
TOWARDS MORE SECURE

PROGRAM EXECUTION ENVIRONMENTS

SUFATRIO
(B.Sc., University of Indonesia,

M.Sc., National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48634000?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

First and foremost, all the praise and gratitude to Beloved True Source, our Source

and Only Destiny, who always Loves and Blesses all beings so completely. May we all

always embrace and accept Your Love and Will, which are the perfect and most beautiful

ones ever. And may Your Name be exalted and glorified forever always.

I am very grateful to my supervisor, Associate Professor Roland Yap, for his con-

tinuous guidance, help and support throughout my Ph.D. years. I benefited very much

from his vast range of knowledge on many areas of computer science, including operating

systems, networks, and their related security aspects. The results reported in this the-

sis would not have been possible without his invaluable and constant support, and his

set-by-example commitment to conducting research.

I am also much indebted to Professor Lim Hock for his generous support through

Temasek Laboratories, NUS. With Temasek Laboratories, NUS, Professor Lim has always

been very supportive in fostering an excellent environment on the University’s campus

for fruitful research in defence and security related areas.

I also would like to thank my team mates and friends on RISCI and VISCA projects:

Wu Yongzheng, Rajiv Ramnath and Felix Halim. Working with them were inspiring,

leveraging, and always enlightening. Thanks for the fruitful collaboration over these

years. My thanks also go to my SoC and NUS friends: Dr. Andrew Edward Santosa,

Dr. Li Qiming, Dr. David Lo and Dr. Vivy Suhendra. Special thanks to Dr. Zeyar Aung

for his careful proofreading on the draft of this thesis. I also would like to sincerely

thank the Administration and HR teams of Temasek Laboratories, NUS. They were

always there to assist whenever I needed help.

My thanks beyond words go to my family for their continuous great love and support

throughout my life. Special thanks to my wife, Elizabeth, and my baby son, Mike, for

their love and support. Thanks and I love you all.

The support of DSTA and Temasek Laboratories NUS through RISCI and VISCA

research grants are gratefully acknowledged. The excellent research facilities of School of

Computing, National University of Singapore are also greatly appreciated.

ii

With gratitude to Beloved True Source, Who always Loves all beings so completely.

Our love for You...

iii

Contents

Summary ix

List of Tables x

List of Figures xii

List of Algorithms xiii

List of Notations xiv

List of Abbreviations xviii

1 Introduction 1

1.1 Securing Program Execution Environments 1

1.2 Challenges in Securing Program Protection Life Cycle 4

1.2.1 Difficulty in Evaluating the Security of IDS 4

1.2.2 Making Anomaly Detector IDS More Secure 4

1.2.3 Practicality of OS-based Executable Authentication System 4

1.2.4 Automating Vulnerability Alert Processing 5

1.2.5 Providing a Lightweight and Near Real-Time Certificate Revoca-

tion Service . 5

1.2.6 Concise yet Practical Formal Reasoning on PKI-based Protocols . 5

1.3 Contributions . 6

1.4 Organization of the Thesis . 9

2 Background 10

2.1 Intrusion Detection Systems . 10

2.1.1 Overview and Motivation . 10

2.1.2 IDS Classification . 11

2.1.3 IDS Effectiveness Metrics . 11

2.1.4 IDS and Alert Correlation . 12

2.2 System-Call Monitoring IDSs: Self-based IDS, Attacks, and Related Models 12

iv

2.2.1 Self-based IDS . 13

2.2.2 Mimicry Attacks on Self-based IDS 14

2.2.3 Improved System-Call based IDSs 14

2.3 Software Authentication Protection . 15

2.3.1 Executable Authentication Problem 15

2.3.2 Overview of Existing Authentication Systems 16

2.3.3 Authentication Issues in Microsoft Windows 17

2.4 Managing Host Vulnerabilities . 18

2.4.1 The Problem of Host Vulnerabilities 18

2.4.2 Vulnerability Assessment and Self-based IDS 19

2.5 PKI and Certificate Revocation . 20

2.5.1 Issues in Certificate Revocation . 21

2.5.2 Survey of Existing Certificate Revocation Systems 22

2.5.3 Extended-Validation (EV) Certificates 23

2.6 Formal Protocol Verification and BAN Logic 24

2.6.1 Overview of BAN Logic . 24

2.6.2 Issues on BAN Logic Application to PKI-based Protocols 25

3 Self-Based IDS: Security Analysis and Automated Attack Construction 26

3.1 Motivation and Limitations of Existing Works 27

3.2 Automated Mimicry Attack Construction 29

3.2.1 Definitions . 29

3.2.2 Pseudo Subtraces . 29

3.2.3 Overlapping Graph Representation 31

3.2.4 Mimicry Attack Construction . 33

3.2.5 Attack Construction Algorithm under Trojan Attack Scenario . . . 33

3.2.6 Attack Construction Algorithm under Code-Injection Attack Sce-

nario . 36

3.2.7 Proof of Optimality of the Attack Construction 37

3.3 IDS Attack Experiments . 39

3.3.1 Experimental Set-Up . 39

3.3.2 Sample Vulnerable Programs and Attack Construction 40

3.4 IDS Evaluation Discussion . 43

3.5 Using Attack Construction to Measure IDS Security 44

3.5.1 Approach and General Framework 44

3.5.2 Applying the Framework to Self-based IDS 45

3.5.3 Applying the Framework to the FSA-based IDS 46

3.6 Chapter Summary . 50

v

4 Improving Self-based IDS using Privilege and Argument Abstraction 51

4.1 Related Works on Data-Flow based IDS 51

4.2 Privilege and Argument Categorization (PAC) based IDS 53

4.2.1 Privilege and Argument Categorization 53

4.2.2 A Simple Category Specification Scheme 55

4.2.3 Disallowing Transitions . 57

4.3 Experiments on PAC-based IDS . 58

4.3.1 Attack Construction on PAC-based IDS 58

4.3.2 Behavior of PAC-based IDS . 60

4.4 Discussions . 61

4.5 Chapter Summary . 62

5 Lightweight Executable Authentication Protection 63

5.1 Security Goals . 64

5.2 Framework for Analyzing Binary Authentication Schemes 65

5.2.1 Security Assumptions . 65

5.2.2 Authentication System Design Options 66

5.2.3 Comparison of Existing Authentication Systems and BinAuth . . . 69

5.3 System Architecture for Lightweight Authentication 72

5.3.1 BinAuth Architecture . 73

5.3.2 SignatureToMac Module . 74

5.3.3 Verifier Module . 74

5.4 Security Analysis . 76

5.5 Experimental Results and Discussion . 79

5.6 BinAuth and Software ID Scheme . 83

5.7 Chapter Summary . 84

6 Towards Automated Vulnerability Alert Processing 85

6.1 Existing Works and Challenges . 86

6.1.1 Machine-Oriented Vulnerability Database 86

6.1.2 Host-based Vulnerability Scanner 87

6.1.3 Vulnerability Description . 88

6.2 Movtraq Framework: System Overview . 89

6.3 Movtraq Vulnerability Database . 89

6.3.1 Design Goals . 89

6.3.2 Content of a Vulnerability Entry 90

6.3.3 Database Structure . 92

6.4 Vulnerability Description Expressions . 92

6.4.1 Examples using Vulnerability Expressions 94

vi

6.4.2 Translation Issues . 95

6.5 Movtraq Vulnerability Scanner . 96

6.5.1 Design Goals . 96

6.5.2 Implementation . 96

6.5.3 Vulnerability-Chain Analysis . 97

6.6 Discussion . 98

6.6.1 Deployment Strategies for Movtraq 98

6.6.2 Movtraq and Recent Standardization Efforts 99

6.7 Chapter Summary . 100

7 Lightweight and Near Real-Time Certificate Revocation Schemes 101

7.1 Certificate Revocation Framework and Related Works 103

7.1.1 Framework for Certificate Revocation Schemes 103

7.1.2 Related Works . 104

7.2 Preliminaries . 107

7.2.1 Extended-Validation Certificates (EVC) 107

7.2.2 CRS/NOVOMODO . 108

7.2.3 Certificate Revocation Model using Empirical Data 109

7.3 CREV Schemes for Lightweight Certificate Revocations 111

7.3.1 New Revocation Setting . 111

7.3.2 CREV Overview and Assumptions 112

7.3.3 CREV-I: Session-based Hash-Chaining Scheme 113

7.3.4 CREV-II: Session-based Online Status Scheme 116

7.4 Analysis, Evaluation and Comparison of CREV Schemes 118

7.4.1 Security Analysis of CREV Schemes 118

7.4.2 A Framework for Performance Analysis 118

7.4.3 Performance Comparison . 124

7.4.4 Performance Evaluation . 129

7.5 Discussion . 130

7.6 Chapter Summary . 134

8 Extending BAN Logic for Reasoning with PKI-based Protocols 135

8.1 Related Work . 136

8.2 The Extension by Gaarder-Snekkenes . 138

8.2.1 GS-BAN Extension Summary . 138

8.2.2 Problems and Limitations . 140

8.3 MPKI-BAN: Extending BAN Logic to Deal with PKI 141

8.3.1 Revised Idealized Certificate . 141

8.3.2 New Use of Message-Recipient Construct 142

vii

8.3.3 New Message-Meaning Rule for Private-Key Signed Message . . . 142

8.3.4 All-Recipient See Rule . 143

8.3.5 Certificate and New Certificate-Validation Rule 143

8.3.6 Duration-Stamp (without Revocation) Validation Rule 144

8.3.7 Message-Sender Construct . 144

8.3.8 New Message-Meaning Rule for Public-Key Encrypted Message . . 145

8.3.9 Additional Message-Meaning Rule for Encrypted Signed Message . 145

8.3.10 Rule for Signed Encrypted Message 146

8.3.11 Redefined Message-Meaning Rule for Keyed Hashed Message . . . 147

8.3.12 Additional Rules for See Operator 148

8.4 Using MPKI-BAN Logic . 148

8.4.1 Needham-Schroeder Public-Key Authentication Protocol 148

8.4.2 Aziz-Diffie Protocol . 149

8.5 Sample Application of MPKI-BAN Logic 150

8.6 Discussion . 151

8.7 Chapter Summary . 151

9 Conclusion 154

9.1 Summary of the Thesis . 154

9.2 Future Work . 158

Appendix:

A Sample Configuration for Privilege and Argument Categorization 160

B Database Entities in Movtraq Vulnerability Database 162

C Relevant Rules of BAN Logic 163

D New Rules of MPKI-BAN Logic 165

E Sample Application of MPKI-BAN Logic 167

E.1 Idealized Protocol . 168

E.2 Initial-State Assumptions . 168

E.3 Protocol Goals . 169

E.4 The Proof . 169

E.5 Discussion . 170

F List of Author’s Published and Submitted Work 172

Bibliography 172

viii

Summary

The increasing prevalence of cyber attacks is a worrying trend in the Internet age. By

exploiting vulnerabilities in operating systems or applications, intruders are often able

to circumvent the existing security mechanisms. This thesis proposes measures and in-

frastructure to provide more secure program execution environments so as to enhance

host security. Our approach is based on securing the “Program Protection Life Cycle

(PPLC)”, which protects application programs throughout their life cycles against at-

tacks, including zero-day attacks. A number of security mechanisms are proposed along

the PPLC to substantially reduce attack vectors on a host.

Firstly, to mitigate the threat of zero-day attacks to a running program, we inves-

tigate a system-call monitoring Intrusion Detection System (IDS) which aims to detect

any potential anomalous behavior of the execution. Using an automated attack gener-

ation approach, we show how a non-parameterized Self-based IDS model is vulnerable

to mimicry attacks. We then propose an improved IDS model to mitigate mimicry at-

tacks by employing a privilege and argument abstraction technique. We also move on to

propose a general framework based on a notion of “attack-space search” to demonstrate

how the attack construction approach can apply to various IDS models. The framework

is then used to measure the resistance level of IDSs against attacks targeted on them.

Secondly, to secure program invocations on a host, we propose a lightweight exe-

cutable authentication scheme which provides secure program distribution and integrity

assurance on the invoked program. This is complemented by an automated vulnerabil-

ity management scheme, which is aimed at performing automated vulnerability checks

on operating system components and application programs to ensure vulnerability-free

executions.

Thirdly, we address a supporting infrastructure which is needed to provide an effi-

cient and secure program distribution and associated usage. Since existing Public Key

Infrastructure (PKI) certificate revocation mechanisms are not sufficiently lightweight

and timely, we propose two lightweight and practical near real-time revocation schemes.

Our schemes are based on the use of the recently available Extended-Validation Certifi-

cate infrastructure, and can offer timeliness guarantees on the order of minute(s) with

low performance cost. We also propose a formalism to reason with PKI-based systems

and protocols by enhancing BAN Logic to deal with modern PKI-based protocols.

In summary, the contribution of this thesis is to give additional layers of protection,

which give greater assurances of secure program executions amidst the increasing malware

threats in today’s Internet-connected systems.

ix

List of Tables

2.1 Confusion matrix comparing actual intrusive condition and detection result. 12

2.2 The comparison between vulnerability assessment tool and the Self-based

IDS. 20

3.1 Attack construction results for traceroute with k=5 to 11 (with 2,789

system calls in the normal trace). SET-SELF and GRA-SELF represent

the Self-based IDSs with the normal profile stored as a set of k-grams and

a graph of k-grams respectively. 41

3.2 Attack construction results for JOE with k=5 to 11 (with 9,802 system

calls in the normal trace). 42

3.3 Attack construction results for WU-FTPD with k=5 to 11 (with 19,582

system calls in the normal trace). 42

4.1 Several important files in Unix/Linux to be protected from security view-

point. 59

4.2 Execution times for the attack constructions on the PAC-based IDSs us-

ing traceroute program (used earlier in Section 3.3) with k=5 to 11. No

stealthy attack trace can be found on SET-PAC and GRA-PAC on all the

examined cases. 59

4.3 Execution times for the attack constructions on the PAC-based IDSs using

JOE with k=5 to 11. No stealthy attack trace can be found on all the

examined cases. 59

4.4 Execution times for the attack constructions on the PAC-based IDSs using

WU-FTPD with k=5 to 11. No stealthy attack trace can be found on all

the cases. 60

4.5 Attack strategies (on important files listed in Table 4.1) to be prevented. . 60

4.6 Number of foreign k-grams in traceroute and ls program with window sizes

k=5 to 11. SET-SELF refers to the Self-based IDS (Stide), whereas SET-

PAC indicates our new PAC-based IDS that stores its normal profile as a

set of enhanced k-grams. 61

x

5.1 Comparison of binary authentication systems using the design-option based

framework. 70

5.2 Performance benchmark results showing the authentication+execution times

(in seconds) and the slowdown factors. The worst slowdown factor for each

scenario is shown with underline, whereas the best is in bold. 81

5.3 Micro benchmark results showing the overheads of file modification mon-

itoring. 82

6.1 Combination of checking results between component and environment fac-

tors. 91

6.2 Actions in the vulnerability description expressions. 92

6.3 Objects in the vulnerability description expressions. The prefix ‘%’ is used

to denote an actual value, ‘#’ for a symbolic value, and ‘&’ for expressing

users/groups of an application or service. 93

7.1 Possible combinations of directory placement and CSI scope for certificate

revocation schemes. Note that we consider the OCSP scheme with the CA

as the responder. 104

7.2 Notations used in the performance analysis. Value(s) column shows the

selected values for the two investigated scenarios. 125

7.3 Calculation results of some performance factors under timeliness guaran-

tees between 1 day and 1 minute. 129

7.4 Cost comparison of various schemes on a certification system with 100,000

certificates and δ = 10 minutes. 131

7.5 Cost comparison of various schemes on a certification system with 100,000

certificates and δ = 1 minute. Due to the short value of δ used, CREV-II

can also operate with the range optimization technique. 132

8.1 Comparison of public-key constructs and rules from GS-BAN [51] and

those from our MPKI-BAN. 152

9.1 Beliefs established by the proposed mechanisms. 155

9.2 Belief interactions and derivations in achieving the desired “good intended

program execution” belief. 155

xi

List of Figures

1.1 Program Protection Life Cycle : securing a program and its execution. . . 2

2.1 Vulnerability Exploit Cycle (from CERT Coordination Center [94]). . . . 19

3.1 An example of pseudo subtrace construction with k = 5. 30

3.2 Mimicry attack construction by composing pseudo subtraces. 30

3.3 The overlapping graph G for N : 〈A, B, C, D, E, F, G, A, B, E, F, H〉 with k = 3.

For simplicity, nodes corresponding to 3-gram (F, H, $) and (H, $, $) are not

shown. 32

3.4 The extended overlapping graph G′ from graph G in Figure 3.3. 34

3.5 A graph of 3-grams (without pseudo edges) used in GRA-SELF model for

the sample trace 〈A, B, C, D, E, A, B, C, M〉. Note that a “common node” ABC

allows for pseudo subtrace construction. 44

3.6 A sample FSA as a program’s normal profile used in [146]. 46

4.1 An example of category specification for the PAC-based IDS. 55

5.1 SignatureToMac: deriving the MAC for a signed binary. 74

5.2 Verifier: the in-kernel authentication process. 76

6.1 System overview of Movtraq automated framework, showing the vulnera-

bility database and scanner. Note that (a subset of) the database may be

replicated in the target’s host or a proxy server within the same adminis-

trative domain. 89

6.2 Deployment options for Movtraq vulnerability database. 99

7.1 The fitted exponential PDF and empirical data for certificate revocations

over time (from [99]). 109

7.2 CSI communication flow in CREV schemes. 112

7.3 Two probability functions SA(t) and SB(t) are shown in the time inter-

val [0, β-days) after the certificate’s revocation, with β = 365 days. The

function SA(t) is shown as an L-shaped curve close to the axes. 122

xii

List of Algorithms

3.1 Attack construction on the Self-based IDS under trojan attack scenario 35

3.2 Attack construction on the FSA-based IDS under code-injection scenario 50

xiii

List of Notations

k Sliding-window size . 13

|≡ BAN Logic’s operator for believes . 25

⊳ BAN Logic’s operator for sees .25

|∼ BAN Logic’s operator for said .25

p⇒ BAN Logic’s operator for jurisdiction . 25

♯() BAN Logic’s operator for fresh . 25

{X}K BAN Logic’s construct for encryption of X with secret key K 25

P
KPQ
←→ Q BAN Logic’s construct for a secret key KPQ shared by P and Q 25

N Normal trace of a program. .29

$ Sentinel symbol signifying the end of a trace . 31

K Normal profile generated using the Self-based (Stide) IDS model 31

Ni A normal trace collected from one execution session of a program 31

x The number of collected normal trace sessions of a program 31

G Overlapping graph generated from K . 31

D The set of direct edges in G . 32

U The set of pseudo edges in G .32

S− The set of unnullifiable system calls . 32

A Basic attack trace which is detectable by the Self-based IDS33

Lmin The shortest stealthy attack trace that passes the IDS 33

G′ Extended overlapping graph . 34

W Nodes of the occurrence subgraph . 34

Occ Edges of the occurrence subgraph . 34

 Path of length one or more on the overlapping graph or FSA 34

B Border sequence representing k system calls prior to the attack point . . .36

vs The border-start node corresponding to sequence B . 36

B′ Sequence representing k−1 system calls prior to the attack point 36

Z The set of all border-end nodes derived from sequence B′ 36

vz A border-end node which is an element of set Z . 36

Pv Path on the overlapping graph that leads to a border node 36

Vk−1 The set of all reachable nodes from node vs by distance k−1 36

xiv

L′ Stealthy attack trace assumed to be shorter than Lmin 37

P ′ Path on the overlapping graph that corresponds to L′ 38

Pmin Path on the overlapping graph that corresponds to Lmin 38

Pequiv Path on the graph that shares a common subsequence with path P ′ 38

qprev State before a buffer overflow occurs . 48

sprev The last system call invoked before a buffer overflow occurs 48

U The set of effective user-IDs on a system . 53

U ′ Categorized values of effective user-IDs .53

G The set of effective group-IDs on a system . 53

G′ Categorized values of effective group-IDs . 53

Cs Categorized value for arguments of system call s . 53

S+ The set of system calls that is extended with the sentinel system call . . . 54

C The set of all categorized argument values . 54

S′ Subset of system calls belonging to threat-level 1 category56

D0 The set of bad (dangerous) transitions . 57

DN The set of bad transitions whose elements appear in the normal trace . . 57

D The adjusted set of bad transitions .57

♦ Construct meaning “at some point in the run prior to the current one” . 77

tensured Time until when BinAuth still periodically verifies a certificate 78

δrev delay Upper-bound for the time delay in receiving revocation information 78

@ Prefix indicating an action in vulnerability description expression 92

% Prefix indicating an actual value of a target object . 92

Prefix indicating a symbolic value of a target object . 92

& Prefix indicating users or groups associated with an application/service 92

H() One-way hash function used in CRS/NOVOMODO scheme 108

d Time interval period for hash-token update in CRS/NOVOMODO 108

ℓ Length of the hash chain in CRS/NOVOMODO . 108

Y Beginning of the hash chain that represents valid status 108

N Beginning of the hash chain that represents revoked status 108

Y0 Secret number used to generate Y . 108

N0 Secret number used to generate N . 108

Vi Hash token released on the i-th time interval in CRS/NOVOMODO . . 108

α Number of certificates issued at a given time . 109

X Time when α certificates are issued . 109

β Lifetime of the issued certificates .109

b Percentage of the certificates revoked in the time span of β109

xv

∆t Time interval between two successive CRL releases 109

R(t) Revoked percentage which is modeled with an exponential PDF 109

k Parameter for the realistic certificate revocation PDF 109

v Any time within time interval (0, β] . 110

f(v) Number of new certificate revocations within time interval [v, v+∆t] . . 110

F (v) Number of cumulative revocations within time interval [1,v] 110

T Timestamp or CA’s nonce used for replay protection in CREV-I 114

tCREV I Session’s lifetime in CREV-I . 115

ℓCREV I Length of the hash chain used in a CREV-I session 115

tCREV II Session’s lifetime in CREV-II . 117

ℓCA Number of OCSP Responses delivered in a CREV-II session 117

dCA Time interval between two OCSP Responses in CREV-II117

SNi Serial number of a certificate .117

N Number of principals and the corresponding valid certificates118

∆X Time interval between two successive certificate generations 119

g(v) Revised function derived using integration method used to replace f(v) 120

Rev Entries Number of revoked entries in the CRL on the steady-state condition . . 120

h(i) Number of revoked entries from i previous certificate generation(s) 120

η Number of certificate generations considered in calculating CRL size . . 121

Qdaily Total number of daily query . 123

S(t) Probability that a certificate will still be queried after its revocation . . 121

kA Parameter for type-A query model on revoked certificates 122

kB Parameter for type-B query model on revoked certificates 122

Prvalid Probability that a query is issued on a valid certificate 123

Prrev Probability that a query is issued on a revoked certificate 123

OvhA Computation overheads on entity A .124

BwA−B Bandwidth requirement from entity A to B . 124

StorA Storage requirement on entity A for its CSI dissemination 124

LM Length of message portion M . 124

U Total number of CRL and hash-token releases per day 125

Csign Cost of generating a digital signature (using RSA-1024) 125

Cverify Cost of verifying a digital signature (using RSA-1024)125

Chash Cost of computing a hash (using SHA-1) . 125

Lhash Length of hash output (using SHA-1) . 125

℘κ (P, KP) Principal P has associated a good public key KP . 138

Π(K−1
P) Principal P has a good private key K−1

P . 138

σ(X, K−1
P) Statement X signed with P ’s private key K−1

P . 138

{X}KP
Statement X encrypted under P ’s public key KP . 138

xvi

CertP Idealized certificate of principal P . 139

Θ(t1, t2) GS-BAN’s construct for duration-stamp indicating time interval [t1, t2] 139

CP Certificate statement carried in an idealized certificate of principal P . .139

∆(tR1 , tR2) Good time interval [tR1 , tR2] . 139

Θ′(t1, t2, I, X) Validity period (duration-stamp) with revocation construct 141

Θ(t1, t2, X) Validity period without revocation construct . 141

ℜ(X, P) Message X together with P as the stated recipient . 142

ℜ(X, all) Message X that is intended for all principals in the protocol 143

Φ(CR) Certificate revalidation construct .143

S(X, Q) Message X together with Q as the stated sender . 144

µ(X, KPQ) Statement X and its MAC value generated using secret key KPQ 147

xvii

List of Abbreviations

CA Certificate Authority

CMAE Certificate Management Ancillary Entity

COTS Commercial Off The Shelf

CPE Common Platform Enumeration

CRL Certificate Revocation List

CRS Certificate Revocation Status

CRT Certificate Revocation Tree

CSI Certificate Status Information

CVE Common Vulnerabilities and Exposures

DoS Denial of Service

EV Extended Validation

EVC Extended Validation Certificate

FSA Finite State Automaton

IETF Internet Engineering Task Force

IDS Intrusion Detection System

IPS Intrusion Prevention System

LFC Locality Frame Count

MAC Message Authentication Code

MHT Merkle Hash Tree

NVD National Vulnerability Database

OCSP Online Certificate Status Protocol

xviii

OS Operating System

OSVDB Open Source Vulnerability Database

OVAL Open Vulnerability and Assessment Language

PAC Privilege and Argument Categorization

PC Program Counter

PDA Push Down Automaton

PDF Probability Density Function

PKI Public Key Infrastructure

PPLC Program Protection Life Cycle

SCAP Security Content Automation Protocol

SDL Security Development Lifecycle

SSL Secure Sockets Layer

TCG Trusted Computing Group

TLS Transport Layer Security

TPM Trusted Platform Module

TSA Time Stamping Authority

UAC User Account Control

xix

Chapter 1

Introduction

Malicious software (malware), which is designed to infiltrate a system and cause damage

to it, is a critical threat today. A report by F-Secure [45] indicates that there was as

much malware produced in 2007 as in the previous 20 years altogether. A report by

OECD [131] additionally highlights a worrying trend that malware has now evolved from

occasional exploits to a global multi-million dollar criminal industry, and is threatening

the Internet economy. On the other hand, computer systems, particularly software, are

much more susceptible to attacks now than in the past. Hoglund and McGraw [68]

attribute three factors to the present-day software security problem, namely: increasing

connectivity, complexity and extensibility.

Despite numerous built-in security measures deployed by modern operating systems

(OSes), the growing number of successful attacks shows that quite often intruders are able

to circumvent the measures by exploiting flaws in the OSes or applications. To mitigate

this situation, additional measures that can be deployed on top of the existing OS security

mechanisms are needed in order to harden the OS and provide an increased protection.

In addition, security infrastructure that critically supports host security mechanisms,

such as Public Key Infrastructure (PKI), must be reliably available.

1.1 Securing Program Execution Environments

The central theme of this thesis is how to enhance host security by providing more secure

environments for program execution. This thesis focuses on a concept of protecting

software, i.e. programs, to ensure that they run as intended without violating host

security. In particular, we focus on the challenges posed by commercial-off-the-shelf

(COTS) software where no source code is available. Our aim is to safeguard software,

from their distribution to their execution, from a variety of attack by the attackers.

We secure a program’s execution environments based on our model of “Program

Protection Life Cycle (PPLC)”. The final objective of PPLC is to establish a belief on

1

host H concerning “good intended execution” property of a program P . That is, a host H

believes that program P performs the operations as intended by its (trusted) developer

D, and that the operations will not violate H’s security policies.1 Figure 1.1 shows the

overall components and steps of the PPLC model.

Host

File System

OS (Kernel)

Process Loader

P’s Process

(in execution) PP’

Vulnerability

Database

Certificate

Authority (CA)

External

Application Server
Software

Developer

External host

1

2
34

System-Call

Interface

P

Bad

User

Bad

User

Known-

Vulnerability

Attacker

Zero-Day

Attacker

Impersonator

Attacker

Figure 1.1: Program Protection Life Cycle : securing a program and its execution.

The four main steps of PPLC are:

1. Secure program distribution. This step is to give assurance to host H that

program P originates from software developer D, and it is received unmodified.

This goal can be achieved using public-key based signing on the program. Given a

strong cryptosystem used, the security thus relies on ensuring that the public and

private key pair of D is still valid (unrevoked) when H verifies P . By installing P

into its system at time tinstalled, host H implicitly agrees that P is a good program2

which if it is run, it will not violate H’s security policies. Hence, besides its content,

P actually also carries with itself a belief statement that it is a good program.

2. Preserved program integrity for execution. To protect system security, it is

imperative to ensure that both the content and pathname of P at time tinvoked (i.e.

just prior to its execution by the OS) is the same as those at time tinstalled. In other

words, P ’s location and content must stay intact on the file system of H.

1Chapter 8 discusses logic systems, such as Burrows-Abadi-Needham (BAN) Logic [26, 27], which deal
with beliefs pertaining to security properties on network protocols and computer systems.

2More specifically, by “good program”, we mean that the program is non-malicious in nature, and has no
intention to violate any security policies of the target hosts (beyond the program’s known functionalities)
or any acceptable use policies.

2

3. Vulnerability-free program execution. Despite the deployment of numerous

security measures, a host becomes highly susceptible to attacks when executing

P with publicly known vulnerabilities during its “unpatched time interval”. This

interval spans from the time when a vulnerability alert affecting P is published un-

til patches are applied or other preventive/corrective measures are taken by users.

Given the increasingly high volume of reported vulnerabilities in recent years, the

advantage is clearly with the attackers. To ensure that P runs as intended with-

out any compromise due to attacks exploiting known vulnerabilities, automated

vulnerability checking on P prior to program execution is important.

4. Intrusion-free (unaltered) process execution.

Although P is believed to be good for execution, it still needs to be protected

from possible attacks exploiting previously unknown vulnerabilities, which are also

known as zero-day attacks. One useful mechanism to deal with this is anomaly

detection Intrusion Detection System (IDS), which has an ability to detect novel

attacks by flagging any abnormalities in program behavior. Online IDS systems

which are well-integrated into the OS kernel can also block any suspected operations

from being executed, thus preventing any potential security breach on H.

Safeguarding the four PPLC steps brings two main benefits to host security. Firstly,

it reduces or even possibly eliminates the need for some defense mechanisms, such as anti-

virus scanning on the executables, or network-packet scanning for known attack patterns.

Secondly, it naturally deals with multi-modal attack entries. Program integrity protec-

tion, for instance, prevents file modification or addition either due to social engineering

techniques, illegal user’s operations, or various malware activities. Vulnerability check-

ing also prevents vulnerable programs from being executed, therefore inhibiting various

modes of attacks attempting to exploit the vulnerabilities.

In view of PPLC’s critical role in ensuring secure operations of systems and appli-

cations, we position it to complement secure software development methodologies such

as Microsoft’s Security Development Lifecycle (SDL) [112]. While secure software devel-

opment methodologies (and the associated techniques) aim to help software developers

to reduce the presence of vulnerabilities in software products, the PPLC aims to ensure

that the installed software products on deploying hosts run securely as intended.

Based on the PPLC model, in this thesis we thus argue the following statement:

“Security measures to protect the program life cycle are important to estab-

lish, and that they will reduce many attack vectors on a host and ensure

more secure program executions on that host. With the right approach and

techniques, these measures can be deployed with acceptable performance cost

while substantially increasing host security.”

3

1.2 Challenges in Securing Program Protection Life Cycle

There are a number of challenges faced in securing the PPLC as well as providing the

required infrastructures to support it. We mention several main challenges, which have

provided motivations to our work reported in this thesis.

1.2.1 Difficulty in Evaluating the Security of IDS

In IDS research, it is common for a proposed IDS to be shown, usually using several

known attacks and available dataset(s), for being able to detect the attacks with a high

detection rate while exhibiting a low false positive rate. The question of how secure

the IDS against attacks on itself is usually overlooked. A “smart attacker”, who knows

all the IDS internals, can exploit IDS limitations to craft attacks targeted on the IDS.

One example highlighting this issue is the possibility of mimicry attacks [180, 164] on

a system-call monitoring IDS called Stide [67, 152, 153]. Hence, one step towards IDS

security analysis is finding a systematic way to measure the resistance level of an IDS

against attacks targeted on itself. The derived attack generation time is particularly

useful to estimate how fast an attacker can come up with a stealthy exploit given a

newly discovered vulnerability on the protected program.

1.2.2 Making Anomaly Detector IDS More Secure

Given possible attacks on anomaly detection IDSs such as Stide IDS [67, 152, 153], the

question to be asked is how we can improve the IDS, as well as other IDSs sharing a

similar basic model (e.g. [146, 48]), to prevent the attacks. One approach is to make use

of all available information from the observable events, such as system call arguments

and user credential information. While increasing the IDS robustness against attacks,

the inclusion of these new details should not prohibit fast (preferably online) detection

operations, or increase the false positive rate.

1.2.3 Practicality of OS-based Executable Authentication System

The concept of executable integrity, i.e. checking the integrity of executable codes stored

on a host, is not new. Tripwire [82] is one of widely known systems that provide (offline)

file integrity protection. In securing the PPLC, we are more concerned with ensuring

data origin authentication on executable codes, i.e. giving assurance to a party executing

a code of the identity of the party which originated the code. Data origin authenti-

cation on an executable code implicitly provides data integrity since, if the code was

modified during transmission or while stored on the host’s file system, the sender of the

code would no longer be the originator [109]. There are a number of OS-integrated exe-

cutable authentication implementations, although mostly on Unix [9, 183, 175]. Despite

4

the potential great benefits brought, current commercial OSes, such as Windows and

Solaris, do not generally come with built-in support for executable authentication yet.

One challenge here is to investigate how to devise a mandatory in-kernel executable au-

thentication scheme, conducted just prior to program execution, in a lightweight manner

on a real-world complex OS like Windows.

1.2.4 Automating Vulnerability Alert Processing

In order to keep track of security alerts on relevant OS and applications, system adminis-

trators usually rely on various sources of narrative vulnerability alert repositories. Given

the speed at which an exploit becomes available once a vulnerability is known, and the

frequency of occurrence of such alerts, manual intervention is too slow, time-consuming

and possibly ineffective. It is therefore a real challenge on how to develop a coordinated

vulnerability database which is designed to be machine readable and processable. This

will allow automated processing of alerts and corresponding vulnerability scanning to be

done on a host. One particular issue is that the scanning process should provide assur-

ance that it does not perform any operation beyond what is necessary. Thus, the scanner

operations must be minimal and open to inspection.

1.2.5 Providing a Lightweight and Near Real-Time Certificate Revo-

cation Service

Many host security mechanisms, including validating a digitally-signed program, rely on

ensuring that the signer’s public key is not revoked. In X.509-based PKI, certificate revo-

cation is mainly supported by a mechanism called Certificate Revocation List (CRL) [37].

However, CRL is widely perceived to be costly [96, 64]. Several alternatives have been

proposed, such as Online Certificate Status Protocol (OCSP) [124] which requires the

Certificate Authority (CA) to respond to any incoming query in real time with a signed

message. To secure software distribution and PKI-based program’s interaction with ex-

ternal hosts, a certificate revocation scheme must provide a near real-time timeliness

guarantee and enable fast computation on the verifiers. This is particularly important

given the proliferation of lightweight computers and mobile devices. In addition, the

scheme must not put excessively high overheads on any of the entities involved, such as

the CA or the revocation repository, which will create undesirable service bottlenecks.

1.2.6 Concise yet Practical Formal Reasoning on PKI-based Protocols

Nowadays, it is common for many programs running on a host to interact with external

entities using PKI-based operations. PKI-based protocols, including those used in se-

cure program distribution and certificate revocation management, must be shown to be

5

secure. Designing a correct protocol specification is however well recognized as a diffi-

cult task. A formal protocol analysis is therefore necessary to establish the security of a

protocol. Although protocol analysis on PKI-based protocols does not constitute a step

in the PPLC, it is however an important prerequisite for securing the PPLC due to the

assurance needed on both PKI-based application programs and infrastructure support-

ing the PPLC. Moreover, such analysis is usually not a focus of most secure software

development methodologies such as [112]. Despite the availability of numerous formal

techniques, one challenge is to devise techniques which can be handily utilized to verify

real-world protocols by many protocol designers. One approach is by leveraging the pop-

ularity of widely-known techniques such as BAN Logic [26, 27]. BAN Logic however does

not properly deal with the detailed aspects of PKI-based authentication, such as cer-

tificate processing, as commonly practiced nowadays. Given the ubiquity of PKI-based

protocols and their importance to host security, there is a need to update such logic to

be more concise yet remain practical to use.

1.3 Contributions

Based on the PPLC model and various security issues faced in securing it, we have pro-

posed a number of schemes to help ensure more secure program environments. Most

of the results here have been reported in the publications [158, 66, 186, 160, 159]. Ap-

pendix F gives a list of the author’s published as well as submitted works throughout his

Ph.D. candidature. The contributions of this thesis can be summarized as follows.

• Using our notion of pseudo subtrace construction, we demonstrate the security

weakness of the Self-based IDS (Stide) [67, 152, 153], which compares the system

call trace of a process with a set of k-grams (see Chapter 3). We then outline an

efficient algorithm that transforms a previously detectable attack into the one that

will pass the IDS detection. Using a number of real-world vulnerable programs,

we show that mimicry attacks can be easily constructed with execution times of at

most a few seconds, even when a relatively large window size is used. A variant

model using a more precise graph profile representation can also be easily attacked.

Based on this automated attack generation approach, we then propose a general

framework which shows how the attack construction can be applied to various IDS

models, including a Finite State Automaton (FSA) based IDS model [146]. This

allows us to find out how computationally expensive it is to perform a search to

craft attacks on the IDS. This result shows the feasibility of obtaining quantitative

measurement on IDS resistance against targeted attacks.

• We also propose an extension to the Self-based IDS to make it more resistant against

mimicry attacks by making use of the system call arguments and process credentials

6

(see Chapter 4). The proposed data-flow technique can be easily combined with

other system-call based IDS techniques. To avoid increasing the false positives,

a user-supplied specification is used to abstract the arguments and credentials.

This specification takes into account security semantics of the operations and their

potential effects to system security, and highlights the occurrence of “dangerous”

operations. With this simple extension, we show that the robustness of the IDS is

increased. We demonstrate that the enhanced IDS provides resistance to attacks

previously successful on the Self-based IDS as well as a variety of common attack

strategies. We also have some evidence that the increase in detection accuracy does

not lead to more false positives. Unlike other proposed data-flow IDS techniques

[91, 123, 167, 23], our IDS enhancement using system call arguments highlights the

virtue of incorporating the host’s security model into the IDS model to result in a

more concise and robust IDS.

• In the area of software authentication protection, we demonstrate the practicality

of a mandatory, in-kernel, pre-execution executable (binary) authentication mech-

anism in Windows (see Chapter 5). We first analyze numerous design factors for

a binary authentication system and compare a variety of existing systems. We

then present a prototype, BinAuth, which exemplifies a lightweight binary authen-

tication scheme and its integration within an OS. The main contribution of this

work is that we believe that it provides the first comprehensive infrastructure for

trusted binaries in Windows. It provides mandatory authentication for all binaries

in Windows, and goes beyond authenticated code in XP and Vista. This is signifi-

cant given that much of the problems of security on Windows stems from a host’s

inability to distinguish between trusted and untrusted software. With BinAuth,

binaries are allowed for execution only if they come from developers that the host

trusts, and that the binary’s contents as well their file properties were not illegally

modified. Our benchmarking shows that the overhead of the scheme can be quite

low, around 2%, with a caching strategy. In addition, we also leverage the authen-

tication with a Software ID scheme which is useful for easier software management

and automated vulnerability assessment.

• We propose a framework for machine-oriented vulnerability database geared to-

wards automated vulnerability checking on a host (see Chapter 6). We developed a

prototype sample scanner for Unix/Linux systems tailored for Red Hat Linux and

FreeBSD, although the basic principles are applicable to other OSes. Our work

was developed when vulnerability representation and automated processing were

still not widely addressed by the security community. Our results are in line with

present on-going standardizations efforts on vulnerability processing by the U.S.

Government-sponsored organizations, such as CVE [116], OVAL [117], CPE [115]

7

and SCAP [126]. Given these latest standardization efforts, we also address how

these standardization results still need to be extended in order to realize the fully

automated vulnerability processing as envisioned in our proposed framework.

• We also propose two lightweight, practical and inherently-distributed certificate re-

vocation schemes, which are based on the recently available Extended-Validation

(EV) certificate infrastructure (see Chapter 7). Our schemes enhance CRS/NOVO-

MODO [110, 111] and OCSP [124] to support efficient revocation with near real-

time timeliness guarantees (1–10 minutes). Using a more realistic cost-evaluation

model derived from empirical data, we demonstrate that it is feasible to keep the

overheads manageable on all the involved entities, while maintaining lightweight

requirements on the verifier even under a timeliness guarantee of one minute. The

scheme has an additional advantage in that status queries are protected from exter-

nal parties including the CA, which may be important for privacy reasons. Another

contribution is our development of a more realistic cost-analysis framework for eval-

uating revocation schemes. Our proposed framework follows the approach taken in

[99, 72] which makes use of empirical revocation data. In addition, our framework

incorporates a number of novel aspects, including: a more accurate calculation of

CRL data size over [99, 72] (which also works for fine-grained certificate generation

and CRL issuance), a more realistic query model on revoked certificates, and the

derivation of query probability on revoked and valid certificates.

• Finally, we propose various public-key related enhancements to BAN Logic [26, 27]

to allow for more concise reasoning on PKI-based protocols (see Chapter 8). Our

extension is along the lines of the work by Gaarder and Snekkenes [51] but better

captures the current aspects of PKI. In particular, our extension redresses the rea-

soning on the goodness of private keys, and considers certificate revocation. We

also address common pitfalls in public-key based protocol design due to insufficient

attention placed on the “intended recipient” and “stated sender” of a message.

Our extension makes the recipient and sender explicit, and these requirements are

incorporated into the logic. As a result, our logic reduces the likelihood of allow-

ing such flaws in the protocol and the corresponding formalism. In addition, our

logic also deals with cases of (public-key) signed encrypted message and encrypted

signed message. Examples and notes on the usage of our logic are also given. We

additionally apply our logic to analyze a session establishment protocol, which is

employed in our proposed certificate revocation scheme.

8

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 gives the background

information on various related problems addressed in this thesis. Chapter 3 presents our

automated attack algorithm on the Self-based IDS and the framework for analyzing IDS

resistance level. Chapter 4 proposes an enhancement to the Self-based IDS using system

call argument and privilege abstraction technique. Chapter 5 outlines our lightweight,

in-kernel software authentication protection scheme. In Chapter 6, we expound the au-

tomated vulnerability alert processing scheme. We present our lightweight and practical

certificate revocation schemes in Chapter 7. Chapter 8 elaborates our extension to BAN

Logic for reasoning with PKI-based protocols. Finally, Chapter 9 gives a summary on

what has been achieved in this thesis and points out possible future work.

9

Chapter 2

Background

In this chapter, we give some background on related aspects of system and network-based

infrastructure that support secure program environments. This chapter can be skipped

given the familiarity of the subjects, or its parts can just be referred to as necessary.

2.1 Intrusion Detection Systems

2.1.1 Overview and Motivation

Intrusion detection is defined as the process of monitoring events occurring in a computer

system or network and analyzing them for signs of possible incidents, namely violations

or imminent threats of violation of computer security policies, acceptable use policies,

or standard security practices [140]. An Intrusion Detection System (IDS) is a device

or software that automates the intrusion detection process. Intrusion Prevention System

(IPS) has all the capabilities of an IDS, and can also attempt to stop possible incidents.

Prevention features in IPSs can usually be disabled by system administrators, causing

them to function as IDSs. Since this thesis focuses on intrusion detection mechanisms,

for ease of discussion, the term IDS is used throughout this thesis to refer to both IDS

and IPS.

IDSs represent a system’s second line of defense, which are aimed to provide addi-

tional layer of security protection. The adoption of IDSs is motivated by the following

observations and trends [89], which have led many experts to belief that a computer

system even with all its attack prevention measures will never be absolutely secure [20]:

1. Statistics show that the number of reported vulnerabilities has increased greatly in

the past decade [30].

2. Meanwhile, the number of produced malware is continuously increasing [45].

3. Administrators are generally very slow in applying fixes to vulnerable systems [137].

10

4. There is an increasing concern on zero-day attacks to computer systems. Unreleased

zero-day exploits even now have formed a “zero-day market” [114].

For an introduction to IDS, we recommend [80, 40].

2.1.2 IDS Classification

In this section, we give a very short overview of IDS with respect to the classification of

IDSs. A comprehensive survey and taxonomy of IDSs can be found in [14, 148, 98].

IDSs are commonly classified by their audit (event information) source location and

detection method. Based on the audit source location, the IDSs are classified into:

• Host-based IDSs: which deal with audit data generated on a single host.

• Network-based IDSs: which monitor network traffic.

Based on the detection method, they can be broadly classified into:

• Misuse detection IDSs: which model known attacks using attack patterns (also

called signatures), and detect them by means of pattern matching. The benefit of

these IDSs is a high degree of detection accuracy, while their main drawback is the

inability to identify new attacks.

• Anomaly detection IDSs: which define what is the “normal behavior” on the

system (i.e. normal profile), and flags any deviations from normal as potential at-

tacks. They thus operate based on the assumption that all anomalous activities are

malicious [89]. Anomaly detection IDSs, also sometimes called anomaly detectors,

are capable of detecting novel attacks. However, there are some challenges such as

defining accurate “normal” behaviors and keeping a low false positive rate. In fact,

these challenges are not unique only to the anomaly detection IDSs, but represent

known issues in the anomaly detection problem (see [32] for a comprehensive survey

of the problem). Patcha and Park [132] gave a recent survey of anomaly detection

techniques used specifically for intrusion detection purpose.

2.1.3 IDS Effectiveness Metrics

The effectiveness of an IDS is usually measured in terms of detection (true positive)

and false positive rate. Functioning as a classifier on a binary decision problem, an

IDS determines examples as either positive (intrusive) or negative (non-intrusive). The

decision can be represented in a structure known as a confusion matrix shown in Table 2.1.

The confusion matrix has the following four cases, and makes the four corresponding

sets:

• True Positives (TP): refer to intrusive behaviors correctly determined as intrusion.

11

Actual Condition
Intrusive Behavior Non-Intrusive Behavior

Detection
Intrusion Alarm True Positive (TP) False Positive (FP)

No Alarm False Negative (FN) True Negative (TN)

Table 2.1: Confusion matrix comparing actual intrusive condition and detection result.

• False Positives (FP): are non-intrusive behaviors incorrectly labeled as intrusion.

• False Negatives (FN): represent a failure of an IDS to detect actual intrusions.

• True Negatives (TN): when no intrusive behaviors have taken place and no alarm

is raised by the IDS.

In a benchmark measurement scenario, based on the sizes of four defined sets, we

can determine the following metrics [13] (let I and ¬I denote intrusive and non-intrusive

behaviors respectively, and let A and ¬A denote the presence or absence of an alarm

respectively):

• True positive (detection) rate: is defined by the conditional probability P (A|I) =
|TP |

|TP |+ |FN |
, where | | denotes the size of a set.

• False positive rate: is defined by the probability P (A|¬I) =
|FP |

|FP |+ |TN |
.

• False negative rate: is P (¬A|I) = 1− P (A|I) =
|FN |

|TP |+ |FN |
.

• True negative rate: is P (¬A|¬I) = 1− P (A|¬I) =
|TN |

|FP |+ |TN |
.

2.1.4 IDS and Alert Correlation

Alert correlation has recently attracted the attention of the IDS community as an ex-

tension to intrusion detection. It is defined as a process that takes as input the alerts

produced by one or more IDS sensors, and provides as output a more succinct and high-

level view of occurring or attempted intrusions. See [89] for a survey on alert correlation.

2.2 System-Call Monitoring IDSs: Self-based IDS, Attacks,

and Related Models

In this part, we provide some background on system-call monitoring IDSs, particularly

the Self-based IDS which is the focus of Chapters 3 and 4. A recent paper by Forrest et al.

[50] gives a comprehensive survey on the development of system-call monitoring IDSs as

inspired by the Self-based IDS.

12

2.2.1 Self-based IDS

Inspired by how the natural immune system distinguishes “self” from “other”, a seminal

work [67] proposed a host-based anomaly detection IDS based on an observation that

short sequences generated from a program’s system call traces can serve as a stable

indicator of the program’s behavior. Monitoring system calls has been recognized as

an effective mechanism to observe what a program really does. System calls are the

gateway to privileged kernel operations. Thus, by monitoring and restricting them, a

running program can be observed and (if necessary) be prevented from violating the

host’s security policy.1 The works [152, 153] expanded the IDS with an automated

response to a detected intrusion. For ease of reference, in this thesis we will call this type

of IDS a Self-based IDS.

The Self-based IDS takes an unparameterized system call trace of a program as its

input. A system call trace can be viewed simply as a string where the alphabet consists

of all the possible system calls in the underlying OS (∼200 for Unix/Linux systems). The

IDS defines normal behavior of a program in terms of short k-grams of system calls. A

k-gram is a sequence of system calls with length k. Conceptually, we define a small fixed

size (k) window and then “slide” it over each normal trace. The parameter k is thus

usually known as the (sliding) window size. Every unique system calls within the sliding

window, i.e. k-gram, is recorded into the normal profile database. Sliding-window sizes

of 6–8 are commonly used in practice [67, 152, 182].

Previous works on Self-based IDS make use of a few different techniques for represent-

ing a normal database entry, namely full sequence, (forward) lookahead pair and backward

lookahead pair technique. The Self-based IDS using full sequence representation is also

known as sequence time-delay embedding (Stide). It was first proposed in [67], and is

later analyzed in a widely cited performance comparison work [182]. The Stide model

has been widely used for performance analysis mainly due to its better discrimination

power than the lookahead pair methods. However, a recent work comparing Stide and

the backward lookahead pair method [74] shows that the latter exhibits lower false posi-

tives. Notwithstanding this, in our attack construction in this thesis, we mainly consider

Stide since it is theoretically a more resistant model against mimicry attacks [74, 182].

Experiments were conducted in [67] to evaluate the effectiveness of the Self-based

IDS. In [182], Warrender et al. reported the comparison results of the Self-based IDS and

several system-call analyzing IDSs including an IDS based on data mining and Hidden

Markov Models. Although no definite conclusion can be made, the results show that the

Self-based IDS performs reasonable well despite its relative simplicity.

1This system-call based monitoring approach cannot detect intrusions which do not invoke system
calls. Hence, this approach performs simpler measures in ensuring the intrusion-free (unaltered execution)
property (see Section 1.1) of a running program. In practice, however, security-relevant interactions
typically take the form of system calls [180].

13

2.2.2 Mimicry Attacks on Self-based IDS

Despite the good experimental results in [67, 182], the security of the Self-based IDS did

not receive much attention until later when Wagner and Soto [180] and Tan et al. [164]

independently published their security analysis results on the IDS.

Wagner and Soto [180] used Finite State Automaton (FSA) as a framework for study-

ing and evaluating mimicry attacks. They showed that a mimicry attack is possible be-

cause additional system calls which behave like no-ops can be inserted into the original

attack trace so that the resulting trace is accepted by the automaton of the IDS model.

Independently, Tan et al. [164] showed attack construction as a process of moving an

attack sequence into the IDS detection’s “blind region” through successive attack mod-

ifications. The focus in these two works is to demonstrate the feasibility of mimicry

attacks. However, they do not take a detailed look at designing and constructing auto-

mated attacks.

In a later work, Gao et al. [53] performed a study of the “black-box” Self-based IDS

and also several “gray-box” IDSs such as [146, 48].2 They investigated mimicry attacks

with window sizes of up to 6 and showed the existence of mimicry attacks across the

methods and the window sizes studied. However, they did not go into the details of

attack generation. Later works, including the more recent mimicry attack construction

techniques [88, 58], are surveyed in Section 3.1 when we discuss our own automated

mimicry attack construction.

2.2.3 Improved System-Call based IDSs

Due to possible attacks on the basic Self-based IDS, a variety of improved IDS models

have been proposed. Within the context of black-box and gray-box anomaly detectors,

there are two main approaches, namely:

• Incorporation of additional execution context. Two main examples of this

approach are [146, 48]. In [146], Sekar et al. proposed the use of FSA-based IDS

which is generated by observing both system calls and program points during the

normal program executions. A program point is the Program Counter (PC) at the

point from where a system call is made. A stack traversal mechanism is used to

recover the PC within the program segment where a system call is actually invoked.

Each distinct PC is made as a state, whereas system calls are used as the labels

2We follow the terminology in [53] which classifies various system-call monitoring anomaly detectors
into “black-box”, “gray-box” and “white-box” detectors. Black-box detectors (e.g. [67, 152]) do not
acquire any additional information other than the system call number and arguments. In contrast,
white-box detectors (e.g. [179, 47]) examine all available pieces of information including those acquired
by statically analyzing (and potentially modifying) the source or the binary codes. Gray-box approaches
(e.g. [146, 48]) lie in between: the anomaly detector does not utilize static analysis of the program, but
does extract additional runtime information.

14

for transitions. The FSA can then be used to monitor the program execution in an

online fashion. If an error occurs while performing the stack traversal mechanism,

or if a state or transition does not exist, there may be an anomaly. Since the FSA

model is deterministic, the efficiency is high. It, however, allows the possibility of

false positives as some legal transitions or states may never occur during training.

In addition, it also suffers from the impossible path problem [48]. Feng et al.

[48] then proposed the use of call stack information obtained through runtime

monitoring in addition to the program’s system call trace. Later works [53, 88],

however, showed that attacks which will escape the detection of this IDS model can

still be constructed.

• Data-flow approach. Examples of IDS models incorporating data-flow analysis

which can be used to improve the Self-based IDS against mimicry attacks are

[91, 123, 167, 23]. We discuss more about these models when we present our work

on improving the Self-based IDS in Chapter 4.

A survey paper [50] also mentioned other works making use of static analysis and

other observables, which are beyond the scope of this thesis.

2.3 Software Authentication Protection

Chapter 5 addresses the problem of assuring data origin authentication on a piece of

software (i.e. executable code) prior to its execution on a host. For ease of reference in

this thesis, we refer to an executable code stored on the file system as a binary. Data (i.e.

binary) origin authentication implicitly also provides data integrity since, if the binary

was modified during transmission or while stored on the host’s file system, the sender

of the binary would no longer be the originator [109]. Note that on a host, a binary is

associated with an entry on the host’s file system. The goal of a binary authentication

system is thus to ensure that an executed binary only comes from a developer that the

host trusts, and that the binary’s content as well its properties on the file system were

not illegally modified. Below, we provide some background on executable authentication

problem, and survey several existing systems aimed to ensure executable authentication.

2.3.1 Executable Authentication Problem

The first step in securing the PPLC is to establish a secure program distribution. Hence,

all installed binaries must be shown to be originated from a developer that a host trusts,

and that they are received unmodified. This is particularly relevant nowadays since a

large proportion of software packages are downloaded over the Internet, which is a public

untrusted network. Thus, only trusted binaries should be kept on a host’s file system.

15

This is however still insufficient to ensure that only trusted binaries are allowed for exe-

cution on the host. A modern OS has numerous built-in security measures designed to

prevent illegal operations on a system, including any illegitimate addition or modification

of executable codes on the file system. However, due to various vulnerabilities, an OS

component or an application program can be attacked. Once an attacker succeeds in

compromising a system, the next step is usually to install/modify executable code(s) on

the victim’s file system. This could be done for several reasons: to install a backdoor, to

plant a spyware, or to use as a step for subsequent privilege-escalation attacks. A mecha-

nism to deal with illegal addition or modification of binaries on a host’s file system is thus

required. This would also help prevent social engineering attacks which attempt to trick

a user to install an application software package that illegitimately replaces important

system libraries. Besides protecting application programs, binary authentication is also

beneficial to protect the OS against illegal loading of malicious drivers into its kernel.

2.3.2 Overview of Existing Authentication Systems

Although the concept of binary authentication protection is not new, it is not commonly

incorporated as a standard in-kernel mechanism in popular commercial off-the-shelf OSes,

such as Windows and Solaris. Below, we will briefly mention some existing systems as

well as other security approaches related to providing software authentication protection.

Tripwire [82] is one of the first to provide file integrity protection.3 However, Tripwire

is a user-mode application program. It checks file integrity in an off-line manner, and

does not provide any mandatory form of integrity checking.

There exist a number of kernel-level binary authentication implementations. These

are mainly for Unix, such as DigSig [9], Trojanproof [183] and SignedExec [175]. They

modify the Unix kernel to verify a binary’s digital signature before executing the binary.

For efficiency, DigSig employs a caching mechanism to avoid checking binaries which have

already been verified.

Partly motivated by the emergence of mobile code (e.g. Java applets), some OSes

extend the concept of signed code to standard binary types. They check the validity of a

binary’s signature particularly if it is downloaded from an untrusted zone like the Internet.

Windows has a technology called Authenticode [61]. In Windows XP and earlier versions,

Authenticode alerts the users of the results of signature verification under a few situations.

However, it is not mandatory, and can be bypassed. Windows Vista User Account Control

(UAC) adds binary signature checks in some special cases, but it only deals with EXE

binaries. It is also limited to privilege escalation situations. One common drawback of

existing Windows mechanisms is that they do not authenticate the binary’s pathname.

3A file integrity protection system ensures that a file on a host’s file system is not illegally modi-
fied. Such a system may provide only data (i.e. file) integrity assurance, and no data (i.e. file) origin
authentication assurance.

16

Moreover, they always perform digital signature verification when verifying a protected

binary. Besides the incurred performance overhead, a certificate revocation service is thus

always required. Hence, they may be too heavy for an online (pre-execution) program

integrity checking mechanism, particularly on lightweight computers.

There is also the Trusted Computing initiative by the Trusted Computing Group

(TCG) [173]. The Trusted Platform Module (TPM), promoted by the TCG, is a certi-

fied hardware in which all the basic trusted operations and the cryptographic functions

are securely handled. It thus constitutes the “root of trust” aimed to provide an unin-

terrupted “chain of trust” which starts at the system’s startup up to the application’s

executions. TPM can therefore facilitate a secure startup service on a host, thus ensur-

ing the integrity of the OS kernel. This is important since most binary authentication

systems including BinAuth require the OS kernel to be trusted. In addition, an authen-

tication system like BinAuth can take advantage of TPM by having the latter securely

store keys and authentication data.

The concept of layered integrity protection, which aims to ensure the integrity of the

overall system starting from the lowest level (hardware) to the highest level (application),

was analyzed among others by Arbaugh [10]. In the layered model described in [10, page

54], an in-kernel authentication scheme deals with integrity assurance at level 5 (user

applications) and part of level 4 (some components of the OS, e.g. kernel drivers).

2.3.3 Authentication Issues in Microsoft Windows

Most works on binary authentication are on Unix/Linux [9, 183, 175]. The problem of

malware is however more acute in Microsoft Windows. Windows is perhaps the most

commonly exploited commercial OS. This is partly due to its sheer complexity, which

leads to a high number of security flaws. Below, we briefly mention the complexities and

special problems of Windows which make it more difficult to implement binary authen-

tication than in other OSes such as Unix. This is to highlight issues which need to be

taken into consideration when establishing a binary authentication system on Windows.

Windows NT (including later Windows versions based on it such as Server 2000, XP,

Server 2003, and Vista) is a microkernel-like OS. Programs are usually written for the

Win32 API, but these are decomposed into microkernel operations. Windows is closed

source — only the Win32 API is documented but not the microkernel API. As a result,

it is not possible for an enhancement work related to Windows kernel infrastructure to

make any guarantees on the completeness of the security mechanisms.

Some specific issues in Windows related to implementing binary authentication are

as follows [66, 186].

• Proliferation of binary types: It is not sufficient to ensure the integrity of EXE

files alone. In Windows, binaries can have any file name extension, or even no

17

extension. Some of the most common extensions include EXE (regular executables),

DLL (dynamic linked libraries), OCX (ActiveX controls), SYS (drivers), DRV (drivers)

and CPL (control panel applets). Unlike in Unix, binaries in Windows cannot be

distinguished by their execution flags.

• Complex process execution and DLL loading: In Windows, a process is cre-

ated using CreateProcess() which is a Win32 library function. To load a DLL,

a process uses LoadLibrary(). However, these two operations are broken up into

several operations at the native API level. Hence, it is more complex to incorpo-

rate a mandatory authentication in Windows. We need to properly intercept the

right API(s) with correctly intended operation semantics with respect to Windows’

behavior.

Compared to other open platforms, Windows potentially also makes the issue of locat-

ing vulnerable software components more complicated. A great deal of binaries created

by Microsoft contain an internal file version, which is stored as the file’s meta data. The

Windows update process, however, does not inform the user which files have been mod-

ified. Furthermore, the meta data of the modified file might remain unchanged. Thus,

by merely inspecting the meta data of a binary, one cannot ensure whether the binary is

still affected by a particular vulnerability. A “software naming” scheme, which associates

binaries with unique names, can simplify the software vulnerability management. This

issue is addressed later in Section 5.6.

2.4 Managing Host Vulnerabilities

2.4.1 The Problem of Host Vulnerabilities

A vulnerability is defined as a weakness in a system that allows the use of a product

beyond its design intent with an adverse effect on the software, system, or data [49].

Security loopholes found in programs and OS thus lead to vulnerabilities in the system.

In recent years, the number of security vulnerabilities discovered in computer sys-

tems has increased explosively [30]. To keep track of known vulnerabilities, system ad-

ministrators usually rely on vulnerability alert repositories/databases4, such as CERT

Coordination Centre Vulnerability Notes Database (now hosted by the US-CERT [174]),

Securityfocus BugTraq [145] and Open Source Vulnerability Database [171]. Unfortu-

nately, with the observed rate of alerts (e.g. 5,500 vulnerabilities reported in 2002), it

has been estimated that it would take more than 200 days for an administrator to digest

all the alerts published in that year alone [31, page 41]. Hence, a mechanism that requires

4Following a common practice in vulnerability management field, we refer to a vulnerability alert
repository as vulnerability database although the alert entries are narrative and not structured in a
well-defined database model, e.g. relational model.

18

human intervention to understand and deal with such alerts is too time consuming, and

more importantly is too slow to respond to vulnerabilities in this day and age.

This situation, we argue, has contributed quite significantly to the noticed trend in the

Vulnerability Exploit Cycle [94] shown in Figure 2.1. The Y-axis in the graph represents

the number of incidents for a given vulnerability. It quite clearly shows the existence

of significant time lag between the release of a vulnerability report and the decrease of

incidents following corrective measures by users/administrators.

Figure 2.1: Vulnerability Exploit Cycle (from CERT Coordination Center [94]).

2.4.2 Vulnerability Assessment and Self-based IDS

A vulnerability assessment tool (also known as vulnerability scanner) tests to determine

whether a network or host, which is generally called a target, is vulnerable to a set of

known attacks [49]. For each vulnerability, it performs a vulnerability check, which is a

set of items to check on a target that may reveal the presence of the vulnerability [49]. As

acknowledged by many including [16], vulnerability analysis is a very powerful security

management technique. However, it also has its own limitations, and is suitable only as a

complement to using an IDS, not as a replacement. It thus works together with an IDS in

protecting the PPLC as depicted in Section 1.1. In [16], Bace views that a vulnerability

assessment can be treated as a special case of intrusion detection process. To better

highlight the differences between a vulnerability assessment tool and the Self-based IDS

(as an anomaly detector), we compile the comparison of the two systems in Table 2.2.

Vulnerability scanners can be broadly classified into two categories:

1. Network-based scanners: which probe a target machine remotely to find vulnerabil-

ities. Widely known examples are SATAN [144] and Nessus [128]5. These scanners

5Nessus is traditionally and still mainly a network-based scanner. Recent development however also
equips it with an option to perform host-based assessments. Nonetheless, Nessus achieves this by making
use of network-based access using system credentials as opposed to a software agent approach [41]. It
logs on to Unix systems via the SSH protocol and to Windows systems via an NTLM network API.

19

Aspect Vulnerability Assessment Tool Self-based IDS

Goal To detect vulnerable programs in a
system

To detect whether an intrusion is tak-
ing place on a program

Scope of detec-
tion

Whole system (OS and application
programs)

A program of interest

Information ex-
amined

System state, i.e. installed programs
and environmental settings

System call trace invoked by the ob-
served program

Reference data Vulnerability alert entries from vulner-
ability database center(s)

Normal program profile (database of
k-grams)

Type of analysis Misuse detection Anomaly detection
Timing Interval-based (each execution makes

a snapshot of the system’s state)
Whole program execution

Output To report whether there exist vulner-
able programs in the system

To raise an alarm when anomalous be-
havior is observed

Monitoring
agent

System information collector as part of
the vulnerability scanner

System call interposition (reference
monitor)

Main strength Exhaustively test a system for large
numbers of known vulnerabilities

Able to detect novel attacks or anoma-
lous behaviors

Main drawback Offer no protection for attacks in be-
tween scanning times and no ability to
detect novel attacks

Must continuously observe the pro-
gram and inspect its activity

Table 2.2: The comparison between vulnerability assessment tool and the Self-based IDS.

can help administrators automate the process of testing target systems for known

vulnerabilities that can be exploited via the network. In its typical operation, Nes-

sus begins by performing a port scan to determine which ports are open on the

target, and then tries various exploits on the open ports.

2. Host-based scanners: which are installed and executed on the target host itself,

such as COPS [46] or Ferret [147]. The host-based scanners have an advantage

over network-based scanners as they can directly access the host’s configuration

information and various running services. They can also work together with a

“scanning manager”, which is deployed within the same administrative network

domain. In this way, the scanners can be made as lightweight as possible. As such,

we can mitigate the main drawback of host-based scanners, namely the need for

installations or regular updates of the scanners on every target machine.

Our work reported later in Chapter 6 focuses on developing a host-based scanner to

automatically process host vulnerability alerts.

2.5 PKI and Certificate Revocation

Public Key Infrastructure (PKI) is defined in [75] as “the infrastructure able to sup-

port the management of public keys able to support authentication, encryption, integrity

or non-repudiation services”. The dominant PKI standards used are the ITU-T X.500

standards, in particular X.509 [75]. X.509 has also been adopted by the IETF (Internet

20

Engineering Task Force) for use in the Internet [37]. PKIs have been developed and de-

ployed to facilitate secure communication and transactions over insecure public networks

such as the Internet. Electronic commerce and secure server-access applications that

use Transport Layer Security (TLS) or Secure Sockets Layer (SSL) [42] do rely on PKI.

Verification of network-based (signed) software distribution and mobile code execution

also critically depend on a timely and efficient PKI service.

In order for a principal to trust a public key belonging to another principal, the

public key must be issued by a trusted source commonly known as a Certificate Authority

(CA). A CA certifies a public key by issuing a digitally signed certificate, which binds the

public key to the entity holding the corresponding private key. An issued certificate is

expected to be in use for its entire validity period. However, it can become invalid prior

to its expiration due to several reasons, such as change of name, change of association

between the subject and the CA (e.g. the subject is no longer with an organization),

and compromise or suspected compromise of the corresponding private key. Under such

circumstances, the CA needs to revoke the certificate.

From a technical viewpoint, certificate revocation is probably the most challenging

task of certificate management [96]. It thus deserves a special attention, and needs to be

satisfactorily addressed so that the PKI service can be reliably available to host systems.

2.5.1 Issues in Certificate Revocation

In X.509-based PKI, certificate revocation is mainly supported by a mechanism called

Certificate Revocation List (CRL) [37]. However, CRL is widely perceived to be costly

and is attributed as one of the main impediments to successful global PKI deployment

[96, 64]. Among others, CRL suffers from a high bandwidth requirement and (generally)

a low timeliness guarantee.

Several alternatives, such as Online Certificate Status Protocol (OCSP) [124], have

been proposed. OCSP offers a potentially real-time recency, but the CA needs to respond

to any incoming query in real time with a signed message. As such, it imposes significantly

high computation and network requirements on the CA. CA/Browser Forum, for instance,

mandates OCSP support for its premium certificates only starting from 2012 [28].

To secure software distribution and programs’ interaction with external hosts (e.g.

using TLS/SSL), certificate revocation service must provide a near real-time timeliness

guarantee and enable a fast computation on the verifier. This is particularly important

given the proliferation of lightweight computers and mobile devices. In addition, the

revocation scheme must not put excessively high overheads on any of the entities in-

volved. Otherwise, undesirable service bottlenecks will be formed. Chapter 7 proposes

two lightweight and practical certificate revocation schemes which can provide a near

real-time timeliness guarantee.

21

2.5.2 Survey of Existing Certificate Revocation Systems

This section surveys various existing revocation schemes, and examines the potential

issues with them. Throughout this thesis, we will refer to the subject of a certificate as

a principal, and the party accepting/verifying certificates as a verifier. We also adopt

the term Certificate Status Information (CSI) [73] to denote information pertinent to

the validity of a certificate. Hence, CSI encompasses CRL data, OCSP messages and

hash tokens in CRS/NOVOMODO. We refer to Certificate Management Ancillary Entity

(CMAE) as a generic term for a repository or directory, from which a verifier may obtain

the CSI.6 Also, we define revocation latency (based on [4]) as the time interval between

when a CA makes a revocation record and when it makes that information available to

the verifiers. A low revocation latency means a high revocation timeliness guarantee.

Standardized in X.509 [75] and also profiled in the IETF [37], CRL is the most

widely supported revocation scheme. Rivest [138] criticizes CRL by elaborating its several

important drawbacks. McDaniel and Rubin [106] however responded to the criticism by

pointing out that CRL still can provide a useful and efficient service in some environments.

For many typical online transaction environments, however, CRL is widely known to

have serious shortcomings. Firstly, the CRL may eventually grow to a cumbersome size

in very large PKIs, e.g. ∼750 KB in Verisign’s [141] and ∼40 MB in the U.S. DoD’s

[129]. Secondly, the downloaded CRLs may be mostly redundant given that more than

90% of the information is irrelevant to the verifiers [141]. Lastly, CRL does not offer

adequate timely revocation guarantees. It is common for a CA to update its CRL only

daily, as suggested in [177], although the CA may have a service for a shorter window

period presumably with a higher charge.

There are several methods for improving the basic CRL mechanism, such as CRL

Distribution Points, Delta CRLs, and Indirect CRLs (see [4] for a survey). However,

all these improved schemes still put the same requirement on the verifier to obtain a

complete revocation list, which includes the unrelated entries.

OCSP [124] was proposed to provide a more timely certificate status checking. An

OCSP Responder is required to return the status information about a specific certifi-

cate in a digitally signed response. Since OCSP is an online service, it necessitate a

prompt and reliable OCSP Responder system with a high level of security. It basically

shifts the demands from network bandwidth in CRL to the Responder’s processing power

[141]. The high requirement put on the Responder to promptly generate signed replies

may however be an issue [96]. A report on day-to-day operation of the EuroPKI infras-

tructure [93] highlighted the signature operations as the Responder’s main bottleneck.

Furthermore, the Responder’s throughput is always bounded by the maximum number

of signatures per second that it is able to perform.

6A CMAE may be trusted or untrusted depending on the revocation scheme.

22

Several modifications have been proposed on OCSP. H-OCSP [122] is as an improve-

ment over OCSP that allows a verifier to verify the validity of a pre-produced response

beyond its documented life time (as indicated by thisUpdate and nextUpdate fields in

OCSP Response). The scheme uses a hash-chaining technique so that a H-OCSP Re-

sponse can later be updated with reduced information and processing needs. However,

H-OCSP requires the CA to maintain a hash-chain for each verifier. Given a potentially

large number of verifiers, the CA’s bandwidth and storage requirements are thus high.

Merkle Based Server (MBS)-OCSP [21] is a further improvement over H-OCSP, which

employs Merkle Hash Tree (MHT) for faster verification by the verifier. In MBS-OCSP,

a Responder associates a MHT with an OCSP Response, and stores in its local database

the signed OCSP Response together with the associated MHT. We note that the use

of MHT in MBS-OCSP is essentially the same as that suggested by Naor and Nissim

[125]. The enhancement, however, comes with at the expense of larger messages to be

downloaded by the verifier and extra storage on the Responder for all the MHTs.

Another approach, sometimes called “trusted directories”, includes Certificate Re-

vocation Status (CRS) [110] and NOVOMODO [111]. CRS/NOVOMODO, which we

improve upon in Chapter 7, are summarized in Section 7.2.2.

Aiello et al. [6] proposed an improvement to CRS called “Hierarchical Scheme”. It

is aimed at reducing the CA-to-CMAE communication while still maintaining the low

query communication. The improvement however comes at the price of a significant

increase in the certificate transmission costs due to the increase in certificate size.

Kocher [83] proposed Certificate Revocation Tree (CRT) which employs MHT. In

CRT, the CA breaks its revoked certificate list into a series of ranges that describes the

certificate statuses. The lower end of each range contains the unique serial number of a

revoked certificate. The ranges are then packaged as leaf nodes. A tree is built on these

leaves by hashing two sibling values to obtain their parent node. The scheme however

suffers from a high computational cost needed to update the tree.

Naor and Nissim [125] extended CRT by using a more suitable data structure, a 2-3

tree, rather than a binary hash tree. In a 2-3 tree, insertion and deletion of an element

only affects a few interior points. Thus, there is no need to recalculate the entire tree.

2.5.3 Extended-Validation (EV) Certificates

In Chapter 7, our proposed scheme makes use of the Extended-Validation Certificate

infrastructure as the basis for a lightweight and practical revocation scheme. We give

some background on EV Certificate (EVC) here.

Recent attacks, such as certification-chaining [102], homograph phishing [52, 69, 102],

and man-in-the-middle based SSLstrip attack [102], have shown the weaknesses of the

standard X.509 certificate’s usage. As a response, the EVC initiative was launched by the

23

CA/Browser Forum [28] to provide stronger assurance on certificates. This is achieved

through a stricter issuance process based on the EV Guidelines [28]. The Guidelines

standardize the identification process for EVCs, so that those issued by different CAs are

still of the same quality with respect to identification. In addition, the Guidelines specify

more rigorous checkings by a CA before issuing an EVC, which include:

• verifying the legal, physical and operational existence of the entity;

• verifying that the entity has an exclusive right over the specified domain name;

• verifying the identity and authority of the individuals acting for the website owner,

and documents pertaining to legal obligations are signed by an authorized officer.

There have been a number of studies conducted to ascertain the usability and ef-

fectiveness of EVC and its purported benefits, particularly in securing SSL transactions

[77, 168, 149]. These studies however focused mostly on the user’s perception of EVC

based on the perceived browser’s interface. Jackson and Barth [76] evaluated the security

of EVC with respect to the browser’s security policy, and reported a possible vulnera-

bility in its usage by the browser. We however view the issue more as a loophole in the

browser’s SSL usage of EVC rather than the flaw of EVC infrastructure. It is worth

noting that despite the suggested conclusions, all of the studies acknowledge the value of

EVC in providing stronger protections for secure transactions.

2.6 Formal Protocol Verification and BAN Logic

Designing a correct protocol specification which satisfies certain security properties is well

recognized as a non-trivial task. Many logics and formal techniques have been proposed

for verifying security protocols. Among various authentication logics, Burrows-Abadi-

Needham (BAN) Logic [26, 27] is one of the best known and most widely used [107, 143,

108]. One reason for its popularity is that BAN Logic is comparatively easy to use. As

pointed out by Meadows [107, 108], BAN Logic’s intentional avoidance of many advanced

features makes it a simple and straightforward logic that is easy to apply yet of substantial

use for detecting flaws. This may well explain the constant appearance of publications

applying BAN Logic even till now [5, 24, 155, 188, 35, 33], with application domains as

diverse as wireless network [188], mobile communication [33], and voting system [155].

2.6.1 Overview of BAN Logic

BAN Logic [26, 27] is a modal-sorted logic constructed on several sorts of objects: prin-

cipals, keys, messages and well-formed formulae. In BAN Logic notation, the symbols P ,

Q and R are usually used to denote principals; whereas X and Y are statements; and K

is an encryption key. Predicate constructs are used to organize objects into well-formed

formulae. BAN Logic defines the following constructs:

24

P |≡X: P believes X. P may act as though X is true.

P ⊳ X: P sees X. Someone has sent a message containing X to principal P , who

can read and repeat X (possibly after doing some decryption).

P |∼X: P once said X. P at some time sent a message including X. It is not

known whether the message was sent long ago or during the current run of

the protocol, but it is known that P believed X when he sent the message.

P p⇒X: P has jurisdiction over X. P is an authority on X and should be trusted

on this matter.

♯(X): X is fresh. X has not been sent in a message at any time before the

current run of the protocol.

{X}KPQ
: X encrypted with a secret key KPQ.

P
KPQ
←→ Q: P and Q may use a secret key KPQ. The key KPQ is good, i.e. it will

never be discovered by any principal except P or Q, or a principal trusted

by either P or Q.

The only propositional connective used in BAN Logic is conjunction, which is denoted

by a comma. A set of inference rules, also called logical postulates, are used to reason

on well-formed formulae. Appendix C lists all the rules of BAN Logic which are relevant

to our discussion in this thesis. A sample application of BAN Logic’s rules to analyze a

protocol can be found later in Appendix E.

BAN Logic has been criticized by many largely for its idealization process. It lacks a

systematic way of transforming a protocol into the form that will be used by the logic.

Additional criticisms were also pointed out in [127, 59, 101]. Fortunately though, along

with these criticisms, suggestions for improvement as well as precautions on the improper

usage of BAN Logic were made [51, 176, 81]. [176] attributes inaccurate idealization

rather than the logic itself to be the root of many problems associated with BAN Logic.

For more discussion on BAN Logic, see [62, 107]. Syverson and Cervesato [163] give

a tutorial on BAN Logic, and put it within a broader context of authentication logics.

2.6.2 Issues on BAN Logic Application to PKI-based Protocols

Despite being useful and widely applied, BAN Logic gives a rather simplified treatment of

public-key authentication processing. It does not deal with deeper aspects of public key

authentication such as certificate processing. This is presumably because PKI was not

well established when the logic was designed. The situation is now very different since

PKI becomes common. There exist some works such as [5, 51, 156] which attempted to

extend BAN Logic to reason better with public key authentication. We find that the

extension proposed in [51] does improve the expressiveness of BAN Logic while keeping

the logic’s secret-key aspects intact for easy application. However, it still falls short in

capturing many important concepts and practices of the modern PKI usage.

25

Chapter 3

Self-Based IDS: Security Analysis

and Automated Attack

Construction

Section 2.2.1 gives an overview of the Self-based IDS [67, 152, 153], which compares an

unparameterized system call trace of a process against the normal profile using k-grams

of system calls. While the IDS has been shown to be effective in detecting intrusions

[67, 182], it can be susceptible to evasion or mimicry attacks [180, 164]. The attacks

disguise an attack trace so that it appears “normal” to the IDS. Our aim in this chapter is

to systematically investigate the susceptibility of the Self-based IDS to mimicry attacks.

In particular, we focus on deriving automated and practical attack constructions, and

whether changing parameter(s) and normal profile representation of the Self-based IDS

can help prevent such attacks. Here we assume a Self-based IDS which makes use of the

full k-grams, an IDS model sometimes referred to as Stide [182]1, instead of the lookahead

pair representations.

In the discussion to follow, we present a branch-and-bound algorithm for automat-

ically constructing the shortest mimicry attack trace on the Self-based IDS (Stide) and

its variant where the normal profile is represented as a graph of k-grams. This variant

(defined later in Section 3.2.3) is a more precise model since it also records a tempo-

ral relationship between two consecutive k-grams generated from the normal trace. We

evaluate these two models under two attack scenarios of trojan attack and code-injection

attack. Our experimental results show that using sliding-window sizes larger than what is

commonly used (6–8) and even using a more precise graph profile representation cannot

prevent mimicry attacks on both attack scenarios. Furthermore, the execution times of

1Stide (sequence time-delay embedding) makes use of a more precise representation compared to the
lookahead pair counterparts. As a result, it gives better discrimination in detecting potential anomalous
behaviors, and is theoretically more resistant against mimicry attacks [74, 182].

26

the attack construction on several sample vulnerable programs are at most a few seconds,

even for the relatively large sliding-window sizes (k=9–11). These running times thus

show the practicality and efficiency of our attack construction algorithm.

In addition to producing the mimicry attack trace, our construction technique also

provides us with useful information on how computationally expensive it is to perform a

search to craft attacks on an IDS. Hence, it provides a systematic method to effectively

measure the resistance level of the IDS against targeted attacks. Based on this observa-

tion, we generalize our attack construction method into a framework for measuring IDS

resistance against attacks using a notion of “attack space”. We show the generality of

the framework by applying it to other system-call based IDS models. Parts of the results

on our mimicry attack construction on the Self-based IDS have been reported in [158].

The remainder of this chapter is organized as follows. Section 3.1 discusses related

works on mimicry attacks. We give an algorithm for constructing mimicry attacks in

Section 3.2. Section 3.3 presents the results of our experiments on automatically attacking

the Self-based IDS and its variant. Section 3.4 discusses and analyzes these results. The

generalization of our attack construction into a framework for measuring the robustness

of IDS is expounded in Section 3.5. Finally, Section 3.6 gives a chapter summary.

3.1 Motivation and Limitations of Existing Works

Wagner and Soto [180] showed how the Self-based IDS which takes a non-parameterized

system call trace can be vulnerable against mimicry attacks. They achieved this by

inserting system calls which semantically behave like “no-ops”, i.e. dummy operations

that do not change any system effects, into the attack trace. In their work, they model

the detection mechanism of the Self-based IDS as a Finite State Automaton (FSA). The

attack is defined as a regular language. By adding no-ops, an attack is thus transformed

into one that falls into the language modeled by the FSA of the IDS. Although the work

contributed to the establishment of theoretical framework for the Self-based IDS from

FSA viewpoint, the question of whether such attacks are practical is not fully answered.

In our work, we address the practical construction of attacks and its efficiency issue.

Independently, Tan et al. [164] showed that it is possible to modify a foreign subtrace

to be accepted by the Self-based IDS by taking advantage of the limited sliding-window

size. They gave a hint on how this process could work involving an example with a sliding-

window of length two. Their work viewed the construction problem as how to move an

attack sequence into the IDS detection’s “blind region” through successive attack mod-

ifications. However the work is primarily descriptive, and does not give a systematic

procedure for attacking the IDS. A later paper by Gao et al. [53] showed some experi-

mental results of attack construction on the Self-based IDS (Stide), which is a black-box

27

detector, and several gray-box detectors [146, 48]. They investigated mimicry attacks

on the IDSs with window sizes of up to 6, and showed the existence of mimicry attacks

across the methods and the window sizes studied. But there was also no mention in

the work on how the attack construction procedure was actually performed, which is the

main focus of this chapter. Furthermore, we also consider mimicry attack construction

algorithm in both trojan and code-injection attack scenarios.

Based on these earlier works, we can conclude that although mimicry attack on the

Self-based IDS is known, and examples of turning an attack trace into a stealthy one

do exist, it is however not completely clear how to generate a practical attack, which is

fully automated and efficient in terms of the construction time. Additionally, we are also

interested to find out whether varying parameter(s) and the normal profile representation

of the the Self-based IDS can help prevent mimicry attacks.

Other related works on mimicry attack construction are [88, 58]. Mimicry attack on

gray-box detectors [146, 48] requires forging the call stack and also temporarily relin-

quishing control to the victim application before regaining it for the next system call

execution. Gao et al. [53] suggested a technique to forge the call stack and transfer the

execution control to the injected code. To regain control, they suggested the modification

of any code pointer following the system call so that it points back to the attack code.

The work [53] shows the feasibility of this technique on a small example program, but

manual development of mimicry attacks for realistic programs based on the technique

poses some challenges. Kruegel et al. [88] addressed this challenge with a novel tech-

nique based on symbolic code execution on a program’s binary to automate the steps

needed for regaining control. Using example programs and applications, they showed

that about 90% of the times, control could be successfully returned to the attack code.

This result highlights the susceptibility of gray-box detectors against mimicry attacks.

The technique in theory reduces the difficulty level of constructing mimicry attacks on

gray-box detectors into that on black-box ones (e.g. Self-based IDS). The problem now

becomes that of creating a “stealthy” attack trace interspersed with no-ops, the process

which our attack construction algorithm addresses.

Giffin et al. [58] generated mimicry attack sequences using techniques based on model

checking. The input to the model checker includes a specification of the OS model, the

program model in the form of Push Down Automaton (PDA), and a specification that

characterizes “unsafe” OS states. By using the model checking, their technique auto-

matically finds system call sequences with the necessary arguments, which are allowed

as a valid execution by the PDA that however produce unsafe OS state(s). However,

the work has its own limitations too. Firstly, although the system does not require an

initial exploit (or basic attack trace in our terminology as discussed in Section 3.2.5),

it however requires a manually-specified model of the OS and its unsafe configurations.

28

Secondly, the “proofs” of detection hold only with respect to the developed OS abstrac-

tion and may not hold in the actual OS implementation. Thirdly, depending on the

model-checker used, a reported attack sequence may not be the shortest attack trace

possible. Lastly, the sample generated attack sequences given in [58] do not attempt to

reach the exit() system call in order to gracefully terminate the attack. Nevertheless,

the work still supports the conclusion of our results that the IDS model omitting data

flow is vulnerable to mimicry attacks.

3.2 Automated Mimicry Attack Construction

3.2.1 Definitions

Before explaining our mimicry attack generation algorithm, let us first establish some def-

initions. A trace is a sequence of system calls invoked by a program during its execution.

In our context, a trace can be viewed simply as a string over some defined alphabet. In

the Self-based IDS model [67, 152, 153], the alphabet for traces are the system call num-

bers. A normal trace is the trace generated by a program during its training stage, which

represents the normal behavior of the program. This normal trace is used to construct

the normal profile of the program.

The objective of a Self-based IDS is to examine traces and determine whether they

are normal or anomalous based on the program’s normal profile. We call the attack trace

that is detected by the IDS a basic attack trace. A mimicry attack disguises a basic attack

trace into a stealthy attack trace, which the IDS classifies as being normal.

In our analysis, we will also look at subtraces, which are simply substrings of a trace.

In addition, we also consider subsequences, which are a subset of letters from a trace

that is arranged in the original relative order. Thus, subsequences are different from

subtraces, i.e. the former need not be contiguous in the trace.

3.2.2 Pseudo Subtraces

A weakness of the Self-based IDS which makes use of a normal profile represented as

a set of k-grams is that it can accept subtraces which actually do not occur in the

normal trace(s). For example, consider the following two subtraces of a normal trace

N : 〈A, B, C, D, E〉 and 〈B, C, D, E, F〉.2 Suppose the window size is 5, and assume that the

subtrace 〈A, B, C, D, E, F〉 never occurs in the normal trace. This subtrace, however, will

be accepted as normal by a Self-based IDS since its two 5-grams are both present in the

normal profile. We call such a subtrace a pseudo subtrace, which is defined as follows.
2For easier illustration, we opt to use English letters instead of system call names or numbers for

representing system calls in the example trace(s).

29

Definiton 3.1 (Pseudo subtrace). A subtrace is a pseudo subtrace for sliding-

window size k if it is not a substring of the actual normal trace, yet passes the IDS

detection since all of its k-grams are present in the normal profile.

A pseudo subtrace can be constructed by finding a common substring of length k−1+ℓ

with ℓ ≥ 0 in two separate subtraces of length m (≥ k+ℓ) and n (≥ k+ℓ) respectively,

and then joining them to form a new subtrace of length m+n−k− ℓ+1. For our attack

construction, we set ℓ = 0 so as to put the weakest constraint on the mimicry attack

construction with sliding-window size k.

Example 3.1. Given two unrelated subtraces 〈A, B, C, D, E〉 and 〈B, C, D, E, J, K〉 with

k = 5, we can construct a pseudo subtrace 〈A, B, C, D, E, J, K〉 of length 5+6−5−0+1 = 7

as illustrated in Figure 3.1.

A B C D E

B C D E J K

common substring (length=k-1)

Resulting pseudo-subtrace

A B C D E J K

Figure 3.1: An example of pseudo subtrace construction with k = 5.

We can concatenate a pseudo subtrace with a normal subtrace, or another pseudo

subtrace, to create a longer pseudo subtrace. A stealthy attack trace version of a basic

attack trace is simply a pseudo subtrace in which the basic attack trace is its subsequence.

Figure 3.2 illustrates such a complete process which combines subtraces into a stealthy

attack trace containing basic attack sequence interspersed with no-ops.

Normal portion Resulting attack portion (with no-ops in between)

: Attack System Call

…

…

.....

Figure 3.2: Mimicry attack construction by composing pseudo subtraces.

In our work, we use the term pseudo subtrace to specifically refer to the resulting

subtrace which is obtained by joining two separate subtraces according to Definition 3.1.

This resulting subtrace contains a foreign sequence (of foreign order type in the ter-

30

minology of [166, 165]) of length k+1+ℓ as a substring. When ℓ = 0 in the joining

operation, the foreign sequence is a minimal foreign sequence. In the previous example,

〈A, B, C, D, E, F〉 is a minimal foreign sequence of length 6 for k = 5. The process in Fig-

ure 3.2 constructs a pseudo subtrace for a mimicry attack where multiple minimal foreign

sequences of length k+1 may exist along that subtrace. Each minimal foreign sequence

combines two unconnected subtraces of the normal trace(s) together.3

3.2.3 Overlapping Graph Representation

Given a normal trace, we represent the corresponding normal profile using a construct

called an overlapping graph. This is similar to the De-Bruijn graph, which has been

applied to various problems such as the “sequencing by hybridization” problem in com-

putational biology [134].

Consider the normal trace of a program P , which is denoted as N :〈n1, n2, n3, ..., nt〉,

where ni (with 1 ≤ i ≤ t) is the i-th system call of the trace N . We first augment

N by adding a suffix consisting of the k − 1 occurrences of sentinel symbol (’$’), which

signifies the end of the trace. This adds k− 1 extra k-grams, and is done to simplify the

attack construction algorithm. We now define K as the set of all k-grams derived from

N according to the sliding-window based profile generation rule of the Self-based IDS.

In the presence of multiple normal traces of P , each collected from an execution

session of P , we thus have Ni for 1 ≤ i ≤ x, where x= the number of normal trace

sessions. For each trace N1≤i≤x, we augment it with a suffix of k − 1 sentinel symbols,

and then derive the corresponding set of k-grams Ki. The (consolidated) normal profile

set is K =
⋃x

i=1 Ki.
4

Given two strings p and q, the function overlap(p, q) gives the maximal length of a

suffix of p that matches a prefix of q. We define the overlapping graph constructed from

K as follows.

Definiton 3.2 (Overlapping Graph). The overlapping graph G for a normal profile

K, which is generated from the normal trace(s) and sliding-windows size k, is defined as:

a directed graph (V, E), where the vertices V are the k-grams in K, and E ⊆ V ×V with

each edge e ∈ E connects two vertices p and q whenever overlap(p, q) = k − 1.

Example 3.2. Given a normal trace N : 〈A, B, C, D, E, F, G, A, B, E, F, H〉 with k=3, the

corresponding overlapping graph G is as shown in Figure 3.3. For simplicity, we do not

show the nodes corresponding to 3-grams of (F, H, $) and (H, $, $) which are in G.

3We remark that not all foreign sequences according to the definition in [166, 165] are related to the
notion of pseudo subtraces. Here, we are not concerned with foreign sequences containing system calls
that are not in the k-grams. This is because they cannot be used to generate mimicry attacks.

4A single-session normal trace N thus can be considered as N1 where x = 1.

31

ABC

BCD

CDEEFG

FGA

GAB

ABE

EFH

DEF

BEF

Figure 3.3: The overlapping graph G for N : 〈A, B, C, D, E, F, G, A, B, E, F, H〉 with k = 3. For
simplicity, nodes corresponding to 3-gram (F, H, $) and (H, $, $) are not shown.

Notice that there are two types of edges in G: direct edges and pseudo edges. A

direct edge is an edge that connects vertices p and q corresponding to two consecutive

k-grams derived from a normal trace N1≤i≤x. More formally, we can define the set

of direct edges D = {d ∈ E | d connects two vertices p = (n1, n2, . . . , nk−1, nk) and

q = (n2, n3, . . . , nk, nk+1) if there exists a subtrace 〈n1, n2, n3, . . . , nk−1, nk, nk+1〉 in a

normal trace N1≤i≤x}. Hence, both p and q contain a common substring of length k−1,

namely 〈n2, n3, . . . , nk−1, nk〉, which stems from the same subtrace in a normal trace.

Pseudo edges are edges created not due to the same substring of length k−1 in all Ni

with 1≤ i≤ x. The set of pseudo edges is thus U = E−D. A pseudo edge is of special

importance as it can be used to generate a pseudo subtrace. In Figure 3.3, the direct

edges are drawn with single arrows, while the pseudo edges are drawn with double arrows.

The graph G can also be viewed as an FSA model for recognizing normal traces. The

work [180] develops an FSA from the k-gram database profile. Their approach however

does not distinguish between what in the overlapping graph corresponds to direct and

pseudo edges. Since our concern is to address the limitations of the Self-based IDS,

the overlapping graph gives us a natural capability where we can evaluate the difference

between allowing pseudo edges and removing them.

So far, by our definition of G, we always assume that all system calls can be turned

into no-ops. Wagner and Soto [180] analyze system calls in Unix/Linux environment,

and conclude that apart from just a few system calls, almost all can be easily nullifiable.

The exception applies mainly to exit(), pause() and vhangup(). We thus can define

S− as the set of unnullifiable system calls. To avoid any subsequent effect of using S−

in the stealthy trace, we can remove all outgoing edges from every node whose k-gram

starts with any letter in set S−. Thus, a stealthy trace can only contain a system call

s ∈ S− as its last system call in the trace.5

5If deemed necessary, we can additionally remove all incoming edges into every node whose k-gram
starts with any letter in set S− − { exit()} to avoid executing unnullifiable system calls altogether.

32

3.2.4 Mimicry Attack Construction

Now, we would like to construct mimicry attacks by using the overlapping graph. Given

an overlapping graph G and a basic attack trace A : 〈a1, a2, a3, . . . , am〉 which is de-

tectable by the IDS, we want to automatically construct the shortest stealthy attack

trace Lmin : 〈l1, l2, l3, . . . , ln〉, where n ≥ m, which contains a1, a2, a3, . . . , am as a sub-

sequence and where the other system calls in {Lmin−A} behave as no-ops with respect

to A.

We consider automated attack constructions in two following attack scenarios:

1. Trojan attack scenario: where the attacker replaces a victim program with a trojan

that executes a stealthy attack trace.

2. Code-injection attack scenario: where the resulting stealthy attack trace is to be

injected into a victim program’s process memory, and subsequently be executed.

This can be achieved, for example, by using a buffer overflow attack technique,

where the stealthy trace is crafted as the shellcode of the buffer-overflow exploit.

The code-injection attack scenario poses more challenges since the transition between

the pre-injection subtrace and the stealthy attack trace must still pass the IDS detection.

In addition, from the attacker’s viewpoint, the shortest stealthy attack trace is desirable in

this scenario for the following important reasons. Firstly, an attack trace with a minimum

number of system calls will achieve attack efficiency. Secondly, and more importantly, a

rather long shellcode injected as input data into the program may be noticed by other

security measure(s) deployed on the host. A security measure monitoring the length of

an input fed into the program, for instance, may suspect a long shellcode as a malicious

input or an anomalous request [90]. Lastly, the most straightforward buffer overflow

technique is one that puts the whole shellcode inside the overflowed buffer [130]. Hence,

for this technique to work, the shellcode is restricted by size constraints.

3.2.5 Attack Construction Algorithm under Trojan Attack Scenario

In a trojan attack scenario, transforming a basic attack trace A into a stealthy attack

trace L is equivalent to:

Finding a path P on the overlapping graph G which monotonically visits

nodes whose k-gram label begins with the symbol ai for all 1 ≤ i ≤ m.

The shortest stealthy trace Lmin is a stealthy attack trace with the minimum number of

system calls among all the stealthy attack traces.

To allow for an attack construction, we augment the previously constructed overlap-

ping graph G into the extended overlapping graph G′ defined as follows.

33

Definiton 3.3 (Extended Overlapping Graph). The extended overlapping graph

G′ = (V +W, E+Occ) is the resulting graph constructed by augmenting G with an addi-

tional subgraph called the occurrence subgraph O = (W, Occ). The nodes in the occur-

rence subgraph, W , are the unique individual letters from the k-grams in G. The edges

Occ, which connect W and V , are constructed as follows: for each node w ∈W , we add

an outgoing edge to every node in G where the first letter in its k-gram label is the same

as the letter for w.

Example 3.3. Figure 3.4 shows the extended overlapping graph for the overlapping

graph in Example 3.2 (which is shown in Figure 3.3).

ABC

BCD

CDEEFG

FGA

GAB

ABH

A

B

D

E

F

G

C

EFH

BEF

DEF

Figure 3.4: The extended overlapping graph G′ from graph G in Figure 3.3.

Before outlining the construction algorithm, we illustrate the mimicry attack con-

struction with the following example.

Example 3.4. Suppose that we want to construct a stealthy attack trace from a basic

attack trace A:〈G, C, D〉 using the extended overlapping graph G′ in Figure 3.4. Note that

trace A is detected by the IDS since its corresponding 3-gram (G, C, D) is not in the normal

profile. Inspecting graph G′, we however find the stealthy path: GAB - ABC - BCD - CDE - DEF.

Thus, the stealthy attack trace is the sequence of 〈G, A, B, C, D〉, with A and B added as

no-ops. This example uses the pseudo edge (GAB, ABC).

Our attack construction builds a search tree, and performs a search on the tree to find

the shortest stealthy attack trace. Apart from the specially-added root node v0, each node

with depth i (for 1≤ i≤ m) in the search tree is a node vi ∈ V whose label starts with ai

in A. The node vi also represents a path Pvi
: v0, v1, π1, v2, π2, . . . , vi−1, πi−1, vi on G,

where πi (for 1≤ i <i−1) denotes a subpath with zero or more nodes. By extracting the

first system call in each node along the path, the path Pvi
thus corresponds to a trace

containing a1, a2, . . . , ai as its subsequence. From vi (for 1≤ i <m), the search explores

all the next nodes in {vi+1 ∈ V | vi vi+1 ∧ (ai+1, vi+1) ∈ Occ)}, where the connection

relation (‘p q’) denotes that nodes p and q on G are connected. The branches from vi

34

(for 1≤ i <m) thus represent the choices of extending the path Pvi
into the path Pvi+1

,

which corresponds to the trace containing a1, . . . , ai, ai+1 as its subsequence. A stealthy

attack trace is found when we can reach vm which corresponds a trace containing A as

its subsequence.

In order to make the search more efficient, we employ a branch-and-bound strategy

to prune the constructed attacks which exceed the best solution found so far. Our

implementation constructs an all-pair shortest-path distance table, which is used both to

test connectivity between two nodes on G and also to assist in pruning for the branch-

and-bound search. A sketch of the algorithm is given in Algorithm 3.1.

Algorithm 3.1 Attack construction on Self-based IDS under trojan attack scenario

Input:

- Extended overlapping graph G′ constructed from the program’s normal profile K

- Basic attack trace A : 〈a1, a2, a3, . . . , am〉

Output:

- The shortest stealthy attack trace Lmin : 〈l1, l2, l3, . . . , ln〉

- Or failure, if no solution trace can be found.

1. Construct the all-pair shortest-path distance table, with the following initialization:

Between any two adjacent nodes p and q, set distance(p, q) := 1.

If two nodes p and q are not connected Then distance(p, q) :=∞.

2. Min distance:= ∞ and Min path:=〈〉.

Create a special node v0 as the root of the search tree, and ∀ v ∈ V , distance(v0, v) := 1.

3. (Perform branch-and-bound search on the search tree as follows:)

current cost:= 0. (It keeps track of the distance from v0 to vi in the path being explored.)

For i:=1 to m choose vi from {vi ∈ V | (ai, vi) ∈ Occ}:

- If distance(vi−1, vi) = ∞ Then backtrack.

- Add distance(vi−1, vi) to current cost.

- If current cost ≥ Min distance Then backtrack.

- If complete solution is found (i = m) Then

If current cost < Min distance Then

Min distance := current cost;

Min path := current path.

(Note that a path includes zero or more nodes in between vi−1 and vi for 2 ≤ i ≤ m.)

4. Once the search tree is fully explored:

If Min distance = ∞ Then return failure;

Else return Lmin:〈l1, l2, l3, . . . , ln〉 with n =Min distance, and li (for 1 ≤ i ≤ n) being the first

system call in the k-gram label of (i+1)-th node in Min path.

(Note that the first node in Min path, i.e. the root node v0, is eventually discarded.)

35

3.2.6 Attack Construction Algorithm under Code-Injection Attack Sce-

nario

Under the code-injection attack scenario, a stealthy attack trace must be introduced

only after the “attack-introduction point”, that is after the code injection succeeds and

the victim process’ control flow is gained and redirected. Here, we need to make note

of the k system calls prior to the attack point, which we call the border sequence

B : 〈b−k, b−k+1, . . . , b−2, b−1〉. This sequence corresponds to a border k-gram in the nor-

mal profile; which then translates into a particular node vs in G, which we call the

border-start node.

To ensure that the concatenation of the pre-injection trace and the stealthy attack

trace still passes the IDS, we extend Algorithm 3.1 as follows:

• (E1): The border sequence B : 〈b−k, b−k+1, . . . , b−2, b−1〉 must be included as an

input to the search algorithm.

• (E2): This border-start node vs is made as the root of the search tree.

• (E3): A first-level node in the search tree, i.e. node v1 ∈ {v1 ∈ V | (a1, v1) ∈ Occ},

is explored during the search only if k ≤ distance(vs, v1) <∞.

• (E4): Once the search tree is fully explored with a solution, then return Lmin :

〈l1, l2, l3, . . . , ln〉 with li (for 1 ≤ i ≤ n =Min distance−k) being the first system

call in the k-gram label of (i+k)-th node in Min path. (Thus, in the end, we discard

the first k nodes of Min path).

We remark that the construction actually requires only the last k−1, instead of k,

system calls prior to the attack point. In other words, the sequence B′ : 〈b−k+1, b−k+2, . . . ,

b−2, b−1〉 would be sufficient. Our actual objective is to first form a set of border-end

nodes, denoted as Z, where each node vz ∈ Z is determined as follows: Find a path

Pv : v−k+1, v−k+2, . . . , v−2, v−1 (of length k−2) on G, where vi (for −k+1 ≤ i ≤ −1) is a

node whose label starts with bi in B′. The last node in Pv, i.e. node v−1, is a border-end

node vz. Given this set Z, the “attack trace connectivity constraint” to satisfy under

the code-injection attack scenario is that the first-level nodes in the search tree, i.e.

set {v1∈V | (a1, v1)∈Occ}, are explored during the search only if they are connected to

vz ∈ Z. In other words, a node v1 must satisfy 1 ≤ distance(vz, v1) <∞ to be explorable.

The set of border-end nodes Z is in fact equivalent to the set of all reachable nodes

from the border-start node vs by distance k−1, which we denote as set Vk−1. We can show

this equivalence as follows. Suppose a node v ∈ Z. By the definition of a border-end node,

there exists a path Pv : v−k+1, v−k+2, . . . , v−2, v on G where: vi (for −k+1 ≤ i ≤ −2) is a

node whose label starts with bi in B′, and v has a label starting with b−1 in B′. Given the

fact that an edge in G connects two nodes p and q when overlap(p, q) = k−1 (see Defini-

tion 3.2), the node v−k+1 in the path Pv has (b−k+1, b−k+2, . . . , b−2, b−1, b0) as its label.

36

As a result, there exists an edge connecting vs, whose label is (b−k, b−k+1, . . . , b−2, b−1),

to v−k+1. The node v is thus reachable from vs by distance k−1, i.e. v ∈ Vk−1. There-

fore, Z ⊆ Vk−1. Now, suppose that a node v ∈ Vk−1. Thus, there exists a path of length

k−1 on G connecting vs, whose label is (b−k, b−k+1, . . . , b−2, b−1), to v. Let us call this

path Pz : v−k, v−k+1, . . . , v−2, v. From the definition of the overlapping graph, node vi

(for −k ≤ i ≤ −2) is a node whose label starts with bi in B, and the node v has a label

starting with b−1 in B. By the definition of the border-end node, v is thus a border-end

node, i.e. v ∈ Z. Therefore, Vk−1 ⊆ Z. We thus have shown that Z = Vk−1.

For the attack construction under the code-injection attack scenario, having the bor-

der sequence B (instead of B′) allows us to easily check if a first-level node in the search

tree satisfies the attack trace connectivity constraint. As mentioned, the border sequence

B allows us to determine the border-start node vs. Also recall that we only explore a

first-level node v1 in the search tree only if ∃ vz ∈Z such that 1 ≤ distance(vz, v1) <∞.

Given the equivalence between Z and Vk−1 as shown above, we thus can easily satisfy the

constraint by exploring a first-level node v1 only if k ≤ distance(vs, v1) <∞ (as required

by step E3). Note that we later discard the first k nodes of Min path, which corresponds

to a sub-path connecting vs to a border-end node vz ∈ Z (see step E4).

3.2.7 Proof of Optimality of the Attack Construction

The construction algorithm produces the shortest stealthy attack trace for a given set of

k-grams as the normal profile database, with k being the sliding-window size. Note that

there may be more than one shortest stealthy attack trace, all of the same length. Our

attack algorithm returns one of them.

We now prove the optimality of the attack construction algorithm for both the trojan

and the code-injection attack scenarios.

Theorem 3.1 (Stealthy Attack Trace Optimality). Let k be the chosen sliding-

window size and K be a set of k-grams as the normal profile database, then the stealthy

attack trace Lmin : 〈l1, l2, l3, ..., ln〉 returned by the attack construction algorithm is the

shortest stealthy attack trace of the basic attack trace A :〈a1, a2, a3, . . . , am〉.

Proof. We will prove the optimality by contradiction. Suppose there exists a stealthy

attack trace shorter than Lmin, which is denoted by L′ : 〈l′1, l
′
2, l

′
3,, l

′
ℓ〉, with ℓ < n.

Given that all k-grams derived from trace L′ must be present in the set K, there exists a

node corresponding to each k-gram of L′ in the overlapping graph G which is constructed

based on K.6 Moreover, since any two consecutively generated k-grams share a common

substring of length k−1, then the two nodes corresponding to these two consecutive

6Recall that graph G also contains k−1 nodes whose label contains sentinel symbol (’$’) due to our
addition of k−1 occurrences of sentinel at the end of the trace (see Section 3.2.3).

37

k-grams are connected by an edge in G. As a result, the assumed stealthy trace L′

corresponds to a path P ′ : π′
0, v

′
1, π′

1, v′2, π′
2, v′3, π′

3, . . . , v′m−1, π′
m−1, v′m on G, where the

following conditions hold (here v′i, with 1 ≤ i ≤ m, is a node in G; and π′
i, with 0 ≤ i < m,

denotes a path on G with zero or more nodes):

1. For each node v′i on path P ′, with 1 ≤ i ≤ m, the first letter of its label is the

attack system call ai.

2. For each node v′i, with 1 ≤ i ≤ m, there exist a node wi ∈W whose label is ai and

an edge (wi, v
′
i) ∈ Occ (i.e. an edge connecting wi to v′i).

3. Node v′i, with 1 ≤ i < m, is connected to node v′i+1 through a path π′
i on G which

consists of zero or more nodes.

4. Under the trojan attack scenario, path π′
0 is empty. Under the code-injection attack

scenario (discussed in Section 3.2.6), path π′
0 connects a border-end node vz ∈ Z

to node v′1.

Following the same reasoning on the correspondence between a stealthy attack trace

and a path on G, we also have a path Pmin on G which corresponds to the reported

stealthy trace Lmin : 〈l1, l2, l3, . . . , ln〉. Due to the 1-to-1 correspondence between a

system call in a stealthy attack trace and a node in the corresponding path on G, the

number of system calls of a stealthy trace is the same as the number of nodes on the

corresponding path. Here, we use |P | to denote the number of nodes in a path P . We

thus have |P ′| = ℓ, |Pmin| = n, and ℓ < n. Note that |P | = 1 + the length of path P .

By the definition of our search tree in the attack construction algorithm and the fact

the our search explores all possible solution paths, there exists an explored solution path

Pequiv which also contains v′1, v
′
2, v

′
3, . . . , v

′
m−1, v

′
m as its subsequence. That is, Pequiv is

in the form of: π0, v
′
1, π1, v′2, π2, v′3, π3, . . . , v′m−1, πm−1, v′m where πi, for 0 ≤ i < m,

denotes a path on G with zero or more nodes. Similar to π′
0 in P ′, the path π0 is empty

under the trojan attack scenario. Under the code-injection attack scenario, π0 connects

a border-end node to v′1. Note that this border-end node may or may not be the same

as the one used by the path π′
0 in P ′.

Now let us consider paths P ′ and Pequiv. We have two possible cases:

1. If |Pequiv| ≤ |P
′|:

Since the branch-and-bound algorithm returns a trace with the shortest length

among all solution paths, we therefore have |Pmin| ≤ |Pequiv|. By transitivity, we

have |Pmin| ≤ |P
′|. Thus, n ≤ ℓ. However, we assume earlier that L′ is shorter

than Lmin, that is: ℓ < n. This leads to a contradiction.

2. If |Pequiv| > |P
′|:

Since both paths share a common subsequence v′1, v
′
2, v

′
3, . . . , v

′
m−1, v

′
m, the path P ′

can be shorter than Pequiv only if:

38

m−1
∑

i=0

|π′
i| <

m−1
∑

i=0

|πi| (3.1)

However, the attack construction algorithm always makes use of the shortest path

between any two nodes v′i and v′i+1 for 1 ≤ i ≤ m−1 to produce Pequiv. Hence,

|πi| ≤ |π
′
i| for all 1 ≤ i ≤ m−1. Now, recall that |π0| = |π′

0| = 0 under the

trojan attack scenario. Under the code-injection attack scenario, both π0 and

π′
0 contain their respective (prefix) subpath of length k−1, which connects vs to

their respective choice of a border-end node. In constructing Pequiv, the attack

construction algorithm also makes use of the shortest path between vs and v′1. As

a result, Pequiv also has the shortest path possible between its border-end node and

v′1. Hence, |π0| ≤ |π
′
0| under the code-injection attack scenario. We therefore have

|πi| ≤ |π
′
i| for all 0 ≤ i ≤ m−1. Consequently:

m−1
∑

i=0

|πi| ≤
m−1
∑

i=0

|π′
i| (3.2)

Therefore, |Pequiv| ≤ |P
′|. This contradicts our case assumption that |Pequiv| > |P

′|.

Hence, the stealthy attack trace L′ which is shorter than Lmin does not exist.

3.3 IDS Attack Experiments

3.3.1 Experimental Set-Up

We perform an automated stealthy attack construction under the trojan and the code-

injection attack scenario on the following two variations of the Self-based IDS models:

• Set Represented Self-based IDS (SET-SELF): where the normal profile is

represented as a set of k-grams. This is the Stide model used in [67, 182].

• Graph Represented Self-based IDS (GRA-SELF): where the normal profile

is a graph of k-grams. This graph is essentially an overlapping graph with the edge

set E = D (see Definition 3.2). That is, only direct edges are allowed in this graph

profile. Since a path on this direct-edge only overlapping graph corresponds to an

accepted subtrace in GRA-IDS, our attack construction algorithms which find a

trace on the overlapping graph (outlined in Section 3.2.5 and 3.2.6) and their proof

of optimality (given in Section 3.2.7) apply to GRA-SELF as well.

Our attack construction is implemented in C, and executed on a PC with an Intel

Core i7 processor (3.20 GHz) and 12 GB of RAM running Linux Fedora 12. We have also

used various older versions of the Red Hat Linux distribution in order to obtain the traces

of sample vulnerable programs together with their exploits. The traces are captured in

Linux by using the strace utility. For simplicity, we have omitted system calls related

to signal events, such as SIGALRM and SIGCHLD, due to their asynchronous nature.

39

The following remarks apply to our experiments:

• To construct a mimicry attack, the attacker requires the knowledge of the vulnerable

program’s actual profile (K) in the victim host. Generally, K is not available to the

attacker. Yet, given possible information and insights on the OS environments and

the program’s configurations, the attacker can attempt to simulate the targeted

program and derive an approximated profile (K ′) to be as close as possible to K.

This is particularly the case if the attacker is an insider, or receives some help from

one. Furthermore, the normal profile K is meant to be generated by exploring

all possible execution paths of the program which are deemed normal. In our

experiments, we use K as an input to the algorithm so as to investigate the actual

susceptibility of the programs against mimicry attacks. This assumption is relevant

particularly when the smart attacker assumed could derive a good approximation

of K, or when it somehow manages to obtain K.

• The three exploits below make use of execve() system call to spawn a root shell.

However, execve() is not present in the normal trace. Therefore, we use an al-

ternative strategy to write an entry into the file “/etc/shadow”. This actually

corresponds to Attack-strategy A2 from our list of strategies given in Table 4.5 (see

Section 4.3.2). This particular attack strategy is chosen for comparison here as it

has been used for mimicry attacks on the Self-based IDS before (e.g. [164]). We

remark that it is perfectly reasonable to modify the original attack since we assume

an intelligent adversary.

3.3.2 Sample Vulnerable Programs and Attack Construction

As our goal is to investigate the practicality of our automated attack construction, we

experiment with real programs using real available exploits.

Traceroot2 (Traceroute Exploit)

This traceroute exploit was previously used in [164]. It is available at http://www.

packetstormsecurity.org/0011-exploits/traceroot2.c. The exploit attacks LBNL

traceroute v1.4a5 which is included in the Linux Red Hat 6.2 distribution.

The original attack sequence is: setuid(0),setgid(0), execve("/bin/sh"). This

is changed into: open(),write(), close(), exit() as in [164]. The results of the

attack construction on normal traces generated from three traceroute’s sessions (with a

total of 2,789 system calls) for window sizes from k=5 to 11 are given in Table 3.1.

As can be seen in Table 3.1, the attack construction algorithm on traceroute is able

to find stealthy attack traces on the two IDS variants and under the two attack scenarios.

The shortest stealthy attack traces under the trojan attack mode are of below 60 system

40

Traceroute Search k=5 k=6 k=7 k=8 k=9 k=10 k=11

Number of System Calls in Resulting Stealthy Attack Trace:

SET-SELF (Trojan-Attack) 39 43 43 48 51 54 54

GRA-SELF (Trojan-Attack) 43 43 48 51 54 54 56

SET-SELF (Code-Injection) 44 48 48 64 64 112 114

GRA-SELF (Code-Injection) 48 48 64 64 112 114 125

Average Search Time 0.021s 0.021s 0.025s 0.028s 0.032s 0.034s 0.030s
(User+Sys)

Table 3.1: Attack construction results for traceroute with k=5 to 11 (with 2,789 system
calls in the normal trace). SET-SELF and GRA-SELF represent the Self-based IDSs
with the normal profile stored as a set of k-grams and a graph of k-grams respectively.

calls even with k=11. The stealthy attack traces under code-injection attack scenario

require longer traces than those under trojan attack scenario given the same k. Storing

the normal profile as a graph of k-grams (GRA-SELF) does not make the Self-based IDS

substantially more robust against mimicry attacks. It makes the resulting stealthy traces

only slightly longer than those required in the SET-SELF.

JOE Text Editor Exploit

The victim program that we chose is a popular Linux terminal text editor JOE, avail-

able at http://sourceforge.net/projects/joe-editor/. The exploit for Red Hat

Linux was available at http://www.uhagr.org/src/kwazy/UHAGr-Joe.pl7, and was

run on Red Hat 7.3. JOE is not normally run as a setuid program. As a proof of

concept, we assume that JOE has been run from root (or setuid to root). The orig-

inal attack sequence is: setuid(0), execve ("/bin/sh"). Again, we changed it to:

open(), write(), close(), exit().

The results of the attack construction algorithm on JOE’s normal traces generated

from three JOE sessions (with a total of 9,802 system calls) for sliding-window sizes from

k=5 to 11 are given in Table 3.2.8

Since JOE is a text editor, it falls into the class of general purpose programs as

opposed to the more privileged processes targeted for monitoring by the Self-based IDS

[67, 152]. We include it here to highlight some points on the results of attack construction.

From the results shown in Table 3.2, we have made some interesting observations. Here,

we find that for the trojan attack scenario, a stealthy attack trace with 7 system calls is

sufficient for k=5 to 11. This is because a subtrace in the normal trace of JOE happens to

7The site seems to be no longer in operation (as of October 2010).
8From the normal traces collected for JOE, we note that there are actually some differences between

the normal traces and the exploit trace before the attack-introduction point due to some brk() system
calls. This is probably due to an increased memory allocation for the buffer overflow attack. However, as
reasoned by [180], small differences may be tolerated by the Self-based IDS depending on the parameters
used in its anomaly-signal measurement function (e.g. Locality Frame Count).

41

JOE Search k=5 k=6 k=7 k=8 k=9 k=10 k=11

Number of System Calls in Resulting Stealthy Attack Trace:

SET-SELF (Trojan-Attack) 7 7 7 7 7 7 7

GRA-SELF (Trojan-Attack) 7 7 7 7 7 7 7

SET-SELF (Code-Injection) 20 30 49 76 79 80 81

GRA-SELF (Code-Injection) 30 49 76 79 80 81 82

Average Search Time 0.039s 0.043s 0.048s 0.054s 0.059s 0.070s 0.081s
(User+Sys)

Table 3.2: Attack construction results for JOE with k=5 to 11 (with 9,802 system calls
in the normal trace).

contain the basic attack trace as its subsequence. Hence, no pseudo subtrace construction

was needed. However, this stealthy trace does not work under the code-injection attack

scenario. Instead, longer stealthy attack traces are required.

Autowux WU-FTPD Exploit

This is the same exploit used in [180]. The autowux.c exploits “site exec” vulnerability

on the WU-FTPD FTP server. It is available at http://www.securityfocus.com/bid/

1387/exploit/. We ran the wu-2.4.2-academ [BETA-15] version of WU-FTPD that

comes with Red Hat 5.0 distribution on the 2.2.19 kernel.

We use the same attack trace as [180] which is: setreuid(),chroot(),chdir(),

chroot(),open(),write(),close(), exit(). The results of the attack construction

on the WU-FTPD normal traces generated from 17 sessions (19,582 system calls) for

sliding-window sizes from k=5 to 11 are given in Table 3.3.

WU-FTPD Search k=5 k=6 k=7 k=8 k=9 k=10 k=11

Number of System Calls in Resulting Stealthy Attack Trace:

SET-SELF (Trojan-Attack) 64 155 165 174 216 241 258

GRA-SELF (Trojan-Attack) 155 165 174 216 241 258 276

SET-SELF (Code-Injection) 79 170 180 203 238 256 294

GRA-SELF (Code-Injection) 170 180 203 238 256 294 308

Average Search Time 0.547s 0.738s 0.947s 1.183s 1.456s 1.730s 1.927s
(User+Sys)

Table 3.3: Attack construction results for WU-FTPD with k=5 to 11 (with 19,582 system
calls in the normal trace).

We can see from Table 3.3 that the resulting stealthy attack traces happen to be

relatively longer than those in the first two sample programs. The work [180] give a

stealthy trace for k=6 with 135 system calls based on their normal profile. Their result,

however, is not comparable to ours as the normal traces used are different. In their

case, they had collected normal traces for an existing WU-FTPD with large numbers of

42

downloads over two days. On the other hand, we have used a small normal profile.

We additionally discuss some patterns which commonly apply to the three sample

programs below.

3.4 IDS Evaluation Discussion

We have shown that the two variants of the Self-based IDS are vulnerable against mimicry

attacks even with sliding-window size longer than that is usually employed (k= 6 to 8).

The running times also show that our automated attack construction algorithm is practi-

cal and efficient. Execution times for all cases are at most a few seconds even on relatively

large window sizes.

Based on the results, we also observe the following common trends:

• There can be a considerable difference in length between the stealthy code-injection

attack traces and the trojan attack ones. In some cases, like in JOE, the stealthy

attack trace under the trojan attack scenario is very short. Here an attack with 7

system calls works for window sizes from k=5 to 11.9

• The length of the shortest stealthy attack trace varies from program to program. It

confirms the earlier reports [164, 53] that a larger window size (k) tends to require

also a longer stealthy attack trace. In practice, however, there is a limit on the

choice of k due to the increase in normal profile size and processing overheads of

the IDS [182, 74]. Nevertheless, it clearly shows that relying on the Self-based IDS

with a certain size of sliding-window of, such as 6 as suggested in [67], is insufficient.

Rather, other improvements are necessary.

• We can see that removing pseudo edges on graph G (i.e. imposing the GRA-

SELF IDS model) does not make the Self-based IDS significantly stronger against

mimicry attacks. In other words, pseudo subtraces can still exist even if we store

the normal profile as a graph of k-grams. We find that, besides pseudo edges, there

is another source of imprecision in the GRA-SELF model which would allow for a

pseudo subtrace construction. To understand this, let us now consider a normal

trace 〈A, B, C, D, E, A, B, C, M〉 with k = 3. Figure 3.5 shows the graph without pseudo

edges as the normal profile for this trace.

A stealthy attack trace 〈E, A, B, C, D〉 can be constructed for a basic attack trace

〈E, B, D〉. This is achieved by a pseudo subtrace construction of 〈E, A, B, C, D〉 from

two unrelated subtraces 〈E, A, B〉 and 〈A, B, C, D〉. In Figure 3.5, the constructed

stealthy trace corresponds to the path: EAB-ABC-BCD-CDE-DEA. The reason why

9The actual trojans will usually have longer sequences since there are additional system calls invoked
at the beginning of a program related to libraries loading or memory allocation. However, the reported
number of system calls does establish the lower-bound of mimicry attacks in the trojan attack setting.

43

the path exist in the graph is that a “common node” ABC facilitates such a path

construction. To illustrate this construction, Figure 3.5 is drawn with two different

outgoing edges from node ABC based on the actual overlapping relationships with

its adjacent nodes (k-grams) as they appear in the normal trace. A stealthy path

can make use of a common node like ABC to combine two unrelated paths (shown as

solid and dotted lines in the figure). Such common nodes exist due to the existence

of a common substring of length k, e.g. 〈A, B, C〉 in the example, between any two

unrelated subtraces in the normal trace.

BCM

EAB BCD

CDE

M$$

ABC

CM$

DEA

Figure 3.5: A graph of 3-grams (without pseudo edges) used in GRA-SELF model for the
sample trace 〈A, B, C, D, E, A, B, C, M〉. Note that a “common node” ABC allows for pseudo
subtrace construction.

3.5 Using Attack Construction to Measure IDS Security

Although our main focus is the automated attack construction on the Self-based IDS, an

important contribution of our work is the demonstration of the attack construction as a

systematic method to effectively measure the resistance level of an IDS against targeted

attacks. This section describes our generalized framework for attacking IDSs, which can

be used to measure the resistance levels of various IDS models.

3.5.1 Approach and General Framework

Our generalized framework is constructed upon the notion of “attack-space search”. An

attack space is a state representation derived from the properties and detection mecha-

nism of the IDS given that one of its security assumptions is broken. We will show how

actual attack spaces look like by means of examples in the subsections to follow. Once

the attack search objective has been defined, the problem is then recast into how we can

perform an efficient search on the attack space.

Our framework for evaluating the IDS security involves the following steps:

Step 1. Study and formalize the IDS’ definition and its security assumptions;

Step 2. Find a security assumption that can be made invalid;

44

Step 3. Define the attack space;

Step 4. Establish the search objective;

Step 5. Construct a corresponding search algorithm;

Step 6. Apply the search on the gathered experimental data;

Step 7. (Optionally) modify the IDS model so that the search process becomes compu-

tationally harder or its search objective becomes unfeasible in the new attack space.

This step thus increases the strength of the IDS against attacks which attempt to

exploit the invalidated assumption.

Steps 1–5 above realize the objective of obtaining the attack crafting time as well as

the constraints for a successful attack, which will be our main focuses here. Step 6 is the

step which analyzes the attack occurrence given a normal profile dataset. Defining an

attack space (Step 3) is an important step, which unfortunately requires some insights

to be carried out. In defining an attack space, we can always come up with different

representations for it. The efficiency of an attack construction, of course, depends on the

right representation and its corresponding search algorithm.

Rather than giving detailed definition of the above steps, we instead show below how

we can apply the framework. We revisit the attack construction on the Self-based IDS by

describing the construction process within the developed framework. Details of the attack

process are now fitted into the framework’s defined steps. This makes the higher-level

strategy of constructing mimicry attacks on the Self-based IDS become much clearer.

Additionally, we then show how the framework can be applied to another IDS model.

3.5.2 Applying the Framework to Self-based IDS

Security Assumption

Self-based IDS (Stide) assumes that k-grams of a running program are good predictors

of the program’s behavior. More specifically, it assumes that:

“It is difficult for an attacker to inject system call(s) into the program’s system

call trace without introducing foreign k-grams 10 which will be detected by

the IDS.”

Invalidating the Assumption

Stide’s assumption above, however, can be made invalid by the following observation.

“It is quite possible to combine two unrelated subtraces to make a longer sub-

trace that derives no foreign k-grams (i.e. all of the k-grams of the combined

subtrace are present in the program’s normal database)”.

10Foreign k-grams are k-grams which are not present in the normal profile database.

45

We have shown this constructively using our pseudo subtrace construction described in

Section 3.2.2.

Attack Space, Search Objective, and Algorithm

Here, we define the attack space for Stide that fulfills the requirements that:

1. Two k-grams derived from (k + 1)-length of the normal subtrace are related since

they can be joined to produce (part of) a stealthy attack trace;

2. A pseudo subtrace can be constructed from two unrelated k-grams provided that

they share a common substring of length k − 1.

We have used overlapping graph for the attack space (see Section 3.2.3), in which the

requirement 1 is satisfied by the direct edges, whereas requirement 2 is realized by the

pseudo edges in the overlapping graph. Accordingly, we also have shown the search

objective on attack space and the construction algorithm in Section 3.2.

3.5.3 Applying the Framework to the FSA-based IDS

We now examine a different IDS model, which is based on FSA as proposed by Sekar et

al. [146]. We have briefly summarized this IDS model in Section 2.2.3. In our attack

construction, we make use of the technique to forge a Program Counter (PC) through

a buffer overflow attack as suggested in [53]. Hence, we extend the results here by

formalizing the search space for the IDS, and constructing the search algorithm using

our framework.

To make the discussion of the attack construction below clearer, we include a sample

FSA as shown in Figure 3.6, which was also used as an example in [146]. Recall that in

the FSA-based IDS, each distinct Program Counter (PC) within the program segment,

which is recovered by a stack traversal mechanism, is made as a state. System calls

invoked on a PC are used as the labels for transitions from the corresponding state.

a1

a0 a4a3a5a2a4

a4

1 3

4

5

6 7 8 10 11

a1

a2

a3

a5

a0

12

Figure 3.6: A sample FSA as a program’s normal profile used in [146].

46

Security Assumption

The FSA-based IDS incorporates the PC information into the IDS model. It assumes that

the PC information can be reliably obtained, and its inclusion can enhance the detection

and security of the IDS. More specifically, we can state this security assumption as follows:

“PC represents a program point where a system call is made within the pro-

gram. It can be accurately obtained by using a stack traversal mechanism.

The attacker cannot forge the stack (or other runtime environment informa-

tion) in order for the stack traversal to recover the correct PC information.”

Invalidating the Assumption

The work [53] points out how one can forge PC and return address through a buffer

overflow attack.11 The attack technique makes use of ret instead of call instruction to

launch an exploit system call without inserting a stack frame into the stack. The hijacked

control flow is then made to jump and re-execute the vulnerable operation12 again and

again until the complete exploit sequence has been executed. To achieve one system call

execution, three forged stack frames are inserted into the stack in the following “push

order”: (i) a stack frame with a PC address of the vulnerable function; (ii) another stack

frame with a PC that falls within the program’s code region; and (iii) one with a PC

of the exploit system call somewhere within the library. Note that since we assume the

occurrence of buffer overflow in the user space, such a vulnerable operation does not

involve any invocation of system call.

From our framework’s viewpoint, the attack technique actually provides a mechanism

to invalidate IDS’ security assumption on the stack integrity and the correctness of the

recovered PC addresses. Since the IDS does not check system call arguments, an attack

will therefore successfully fool the IDS as long as its transitions (PCs and executed system

calls) are accepted by the normal FSA.

Attack Space and Search Objective

Different from the Self-based IDS (Stide) where we need to define the overlapping graph,

the FSA-based IDS generates an FSA as the normal representation. This FSA directly

provides an attack space for the IDS. We define an FSA representing the IDS normal

profile as a tuple (Q, S, δ, q0,Q−{q⊥}), where: Q as the set of states (Program Counters);

S as the set of all system calls; q0 as the initial state; q⊥ as a special state indicating

that an anomaly has occurred; and δ : Q× S → Q.13

11A technique proposed by Kruegel et al. [88] can additionally be used on the program’s binary to
automate the process of modifying code pointers following a system call so as to transfer the execution
control back to the attacker for the invocation of subsequent attack system calls.

12We assume that the overflow occurs in the user space due to the program’s use of an unsafe function.
13It is assumed that every state q 6= q⊥ is an accepting state.

47

The state and the system call before the buffer overflow occurs are of particular impor-

tance. Let us call that state qprev and the system call sprev. Given an FSA (Q, S, δ, q0,Q−

{q⊥}), qprev, sprev, and an intended (basic) attack trace A : 〈a1, a2, . . . , am〉, our search

objective is thus to form the shortest stealthy attack path Pmin on the FSA of the fol-

lowing form:

Pmin = q0
s1−→ q1

s2−→ q2 . . . qn−2
sn−1
−→ qn−1

sn−→ qn (3.3)

where: n ≥ m; state q0 is reached by a transition qprev
sprev
−→ q0; the stealthy attack trace

L : 〈s1, s2, . . . , sn−1, sn〉 contains A as a subsequence; and all system calls in {L−A}

behave as no-ops with respect to A. The terminating state qn is a special state after the

invocation of sn as the last system call in the exploit (usually exit()), thus allowing

the exploit to make a grateful exit.

The key to the attack construction is the fact that we can forge the PC for a state

executing an exploit system call so that it appears to fall within the valid program’s code

region, and that the forged PC is connected to the previous valid state in the FSA. The

PC forging is achieved by the crafting of the second stack frame in the corrupted stack

after a buffer overflow attack occurs as discussed in [53].

Search Algorithm

To facilitate the search, we add an auxiliary subgraph similar to the one added for the

Self-based IDS (Stide) attack construction. Occurrence subgraph O = (W, Occ) is defined

with W (⊆ S) as a set of unique system calls invoked in the FSA. For each node w ∈W ,

we add an outgoing edge to every state reached by the invocation of the system call w,

i.e. every state in the set {q ∈ Q | qadj
w
→ q}. These edges form a set of edges Occ.

Our attack construction algorithm performs the search starting from all the states that

are (directly) adjacent to qprev by sprev. We denote this set as R = {r ∈ Q | qprev
sprev
−→ r}.

Hence, there are |R | search trees, each with state r ∈ R as the root node q0. Each

node with depth i (for 1 ≤ i ≤ m) in the search tree is a state qi ∈ Q with qadj i
ai→

qi, i.e. the state qi ∈ Q where (ai, qi) ∈ Occ. This state qi also represents a path

Pqi
: q0, π0, q1, π1, . . . , qi−1, πi−1, qi on the FSA, where πi (for 0 ≤ i < i−1) denotes a

subpath with zero or more states. The path Pqi
therefore corresponds to an execution of

a system call trace containing a1, a2, . . . , ai as its subsequence. From qi (for 1≤ i <m),

the search explores all the next states in {qi+1 ∈ Q | qi qi+1 ∧ (ai+1, qi+1) ∈ Occ)},

where the connection relation (‘p q’) denotes that states p and q on the FSA are

connected. The branches from qi (for 1≤ i <m) thus represent the choices of extending

the path Pqi
into the path Pqi+1

, which corresponds to the extended execution trace

containing a1, . . . , ai, ai+1 as its subsequence. A stealthy attack trace is found when we

can reach qm which corresponds an execution trace containing A as its subsequence.

48

Before outlining the construction algorithm, we illustrate the mimicry attack con-

struction on the FSA-based IDS with the following example.

Example 3.5. Given the FSA in Figure 3.6 as the normal profile, suppose that the

basic attack trace is A : 〈a5, a1, a4〉, with state 3 being the last state before the buffer

overflow occurs, and a1 is the corresponding system call invoked. (Note that this sample

FSA (from [146]) employs numbers to indicate states and ai to indicate system calls.)

Although the occurrence subgraph is not shown in Figure 3.6, we can easily form the

following attack path by using the search construction algorithm outlined above:

4
a2−→ 6

a4−→ 8
a5
−→ 3

a1
−→ 4

a2−→ 6
a4
−→ 7.

The exploit system calls performing real attacks are shown inside boxes, whereas the rest

are no-ops.

Algorithm 3.2 Attack construction on the FSA-based IDS under code-injection scenario

Input:

- Normal-profile FSA (as a directed graph);

- Basic attack trace A : 〈a1, a2, a3, ..., am〉;

- The last state before the buffer overflow occurrence (qprev);

- The last system call before the first buffer overflow occurs (sprev).

Output:

- The shortest stealthy attack path Pmin : q0

s1−→ q1

s2−→ q2 . . . qn−2

sn−1

−→ qn−1

sn−→ qn;

- Or failure, if no solution trace can be found.

1. Construct the all-pair shortest-path distance table, with the following initialization:

Between two adjacent states p and q, set distance(p, q):=1.

If two states p and q are not connected Then distance(p, q):= ∞.

2. Set Min distance:= ∞ and Min path:=〈〉.

3. For all r ∈ {r ∈ Q | qprev

sprev

−→ r}:

(Perform branch-and-bound search on the search tree of r as follows:)

Set qo:=r.

current cost:= 0 (it keeps track of the distance from q0 to qi in the path being explored)

For all i:=1..m choose qi from {qi ∈ Q | (ai, qi) ∈ Occ}:

- If distance(qi−1, qi) = ∞ Then backtrack.

- Add distance(qi−1, qi) to current cost.

- If current cost ≥ Min distance Then backtrack.

- If complete solution is found (i = m) Then

If current cost < Min distance Then

Min distance := current cost;

Min path := current path.

(Recall that a path includes zero or more states in between qi−1 and qi for 2 ≤ i ≤ m.)

4. Once the search tree is fully explored:

If Min distance = ∞ Then return failure;

Else return Min path (as the shortest stealthy attack path Pmin).

49

As before, we employ a branch-and-bound strategy to prune a constructed path which

exceeds the best solution found so far. The shortest distance between any two states

is stored in a “distance table”. It is employed both to test connectivity between two

states and also to assist in pruning for the branch-and-bound search. The algorithm

for constructing attack on the FSA-based IDS is a variation of the one on the Self-

based IDS (see Algorithm 3.1). They both make use of the same branch-and-bound

search procedure. However, we now use a different search tree definition to be explored.

Algorithm 3.2 shows a sketch of the algorithm to automatically construct the shortest

stealthy attack execution trace on the FSA-based IDS under code-injection scenario.

3.6 Chapter Summary

We have presented an efficient algorithm for automated mimicry attack construction

on the Self-based IDS (Stide) and its variant model (GRA-SELF). Using several real

programs and exploits, we also have shown the practicality of the attack construction,

with execution times of at most a few seconds even for the relatively large window sizes.

We also have shown how the construction method can be generalized into an approach

to evaluate the robustness of an IDS against targeted attacks. The attack construction

time is particularly useful to evaluate the resistance of an IDS against attacks in a zero-

day attack setting. If we know that crafting an attack is possible but computationally

hard, then we can have greater confidence that the IDS can function sufficiently well

as the second line of defense during the program’s unpatched time interval. This result

is important since it shows how a quantitative measurement on IDS security strength

against targeted attacks can be established.

50

Chapter 4

Improving Self-based IDS using

Privilege and Argument

Abstraction

The previous chapter has shown that the Self-based IDS is susceptible to mimicry attacks.

In this chapter, we consider a simple enhancement to the Self-based IDS, which can either

prevent mimicry attacks or make them more difficult. The enhancement makes use of

system call arguments and process privilege information. By using system call arguments,

a data-flow aspect is thus incorporated into the IDS model. Taking the arguments into

account is also important for mitigating non control-flow attacks, whose threat has been

shown in [36] to be sufficiently realistic in practice.

Besides being applicable to the Self-based IDS, our improved model can also strengthen

various system-call monitoring IDS, such as the FSA-based [146] and the VtPath model

[48]. To simplify our discussion, we will elaborate the enhancement to the Stide model

of Self-based IDS, which keeps track of system call numbers in terms of a set of (full

sequence) k-grams [67].

Our enhanced model has been published in [158], and also surveyed in [50]. The

remainder of this chapter is organized as follows. Section 4.1 discusses the related works

on improving the Self-based IDS using system call arguments. Section 4.2 elaborates our

scheme which abstracts system call arguments and process privilege information. Our

experiments are reported in Section 4.3, and the discussions on the experimental results

are given in Section 4.4. Section 4.5 finally gives a summary of this chapter.

4.1 Related Works on Data-Flow based IDS

The general idea of analyzing arguments of operations for detecting behavior deviance

appeared in a number of works. For example, [105] showed how the use of enriched

51

command-line data can enhance the detection of masqueraders. Our work reported in

this chapter is based on the established Self-based IDS model (described in Section 2.2),

and focuses on system call arguments. Below, we discuss several IDS models which also

make use of system call arguments.

Kruegel et al. [91] made use of statistical analysis of system call arguments which

can be used to evaluate features of the arguments such as string length, string character

distribution, structural inference and token finder. It is however unclear whether the

approach is sufficiently robust against targeted attacks such as mimicry attacks [18].

In addition, the work solely examined the arguments and disregarded the code flow

altogether. The work was later extended in [123] by additionally using a Bayesian network

to combine individual model scores into a single aggregate score. Another work which

made use of machine learning technique on system call trace is [167]. It proposed a

scheme to learn the attributes of system call arguments using a rule learning algorithm.

Taking a static analysis-based approach, Giffin et al. [57] made use of inter-procedural

data-flow analysis to model statically-known arguments passed to system calls. Due to

the nature of static analysis on program behavior, the scheme was only able to detect

attacks that cause a program’s runtime behavior to deviate from its statically extracted

data-flow model. In our work, we focus on the gray-box and the black-box techniques

which do not require the analysis of source codes or the binaries of the executables.

Yet, the white-box technique and gray/black-box detector can complement each other as

discussed in [95].

In a work proposed after ours, Bhatkar et al. [23] modeled the temporal aspects of

data flow by performing a learning on system call arguments. The learning establishes

unary relations which correlate arguments with constant values, and binary relations

of which each correlates two arguments of system calls on two different PC locations.

Although our proposed technique does not relate arguments from two system calls, it has

a particular strength in that the supplied simple policy represents an effective security

model to prevent potentially dangerous operations according to their direct effects on

the host’s security. The work [23] did share the same conclusion as ours here that it is

necessary to include data-flow model to be layered into the code-based IDS model.

Finally, there exist sandboxing techniques which also make use of system-call argu-

ment checking. The systrace scheme [135] uses system call policies to specify that certain

system calls with specific arguments can be allowed or denied. This can be viewed as a

the Self-based IDS with a window size of one, which is then enriched with system-call

argument checking. We additionally remark that, compared to a basic policy definition

used in [135], our policy definition (see Section 4.2.1) allows for a generalized mapping

of arguments. Our scheme allows operations on files/directories to be grouped together

into a set of specified categories according to their impact on the host’s security.

52

4.2 Privilege and Argument Categorization (PAC) based

IDS

In Unix, every process environment contains credentials which are evaluated by the OS

access control mechanism when the process makes a system call. The credentials that

determine the current privileges of a process are its effective user-id (euid) and effective

group-id (egid). The euid/egid is either the actual real uid/gid of the user, or the one

changed by invoking a setuid/setgid executable. Hence, euid and egid are simply a subset

of all the user and group-id values defined in a system.

We propose to enhance k-grams to include not only the system number but also the

(abstracted) information about the euid, egid and system call arguments. We call our

enhanced IDS model the Privilege and Argument Categorization (PAC)-based IDS. It is

common for attacks to attempt exploiting programs while they are running in a privileged

mode, or to elevate the privilege of the hijacked programs prior to performing damaging

operations. The idea behind our privilege profiling is that such attacks can be detected if

the corresponding executed system calls are unprivileged in the normal trace(s). This is

particularly useful if a program conforms to a good setuid programming practice, which

generally drops privileges as soon as they are no longer required. Rather than using the

actual values, we abstract the euid, egid and system call arguments into categories based

on a configuration specification. This is mainly to reduce the false positives which can

be higher since the number of possible values is much greater. The abstraction technique

also provides flexibility to group the arguments and the privileges together in terms of

their importance/sensitivity levels.

4.2.1 Privilege and Argument Categorization

Formally, we can represent the privilege and argument categorization in the OS model

with the following mapping functions:

• Function EuidCat : U → U ′, where: U = the set of euid values, and U ′ ⊂ N0 (the

set of natural numbers starting from zero).

• Function EgidCat : G→ G′, where: G = the set of egid values, and G′ ⊂ N0.

• Let S ⊂ N0 be the set of system call numbers in the OS model. For each s ∈ S,

function ArgCats : As,1 × As,2 × . . . × As,no of args(s) → Cs, where As,i (1 ≤ i ≤

no of args(s)) = the set of possible entries for i-th argument of the system call s,

and Cs ⊂ N0 as the categorized value for the specified arguments of system call s.

We enhance the Self-based IDS using the privilege and argument categorization tech-

nique by extending the k-gram definition from a sequence of system calls of length k,

53

into a sequence of tuples 〈categorized euid, categorized egid, system call, system call ar-

gument category〉 of length k. Since there are two variants of the Self-based IDS defined

earlier, namely SET-SELF and GRA-SELF (see Section 3.3.1), we also can apply the

categorization technique to result into two following PAC-based IDS models:

• SET-PAC: which stores the normal profile as a set of enhanced k-grams. This

model thus enhances SET-SELF.

• GRA-PAC: which stores the normal profile as a graph of enhanced k-grams. Note

that this model, which is enhancement of GRA-SELF, is a stricter model than

SET-PAC.

As mentioned earlier, we can formalize system-call monitoring IDS as an FSA [180,

53, 146]. Let us define the two PAC-based IDS models more precisely. We first define

sz ∈ N0 and sz /∈ S to denote the “sentinel” system call. We then define the extended

system call set S+ = S ∪ {sz}. The automaton based on our PAC-based IDS can be

defined as (Q, Σ, δ, q0,Q− {q⊥}), with:

• The set of states Q = {q0, q⊥} ∪ Σk, with k as the size of sliding window.

• The set of input Σ = U ′ ×G′ × S+ × C, with C =
⋃

s∈S Cs.

• The initial state q0.

• A special state q⊥ which indicates that an anomaly has occurred. The other states

Q− {q⊥} are considered as accepting states.1

• A transition (σ1, σ2, . . . , σk−1, σk)
σk+1
−→ (σ2, σ3, . . . , σk, σk+1), where σi ∈ Σ (for

1 ≤ i ≤ k+1), is added into the FSA of the GRA-PAC model if there exists a

subtrace (σ1, σ2, . . . , σk−1, σk, σk+1) in the normal trace. As for the FSA of the SET-

PAC model, we add a transition (σ1, σ2, . . . , σk−1, σk)
σk+1
−→ (σ2, σ3, . . . , σk, σk+1) for

any two states q = (σ1, σ2, . . . , σk−1, σk) and q′ = (σ2, σ3, . . . , σk, σk+1) in the

FSA. As can be seen, a transition in the FSA of GRA-PAC also exists in that of

SET-PAC. The converse is however not necessarily true.

Here, we assume that a state q ∈ Q−{q0, q⊥} is always a k-tuple, i.e. (σ1, . . . , σk).

A complication however arises in the beginning or end of the normal trace, where only

i < k of σi entries are available. A workaround to this is by defining a “sentinel” entry

σz = (u′, g′, sz, c), with sz as the sentinel system call; and u′, g′, and c being arbitrarily

selected entries in U ′, G′ and C, respectively. We can add this sentinel as padding entries

either in the first k−1 k-grams of the trace (as suggested in [74]), or the last k−1 k-grams

as discussed in Chapter 3.

1As elaborated in [180], every state q 6= q⊥ is an accepting state. The special state q⊥ is non-accepting
and contains a self-loop q⊥

σ
−→ q⊥ for every σ ∈ Σ. When a state q contains no outgoing transitions on

σ ∈ Σ, we add an implicit transition q
σ
−→ q⊥. Note that this FSA definition takes a single transition

mismatch, i.e. a non-existent transition from a state q 6= q⊥, as an intrusion. In practice, mainly to
keep false positive rate reasonably low, the IDS raises an alarm only if the output of its anomaly-signal
measurement function (e.g. Locality Frame Count) has reached a specified threshold value.

54

As can be easily observed, the new automaton is richer in comparison to that of the

Self-based IDS. In the basic Self-based IDS, the alphabet (Σ) is the the set of possible

system call numbers S. In PAC-based IDS, the alphabet is now defined as a tuple

U ′×G′×S+×C. Note that while we have focused on Unix, the categorization approach

can be extended to other OSes.

4.2.2 A Simple Category Specification Scheme

We now give a simple scheme for defining the abstraction and the categories. The category

specification is constructed by taking into account the importance or the sensitivity level

of files/directories in the underlying OS from the security standpoint. The main goal of

the specification is to separate operations which have potential security risks from the

benign ones.

A fragment of an example specification is given in Figure 4.1. It consists of four

sections: euid abstraction, egid abstraction, argument abstraction and illegal transition,

which are explained more below. For each section, the category specifications are pro-

cessed in a sequential manner, from the start to the end of the definition. In this fashion,

the more specific mappings are specified first and the most general ones last. This is sim-

ilar to the ordering in firewall configuration files. Note that this example is only meant

to be illustrative on how the category specification works. A more complete example

specification can be seen in Appendix A.

EUID Abstraction Section

Format: <categorized-euid>:<euid1>,<euid2>,...

0:0

1:2000,2001,2003

100:*

EGID Abstraction Section

Format: <categorized-egid>:<egid1>,<egid2>,...

0:0

1:1,2,3,5

100:*

Argument Abstraction Section

Format: <cat-value> <syscall> <arg1> <arg2> <arg3> ...

1 open p=/etc/passwd o=O WRONLY|o=O RDRW *

2 open p=/etc/shadow o=O WRONLY|o=O RDRW *

18 open * * *

1 chmod p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem *

Illegal Transition Section

Format: <syscall> <cat-values> [<cat-euid>,<cat-egid>]*

open [1..6,8-11,13-15] 0,* *,0

{chmod,fchmod,chown,fchown,lchown,mknod,unlink,init module,execve} 1 0,* *,0

Figure 4.1: An example of category specification for the PAC-based IDS.

55

Privilege Abstraction Section

The euid and egid sections are meant to provide the actual value mapping for EuidCat :

U → U ′ and EgidCat : G→ G′ respectively. The example specification uses the following

syntax for euid and egid:

〈u′
i〉 : 〈ui1〉, 〈ui2〉, . . . , 〈uin〉

〈g′i〉 : 〈gi1〉, 〈gi2〉, . . . , 〈gin〉
(4.1)

where: u′
i ∈ U ′, uij ∈ U , g′i ∈ G′ and gij ∈ G.

To ensure that EuidCat/EgidCat is a total mapping, a special entry “*” is employed

to indicate other (remaining) euids/egids so that the mapping satisfies the requirement

for a function. As euid=0 and egid=0 signify important privileges in Unix, each of them

should have a distinguished mapping.

Argument Abstraction Section

Each entry in this section maps a system call together with its corresponding arguments

into a number representing its category. We now briefly discuss some considerations in

creating a definition:

• The approach taken in our work is to focus on a subset of system calls S ′ ⊂

S which should be checked in order to prevent attacks from gaining full con-

trol of the system. Our choice for the system call subset S ′ is based on the

work of Bernaschi et al. [22] which classified Unix system calls according to

their threat level with respect to the system penetration. Here, we consider S ′

to be the system calls in the Threat-level 1 Category in [22], namely: open(),

chmod(), fchmod(), chown(), fchown(), lchown(), rename(), link(), unlink(),

symlink(), mount(), mknod(), init module() and execve() [22].

Other system calls in S−S ′, which are not defined in the specification are simply

mapped to a unique default value. We do not address the issues raised by the system

calls in the Threat-level 2 (which can be used for a denial of service) and the Threat-

level 3 (which can be used for subverting the invoking process). Otherwise, we

might need a richer IDS model which also deals with issues such as memory/storage

consumption metering and file usage pattern, which are beyond the scope of this

work. One advantage of the system call subset, which is approximately 10% of the

total number of system calls, is that it reduces the monitoring overheads which is

important when the IDS is to run in an on-line fashion.

Bernaschi et al. also grouped the setuid/setgid system call family into the

Threat-level 1 list. However, we take a different approach here by capturing the

effect of the setuid/setgid system call family as the changes in process credential

56

values —in the form of (euid, egid) pairs— to form part of the state information

in our enhanced IDS model.

• Given a system call s ′ ∈ S ′, a simple approach for the choice of abstraction is to

ensure that any critical operations on security-sensitive objects are mapped to a

value different from non or less critical ones.

• To indicate a pathname in our specification, we use a special notation: p=<pathname>.

Since pathnames in Unix are not unique, they have to be made canonical by turning

them into a normalized absolute pathname (see also [135]).

• Additionally, we also make use of a special tag o=<option token> to indicate that

the option token is to appear as an entry in a list of entries in the corresponding

argument space. An example is oflag as the second argument of open(), where

O RDWR can co-exist with other modes such as O CREAT or O APPEND. A categorization

specification entry is triggered if the specified option token is present in the list.

4.2.3 Disallowing Transitions

It is also useful to specify the transitions that can immediately lead to “bad states”. The

idea is to identify those singleton system calls with the corresponding privileges which can

be sufficient to compromise the system’s security. An example would be the operation

of chown() on /etc/passwd with root privileges. Thus, the usual way of measuring

anomaly signal by means of Locality Frame Count (LFC) function as used in [152] is

inadequate. This can also be used as an enhancement to the access control to actually

deny such a system call invocation in a running program.

In the ileggal transition section (see Figure 4.1), the syntax for an entry line is:

s′ c [u′, g′]∗ (4.2)

where: s′ ∈ S′; c is the abstracted value for the arguments of s′; u′ and g′ are the

abstracted user and group privileges respectively. We denote the set of bad transitions

as D0. Disallowing D0, however, may be too strict, and needs to be adjusted with respect

to the normal traces. When extracting the normal profile from the normal trace, we can

construct the set DN from all σ ∈ D0 which are also present in the normal traces. The

final adjusted negative transitions are: D = D0 −DN .

In the detection stage, the PAC-based IDS flags any system call execution that

matches an illegal transition σd ∈ D as intrusive.2 Since the PAC-based IDS can function

as an IPS, it may also prevent such operation from being executed.

2The PAC-based IDS can additionally log any execution of σ ∈ DN .

57

4.3 Experiments on PAC-based IDS

Our aim here is to evaluate whether the inclusion of abstracted process privilege and

system call arguments in the PAC-based IDS can make it more resistant against mimicry

attacks. In addition, we also would like to evaluate the behavior of the PAC-based IDS,

particularly whether there is any increase in its number of false positives.

4.3.1 Attack Construction on PAC-based IDS

We extend the attack construction algorithm on the Self-based IDS (described in Sec-

tion 3.2.5) to also work with the PAC-based IDS. This can be easily done since we just

need to extend the k system call labels in each node’s state in the overlapping graph G

by adding the euid, the egid and the argument category value.

To compare the PAC-based IDS with the two variants of the Self-based IDS (i.e.

SET-SELF and GRA-SELF), we evaluate the attack construction on the PAC-based

IDS using the three vulnerable programs used in evaluating SET-SELF and GRA-SELF

(see Section 3.3). Recall again that we can successfully construct stealthy attacks on

the three vulnerable programs protected by both SET-SELF and GRA-SELF. These

vulnerable programs are:

• Traceroute: with the basic attack trace: open(), write(), close(), exit().

• JOE: with the basic attack trace: open(), write(), close(), exit().

• WU-FTPD: with the same following basic attack trace as in [180]: setreuid()

chroot(), chdir(), chroot(), open(), write(), close(), exit().

In the trace generation, we purposely set the euid/egid value of all system call entries in

the normal trace to 0 (root). In other words, we assume a poorly written setuid program.

This is to provide the worst-case condition for attacks to occur, since system calls in the

attack trace are typically to be executed with root privilege.

In these experiments, the argument category specification makes use of the “dan-

gerous” system call subset discussed in Section 4.2. For the choice of arguments, from

[22, Table 4], we can see that the dangerous arguments for system calls in S′ are mainly

files/directories. The work by Garfinkel and Spafford [54, Appendix B] gave a comprehen-

sive list of security sensitive and important files/directories that one might want to con-

sider monitoring in Unix. In our experiments, we pay special attention to several security

critical files in the Unix/Linux environment, which are listed in Table 4.1. For simplic-

ity, we omit most of the system configuration files in /etc (such as: /etc/inetd.conf,

/etc/hosts, /etc/cron/*) and devices files in /dev. We however include entries for var-

ious directories commonly found in the Unix/Linux file system hierarchy, which conforms

to the Filesystem Hierarchy Standard (http://www.pathname.com/fhs/pub/fhs-2.3.

58

File ID File name

F1 /etc/passwd

F2 /etc/shadow

F3 /etc/group

F4 /proc/kmem

F5 hosts.equiv

Table 4.1: Several important files in Unix/Linux to be protected from security viewpoint.

html). While one can use a more detailed specification, ours is already sufficient to show

an increase in the robustness of the IDS.

Based on our experiments for window sizes from k=5 to 11 using the three sample

programs above, we found that no stealthy attack could be constructed on both SET-PAC

and GRA-PAC under both the code-injection and the trojan attack scenarios. Table 4.2–

4.4 show the running times for the attack constructions on SET-PAC and GRA-PAC

using the three sample programs. Note that if no attack can be constructed on SET-

PAC, then no attack can be constructed on GRA-PAC either. This is since GRA-PAC is

a stricter model than SET-PAC (see their definitions in Section 4.2.1). As can be seen,

the attack constructions on SET-PAC and GRA-PAC are almost as efficient as those on

SET-IDS and GRA-IDS. The construction times on all considered cases are at most a

few seconds even for the relatively large sliding-window sizes (k=9–11).

Traceroute Search Attack Construction Time (User+Sys)
on PAC-based IDS k=5 k=6 k=7 k=8 k=9 k=10 k=11

SET-PAC (Trojan-Attack) 0.020s 0.025s 0.026s 0.031s 0.032s 0.033s 0.031s

GRA-PAC (Trojan-Attack) 0.019s 0.022s 0.027s 0.028s 0.031s 0.029s 0.029s

SET-PAC (Code-Injection) 0.022s 0.025s 0.026s 0.033s 0.034s 0.037s 0.032s

GRA-PAC (Code-Injection) 0.021s 0.026s 0.028s 0.027s 0.032s 0.027s 0.029

Average Time 0.021s 0.025s 0.027s 0.030s 0.032s 0.032s 0.030s

Table 4.2: Execution times for the attack constructions on the PAC-based IDSs using
traceroute program (used earlier in Section 3.3) with k=5 to 11. No stealthy attack trace
can be found on SET-PAC and GRA-PAC on all the examined cases.

JOE Search Attack Construction Time (User+Sys)
on PAC-based IDS k=5 k=6 k=7 k=8 k=9 k=10 k=11

SET-PAC (Trojan-Attack) 0.048s 0.051s 0.057s 0.064s 0.077s 0.089s 0.102s

GRA-PAC (Trojan-Attack) 0.047s 0.050s 0.056s 0.061s 0.071s 0.085s 0.099s

SET-PAC (Code-Injection) 0.049s 0.052s 0.059s 0.067s 0.077s 0.088s 0.102s

GRA-PAC (Code-Injection) 0.048s 0.049s 0.058s 0.064s 0.074s 0.085s 0.095s

Average Time 0.048s 0.051s 0.058s 0.064s 0.075s 0.087s 0.100s

Table 4.3: Execution times for the attack constructions on the PAC-based IDSs using
JOE with k=5 to 11. No stealthy attack trace can be found on all the examined cases.

59

WU-FTPD Search Attack Construction Time (User+Sys)
on PAC-based IDS k=5 k=6 k=7 k=8 k=9 k=10 k=11

SET-PAC (Trojan-Attack) 0.574s 0.837s 0.997s 1.232s 1.494s 1.916s 2.139s

GRA-PAC (Trojan-Attack) 0.581s 0.846s 1.000s 1.233s 1.523s 1.723s 1.984s

SET-PAC (Code-Injection) 0.577s 0.835s 0.994s 1.238s 1.490s 1.774s 2.118s

GRA-PAC (Code-Injection) 0.590s 0.797s 0.998s 1.354s 1.521s 1.718s 1.971s

Average Time 0.581s 0.829s 0.997s 1.264s 1.507s 1.783s 2.053s

Table 4.4: Execution times for the attack constructions on the PAC-based IDSs using
WU-FTPD with k=5 to 11. No stealthy attack trace can be found on all the cases.

4.3.2 Behavior of PAC-based IDS

We now experiment with the PAC-based IDS against various mimicry attack strategies,

and also investigate its false positives.

Resistance Against Various Attacks

Having shown that the PAC-based IDS can better withstand mimicry attacks on the three

sample programs when the attacker attempts to write an entry into the file /etc/shadow,

we now evaluate the IDS against a number of different attack strategies.

Attack ID Operation (respectively)

A1 −A5 Open and write an entry into F1, F2, F3, F4, F5

A6 −A10 Chmod on F1, F2, F3, F4, F5

A11 −A15 Fchmod on F1, F2, F3, F4, F5

A16 −A20 Chown on F1, F2, F3, F4, F5

A21 −A25 Fchown on F1, F2, F3, F4, F5

A26 −A30 Lchown on F1, F2, F3, F4, F5

A31 −A35 Rename F1, F2, F3, F4, F5 into some other file

A36 −A40 Rename some other file into F1, F2, F3, F4, F5

A41 −A45 Link F1, F2, F3, F4, F5 into some other file

A46 −A50 Link some other file into F1, F2, F3, F4, F5

A51 −A55 Unlink F1, F2, F3, F4, F5

A56 −A60 Mknod F1, F2, F3, F4, F5

A61 Execve a shell or command

Table 4.5: Attack strategies (on important files listed in Table 4.1) to be prevented.

In Table 4.5, we list a number of common attack strategies in the Unix/Linux envi-

ronment on the files listed in Table 4.1 when the system calls are executed with a root

euid/egid privilege. While the list is not comprehensive, it is sufficient to demonstrate

the improvements in the IDS’ resistance level. We choose the traceroute program for

this experiment. The experiment was done on normal traces described earlier (2,789

system calls) with the sliding-window size (k) set to 5, which is a relatively short one.

We found that all the attack strategies listed in Table 4.5 fail on the tested normal traces

60

even in the trojan attack scenario. For most of the strategies (A6–A61), the attacks fail

because the needed attack system calls do not appear in the normal traces.3 In attacks

A1–A5, given the category specification, the searches fail because the normal trace does

not contain the required system call argument categories.

False Positives

Here, we give some preliminary results of comparing the PAC-based IDS and the baseline

Self-based IDS in terms of the number of false positives. We choose two programs, ls

and traceroute in Red Hat Linux 7.3. For each program, we record 10 traces from 10

different program runs. We then randomly choose one to be tested against the other

9. We compare SET-PAC with SET-SELF which also stores its normal profile as a set

of k-grams. The comparison results for k=5 to 11 are shown in Table 4.6. Here, we

simply measure the number of foreign k-grams. As can be seen, the enhancement does

not increase the number of false positives.

traceroute ls

k SET-SELF SET-PAC SET-SELF SET-PAC

5 0 0 2 2

6 0 0 2 2

7 0 0 2 2

8 0 0 2 2

9 1 1 2 2

10 2 2 2 2

11 3 3 2 2

Table 4.6: Number of foreign k-grams in traceroute and ls program with window sizes
k=5 to 11. SET-SELF refers to the Self-based IDS (Stide), whereas SET-PAC indicates
our new PAC-based IDS that stores its normal profile as a set of enhanced k-grams.

4.4 Discussions

We have shown that the PAC-based IDS model is more resistant to mimicry attacks since

the basic attacks in our experiments could not be turned into the mimicry attacks.

Furthermore, we have the following observations:

• As we have shown that the Self-based IDS with certain sizes of the sliding window,

such as k=6 to 8 as suggested in [67, 152, 74], is insufficient, other improvements

to the IDS model are thus necessary. Our privilege and argument abstraction

technique appears to be able to answer the need to make the Self-based IDS more

robust. In addition, one can always specify his/her own specification rules for the

PAC-based IDS in order to suit a particular program and its operational setting in

preventing possible attacks.
3These attack strategies thus would not work to attack SET-SELF and GRA-SELF either.

61

• Our experimental results show that with the given basic attacks, it was not possible

to turn them into the mimicry attacks on the PAC-based IDS although it was

possible to do so in the two Self-based IDS models (SET-SELF and GRA-SELF).

Most results that we are aware of for analyzing an IDS, in particular using the

mimicry attacks, are usually of the negative variety in that they show the existence

of attacks or ways of attacking the IDS. It is significant that our result here is

a positive one, since it shows that certain systematic attacks fail to work on the

PAC-based IDS. However, we do not guarantee that no attacks are possible since

the evaluation is relative with respect to a given basic attack and the normal traces.

The question of a security guarantee is in fact an open problem in the most IDS

models, and we argue that our work here paves a way towards the more robust

evaluation methods.

• The false positive results of the experiments are encouraging as we find that im-

proving the IDS with a more fine-grained detection mechanism does not increase

the number of false positives over the baseline IDS.

• The privilege and argument abstraction technique can also be applied to the other

gray-box IDS models, such as the FSA-based model [146]. In this new model, we

have the set of states Q = {q0, q⊥}∪{U
′×G′×P} with P = set of possible Program

Counter values, and Σ = S × C. The transition is thus enhanced using a 2-tuple

of the system call number and the argument category value.

4.5 Chapter Summary

We have proposed an extension to the Self-based IDS using privilege and argument

abstraction. The new IDS, called the PAC-based IDS, is a more-fine grained model

which takes into account the security aspects of the operations. We argue that this

extension is both simple to use and also makes the IDS more robust. Our experimental

results show that mimicry attacks, which were able to work in the baseline Self-based

IDS, fail in the PAC-based IDS using both the SET-PAC and GRA-PAC variants. We

also have some evidence that the increase in detection accuracy does not lead to more

mis-predictions.

An important advantage of our IDS extension is its simplicity. Directly using the

arguments or process credentials will not work well due to the possibility of increasing

the number of false positives. However, a simple classification technique, which abstracts

away the irrelevant information and takes into account a security model of the OS,

appears to work well. Furthermore, the simplicity means that the scheme can be easily

integrated into various IDS models to make them significantly more robust.

62

Chapter 5

Lightweight Executable

Authentication Protection

Ensuring that a host only executes codes from trusted sources, which were also unmod-

ified while in transit and stored on the host’s file system, is an important step in the

Program Protection Life Cycle (PPLC). It helps establish a stronger trust on good pro-

gram execution. Moreover, it is also beneficial to the OS since it can help protect the OS

against malicious kernel drivers, i.e. attacks attempting to load malware into the kernel.

Section 2.3 has provided some background on the executable authentication problem,

as well as briefly mentioned existing authentication systems and issues in providing ex-

ecutable authentication on Windows. As mentioned before, we refer to an executable

code stored in the file system as a binary.

Despite its important role, binary authentication protection mechanism is yet to

be commonly incorporated as a standard in-kernel mechanism in popular commercial-

off-the-shelf OSes, such as Windows and Solaris. Demonstrating the practicality of a

binary authentication system on a complex commodity OS is thus significant. This is

since many of the security problems on commodity OSes, particularly Windows, stem

from a host’s inability to distinguish between trusted and untrusted software. In this

chapter, through a proof-of-concept implementation called BinAuth, we demonstrate

the practicality of establishing a binary authentication system on Windows. BinAuth

is a practical, lightweight and in-kernel mandatory binary authentication system. It is

lightweight in terms of both performance overheads and its reduced reliance on PKI for

the certificate revocation service. Our benchmarking shows that the overhead of BinAuth

can be quite low, around 2%, with a caching strategy.

In addition to proposing BinAuth, we also develop a framework for comparing binary

authentication systems based on a number of key design factors. We use this framework

to compare a variety of existing authentication systems, and identify the desirable prop-

erties of an robust and efficient binary authentication system. In fact, we specifically

63

design BinAuth to meet these desirable properties. Besides this framework, we addition-

ally propose a simple scheme called Software ID which leverages on the authentication

infrastructure. This scheme is similar to the Common Platform Enumeration (CPE)

initiative [115], which can help simplify the task of vulnerability alert management as

discussed more in Chapter 6.

Most of the results reported in this chapter have been published in our collaborative

works [66, 186]. The author of this thesis focuses mainly on the design of BinAuth

including the notion of Software ID, the security analysis of MAC-based authentication

(as given in Section 5.4), and on a comparative analysis of the authentication schemes.

The implementation of BinAuth on Windows was done by other team members. The

remainder of this chapter is organized as follows. We elaborate the security goals to be

achieved in Section 5.1. Section 5.2 outlines our framework for comparing authentication

systems. Section 5.3 describes the design, and briefly mentions some implementation

aspects of BinAuth. We analyze the security of BinAuth in Section 5.4, and provide the

benchmarking results on BinAuth in Section 5.5. Section 5.6 discusses the Software ID

scheme which can take advantage of BinAuth. Section 5.7 summarizes this chapter.

5.1 Security Goals

Let us first establish the security goals of a binary authentication system. Throughout

this chapter, we define “administrator” to be the trusted privileged user, such as system

administrator in Windows or superuser in Unix/Linux. We define the security goals of a

binary authentication system as follows. A binary authentication system aims to ensure

that a binary file B stored on a host is allowed for execution at time tinvoked only if the

following security goals are satisfied:

• (G1) Trusted Origin: the binary originates from a source (developer) that the

host trusts. The host trusts the developer that the binary produced by the latter is

non-malicious in nature and has no intention to violate any security policies of the

host (beyond the program’s known functionalities) or any acceptable use policies.

• (G2) Binary-Content Integrity: the content of the binary was unmodified while

in transit (during the software distribution) and while stored on the host’s file

system. This goal ensures that the executed binary has not been illegally tampered

with. For example, cmd.exe in a Windows system is not replaced with a trojan.

• (G3) Binary-Pathname Integrity: the pathname (location) of the binary on the

host’s file system must not be illegally modified based on the pathname mapping

when it was securely added into the host at tinstalled. Note that on a host, a binary

is kept in a file and is identified by its pathname. As such, the pathname associated

64

with a particular binary must not be illegally modified.1 This goal is needed so

that we execute a binary which we actually want. For instance, suppose that the

binary of a file-system format and that of a shell both satisfy G1 and G2. However,

if an attacker swaps their pathnames, then running the shell would cause the file

system to be formatted.

Goals G1 and G2 can be achieved by ensuring data origin authentication2 on the

invoked binary; whereas goal G3 is attained by ensuring data integrity on the binary’s

pathname. In practice, data origin authentication on a binary is achieved by using digital

signature3, whereas binary’s pathname integrity is easily attainable using hash function.

5.2 Framework for Analyzing Binary Authentication Schemes

This section describes our framework for characterizing authentication systems based on

a number of key design factors. We elaborate the available choices for the design factors,

and discuss their impact on the effectiveness of the resultant systems. A set of desirable

design factors are then identified. We also compare a variety of existing authentication

systems using the framework.

5.2.1 Security Assumptions

First, we make clear some assumptions which are commonly made by software-based

binary authentication systems including BinAuth:

• Trusted host’s kernel: Since the authentication systems run on top of the kernel,

and thus depend on the kernel to achieve their security objectives, it is assumed that

the host’s kernel is uncompromised. Following a host (but not kernel) breach, an

authentication system is still expected to remain trusted and to function properly

in preventing the execution of illegal binaries. As such, an authentication system

should allow for the possibility of malware exploitation, e.g. a buffer overflow attack

hijacking a privileged process, but not the ability to alter the kernel code [187].

• Protected authentication system’s information: The systems also assume

the security (integrity, confidentiality and availability) of all the keys used for the

authentication as well as any database and configuration files stored on the host.
1Extending this security goal to additionally ensure the integrities of a binary file’s other properties,

such as permission modes (in Unix/Linux), is trivial. For simplicity, here we focus on protecting a binary
file’s pathname, which is a file’s main property.

2Recall again that ensuring data origin authentication on a binary implicitly also assures data (i.e.
binary-content) integrity [109] (see also some background in Section 2.3).

3It is actually possible to use symmetric key mechanism to ensure data origin authentication on a
binary. A Message Authentication Code (MAC), which is a keyed hash function, can be used to provide
data origin authentication [109]. However, it requires a host and each software developer to share a
secret key, which is rather impractical in practice. Note that, unlike the signature-based authentication,
MAC-based authentication can not additionally provide non-repudiation service.

65

• Trusted administrator account: Since the administrator in most OSes virtually

has unblocked access to all the files, registries, and possibly kernel settings, we also

need to assume the security of the administrator account.

• The goodness of developer’s private key: Each software developer protects

the secrecy of its private key (which is used for signing its binaries), and notifies the

CA immediately in the event that the key has been compromised. This assumption

on a principal’s responsibility to safeguard its private key is commonly taken in

practice (e.g. [56, 169]). Without such a strong guarantee on the goodness of a

principal’s secret key, it is practically impossible to provide both data origin au-

thentication and non-repudiation service on documents/codes digitally signed by a

principal. However, there exists a legitimate concern with possible compromise of

an honest user’s private key [104], particularly under the “undetected key compro-

mise” scenario [79].4 To better protect a private key against potential compromise,

some mechanisms have been proposed [192, 191, 79], which go beyond timestamping

and countersigning by a trusted Time Stamping Authority (TSA) [65, 3].

5.2.2 Authentication System Design Options

We now list the main design options in constructing a binary authentication system.

(D1) Location of the authentication verification module:

(a) In-kernel module: The authentication verification module is implemented as

part of the kernel, and thus runs in the kernel space.

(b) User-mode application: The module runs as an application in the user space.

(D2) Time of authentication:

(a) Pre-execution: The binary file is verified just right before it is loaded for ex-

ecution. This does not necessarily imply that the authentication is done by

in-kernel module since wrappers can be placed on various entry points of the

program’s execution, e.g. command shell and GUI-based shell.

(b) User-specified time: The authentication timing is set independent from the

binary-invocation time. It can be directly triggered by the user, or based on

a user-specified time in the case of a scheduled job. A system like this usually

verifies all protected binaries within one verification session. It thus takes a

“snapshot” of all the binaries at one point in time.

(c) Installation-time: The verification is performed only at the installation time.

4An undetected private key compromise takes place where a principal suspects a compromise of its
private key (and subsequently reports the compromise to the CA) only after it has signed a number of
documents/binaries [79]. In Section 5.4, we discuss potential security implications to BinAuth if we allow
such a possible compromise despite the developer’s best protection efforts in safeguarding its private key.

66

(D3) Coverage of mandatory authentication:

(a) All binaries: All binaries must be verified before being executed.

(b) Selected binaries: Only certain classes of binaries are subject to verification.

For example, only binaries run with the administrator privilege and those with

embedded digital signatures are checked. The rest are allowed to run without

authentication.

(c) Configurable: Here, a system’s level of enforcement is configurable. The ad-

ministrator is responsible to select one from a set of preset options to apply

at a time. He/she, for instance, can apply one of the following options: all

binaries must be authenticated, all binaries with the administrator privilege

are authenticated, or no authentication is performed.

We note that for the mandatory authentication enforcement on all binaries, an

in-kernel pre-execution mechanism is the most robust option.

(D4) Implementation platform:

(a) Microsoft Windows

(b) Unix/Linux

We note that it is theoretically possible to port an authentication system imple-

mented in one OS to another OS. In practice, however, such porting is rather

difficult due to the differences in the security model and the kernel operations of

the underlying OSes.

(D5) Security goals achieved:

(a) Trusted Origin: goal G1 as defined in Section 5.1.

(b) Binary-Content Integrity: goal G2 as defined in Section 5.1.

(b) Binary-Pathname Integrity: goal G3 as defined in Section 5.1.

(D6) Placement of authentication information (digital signature/hash value):

(a) Embedded into the executable: In this method, the digital signature or hash

value is embedded into the executable file. Putting the information in the file

itself seems to result in a cleaner model of the authentication system. However,

as we will see later, there is a potential weakness in such a system.

(b) (Secure) centralized database: The information from all the protected binaries

is stored in a (secure) database. If all binaries are to be mandatorily authenti-

cated prior to execution, then the database serves as a “whitelist” of accepted

applications. This contrasts with the “blacklist” approach taken, for example,

by anti-virus software. The advantage of using a centralized database is that

the authentication system can also monitor non-binary files.

(D7) Producer of the binaries’ digital signatures/hash values:

67

(a) Authentication system: Here, all the signatures or hash values come solely from

the authentication system. This option is useful when all installed binaries

do not come signed by their respective developers. The administrator then

assumes that a binary file is good at some point in time (usually at tinstalled),

and then invokes the authentication system to produce a signature/hash value

as the reference for the binary’s future executions.

(b) Developer: All binaries are assumed to be signed by their respective software

developers.

(c) Both: It is possible that the administrator produces the signatures/hash values

on some of the binaries. It is also possible that the administrator reproduces

the signatures/hash values based on the existing developer’s signature for se-

curity or performance reasons as in BinAuth system.

(D8) Authentication mechanism used:

(a) Symmetric key: The authenticity/integrity of a binary is checked by using a

symmetric-key based hash function.

(b) Public key: The checking is done by using digital signature operation and

related PKI mechanisms.

(D9) Authentication Caching:

(a) With/without caching: Whether a caching technique is employed by an in-kernel

authentication system to keep track of the previously authenticated binaries.

This technique is employed to reduce the overheads of always checking the

binary files every time they are executed. It is particularly useful for some

frequently executed binaries, especially if their file sizes are large. Files which

are stored externally, e.g. files on NFS, however cannot be cached [9]. One

main drawback of the caching technique is that the authentication system now

needs to monitor if a binary in the cache list has been modified.

(b) Not-applicable: The caching technique is not applicable to a user-mode au-

thentication system, or one such as [187] which checks the integrity during

binary installation.

(D10) Reduced reliance on PKI:

(a) Reduced/full reliance: Whether there is any mechanism employed to reduce

the reliance on PKI in the case where verification using public key mechanism

is used.

(b) Not-applicable: This is not applicable if only symmetric key mechanism is used.

(D11) Support for secure update of a protected binary:

(a) With/without support: Whether there is any mechanism to support secure

update of a protected binary file.

68

5.2.3 Comparison of Existing Authentication Systems and BinAuth

We now survey and compare various existing authentication systems using the developed

framework. We select a representative system for each category. We also highlight how

well each authentication scheme meets the authentication goals G1–G3, and contrast

them with BinAuth. Table 5.1 summarizes the surveyed systems including BinAuth.

Tripwire [82] is one of the first schemes to perform file integrity protection. Tripwire

ensures Binary-Content Integrity (G2) as well as Binary-Pathname Integrity (G3), but not

Trusted Origin (G1).
5 Tripwire is limited as it is a user-mode application program, and

checks the file integrity in an off-line manner. It also does not provide any mandatory

form of integrity checking. In addition, there exist many known attacks such as: file

modification in between authentication times, and attacks on system daemons (e.g. cron

and sendmail) and system files that it depends on [12].

There are a number of in-kernel binary authentication implementations such as DigSig

[9], Trojanproof [183], SignedExec [175] and one proposed in [29]. These are mainly for

Unix or Linux. They modify the Unix kernel to verify an executable’s digital signature

prior to its execution. DigSig, SignedExec and the scheme proposed in [29] embed

signatures within the binary itself by making use of the ELF format. The works assume

that the installed binaries are unsigned by their developers. Hence, the administrator

signs the binaries using his/her own private key. It appears that these systems provide

Trusted Origin (G1) and Binary-Content Integrity (G2), but not Binary-Pathname In-

tegrity (G3). The problem is that, in an embedded-signature authentication system, one

signed binary replacing another signed binary would go undetected. One solution to this

problem is that the authentication system must include the pathname in addition to the

binary content when producing a digital signature. Even with this inclusion, the sys-

tem would still suffer from a “old-attack” problem, when the attacker replaces a signed

binary with an older, perhaps vulnerable, signed binary of the same pathname. DigSig

employs a technique called signature revocation list in order to blacklist a signed binary.

Catuogno and Visconti similarly proposed a file revocation list and an alternative tree-

based scheme [29]. However, such techniques require a separate centralized configuration

file which can grow over time. Maintaining such a list also poses its own challenges. In

light of this, we opt for an authentication system with a centralized database.

For efficiency, DigSig and the scheme proposed in [29] employ a caching mechanism

to avoid checking binaries which have been previously verified. In developing BinAuth,

we also address the detailed implementation issues of caching technique on Windows,

which are much more complex than in Unix.

Cryptomark [19] is another in-kernel authentication system on Linux, and is similar

5Tripwire (as outlined in [82]) does not attempt to ensure Trusted Origin (G1) as it aims mainly to
function as a file system’s integrity checking tool.

69

Authentic- Verifier Time of Enforced Platform Security Placement Signature Mechan- Caching PKI Binary
ation Module Authentic- Mandatory Goals of Integrity /Hash isms Used? Reliance Update

System Location ation Authentic- Achieved Information Producer Used Reduct- Support?
ation? ion?

Tripwire Application- User- No Unix G2,G3 Centralized Auth. Symmetric No -N/A- No
level specified System Key

DigSig In-kernel Pre- No Linux G1,G2 Embedded Auth. Public Yes No No
execution System Key

Trojan- In-kernel Pre- Yes Linux G2,G3 Centralized Auth. Symmetric No -N/A- No
proof execution System Key

SignedExec In-kernel Pre- Yes Linux G1,G2 Embedded Auth. Public Yes No No
execution System Key

CryptoMark In-kernel Pre- Configurable Linux G1,G2 Embedded Auth. Public No No No
execution System Key

Emu In-kernel Pre- Yes Windows G2,G3 Centralized Auth. Symmetric No -N/A- No
System execution System Key

SignTool Application- User- No Windows G1,G2 Embedded Auth. Public No No No
level specified System Key

Sigcheck Application- User- No Windows G1,G2 Embedded Auth. Public No No No
level specified System Key

Vista UAC In-kernel Pre- No Windows G1,G2 Embedded Developer Public No No No
(On Signed execution Key
Executables) (on privilege-

elevation)

Wurster- In-kernel Installa- No Unix/Linux G1,G2 Embedded Developer Public -N/A- Yes Yes
Oorschot tion time Key (weak)

BinAuth In-kernel Pre- Yes Windows G1,G2,G3 Centralized Auth. Symmetric, Yes Yes Yes
execution System, Public

Developer Key

Table 5.1: Comparison of binary authentication systems using the design-option based framework.

70

to DigSig in a number of ways. The special feature of Cryptomark is that it can be

configured to require valid digital signatures for all or some binary files. The most secure

configuration requires a valid signature for every binary. A more permissive configuration

mandates signatures only for binaries that run with the root privilege.

There are some mechanisms in Windows related to binary authentication. Authen-

ticode [61] is a Microsoft infrastructure for producing and verifying signed binaries. In

Windows versions prior to Vista, such XP with SP2, Authenticode is used as follows:

• During an ActiveX installation: Internet Explorer uses Authenticode to examine

the ActiveX plugin, and shows a prompt containing the publisher’s information

and the result of the signature verification.

• Following a user’s download of a file using Internet Explorer: If this file is later

invoked using the Windows Explorer shell, a prompt will be displayed giving the

information of the publisher’s information and the signature verification result.

Internet Explorer uses an NTFS feature called Alternate Data Streams to embed

the untrusted Internet zone information into the downloaded file. The Windows

Explorer shell detects this zone information and then displays the prompt. This

mechanism is however not mandatory, and relies on the use of zone-aware programs.

Since Authenticode runs in the user space, its signature verification can be bypassed

in a number of ways, e.g. using the non zone-aware command shell. It is also limited

only to files downloaded using Internet Explorer. Authenticode examines EXE binaries,

but not the DLLs. Thus, one possible attack is to put malware into a DLL and then

execute it, e.g. using rundll32.exe. Furthermore, Authenticode relies heavily on digital

certificates. Ensuring that the developer’s public key is still valid may add extra delay

including timeouts due to the need to contact the CA and download the latest certificate

status information, such as CRL. In some cases, this causes significant slowdown.

Windows Vista improves on signed-code checking since its User Account Control

(UAC) can be configured for mandatory checking of all signed executables. However,

this is quite limited since the UAC mechanism only kicks in when a process requests

privileged elevation, or for certain operations on protected resources. Vista does not seem

to prevent the loading of unsigned DLLs and other non-EXE binaries. The 32-bit versions

of Windows (including Vista 32-bit) do not check whether drivers are signed. Similar

to DigSig, both the UAC and Authenticode do not authenticate the binary pathname.

Moreover, a system that always requires PKI infrastructure, we believe, poses various

challenges for a general purpose online (pre-execution) authentication mechanism.

The closest existing work to our BinAuth is the Emu system [142], which also runs

in Windows. It intercepts a process creation by intercepting the NtCreateProcess()

system call. It is unclear, however, whether they are able authenticate all binary codes

71

since trapping at NtCreateProcess() is insufficient to deal with DLLs. No performance

benchmarks were given, so it is difficult to assess its efficiency.

There is also a binary protection system that protects unauthorized modification of

existing binaries during the installation of a new piece of software [187]. This system

does not restrict the software which can be installed on a system, but it denies one

which modifies existing binaries. Hence, the system does nothing to prevent malware

from being installed on the system, but it restricts the files that the malware can modify.

One particular feature of the system in [187] is that it aims to allow software updates

in a controlled manner. A binary can be replaced by another binary only if the latter

is of the same name and contains a digital signature derived from the same public key

previously used on the former. However, there is a potential attack of downgrading the

binary. BinAuth, in contrast, makes use of a naming scheme like Software ID (described

in Section 5.6) to ensure a controlled software upgrading.

Lastly, we remark that there was also a related work which compares existing au-

thentication systems. In [121], Motara and Irwin looked at six authentication systems

and evaluated them in terms of the following criteria: ease of use, executable checking,

pre-execution validation, active development and transparent checking. They also dis-

cussed several design options, namely: in-kernel vs user-mode (D1), pre-execution vs

offline validation (D2), embedded-signature vs centralized (D6), and caching mechanism

(D9). Our work [186] conducts a significantly more comprehensive analysis on the design

options when compared to [121]. More importantly, our analysis is performed as a part of

our effort to devise a robust yet lightweight binary authentication system. As such, the

analysis is geared towards identifying desirable characteristics for such an authentication

system, which are then realized in the BinAuth system.

5.3 System Architecture for Lightweight Authentication

Based on the analysis using the design-option based framework discussed above, our goal

is to devise BinAuth as a robust and practical authentication scheme with the following

characteristics: an in-kernel (D1a), pre-execution (D2a), mandatory (D3a) authentication

scheme for Windows (D4a), which ensures security goals G1–G3 by storing the authentica-

tion information in a centralized database (D6b). BinAuth accepts both digital signatures

from the developer as well as producing MAC values on protected binaries. It thus exer-

cises (D7c), (D8a) and (D8b), and has a reduced reliance on PKI (D10a−Reduced reliance).

It also makes use of caching (D9a−With caching), and supports controlled update of the

protected binaries (D11a−With support). Additionally, it should incur low overhead and

allow for a better vulnerability management on the protected binaries.

72

5.3.1 BinAuth Architecture

In the following discussion, we assume that binaries already come tagged with a neces-

sary naming information such as Software ID (see Section 5.6) or CPE [115].6 BinAuth

achieves goals G1–G3 by performing the following two-step guarantees (under the as-

sumptions stated in Section 5.2.1):

• (Step1) Trusted-binary installation: Immediately after a binary is installed

into the host’s file system at time tinstalled, BinAuth should be invoked to en-

sure both Trusted-Origin (goal G1) and Binary-Content Integrity (goal G2) on the

binary. If the binary is signed by its developer, BinAuth verifies the binary’s sig-

nature. Should the binary come unsigned, BinAuth consults the administrator to

manually decide whether the binary can be deemed trusted. Once an installed

binary is considered trusted, BinAuth generates the Message Authentication Code

(MAC) value for the binary. In addition, BinAuth also records its pathname.

• (Step2) Unmodified-binary invocation: When an installed binary is later in-

voked at time tinvoked, BinAuth ensures that both the MAC value and the pathname

of the binary are the same as those recorded at Step1. In this way, BinAuth finally

ensures that the binary does satisfy goals G1–G3 prior to its execution.

From the way BinAuth works as elaborated above, only one public-key operation is

done per signed binary. We choose to use the HMAC algorithm [86] for generating MAC

value. Note that HMAC is a keyed hash construction, therefore there is a secret key

for the administrator. This secret key could be stored on a secure external storage such

as a TPM module [173]. Having this secret key provides an additional host protection.

Suppose that an attacker manages to illegally add a binary and also modify the MAC

database. Given the use of the secret key, an attempted execution of the added binary

will still be detected by BinAuth. To ensure the authenticity of a protected binary on its

future invocation, only the generated HMAC value needs to be checked. In what follows,

we mostly write MAC which already covers the choice of HMAC algorithm.

One way of storing the generated MAC is to embed it into the binary. However, doing

so may interfere with file format of the binaries, and may also have other complications,

such as the inability to provide Binary-Pathname Integrity (goal G3). As such, we instead

use a repository (database) file which stores all the MAC values of protected binaries

together with their pathnames. During the boot-up process, the kernel creates its own

in-memory data structures for binary authentication from this repository. We can also

customize binary authentication on a per-user basis rather than on a system-wide basis,

thus producing a white list of binaries approved for execution for each user.

6Unlike our Software ID, CPE does not include the binary file name. Hence, the file name must be
added should the CPE be used.

73

There are two main components of BinAuth: the SignatureToMac and the Veri-

fier. The SignatureToMac maintains the authentication repository, called Digest file.

The Verifier is a kernel driver, which makes use of Digest file and decides whether the

execution of a binary is to be allowed.

5.3.2 SignatureToMac Module

Once a piece of software is installed on the system, Figure 5.1 shows how SignatureToMac

processes the installed binaries. The steps involved can be elaborated as follows.

signature SignatureToMac
MAC

(software_digest)

Digest_File

Hashing_KeyBinary

software_id

Figure 5.1: SignatureToMac: deriving the MAC for a signed binary.

1. If a binary is signed, check the validity of the binary’s digital signature and the

corresponding certificate. If the signature or certificate is invalid, report failure. In

the case where the binary is unsigned, inform the administrator.

2. Consult the administrator whether the software is to be trusted or not. This is

similar to the Vista UAC dialog, but only happens once. Additional checking

policies (possibly mandatory) can also be implemented.

3. Generate the MAC value (called software digest) from the binary’s content (in-

cluding its Software ID string) using a system-wide secret key called Hashing key.

This Hashing key is accessible only by the authentication system, e.g. obtained at

boot time from a secure (external) storage. Our prototype implements the HMAC-

MD5 [86], HMAC-SHA-1 and HMAC-SHA-256 [44] hash algorithms.7

4. Add an entry for the binary as a tuple 〈path name, software digest〉 into the

Digest file repository, and inform the Verifier to perform the necessary in-memory

updates.

5.3.3 Verifier Module

The Verifier performs a mandatory binary authentication — it denies the execution of

any kind of Windows binary that fails to match the MAC or the pathname. There are

two general approaches for the checking. One is cached MAC, which avoids generating

7The stronger hash functions SHA-1 and SHA-256 are used due to recent concerns on the weaknesses
of MD5 and the associated attacks on it [181].

74

and checking the MAC for a previously authenticated binary. The other is uncached

MAC, which always generates and checks the MAC. As we will see, these two approaches

have various tradeoffs. The cached MAC implementation needs to ensure that binaries

are unmodified. Hence, the Verifier monitors all file operations on binaries being cached,

and removes them from the cache if they can potentially be modified.

The core data structure of the Verifier can be viewed as a table of tuples in the form

〈Kernel path, FileID, MAC, Authenticated bit〉 representing the allowed binaries. The

four fields in the tuple are as follows.

• The Kernel path is Windows kernel (internal) pathname representation of a file. In

Window’s user space, a file can have multiple absolute pathnames, due to: (i) 8.3 file

naming format (e.g. “C:\Program Files\” and “C:\progra∼1\” are the same);

(ii) symbolic links; (iii) hard links; (iv) volume mount points; or (v) the SUBST and

APPEND DOS commands. The Kernel path is a unique representation for all the

possible pathnames. When the system loads a tuple 〈path name, software digest〉

from Digest file either during the startup or when an entry was just added into

the Digest file, the path name is converted into Kernel path since all subsequent

checks by the Verifier use the latter.

• The FileID is a pair of 〈device name, NTFS object ID〉. The device name is a

Windows internal name to identify a disk or partition volume. For instance, the

device name HarddiskVolume1 usually refers to C:\. The NTFS object ID is a

128-bit number uniquely identifying a file in an NTFS file system.8 This FileID is

used by the Verifier to identify the same binary file given more than one hard links.

This prevents an attacker from creating a hard link in order to modify a binary

(which has been authenticated before) without invalidating the binary cache.

• The MAC is same as the software digest entry in Digest file.

• The Authenticated bit remembers whether a binary has been previously authen-

ticated. It is initially set to false, and then set to true after a successful binary

authentication. If the binary is modified at a later time, the bit is set back to false.

Figure 5.2 shows the authentication steps performed by the Verifier (with caching tech-

nique used) when a binary is invoked for execution. The steps can be elaborated as

follows.

1. Check if the binary’s Kernel pathname exists in the Verifier’s table. If not, deny

the execution (and optionally log the event). A notification is accordingly sent

to the user and the administrator. The user then could ask the administrator to

perform the step of generating the binary’s MAC using the SignatureToMac.
8NTFS is the standard file system of Windows NT, including its later versions Windows 2000, Windows

XP, Windows Server 2003, Windows Server 2008, Windows Vista, and Windows 7. Hence, we assume
that NTFS is the file system type used by the Windows systems to be protected by BinAuth. If the older
FAT file system is used instead of NTFS, we simply make use of the pathname to identify a binary.

75

Load binary
Is its path in

the table

Deny

Is it in a network

shared drive?

Calculate the MAC

of the binary

Allow

Is the

Authenticated

bit set?

Does the MAC of the

binary matches its MAC

in the table

Set the

Authenticated bit

Deny Allow

Yes

No

Yes

No

Yes

No

Yes

No

Figure 5.2: Verifier: the in-kernel authentication process.

2. If the file is on a network shared drive or removable media, then goto step 4.

3. If the Authenticated bit is set, then go to step 7.

4. Perform MAC generation operation on the binary.

5. If the resulting MAC value does not match with the MAC stored in the Verifier’s

table, deny the execution.

6. Set the Authenticated bit of the binary to true.

7. Pass the control to the kernel to continue the binary’s execution.

For additional details on the implementation aspects of BinAuth, such as the use of

system-call interception mechanism and file-monitoring mechanism for secure caching,

the readers can refer to [66, 186].

5.4 Security Analysis

In this section, we give the security analysis of BinAuth.

Since BinAuth makes use of MAC operations, its security thus also relies on the

strength of the chosen hash functions (i.e. MD5, SHA-1, SHA-256) as well as the HMAC

construction. Here, we assume that any change in a binary can be detected through a

changed MAC value.

Following BinAuth’s successful verification of a digitally signed binary, the MAC value

for the binary is generated and then securely recorded. Subsequent invocations on this

binary is verified by BinAuth based on the binary’s MAC value as opposed to its original

digital signature. Thus, BinAuth considers that a successful MAC authentication at time

tinvoked “preserves” the data origin authentication assurance on a binary, that was pre-

viously established from a valid digital signature shortly after time tinstalled. A subtlety

however arises when the developer’s certificate expires or is revoked at some point in time

after the MAC generation. Given the assumption on the goodness of a principal’s pri-

vate key (up until shortly prior to the revocation as discussed in Section 5.2.1), signatures

created before the compromise are deemed still valid. Such a reasoning is also taken in

practice in the case of a securely timestamped digital signature used as non-repudiation

76

evidence for a signed document (e.g. [43, 55, 3]).9 In this signed document application,

the use of a trusted timestamp can prevent a malicious party, who obtains a principal’s

private key after the certification revocation/expiration, from fabricating a signed mes-

sage and subsequently claiming that the principal had signed the document when the

certificate was still good (i.e. at one point in time prior to the revocation/expiration). In

BinAuth, the host directly verifies both the developer’s certificate and the corresponding

signature before immediately generating the MAC value at Step1 (see Section 5.3.1). As

such, BinAuth can work on digital signatures with no added secure timestamps.

Alternatively, we can view that the question of whether one should keep trusting

the binary (after the corresponding certificate’s revocation/expiration) depends on one’s

interpretation of certificate expiration/revocation. If the certificate expiration/revocation

means that the corresponding public key must no longer be used, but the fact that the

previously established goodness properties of a binary still hold (under the assumption of

the goodness of the private key prior to the revocation/expiration), then we can keep

trusting the binary as long as we still believe in its issuer.

We can reason this issue more concisely using a BAN Logic-based reasoning [26, 27].

An overview of BAN Logic is given in Section 2.6, and its extension is the subject of

Chapter 8. Since we need to deal with a belief established in the past, we thus need to

incorporate a temporal aspect into BAN Logic.10

For our purpose, we can use a temporal construct defined in [161], namely ♦, which

means “at some point in the run prior to the current one”. Given a formula ϕ, a run r,

and a time t, we define that:

(r, t) |= ♦ ϕ iff (r, t′) |= ϕ for some t′ < t. (5.1)

Given this ♦ construct, we can restate the validity of the employed MAC authentication

in BinAuth as follows:

The question of whether we can still believe in a binary that has been suc-

cessfully verified using the MAC authentication, but whose public/private key

pair used to generate the digital signature has expired or has been revoked

after the MAC generation, is equivalent to that of determining whether the

following Carried-forward-belief Rule is applicable:

P |≡Q p⇒X, ♦(P |≡X)

P |≡X
. (5.2)

That is, if we know that (r, t′) |= (P |≡X) for some t′<t, with t being the present time, and

9In this setting, each newly generated digital signature is timestamped and countersigned by a trusted
TSA, which establishes evidence that the signed message had existed at the time of the timestamping.
Given the goodness of the public/private key pair up to its revocation/expiration, the TSA’s assurance
allows a revoked or expired certificate to be used for verifying timestamped signatures created before the
time of revocation or expiration (see also [3]).

10This is because the original BAN Logic only allows the promotion of “once said” (in the past) to
“believe” (in the present) using the Nonce-verification Rule (i.e. R2 in Appendix C).

77

that (r, t) |= (P |≡Q p⇒X), we are to determine whether we can derive (r, t) |= (P |≡X).

For our purpose of authenticating a binary under the assumptions stated in Section 5.2.1,

we chose to accept this rule. As such, BinAuth can perform binary authentication with

low performance overhead.

Note however that, given an expired or revoked certificate, we cannot derive the

present belief of a binary (i.e. P |≡X) using our MPKI-BAN Logic which is defined in

Chapter 8. This is because the New certificate-validation Rule (R15 in Appendix D)

cannot be used to derive the belief on the goodness of the developer’s public key (i.e.

P |≡℘κ (Q, KQ)) and private key (i.e. P |≡Π(K−1
Q)). As a result, we cannot use the

New message-meaning for signed message Rule (R13) to derive P |≡Q |∼X, which is a

requirement for the desired belief P |≡X.

One additional issue with regard to the use of MAC instead of the developer’s digital

signature is the potential delay in obtaining a timely certificate revocation information,

which may happen in practice. As explained, prior to generating a MAC value for

a newly added binary, BinAuth first verifies the validity of the developer’s certificate.

However, it may be the case that the certificate has been already revoked by that time,

but the revocation notification fails to be received in time. To overcome this, we stipulate

BinAuth to monitor the status of a recently used certificate until the possibility of such a

delay diminishes. That is, BinAuth will still ensure that the certificate must still be valid

at time tensured > tinstalled+δinstalled to verified+δrev delay, where: δinstalled to verified is the

time interval between tinstalled and the time where the signature verification is done, and

δrev delay is the upper-bound margin for the delay in obtaining revocation information.

The value for δrev delay can be set in accordance to the revocation scheme’s inherent

timeliness delay (see Section 2.5). BinAuth can thus maintain a list of certificates to be

revalidated, which are periodically checked in the background.

Let us now analyze the security of BinAuth, if we relax the assumption on the good-

ness of a developer’s private key as stated in Section 5.2.1. That is, we now allow a

possibility of an “undetected key compromise” scenario [79] where a principal (i.e. de-

veloper) suspects a compromise of its private key only after it has signed a number of

binaries. In this scenario, BinAuth needs to keep revalidating all the certificates previ-

ously used to generate the corresponding MAC values. We can thus stipulate BinAuth

to periodically check these previously validated certificates in the background.11 This

way, BinAuth still provides an advantage of shifting the required pre-execution certifi-

cate validations (if we do not generate and use MAC values at all) to periodic certificate

validations in the background.

Upon finding out that a particular certificate is revoked, the administrator needs to

11Note that the number of certificates is much less than the number of binaries. This is because all
binaries from the same software package are signed by one developer using a single certificate.

78

determine whether future executions of all binaries signed using the revoked certificate

should no longer be allowed. Disallowing all these binaries represents a prudent action.

However, it can be too restrictive in some environments. One possible compromise is to

examine the reason code of the revocation. In [38], Cooper analyzes possible revocation

reason codes, and categorize them into repudiable and non-repudiable sets depending on

whether there is a possibility that someone other than the principal may have illegally

used the private key associated with the revoked certificate. Thus, an authentication

system like BinAuth may still allow the future executions of a binary if the corresponding

certificate is revoked with a reason code belonging to the non-repudiable category. Yet,

the work [38] also identifies some potential problems that may arise due to an attacker’s

attempts to manipulate the use of reason codes in certificate revocation systems.

In our analysis on BinAuth security, we also have additionally analyzed various pos-

sible system (OS-related) attacks to BinAuth. These attacks mainly attempt to target

the caching system, i.e. the attacker attempts to modify an already authenticated binary

without causing the Authenticated bit to be set to false. The analysis on how BinAuth

can deal with these attacks can be found in [66, 186].

Lastly, we remark that if an additional hardware-based infrastructure, such as TPM

[173], is available to support secure booting, then BinAuth can enjoy an increased secu-

rity. The Hashing key can also be stored securely by TPM.

5.5 Experimental Results and Discussion

We now briefly discuss the impact of BinAuth on the system’s performance. The two

main factors that impact the overall system performance are: (i) the Verifier’s checking

upon binary invocations; and (ii) file modification monitoring (when caching is used).

These factors affect the user’s waiting time for a binary’s execution and file operations.

We use both micro and macro benchmarks to determine the worst case and the average

performance overheads.

The benchmarks are run on an Intel Core 2 Duo PC with 2-GB of RAM running

Windows XP with SP2. Each benchmark is run five times. As we want to investigate

the effect of the cached Verifier, each benchmark is run with and without caching.

To see the difference of using different hashing algorithms, we implement and bench-

mark three algorithms: MD5, SHA-1 and SHA-256. For clarity, only the results of MD5

and SHA-256 are shown in Table 5.2. (The results of SHA-1 are always in between

those of MD5 and SHA-256). When caching is enabled, the results of different hashing

algorithms are not distinguished (shown as Cached-MAC in the table), because BinAuth

does not perform any MAC checkings during the benchmark. This is since the first run

79

is ignored12, and no binary is modified during the benchmark.

To see the difference against digital signature based authentication systems, we also

compare the performances of BinAuth with those of the Microsoft official Authenti-

code utility called SignTool [113], and another Sysinternals (now acquired by Microsoft)

Authenticode utility called Sigcheck [139]. Note that these two tools are user-mode pro-

grams. They are considered here only to illustrate the difference between non-mandatory

strategies used in Authenticode and our in-kernel mandatory authentication.

We have conducted a total of three benchmarks. The first two benchmarks investigate

the system’s performance, whereas the third investigates the tradeoffs between the cached

and the uncached verifications. The first two benchmarks are conducted under two

following scenarios:

1. Micro benchmark: The micro benchmark aims to measure the worst case perfor-

mance overhead incurred by the authentication scheme. Note that this is primarily

intended to measure the authentication costs, and not other system’s overheads.

Here, we have two micro benchmark scenarios:

(a) EXE-Intensive: This scenario executes the noop.exe program, which is a

dummy program that immediately exits, for 10,000 times. We use different

binary sizes (40 KB, 400 KB, 4 MB, and 40 MB respectively). This scenario

aims to show how executable size impacts the performance. Note that due to

the way Windows works, an execution of noop.exe still involves some DLL

invocations. When sufficiently large EXE files are used, this scenario thus

investigates the overheads of EXE-intensive authentications.

(b) DLL-Intensive: This executes the load-dll.exe program for 100 times.

This scenario is used to find out how loading a significant number of DLLs

impacts the system’s performance. The program load-dll.exe loads 278

standard Microsoft DLLs with a total file size of ∼75 MB. The size of the

load-dll.exe itself is only 60 KB.

2. Macro benchmark: The macro benchmark measures the overhead under a user’s

typical usage scenario. The selected scenario here is a user’s creations of Windows

DDK sample projects using the build command. In each test run, 482 C/C++

source files in 43 projects are built. This benchmark is chosen as it is deterministic

and non-interactive in nature; and it creates many processes and uses many files.

We benchmark SignTool and Sigcheck in the following fashion. For the micro

benchmark, we first sign noop.exe and load-dll.exe using SignTool’s signing opera-

12When caching is enabled, we ignore the result of the first run because this authentication overhead
is already shown in the uncached cases. Even if we take the first run into account, its impact will be very
small due to the high number of runs that the benchmarks are subject to.

80

tion. We then measure the total times for both authenticating these two programs (using

the SignTool’s and Sigcheck’s verification operations respectively) and executing them.

The results of two following evaluation modes on SignTool and Sigcheck are reported

under the micro benchmark: (i) evaluating EXEs only; and (ii) evaluating all binaries

(EXEs + DLLs). For the macro benchmark, we replace each development tool in the DDK

(i.e. build.exe, nmake.exe, cl.exe and link.exe) with a wrapper program. This

wrapper first authenticates the actual development tool and then invokes it. Unlike in

the micro benchmark, only the overheads of evaluating EXEs are reported in the macro

benchmark. This is because many supporting binaries are invoked during the macro

benchmark. Each invocation of these binaries also loads a different set of DLLs depend-

ing on the input file(s) being processed. Thus, it is rather hard to keep track of what

DLLs are loaded. We therefore do not report the results for evaluation EXEs + DLLs.

The results are presented in Table 5.2. For clarity, the micro benchmark results for

“noop.exe 400 KB” and “noop.exe 4 MB” are not shown because they are bounded by

those of “noop.exe 40 KB” and “noop.exe 40 MB” in a linear fashion. The slowdown

of executing a binary b is defined as: slowdownb = (timeb − timebaseline)/timebaseline.

Micro Macro
Benchmark Benchmark

Authentication EXE-Intensive DLL-Intensive
System noop.exe (40 KB) noop.exe (40 MB) load-dll.exe build

time slowdown time slowdown time slowdown time slowdown

Baseline 22.76 − 30.07 − 45.32 − 66.26 −

EXEs Only:
SignTool 2822 11637% 4850 16033% 73.49 62.16% 97.00 46.39%
Sigcheck 1720 7457% 5629 18623% 62.82 38.62% 110.5 66.72%
Uncached-MD5 25.96 14.08% 2150 7052% 45.34 0.05% 70.85 6.93%
Uncached-SHA256 30.29 33.07% 9005 29851% 45.34 0.05% 71.79 8.35%
Cached-MAC 23.20 1.93% 30.63 1.88% 45.33 0.02% 67.62 2.06%

All Binaries:
SignTool 11867 52043% 14030 46565% 16018 35244% − −
Sigcheck 4283 18772% 6186 20478% 12548 27587% − −
Uncached-MD5 26.10 14.67% 3881 12811% 128.8 184.1% 79.31 19.69%
Uncached-SHA256 30.42 33.67% 9302 30839% 201.3 344.0% 91.80 38.55%
Cached-MAC 23.25 2.14% 30.58 1.72% 45.35 0.07% 67.88 2.45%

Table 5.2: Performance benchmark results showing the authentication+execution times
(in seconds) and the slowdown factors. The worst slowdown factor for each scenario is
shown with underline, whereas the best is in bold.

We can see that the overheads of SignTool and Sigcheck makes them unusable

under DLL-intensive scenario when EXEs and DLLs are evaluated (∼352 times slower for

SignTool and ∼276 times slower for Sigcheck). If only EXEs are checked, the overhead is

at least ∼39%. Again, our main purpose here is just to show the difference between what

can be done in user-mode versus in-kernel scheme. We can see that the uncached-MD5

and uncached-SHA256 are considerably faster than SignTool and Sigcheck in almost

all cases. The only exception is the micro benchmark case of invoking huge 40-MB

81

noop.exe. Here, the uncached-SHA256 runs slower than SignTool if both EXEs and

DLLs are evaluated, and runs slower than both SignTool and Sigcheck if only EXEs are

evaluated. This is since we have BinAuth repeatedly authenticate the 40-MB length

binary for 10,000 times in each run using the more computationally expensive SHA-256

algorithm. As mentioned earlier, the results are not fully comparable for this case since

SignTool employs SHA-1 algorithm.

Now, let us compare the results of the cached and the uncached BinAuth. Under

EXEs only measurements, as also mentioned above, the running time for the uncached

BinAuth is very high in the micro benchmark scenario with SHA-256 on the 40-MB

noop.exe. The micro benchmark results on the smaller file size (40 KB) however shows

that the overhead of the uncached BinAuth is acceptable (∼14–33%). Furthermore,

the macro benchmark shows that under a typical usage, the uncached BinAuth incurs

overheads of only ∼7–8%, while the cached mode brings this down to very small value of

∼2%. In the load-dll.exe benchmark, the overhead of cached BinAuth is even almost

negligible (0.02%).13 Moving to the overheads of authenticating both EXEs + DLLs, we

can see the effect of programs which generally use many DLLs in Windows. (Typically,

there are more codes contained in invoked DLLs than EXE.) The overheads incurred by

cached BinAuth are still small (∼2% on noop.exe and ∼0.07% on load-dll.exe in the

micro benchmark; and ∼2% in the macro benchmark). The overheads of the uncached

mode however can grow to between ∼20-40% in the macro benchmark depending on the

hash algorithm used.

The third benchmark is a micro benchmark investigating the tradeoffs between the

cached and the uncached verification. Using caching means that the MAC verification is

amortized over executions, but it has added an overhead for monitoring file modifications.

The uncached mode is just the opposite. Our micro benchmark opens a file for writing

100,000 times in order to measure the worst case overhead incurred by the file modifica-

tion monitoring. We consider three following cases: (i) a clean system without BinAuth

as the baseline case; (ii) cached BinAuth when the modified file is a BinAuth-protected

binary file; and (iii) cached BinAuth when the modified file is a non BinAuth-protected

file. The results are shown in Table 5.3.

Micro Benchmark Case Time (s) Slowdown

Baseline 4.051 −
Cached-MAC with a modified BinAuth-protected binary file 6.809 68.1%
Cached-MAC with a modified non BinAuth-protected file 6.266 54.7%

Table 5.3: Micro benchmark results showing the overheads of file modification monitoring.

13Note that as this overhead is quite small, the results are dominated by the non-determinism in timing
measurements.

82

The results for the file modification benchmark show that for the cached BinAuth,

it does not matter whether the file being written to is a binary or not. File monitoring

in case (ii) and (iii) incur ∼60% overhead compared to a clean system. Note that there

is no overhead associated with file monitoring in the uncached BinAuth. Hence, under

some usage scenarios where files are frequently modified, the uncached strategy may be

preferable over the cached one although the Verifier’s overhead is higher in the former.

5.6 BinAuth and Software ID Scheme

We also complement binary authentication with a scheme called Software ID in order

to simplify binary management issues. The idea is that we associate a unique string to

a particular binary of a software product. This is similar to the recent CPE initiative

by MITRE [115]. Software ID is however different from CPE in that Software ID is

associated not with a family of software, but rather with each individual (binary) file.

Additionally, we suggest that Software ID is to be signed together with a binary file.

The benefits of combining binary authentication and Software ID are twofold. Firstly,

we can obtain the ID of an executed binary in an accurate manner right to the file level.

This allows us to perform any necessary check, such as pre-execution vulnerability check

(described in Chapter 6), on a binary. The vulnerability alert advisory may already

contain the affected Software ID. Compared to CPE, it is now possible to identify and

block only the affected file(s) in a vulnerable software product.14 Secondly, due to the

use of binary authentication, a Software ID string is securely protected against illegal

modifications.

Software ID should ideally come from the software developer. Alternatively, it can be

assigned by the system administrator. The key to ensuring the uniqueness of Software ID

lies on its standardized format. We can define Software ID as follows:

Software ID ::= 〈vendor ID || product ID || module ID || version ID〉. (5.3)

Here, ‘||’ denotes string concatenation. Module ID records the file name of the binary.

Different from CPE, version ID does not keep track of a software product version. Rather,

it is meant to keep track of file versioning in the case where a binary is updated or

patched.15 For the software product version information, we make it as part of prod-

uct ID. Similar to CPE, we can leverage on the possible existing trust infrastructures

[178], such as the domain name of the developer, for the vendor ID in the absence of a

centralized naming authority for software vendors.

14This policy of blocking only the affected file(s) can be acceptable, for instance, when the vulnerable
components are the non-essential components of the software package.

15To deal with module updates, module ID can also be used to record the module’s version information.
Having a separate version ID, however, is useful to easily track different versions (or patched versions) of
the same program.

83

Software ID can also be used to help ensure controlled update on (protected) binaries.

We can stipulate that a signed binary can only be replaced with another signed binary

that satisfies the following requirements:

• The new binary is of the same file name.

• It is correctly signed by the same developer.

• The binary has the same Software ID, but with higher version ID information.

Upon a valid binary update, the database (Digest file) is thus accordingly updated.

Using this mechanism, we can therefore protect the binaries against old-attacks attempt-

ing to exploit the software update process. Note that this mechanism does not need an

additional file/signature revocation list as in [9, 29].

5.7 Chapter Summary

We have analyzed the problem of ensuring trusted execution of binaries on a host. We also

have developed a framework that characterizes a binary authentication system, and how

its design options may affect its ability in ensuring trusted executions. Using BinAuth, we

have shown how a mandatory in-kernel authentication system can increase the trust on

good software execution but with acceptable performance overheads, even on a complex

OS like Windows. BinAuth integrates well with PKI without having to heavily rely on it.

Additionally, we have shown how BinAuth can be combined with a simple Software ID

scheme to simplify binary version management and vulnerability alert processing.

84

Chapter 6

Towards Automated Vulnerability

Alert Processing

The number of security vulnerabilities discovered in computer systems has increased

explosively [30]. In order to keep track of security alerts, administrators generally rely

on vulnerability alert repositories/databases1 such as [174, 145, 171]. Such databases are

however designed primarily to be read and understood by humans. Given the speed at

which an exploit becomes available once a vulnerability is known, and the frequency of

occurrence of such vulnerabilities, manual human intervention becomes too slow, time-

consuming and possibly ineffective [31] (see also background information in Section 2.4).

In this chapter, we address the challenge to provide a vulnerability-free execution

of a program with respect to the (publicly) known vulnerabilities. This constitutes an

important step in securing the PPLC. Given the limitations of the manual processing

of alert information, we incorporate a framework for automating vulnerability alert pro-

cessing on a host. The framework is based on our work [160], which was developed when

vulnerability alert databases for automated processing were still not addressed as widely

as today. More specifically, our framework aims to achieve the following objectives:

• To define a coordinated vulnerability database, whose entries that are meant to

be machine-readable and processable. The database must be comprehensive and

up-to-date in its contents, and is coordinated from multiple different existing sources

in a well-structured manner. In our approach in [160], we assume a representation

using the relational database model.

• To represent each alert information as a specification data by means of a vulnera-

bility description expression scheme rather than as a code (i.e. binary or script).

The specification should enable efficient operation of a vulnerability scanner. In

1As previously mentioned, we follow a common practice in vulnerability management field to refer to
a vulnerability alert repository as a vulnerability database. This is despite the alert entries are narrative
and not structured in a well-defined database model, e.g. the relational model.

85

addition, it should make it possible for the scanner to relate different vulnerability

entries and determine the possibility of a “chain of exploits”.

• To define and develop a proof-of-concept vulnerability scanner which performs an

automated alert processing and vulnerability scanning on a host. Such a scanner

must be general purpose in that its mechanisms are independent from any specific

entry definitions and not tied down to limited vendor-specific entries. Further-

more, its operations must be minimal and should be open to possible scrutiny and

verification.

Our work published in [160] proposes example mechanisms that achieves the above-

mentioned objectives. Since the creation of an integrated database should involve many

relevant parties, the proposed mechanisms are however not meant to be a standalone

definitive solution. Rather, the main contributions of our work are the definition of the

framework and the identification of its key components and required properties for an

effective automated vulnerability processing. Despite being published several years back,

our results are in line with the present standardization efforts to automate vulnerability

processing, such as OVAL [117], CPE [115] and SCAP [126]. With respect to these

standardization results, we are pleased to see how the vulnerability management field has

been progressing in recent years, and that our published work may have played a part

in spurring the developments of machine-oriented vulnerability alert processing. Later

in this chapter, we contrast our framework with these on-going standardized results. We

also point out how the standardization results still need to be extended to realize the

fully-automated vulnerability processing solution as envisioned in our framework.

The rest of this chapter is organized as follows. Section 6.1 surveys the existing works.

Section 6.2 gives an overview of our proposed framework. Section 6.3 then describes our

proof-of-concept vulnerability database, and Section 6.4 covers our vulnerability descrip-

tion expression scheme. A prototype scanner is described in Section 6.5. Section 6.6

discusses deployment issues as well as other aspects, and Section 6.7 gives a summary.

6.1 Existing Works and Challenges

We discuss below various works related to the three components of our proposed frame-

work, namely: machine-oriented database, automated vulnerability scanner, and vulner-

ability description scheme. We additionally highlight the challenges found in some of the

existing systems, which have provided motivations for our framework’s design goals.

6.1.1 Machine-Oriented Vulnerability Database

There exist a number of vulnerability databases which reorganize and integrate various

vulnerability alerts into one repository that is searchable based on specified attribute

86

values. Examples are ICAT2, Public Cooperative Vulnerability Database [136], and the

Open Source Vulnerability Database (OSVDB) [171]. Although these databases are

searchable, they are however not specifically designed for any automated applications.

Krsul [87] proposed a comprehensive taxonomy of vulnerabilities for possible further pro-

cessing or automated manipulation. A database definition was also proposed. However,

no specific applications were co-designed or shown to work together with it.

National Vulnerability Database (NVD) [170] is an active vulnerability database man-

aged by NIST, based on a recent initiative supported by the U.S. Department of Home-

land Security. It hosts the U.S. government repository of vulnerability management

data, and can be searched based on CVE [116] or OVAL [117] query. NVD was specially

created with the intent of reorganizing and aggregating vulnerability information from

multiple existing databases into a standardized database. MITRE also maintains OVAL

Repository [119], which hosts OVAL Definitions, i.e. machine-readable tests written in

the OVAL Language [117]. These two databases are thus in line with our proposal for

an integrated and unified machine-oriented database.

6.1.2 Host-based Vulnerability Scanner

There have been a number of popular tools that scan for any presence of vulnerability

or configuration weaknesses in a system. Some examples are COPS [46], Ferret [147],

SATAN [144], and Nessus [128]. In code-based scanners such as [46, 144], the logic

of vulnerability checking is embedded tightly in the scanner’s code. This means that

including a new vulnerability check requires one to update the scanner’s code or its sub-

component(s). Most recent scanners such as [147, 128] take a modular approach. A

vulnerability check is usually represented as a “plug-in module”, which can be fed to

the scanner to perform the test. Nessus writes its vulnerability checks in a scripting

language called NASL [11]. Vulnerability checks written in languages like NASL however

can potentially be too powerful, which may allow for possible misuse. NASL resembles

code rather than data. Thus, an attacker may target the plug-in modules so as to perform

its own unauthorized operations on a target host. In contrast, our proposed framework

uses a declarative language to specify a vulnerability check. The actions are performed

by a generic scanner which is made available for third party inspection.

Windows Update [185] is a Microsoft online tool for automatically updating Windows

OSes and and its installed components with recent patches. It illustrates some important

issues with vendor-specific automated tools. Windows Update and its more automatic

cousin Windows Software Update Services [184] are closed systems, and follow a “black-

box” software update model. This leads to the following issues:
2The database used to be available at http://icat.nist.gov/icat.cfm. The site seems to be no

longer in operational, and access to it is referred to the National Vulnerability Database (NVD) [170].

87

1. Trust and privacy issue: As there is no open specification or possible inspection

on the scanner, no complete trust can be put on the scanner. It is difficult to

determine if the scanner performs the correct actions while preserving the local

system security policy. Since the update system is typically hosted on the vendor’s

server, there is also no guarantee that any local sensitive information will not leak

to external entity(ies).

2. Non-standard vulnerability checking issue: Windows Update behaves more

as a vendor’s patch-updating mechanism rather than a standardized vulnerability

entry checking. Thus, little feedback is given back to users in terms of a standard-

ized vulnerability report information. This might be too limiting for an administra-

tor who, for example, wants to ensure that his/her systems are up-to-date against

recent vulnerability reports regardless of whether patches for the vulnerabilities are

available or not.

Thus, in contrast to this black-box and vendor-specific update model approach, we pro-

pose an open system which can cater to heterogeneous environments.

6.1.3 Vulnerability Description

Besides describing a vulnerability entry, our proposed vulnerability description scheme

also aims to allow the scanner to analyze a potential chain of exploits involving multiple

vulnerabilities. More specifically, the specification must take into account of the effects

of a vulnerability in a way that allows us to verify whether they can induce the necessary

condition(s) for the exploitation of other vulnerabilities.

Modeling vulnerabilities and their interactions can be traced back to the Kuang sys-

tem [17]. Baldwin proposed a rule-based system called Kuang, and developed a sample

Unix scanner called U-kuang [17]. Based on a set of deduced access privileges on a host,

the system tries to find any ways the host’s access policy can be violated. COPS [46]

incorporated the U-kuang system into its host-based scanner. NetKuang [189] extended

the rule set in Kuang to allow it to also work in a networked environment. Based on

the concepts from Kuang, the KuangPlus system [70, 172] was developed as a Perl-based

scanner. Our prototype scanner is also written in Perl, and is inspired by KuangPlus

due to Perl’s versatile text processing facilities. Given this Perl-based scanner, we pro-

pose our vulnerability description scheme which we find easy to describe and amenable

for vulnerability-chaining analysis. Unlike KuangPlus [70, 172], we take a vulnerability

check as a declarative data rather than a code.

Open Vulnerability and Assessment Language (OVAL) [117] is a security assessment

language from MITRE, which is supported by the U.S. Department of Homeland Security.

The OVAL Language specifies how to check a host for the presence of software vulnera-

88

bilities using XML. The vulnerability checks are to be verified by a scanner called OVAL

Interpreter. The present OVAL Definition Language however does not allow us to ab-

stract the effects of the exploitation of a vulnerability. [100, 34] presented the DESEREC

vulnerability definition language, which extends our Movtraq description language [160]

by using the OVAL format in order to enable vulnerability-chaining analysis.

6.2 Movtraq Framework: System Overview

We call our proposed framework for automated host vulnerability alert processing as

Movtraq (Machine Oriented Vulnerability and Tracking). Figure 6.1 shows the system

overview of Movtraq. The integrated Movtraq vulnerability database is designed to be

compiled from multiple sources and is usable directly by an automatic scanner.

...

Existing Narrative

Databases

C
o

n
v
e

rs
io

n
 +

 I
n

te
g

ra
ti

o
n

Integrated

Machine-oriented

Database

Vulnerability Scanner
(Subset) Local

Database Copy

Local System

Configuration

Collector

Vulnerability

Analyzer

User

Interface

Figure 6.1: System overview of Movtraq automated framework, showing the vulnerability
database and scanner. Note that (a subset of) the database may be replicated in the
target’s host or a proxy server within the same administrative domain.

We now explain the three main components of the framework, namely: integrated

database scheme representation, vulnerability description expressions, and automated

scanner.

6.3 Movtraq Vulnerability Database

6.3.1 Design Goals

As mentioned, our philosophy for Movtraq database is that vulnerabilities should be

stored as well-structured data/description. The data can be stored in a database (e.g. re-

lational database), or any data description language such as XML. Our proposed database

is designed with the following criteria:

89

• Each vulnerability entry includes the general information of the vulnerability, the

conditions (pre-requisites) in which it can affect a host, and its consequences.

• The pre-requisites and the consequences of a vulnerability are described using an

abstraction which we call a vulnerability description expression scheme. It allows a

precise formulation of the nature of the vulnerability, and is machine processable.

• The structure of the database should allow easy retrieval both by users and automated-

tools via SQL.

6.3.2 Content of a Vulnerability Entry

The main challenge in designing the new database is to determine what the actual con-

tents of each vulnerability entry should be. For our proof of concept, we focus on what the

database should contain rather than on constructing an optimal database schema. The

data fields corresponding to a vulnerability entry fall into the following three categories:

General Information

This portion mostly contains references to several public vulnerability databases such as

CERT and Bugtraq. The purpose of these fields is to give the user a reference to the

original source of information. This portion is mainly for human understanding.

Vulnerability Conditions

This second category provides the main content of the vulnerability information. A vul-

nerability normally exists within a context. Therefore, it can be described in terms of its

component factor and the associated environmental factors. By “component factor”, we

mean the system component (i.e. application or OS) where the vulnerability originates.

“Environmental factors” refers to the settings or services in the local host which make it

subject to the vulnerability.

We distinguish two following types of presences of a vulnerability on a host:

• vulnerability that currently exists on the system; and

• vulnerability that potentially exists on the system.

There are four possible combinations of the checking results on the component and

environmental factors of a vulnerability, which are diagrammatically shown in Table 6.1:

Case 1: Component factor: match & Environmental factors: match. We will

obtain this result when a vulnerable component exists on a host and the host’s

settings match all the required environmental factors. In this case, we will conclude

that the vulnerability exists on the host.

90

Environmental Factors
Match No-Match

Match
Vulnerability (Potential)

Component Exists Vulnerability
Factor

No-Match
Vulnerability Vulnerability

Free Free

Table 6.1: Combination of checking results between component and environment factors.

Case 2: Component factor: match & Environmental factors: no match. This

occurs when we can detect a vulnerable component on the host, however the host’s

settings do not match the environmental requirements. While the vulnerability

is currently not applicable yet, it has the potential to affect the system should

its settings change. For example, consider the case of “Apache Web Server Chunk

Handling Vulnerability” (http://www.cert.org/advisories/CA-2002-17.html).

Even if Apache is installed in our system, the host will not be affected by this

vulnerability as long it does not provide http services.

Case 3: Component factor: no match & Environmental factors: match. In this

case, the vulnerability would appear to be not applicable. However, there is a subtle

issue. Consider the case of OpenSSL which previously had several exploitable stack

overflow vulnerabilities (http://cve.mitre.org/cgi-bin/cvename.cgi?name=

CAN-2002-0656). OpenSSL may not be installed as an individual component. As

such, even if there is a database entry for the OpenSSL vulnerability, this would

return a negative result in terms of the vulnerability component factors. However,

OpenSSL is commonly included in various applications such as Apache, Sendmail

and Bind. Thus, it is necessary to check for the existence of such applications. To

deal with this case, we therefore need a vulnerability entry to list all the affected

applications based on the dependency of the vulnerable software component(s).

Case 4: Component factor: no match & Environmental factors: no match.

The vulnerability does not exist on the local host. However, the remark on vulner-

ability component dependency in Case 3 also applies here.

Vulnerability Impact (Consequences)

The third category of data fields concerns with the impact of vulnerability, which de-

scribes the possible consequences of a vulnerability if it is successfully exploited. In our

proposed database, it is represented using the vulnerability description expression. This

enables checking of the relationship among different vulnerabilities and whether they can

affect one another.

91

6.3.3 Database Structure

As we have argued, the exact structure of the database is not very important. Rather,

it is the selected content and having it in a machine processable format. In our proof-of-

concept design, the database has seven main entities (tables). The description of these

entities is given in Appendix B.

6.4 Vulnerability Description Expressions

As shown above, both the environmental pre-requisites and consequences of a vulnera-

bility entry require a machine friendly specification. After studying ∼1,000 vulnerability

alerts from CERT advisory database, we found that most of the information for these

two categories can be described effectively using the vulnerability description expres-

sions as describe below. These expressions are designed to be easily processable using

text-processing based vulnerability scanners, such as our Perl-based prototype scanner

inspired by KuangPlus [70, 172].

An expression is written with the following syntax:

〈V ulnerability Expression〉 := 〈Target Object〉 | 〈Action〉 〈Target Object〉. (6.1)

An action is written prefixed by ‘@’. Table 6.2 illustrates the actions and the types

of the corresponding target objects. Here, we use a concise notation mainly for brevity.

A real system may also support multiple syntaxes.

Syntax Semantics

@G 〈u|g〉 Gain 〈 user object u | group object g〉

@R | W 〈f |m〉 Read | Write 〈 file object f | memory object m〉

@A 〈f |m〉 Access (read and write) 〈 file object f | memory object m〉

@C 〈f〉 Create 〈 file object f〉

@K 〈f |m〉 Corrupt 〈 file object f | memory object m〉

@X 〈f |c〉 Execute 〈 file object f | code object c〉

@S | I 〈n|a〉 Crash | Disrupt 〈 node object n | application object a〉

@D 〈n|a|s〉 Deny 〈 node object n | application object a | service object s〉

@U 〈r〉 Use 〈resource object r〉

@E 〈r〉 Exhaust 〈resource object r〉

Table 6.2: Actions in the vulnerability description expressions.

Rather than giving a formal definition of the target objects, we have listed the target

object examples in Table 6.4. The following prefixes are used: ‘%’ is used to denote

an actual value; ‘#’ is used to denote a symbolic value; and ‘&’ is used to express

users/groups associated with an application/service. As our proof-of-concept implemen-

tation is for Unix systems, the examples and objects are also Unix based. Vulnerabilities

for other OSes may require extension to the types of target objects and actions.

92

Syntax Semantics

〈u〉: User Objects:
u#R Remote user
u#L Local user
u#S Super user
u#* All users
u#P Physical user
u#U User whose privilege is beyond that of the current user

u%〈uid〉 User with UID=uid (e.g. 100)
u%〈user name〉 User with the specified user name (e.g. ‘nobody’)

u&App User running the corresponding application process
u&Svc User running the corresponding service (i.e. daemon)

u&Kernel User who can access or control OS kernel

〈g〉: Group Objects:
g#* All groups

g&〈App|Svc〉 Group of the corresponding application process/service
g%〈gid〉 Group with GID=gid (e.g. 50)

g%〈group name〉 Group with the specified group name (e.g. ‘sys’)

〈f〉: File Objects:
f#* All files

f#passwd Pathname corresponding to passwd file (i.e. ‘/etc/passwd’)
f#shell Pathname corresponding to shell files (e.g. ‘/bin/bash’)

f#system Pathname corresponding to system files in OS
f#*(4777) All files with permission 4777

f#F Files beyond the current user’s access rights
f%〈file name〉 File with the specified file name (e.g. ‘/etc/httpd/httpd.conf’)

f&App File associated with the running application process

〈m〉: Memory Object:
m#M Memory area beyond the current user’s access right

〈c〉: Code Object:
c#(〈u〉) Piece of code with execution privilege of user object u, e.g. privilege escalation

〈n〉: Node Objects:
n#S Target node where an application is installed and/or related service is running
n#L Nodes in a local area network
n#N Network

n%〈IP1[−IP2]〉 Node with the specified IP address (may be a range)

〈a|s〉: Application Objects and Service Objects:
a%〈AppName〉 Application with the specified AppName (i.e. as listed by ‘ps’ command)
s%〈SvcName〉 Service with the specified SvcName

〈r〉: Resource Objects:
r#M Memory

r#CPU CPU
r#B Network bandwidth
r#D Disk space

Table 6.3: Objects in the vulnerability description expressions. The prefix ‘%’ is used to
denote an actual value, ‘#’ for a symbolic value, and ‘&’ for expressing users/groups of
an application or service.

93

6.4.1 Examples using Vulnerability Expressions

The following examples use the expressions to describe various vulnerability consequences:

• @D n#N: Denial of service for the whole network (in: Cisco IOS Interface Blocked

by IPv4 Packet, CERT ID: VU#411332).

• @G u#S : Gain superuser right (in: Linux Kernel Privileged Process Hijacking

Vulnerability, Bugtraq ID: 7112).

• @G u#R : Gain remote user right (in: Apache htpasswd Password Entropy Weak-

ness, Bugtraq ID: 8707).

• @R f%/etc/passwd : Read file ‘/etc/passwd’.

• @X f#*(4777) : Execute a file with setuid permission.

The following are examples of portions of the machine oriented fields in the database

for several vulnerabilities:3

• MySQL Password Handler Buffer Overflow Vulnerability:

CVE ID: CAN-2003-0780

Bugtraq ID: 8590

Vul Con: @G u%mysql; @G u#L; @X c#(u%mysql)

Vul OS: null

Vul App: (Various Mysql versions)

Env User: u#L

Env File: null

Env OS: null

Env App: mysql

Env Remote: No

Exploit: No

• Linux Kernel IOPERM System Call IO Port Access Vulnerability:

CVE ID: CAN-2003-0246

Bugtraq ID: 7600

Vul Con: @A f#F

Vul OS: (Various Linux distributions)

Vul App: null

Env User: u#L

Env File: null

Env OS: Linux kernel 2.4.0 - 2.4.21, 2.5.0 - 2.5.69

Env App: null

Env Remote: No

Exploit: No

3For simplicity, multiple expressions are separated by semicolon.

94

• Linux 2.4 Kernel execve Race Condition Vulnerability:

CVE ID: CAN-2003-0462

Bugtraq ID: 8042

Vul Con: @A f#F; @X c#(u#S); @G u#S

Vul OS: (Various Linux distributions)

Vul App: null

Env User: u#L

Env File: f#*(4111)

Env OS: Linux Kernel 2.4.0 - 2.4.21

Env App: null

Env Remote: No

Exploit: Yes

• Multiple Vulnerabilities In OpenSSL:

CVE ID: CAN-2002-0656

Bugtraq ID: 5363

Vul Con: @X c#(u&App); @G u#L

Vul OS: null

Vul App: (Various Apache versions and OpenSSL-based applications)

Env User: u#R

Env File: null

Env OS: null

Env Svc: (Corresponding service provided by the vulnerable application)

Env Remote: Yes

Exploit: Yes

6.4.2 Translation Issues

From our experiments in translating text-based vulnerabilities into vulnerability expres-

sions, we encountered the following issues:

• The vulnerability description in the narrative database sources is sometimes rather

vague. Some examples are: “could expose sensitive information to local attackers”

(Bugtraq ID: 8233), “gain access to sensitive information” (Bugtraq ID: 9558), or

“leads to unauthorized access to attacker-specified resources” (Bugtraq ID: 9778).

We however require a more precise consequence, which either means settling for a

general (high-level) consequence, or that much more work is required to assess the

vulnerability.

• Our vulnerability expression language is designed to capture general expressions

at the OS level. It does not express various application specific descriptions, such

as: “to access variables outside the Safe compartment” (Perl, Bugtraq ID: 6111),

or “could compromise the private keys of ElGamal signing key implementation”

95

(GnuPG, Bugtraq ID: 9115). Such consequences are approximated by our transla-

tion into the closest vulnerability expressions capturable by our language. In the

two examples above, we can rewrite them into: access of memory and files that are

beyond the current user’s right respectively.

• Some vulnerability consequence entries, particularly those of CAN (didate) type,

are listed as “unknown consequence” (e.g. Bugtraq ID: 10428). Hence, we either

have to ignore such consequences until they are known and specified, or use a special

notation to indicate unknown consequences.

6.5 Movtraq Vulnerability Scanner

6.5.1 Design Goals

Our objective is build an automatic scanner that can use the defined database to perform

the following tasks:

• Check whether a given vulnerability exists on a local host;

• Notify the existence of potential vulnerabilities on a local host;

• Scan a local host for all possible vulnerabilities;

• Analyze the relationship among different vulnerabilities, e.g. whether one vulner-

ability can be exploited to lead to another.

6.5.2 Implementation

To demonstrate the use of the Movtraq database, we implement a prototype automatic

vulnerability scanner called the Movtraq vulnerability scanner. The scanner runs on two

different versions of Unix, namely Red Hat Linux and FreeBSD. This is to demonstrate

some degree of platform independence.

Our prototype scanner runs as a user-mode application following its invocation by

the administrator. An alternative operation mode is to integrate it into the kernel,

which then checks a particular binary prior to the binary’s execution. To avoid any

significant delay in binary execution, this pre-execution vulnerability scanning would be

more feasible if the host maintains a local (up-to-date) copy of the vulnerability database,

or that the database is hosted by a server within its network. These possible deployment

scenarios of the database are discussed more in Section 6.6.1. To reduce the database

size, the host can choose to copy only the relevant entries based on its installed software

packages. In our prototype, which is aimed at highlighting the feasibility of the machine-

processable database and corresponding automated scanner, we opt to implement a user-

mode scanner which can be run interactively by the administrator.

96

The overall structure of the scanner together with the database is depicted in Fig-

ure 6.1. The integrated Movtraq database is stored in MySQL. The scanner consists of a

local system configuration collector which collects information about the OS (i.e.: which

processes are running, which ports are open, hardware details), applications, and services

on the system. Software versions are obtained by using the rpm utility on Red Hat and

the pkg info utility on FreeBSD. The scanner is written in Perl, and queries the MySQL

Movtraq database using SQL.

An abbreviated sample log from running the scanner illustrates how OS, application,

and environmental checkings are performed:

1. Apache Mod_Auth_Any Remote Command Execution Vulnerability

Application version check: positive.

Application environment (service port) check: negative.

Conclusion: source application is detected, default port required

is not open. Potential vulnerability exists but does not affect

current system configuration.

2. Sun One/iPlanet Web Server Vulnerability to DOS

Application version check: negative.

Conclusion: source application not detected, safe from vulnerability.

3. Linux Kernel IOPERM System Call IO Port Access Vulnerability

OS version check: positive.

OS environment (running kernel version) check: positive.

Conclusion: vulnerability detected!

4. MySQL Password Handler Buffer Overflow Vulnerability

Application version check: positive.

Application environment (process object) check: positive.

Conclusion: vulnerability detected!

Only some of the pertinent checks from the log are shown above to illustrate the

following cases:

Example 1: Apache vulnerability exists, but the environmental factor check fails since

the required port is not open.

Example 2: no vulnerability since the vulnerable application is not installed.

Example 3: OS vulnerability exists, so only OS component and the (environmental)

kernel status checking are used.

Example 4: vulnerability inherent to MySQL, OS environment checking is skipped as

it is not required.

6.5.3 Vulnerability-Chain Analysis

An interesting use of the scanner is that it can be used to test if existing vulnerabilities

can be combined (chained) together to create more serious vulnerabilities. This mimics

97

what a hacker might do to take advantage of indirect weaknesses on the system.

Consider the following example which is typical of a privilege escalation attack. Sup-

pose the system has the following two vulnerabilities:

Name: Buffer Management Vulnerability in OpenSSH

Vul ID: 57

CVE ID: CAN-2003-0693 Bugtraq ID: 8628

Vul Con: @G u#L Vul OS: null

Vul App: (Openssh applications) Env Usr: u#R

Env File: null Env OS: null

Env App: (Services provided by the vulnerable applications)

Env Remote:Yes Exploit: No

Name: Linux 2.4 Kernel execve Race Condition Vulnerability

Vul ID: 48

CVE ID: CAN-2003-0462 Bugtraq ID: 8042

Vul Con: @G u#S Vul OS: (various Linux distributions)

Vul App: null Env Usr: u#L

Env File: f#*(4111) Env OS: Linux kernel 2.4.0 - 2.4.21

Env App: null

Env Remote:No Exploit: Yes

In this example, the scanner discovers that both vulnerabilities are present. From

Vul ID: 57, a remote user (u#R) can gain the local user access (@G u#L), and this can

chain onto Vul ID: 48 which has two environmental factors (i.e. the local user access:

u#L and a setuid executable file:f#*(4111)). Thus, the scanner discovers that a remote

user may be able to exploit the two vulnerabilities to gain the local root access.

The vulnerability-chaining analysis illustrates the benefit of a machine oriented ap-

proach and the use of vulnerability expressions to analyze the relationships among the

vulnerabilities.

6.6 Discussion

6.6.1 Deployment Strategies for Movtraq

The prototype Movtraq system is sufficiently useful to be deployed in a number of ways.

Some of the potential scenarios are depicted in Figure 6.6.1:

Scenario 1: Local vulnerability database, local scanner.

Here, each local machine hosts its own database. The Movtraq database is meant

to have been (securely) downloaded from an authoritative server. This scenario has

the advantage that all operations can be done locally. The disadvantage is that an

up-to-date database has to be maintained on every host.

98

Internet

Scenario 2

Scenario 3

Scenario 1

Figure 6.2: Deployment options for Movtraq vulnerability database.

Scenario 2: Organization-wide database, local scanner.

This simply extends Scenario 1 to an organizational context where there is an

organization-wide database server. Where multiple machines have exactly the same

configuration, one may choose to check only a subset of the machines.

Scenario 3: Internet-based database, local scanner.

Lastly, as in the automated update systems, a database server somewhere on the

Internet serves as the database repository.

6.6.2 Movtraq and Recent Standardization Efforts

Our Movtraq framework was proposed several years back when machine-oriented vulner-

ability database and automated processing were still not widely addressed. At present,

there exist several on-going collaborative standardization efforts, including those con-

ducted by the U.S. Government-sponsored organizations, such as OVAL [117], National

Vulnerability Database (NVD) [170], CPE [115] and SCAP [126].

Both OVAL Repository [119] and NVD [170] were specially created to be a unified and

machine-oriented vulnerability database. These two databases are thus in line with our

proposal of Movtraq vulnerability database. The OVAL initiative also has a language,

called OVAL Language [120], which specifies how to check a host for the presence of

vulnerabilities. A vulnerability entry is specified in XML in order for a scanner, called

OVAL Interpreter, to perform the corresponding check(s) on a target machine. A sample

OVAL Interpreter, although not a fully functional scanning tool yet, is freely available

[118]. Thus, as an on-going collaborative efforts, the OVAL initiative does share the same

philosophy and many common goals with our proposed framework.

The present OVAL Definition Language however does not allow us to abstract the

effects of the exploitation of a vulnerability. As such, the language does not facilitate easy

support for the vulnerability-chaining analysis, which we aim to provide with Movtraq.

This deficiency led [100, 34] to present their own definition language, which extends

OVAL definition with ideas taken from our Movtraq vulnerability description expressions.

99

They describe vulnerabilities in terms of the conditions (pre-conditions) that make them

exploitable and the effects (post-conditions) on the victim system.

In our present approach with Movtraq, objects involved in the checking of environ-

mental factors are stored as database fields. The scanner is assumed to implicitly know

how to operate on them. For an actively-evolving standardization effort like OVAL,

such a rather rigid model may be too limiting. A database model worth investigating

is one that standardizes all possible scanner’s basic checks on the target machine. Such

standardized checks could also be parameterized to make them as generic as possible.

These checks are then recorded as database entries. An entry thus specifies how the

check should be performed (on various applicable OSes), fields containing the values of

objects involved in the checking, and notational descriptions of the pre-conditions and

the consequence as in Movtraq. In this model, the capabilities of a scanner are thus

basically limited by the checks defined in the database. This would answer the growing

nature of on-going standardization effort on vulnerability language. At the same time,

it will establish a set of standardized basic operations that can be performed on a target

host, an area which is presently still not well addressed in OVAL. Moreover, as discussed

earlier, the model will also allow for vulnerability-chaining analysis.

To describe vulnerable components, OVAL makes use of CPE [115]. Unlike CPE, our

proposed Software ID scheme (see Section 5.6) is associated not with a family of software,

but with each individual binary file. Using Software ID thus gives us a flexibility in

choosing to block the execution of either a particular vulnerable binary or the whole

software package. The former is useful when the vulnerable binary is a non-critical

component of a software package. In the latter, we can simply put wildcards (‘*’) on both

module ID and version ID (see Eq. 5.3) in the Software ID of the vulnerable component.

6.7 Chapter Summary

We believe that there is a pressing need for vulnerability databases that allow for auto-

mated host vulnerability processing. We have demonstrated a proof-of-concept database

that allows effective integration of vulnerability data from multiple sources and can be

used directly by a scanner. The proposed Movtraq scheme decouples the vulnerability

information from its processing by storing a vulnerability description as declarative data.

The scanner simply collects a system’s local information and analyzes whether vulnerabil-

ities apply on that host. Due to our use of the vulnerability description expression scheme

in describing a vulnerability’s pre-requisites and consequences, the analysis of potential

chain of exploits involving multiple vulnerabilities becomes possible. Our prototype sys-

tem was designed for Unix-based systems. However, we believe that the fundamental

concepts in our design should still be substantially applicable to other OSes.

100

Chapter 7

Lightweight and Near Real-Time

Certificate Revocation Schemes

As previously mentioned, timely and efficient certificate revocation service is a critical pre-

requisite for host security. This revocation service must be reliably available to ascertain

that public keys belonging to external parties are not revoked. In our PPLC context, the

service is thus essential for secure software distribution, including possible mobile code

execution on a local host (Step 1 of the PPLC); and public-key based interaction of a

running program with external hosts (Step 4). Disregarding such revocation verification

would result in a catastrophic compromise to a host security.

In X.509-based PKI [75], certificate revocation is mainly supported by Certificate

Revocation List (CRL) [37]. However, CRL is widely perceived to be costly, and is

attributed as one of the main impediments to a successful global PKI deployment [96,

64]. Among others, CRL suffers from high bandwidth requirement and (generally) low

revocation timeliness guarantee. Several alternatives, such as Online Certificate Status

Protocol (OCSP) [124], have been proposed. OCSP offers a potentially real-time recency,

but requires the Certificate Authority (CA) to respond to any incoming query in real

time with a signed message. As such, it imposes significantly higher computational and

network requirements on the CA. Additionally, there exists a privacy issue since the

information of all verifiers validating a certificate becomes known to the CA.

In this chapter, we look at a satisfactory revocation solution to support two important

emerging trends on the Internet. Firstly, the growth of transactions relying on certifi-

cates increases the need for timely certificate revocation service. Secondly, rapid growth

in mobile devices, whose power and bandwidth are limited, mean that any revocation

solution should be low in terms of computation, bandwidth and storage requirements on

the verifier. The lack of lightweight and timely revocation today means that many ap-

plications, particularly on bandwidth- and processing-limited clients, are unable to offer

proper revocation checking [141, 96]. Although this situation is slowly changing, it is still

101

unsatisfactory given the above trends.

More specifically, our goal here is to have a practical and scalable revocation solution,

which provides near real-time certificate revocation scheme (e.g. from 1 to 10 minutes) yet

allows for fast verification and low bandwidth on the verifiers. In addition, we would like

to avoid excessively high overheads on any of the entities so as to avoid any undesirable

service bottlenecks. Lastly, we also aim to provide privacy assurance so that queries

from the verifiers are unknown to external parties, including the CA. Although the CA

is trusted for managing certificates, transaction information involving a certificate should

not necessarily be made available to the CA.

We propose two new and simple revocation schemes, CREV-I and CREV-II, which

take advantage of the availability of the “Extended-Validation SSL Certificate” (EVC)

[28] to utilize a principal’s server as the directory for its own revocation information. We

argue that this new proposed revocation setting gives a simple and practical solution to

the revocation problems, and allows CREV-I and CREV-II to achieve the above men-

tioned objectives. CREV-I scheme enhances CRS/NOVOMODO [110, 111] to achieve the

stated objectives; whereas CREV-II scheme enhances OCSP and makes it more scalable.

In addition, the new setting also provides suitable incentive models for all the involved

parties to achieve both revocation timeliness and scalability.

Another contribution of this chapter is the use of a more realistic cost-analysis frame-

work for evaluating certificate revocation schemes. We follow the approach taken in

[99, 72] which uses empirical revocation data from VeriSign. Our framework is a sub-

stantial extension of [99, 72] by incorporating the following: the revision of the CRL size

derivation using a more accurate calculation method; and the generalization of the CRL

size estimate with both certificate generation and the CRL issuance in minute(s) instead

of day(s). Furthermore, our analysis incorporates more realistic features in order to de-

rive more realistic derivations of costs, which include: a more realistic query model on

revoked certificates, the derivation of query probability on revoked and valid certificates,

and more accurate accounting of message sizes based on the standardized CSI formats.

Our evaluation demonstrates that the two CREV schemes achieve good scalability on

the part of the CA and the principals servers, and incur low computation and bandwidth

costs on the part of the verifier.

The remainder of this chapter is organized as follows. Section 7.1 provides a frame-

work for designing revocation schemes, and gives a brief survey of existing schemes and

revocation-cost analysis works. Section 7.2 provides additional background on EV Cer-

tificate, CRS/NOVOMODO, and the cost analysis of [99, 72]. We explain our revocation

setting and CREV schemes in Section 7.3. We then elaborate our realistic cost-calculation

framework, and analyze CREV schemes as well as several existing ones in Section 7.4.

Section 7.5 discusses the comparison results, and Section 7.6 concludes this chapter.

102

7.1 Certificate Revocation Framework and Related Works

Let us first establish some definitions for use in our discussion in this chapter. We refer to

the subject of a certificate as principal, the principal of an Extended Validation Certificate

(EVC) as EVCP, and the party verifying certificates as verifier. We also adopt the term

Certificate Status Information (CSI) [73] to denote CA’s released information pertinent

to the validity of a certificate. Hence, CSI encompasses CRL data, OCSP messages, and

hash tokens in CRS/NOVOMODO. Certificate Management Ancillary Entity (CMAE) is

a generic term for a designated repository from which a verifier may obtain the CSI.1 We

define revocation latency (based on [4]) as the time interval between when a CA makes

a revocation record and when it makes that information available to the verifiers. A

low revocation latency means a high revocation timeliness guarantee. In a per-certificate

revocation scheme, such as CRS/NOVOMODO, OCSP and ours here, we assume that

the CA will not unnecessarily delay publishing the CSI indicating a revocation event in

contrast to a periodic batch-processing mechanism.2

Below, we first outline a framework for designing certificate revocation schemes. We

then briefly summarize related existing revocation schemes, and mention related works

on the cost analysis of revocation schemes.

7.1.1 Framework for Certificate Revocation Schemes

We can characterize certificate revocation schemes based on the following four properties:

(P1) Placement of directory: The directory (or sometimes referred to as cache), which

holds a copy of CSI issued by the CA, can be placed in either: the CMAE as a

designated repository, the verifier, or the principal. It is also possible that no di-

rectory is employed at all, such as in NOVOMODO and OCSP with the CA as the

Responder.

(P2) Scope of released CSI: A released CSI is verifiable to provide status information

for either: all certificates, a subset of certificates, or a single certificate issued by

the CA. CRL data, for instance, gives the statuses of either all (as in the standard

CRL) or a subset of (as in the Partitioned CRL) certificates. In contrast, CSI in

CRS/NOVOMODO or OCSP accounts for an individual certificate.

(P3) Positive or negative status representation: The CA can state the statuses of

certificates using either a negative (black-listing) approach, or positive approach

where the status of each certificate is explicitly stated. Note that the negative

1A CMAE may be trusted or untrusted depending on the revocation scheme.
2Although OCSP is considered as a real-time service, its timeliness is only as up-to-date as the latency

involved in obtaining the CSI from the Responder’s definitive source. In our work here, we take an
optimistic assumption that a CA providing OCSP service would provide the lowest latency it can afford
as permitted by its applicable policy, in order to take advantage of the available real-time setting.

103

approach can only work when the scope of CSI is for all CA’s certificates or a

well-defined subset (partition) of CA’s certificates.

(P4) Use of Linked CSIs for Subsequent Status Updates: A CSI generally comes

signed by the CA in order to ensure data origin authentication. It is also possi-

ble that the signed CSI additionally contains some value identifying a hash chain,

which is usually the tip of the hash chain. Subsequent periodical releases of com-

pact and unsigned hash token information update the status(es) of the certificate(s)

in a lightweight manner. We thus can characterize a revocation scheme based on

whether or not it employs a hash chain for lightweight subsequent status updates.

Table 7.1 characterizes several revocation schemes based on properties P1 and P2.

Directory CSI Coverage Scope
Placement All CA’s Certificates Multiple Certs Individual Cert

No directory NOVOMODO [111],
(handled by CA) OCSP [124], H-OCSP [122],

MBS-OCSP [21]
CMAE CRL [37], HS [6], Partitioned CRL, CRS [110]

CRT [83], CSPR [60]
2-3 tree CRT [125]

Verifier CPR [151], BCPR[150]
Principal Optimized CREV-II CREV-I, CREV-II

Table 7.1: Possible combinations of directory placement and CSI scope for certificate
revocation schemes. Note that we consider the OCSP scheme with the CA as the re-
sponder.

7.1.2 Related Works

We briefly summarize the related existing revocation schemes below. Our focus here

is to highlight their main strengths and weaknesses, and also their differences with our

schemes. Section 2.5 provides more detailed background information on some of the

surveyed schemes.

Standardized in X.509 [75] and also profiled in the IETF [37], CRL is also the most

widely supported revocation scheme. It is however widely known to have serious short-

comings. Firstly, the CRL may eventually grow to a cumbersome size in very large PKIs,

e.g. ∼750 KB in Verisign’s [141] and ∼40 MB in the U.S. DoD’s [129]. Secondly, the

downloaded CRLs may be mostly useless given that more than 90% of the information

is irrelevant to the verifiers [141]. Lastly, CRL does not offer adequate timely revocation

guarantees. It is common for a CA to update its CRL only daily, as suggested in [177],

although the CA may have a service for a shorter window period presumably with a

higher charge.

There are several methods for improving the basic CRL mechanism, such as CRL

Distribution Points, Delta CRLs, and Indirect CRLs (see [4] for a survey). However,

104

all these schemes still put the same requirement on the verifier to obtain a complete

revocation list, which includes the unrelated entries. Furthermore, for our setting of

EVCP servers as CSI distribution points, we require a scheme that carries a certificate’s

liveness status instead of the black-listing approach taken by CRL-based mechanisms.

OCSP [124] was proposed to provide a more timely certificate status checking. An

OCSP Responder is required to return the status information about a specific certificate

in a digitally signed response. Since OCSP is an online service, it necessitate a prompt

and reliable OCSP Responder system with a high level of security. As such, it imposes

significantly higher computational and network requirements on the Responder [93] (see

also Section 2.5). Additionally, there exists a privacy issue with OCSP. Since the Respon-

der is consulted whenever a verifier validates a certificate, it therefore knows all verifiers

dealing with a principal. In our proposed schemes, the verifier obtain the CSI of an EVC

principal directly from the principal’s server. Hence, our schemes does not reveal certifi-

cate status queries to any third party, including the Responder (the CA).3 Although the

CA is trusted for managing certificates, the transaction information involving a principal

and a verifier should not be made available to the CA.

Several modifications have been proposed on OCSP, such as H-OCSP [122] and MBS-

OCSP [21]. Similar to our proposed scheme (CREV-I), H-OCSP and MBS-OCSP make

use of a hash-chaining technique. However, they require the CA to cater for a poten-

tially large number of verifiers. Hence, the CA’s bandwidth and storage requirements

remain high. Our CREV schemes operate differently since the CA maintains hash chains

belonging to EVC principals, whose number is much smaller than that of the verifiers.

Moreover, we also employ a session-based hash chain as to reduce costs further (see

Section 7.3).

Aiello et al. [6] proposed an improvement to CRS called “Hierarchical Scheme” (HS)

aimed at reducing the CA-to-CMAE communication while still maintaining a low query

communication. The improvement however comes at the price of a significant increase in

the certificate size. Kocher [83] proposed Certificate Revocation Tree (CRT) which em-

ploys Merkle Hash Tree (MHT). The scheme however suffers from a high computational

cost needed to update the CRT. Naor and Nissim [125] subsequently extended the CRT

by using a more suitable data structure, a 2-3 tree. All these three schemes are however

rather different from CRS/NOVOMODO since the employed data structure maintains

the statuses of all revoked certificates in contrast to an individual certificate status.

Certificate Push Revocation (CPR) [151] and Beacon CPR (BCPR) [150] suggest

placing the cache at the verifiers. Although the schemes may work for highly connected

and high-bandwidth verifiers, they however seem impractical for mobile verifiers con-

3Recall again that, in this thesis, we assume a scenario of OCSP deployment where the OCSP Re-
sponder is co-located with the CA.

105

nected intermittently or at low-speed. The works also suggest placing the cache on the

ISPs. However, there exists a question of economic incentive for the ISPs to provide the

service.

Certificate Space Partitioning with Renewals (CSPR) [60] was proposed to reduce

the high CA-to-directory communication cost found for example in CRS [110]. In CSPR,

the CA divides its certificates into partitions, and signs the CSI for each partition which

contains the status bits of all certificates in the partition. If there was no status change

for any of the certificates in a partition, the CA then renews the partition by releasing

a hash-chain information whose tip is embedded in the partition’s CSI. Unlike CREV

which utilizes a new proposed setting with the principals as directories, CSPR employs

CMAEs as directories.

One of our proposed schemes, CREV-II, can utilize an optimization technique where

an OCSP Response carries the common valid status of multiple certificates. The technique

is based on the certificate range definition in CRT [83]. A similar technique was also

proposed by Koga et al. [84]. Our use of this technique in CREV-II thus demonstrates

how it can be utilized in the assumed network setting. In addition, using the developed

realistic analysis framework, we also show how well the optimization can reduce the

overheads.

Our performance analysis framework offer a more realistic cost calculation of revo-

cation schemes. Below, we briefly describe the differences of our developed framework

from previous analysis works such as [190, 92, 99, 72].

The work by Zheng [190] is one of the most widely cited works on cost analysis of

certificate revocation schemes. However, it simply assumes that a certificate is always

revoked at the half of its issued lifetime. In addition, its analysis of NOVOMODO is

based on an assumption that the hash token is released on a daily basis. In contrast,

our framework is based on a realistic revocation model which enhances the one proposed

in [99, 72]. We consider a revocation service with timeliness guarantee on the order of

minute(s) instead of day(s). Moreover, in Section 7.4.2, we derive a realistic query model

on revoked certificates. Given the timeliness guarantee in minute(s), this model has a

significant effect on the cost calculation of hash-chaining based schemes. This is because

there is a great difference in cost between verifying a valid and a revoked certificate.

Lim and Lakshminarayanan [92] also conducted a performance analysis of various

revocation schemes. They proposed a more detailed framework than that of Zheng [190].

However, the work is still based on the same assumption that a certificate is revoked

at the half of its lifetime. The work derived the probability that a queried certificate

is valid/revoked. This allows for a more accurate cost estimate in hash-chaining based

schemes. However, the probability derivation is simply based on the number of valid

and revoked (but not yet expired) certificates in the certification system. In contrast,

106

our work (see Section 7.4.2) develops a realistic exponential-based model of a query

on revoked certificates. This is because, in practice, the number of queries on revoked

certificates tend to decrease over time. Our performance analysis is thus more accurate

with respect to the CRL size as well as the probability of the query on valid/revoked

certificates. Furthermore, we also follow the standardized CSI message sizes in [133] to

derive realistic message costs in various revocation schemes.

Our cost analysis framework enhances the one proposed in [99, 72]. We summarize

the framework of [99, 72] in Section 7.2.3, and describe how we enhance it in Section 7.4.2.

7.2 Preliminaries

Below we provide a brief summary of EV Certificate, CRS/NOVOMODO schemes, and

a realistic cost analysis model proposed in [99, 72].

7.2.1 Extended-Validation Certificates (EVC)

EV Certificates (EVCs) are a special type of the X.509 certificate to deal with the prob-

lems of phishing [8] and online fraud. It requires a more extensive investigation of the

requesting entity by the CA before a certificate is issued. The investigation includes

the existence of a domain name and its associated publicly-accessible server which are

exclusively owned or controlled by the entity. EVC is important to provide a stronger as-

surance against some recent attacks on the X.509 certificate usage, such as certification-

chaining attack [102], homograph-based phishing [52, 69, 102], and man-in-the-middle

based SSLstrip attack [102]. (See Section 2.5.3 for additional background on EVC.)

We remark that, in theory, our proposed CREV schemes could equally work on the

standard X.509 certificate with an included domain name. However, simply accepting a

domain name and having the server disseminate the CSI falls short of providing strong

assurances on both the certification and the revocation services. The above mentioned

attacks in [102, 52, 69], among others, may apply. For our revocation schemes, we need

an assurance that a server associated with an EVC principal is a valid server representing

the principal as how general public would likely to assume (e.g. mics0s0ft.com is not

microsoft.com). Additionally, a principal is bound to perform its best in following the

revocation scheme. Our CREV schemes build upon the EVC infrastructure, since it

is a widely-accepted standardized premium certificate mechanism that can provide the

needed assurance. Any service provided by a PKI that operates under restricting policies

at least as secure as those used for EVC can also work with our schemes.

107

7.2.2 CRS/NOVOMODO

Certificate Revocation Status (CRS) [110] makes revocation more efficient through its

periodical release of compact hash chain information. CRS assumes the involvement of

CMAE(s), which receive CSI from the CA and handle the verifier’s queries.

The basic idea is as follows. Prior to issuing a certificate, the CA chooses a one-way

hash function H(), and determines a time interval period d and a hash-chain length ℓ.

The lifetime of the certificate is: d (ℓ+1). The CA then adds the following to the published

certificate: HashAlgID as the identification of H(), d, ℓ, issue time, expiration time4,

and two 100-bit values Y and N representing “valid” and “revoked” status, respectively.

Y and N are calculated as follows: the CA first generates two secret 100-bit random

numbers Y0 and N0, and then computes Y = Hℓ(Y0) and N = H(N0). The scheme works

as follows: on the i-th time interval after the certificate’s issuance, where 1 ≤ i ≤ ℓ,

the CA submits the following information to CMAE(s): a signed timestamped string

containing all serial numbers of issued and not-yet-expired certificates, and 100-bit Vi for

each certificate, which indicates whether it has been revoked or not by the current time

interval. Vi is set as follows: Vi = Hℓ−i(Y0) if a certificate is still valid, or Vi = N0 if it is

revoked. When a CMAE receives a verifier’s query, it then sends Vi to the verifier. Using

the current time and certificate’s issue time, the verifier can check whether a certificate

is valid or revoked by comparing H(Vi) with N or comparing H i(Vi) with Y .5

NOVOMODO [111] was later proposed as an improvement on CRS. It suggests the

use of SHA-1 as one-way hash function and the avoidance of the CMAE in the centralized

NOVOMODO scheme. The hash-chaining mechanism is the same as in CRS. The work

[111] also described how to build a distributed NOVOMODO, which makes use of a single

vault and an unlimited number of “untrusted responders” to answer validation queries.

CRS and NOVOMODO have their own limitations. Firstly, CRS has a high CA-to-

CMAE communication cost [125, 6]. Our CREV scheme mitigates this since an EVCP

acts as a CMAE only for its own certificate. Secondly, CRS/NOVOMODO may require

a high verifier’s processing cost due to the a large number of repeated hash operations.

A hash operation is much more efficient than a public-key operation. However, for a

sufficiently high timeliness guarantee and long certificate lifetime, the total computation

cost of hash operations can be significant particularly for lightweight verifiers. CREV

scheme reduces the total length of the hash chain to make the verifier more efficient.

Lastly, CRS/NOVOMODO increases the CA’s storage requirements into O(n · ℓ), where

n is the number of certificates. This storage requirement can be reduced at the cost of

more computation by the CA [78], thus trading-off storage with computational cost.

4The expiration time can actually be derived from: issue time + d(ℓ + 1).
5If a verifier has obtained a valid Vj at an earlier j-th time interval (j < i), the number of hashes

required to check the validity is reduced to i − j.

108

7.2.3 Certificate Revocation Model using Empirical Data

The work [99, 72] aims to determine the CA’s strategies in releasing CRL so as to reduce

the CA’s operational cost. To this end, the work derives a realistic estimate of the number

of new revocations between two successive CRL generations as well as the size of CRL

on a particular day.

Most previous analysis works on revocation schemes usually assume that a certificate

is revoked at the half of its lifetime [190, 92]. In contrast, the work [99, 72] gives a

realistic revocation model based on the empirical data of CRLs collected from VeriSign.

They found that most of the certificate revocations occur during the early part of the

certificate’s lifetime. In fact, more than 30% of revocations occur within the first two

days after certificates get issued. In addition, the percentage of revocations decreases as

time elapses. This result thus invalidates the assumption about the CRL size taken by

most earlier works [190, 92].

The work [99, 72] defines a probability density function (PDF) of certificate revoca-

tions over time. Suppose that there are α certificates issued at time X, with uniform

issued age β. From time X to X+β, on average αb of the certificates will be revoked.

In [99, 72], the basic time unit between two CRL releases (∆t) is assumed to be of one

day. Function R(t) is defined to represent the revoked percentage, that is the ratio of the

number of revocations that occur in the time interval [t, t+∆t], where X<t<X+β, to

the total number of revocations in the time interval [X, X + β]. The work [99, 72] model

the revocation distribution of certificates issued at a particular time with the following

exponential PDF6:
R(t) = ke−kt (7.1)

where t is the time, and k = 0.26 as the function paramenter which has a good fit to the

real observed data. Figure 7.1, reproduced from [99], shows the defined PDF and the

actual plot from the empirical data.

Figure 7.1: The fitted exponential PDF and empirical data for certificate revocations
over time (from [99]).

6A Probability Density Function (PDF) is defined by taking lim∆t→0.

109

The model in [99, 72] derives a realistic estimate of the CRL data size by deriving the

number of revoked entries on a particular day. Three scenarios are considered, namely:

certificates issued at different times but with the same issued age β; certificates issued

at different times and with different issued ages; and a more general case where the

number of certificates generated at a particular time is not constant, but follows a Poisson

distribution. The work [99, 72] derives an analytical model for the first and the second

scenarios respectively, but use a simulation technique for the third. For our comparison

framework in this chapter, we only consider the first scenario. If desired, the framework

can be extended to analyze the second scenario in a rather straightforward manner.

The number of new revocation requests is derived in [99, 72] as follows. Suppose

that v is any time in (0, β]. Function f(v) is defined as the number of new certificate

revocations between day v and day v+∆t from all of the valid generations:7

f(v) = αbR(v) + αbR(v −∆t) + αbR(v − 2∆t) + . . . + αbR(v − (n− 1)∆t) (7.2)

where n is the number of certificate generations in time period β, i.e. n = ⌈ β
∆t
⌉. As men-

tioned, [99, 72] assumes ∆t = 1 day. Similarly, the time interval between two certificate

generations (∆X) is also assumed to be 1 day. As a result, v in (7.2) is an integer. Thus,

when v is in (0, β], we have:

f(v) = αbR(1) + αbR(2) + . . . + αbR(v) = αbke−k 1− e−vk

1− e−k
(7.3)

When v is in (β,+∞), which represents the steady-state condition, [99, 72] derives that:

f(v) = αbR(1) + αbR(2) + . . . + αbR(β) = αbke−k 1− e−βk

1− e−k
(7.4)

The size of CRL is derived as follows. Let F (v) be the valid cumulative number of

revocations from time 1 to v. It is also the size of the CRL on that day. For v in (0, β]:

F (v) =
v

∑

t=1

f(t) =
αbke−k

1− e−k

[

v −
e−k

1− e−k

(

1− e−vk
)

]

(7.5)

For v in (β,+∞), [99, 72] derives:

F (v) = F (β) =

β
∑

t=1

f(t) =
αbke−k

1− e−k

[

β −
e−k

1− e−k

(

1− e−βk
)

]

(7.6)

From (7.5) and (7.6), it can be shown that the size of CRL increases from day 0 until

day β. After that, in what we call the steady-state condition, the size of CRL becomes

constant. Note that some revoked certificates may be expired after they reach their issued

lifetimes, and accordingly removed from CRL.

We remark that there are a number of issues with respect to the derivations of f(v)

and F (v) in [99, 72], which we discuss and address later in Section 7.4.2.

7The more recent version of the work [72] uses N(v) instead of f(v) to denote the function.

110

7.3 CREV Schemes for Lightweight Certificate Revocations

7.3.1 New Revocation Setting

Our CREV schemes differ from other previous revocation schemes in that the directory

for an individual certificate is placed on the respective principal’s server. The principal’s

server thus acts as a distribution point for its own CSI. As such, our schemes allows for

the co-location of Web (transaction) server, where a principal’s certificate is normally

obtained by the verifiers, and the corresponding CSI’s distribution point.

This (seemingly small) change has a number of important advantages:

• The CSI distribution servers are self-managed (i.e. independent from the CA), and

deal only with their own respective verifiers.

• The servers also have a strong incentive to provide reliable and timely CSI access

services for their own respective transactions. The new setting thus addresses

the incentive problem on CSI management and dissemination [64]. Hence, it has

economic advantages to those employing the verifier’s ISP as directory [151, 150].

• Scalability issue is also naturally addressed since CSI accesses are now distributed

to the respective principals’ servers, which are expected to have sufficient capacity

to meet the respective transaction volumes.

There are overheads associated with CSI transfer management between the CA (or its

proxy) and EVCPs in the new setting. We show later that the overheads are manageable.

To work securely and efficiently under the proposed revocation setting, a revocation

scheme should satisfy the following requirements:

(Req1) Verified principal’s server: The setting requires a principal to have an exclu-

sively controlled domain name and the associated publicly-accessible server. Fur-

thermore, the designation of the server should provide strong protection against

impersonation attacks such as phishing attacks.

(Req2) Availability of principal’s server: As a CSI access point for a principal, the

principal’s server thus must be reliably available to the verifiers in order for latter

to complete their online transactions with the principal.8

(Req3) Per-certificate CSI: As a principal provides a CSI access service only to its own

verifiers, a revocation scheme with per-certificate CSI is therefore more bandwidth

and storage efficient.

(Req4) Positive status information: The use of per-certificate CSI means that a revo-

cation scheme should use a positive status representation to confirm the continued

goodness (“liveness”) of a certificate.

8Note that our CREV schemes can co-exist with other revocation schemes such as timely CRL. Hence,
if a principal’s server is temporarily unavailable, the verifier can resort to downloading the CRL in order
to validate the status of a certificate.

111

7.3.2 CREV Overview and Assumptions

To address the Requirement Req1, our schemes leverage on the availability of the Extended-

Validation Certificates (EVCs) so as to ensure a verified domain name and the associated

server. In theory, our CREV schemes could also work on the standard X.509 certificate

with an included domain name. However, this falls short of providing strong assurance

against attacks such as [102, 52]. By building upon upon the EVC, we thus leverage

on a widely-accepted standardized premium certificate mechanism which provides the

necessary assurance for Req1.

Our schemes thus make use of an EVCP’s server to acts as a CMAE for its own

certificate. Figure 7.2 depicts the CSI communication flow between the parties involved.

Figure 7.2: CSI communication flow in CREV schemes.

Two existing revocation schemes, CRS/NOVOMODO and OCSP, meet the require-

ments for per-certificate (Req3) and positive status (Req4) CSI. We enhance these two

schemes to achieve the stated objectives of providing timely and lightweight revoca-

tion service. CREV-I improves CRS/NOVOMODO by setting up a session-based hash-

chaining service between the CA and an EVCP. It aims to take advantage of the hash-

chaining technique, but shorten the length of the hash chain for a faster verifier’s oper-

ation and a reduced CA’s storage requirement.9 CREV-II takes advantage of available

online schemes like OCSP. For each (EV) certificate, the CA produces only one OCSP

Response per time interval. It also can make use of an optimization technique using

group-based CSI [84], which is inspired by the notion of certificate-range in the CRT.

With respect to the Properties P1–P4 discussed in Section 7.1.1, our CREV schemes

9Here, we do not deal with amortization techniques such as those based on multidimensional hash
chain [78]. Rather, we work at the protocol level to reduce the length of the used hash chains by taking
advantage of the proposed new setting. The amortization techniques thus can still work together with
CREV-I to make its costs even lower.

112

thus realize a revocation service with the following chosen design options:

• (D1) Placement of directory: The directory is placed in the (server belonging to

the) principal of an EV certificate.

• (D2) Scope of released CSI: The released CSI provides assurance for a single cer-

tificate issued by the CA.

• (D3) Positive or negative status representation: The status of a certificate is stated

using a positive representation.

• (D4) Use of linked CSIs for subsequent status updates: CREV-I makes use of a

hash chain to provide lightweight subsequent status updates. In contrast, CREV-II

does not use such a technique, since it is meant to allow the verifiers to employ the

existing online status verification infrastructure such as OCSP.

Note that the Requirement Req2 is met by our assumption that a principal’s server

has a strong incentive to provide reliable and timely CSI access service for its own trans-

actions. In addition, we also make following assumptions between the EVCPs and the

CA, which are reasonable under typical settings of an Internet transaction:

• Synchronized clocks are available to determine the current time on the part of

entities involved. CRL, CRS/ NOVOMODO and OCSP also make this assumption.

• There exists an established Service Level Agreement (SLA) between the CA and

an EVCP, with a reliable and secure communication channel.

• The number of verifiers is much more than the number of EVCPs. Moreover, the

ratio of number of verifiers to the corresponding EVCPs is high.

To identify the availability of a CREV revocation scheme, we define the following

extension to an EV Certificate:

CREV Extension ::= CREV Scheme,Transfer Mechanism (7.7)

The fields are as follows:

• CREV Scheme: gives the CREV scheme employed.

• Transfer Mechanism: defines the CSI transfer mechanism, e.g. HTTP.

7.3.3 CREV-I: Session-based Hash-Chaining Scheme

Despite their benefits, CRS and NOVOMODO can incur significant overheads when

the hash chains employed are rather long. (Note that the length of the hash chain

increases with higher timeliness guarantee.) The verifiers need to perform more hash

computations, and the CA must allocate more storage for the hash chains (although

amortization techniques can help). CREV-I improves CRS/NOVOMODO by setting up

a session-based hash-chaining service between the CA and an EVCP. The idea is that

each EVCP and the CA establish a secure session using a “3-way Session Establishment”

113

protocol given below. Thus, CREV-I employs a hash chain, but it shortens the length of

the hash chain for faster verifier’s operation and reduced CA storage.

Similar to OCSP, the CA’s availability for a request message may lead to the possi-

bility of Denial of Service (DoS) attacks due to flood of requests to the CA, including

replaying previously valid request messages.10 To deal with this, we require every incom-

ing SessionRequest message (see Step 1) to be signed by the EVCP. Moreover, we also

require the message to carry T , which is either:

• A timestamp of the current time based on network time protocols.

• A CA’s nonce that is accessible by the verifiers from a CA’s pre-defined URI. The

nonce is regularly updated by the CA at a pre-determined short time interval.

In a published certificate, the CA includes:

• CREV Extension, which is defined in (7.7).

• CREV-I Extension, which contains: URI for the CA’s nonce (URICA nonce), URI

for the Session Reply message (URIhashchain session), and URI for the hash-chain

token (URIhash token).

The following protocol is executed by the CA and EVCP to establish a hash chain

session on a valid EVC. We define “Session Request” and “Session Reply” below to be

syntactically similar to OCSP Request and OCSP Response respectively. In the protocol,

we assume that Serial No and CA’s name (CA ID) are sufficient to identify a unique

certificate.11 The notation 〈M〉K−1
A

denotes a message M which is signed using the

private key of principal A (i.e. K−1
A); whereas nonceX denotes a nonce from X.

1. EV CP → CA : “Session Request”= 〈SessReq, EV CP ID, CA ID, Serial No, T ,

nonceEV CP , SigAlgID〉K−1
EV CP

.

where:

SessReq = header indicating a Session Request message;

EV CP ID = identity (i.e. domain name) of the EVCP;

Serial No = serial number of the EVC;

T = timestamp or a CA’s nonce accessible at URICA nonce;

SigAlgID = identification for the signing algorithm.

2. CA : If T or K−1
EV CP is incorrect, then abort.

3. CA→ EV CP : “Session Reply”= 〈SessReply, ReplyStatus, CA ID, EV CP ID,

nonceEV CP , Serial No, CertStatus, HashAlgID, d, Y , N ,

10OCSP makes use of a nonce (from the requester) to bind a request and a response message. This
measure is employed to protect the requester from possible replay attacks. However, there seems to be
no mechanism in OCSP to prevent flood-of-requests attack to the responder (see also [124, Section 5]).

11OCSP [124] makes use of a serial number together with HashAlgID, H(CA ID) and H(CA’s public-
key) due to the presumed lack of strong uniqueness guarantee for CA names.

114

SessStart, SessExpiry, nonceCA, SigAlgID 〉K−1
CA

.

where:

SessReply = header indicating a Session Reply message;

ReplyStatus = status indicator for a successful session establishment;

CertStatus = status of the EVC;

HashAlgID, d, Y , N = hash chain parameters (see Section 7.2.2);

SessStart and SessExpiry = the start and end times of the established session.

4. EV CP : If nonceEV CP or K−1
CA incorrect, or ReplyStatus is unsuccesful,

then abort.

5. EV CP → CA: “Session ACK”= 〈SessACK, EV CP ID, CA ID, nonceCA,

Serial No, SigAlgID 〉K−1
EV CP

.

where:

SessACK = header indicating a Session ACK message.

6. EV CP : Put Session Reply message from Step 3 at URIhashchain session;

Establish an association for hash chain updates with CA.

7. CA : If nonceCA and K−1
EV CP is incorrect, then abort.

Start providing timely hash-chain token updates until the session

expires, or the EV certificate is revoked.

The established session is good for time interval tCREV I = SessExpiry−SessStart.

For a valid certificate, on the i-th time interval (for 1 ≤ i ≤ ℓCREV I) after SessStart,

the CA releases the latest hash chain token (Vi) to the EVCP as in CRS/NOVOMODO.

The EVCP always puts the most recent Vi it receives from CA at URIhash token.

The verifier obtains a Session Reply from the specified URIhashchain session, and Vi

from URIhash token. It then validates K−1
CA in the Session Reply, and then determines

that the EVC is still valid if H i(Vi) = Y , or that the EVC is revoked if H(Vi) = N .

The length of the hash chain in a CREV-I session is ℓCREV I = tCREV I

d
− 1, which

is much smaller than CRS/NOVOMODO. As a result, the workload for the verifier’s

repeated hash operations is much reduced. The CA now also stores and keep tracks of a

much smaller (session-wide) hash chain. This is in contrast with the hash chain used in

CRS/NOVOMODO, which is constructed for the whole certificate’s lifetime.

A formal analysis of the session establishment protocol using MPKI-BAN Logic (the

subject of Chapter 8) is given in Appendix E.

115

7.3.4 CREV-II: Session-based Online Status Scheme

CREV-II takes advantage of a CA’s ability to support an online status notification service

such as OCSP. Given OCSP as a standardized scheme for online status notification, here

we simply assume the online status assurance in the form of OCSP Response. Unlike

OCSP, however, the CA in CREV-II produces only one OCSP Response for an EVC

principal per time interval (regardless of the number of verifiers). Compared to CREV-I,

CREV-II has an advantage of providing a CA’s direct (signed) proof of certificate good-

ness to EVCPs.12 Thus, CREV-II may be more desirable than CREV-I if we want to

take advantage of the existing OCSP infrastructure. Also notice that the CA in CREV-II

provides the service only to EVCPs, which in turn make the CSI available to the respec-

tive verifiers. Hence, the new setting also allows for a workable economic model in which

the CA charges EVCPs, rather than the verifiers, for the rendered CSI services.

To support CREV-II, the CA includes the following in a certificate it publishes:

• CREV Extension, which is defined in (7.7).

• CREV-II Extension, which contains: URI for CA’s nonce (URICA nonce) and URI

for the latest OCSP Response (URIlatest OCSP).

The following protocol establishes a CSI subscription session between CA and EVCP.

1. EV CP → CA : “Subscription Request”= 〈SubsRequest, EV CP ID, CA ID,

Serial No, T , nonceEV CP , tEV CP , dEV CP , SigAlgID 〉K−1
EV CP

.

where:

SubsRequest = header indicating a Subscription Request message;

T = either a timestamp or CA’s nonce as in CREV-I;

tEV CP = EVCP’s proposed lifetime of the established session;

dEV CP = EVCP’s proposed time interval between two OCSP Responses.

2. CA : If T or K−1
EV CP is incorrect, then abort.

3. CA→ EV CP : “Subscription Reply”= 〈SubsReply, EstablishmentStatus, CA ID,

EV CP ID, Serial No, nonceEV CP , CertStatus, dCA, SessStart,

SessExpiry, nonceCA, SigAlgID 〉K−1
CA

.

where:

SubsReply = header indicating a Subscription Reply message;

EstablishmentStatus = status indicator for a successful subscription establishment;

dCA = selected time interval between two OCSP Responses.

The session’s lifetime (tCREV II) = SessExpiry − SessStart.

12In reporting a certificate’s status, an online service is assumed in this thesis to provide its timeliest
possible revocation guarantee as permitted by its policy.

116

4. EV CP : if nonceEV CP or K−1
CA incorrect, or EstablishmentStatus is

unsuccesful, then abort.

5. EV CP → CA : “Subscription ACK”= 〈SubsACK, EV CP ID, CA ID, Serial No,

nonceCA, SigAlgID 〉K−1
EV CP

.

where:

SubsACK = header indicating a Subscription ACK message.

6. EV CP : Establish an update association with CA.

7. CA : If nonceCA and K−1
EV CP is incorrect, then abort.

After Step 7, the CA starts delivering (pushing) OCSP Response messages to the

EVCP every dCA time interval for ℓCA times, or until the certificate is revoked. Upon

receipt of every OCSP Response from the CA, the EVCP puts it on URIlatest OCSP .

Note that the periodically released OCSP Responses contain no requester’s nonce.

As such, the EVCP and the verifier must verify the freshness of an OCSP Response by

checking the included values of thisUpdate and nextUpdate (as two fields in the standard

OCSP Response) to be current. The CA must properly set a Response’s validity period

(nextUpdate - thisUpdate) to dCA. Note that these OCSP Responses can be pre-

produced by the CA.

If dCA for multiple EVCPs is short, e.g. 1 minute, an optimization is applicable. The

CA can issue a single OCSP Response that carries the statuses of multiple certificates

by merging the generated OCSP Responses together. The validity periods of all the

certificate statuses are set uniformly.

If the EVC serial number is sequential, we additionally can apply a range optimization

based on the notion of certificate range in CRT [83], which is also employed in [84]. We

use this optimization as follows: The CA keeps track of valid certificates as a set of good

certificate ranges. Each good certificate range is defined as [SNa, SNb] indicating that

all certificates with serial number SNi, where SNa ≤ SNi ≤ SNb, are all valid. For an

optimal range construction (resulting in the smallest number of ranges), we simply set

[SNa, SNb] to be the largest contiguous valid certificate range. If a certificate is revoked,

the CA sends a single OCSP Response notifying the revoked status of that certificate.

For a valid certificate with serial number SNv, the CA sends an OCSP Response with a

good certificate range where SNa ≤ SNv ≤ SNb. Given that the majority of certificates

are good, this optimization can significantly reduce the CA’s signature operations as

shown later in Section 7.4.4.

117

7.4 Analysis, Evaluation and Comparison of CREV Schemes

7.4.1 Security Analysis of CREV Schemes

The security of CREV schemes relies mainly on the underlying revocation schemes,

namely CRS/NOVOMODO and OCSP. Provided that all the entities run with relatively

synchronized clocks, the freshness of the released hash tokens (in CREV-I) and OCSP

Responses (in CREV-II) can be established. The Session Reply message (in CREV-I)

is signed by the CA. It thus behaves as a kind of “mini certificate” which carries infor-

mation about the CA’s hash chain parameters. The CREV-II scheme takes advantage

of the OCSP Response model, where the verifier only needs to check the validity of the

CA’s signature and the Response’s validity period.

We project that the CREV schemes are practical with near a real-time timeliness

guarantee from ten to one minute. A ten minute guarantee may already be considered

reasonably short-lived in many environments. A one minute guarantee could be even

considered as being “indistinguishable” from a real-time service due to potential clock

time differences among the involved entities [111]. The recency requirements in our

schemes are thus set by the CA and EVCP, and not the verifier (as acceptor). As such,

the schemes still fail to address an issue pointed out in [138]. Yet, with a near real-time

timeliness guarantee, a verifier can proceed with the transactions only if it feels satisfied

with the offered more fine-grained timeliness guarantee.

7.4.2 A Framework for Performance Analysis

Our performance analysis framework extends the model given in [99, 72]. A novelty of

our framework is that it includes more real-world features and cost estimates.

Certification System Assumptions

Our analysis framework is intended to measuring the overheads of revocation schemes

with a single CA during the steady-state condition, i.e. when certificate expiration is

balanced by the new certificates added. This assumption is commonly adopted by many

works [99, 72, 92, 190], which allows us to focus on the stable behavior of the revocation

schemes and omit possible variable external factors. Since our objective is to provide a

near real-time freshness guarantee, we make use of minute as our unit of time.

Some other assumptions commonly made when analyzing revocation schemes under

the steady-state condition (e.g. taken in [99, 72, 92, 190]), which we also make here, are

the following:

• The total number of principals and the corresponding valid certificates (N) is con-

stant.

118

• Certificates have the same lifetime, which is β days = β × 1, 440 minutes.13

• There are b ·N certificates revoked in the span of β days.

• The time interval between two successive CRL releases (∆t) is constant. The unit

of ∆t is minute(s).

• Certificate issuance takes place at a constant rate. The time interval between two

successive certificate generations (∆X) is the same as ∆t.

• A new valid certificate is issued immediately to replace a revoked one. This can take

place in practice by assuming that a principal always submits a revocation notice

together with a replacement request to prevent any operational interruption.

Since we consider a certification system with uniform certificate lifetime β, the steady-

state condition takes place after β days from the first certificate generation in the system,

i.e. the time interval (β,+∞).

By considering a system where ∆X = ∆t = 1 minute as an example of our evaluation

scenario, we thus cover the situation where the certificate issuance and the CRL release

take place continuously.14 As mentioned earlier, most earlier works [190, 92] make an

assumption that a certificate is assumed to be revoked at half of its lifetime (β
2). Such

an assumption is however crucial to the performance analysis of revocation schemes as

it affects, among others, the estimate of the CRL size.

An Improved Model and Analysis

The work [99] (summarized in Section 7.2.3) is the first to suggest a realistic revocation

model based on real empirical data of CRLs. Our analysis employs the same approach

as [99, 72] but increases the realistic features as in the following aspects.

1. Revision of the CRL Size Estimate

The work [99, 72] always assume that ∆X = ∆t = 1 day. As such, there are α = N
β

certificates issued on day X, which are valid between day X and day X+β. For certificates

issued at time X, R(t) is defined to represent the revoked percentage. It is modeled as

an exponential PDF of R(t) = ke−kt, where t is the time and the parameter k = 0.26.

The work [99, 72] calculates the CRL size estimate using the derivation shown in Eqs.

7.2–7.6. We note two issues with this derivation. Firstly, their calculations make use of

f(v) in [99] (or N(v) in [72]) to obtain the number of new certificate revocations between

day v and day v+∆t. The functions however use a discrete summation on the PDF

which is only an approximation (see Eqs. 7.2–7.4). In our work, we derive the number

of new certificate revocations using integration, which is a more proper method, on the

13The work [99, 72] also considers a scenario with certificates having several ages.
14It is possible to allow ∆X = c.∆t for some constant value c. Here, we assume a “continuous” issuance

(i.e. ∆X = ∆t) as opposed to a batched one.

119

same PDF. This difference becomes important when ∆X and ∆t is much less than one

day. Simply applying the summation technique as in [99, 72] would derive the number of

revoked entries that is much larger than that of the total revoked certificates N · b (see

Section 7.4.4 for a sample figure based on two selected evaluation scenarios). Secondly,

in the steady-state calculation (Eq. 7.4), f(v) or N(v) actually measures the number of

revocations for days [1, β + 1] instead of (0, β).

Thus, we reformulate F (v) where ∆X = ∆t = 1 day by first defining g(v) to replace

f(v) in [99] or N(v) in [72]. Function g(v) is defined as the number of new revocations

between day v−∆t and day v from all valid generations. When v is in [0, β], we have:

g(v) =
v

∑

i=1

αb

∫ i

i−1
R(t) dt = αb

∫ v

0
ke−kt dt = αb

[

− e−kt
]v

0
= αb

(

1− e−kv
)

. (7.8)

For the steady-state condition, i.e. when v ∈ (β,+∞), we have:

g(β) = αb

∫ β

0
ke−kt dt = αb

[

− e−kt
]β

0
= αb

(

1− e−kβ
)

. (7.9)

F (v), representing the cumulative number of certificate revocations from day 0 to day

v, with v ∈ [1, β − 1] becomes:

F (v) =
v

∑

i=1

g(i) =
v

∑

i=1

αb

∫ i

0
ke−kt dt = αb

[

v − e−k 1− e−kv

1− e−k

]

. (7.10)

For v ∈ [β,+∞), which includes the steady-state condition, we thus have:

Rev Entries = F (β − 1) =

β−1
∑

i=1

g(i) = αb

[

(β − 1)− e−k 1− e−k(β−1)

1− e−k

]

. (7.11)

Note that in Eq. 7.11, we make use of F (β − 1) instead of F (β) in Eq. 7.6 as in

[99, 72]. This is since there are only β − 1 valid certificate generations, and not β. The

generation on day v has no revoked certificates yet, and the generation on day v−β is

expired on that day, hence leaving only β − 1 generations from day v−1 to v−β + 1.

We also find out that there is a simpler and more elegant way of calculating the CRL

size on day v, which is described as follows. First, we define h(i) as the total number of

(non-expired) revoked certificates from certificates generated in i generation(s) prior to

the current generation:

h(i) = αb

∫ i

0
R(t) dt. (7.12)

Function h(i) thus represents the cumulative distribution function of R(t). The number

of entries in CRL during the steady-state condition (with β−1 certificate generations

counted) is:

Rev Entries =

β−1
∑

i=1

h(i) =

β−1
∑

i=1

αb

∫ i

0
R(t) dt = αb

[

(β − 1)− e−k 1− e−k(β−1)

1− e−k

]

, (7.13)

yielding the same result as Eq. 7.11. In our generalization below, we will make use of

h(i).

120

2. Generalization of CRL Size with Certificate Generation (∆X) and CRL

Issuance (∆t) in Minutes

In our performance evaluation, we set the revocation timeliness guarantee of 1 and 10

minutes. To deal with this, we need to generalize the calculation of the number of CRL

entries where ∆X = ∆t = δ minutes.

Let M denote the number of minutes in a day, that is M=1, 440. We then define a

constant λ = δ
M

. The number of certificate issued per generation (αg) is now:

αg =
Nλ

β
= αλ. (7.14)

We generalize h(v) into hg(v) as follows:

hg(v) = αgb

∫ i

0
R(t) dt = αgb

∫ i

0
ke−kt =

Nλ

β
b

(

1− e−kv
)

. (7.15)

The number of revoked entries during the steady-state condition where v ∈ (β,+∞)

with ∆X = ∆t = δ
M

day is:

Rev Entriesg =

η
∑

i=1

hg(λi) =

η
∑

i=1

αgb

∫ λi

0
R(t) dt

=
Nλ

β
b

[

(

β

λ
− 1

)

− e−kλ 1− e−k(β−λ)

1− e−kλ

]

.

(7.16)

where η=βM
δ
− 1 denotes the number of counted generations.

3. More Realistic Models for Query on Revoked Certificates

Determining the probabilities of whether a certificate being queried is either revoked

or valid is a key factor in calculating the computational costs of a hash-chaining based

scheme like CRS, NOVOMODO or CREV-I. This is since there is a great difference in

cost between verifying a valid certificate and a revoked one. To derive such realistic

probabilities, the framework needs to have some realistic assumptions for the probability

of a revoked but not expired certificate to be queried.

We would expect that once a certificate has been revoked, the likelihood that the

revoked certificate will be queried by a verifier should decrease over time. One reason for

this would be that the revoked certificate is replaced by a new valid one, which we also

assume in our framework. Hence, for example, a new certificate will be used by a web

server whose certificate was recently revoked in order to secure its SSL-based transactions.

Similarly, mobile codes that were signed by a revoked certificate are now signed using a

new one. Some verifiers may still have a stale reference to the revoked certificate, but

the numbers of queries issued by those verifiers would be expected to decrease over time.

The function S(t) is defined as the probability that a certificate will still be queried in

the time interval [(t−1)δ, tδ] minutes after it is first known to be revoked.15 Here, we take

15Unlike R(t), S(t) indicates the probability value at time t rather than a PDF. As such, in Eqs. 7.19
and 7.20 we make use of summation over S(t) as opposed to integration in deriving the total number of
queries on the revoked certificates.

121

into account the fact that certificates are used for different purposes, such as for online

transactions and code/document signing. As such, one should also have different query

models to suit these different purposes. We define the following two query models:16

Model A (Online-transaction certificates): This applies to certificates used for on-

line transactions where a revoked certificate will quickly cease to be referred to. We

define the following probability function for this model (shown in Figure 7.3):

SA(t) = e−kA λ t. (7.17)

As web servers for online-transactions can be updated very quickly upon a cer-

tificate revocation, we therefore choose a value of kA = 0.95 in the evaluation of

revocation schemes.

Model B (Code/document-signing certificates): This applies to certificates used

to provide non-online services, such as the signing of documents/software that may

be distributed in an off-line manner (e.g. using a physical media). In this type of

certificates, a revoked certificate will still be referred to for a longer time period

following its revocation. We model its probability function as:

SB(t) = e−kB λ t. (7.18)

We choose a value of kB = 0.01 in the evaluation of revocation schemes.

Figure 7.3 shows the two probability functions with the chosen parameters.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

 k
A

 = 0.95

 k
B

 = 0.01

Days after Certificate Revocation (with β=365 days)

P
er

ce
nt

ag
e

of
 D

ai
ly

 Q
ue

rie
s

on
 a

 C
er

tif
ic

at
e

S
A
(t): Online−Transaction Cert

S
B
(t): Code/Document−Signing Cert

Figure 7.3: Two probability functions SA(t) and SB(t) are shown in the time interval
[0, β-days) after the certificate’s revocation, with β = 365 days. The function SA(t) is
shown as an L-shaped curve close to the axes.

16A CA can have a different number of certificates classes. However, we assume that these classes can
be mapped into the two defined query models.

122

4. Derivation of the Probabilities of Querying Revoked and Valid Certificates

Our objective here is to derive the probabilities of whether a query from a verifier is

issued on a valid certificate (Prvalid) and a revoked one (Prrev). We derive these two

probabilities as follows.

First, the total number of daily queries issued by all verifiers is: Qdaily = V ·QV er daily,

where V is the number of verifiers and QV er daily is the average daily queries issued by

each verifier to CA/CMAE.17 Since we assume that queries on all the certificates in the

system are uniformly distributed, we thus have the number of queries per certificate in a

day: qper cert daily = Qdaily/N .

Now, we derive Qrev β days which is the total number of queries on all revoked certifi-

cates (until their expirations) throughout β days under the steady-state condition. Since

we have two query models on the revoked certificates (i.e. model A and B), we define

Qrev β days A as follows:

Qrev β days A =

η
∑

i=1

[

(

NA · b ·

∫ λi

λ(i−1)
R(t) dt

)

·
(

β
λ
−i

∑

j=1

SA(j) · qper interval

)

]

(7.19)

where NA denotes the number of certificates with query model A, η = βM
δ
− 1 denotes

the number of counted certificate generations, λ = δ
M

, and qper interval = λ · qper cert daily

denotes the number of queries on a certificate in the time interval of δ minutes. Similarly,

we define Qrev β days B as follows:

Qrev β days B =

η
∑

i=1

[

(

NB · b ·

∫ λi

λ(i−1)
R(t) dt

)

·
(

β
λ
−i

∑

j=1

SB(j) · qper interval

)

]

(7.20)

where NB denotes the number of certificates with query model B. Summing them up

gives: Qrev β days = Qrev β days A +Qrev β days B. The total number of queries on all non-

expired certificates (both valid and revoked ones) for β days is Qall β days = Qdaily · β.

Hence, the total number of queries on all valid certificates throughout β days (under the

steady-state condition) is: Qvalid β days = Qall β days − Qrev β days. Finally, the proba-

bilities of whether a status query is issued on a valid certificate (Prvalid) and a revoked

certificate (Prrev) are:

Prrev =
Qrev β days

Qall β days

and Prvalid =
Qvalid β days

Qall β days

. (7.21)

5. Taking Realistic CSI Message Sizes into Account

Many previous analysis works [190, 92] take a simplified (or minimalistic) approach with

respect to the CSI message sizes of standardized revocation schemes. In practice, how-

17Qdaily denotes the number of daily CSI look-ups received by the CA/CMAE. Given the short time-
liness guarantees in our setting, we assume that all queries are always consulted with the CA/CMAE.
Thus, no CSI cache is employed by a verifier. This is reasonable since we set the verifier’s daily query
(QV er daily) to 30, which is much less than the number of daily CSI updates (1,440 and 144). As a result,
we can employ Qdaily for calculating query overheads in both the batch-updating and the online schemes.

123

ever, the CSI also include various auxiliary information. To achieve a realistic analysis, we

follow the CSI message sizes in [133], which utilize a BER viewer for all ASN.1 standard-

ized data structures. Furthermore, we also always assume SHA-1 for the hash algorithm

and SHA-1 with RSA for the signature algorithm in all the examined schemes.

Performance Comparison Metrics

We use the following notations to denote the various costs incurred in a particular re-

vocation scheme: OvhA= computation time needed by entity A (in seconds), BwA−B =

network bandwidth needed from entity A to B (in MB), and StorA = storage needed on

A (in MB). The entities involved are: CA indicating the CA, V er indicating a verifier,

CMAE indicating a CMAE as a designated repository, and EV CP indicating an EVC

principal’s server.

To compare different schemes, we use the following metrics:

1. Certificate creation cost: OvhCA.

2. Update costs: OvhCA, OvhCMAE (OvhEV CP) and BwCA−CMAE (BwCA−EV CP).

3. Query costs: OvhCA, OvhCMAE (OvhEV CP), BwCMAE−V er (BwEV CP−V er) and

OvhV er.

4. Storage requirement at one point in time (during the steady-state condition):

StorCA and StorCMAE (StorEV CP).

5. Timeliness: the revocation timeliness guarantee, which also represents the window

of vulnerability of the revocation scheme.

For metrics (1) to (3), we measure the total cost per day. In order to have a more

compact notation, we abuse the notation slightly and write ∀A for all instances of entity

A, and ∃A for a single instance of A. Thus, for example, D BwCMAE−∃V er denotes the

daily bandwidth cost between a CMAE and a single verifier, whereas D BwCMAE−∀V er is

the daily bandwidth needed by a CMAE to all the verifiers. A summary of the notations

used for the performance comparison is given in Table 7.2.

7.4.3 Performance Comparison

We derive the overheads of the following revocation schemes using our analysis framework:

CRL (with a CMAE used), OCSP (with the CA as a Responder), CRS (with a CMAE

used), and our two CREV schemes. For bandwidth calculation, we do not consider the

cost due to the underlying network transfer mechanism(s), i.e. HTTP, TCP, or IP. For

CRL and CRS which makes use of CMAE, we assume of one CMAE involved respectively.

We use LM to denote the length of message portion M .

124

Symbol Description Unit Value(s)
Parameters for Certification & Revocation System:
N No. of valid (non-revoked) and not-yet-expired certs - 100,000
β Issued lifetime of a certificate days 365
b Percentage of certificates revoked - 0.1 = 10%
∆X = δ Time interval between two successive cert generations mins 1 10
∆t = δ Time interval between two successive CRL releases mins 1 10
M Number of minutes in a day - 1,440
λ Factor of δ/M - δ/M
αg No. of certificates issued per certificate generation - Nλ/β

η No. of cert generations counted to calculate CRL size - β
λ
− 1

d = δ Time interval for periodic hash-token release in
CRS/NOVOMODO/CREV-I

mins 1 10

ℓ Hash chain length which determines certificate lifetime
in CRS/NOVOMODO/CREV-I

-
β

λ
− 1

U Total number of CRL and hash-token releases per day - M/δ
tCREV I Lifetime of hash chain in a CREV-I session hrs 3 12
tCREV II Lifetime of a status subscription session in CREV-II hrs 3 12
k Parameter for realistic certificate revocation PDF - 0.26

(Ref. [99, 72])
kA Parameter for class-A query model on revoked certs - 0.95
kB Parameter for class-B query model on revoked certs - 0.01
NA No. of certificates with class-A query model - 0.8 ·N
NB No. of certificates with class-B query model - 0.2 ·N
V Number of verifiers - 30,000,000
QV er daily Average daily queries to CA/CMAE from a verifier - 30
Qdaily Total average daily queries received by CA/CMAE - V ·QV er daily

qper cert daily Average daily queries on a certificate - Qdaily/N

Basic Cryptographic Operation’s Overheads and CSI Size:
Csign Cost of a digital signature generation (RSA-1024) ms 1.48
Cverify Cost of a digital signature verification (RSA-1024) ms 0.07
Chash Cost of computing a hash (SHA-1) µs 0.40
Lhash Length of hash output (SHA-1) bytes 20

Revocation Scheme’s Cost Factors:
BwA−B Bandwidth requirement from entity A to B MB -
OvhA Computation overheads on entity A sec -
StorA Storage requirement (due to CSI dissemination) on A MB -
D 〈Cost〉 Total daily bandwidth/computation/storage costs MB|sec -

Table 7.2: Notations used in the performance analysis. Value(s) column shows the se-
lected values for the two investigated scenarios.

CRL (with a CMAE)

In our framework, the number of revoked (but non-expired) certificates where ∆X =

∆t = δ minutes is Rev Entriesg (see Eq. 7.16). The CRL size can be defined as:

LCRL = LCRL fields + ⌊Rev Entriesg⌋ · LCRL entry where LCRL fields = 400 bytes is the

message length of the CRL header and signature, and LCRL entry = 39 bytes is the length

of each entry in the CRL data [133]. With U = M
δ

as the total number of CRL updates

in a day, the daily update costs are: D BwCA−CMAE = U ·LCRL, D OvhCA = U ·Csign,

and D OvhCMAE = U · Cverify.

Recall that QV er daily is the average number of queries issued by a verifier to the

125

CA/CMAE in a day, and Qdaily is the total queries received by the CA/CMAE in a day.

The daily query costs of the CRL scheme are: D BwCMAE−∀V er (for CMAE) = Qdaily ·

LCRL, D BwCMAE−∃V er (for Ver)= QV er daily ·LCRL, D OvhCA = 0, D OvhCMAE = 0,

and D OvhV er = QV er daily · Cverify.

The storage requirements are: StorCA = LCRL, and StorCMAE = LCRL. The daily

cost of certificate creation is: D OvhCA = N
β
·Csign. Finally, the timeliness guarantee is

δ minutes.

OCSP (with CA as Responder)

We analyze the overheads of OCSP where the CA functions as the OCSP Responder.

Here we assume an OCSP usage mode where a nonce is used to bind an OCSP Response

with the corresponding Request. There is no update cost between the CA and CMAE,

since no CMAE is involved.

With LOCSP Response = 459 bytes as the length of OCSP Response [133], the daily

query costs (due to status reply) are: D BwCA−∀V er (for CA)= Qdaily · LOCSP Response,

D BwCA−∃V er (for Ver)= QV er daily · LOCSP Response, D OvhCA = Qdaily · Csign, and

D OvhV er = QV er daily · Cverify.

The storage requirement is: StorCA = 0, since the CA needs no additional data

structure. The daily cost of certificate creation is: D OvhCA = N
β
·Csign. The timeliness

guarantee of OCSP can be close to zero when desired.

CRS (with a CMAE)

The CRS scheme is proposed to work with a CMAE [110]. Here, we set d = δ minute(s).

Since the certificate lifetime is βM minutes, the length of the hash chain becomes ℓ =
βM
δ
− 1. Here, we assume that the CA stores the whole hash chain for all the valid

certificates in its storage. An amortization technique such as [78] can be used to reduce

its storage requirements, but at the cost of additional online processing for the CA.

We use LCRS fields = 161 bytes to denote the length of the CA’s timestamp and

signature, and LSerial No = 7 bytes to denote the length of a certificate’s serial number

[133]. The bandwidth cost for update between CA and CMAE is: BwCA−CMAE =

LCRS fields + (N + ⌊Rev Entriesg⌋) · (LSerial No + Lhash). With U = M
δ

, the total daily

update costs become: D BwCA−CMAE = U · BwCA−CMAE , D OvhCA = U · Csign, and

D OvhCMAE = U · Cverify.

For queries, the overheads incurred on the verifier depends on the following condi-

tions. If the certificate is revoked, then OvhV erifier rev = Chash. If the certificate is

valid, the overhead varies according to the number of hash operations required. The

best case occurs when i = 1 or when the verifier previously has checked Vi−1, thus

OvhV erifier valid best = Chash. The worst case happens when i = ℓ, in which the verifier

126

needs to perform ℓ hash operations, resulting in OvhV erifier valid worst = ℓ · Chash. The

average number of hash computations is ℓ+1
2 , hence OvhV erifier valid avg = ℓ+1

2 · Chash.

The verifier’s average query cost which encompasses both the revoked and the valid cases

is therefore: OvhV erifier Avg = Prrev ·OvhV erifier rev +Prvalid ·OvhV erifier valid avg, with

Prrev and Prvalid defined in Eq. (7.21).

The corresponding daily query costs are: D BwCMAE−∀V er (for CMAE)= Qdaily ·

Lhash, D BwCMAE−∃V er (for Ver)= Qver daily · Lhash, D OvhCA = 0, D OvhCMAE = 0,

and D OvhV erifier Avg = Qver daily ·OvhV erifier Avg.

For the storage costs, note that the CA can remove the subchains it has released.

Hence, for a certificate issued i generations prior to the current time, the CA only needs

to store (ℓ−i) hash tokens together with N0. Thus, the storage requirements in CRS

are: StorCA =
∑ℓ

i=1
Nλ
β
· (i + 1) · Lhash + ⌊Rev Entriesg⌋ · Lhash = Nλ

β
· ℓ2+3ℓ

2 · Lhash +

⌊Rev Entriesg⌋ · Lhash, and StorCMAE = BwCA−CMAE .

For each certificate, the total cost for generating hash chains (from Y0 and N0) is:

(ℓ + 1) ·Chash. Note that the hash generation portions can be pre-computed. The online

overhead which we are concerned here is: OvhCA = CSign, and the corresponding daily

cost is: D OvhCA = N
β
· CSign. The timeliness guarantee of CRS is d = δ minutes.

CREV-I

CREV-I establishes a short-term session of tCREV I minutes between the CA and an

EVCP. To achieve the timeliness guarantee of δ minutes, we set the hash-chain update

interval in CREV-I (d) to δ minutes. Assuming an uninterrupted service, each EVCP

thus performs S = M
tCREV I

session establishments daily. Hence, each EVCP receives

U = S · ℓCREV I = M
δ
− S hash-token updates in a day. We use LCREV I Reply = 605

bytes to denote the length of Session Reply message, and LCREV I Msgs = 1,615 bytes

to denote the length of all messages in a session establishment of CREV-I.

The total daily update costs (comprising both the session establishments and the

hash-token updates) are: D BwCA−∀EV CP (for CA) = N · (S ·LCREV I Msgs +U ·Lhash),

D BwCA−∃EV CP (for EVCP)= S · LCREV I Msgs + U · Lhash, D OvhCA = N · S · (2 ·

Cverify + Csign), and D OvhEV CP = S · (2 · Csign + Cverify) + U · Chash.

The verifier’s average query cost in CREV-I is: OvhV erifier Avg = Prrev · Chash +

Prvalid·(
ℓCREV I+1

2 ·Chash +Cverify). The corresponding total daily costs due to query are:

D BwEV CP−∀V er (for EVCP) = qper cert daily ·(Lhash +LCREV I Reply), D BwEV CP−∃V er

(for Verifier) = QV er daily · (Lhash+ LCREV I Reply), D OvhCA = 0, D OvhEV CP = 0,

and D OvhV erifier Avg = QV er daily ·OvhV erifier Avg.

As in CRS, for a certificate whose hash tokens have ben released i times before,

where 0≤i≤ℓCREV I , the CA only needs to store ℓCREV I − i hash-tokens together with

N0. Hence, the CA’s storage requirement is: StorCA =
∑ℓCREV I

i=1
N

ℓCREV I
·(i+1) ·Lhash =

127

N
ℓCREV I

·
ℓ2CREV I+3ℓCREV I

2 · Lhash. The storage needed in each EVCP is: StorEV CP =

LT +LCREV I Reply +Lhash, where LT denotes the length of the CA’s nonce or timestamp

for its replay protection (see Section 7.3.3).

For the CA’s certificate creation, the (online) daily cost is: D OvhCA = N
β
· Csign.

The timeliness guarantee of CREV-I scheme is δ minutes.

CREV-II

CREV-II establishes a short-term session of tCREV −II minutes between the CA and an

EVCP. Throughout an established session, the CA sends an OCSP Response message

every dCA=δ minutes. In a day, each EVCP thus performs S = M
tCREV II

session establish-

ments, and receives U=S · ℓCA=M
δ

OCSP Response messages. We use LCREV II Reply=

550 bytes to denote the length of Subscription Reply, and LCREV II Msgs = 1,577bytes

to denote the length of all messages used in a session establishment of CREV-II.

The total daily update costs (comprising both the session establishments and the

OCSP Response updates) are: D BwCA−∀EV CP (for CA) = N · (S ·LCREV II Msgs + U ·

LOCSP Response), D BwCA−∃EV CP (for EVCP) = S ·LCREV II Msgs +U ·LOCSP Response,

D OvhCA = N · S · (2 · Cverify + Csign) + N · U · Csign, and D OvhEV CP = S · (2 ·

Csign + Cverify) + U · Cverify. With the range optimization technique, the worst case

scenario for the required number of group-based status updates occurs when each revoked

certificate happens to be in between two valid ones. As such, we require Rev Entries

of OCSP Response messages. The average case requires Nrange msgs = ⌈Rev Entries
2 ⌉

messages. Let us use LOCSP Response Range to denote the length of OCSP Response

message containing a range specification. The total daily update costs for CREV-II with

range optimization are: D OvhCA (with range optimization) = N · S · (2 · Cverify +

Csign) + Nrange msgs · U · Csign, D BwCA−∀EV CP (for CA, with range optimization) =

N ·(S ·LCREV II Msgs +U ·LOCSP Response Range), and D BwCA−∃EV CP (for EVCP, with

range optimization) = S · LCREV II Msgs + U · LOCSP Response Range.

The total daily query costs are as follows: D BwEV CP−∀V er (for EVCP) = qper cert daily·

LOCSP Response, D BwEV CP−∃V er (for Ver) = QV er daily ·LOCSP Response, D OvhCA = 0,

D OvhEV CP = 0, and D OvhV er = QV er daily · Cverify. When range optimization tech-

nique is employed, we have: D BwEV CP−∀V er (for EVCP, with range optimization)

= qper cert daily · LOCSP Response Range, D BwEV CP−∃V er (for Ver, with range optimiza-

tion) = QV er daily · LOCSP Response Range,

The storage requirements are: StorCA = 0 (without range optimization) or StorCA =

Nrange msgs · LOCSP Response Range (with range optimization); and StorEV CP = LT +

LOCSP Response (without range optimization) or StorEV CP = LT + LOCSP Response Range

(with range optimization). For the CA’s certificate creation, the (online) cost is D OvhCA =

N
β
· Csign. The timeliness guarantee of CREV-II scheme is: dCA = δ minutes.

128

7.4.4 Performance Evaluation

Evaluation Scenarios and Objectives

We conducted our evaluation on a certification system with 100, 000 certificates and a

10% revocation rate. The other parameter values for two evaluation scenarios (with

the timeliness guarantee of 1 and 10 minutes respectively) are given in Table 7.2. Our

main objective here is to have a quantitative comparison of the costs incurred by the

various schemes under the same evaluation scenarios. For the calculation of Prrev and

Prvalid (Eq. 7.21), we assume that 80% of the certificates follow SA(t) query model on

revoked certificates and the other 20% observe SB(t). We set that all hash values are

produced using SHA-1, and signatures are created using RSA with a 1024-bit modulus.

Based on the Crypto++ 5.6.0 Benchmarks (http://www.cryptopp.com/benchmarks.

html) on Intel Core-2 PC with 1.83 GHz CPU running Windows Vista 32-bit, we have

the overheads of the basic cryptographic operations as shown in Table 7.2.

Evaluation Results

The calculation results of several realistic performance factors under various timeliness

guarantees (δ values), including δ = 10 minutes and 1 minute, are shown in Table 7.3.

As can be seen, with δ between 1 day and 1 minute, there are 9,880–9,894 entries in the

CRL which represent ∼98% of the total revoked certificates. The number of entries is

significantly higher than using prior simplified model which were based on an assumption

that revoked entries are kept in the CRL for β
2 days [190, 92] (only 5,000 entries in

the CRL). So, even with N=100, 000 and δ = 1 day, the difference in CRL data size

calculation is 190,720 bytes, which increases the burden of bandwidth-limited verifiers.

We remark that simply applying function f(v) or N(v) in [99, 72] gives Rev Entries ≈

5.7M (with δ = 1 hour) and ≈ 200M (with δ = 10 minutes) on 100,000 certificates

and 10% revocation. This shows that the summation-based approximation can have

significant error when δ is less than 1 day since the maximum number of entries in the

CRL can only be 10,000.

Performance Timeliness Guarantee (δ)
Factors 1 day 1 hour 10 mins 1 min

Rev Entriesg 9880.33 9894.05 9894.53 9894.62

CRL Size (KB) 376.68 377.21 377.21 377.21

Prrev 0.005442 0.005556 0.005561 0.005562

Prvalid 0.994558 0.994444 0.994439 0.994438

Table 7.3: Calculation results of some performance factors under timeliness guarantees
between 1 day and 1 minute.

129

Another important finding is that the probability of a verifier’s query to be reported

as valid is ∼99%. The probability is higher than 92% reported in [92] where it is simply

assumed that Prvalid = N/(N +Rev Entries). The higher percentage is due to our more

realistic exponential probability functions SA(t) and SB(t), which model the “decaying”

effect of queries on the revoked certificates over time. This result is particularly important

for hash-chaining based schemes since now the verifier is almost certain to perform the

repeated hash operations to prove the validity (instead of the revocation) of a queried

certificate.

Table 7.4 and Table 7.5 show the overheads of the examined revocation schemes under

the selected certification scenarios.

7.5 Discussion

We discuss how CREV schemes compare with others on a certification scenario with

100,000 certificates and other parameter values as shown in Table 7.2. We first highlight

the results from Table 7.4.

Given a CRL size of 377.21 KB for 100,000 principals, the CRL scheme incurs

an enormous daily bandwidth of 3.22 × 108 MB between the CMAE and all verifiers

(D BwCMAE−∀V er). Another real problem faced by CRL is that a verifier, who performs

just 30 queries per day, needs to download 11.05 MB of daily CRL data which may not

be reasonable for mobile devices.

In OCSP, a verifier receives only 0.013 MB of OCSP Responses daily. However,

OCSP puts a large burden on the CA. Every day, the CA needs to deliver 3.93 × 105

MB of OCSP Response messages to all the verifiers, and spend 1.33× 106 seconds (370

hours) of processing time to sign the Response messages.

CRS significantly reduces the bandwidth requirement from the CMAE to the veri-

fiers. Each verifier also needs to access only ∼600 bytes of hash tokens daily. However, on

average, a verifier needs to spend 10.45 ms verifying a single hash token (on an 1.83-GHz

Intel Core-2 CPU). With the length of the hash chain of 52,559, the worst case of verify-

ing a single hash token (belonging to a valid certificate) is 21.02 ms, which is much more

expensive than verifying a digital signature (0.07 ms). As such, this overhead may be

too costly for lightweight verifiers such as netbooks or mobile devices. Another problem

is that CRS requires a huge storage on the CA (5.01×104 MB) when the CA stores all

the hash chains (without amortization). Furthermore, the bandwidth requirement from

the CMAE to all verifiers is also high (1.72× 104 MB).

CREV-I offers an attractive trade-off between the CA’s storage requirement and

processing overheads while still maintaining a low verifier’s computational (energy) and

bandwidth requirements. The storage requirement on the CA is now down to 70.57 MB

130

Entity Daily Costs Unit CRL OCSP CRS CREV-I CREV-II
(U=Update, Q=Query) (/day)

CA

D OvhCA (U+Q) sec 0.21 1.33×106 0.21 324 2.16×104

D OvhCA (Cert Creation) sec 0.41 0.41 0.41 0.41 0.41
StorCA MB 0.37 0 5.01×104 70.57 0
D BwCA−CMAE (U) MB 53.05 - 423.80 - -
D BwCA−∀EV CP (U) MB - - - 578.88 6604.19
D BwCA−∀V er (Q) MB - 3.93×105 - - -

CMAE

D OvhCMAE (U+Q) sec 0.01 - 0.01 - -
StorCMAE MB 0.37 - 2.94 - -
D BwCA−CMAE (U) MB 53.05 - 423.80 - -
D BwCMAE−∀V er (Q) MB 3.32×108 - 1.72×104 - -

EVCP

D OvhEV CP (U+Q) sec - - - 0.0061 0.07
StorEV CP MB - - - 6.11×10−4 4.53×10−4

D BwCA−∃EV CP (U) MB - - - 0.0058 0.066
D BwEV CP−∀V er (Q) MB - - - 14.03 3.94

D OvhV er (Q) sec 0.0021 0.0021 0.31 0.0025 0.0021
Verifier D BwCA−∃V er (Q) MB - 0.013 - - -

D BwCMAE−∃V er (Q) MB 11.05 - 5.74×10−4 - -
D BwEV CP−∃V er (Q) MB - - - 0.047 0.013

Revocation Latency mins 10 ≈0 10 10 10

Table 7.4: Cost comparison of various schemes on a certification system with 100,000 certificates and δ = 10 minutes.

131

Entity Daily Costs Unit CRL OCSP CRS CREV-I CREV-II CREV-II
(U=Update, Q=Query) (/day) Range Opt

CA

D OvhCA (U+Q) sec 2.13 1.33×106 2.13 1296 2.14×105 1.18×104

D OvhCA (Cert Creation) sec 0.41 0.41 0.41 0.41 0.41 0.41
StorCA MB 0.37 0 5.01×105 173.57 0 2251.27
D BwCA−CMAE (U) MB 530.46 - 4238.01 - - -
D BwCA−∀EV CP (U) MB - - - 3963.47 6.42×104 6.52×104

D BwCA−∀V er (Q) MB - 3.94×105 - - - -

CMAE

D OvhCMAE (U+Q) sec 0.10 - 0.10 - - -
StorCMAE MB 0.37 - 2.94 - - -
D BwCA−CMAE (U) MB 530.46 - 4238.01 - - -
D BwCMAE−∀V er (Q) MB 3.32×108 - 1.72×104 - - -

EVCP

D OvhEV CP (U+Q) sec - - - 0.025 0.13 0.13
StorEV CP MB - - - 6.11×10−4 4.53×10−4 4.60×10−4

D BwCA−∃EV CP (U) MB - - - 0.040 0.64 0.65
D BwEV CP−∀V er (Q) MB - - - 14.03 3.94 4.00

D OvhV er (Q) sec 0.0021 0.0021 3.14 0.0032 0.0021 0.0021
Verifier D BwCA−∃V er (Q) MB - 0.013 - - - -

D BwCMAE−∃V er (Q) MB 11.05 - 5.74×10−4 - - -
D BwEV CP−∃V er (Q) MB - - - 0.047 0.013 0.013

Revocation Latency mins 1 ≈0 1 1 1 1

Table 7.5: Cost comparison of various schemes on a certification system with 100,000 certificates and δ = 1 minute. Due to the short value of δ
used, CREV-II can also operate with the range optimization technique.

132

from 5.01×104 MB earlier in CRS. With still 0.08 ms of the verifier’s average processing

time on a query, or 2.52 ms daily, the downsides of CREV-I are the CA’s extra band-

width and processing due to the establishments of sessions. The overall bandwidth of

D BwCA−∀EV CP is however only 578.88 MB/day, which is still reasonable. The CA’s

daily processing time becomes 324 s (∼5.4 minutes), which is significantly smaller com-

pared to the 1.33× 106 s or ∼370 hours in OCSP.

CREV-II has a unique advantage that it delivers a standardized OCSP Response

message. The advantage over OCSP is that the bandwidth requirement from the CA to

all EVCP servers is only 6604.19 MB/day, which is a very much smaller than that from

the CA to all Verifiers in OCSP (3.93 × 105 MB/day). The CA’s computational cost

increases to 2.16×104 s or ∼6 hours daily, which is still quite affordable. CREV-II thus

makes online status-based schemes much more viable to deploy.

We now discuss the results when δ = 1 minute as shown in Table 7.5. Due to the

higher timeliness guarantee, CRS now must deal with substantially longer hash chains.

Its CA’s storage requirement now jumps to 5.01×105 MB. More importantly, the daily

Verifier’s computation overheads now increases to 3.14 s from 0.31 s when δ = 10 minutes.

As expected, the CA’s computation cost in CREV-II also increases. Now, it becomes

2.14×105 s or ∼60 hours daily (on an 1.83-GHz Intel Core-2 CPU).18 Since δ = 1 minute,

CREV-II now can also operate with the range optimization technique by merging the

generated OCSP Responses together. With this optimization technique, CREV-II man-

ages to bring down the CA’s processing cost to only 1.18×104 s or ∼3 hours daily. Thus,

when δ = 1 minute, the range optimization helps keep the CA’s overhead in CREV-II

reasonable, while OCSP already incurs a very high cost of 1.33× 106 s or ∼370 hours.

In summary, both CREV-I and CREV-II thus offer a good trade-off between the costs

incurred on CA, CMAE and EVCP, while maintaining fairly lightweight requirements on

the verifier. Compared with other examined schemes, these two CREV schemes are more

viable for deployment when a near real-time timeliness guarantee is needed. CREV-II

incurs a higher overhead on the CA’s processing compared to CREV-I due to a higher

volume of signing operations. However, with the range-optimization technique, it can be

kept still reasonable.

The main new requirement for our CREV schemes is that an EVCP now needs to

be available and provide a reliable CSI access service. However, given the fact that an

EVCP needs to be up and running to provide its own online services, this requirement is

theefore not an issue. With a present trend of using Content Delivery Network (CDN)

which are commercially available from various parties (e.g. Akamai Technologies and

Amazon CloudFront), we envision that the EVCP servers are able to provide the uptime

18We remark that the CA functioning as an OCSP Responder usually makes use of a more powerful
CPU specification.

133

requirement either by themselves or through the use of third party providers. Lastly, we

also note that the CREV schemes can be deployed in conjunction with other standard

revocation schemes such as CRL or OCSP, thus ameliorating the potential workload

bottlenecks faced in the existing revocation schemes.

7.6 Chapter Summary

We have presented two lightweight, practical and inherently-distributed certificate re-

vocation schemes, called CREV, based on the recently available Extended-Validation

Certificate infrastructure. Based on the analysis using our realistic performance analysis

framework, we have shown the practicality of our schemes when compared to several

existing schemes under the scenarios of revocation timeliness guarantees between 1 and

10 minutes. The CREV-I and CREV-II schemes offer a good balance of incurred costs

on the involved entities, while maintaining lightweight requirements on the verifier. With

the range-optimization technique, even with a timeliness guarantee of 1 minute, CREV-II

can keep the CA’s computational overheads manageable. Given their practical setting-

implementability and lightweight requirements, the proposed CREV schemes are thus

very suitable for certificate revocation in numerous real-world scenarios. With their near

real-time timeliness guarantee, the schemes can offer appealing alternative solutions to

the problem of providing a timely yet lightweight revocation infrastructure, including to

mobile devices where computation, bandwidth and energy usage need to be kept small.

134

Chapter 8

Extending BAN Logic for

Reasoning with PKI-based

Protocols

It is common nowadays for a running program on a host to interact with external pro-

grams over a public untrusted network like the Internet. In order to secure the communi-

cation as well as the access to any provided services, public-key cryptographic operations

are often employed. PKI-based protocols, including those used in securing program distri-

bution and certificate revocation management of the PPLC, must be shown to be secure.

In view of this, although protocol analysis on PKI-based protocols does not constitute

a step in the PPLC, it is however an important prerequisite for securing the PPLC.

Furthermore, such analysis is usually not a focus of most secure software development

methodologies such as [112]. We therefore address the need for establishing concise yet

practical formal reasoning on PKI-based protocols in this chapter.

Although a network protocol specification may look incomplex, designing a correct

specification that satisfies the intended security objectives is well recognized as difficult.

Hence, a formal analysis is necessary to establish the security of the protocols. Despite

the availability of numerous formal techniques, there is a challenge to devise one that

can be handily utilized by many protocol designers to verify real-world protocols.

Among various authentication logics, BAN Logic [26, 27] (see also Section 2.6 for

its background information) is one of the best known and most widely used techniques

[107, 143, 108]. This may well explain the constant appearance of publications applying

BAN Logic to protocols and security systems even till now [5, 24, 155, 188, 35, 33], with

application domains as diverse as wireless network [188], mobile communication [33] and

voting system [155]. BAN Logic however does not properly deal with the detailed as-

pects of PKI-based authentication, such as certificate processing, as commonly practiced

nowadays. This is arguably because PKI was not well established yet when the logic was

135

designed. The situation now is however very different since PKI becomes common, and is

an infrastructure on which many real-world protocols critically rely. Given the ubiquity

of PKI-based protocols and their importance to host security, there is a need to update

BAN Logic to better reason with PKI-based protocols, yet remain practical to use.

This chapter explains our extension of BAN Logic, published in [159], which allows

for a more concise reasoning with PKI-based protocols. In our work, we begin with

the starting point of retaining the popularity of BAN Logic among protocol designers.

Our extension is along the lines of the work by Gaarder and Snekkenes [51], but better

captures the current aspects of PKI. We address various limitations of [51] in capturing

many important concepts and practices of the modern PKI usage. We also apply our logic

to verify the session establishment protocol in CREV scheme as outlined in Chapter 7.

The remainder of this chapter is organized as follows. We first survey the related works

in Section 8.1. We then give a brief review of the previous extension of BAN Logic by

Gaarder and Snekkenes in Section 8.2. Section 8.3 presents our new extended BAN Logic,

whereas Section 8.4 gives insight on its usage in preventing flawed protocol designs. An

example of the application of our logic is considered in Section 8.5. Section 8.6 discusses

the results, and Section 8.7 finally concludes this chapter.

8.1 Related Work

There exist various works in the literature, such as [5, 51, 156, 103, 85, 71, 161], which

apply formal methods to PKI. We briefly survey ones which extend authentication logics,

particularly BAN Logic, to deal with public-key authentication. Our focus of compar-

ison will be on certificate processing formalism, time durations, and rules on messages

encrypted (signed) using public (private) keys.

As pointed out by many researchers, such as in [15], the original BAN Logic is known

to have limitations in describing “serverless protocols”. This may happen since the only

way of promoting “once said” (|∼) to “believe” (|≡) is by use of the freshness property

of a statement, which is typically in the form of a nonce or a timestamp. In a serverless

protocol, such freshness guarantee however cannot be provided, because the server is not

necessarily available at the time of communication. In PKI setting, the limitations have

to do with accepting the validity of a certificate. A certificate is issued at a point in time

to be valid afterwards within its specified validity time interval (unless it is revoked at

some time within this time interval). To work around this problem, the original BAN

Logic choose to ignore the initial handling of certificates by assuming that they have been

previously distributed, checked, and accepted as valid. Aziz and Diffie, who applied BAN

Logic in [15], alternatively assume a certificate to always be fresh. Hence, the required

belief statements on the certificate’s contents can somehow be derived.

136

In their work on formal verification of CCITT X.509 protocol [51], Gaarder and

Snekkenes argued that important aspects of public-key authentication are lost when

BAN Logic is used for PKI-based protocol verification. To amend this deficiency, they

proposed enhancements to BAN Logic that take certificate checking into account as an

integral part of the reasoning process. The extension defines the notion of duration to

capture some time-related aspects. A principal can therefore claim that a formulae is,

was, or will be good in a time interval. In [156], Stubblebine and Wright however argued

that the assumptions used are too restrictive for reasoning about long-lived security

associations. Additionally, there exist issues on synchronization and synchronization

bounds. Nevertheless, the simplicity of the logic proposed in [51], while improving the

ability to reason with PKI-based protocols, is appealing. Our work here focuses on

reworking the logic to be more accurately in line with the current PKI practice.

The work of Syverson [161] also adds the element of time to a logic of authentication.

It incorporates a temporal formalism into a semantic model of BAN Logic, which is

developed in [2], using temporal notions of “all points in the run prior to the current

one” and “at some point in the run prior to the current one.” Here in our work, we adopt

the duration model of [51] which is relatively easier to use, yet enables the analysis of

subtle relationships in PKI-based protocols.

Stubblebine and Wright [156] also propose a logic extension for dealing with PKI. The

logic supports the concept of synchronization, revocation and recency. In pursuing more

expressiveness, it however becomes far more complex than the original BAN Logic. We

view that the complexity is a drawback which could hinder its adoption and application

in practice.

Parts of our extension logic appeared earlier in the author’s Master’s thesis [157],

which described the basic ideas of the extension logic. The logic formulation in [157]

however only covers the basic aspects and is not full fledged. More specifically, it does

not cover: the stated sender constructs (constructs 8.15 and 8.16—see later), the re-

lated New message-meaning for (public-key) encrypted message Rule (Rule 8.17), as well

as the analysis of encrypted signed message (Rule 8.18) and signed encrypted message

(Rules 8.19–8.22). In addition, it also lacks a comparative analysis of the logic with other

works incorporating time into BAN Logic as discussed earlier in this section. Also miss-

ing in [157] is the analysis of how the extension can help prevent BAN Logic’s “imprecise

proof” when applied to PKI-based protocols (elaborated later in Section 8.4). The re-

ported results in this chapter are based on the work [159], which published during the

author’s Ph.D candidature.

137

8.2 The Extension by Gaarder-Snekkenes

The extension logic of Gaarder and Snekkenes [51], which we call here GS-BAN, keeps

BAN Logic’s secret-key aspects intact for easy application. Our proposed extension takes

the same approach. Appendix C lists all the secret-key rules of (the original) BAN Logic

which are relevant to our extension in this chapter. Below, we summarize the extension

logic of GS-BAN, and pinpoint some problems with it.

8.2.1 GS-BAN Extension Summary

Constructs for Public-Key Formalism

The following logic constructs were defined for public-key authentication in [51] (we use

some slight notational modifications on keys below):

• ℘κ (P, KP) : Principal P has associated a good public key KP ;

• Π(K−1
P) : Principal P has a good private key K−1

P ;

• σ(X, K−1
P) : X signed with P ’s private key K−1

P ;

• {X}KP
: X encrypted under P ’s public key KP .

In GS-BAN extension, it is assumed that a digital signature is always in appendix

mode. (We also adopt the same assumption here.) Hence, the signature construct

σ(X, K−1
P) is actually a contracted form of the following:

σ(X, K−1
P) = X, Sign(K−1

P , hash(X)) (8.1)

where: Sign() is a signature function, and hash() is a hash construction function.

Certificate and Its Idealization

As mentioned earlier, one of the extension’s main contributions is the idealization of

a certificate. It adopts the certificate based on the X.509 standard [75], whose basic

structure can be described as follows:1

CertP = σ((N, I, δP , P, KP , A), K−1
I) (8.2)

where:

• N : unique serial number of the certificate;

• I : name of the issuer;

• δP : validity period of the certificate, which consists of tP1 (not before) and tP2

(not after);

• P : the distinguished name of the principal;

• KP : the certified public key of P ;

• A : identifier of the signature algorithm employed;

• K−1
I : I’s private key which is used to sign the certificate.

1To simplify the formalism, GS-BAN extension considers the certification path to be of length 1. We
also take similar approach here.

138

Based on the certificate structure, GS-BAN gave a certificate the following idealiza-

tion:
CertP = σ((Θ(tP1 , tP2), ℘κ (P, KP)), K−1

I). (8.3)

In its idealized form, a certificate contains a newly defined validity period construct,

which is also called “duration-stamp” in [51]. The construct (Θ(t1, t2), X) was specifically

introduced to say that “statement X holds in the time interval [t1, t2]”. A message might

thus be tagged with the duration-stamp denoting the time interval during which its

creator claims the message is good. In a certificate, the tagged message represents the

certificate statement CP = ℘κ (P, KP) in GS-BAN. Hence, the issuer I who uttered the

duration-stamped certificate in (8.3) claims that ℘κ (P, KP) is good in the time interval

of [tP1 , tP2].

Inference Rules

To reason with the certificate and public-key constructs, GS-BAN introduced the follow-

ing inference rules:

• The Message-meaning (for public-key) Rule:

P |≡℘κ (Q, KQ) , P |≡Π(K−1
Q), P ⊳ σ(X, K−1

Q)

P |≡Q |∼X
(8.4)

• The See signed-message Rule:

P ⊳ σ(X, K−1
Q)

P ⊳ X
(8.5)

• The Certificate duration-stamp Rule:

P |≡Q |∼ (Θ(tR1 , tR2), CR), P |≡Q |≡∆(tR1 , tR2)

P |≡Q |≡CR
(8.6)

In the above rule, Q acts as the issuer of a certificate for R, whose certificate

statement is denoted by CR. The rule thus provides a way of promoting once said

to believe about a certificate statement. For this purpose, P needs to believe that

Q holds a belief on “good time interval” [tR1 , tR2] (denoted by ∆(tR1 , tR2)) . In

other words, P must believe that the validity period of [tR1 , tR2] still holds according

to the current time in Q.

Message-Recipient Construct

GS-BAN also introduced a notion of “intended recipient” of a message. Its authors

argued that such assurance needs to be explicitly stated as one of the goals in their

X.509 protocol formalism. Moreover, they also claimed that the original BAN Logic

provides no means of expressing it in the language available. Therefore, the construct

“ℜ(X, P)” was introduced to say that “P is the intended recipient of message X”.

The construct is defined to appear in the following form:

P → Q : X,ℜ(X, Q) (8.7)

139

which should be interpreted as “P sends to Q a particular message X together with a

statement telling that Q is the intended recipient of X”. This effort clearly represents a

step forward in capturing the notion of explicit principal naming [1]. In doing so, however,

GS-BAN requires the receiver to hold an assumption about the sender’s jurisdiction over

the message recipient statement (i.e. Q |≡P p⇒ℜ(X, Q)), an approach which we will

examine more closely below.

8.2.2 Problems and Limitations

Despite its improvements on BAN Logic, there exist some key aspects of GS-BAN ex-

tension [51] which we find rather unsettling:

• Assumption on Π(K−1
Q): In verifying a protocol using GS-BAN, a (supplied) as-

sumption needs to be added to a principal that he/she believes the goodness of the

private key of another principal involved. That is, a formula such as “P |≡Π(K−1
Q)”

needs to be vacuously held at the start of the verification process. Such a stipula-

tion is needed so that GS-BAN can process the Message-meaning Rule (8.4). We

however view the inclusion of such an assumption as an unsound practice. Such

a formula should never be supplied as an assumption, but must rather be logi-

cally derived from a certificate reasoning within the logic. The only assumption

needed is the goodness of public and private keys of the CA in addition to the

principal’s own key pair. A principal then should be able to derive the goodness of

the other principal’s keys from the certificates issued by the CA. Furthermore, if a

key is no longer considered good, revocation mechanisms like CRL [37] should be

incorporated in the logic.

• Assumption for message recipient construct: One of the consequences of the

Message-recipient construct in GS-BAN is that it requires a statement ℜ(X, P) to

be made as a protocol goal for every message with the intended recipient construct.

In our opinion, such a statement does not need to be stipulated as a formalism goal

since we are mainly interested in deriving goals about the goodness of the generated

session key(s). In our view, the intended recipient construct should instead be

incorporated as a part of logic rules. Moreover, as mentioned above, the construct

requires the receiver to hold an assumption about the sender’s jurisdiction over

the message recipient statement (i.e. Q |≡P p⇒ℜ(X, Q)). In our new extension,

by integrating the intended-recipient requirement into the New message-meaning

Rule, we manage to eliminate the need for sender’s jurisdiction, thus simplifying

the reasoning on message processing.

• Omission of certificate revocation process: GS-BAN apparently has chosen to

ignore the incorporation of the certificate revocation issue into its logic. Instead, it

140

assumes that each principal always maintains the goodness of its private key. As a

result, we need to believe that a certificate, once issued, is always good for the time-

interval specified in its validity period. Considering the importance of certificate

revocation in public-key authentication, its omission in the formalization represents

a limitation of the extension.

8.3 MPKI-BAN: Extending BAN Logic to Deal with PKI

Motivated by the aforementioned drawbacks of GS-BAN extension [51], we propose the

following extensions to BAN Logic which addresses various limitations of GS-BAN and

also provides other substantial contributions. We call our new extension MPKI-BAN

since it is aimed at dealing with modern PKI-based protocols.

Our approach of presenting the results in this chapter focuses on pragmatism. We

focus on the logic definition and its usage application while leaving theoretical analysis of

the logic, e.g. the logic’s soundness and completeness with respect to some well-defined

semantics, as a separate treatment beyond our work’s scope. Our goal here is to expound

an up-to-date yet accessible authentication logic which can be handily used by protocol

designers who may not be experts in authentication logics or formal methods.

8.3.1 Revised Idealized Certificate

In MPKI-BAN, we idealize a certificate’s statement as follows:2

CertP = σ(Θ′(tP1 , tP2 , I, (℘κ (P, KP) , Π(K−1
P))), K−1

I) (8.8)

To capture the need to ensure that a certificate is not revoked prior to deriving any

beliefs on its contents, we define a “validity period (duration-stamp) with revocation”

construct Θ′(t1, t2, I, X). This construct states that “statement X holds in the time

interval [t1, t2], provided that it is not revoked by the issuer I”. We will redefine the

certificate validation rule using this construct later in Section 8.3.5. We may keep the

original validity period construct of GS-BAN (Θ(t1, t2), X), now restated as Θ(t1, t2, X),

to represent a validity period without revocation. That is, the statement X will always be

good in [t1, t2] without any need to revalidate it with the issuer. For a certificate in the

X.509-based PKI framework, however, we need to use the newly defined function Θ′()

rather than Θ().

As can be seen, we now include Π(K−1
P) into the idealized certificate’s statement in

contrast with the previous definition in (8.3). Hence, a valid certificate now assures that

both public and private keys of a principal are good. With this modification, we thus

eliminate the need to have an assumption about the goodness of the other principal’s

2Note that the complete idealized certificate definition will include message-recipient construct as
defined in (8.12).

141

private key as in GS-BAN. This modification is crucial as it helps formalize the close

relationship between the certificate validity and the goodness a private key. The rule

makes it clear that a belief on Π(K−1
P) should be derived from a valid P ’s certificate.

Consequently, should the private key of a principal ever be compromised, the principal

must notify and ask the CA to revoke his/her certificate, a requirement that is consistent

with current PKI practices.

8.3.2 New Use of Message-Recipient Construct

Different from GS-BAN, the message-recipient construct is defined in our extension to

be part of signature construct (σ), which now appears in the following form:

σ(ℜ(X, P), K−1
Q). (8.9)

Note that now we make statement ℜ(X, P) as a stronger statement than X, as it implies

a statement X together with its recipient tag for P .

Unlike the use of the message-recipient construct in GS-BAN, we thus incorporate it

into our New message-meaning Rule (defined below) as one of its premises. A principal

thus needs to ensure the existence of a valid recipient tag in the signed message in order to

proceed with the rule. With this, we also manage to eliminate the requirement of stating

a message-recipient as a verification goal, as well as the requirement of introducing an

assumption about the sender’s jurisdiction over the message-recipient as in GS-BAN.

8.3.3 New Message-Meaning Rule for Private-Key Signed Message

In symmetric-key based authentication, the intended recipient of a message can usually

be inferred from the shared secret-key employed in the encryption or the generation of

Message Authentication Code (MAC). Unfortunately, this does not apply in private-key

signed messages where the same private key is used to sign messages regardless of their

intended recipient. Hence, in public-key authentication, there is a greater need to follow

the “naming principle” [1].3 Surprisingly, the same mistake due to disregarding this

principle seems to be made time after time in many protocols (see e.g. [97]). Given this

concern, we redefine the New message-meaning for (private-key) signed message

Rule as follows:

P |≡℘κ (Q, KQ) , P |≡Π(K−1
Q), P ⊳ σ(ℜ(X, P), K−1

Q)

P |≡Q |∼X
. (8.10)

3It is possible to argue that in a few situations, due to privacy considerations, protocol designers might
aim to withhold identity information as long as possible, thus conflicting with the naming principle. We
however focus here on general situations where ensuring secure authentication takes precedence over
privacy concerns.

142

With (8.10), we thus integrate the message-recipient construct into the Message-

meaning Rule. Our requirement for the third premise above is strongly motivated by the

works of Meadows [107] and Boyd and Mathuria [25], which still managed to uncover

a loophole in the Aziz-Diffie protocol [15] despite the application of BAN Logic to the

proposed protocol. We will examine this later in Section 8.4 where we show how the

new rule and some cautionary note on the application of BAN Logic can together help

pinpoint the problem with the protocol and its imprecise proof.

8.3.4 All-Recipient See Rule

Having defined the New message-meaning for signed message Rule in (8.10) above, we

further note that it is possible for a message to be actually intended for all principals

in the protocol. A good example is a certificate, which is meant to be accepted by any

principal as long as he/she trusts the issuer. We thus define a special principal name

“all”, and define the following All-recipient see Rule:

P ⊳ σ(ℜ(X, all), K−1
Q)

P ⊳ σ(ℜ(X, P), K−1
Q)

. (8.11)

8.3.5 Certificate and New Certificate-Validation Rule

In line with the use of all recipient definition above, a certificate is now to be idealized

in MPKI-BAN as follows:

CertP = σ(ℜ(Θ′(tP1 , tP2 , I, (℘κ (P, KP) , Π(K−1
P))), all), K−1

I). (8.12)

This certificate definition now correctly includes the message-recipient construct, and

subsumes the previous interim definition given in (8.8).

To derive a belief on a certificate, this New certificate-validation Rule is used:

P |≡Q |∼Θ′(tR1 , tR2 , Q, CR), P |≡Q |≡∆(tR1 , tR2), P |≡Q |≡Φ(CR)

P |≡Q |≡CR
. (8.13)

Here, Q acts as the certificate issuer. CR denotes a certificate statement, consisting

of ℘κ (P, KP) and Π(K−1
P). This rule thus supersedes Rule (8.6) previously defined in

GS-BAN. The third premise (i.e. P |≡Q |≡Φ(CR)) emphasizes the need for “certificate

revalidation step” with the issuer Q as the principal stated in Θ′() construct. P must

ensure this premise by checking that Q still believes that the uttered certificate statement

remains valid (i.e. Q |≡Φ(CR)).4 In the CRL model, this step is done by checking the

absence of the certificate in question in Q’s recent CRL.

4Note that although we put CR as the parameter of Φ(), in practice the matching is done based on
the unique certificate’s serial number N .

143

In the rule above, we note that the resulting belief statement (CR) can be argued

as an “unstable” statement [27]. That is, the statement is valid only at the time of

validation but not necessarily thereafter, as the corresponding certificate might be revoked

at some point of time in the future. A more elaborate logic might include a more general

time-related reasoning as exemplified by the work [156]. However, in order to keep

our extension simple, we avoid doing so. Instead, we limit such statements to beliefs

on the goodness of public and private key of a principal, and not on actual statements

communicated among the principals in the protocol. In fact, both BAN Logic [27] and

GS-BAN [51] implicitly make a similar simplification too, because a secret key, in practice,

will eventually cease to be valid due to its expiry or a possible security breach.

8.3.6 Duration-Stamp (without Revocation) Validation Rule

Having mentioned that we can keep a validity period without a revocation construct (see

Section 8.3.1), we can define the following Duration-stamp (without revocation)

validation Rule:
P |≡Q |∼Θ(t1, t2, X), P |≡Q |≡∆(t1, t2)

P |≡Q |≡X
. (8.14)

This rule thus promotes once said to believe on a duration-stamped (without revo-

cation) statement. Here, P needs to ensure that the validity period of [t1, t2] still holds

according to the current time in Q. This rule is similar to the certificate duration-stamp

Rule (8.6) in GS-BAN. For validating a certificate, MPKI-BAN however makes use of

the more comprehensive Rule (8.13), which also includes a revocation checking step.

8.3.7 Message-Sender Construct

Realizing the importance of the naming principle, we take another step to define a

message-sender construct in MPKI-BAN. It aims to introduce the notion of a “stated

sender” of a message. The message-sender construct S(X, Q) is defined to specifically

say that “message X together with Q as the stated sender of the message”. It can appear

in the following two forms:

• Stated-sender within the encrypted message:

This message-sender construct appears in the following form:

{S(X, Q)}KP
. (8.15)

It occurs when the encryption is employed with an additional function of authen-

tication.5 Principal P , who receives the message from Q, ensures this construct by

first decrypting the message, and then verifying that it contains Q as the sender

ID together with correctly formatted message X. We define the corresponding

Message-meaning for public-key encryption Rule in Section 8.3.8.
5It is thus important to make clear the role of encryption in a protocol specification (see e.g. [1]).

144

• Stated-sender outside of the encrypted message:

This form appears as follows:

S({X}KP
, Q). (8.16)

It takes place when the encrypted message ({X}KP
) comes in a message signed by

Q. We discuss the usage of this construct and its related rule in Section 8.3.10.

8.3.8 New Message-Meaning Rule for Public-Key Encrypted Message

When receiving a private-key signed message, it is important to ensure the intended

recipient of the message. This requirement is captured by the message-recipient construct.

When dealing with a message encrypted with the public key of a recipient, it is the identity

of the sender that matters.

We consider the two following commonly applicable scenarios where a public-key

encrypted message portion appears in a message. The first is when the encryption is

employed as a form of authentication in addition to providing confidentiality. This occurs

with the whole message is encrypted. The second scenario occurs when an encrypted

message portion is contained in a signed message. We deal with the first scenario here,

whereas the second scenario is analyzed in Section 8.3.10 below.

Since we require a stated sender assurance on a public-key encrypted message, an

already decrypted message must thus contain the sender’s identity in a pre-defined loca-

tion. The first type of the message-sender construct, {S(X, Q)}KP
(8.15), applies in this

scenario. That is, the identity of the sender is within the encrypted message. We thus

define the following New message-meaning for (public-key) encrypted message

Rule: P |≡℘κ (P, KP) , P |≡Π(K−1
P), P ⊳ {S(X, Q)}KP

P |≡Q |∼X
(8.17)

We later show in Section 8.4 how this rule could have helped deal with a loophole in

Needham-Schroeder public-key authentication protocol, which was exploited in [97].

Note that it is possible that the decrypted message X is actually a signed message.

This case is considered further below (Section 8.3.9).

8.3.9 Additional Message-Meaning Rule for Encrypted Signed Message

The message-meaning rule above (8.17) specifies how MPKI-BAN Logic deals with a

public-key encrypted message. In the case where the decrypted message is actually a

signed message, we thus encounter an encrypted signed message, i.e. a signed message

which is sent encrypted.

For the already-decrypted message, we define the following Message-meaning for

(private-key) signed message –after decryption– Rule:

P |≡℘κ (Q, KQ) , P |≡Π(K−1
Q), P |∼σ(ℜ(X, P), K−1

Q)

P |≡Q |∼X
. (8.18)

145

8.3.10 Rule for Signed Encrypted Message

Here we address another subtle issue, namely the reasoning of signed encrypted message,

that is a signed message that contains encrypted message portion(s). Although the com-

monly suggested practice is to perform signing before encrypting [7], it is not uncommon

to find the reverse in some published protocols.6

Hence, after a message has been validated using the New message-meaning for signed

message Rule (8.10), we need to specify how to process the encrypted message portion.

Here, there are two possibility of the message-sender constructs as in (8.15) and (8.16):

• Stated-sender information is within the encrypted message ({S(X, Q)}KP
):

Here, the sender identity is part of the encrypted message. We thus define the

following Message-meaning for encrypted message portion –after signa-

ture verification, with encrypted stated-sender and included freshness

assurance– Rule:

P |≡℘κ (P, KP) , P |≡Π(K−1
P), P |≡Q |∼ {S(X, Q)}KP

P |≡Q |∼X
. (8.19)

• Stated-sender information is outside of the encrypted message (S({X}KP
, Q)):

For this case, it is insufficient to simply take the presence of a sender ID in the

(correctly signed) clear-text message portion. This is due to the “proof of author-

ship” problem of the encrypted message (see [7]). The problem is that we really

cannot infer that the sender actually knows about X. To resolve this problem, we

require the sender to prove his knowledge of X. On way to fulfill this requirement

is by requiring the sender to generate the signature over the message including

X. Thus, X is calculated in the signature generation although its (clear-text)

value does not appear in the signed message. One example protocol performing

this is a proposed enhancement in [25] to fix the broken Aziz-Diffie protocol [15],

which is analyzed later in Section 8.4.2. In this way, the message-sender construct

S({X}KP
, Q) can be satisfied. In validating the signature, the receiver thus needs to

first decrypt {X}KM
into X, and check that the signature is correctly constructed

using X as a part of the input message. We therefore can define the following

Message-meaning for encrypted message portion –after signature verifi-

cation, with clear stated-sender and included freshness assurance– Rule:

P |≡℘κ (P, KP) , P |≡Π(K−1
P), P |≡Q |∼S({X}KP

, Q)

P |≡Q |∼X
. (8.20)

6Syverson [162] analyzed this ordering principle as suggested in [7], and questioned its applicability by
putting forward examples when the principles are not applicable. Nevertheless, Syverson agreed that such
principle is useful as a general guideline, although it should be critically used by the protocol designers.

146

Notice that without the message-sender assurance, the receiver P can only derive

P |≡Q |∼ {X}KP
, and not P |≡Q |∼X. This difference is crucial, and disregarding it can

lead to erroneous proof generations using the original BAN Logic.

In order for the consequences of (8.19) and (8.20) to be derived further using the

Nonce verification Rule (R2 in Appendix C), X needs to come with a freshness assurance

so that P |≡ ♯(X) can be derived. There are two possible sources for such a freshness:

• The freshness assurance is inside the encrypted message:

Here, statement X contains freshness assurance Y , which can be a nonce or a

timestamp. As such, belief P |≡ ♯(Y) is derivable. Given the Freshness extension

Rule (R10 in Appendix C), we therefore can derive the required belief P |≡ ♯(X).

Rules (8.19) and (8.20) above are defined to deal with this situation.

• The freshness assurance is not within the encrypted message:

In this case, the freshness assurance must come in the clear-text portion outside

of the encrypted portion ({X}KP
) in the signed message. To emphasize the need

for a freshness assurance in this case, the third premise in Rules (8.19) and (8.20)

must be applied on both the encrypted message portion and a “fresh” statement.

Hence, for completeness, we also define the following two rules:

– Message-meaning for encrypted message portion –after signature

verification, with encrypted stated-sender and external freshness

assurance– Rule:

P |≡℘κ (P, KP) , P |≡Π(K−1
P), P |≡Q |∼ {S(X, Q)}KP

, Y

P |≡Q |∼X, Y
. (8.21)

– Message-meaning for encrypted message portion – after signature

verification, with clear stated-sender and external freshness assurance–

Rule:

P |≡℘κ (P, KP) , P |≡Π(K−1
P), P |≡Q |∼S({X}KP

, Q), Y

P |≡Q |∼X, Y
. (8.22)

Statement Y in (8.21) and (8.21) is the statement in the previously-verified signed

message, which also contains the freshness assurance (i.e. a timestamp or a nonce).

Given P |≡ ♯(Y), we can therefore derive P |≡ ♯(X, Y) using the Freshness extension

Rule (R10 in Appendix C). As a result, the belief on X can be derived.

8.3.11 Redefined Message-Meaning Rule for Keyed Hashed Message

For completeness, we redefine here a new construct for message authentication using

secret-key based MAC:
µ(X, KPQ) = X, H(KPQ, X). (8.23)

147

Similar to signature construction in (8.1), MAC generation is performed by applying

a selected keyed hash-construction function H() to message X using KPQ, and then

appending the resulting hash value to X. The related Message meaning for (secret-

key) hashed message Rule is defined as follows:

P |≡Q
KPQ
←→ P, P ⊳ µ(X, KPQ)

P |≡Q |∼X
. (8.24)

Here we omit the requirements for the intended-recipient and stated-sender by assuming

that the shared secret key is good and message X is unambiguously formatted.

8.3.12 Additional Rules for See Operator

For completeness, we also define the following new rules for see operator:

• The See keyed-hashed message Rule:

P ⊳ µ(X, KPQ)

P ⊳ X
(8.25)

• The See signed message Rule:

P ⊳ σ(X, K−1
Q)

P ⊳ X
(8.26)

• The See recipient-tagged message Rule:

P ⊳ ℜ(X, P)

P ⊳ X
(8.27)

For easy reference, all the newly added rules in MPKI-BAN are listed in Appendix D.

8.4 Using MPKI-BAN Logic

We now show how our MPKI-BAN could have helped prevent problems in vulnerable

published protocols.

8.4.1 Needham-Schroeder Public-Key Authentication Protocol

In [97], Lowe published an attack on Needham-Schroeder public-key authentication pro-

tocol. The protocol proceeds as follows (Notation {X}K below denotes an encryption

operation using key K. When K is a private key, it represents a signing operation.):

1. A→ S : A, B

2. S → A : {KB, B}K−1
S

3. A→ B : {NA, A}KB

4. B → S : B, A

5. S → B : {KA, A}K−1
S

6. B → A : {NA, NB}KA

7. A→ B : {NA}KB
.

148

Despite the assumption that each principal has each other’s public key correctly, Lowe

managed to find an attack on the protocol. The problem with the protocol has to do

with the encryption using public key of the recipient without clear identity of the sender.

In order to prevent potential attacks, Lowe proposed the modification of message 6 into:

6′. B → A : {B, NA, NB}KA
.

In MPKI-BAN, with our New message-meaning for (public-key) encrypted message

Rule (8.17), the derivation of the incorrect beliefs would be impossible. This is because

the required statement {S((NA, NB), B)}KA
is underivable from message 6. The pro-

posed fix using message 6′ adds the sender identity (i.e. B), as part of the encrypted

message. Thus, the statement {S((NA, NB), B)}KA
is thus derivable. This example

highlights the value of integrating message-sender construct into Message-meaning Rule.

8.4.2 Aziz-Diffie Protocol

Now, let us analyze the protocol by Aziz and Diffie [15] which was still broken despite

the use of the original BAN Logic by the authors to verify it.

The protocol uses public-key cryptography for securing the wireless link between a

mobile (M) and a base (B). In the following, alg list denotes a list of flags representing

potential secret-key algorithms chosen by M . The flag sel alg represents the particular

algorithm selected by B from the list alg list, and is to be employed to encrypt the

subsequent data call. The protocol for providing the connection setup between M and

B is as follows ([25]):

1. M → B : Cert(M), NM , alg list

2. B →M : Cert(B), {XB}KM
, sel alg, {hash({XB}KM

, sel alg, NM , alg list)}K−1
B

3. M → B : {XM}KB
, {hash({XM}KB

, {XB}KM
}K−1

M

Here NM is a nonce from M , whereas Cert(M) and Cert(B) are certificates of M and

B respectively. XB and XM denote the particular session key values chosen by B and

M , respectively. The final session key x is calculated as XM ⊕XB.

The protocol was verified in [15] using BAN Logic. Our analysis however reveals

that the given proof in [15] apparently contains a flaw. The flaw is introduced in the

error-prone idealization step of the formalism. The work [15] idealized message 2 (using

the original BAN Logic) as:

{{
KB7−→ B}K−1

Ca
, M

XB

←→ B, NM}K−1
B

. (8.28)

The problem with this is that what can actually be derived from the message above is:

M
{XB}KM←−−−−−→ B or {M

XB←→ B}KM
, and not M

XB←→ B. This formalism pitfall allowed

[15] to incorrectly derive the desired goals despite the loophole in the protocol.

149

After the publication of [15], both [107] and [25] managed to mount an attack on the

protocol. The attack outlined in [25] makes use of two parallel open sessions. Imper-

sonating M in the first session, an attacker C is able to obtain {XB}KM
from message

2. In the second session, C then replays {XB}KM
to the initiating M when it plays a

role as B. The work [25] correctly pointed out the source of the problem is that C can

construct message 2 without the knowledge of XB. To fix the protocol, [25] proposed the

modifications of message 2 and 3 into:

2′. B →M : Cert(B), NB, {XB}KM
, sel alg, {hash(XB, M , NM , alg list)}K−1

B

3′. M → B : {XM}KB
, {hash(XM , B, NB}K

−1
M

Nonce NB now provides the freshness assurance, taking the role of {XB}KM
in the

original protocol. Note that message 2′ contains M in the signed hash’s arguments. Like-

wise, message 3′ now contains B. Such inclusions are thus in line with our requirement of

message-recipient in our New message-meaning for signed message Rule (8.10). Although

M and B are not included in the clear portions of message 2′ and 3′ respectively, they

are actually present from the message transfer context. As such, we should take their

presence into account in the idealized protocol.

In message 2′, the encrypted message portion {XB}KM
is sent with a sender assurance

outside of the encrypted message portion. The assurance is implicitly established by the

sender’s knowledge of XB in the message’s signature. Thus, this therefore belongs to the

case of sender-assurance sent clear outside of the encrypted message (S({XB}KM
, B)),

which is analyzed above in Section 8.3.10. Hence, we can process the statement using the

message-meaning defined in (8.20). Similarly, message 3′ employs the same technique on

{XM}KB
. An alternative proposed solution is to simply use (explicit) enclosed sender-

stated assurances. In this case, we can have {XB, B}KM
in message 2′, and {XM , M}KB

in message 3′.

8.5 Sample Application of MPKI-BAN Logic

Appendix E shows how we can apply MPKI-BAN Logic to formally analyze a PKI-based

protocol. We have chosen the 3-way Session-Establishment protocol of CREV-II which is

outlined in Section 7.3.3. The protocol is chosen here so that we can establish the security

assurance of the proposed session establishment of hash-chaining based revocation service.

The idealized protocol, protocol goals, assumptions, and the proof that the protocol can

achieve the goals are given in Appendix E.

150

8.6 Discussion

We have presented MPKI-BAN as an extension of BAN Logic to deal with PKI. It solves

a number of issues in GS-BAN [51] whose solutions are vital to a more accurate reasoning

with PKI-based protocols. In summary, our enhancements are as follows.

• We present an improved idealization of certificate, in which the assurance of a

private key is also derived from certificate. This eliminates the need to have an

assumption about the goodness of the other principal’s private key as in GS-BAN.

• We define a New message-meaning for (private-key) signed message Rule, which

contains the message-recipient construct. By doing so, we manage to eliminate the

requirement for stating a message-recipient as a goal, as well as that for introducing

an assumption about the sender’s jurisdiction over the message-recipient construct

as in GS-BAN.

• We also revise the Certificate-validation Rule, which now includes a third premise

to highlight the need for a certificate revalidation step. In the CRL model, the

new rule thus makes explicit of two requirements in validating a certificate: time

synchronization with the issuer and checking with the issuer’s recent CRL.

• We define the New message-meaning for (public-key) encrypted message Rule which

now requires a message-sender construct. This modification is vital as it prevents

a common pitfall in public-key protocol design, as clearly illustrated among others

by Lowe’s attack on Needham-Schroeder public-key authentication protocol [97].

• We additionally deal with the cases of encrypted signed message and signed en-

crypted message.

Although some of the modifications may look simple, they are however crucial for

better reasoning with PKI-based protocols. Table 8.1 contrasts several constructs and

rules from GS-BAN with those in our new MPKI-BAN.

8.7 Chapter Summary

We have presented MPKI-BAN, which makes BAN Logic more in line with concepts and

practices in the modern PKI setting. MPKI-BAN removes various limitations of [51],

which we refer to as GS-BAN, for more concise reasoning with a certificate-based public-

key authentication. In particular, MPKI-BAN redresses the reasoning on the goodness of

private keys, and takes certificate revocation into account. Furthermore, it also addresses

common pitfalls in public-key based protocol design due to insufficient attention placed

on the “intended recipient” and “stated sender” of a message. MPKI-BAN makes the

recipient and the sender explicit, and these requirements are tightly coupled into the

logic. In this way, it reduces the likelihood of allowing such flaws in the protocol and the

151

Construct/Rule GS-BAN Extension [51] Our MPKI-BAN Extension

Idealized certificate σ((Θ(tP1 , tP2), ℘κ (P, KP)), K−1
I) σ(ℜ(Θ′(tP1 , tP2 , I, (℘κ (P, KP) , Π(K−1

P))), all), K−1
I)

Certificate validation
P |≡Q |∼ (Θ(tR1 , tR2), CR), P |≡Q |≡∆(tR1 , tR2)

P |≡Q |≡CR

P |≡Q |∼Θ′(tR1 , tR2 , Q, CR), P |≡Q |≡∆(tR1 , tR2), P |≡Q |≡Φ(CR)

P |≡Q |≡CR

Usage of message-recipient ℜ(X, P) σ(ℜ(X, P), K−1
Q)

Usage of stated-sender - {S(X, Q)}KP
or S({X}KP

, Q)

Message-meaning for signed mes-
sage

P |≡℘κ (Q, KQ) , P |≡Π(K−1
Q), P ⊳ σ(X, K−1

Q)

P |≡Q |∼X

P |≡℘κ (Q, KQ) , P |≡Π(K−1
Q), P ⊳ σ(ℜ(X, P), K−1

Q)

P |≡Q |∼X

Message-meaning for signed mes-
sage (after decryption)

- P |≡℘κ (Q, KQ) , P |≡Π(K−1
Q), P |∼σ(ℜ(X, P), K−1

Q)

P |≡Q |∼X
Message-meaning for encrypted
message

- P |≡℘κ (P, KP) , P |≡Π(K−1
P), P ⊳ {S(X, Q)}KP

P |≡Q |∼X

Message-meaning for encrypted message portion (after signature verification):

with encrypted stated-sender
and included freshness assurance

- P |≡℘κ (P, KP) , P |≡Π(K−1
P), P |≡Q |∼ {S(X, Q)}KP

P |≡Q |∼X
with encrypted stated-sender
and external freshness assurance

-
P |≡℘κ (P, KP) , P |≡Π(K−1

P), P |≡Q |∼ {S(X, Q)}KP
, Y

P |≡Q |∼X, Y

with clear stated-sender and in-
cluded freshness assurance

- P |≡℘κ (P, KP) , P |≡Π(K−1
P), P |≡Q |∼S({X}KP

, Q)

P |≡Q |∼X
with clear stated-sender and ex-
ternal freshness assurance

-
P |≡℘κ (P, KP) , P |≡Π(K−1

P), P |≡Q |∼S({X}KP
, Q), Y

P |≡Q |∼X, Y

Table 8.1: Comparison of public-key constructs and rules from GS-BAN [51] and those from our MPKI-BAN.

152

corresponding formalism. In addition, our logic also deals with the cases of (public-key)

signed encrypted message and encrypted signed message. Some examples on the usage

of MPKI-BAN are given, and these examples demonstrate that MPKI-BAN can help

prevent common mistakes in public-key protocol design and verification.

Given that BAN Logic is a widely-used logic, we envisage that MPKI-BAN extension

can provide a practical and valuable tool without requiring the users to manipulate a

substantially complex formalism. It is indeed our aim to make the formal analysis on PKI-

based protocols become more handily accessible to a wider range of protocol designers,

thus allowing more parties to improve the security of their protocols.

153

Chapter 9

Conclusion

This chapter concludes this thesis. We summarize the contributions of this thesis in

Section 9.1, and discuss some future directions in Section 9.2.

9.1 Summary of the Thesis

Malware is a critical security threat today particularly to connected host systems. It has

now evolved from occasional exploits to a global multi-million dollar criminal industry,

and is threatening the Internet economy. In this thesis, we focus on protecting software,

i.e. programs, to ensure that they run as intended without violating a host’s security.

We safeguard software from various attack vectors based on the Program Protection Life

Cycle (PPLC) framework (see Figure 1.1). Our works reported in this thesis aim to

mitigate malware threats by deploying additional security mechanisms on top of the OS

as well as securing critical infrastructure which supports the host’s security mechanisms.

We have shown how the proposed measures can secure the PPLC stages by providing

effective defense against numerous attack vectors while incurring acceptable performance

overheads. Using BAN Logic’s notation1, Table 9.1 lists the beliefs established by the

proposed measures, whereas Table 9.2 shows their relationship in achieving the objective

assurance of “good intended execution” of a program on a host. We summarize the main

conclusions from our results as follows.

Firstly, to protect a running program on a host particularly against zero-day attacks,

we have conducted an in-depth security analysis on the Self-based (Stide) IDS model

[67, 152, 153] and related system-call monitoring IDSs such as [146]. We have presented

an efficient algorithm for automated mimicry attack construction on the Self-based IDS

and its more precise graph-based variant. Using several real programs and exploits, we

also have shown the practicality of the attack construction, with execution times of at

most a few seconds. We also have shown how the construction method can be generalized

1Symbol ‘ |≡ ’ in a BAN Logic formula denotes believes operator. Section 2.6 provides some background
on BAN Logic.

154

Our Proposed Mechanism(s) Belief(s) Established

BinAuth (Chap. 5), Certificate re-
vocation scheme (Chap. 7)

H |≡P (9.1)

H |≡ good behavior of P (9.2)

H |≡ intact pathname of P (9.3)

Vulnerability database (Chap. 6) H |≡ no known vulnerability on P (9.4)

Improved IDS (Chap. 3 & 4) H |≡ unaltered execution of P (9.5)

Table 9.1: Beliefs established by the proposed mechanisms.

Belief Derivations for “Good Intended Program Execution”

H |≡P, H |≡ good behavior of P

H |≡ trusted program P
(9.6)

H |≡ trusted program P, H |≡ intact pathname of P

H |≡ good invocation of P
(9.7)

H |≡ good invocation of P, H |≡ no known vulnerability on P

H |≡ good for execution of P
(9.8)

H |≡ good for execution of P, H |≡ unaltered execution of P

H |≡ good intended execution of P
(9.9)

Table 9.2: Belief interactions and derivations in achieving the desired “good intended
program execution” belief.

into an approach to evaluate the robustness of an IDS against attacks targeting the IDS.

The result allows us to find out how computationally expensive it is to perform a search

to craft attacks on the IDS. The approach taken thus shows the feasibility of obtaining

quantitative measurements on the IDS resistance against targeted attacks.

Due to threat from mimicry attacks, we also have proposed an improved IDS model

by employing an abstraction technique on process credentials and system call arguments.

The proposed technique can be easily combined with other system-call based IDS models.

To avoid increasing the false positives, a user-supplied specification is used to abstract

the arguments and credentials. This specification takes into account security semantics

of the operations and their potential effects to host security. Using sample programs, we

have shown that the robustness of the IDS is increased when the abstraction is used. We

also have some evidence that the increase in detection accuracy does not lead to more

false positives. Unlike other data-flow IDS models [91, 123, 167, 23], our enhancement

highlights the virtue of incorporating a host’s security model into the IDS to result in a

more concise IDS.

By monitoring parameterized system calls of a running process, our improved IDS pro-

vides an effective approximation mechanism to ensure unaltered execution of program P

155

(belief 9.5). The monitoring can be done in a fast and online fashion, and also allows

for a possible prevention of suspected system-call invocations(s). This establishment of

belief 9.5 allows us to derive the desired belief of good intended execution of program P

as shown in (9.9). That is, given a belief that program P is good for execution (i.e. P is

a good trusted program and is vulnerability-free for execution) established by Steps 1–3

of the PPLC as shown in (9.8), and a belief on unaltered execution of program P (be-

lief 9.5) ensured by the IDS, a host can establish the desired belief that the good-behaving

program P runs as intended by its trusted developer.

Secondly, to secure program invocations on a host, we have demonstrated the prac-

ticality of a mandatory, in-kernel, pre-execution binary authentication mechanism in

Windows. We have presented a prototype, BinAuth, which exemplifies a lightweight

binary integrity scheme and its integration into an OS. Using BinAuth, we have shown

how a mandatory in-kernel authentication system can ensure that a host only executes

programs from trusted sources, which were also unmodified while in transit and stored

on the host’s file system, with acceptable performance overheads even on a complex OS

such as Windows. Practical binary authentication system such as BinAuth thus serves

as a crucial enabler for providing more secure program execution environments on com-

modity OSes. We have also compared BinAuth with a variety of authentication systems

[82, 9, 183, 175, 29, 19, 61, 142, 187] using our developed analysis framework, which

inspects key design factors for a binary authentication system.

Using BAN Logic notation, we can state that BinAuth (together with the required

PKI certificate revocation service) ensures the beliefs 9.1–9.3 listed in Table 9.1. Note that

in addition to its content, program P also carries with itself a belief statement that it is

a “good program”.2 That is, P is non-malicious in nature, and has no intention to violate

any security policies of the target hosts (beyond the program’s known functionalities) or

any acceptable use policies. As such, we can infer both (9.6) and (9.7) to establish a

belief of good invocation of (trusted) program P on host H.

Thirdly, we have proposed a framework for a machine-oriented vulnerability database,

which allows for an automated vulnerability checking on a host using published advisories.

We have demonstrated a proof-of-concept database, which shows effective integration of

data from multiple sources and can be used directly by a vulnerability scanner. A corre-

sponding scanner prototype has also been developed for Unix/Linux systems, although

the basic principles are applicable to other OSes.

Our work was developed and published in [160] when vulnerability representation

and automated processing were still not widely addressed by the security community.

Given the present on-going standardization efforts on vulnerability processing by the

U.S. Government sponsored organizations, such as CVE [116], OVAL [117], CPE [115]

2This belief is accepted by host H when it decides to install P into its system at time tinstalled.

156

and SCAP [126], we are pleased to see that our proposed mechanisms are in line with

these efforts. The developed system for automated vulnerability processing allows a host

to establish an important belief that program P has no known vulnerability (belief 9.4).

This assurance is important to prevent possible known-vulnerability attacks during the

program’s unpatched time interval. The establishment of belief 9.4 makes it possible to

infer that program P is good for execution (as shown in 9.8).

Next, to provide an efficient and secure PKI-based program distribution and inter-

action, we have addressed the need for a lightweight and practical near real-time cer-

tificate revocation scheme. We have proposed two lightweight, practical and inherently-

distributed certificate revocation schemes, called CREV, which are based on the recently

available Extended-Validation (EV) certificate infrastructure. Our CREV schemes en-

hance CRS/NOVOMODO [110, 111] and OCSP [124] to support efficient revocation with

near real-time timeliness guarantees (1–10 minutes). We also have developed a more re-

alistic cost analysis framework for evaluating the certificate revocation schemes. Our

framework enhances the model in [99, 72] by incorporating a number of novel aspects to

result in a more realistic cost analysis and to properly deal with fine-grained certificate

generation and CRL issuance time intervals. Using the developed framework, we have

demonstrated that CREV schemes keep the overheads manageable on all the involved

entities, while maintaining lightweight requirements on the verifier even under a timeli-

ness guarantee of 1 minute. The proposed schemes also have an additional advantage in

that the status queries are protected from external parties including the CA.

CREV schemes thus provide a host with an efficient and timely mechanism to validate

certificates. Hence, they support a binary authentication system like BinAuth to establish

the required beliefs on a digitally signed program P (beliefs 9.1 and 9.2). Note that

without a strong assurance on the validity of the certificates used in digitally signed

programs, the whole security of a host executing the programs can be easily compromised.

Finally, we have extended BAN Logic [26, 27] and a prior extension work by Gaarder

and Snekkenes [51] in order to make BAN Logic more concise in reasoning on PKI-based

protocols. In particular, our extension redresses the reasoning on the goodness of private

keys, and considers certificate revocation as a part of certificate verification. We also

address common pitfalls in public-key based protocol design due to insufficient attention

placed on the “intended recipient” and the “stated sender” of a message. Our extension

makes the recipient and the sender explicit, and these requirements are incorporated into

the logic. In this way, our logic reduces the likelihood of allowing such vulnerabilities

in the protocol and the corresponding formalism. In addition, our logic also deals with

cases of (public-key) signed encrypted messages and encrypted signed messages. We also

have shown the usage and the sample application of our logic to PKI-based protocols,

including a session establishment protocol proposed in CREV-I scheme.

157

Altogether, we have shown how we can safeguard the four PPLC steps with efficient

security measures. The proposed measures provide strong additional layers of protection

to securing program execution, while only incurring acceptable performance overheads.

In view of their benefits to host security, our proposals thus address timely and pressing

problem of the increasing malware threats to today’s connected hosts.

9.2 Future Work

We have identified the following directions to be pursued in the future.

Resource access monitoring on a program

One weakness of the PPLC model is that a host needs to trust a software developer that a

piece of software behaves in a good manner and will not violate the host’s security policies.

One way to deal with this limitation is by conducting resource access monitoring on a

program execution as an additional step of the PPLC. The host can generate the resource-

access profile of a program by observing the program’s normal usage. Alternatively, the

profile can be supplied by the developer based on the expected program’s behavior. In

this way, a host H can limit (sandbox) a program execution within a set of approved op-

erations. As a result, host H can believe that not only a program P runs as intended (i.e.

“H |≡ good intended execution of P”), but also within a specified capabilities in terms

of the host’s resources accessed (i.e. “H |≡ within access specification execution of P”).

Richer IDS model and application to other OSes

For our work on anomaly detector IDS, we can combine our gray-box IDS model with

the white-box techniques if the program’s source code is available [95]. Alternatively,

binary analysis techniques [154] can be used to derive a more concise IDS model. Binary

instrumentation technique can also be used to “randomize” normal system-call profile

generations on a host. This would make the attacker’s approximated normal profile

different from the valid (randomized) one, rendering the former much less effective.

With regard to our IDS attack-construction framework, we also intend to apply it to

more IDS models. We also would like to implement the PAC-based IDS for other OSes,

such as Windows. Additionally, the PAC-based IDS model can also be tailored more for

specific applications, such as web applications [63, 39].

More usable and robust binary authentication system

We can extend the BinAuth system to protect not only binary files, but also important

non-binary files. Additionally, it can be extended to deal with various usage scenarios that

require special treatment of binary authentication, such as during software development,

software installations and software updates.

158

BinAuth does prevent untrusted binaries from being executed. It however does not

prevent illegal additions or modifications to protected binaries. One possible work is to

make BinAuth also monitor illegal modifications on protected binaries. Such monitoring,

however, needs to be justified with respect to the incurred overheads. Given the avail-

ability of a secure booting infrastructure, such as Trusted Platform Module (TPM), we

can also try to combine BinAuth with TPM in order to ensure the integrity of the overall

protection chain, starting from the hardware up to the applications. Cryprographic keys

and important files used by BinAuth can also be securely stored by TPM.

Richer vulnerability description model and improved implementation

To ensure a vulnerability-free host system, we would like to enhance the Movtraq frame-

work by devising a richer vulnerability description model. The model should capture

a vulnerability in a more precise way, yet still be amenable for automated processing.

Another direction worth exploring is to standardize vulnerability checks on a target ma-

chine for different popular OSes. Such checks could also be parameterized to make them

as generic as possible. We would like to make these checks represented as database en-

tries, with each entry specifying: the description of how the check should be performed

on a variety of OSes, associated database fields for the values of objects involved in the

checking, and symbolic description of the pre-conditions and consequence.

Our Movtraq vulnerability database uses SQL for data access and transfer. To be in

line with recent standardization efforts such as OVAL, we can redesign the database for-

mat to use an XML-based data representation. Other possible enhancements on Movtraq

implementation could include convenient GUIs, non Perl-based scanner, and compatibil-

ity with various popular OSes.

Analysis of certificate revocation schemes

In the analysis of certificate revocation schemes using our realistic framework, we can

calculate the overheads of various other revocation schemes to be compared with the

CREV schemes. We can also further improve the developed framework by allowing

certificates to have different lifetimes. Lastly, we can also conduct a simulation to support

the results derived from our analytical based framework.

Formal analysis on PKI-based protocols

In proposing MPKI-BAN Logic, we take an approach that focuses on pragmatism. We

center on the logic definition and its usage application while leaving theoretical analysis of

the logic, such as the logic’s soundness and completeness, as a separate treatment beyond

our work’s scope. Developing a semantic model for MPKI-BAN is an important future

work. Additionally, we can try to apply public-key constructs and rules in MPKI-BAN to

other authentication logics, including non modal-logic based formal analysis techniques.

159

Appendix A

Sample Configuration for

Privilege and Argument

Categorization

#====== Sample Configuration File =======#

EUID Abstraction Section

Format: <categorized-euid>:<euid1>,<euid2>,...

0:0

1:2000,2001,2003

2:3000

100:*

EGID Abstraction Section

Format: <categorized-egid>:<egid1>,<egid2>,...

0:0

1:1,2,3,5

100:*

Argument Abstraction Section

Format: <cat-value> <syscall> <arg1> <arg2> <arg3> ...

1 open p=/etc/passwd o=O WRONLY|o=O RDRW *

2 open p=/etc/shadow o=O WRONLY|o=O RDRW *

3 open p=/etc/group o=O WRONLY|o=O RDRW *

4 open p=/proc/kmem o=O WRONLY|o=O RDRW *

5 open p=/etc/hosts.equiv o=O WRONLY|o=O RDRW *

6 open p=/etc/* o=O WRONLY|o=O RDRW *

7 open p=/etc/* o=O RDONLY *

8 open p=/bin/* o=O WRONLY|o=O RDRW *

9 open p=/sbin/* o=O WRONLY|o=O RDRW *

10 open p=/boot/* o=O WRONLY|o=O RDRW *

11 open p=/dev/* o=O WRONLY|o=O RDRW *

12 open p=/usr/* o=O WRONLY|o=O RDRW *

13 open p=/lib/* o=O WRONLY|o=O RDRW *

14 open p=/var/* o=O WRONLY|o=O RDRW *

15 open p=/mnt/* o=O WRONLY|o=O RDRW *

16 open p=/proc/* o=O WRONLY|o=O RDRW *

17 open * o=O WRONLY|o=O RDRW *

18 open * * *

160

1 chmod p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem *

2 chmod * *

1 fchmod p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem *

2 fchmod * *

1 chown p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem *

2 chown * * *

1 fchown p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem *

2 fchown * * *

1 lchown p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem *

2 lchown * * *

1 rename p=/etc/{passwd,shadow,group} *

2 rename p=/proc/kmem *

3 rename p=/etc/hosts.equiv *

4 rename * p=/etc/{passwd,shadow,group}
5 rename * p=/proc/kmem

6 rename * p=/etc/hosts.equiv

7 rename * *

1 link p=/etc/{passwd,shadow,group} *

2 link p=/proc/kmem *

3 link p=/etc/hosts.equiv *

4 link * p=/etc/{passwd,shadow,group}
5 link * p=/proc/kmem

6 link * p=/etc/hosts.equiv

7 link * *

1 unlink p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem
2 unlink *

1 symlink p=/etc/{passwd,shadow,group} *

2 symlink p=/proc/kmem *

3 symlink p=/etc/hosts.equiv *

4 symlink * p=/etc/{passwd,shadow,group}
5 symlink * p=/proc/kmem

6 symlink * p=/etc/hosts.equiv

7 symlink * *

1 mount * p=/etc * * *

2 mount * p=/{bin,sbin} * * *

3 mount * p=/boot * * *

4 mount * p=/usr * * *

5 mount * p=/lib * * *

6 mount * p=/proc * * *

7 mount * * * * *

1 mknod p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem * *

2 mknod * * *

1 init module * * *

1 execve p=/bin/{sh,csh,ksh} * *

2 execve * * *

Illegal Transition Section

Format: <syscall> <cat-values> [<cat-euid>,<cat-egid>]*

open [1..6,8-11,13-15] 0,* *,0

{chmod,fchmod,chown,fchown,lchown,mknod,unlink,init module,execve} 1 0,* *,0

{rename,link,symlink,mount} [1..6] 0,* *,0

161

Appendix B

Database Entities in Movtraq

Vulnerability Database

Movtraq vulnerability database (see Section 6.3) defines seven entities (tables) to store the in-

formation of a vulnerability entry. Their key fields, as seen from an integration and machine

processing perspective, are listed below. The fields labeled by ‘∗’ make use of the vulnerability

description expressions described in Section 6.4. Those labeled by ‘†’ can use the Software ID

(see Section 5.6) or the CPE [115] format.

Vulnerability Entity — records the main information about each vulnerability: Vul ID, Vul-

nerability name, CVE ID, other corresponding IDs (e.g. CERT ID, BugTraq ID), a textual

description for the vulnerability, and fields relating to Component Specification Entity, En-

vironment Specifications Entity, and Exploit Entity.

Component Specification Entity — records the information of a component factor: Comp ID,

vulnerability consequences∗, fields relating to Operating System Entity, Application Entity,

and Service Entity.

Operating System Entity — records a component factor originating from the OS: OS ID, OS

name, vulnerable versions†, hardware type information†.

Application Entity — records a component factor due to an application: application ID, name

of application, vulnerable versions†, hardware type information†.

Service Entity — records a component factor due to a service (a service could be a daemon):

service ID, name of service, vulnerable versions†, hardware type information†, protocols,

and port numbers.

Environment Specifications Entity — records the information of environmental factors af-

fecting a vulnerability: Env ID, existence of required user, application, service, and file

object∗, vulnerable kernel versions of the running OS†, remote exploitation flag.

Exploit Entity — records the details of any available exploits: Exp ID, exploit information

(URL, filename, description, etc.), privileges needed to execute the exploit∗, consequences

of using the exploit∗.

Note that some fields sharing a similar function can occur a few times in different contexts.

Consequences field, for example, occurs both in Component Specification Entity and Exploit

Entity. The former describes the consequences of the specified vulnerability, whereas the latter

lists those from using a specific available exploit.

162

Appendix C

Relevant Rules of BAN Logic

Below are the rules of the original BAN Logic [26, 27] which are relevant to our MPKI-BAN

extension explained in Chapter 8. We follow the notation and description of BAN Logic as in

[27].

• (R1) Message-meaning (for secret-key encryption) Rule:

(If P believes that the key KPQ is shared with Q, and sees a message X encrypted

under KPQ, then P believes that Q once said X.)

P |≡Q
KP Q

←→ P, P ⊳ {X}KP Q

P |≡Q |∼X

• (R2) Nonce verification Rule:

(This checks that a message is recent, and hence that the sender still believes in it.)

P |≡ ♯(X), P |≡Q |∼X

P |≡Q |≡X

• (R3) Jurisdiction Rule:

(If P believes that Q has jurisdiction over X, then P trusts Q on the truth of X.)

P |≡Q p⇒X,P |≡Q |≡X

P |≡X

• (R4) And-introduction Rule:

(If P believes each individual statement separately, then P believes a set of state-

ments.)

P |≡X,P |≡Y

P |≡ (X,Y)

• (R5) And-elimination Rule:

(If P believes a set of statements, then P believes each individual statement sepa-

rately.)

P |≡ (X,Y)

P |≡ (X)

163

• (R6) Believe and-elimination Rule:

(And-elimination Rule that applies to a belief held by other principal.)

P |≡Q |≡ (X,Y)

P |≡Q |≡X

• (R7) Said and-elimination Rule:

(And-elimination Rule that applies to the |∼ operator. Note that And-introduction

Rule does not apply to |∼ .)

P |≡Q |∼ (X,Y)

P |≡Q |∼X

• (R8) See components Rule:

(If P sees a formula, then P also sees its components, provided he knows the necessary

keys.)

P ⊳ (X,Y)

P ⊳ X

• (R9) See encrypted message (for secret-key) Rule:

(If P sees an message encrypted with a secret key KPQ, and that he knows the key

KPQ, then P also sees its message.)

P |≡Q
KP Q

←→ P, P ⊳ {X}KP Q

P ⊳ X

• (R10) Freshness extension Rule:

(If one part of a formula is known to be fresh, then the entire formula is also fresh.)

P |≡ ♯(X)

P |≡ ♯(X,Y)

• (R11) Key-symmetry (for secret-key) Rule:

(A secret key is used between a pair of principals in either direction.)

P |≡R
KRR′

←→ R′

P |≡R′
KR′R←→ R

• (R12) Believe key-symmetry (for secret-key) Rule:

(Key-symmetry Rule that applies to a belief held by other principal.)

P |≡Q |≡R
KRR′

←→ R′

P |≡Q |≡R′
KR′R←→ R

164

Appendix D

New Rules of MPKI-BAN Logic

Below are the newly defined rules in our MPKI-BAN Logic elaborated in Chapter 8.

• (R13) New message-meaning for (private-key) signed message Rule:

P |≡℘κ (Q,KQ) , P |≡Π(K−1

Q), P ⊳ σ(ℜ(X,P),K−1

Q)

P |≡Q |∼X

• (R14) All-recipient see Rule:

P ⊳ σ(ℜ(X, all),K−1

Q)

P ⊳ σ(ℜ(X,P),K−1

Q)

• (R15) New certificate-validation Rule:

P |≡Q |∼Θ′(tR
1
, tR

2
, Q,CR), P |≡Q |≡∆(tR

1
, tR

2
), P |≡Q |≡Φ(CR)

P |≡Q |≡CR

with CR = ℘κ (P,KP) ,Π(K−1

P).

• (R16) Duration-stamp (without revocation) validation Rule:

P |≡Q |∼Θ(t1, t2,X), P |≡Q |≡∆(t1, t2)

P |≡Q |≡X

• (R17) New message-meaning for (public-key) encrypted message Rule:

P |≡℘κ (P,KP) , P |≡Π(K−1

P), P ⊳ {S(X,Q)}KP

P |≡Q |∼X

• (R18) Message-meaning for (private-key) signed message –after decryption–

Rule:

P |≡℘κ (Q,KQ) , P |≡Π(K−1

Q), P |∼σ(ℜ(X,P),K−1

Q)

P |≡Q |∼X

165

• (R19) Message-meaning for encrypted message portion –after signature verifi-

cation, with encrypted stated-sender and included freshness assurance–

Rule:

P |≡℘κ (P,KP) , P |≡Π(K−1

P), P |≡Q |∼ {S(X,Q)}KP

P |≡Q |∼X

• (R20) Message-meaning for encrypted message portion –after signature verifi-

cation, with encrypted stated-sender and external freshness assurance–

Rule:

‘ P |≡℘κ (P,KP) , P |≡Π(K−1

P), P |≡Q |∼ {S(X,Q)}KP
, Y

P |≡Q |∼X,Y

• (R21) Message-meaning for encrypted message portion –after signature verifi-

cation, with clear stated-sender and included freshness assurance– Rule:

P |≡℘κ (P,KP) , P |≡Π(K−1

P), P |≡Q |∼S({X}KP
, Q)

P |≡Q |∼X

• (R22) Message-meaning for encrypted message portion –after signature verifi-

cation, with clear stated-sender and external freshness assurance– Rule:

P |≡℘κ (P,KP) , P |≡Π(K−1

P), P |≡Q |∼S({X}KP
, Q), Y

P |≡Q |∼X,Y

• (R23) Message meaning for (secret-key) hashed message Rule:

P |≡Q
KP Q

←→ P, P ⊳ µ(X,KPQ)

P |≡Q |∼X

• (R24) See keyed-hashed message Rule:

P ⊳ µ(X,KPQ)

P ⊳ X

• (R25) See signed message Rule:

P ⊳ σ(X,K−1

Q)

P ⊳ X

• (R26) See recipient-tagged message Rule:

P ⊳ ℜ(X,P)

P ⊳ X

166

Appendix E

Sample Application of

MPKI-BAN Logic

This appendix shows how we can apply MPKI-BAN Logic (elaborated in Chapter 8) to formally

analyze a PKI-based protocol. We have chosen the 3-way Session-Establishment protocol of

CREV-I outlined in Section 7.3.3. The protocol is chosen here so that we can establish the

security assurance of the proposed session establishment of a hash-chaining based revocation

service.

For ease of reference, we show the protocol again below (only the message transfers are shown).

Recall that the notation 〈M〉K−1

A
denotes a message M which is signed using the private key of

principal A (i.e. K−1

A); and nonceX denotes a nonce from X.

1. EV CP → CA : “Session Request”= 〈SessReq, EV CP ID, CA ID, Serial No, T ,

nonceEV CP , SigAlgID〉K−1

EV CP
.

where:

SessReq = header indicating a Session Request message;

EV CP ID = identity (i.e. domain name) of the EVCP;

CA ID = identity (i.e. name) of the CA;

Serial No = serial number of the EVC;

T = timestamp or a CA’s nonce accessible at URICA nonce;

SigAlgID = identification for the signing algorithm.

2. CA→ EV CP : “Session Reply”= 〈SessReply, ReplyStatus, CA ID, EV CP ID,

nonceEV CP , Serial No, CertStatus, HashAlgID, d, Y , N , SessStart,

SessExpiry, nonceCA, SigAlgID 〉K−1

CA
.

where:

SessReply = header indicating a Session Reply message;

ReplyStatus = status indicator for a successful session establishment;

CertStatus = status of the EVC;

HashAlgID, d, Y , N = hash chain parameters (see Section 7.2.2);

SessStart and SessExpiry = the start and end times of the established session.

167

3. EV CP → CA: “Session ACK”= 〈SessACK, EV CP ID, CA ID, nonceCA, Serial No,

SigAlgID 〉K−1

EV CP
.

where:

SessACK = header indicating a Session ACK message.

E.1 Idealized Protocol

We can idealize the messages in the protocol above as follows.

1. EV CP → CA: σ(ℜ ((Sess Req, Serial No, T, nonceEV CP), CA) ,K−1

EV CP)

2. CA→ EV CP : σ
(

ℜ ((Sess Reply, nonceEV CP ,Hash Chain, nonceCA), EV CP),K−1

CA

)

with: Hash Chain = (ReplytStatus, Serial No, CertStatus, SessStart, SessExpiry,

HashAlgID, d, Y , N)

3. EV CP → CA: σ(ℜ ((Sess ACK,nonce CA,EV CP |≡Hash Chain), CA) ,K−1

EV CP)

The message-recipient construct (ℜ(X, receiver)) is idealized in all messages above. This is

because each message always contains the ID of the receiver, which is also taken into consideration

in generating the respective message’s digital signature.

We specifically define Hash Chain as the message portion containing all the parameters

specifying a hash-chaining based (e.g. CRS/NOVOMODO) revocation system. Hash Chain is

to be used by the verifiers as reference token information, together with the CA’s latest hash

token, in ensuring the validity of the EVCP’s certificate.

Note that the protocol above is between an EVCP and the CA. Thus, unlike a typical protocol

where the principals establish a trust on each other through a (common) CA, here it is the CA with

whom the EVCP deals directly. Since all principals are assumed to have believed the CA’s public

and private keys, we do not logically infer the following EVCP’s beliefs: EV CP |≡℘κ (CA,KCA)

and EV CP |≡Π(K−1

CA). Rather, they are assumed to be true at the start of the protocol run. Con-

versely, since the CA is the authoritative entity on the goodness of the EVCP’s public and private

key pair, the CA determines by itself the goodness of the keys (i.e. CA |≡℘κ (EV CP,KEV CP)

and CA |≡Π(K−1

EV CP)).

E.2 Initial-State Assumptions

We list all the assumptions below:

• EVCP believes correct and good public and private keys of CA:

α1: EV CP |≡℘κ (CA,KCA)

α2: EV CP |≡Π(K−1

CA)

• CA believes the goodness of EVCP’s public and private keys (based on its certification

record):

α3: CA |≡℘κ (EV CP,KEV CP)

α4: CA |≡Π(K−1

EV CP)

168

• Each principal believes the freshness of its own nonce(s) or timestamp:

α5: CA |≡ ♯(T)

α6: EV CP |≡ ♯(nonceEV CP)

α7: CA |≡ ♯(nonceCA)

• CA believes that EVCP has a jurisdiction over the Session Request message portion:

α8: CA |≡EV CP p⇒SessReq, Serial No, nonceEV CP

• EVCP believes that CA has a jurisdiction over SessReply and Hash Chain:

α9: EV CP |≡CA p⇒SessReply,Hash Chain

• CA believes that EVCP has a jurisdiction over SessACK and EVCP’s belief on Hash Chain:

α10: CA |≡EV CP p⇒SessACK, (EV CP |≡Hash Chain)

E.3 Protocol Goals

The CREV-I session establishment protocol does not aim to establish a session key to secure the

subsequent communication session. Rather, it aims to establish a mutual authentication between

the CA and EVCP, and to allow EVCP to securely obtain the CA’s Hash Chain. In addition,

the CA needs to establish a belief that EVCP has believed its generated Hash Chain.

We list the goals as follows:

• CA believes SessReq, Serial No, nonceEV CP (sent in EVCP’s Session Request message):

G1: CA |≡SessReq, Serial No, nonceEV CP

• EVCP believes SessReply,Hash Chain, nonceCA (sent in CA’s Session Reply message):

G2: EV CP |≡SessReply,Hash Chain, nonceCA

• CA believes SessACK together with EVCP’s belief on Hash Chain (sent in EVCP’s

Session ACK message):

G3: CA |≡SessACK, (EV C |≡Hash Chain)

E.4 The Proof

We prove that the proposed protocol achieve its stated goals as follows. Note that the rule

numbering here follows that of Appendix D.

After message 1, we have:

CA ⊳ σ(ℜ ((SessReq, Serial No, T, nonceEV CP), CA) ,K−1

EV CP) (E.1)

Using New message-meaning for signed message Rule (R13) on α3, α4, and (E.1):

CA |≡EV CP |∼SessReq, Serial No, T, nonceEV CP (E.2)

Using Freshness extension Rule (R10) on α5:

CA |≡ ♯(SessReq, Serial No, T, nonceEV CP) (E.3)

Using Nonce verification Rule (R2) on (E.3) and (E.2):

CA |≡EV CP |≡SessReq, Serial No, T, nonceEV CP (E.4)

Using And-elimination Rule (R5) on (E.4):

169

CA |≡EV CP |≡SessReq, Serial No, nonceEV CP (E.5)

Using Jurisdiction Rule (R3) on α8 and (E.5):

G1 : CA |≡SessReq, Serial No, nonceEV CP (E.6)

After message 2, we have:

EV CP ⊳ σ(ℜ ((SessReply, nonceEV CP ,Hash Chain, nonceCA), EV CP) ,K−1

CA) (E.7)

Using New message-meaning for signed message Rule (R13) on α1, α2, and (E.7):

EV CP |≡CA |∼SessReply, nonceEV CP ,Hash Chain, nonceCA (E.8)

Using Freshness extension Rule (R10) on α6:

EV CP |≡ ♯(SessReply, nonceEV CP ,Hash Chain, nonceCA) (E.9)

Using Nonce verification Rule (R2) on (E.9) and (E.8):

EV CP |≡CA |≡SessReply, nonceEV CP ,Hash Chain, nonceCA (E.10)

Using And-elimination Rule (R5) on (E.10):

EV CP |≡CA |≡SessReply,Hash Chain, nonceCA (E.11)

Using Jurisdiction Rule (R3) on α9 and (E.11):

G2 : EV CP |≡SessReply,Hash Chain, nonceCA (E.12)

After message 3, we have:

CA ⊳ σ(ℜ (SessACK,nonceCA, (EV CP |≡Hash Chain), CA) ,K−1

EV CP) (E.13)

Using New message-meaning for signed message Rule (R13) on α3, α4, and (E.13):

CA |≡EV CP |∼SessACK,nonceCA, (EV CP |≡Hash Chain) (E.14)

Using Freshness extension Rule (R10) on α7:

CA |≡ ♯(SessACK,nonceCA, EV CP |≡Hash Chain) (E.15)

Using Nonce verification Rule (R2) on (E.15) and (E.14):

CA |≡EV CP |≡SessACK,nonceCA, (EV CP |≡Hash Chain) (E.16)

Using And-elimination Rule (R5) on (E.16):

CA |≡EV CP |≡SessACK, (EV CP |≡Hash Chain) (E.17)

Using Jurisdiction Rule (R3) on α10 and (E.17):

G3 : CA |≡SessACK, (EV CP |≡Hash Chain) (E.18)

E.5 Discussion

We have given a proof of the proposed session establishment protocol in CREV-I by using MPKI-

BAN Logic. Some interesting points to note from the proof are:

• We can see that the three stated goals (G1–G3) are all achievable. Using the protocol,

EVCP and the CA can authenticate each other in order to set up a new session. In

170

particular, EVCP can derive a belief on Hash Chain which is sent together with CA’s nonce

in a valid Session Reply message (i.e. G2 : SessReply, (EV CP |≡Hash Chain), nonceCA).

Moreover, the CA can also establish a belief that EVCP believes Hash Chain, which is

sent in a valid Session ACK message (i.e. G3 : CA |≡SessACK, (EV CP |≡Hash Chain)).

Capturing these facts is important because only after establishing these beliefs, the CA

then starts sending its periodical hash tokens to EVCP.

• Although the CA believes that EVCP believes Hash Chain (i.e. G3), EVCP however

has no knowledge that the CA has established G3. In other words, the following belief

is not derivable: EV CP |≡CA |≡ (EV CP |≡Hash Chain). When proposing the protocol,

we assume that the channel between EVCP and the CA is reliable. Hence, EVCP simply

assumes that the CA can derive G3 upon receipt of the message 3. In a lossy channel,

mechanisms to deal with possible message losses are thus required.

• It is possible to omit the use of CA’s nonce (nonceCA) in Session Reply and Session ACK

messages. Instead one may chose to use SessStart (representing the timestamp where

the established session starts to be valid) as the freshness assurance. That is, SessStart,

which is generated and sent in the message 2 by the CA, functions as a nonce to be

returned in the message 3 by EVCP. The CA however now needs to keep track of the latest

Session ACK message that it sends to each EVCP. This is required in order to ensure that

Serial No+SessStart is unique. The use of SessStart as a CA’s nonce can work provided

that SessStart timestamp is sufficiently fine-grained. Otherwise, the nonce space is rather

limited, and may result in a potential “oracle attack” on the generation of the CA’s (signed)

Session Reply message. Our use of nonceCA functions as a challenge to EVCP, as well as

acting as a “salt” to increase the message space of the Session Reply message so as to

reduce the risk of an oracle attack.

• Our formalism using MPKI-BAN Logic on the protocol thus demonstrates the Logic’s

benefits in highlighting the implicit assumptions of the protocol as well as formulating the

desired protocol goals. The Logic can subsequently help protocol designers to reason more

systematically on the protocol by showing how the protocol can establish its objectives.

171

Appendix F

List of Author’s Published and

Submitted Work

The following are published and submitted works by the author during the author’s Ph.D. can-

didature.

Published Works:

• Sufatrio, Roland H. C. Yap and Liming Zhong, “A Machine-Oriented Integrated Vulnera-

bility Database for Automated Vulnerability Detection and Processing”, In Proceedings of

the 18th USENIX Large Installation System Administration, pp. 47–58, 2004.

• Sufatrio and Roland H. C. Yap, “Improving Host-based IDS with Argument Abstraction to

Prevent Mimicry Attacks”, In Proceedings of the 8th International Symposium on Recent

Advances in Intrusion Detection (RAID). pp. 146–164, 2005.

• Rajiv Ramnath, Sufatrio, Roland H. C. Yap, and Wu Yongzheng, “WinResMon: A Tool

for Discovering Software Dependencies, Configuration, and Requirements in Microsoft Win-

dows”, In Proceedings of the 20th USENIX Large Installation System Administration, pp.

175-186, 2006.

• Felix Halim, Rajiv Ramnath, Sufatrio, Yongzheng Wu, and Roland H. C. Yap, “A

Lightweight Binary Authentication System for Windows”, In Proceedings of the Joint iTrust

and PST Conferences on Privacy, Trust Management and Security (IFIPTM), pp. 295–310,

Springer, 2008.

• Sufatrio and Roland H. C. Yap, “Extending BAN Logic for Reasoning with Modern PKI-

based Protocols”, In Proceedings of the IFIP International Workshop on Network and Sys-

tem Security 2008 (NSS), pp. 190–197, 2008.

• Yongzheng Wu, Sufatrio, Roland H. C. Yap, Rajiv Ramnath and Felix Halim, “Establishing

Software Integrity Trust: A Survey and Lightweight Authentication System for Windows,

Book Chapter, in Trust Modeling and Management in Digital Environments: From Social

Concept to System Development, Information Science Reference, 2010.

Submitted Work:

• Sufatrio and Roland H. C. Yap, “Practical and Near Real-Time Certificate Revocation”,

2010.

172

Bibliography

[1] Abadi, M., and Needham, R. Prudent engineering practice for cryptographic protocols.

IEEE Transactions on Software Engineering 22, 1 (1996), 6–15.

[2] Abadi, M., and Tuttle, M. R. A semantics for a logic of authentication. In Proceedings

of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC)

(1991), pp. 201–216.

[3] Adams, C., Cain, P., Pinkas, D., and Zuccherato, R. Internet X.509 Public Key

Infrastructure Time-Stamp Protocol (TSP). IETF RFC 3161, 2001.

[4] Adams, C., and Lloyd, S. Understanding PKI: Concepts, Standards, and Deployment

Considerations, 2nd ed. Addison-Wesley Professional, 2002.

[5] Agray, N., van Der Hoek, W., and de Vink, E. On BAN Logics for industrial security

protocols. In Proceedings of the 2nd International Workshop of Central and Eastern Europe

on Multi-Agent Systems (2002), pp. 29–36.

[6] Aiello, W., Lodha, S., and Ostrovsky, R. Fast digital identity revocation. In

Proceedings of the 18th Annual International Cryptology Conference (CRYPTO) (1998),

pp. 137–152.

[7] Anderson, R., and Needham, R. Robustness principles for public key protocols. In

Proceedings of the 15th Annual International Cryptology Conference (CRYPTO) (1995),

pp. 236–247.

[8] Anti Phishing Working Group (APWG). Phishing activity trends report 2nd half

2008. Retrieved on October 22, 2010, from http://www.antiphishing.org/reports/

apwg report H2 2008.pdf, 2009.

[9] Apvrille, A., Gordon, D., Hallyn, S., Pourzandi, M., and Roy, V. Digsig:

Runtime authentication of binaries at kernel level. In Proceedings of the 18th USENIX

Large Installation System Administration Conference (2004), pp. 59–66.

[10] Arbaugh, W. A. Chaining Layered Integrity Checks. PhD thesis, University of Pennsyl-

vania, 1999.

[11] Arboi, M. The NASL2 reference manual. Retrieved on October 22, 2010, from http:

//www.nessus.org/doc/nasl2 reference.pdf.

[12] Arnold, E. R. The trouble with Tripwire. Retrieved on October 22, 2010, from http:

//www.securityfocus.com/infocus/1398, 2001.

[13] Axelsson, S. The base-rate fallacy and the difficulty of intrusion detection. ACM Trans-

actions on Information and System Security 3, 3 (2000), 186–205.

[14] Axelsson, S. Intrusion detection systems: A taxomomy and survey. Tech. Rep. TR 99-15,

Chalmers University of Technology, 2000.

173

[15] Aziz, A., and Diffie, W. Privacy and authentication for wireless local area networks.

IEEE Personal Communication 1, 1 (1994), 25–31.

[16] Bace, R., and Mell, P. Intrusion Detection Systems. Tech. Rep. Special Publication

on Intrusion Detection Systems, National Institute of Standards and Technology (NIST),

2001.

[17] Baldwin, R. W. Rule based analysis of computer security. Tech. Rep. MIT/LCS/TR-401,

Massachusetts Institute of Technology, 1988.

[18] Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and Tygar, J. D. Can

machine learning be secure? In Proceedings of the 2006 ACM Symposium on Information,

Computer, and Communication Security (ASIACCS) (2006), pp. 16–25.

[19] Beattie, S., Black, A., Cowan, C., Pu, C., and Yang, L. CryptoMark: Locking the

stable door ahead of the trojan horse. White Paper. WireX Communications Inc., 2000.

[20] Bellovin, S. M. Computer security—an end state? Communications of the ACM 44, 3

(2001), 131–132.

[21] Berbecaru, D. MBS-OCSP: An OCSP based certificate revocation system for wireless en-

vironments. In Proceedings of the 4th IEEE International Symposium on Signal Processing

and Information Technology (2004), pp. 267–272.

[22] Bernaschi, M., Gabrielli, E., and Mancini, L. V. REMUS: A security-enhanced

operating system. ACM Transactions on Information and System Security 5, 1 (2002),

36–61.

[23] Bhatkar, S., Chaturvedi, A., and Sekar, R. Dataflow anomaly detection. In Pro-

ceedings of the 2006 IEEE Symposium on Security and Privacy (2006), pp. 48–62.

[24] Bicakci, K., and Baykal, N. One-time passwords: Security analysis using BAN Logic

and integrating with smartcard authentication. In Proceedings of the 18th International

Symposium on Computer and Information Sciences (2003), pp. 794–801.

[25] Boyd, C., and Mathuria, A. Key establishment protocols for secure mobile communica-

tions: A selective survey. In Proceedings of the 3rd Australasian Conference on Information

Security and Privacy (ACISP) (1998), pp. 344–355.

[26] Burrows, M., Abadi, M., and Needham, R. A logic of authentication. Proceedings of

the Royal Society 426, 1871 (1989).

[27] Burrows, M., Abadi, M., and Needham, R. A logic of authentication, revised. Tech.

Rep. SRC Technical Report 39, Digital Systems Research Centre, 1990.

[28] CA/Browser Forum. Guidelines for the issuance and management of Extended Valida-

tion Certificates, version 1.2. Retrieved on October 22, 2010, from http://www.cabforum.

org/Guidelines v1 2.pdf, 2009.

[29] Catuogno, L., and Visconti, I. An architecture for kernel-level verification of executa-

bles at run time. The Computer Journal 47, 5 (2004), 511–526.

[30] CERT Coordination Center. CERT statistics (historical): Cataloged vulnerabilities.

Retrieved on October 22, 2010, from http://www.cert.org/stats/cert stats.html.

[31] CERT Coordination Center. CERT/CC overview incident and vulnerability trends.

Retrieved on October 22, 2010, from ftp://ftp.upc.es/pub/cert/cert advisories/

www.cert.org/present/cert-overview-trends/module-2.pdf.

174

[32] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detection: A survey. ACM

Computing Surveys 41, 3 (2009), 1–58.

[33] Chang, C., Pan, H., and Jia, H. A secure short message communication protocol.

International Journal of Automation and Computing 5, 2 (2008), 202–207.

[34] Cheminod, M., Bertolotti, I., Durante, L., Maggi, P., Pozza, D., Sisto, R.,

and Valenzano, A. Detecting chains of vulnerabilities in industrial networks. IEEE

Transactions on Industrial Informatics 5, 2 (2009), 181–193.

[35] Chen, L., Zhang, G., and Li, X. Efficient identity authentication protocol and its formal

analysis. In Proceedings of the 2007 International Conference on Computational Intelligence

and Security Workshops (2007), pp. 712–716.

[36] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K. Non-control-data

attacks are realistic threats. In Proceedings of the 14th USENIX Security Symposium (2005),

pp. 177–192.

[37] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and Polk, W.

Internet X.509 Public Key Infrastructure certificate and Certificate Revocation List (CRL)

profile. IETF RFC 5280, 2008.

[38] Cooper, D. A. A closer look at revocation and key compromise in Public Key Infrastruc-

tures. In Proceedings of the 21st National Information Systems Security Conference (1998),

pp. 555–565.

[39] Criscione, C., and Zanero, S. Masibty: An anomaly based intrusion prevention system

for Web applications. In Proceedings of the 2009 Black Hat Europe (2009).

[40] Debar, H., and Viinikka, J. Intrusion detection: Introduction to intrusion detection

and security information management. In Foundations of Security Analysis and Design III

(FOSAD 2004/2005) (2005), pp. 207–236.

[41] Deraison, R., and Gula, R. Blended security assessments: Combining active, passive

and host assessment techniques. Tech. rep., Tenable Security, 2009.

[42] Dierks, T., and Rescorla, E. The Transport Layer Security (TLS) protocol version

1.2. IETF RFC 5246, 2008.

[43] Digistamp, Inc. Frequently asked questions – digital signatures. Retrieved on October

22, 2010, from http://www.digistamp.com/FAQsig.htm#tsSig.

[44] Eastlake, D., and Hansen, T. US Secure Hash Algorithms (SHA and HMAC-SHA).

IETF RFC 4634, 2006.

[45] F-Secure. F-Secure reports amount of malware grew by 100% during 2007. Retrieved on

October 22, 2010, from http://www.f-secure.com/en EMEA/about-us/pressroom/news/

2007/fs news 20071204 1 eng.html, 2007.

[46] Farmer, D., and Spafford, E. H. The COPS security checker system. In Proceedings

of the Summer 1990 USENIX Conference (1990), pp. 165–170.

[47] Feng, H. H., Giffin, J. T., Huang, Y., Jha, S., Lee, W., and Miller, B. P.

Formalizing sensitivity in static analysis for intrusion detection. In Proceedings of the 2004

IEEE Symposium on Security and Privacy (2004), pp. 194–208.

[48] Feng, H. H., Kolesnikov, O. M., Fogla, P., Lee, W., and Gong, W. Anomaly

detection using call stack information. In Proceedings of the 2003 IEEE Symposium on

Security and Privacy (2003), pp. 62–75.

175

[49] Foreman, P. Vulnerability Management. CRC Press, 2010.

[50] Forrest, S., Hofmeyr, S., and Somayaji, A. The evolution of system-call monitoring.

In Proceedings of the 2008 Annual Computer Security Applications Conference (ACSAC)

(2008), pp. 418–430.

[51] Gaarder, K., and Snekkenes, E. Applying a formal analysis technique to the CCITT

X.509 strong two-way authentication protocol. Journal of Cryptology 3, 2 (1991), 81–98.

[52] Gabrilovich, E., and Gontmakher, A. The homograph attack. Communications of

the ACM 45, 2 (2002), 128–128.

[53] Gao, D., Reiter, M. K., and Song, D. On gray-box program tracking for anomaly

detection. In Proceedings of the 13th USENIX Security Symposium (2004), pp. 103–118.

[54] Garfinkel, S., and Spafford, G. Practical Unix Security, 2nd ed. O’Reilly and Asso-

ciate, 1996.

[55] Gemini Security Solutions, Inc. Long term digital signatures. Retrieved on

October 22, 2010, from http://geminisecurity.com/wp-content/uploads/2009/01/

long-term-digital-signatures.pdf.

[56] GeoTrust, Inc. True Credentials for code signing certificate practice statement. Re-

trieved on October 22, 2010, from http://www.geotrust.com/resources/cps/pdfs/

tc code signing CPS v.1.1.pdf, 2004.

[57] Giffin, J. T., Jha, S., and Miller, B. P. Efficient context-sensitive intrusion detection.

In Proceedings of the 11th Network and Distributed System Security Symposium (2004).

[58] Giffin, J. T., Jha, S., and Miller., B. P. Automated discovery of mimicry attacks. In

Proceedings of the 9th International Symposium on Recent Advances in Intrusion Detection

(RAID) (2006), pp. 41–60.

[59] Gligor, V. D., Kailar, R., Stubblebine, S., and Gong, L. Logics for cryptographic

protocols - virtues and limitations. In Proceedings of the 4th IEEE Computer Security

Foundations Workshop (1991), pp. 219–226.

[60] Goyal, V. Certificate revocation using fine grained certificate space partitioning. In Pro-

ceedings of the 11th International Conference on Financial Cryptography and Data Security

(2007), pp. 247–259.

[61] Grimes, R. Authenticode. Retrieved on October 22, 2010, from http://technet.

microsoft.com/en-us/library/cc750035.aspx.

[62] Gritzalis, S., Spinellis, D., and Georgiadis, P. Security protocols over open net-

works and distributed systems: Formal methods for their analysis, design, and verification.

Computer Communications 22, 8 (1999), 697–709.

[63] Guha, A., Krishnamurthi, S., and Jim, T. Using static analysis for Ajax intrusion

detection. In Proceedings of the 18th International Conference on World Wide Web (2009),

pp. 561–570.

[64] Gutmann, P. PKI: It’s not dead, just resting. Computer 35, 8 (2002), 41–49.

[65] Haber, S., and Stornetta, W. S. How to time-stamp a digital document. Journal of

Cryptology 3, 2 (1991), 99–111.

176

[66] Halim, F., Ramnath, R., Sufatrio, Wu, Y., and Yap, R. H. C. A lightweight binary

authentication system for Windows. In Proceedings of the Joint iTrust and PST Conferences

on Privacy, Trust Management and Security (IFIPTM). IFIP International Federation for

Information Processing - Trust Management II, Vol. 263/2008 (2008), Springer, pp. 295–

310.

[67] Hofmeyr, S. A., Forrest, S., and Somayaji, A. Intrusion detection using sequences

of system calls. Journal of Computer Security 6, 3 (1998), 151–180.

[68] Hoglund, G., and McGraw, G. Exploiting Software: How to Break Code. Addison-

Wesley Professional, 2004.

[69] Holgers, T., Watson, D. E., and Gribble, S. D. Cutting through the confusion:

A measurement study of homograph attacks. In Proceedings of the 2006 USENIX Annual

Technical Conference (2006), pp. 261–266.

[70] Howard, J. Kuangplus: A general computer vulnerability checker. Master’s thesis, Aus-

tralian Defence Force Academy, 1999.

[71] Howell, J., and Kotz, D. A formal semantics for SPKI. In Proceedings of the 6th

European Symposium on Research in Computer Security (ESORICS) (2000), pp. 140–158.

[72] Hu, N., Tayi, G. K., Ma, C., and Li, Y. Certificate revocation release policies. Journal

of Computer Security 17, 2 (2009), 127–157.

[73] Iliadis, J., Gritzalis, S., Spinellis, D., de Cock, D., Preneel, B., and Gritza-

lis, D. Towards a framework for evaluating certificate status information mechanisms.

Computer Communications 26, 16 (2003), 1839–1850.

[74] Inoue, H., and Somayaji, A. Lookahead pairs and full sequences: A tale of two anomaly

detection methods. In Proceedings of the 2nd Annual Symposium on Information Assurance

(2007), pp. 9–19.

[75] ITU-T Recommendation X.509. Information Technology - Open Systems Interconnec-

tion - The Directory: Public-key and attribute certificate frameworks, 2000.

[76] Jackson, C., and Barth, A. Beware of finer-grained origins. In Proceedings of the Web

2.0 Security and Privacy 2008 (2008).

[77] Jackson, C., Simon, D. R., Tan, D. S., and Barth, A. An evaluation of Extended

Validation and picture-in-picture phishing attacks. In Proceedings of the Usable Security

2007 (2007), pp. 281–293.

[78] Jakobsson, M. Fractal hash sequence representation and traversal. In Proceedings of the

2002 IEEE International Symposium on Information Theory (2002), pp. 437–444.

[79] Just, M., and van Oorschot, P. C. Addressing the problem of undetected signature

key compromise. In Proceedings of the Network and Distributed System Security Symposium

(1999).

[80] Kemmerer, R. A., and Vigna, G. Intrusion detection: A brief history and overview.

Computer 35, 4 (2002), 27–30.

[81] Kessler, V., and Wedel, G. AUTLOG - an advanced logic of authentication. In

Proceedings of 7th IEEE Computer Security Foundations Workshop (1994), pp. 90–99.

[82] Kim, G. H., and Spafford, E. H. The design and implementation of Tripwire: A file

system integrity checker. In Proceedings of the 2nd ACM Conference on Computer and

Communications Security (1994), pp. 18–29.

177

[83] Kocher, P. C. On certificate revocation and validation. In Proceedings of the 2nd Inter-

national Conference on Financial Cryptography (1998), pp. 172–177.

[84] Koga, S., Ryou, J.-C., and Sakurai, K. Pre-production methods of a response to

certificates with the common status - design and theoretical evaluation. In Proceedings of

the 1st European PKI Workshop Research and Applications (EuroPKI) (2004), pp. 85–97.

[85] Kohlas, R., and Maurer, U. Reasoning about public-key certification: On bindings

between entities and public keys. Journal on Selected Areas in Communications 18 (2000),

551–560.

[86] Krawczyk, H., Bellare, M., and Canetti, R. HMAC: Keyed-hashing for message

authentication. IETF RFC 2104, 1997.

[87] Krsul, I. V. Software Vulnerability Analysis. PhD thesis, Purdue University, 1998.

[88] Kruegel, C., Kirda, E., Mutz, D., Robertson, W., and Vigna, G. Automating

mimicry attacks using static binary analysis. In Proceedings of the 14th USENIX Security

Symposium (2005), pp. 161–176.

[89] Kruegel, C., Valeur, F., and Vigna, G. Intrusion Detection and Correlation: Chal-

lenges and Solutions. Springer, 2005.

[90] Kruegel, C., and Vigna, G. Anomaly detection of Web-based attacks. In Proceedings of

the 10th ACM Conference on Computer and Communication Security (2003), pp. 251–261.

[91] Krugel, C., Mutz, D., Valeur, F., and Vigna, G. On the detection of anomalous

system call arguments. In Proceedings of the 8th European Symposium on Research in

Computer Security (ESORICS) (2003), pp. 326–343.

[92] Lim, T.-L., and Lakshminarayanan, A. On the performance of certificate validation

schemes based on pre-computed responses. In Proceedings of the 50th Annual IEEE Global

Telecommunications Conference (GLOBECOM) (2007), pp. 182–187.

[93] Lioy, A., Marian, M., Moltchanova, N., and Pala, M. PKI past, present and future.

International Journal of Information Security 5 (2006), 18–29.

[94] Lipson, H. F. Tracking and tracing cyber-attacks: Technical challenges and global pol-

icy issues. Retrieved on October 22, 2010, from http://www.cert.org/archive/pdf/

02sr009.pdf, 2002.

[95] Liu, Z., Bridges, S. M., and Vaughn, R. B. Combining static analysis and dynamic

learning to build accurate intrusion detection models. In Proceedings of the 3rd IEEE

International Workshop on Information Assurance (2005), pp. 164–177.

[96] Lopez, J., Oppliger, R., and Pernul, G. Why have Public Key Infrastructures failed

so far? Internet Research 15, 5 (2005), 544–556.

[97] Lowe, G. Some new attacks upon security protocols. In Proceedings of the 9th IEEE

Computer Security Foundations Workshop (1996), pp. 162–169.

[98] Lundin, E., and Jonsson, E. Survey of research in the intrusion detection area. Tech.

Rep. 02-04, Chalmers University of Technology, 2002.

[99] Ma, C., Hu, N., and Li, Y. On the release of CRLs in Public Key Infrastructure. In

Proceedings of the 15th USENIX Security Symposium (2006), pp. 17–28.

178

[100] Maggi, P., Pozza, D., and Sisto, R. Vulnerability modelling for the analysis of network

attaks. In Proceedings of the 3rd International Conference on Dependability of Computer

Systems (2008), pp. 15–22.

[101] Mao, W., and Boyd, C. On a limitations of BAN Logic. In Proceedings of the Work-

shop on the Theory and Application of Cryptographic Techniques –EUROCRYPT (1993),

pp. 240–247.

[102] Marlinspike, M. New tricks for defeating SSL in practice. In Proceedings of the 2009

Black Hat DC (2009).

[103] Maurer, U. Modelling a Public-Key Infrastructure. In Proceedings of the 4th European

Symposium on Research in Computer Security (ESORICS) (1996), pp. 325–350.

[104] Maurer, U. Intrinsic limitations of digital signatures and how to cope with them. In

Proceedings of the 6th Information Security Conference – ISC ’03 (2003), pp. 180–192.

[105] Maxion, R. A. Masquerade detection using enriched command lines. In Proceedings of

the 2003 International Conference on Dependable Systems & Networks (2003), pp. 5–14.

[106] McDaniel, P., and Rubin, A. A response to ‘Can we eliminate Certificate Revocation

Lists?’. In Proceedings of the 4th International Conference on Financial Cryptography

(2000), pp. 245–258.

[107] Meadows, C. A. Formal verification of cryptographic protocols: A survey. In Proceed-

ings of the 4th International Conference on the Theory and Application of Cryptology –

ASIACRYPT (1994), pp. 133–150.

[108] Meadows, C. A. Formal methods for cryptographic protocol analysis: Emerging issues

and trends. IEEE Journal on Selected Areas in Communications 21, 1 (2003), 44–54.

[109] Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. Handbook of Applied

Cryptography. CRC Press, 1996.

[110] Micali, S. Efficient certificate revocation. Tech. Rep. MIT-LCS-TM-542b, Massachusetts

Institute of Technology, 1996.

[111] Micali, S. NOVOMODO: Scalable certificate validation and simplified PKI management.

In Proceedings of the 1st Annual PKI Research Workshop (2002), pp. 15–25.

[112] Microsoft Corporation. Microsoft Security Development Lifecycle (SDL) - version

5.0. Retrieved on October 22, 2010, from http://www.microsoft.com/downloads/en/

details.aspx?FamilyID=7d8e6144-8276-4a62-a4c8-7af77c06b7ac&displaylang=en,

2010.

[113] Microsoft Developer Network. Signtool. Retrieved on October 22, 2010, from http:

//msdn.microsoft.com/en-us/library/aa387764(VS.85).aspx.

[114] Miller, C. The legitimate vulnerability market: Inside the secretive world of 0-day exploit

sales. In Proceedings of the 2007 Workshop on the Economics of Information Security

(2007).

[115] MITRE Corporation. Common Platform Enumeration (CPE). Retrieved on October

22, 2010, from http://cpe.mitre.org.

[116] MITRE Corporation. Common Vulnerabilities and Exposures (CVE). Retrieved on

October 22, 2010, from http://cve.mitre.org.

179

[117] MITRE Corporation. Open Vulnerability and Assessment Language (OVAL). Retrieved

on October 22, 2010, from http://oval.mitre.org.

[118] MITRE Corporation. OVAL Interpreter. Retrieved on October 22, 2010, from http:

//oval.mitre.org/language/interpreter.html.

[119] MITRE Corporation. OVAL Repository. Retrieved on October 22, 2010, from http:

//oval.mitre.org/repository.

[120] MITRE Corporation. An introduction to the OVAL Language, version 5.0. Re-

trieved on October 22, 2010, from http://oval.mitre.org/oval/documents/docs-06/

an introduction to the oval language.pdf, 2006.

[121] Motara, Y., and Irwin, B. In-kernel cryptographic executable verification. In Proceed-

ings of IFIP International Conference on Digital Forensics (2005), pp. 303–313.

[122] Munoz, J. L., Forn, J., Esparza, O., and Soriano, B. M. Using OCSP to secure

certificate-using transactions in m-commerce. In Proceedings of the 1st International Con-

ference on Applied Cryptography and Network Security (2003), pp. 280–292.

[123] Mutz, D., Valeur, F., Kruegel, C., and Vigna, G. Anomalous system call detection.

ACM Transactions on Information and System Security 9 (2006), 61–93.

[124] Myers, M., Ankney, R., Malpani, A., Galperin, S., and Adams, C. X.509 Internet

Public Key Infrastructure Online Certificate Status Protocol - OCSP. IETF RFC 2560,

1999.

[125] Naor, M., and Nissim, K. Certificate revocation and certificate update. In Proceedings

of the 7th USENIX Security Symposium (1998), pp. 217–228.

[126] National Institute of Standards and Technology (NIST). Security Content Au-

tomation Protocol (SCAP). Retrieved on October 22, 2010, from http://scap.nist.gov.

[127] Nessett, D. M. A critique of the Burrows, Abadi, and Needham Logic. ACM Operating

Systems Review 24, 2 (1990), 35–38.

[128] NESSUS. Retrieved on October 22, 2010, from http://www.nessus.org.

[129] Nielsen, R., and Hamilton, B. A. Observations from the deployment of a large scale

PKI. In Proceedings of the 4th Annual PKI R&D Workshop (2005).

[130] One, A. Smashing the stack for fun and profit. Phrack 7, 49 (1996).

[131] Organisation for Economic Co-operation and Development (OECD). Malicious

software (malware): A security threat to Internet economy, Ministerial Background Report,

DISTI/ICCP/Reg(2007)5/Final. Retrieved on October 22, 2010, from http://www.oecd.

org/dataoecd/53/34/40724457.pdf, 2008.

[132] Patcha, A., and Park, J.-M. An overview of anomaly detection techniques: Existing

solutions and latest technological trends. Computer Networks 51, 12 (2007), 3448–3470.

[133] Perlines Hormann, T., Wrona, K., and Holtmanns, S. Evaluation of certificate

validation mechanisms. Computer Communications 29, 3 (2006), 291–305.

[134] Pevzner, P. A. L-tuple DNA sequencing: Computer analysis. Journal of Biomolecular

Structure and Dynamics 7 (1989), 63–74.

[135] Provos, N. Improving host security with system call policies. In Proceedings of the 12th

USENIX Security Symposium (2003), pp. 257–272.

180

[136] Public Cooperative Vulnerability Database. Retrieved on October 22, 2010,

https://cirdb.cerias.purdue.edu/coopvdb/public/.

[137] Rescorla, E. Security holes... Who cares? In Proceedings of the 12th USENIX Security

Symposium (2003), pp. 75–90.

[138] Rivest, R. Can we eliminate Certificate Revocation Lists? In Proceedings of the 2nd

International Conference on Financial Cryptography (1998), pp. 178–183.

[139] Russinovich, M. Sigcheck v1.65. Retrieved on October 22, 2010, from http://technet.

microsoft.com/en-us/sysinternals/bb897441.aspx.

[140] Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention Systems

(IDPS). Tech. Rep. Special Publication 800-94, National Institute of Standards and Tech-

nology (NIST), 2007.

[141] Scheibelhofer, K. PKI without revocation checking. In Proceedings of the 4th Annual

PKI R&D Workshop (2005).

[142] Schmid, M., Hill, F., Ghosh, A., and Bloch, J. Preventing the execution of unau-

thorized Win32 applications. In Proceedings of the DARPA Information Survivability Con-

ference & Exposition II (DISCEX) (2001), pp. 175–183.

[143] Schneier, B. Applied cryptography: Protocols, algorithms, and source code in C, 2nd ed.

Wiley, New York, 1996.

[144] Security Administrator Tool for Analyzing Networks (SATAN). Retrieved on

October 22, 2010, from http://www.porcupine.org/satan.

[145] Securityfocus BugTraq. Retrieved on October 22, 2010, from http://www.

securityfocus.com/archive/1.

[146] Sekar, R., Bendre, M., Dhurjati, D., and Bollineni, P. A fast automaton-based

method for detecting anomalous program behaviors. In Proceedings of the 2001 IEEE

Symposium on Security and Privacy (2001), pp. 144–155.

[147] Sharma, A., Martin, J. R., Anand, N., Cukier, M., Sanders, W. H., and S, W. H.

Ferret: A host vulnerability checking tool. In Proceedings of the 10th IEEE Pacific Rim

International Symposium on Dependable Computing (2004), pp. 389–394.

[148] Sherif, J. S., and Dearmond, T. G. Intrusion detection: Systems and models. In

Proceedings of the 11th IEEE International Workshops on Enabling Technologies: Infras-

tructure for Collaborative Enterprises (2002), pp. 115–133.

[149] Sobey, J., Biddle, R., van Oorschot, P. C., and Patrick, A. S. Exploring user

reactions to new browser cues for Extended Validation certificates. In Proceedings of the

13th European Symposium on Research in Computer Security (ESORICS) (2008), pp. 411–

427.

[150] Solworth, J. A. Beacon certificate push revocation. In Proceedings of the 2nd ACM

Workshop on Computer Security Architecture (2008), pp. 59–66.

[151] Solworth, J. A. Instant revocation. In Proceedings of the 5th European PKI workshop

on Public Key Infrastructure: Theory and Practice (2008), pp. 31–48.

[152] Somayaji, A., and Forrest, S. Automated response using system-call delays. In Pro-

ceedings of the 9th USENIX Security Symposium (2000), pp. 185–197.

181

[153] Somayaji, A. B. Operating system stability and security through process homeostasis. PhD

thesis, The University of New Mexico, 2002.

[154] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M. G., Liang,

Z., Newsome, J., Poosankam, P., and Saxena, P. BitBlaze: A new approach to

computer security via binary analysis. In Proceedings of the 4th International Conference

on Information Systems Security (2008), pp. 1–25.

[155] Storer, T., Martin, U., and Duncan, I. BAN Logic analysis of the UK postal voting

system. Tech. rep., University of St. Andrews, 2003.

[156] Stubblebine, S., and Wright, R. An authentication logic with formal semantics sup-

porting synchronization, revocation, and recency. IEEE Transactions on Software Engi-

neering 28, 3 (2002), 256–285.

[157] Sufatrio. Authentication schemes for secure mobile Internet services. Master’s thesis,

National University of Singapore, 2001.

[158] Sufatrio, and Yap, R. H. C. Improving host-based IDS with argument abstraction to

prevent mimicry attacks. In Proceedings of the 8th International Symposium on Recent

Advances in Intrusion Detection (RAID) (2005), pp. 146–164.

[159] Sufatrio, and Yap, R. H. C. Extending BAN Logic for reasoning with modern PKI-

based protocols. In Proceedings of the IFIP International Workshop on Network and System

Security 2008 (NSS) (2008), pp. 190–197.

[160] Sufatrio, Yap, R. H. C., and Zhong, L. A machine-oriented integrated vulnerability

database for automated vulnerability detection and processing. In Proceedings of the 18th

USENIX Large Installation System Administration (2004), pp. 47–58.

[161] Syverson, P. F. Adding time to a logic of authentication. In Proceedings of the 1st ACM

Conference on Computer and Communications Security (CCS) (1993), pp. 97–101.

[162] Syverson, P. F. Limitations on design principles for public key protocols. In In Proceed-

ings of the 1996 IEEE Symposium on Security and Privacy (1996), pp. 62–73.

[163] Syverson, P. F., and Cervesato, I. The logic of authentication protocols. In Proceed-

ings of the Foundations of Security Analysis and Design (FOSAD) (2001), pp. 63–136.

[164] Tan, K. M. C., Killourhy, K. S., and Maxion, R. A. Undermining an anomaly-based

Intrusion Detection System using common exploits. In Proceedings of the 5th International

Symposium on Recent Advances in Intrusion Detection (RAID) (2002), pp. 54–73.

[165] Tan, K. M. C., and Maxion, R. A. ‘Why 6?’ Defining the operational limits of Stide, an

anomaly-based intrusion detector. In Proceedings of the 2002 IEEE Symposium on Security

and Privacy (2002), pp. 188–202.

[166] Tan, K. M. C., and Maxion, R. A. Determining the operational limits of an anomaly-

based intrusion detector. IEEE Journal on Selected Areas in Communications: Special

Issue on Design and Analysis Techniques for Security Assurance 21, 1 (2003), 96–110.

[167] Tandon, G., and Chan, P. K. On the learning of system call attributes for host-based

anomaly detection. International Journal on Artificial Intelligence Tools 15, 6 (2006), 875–

892.

[168] Tec-Ed. Extended Validation and VeriSign brand, white paper. Retrieved on October 22,

2010, from http://www.verisign.com/static/040655.pdf, 2007.

182

[169] Thawte, Inc. Thawte code signing certificate agreement. Retrieved on October 22, 2010,

from http://www.thawte.com/assets/documents/guides/pdf/develcertsign.pdf.

[170] The National Vulnerability Database. Retrieved on October 22, 2010, http://nvd.

nist.gov.

[171] The Open Source Vulnerability Database. Retrieved on October 22, 2010, http:

//osvdb.org/search/advsearch.

[172] Toomey, W., and Howard, J. Kuangplus: Automating vulnerability detection. In

Proceedings of the AUUG2K Conference (2000), pp. 163–174.

[173] Trusted Computing Group. Retrieved on October 22, 2010, from http://www.

trustedcomputinggroup.org.

[174] US-CERT Vulnerability Notes Database. Retrieved on October 22, 2010, from

http://www.kb.cert.org/vuls.

[175] van Doorn, L., Ballintijn, G., and Arbaugh, W. A. Signed executables for Linux.

Tech. Rep. CS-TR-4256, University of Maryland, 2001.

[176] van Oorschot, P. An alternate explanation of two BAN-Logic ‘failures’. In Proceedings of

the Workshop on the Theory and Application of Cryptographic Techniques – EUROCRYPT

(1993), pp. 443–447.

[177] VeriSign, Inc. Verisign certification practice statement version 3.8.1. Retrieved on Octo-

ber 22, 2010, from http://www.verisign.com/repository/CPSv3.8.1 final.pdf, 2009.

[178] Vishik, C., Johnson, S., and Hoffman, D. Infrastructure for trusted environment: In

search of a solution. In Proceedings of the ISSE/SECURE Securing Electronic Business

Processes (2007), pp. 219–227.

[179] Wagner, D., and Dean, D. Intrusion detection via static analysis. In Proceedings of

2001 IEEE Symposium on Security and Privacy (2001), pp. 156–168.

[180] Wagner, D., and Soto, P. Mimicry attacks on host-based intrusion detection systems.

In Proceedings of the 9th ACM Conference on Computer and Communications Security

(CCS) (2002), pp. 255–264.

[181] Wang, X., and Yu, H. How to break MD5 and other hash functions. In Proceedings of

the 24th Annual International Conference on the Theory and Applications of Cryptographic

Techniques – EUROCRYPT (2005), pp. 19–35.

[182] Warrender, C., Forrest, S., and Pearlmutter, B. Detecting intrusions using sys-

tem calls: Alternative data models. In Proceedings of the 1999 IEEE Symposium on Security

and Privacy (1999), pp. 133–145.

[183] Williams, M. A. Anti-trojan and trojan detection with in-kernel digital signature testing

of executables. NetXSecure NZ Ltd. Retrieved on October 22, 2010, from http://www.

netxsecure.net/downloads/sigexec.pdf, 2002.

[184] Windows Software Update Services. Retrieved on October 22, 2010, from http:

//www.microsoft.com/windowsserversystem/sus/default.mspx.

[185] Windows Update. Retrieved on October 22, 2010, from http://www.microsoft.com/

windows/downloads/windowsupdate/learn/default.mspx.

183

[186] Wu, Y., Sufatrio, Yap, R. H. C., Ramnath, R., and Halim, F. Establishing software

integrity trust: A survey and lightweight authentication system for Windows. Book chapter.

In Trust Modeling and Management in Digital Environments: From Social Concept to

System Development, Z. Yan, Ed. Information Science Reference, 2010, ch. 4.

[187] Wurster, G., and van Oorschot, P. Self-signed executables: Restricting replacement

of program binaries by malware. In Proceedings of the 2nd USENIX Workshop on Hot

Topics in Security (2007), pp. 1–5.

[188] Xu, S., and Huang, C.-T. Attacks on PKM protocols of IEEE 802.16 and its later

versions. In Proceedings of the 3rd International Symposium on Wireless Communication

Systems (2006), pp. 185–189.

[189] Zerkle, D., and Levitt, K. Netkuang: A multi-host configuration vulnerability checker.

In Proceedings of the 6th Conference on USENIX Security Symposium (1996).

[190] Zheng, P. Tradeoffs in certificate revocation schemes. ACM Computer Communication

Review 33, 2 (2003), 103–112.

[191] Zhou, J., and Deng, R. On the validity of digital signatures. Computer Communication

Review 30, 2 (2000), 29–34.

[192] Zhou, J., and Lam, K.-Y. Securing digital signatures for non-repudiation. Computer

Communications 22, 8 (1999), 710–716.

184

