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Abstract

Cardiac MRI has been widely used in the study of heart diseases and transplant

rejections using small animal models. However, due to low image quality, quan-

titative analysis of the MRI data has to be performed through tedious manual

segmentation. In this thesis, a novel approach based on data-driven priors and

temporal correlations is proposed for the segmentation of left ventricle myocardium

in cardiac MR images of native and transplanted rat hearts. To incorporate data-

driven constraints into the segmentation, probabilistic maps generated based on

prominent image features, i.e., corner points and scale-invariant edges, are used

as priors for endocardium and epicardium segmentation, respectively. Non-rigid

registration is performed to obtain the deformation fields, which are then used to

compute the averaged probabilistic priors and feature spaces. Integrating data-

driven priors and temporal correlations with intensity, texture, and edge informa-

tion, a level set formulation is adopted for segmentation. The proposed algorithm

was applied to 3D+t cardiac MR images from eight rat studies. Left ventricle en-

docardium and epicardium segmentation results obtained by the proposed method

respectively achieve 87.1 ± 2.61% and 87.79 ± 3.51% average area similarity and

83.16 ± 8.14% and 91.19 ± 2.78% average shape similarity with respect to manual

segmentations done by experts. With minimal user input, myocardium contours

obtained by the proposed method exhibit excellent agreement with the gold stan-
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dard and good temporal consistency. More importantly, it avoids inter- and intra-

observer variations and makes accurate quantitative analysis of low-quality cardiac

MR images possible.
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Chapter 1

Introduction

1.1 Problem Statement

Small rodent animal models are widely used in evaluating pharmacological and

surgical therapies for cardiovascular diseases. With the help of noninvasive imaging

tools, like cardiac magnetic resonance imaging (MRI), in-vivo quantitative analysis

of heart function of small animal models becomes possible in cardiac pathological

studies and therapy evaluations [1, 2].

Reliable quantitative analysis of cardiac MRI data requires accurate segmentation

of the left ventricle (LV) myocardium, which is tedious and time-consuming when

performed manually. In addition to its high labor cost, manual segmentation

also suffers from inter- and intra-observer variations. Therefore, it is desirable to
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design an automated segmentation system which produces accurate and consistent

segmentation results.

Automated segmentation of small animal MRI data is very challenging, and ex-

isting algorithms lack accuracy as well as robustness in solving such segmentation

problems. Different from human hearts, rat hearts are small in size, therefore car-

diac MR images acquired from rats normally have very limited spatial resolution

and low signal-to-noise ratio (SNR). In allograft rejection studies [2], the trans-

planted rat heart is placed in recipient’s abdomen and edges are not as well defined

as is found when the native heart is surrounded by the lung. Moreover, turbulent

blood flow often causes confusing edges in the LV cavity.

Although many approaches have been reported for the automated segmentation

of human hearts [3], few methods have been proposed to segment small animal

hearts. The STACS method proposed in [4] has been shown to produce relatively

accurate segmentation results on short-axis cardiac MR images of a rat by com-

bining region-based and edge-based information with an elliptical shape prior and

contour smoothness constraint. Proposed in [5], a deformable elastic template has

been utilized to segment left and right ventricles of mouse heart simultaneously in

3D cine MR images.

The above mentioned methods achieved acceptable segmentation in MR images

of native rat heart, but they perform poorly on MRI data used in the study of
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animal heart transplantation. To realize accurate automatic segmentation of the

LV myocardium in MR images of both native and transplanted rat hearts, new

approaches have to be explored.

1.2 Contributions

In this thesis, a novel method is proposed for the segmentation of LV myocardium

in cardiac MRI for both native and transplanted rat hearts, incorporating data-

driven priors as well as temporal correlations.

The extraction of prominent features and the generation of data-driven priors were

originally introduced in our previous publication [6]. Derived from prominent fea-

tures on individual images, the prior maps are representative of corresponding

image data yet embedded with anatomical prior knowledge that is complemen-

tary to pixel-wise information, e.g., image intensity. Combining the prior maps

and pixel-wise information, the proposed method achieves accurate and robust

segmentation.

In addition to the data-driven priors, the segmentation results are further refined

through the incorporation of temporal correlations. Though some research works

have been done on temporally constrained segmentation, misleading point-to-point

correspondence caused by inaccurate registration is still the major challenge yet
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to be overcome. In the proposed approach, point-to-point correspondences for

epicardium and endocardium segmentations are constructed separately through

non-rigid registration. Utilizing the previously extracted features as prior knowl-

edge, registration accuracy is enhanced significantly. With reliable frame-to-frame

registration, not only image data of neighboring frames are incorporated into the

segmentation, prior maps of neighboring frames are also utilized to provide com-

plementary information that is absent in the image to be segmented.

Through accurate automatic segmentation, the proposed method enables efficient

quantitative analysis of low quality rat MRI data and avoids inter- and intra-

observer variations.

1.3 Thesis Organization

This thesis is organized as follows. A review of related works is presented in

Chapter 2. Chapter 3 provides a detailed introduction on the proposed approach.

Experimental results and performance evaluations are given in Chapter 4. In

Chapter 5, the thesis is summarized and possible future work is discussed.
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Chapter 2

Background and Previous Work

2.1 Segmentation

Medical image segmentation attracted enormous attention from the research com-

munity in the past few decades. Several approaches have been widely adopted in

solving different segmentation problems, and some of the popular methods have

been extensively developed recently. It is common that different approaches are

used in conjunction for solving specific segmentation problems.

One important group of segmentation methods can be considered as pixel clas-

sification methods, including thresholding, classifiers, supervised or unsupervised

clustering methods, and Markov random field (MRF) models [3].
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Other techniques have also been developed, including artificial neural networks,

atlas-based approaches, and deformable models. In the application of cardiac MRI

segmentation, methods based on deformable models have been widely studied and

adopted. A review of different approaches using deformable models is provided in

this section.

In segmentation applications where the most discriminant features are intensity

distribution patterns instead of pure intensity values, texture features are often

extracted and utilized predominantly. Proposed by Rousson et al. in [7], an effec-

tive segmentation method based on texture information is introduced in Section

2.1.2.

Due to high noise level and complex anatomic structures, prior knowledge is often

used in segmenting medical images. As a new type of prior, the data-driven prior,

will be introduced in this thesis. A brief summary of previous work on incorporat-

ing prior knowledge into segmentation is provided at the end of this section.

2.1.1 Deformable Models

According to [3], deformable model based methods are defined as physically mo-

tivated, model-based techniques for delineating region boundaries by using closed

parametric/non-parametric curves or surfaces that deform under the influence of

internal and external forces. Internal forces are determined from the curve or
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surface to make it smooth or close to a predefined appearance. External forces

are normally computed from the image to deform the contour so that the object

boundaries can be correctly delineated.

Deformable model based methods have the following advantages: 1) object bound-

aries are defined as closed parametric or non-parametric curves, and the final seg-

mentation results can be deformed from an initial contour according to internal

and external forces; and 2) by introducing the internal force, boundaries of seg-

mented objects are smooth and can be biased towards different appearances, and

this is particularly important because desired object boundaries do not have ar-

bitrary appearances in most medical segmentation applications. There are also

limitations of deformable based approaches [3]: an initial contour should be placed

before the deformation, and in some cases, final outcomes are very sensitive to the

initialization; and choosing appropriate parameters can also be time consuming.

2.1.1.1 Parametric Active Contours

Snakes

Initially introduced as “snakes” in [8], this classical active contour approach was

effective in solving a wide range of segmentation problems. Through energy mini-

mization, snakes evolve a deformable model based on image features.
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Let us define a contour C parameterized by arc length s as

C(s) = {(x(s), y(s)) : 0 ≤ s ≤ L} < −→ Ω, (2.1)

where L denotes the length of the contour C and Ω denotes the entire domain of

an image I(x, y). An energy function E(C) can be defined on the contour such as:

E(C) = Eint + Eext, (2.2)

where Eint and Eext denote the internal and external energies, respectively. The

internal energy function determines the regularity (or the smoothness) of the con-

tour. A common definition of the internal energy is a quadratic function:

Eint =

∫ 1

0

α|C ′(s)|2 + β|C ′′(s)|2ds, (2.3)

where α controls the tension of the contour, and β controls the rigidity of the

contour. The external energy term that determines the criteria of contour evolution

depending on the image I(x, y) can be defined as

Eext =

∫ 1

0

Eimg (C(s)) ds, (2.4)

where Eimg(x, y) denotes a scalar function defined on the image plane, so that local

minimum of Eimg attracts the snakes to edges. A common example of the edge

attraction function is a function of the image gradient given by

Eimg(x, y) =
1

λ |∇Gσ ∗ I(x, y)| , (2.5)
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where G denotes a Gaussian smoothing filter with standard deviation σ, λ is the

suitable constant chosen and ∗ is the convolution operator. Solving the problem

of snakes is to find the contour C that minimizes the total energy term E with the

given set of weights α and β.

Classic snakes suffer from two major limitations: 1) initial contours have to be

sufficiently close to the correct object boundaries to provide accurate segmenta-

tion. However, without prior knowledge, it is impossible for most segmentation

applications to initialize contours close to object boundaries; 2) classic snakes are

not capable of detecting more than one objects simultaneously, as it maintains the

same topology during contour evolution.

Gradient Vector Flow

To overcome the problem that classic snakes encounter in segmenting objects with

concave boundary regions [9], gradient vector flow (GVF) was introduced in [10]

as an external force. It is a 2D vector field V (s) = [u(s), v(s)] that minimizes the

following objective function

E =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇f |2|V −∇f |2dxdy, (2.6)

where ux, uy, vx and vy are the spatial derivatives of the field, µ is the blending

parameter, and ∇f is the gradient of the edge map which is defined as the negative

external force, i.e., f = −Eext. The objective function is composed of two terms:
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the regularization term and the data driven term. The data-driven term dominates

this function in the object boundaries (i.e., |∇f | is large), while the regularization

term dictates the function in areas where the intensity is constant (i.e., |∇f | tends

to zero). The GVF is obtained by solving the following Euler equations by using

calculus of variations, and the normalized GVF is used as the static external force

of the snake:

µ∇2u− (u− fx)(f
2
x + f 2

y ) = 0 (2.7)

µ∇2v − (v − fy)(f
2
x + f 2

y ) = 0 (2.8)

where ∇2 is the Laplacian operator.

Although GVF solves the problem associated with concave boundaries, it has its

own limitation caused by the diffusion of flow information: GVF creates similar

flow for strong and weak edges, which can be considered a drawback in some

applications.

2.1.1.2 Geometric Active Contours

Extended from classic snakes, the geometric active contour (GAC) model intro-

duced in [11] overcomes some snakes’ limitations. The model is given by

E(C) =

∫ 1

0

f(|∇I(C(s))|)|Cs|ds (2.9)

=

∫ L(C)

o

f(|∇I(C(s))|)ds, (2.10)
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where the function f is the edge detecting function defined in (2.5), ds is the

Euclidean element of length and L(C) is the Euclidean length of the curve C

defined by

L(C) =

∫ 1

0

|Cs|ds =

∫ L(C)

0

ds. (2.11)

Though some short comings of classic snakes are overcome, the GAC model still

suffers from one major limitation: the curve can only be evolved towards one

direction (inwards or outwards). As a result, the initial curve has to be placed

completely inside or outside of the object of interest.

Level Sets

Level sets are a class of deformable models that have been studied most intensively

in the area of medical image segmentation. Initially proposed in [12], Osher and

Sethian represent a contour implicitly via 2D Lipchitz continuous function φ(x, y) :

Ω → <, defined in the image plane. The function φ(x, y) is called level set function,

and a particular level, usually the zero level of φ(x, y) is defined as the contour,

such as

C = {(x, y) : φ(x, y) = 0} , ∀(x, y),∈ Ω (2.12)

where Ω denotes the entire image plane.

As the level set function φ(x, y) evolves from its initial stage, the corresponding set

of contours C, i.e., the red contours in Fig. 2.1, propagate. With this definition,
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the evolution of the contour is equivalent to the evolution of the level set function,

i.e., ∂C/∂t = ∂φ(x, y)/∂t. The advantage of using the zero level is that a contour

can be defined as the border between a positive area and a negative area, so the

contours can be identified by just checking the sign of φ(x, y). The initial level

set function φ(x, y): Ω → < may be given by the signed distance from the initial

contour such as,

φ0(x, y) ≡ {φ(x, y) : t = 0}

= ±D ((x, y), Nx,y(C0))

∀(x, y) ∈ Ω, (2.13)

where ±D(a, b) denotes the signed distance between a and b, and Nx,y(C0) denotes

the nearest neighboring pixel on initial contours C0 ≡ C(t = 0) from (x, y). The

initial level set function is zero at the initial contour points given by

φ0(x, y) = 0, ∀(x, y) ∈ C0. (2.14)

The deformation of the contour is generally represented in a numerical form as a

partial differential equation (PDE). A formulation of contour evolution using the

magnitude of the gradient of φ(x, y) was initially proposed by Osher and Sethian

as

∂φ(x, y)

∂t
= |∇φ(x, y)|(ν + εκ(φ(x, y))), (2.15)

where ν denotes a constant speed term to push or pull the contour, κ(·) : Ω → <

denotes the mean curvature of the level set function φ(x, y) given by

κ(φ(x, y)) = div

( ∇φ

‖∇φ‖
)

=
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3
2

, (2.16)
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Figure 2.1: Evolution of level set function

where φx and φxx denote the first and second order partial derivatives of φ(x, y)

with respect to x respectively, and φy and φyy denote the same with respect to

y. The role of the curvature term is to control the regularity of the contours as

the internal energy term Eint does in the classical snake model, and ε controls the

balance between the regularity and robustness of the contour evolution.

An outstanding characteristic of the level set method is that contours can split or

merge as the topology of the level set function changes. Therefore, level set meth-

ods can detect more than one object simultaneously, and multiple initial contours

can be placed. Figure 2.1 shows how the initial separated contours merge as the

topology of level set function varies. This flexibility and convenience provide a

means for an automated segmentation by using a predefined set of initial contours.

Another advantage of the level set method is the possibility of curve evolution in

dimensions higher than two. The mean curvature of the level set function (see

(2.16)) can be easily extended to deal with higher dimensions. This is very useful
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in propagating a surface to segment volume data.

The computational cost of level set methods is high because the computation

should be done on the same dimension as image plane Ω. Thus, the convergence

speed is slower than other segmentation methods, particularly local filtering based

methods. The high computational cost can be compensated by using multiple

initial contours. The use of multiple initial contours increases the convergence

speed by cooperating with neighbor contours quickly. Level set methods with

faster convergence, called fast marching methods, have been studied intensively

for the last decade [13].

However, in traditional level set methods, the level set function φ can develop

shocks, very sharp and/or flat shape during the evolution, which makes further

computation highly inaccurate. To avoid these problems, a common numerical

scheme is to initialize the function φ as a signed distance function before the

evolution, and then “reshape” (or “re-initialize”) the function φ to be a signed

distance function periodically during the evolution. Indeed, the re-initialization

process is crucial and cannot be avoided in using traditional level set methods.

Variational Level Set

To realize the level set method without re-initialization, a novel way of level set

formulation which is easily implemented by simple finite difference scheme has

been proposed by Li et al. [14].
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Re-initialization in traditional level set methods has been extensively used as a

numerical remedy for maintaining stable curve evolution and ensuring desirable

results. From the practical viewpoint, the re-initialization process can be quite

complicated, expensive, and have subtle side effects. It is crucial to keep the

evolving level set function as an approximate signed distance function during the

evolution, especially in a neighborhood around the zero level set. It is well known

that a signed distance function must satisfy a desirable property of |∇φ| = 1.

Conversely, any function φ satisfying |∇φ| = 1 is the signed distance function plus

a constant [15]. A metric to characterize how close a function φ is to a signed

distance function in Ω ⊂ <2 is defined by:

P (φ) =

∫

Ω

1

2
(|∇φ| − 1)2 dxdy. (2.17)

This metric plays a key role in the variational formulation. The variational formu-

lation is defined as:

E(φ) = µP (φ) + Em(φ), (2.18)

where µ > 0 is the parameter controlling the effect of penalizing the deviation of

φ from a signed distance function, and Em(φ) is a certain energy that would drive

the motion of the zero level curve of φ.

The gradient flow that minimizes the functional E is defined as:

∂φ

∂t
= −∂E

∂φ
. (2.19)
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For a particular functional E(φ) defined explicitly in terms of φ, the Gateaux

derivative can be computed and expressed in terms of the function φ and its deriva-

tives [16].

The variational formulation described in (2.18) is applied to active contours for

image segmentation, and the zero level set curve of φ can evolve to the desired

features in the image. The energy Em is defined as a functional that depends on

image data, and it is named as external energy. Accordingly, the energy P (φ) is

called the internal energy of the function φ.

During the evolution of φ according to the gradient flow in (2.19) that minimizes

the functional (2.18), the zero level curve is moved by the external energy term Em.

Meanwhile, due to the penalizing effect of the internal energy, the evolving function

φ is automatically maintained as an approximate signed distance function during

the evolution according to the evolution in (2.19). As a result, the re-initialization

procedure is completely eliminated in the above formulation.

2.1.2 Texture Segmentation

In an attempt to extract texture features to assist segmentation, structure tensor

based methods were first introduced by Bigun et al. [17]. To overcome the problem

of dislocated edges in feature channels caused by Gaussian smoothing, Rousson et

al. [7] combine the nonlinear structure tensor proposed in [18] and vector-valued
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diffusion introduced in [19] to obtain a diffusion based feature space. Applying the

variational framework proposed in their earlier publication [20] on the extracted

feature space, Rousson et al. implement maximum a posteriori segmentation by

energy minimization.

Diffused Feature Space

For a given image I, the structure tensor matrix is defined as:

u = ∇I∇IT =




I2
x IxIy

IxIy I2
y


 , (2.20)

where Ix and Iy are gradients of image I along the x and y direction respectively.

To reduce noise while preserving edges, nonlinear diffusion (based on Perona and

Malik [21]) is applied. The diffusion equation is

∂tu = div (g (|∇u|)∇u) , (2.21)

where g is a decreasing function. For vector-valued data:

∂tui = div

(
g

(
N∑

k=1

|∇uk|2
)
∇ui

)
, ∀i, (2.22)

where ui is an evolving vector channel and N the number of channels. All channels

are coupled by a joint diffusivity, so an edge in one channel inhibits smoothing in

the others. The diffusivity function g is defined as:

g (|∇u|) =
1

|∇u|+ ε
, (2.23)
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Figure 2.2: Feature channels (u1, . . . , u4) obtained by smoothing I, I2
x, I2

y , IxIy from
left to right and top to bottom.1

where ε is a small positive constant added to avoid numerical problems.

By applying (2.22) with initial conditions u1 = I, u2 = I2
x, u3 = I2

y ,u4 = IxIy

and the diffusivity function g(s) = 1/s, features can be extracted as illustrated in

Fig. 2.2.

Adaptive Segmentation

The image segmentation can be found by maximizing a posteriori partitioning

probability p (P(Ω)|I) where P(Ω) = {Ω1, Ω2} is a partition of the image domain

1Figure taken from “Active unsupervised texture segmentation on a diffusion based feature
space” [7]
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Figure 2.3: Texture segmentation results1

Ω. Instead of using original image I, the segmentation energy functional is defined

based on the vector-valued image u = (u1, . . . , u4).

Let p1 (u(x)) and p2 (u(x)) be the probability density function for the value u(x)

to be in Ω1 and Ω2, respectively. With ∂Ω being the boundary between Ω1 and

Ω2, the segmentation is found by minimizing the energy

E(Ω1, Ω2) = −
∫

Ω1

log p1 (u(x)) dx−
∫

Ω2

log p2 (u(x)) dx. (2.24)

To model the statistics of each region, a general Gaussian approximation is used for

all four channels. Let {µ1,Σ1} and {µ2,Σ2} be the vector’s means and covariance

matrices of the Gaussian approximation in Ω1 and Ω2. The probability of u(x) to

be in Ωi is:

pi (u(x)) =
1

(2π)2|Σi|1/2
e−

1
2
(u(x)−µi)

T Σ−1
i (u(x)−µi). (2.25)

Here information in each channel is assumed to be uncorrelated, and the probability
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density function (pdf) pi (u(x)) can be estimated using the joint density probability

of each component:

pi (u(x)) =
4∏

k=1

pk,i (uk(x)) . (2.26)

Let Hε(z) and δε(z) be regularized versions of the Heaviside and Dirac functions.

Adding a regularization constraint on the length of ∂Ω, the energy (2.24) can be

minimized with respect to the whole set of parameters {∂Ω, µ1, µ2,Σ1,Σ2} using

the following evolution equation (see [20] for details):

φt(x) = δε (φ(x))

(
νdiv

( ∇φ

|∇φ|
)

+ log
p1 (u(x))

p2 (u(x))

)
, (2.27)

while the Gaussian parameters are updated at each iteration as:





µi(φ) =
∫

Ω
u(x)χi[φ(x)]dx/

∫
Ω

χi[φ(x)]dx

Σi(φ) =
∫

Ω
(µi − u(x)) (µi − u(x))T χi[φ(x)]dx/

∫
Ω

χi[φ(x)]dx

(2.28)

where χ1(z) = Hε(z) and χ2(z) = 1−Hε(z).

2.1.3 Incorporating Priors

For the integration of prior knowledge, some segmentation methods [5] based on

deformable templates were proposed. In [5], obtained from manual segmentation of

cardiac ventricles in a reference data set, a topological and geometric model of the

ventricles is used as a deformable elastic template to simultaneously segment both

left and right ventricles in 3D cine MR images of rat hearts. Although this method
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utilizes both topological and geometric characteristics of ventricles, the deformable

template obtained from one reference dataset (or even several reference datasets) is

not representative enough, and it only captures very limited topological variations.

Besides deformable templates, many existing segmentation methods [4, 22, 23] use

shape priors. In [4] and [22], elliptical shape priors were used for both endocardium

and epicardium segmentation by including a shape prior term in the energy func-

tional. Learned from training samples, probabilistic shape priors proposed in [23]

constrain the segmentation by optimizing a statistical metric between the evolving

contour and the prior model.

Incorporating shape priors, the above mentioned methods significantly enhanced

the segmentation robustness. However, due to the fact that these shape priors are

not representative of any particular image, the effect of incorporating such shape

priors is just adding another regulatory force that prevents the contours from

having very unlikely shapes. Moreover, obtaining a large number of manually

processed training samples can be very time consuming. For these reasons, it is

desirable to extract representative priors from the image itself without the training

process. Ideally, the extracted priors should carry useful information about the

image structure which can be utilized as a piece of reliable prior knowledge to

guide the contour deformation towards correct segmentation.
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2.2 Registration

Similar to segmentation, image registration is also a fundamental image processing

problem that has been extensively studied [24, 25, 26]. The registration process

can be simply interpreted as a process of aligning or matching two or more images

having similar contents. Under the context of multi-frame segmentation problem,

registration provides correspondence from one image to another, which is useful

when complementary image information appears on different frames.

In general, available registration approaches can be grouped into two classes:

feature-based and intensity-based methods. To register images based on features,

a preprocessing step is required to extract appropriate features, such as salient

points or edges. By matching corresponding features, the deformation field can be

calculated by interpolation. The intensity-based methods measure similarity us-

ing pixel intensity values directly. In this thesis, we only focus on intensity-based

registration methods, as automated accurate detection of unique features is too

difficult to achieve on rat cardiac MR images.

Depending on the application, similarity measures can be different. Sum-of-absolute-

difference (SAD) and sum-of-square-differences (SSD) similarity measures have

been compared in [27] for the registration of cardiac positron emission tomography

(PET) images. The SAD and SSD similarity measures assume constant brightness

for corresponding pixels, and therefore, are mostly used in intra-modality image
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registration. Another group of similarity measures calculate cross-correlation (CC).

CC is an optimal measure for registration in the case of linear relationship between

the intensity values in the image to be registered as it can compensate difference

in gain and bias. For different imaging modalities, similarity measures based on

joint entropy, mutual information, and normalized mutual information generally

result in better registration [28, 29].

Within the intensity-based class of registration approaches, one of the well-known

methods uses the concept of diffusion to perform image-to-image registration based

on the optical flow [30]. Another class of methods named free form deformation

(FFD) [26] calculate the transformation using a set of sparse spaced control points,

which are not linked to any specific image features, and finding the extreme of

the similarity measure defined in the neighborhood at the control points. After

interpolated from the displacement of sparse control points according to certain

smooth constraints, the deformation field is calculated. PDEs are also used to

model the deformation by physical analogies [24]. Some Markov random field

(MRF) based registration methods are also proposed in recent publications [25].

The B-spline based FFD is discussed in detail in the following sub-section.
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2.2.1 B-spline Based Free Form Deformation

Initially proposed in [26], B-spline based FFD has been used in the application of

3D breast MR image registration. The deformation model consists of two parts:

global and local transformation.

Global Motion Model

A rigid transformation which is parameterized by 6 degrees of freedom (describing

rotations and translations) has been used to model the global motion. In 3-D, an

affine transformation can be used to describe the rigid transformation:

Tglobal(x, y, z) =




θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33







x

y

z




+




θ14

θ24

θ34




, (2.29)

where the coefficients Θ parameterize the 12 degrees of freedom of the transforma-

tion.

Local Motion Model

Affine transformation only captures the global motion, therefore an additional

transformation is required to model the local deformation. In medical images

acquired at different time instances, local transformation can vary significantly.

Therefore, parameterized transformation is not capable of modeling it. Differ-

ent from parameterized models, B-spline based FFD models deform an object by
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manipulating an underlying mesh of control points. The resulting deformation

controls the shape of the 3-D object and produces a smooth and C2 continuous

transformation.

To define a spline-based FFD, we denote the domain of the image volume as

Ω = {(x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}. Let Φ denote a nx × ny × nz

mesh of control points φi,j,k with uniform spacing δ. Then the FFD can be written

as the 3-D tensor product of the familiar 1-D cubic B-splines:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bt(u)Bm(v)Bn(w)φi+l,j+m,k+n, (2.30)

where i = bx/nxc − 1,j = by/nyc − 1, k = bz/nzc − 1, u = x/nx − bx/nxc − 1,v =

y/ny−by/nyc− 1, w = z/nz −bz/nzc− 1, and Bl represents the lth basis function

of the B-spline

B0(u) = (1− u)3/6,

B1(u) = (3u3 − 6u2 + 4)/6,

B2(u) = (−3u3 + 3u2 + 3u + 1)/6,

B3(u) = u3/6.

(2.31)

To achieve the best compromise between the degree of nonrigid deformation and

associated computational cost, a hierarchical multi-resolution approach is adopted.

Let Φ1, . . . , ΦL denote a hierarchy of control point meshes at different resolutions

in a coarse to fine fashion. Each control mesh Φl and the associated spline-based

FFD defines a local transformation T l
local at each level of resolution and their sum
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defines the local transformation Tlocal:

Tlocal(x, y, z) =
L∑

l=1

T l
local(x, y, z). (2.32)

Although the local transformation can vary significantly from region to region,

the deformation should be characterized by a smooth transformation locally. The

penalty term introduced to regularize the smoothness of the deformation is defined

as:

Csmooth =
1

V

∫ X

0

∫ Y

0

∫ Z

0

[(
∂2T

∂x2

)2

+

(
∂2T

∂y2

)2

+

(
∂2T

∂z2

)2

+ 2

(
∂2T

∂xy

)2

+2

(
∂2T

∂xz

)2

+ 2

(
∂2T

∂yz

)2
]

dxdydz, (2.33)

where V denotes the volume of the image domain.

Normalized Mutual Information

Mutual information is based on the concept of information theory and expresses

the amount of information that one image A contains about a second image B

Csimilarity(A,B) = H(A) + H(B)−H(A,B), (2.34)

where H(A), H(B) denote the marginal entropies of A, B and H(A,B) denotes

their joint entropy, which is calculated from the joint histogram of A and B. If both

images are aligned, the mutual information is maximized. To avoid any dependency

on the amount of image overlap, normalized mutual information (NMI) can be used

as a measure of image alignment. According to [26], the image similarity is defined
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based on one form of NMI:

Csimilarity(A,B) =
H(A) + H(B)

H(A,B)
. (2.35)

Optimization

To obtain the optimal transformation, a cost function associated with the global

transformation parameters Θ, as well as the local transformation parameters Φ

is minimized. Combining the smoothness penalty described in (2.33) and the

similarity measure in (2.35), the function that needs to be minimized is:

C(Θ, Φ) = −Csimilarity (I(t0), T (I(t))) + λCsmooth(T ), (2.36)

where λ is the weighting parameter which defines the tradeoff between the align-

ment of the two image volumes and the smoothness of the transformation.

2.3 Joint Registration & Segmentation

As two of the most important fundamental image processing problems, image

segmentation and registration have been studied separately for decades. Recent

development in the image processing research community shows a trend of integrat-

ing segmentation and registration, and proposed methods are sometimes known as

“Segistration” [31]. In general, joint segmentation and registration methods can

be divided into two groups depending on the availability of initial segmentation.
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Proposed in [31], using the reference with initial segmentation as an atlas image,

target image can be segmented by the “Registration+Segmentation” model. Let I1

be the atlas image containing the atlas shape C̄, I2 the target image that needs to

be segmented, and v be the deformation field from I2 to I1, i.e., the transformation

is centered in I2, defining the non-rigid deformation between the two images. Final

segmentation in I2 can be obtained by minimizing the following energy:

E(v, C̃) = Seg(I2, C̃) + dist(v(C̄), C̃) + Reg(I1, I2, v), (2.37)

where C̃ is the boundary contour of the desired anatomical shape in I2. The first

and last term denote the segmentation and registration functional, respectively.

The second term measures the distance between the transformed atlas v(C̄) and

the current segmentation C̃ in the target image.

Another class of approaches requires no initial segmentation (or atlas image). The

aim of this case is to find a displacement field for the registration and a seg-

mentation of objects in both images. Actually a segmentation of the template is

computed and then carried out over to the reference by the computed displacement

field. In this process, registration and segmentation interact sequentially: in each

iteration, the segmentation uses feedback from the last registration step and vice

versa. One representative approach of this class is proposed by Unal and Slabaugh

in [32].
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Chapter 3

Proposed Method

3.1 The Cine MRI

The cine MRI data that primarily used in the experiments consists of short axis

(SA) images, which are cross-sectional images of rat hearts transversal to its major

axis. All MRI datasets are in 4D; for each time instant, one set of volumetric images

is acquired.

Image acquisition is done by scanning multiple successive slices at different times

within the cardiac cycle. The acquisition is triggered by an electrocardiography

(ECG) signal, and several cycles of the heart must be acquired. Several cardiac

images corresponding to the same cardiac phase can be averaged to improve the

PSNR. Fig. 3.1 illustrates the image acquisition process.
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Figure 3.1: Illustration of MRI acquisition2

In Figs. 3.2 and 3.3, down-sampled version of datasets acquired from native and

transplanted rats are illustrated. The actual dataset normally consists of 10 slices

(each column shown in Figs. 3.2 and 3.3 illustrates a set of volumetric images

scanned at a particular instance), and for each slice of images, about 10 frame

of images were acquired (each row shown in Figs. 3.2 and 3.3 illustrates a set of

images scanned from the same short axis plane at different phases of a cardiac

cycle).

Cine images of native and heterotopic transplanted hearts are shown in Fig. 3.4, A

and B are short-axis images of a native rat heart with a bright blood pulse sequence

2Figure taken from “A review of cardiac image registration methods” [33]
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Figure 3.2: Illustration of MRI data of native hearts

(FLASH), C and D are short-axis images of a native rat heart with a black-blood

spin-echo pulse sequence, E and F are short-axis images of a transplanted rat heart

in the abdomen with a black-blood spin-echo pulse sequence. The left column (A,

C, E) are images acquired at the end-diastole (ED), whereas the right column (B,

D, F) are acquired at the end-systole (ES).
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Figure 3.3: Illustration of MRI data of transplanted hearts

3.2 Slice-by-slice Segmentation

For a given 3D+t MRI dataset, frames in the same slice are acquired at different

time instances, capturing the myocardial motion in a cardiac cycle from ED to ES

and back to ED. Due to the myocardium wall motion, some prominent image fea-
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Figure 3.4: Cine imaging for native and heterotopic transplanted hearts
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Figure 3.5: Illustration of segmentation ambiguity caused by the lack of prominent
image feature

tures are not visible on one frame, but they can be observed on neighboring frames.

As illustrated in Fig. 3.5, within the same slice, edges pointed by green arrows are

observed on frames #1 and #3 but not on frame #2. It shows that although most

image features on frames in the same slice are consistent, some information present

on different frames can also be complementary. For the segmentation problem par-
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ticularly, given one single 2D image, sometimes the “correct” segmentation is not

unique and there exist multiple acceptable solutions (illustrated in yellow segments

in Fig. 3.5, however only green segments are correct according to expert’s manual

segmentation). Interestingly, the ambiguity is largely eliminated when a sequence

of images are provided, and that is exactly why experts go back and forth between

frames to refine their drawings when they perform manual segmentation. As a

result, to resolve the segmentation ambiguity, even if just one image in the 3D+t

dataset needs to be segmented, the proposed method not only utilizes the frame

of interest, but also considers all the remaining frames in the same slice.

There is always a tradeoff between system performance and the amount of user

interaction required. We managed to find an efficient solution that significantly

enhances the robustness of the proposed method while requiring only minimum

user input. For each slice of images, one frame is manually selected as the reference

frame, and a rough center of the epicardium in the reference frame is provided by

the user, then the system correctly initializes the region of interest (ROI), according

to which the images are cropped. Without affecting the segmentation accuracy,

image cropping largely reduces the computational cost.
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Figure 3.6: Steps of the acquisition of data-driven priors and the establishment of
temporal correlations

3.3 Algorithm Overview

The proposed method realizes the segmentation of the LV myocardium in rat

MRI in five steps: 1) preprocessing, 2) generate diffused structure tensor space,

3) extract the data-driven priors, 4) establish temporal correspondences, and 5)

energy formulation and optimization. Details on the extraction of data-driven

priors and the construction of temporal point correspondences are illustrated in

Fig. 3.6.

To enhance image quality and suppress systematic intensity inhomogeneity, image

preprocessing is performed before further operations. Due to the fact that intensity

values in the LV cavity are inconsistent and fluctuate dramatically during blood

flow into and out of the cavity while intensity values in the myocardium region are
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consistent and homogeneous, diffused structure tensor space is constructed based

on the image to capture texture information.

Given an user input point, all frames in a slice are cropped, and non-reference

frames are registered to the selected reference frame. Prominent features, i.e., cor-

ner points inside LV cavity and scale-invariant edges along the LV epicardium, are

extracted from the registered images. Probabilistic priors maps are then generated

based on the distributions of extracted corner points and edges. According to the

detected scale-invariant edges along LV epicardium, an initial epicardium contour

can be estimated. As all the above operations are performed on the registered

image sequence, probabilistic priors and initial epicardium contours need to be

deformed backward to match the unregistered original slice.

After the data-driven priors are obtained, correspondences among pixel points on

frames in the same slice are formed through non-rigid registration. Minimizing

the registration error according to the ROI masks defined by initial epicardium

contours generated previously, cropped original frames are registered to the refer-

ence slice, and different deformation fields are then interpolated for the purpose

of endocardium segmentation and epicardium segmentation separately. With the

deformation fields, frames in the same slice are connected: any point on any frame

can be matched to another point on any other frame within that slice.

Combining the data-driven priors, temporal correlation and the diffused structure
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Figure 3.7: Preprocessing. First row: original images. Second row: images af-
ter contrast enhancement. Third row: images after contrast enhancement and
inhomogeneity correction.

tensor space, an energy functional is formulated. By minimizing the energy func-

tional in a level set framework, the LV myocardium is automatically segmented.

3.4 Preprocessing

Due to low contrast and inhomogeneity of raw cardiac MR images of rat hearts,

preprocessing including contrast enhancement as well as inhomogeneity correction

are performed prior to feature extraction. Image contrast is enhanced by histogram

equalization, and inhomogeneity is corrected by the algorithm proposed by Axel

et al. in [34]. In [34], the bias field of the MR image is estimated and corrected
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using an approximation of the image of a uniform phantom, which is obtained by

blurring the original image.

In Fig. 3.7, cropped original images are displayed in the first row, images after

contrast enhancement are shown in the second row, and images in the last row

are obtained after contrast enhancement and inhomogeneity correction. One can

observe that through preprocessing, edges in the original MR images are preserved,

and systematic intensity inhomogeneity is removed.

3.5 Diffused Structure Tensor Space

As shown in the top rows in Figs. 3.8 and 3.9, intensity values in the LV cavity

are inconsistent and fluctuate dramatically during blood flow into and out of the

cavity while intensity values in the myocardium region are normally consistent and

homogeneous. This implies that texture can be used as a discriminant feature.

Presented by Rousson et al. in [7], unsupervised texture segmentation can be

realized in the diffused structure tensor feature space, which is also referred to

as the “feature space” for short in this thesis. Details are described in Section

2.1.2. Applying Rousson’s method, the feature space can be constructed from

the cropped rat MR images. As shown in Figs. 3.8 and 3.9, the first channel

is obtained by diffusing original image, i.e., I, and the second, third and fourth

39



Figure 3.8: Diffused structure tensor space of a native rat heart

channels are diffused from I2
x, I2

y and IxIy, respectively. Ix is the gradient of I in

the x direction, and Iy is the gradient of I in the y direction.

One can observe that especially in the second and third channel, myocardium

regions are homogeneous and with low intensity, whereas the LV cavity regions

are generally bright. In some images, if we know the epicardium boundary, the

classification of points within LV cavity and points on LV myocardium can be

easily done by common stochastic classifiers. The feature space is shown to be

superior to the original image in discriminating textures, therefore the proposed

method uses the feature space predominately.
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Figure 3.9: Diffused structure tensor space of a transplanted rat heart

3.6 Acquisition of Data-driven Priors

Deformable models without prior knowledge cannot provide accurate segmenta-

tion and may result in leaking due to noise and complexity of organ structures. To

overcome this problem, probabilistic priors are automatically generated based on

extracted features. Prominent feature points, i.e., corner points and scale-invariant

edges, are detected respectively as good indicators of the LV cavity and the epi-

cardium. To remove undesired feature points, we assume that the point provided

by user is close to the true center of epicardium and the shape of the epicardium

is approximately circular.
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3.6.1 Registration

Different from the method previously proposed in [6], we now first register all

remaining frames in the selected slice to the reference frame through non-rigid

registration, so the registered frames and the reference frame form a “registered

slice”.

The reason of introducing the registered slice is to compensate heart motion, there-

fore minimize the error in prior extraction step. As aforementioned, to segment

any frame, the proposed method utilizes all frames within that slice. Specifically

in the acquisition of data-driven prior for epicardium segmentation, scale-invariant

edges on current frame and neighboring frames are detected, and those edges are

combined to generate a data-driven prior map for current frame. Therefore, it

is desirable that features detected in neighboring frames can be correctly mapped

onto the current frame, which means that the heart motion has to be compensated.

Since motion compensation is particularly important to the generation of data-

driven prior for epicardium segmentation, it is crucial that registration error es-

pecially along the epicardium boundary is minimized. As shown in Figs. 3.10

and 3.11, the first row displays cropped original images within the same slice, and

the corresponding registered images are in the second row. The middle column

shows the reference image with a set of green landmarks along epicardium, and

the same set of landmark points are shown in red on neighboring frames. One can
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Figure 3.10: Illustration of registration accuracy along epicardium (native rat
heart). First row: original images. Second row: registered images.

Figure 3.11: Illustration of registration accuracy along epicardium (transplanted
rat heart). First row: original images. Second row: registered images.

observe that through registration, original images are deformed such that points

along epicardium in neighboring frames are mapped to the ones in the reference

frame. As a result, epicardium wall motion is compensated.
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3.6.2 Priors for Endocardium

As previously illustrated, the intensity distribution in the LV cavity is unpre-

dictable and inhomogeneous. To extract features that are only available in the LV

cavity but not in the myocardium and at the same time complementary to low

level image features, we apply corner point detection.

Compared to blob detectors, corner detectors are more robust against intensity

inhomogeneities inside the LV cavity region caused by turbulent blood flow. Here

we use the algorithm proposed by Rosten and Drummond in [35, 36] to detect

corner points. These corner points are mostly located either inside the LV cavity or

outside the epicardium, with very few in the myocardium. Therefore, it is possible

to filter out corner points outside the LV cavity. Taking the center point provided

by the user as the origin, we convert all corner points to polar coordinates and

obtain the distribution of the corner points with respect to radius R. A threshold

radius R∗ is then calculated using Gaussian mixture models to extract the corner

points inside the LV cavity (see Fig. 3.12).

Using the extracted corner points as sample points, for the LV cavity, a rela-

tive probability density function having values in the range [0, 1], pprior(x, y) (see

Fig. 3.12(d)), is obtained by kernel density estimation. To avoid the domination

of priors in the energy functional, we define a conservative prior probability map
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Figure 3.12: Extraction of endocardium prior. (a) User provided point; (b) All
corner points detected; (c) Corner points within the LV cavity; (d) Relative prob-
ability density map; (e) Prior map for endocardium segmentation; (f) Distribution
of corner points in polar coordinates.

as:

Pprior(x, y) =





pprior(x, y) if pprior(x, y) > 0.5

0.5 otherwise

. (3.1)

As shown in Fig. 3.12(e), a high prior probability indicates that the point is more

likely to be inside the LV cavity than outside. On the other hand, a prior prob-

ability of 0.5 indicates no preference between the inside and outside of the LV

cavity.

As the probabilistic maps are obtained from the registered slice, we deform the

maps backward to get prior maps that match the original slice.
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3.6.3 Priors for Epicardium

Similar to the feature selection for endocardium segmentation, prominent feature

that represents the epicardium boundary has to be complementary to low level

image features, and at the same time, it can only be uniquely detected along the

epicardium, or detected features that do not lie on the epicardium boundary can be

effectively filtered out. The scale-invariant edge is one of the most discriminative

features that fits the requirements.

We detect scale-invariant edges according to the method described in [37, 38]. In

order to select edges along the epicardium, we first filter out undesired ones by

examining edge directions: desired edges should be tangent to the epicardium,

which is approximately circular. If a detected edge and the corresponding radial

direction are nearly perpendicular, the edge is preserved; otherwise, the edge is

discarded.

In polar coordinates, we remove edges inside the LV cavity using the threshold R∗

obtained previously. After that, edges along the epicardium can be approximately

extracted by selecting edges with radius in the range from R̃ to R̃+ ∆r, where

R̃ is the minimum radius value of edges not inside the cavity and ∆r is a toler-

ance distance that assures the true boundary is inside its capture range. In our

experiments, ∆r is set to be 10 pixels.

Let Si,j denote the set of extracted edges in the jth frame of the ith slice. Since
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the epicardium is generally approximately circular, we estimate the distribution

of edge points along radial directions. Let N(µi,θ, σ
2
i,θ) denote a global Gaussian

distribution of the epicardial radius, estimated from edge points from all frames

of ith slice along angle θ and its neighboring directions. To estimate the distribu-

tion N(µij,θ, σ
2
ij,θ) for the jth frame, we first remove outliers from set Si,j based on

N(µi,θ, σ
2
i,θ). Next, we estimate the distribution of the epicardial radius in differ-

ent directions using the remaining edge points. In case the edge points are not

detected along certain segments in the jth frame, we use the global distribution

N(µi,θ, σ
2
i,θ) to approximate N(µij,θ, σ

2
ij,θ). By mapping the estimated distributions

N(µij,θ, σ
2
ij,θ) back to Cartesian coordinates, the probabilistic map (normalized to

[0, 1]) of the epicardium for a particular frame, as shown in Fig. 3.13, can be

obtained.

To estimat an initial epicardium boundary for the jth frame in the ith slice, we con-

vert points in polar coordinates with radius µij,θ for each angle θ back to Cartesian

coordinates. As shown in Fig. 3.13, the estimated initial epicardium boundary is

plotted in blue.

Similarly, as the probabilistic maps are obtained from the registered slice, we de-

form the maps backward to get prior maps for the original slice.
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Figure 3.13: Extraction of epicardium prior. (a) Original image. (b) Edges de-
tected from the current image. (c) Edges in the current frame after filtering. (d)
Edges detected from all image in the slice. (e) All edges in the slice after filter-
ing. (f) User provided point. (g) Illustration of N(µi,θ, σ

2
i,θ). (h) Illustration of

N(µij,θ, σ
2
ij,θ). (i) Prior map for epicardium segmentation. (j) Estimated initial

epicardium boundary.

3.7 Establishment of Temporal Correlations

Temporal correspondences between different frames in the same slice are con-

structed through image registration. Here, the purpose of performing image regis-
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tration is to get the deformation fields, which explicitly show heart motion. Using

the deformation fields obtained from registration, point correspondences are estab-

lished. Then complementary information that is present on neighboring frames are

correctly transformed onto current frame, therefore segmentation ambiguity can

be effectively resolved.

Different from normal human MRI, MR images of rat hearts have very limited res-

olution, low SNR and very irregular LV cavity shape. Most importantly, intensity

of the blood in the LV cavity changes dramatically among different frames within

the same slice, as shown in Figs. 3.8 and 3.9. All the above mentioned differences

make the frame-to-frame registration a very difficult task.

3.7.1 Registration

Most methods achieve registration by minimizing a cost function that consists of

two terms: a data term and a smoothness term. The data term is defined in such

a way that by minimizing it, the pixel-wise similarity between target image and

the registered floating image is maximized. The smoothness term is sometimes

referred as the regularization term, which constrains discontinuous deformation by

penalizing local deviations on the deformation fields. The energy minimization

process is actually a compromise between the pixel-wise difference defined by the

data term and spatial constraint specified in the smoothness term.
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Due to the fact that the endocardium deforms more dramatically than the epi-

cardium does, it is necessary to define different smoothness costs in the LV cav-

ity, myocardium, and regions outside epicardium, such that a weak smoothness

penalty allows large deformations in the LV cavity and myocardium while a strong

smoothness penalty ensures local continuity of the deformation fields in other re-

gions. However, the proper definition of such a smoothness cost is difficult in actual

implementation. Without a spatially varying smoothness constraint, registration

accuracy will be compromised. Therefore in this thesis, to avoid registration er-

ror caused by improper definition of the smoothness cost, we perform registration

using two spatially uniform smoothness constraints with different ROI masks to ob-

tain deformation fields for endocardium and epicardium segmentations separately.

Here we adopt the B-spline based non-rigid registration proposed by Rueckert et

al. in [26], and the method is implemented by Dirk-Jan Kroon from the University

of Twente.

To overcome problems caused by inconsistent intensity in the region of LV cavity,

we register feature maps instead of original images. For each frame in a particular

slice, its feature map is obtained from the constructed feature space. As we already

have the initial epicardium boundary in every frame, we define a ring shape region

(shown in the second column of Fig. 3.14) in which most of the points belong

to the myocardium. Then average intensity of the myocardium can be estimated

easily by calculating mean intensity value within the ring region. Note that the
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estimation here does not have to be very accurate. With the estimated average

myocardium intensity, we define the feature map as follows:

IFM = |I − ī|+ |u1 − ī|+
∑

k=2,3

uk, (3.2)

where ī is the estimated average myocardium intensity, I is the original image,

and uk is the kth channel in the feature space. u1, u2, and u3 are respectively

shown in the third, fourth, and fifth column of Fig. 3.14, and IFM is shown in the

last column. We provide more examples in Fig. 3.15: images in the first row are

cropped original MR images, and the corresponding feature maps are shown in the

second row.

As shown in Figs. 3.14 and 3.15, instead of a mix of bright and dark pixels, the

LV cavity region is filled with pixels having higher intensities compared to pixels

in the myocardium region. As a result, to register the feature maps, there is no

need to define a similarity measure as what normally used in inter-modality image

registration, and here we choose SSD as the similarity measure.

3.7.1.1 Endocardium

In the process of generating deformation fields for endocardium segmentation, we

focus on enhancing the registration accuracy within the LV cavity. Therefore, we

define a ROI using the initial epicardium contours as a mask (as shown in white

in Fig. 3.16(c) and (f)) to calculate registration error.
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(a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e) (f)

Figure 3.14: Feature maps for MR images of native and transplanted rat hearts.(a)
Estimated initial epicardium boundary. (b) Ring shape mask. (c)-(e) Feature
channels u1, u2, and u3. (f) Feature map.

Figure 3.15: More feature maps. First row: original images. Second row: corre-
sponding feature maps.

The registration results are shown in Fig. 3.17. The first and third row respectively

displays cropped original MR images of a native and transplanted rat heart, and

the second and last row shows corresponding registered images. Similar to Section

3.6.1, the middle column shows the reference image with a set of green landmarks

along endocardium, and the same set of landmark points are shown in red on

neighboring frames. One can observe that through registration, original images are
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Endo
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Figure 3.16: Registration Masks. (a,d) Original image. (b,e) Estimated initial
epicardium boundary plotted on the feature map. (c,f) Registration mask.

deformed such that points along endocardium in neighboring frames are mapped

to the ones in the reference frame.

Here we use T
(i,j)
endo to represent the deformation field for endocardium segmentation

from the ith frame to the jth frame. For a slice with 10 frames, deformation fields

are stored in a 10 by 10 array, which has all diagonal elements equal to zero.

Ideally, for any pair of frames A and B within a slice, the deformation field for

endocardium segmentation has to be obtained by registering frame A and B. How-

ever, the computational cost would be very high if such mechanism was adopted in

the proposed method. In our implementation, we only register the non-reference

frames to the selected reference frame once. We use the following equations to get

the deformation field T
(i,j)
endo for any pair of frames:

T
(r,n)
endo = B

(
T

(n,r)
endo

)
, (3.3)

T
(n1,n2)
endo = T

(n1,r)
endo + B

(
T

(n2,r)
endo

)
(3.4)

where frame r is the reference frame, frames n, n1, and n2 are non-reference frames

in the same slice, and B
(
T

(i,j)
endo

)
is the backward transformation function that
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Figure 3.17: Registration results for endocardium segmentation

calculates the deformation field T
(j,i)
endo based on T

(i,j)
endo.

3.7.1.2 Epicardium

Similar to Section 3.7.1.1, we only minimize the registration error within the mask

(shown in black in Fig. 3.16(c) and (f)). Registration results are shown in Fig.

3.18. One can observe that through registration, original images are deformed such

that points along epicardium in neighboring frames are mapped to the ones in the
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reference frame.

Here we define T
(i,j)
epi to represent the deformation field from the ith frame to the

jth frame. In the implementation, we also only register the non-reference frames to

the selected reference frame once. To get the deformation field T
(i,j)
epi for any pair

of frames, we use similar equations:

T
(r,n)
epi = B

(
T

(n,r)
epi

)
, (3.5)

T
(n1,n2)
epi = T

(n1,r)
epi + B

(
T

(n2,r)
epi

)
(3.6)

3.7.2 Combined Feature Spaces

To resolve the segmentation ambiguity caused by the lack of prominent image

features on the frame of interest, we propose to use the image information in the

remaining frames within the same slice as complementary information to constrain

the segmentation.

To find a combined feature space utilizing all frames within the same slice, we use

the weighted average:

ũi
endo/epi,k = αcu

i
k + αn

∑

j 6=i

T
(j,i)
endo/epi(u

j
k), (3.7)

where ũi
endo/epi,k is the combined kth channel in the feature space of the ith frame

for endocardium or epicardium segmentation, ui
k is the kth channel in the feature
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Figure 3.18: Registration results for epicardium segmentation

space of the ith frame obtained in Section 3.5, and αc and αn are weights for the

current and neighboring frames, respectively.

As shown in Figs. 3.19 and 3.20, current frame and neighboring frames are com-

bined according to (3.7). It is easy to observe that the combined feature space

provides more information at regions where current frame displays indiscrimina-

tive image feature. Incorporating information present on all frames in the same

slice, the combined feature space has enhanced discriminability, therefore the seg-

mentation ambiguity problem is effectively resolved.
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ũ8

3

u4

4 u7

4 u8

4 u2

4

Endo−

ũ8
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Figure 3.19: Combination of feature spaces (native rat heart). First four columns:
feature space of individual frames. Fifth column: combined feature space for
endocardium segmentation. Last column: combined feature space for epicardium
segmentation.

3.7.3 Combined Probabilistic Prior Maps

In our previous publication [6], although features extracted from all frames within

one slice were utilized in generating the prior map for a particular frame, features

detected on the frame of interest is assumed to most reflect the image structure

and used primarily in calculating the prior map. As a result, the generated prior

maps are conservative and preserve only information with high probability. In this

thesis, to utilize the reliable information in prior maps to the most possible extent,

we also take prior maps of neighboring frames into consideration when one frame
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ũ7

2

Epi−

ũ7
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Figure 3.20: Combination of feature spaces (transplanted rat heart). First four
columns: feature space of individual frames. Fifth column: combined feature
space for endocardium segmentation. Last column: combined feature space for
epicardium segmentation.

is segmented.

Here we also use weighted average:

P̃ i
endo/epi = βcP

i
endo/epi + βn

∑

j 6=i

T
(j,i)
endo/epi(P

j
endo/epi), (3.8)

where P̃ i
endo/epi is the combined prior map of the ith frame for endocardium or

epicardium segmentation, P i
endo/epi is the prior map of the ith frame for endocardium

or epicardium segmentation obtained in Section 3.6, and βc and βn are weights for

the current and neighboring frames, respectively.

As shown in Fig. 3.21, the current frame prior map and complementary informa-
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Figure 3.21: Combination of prior maps. First four columns: prior maps of indi-
vidual frames. Fifth column: combined prior maps. Last column: corresponding
original images.

tion in prior maps of the rest frames are integrated to get a combined prior map.

For endocardium prior maps, one can observe that the combined prior map (P̃ 4
endo

and P̃ 9
endo) represents the LV cavity better than the individual prior map (P 4

endo and

P 9
endo). Similarly, for epicardium prior maps, information in the combined prior

map (P̃ 10
epi and P̃ 10

epi) is augmented by incorporating complementary information in

prior maps of other frames, and the combined prior map is more representative to

the epicardium than the individual prior map (P 4
epi and P 10

epi).
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3.8 Energy Formulation

For a contour C in the ith frame, which is embedded as the zero level set of function

φi, the energy functional is defined as:

J(φi) = λrJr(φi) + λtJt(φi) + λeJe(φi), (3.9)

Jt(φi) =
∑

j 6=i

Jr

(
T

(i,j)
endo/epi(φi)

)
, (3.10)

where Jr(φi) is the region-based term incorporating extracted priors and images in

feature channels; Jt(φi) is the temporal constraint term; Je(φi) is the edge-based

term moving the contour towards the object boundaries; and λr, λt and λe are

wights that regulate relative strength of above mentioned three terms, respectively.

In our implementation, we set λr = 1, λt = 0.1, and λe = 0.5, for both endocardium

and epicardium segmentation.

The edge-based term Je(φi) is common for both endocardium and epicardium

segmentation. Let gi be an inverse edge indicator function:

gi =
1

1 + |∇Gσ ∗ Ii|2 , (3.11)

where Gσ is the Gaussian kernel with standard deviation σ and Ii is the prepro-

cessed image in the ith frame. Thus, Je is given by

Je(φi) =

∫

Ω

giδε(φi(x, y))|∇φi(x, y)|dxdy, (3.12)
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where δε is the regularized Dirac function.

According to Section 3.7.2, we have constructed the feature space ũi = (ũi
1, ..., ũ

i
4)

for the ith frame. The probability density function for ũi(x, y) to be in the fore-

ground Ω1 and the background Ω2 can be estimated by

pj

(
ũi(x, y)

)
=

4∏

k=1

pk,j(ũ
i
k(x, y)) j ∈ {1, 2}, (3.13)

where pk,j (ũi
k(x, y)) represents the likelihood of a point (x, y) belonging to Ωj,

based on the kth channel (I, I2
x, I2

y or IxIy) of the combined feature space, ũi.

Here we adopt Gaussian approximation for all channels. Since the image ũi is

vector-valued, we have to deal with covariance matrices. Let {µ1,Σ1} and {µ2,Σ2}

be the vector’s means and covariance matrices of the Gaussian approximation in

Ω1 and Ω2. The probability of ũi to be in Ωj, j ∈ {1, 2}, is:

pj

(
ũi(x, y)

)
=

1

(2π)2|Σj|1/2
e−

1
2(ũi(x,y)−µj)

T
Σ−1

j (ũi(x,y)−µj). (3.14)

3.8.1 Endocardium Segmentation

The region-based term is then defined as

Jr(φi) = − ∫
Ω1

ln
[
p1 (ũi

endo)·P̃ i
endo

]
dxdy

− ∫
Ω2

ln
[
p2(ũ

i
endo)·

(
1− P̃ i

endo

)]
dxdy,

(3.15)

where P̃ i
endo is the combined probabilistic map for the LV cavity shown in Fig.

3.21.
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The temporal constraint term is defined as:

Jt(φi) =
∑

j 6=i

{
− ∫

Ω1
ln

[
T

(j,i)
endo

(
p1

(
ũj

endo

)·P̃ j
endo

)]
dxdy

− ∫
Ω2

ln
[
T

(j,i)
endo

(
p2

(
ũj

endo

)·
(
1− P̃ j

endo

))]
dxdy

}
.

(3.16)

Finally, the level set evolution equation can be derived as:

dφi

dt
= δε(φi)

[
λr ln

p1(ũi
endo)·P̃ i

endo

p2(ũi
endo)·(1−P̃ i

endo)
+ λt

∑
j 6=i T

(j,i)
endo

(
ln

p1(ũj
endo)·P̃ j

endo

p2(ũj
endo)·(1−P̃ j

endo)

)

+λediv
(
gi

∇φi

|∇φi|

)]
.

(3.17)

3.8.2 Epicardium Segmentation

Unlike the segmentation of the endocardium, the region-based term in epicardium

segmentation incorporates the combined priors by applying a spatially varying

weight ωi(x, y) = 1−P̃ i
epi(x, y), where P̃ i

epi is the combined probabilistic map shown

in Fig. 3.21. Therefore, the level set evolution equation is defined as follows:

dφi

dt
= δε(φi)

[
λrω

i ln
p1(ũi

epi)

p2(ũi
epi)

+ λt

∑
j 6=i T

(j,i)
epi

(
ωj ln

p1(ũj
epi)

p2(ũj
epi)

)

+λediv
(
gi

∇φi

|∇φi|

)]
.

(3.18)
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Chapter 4

Results & Discussion

4.1 Material

4.1.1 Study Population

Altogether 8 sets of 3D+t MRI data provided by the Pittsburgh NMR Center for

Biomedical Research (Pittsburgh, PA, USA) were used in our experiments. These

datasets were obtained by taking MR scans on a group of rats consisting of 4 rats

with native heart and the other 4 with transplanted heart. As larger rats have

more fatty tissue that can cause difficulties in surgical dissection, all rats used

were 8-10 weeks of age and weighed between 250 and 300 g.
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4.1.2 Transplantation Model

Unlike normal clinical practice, heterotopic heart and lung transplantation models

were chosen for MRI studies. In the heterotopic heart and lung transplantation

model, in addition to keeping in place the native heart and lung, the recipient

rat receives another heart and lung located outside the chest. The reasons for

the heterotopic transplantation models are twofold. First, this enables studies of

the entire rejection process without many physiologic alterations of a transplanted

animal, because the heart and lung grafts do not have a life-supporting function.

Second, a cardiopulmonary bypass system is not available for rodents, so orthotopic

heart transplantation is not feasible at the present time. The total ischemic time

for the transplant surgery is about 30 min.

4.1.3 Image Acquisition

All eight MRI datasets used in our experiments were acquired by a Brucker AVANCE

DRX 4.7 Tesla system. The MRI protocol has the following parameters: TR =

one cardiac cycle (about 180 ms); TE = 8-10 ms; NEX = 4; flip angle = 90◦;

field-of-view = 3-4 cm; slice thickness = 1-1.5 mm; in-plane resolution = 117-156

µm; 4D image data resolution = 256×256×10×10 pixel.
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4.1.4 The Gold Standard

Manual segmentation results provided by an experienced research scientist from the

Pittsburgh NMR Center for Biomedical Research were used as the “Gold Standard”

in evaluating the performance of the proposed method. There are in total 101

images with manual segmentation results, of which 76 are images of native rat

hearts and 25 are images of transplanted rat hearts.

4.2 Qualitative Analysis

4.2.1 Agreement With Image Features

In Fig. 4.1, we qualitatively compare the segmentation results obtained by various

automated methods and by manual segmentation. Cropped original images are

shown in the top row, in which the first three images are samples of native rat

heart MRI and the remaining three are MR images of transplanted rat hearts.

From the second to the fifth row, each row shows, respectively the segmentation

results automatically generated by methods using level sets without prior informa-

tion, with elliptical shape prior, with data-driven priors introduced in our previous

publication [6], and with both data-driven priors and temporal correlations as pro-

posed in this thesis. The last row shows the “gold standard” obtained through

manual segmentation by experts.
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Figure 4.1: Agreement with image features of segmentation results

One can observe that when no prior information is adopted, leaking occurs. It is

resulted from the fact that in rat MR images, “object” and “background” some-

times carry similar image information and cannot be successfully discriminated by

low level image features. Therefore, spatial constraints need to be applied. Results

in the third row show that elliptical shape prior successfully avoids leaking and
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prevents the contour from having a random shape. Though shape prior enhances

robustness, it does compromise the segmentation accuracy in cases when the endo-

cardium or epicardium has a very different shape compared to the prior. Examples

can be found in the last two images of the third row.

Different from normal shape priors, the data-driven priors regulate the level set

evolution according to representative image features extracted from the image it-

self, therefore the segmentation accuracy is not compromised by inappropriate

assumptions about the image. Resulting segmentations obtained by exerting data-

driven priors (see the fourth row in Fig. 4.1) show better agreement with image

features compared to the ones in the third row. As observed from the segmenta-

tion results, one limitation of utilizing only data-driven priors is that sometimes

the segmented endocardium does not include the papillary muscles, which should

be enclosed by the endocardium contour according to expert’s explanation. Our

proposed method incorporating both data-driven priors and temporal correlations

successfully overcomes this limitation (see the fifth row in Fig. 4.1). As shown

in the last two rows, the endocardial and epicardial boundaries detected by the

propose method in the fifth row are very close to their manual counterparts in the

last row.
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Figure 4.2: Comparison of temporal consistency of segmentation results

4.2.2 Temporal Consistency

We compare the temporal consistency of segmentation results obtained by different

methods in Fig. 4.2. The first row displays a slice of native rat heart MR images

acquired at different time instances in a cardiac cycle; and we show corresponding

myocardium boundaries detected using the algorithm described in [6], the proposed

method in this thesis, and expert’s manual segmentation in the second, third and

fourth row, respectively.

Generally, the myocardium motion is smooth. As a result, the myocardium bound-

aries in adjacent frames should have similar appearance but with different scales
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to reflect the contraction or expansion of the myocardial wall. Observed from the

second row of Fig. 4.2, epicardium and endocardium boundaries in neighboring

frames have quite different shapes. This reveals that without considering point

correspondence between adjacent frames, the method introduced in [6] fails in

maintaining temporal consistency of the segmentation.

On the contrary, the myocardium boundaries obtained by the proposed method

in this thesis reflect a smooth motion of the myocardial wall. By taking account

of the complementary information present in neighboring frames, the proposed

method effectively resolves the segmentation ambiguity discussed in the beginning

of Section 3.2. Compared with the manual segmentations, the myocardium bound-

aries detected by the proposed method actually exhibit better consistency as far

as temporal smoothness is concerned. Indeed, even for the experts, it is very hard

to manually delineate contours by considering both image feature from the current

frame and contour point correspondences in neighboring frames at the same time.

This also explains the existence of the intra-observer variation, which refers to the

segmentation variation encountered by the same expert in an attempt to segment

the same image more than once. Therefore, the proposed method outperforms

manual segmentation as it maintains temporal consistency of the segmentation

and avoids intra- and inter-observer variations.
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4.3 Quantitative Analysis

To quantitatively evaluate the accuracy of the proposed segmentation method

against manual segmentation, we measure area similarities and shape similarities.

Table 4.1: Area similarity

Endocardium Epicardium Myocardium

Dataset # of images Mean STD Mean STD Mean STD

1 34 0.8609 0.0302 0.8824 0.0201 0.8134 0.0628

2 26 0.8812 0.0248 0.8603 0.0212 0.8245 0.0560

3 10 0.8787 0.0180 0.8387 0.0207 0.8641 0.0486

4 6 0.8757 0.0225 0.8644 0.0100 0.8474 0.0313

5 20 0.8702 0.0221 0.9280 0.0220 0.8414 0.0314

6 3 0.8614 0.0110 0.8348 0.0109 0.8762 0.0603

7 1 0.8927 0 0.8350 0 0.8963 0

8 1 0.8665 0 0.8318 0 0.8843 0

Total 101 0.8710 0.0261 0.8779 0.0351 0.8322 0.0548
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Figure 4.3: Area Similarity

4.3.1 Area Similarity

We first measure the area similarities, Sarea, between the ROI masks (generated

from endocardium, epicardium and myocardium boundaries) obtained by the pro-

posed method and the corresponding masks by manual segmentation.

Here Sarea follows the same definition as in [4]. The area similarity of myocardium

is defined as follows:

Sarea =
2n(A1

∧
A2)

n(A1) + n(A2)
, (4.1)
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where A1 and A2 are binary images whose “on” pixels represent the regions of

the segmented object,
∧

is the element-wise “and” operator, and n represents the

cardinality of A or the number of “on” pixels in the binary image A.

For the eight studies tested in our experiments, the distributions of Sarea for en-

docardium, epicardium, and myocardium have mean values of 0.871, 0.8779, and

0.8322 with standard deviations 0.0261, 0.0351, and 0.0548, respectively. Details

are provided in Table 4.1 and Fig. 4.3. These results show that the proposed

method has similar performances compared to those reported in [4] and [22]. Al-

though area similarity values are not significantly improved, considering the fact

that the methods presented in [4] and [22] only work on images of native rat

hearts, the proposed method has expanded the capability for reliable segmenta-

tion of transplanted rat heart images, which are much more difficult to segment

than the native ones.

4.3.2 Shape Similarity

Shape similarity measures the difference in local orientation between two different

segmentations. Different from area similarity, shape similarity is more sensitive to

local variations in the object shape. By measuring the shape similarity, we further

evaluate the performance of our segmentation method.

According to [4], steps in calculating the shape similarity measure is illustrated in
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Fig. 4.4. Let C1 and C2 be two contours. The contour C1 is the set of coordinates

of the reference contour, or the gold standard contour, and the contour C2 is the

set of coordinates of the contour obtained automatically by the proposed method,

which we will call the automatic contour. The goal is to find a similarity measure

Sshape ∈ [0, 1] that quantitatively assesses how similar the shape of the two contours

C1 and C2 are. To determine the shape similarity measure, the first step is to

generate the binary edge maps E1 and E2, where the “on” pixels represent the

pixels on each of the two contours being compared. Then the shape of the contours

in each binary edge map is propagated by applying the signed Euclidean distance

transform

D(x, y) =





− min
(i,j)∈C

√
(x− i)2 + (y − j)2, if(x, y) ∈ Ω1

min
(i,j)∈C

√
(x− i)2 + (y − j)2, if(x, y) ∈ Ω2

, (4.2)

where (x, y) represents the pixels in the image domain, (i, j) ∈ C represents the

pixels on the contour C, and Ω1 and Ω2 are sets of pixels inside and outside contour

C, respectively. Applying the signed Euclidean distance transform in (4.2) to the

binary edge maps E1 and E2, the corresponding distance maps, D2 and D2, can

be obtained respectively. These distance maps simply contain the scaling replicas

of the contour shapes, represented in different level sets, throughout the image

domain.

In the third step, we calculate the corresponding phase maps by taking the inverse
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tangent of the ratio of the gradient components in each distance map, i.e.,

Φi(x, y) = tan−1∇yDi(x,y)

∇xDi(x,y)
for i = 1, 2, (4.3)

where ∇xDi and ∇yDi represent the x and y components of the gradient of the

distance map Di, respectively.

In the fourth step, the normalized phase similarity between the two contours are

computed according to

Sphase =
Φ1 − Φ2 − π

π
. (4.4)

The index Sphase takes values in [0, 1]. A value of 1 for Sphase indicates that the

contours have the same phase and a value of 0 refers to the maximum phase

difference of π.

Figure 4.4: Flowchart for calculating shape similarity measure3

3Figure taken from “STACS: New active contour scheme for cardiac MR image segmenta-
tion” [4]
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In the final step, the shape similarity is measured by taking the weighted sum of

the phase similarity measure along C2 (the automatic contour) against C1 (the

reference contour), i.e.,

Sshape =
1

n(C2)

∑

(x,y)∈C2

Γ1(x, y)Sphase(x, y), (4.5)

where C2 is the set of pixels on the automatic contour, n(C2) denotes the cardinality

of C2, or the number of pixels on the contour C2, and Γ1(x, y) ∈ [0, 1] is derived

from D1, the distance map of the reference contour, as

Γ1(x, y) = exp

{
−D

2
1(x, y)

σ2

}
, (4.6)

where σ2 is a positive constant.

For the eight studies tested in our experiments, distribution of Sshape for endo-

cardium and epicardium has a mean value of 0.8316 and 0.9119 with standard

deviation 0.0814 and 0.0278, respectively. Details are provided in Table 4.2 and

Fig. 4.5. These results show a significant improvement compared to those have

been reported in [4] and [22], despite the fact that images used in [4] and [22] are

all MRI of native rat hearts, which are much easier to segment.

4.4 Discussion

As segmentation results obtained by the proposed method achieve 0.8 to 0.9 av-

erage area similarity and shape similarity with very small standard deviations, we
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Table 4.2: Shape similarity

Endocardium Epicardium

Dataset # of images Mean STD Mean STD

1 34 0.8253 0.0822 0.9065 0.0273

2 26 0.8621 0.0784 0.9089 0.0302

3 10 0.8548 0.0557 0.9355 0.0247

4 6 0.8399 0.0884 0.9202 0.0241

5 20 0.8032 0.0698 0.9063 0.0244

6 3 0.7585 0.1700 0.9291 0.0209

7 1 0.7627 0 0.9255 0

8 1 0.8303 0 0.9326 0

Total 101 0.8316 0.0814 0.9119 0.0278

conclude that our algorithm consistently produces accurate segmentation results.

Regarding the area similarity measure, we observe that epicardium area similarity

is normally greater than endocardium and myocardium area similarities, and en-

docardium similarity is generally greater than myocardium similarity. The reason

is quite straightforward: the epicardium contour has the largest area, therefore

without normalization, epicardium area similarity is generally the greatest; the

endocardium contour has a smaller area compared to the epicardium contour,
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Figure 4.5: Shape Similarity

therefore the endocardium area similarity has smaller values as it is more sen-

sitive to segmentation error; due to the fact that myocardium is determined by

the combination of endocardium and epicardium, myocardium has accumulated

segmentation error, therefore lower area similarity.

Interestingly, although the area similarity values and the shape similarity values are

not directly comparable, we do observe that for endocardium, area similarity (0.871

± 0.0261) is greater than shape similarity (0.8316 ± 0.0814), but for epicardium,

area similarity (0.8779± 0.0351) is smaller than shape similarity (0.9119± 0.0278).

One reasonable explanation is that compared to area similarity, the shape similarity

is more sensitive to the contour size. As contour shape is extremely sensitive to

segmentation error when the contour size is small, we observe epicardium shape
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similarity is always greater than endocardium shape similarity.

Our experiments are performed in the MATLAB environment on a workstation

with a quad core CPU running at 3.0GHz. The average processing time is about

4 minutes per slice, which consists of 10 two-dimensional MR images. As current

experiments are primarily designed for the purpose of feasibility test, our method

was not implemented to optimize the computational efficiency. The processing

time can be significantly reduced if the proposed method is implemented in a more

efficient programming language, and at the same time, multi-threading is enabled

to take advantage of the multi-core processor system.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this thesis, we introduced a novel method for the segmentation of LV my-

ocardium in transplanted rat cardiac MRI utilizing data-driven priors and tempo-

ral correlations.

Different from normal shape priors which are used to enhance segmentation robust-

ness by penalizing unlikely contour shapes, the data-driven priors introduced in

this thesis improves both accuracy and robustness of the segmentation by providing

reliable information that is extracted from the the image itself and complementary

to low level image features. The essential difference between the proposed method

and other automated segmentation methods utilizing prior knowledge is how the
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prior knowledge is interpreted as a cost in the segmentation energy formulation:

most methods build certain type of model according to some prior knowledge,

descriptive or statistical, and define a cost based on the degree of geometrical or

topological agreement between the current contour and the model; however, the

proposed method extracts prominent image features from the image and uses the

features that conform with descriptive prior knowledge to generate prior maps,

which are applied as confidence maps to spatially bias the segmentation cost func-

tion.

Compared with traditional ways of incorporating prior knowledge into segmenta-

tion, the data-driven prior shows its superiority in twofold: first, based on very

general descriptive prior knowledge, the proposed method automatically generates

prior maps for any image, therefore it avoids the tedious training or modeling pro-

cess; second, the proposed method only incorporates prior knowledge that coincides

with prominent image features into the segmentation, therefore the segmentation

results are not compromised by the fact that prior knowledge is only a piece of very

general and observational information, and some of it can be wrong on a particular

image.

To resolve the problem of segmentation ambiguity caused by the lack of discrimi-

native image feature on a particular frame of image, complementary information

from neighboring frames is incorporated into the segmentation. Point-to-point cor-

respondence between pixels on neighboring frames is constructed through image
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registration. To reduce registration error due to the inconsistent intensity distri-

bution in original MR images, feature maps are calculated and registered to obtain

deformation fields, which are applied not only on channels in the feature space,

but also on data-driven priors to form point correspondence between the frame of

interest and its neighboring frames.

Experimental results show that myocardium contours obtained by the proposed

method exhibit excellent agreement with image features and the gold standard.

At the same time, smooth myocardial wall motion reflected by the automatically

segmented contours reveals that the proposed method largely resolves the problem

of segmentation ambiguity and effectively preserves the temporal consistency of

the segmentation. Undoubtedly, the method proposed in this thesis has improved

performance over the one we previously presented in [6].

Being able to produce reliable and accurate myocardium segmentation results,

the proposed method not only significantly reduces the cost and processing time

compared to manual segmentation, but also successfully circumvents intra- and

inter- observer variations.
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5.2 Future Work

Segmentation accuracy can be further enhanced by incorporating spatial smooth-

ness constraints. As myocardium in the apical or basal slice normally has dimin-

ishing size and irregular shape, it is true that MR images in apical and basal slices

are more difficult to segment than the ones in middle slices. Under the assump-

tion that the heart has a spatially smooth anatomic structure, it is reasonable to

constrain the smoothness of the LV myocardium surface in the segmentation. For-

mulated in the level set framework, the proposed method can be easily extended

for 3D volume segmentation. In our future work, we aim to refine the segmentation

accuracy, especially in the apical and basal regions, by incorporating myocardium

surface smoothness constraints.
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