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Summary 
 

Botulinum neurotoxins (BoNTs) are widely regarded as the “poison of all poisons”. 

BoNTs are built upon two primary domains, the light chain (LC) and the heavy chain 

(HC). The LC constitutes a zinc metalloprotease which cleave the SNARE proteins, 

whereas the HC domain transports the LC into the neuronal cytosol via the acidic 

endosome. Numerous researchers have explored the design of potent BoNTs inhibitors 

targeting the LC domain. However, in nearly all cases, low cell uptake or high 

cytotoxicity was limiting factors preventing their potential for in vivo applications. Due 

to their mechanism of action, inhibitors targeting the HC domain would not need to cross 

cell membranes in order to reach their targets since they would interfere with BoNTs in 

the blood stream and thus prevent BoNTs uptake. Up to now, no rational approach for the 

identification of HC inhibitors has been reported. Such an approach is also considered 

challenging due to the necessity to address both neuroselective binding sites with so far 

unknown small molecule inhibitors. Therefore, the present project is focused on the 

development of macromolecular aptamer inhibitors ideally targeting both binding sites of 

the HC domain.  

Aptamers are particularly attractive as potential antibody replacements due to their high 

binding specificities and affinities and improved accessibilities and stabilities. We have 

chosen the SELEX process to generate novel aptamers against the ganglioside binding 

peptide or protein reflecting the native membrane binding sites from the HC domain of 

BoNT/A. A single bead SELEX technique has been established successfully in the course 

of this project by using the 19mer ganglisoside binding peptide from the amino acid 
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sequence at one of the essential membrane binding site (gangalioside binding site) from 

BoNT/A HC domain as the first target. Aptamers were found with about 0.8uM binding 

affinity to this peptide after 3 cycles of SELEX. After the peptide SELEX process has 

been successfully established, the ganglioside binding protein (gsbp), which is part of the 

HC domain containing both essential binding sites for BoNT/A membrane recognition 

was used as the final target. This protein contained the native, active conformation and 

was a particular challenge to identify the optimal conditions to maintain this 

conformation during the whole SELEX process. Therefore, the SELEX procedure was 

further modified and adjusted to this very sensitive protein which facilitated the 

identification of novel aptamers that were able to interact with the protein surface. 

Aptamer with 5uM binding affinity was successfully identified after 5 cycles of SELEX. 

These aptamers will be very promising candidates to interact with BoNT/A and they 

might serve as valuable tools to allow a first proof-of-concept study and assess the 

therapeutic potential of blocking BoNT/A cell uptake, which has not been explored yet. 

Therefore, such aptamers pave the way to therapeutic aptamers displaying higher binding 

affinities which might serve as an efficient treatment of botulism at the early stage. The 

ability of these aptamers to prevent BoNT/A uptake will be in the focus of future 

investigations.  
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Chapter 1.  Introduction 

1.1   Introduction of aptamers 

Aptamers are single strand oligonucleotides which can bind to a target with high 

specificity and affinity. This innovative biotechnology tool has been developed for only 

20 years. In 1989, the Nobel Prize of Chemistry was awarded to Professor Sidney Altman 

and Professor Thomas Cech for their discovery of catalytic properties of RNA which 

revealed that nucleic acids are not only information-containing molecules but also can 

bind to targets such as proteins and initiate and catalyze biological processes[1]. Inspired 

by this discovery, professor Larry Gold[2] and professor Jack W. Szostak[3] 

independently introduced the approach for the in vitro selection of RNA molecules that in 

principle can specifically interact with basically any protein. Later, this technique was 

called SELEX (systematic evolution of ligands by exponential enrichment) and the RNA 

molecules selected by this method were named aptamers，which is derived from the 

Latin word ‘‘aptus’’—which means fitting and the Greek word “meros’’ meaning part[3]. 

Two years later, the successful selection of single-stranded DNA (ssDNA) aptamers was 

also demonstrated by Szostak’s group[4] which revealed improved stability compared 

with RNA aptamers. This facile and efficient method to achieve ligands displaying high 

affinity and specificity for various proteins attracted plenty of research interests 

immediately. The targets of aptamers have been explored rapidly and the SELEX 

technique has also been further developed and optimized since the early times of aptamer 

research.  
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Figure. 1.  Schematic representation of the architecture and binding capability of 
aptamers[5]. 
 

As short single-stranded oligonucleotides, aptamers can form complicated three-

dimensional structures characterized by stems, loops, bulges, hairpins, pseudoknots, 

triplexes, or quadruplexes. Binding of aptamer to a target can attribute to multiple effects 

including the precise stacking of flat moieties such as aromatic rings, specific hydrogen 

bonding, and molecular shape complementarity with regard to electrostatic and van der 

Waals interactions[6]. Based on the large number of possible nucleotide sequences, the 

adopted structure of aptamers in principle can be diverse enough to bind to basically any 

biological target (Figure 1).  

 

After the first report of aptamers binding to proteins, this principle was rapidly extended 

to many other targets including small bio-molecules, complexes and even the whole cells. 

In 1995, Szostak firstly reported an ATP-recognizing aptamer[7], and he even selected an 

aptamer with strong and specific recognition of the triphosphate of ATP in 2004[8]. After 

this discovery, many aptamers targeting small biomolecules have been reported, such as 

His-tag-specific aptamer[9], Coenzyme A aptamer [10], and mRNA aptamer[11]. 

Recently, the requirement for high cell specificity in cancer treatment encouraged the 

whole cell-based SELEX approach which generates aptamers recognizing a cancer cell 
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type in a highly specific manner [12, 13]. Cancer cell aptamers can selectively 

differentiate whole cancer cells from healthy. Compared with other known cancer makers 

such as e.g. folic acid receptors which are over expressed in cancer cells but to a lesser 

extent also present in normal cells, this technique paves the way to a personal cancer 

treatment with high specificity for the patient’s tumor. These broad applications make 

aptamers technology particularly attractive for a broad range of applications in medicine 

but also in material science. 

 

1.2   SELEX technique 

After the first introduction of SELEX in 1990[2], numerous aptamers have been 

generated via this technique. Although many modern technologies were added to the 

SELEX process, the basic principle remained the same. A complete SELEX cycle 

involves three main processes: Incubation of the oligonucleotides pool with a target to 

allow binding; partitioning of binding aptamers from non-binding aptamers; and 

amplification of bound aptamers[14]. After the amplification, a new aptamer pool with 

preliminary affinity to the target will be obtained and this pool is used again for target 

binding (Figure 2). A successful SELEX normally involves 10 to 20 cycles.  
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Individual 
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Figure. 2.  In vitro selection of target-specific aptamers using SELEX technology. 
 

Before starting the SELEX cycle, a random oligonucleotides pool with sufficient 

diversity but also some constant regions needs to be designed first. If the target doesn’t 

have a known functional nucleic acid sequence or a bound structural motif, a random 

sequence pool is normally used to initiate the SELEX process. The length of the random 

sequence generally varies from 20nt to 80nt depending on the size of target and the 

degree of randomization required (Figure 3). On both ends of the random sequence, 18nt 

to 21nt constant regions for primers binding need to be introduced for Aptamer 

amplification. This random oligonucleotides library was chemically synthesized 

consisting of about 1013 to 1015 different sequences to ensure a successful SELEX[15]. In 

1st cycle 
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a SELEX procedure which is aimed for identifying DNA aptamers, this library could be 

used without any pretreatments, whereas an in vitro transcription is needed for RNA 

aptamers. 

5’ 3’

fixed 
sequence

fixed 
sequencerandom sequence

12-18nt 12-18nt20-80nt  

Figure 3.  Design of a randomized oligonucleotides pool. 
 

During the SELEX process, the randomized RNA or DNA pool is incubated with the 

target in an appropriate buffer and at constant temperature. Thereafter, the formed 

complexes need to be separated from unbound oligonucleotides. This is one of the most 

crucial steps in the SELEX process and there are various techniques available to achieve 

it. Traditional separation without target immobilization can be achieved by ultrafiltration 

using membrane filters with specific molecular weight cut-offs lower than the respective 

target-aptamer complex but higher than the unbound oligonucleotides[2, 16, 17]. 

However, membrane absorption of the complexes as well as unspecific interactions of 

oligonucleotides with the membrane often results in reduced selection efficiency. For 

protein targets, the most common methods nowadays are affinity column 

chromatography with the immobilized target protein. Proteins can be firstly equipped 

with His-tags or biotin units and immobilized on Ni-NTA or streptavidin columns either 

before SELEX or after incubation with the aptamers[18, 19]. Even though this method is 

quite convenient to operate, a significant amount of protein is usually needed in order to 

completely coat the whole surface area of the column, since otherwise non-specific 
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absorption of the oligonucleotides by the packing material is likely to occur. In recent 

years, several modern techniques have been applied in this step, e.g. Capillary 

Electrophoresis (CE)[20-22], Flow Cytometry, FC[12, 23], Electrophoretic Mobility Shift 

Assay, EMSA[24], Surface Plasmon Resonance, SPR[25] or centrifugation[26, 27]. 

Gopinath[14] has given a very helpful overview of all these different partition methods. 

 

Partitioned target bound oligonucleotides are amplified by PCR (DNA SELEX) or RT-

PCR (RNA SELEX). For DNA SELEX, the resulting double-stranded DNA from the 

PCR mixture has to be separated into a new ssDNA pool, which can be achieved by 

different approaches, such as asymmetric PCR or biotin-primer separation[28, 29]. 

Details are discussed in the experimental part.  For RNA SELEX, an in vitro transcription 

and subsequent purification is needed. Then, this new pool of selected oligonucleotides is 

ready for use in the next SELEX cycle. After several selection and amplification cycles, 

the higher binding affinity sequences are enriched and lower binding affinity sequences 

are minimized due to binding competition. 

 

Recently, some automatic SELEX techniques have also been reported, such as the 

automatic SELEX work station, which combines all SELEX steps together[30] as well as 

microfluidic channel based SELEX[31, 32]. Although the automatic SELEX considered 

as a dream in aptamer technology, the real automatic SELEX for broad target application 

is still not feasible at present. For each new target, a specific SELEX process needs to be 

established and optimized individually 
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1.3.    Aptamers for therapeutic applications 

Interactions between oligonucleotides and proteins with high affinity and specificity 

naturally occur in many biological processes such as transcription, translation or RNA 

interference. For example, protein conformation and function can be changed when 

binding to its oligonucleotide substrate. Based on the same concept, aptamers provide 

non-natural oligonucleotide-protein interactions, which theoretically can also modulate 

the protein’s function. This therapeutic principle has been exploited in the past. Until 

June 2009, seven therapeutic aptamers were in clinical development and one of them has 

been already reached the market [MacugenTM, anti-,macular degeneration drug] (Table 

1)[33]. Among all these aptamer drugs in clinical trials, the common mechanism of their 

action is based on a specific binding property to a target protein and thereby blockade of 

the interaction of the particular protein with other proteins that function as competitive 

inhibitors. 

 
Table 1. Therapeutic aptamers in clinical use or clinical development as of June 2009. 

Compound 
ID 

Therapeutic 
Target 

Disease 
Indication 

Route/Method 
Administration 

Clinical 
Phase 

MacugenTM VEDF Macular 
degeneration 

Intravitreal Market 

ARC1779 Won Willebrand 
factor 

Thrombotic 
microangiopathy

Intravenous infusion Phase 2 

REG1 Factor IXa Coronary artery 
bypass 

Intravenous bolus Phase 2 

AS1411 Nucleolin Acute 
myeologenous 
leukemia 

Intravenous infusion Phase 2 

E10030 PDGF-b Macular 
degeneration 

Intravitreal Phase 1 

ARC1905 Complement 
factor 5 

Macular 
degeneration 

Intravitreal Phase 1 

NU172 Thrombin Coronary artery 
bypass 

Intravenous infusion Phase 1 
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Since oligonucleotides usually reveal very limited cell membrane penetration due to 

electrostatic repulsion forces, most targets of therapeutic aptamers are located outside the 

cells such as plasma proteins or cell-surface proteins. Therefore, aptamer drugs normally 

need to spent sufficient time in the blood circulation and thus remain in the plasma 

compartment. However, most oligonucleotides generally encounter three major DMPK 

(distribution, metabolism and pharmacokinetics of a drug) hurdles: (1) rapid metabolic 

degradation, (2) rapid renal elimination and (3) rapid biodistribution from plasma into 

tissue[33]. Consequently, post SELEX modifications of the aptamer to increase plasma 

life time are normally required to generate aptamer drugs. 

 

Post SELEX modifications of the initially selected aptamer displaying high binding 

affinity and therapeutic potential can improve drug like properties of the aptamer. The 

first major step which is important to limit manufacture costs and improve synthetic 

feasibility is to identify the functional moieties and minimize the aptamer sequence to the 

smallest possible size. Minimized aptamers generally have 15–45 oligonucleotides with 

molecular weights of 5-15 kDa[33]. After minimization, further chemical modifications 

can be introduced systematically to improve metabolic stability or enhance binding 

affinity. For example, substitutions (e.g., 2’ -OMe, 2’ -F) at the 2’ position of the sugar 

ring or at the phosphate backbone [e.g. introduction of sulfur to replace non-bridging 

phosphodiester oxygen (P=S)] can enhance aptamer plasma life time[34]. Pegylation 

(conjugation with polyethylene(oxide), PEG) is another way to extends aptamer 

elimination half-life, which is a widely used strategy to extend drug circulating life time 
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for clinical use[35, 36]. PEG can be easily conjugated at one (5’) or both ends (5’ and 3’) 

of the aptamer during chemical synthesis. 

 

Very limited information of the toxicological properties of aptamers are available, except 

for the marketed aptamer product MacugenTM[37]. The clinical trials accomplished for 

MacugenTM allowed a limited toxicological assessment due to the minimal systemic 

exposure from the low total dose administered (0.3 mg/eye), sporadic administration 

(every 6 weeks) and compartmental administration (intravitreal). However, in toxicology 

studies of therapeutic aptamers, the general toxicology profile of therapeutic aptamers has 

been reported[33] quite predictable and favorable. The previously reported 

oligonucleotide class effects such as immune stimulation, complement activation and 

anticoagulation are largely devoid in aptamers. NoAELs (no observed adverse effect 

levels) are generally in the 25–100 mg/kg/day range.  

 

In short, therapeutic aptamers have been demonstrated as a new promising class of drugs 

for targeting plasma proteins or cell surface proteins. Chemical modifications of such 

aptamers are feasible at various positions to improve drug like properties. The 

pharmacokinetic and toxicological properties of aptamer drugs are favorable and they are 

devoid of the reported oligonucleotides side effects. However, still further data and more 

Aptamer drugs are required to intensively investigate the clinical properties of therapeutic 

aptamers. 
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1.4    Botulinum Neurotoxin infection and applications 

Botulinum neurotoxins (BoNTs) produced by anaerobic bacteria Clostridium botulinum 

are the most potent toxins known with a mouse LD50 of roughly 1–5 ng/kg[38]. Seven 

botulinum neurotoxin serotypes (named BoNT/A to G) distinct biochemically and 

serologically have been characterized from anaerobic bacteria spores of the genus 

Clostridium. These bacterial spores are broadly present in the environment and are 

strongly resistant to a range of physical and chemical damages. Food contaminated by 

Clostridium botulinum spores, under suitably anaerobic conditions such as in cans, can 

generate bacterial cells producing one or more types of BoNTs. Therefore, botulinum 

toxin was also described as a "sausage poison" and "fatty poison"[39], as this bacterium 

often poisoned sausages or canned meat. Ingestion of BoNT-poisoned food potentially 

causes a fatal disease known as botulism which leads to paralysis starting with the 

muscles of the face and then spreading towards the limbs[38]. If left untreated, it leads to 

death because of the breathing muscles paralysis resulting respiratory failure. Infant 

botulism is also a common type of BoNTs infection caused by the colonization of the 

digestive tract of infants by Clostridium botulinum, which may cause sudden infant death. 

Botulism can also occur in wounds resulting from Clostridium botulinum growing in 

anaerobic wounds. 

 

Despite its fatal toxic effects, BoNTs have also been used as a powerful therapeutic tool 

for treating a variety of neurological, ophthalmic and other muscle contraction disorders. 

For example, a popular botulinum toxin-containing drug, BOTOX, was approved by the 
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U.S. Food and Drug Administration (FDA) in December 1989 for the treatment of 

strabismus, blepharospasm, and hemifacial spasm in patients over 12 years old. And this 

product has also been used for cosmetic purposes to treat wrinkles.  

 

1.5    Botulinum Neurotoxin structure and action mechanism 

The seven serotypes of botulinum neurotoxins (BoNTs) share very similar structure and 

properties. In bacterial autolysis, they are produced as complexes composed of inactive 

single polypeptide toxin chains (Mr ~150 kDa) which are activated by proteolysis and 

other non-toxic accessory proteins[40]. The accessory proteins protect BoNTs through 

the stomach and dissociate when the complexes reach the small intestine where the toxins 

are absorbed into the bloodstream[41]. The active form of the toxin consists of a 150kDa-

dichain protein composed of a 100kDa C-terminal heavy chain (HC) linked by a disulfide 

bridge to a 50kDa N-terminal light chain (LC) which is a zinc-protease (Figure 4). The 

HC can also be identified as two domains, the HC domain (blue color) include a 

ganglioside binding site and a membrane receptor binding site which is responsible for 

neuroselective binding and the HN domain (green color) functions as a chaperone for 

refolding of the LC domain after translocation[42]. 
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Figure 4. Crystal structure of BoNT/B illustrates the typical structural motifs of 

BoNTs[43]. 

 

BoNTs intoxication occurrs via a multistep process involving each of these functional 

domains (Figure 5): 1) The HC domain interaction with Gangliosides at the 

neuromuscular junction resulting in neurospecific binding and diffusion along the motor 

neurons, 2) the membrane receptor binding site on the HC domain is recognized by 

membrane receptors such as Synaptotagmins and internalization by receptor mediated 

endocytosis is initiated, 3) conformational changes of the HN domain in the endosomes 

and release of the LC into the cytosol, and 4) cleavage of the SNARE protein by the LC 

domain, thereby preventing neurotransmitter release[44]. 
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Figure 5.  Demonstration of the intoxication mechanism of BoNTs.[41] 
 

1.6    Treatment of botulism 

The death by botulism is caused by respiratory failure due to paralysis of the respiratory 

muscles, which represents a secondary symptom of botulism. Therefore, if the symptoms 

of botulism are identified at an early stage, botulism could be treated by blocking any 

further step of the BoNTs intoxication pathway in order to prevent worsening of the 

paralysis symptoms. The only available drugs to treat botulinum intoxication currently 

are equine antitoxins which induce passive immunity to block the blood circulation of 

BoNTs [45]. Two primary Botulinum Antitoxins available are Trivalent (A,B,E) 

Botulinum Antitoxin derived from equine sources utilizing whole antibodies (Fab & Fc 

portions) and Heptavalent (A,B,C,D,E,F,G) Botulinum Antitoxin derived from 
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"despeciated" equine IgG antibodies with only Fab portions. Antitoxin treatment and 

modern clinical practice has reduced botulism fatality rates from 60% to about 10%[46]. 

However, the functional recovery of the nervous system could take several weeks to 

months or even longer. Currently, this antitoxin is not applied to treat infant botulism due 

to potential life-threatening side-effects such as anaphylaxis and serum sickness. Human 

botulinum immune globulin is still under investigation, which might have the potential to 

treat infants with fewer side effects since it is a homologous immunoglobulin[47]. 

Development of small molecular inhibitors for the treatment of BoNTs has also been 

strongly supported. Nearly all of the steps during BoNT pathogenesis have been 

exploited as potential therapeutic targets including toxin binding, translocation and 

catalytic activity. Several compounds with promising inhibiting ability or mitigating the 

paralysis have been identified. However, most of the compounds show unfavorable drug 

like properties such as very limited cell uptake or high cytotoxicity and therefore, they 

haven’t been considered for clinical studies[48]. 

 

1.7    Aim of project 

In this project, the development of therapeutic aptamers which are able to block the 

ganglioside binding site and Synaptotagmin binding site on the HC domain of BoNT/A 

represents a key concern. Due to the intoxication mechanism of BoNTs, these aptamers 

could in principle used as BoNTs inhibitors without cell membrane penetration. The 

mechanism of action would be similar as the antitoxins on the market, which were 

derived from equine antibodies (Section 1.6), but less immune side effects are expected 
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according to the clinical reports of several types of available therapeutic aptamers. Up to 

now, no rational approach for the identification of HC inhibitors has been reported.  

 

A preliminary study of BoNT HC domain aptamer has been reported by Prof. Tok[28] 

using a single bead SELEX method. A short peptide sequence derived from the BoNT/A 

HC domain was used in that study. However, the short peptide might not retain the active 

conformation of the neuroselective binding site and no binding affinity data of the 

generated aptamer for the whole BoNT protein was reported in that study.  

 

Figure 6. Crystal structure of the HC domain of BoNT/A where the ganglioside 
binding site and the protein receptor binding site are highlighted. 

 

Co-crystallization of BoNT/B and gangliosides and part of the protein receptor peptide 

sequence as well as a combination of molecular modeling and mutation analyses 

facilitated the identification of the gangliosides binding site and protein receptor binding 

site on HC domain of BoNT/A (Figure 6)[49]. Both of these two binding sites are exposed 

to the surface and located close, which should enable an interaction with aptamers and a 
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blockade of these binding events. In close cooperation with our collaborator, the 

ganglioside binding protein (gsbp) consisting both of the essential membrane binding 

sites and a retained active conformation has been expressed successfully. A His-tag is 

introduced just on the opposite side of these two binding sites to allow immobilization of 

this protein to a single Ni-NTA bead. Therefore, a similar single bead SELEX approach 

as reported by Prof. Tok’s previously with some modifications on the procedures was 

designed and established herein to select aptamers with high binding affinities for gsbp 

and with potential to block the BoNT/A infection pathway.  
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Chapter 2.  Experimental 

2.1   Materials 

Synthetic 29-mer ganglioside binding peptide with the following sequence 

HHHHHHGGGGDRVYINVVVKNKEYRLATN was ordered from Genescript (USA), 

and a purity of 98.1% was certified after HPLC analysis. The ganglioside binding protein 

(gsbp) was expressed and purified by Dr. Andreas Rummel from Medizinische 

Hochschule Hannover, Germany. Ni-NTA derivatized agarose beads and streptavidin 

derivatized agarose beads were purchased from Invitrogen (Carlsbad, CA). The 40nt 

random sequence containing the ssDNA library and both derivatized and underivatized 

primers were obtained from 1st-BASE (Singapore) with the following sequences: ssDNA 

Library: 5’-ATACCAGCTTATTCAATT-N40–AGATAGTAAGTGCAATCT-3’; 

Reverse Primer: 5’-(Biotin)-AGATTGCACTTACTATCT-3’; Forward Primer: 5’-

(Fluorescein)-ATACCAGCTTATTCAATT-3’. M13 forward (–20): 5' 

GTAAAACGACGGCCAGT 3' and M13 reverse: 5' AACAGCTATGACCATG 3' are 

also synthesized by 1st-BASE (Singapore). GoTag DNA polymerase and other PCR 

reagents were all purchased from Promega (USA). PCR cloning kits were obtained from 

Fermentas Life Sceinces and Qiagen (USA). XL-blue competent cells were used for 

cloning. LB Agar plates were prepared from LB Agar (Lennox) Powder Growth Media, 

PTG and X-gal was obtained from Promega Pte Ltd. Fluorescein was purchased from 

Alfa Aesar. 

 

2.2   Instruments 
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Sequencing was performed by Genewiz Inc. Beijing. Fluorescence polarization was 

measured by a Tecan Infinite F200 Microplate reader in PerkinElmer 384 Flat bottom 

Black microplates. Fluorescence images were recorded on an Olympus XTI-17 

microscope. 

 

2.3   Overview of SELEX process 

The SELEX process to generate the gsbp aptamer has been modified from the originally 

reported single bead method [28]. (Figure 7) The single strand DNA (ssDNA) library was 

designed with 40nt random sequences in the middle region and two 18nt primer binding 

sites at each end. The target protein with His-tag was firstly coated on the Ni-NTA 

agarose bead. One bead coated with the peptides was incubated with 10uL of the ssDNA 

library. After incubation, free ssDNA was washed off and the bead with bound DNA 

binding was directly used for PCR. Reverse primers functionalized with biotin were used 

for PCR so that the antisense strand is labeled with biotin and can be removed via 

streptavidin beads. After separation, the sense strand was used as a new library for next 

cycle of the SELEX process. Since in each cycle, the relative amount of the peptide is 

limited, the competition during the binding process is much higher compared with a 

traditional column SELEX. Therefore, after less than 10 cycles aptamers displaying high 

binding affinities are achieved already. It is a key feature that only few pictograms of the 

peptide is needed for this kind of SELEX approach which is a big advantage considering 

the high costs of proteins such as the gsbp. 



 
 
Chapter 2  Experimental 
 

 Generation of aptamers against the ganglioside-binding proteins via single bead SELEX 19

 
Figure 7.  Representation of the single bead SELEX cycle. 

 

The single bead SELEX method was first established using the reported ganglioside 

binding peptide [27] as target. Later on, the similar method was applied for gsbp native 

protein. A few but important modifications of the peptide SELEX procedure have been 

introduced in order to contribute to the higher sensitivity of the protein compared with the 

peptide at elevated temperature and under vigorous stirring. The general procedure of 

each SELEX step is described below and differences between the peptide SELEX and the 

protein SELEX are highlighted. 

 

2.4.     Loading of the His-tag peptide or protein onto a single Ni-NTA agarose bead 

The sequence of the synthetic 19-mer ganglioside binding peptide consists of the amino 

acids 1177 to 1195, a short 4-mer glycine spacer and a 6-mer His-tag incorporated at the 

N-terminus. This peptide was dissolved in Milli-Q water with a final concentration of 

1mM as stock solution. The gsbp native protein was also expressed with His-tag at the 
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opposite side of the essential membrane binding sites and it was obtained with a 

concentration of 15uM and used as obtained. 

 

The Ni-NTA agarose beads in 20% ethanol stock solution were firstly washed 6 times 

with Milli-Q water and 6 times with binding buffer (20 mM HEPES, pH 7.4; 150 mM 

NaCl; 5 mM KCl; 2 mM MgCl2; 2 mM CaCl2). Subsequently, 5 to 10 beads with regular 

shape and similar average diameters were selected under the light microscope and 

transferred into a PCR tube. The beads were resuspended in 20µL of binding buffer, 

0.08µL/bead of peptide stock solution or 0.5µL/bead of gsbp stock solution was then 

added. The solution was incubated at room temperature for 3hrs. After the first hour of 

incubation, the NaCl concentration was slowly adjusted to 1M. The beads were washed 

again 6 times with Milli-Q water and binding buffer after coating of the peptide. Both 

peptide and protein immobilized beads were stored in 100µL of binding buffer at 4oC. 

 

General procedure for washing a batch of beads: 1μL of Ni-NTA beads in ethanol were 

transferred to a 96-well plate, and diluted by 49μL of Milli-Q water. 5μL diluted beads 

were transferred to another well and further diluted by 45μL of Milli-Q water. About 50 

beads in the well could be visualized under the microscope (10X magnification). The 

solution was well mixed by pipette, and then kept for 2 minutes until all beads had settled 

down. 40μL of water was carefully transferred from the upper layer with minimum 

movement of the beads on plates. Then 40μL of fresh Milli-Q water was added again to 

repeat this wash step. 
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2.5.     Incubation and washing of the peptide or protein coated bead with the ssDNA 

library 

One of the peptide or protein coated beads was transferred with 0.5μL of binding buffer 

via micropipette under the microscope to a Petri dish. The bead was washed 3 times with 

20μL of Milli-Q water, and then transferred with 1μL of water to a 0.2mL PCR tube. 3μL 

of water, 5μL of 2X binding buffer and 1μL of ssDNA library was mixed with the bead 

in the tube (10μL of final volume). For peptide SELEX, the solution was heated at 95oC 

for 7min and cooled down to 20oC for 30min in the thermal cycler to minimize cross 

hybridization within the ssDNA library while this step was omitted for protein SELEX. 

The solution was then incubated at room temperature for 2hrs with gentle shaking. 

 

After incubation, this 10μL solution was transferred to a Petri dish. The bead was washed 

7 times with binding buffer and 3 times with water and finally transferred with 1μL water 

together to a new PCR tube and stored at 4oC for PCR. 

 

General procedure for washing one bead: One bead located on a Petri dish could be 

transferred in solution by a pipette. The bead was carefully transferred with 1μL of 

solution to a clean place under the microscope. 20μL of new binding buffer or water was 

added onto the bead. The drop was gently moved around by air derived from actuating a 

pipette. The bead should be circulated around in the drop, which can be monitored under 
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the microscope. After washing, the bead was transferred with 1μL of solution to another 

new place and the washing step was repeated. 

 

2.6.     Single Bead PCR optimization 

In order to produce single stranded DNA after PCR, two PCR approaches have been 

examined. One is asymmetric PCR which is a PCR with one primer in very high excess 

compared with the other primer. The other approach is based on PCR with a biotin- 

labeled primer, which can be separated by streptavidin beads. 

 

For asymmetric PCR, one bead was reacted in a 120μL of PCR solution. 6μL of forward 

primer (10μM) and 6μL of biotin-labeled reverse primer (0.1µM) were used. PCR 

conditions: preheat to 95oC for 4min, 90 cycles of 94oC 30s, 50oC 45s, 72oC 45s, final 

extension at 72oC 10min. 

 

For PCR with the biotin primer, one bead was also reacted in 120μL PCR solution. 6μL 

of 10μM of both forward and biotin-reverse primers were used. PCR conditions: preheat 

to 95oC for 4min, 25 cycles of 94oC and 30s, 49oC and 45s, 72oC and 45s, final extension 

at 72oC for 10min. 

 

2.7.     Separation of sense strand ssDNA from double stranded DNA 



 
 
Chapter 2  Experimental 
 

 Generation of aptamers against the ganglioside-binding proteins via single bead SELEX 23

To prepare streptavidin agarose beads for separation, 20μL streptavidin beads slurry were 

added into a 0.2mL PCR tube, centrifuged at 6.0X1000g for 1min. The supernatant was 

discarded carefully by a pipette. 90μL of autocleaved Milli-Q water was then added, the 

slurry was votexed and centrifuged at 6X1000g for 1min, supernatant was again carefully 

discarded. This wash step was repeated 5 times.  

 

90μL of PCR sample was added into 10µL of streptavidin agarose beads. The solution 

was mixed by vortex and then incubated at room temperature for 1h. After incubation, the 

beads were centrifuged down at 6X1000g and the supernatant was carefully discarded. 

The beads were then washed with 90µL of water 3 times as described before. 

Subsequently, 50μL of sterilized NaOH solution (15mM) was added. For peptide SELEX, 

the resulting solution was first heated to 95oC for 7 min and then cooled to 20oC for 

30min by a thermal cycler. For protein SELEX, 3hrs RT incubation with gently shaking 

was required. After incubation, the beads were centrifuged down and the supernatant was 

transferred into a new tube. ~0.5µL of 2.5% acetic acid was added to adjust the solution 

to neutral pH and the final pH was checked by pH indicator paper. The solution now 

containing clean ssDNA can be stored at 4oC and used as a new library for next cycle of 

SELEX. 

 

2.8.     Cloning and sequencing 

The clones of the selected aptamer sequences were generated using the InsTAclone PCR 

cloning kit (Fermentas) according to manufacturer’s instructions. After overnight growth 



 
 
Chapter 2  Experimental 
 

 Generation of aptamers against the ganglioside-binding proteins via single bead SELEX 24

on LB agar plates, 21 colonies were selected and amplified by PCR. The PCR reaction 

solution was directly sent to GeneWiz Inc. Beijing for further purification and sequencing. 

 

2.9.     Binding affinity test 

The selected colonies were amplified by colony PCR with biotin-labeled reverse primer 

and fluorescein-labeled forward primer. The purification was performed by streptavidin 

agarose beads and the double strand DNA was separated into single strand DNA 

simultaneously (section 2.7). The whole process was carried out in the dark room to 

avoid photobleaching of fluorescein. 

 

After purification and separation, the concentration of single strand aptamers was 

measured by agarose gel electrophoresis with a quantitative DNA ladder. Then, 5 μL of 

the aptamer solution was transferred into PerkinElmer 384 Flat bottom Black microplates 

and 10 μL of 2 x binding buffer (40 mM HEPES, pH 7.4; 300 mM NaCl; 10 mM KCl; 4 

mM MgCl2; 4 mM CaCl2) was added. After which 5 μL of the desired concentration of 

the peptide or gsbp was added into the individual sample and incubated at room 

temperature in the dark for half an hour to allow binding. After incubation, the 

fluorescent polarization was obtained by using a Tecan Infinite F200 microplate reader. 

The excitation wavelength was set at 480 nm and the emission wavelength at 520 nm. 

The G-factor was corrected by 20nM fluorescein aqueous solution (1mP). At each 

peptide concentration, the polarization value (mP) was obtained by average of 5 

independent measurements. The polarization (mP) data was then converted to anisotropy 
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data (r) by Equation 2, and the dissociation constant (Kd) was calculated by fitting the 

experimental data to Equation 3. The fitting curve was plotted by OriginPro 8  and the Kd 

values were also calculated.  

Equation 2.  r = 2P/3-P 

Equation 3.  y = m1 + [m2/2 * ((m0 + m3 + m4) - ((m0 + m3 + m4)*(m0 + m3 + m4)-(4 

* m0 * m3))0.5)]/m3 

where: 

y = anisotropy in the presence of peptide 

m1 = anisotropy in the absence of peptide(mP) 

m2 = anisotropy changes in the presence of infinite amt of peptide(mP) 

m0 = initial concentration of peptide (μM) 

m3 = initial concentration of aptamer (μM) 

m4 = dissociation constant (Kd) 
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Chapter 3. Results and Discussion 

3.1  Establishment of the single bead SELEX method 

3.1.1 Single bead PCR optimization 

In order to get single stranded DNA after PCR, two PCR methods have been explored. One 

is asymmetric PCR approach where one primer is applied in very large excess compared 

with the other primer. The second approach includes PCR with a biotin-labeled primer and 

the separation by streptavidin beads. (Figure 8) 

Biotin

5’

3’

3’

5’

Sence strand

Antisence strand

Unidirectional PCR Use only one or a much bigger amount of reverse 
primer , but very little or no forward primer.

Use biotin to separate dsDNA after normal PCR

 

Figure 8.  Illustration of the two PCR methods to receive ssDNA[50]. 

 

After the 1st SELEX cycle, PCR on the single bead coated with the ganglioside binding 

peptide was performed by these two methods and the outcome is shown in Figure 9. The 
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number of reaction cycles for PCR was also optimized. The biotin primer PCR achieves 

enough amount of product (76bp fragment) within 25 cycles (line 4), and with too much 

cycles, the product band become broad which indicating nonspecific reactions. The 

asymmetric PCR product is slightly lower than the double stranded PCR product, which 

indicated single strand product formation. The optimal number of cycles is 90 cycles (line 

6), and nonspecific amplification abserved after 120 cycles (line 5). The best annealing 

temperature found was 50oC. Both of these two PCR runs yield the correct product (line 4 

and 6). However, as an important feature, separation of the biotin-labeled double strands 

with streptavidin agarose beads is much easier and can also achieve purification in one step. 

Therefore, this method was chosen for all following PCR cycles. 

 
Figure 9. Comparison of the biotin primer single bead PCR and the asymmetric single 
bead PCR (4% agarose gel). Line 1: 25bp DNA ladder (Invitrogen); line 2: 9uL of 
PCR product from biotin primer PCR 35 cycles; line 3: 5uL of PCR product from 
biotin primer PCR 25 cycles; line 4: 9uL of PCR product from biotin primer PCR 25 
cycles; line 5: 9uL of PCR product from asymmetric PCR 120 cycles; line 6: 9uL of 
PCR product from asymmetric PCR 90 cycles; line 7: negative control. 
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For biotin primer single bead PCR, the annealing temperature was further optimized to 

ensure the best PCR conditions. Results were shown in Figure 10. The best annealing 

temperature (49oC) was using for all following SELEX cycles. 

 

Figure 10. Annealing temperature optimization of biotin primer single bead PCR. 
Line 1 to 7: Annealing temperature 37oC, 40 oC, 43 oC, 46 oC, 49 oC, 52 oC and 55 oC. 

 

3.1.2  Protein coated beads monitored under the fluorescence microscope  

In our initial design, the aptamer was labeled by a fluorescein dye that allows straight-

forward detection via a fluorescence microscope. Before producing fluorescein-labeled 

aptamers, the fluorescein dye and the fluorescein-labeled primer were first incubated with 

the protein coated beads to record the background emission. However, we found that the 

fluorescein dye could be absorbed onto proteins most likely due to hydrophobic interactions, 

but these dyes are not absorbed by agarose beads (Figure 11 b, c).  For the same reason, 

fluorescein-labeled primers could also interact non-specifically on protein-coated beads. 

This unspecific absorption leads to a high imaging background and reduces SELEX 

efficiency. Therefore, no fluorescein was further used in the SELEX cycles. However, since 

1     2     3    4     5    6    7  
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specific (Figure 11d) and non-specific(Figure 11 b) interactions could be visualized, and the 

Ni-NTA agarose beads and protein coated agarose beads showed completed different 

interactions with fluorescein, this is a good choice to prove the success of protein 

immobilization. 

 
 

Figure 11.  White light and fluorescence imaging of fluorescein incubated with 
peptide coated and non-coated beads. (a) Fluorescence background of peptide-coated 
bead (the bright dot is dust); (b) Fluorescein incubated with the peptide-coated bead 
and washed 3-times with water after incubation; (c) Fluorescein incubated with 
agarose beads and washed with water 3-times after incubation; (d) Fluorescein-labeled 
aptamer incubated with peptide-coated beads and washed 3-times with water. 
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3.1.3 Proof of washing efficiency. 

During SELEX, a single protein-coated agarose bead was incubated with the ssDNA library. 

After incubation, several washing steps were used to completely remove unbound ssDNA, 

which is essential for achieving high affinity aptamers in a minimum number of SELEX 

cycles. In order to examine the washing efficiency, 1 μL of washing solution from the last 

washing step was subjected to PCR reaction and compared with the positive PCR of the 

single protein coated bead. The PCR products were analyzed by using agarose gel 

electrophoresis (Figure 12). The protein-coated bead with bound aptamers has a positive 

PCR-product shown at the 76 bp position on the gel, whereas no PCR product was detected 

in the PCR reaction of the washing solution. 

 
Figure 12.  Proof of the washing efficiency (4% Agarose gel). Line2: DNA ladder; Line 4: 
PCR product from the single protein coated bead with bound aptamer; Line 6: PCR product 
from 1μL of the last washing solution. 
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3.1.4  Separation of “sense-strand” DNA from double-stranded PCR mixture 

After biotin primer PCR reaction, double-stranded DNA (dsDNA) was separated by 

streptavidin agarose beads. The reaction mixture was firstly incubated with streptavidin-

coated agarose beads to allow binding of the biotin-containing products. After incubation, 

the supernatant was kept in order to check whether the binding step was efficiently finalized 

(Figure 13 line 2 and 5). The beads were washed several times with Milli-Q water (Figure 

13 line 3 and 6) and thereafter, 15mM NaOH was added to denature the double strands. 

After 1h denaturation, the supernatant was taken and neutralized by acetic acid (Figure 13 

line 4 and 7), and used as a new library for the next SELEX cycle. The result of this 

separation step was investigated again via an agarose gel (Figure 13), which displayed a 

successful purification and separation of the DNA. 

 
Figure 13.  Double-stranded DNA separation (4% Agarose gel). Line1: DNA ladder; line 2: 
first wash solution after the PCR reaction mixture was incubated with streptavidin beads 
(primers were washed out while 76bp target PCR products were bound to streptavidin 
beads); line 3: second wash solution (nearly no DNAs inside); line 4: elution of sense-
stranded ssDNA after denaturation with NaOH (yellow circle shows the ssDNA products 
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that are a little bit below compared with the dsDNA in line 8); line 5 to 7: same sample as 
line 2 to 4 but half loading amount; line 8: PCR reaction mixture before separation. 
 
 
3.1.5  Cloning efficiency – blue and white screening 
 

After the final cycle of the SELEX process, the PCR products were directly cloned into 

E.Coli cells and amplified by the Qiagen PCR cloning kit. Blue and white screening was 

perfomed to check ligation efficiency. The blue and white screening is a technique that 

allows for the quick and easy detection of successful ligation, without the need to 

individually test each colony. If the ligation was successful, the bacterial colony on Agar 

plate will be white; if not, the colony will be blue. The molecular mechanism is based on a 

genetic engineering of the lac operon in the E. coli strain. The chromosome of the host 

strain and the LacZ gene on the vector together encode a functional β-galactosidase enzyme. 

The foreign DNA can be inserted in vectors within the LacZ gene, thus disrupting the 

production of functional β-galactosidase. The competent cells with transformed vectors are 

grown in the presence of X-gal, which is colourless modified galactose sugar that is 

metabolized by β-galactosidase to form an blue product (5-bromo-4 chloroindole) (Scheme 

1). The hydrolysis of colourless X-gal by the β-galactosidase causes the characteristic blue 

colour in the colonies containing vector without insert. White colonies indicate insertion of 

foreign DNA and loss of the cells' ability to hydrolyse the X-gal. 
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Scheme 1. β-galactosidase hydrolysis of X-gal to blue product 5-bromo-4 chloroindole. 

From blue and white screening, 1.5µL of PCR product ligation resulted in an improved 

ligation efficiency compared with the 0.25μL of PCR product ligation. No obvious blue 

clone was found in the 1.5µL of PCR product ligation plate. However, since the inserted 

PCR product is too short, white clones also displayed a minor blue color. Subsequently, 20 

white clones were randomly selected and amplified by the M13 primer clony PCR and a 

blue clone was also chosen as negative example (Figure 14). The PCR product with the 

aptamer inserted has 316bp in contrast to 238bp without ligation. Figure 14b reveals that the 

white clones all showed the 316bp target DNA products while in case of the blue clone no 

aptamer was inserted, which could be seen from the PCR products (238bp).The PCR 

solutions originating from the white clones were then send for sequencing. 

 
Figure 14.  Blue and white screening of clone efficiency. (a) Blue and white E. Coli clones 
on LB Agar plate. (b) 2% Agarose gel electrophoresis showed the clony PCR sample 
products from blue and white clones. Line 1: 25bp DNA ladder; line 2 to 7: clony PCR 
samples from white clones; line 8: clony PCR sample from blue clone.  
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3.2  Generation of Aptamers for the Hc peptide (Apt-pep) 

3.2.1 Selected sequencing of Apt-pep 

After 3 cycles of SELEX, the aptamer-bound peptide-coated bead was subjected to a PCR 

reaction with non-labeled primers. The PCR solution was directly cloned into E. Coli cells 

using the InsTAclone PCR cloning kit (Fermentas) according to the manufacturer’s 

instructions. After overnight growth on LB agar plates, 21 colonies were selected and 

amplified by M13 primer PCR. The PCR reaction solution was directly sent to GeneWiz Inc. 

Beijing for further purification and sequencing. Unfortunately, four of the sequencing 

results were not reliable which most likely due to insufficient amount of PCR products after 

purification. The remaining 17 aptamer sequences were summarized below. Three of these 

aptamers, which are highlighted in yellow color, have thereafter been investigated by a 

binding affinity assay. 

>1 

GGCGGTTCCTTGTGGTTCTTGAATGGTGCCTTGTGTGAT 

>b2 

CTGATGGGAGTAGACCAATCTGGGTTATGCCAAGGTGAC 

>b6 

GTTCGGGCCCAAAGTTGGTGTCTTTCAACTAACATGGCT 

>b7 

CCTATGGTGACCAAGGATGGATGCCCGTGCCATGGAGGC 

>b8 
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ACACAGGGACCTTTTCCTATCGAACCTCGAGCGTATTCC 

>b9 

TGCCCCCTAATGTAGTTGCCGCAATTTGCCCAGTTCTTT 

>b10 

GCGTTATTGGGTTCGTGGGGCCGTTACACCTGGTACTCG 

>b11 

CCATACGCATGTTCCCCGGTTTTTGGATTGCTACCGTCC 

>b12 

GATCCCAGTCGACCTCTTCCTTTATCCGTAGGTGCCATC 

>n1 

CACCGAAAGTAGGTCAGCGAGTAACACCCGAGTTGATGA 

>n7 

AGGAGAATGCACGTCCGGGCGGCGGGATGAACGTGGTAT 

>n9 

CGAATATGTACAAGCTTTCGGTCGCTATGGTAAGCCCGT 

>n11 

GGCTGCAGACTTTCCGTGCAAACTGGTTTGGGTCGCTGA 

>n12 

CACCGGTACCATCCCACGTCCGTATGACGTTTTATTTCA 

>n13 

CCTTCCGCTTGTGTCCACCTATAGCACGCGCCATTGCAC 

>n14 
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GACCGAAGGAGTAGCGGGAACGTCCCCATTGGCTCGGCT 

>n16 

TCCGGGCACACTGCGCTCCTGCCTGCTTGAGCTTTGTCT 

>n17 

CCGAGCCCTCAGCAGCGACGAGTTCCTACCGTTCCTCCG 

>n18 

GTCGGTAATCGCAACGGACCAGTAGCCAATTCCGCAGAT 

 

3.2.2 Sequences alignment of the aptamers and similarity analysis 

The obtained cloned sequences were subjected to homology analysis using the sequence 

alignment program ClustalW (available free-of charge from the website: www.ebi.ac.uk). 

The software allows to organize these 17 diverse input sequences into meaningful, 

homologous groups (Figure 15). Based on the above analysis, we have chosen 3 distinct 

sequences from the aptamer pool and subsequently examined their binding affinities toward 

the Hc-peptide. These three sequences were highlighted with red squares in Figure 15. 
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Figure 15. The Cladogram Guide Tree indicating the similarity score of the 
Aptamer sequences. The three selected sequences, which belong to different 
Aptamer families, were highlighted by red squares,  

 

3.2.3 Investigation of the binding affinity of three representative aptamers 

The binding affinity of aptamer n9, n17 and n14 were investigated by a fluorescence 

anisotropy binding affinity test. Fluorescence anisotropy is based on the detection of the 

depolarization of fluorescence emission after excitation of a fluorescent molecule by 

polarized light (Figure 16). Due to random character of diffusion, a linearly polarized 

excitation light will be translated into a less polarized emission light.[51] Thus, a high 

resultant of mP value (Fluorescence polarization) denotes the slow rotation of the labeled 

molecule, indicating that binding of large molecules probably did occur and vice-versa. It is 

suitable for aptamer binding studies as the tumbling motion of small aptamer molecules 

may be dramatically slowed down after binding to a larger protein molecule. Fluorescence 

anisotropy study offers numerous advantages over more conventional methods to study the 

binding of proteins to nucleic acids (particularly in that no hazardous radioactive waste is 

generated) and has a lower limit of detection in the sub-nanomolar range.  
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Figure 16. The principle of investigating binding events by fluorescent anisotropy. 

 

Based on the fluorescence anisotropy study, the dissociation constants Kd of the formed 

complexes were determined and a considerable interaction between the peptide and the 

aptamer was found. In detail: the following Kd values were obtained: Kd of n9 = 1.99µM; 

Kd of n14 = 0.79µM and Kd of n17 = 0.72µM. The fluorescence anisotropy data and 

binding affinity fitting curve were shown in Figure 17. 

                                                                                                Data Table of Aptamer n9 

[Hc peptide] mP r = 2P/3-P 
0 181.6 0.129 
1 197.2 0.133 
2 273.6 0.201 
5 303.8 0.225 
7 304.4 0.226 
9 255.2 0.186 

10 327.6 0.245 
15 320.6 0.239 
20 324.2 0.242 
25 330.0 0.247 

 

Kd = 1.99 
Std deviation = +/- 0.18 
R2 = 0.98 
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                                                                                     Data Table of Aptamer n14 

[Hc peptide] mP r = 2P/3-P 
0 88.8 0.061 
1 257.4 0.188 
2 271.0 0.199 
5 290.2 0.214 
7 296.6 0.219 
9 342.8 0.258 

10 335.0 0.251 
15 337.6 0.254 
20 339.8 0.255 
25 344.2 0.259 

 

                                                                                          Data Table of Aptamer n17 

[Hc peptide] mP r = 2P/3-P 
0 185.4 0.132 
1 274.8 0.202 
2 312.2 0.232 
5 301.0 0.223 
7 308.6 0.229 
9 318.2 0.237 

10 326.4 0.244 
15 330.4 0.248 
20 331.8 0.249 
25 329.6 0.247 

 

Figure 17. Binding affinity data and fitting curve of Aptamers n7, n14, n17. 
 

3.2.4 Analysis of aptamer structures 

The three selected sequences were also subjected to the Rensselaer bioinformatics web 

server (http://mfold.bioinfo.rpi.edu) in order to visualize their potential secondary structures, 

which are summarized in Figure 18. 

 

Kd = 0.72 
Std deviation = +/- 0.12 
R2 = 0.98 

Kd = 0.79 
Std deviation = +/- 0.13 
R2 = 0.96 
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Figure 18. Predicted secondary structures for the three selected sequences based on 
Mfold software (http://mfold.bioinfo.rpi.edu) analysis. 
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3.2.5  Investigation of the binding affinity of Apt-pep to BoNT/A Hc domain protein 

In order to highlight that it was crucial to use whole BoNT/A-Hc domain protein (gsbp), 

instead of 17mer Hc-peptide, as target for SELEX to get aptamers with potential to be 

BoNT/A inhibitor, we have tested aptamer n14 (its binding affinity to Hc-peptide is 

Kd=0.79µM) with BoNT/A-Hc domain protein in fluorescent polarization assay. No 

binding affinity was observed for ganglioside binding peptide aptamer toward native gsbp 

in 0~10µM range (Table 2). 

 

Table 2. Fluorescence polarization assay for identifying the binding affinity between 
aptamer n14 and the BoNT/A-Hc domain protein. 

BoNT-Hc 
concentration 

0μM 1μM 2μM 4μM 7μM 10μM 

mP 134.8 136.4 129.6 133.6 131.8 130.6 
 

3.3 Aptamer for the gsbp (Apt-Hc) 

3.3.1 Selected sequencing of Apt-Hc 

After 6 SELEX cycles, the protein coated bead that contained bound aptamer was subjected 

to the PCR reaction with non-labeled primers. The PCR solution was directly cloned into E. 

Coli cells using the Qiagen PCR cloning kit according to the manufacturer’s instructions. 

After overnight growth on LB agar plates, twenty colonies were selected and amplified by 

M13 primer PCR. The PCR reaction solution was directly sent to GeneWiz Inc. Beijing for 

further purification and sequencing. Four of the sequencing results were not reliable 

according to the chromatography data. The remaining 16 aptamer sequences were 
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summarized as follows. One of these aptamers has been investigated by a binding affinity 

assay which was highlighted with yellow color. 

>LT5-2-1 

CCAGTGGCGTATAGTATAGGGGGTCGCTTTGCAAGGTCA 

> LT5-2-2 

CAACGCCAACCCCCTTTGTAGCTCAGTCTTCCCGCCTCC 

> LT5-2-3 

ACCACCGTCATCCACTTTTCCCCTCGTGTCCGGACTTCA 

> LT5-2-4 

GAGATGAGCGCGCGTTAGGTTCAATGCGGACCCCGTGCG 

> LT5-2-5 

CCATGAGAACATAGCCTACCTGCCGACTATTCAGGTCCT 

> LT5-2-6 

GGGCACCGGACGATATAGGGAGAAAGGCCGTTAGCTGCC 

> LT5-2-7 

GGCCGACGCGAGACTTATGAGGTTTTACCCTTTCCCGTG 

> LT5-2-8 

CCATGAGGGCTAAGAATAAGATGAGCACACCCGTTCTCG 

> LT5-2-9 

CCCGCTATCCTCACTGCGCGATAATGTGAGTTTCGTGTT 

> LT5-2-10 

GCCCCGTATCAAGGTTTAATTACTACCCACAACCTACCA 

> LT5-2-12 

CCGACGATATCTAGCTCTGACACGCTACACGTAGCCCGT 
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> LT5-2-13 

ACAACCGGGCGGCTCTCCTCAGTTATTGCTTATTCGTCG 

> LT5-2-15 

CCAGCTTATATATAATTTCCGGCCCGTTCACCCACCCCG 

> LT5-2-17 

CCCCGATAGACAAGCTGGGATCACACAACGTCGAGTTCT 

> LT5-2-18 

CCCACACCCTATCTTGTAATGCTTTCTCCACATGGCTTT 

> LT5-2-19 

CCACGCGACCTTTGACGCCGACCTGACTTATCGCTATCG 

 

3.3.2 Sequences alignment and similarity analysis 

The obtained clone sequences were subjected to homology analysis using the sequence 

alignment program ClustalW (available free-of charge via the website: www.ebi.ac.uk). The 

software is able to separate the greatly diverse 16 input sequences into meaningful groups 

(Figure 19).  

 
Figure 19.  The Cladogram Guide Tree indicating the similarity score of the 
aptamer sequences. 
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According to the similarity score and cladogram guide tree, the identified aptamers pool is 

still too diverse and little similarity. This normally indicates that more SELEX cycles may 

be needed in order to get more potent aptamers. 

 

3.3.3 Binding affinity of a representative aptamer 

The binding affinity of aptamer LT5-2-3 for the gsbp protein was tested by fluorescent 

polarization spectroscopy. A binding affinity of 5µM with a standard deviation of +/- 0.86 

was found and the fluorescence anisotropy data and the binding affinity fitting curve were 

shown in Figure 20. 

 

Data Table of Aptamer LT5-2-3 

[Hc peptide] mP r = 2P/3-P
0 90.6 0.062 

0.2 92.4 0.064 
0.5 114.6 0.079 
0.8 130.6 0.091 
1 124.2 0.086 
2 160.2 0.113 
3 169.6 0.120 
5 198.6 0.142 
7 240.4 0.174 

10 257.8 0.188 
15 356.8 0.270 
20 357.0 0.270 

Figure 20.  Binding affinity correlation curve and anisotropy data summary of 
Aptamer LT5-2-3. 
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3.3.4 Analysis of aptamer structures 

The sequences of LT5-2-3 were also subjected to the Rensselaer bioinformatics web server 

(http://mfold.bioinfo.rpi.edu) analysis for their secondary structures and shown in Figure 21. 

The real structure of this aptamer can only be derived from a crystal structure, which 

represents an additional, future goal. 

 

Figure 21. Predicted secondary structures for Apt LT5-2-3 based on Mfold 
software (http://mfold.bioinfo.rpi.edu) analysis. 
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Chapter 4.  Conclusion 

The HC domain of the protein toxin BoNT/A contains both the ganglioside and the 

protein receptor binding site which are essential for the first step of the BoNT/A 

intoxication process. In this project aptamers as macromolecular inhibitors were designed 

and selected to interact with and block the HC domain. Efficient blockade of the critical 

binding sites of the HC domain would therefore prevent adhesion and endocytosis of 

BoNT by neuron cells. Cell membrane penetration of these aptamers is not required since 

the therapeutic targets are blood circulating BoNTs and therefore, the major drawback of 

aptamer drugs is less relevant here. 

 

A single bead SELEX method has been established and described in detail. A 

commercially available, 19-mer peptide of the ganglioside binding peptide was used as 

the first target to set up the SELEX process. The protein immobilization conditions, PCR 

conditions, ssDNA library regeneration methods and PCR cloning conditions were all 

optimized in the course of this project. After 3 SELEX cycles, several moderately potent 

aptamers with binding affinities in the range of about 1μM were selected and analyzed. 

However, the chemically synthesized 19-mer peptide did most likely not maintain the 

correct, active conformation of native BoNTs and therefore, no significant binding 

affinity of these aptamers toward the native BoNT/A protein was observed. 

 

Based on these important findings of the peptide aptamer (Apt-pep) SELEX, a similar 

SELEX procedure was applied for the gsbp called “small protein SELEX”. The target 
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protein used in this part reflects the neuroselective binding site of the HC domain of 

BoNT/A (gsbp) and it was expressed with a His-tag provided by the collaborator. The 

original SELEX procedure has been modified with regard to the temperature and 

incubation time since protein SELEX requires several additional precautions due to the 

prerequisite to retain the active protein conformation in solution during the SELEX 

process, under these improved conditions, and after 6 cycles, aptamers with binding 

affinities of about 5μM for the native BoNT/A HC domain were obtained. 

 

More potent aptamers might be achieved after additional SELEX cycles or by post-

SELEX modifications, which will explored in the future. All of these aptamer samples 

are currently being subjected to bioactivity tests by the collaboration partner. 
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