.5) and (4.6),

and then get an estimate of α which is f̂s1(γs1). Similarly for gT
si
, i = 2, · · · , k,

we conduct nonparametric simple regression and estimate unknown function

f̂si
(·).

STEP 3: Weighted average of the k estimates

Finally a weighted average of f̂si
(γsi

), i = 1, · · · , k is the final estimate of α

as the following,

w(si) =
1

dsin(gt,gsi
)
/

k∑
i=1

1

dsin(gt,gsi
)
, i = 1 . . . k . (4.10)

and

α =
k∑

i=1

w(si) · f̂si
(γsi

) . (4.11)

4.3.3 Multiple missing entries in a gene

In this section, we discuss the case in which there are more than one missing value in a

gene vector. In this case, to recover the total of n′ missing values in any location of the

target gene gt, first the k similar gene vectors for gt,

gT
si
∈ R1×n

are found.

For simplicity, suppose that the target gene has two missing values in the first and

second position, denoted by α1 and α2. For the k selected nearest genes, they must have
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observed values in the first and second position as follows,




gT
t

gT
s1

gT
s2

...

gT
sk




=




α1 α2 xt,3 · · · xt,n

γs1,1 γs1,2 xs1,3 · · · xs1,n

...
...

...
. . .

...

γsk,1 γsk,2 xsk,3 · · · xsk,n




=




α1 α2 yT
t

γs1,1 γs1,2 xT
s1

...
...

...

γsk,1 γsk,2 xT
sk




,

where yt = [xt,3, · · · , xt,n]T is a subvector of gt excluding the missing values α1 and α2

and γsi,1 and γsi,2, i = 1, · · · , k must be observable.

The Euclidean distance between gt and gsi
can be calculated by

dmul(gt,gsi
) = { 1

nsi

n∑
j=3

[xt,j − xsi,j]
2Msij}1/2, i = 1 . . . k , (4.12)

where nsi
=

∑n
j=3 Msij is the number of available values in xT

si
, and Msij is missingness

value for xsij.

After selecting k similar genes gsi
, we regress yt against each of xsi

as follows,

y∗t = f ∗si
(x∗si

) , (4.13)

where y∗t and x∗si
are the simultaneously observable elements in the vectors yt and xsi

.

If there are also some missing entries in xsi
and the number of missing entries is quite

large, the nonparametric regression analysis would be affected. In this specific case, we

impute xsi
first by a simple method, such as row average, and then (4.13) will degenerate

to (4.9).

Finally, similar to the case of single missing entry, a weighted average of f̂si
(γsi

), i =
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1, · · · , k, is the final estimate of α as the following,

w(si) =
1

dmul(gt,gsi
)
/

k∑
i=1

1

dmul(gt,gsi
)
, i = 1 . . . k . (4.14)

and

α1 =
k∑

i=1

w(si) · f̂ ∗si
(γsi,1) , α2 =

k∑
i=1

w(si) · f̂ ∗si
(γsi,2) . (4.15)

4.4 Evaluation

4.4.1 Dataset

In order to assess our proposed method, four datasets were selected from publicly available

microarray data. The datasets were classified into three types: time-series (TS), non-time

series(NTS) or mixed (MIX) experiments, as shown in Table 4.1.

Table 4.1: Overview of datasets

GASCH LISTERIA CALCINEURIN BC

Type of microarray Time series Time series Mixed Non-time series
Original dataset 6,152 × 173 16,838×39 6,102×24 3,226×22
Complete dataset 2,239 × 159 6,850×39 4,379×24 3,226×22

Overall missing rate (%) 3 7.2 3.2 0

Prior to analysis, data were log-transformed (base 2) before applying the imputation

methods where datasets were not downloaded in log2 scale.

GASCH [62]

The first dataset is from a study of response to environmental changes in

yeast [62]. It contains 6,152 genes and 173 experiments that have time-series
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of specific treatments. After removing columns having more than 10% miss-

ing values and then selecting genes that don’t have missing value, we got a

complete matrix of 2,239 genes and 159 experiments.

LISTERIA [22]

The second dataset is from a study about infection time series by Listeria

monocytogenes. It has 16,838 genes and 39 time series in the original dataset.

After removing all genes with missing values, resulting in a 6, 850 × 39 data

matrix.

CALCINEURIN [33]

The third dataset is from a study of gene expression regulated by the cal-

cineurin /Crzlp-signalling pathway in yeast. It has 6,102 genes and 24 exper-

iments in the original dataset. After removing all genes with missing vaules,

a 4, 379× 24 data matrix is obtained.

Breast Cancer [35]

Hedenfalk et al. [35] monitored the global expression patterns of 7 breast

cancer samples with BRCA1 mutation, 8 with BRCA2 mutation, and 7 spo-

radic cases with neither mutations using cDNA microarrays. There are 6,512

cDNA used which represent 5361 unique genes. The dataset is formed by

selecting 3,226 genes for analysis and available publicly, which has multiple

experiments with no time course relationships.

4.4.2 Missing data setup

We knocked out values in the complete dataset, pretending that they are missing and

compared imputed values with the actual value to evaluate the accuracy of each imputa-

tion method. We employed two strategies to produce missing entries. Multiple missing
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values were allowed in a gene at different experiments. One is to randomly remove a spe-

cific percentage of entries (5%, 10%, 15%, and 20%) from the complete dataset, and the

other one is to assign MVs to the elements in the m rows of the complete dataset (m×n)

by randomly sampling m rows from the original dataset, which is a p × n matrix, and

using their missing positions. The latter used the missing value distribution estimated

from the original data, and the missing rate in this case is denoted by r∗. Brás et al. [10]

stated that the missing entries produced by the second strategy is similar to the realistic

missing pattern in original dataset.

In summary, we applied five missing rates (namely 5%, 10%, 15%, 20% and r∗) to

each dataset, which consists of both MAR and MNAR pattern, resulting in datasets

allowing for a comprehensive comparison of different imputation methods. Missing value

generation was repeated 20 times for each dataset and each missing rate, yielding a total

of 400 different datasets with missing values for comparison.

4.4.3 Performance measurements

We employed the normalized root mean squared error (NRMSE) as main metric by which

we assessed the performance of proposed NPRA.

NRMSE =

√
mean[(yguess − yreal)2]

V ar(yreal)
,

where yguess and yreal are estimated values and actual values respectively. The mean and

the variance were calculated over missing entries in the complete matrix. Moreover, we

also evaluated the imputation accuracy of the methods using squared Pearson correlation

coefficients between the complete and imputed data within each column.
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Figure 4.1: NRMSE over a number of nearest neighbours used for NPRA
for different missing percentages on gasch data

4.5 Results and Discussion

In this section, we assessed the accuracy of each method under different conditions, such

as type of data (time series, mixed, and non-time series), missing rate (5%, 10%, 15%,

and 20%), and missing pattern (MAR and MNAR).

4.5.1 Choosing k in NPRA

For NPRA imputation, the number of nearest neighbour genes, k, must be selected. This

parameter k, is dependent on the data type, but has no theoretical way to be appropriately

determined. Arnone and Davidson [5] believe genes are influenced on average by no

more than eight to ten other genes. It was found in [87] that KNNimpute is relatively

insensitive to the exact value of k within the range of 10-20 neighbours and the best

estimation results were observed in this range, based on a yeast cDNA array data. Also,

k = 10 is suggested in LSimpute, whereas Sehgal et al. [75] believe k in the range of 10-15

is the most appropriate. For each dataset and percentage of missing data, we examined

the performance of NPRA using k = 4 to 20 nearest neighbour genes for prediction.

For time series data, Figures 4.1 and 4.2 show that k in the range of 4-12 gives superior
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Figure 4.2: NRMSE over a number of nearest neighbours used for NPRA
for different missing percentages on listeria data

accuracy for low missing percentage. When the missing rate increases, this optimal range

will narrow. The curves in Figure 4.1 seem smoother than in Figure 4.2. Then we studied

the influence of k on prediction ability by performing paired t-test (see Section 3.3.1) over

the absolute residuals between real and actual values using different k on Listeria data.

The comparative results were shown in Tables 4.2 and 4.3. Each table exhibits the results

for two different missing percentages, separated by the diagonal. Each entry in Tables

4.2 and 4.3 corresponds to the p-value for the comparison with different values of k.

The p-value indicates whether the estimates by NPRA with different k are statistically

equivalent or not. That is to say, the paired t-test is aimed at how the parameter value (k)

affects NPRA’s prediction ability. Results from Tables 4.2 and 4.3 suggest that k values

of 4 and 6 almost give statistically equivalent performance for Listeria data, although

difference in NRMSE between various values of k in the range of 4-12 is small.

In the case of mixed data, Figure 4.3 shows how the Calcineurin data responds to the

changing value of k. The range k = 4-14 gives statistically equivalent prediction error for

lower missing percentage (p-value>0.1865), however, this optimum range narrows to k =

8-12 for higher missing rates (p-value>0.2646). In the non-time series data of BC, there
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Figure 4.3: NRMSE over a number of nearest neighbours used for NPRA
for different missing percentages on calcineurin data

Figure 4.4: NRMSE over a number of nearest neighbours used for NPRA
for different missing percentages on breast cancer data
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Table 4.2: Probability level (p-value) of T-test based on residuals of 5% entries missing
(above diagonal) and 10% entries missing (below diagonal) for listeria data,

using different k
k = 4 k = 6 k = 8 k = 10

k = 4 1.71E-01 1.10E-01 3.09E-06
k = 6 1.83E-01 3.22E-03 8.50E-05
k = 8 2.99E-01 7.48E-03 6.14E-05
k = 10 6.14E-06 2.33E-07 6.09E-06

Table 4.3: Probability level (p-value) of T-test based on residuals of 15% entries missing
(above diagonal) and 20% entries missing (below diagonal) for listeria

data, using different k
k = 4 k = 6 k = 8 k = 10

k = 4 6.19E-01 5.10E-03 8.51E-03
k = 6 1.53E-01 1.12E-03 1.23E-07
k = 8 4.40E-01 1.52E-02 3.62E-06
k = 10 7.22E-01 8.24E-05 5.57E-04

is evidence of a better estimation performance when k falls in the range of 4-20 for lower

missing percentage, as shown in Figure 4.4. When the missing percentage increases, the

optimum range shrinks to k = 8-12 (p-value>0.2716).

In this section, we evaluated whether choosing the correct value for k has impact on

the predictor error. The choice of k depends on different datasets, missing percentage,

and types of microarray data. A high value of k results in the reduction of prediction

accuracy due to incorporation of farthest genes, whereras a low value of k may ignore the

similar genes, also leading to erroneous results. From the results of our study based on

Figures 4.2-4.4, we suggest that k = 8 for NPRA be used for the subsequent studies.

4.5.2 Comparative studies with KNNimpute, LSimpute and LL-

Simpute

After selecting the optimum parameter values for NPRA, we compared the performance

of NPRA, KNN, LSimpute and LLSimpute, where simulation studies were performed for
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missing values from 5% to 20%.

Parameter setting for each method

Here, k = 8 was selected for NPRA following previous study, while k = 10 was used

for the other three methods (KNNimpute, LSimpute and LLSimpute), since it has been

strongly recommended by respective author [87, 8] except for LLSimpute. It has been

pointed out that considering a sufficient number of genes is helpful in LLSimpute, so that

the optimal value of k for LLSimpute can be large and up to hundreds of genes [47, 101].

However, LLSimpute shows a high peak when k is close to the number of samples, so we

do not have to test the performance when k is close to the number of samples. Later on,

we will test it in the case of large k.

Evaluation in terms of NRMSE and RNSE

For each data type, Tables 4.4-4.7 show the methods’ NRMSE and RNSE for different

percentages. Our proposed method NPRA shows good performance on all four datasets

across different missing rates. For various percentages (5, 10, 15, and 20%) of missing

entries, NPRA performs the best consistently except that in the case of Gasch data,

NPRA is second best.

Table 4.4: Methods’ prediction errors on listeria data over different missing rates

Method 5% 10% 15% 20%

NRMSE RNSE NRMSE RNSE NRMSE RNSE NRMSE RNSE
KNNimpute 0.4753 0.3740 0.4758 0.3744 0.4819 0.3819 0.4826 0.3838
LSimpute 0.4284 0.3268 0.4296 0.3294 0.4321 0.3320 0.4351 0.3325
LLSimpute 0.4301 0.2946 0.4445 0.3146 0.4587 0.3197 0.4665 0.3316

NPRA 0.3815 0.2821 0.3881 0.2972 0.3976 0.2992 0.3990 0.3065

As missing percentage increases, NRMSE and RNSE increase correspondingly for

all methods. For mixed and non-time series data, LLSimpute is less robust to increasing

missing rate than the other three methods, which is shown in Tables 4.6 and 4.7. However,

for time series data, the robustness gives similar performance for all methods although
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Table 4.5: Methods’ prediction errors on gasch data over different missing rates

Method 5% 10% 15% 20%

NRMSE RNSE NRMSE RNSE NRMSE RNSE NRMSE RNSE
KNNimpute 0.9647 0.6911 0.9788 0.6814 0.9816 0.6969 0.9817 0.6911
LSimpute 0.7891 0.6366 0.7931 0.6249 0.8019 0.6241 0.7998 0.6282
LLSimpute 0.6421 0.5431 0.6594 0.5367 0.6771 0.5531 0.6838 0.5593

NPRA 0.6736 0.5753 0.6873 0.5676 0.7048 0.5729 0.7206 0.5859

Table 4.6: Methods’ prediction errors on calcineurin data over different missing rates

Method 5% 10% 15% 20%

NRMSE RNSE NRMSE RNSE NRMSE RNSE NRMSE RNSE
KNNimpute 0.9179 0.6507 0.9180 0.6486 0.9189 0.6498 0.9401 0.6539
LSimpute 0.6248 0.5262 0.6365 0.5494 0.6629 0.5520 0.6693 0.5543
LLSimpute 0.5848 0.4859 0.6278 0.5314 0.6968 0.5609 0.7736 0.5980

NPRA 0.5406 0.4833 0.5794 0.5012 0.6085 0.5213 0.6379 0.5259

they show significant differences with respect to NRMSE and RNSE.

Evaluation in terms of bias analysis

We assessed the imputation methods further in terms of bias by means of Wilcoxon signed

ranks test, reviewed in Section 3.3.1. The Wilcoxon Signed Ranks test does not require

the assumption that the population is normally distributed, but does assume that the

population probability distribution is symmetric. Wilcoxon signed ranks test is designed

to test a hypothesis about the median of a population distribution. It often involves the

use of matched pairs, for example, actual and imputed data, in which case it tests for a

median difference of zero.

For time series data, KNNimpute and LSimpute generate more biased estimates than

LLSimpute and NPRA, whereas for Calcineurin data, the results show that all methods

are unbiased except for the case of 20% missing percentage. In the case of Breast Cancer

data, the other three methods are less biased than KNNimpute which means that negative

and positive residuals are not equally likely for KNNimpute.
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Table 4.7: Methods’ prediction errors on breast cancer data over different missing rates

Method 5% 10% 15% 20%

NRMSE RNSE NRMSE RNSE NRMSE RNSE NRMSE RNSE
KNNimpute 0.9660 0.6793 0.9612 0.6765 0.9644 0.6810 0.9630 0.6752
LSimpute 0.6535 0.4653 0.6575 0.4564 0.6568 0.4690 0.6653 0.4542
LLSimpute 0.8950 0.6041 0.9155 0.6151 0.9912 0.6426 1.0761 0.6755

NPRA 0.6344 0.4419 0.6363 0.4412 0.6406 0.4537 0.6524 0.4439

In conclusion, in terms of bias analysis, NPRA and LLSimpute are much more pre-

ferred than KNNimpute and LSimpute, although they also generate biased estimate oc-

casionally when missing rate is high.

Evaluation in terms of squared correlation coefficients

Pearson correlation coefficients between the complete and imputed data within each col-

umn reflects how well the imputation method recovers the structure of the dataset. The

higher the squared correlation coefficients is, the better the relationship between com-

plete data and imputed data in a column. It is another measure to assess the imputation

method besides NRMSE and RNSE.

Figures 4.5 and 4.6 depict the squared correlation coefficients between the actual and

estimated values in each array of Listeria data across different missing percentages. For

low missing rate, the curves show the methods’ capability to retain similarity structure

within each array. As missing rate increases, the performance of all imputation methods

decreases more or less. KNNimpute presents the worst capacity for retaining the structure

in each array by significant drop of squared correlation coefficients in two different missing

percentages (5% and 20%).

For the other time series data gasch, LLSimpute and NPRA show the best perfor-

mance, as shown in Figures 4.7 and 4.8. LSimpute depicts a very large fluctuation among

different arrays, whereas KNNimpute shows a rather robust performance for different ar-

rays. NPRA shows less accuracy than LLSimpute in terms of NRMSE and RNSE in
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Figure 4.5: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the complete

and imputed data for listeria with 5% (left) and 10% (right) artificial missing values

Figure 4.6: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the complete
and imputed data for listeria with 15% (left) and 20% (right) artificial missing values
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Figure 4.7: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the complete
and imputed data for gasch with 5% (above) and 10% (bottom) artificial missing values
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Figure 4.8: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the complete
and imputed data for gasch with 15% (above) and 20% (bottom) artificial missing values
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Table 4.5, but there is not much difference with respect to the ability of retaining the

structure in each array.

LLSimpute is easily affected by data similarity structure. Thus, as the data similarity

structure is weaker, such as for mixed and non-time series data, LLSimpute exhibits very

poor ability to retain the data structure, showing a high variance among different arrays,

especially for high missing rate in Figures 4.10 and 4.12. Although NPRA and LLSim-

pute are the two best imputation methods for mixed data in Table 4.6, NPRA shows a

more consistent performance than LLSimpute across the different missing percentages.

Therefore, it is desirable to assess imputation methods by means of different metrics.

In conclusion, regarding the results discussed so far from Figures 4.5 to 4.12, KN-

Nimpute is not preferable for missing value estimation across all datasets. NPRA is the

best option for time series and mixed data, regardless of the missing percentage, while

LLSimpute is also applicable in low missing rate data. In the case of non-time series

data, NPRA and LSimpute show very similar favorable results in Figures 4.11 and 4.12,

but NPRA is preferred in terms of NRMSE. Squared correlation coefficients are aimed at

offering another evaluation metric other than NRMSE, since NRMSE provides the over-

all assessment between imputed and complete data, while squared correlation coefficients

describe the relationship between imputed and complete data in each array which seems

more detailed. These two metrics are complementary and suggested in the evaluation of

missing value imputation methods.
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Figure 4.9: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the complete
and imputed data for calcineurin with 5% (left) and 10% (right) artificial missing values

Figure 4.10: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the

complete and imputed data for calcineurin with 15% (left) and 20% (right) artificial
missing values
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Figure 4.11: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the

complete and imputed data for breast cancer with 5% (left) and 10% (right) artificial
missing values

Figure 4.12: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the

complete and imputed data for breast cancer with 15% (left) and 20% (right) artificial
missing values
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4.5.3 Comparative studies on a realistic model of the missing-

ness

There are various missing data mechanisms, including missing completely at random

(MCAR), missing at random (MAR), and missing not at random (MNAR). We have just

reviewed the performance of comparative imputation methods on MAR pattern. Here it

is of interest to see how NPRA performs when the MAR assumption is violated. We are

aimed at studying the influence of missing data pattern in the accuracy of imputation

methods.

Three datasets Gasch, Listeria and Calcineurin were used for comparative study, and

Breast Cancer data was excluded since there is no missing value in the original data.

We employed the strategy introduced in Section 4.4.2 to generate a realistic model of

missingness. The artificial missing rate as shown in Table 4.8, is very close to the real

one in the original data (Table 4.1). We have simulated 20 independent studies for each

dataset.

Table 4.8: Methods’ prediction errors on MNAR pattern over three datasets

Data Gasch Listeria Calcineurin

Missing percentage (r∗) 3.21% 7.29% 3.28%
NRMSE RNSE NRMSE RNSE NRMSE RNSE

KNNimpute 0.9751 0.6996 0.4882 0.3768 0.9382 0.6759
LSimpute 0.8016 0.6395 0.4507 0.3336 0.7098 0.5455
LLSimpute 0.6563 0.5360 0.4973 0.3406 0.8376 0.5881

NPRA 0.6916 0.5739 0.4216 0.3079 0.6392 0.5126

Overall, the missing value estimation accuracy is affected by the type of missing entries

(MAR or MNAR), even if the missing percentage is the same by comparing the results

in Table 4.8 and Tables 4.4-4.6. All imputation methods generate higher prediction error

(Table 4.8) and lower squared correlation coefficients between actual and imputed value

in each array (Figure 4.13) when applied to datasets with a more realistic missing pattern,

even though the missing rate is similar to or less than that of datasets with randomly
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Figure 4.13: Comparison of the performance of KNNimpute, LSimpute, LLSimpute
and NPRA by the squared correlation coefficients for each column between the
complete and imputed data on MNAR pattern over three datasets: Gasch(top),

Listeria(middle) and Calcineurin(bottom)
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generated missing entries. Specifically, in some arrays, squared correlation coefficients

decay very fast to as low as 0.65 because of the unequally distributed missing entries,

however the squared correlation coefficients in Figure 4.7 (top) is above 0.9 for each array

in the case of 5% randomly missing values.

KNNimpute is less capable to deal with the MNAR pattern in terms of NRMSE and

RNSE, and shows a poor ability to reconstruct the data structure in terms of squared

correlation coefficients. LLSimpute is not robust over the three datasets by being an

unfavorable method twice and a favorable method only once in terms of accuracy. In

addition, its less robustness is specially shown from the bottom one in Figure 4.13, where

squared correlation coefficients of LLSimpute fluctuate up and down more sharply over

a couple of experiments than other imputation methods.

In conclusion, the proposed NPRA exhibits its strong competitiveness as follows.

Firstly, it performs most favorably in terms of accuracy, giving the lowest prediction

error on Listeria and Calcineurin data and the second lowest on Gasch data. Secondly, it

preserves the structure of data better than the other three imputation methods almost for

all columns of time series datasets (top and middle in Figure 4.13). Especially for some

arrays with high missing values, NPRA always performs the best over the other methods

by having higher squared correlation coefficients. For mixed Calcineurin data, although

in 5 out of 24 experiments, it does not give the highest squared correlation coefficients,

overall it is still the most favorable in terms of both accuracy and squared correlation

coefficients.

4.6 Summary

In this chapter, we proposed a nonparametric regression approach (NPRA) for imputation

by taking advantage of gene-wise relationships, and made some comparative studies with

KNNimpute, LSimpute and LLSimpute, demonstrating the influence of some factors,
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such as the value of parameter k, type of experiment (TS, MIX and NTS), missing

data pattern (MAR and MNAR), and missing percentage, in the accuracy of NPRA. The

results show that missing rate and missing data pattern, and the type of experiment affect

the data similarity structure, hence influencing the methods’ performance. As missing

rate increases, the methods’ prediction ability decreases. Moreover, the prediction ability

on a missing pattern close to that of original data is weaker than on a random missing

pattern.

All the evaluation metrics used to assess the methods’ performance gave consistent

results. KNNimpute is unfavorable because it is less capable of taking advantage of

data similarity structures, generating more biased estimates, higher prediction error,

and showing a poor ability to recover the data structure. Novel NPRA method based

on non-parametric regression combined with k-nearest neighbour, consistently exhibits

superior accuracy compared to the other three imputation methods over four experimental

datasets. Our study also shows that NPRA is a more robust and accurate missing value

estimation method on MNAR pattern than LSimpute and LLSimpute.

NPRA makes full use of the gene-wise relationships for imputation. Relationships

between genes are the type of relationships widely used as the basis for imputation. Even

though NPRA shows good performance in our experiments, it also has some shortcomings.

Firstly, when the number of arrays is too small, it is not suitable, since non-parametric

regression requires a higher number of samples to estimate the function than parametric

regression in which the function is already known and just the parameters need to be

estimated. Secondly, if we want to impute values for a gene with many missing values,

for instance if a gene has 60% missing values, we do not recommend NPRA, since few

arrays remain to determine how this gene is correlated with other genes in the dataset,

thus most likely resulting in less accurate estimates. Thirdly, the Euclidean distance used

by NPRA is sensitive to outlier values in microarray, although log-transforming the data
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significantly reduces their influence in nearest neighbour gene determination.

Under such circumstances, utilizing how the arrays are correlated appears to be a good

solution, since typically the expression profile for each array is available for thousands of

genes. Relationships between arrays have already been explored in some work [9, 28, 8],

though not used as widely as gene-wise relationships. Moreover, most of the imputation

methods lack robustness in case outlying values are present in the microarray data. In

the next chapter, a more robust missing value imputation method based on array-wise

relationships will be proposed.



Chapter 5

Robust Principal Component

Analysis Approach for Imputation

Based on Array-wise Relationships

In previous chapter, you have seen how it works for imputation to use the gene-wise rela-

tionships due to the existence of some degree of association between genes. The focus of

this chapter is to impute missing values by making use of array-wise relationships. The

proposed RPCA imputation method employs robust regression to estimate the missing

values by using the principal component arrays. In Section 5.2, we very briefly describe

the precise relation between singular value decomposition analysis and principal com-

ponent analysis. Further, we investigate the sensitivity of RPCA to initial estimates,

and study the existence of an optimal number of principal components Kpc for RPCA

in Section 5.3. Section 5.4 demonstrates our RPCA algorithm in detail and Section 5.5

exhibits a series of comparative studies with BPCA and LLSimpute.

68
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5.1 Introduction

Gene-wise relationships have been successfully utilized for missing value imputation.

However, information between arrays can provide useful information for imputation as

well. For temporal gene expression data in which a given biological process is followed in

time, array hybridisations from adjacent time points are highly correlated, hence we may

expect some relations between arrays. Moreover, this kind of array relationships may also

occur when biologically similar samples are used in different microarray experiments.

Chapter 5 intends to propose robust estimation for MVs with principal component

analysis method. The main motivation was to take advantage of the correlation between

arrays and reduce the effect of outliers in estimation of missing values. In our previous

work, we have proposed LADimpute [14] which performs quantile regression between

genes. Inspired by the idea of LADimpute, we are going to perform robust regression

between target array and principal component arrays. This is aimed at capturing the

global correlation structure between arrays, whereas Chapter 4 is dedicated to exploit

the local correlation structure among genes.

5.1.1 Related work

There are some references which have brought important relevance to our idea. Bφ

et al. [8] present a method called LSimputearray, to impute missing values from array

correlations using a multiple regression model. Brás and Menezes [9] also explored the

array-based relationships by applying KNNimpute, LLSimpute and PLSimpute in the

array space where PLSimpute offers an advantage in terms of regression parameters’

identifiability and increases the power of the estimation, since the number of genes is

larger than the number of arrays.

Alter et al. [4] have visualized eigenarrays resulting from singular value decomposition

analysis of cell-cycle data, inferring that an eigenarray that represents a state across all
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genes. Gan et al. [28] employ this property to capture the global array-wise variation, in

contrast to SVDimpute which captures the gene-wise correlation. This could be consid-

ered as an extension of SVDimpute from another perspective. For each eigenarray, there

is a corresponding eigenvalue which indicates the relative significance of the eigenarray in

terms of the fraction of the overall expression data. The decorrelation of the eigenarrays

suggests the possibility that some of the eigenarrays represent independent cellular states

[28].

Before illustrating proposed RPCA imputation method, we will interpret the PCA in

the context of microarray. This interpretation and the accompanying nomenclature will

serve as a foundation for understanding the RPCA method described later.

5.2 Principal Component Analysis

Singular value decomposition (SVD) and principal component analysis (PCA) are com-

mon techniques for analysis of multivariate data, especially for gene expression data

[4, 53]. There is a direct relation between PCA and SVD in the case where principal

components are calculated from the covariance matrix [93].

5.2.1 Mathematical definition of SVD

Recalling Section 2.3, microarray data is denoted by m × n matrix X = (xij), which

has rank r. Typically, m is the number of genes (rows) and n is the number of arrays

(columns), where m À n and thus r ≤ n.

X =




gT
1

...

gT
m




=

[
a1 · · · an

]
=




x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn



∈ Rm×n
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In the matrix X, a row gT
i ∈ R1×n represents expression of the ith gene in n experiments

(where the superscript T denotes transpose). Alternatively, the m-dimensional vector aj

is referred to as the expression profile of the jth array.

The equation for singular value decomposition of X is as follows:

Xm×n = Um×nSn×nV
T
n×n , (5.1)

where the m× n matrix U and the n× n matrix V are orthogonal matrices, and S is an

n×n diagonal matrix [93]. The columns of U are called the left singular vectors, uk, and

form an orthonormal basis for the array expression profile, while the rows of VT contain

the elements of the right singular vectors,vk, and form an orthonormal basis for the gene

expression profile. Thus, uk is referred as eigenarrays and vk is called eigengenes.

S is an n × n matrix that contains all zeros except for the diagonal si,i, i = 1, · · · , n

which are called singular values, indicating the relative significance of the ith eigengene

or eigenarray in terms of the fraction of the overall expression they captured. Thus,

S = diag(s1, · · · , sn). Conventionally, the singular vectors are sorted by high-to-low

singular values, with the highest singular value s1 in the upper left position. Furthermore,

si > 0 for 1 ≤ i ≤ r, and si = 0 for (r + 1) ≤ i ≤ n. It is noticeable that in any real

gene expression analysis application, r = n due to the presence of noise, although the

last singular values may be very close to 0.

5.2.2 Relation between PCA and SVD

Principal component analysis is a statistical technique for determining the key variables

for simplifying complex datasets. If principal components are calculated from the covari-

ance matrix [93], there is mathematical relation between SVD and PCA. We refer to an

eigengene or eigenarray in (5.1) generically as a component in PCA, or, by analogy with

SVD, as a singular vector.



CHAPTER 5. ROBUST PCA IMPUTATION APPROACH 72

A PCA analysis of DNA microarray data can consider the genes as variables or the

experiments as variables or both [66]. When genes are variables, the right singular vectors

vk are the same as principal components of gi, which indicate the features of genes. When

experiments are the variables, the left singular vectors uk are the same as the principal

components of aj, which indicate the features of the experimental conditions, showing

whether the experiments are measuring different gene expression states or measuring

similar states created by different mechanisms. In PCA for gene expression data, only

Kpc most significant principal components are used [66] and the other n−Kpc principal

components are treated as noise and the signal-to-noise ratio (SNR) is described by the

following equation:

p =

Kpc∑
i=1

s2
i

n∑
i=Kpc+1

s2
i

. (5.2)

5.3 Quantile Regression with Kpc Principal Compo-

nents

In this section, we introduce the imputation method that takes advantage of principal

component analysis as well as robust regression. Rather than select k nearest genes for

performing PCA, as in [101], we conduct PCA on the whole gene expression matrix to

capture global correlation structure among arrays across all genes for imputation.

5.3.1 Initial values for PCA

Computations involved with PCA, as shown in (5.1), requires a complete dataset X.

However, this matrix contains missing entries so estimates from row average were used as

the initial estimates to fill in X. The sensitivity of RPCA method to the initial estimate

will be studied in Section 5.5.2.
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5.3.2 Robust regression

It is known that linear regression has been dominated by least squares (LS) estimate,

mostly because of its solid theoretical foundation and ease of implementation. The as-

sumption for LS estimate is that the model has normally distributed errors. However,

linear least-squares estimates can behave badly when the error distribution is not normal,

particularly when the errors are heavy-tailed. One solution is to remove outliers from the

least-squares fit, while another approach, referred to as robust regression, is to employ a

fitting criterion that is not as vulnerable as least squares to unusual data.

The most common general method of robust regression is M-estimation, introduced

by Huber (1964) [38]. Consider the linear model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

= X ′
iβ + εi ,

for the ith of n observations. The fitted model is

yi = b0 + b1xi1 + b2xi2 + · · ·+ bkxik + ei

= X ′
ib + ei .

The general M-estimator minimizes the objective function [39]

n∑
i=1

ρ(ei) =
n∑

i=1

ρ(yi −X ′
ib) , (5.3)

where the function ρ gives the contribution of each residual to the objective function.

The main purpose of robust regression is to provide resistant (robust) results in the

presence of outliers. In order to achieve this stability, robust regression limits the influence

of outliers, such as by assigning ρ(ei) = |ei|, rather than ρ(ei) = e2
i for least-squares esti-

mation. Currently, there are several robust regression methods, such as Tukey’s bi-weight
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M-estimator and quantile regression [63]. For RPCA, we employ quantile regression us-

ing 50th percentile for simplicity. However, a further study focusing on the selection of a

better robust method is desirable.

5.3.3 Single missing entry in an array

The array which has missing values is called target array. For simplicity, in this section we

assume that the target array a1 only has one missing value in the first position, denoted

by M , and the available values in target array a1 are denoted by yT = (x21, · · · , xm1),

X =

[
a1, · · · , an

]
=




M x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn



∈ Rm×n.

Based on (5.1), we construct array principal components. According to the relations be-

tween SVD and PCA, as mentioned previously, we obtain the array principal components

as follows,

PC =




PC11 PC12 · · · PC1n

PC21 PC22 · · · PC2n

...
...

. . .
...

PCm1 PCm2 · · · PCmn




=




PC11 PC12 · · · PC1n

PC−1,1 PC−1,2 · · · PC−1,n


 ∈ Rm×n,

where the vectors in principal components without the first elements, are denoted by

{PC−1,1,PC−1,2, · · · ,PC−1,n} and the first element of each principal component is de-

noted by PC1,j, j = 1, · · · , n.
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After performing principal component analysis, Kpc principal components are selected

to estimate MVs in target array by a regression model with the target array as the

response variable and Kpc array principal components as predictors. The corresponding

regression model is

y =

Kpc∑
i=1

PC−1,iβi + ε . (5.4)

Then 50th percentile quantile regression is used to fit the regression model in a robust

manner. Robust regression usually provides an alternative analysis to least square regres-

sion. The assumption for LS estimate is that the model has normally distributed errors.

When this fundamental assumption is violated, the need for robust estimate emerges.

The 50th percentile quantile regression is considered conceptually the simplest one,

though not necessarily the best, since it does not require a tuning mechanism like most

of the other robust regression procedures. This kind of quantile regression estimates βi

by minimizing the sum of absolute values of the residuals as follows,

β̂ = arg min
β

m∑
i=2

|xi1 −
Kpc∑
j=1

PCi,jβj| . (5.5)

Then, the missing value in a1 can be estimated by

M =

Kpc∑
i=1

PC1,iβ̂i = PC1,1β̂1 + PC1,2β̂2 + · · ·+ PC1,Kpc β̂Kpc .
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5.3.4 Multiple missing entries in an array

Without loss of generality, in this section we assume that the target array a1 has two

missing values in the first and the last position, denoted by M1 and M2 as follows,

X =

[
a1, · · · , an

]
=




M1 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm−1,1 xm−1,2 · · · xm−1,n

M2 xm2 · · · xmn




∈ Rm×n,

where the observable values in target array a1 are denoted by yT = (x21, · · · , xm−1,1).

Note that after performing principal component analysis on X, we have

{PC1,PC2, · · · ,PCn} =




PC11 PC12 · · · PC1n

PC21 PC22 · · · PC2n

...
...

. . .
...

PCm−1,1 PCm−1,2 · · · PCm−1,n

PCm1 PCm2 · · · PCmn




,

where from the second to last second element of each principal component are denoted

by vectors PC2:m−1,j, j = 1, · · · , n.

The known elements of a1 can be represented by

y =

Kpc∑
i=1

PC2:m−1,iβi + ε , (5.6)

where Kpc is the number of selected principal components, and βi are the coefficients of
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the linear combination, found from 50th percentile quantile regression, as shown in (5.7).

β̂ = arg min
β

m−1∑
i=2

|xi1 −
Kpc∑
j=1

PCi,jβj| . (5.7)

Accordingly, the missing values in a1 can be estimated by

M1 =

Kpc∑
i=1

PC1,iβ̂i = PC1,1β̂1 + PC1,2β̂2 + · · ·+ PC1,Kpc β̂Kpc ,

and

M2 =

Kpc∑
i=1

PCm,iβ̂i = PCm,1β̂1 + PCm,2β̂2 + · · ·+ PCm,Kpc β̂Kpc ,

where M1 and M2 are the missing values in the target array.

5.4 RPCA Algorithm

The previous section discussed both single and multiple missing entries in a target array.

RPCA makes use of Kpc principal components to build a regression model and utilizes an

expectation maximization method to arrive at the final estimate. Given a gene expression

matrix X with N missing entries, the outline for RPCA algorithm is given below:

Step 0

Initialisation: replace the MVs in X by the estimate given by row average,

obtaining Xcomplete(0).

Step 1

Using Xcomplete(0), perform principal component analysis and select Kpc array

components as predictor variables, then regress each target array against Kpc

array components, in order to obtain a vector of estimates, y
(1)
guess, and update

the complete gene expression matrix into Xcomplete(1).
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Step 2

For each lth cycle (l = 2, . . .):

(a) Using Xcomplete(l−1), re-estimate the missing entries, by performing PCA

and conducting robust regression for each target array against new Kpc array

components.

(b) Obtain a vector of new estimates y
(l)
guess, and update the complete expres-

sion matrix into Xcomplete(l).

(c) Calculate δ(l) =
∑N

i=1(y
(l)
guess[i]−y

(l−1)
guess[i])2, the sum of squared differences

between the MV estimates.

Step 3

If δ(l) < τ , stop. Otherwise return to Step 2 and iterate until convergence.

The convergence criterion was set to τ = 10−10. If it could not be reached, we set the

maximal number of iterations to be 50.

5.5 Results and Discussion

In this section, the accuracy of RPCA imputation was evaluated for each of the missing

rates 5%, 10%, 15%, and 20% on pattern of missing at random. We include the same four

datasets from Chapter 4 in this study.

5.5.1 Effect of Kpc on RPCA

The use of RPCA imputation requires the selection of the number of principal compo-

nents. RPCA imputation is repeated for a sequence of values for the parameter Kpc for

each dataset, in order to provide general guidelines for the selection of Kpc in practice.

The results show that in many cases there is no particular choice of Kpc which gives

consistent accuracy, since the choice of Kpc is much dependent on each dataset. Thus,

implementing the evaluation design to find Kpc is preferable.
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We examined different values of Kpc for each dataset, since the number of arrays is

different. Note that the maximal Kpc is equal to the number of arrays, and depending

on the singular values in (5.2), only a small number of principal components are most

significant. As shown in Tables 5.1-5.4, the optimal Kpc for each data set is totally

different.

Time series data Table 5.1 presents that for time series data Listeria, NRMSE has the

lowest value when Kpc = 8, although it has a robust performance on the range between 6

and 9. The accuracy deteriorates rapidly outside this range and NRMSE is unacceptably

high. For the other time series data Gasch, we test the value of Kpc from 8 up to 100,

because Gasch has 159 columns (arrays) in total. In general, there is evidence of a better

accuracy from Table 5.2 when Kpc = 16 across different missing rates.

Table 5.1: NRMSE of different numbers of principal components used for RPCA on
listeria data with different missing percentages

Kpc 2 4 6 7 8 9 10 12 15 20

5% 0.3888 0.3402 0.3049 0.2886 0.2859 0.2999 0.3133 0.3261 0.3576 0.4462
10% 0.3761 0.3320 0.2976 0.2927 0.2882 0.3039 0.3085 0.3252 0.3856 0.4468
15% 0.3778 0.3424 0.3011 0.2989 0.2903 0.3301 0.3118 0.3329 0.3865 0.4546
20% 0.3769 0.3395 0.3060 0.2986 0.2925 0.3099 0.3313 0.3391 0.3907 0.4605

Table 5.2: NRMSE of different numbers of principal components used for RPCA on
gasch data with different missing percentages

Kpc 8 10 16 18 20 30 50 60 80 100

5% 0.5211 0.4991 0.4694 0.4689 0.4893 0.5252 0.6016 0.6472 0.7758 0.8959
10% 0.5212 0.4954 0.4854 0.4946 0.5061 0.5403 0.6129 0.6854 0.8004 0.8832
15% 0.5286 0.5054 0.4894 0.4856 0.5265 0.5606 0.6235 0.6933 0.8007 0.9004
20% 0.5268 0.5170 0.4911 0.5172 0.5398 0.5563 0.6714 0.7582 0.8505 0.9243

Mixed data Not only does the optimal Kpc depend on the specific dataset, but it is

also affected by different missing percentages in the same dataset. Table 5.3 gives a good

illustration about that. In the case of 5% missing entries, the optimal range for Kpc is
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from 8 to 10, which shows the lowest NRMSE. As the number of missing entries increases,

the optimal range changes to between 6 and 9 for 20% missing percentage. Thus, it is

desirable to implement some evaluation design to choose the best Kpc.

Table 5.3: NRMSE of different numbers of principal components used for RPCA on
calcineurin data with different missing percentages

Kpc 2 4 6 7 8 9 10 11 12 15

5% 0.5206 0.4197 0.3798 0.3729 0.3576 0.3543 0.3540 0.3605 0.3791 0.4794
10% 0.5337 0.4293 0.3900 0.3960 0.3838 0.3776 0.3773 0.4108 0.4212 0.4727
15% 0.5330 0.4375 0.4130 0.3935 0.4000 0.3968 0.4011 0.4236 0.4511 0.5112
20% 0.5331 0.4326 0.4167 0.4182 0.4155 0.4119 0.4349 0.4349 0.4983 0.5544

Non-time series data We also found, not surprisingly, that some knowledge about the

characteristics of data is beneficial in choosing the number of principal components. The

number of components that results from PCA is sometimes associated with the number

of underlying biological processes that give rise to the patterns in the data [93].

The application of PCA allows us to summarize the ways in which gene responses vary

under different conditions, and simplify the analysis. Thus, it is of interest to describe

biological meaning to the significant eigenarrays. For Breast Cancer example data [35],

it is known to contain three types of samples, BRCA1, BRCA2 mutation, and sporadic.

Making full use of biological information proves to be very helpful when choosing the

optimal Kpc, as shown in Table 5.4, where Kpc = 3 performs best overall, in terms of

NRMSE accuracy. Table 5.4 also exhibits that with more than 6 principal components,

the prediction accuracy is quite low and it is far from satisfactory when Kpc is larger than

12.

To summarize, the performance of RPCA imputation depends on the value of Kpc. By

varying the value of Kpc, we studied its influence in NRMSE accuracy. The results show

that the optimal Kpc for RPCA imputation differs among different datasets and depends

on missing rate as well. Thus, we would not suggest the optimal value of Kpc for practical
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Table 5.4: NRMSE of different numbers of principal components used for RPCA on
breast cancer data with different missing percentages

Kpc 2 3 4 5 6 8 10 12 15 20

5% 0.6072 0.5965 0.6042 0.6022 0.6231 0.6769 0.7516 0.8794 1.0873 1.2232
10% 0.6236 0.6123 0.6223 0.6309 0.6570 0.6965 0.7782 0.8911 1.1499 1.1116
15% 0.6273 0.6246 0.6380 0.6611 0.6437 0.7431 0.8077 0.9673 1.1779 1.0149
20% 0.6372 0.6273 0.6505 0.6491 0.6749 0.7507 0.8580 0.9735 1.1720 1.1720

application, although BPCA [59] recommends an optimal parameter which is equal to the

number of arrays minus 1. Sometimes BPCA incurs a very heavy computational burden

and loses its competitiveness (as shown in Table 5.8), due to its repetitive algorithm.

Moreover, the optimal value of Kpc may be different from array to array since the

RPCA imputation procedure is executed for each target array. Choosing an optimal value

for each target array requires intensive computation. It is recommendable to implement

evaluation design to find optimal Kpc and take advantage of the external information

about arrays.

5.5.2 Sensitivity of RPCA to initial values

As demonstrated in Section 5.4, RPCA imputation method requires a complete expression

matrix for applying principal component analysis. So estimates from row average were

used as initial estimates for the RPCA algorithm. In this section, the sensitivity of RPCA

imputation to the initial estimate was assessed. To see how RPCA would perform with

poor initial estimates, RPCA imputation was run with initial estimates from row average

and KNNimpute respectively for Listeria, Calcineurin and Breast Cancer datasets with

5% missing values.

From Table 5.5, we find that RPCA prediction error using row average as initial

estimates is quite similar to that using KNNimpute. Thus, the performance of RPCA

imputation is not affected by initial estimates, in the sense that it is not necessary to

give accurate initial estimates for RPCA. Just a simple method for initial estimate, such
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Table 5.5: Sensitivity of RPCA imputation method to initial estimates. Given are
NRMSE and RNSE of RPCA with initial estimates from row average and KNNimpute

respectively over different datasets with 5% missing rate.

Initial estimate Row average KNNimpute

NRMSE RNSE NRMSE RNSE
Listeria 0.285247 0.195489 0.285248 0.195499

Calcineurin 0.374854 0.319405 0.375857 0.319358
Breast cancer 0.623974 0.428017 0.623973 0.428019

as row average, is good enough.

5.5.3 Comparative study with BPCA and LLSimpute

In this subsection, we compared RPCA imputation method with BPCA and LLSimpute

to see whether RPCA represents an improvement over previously proposed methods,

since BPCA and LLSimpute are the most recognized methods by the community. We

conducted comparative studies from several perspectives, such as accuracy, variation, and

computation time, in order to get a comprehensive understanding of the performance of

the proposed RPCA imputation method.

Evaluation in terms of accuracy

The performance of RPCA imputation method is evaluated in Figures 5.1-5.2 for all types

of datasets (Time series, Mixed, and Non-time Series). In each of the datasets and each

level of missing rate, 5 simulations are conducted with independent selections of artificial

missing values. For RPCA, the number of principal components was chosen to be the

one that exhibited the best performance in each test. For LLSimpute, Kim et al. [47]

showed it performed well for a large value of k, say over 100. Thus we used 100 for k in

LLSimpute to test its performance. Overall, we can see that for various percentages of

missing entries, RPCA showed the least NRMSE consistently for time-series and non-time

series datasets.

Figure 5.1 also shows that the performances of RPCA and BPCA are better than
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Figure 5.1: Comparison of the NRMSEs against percentage of missing entries for three
methods (LLSimpute, BPCA and RPCA) on Listeria (left) and Gasch (right) data

that of LLSimpute over a whole range of missing rates. The range of NRMSE by RPCA

imputation, for example, was 0.4694 to 0.4911 in comparison with 0.6511 to 0.6856 of

the LLSimpute method in large Gasch data. The poor performance of LLSimpute is

probably because of multi-collinearity of the selected k genes. In Listeria data, RPCA

and BPCA show similar results and the best performance, although RPCA shows a

slightly better performance for high missing rate. This may be due to the strong global

similarity structure in time series data, which is explored by RPCA and BPCA, although

they adopt different strategies. RPCA takes advantage of global correlation structure

between arrays, whereas BPCA makes use of that between genes.

A further illustration of the improved accuracy of RPCA is given for Breast Cancer

data in Figure 5.2. We found that RPCA has the least NRMSE, while BPCA performs

worst for non-time series data. BPCA method is strongly influenced by data similarity,

and in non-time series data, the proportion of low similarity genes is higher than in

time series data, which can result in the bad performance of BPCA. Although RPCA’s

prediction ability decreases for increasing levels of missing rate, it outperforms BPCA

and LLSimpute, since it takes robust regression into consideration. Very interestingly,

we found some outliers in the Breast Cancer raw data set after careful observation. This
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Figure 5.2: Comparison of the NRMSEs against percentage of missing entries for three
methods (LLSimpute, BPCA and RPCA) on Calcineurin (left) and Breast Cancer

(right) data

fact also suggests that employing robust regression is advisable, since it reduces the effect

of outliers in estimation of missing values. RPCA imputation benefits a lot from quantile

regression when dealing with outliers.

For mixed data, Figure 5.2 clearly shows that BPCA and RPCA are more favourable

than LLSimpute, although BPCA is better than RPCA, in terms of NRMSE accuracy.

As the missing rate increases, NRMSE increases for all methods and the performances

become worse.

In conclusion, RPCA shows very high competitiveness in terms of NRMSE accuracy

for time series and non-time series data, whereas BPCA gives best performance for mixed

data. Moreover, RPCA does very well in imputing missing values in datasets with outliers,

such as cancer microarray data. Although log2 transformation of the gene expression

values may reduce the influence of outliers, it is still advisable to employ robust regression.

Imputation methods’ performance on noisy data

Even on the high density oligonucleotide arrays such as Affymetrix GeneChip oligonu-

cleotide (Affy) arrays, a significant percentage of probes could be blemished. Hence, in
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Table 5.6: The proportion of total variance explained by the first and second
components for different datasets

Data PC1 PC2

Listeria 81.56% 5.46%
Gasch 53.16% 9.10%

Calcineurin 64.71% 11.43%
BC 62.42% 6.38%

gene expression values, a high percentage of them may be noisy [100]. When microarray

data are noisy, principal component analysis can still detect the underlying patterns.

This ability of the PCA distinguishes itself among the commonly used gene expression

analysis methods. The square of each singular value si in (5.1) is proportional to the

variance explained by each principal component. The relative variance of each principal

component is often calculated by

pk =
s2

k∑
i

s2
i

. (5.8)

Table 5.6 provides the relative variance explained by the first and second components.

We decided to take Listeria data as an example, since the first component in Listeria has

the greatest relative variance among four datasets, which indicates the highest correlation

structure between arrays and suggests that Listeria has the lowest noisy level in some

sense. In the following, we evaluate the performance of RPCA with respect to noisy data,

and exhibit how the results of each imputation method respond to various noise levels.

In order to demonstrate the performances of RPCA and BPCA on noisy data, I

prepared the datasets based on Listeria data by adding random noise of various levels,

with normal distribution. After building matrices of random numbers with the normal

distribution of mean µ = 0 and various standard deviations (σ = 0.01, 0.05, 0.1, 0.15, 0.2

and 0.25), each noise matrix was added to the Listeria data with 5% artificial missing

rate in order to build the six noisy datasets.

Figure 5.3 shows that the performance of RPCA was less sensitive to the noise level
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Figure 5.3: Comparison of the NRMSEs with respect to noise levels. We added artificial
noise with normal distribution of mean µ = 0 and various standard deviations

(σ = 0.01, 0.05, 0.1, 0.15, 0.2 and 0.25) to Listeria dataset

than BPCA. Although both of them have higher prediction error as the data becomes

more noisy, RPCA method outperforms BPCA consistently for various noise levels. This

fact can be attributed to the robust regression employed in RPCA.

Variation of imputation methods’ performance

To assess the variance in prediction error of each method, we conducted all imputation

methods 10 times for each percentage of missing entries. Table 5.7 gives the average and

variance of NRMSE from 10 runs of simulation in breast cancer example data. In addition

to having the smallest NRMSE for each missing rate, RPCA consistently outperforms

BPCA, in terms of variance. Although there is no significant difference between RPCA

and LLSimpute, regarding variance, the prediction accuracy of RPCA surpasses that of

LLSimpute.

Computational Efficiency

As mentioned previously in Section 3.3.1, computational cost is also an evaluation metric,

though better estimation accuracy always has a greater priority than speed. However,

we cannot avoid the trade-off between the computational burden and the accuracy, when

the time cost of the imputation algorithm appears to be unacceptable for some datasets.
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Table 5.7: Variation of prediction error for breast cancer data over a range of missing
rates. Given are the averages and variances of NRMSE for RPCA, BPCA and

LLSimpute method.

RPCA BPCA LLSimpute

Mean Variance Mean Variance Mean Variance
5% 0.6018 1.54E-04 0.6761 2.43E-04 0.6216 2.78E-04
10% 0.6190 5.17E-05 0.6862 3.76E-04 0.6338 8.07E-07
15% 0.6163 1.01E-05 0.6848 9.31E-05 0.6374 4.09E-05
20% 0.6281 2.27E-05 0.6928 3.91E-04 0.6422 3.55E-07

Table 5.8 exhibits the running time of the three imputation methods in Gasch ex-

ample dataset for the 5% missing rate. It is not surprising that BPCA has the worst

performance, with running time up to dozens of hours. Although that is not always the

case for BPCA, it is advisable to balance the computational efficiency and accuracy when

imputing missing values. One possible reason for BPCA’s bad performance is that its con-

vergence is slow due to its EM-like repetitive algorithm. The other reason might be that

the number of arrays in Gasch dataset is quite large, up to 159. Although BPCA claims

better estimation performance when the number of the samples is large [59], computation

efficiency is still an issue worth paying attention to.

The difference between RPCA and BPCA is that RPCA imputation method effec-

tively controls the computational burden. Applying maximum number of iterations (50)

affords the advantage of reducing the computational time even when δ cannot reach

τ = 10−10. Very interestingly, we found that larger number of iterations does not neces-

sarily ensure more accurate estimates for RPCA in some cases. For instance, we tried to

Table 5.8: The running times were calculated for Gasch dataset with 5% missing rate.
(Intel Pentium 4 CPU 2.80GHz with 1GB RAM was used).

Imputation method Implementation Running time

RPCA R 224s
LLSimpute Matlab 356s

BPCA Matlab 40h
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increase the number of iterations from 50 to 500 (results not shown), but the NRMSE

does not become smaller. In addition, RPCA seems less computationally intensive than

LLSimpute from Table 5.8. However, a further study would be desirable for a systematic

comparison.

5.6 Summary

In this chapter, we introduced the robust principal component analysis imputation method,

referred to as RPCA. In addition to taking advantage of array-wise relationships, RPCA

employs an iterative procedure for imputation. The iterative use of imputed data in

RPCA allows a refinement of the predictions and improves the missing value estimates.

We assessed the prediction performance of RPCA and compared it with BPCA and LL-

Simpute over different types of datasets with different missing rates.

In general, RPCA showed a competitive performance for time series and non-time

series data. Furthermore, we evaluates its performance on noisy data, concluding that

it has a more robust prediction accuracy than BPCA. RPCA also reduced the effect of

outliers in missing value estimation. This is due to the fact that RPCA utilizes quantile

regression, and PCA can capture the underlying array expression patterns even when the

data are noisy.

From the datasets investigated, we found that the performance of RPCA depends on

the number of selected principal components Kpc, whereas it is not affected by the initial

estimates. Therefore, heuristic approaches for deciding on the significant components

are desirable. Moreover, so far imputation methods have been evaluated by prediction

accuracy. It is of more interest to study how the imputation method affects downstream

analysis of microarray data. The next chapter details this further.



Chapter 6

Missing Value Imputation

Framework and Impact on

Subsequent Analysis

The purpose of this chapter is twofold. Firstly, a missing value imputation framework

is constructed by presenting the CMBimpute method, which takes advantage of both

gene-wise and array-wise relationships. In Section 6.2, heuristic methods for determining

the parameters are proposed. Secondly, we study the impact of missing value imputation

on downstream data analyses. Considering the fact that missing value imputation is a

pre-processing step for microarray data mining, among which one of the most important

applications is gene clustering, we focus on the effect of imputation on clustering analy-

sis, since gene clustering is capable of discovering coherent patterns of gene expression.

Section 6.3 employs k-means clustering method to achieve this goal. Section 6.4 presents

a rigorous analysis on five imputation methods and Section 6.5 summarizes the whole

chapter.

89



CHAPTER 6. FRAMEWORK AND IMPACT ON SUBSEQUENT ANALYSIS 90

6.1 Introduction

In previous chapters, imputation quality has been measured by normalized root mean

squared errors (NRMSE). In addition to NRMSE, it is of more interest to evaluate missing

value imputation method in terms of the impact on subsequent biological analysis, such

as gene clustering [21, 89], sample classification [1, 17, 57] and significant gene selection

[74, 77]. Since the imputated values themselves are not interesting, whether or not the

imputed data can affect the subsequent applications is the major concern.

6.1.1 Related work

Classification

It has been suggested that one may use the classification accuracy [94, 100] to measure

the quality of estimated values in the case of disease subtype recognition and disease

treatment classification, in addition to NRMSE. Wang et al. studied the impact of

imputation on disease classification and observed that while replacing MVs with zero

performs relatively poor, the advanced imputation methods, i.e. KNNimpute, LLSimpute

and BPCA, have little difference in affecting the classification performance of the SVM

or KNN classifiers [94]. Shi et al. [100] also studied the influence of imputation in

classification accuracy, and found that imputed data by BPCA and iLLS could reach the

same classification accuracy as that achieved on the complete data.

Differentially Expressed Gene Detection

Jörnsten et al. [43] examined the effect of imputation on the significance analysis of dif-

ferential expression, and concluded that good imputation alleviated the impact of missing

values. From the simulations, they discovered that missing values affect the detection of

differentially expressed genes, and that more sophisticated imputation methods, such as

BPCA and LinCmb are much better than row average and KNNimpute.
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Scheel et al. [69] also studied the influence of missing value imputation on detection of

differentially expressed genes from microarray data. The results showed that KNNimpute

can lead to a greater loss of differentially expressed genes than LinImp method, and that

imputing values that are missing not at random has a more severe effect on the final

analysis than imputing values occurring completely at random.

Brás et al. [10] presented a modification of KNNimpute, which was called IKNNim-

pute, and performed the impact of its estimates on significance analysis for differential

expression. IKNNimpute has a smaller detrimental effect on the detection of differentially

expressed genes, since the iterative procedure allows refining the missing value estimates.

Clustering

As for the impact on clustering, only two studies have been found to investigate the in-

fluence of missing value imputation methods so far. Brevern et al. studied the impact on

hierarchical clustering and showed that even a small number of missing values may signif-

icantly bias the hierarchical clustering, and that the effects of missing values are related

to the chosen clustering methods as well [21]. Their main finding was that KNNimpute

improves the stability of hierarchical clustering compared to the simple replacement by

zero.

Tuikkala et al. [89] further investigated the effect of missing values on the partitional

clustering algorithm and studied whether more advanced imputation methods, like LL-

Simpute, SVRimpute and BPCA, could provide better results than KNNimpute. Their

results showed that imputation always gave better results than ignoring missing values

or replacing them with row average. They also found that, among advanced imputation

methods, BPCA provides accurate results especially when the missing percentage is lower

than 5%.

With known gene clustering information, one may use cluster accuracy to measure
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imputation quality, just as classification accuracy does. Since only a few studies focus

on the impact of missing values on gene clustering, this chapter will mainly study the

impact of missing value imputation methods on gene clustering and demonstrate that

using clustering accuracy is indeed a good measurement.

6.2 Missing Value Imputation Framework

We have introduced two imputation methods in previous chapters, the NPRA and RPCA.

NPRA mainly captures the local gene-wise relations, whereas RPCA exploits the global

array-wise relations. Since NPRA and RPCA take different perspectives into consid-

eration when imputing missing values, the deviations from the true values will not be

completely correlated. Therefore, we propose to combine these two methods together

by taking a weighted average of the estimates from NPRA and RPCA. In other words,

yCMBimpute, the estimate value by combined method, referred to as CMBimpute, is de-

scribed as

yCMBimpute = µ · yNPRA + (1− µ) · yRPCA , µ ∈ [0, 1] , (6.1)

where yNPRA and yRPCA are estimated values from NPRA and RPCA imputation method

respectively.

The motivation of CMBimpute is that NPRA and RPCA take specific approach to

data imputation, and a particular type of systematic errors is unavoidable. By combining

the two estimates, we borrow strength from each of the methods, and therefore some of

the errors may disappear. If the data have strong local correlation structure, CMBimpute

puts more weight on NPRA, while if the data are dominated by a global structure or if

there are many missing values, CMBimpute puts more weight on RPCA. We expect

through selecting appropriate µ, the performance of CMBimpute will be at least as good

as the best estimate from two component methods, i.e. NPRA and RPCA.

A couple of works bear important relevance to our idea. Bφ et al. [8] combine gene-
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based and array-based imputation estimates, using an adaptive procedure to determine

the weight of the two estimates. Gan et al. [28] incorporate gene-based and array-

based imputation estimates, and prior biological knowledge in corresponding convex sets,

and then use a convergence-guaranteed iterative procedure to obtain the final solution.

Jörnsten et al. [43] describe a method called LinCmb whose estimates are the convex

combinations of the estimates by several other imputation methods. CMBimpute is

dedicated to extend and generalize this kind of combination in this work.

6.2.1 How to determine Kpc

As mentioned before, the value for Kpc in RPCA imputation method is an important pa-

rameter to choose for obtaining high performance, just like the reduced rank in SVDim-

pute [87]. Gan et al. [28] found in their experiments that 20% of the eigenarrays for set

Cv in POCSimpute is a good choice.

Several heuristic approaches to decide the significant components have been proposed.

One typical approach is to ignore the components beyond where the cumulative relative

variance or eigenvalue becomes larger than a certain threshold [93]. The other approach

proposed by Everitt and Dunn [73] is to compare the relative variance of each component

to 0.7/n (n is the number of arrays), where only those components larger than 0.7/n are

selected. We extended Everitt’s idea in our study and make use of the estimates from

NPRA, and then the following heuristic algorithm for estimating parameter Kpc is used.

Recall the definition of normalized root mean squared error in (3.8),

NRMSE =

√
mean[(yguess − yreal)2]

V ar(yreal)
,

where yguess and yreal are estimated values and actual values respectively. In Chapter 5,

we chose the optimal Kpc by minimizing NRMSE, since the missing entries are artificial

and we know their actual values. But when real missing data come, we do not know the
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actual values of missing entries. On the other hand, through applying NPRA imputation

method, we can get the estimates for missing values from gene-wise relations’ point of

view. With the help of estimates from NPRA, we obtain a modification of NRMSE of

the following form,

NRMSE∗ =

√
mean[(yKpc − yNPRA)2]

V ar(yNPRA)
,

where yKpc and yNPRA are estimated values by RPCA and NPRA respectively.

Let us denote the number of components whose relative variances are larger than 0.7/n

by Kmax. Repeating the estimations using several Kpc-values from 2 to Kmax, a Kpc-

value that produces the best estimation ability can be found by minimizing NRMSE∗

as follows,

K∗
pc = arg min

Kpc=2,··· ,Kmax

√
mean[(yKpc − yNPRA)2]

V ar(yNPRA)
. (6.2)

This procedure gives a number of array components that show good performance

in (6.2). The motivation for this procedure is that the Kpc-value that shows the best

performance by comparing the estimates from RPCA with that from NPRA can be close

to an optimal Kpc-value, because we do not know the actual values of missing entries in

real datasets.

6.2.2 Heuristic method to determine µ

To determine the value of µ in (6.1), some known values in the dataset are initially

re-estimated, and the residuals of the NPRA and RPCA estimates are determined. Con-

sidering the vectors of deviations between the re-estimated values and known values

e1 = yNPRA − yknown and e2 = yRPCA − yknown ,
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where yknown is the vector of known values and yNPRA and yRPCA are vectors of esti-

mated values for re-estimated data from NPRA and RPCA imputation method respec-

tively, we have

e = yCMBimpute − yknown

= µ · yNPRA + (1− µ) · yRPCA − yknown

= µe1 + (1− µ)e2 .

(6.3)

The best weighted coefficient, µ∗ is to minimize the sum of squared errors for the

re-estimated data,

µ∗ = arg min
µ

∑
i

(e[i])2 = arg min
µ

∑
i

(yCMBimpute[i]− yknown[i])2 . (6.4)

Notice that e∗ = µ∗e1 + (1− µ∗)e2, µ∗ ∈ [0, 1]. Therefore,

∑
i

(e∗[i])2 ≤ min(
∑

i

(e1[i])
2,

∑
i

(e2[i])
2) . (6.5)

Under the assumption that the joint distribution of e1 and e2 is the same for the re-

estimated data as for the missing values, (6.5) guarantees that the mean squared error of

the CMBimpute will be smaller or equal to either of its two component methods.

Recall the missing percentage in the original data in Table 4.1. CMBimpute first

uses NPRA to estimate the missing values in original data, and then generates the same

percentage of fake missing entries as in original data, among the originally non-missing

entries whose real values are known. The NPRA and RPCA methods are used to estimate

the fake missing entries. Since the real values of fake missing entries are known, (6.4) can

be employed to determine µ∗.

The above procedure is repeated 10 times to determine the value of µ∗ and finally let
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it be the mean of these 10 values from the iterations, denoted by µ̄∗. The CMBimpute is

defined as

yCMBimpute = µ̄∗ · yNPRA + (1− µ̄∗) · yRPCA . (6.6)

6.3 Impact of Missing Value Imputation Method on

Clustering

Several clustering algorithms have been proposed to identify co-expressed genes, such as

Hierarchical Clustering (HC)[6], k-means clustering [34] and Self-organizing Map (SOM)

[82]. Among these techniques, k-means clustering is widely used to group genes sharing

similar expression levels under different experimental conditions by biologists [25], since it

is very straightforward to interpret the results. The other advantage of k-means clustering

is that it is very fast to implement, which is particularly important because of the large

number of clusterings performed.

Recent comparative studies have also demonstrated that partitional clustering meth-

ods often produce more meaningful solutions than hierarchical clustering methods [61].

Therefore, we chose k-means algorithm to demonstrate the impact of missing values im-

putation method on gene clustering.

6.3.1 k-means clustering

The k-means algorithm is one of the most popular partitional clustering algorithms ap-

plied to gene expression data [61]. k-means clustering is different from hierarchical clus-

tering in that the number of clusters, k, needs to be pre-defined. Whereas hierarchical

clustering takes the raw data and processes it into clusters without any knowledge of how

many clusters there should be, k-means clustering needs to be given an idea of how the

data should eventually be partitioned. The goal is to divide the genes into k clusters such

that some metric relative to the centroids of the clusters is minimized.
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The algorithm is composed of the following steps:

1. Selecting the initial k centroids either randomly or using a given rule.

2. Assigning each gene to the cluster whose centroid is closest to its expression profile.

3. Recalculating the positions of the k centroids when all genes have been assigned.

Repeat Steps 2 and 3 until the centroids no longer move or until a given number of

steps have been performed. The k-means algorithm is significantly sensitive to the initial

randomly selected cluster centroids, and this effect can be reduced by running multiple

times.

In our study, we used R package (cluster) downloadable from the comprehensive R

archive network (CRAN) [85]. The package “cluster” provides a more robust version of

k-means, called PAM, which is more robust because it minimizes a sum of dissimilarities

instead of a sum of squared euclidean distances. While the standard k-means algorithm

does not include any rules for the selection of the initial centroids, PAM can look for a

good initial set of centroids first [81].

6.3.2 Missing value generation

From the complete data without missing values, we introduced artificial missing entries

both equally and unequally distributed. Firstly, these missing entries are generated ran-

domly for each of the missing rates 5%, 10%, 15%, and 20%. Secondly, distribution of

artificial missing positions is estimated from that of missing values in original data, by

randomly sampling m rows from the original dataset, which is a p× n matrix, and using

their missing positions to assign MVs to the elements in the m rows of the complete

dataset, which is a m×n matrix. In this way, recall Section 4.4.2, the missing percentage

is denoted by r∗. We expect to get a similar missing pattern to the original data, which

we hope will be more realistic than missing at random (MAR) pattern.
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6.3.3 The performance measurement

After generating missing entries in complete data, we applied several imputation methods

to the missing value datasets, and then performs k-means clustering on the imputed

data. In order to assess the impact of missing data, we also performed clustering on

complete data. The clustering results after imputation were compared to those obtained

on complete data using Mean Normalized Hamming Distance (MNHD).

Specifically, the k-means clustering results obtained from complete data are regarded

as benchmark clustering, where the ith cluster is denoted by Cben
i , i = {1, · · · , kclu}, and

the Cben
i clusters are associated with their corresponding gene list Lben

i . Here we replace

k with kclu, denoting the number of clusters, in order to avoid confusion, since in NPRA

imputation method there is already a parameter called k.

The imputation methods are performed after generating missing values in complete

data. The clustering results obtained from the imputed data are considered as imputed

clustering. The Cimpute
j clusters are associated with their corresponding gene list Limpute

j ,

j = {1, · · · , kclu}.

To compare clustering results after imputation with those on complete data, we

searched for each Cben
i cluster the nearest Cimpute

j[i] cluster from Cimpute
j clusters. For

each cluster Cben
i , the cluster, Cimpute

j[i] , which has the maximum number of genes found

in Lben
i , is considered as the perfect match as follows

j[i] = arg max
j={1,··· ,kclu}

∑

g∈Lben
i

I{g ∈ Limpute
j } ,

where I{g ∈ Limpute
j } equals one if the gene belongs to the cluster Cimpute

j , and zero

otherwise.

The distance between Cben
i and Cimpute

j[i] was calculated as the normalised Hamming
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distance:

d(Cben
i , Cimpute

j[i] ) =
1

n(Lben
i ) + n(Limpute

j[i] )
(

∑

g∈Lben
i

I{g /∈ Limpute
j[i] }+

∑

g∈Limpute
j[i]

I{g /∈ Lben
i }) ,

(6.7)

where n(Lben
i ) and n(Limpute

j[i] ) are the number of genes in clusters Cben
i and Cimpute

j[i] , re-

spectively [83].

The Mean Normalized Hamming Distance (MNHD) was obtained as follows,

D =
1

kclu

kclu∑
i=1

d(Cben
i , Cimpute

j[i] ) , (6.8)

where D is zero if two clusterings are identical and one if the clusterings are totally

different.

6.3.4 The complete workflow

To demonstrate the impact of missing values on gene clustering, we simulated missing

values in the complete dataset. For each of the missing rates (5%, 10%, 15%, 20%, and

r∗), after generating artificial missing entries, KNNimpute, LSimpute, LLSimpute, BPCA

and CMBimpute were applied separately on the same simulated dataset to estimate the

missing values.

After imputing the missing values in the simulated dataset, on both the complete

and imputed data, partitional clustering analysis was done by k-means algorithm, whose

clusters were recorded and compared by (6.8). To reduce the influence of the number

of clusters, kclu, in the MNHD, we repeated clustering analysis on the same data using

different kclu, ranging from 2 to 11. Consequently, the clustering distance is the average

MNHD over ten entities.

To summarize, by regarding the complete dataset as a dataset of 0% missing values,



CHAPTER 6. FRAMEWORK AND IMPACT ON SUBSEQUENT ANALYSIS 100

we have six missing rates, each associated with 10 different kclu, and five imputation

methods.

6.4 Experimental Results

6.4.1 Dataset description

We have two microarray datasets, Listeria dataset [22] and Breast Cancer data [35], in

this study. The Listeria dataset is from a study about infection time series by Listeria

monocytogenes. It contains 39 time series in total. Each sample in this dataset contains

6850 gene expression values after data pre-processing.

The Breast Cancer dataset is a non-time series dataset. Hedenfalk et al. [35] moni-

tored the global expression patterns of 7 breast cancer samples with BRCA1 mutation,

8 with BRCA2 mutation, and 7 sporadic cases with neither mutations using cDNA mi-

croarrays. There are 6512 cDNA used which represent 5361 unique genes. This dataset

is formed by selecting 3226 genes for analysis and available publicly, which has multiple

experiments with no time course relationships.

6.4.2 Comparative study in terms of clustering accuracy

In this subsection, we analyze and compare CMBimpute with other methods by measuring

how well the clustering of the complete dataset was preserved when performing clustering

on imputed data with different missing rates.

In order to alleviate the influence of kclu in MNHD, Figures 6.1 and 6.2 plot the

average MNHD over kclu ranging from 2 to 11. From these two figures, we can see that

when the missing rate is low, CMBimpute outperforms all other methods in terms of

clustering distance. As missing rate increases, this advantage of CMBimpute weakens

gradually. Overall, the general tendencies are that (1) KNNimpute performed the worst
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Figure 6.1: Comparison of average MNHD over different kclu ranging from 2 to 11 in
Listeria data with various percentages of missing values.

over two datasets, (2) in Listeria data, CMBimpute and BPCA performed equally well,

and the best among the five methods, whereas LLSimpute and LSimpute performed in

the middle, and (3) in Breast Cancer data, CMBimpute performed the best, especially for

low missing rate, although the differences with LSimpute, LLSimpute and BPCA became

negligible in the case of 20% missing rate.

From Figures 6.1 and 6.2, it is clear that the missing values had a noticeable impact

on the k-means clustering results, and that imputation can reduce the influence of miss-

ing values in clustering analysis. This emphasizes why accurate imputation method is

desirable for missing values. When missing rate is low, CMBimpute showed its consistent

performance over two datasets, in terms of the less disagreement between the original

and the recovered clustering. For high missing rate, CMBimpute is also comparable to

other methods, though not the best, with its ranking in top 2.

The surprising observation is that the difference is not very remarkable in the case of

high missing percentage for Breast Cancer data (Figure 6.2) between LLSimpute, BPCA

and CMBimpute, although their NRMSE are 0.6459, 0.7112, and 0.6113 respectively.

One possible reason is that k-means clustering is also affected by other factors, such as

the number of clusters and initialization, other than missing values. We conclude that
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Figure 6.2: Comparison of average MNHD over different kclu ranging from 2 to 11 in
Breast Cancer data with various percentages of missing values.

missing values is a very important factor which influences the results of k-means clustering

analysis, stressing the importance of more advanced imputation methods.

In order to have a comprehensive understanding, we also present the box plots of

MNHD for different numbers of clusters, kclu, for all five imputation methods over the

two datasets. Figure 6.3 demonstrates box plots in the case of 5% missing entries with

results confirming the superior performance of CMBimpute across the range of the number

of clusters. It is important that the imputation methods be able to exhibit lower average

MNHD, as shown in Figures 6.1 and 6.2.

Moreover, the disparity of MNHD for different kclu is of great concern. As seen

from Figure 6.3, the results for CMBimpute are competitive, if not better than other

methods. CMBimpute has the smallest disparity for both datasets in the case of 5%

missing values, while LSimpute and KNNimpute show the largest disparity in the two

respective datasets. However, the advantage of CMBimpute becomes weakened as missing

rate increases, which can be found in the box plots for other missing rates (shown in the

appendix).
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Figure 6.3: Box plots of MNHD for different kclu ranging from 2 to 11 in Listeria (top)
and Breast Cancer (bottom) data with 5% missing rate.
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Figure 6.4: Box plots of MNHD for different kclu ranging from 2 to 11 in Listeria data
on missing not at random pattern.

We also studied the effect of missing mechanism by generating non-random missing

value distribution, as introduced in Section 6.3.2. In such a more realistic missing pattern,

Figure 6.4 shows the box plots of MNHD for different kclu in Listeria data. We found

that CMBimpute and BPCA perform best among all the imputation methods. This is

due to the fact that CMBimpute and BPCA allow using the information of the genes

having MVs more efficiently, and the iterative procedure allows refining the MV estimates.

Specifically, CMBimpute has lower median MNHD across different kclu than BPCA. A

possible reason is that CMBimpute takes advantage of both gene-wise and array-wise

relationships, whereas BPCA only considers gene-wise relationships.

We also found that imputing values that are missing not at random had a more serious

effect on clustering analysis than imputing values that are missing at random. This can

be attributed to the fact that the pattern of missing not at random is more complex
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than that of missing at random. In reality, the pattern of missing data in a microarray

dataset is a mixture of missing at random and missing not at random. Although the

number of the clusters, kclu, has influence in clustering analysis when we compared the

clustering results from complete data with those obtained on imputed data in Figure 6.4,

the disparity of the results across kclu is lower when CMBimpute method is used. It

suggests that CMBimpute is more robust and accurate than the widely used imputation

methods.

6.5 Summary

The purpose of imputation is not to improve clustering quality, but rather to lessen the

influence of missing values in clustering analysis. For more clustering algorithms, one

may refer to [44]. This chapter has proposed CMBimpute by constructing a missing

value imputation framework, which takes advantage of both gene-wise and array-wise re-

lationships. The impact of missing values on gene clustering was particularly highlighted,

which stimulates the need for accurate imputation method.

The performance of CMBimpute was compared with other advanced imputation meth-

ods, in terms of the ability of recovering the clusters on complete data. The experimental

results show that CMBimpute is better than other comparative missing value imputation

techniques, namely KNNimpute, LSimpute, LLSimpute and BPCA, for low missing per-

centage, and it shows comparable, if not better results, in high missing percentage cases.

In addition, CMBimpute is more accurate and robust in MNAR pattern. Therefore, it is

justified that clustering accuracy is also a measure to assess imputation methods.



Chapter 7

Conclusion and Future Work

The main purpose of this thesis was to deal with missing values in microarray. Numerous

subsequent microarray data analyses have posed challenges for imputing missing values

accurately in data pre-processing step. This chapter concludes the study by presenting

a summary of research findings, as well as discussing the implications and limitations of

this research. Furthermore, we suggest some possibilities for future work.

7.1 Conclusion

In the first part of this thesis (Chapter 4), we developed a novel non-parametric regression

approach (NPRA) for imputing missing values. This novel imputation method takes

advantage of relationships between genes. Traditional LSimpute and LLSimpute methods

only utilize the linear relations, whereas our proposed NPRA captures both linear and

non-linear relations between genes by virtue of non-parametric regression. Moreover, the

number of similar genes, k, is recommended in our study. In summary, NPRA serves the

purpose of capturing local gene-wise relationships.

We apply NPRA to different types of datasets (time series, mixed and non-time series)

with two patterns, i.e., missing at random and missing not at random. Using the NRMSE

and R2 between true and imputed MVs as measures of performance, the comparative
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studies with KNNimpute, LSimpute and LLSimpute suggest the strong competitiveness

of NPRA.

We also explain the influence of some factors in the prediction accuracy of imputation

methods for microarray. The results show that the rate and pattern of missing data

and the type of microarray experiment affect the data similarity structure, therefore

influencing the methods’ performance. The methods’ prediction ability decreases with

increasing missing rate. In addition, prediction ability is weaker in the presence of a

missing pattern that is close to that of the original data, than in the presence of a

random missing pattern.

In the second part of this thesis (Chapter 5), we make use of array-wise relationship to

improve imputation accuracy. We employ the dimension reduction technique, principal

component analysis (PCA), to capture array components. One drawback of the existing

imputation methods is their lack of robustness to outliers in the data. In order to deal with

the outliers in microarray, we bring robust regression into our algorithm RPCA, which

significantly reduces the influence of outliers in imputation accuracy. To summarize,

RPCA exploits the global array-wise relationships, which are not widely considered in

other methods.

We also study the sensitivity of RPCA to initial estimates and the effect of Kpc, the

number of significant components, on RPCA. Furthermore, we compare RPCA impu-

tation method with LLSimpute and BPCA, which are the two state-of-the-art methods

for imputing missing values in microarray. The results show that RPCA outperforms

LLSimpute and BPCA for time series and non-time series data, whereas BPCA has the

best performance for mixed data.

In addition, we evaluate each method’s performance on noisy data by adding artificial

noise to the complete data. The results suggest that RPCA is less sensitive to noise than

BPCA. This may be due to the fact that PCA can capture the underlying array expression
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patterns even in the presence of noise. We also investigate computation efficiency, besides

imputation accuracy. This finding shows that we have to consider the trade-off between

computational burden and imputation accuracy, although imputation accuracy is the top

evaluation metric when assessing imputation methods.

In the third part of this thesis (Chapter 6), we first construct the framework of miss-

ing value imputation, which utilizes both gene-wise and array-wise relationships. In this

framework, CMBimpute is a weighted average on NPRA and RPCA. By combining the

estimates from NPRA and RPCA respectively, we borrow strength from each of the meth-

ods and avoid particular type of systematic errors. In addition, we propose a heuristic

algorithm to determine the optimal weight µ. To summarize, CMBimpute combines the

exploitation of local gene correlations and global array correlations in a given dataset

with the selection of optimal µ.

Finally, while most of the imputation methods have been evaluated only in terms

of the error between imputed value and true value, e.g., NRMSE, we investigate the

influence of missing values and imputation method in gene clustering analysis. The

impact of missing values on subsequent analysis has attracted many researchers’ interest.

Missing value imputation is essential to minimize the adverse effect of missing values on

microarray data mining.

Our experimental results suggest that missing values have severe influence on gene

clustering, where accurate imputation method is desirable for reducing the biased clusters.

CMBimpute performs the best when applied to low percentage missing data, compared to

other state-of-the-art imputation methods. Moreover, for high percentage missing data,

CMBimpute shows comparable performance, if not better than, to other imputation

methods. In MNAR pattern, CMBimpute is more accurate and robust than the other

imputation methods. This may be attributed to two reasons: CMBimpute takes into

account both gene-wise and array-wise relationships, and CMBimpute allows the re-use
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of imputed values through iterative procedures to refine missing value estimates.

The novel algorithms presented in this thesis are of considerable importance. They

are more capable of exploring existing gene-wise and array-wise relationship. They also

show excellent abilities to impute missing values and lessen the impact on the subsequent

microarray data mining.

7.2 Future Work

Each of the accomplishments above demonstrates that dealing with missing values in

microarray datasets is a challenging issue. Missing value is not a minor problem, thus

it should not be neglected in microarray analysis. From the research undertaken, many

questions and possible extensions have emerged. These are outlined as follows:

1. In Chapter 4, NPRA uses Euclidean distance to select k similar genes. However,

Euclidean distance may not be very accurate to determine the value of k and reflect

the co-expressed genes, especially in the case of high missing percentage. One

possible way of overcoming this problem is to look from a mathematical perspective,

i.e., using Monte Carlo simulation [77]. The other way is to incorporate some

available biological information. The use of available information will somehow

contribute to the selection of similar genes, such as acetylation information [99].

2. In Chapter 5, RPCA employs quantile regression using the 50th percentile as a

robust measure to alleviate the influence of outliers when imputing missing values.

A further study on selecting the better robust method is desirable.

3. Missing value imputation methods are generally proposed as a separate part from

microarray data mining. In other words, we first impute missing values, and then

perform data analysis, so missing value imputation is considered as a pre-processing

step. Obviously, the important part is subsequent data analysis. Thus, to incor-

porate the part of imputing missing values in microarray data mining may be a
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future direction, in order to improve the final result, e.g., gene selection and tumor

classification.

4. Each dataset has its own underlying characteristics. How to exploit this kind of

information could be a future direction when dealing with missing values. The

underlying complexity of the expression data should guide the researcher in deter-

mining the best method to use for imputing missing values [11].

5. To keep the study focused, we did not test our methods on non-microarray datasets

in this thesis. It is likely that our algorithms could sparkle some insights to estimate

missing values in datasets other than gene expression data. It will be interesting to

make extensions in other domains and study their performance.
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[10] Lígia P. Brás and José C. Menezes. Improving cluster-based missing value estima-

tion of DNA microarray data. Biomolecular Engineering, 2:273–282, June 2007.

[11] Guy N. Brock, John R. Shaffer, Richard E. Blakesley, Meredith J. Lotz, and

George C. Tseng. Which missing value imputation method to use in expression

profiles: A comparative study and two selection schemes. BMC Bioinformatics,

9:12+, January 2008.

[12] M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Jr, and

D. Haussler. Knowledge-based analysis of microarray gene expression data by using

support vector machines. In Proc. Natl. Acad. Sci. USA, volume 97, pages 262–267,

2000.

[13] Zhipeng Cai, Maysam Heydari, and Guohui Lin. Iterated local least squares mi-

croarray missing value imputation. J. Bioinformatics and Computational Biology,

4(5):935–958, 2006.

[14] Yi Cao and Kim Leng Poh. An accurate and robust missing value estimation for

microarray data: Least absolute deviation imputation. In Proceedings of 5th In-

ternational Conference on Machine Learning and Applications (ICMLA’06), pages

157–161, 2006.

[15] Yi Cao, Kim Leng Poh, and Wen Juan Cui. A non-parametric regression approach

for missing value imputation in microarray. In Intelligent Information Systems XVI:

Proceedings of the International IIS’08 Conference, pages 25–34, 2008.



BIBLIOGRAPHY 113

[16] W.C. Chang, C.W. Li, and B.S. Chen. Quantitative inference of dynamic regulatory

pathways via microarray data. BMC Bioinformatics, 6:44, 2005.

[17] J.H. Cho, D. Lee, J.H. Park, and I.B. Lee. New gene selection method for classifi-

cation of cancer subtypes considering within-class variation. FEBS Lett., 551:3–7,

2003.

[18] S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P.O. Brown, and Erskowitz

I. The transcriptional program of sporulation in budding yeast. Science, 278:680–

686, 1998.

[19] Rubin D. Multiple Imputation for Nonresponse in Surveys. Siley, New York, 1987.

[20] Storey J. D. and R. Tibshirani. Statistical significance for genome wide studies.

PNAS, 100(16):9440–9445, 2003.

[21] Alexandre G de Brevern, Serge Hazout, and Alain Malpertuy. Influence of mi-

croarrays experiments missing values on the stability of gene groups by hierarchical

clustering. BMC Bioinformatics, 5:114, 2004.

[22] Baldwin D.N., Vanchinathan V., Brown P.O., and Theriot J.A. A gene-expression

program reflecting the innate immune response of cultured intestinal epithelial cells

to infection by Listeria monocytogenes. Genome Biology, 4(1), 2002.

[23] Ben A. Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.

Journal of Computational Biology, 6(3-4):281–297, 1999.

[24] Sam Efromovich. Nonparametric curve estimation: Methods, theory and applica-

tions. Springer, New York, 1999.

[25] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. Proc Natl Acad Sci USA, 95(25):14863–

14868, December 1998.



BIBLIOGRAPHY 114

[26] S. Friedland, A. Niknejad, M. Kaveh, and H. Zare. An algorithm for missing

value estimation for DNA microarray data. In Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing(ICASSP’06), 14-19 May

2006.

[27] Shmuel Friedland, Amir Niknejad, and Laura Chihara. A simultaneous reconstruc-

tion of missing data in DNA microarrays. Linear Alg. Appl, 416:8–28, 2006.

[28] Xiangchao Gan, Alan Wee-Chung Liew, and Hong Yan. Microarray missing data

imputation based on a set theoretic framework and biological knowledge. Nucleic

Acids Res., 34(5):1608–1619, 2006.

[29] A.J.R. GODFREY, G.R. WOOD, S. GANESALINGAM, M. A. NICHOLS, and

C.G. QIAO. Two-stage clustering in genotype-by-environment analyses with miss-

ing data. The Journal of Agricultural Science, 139:67–77, 2002.

[30] G.H. Golub and C.F. Van Loan. Matrix computation. Johns Hopkins University

press,Baltimore,MD, 1996.

[31] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller,

M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander. Molecular classifi-

cation of cancer: Class discovery and class prediction by gene expression monitoring.

Science, 286(5439):531–537, October 1999.

[32] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene se-

lection for cancer classification using support vector machines. Machine Learning,

46:389–422, 2002.

[33] Yoshimoto H., Saltman K., Gasch A. P., Li H.X., Ogawa N., David B.,

BROWN Patrick O., and CYERT Martha S. Genome-wide analysis of gene ex-

pression regulated by the Calcineurin/Crzlp signaling pathway in Saccharomyces

cerevisiae. The Journal of Biological Chemistry, 277(34):31079–31088, 2002.



BIBLIOGRAPHY 115

[34] J.A. Hartigan and M.A. Wong. A k-means clustering algorithm. Applied Statistics,

28:100–108, 1979.

[35] I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon,

P. Meltzer, B. Gusterson, M. Esteller, O. Kallioniemi, B. Wilfond, A. Borg, and

J. Trent. Gene-expression profiles in hereditary breast cancer. The New England

Journal of Medicine, 344:539–548, 2001.

[36] N. Holter, M. Mitra, A. Maritan, M. Cieplak, J. Banavar, and N. Fedoroff. Fun-

damental patterns underlying gene expression profiles: Simplicity from complexity.

In Proc. Natl Acad. Sci. USA, volume 97, pages 8409–8414, 2000.

[37] Jianjun Hu, Haifeng Li, Michael Waterman, and Xianghong Zhou. Integrative

missing value estimation for microarray data. BMC Bioinformatics, 7:449, October

2006.

[38] P. J. Huber. Robust estimation of a location parameter. Annals of Mathematical

Statistics, 35:73–101, 1964.

[39] P. J. Huber. Robust regression: Asymptotics, conjectures and Monte Carlo. Ann.

Stat., 1:799–821, 1973.

[40] Chen J. and Shao J. Jackknife variance estimation for nearest neighbour imputa-

tion. Journal of the American Statistical Association, 96:260–269, 2001.

[41] Schafer J. Analysis of Incomplete Multivariate Data. Chapman & Hall Inc., 1997.

[42] Rebecka Jörnsten, Ming Ouyang, and Hui-Yu Wang. A meta-data based method

for DNA microarray imputation. BMC Bioinformatics, 8:109, March 2007.

[43] Rebecka Jörnsten, Hui-Yu Wang, William J. Welsh, and Ming Ouyang. DNA mi-

croarray data imputation and significance analysis of differential expression. Bioin-

formatics, 21:4155–4161(7), 15 November 2005.



BIBLIOGRAPHY 116

[44] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expres-

sion data: A survey. IEEE Transactions on Knowledge and Data Engineering,

16(11):1370–1386, 2004.

[45] Peter Johansson and Jari Hakkinen. Improving missing value imputation of mi-

croarray data by using spot quality weights. BMC Bioinformatics, 7:306, June

2006.

[46] Javed Khan, Jun S. Wei, Markus Ringnér, Lao H. Saal, Marc Ladanyi, Frank

Westermann, Frank Berthold, Manfred Schwab, Cristina R. Antonescu, Carsten

Peterson, and Paul S. Meltzer. Classification and diagnostic prediction of cancers

using gene expression profiling and artificial neural networks. Nature Medicine,

7(6):673–679, June 2001.

[47] H. Kim, Gene H. Golub, and Haesun Park. Missing value estimation for DNA

microarray gene expression data: local least squares imputation. Bioinformatics,

21:187–198(12), 2005.

[48] Ki-Yeol Kim, Byoung-Jin Kim, and Gwan-Su Yi. Reuse of imputed data in microar-

ray analysis increases imputation efficiency. BMC Bioinformatics, 5:160, October

2004.

[49] Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classification and Re-

gression Trees. Chapman & Hall Inc., 1984.

[50] K. E. Lee, N. Sha, E. R. Dougherty, M. Vannucci, and B. K. Mallick. Gene selection:

a Bayesian variable selection approach. Bioinformatics, 19(1):90–97, January 2003.

[51] Mei-Ling Ting Lee. Analysis of Microarray Gene Expression Data, chapter 7, pages

85–92. Springer US, 2004.

[52] Qi Li and Jeffrey Scott Racine. Nonparametric econometrics: Theory and practice.

Princeton University Press, Princeton and Oxford, 2007.



BIBLIOGRAPHY 117

[53] Li Liu, Douglas M. Hawkins, Sujoy Ghosh, and S. Stanley Young. Robust sin-

gular value decomposition analysis of microarray data. Proc Natl Acad Sci USA,

100(23):13167–13172, Nov 2003.

[54] D.J. Lockhart and E.A. Winzeler. Genomics, gene expression and DNA arrays.

Nature, 405:827–836, 2000.

[55] Harvey M. and Arthur C. Fitting models to biological data using linear and non-

linear regression. Oxford University Press, 2004.

[56] G. Natsoulis, L. El Ghaoui, G. R. Lanckriet, A. M. Tolley, F. Leroy, S. Dunlea,

B. P. Eynon, C. I. Pearson, S. Tugendreich, and K. Jarnagin. Classification of a

large microarray data set: algorithm comparison and analysis of drug signatures.

Genome Res, 15(5):724–736, May 2005.

[57] D. Nguyen and D. Rocke. Multi-class cancer classification via partial least sqaures

with gene expression profiles. Bioinformatics, 18(9):1216–1226, 2002.

[58] Danh V. Nguyen, Naisyin Wang, and Raymond J. Carroll. Evaluation of missing

value estimation for microarray data. Journal of Data Science, 2(4):347–370, 2004.

[59] S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii. A Bayesian

missing value estimation method for gene expression profile data. Bioinformatics,

19:2088–2096, 2003.

[60] M. Ouyang, W. J. Welsh, and P. Georgopoulos. Gaussian mixture clustering and

imputation of microarray data. Bioinformatics, 20(6):917–923, April 2004.

[61] D’haeseleer P. How does gene expression clustering work? Nature Biotechnology,

23:1499–1501, 2005.

[62] Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G.,

Botstein D., and Brown P. O. Genomic expression programs in the response of



BIBLIOGRAPHY 118

yeast cells to environmental changes. Molecular Biology of the Cell, 11:4241–4257,

2000.

[63] Koenker R. and Hallock K. Quantile regression. Journal of Economic Perspectives,

15:143–156, 2001.

[64] Little R. and Rubin D. Statistical analysis with missing data. Wiley, New York,

1987.

[65] C. Radhakrishna Rao. Linear statistical inference and its applications. Wiley, New

York, 1973.

[66] S. Raychaudhuri, J.M. Stuart, and R. Altman. Principal components analysis to

summarize microarray experiments: Application to sporulation time series. In

Biocomputing 2000: Proceedings of the Pacific Symposium, pages 452–463, 2000.

[67] Dudoit S, Yang YH, Callow MJ, and Speed TP. Statistical methods for identifying

differentially expressed genes in replicated cDNA microarray experiments. Stat

Sinica, 12:111–139, 2002.

[68] Lee S-I and Batzogolou S. Application of independent component analysis to mi-

croarrays. Genome Biology, 4:R76, 2003.

[69] I. Scheel, M. Aldrin, I.K. Glad, R. Srum, H. Lyng, and A. Frigessi. The influ-

ence of missing value imputation on detection of differentially expressed genes from

microarray data. Bioinformatics, 21:4272–4279, 2005.

[70] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative monitoring of

gene expression patterns with a complementary DNA microarray. Science, 270:467–

470, 1995.

[71] M. Scholz, F. Kaplan, C.L. Guy, J. Kopka, and J. Selbig. Non-linear PCA: a

missing data approach. Bioinformatics, 21(20):3887–3895, 2005.



BIBLIOGRAPHY 119

[72] A. Schulze and J. Downward. Navigating gene expression using microarrays - a

technology review. Nat. Cell Biol., 3:E190–E195, 2001.

[73] Everitt S.E. and Dunn G. Applied Multivariate Data Analysis. London:Arnold,

2001.

[74] Muhammad Shoaib B. Sehgal, Iqbal Gondal, and Laurence Dooley. Missing value

imputation framework for microarray significant gene selection and class prediction.

In Data Mining for Biomedical Applications, pages 131–142, 2006.

[75] Muhammad Shoaib B. Sehgal, Iqbal Gondal, and Laurence S. Dooley. Collateral

missing value imputation: A new robust missing value estimation algorithm for

microarray data. Bioinformatics, 21(10):2417–2423, 2005.

[76] Muhammad Shoaib B. Sehgal, Iqbal Gondal, and Laurence S. Dooley. Missing

values imputation for cDNA microarray data using ranked covariance vectors. Int.

J. Hybrid Intell. Syst., 2(4):295–312, 2005.

[77] Muhammad Shoaib B S. Sehgal, Iqbal Gondal, Laurence S S. Dooley, and Ross

Coppel. Ameliorative missing value imputation for robust biological knowledge

inference. Journal of biomedical informatics, December 2007.

[78] S. Siegel and N.J. Castellan. Nonparametric Statistics for Behavioral Sciences.

McGraw-Hill, New York, 1988.

[79] M. Smith and R. Kohn. Nonparametric regression using Bayesian variable selection.

Journal of Econometrics, 75(2):317–343, December 1997.

[80] Kuzin SS. Data imputation based on regression models with variations of entropy.

In Conference of European Statistics, pages 18–20, 2000.

[81] A. Struyf, M. Hubert, and P.J. Rousseeuw. Integrating robust clustering techniques

in S-plus. Computational Statistics and Data Analysis, 26:17–37, 1997.



BIBLIOGRAPHY 120

[82] Kohonen T. Self-Organizing Maps. Springer Verlag, 2001.

[83] Lange T., Roth V., Braun M.L., and Buhmann J.M. Stability-based validation of

clustering solutions. Neural computation, 16:1299–1323, 2004.

[84] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lan-

der, and T. R. Golub. Interpreting patterns of gene expression with self-organizing

maps: methods and application to hematopoietic differentiation. Proc Natl Acad

Sci USA, 96(6):2907–2912, Mar 1999.

[85] R Development Core Team. R: A language and environment for statistical com-

puting, 2007. ISBN 3-900051-07-0.

[86] J.P. Townsend. Resolution of large and small differences in gene expression us-

ing models for the Bayesian analysis of gene expression levels and spotted DNA

microarrays. BMC Bioinformatics, 5:54, 2004.

[87] O. Troyanskaya, M. Cantor, G. Sherlock, Brown P., T. Hastie, R. Tibshirani,

D. Botstein, and R.B. Altman. Missing value estimation methods for DNA mi-

croarray. Bioinformatics, 17:520–525(6), 2001.

[88] J. Tuikkala, L. Elo, O. S. Nevalainen, and T. Aittokallio. Improving missing value

estimation in microarray data with gene ontology. Bioinformatics, 22(5):566–572,

March 2006.

[89] Johannes Tuikkala, Laura L. Elo, Olli S. Nevalainen, and Tero Aittokallio. Missing

value imputation improves clustering and interpretation of gene expression microar-

ray data. BMC Bioinformatics, 9:202, April 2008.

[90] V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays

applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 98(9):5116–

5121, April 2001.



BIBLIOGRAPHY 121

[91] Vera van Noort, Berend Snel, and Martijn Huynen. The yeast coexpression network

has a small-world, scale-free architecture and can be explained by a simple model.

EMBO Reports, 5(3):280–284, March 2004.

[92] S. Verboven, K. V. Branden, and P. Goos. Sequential imputation for missing values.

Comput Biol Chem, 31(5-6):320–327, October 2007.

[93] Michael E. Wall, Andreas Rechtsteiner, and Luis M. Rocha. Singular Value De-

composition and Principal Component Analysis, chapter 5, pages 91–109. Kluwel,

Norwell, MA, Mar 2003.

[94] Dong Wang, Yingli Lv, Zheng Guo, Xia Li, Yanhui Li, Jing Zhu, Da Yang, Jianzhen

Xu, Chenguang Wang, Shaoqi Rao, and Baofeng Yang. Effects of replacing the

unreliable cDNA microarray measurements on the disease classification based on

gene expression profiles and functional modules. Bioinformatics, 22(23):2883–2889,

2006.

[95] Xian Wang, Ao Li, Zhaohui Jiang, and Huanqing Feng. Missing value estimation

for DNA microarray gene expression data by support vector regression imputation

and orthogonal coding scheme. BMC Bioinformatics, 7:32, 2006.

[96] D.S. Watkins. Fundamentals of Matrix Computations. Wiley, New York, 1991.

[97] E.C. Wit and J.D. McClure. Statistics for Microarrays:Design, Analysis and Infer-

ence. John Wiley & Sons Ltd, Chichester, UK, 2004.

[98] Dorothy S. Wong, Frederick K. Wong, and Graham R. Wood. A multi-stage ap-

proach to clustering and imputation of gene expression profiles. Bioinformatics,

23(8):998–1005, April 2007.

[99] Qian Xiang, Xianhua Dai, Yangyang Deng, Caisheng He, Jiang Wang, Jihua Feng,

and Zhiming Dai. Missing value imputation for microarray gene expression data

using histone acetylation information. BMC Bioinformatics, 9:252, May 2008.



BIBLIOGRAPHY 122

[100] Shi Y., Cai Z., and Lin G. Classification accuracy based microarray missing values

imputation. New Jersey: Wiley-Interscience, 2007.

[101] D. Yoon, E. K. Lee, and T. Park. Robust imputation method for missing values in

microarray data. BMC Bioinformatics, 8 Suppl 2, 2007.

[102] X. Zhou, X. Wang, and E. R. Dougherty. Construction of genomic networks us-

ing mutual-information clustering and reversible-jump markov-chain-monte-carlo

predictor design. Signal Processing, 83(4):745–761.

[103] X. Zhou, X. Wang, and E. R. Dougherty. Missing-value estimation using linear and

non-linear regression with Bayesian gene selection. Bioinformatics, 19(17):2302–

2307, November 2003.



Appendix A

123



APPENDIX A 124

Figure A.1: Box plots of MNHD for different kclu ranging from 2 to 11 in Listeria data
with 10% missing rate.
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Figure A.2: Box plots of MNHD for different kclu ranging from 2 to 11 in Listeria data
with 15% missing rate.
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Figure A.3: Box plots of MNHD for different kclu ranging from 2 to 11 in Listeria data
with 20% missing rate.
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Figure A.4: Box plots of MNHD for different kclu ranging from 2 to 11 in Breast Cancer
data with 10% missing rate.
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Figure A.5: Box plots of MNHD for different kclu ranging from 2 to 11 in Breast Cancer
data with 15% missing rate.



APPENDIX A 129

Figure A.6: Box plots of MNHD for different kclu ranging from 2 to 11 in Breast Cancer
data with 20% missing rate.


