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Summary

Type-1 fuzzy logic systems (FLSs), constructed from type-1 fuzzy sets introduced

by Zadeh in 1965, have been successfully applied to many fields. However, research

has shown that the ability of type-1 fuzzy sets to model and minimize the effect

of uncertainties is limited. A reason may be that a type-1 fuzzy set is certain in

the sense that for each input, there is a crisp membership grade.

The concept of type-2 fuzzy sets was proposed by Zadeh in 1975 to overcome

this limitation. The uncertainties in the shape and position of a a type-2 set is

modeled by a blur membership function (MF) called the footprint of uncertainty

(FOU). A type-2 FLS is an entity that characterizes its input or output domains

with one or more type-2 fuzzy sets. Compared to type-1 FLSs, type-2 FLSs have

extra mathematical dimensions and they are useful in circumstances where it is

difficult to determine an exact MF for a fuzzy set. They can, therefore, better han-

dle uncertainties and have the potential to outperform their type-1 counterparts.

However, many properties of type-2 FLSs remain unclear so far.

This thesis aims at providing insights into the fundamental properties of type-

2 FLSs and improving their performance. First, it shows that type-2 FLSs can

achieve a better compromise between accuracy/performance and interpretability

than their type-1 counterparts. Then a simplified type-2 FLS structure is proposed

to reduce the heavy computational cost of traditional type-2 FLSs. This makes

type-2 FLSs more suitable for real-time applications. Next, the original concept of

Equivalent Type-1 Sets (ET1Ss) of a type-2 FLS is introduced and used to analyze

the properties of the type-2 FLSs. The ET1Ss are also used to show that a type-2

vi



PI-like FLS may be equivalent to a type-1 PI FLS with adaptive PI gains in certain

input ranges. This provides insights into why type-2 FLSs may generate smoother

input-output maps than their type-1 counterparts. Finally conclusions are drawn

and future research directions are outlined.
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Chapter 1

Introduction

Our knowledge of many problems may be classified to two categories: 1) Ob-

jective knowledge and 2) Subjective knowledge [?]. The former are sensory

measurements and mathematical models that are derived according to physical

laws. i.e. the transfer function of a system. The latter comes from human experts

who describe their knowledge about the system in natural languages [2]. It repre-

sents linguistic information that may be impossible to quantify using traditional

mathematics. e.g. the operation rule for a chemical process :

IF the water level is low, THEN open the valve a little.

Both types of knowledge are useful for solving practical problems. Fuzzy logic,

originally proposed by Lotif Zadeh in 1965 [3], is a way to coordinate the two classes

of knowledge. It emulates a human’s ability to reason and solve problems using

imprecise information. Its underlying modes of reasoning are approximate. This

leads to the concept of fuzzy logic system (FLS). FLSs are knowledge-based

systems consisting of linguistic “IF-THEN” rules that can be constructed using

the knowledge of experts in the given field of interest.

1.1 Type-1 Fuzzy Logic

Type-1 fuzzy set is a generalization of the crisp set, whose membership grades

can only be 0 or 1. A fuzzy set A is defined on a universe of discourse X and is

1



2

characterized by a membership grade µA(x) that takes on values in the interval

[0, 1]. When X is continuous, A is commonly written as :

A =

∫

X

µA(x)/x (1.1)

Here
∫

does not denote integration; it denotes the collection of all points x ∈ X

with associated membership grade µA(x).

A type-1 FLS is constructed completely by type-1 fuzzy sets. It contains four

components—rule base, fuzzifier, inference engine and defuzzifier, as shown in

Figure 1.1.

Fuzzifier


Inference

Engine


Rule Base
 Defuzzifier

Crisp

inputs


Crisp

output


Type-1 fuzzy

input sets


Type-1 fuzzy

output sets


Figure 1.1: A type-1 FLS

The rule base is a collection of IF-THEN statements in the following form :

Rl: IF x1 is X l
1 and · · · and xp is X l

p, THEN y is Y l

where X l
i (i = 1, . . . , p) and Y l are type-1 fuzzy sets in Ui and V , respectively,

and x = (x1, . . . , xp) ∈ U1 × U2 × · · · × Up ≡ U and y ∈ V are linguistic variables.

More specifically, x is the input to the FLS and y is the output. The IF-part

of a rule is its antecedent, and the THEN-part is its consequent. Fuzzy sets

are associated with terms that appear in the antecedents or consequents of rules,

and with the inputs to and output of the FLS. They are called membership

functions (MFs), which provide a measure of the degree of similarity of an

element to the fuzzy set. For type-1 fuzzy sets, the MFs are totally certain.

The fuzzifier performs a mapping from the crisp input x = (x1, . . . , xp) into
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fuzzy sets in U. In the fuzzy inference engine, fuzzy logic principles are used to

combine the fuzzy IF-THEN rules in the fuzzy rule base into a mapping from the

fuzzy sets in U to fuzzy sets in V . The defuzzifier performs a mapping from fuzzy

sets in V to a crisp output y ∈ V .

1.2 Type-1 Fuzzy Modeling and Control: A Re-

view

Type-1 FLSs have been successfully applied in many areas, including data mining

[4–10], time-series prediction [11–16], communication and networks [17–21], etc.

Fuzzy modeling and control is the most common application area of fuzzy logic

[2, 22–30]. The milestone of the application of fuzzy logic controllers (FLCs)

is universally considered to be the experiments on steam control described by

Mamdani and Assilian [31–33]. The fuzzy model introduced by Mamdani is also

known as the Mamdani model. It is the most widely model used by FLCs. All

the results reported in this thesis assume this model.

The early applications of fuzzy control were based on the idea to mimic the

control actions of human operators [34]. In this case, a priori knowledge is used

and the final FLC performs as well as an human operator. Fuzzy control is suit-

able when the system is only partly known, difficult to describe by a white-box

model, and few measurements are available, or the system is highly nonlinear.

However, extensive experience in operating the process should be available to the

FLC designers.

Many fuzzy control architectures are related to simple control algorithms, such
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as the widely used PID controllers. Nonlinearities and exceptions, which are dif-

ficult to realize with conventional controllers, can be handled relatively easily by

FLCs. In conventional control, many additional measures have to be included

for the proper functioning of the controller: anti-reset windup, proportional kick,

retarded integral action, etc. These tricks can be built in naturally in a fuzzy PID-

like controller. Moreover, other types of local nonlinearities can easily be built in

since a FLC can be viewed as a nonlinear mapping [35].

Models play an important role in many advanced controllers. There are several

possibilities to model a system by applying fuzzy techniques such as models based

on Mamdani fuzzy rules [34], models based on Takagi-Sugeno rules [36], fuzzy rela-

tional models [37] and a combination of them [38]. Some approaches to determine

a fuzzy model are [39] :

• A fuzzy model can be obtained by using a priori knowledge about the system

provided as rules by system designers and operators. However, knowledge

acquisition may be cumbersome, costly, and time-consuming.

• A fuzzy model can be obtained by using available measurements and using

identification methods, e.g., clustering methods to find the parameters and

fuzzy terms of the rules describing the system. This method gives good

results and can easily be interpreted in a linguistic way, thus providing a

means for evaluating and validating the final model with knowledge from

operators and experts [26].

The resulting fuzzy models can be used to develop FLCs [40]. An interesting

application is the use of these models in model-based predictive controllers

(MBPCs) [41–44]. Such controllers calculate the future output of a system for
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different control sequences, and find the optimal control action while taking into

account a desired behavior and constraints on system variables. The model of

the process must be able to predict the future process output. Preferably, it

should be based on an intuition so that it can be understood by an operator. In

situations where conventional modeling approaches based on physical modeling or

linear system identification cannot derive reliable models for complex or partly

known systems, fuzzy modeling may give promising results.

Adaptive fuzzy control is a possibility to cope with time-varying and non-

linear behavior of a system [45]. However, complicated measures are needed to

keep the adaptive controllers functioning properly. In FLCs, exceptions can be

easily implemented and their interpretation is more straight-forward to the user

and designer. Generally, exception handling and safety guarding is implemented

in a FLC in a transparent way with easy linguistic interpretations, while in con-

ventional (adaptive) control it is more difficult. When the actual parameters of the

controller are adapted according to the behavior of the overall system, an adap-

tive supervisory control algorithm may be used. The adaption should be related

to some performance measure of the system. Some possibilities to apply fuzzy

techniques are [39] :

• The performance criterion provides information as MFs, such as that the

overshoot is too big, or within the specs. The supervision is done by rules

relating these fuzzy performance measures (antecedents) to the settings of

the controller to be adapted (consequents).

• A fuzzy model is used as a representation of the time-varying system. This

model is adapted and used in a fuzzy control strategy.
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• Depending on the situation, a choice is made between different control strate-

gies (strategy switching). A fuzzy decision maker realizes this selection based

on the requirements and actual state of the system and takes care of transient

behavior.

As an autonomous system utilizes the supervisory methods described above,

special attention should be paid to exception handling and safety guarding, which

can be described quite easily by rules. The whole supervisory system can then be

realized in a fuzzy expert system .

1.3 Type-2 Fuzzy Logic

Despite having a name which carries the connotation of uncertainty, research has

shown that there may be limitations in the ability of type-1 FLSs to model and

minimize the effect of uncertainties [?, 62]. One restriction being that a type-1

fuzzy set is certain in the sense that the membership grade for each input is a crisp

value. Recently, type-2 fuzzy sets [46], characterized by MFs that are themselves

fuzzy, have been attracting interest [?].

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS. Type-

2 FLSs have been used successfully in many applications, for example, time-series

forecasting [?, 47], communication and networks [48–50], decision making [51–53],

data and survey preprocessing [?, ?, 54], noise cancellation [55], word modeling

[56,57], phoneme recognition [58], plant monitoring and diagnostics [59,60], etc.

Fuzzy control is the most widely used application of fuzzy set theory. A lit-

erature search reveals that type-2 FLSs are beginning to be employed in the field

of control. A type-2 proportional controller was proposed in [61]. Interval type-2
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FLCs were applied to mobile robot control [62], quality control of sound speak-

ers [63], connection admission control in ATM networks [20]. A dynamical opti-

mal training algorithms for type-2 fuzzy neural networks (T2FNN) was proposed

in [64]. T2FNNs have been used in non-linear plant control [65,66] and truck back

up control [64]. A comparison of the performances of type-1 and type-2 FLCs on

a first-order time delay system was conducted in [67].

1.4 Aims and Scope of This Work

Type-2 fuzzy logic is still a relatively new concept. Many of its properties remain

unclear. Though type-2 FLSs may have better abilities to handle uncertainties than

their type-1 counterparts, the heavy computational cost of type-reduction may

limit their usefulness in certain real-time applications. This work seeks to better

understand the properties of type-2 FLSs, and tries to reduce their computational

requirements. The specific aims are the follows :

1. To investigate whether a type-2 FLC can achieve better control performance

than its type-1 counterpart with similar or more design parameters. That

is, whether a type-2 FLC has better trade-off between accuracy and inter-

pretability.

2. To reduce the computational cost by finding a simplified structure for real-

time type-2 FLCs. The simplified type-2 FLC should be able to bring about

computational savings without sacrificing the ability to handle modeling un-

certainties.

3. To demonstrate that a type-2 FLS can be viewed as being equivalent to a

collection of equivalent type-1 fuzzy logic systems and explain why
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type-2 FLSs may be able to model more complex input-output maps than

their type-1 counterparts.

4. To explain why type-2 FLCs generally are better at eliminating oscillations by

introducing the concept of equivalent proportional and integral gains.

1.5 Organization of the Thesis

Chapter 2 deals with the groundwork that forms the basis of the research presented

in this thesis. It introduces several important concepts on type-2 fuzzy sets and

FLSs. The operations in each part of a type-2 FLS are described. An illustrative

example is given at the end of the Chapter.

Chapter 3 focuses on advancing the understanding of type-2 fuzzy systems by

studying the characteristics of type-2 FLCs. First, a method for using Genetic

Algorithms (GAs) to evolve a type-2 FLC is presented. The type-2 FLC is then

compared with another three GA evolved type-1 FLCs that have different number

of design parameters. The study aims at investigating the ability of type-2 FLCs to

handle uncertainties as well as the relationship between performance and rule base

size. Via experiments, the ability of a type-2 FLC to cope with the complexity

of the plant, and to handle uncertainties was compared with three type-1 FLC

with different number of design parameters. By examining whether a type-2 FLC

can achieve better control performance with fewer fuzzy sets/rules, the trade-off

between accuracy and interpretability can be established.

One major disadvantage of type-2 FLCs is that they may not be suitable for

real-time applications because they require large computational power, especially

when there are many MFs and the rule base is large. In Chapter 4, a simplified
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type-2 FLC that is more suitable for real-time control is proposed. The key idea is

to only replace some critical type-1 fuzzy sets by type-2 sets. A type-2 FLCs with

simplified structure is designed for a coupled-tank liquid level control process. Its

performances is compared with two type-1 FLCs and a traditional type-2 FLC.

Simulations and experiments are conducted to show whether the simplified type-2

FLC is able to bring about computational savings without sacrificing the ability

to handle modeling uncertainties.

The objective of Chapter 5 is to gain a better understanding of type-2 FLSs by

analyzing the manner in which the extra mathematical dimensions associated with

FOU enable a type-2 FLS to differentiate itself from a type-1 FLS. Utilizing the

fact that the input-output relationships of both type-2 and type-1 FLSs are fixed

once their parameters are selected, a group of equivalent type-1 sets (ET1Ss)

that re-produces the input-output relationship of the type-2 FLS can be identified.

A type-2 FLS may, therefore, be viewed as being equivalent to a collection of

equivalent type-1 FLSs (ET1FLSs), and the role of the type-reducer is to

select an equivalent membership grade from which the firing level of a rule can

be calculated. Via the concepts of ET1Ss and ET1FLSs, properties of a type-2

FLS can be studied. The proposed technique for converting a type-2 FLS into a

group of ET1FLSs is also useful as it provides a framework for extending the entire

wealth of type-1 fuzzy control/identification/design/analysis techniques to type-2

systems.

Chapter 6 studies the characteristics of an interval type-2 PI fuzzy controller.

The equivalent PI gains for a double-input single-output PI-like type-2 FLC

are found. The change patterns of the PI gains with respect to the change of



10

inputs are also studied. This may help understand why type-2 FLCs are generally

better at eliminating oscillations, and provide insights into how to evolve faster

type-reducers theoretically.

Finally, Chapter 7 draws conclusions from the results presented in this Thesis,

and suggests possible directions for future work.



Chapter 2

Background and Preliminaries

The concept of type-2 fuzzy set was introduced by Zadeh in 1975 as an extension

of the type-1 set [46]. It is characterized by fuzzy membership grades. An interval

type-2 fuzzy set Ã in X is defined as [?] :

Ã =

∫

x∈X

∫

u∈Jx⊆[0,1]

1/(x, u) =

∫

x∈X




∫

u∈Jx⊆[0,1]

1/u




/
x (2.1)

where x is the primary variable with domain X; u is the secondary variable, which

has domain Jx at each x ∈ X; Jx is called the primary membership of x. For

interval type-2 sets, the secondary grades of Ã all equal 1. Uncertainty about Ã

is conveyed by the union of all of the primary memberships called the footprint of

uncertainty (FOU) of Ã; i.e.

FOU(Ã) =
⋃
x∈X

Jx (2.2)

Examples of type-2 fuzzy sets are shown in Figure 2.1. The FOU is shown as

the shaded region. It represents the uncertainties in the shape and position of the

type-1 fuzzy set. The FOU is bounded by an upper MF and a lower MF, both of

which are type-1 MFs. Consequently, the membership grade of each element in a

type-2 fuzzy set is a fuzzy set [l, r], where l and r are membership grades on the

lower and upper MFs. Type-2 sets are extremely useful in circumstances where it

is difficult to determine the exact MF for a fuzzy set; hence, they are useful for

incorporating uncertainties.

11
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1
Upper MF

Lower MF
Type-1 MF

FOU

�� ��
L RL1 L2 R1 R2

(a) A type-2 fuzzy set evolved by blurring the
width of a triangular type-1 fuzzy set

1 Upper MF

Lower MF
Type-1 MF

FOU

�� ��
L RL1 L2 R1 R2

(b) A type-2 fuzzy set evolved by blurring the
apex of a triangular type-1 fuzzy set

Figure 2.1: Type-2 fuzzy sets

FLSs constructed using type-2 fuzzy sets are called type-2 FLSs to distinguish

them from the traditional type-1 FLSs. For all the results reported in this the-

sis, interval singleton type-2 FLSs [?] are employed. “Interval” means that the

input/output domains are characterized by interval type-2 sets [47]. The term

“singleton” denotes that the fuzzifier converts the input signals of the FLS into

fuzzy singletons.

Figure 2.2 shows the schematic diagram of a type-2 FLS. It is similar to its type-

1 counterpart, the major difference being that at least one of the fuzzy sets in the

rule base is type-2. Hence, the output of the inference engine are type-2 sets and a

type-reducer is needed to convert them into a type-1 set before defuzzification can

be carried out. In the following subsections the operations in a interval singleton

type-2 FLS are described in detail.

Fuzzifier


Inference

Engine


Rule Base
 Defuzzifier


Type-reducer


Crisp

inputs


Crisp

output


Type-2 fuzzy

input sets


Type-2 fuzzy

output sets


Type-1

fuzzy sets


Figure 2.2: A type-2 FLS
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2.1 Fuzzification

Consider the rule base of a type-2 FLS consisting of N rules assuming the following

form :

R̃l: IF x1 is X̃ l
1 and · · · and xp is X̃ l

p, THEN y is Ỹ l

where X̃ l
i (i = 1, . . . , p) and Ỹ l are type-2 fuzzy sets, and x = (x1, . . . , xp) and y

are linguistic variables.

The fuzzifier maps a crisp point x = (x′1, x
′
2, . . . , x

′
p) into a type-2 fuzzy set

Ãx. In this thesis we focus on the type-2 singleton fuzzifier [?]. This means

µX̃i
(xi) = 1/1 when xi = x′i and µX̃i

(xi) = 1/0 when xi 6= x′i, for all i = 1, 2, . . . , p.

2.2 Inference

The inference engine matches the fuzzy singletons with the fuzzy rules in the rule

base. To compute unions and intersections of type-2 sets, compositions of type-2

relations are needed. Just as the sup-star composition is the backbone computation

for a type-1 FLS, the extended sup-star composition is the backbone for a type-2

FLS [?].

The first step in the extended sup-star operation is to obtain the firing set

up
j=1 µX̃i

j
(xj) ≡ F i(x) by performing the input and antecedent operations. As only

interval type-2 sets are used and the meet operation is implemented by the product

t-norm, the firing set is the following type-1 interval set :

F i(x) = [f i(x), f
i
(x)] ≡ [f i, f

i
] (2.3)

where f i(x) = µ
X̃i

1

(x1)? µ
X̃i

2

(x2) and f
i
(x) = µX̃i

1
(x1)? µX̃i

2
(x2). The term µ

X̃i
j

(xj)

and µX̃i
j
(xj) are the lower and upper membership grades of µX̃i

j
(xj). Next, the



14

firing set, F i(x), is combined with the consequent fuzzy set of the ith rule, µỸ i ,

using the product t-norm to derive the fired output consequent sets. The combined

output fuzzy set may then be obtained using the maximum t-conorm.

2.3 Type-reduction and Defuzzification

Since the output of the inference engine are type-2 fuzzy sets, they must be type-

reduced before the defuzzifier can be used to generate a crisp output. This is

the main structural difference between type-1 and type-2 FLSs. The most com-

monly used type-reduction method is the center-of-sets type-reducer, which may

be expressed as [?] :

Ycos(x) =

∫

y1∈Y i

. . .

∫

yN∈Y i

∫

f1∈F i(X)

. . .

∫

fN∈F i(X)


1

/ N∑
i=1

f iyi

N∑
i=1

f i


 = [yl, yr] (2.4)

where F i(X) = [f i, f
i
] is the interval firing level of the ith rule, Y i = [yi

l , yi
r] is an

interval type-1 set corresponding to the centroid of the interval type-2 consequent

set Ỹ i [?] :

CỸ i =

∫

θ1∈Jx1

· · ·
∫

θN∈JxN

1

/∑N
i=1 xiθi∑N
i=1 θi

= [yi
l , yi

r] (2.5)

Equation (2.4) may be computed using the Karnik-Mendel iterative method [?]

as follows :

Set yi = yi
l for i = 1, . . . , N ;

Arrange yi in ascending order;

Set f i =
f i+f

i

2 for i = 1, . . . , N ;

y′ =
∑N

i=1 yif i

∑N
i=1 f i

;

do
y′′ = y′;
Find k ∈ [1, N − 1] such that yk ≤ y′ ≤ yk+1;
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Set f i = f
i for i ≤ k

Set f i = f i for i ≥ k + 1;

y′ =
∑N

i=1 yif i

∑N
i=1 f i

;

while y′ 6= y′′

yl = y′;

Set yi = yi
r for i = 1, . . . , N ;

Arrange yi in ascending order;

Set f i =
f i+f

i

2 for i = 1, . . . , N ;

y′ =
∑N

i=1 yif i

∑N
i=1 f i

;

do
y′ = y′′;
Find k ∈ [1, N − 1] such that yk ≤ y′ ≤ yk+1;
Set f i = f i for i ≤ k

Set f i = f
i for i ≥ k + 1;

y′ =
∑N

i=1 yif i

∑N
i=1 f i

;

while y′ 6= y′′

yr = y′;

The main idea of the above procedure is to find a switch point for both yl and

yr. Let’s take yl for example. yl is the minimum of Ycos(x). Since yi
l increases

from the left to the right along the horizontal axis of Figure 2.3(a), generally we

should choose the upper membership grade for the yi
l on the left and the lower

membership grade for the yi
l on the right. The Karnik-Mendel procedure finds the

switch point yk
l . For i ≤ k, the upper membership grades are used to calculate

yl; for i > k, the lower membership grades are used. This will ensure yl be the

minimum. For yr, the idea is similar; except that for i ≤ k, the lower membership

grades are used to calculate yr; for i > k, the upper membership grades are used,

as shown in Figure 2.3(b).

It has been proven that this iterative procedure converges super-exponentially

[68]. Once yl and yr are obtained, they can be used to calculate the crisp output.
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1
ly 2

ly N
lyk

ly

(a) Computing yl: switch from the UMF to the
LMF

1
ry 2

ry N
ryk

ry

(b) Computing yr: switch from the LMF to the
UMF

Figure 2.3: Illustration of the switch points in computing yl and yr. The switch
points are found by the Karnik-Mendel algorithms [1].

Since the type-reduced set is an interval type-1 set, the defuzzified output is :

y =
yl + yr

2
(2.6)

2.4 Example of a Type-2 FLS

In this section, the mathematical operations in a type-2 FLS are illustrated using

an example. Consider a baseline type-1 FLS that has two inputs (x1 and x2) and

one output (y). It is assumed that each input domain consists of two type-1 MFs,

shown as the dark thick lines in Figure 2.4.

01− 10.3−

11X 12X11X� 12X�

1.5− 0.5− 0.5 1.5

11uf

11lf

12lf

12uf

(a) Input MFs of x1

0

21X 22X
21X

�

22X
�

22uf

22lf
21uf

21lf

1.5− 1− 0.5− 0.6 1 1.5

(b) Input MFs of x2

Figure 2.4: MFs of the two FLSs

A type-2 FLS is obtained by equipping the four fuzzy sets used to partition the

input domains of the baseline type-1 FLS with FOUs, shown as the shaded areas

in Figure 2.4. The rule base also has four rules assuming the following form :
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R̃ij: IF x1 is X̃1i and x2 is X̃2j, THEN y is Ỹij. i, j = 1, 2

The complete rule base and the corresponding consequents are shown in Table 2.1.

Table 2.1: Rule base and consequents of the type-2 FLS
x2

PPPPPPx1 X̃21 X̃22

X̃11 Ỹ11 = −1 Ỹ12 = −0.5

X̃12 Ỹ21 = 0.5 Ỹ22 = 1

Consider an input vector x = (x1, x2) = (−0.3, 0.6). The firing strengths of the

four type-2 input MFs are :

f̃11 = [0.4, 0.9] f̃12 = [0.1, 0.6]

f̃21 = [0, 0.45] f̃22 = [0.55, 1]

Thus, the firing levels of the four rules are :

Rule No.: Firing Strength → Consequent

R̃11 : [0.4× 0, 0.9× 0.45] = [0, 0.405] → −1

R̃12 : [0.4× 0.55, 0.9× 1] = [0.22, 0.9] → −0.5

R̃21 : [0.1× 0, 0.6× 0.45] = [0, 0.27] → 0.5

R̃22 : [0.1× 0.55, 0.6× 1] = [0.055, 0.6] → 1

For the type-2 FLS, the bounds of the type-reduced interval type-1 set obtained

using the Karnik-Mendel type-reducer are :

yl =
0.405× (−1) + 0.22× (−0.5) + 0× 0.5 + 0.055× 1

0.405 + 0.22 + 0 + 0.055
= −0.6765

yr =
0× (−1) + 0.22× (−0.5) + 0× 0.5 + 0.6× 1

0 + 0.22 + 0 + 0.6
= 0.5976

Note here the switch of membership grades for yl occurs at R̃11. That is,

for consequent −1, the upper membership grade is employed to calculate yl; for

consequents −0.5, 0.5 and 1, the lower membership grades are used. For yr, the

switch occurs after the second rule. That is, for consequent −1 and −0.5, the
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upper membership grades are employed to calculate yr; for consequents 0.5 and 1,

the lower membership grades are used.

Finally, the crisp output of the type-2 FLS, y2, is :

y2 =
yl + yr

2
=
−0.6765 + 0.5976

2
= 0.03945



Chapter 3

Genetic Tuning and Performance
Evaluation of Interval Type-2
FLCs

This Chapter seeks to contribute towards the design and understanding of type-

2 fuzzy control. A genetic learning strategy for designing a type-2 fuzzy logic

controller (FLC) to control non-linear plants is proposed. Genetic algorithm (GA),

a global optimal search algorithm, has been widely used to design FLSs [64,69–71].

Due to the computational requirements, FLCs designed using GAs are generally

evolved off-line using a model of the controlled process. As it is impossible for a

model to capture all the characteristics of the actual plant, the performance of the

type-1 FLC designed using GA and a theoretical model will inevitably deteriorate

when it is applied to the real-world problem. The concept of type-2 fuzzy sets

was introduced to enhance the uncertainty handling capability of FLS so an issue

that is addressed herein is whether a type-2 FLC would cope better with modeling

uncertainties, and thereby achieve better control performance than a type-1 FLC

in practice. The study is performed by comparing the ability of type-1 and type-2

FLCs to control an uncertain liquid level plant.

One aspect that was considered in the comparative study is the number of

design parameters or degrees of freedom that the FLCs have. It is well-known

that the performance of a type-1 FLC may be improved by partitioning the input

19
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domains with a larger number of fuzzy sets. Unfortunately, there is a trade-

off between accuracy/performance and interpretability. A larger number of MFs

results in a bigger rule base that would be harder for a human to interpret because

of the curse of dimensionality. Since the FOU provides a type-2 fuzzy set with an

additional mathematical dimension, the conjecture is that a type-2 FLC with a

smaller rule base may be capable of providing performance comparable to a type-1

FLC that has more rules. Hence, another objective is to ascertain whether a type-2

FLC is able to provide better performance/accuracy without sacrificing rule base

interpretability.

The rest of this Chapter is organized as follows : Section 3.1 briefly introduces

GAs and approaches for designing type-2 FLCs. Next, details of the FLCs that

were evolved by GA are covered in Section 3.2. Section 3.3 presents the compara-

tive abilities of the FLCs to handle modelling uncertainties. Discussions are given

in Section 4.3 before conclusions are drawn in Section 3.5.

3.1 Genetic Tuning of a Type-2 FLC

GA is a general-purpose search algorithm that uses principles inspired by natural

population genetics to evolve solutions to problems. It was first proposed by Hol-

land in 1975 [72]. GAs are theoretically and empirically proven to provide a robust

search in complex spaces, thereby offering a valid approach to problems requiring

efficient and effective searches [73–76].

Figure 3.1 shows the flow chart of a basic GA. First, a chromosome population

is randomly generated. Each chromosome encodes a candidate solution of the op-

timization problem. The fitness of all individuals with respect to the optimization



21

Initialize population

Gen = 1


Evaluate population


Selection


Crossover


Mutation


Gen = Gen + 1


Output results

Yes


No

Gen > MaxGen


Figure 3.1: The flow chart of a basic GA

task is then evaluated by a scalar objective function (fitness function). According

to Darwin’s principle, highly fit individuals are more likely to be selected to re-

produce offsprings. Genetic operators such as crossover and mutation are applied

to the parents in order to produce a new generation of candidate solutions. As

a result of this evolutionary cycle of selection, crossover and mutation, more and

more suitable solutions to the optimization problem emerge within the population.

Increasingly, GA is used to facilitate FLCs design [77–80]. However, most of

the works discuss type-1 FLC design. This Chapter focuses on genetic learning of

type-2 FLCs. There are two very different approaches for selecting the parameters

of a type-2 FLS [?]. One is the partially dependent approach, where a best possible

type-1 FLS is designed first, and then used to initialize the parameters of a type-

2 FLS. The other method is a totally independent approach, where all of the

parameters of the type-2 FLC are tuned from scratch without the aid of an existing

type-1 design.
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One advantage offered by the partially dependent approach is smart initial-

ization of the parameters of the type-2 FLS. Since the baseline type-1 fuzzy sets

impose constraints on the type-2 sets, fewer parameters need to be tuned and

the search space for each variable is smaller. Therefore, the computational cost

needed to implement the GA is less so design flexibility is traded off for a lower

computational burden. Type-2 FLCs designed via the partially dependent ap-

proach may be able to outperform the corresponding type-1 FLCs [70], although

both the FLCs have the same number of MFs (resolution). However, the type-2

FLC has a larger number of degrees of freedom because type-2 fuzzy sets are more

complex. The additional mathematical dimensions provided by the type-2 fuzzy

sets enable a type-2 FLS to produce more complex input-output map without the

need to increase the resolution. However, an open question is whether a type-1

FLS with a higher resolution, and therefore more degrees of freedom, would be

able to match the modeling capability of a type-2 FLS. To address this issue, a

comparative study involving type-2 and type-1 FLCs with similar number of de-

grees of freedom is performed. The totally independent approach is adopted so

that the type-2 FLC evolved using GA has maximum design flexibility. Details

about the FLCs are delineated in the following section.

3.2 Structure of the FLCs

Four double-inputs single-output FLCs with different degrees of freedom (design

parameters) are studied. The input signals of all the FLCs are the feedback error,

e, and the change of the error, ė, and the output signal is the change in the control

signal, u̇.
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3.2.1 The Type-2 FLC, FLC2

Each input domain of FLC2 is partitioned by three interval type-2 fuzzy sets

(Gaussian MFs with constant mean and uncertain variance) that are labeled as N,

Z and P (refer to Figure 3.3(a)). In order to study the benefits of antecedent type-

2 fuzzy sets, its effect is isolated by using five crisp numbers u̇i (i = 1, 2, . . . , 5) as

the consequents. Table 3.1 shows the fuzzy rule base used by the type-2 FLC. As

the GA will only tune the MFs, the rules are fixed so a commonly used structure

is employed.

A Gaussian MF with certain mean and uncertain variance can be completely

defined by 3 parameters, m and [δ1, δ2]. The center-of-sets type-reducer and the

height defuzzifier are means that the MFs of u̇ are completely described by five

distinct numbers (points). As FLC2 has 6 input type-2 MFs and 5 different crisp

outputs, FLC2 has a total of 3× 6 + 5 = 23 parameters.

Table 3.1: Rule base of FLC2 and FLC1a

ė
XXXXXXe Nė Zė Pė

Ne u̇1 u̇2 u̇3

Ze u̇2 u̇3 u̇4

Pe u̇3 u̇4 u̇5

3.2.2 The Type-1 FLC, FLC1a

The structure and rule base of the type-1 FLC, FLC1a, are the same as those

of FLC2. The only difference between FLC1a and FLC2 is that the input MFs

of FLC1a are type-1 (refer to Figure 3.3(b)). Product-sum inference and height

defuzzification were employed. Since two parameters are sufficient to determine a

Gaussian type-1 MF, the GA has to optimize a total of 2× 6+5 = 17 parameters.
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FLC2 and FLC1a have the same number of MFs and rules. Hence, comparing

their performances may provide insights into the contributions made by the FOU.

3.2.3 The Type-1 FLC, FLC1b

Each input of FLC1b has 5 type-1 MFs in its universe of discourse, as shown in

Figure 3.3(c). The rule base is given in Table 3.2. It is commonly used by Mamdani

FLCs. FLC1b has 2 × 10 + 9 = 29 parameters to be tuned. Compared to FLC2,

FLC1b has 6 extra design parameters. They enable us to determine whether a

type-2 FLC is able to outperform a type-1 FLC with similar number of degrees of

freedom.

Table 3.2: Rule base of the type-1 FLC, FLC1b

ėXXXXXXe NBė NMė Zė PMė PBė

NBe u̇1 u̇2 u̇3 u̇4 u̇5

NMe u̇2 u̇3 u̇4 u̇5 u̇6

Ze u̇3 u̇4 u̇5 u̇6 u̇7

PMe u̇4 u̇5 u̇6 u̇7 u̇8

PBe u̇5 u̇6 u̇7 u̇8 u̇9

3.2.4 The Neuro-Fuzzy Controller, NFC

The fourth controller analyzed in this Chapter is a neuro-fuzzy controller similar

to the one proposed in [81]. Its two inputs are characterized by 5 type-1 MFs, as

shown in Figure 3.3(d). Though the input MFs are similar to those of FLC1b, its

rule base is quite different. The consequences of the 25 rules are different from

each other (refer to Table 3.7(b)). Thus, there are 2× 10 + 25 = 45 parameters to

be tuned by GA.
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3.3 Experimental Comparison

This section presents an experimental comparison of the characteristics of the four

FLCs. The test platform is a non-linear second order liquid level process. Since

the FLCs are tuned offline, the simulation model used for identifying the controller

parameters is described in the following subsection.

3.3.1 The Coupled-tank System

The coupled-tank apparatus [82] shown in Figure 3.2 is used to assess the FLCs.

It consists of two small tower-type tanks mounted above a reservoir that stores the

water. Water is pumped into the top of each tank by two independent pumps, and

the levels of water are measured by two capacitive-type probe sensors. Each tank

is fitted with an outlet, at the side near the base. Raising the baffle between the

two tanks allows water to flow between them. The amount of water that returns

to the reservoir is approximately proportional to the square root of the height of

water in the tank, which is the main source of nonlinearity in the system [82].

(a) Schematic diagram (b) Experimental Setup

Figure 3.2: The coupled-tank liquid-level control system

The dynamics of the coupled-tank apparatus can be described by the following
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set of nonlinear differential equations :

A1
dH1

dt
= Q1 − α1

√
H1 − α3

√
H1 −H2 (3.1a)

A2
dH2

dt
= Q2 − α2

√
H2 + α3

√
H1 −H2 (3.1b)

where A1, A2 are the cross-sectional area of Tank #1, #2; H1, H2 are the liquid

level in Tank #1, #2; Q1, Q2 are the volumetric flow rate (cm3/sec) of Pump

#1, #2; α1, α2, α3 are the proportionality constant corresponding to the
√

H1,

√
H2 and

√
H1 −H2 terms. Note that here we assume H1 ≥ H2, which is always

satisfied in the experiments.

The coupled-tank apparatus can be configured as a second-order single-input

single-output system by turning off Pump #2 and using Pump #1 to control

the water level in Tank #2. Since Pump #2 is turned off, Q2 equals zero and

Equation (3.1b) reduces to :

A2
dH2

dt
= −α2

√
H2 + α3

√
H1 −H2 (3.2)

Equations (3.1a) and (3.2) are used to construct a simulation model of the coupled

tank for the GA to evaluate the fitness of the candidate solutions. The parameters

used are as follows :-

A1 = A2 = 36.52 cm2

α1 = α2 = 5.6186

α3 = 10

The area of the tank was measured manually while the discharge coefficients

(α1, α2 and α3) were found by measuring the time taken for a pre-determined

change in the water levels to occur. Although the DC power source can sup-

ply between 0 and 5 Volts to the pumps, the maximum control signal is capped at
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4.906 V which corresponds to an input flow rate of about 75 cm3/sec. To compen-

sate for the pump dead zone, the minimum control signal is chosen to be 1.646 V.

A sampling period of 1 second is employed.

3.3.2 GA Parameters

The model of the coupled tank apparatus described in the previous subsection is

constructed using physical laws and does not accurately reflect the characteristics

of the practical plant. For example, it has been documented that the volumetric

flow rate of the pumps in the coupled-tank apparatus used to produce the results

is nonlinear, the system has non-zero transport delay and the sensor output is

noisy [81]. Due to the presence of such modelling uncertainties, the performance

of the FLCs designed using the simulation model will inevitably deteriorate when it

is applied to the real-world problem. This work aims at studying whether the FOU

of the type-2 FLC will enable it to cope better with the modelling uncertainties.

To find the best possible FOU, there is a need to expose the FLCs to uncertain

model parameters during the design phase because the input-output mapping of

the type-2 FLC is fixed once the controller parameters are selected. Hence, four

plants (I – IV) with the parameters shown in Table 3.3 are used to evaluate each

chromosome. The sum of the integral of the time-weighted absolute errors (ITAEs)

obtained from the 4 plants, defined as Equation (3.3), is used by the GA to evaluate

the fitness of each candidate solution. It is taken to be the

F =
4∑

i=1

αi

[
Ni∑
j=1

j ∗ ei(j)

]
(3.3)

where ei(j) is the error between the setpoint and the actual level height at the

jth sampling of the ith plant, αi is the weight corresponding to the ITAE of the
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Table 3.3: Plants used to assess fitness of candidate solutions
I II III IV

A1 = A2 (cm2) 36.52 36.52 36.52 36.52
α1 = α2 5.6186 5.6186 5.6186 5.6186
α3 10 10 10 8
Setpoint (cm) 0 → 15 0 → 22.5 → 7.5 0 → 15 0 → 15
Transport delay (seconds) 0 0 2 0

ith plant, and Ni = 200 is the number of sampling instants. There is a need to

introduce αi because the ITAE of the second plant is usually several times bigger

than that of other plants. To ensure that the ITAE of the four plants can be

reduced with equal emphasis, α2 is defined as 1
3

while the other weights are unity.

The GA parameters used to evolve the MFs of all the four FLCs in this Chapter

are similar. A population size of 100 chromosomes coded in real number is used.

Members of the first generation are randomly initialized and the GA terminates

after 600 generations. The termination point was selected after an inspection

of the fitness function verses generation plot revealing that the fitness function

will settle within 600 generations. To ensure that the fitness function decreases

monotonically, the best population in each generation enters the next generation

directly. In addition, a generation gap of 0.8 is used during the reproduction

operation so that 80% of the members in the new generation are determined by the

selection scheme employed, while the remaining 20% are selected randomly from

the intervals of adjustment. This strategy helps to prevent premature convergence

of the population. The crossover rate is 0.8 and the mutation rate is 0.1. In order

to enable finer adjustment to occur as the generation number (i) becomes bigger,

the non-linear mutation [76] method defined in Equation (3.4) is used in the FLC
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design.

x(i + 1) = x(i) + δ(i) (3.4)

where

δ(i) =





a ·
[
1− λ(1− i

imax+1)
]
, if rand(1) > 0.5

−a ·
[
1− λ(1− i

imax+1)
]
, otherwise

x(i) is the value of gene x in ith generation, imax is the maximum number of

generations, λ and rand(1) are random numbers in [0, 1], and a is a constant

associated with each input and output. In this Chapter a for each input is chosen

to be 1/6 of the length of its universe of discourse, and a for the output is 1/10 of

the length of its universe of discourse. Flexible position-coding strategy is applied

in each input or output domain to improve the diversity of the members in each

generation. Consequently, the genes in each sub-chromosome may not remain in

the proper order after crossover and mutation, i.e. the center of the type-2 set

corresponding to Ne may be larger than that of Ze. Every sub-chromosome is,

therefore, sorted before fitness evaluation is performed.

Since each input type-2 MF is determined by 3 parameters (m, δ1, δ2) and

there are 6 input type-2 MFs and 5 different crisp outputs, each chromosome has

3× 6 + 5 = 23 genes.

Figure 3.3 shows the MFs of the four FLCs evolved by the GA. The parameters

of the four FLCs are listed in Table 3.4–3.7. Figure 3.4 shows the fitness value

verses generation number curves of the four GAs. It indicates that the fitness

values have converged. Another observation is that the additional mathematical

dimension provided by the FOU enables the FLC2 to achieve a lower ITAE than

the other three type-1 FLCs, though FLC2 has less parameters than two of the
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type-1 FLCs. To further assess the performance of the FLCs, simulation and

experimental study was conducted and the results are presented in the following

subsection.
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Figure 3.3: MFs of the four FLCs

Table 3.4: MFs of the type-2 FLC, FLC2

(a) MFs of the inputs

Input N Z P
m -13.6778 -2.1764 13.3864

e
[δ1, δ2] [4.1385, 5.9727] [1.6850, 5.4645] [2.6457, 6.0475]

m -1.0132 0.0393 1.3172
ė

[δ1, δ2] [0.3172, 0.8553] [0.2342, 1.0000] [0.1130, 0.5656]

(b) MFs of the output

u̇1 u̇2 u̇3 u̇4 u̇5

-0.8091 -0.3429 0.0796 0.4656 0.7457

3.3.3 Performance Study

Figure 3.5 shows the step responses and the corresponding control signals obtained

when the four FLCs were used to control the nominal plant. Performances of FLC2,
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Table 3.5: MFs of the type-1 FLC, FLC1a

(a) MFs of the inputs

Ne Ze Pe Nė Zė Pė

m -9.7890 0.9611 13.6741 -0.8344 0.0022 1.0366
δ 4.7869 4.3414 3.3040 0.5887 0.7562 0.3902

(b) MFs of the output

u̇1 u̇2 u̇3 u̇4 u̇5

-0.3449 -0.1406 0.0668 0.6201 0.8899
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Table 3.6: MFs of of the type-1 FLC, FLC1b

(a) MFs of the inputs

Input NB NM Z PM PB
m -12.9009 -5.4265 -0.3698 9.7432 14.9622

e
δ 3.6845 4.7648 2.4434 2.8409 2.6371
m -2.4483 -1.4590 -0.1044 0.6618 1.8987

ė
δ 0.5499 0.5756 0.3823 0.4662 0.5499

(b) Rule Base and Consequents

ėaaaae NBė NMė Zė PMė PBė

NBe -0.7999 -0.6734 -0.2558 -0.1375 -0.0096
NMe -0.6734 -0.2558 -0.1375 -0.0096 0.2468
Ze -0.2558 -0.1375 -0.0096 0.2468 0.5219

PMe -0.1375 -0.0096 0.2468 0.5219 0.7295
PBe -0.0096 0.2468 0.5219 0.7295 0.8595

Table 3.7: MFs of the neuro-fuzzy controller, NFC
(a) MFs of the inputs

Input NB NM Z PM PB
m -12.0948 -8.7795 3.3386 9.0337 14.3214

e
δ 3.3558 4.0363 3.6185 3.3313 5.1559
m -0.9471 -0.5429 0.4458 0.7916 1.2536

ė
δ 0.5923 0.4165 0.5046 0.4531 0.4781

(b) Rule Base and Consequents

ėaaaae NBė NMė Zė PMė PBė

NBe -0.3052 -0.3671 -0.3679 -0.1765 -0.3744
NMe -0.0074 0.2593 -0.1646 0.1657 -0.2463
Ze -0.0998 -0.0742 -0.0590 0.2755 0.2225

PMe -0.2286 0.1267 0.3988 0.1868 0.2677
PBe 0.6778 0.1248 0.4227 0.1317 0.0201
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FLC1a and FLC1b are comparable to NFC, a neurofuzzy controller reported in the

literature [81]. The results also indicate that the FLCs evolved by GA are able to

provide satisfactory control in spite of the pump non-linearity and the unmodelled

transport delay (about 1∼2 seconds based on our experiments).
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(b) Experiment results

Figure 3.5: Step responses for the nominal plant

To test the ability of the FLCs to handle unmodelled dynamics, unmodelled

transport delay was introduced into the feedback loop. First, a transport delay

equal to 1 second (one sampling period) was artificially added to the nominal sys-

tem. The step responses and the control signal are shown in Figure 3.6. When a 2

sampling periods transport delay was added to the system, the corresponding step

responses and the control signal are shown in Figure 3.7. Although the simulation

results indicated that the four FLCs should have similar performances, large os-

cillations were obtained when FLC1a and FLC1b were used to control the actual

plant. For FLC2 and NFC, the simulation results coincide with the experimental

results more closely.
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Figure 3.6: Step responses with a 1 sec transport delay
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(b) Experimental results

Figure 3.7: Step responses with a 2 sec transport delay
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Next, the ability of the FLCs to cope with variations in the system dynamics

was investigated by lowering the baffle separating the two tanks. This change

modified the discharge coefficient between the two tanks (α3) and gave rise to a

more sluggish system. In addition, the difference in liquid level between the two

tanks was larger at steady state. First, the experimental rig was set up such that

the discharge coefficient between the two tanks (α3) was reduced from 10 to 8.

Since simulation model indicates that the steady-state water level in tank #1 and

tank #2 is 22.4 cm and 15 cm respectively when α3 = 8, the baffle was lowered

until the liquid level in the two tanks are at the above-mentioned heights. The

step responses and the control signal are shown in Figure 3.8. Figure 3.9 shows the

step responses and the control signal when a 1-sec transport delay was added to

the modified plant. From the step responses, it may be observed that all the FLCs

were able to attenuate the oscillations when there were modeling uncertainties.

However, the settling time was much shorter when FLC2 or NFC was employed.

FLC1a gave the poorest control performance. Though the liquid level in the tank

eventually reached the desired setpoint, the settling time was so long that it was

inconvenient to plot the complete trajectory in the figures.

3.4 Discussions

From the results presented in the previous section, it may be concluded that all the

four FLCs provide comparable performances for the nominal plant (Figure 3.5).

However, FLC2 and NFC outperform FLC1a and FLC1b when unmodelled dy-

namics are introduced (Figure 3.6–3.9). The better performance of FLC2 arises

from the extra degree of freedom provided by the FOU. In order to gain some



36

0 50 100 150 200 250 300 350 400
0

5

10

15

H
2 

(c
m

)

FLC1a
FLC1b
FLC2
NFC

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Time, sec

C
on

tro
l s

ig
na

l (
%

)

(a) Simulation results

0 50 100 150 200 250 300 350 400
0

5

10

15

H
2 

(c
m

)

FLC1a
FLC1b
FLC2
NFC

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Time, sec

C
on

tro
l s

ig
na

l (
%

)

(b) Experimental results

Figure 3.8: Step responses when the baffle was lowered
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Figure 3.9: Step responses with the lowered baffle and a 1 sec transport delay
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insights into why the type-2 FLC is able to achieve better control performances,

the control surface of the four FLCs were plotted.
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Figure 3.10: Control surfaces of the four FLCs

Figure 3.10 shows that the control surface of the type-2 FLC is more complex.

It may be observed that the control surface of the type-2 FLC has a gentler gradient

around the equilibrium point (e = 0, ė = 0). As a result, the changes in the output

control signal are small in this area and small disturbances around the equilibrium

point will not result in significant control signal change. This behaviour may help

to explain why the type-2 FLC is better able to attenuate oscillations. To illustrate

the idea more clearly, a slice of the control surface at ė = 0 is shown in Figure 3.11.

It is observed that the outputs of the four FLCs are similar when e ∈ [0, 0.5].

However, when e < 0, the outputs of FLC2 and NFC have much gentler slopes so

the absolute values of u̇ is much smaller compared to those of FLC1a and FLC1b.

The implication is that an overshoot will decay away more gradually, and thus
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reducing the amount of oscillations. This conclusion is consistent with the results

in Figures 3.5–3.7, where there are much fewer oscillations when FLC2 or NFC is

employed. Unfortunately, the gentler gradient around the equilibrium point also

means that more time is taken for an overshoot to die away. Figure 3.12 shows

that FLC2 takes a relatively longer time to recover from an overshoot.
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Figure 3.11: A slice of the control surfaces at ė = 0
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Figure 3.12: Step responses when setpoint is changed from 0 → 22.5 → 7.5 cm

A consolidation of the simulation and experimental results obtained during the
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comparative study are presented in Figures 3.13(a) and (b). The plots show the

ITAEs for different plants in Table 3.3. As the deterioration in performances when

the test platform is switched from simulation to the physical plant reflect the abil-

ities of the four FLCs to handle modelling uncertainties, Figure 3.13(c) illustrates

the difference in the ITAE values between the experimental and simulation results.

The various ITAE values obtained via simulation (sim) and experimentally (exp)

are also tabulated in Table 3.8. They are generated by integrating over the length

of the responses shown in Figure 3.5–3.9 and Figure 3.12. From the data in Fig-

ure 3.13, it may be concluded that NFC provides the best performance, followed

closely by FLC2. Another finding is that FLC2 generally outperforms FLC1b,

even though FLC1b has 6 more parameters (degree of freedom) than FLC2. How-

ever, a type-1 FLC with comparatively larger number of design parameters may

be able to outperform a type-2 FLC. For example, NFC outperforms FLC2 with

the help of 45 − 23 = 22 more parameters. The study suggests that a type-2

FLC can provide better performance with less MFs and a smaller rule base, mak-

ing it is more appealing than its type-1 counterpart with regards to accuracy and

interpretability.

Besides performance, the computational cost required to implement the FLCs

is also an important consideration. The GAs used to tune the four FLCs were im-

plemented as a Matlab 6.5 program and executed on an Intel Pentium III 996MHz

computer with 256M RAM. The time needed by the four GAs to complete 100

generations of evolution was recorded and shown in Table 3.8. A 10000 time-step

simulation (the setpoint is 15 + 10sin(i/50), where i = 1, 2, . . . , 10000 is the time

instant) using the evolved FLCs was also carried out on the same computer and
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the computation time is tabulated in Table 3.8. The data indicate that the compu-

tational cost of FLC2 is much higher than that of the three type-1 FLCs. Though

the neurofuzzy controller (NFC) has 45 − 23 = 22 more parameters than FLC2,

its computation time is only less than 1
4

of that of FLC2. The increase in compu-

tational burden is mainly due to the type-reducer, the main structural difference

between a type-2 FLS and a type-1 FLS. If there are more MFs for each input,

and consequently more rules, the difference in computational load may be more

obvious [83]. While the need for large computing power is a hinderance to real-time

implementation, efforts are being made to reduce the computational requirements

of type-2 FLS [14,83,84].

3.5 Concluding Remarks

In this Chapter, a GA-based totally independent method is used to design a type-2

FLC for controlling a coupled-tank liquid-level control system. The performance

of the type-2 FLC (23 parameters) is compared with that of three type-1 FLCs:

a type-1 Mamdani FLC with 17 parameters, a type-1 Mamdani FLC with 29

parameters and a type-1 neuro-fuzzy controller with 45 parameters. The results

demonstrate that a type-2 FLC can outperform type-1 FLCs that have more de-

sign parameters. In other words, a type-2 FLC with fewer MFs can achieve the

similar performance as a type-2 FLC with much more MFs. Thus, the type-2

FLC is more appealing than its type-1 counterpart with regards to accuracy and

interpretability. The main advantage of the type-2 FLC appears to be its ability

to eliminate persistent oscillations, especially when unmodelled dynamics were in-

troduced. This ability to handle modelling error is particularly useful when FLCs
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Table 3.8: A comparison of the four FLCs

Item \ FLC FLC1a FLC1b NFC FLC2

Type Type-1 Type-1 Type-1 Type-2

No. Input MFs 3 5 5 3
Structure

No. Output MFs 5 9 25 5

Total Parameters 17 29 45 23

Sim (103) 4.4870 4.5010 4.4906 4.5766
Plant I

Exp (103) 6.2360 6.1768 6.0817 6.5160

Plant I Sim (103) 5.0914 5.1833 5.0457 5.0475

1s delay Exp (103) 11.488 8.9097 7.6360 5.8859

Sim (104) 7.4417 7.0015 6.4458 6.7426
Plant II

Exp (104) 7.7033 7.5202 7.0690 9.6253

Performance Sim (103) 6.3906 6.3473 5.9437 5.7221

(ITAE)
Plant III

Exp (103) 22.6450 13.2440 8.5271 6.3521

Sim (103) 6.9179 7.0411 6.7093 6.6710
Plant IV

Exp (103) 24.875 13.356 10.773 16.896

Plant IV Sim (103) 9.1761 9.4582 7.7564 8.3341

1s delay Exp (103) 109.820 49.584 17.731 17.511

Sum of Sim (104) 10.6480 10.2550 9.4404 9.7777

ITAEs Exp (104) 25.2097 16.6470 12.1440 14.9414

Computation GA tuning (sec) 950 1050 1300 5860

Time Simulation (sec) 1.4070 1.5780 1.8120 8.1720



43

are tuned offline using GA and a model as the impact of unmodelled dynamics is

reduced.



Chapter 4

Simplified Type-2 FLCs for
Real-time Control

The results in the previous Chapter show that type-2 FLCs may be better able to

eliminate persistent oscillations than their type-1 counterparts. The most likely

explanation for this behavior is a type-2 FLC has a smoother control surface than

that of a type-1 FLC, especially around the origin. Hence, small disturbances

around steady state will not result in significant control signal changes so there are

less oscillations. As the ability of type-2 FLCs to handle modeling uncertainties

is superior, a type-2 FLC evolved using GA and the plant model is more likely to

perform well in practice.

Despite the advantages offered by type-2 FLCs, one problem that may hinder

the use of type-2 FLCs for real-time control is their high computational cost.

Unlike a type-1 FLC, a type-reducer is needed to convert the type-2 fuzzy output

sets into type-1 sets so that they can be processed by the defuzzifier to give a crisp

output. Type-reduction is very computationally intensive, especially when there

are many MFs and the rule base is large.

To reduce the computational burden while preserving the advantages of type-

2 FLCs, two approaches may be considered : 1) faster type-reduction methods,

such as the uncertainty bound concept in [14] and new type-reducers proposed

in [84]; and 2) a simpler architecture. The second approach is studied in this

Chapter. A procedure to obtain a type-2 FLC that is robust enough to cope

44
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well with the uncertainties while having minimum computational cost is proposed.

This Chapter also presents experimental study that establishes the feasibility of

the proposed simplified type-2 structure.

The rest of this Chapter is organized as follows: Section 4.1 presents the sim-

plified type-2 FLC as well as a computational costs comparison. Two type-1 FLCs

and two type-2 FLCs with degrees of freedom are designed in Section 4.2 and

their abilities to handle modeling uncertainties are compared using a coupled-tank

liquid-level control system. Section 4.3 discusses the performances of the proposed

architecture. Finally, conclusions are drawn in Section 4.4.

4.1 Simplified Type-2 FLCs

The simplified interval singleton type-2 FLC uses type-2 fuzzy sets only for the

fuzzy partition governing behavior around the setpoint (steady-state). All other

fuzzy sets are type-1. Figure 4.1(c)–(d) show the MFs of typical simplified type-2

FLCs. The structure is motivated by the observation that the main advantage

of type-2 FLC is its ability to provide more damping as the output approaches

the set-point. It is conjectured that the degradation in the ability of a type-2

FLC to handle modeling uncertainties will be insignificant if type-1 fuzzy sets

are used to describe the fuzzy rules that govern the transient response. Such a

simplified structure and a FLC where all the fuzzy sets used to partition the input

domains are type-2 may have similar control surfaces around the origin. As the

control surfaces are comparable, it is likely that these two kinds of FLCs may have

similar performances. As the simplified architecture utilizes fewer type-2 sets, the

computational cost can be reduced.
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Figure 4.1: Example MFs of the FLCs

A simplified type-2 FLC may be designed by gradually replacing type-1 fuzzy

sets by their type-2 counterparts until the resulting FLC meets the robustness

requirements, starting with the fuzzy sets that characterize the region around

steady-state. Since the computational cost will increase significantly when the

number of type-2 MFs increases, as few type-2 MFs as possible introduced. For

a PI-like FLC, the response near steady-state is determined mainly by the area

around the origin, which is governed by the middle MFs of each input. Hence, the

procedure for designing a simplified type-2 FLC is as follows :

Step 1 : The type-1 FLC is designed through simulation on a nominal model.

Step 2 : Change the most important input MF to type-2. For the two inputs of a

PI-like FLC, ė is more susceptible to noises. The fuzzy set corresponding to

zero ė is changed to type-2, as illustrated in Figure 4.1(d).

Step 3 : If the type-2 FLC designed in Step 2 cannot cope well with the actual

plant, the fuzzy set associated with zero e is changed to type-2, as illustrated
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in Figure 4.1(c).

Step 4 : If the resulting type-2 FLC is still not robust enough, more type-2 MFs

may be introduced starting from the middle of each input domain and grad-

ually moving towards the limits of the domain. Another criteria is to use

type-2 fuzzy sets to characterize the operating region that needs a smoother

control surface.

A FLC designed by the proposed procedure has two parts — a type-1 part and

a type-2 part. Different portions will be activated when the state of the plant is

in different operating region. During the transient stage, the FLC behaves like

a type-1 FLC since no type-2 MFs are fired. When the output approaches the

setpoint, type-2 MFs will be fired and the plant is controlled by a type-2 fuzzy

logic system. Smoother control signals will be generated, which help to eliminate

oscillations. Next, an analysis is performed in order to establish the computational

savings provided by the simplified type-2 FLC.

4.1.1 Computational Cost Comparison

The reduction in computational requirement comes about mainly because the sim-

plified structure enables type-reduction algorithm to be simplified. Consider a

simplified type-2 FLC where M out of the N rules contain only type-1 MF in the

antecedent. The remaining N −M rules have at least one type-2 fuzzy set in the

antecedent. There will, therefore, be M crisp firing strengths (f i, i = 1, 2, . . . , M)

and N −M interval firing strengths (f̃ j, j = M + 1, M + 2, . . . , N). In this case,
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Equation (2.4) reduces to :

Ycos(x) =

∫

y1∈Y i

. . .

∫

yN∈Y i

∫

f1∈F i(X)

. . .

∫

fN∈F i(X)

1

/ N∑
i=1

f iyi

N∑
i=1

f i

= [yl, yr] (4.1)

Ycos =

∑M
i=1 f iyi +

∑N
j=M+1 f̃ jyj

∑M
i=1 f i +

∑N
j=M+1 f̃ j

=
β +

∑N
j=M+1 f̃ jyj

α +
∑N

j=M+1 f̃ j

=
β

α
+

∑N
j=M+1 f̃ jyj − β

α

∑N
j=M+1 f̃ j

α +
∑N

j=M+1 f̃ j

=
β

α
+

∑N
j=M+1 f̃ j(yj − β

α
)

α +
∑N

j=M+1 f̃ j
(4.2)

where α =
∑M

i=1 f i, β =
∑M

i=1 f iyi.

Defining y′j and f̃N+1 as :

y′j =

{
yj − β

α
, j = M + 1, M + 2, . . . , N

0, j = N + 1

f̃N+1 = α

Equation (4.2) can be further simplified to :

Ycos =
β

α
+

∑N+1
j=M+1 y′j f̃ j

∑N+1
j=M+1 f̃ j

(4.3)

The second term in the right hand side of Equation (4.3),
∑N+1

j=M+1 y′j f̃j

∑N+1
j=M+1 f̃j

can be

calculated by the Karnik-Mendel iterative method. Once α and β are calculated,

the Karnik-Mendel type-reducer will converge in at most (N + 1 −M) iterations

because the number of interval firing strengths has been reduced from N to (N +

1−M).
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To further investigate the savings in computational cost provided by the sim-

plified type-2 FLCs, the computing requirements of one type-1 FLC (FLC1) and

three different type-2 FLCs (FLC2s, FLC2m, FLC2f ) are compared qualitatively.

The FLCs have two input signals (e and ė). Each input domain is characterized by

n fuzzy sets that are equally spaced and the consequent part is n2 distinct fuzzy

sets. FLC2s is a type-2 FLC where only the middle MF of ė is type-2 (corresponds

to Step 2 of the design procedure). Its input MFs are shown in Figure 4.1(a) and

Figure 4.1(d). The FOU of the type-2 set is determined by two length deml
and

demr . FLC2m is one where the middle MF of both e and ė are type-2. This FLC

is the result of Step 3 of the design procedure and its input MFs are shown in

Figure 4.1(c) and Figure 4.1(d). All the input MFs of FLC2f are type-2. The FOU

of each type-2 MF is defined by d = 1
n−1

. The performances of the three type-2

FLCs are compared with a type-1 FLC, whose MFs are shown in Figure 4.1(a)

and Figure 4.1(b).

The comparative study was performed by first dividing the domain of e, [−1, 1],

into 101 equally distributed points ei, where ei = 2(i−1)/100−1 (i = 1, 2, . . . , 101).

101 ėi are generated in the same way. Thus, all possible combinations of ei and

ėi yielded 10201 input pairs. Computational cost is evaluated by comparing the

time needed to find outputs for these 10201 inputs. All the experiments are done

by Matlab on a 996 MHz computer with 256 MB of RAM and Windows XP. The

Karnik-Mendel iterative type-reduction method used is standard routine down-

loaded from the web [85]. Table 4.1 shows the results for different values of n. The

data indicate that the computations for the proposed structure is completed in less

than half the time required for a full type-2 FLC. Computational savings is also
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much larger when n is small. Having shown that the computing requirements of

the simplified type-2 FLC is less, the control performance of the proposed structure

is examined in the following section.

Table 4.1: Computational cost of the four FLCs
n \ FLC FLC1 FLC2s FLC2m FLC2f

3 1.2 secs 2.0 secs 6.7 secs 10.4 secs

5 1.6 secs 2.5 secs 5.1 secs 10.3 secs

7 2.3 secs 3.7 secs 5.0 secs 12.0 secs

9 3.3 secs 5.6 secs 6.6 secs 15.0 secs

11 4.6 secs 8.6 secs 9.5 secs 19.6 secs

4.2 Liquid Level Control Experiments

In this section, the GA-based strategy that was employed to tune the parameters

of FLCs are described. Four FLCs (FLC13, FLC15, FLC2s and FLC2f ) are tested

on the coupled-tank system introduced in the previous Chapter.

4.2.1 Structure of the FLCs

To provide a common basis for comparison, FLC13, FLC2s and FLC2f have es-

sentially the same architecture. The only difference is that the input domains of

FLC13 (e and ė) are partitioned by type-1 sets, while that of the type-2 FLCs are

partitioned by at least one type-2 set. Each input domain is partitioned by three

fuzzy MFs that are labeled as N, Z and P. The output space (u̇) has five MFs

labeled as NB, NS, Z, PS and PB. As illustrated in Figure 2.1, a type-2 fuzzy

set can be obtained by blurring the MF of a baseline type-1 set. For a triangular

type-1 MF, there are at least two ways of blurring to obtain a type-2 MF. The

first is to keep the apex fixed while blurring the width of the triangle, as shown
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in Figure 2.1(a). The other way is to keep the width of the triangle fixed while

blurring the apex, as shown in Figure 2.1(b). The first approach is employed here.

Table 4.2 shows the fuzzy rule base used by the four FLCs. It is commonly used to

construct FLCs. The various fuzzy set operations adopted in this Chapter are the

sum-product inference engine, center-of-sets type-reducer and height defuzzifier.

Table 4.2: Rule base of FLC13, FLC2s and FLC2f

ėXXXXXe Nė Zė Pė

Ne NB NS Z
Ze NS Z PS
Pe Z PS PB

Since each type-2 set provides an extra mathematical dimension, the type-2

FLCs have more degrees of freedom than FLC13. To further study whether a type-

1 FLC with a similar number of design parameters will have similar performance

as a type-2 FLC, another type-1 FLC, FLC15, is introduced. It has five MFs in

each input domain. The rule base is shown in Table 4.3.

Table 4.3: Rule base of FLC15

ėPPPPe ė1 ė2 ė3 ė4 ė5

e1 u̇1 u̇2 u̇3 u̇4 u̇5

e2 u̇2 u̇3 u̇4 u̇5 u̇6

e3 u̇3 u̇4 u̇5 u̇6 u̇7

e4 u̇4 u̇5 u̇6 u̇7 u̇8

e5 u̇5 u̇6 u̇7 u̇8 u̇9

4.2.2 GA Coding Scheme and Parameters

In this section GAs are used to tune type-2 FLCs. First, the chromosome coding

scheme is described. Since the input domain of FLC13 is partitioned by three MFs,

three points are needed to determine the MFs of each input. The three points for

the e domain are Ne, Ze and Pe, as illustrated in Figure 4.2. Similarly, the three
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points that define the three sets for the ė domain are Nė, Zė and Pė. Another five

points are needed to determine the MFs of the output domain, u̇. Consequently,

there is a total of 11 parameters which need to be optimized by the GA.

Figure 4.3 shows the chromosome used by the GA, where the first 11 genes are

parameters of FLC13. The next two genes in the chromosome determine the FOU

of the only type-2 set used to partition the ė domain of FLC2s. They define the

amount by which the type-1 set is shifted (dė2l
and dė2r) to generate the FOU of

the type-2 fuzzy set. In the case of FLC2f , the input domains are partitioned by

6 type-2 sets so the chromosome has 19 genes, as shown in Figure 4.3. Finally

for FLC15, 5 parameters are needed to determine the MFs for each input and 9

parameters for the consequences. Thus each chromosome consists of 5×2+9 = 19

genes, the same as that of FLC2f .

eN eZ eP

22 e ld
22 e rd

Figure 4.2: Example MFs of e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19181715

Sub-chromosome of Sub-chromosome of Sub-chromosome of

Ne Ze Pe Ne
�

Ze
�

Pe
�

NB NS Z PS PB 2e ld �

2e ld2e rd �

2e rd 3e ld �

1e rd 3e ld1e rd �

e e
�

u
�

Figure 4.3: GA coding scheme of the FLCs

The fitness of each chromosome in the GA population is assessed by subjecting

the simulation model of the liquid level process described in the previous Chapter

to step inputs. The GA parameters and fitness function are the same as those in
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Chapter 3. The MFs of FLC13, FLC15, FLC2s and FLC2f evolved by GA are

shown in Figure 4.4 respectively from the top to the bottom. The parameters are

listed in Table 4.4.
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Figure 4.4: MFs of the four FLCs

4.2.3 Experimental Results

The results from the simulation and experimental study that was conducted to

assess the performance of the type-1 and type-2 FLCs evolved by GA are presented

here. The experiment configurations were the same as those in Chapter 3. The

responses are shown in Figures 4.5-4.8. Generally, all the type-2 FLCs outperform

their type-1 counterpart. It is also observed that the performances of the three

type-2 FLCs are similar, though they have different number of type-2 MFs. The

results suggest that some type-2 MFs are not necessary and the computational
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Table 4.4: MFs of FLC13, FLC2s and FLC2f

(a) MFs of e

Ne Ze Pe

FLC1 -9.0611 6.9846 16.0539
FLC2s -12.4578 8.6232 12.1405

-12.9137 3.9722 13.1283
FLC2f de1r = 7.0388 de2l

= 5.0656, de2r = 1.2868 de3l
= 2.4127

(b) MFs of ė

Nė Zė Pė

FLC1 -0.8093 -0.2884 1.0538
-0.0119

FLC2s -1.4505
dė2l

= 0.9002, dė2r = 0.4327
2.1192

-2.0186 0.6459 2.1534
FLC2f dė1r = 0.5479 dė2l

= 0.7091, dė2r = 0.5697 dė3l
= 0.7644

(c) MFs of u̇

NB NS Z PS PB
FLC1 -0.4985 -0.4362 0.1282 0.6613 0.9998
FLC2s -0.2906 -0.2130 0.1422 0.8490 0.8817
FLC2f -0.3967 -0.1702 0.1002 0.3802 0.9978
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Figure 4.5: Step responses when the setpoint was 15 cm
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Table 4.5: MFs of FLC15

(a) MFs of e

e1 e2 e3 e4 e5

-14.8778 -7.5460 -4.7217 7.7783 12.5710

(b) MFs of ė

ė1 ė2 ė3 ė4 ė5

-1.7824 -0.7799 -0.0387 0.8896 1.7115

(c) MFs of u̇

u̇1 u̇2 u̇3 u̇4 u̇5 u̇6 u̇7 u̇8 u̇9

-0.6755 -0.3771 -0.3381 -0.1142 -0.0543 0.0645 0.4632 0.4921 0.5194

cost can be reduced without sacrificing robustness by using type-1 MFs in place

of some type-2 MFs.
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Figure 4.6: Step responses when the setpoint was changed
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Figure 4.7: Step responses when the baffle was lowered
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Figure 4.8: Step responses when there was a 2 sec transport delay



57

4.3 Discussions

From Figures 4.5-4.8, it may be concluded that the simulation results of the four

FLCs are similar. However, the experimental results obtained using the type-2

FLCs generally coincide more than that of the type-1 FLCs. To provide quantita-

tive measure of the performances of the four FLCs, the ITAEs in Figures 4.5-4.8

are calculated and plotted in Figure 4.9. I, II, III and IV in horizontal axis stands

for Plant I, Plant II, Plant III and Plant IV in Table 3.3, respectively. Sum means

the sum of the ITAEs on the four plants. Note the ITAEs of FLC13 on the four

plants are considered as 100 per cent. The ITAEs of the other three FLCs are

calculated accordingly. Thus a smaller number in Figure 4.9 means a better per-

formance. It may be observed that the performances of the two type-2 FLCs are

much better than these of type-1 FLCs in the experiments. Especially, FLC2s

outperforms FLC15 even though FLC15 has 6 more design parameters. In fact,

five type-1 FLCs were optimized by GA and tested on the practical plant. Most of

them performed poorly. The responses either had long settling time or exhibited

persistent oscillations. FLC13 and FLC15 presented in the previous section are

the best ones chosen from these type-1 FLCs. Several type-2 FLCs from different

runs were also tested on the actual plant. The experimental results did not dif-

fer significantly from the simulation results. The trait is indicative of the superior

ability of type-2 FLCs to tolerate more modeling uncertainties. When a simulation

model is used to evaluate the GA candidate solutions, the type-2 FLCs will have

a higher probability of performing well on the actual plant.

Figure 4.10 shows the control surfaces of the four FLCs. The control surfaces

of the two type-2 FLCs are smoother than that of FLC13 around the origin (e =
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Figure 4.9: Comparison of the four FLCs on the four plants

0, ė = 0). The smoother control surface, especially around the origin, is the

reason why the type-2 FLCs are more robust (refer to Section 4.3). Note that the

control surface of FLC2s is similar to that of FLC2f , even though FLC2f has more

type-2 MFs. The control surfaces provide further evidence that there will not be

significant performance deterioration when the proposed simplified type-2 FLC is

used in place of a traditional type-2 FLC where all the input sets are type-2 MFs.

With the simplified architecture, the computational cost of resulting simplified

type-2 FLCs is much lower than a traditional type-2 FLC. The time taken by the

GA to evolve the four FLCs is shown in Table 4.6. The data was obtained using a

996 MHz computer with 256 MB of RAM. A 10000-step simulation (the setpoint

is 15+10sin(i/50), where i = 1, 2, . . . , 10000 is the time instant) using the evolved

FLCs was also run on the same computer and the computation time is shown in

Table 4.6. The results indicate that the computational cost of FLC2s is much

lower when compared with that of FLC2f . The experimental results presented in

this paper suggest that the simplified type-2 structure is suitable for real-time im-

plementation. It enables computational cost to be reduced without a degradation
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Figure 4.10: Control surface of the four FLCs
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in the control performance and the ability to handle modeling uncertainties.

Table 4.6: Comparison of computational cost
Item \ FLC FLC13 FLC15 FLC2s FLC2f

GA tuning (sec) 500 550 1200 4500
Simulation (sec) 1.28 1.40 3.19 11.70

4.4 Concluding Remarks

In this Chapter, a simplified type-2 FLC that is more suitable for real-time control

is proposed. A type-2 FLCs with simplified structure are designed for a coupled-

tank liquid level control process. It performance is compared with two type-1

FLCs and a traditional type-2 FLC. Experimental results show that the simplified

type-2 FLC outperforms the type-1 FLCs and has similar performance as the

traditional type-2 FLC. Analysis also indicates there will be at least 50% reduction

in computational cost if the simplified type-2 FLC is used in place of a traditional

type-2 FLC. It may, therefore, be concluded that the simplified type-2 FLC is

able to bring about computational savings without sacrificing the ability to handle

modeling uncertainties.



Chapter 5

Theory of Equivalent Type-1
FLSs (ET1FLSs)

Chapters 3 and 4 show that the FOUs provide type-2 FLSs with the potential to

outperform type-1 FLSs. However, how to choose the best FOU is still an open

question. Several researchers have demonstrated that GAs can be used to evolve

the FOU [64, 69, 71, 86, 87]. Unfortunately, there are no guidelines for designing

the FOU theoretically and it is unclear how the FOU enables type-2 FLSs to

differentiate themselves from their type-1 counterparts.

This Chapter aims at investigating how the extra degree of freedom provided by

the FOU enables type-2 FLSs to model more complex input-output relationships

than type-1 FLSs with the same number of MFs (resolution). The key idea is that a

type-2 FLS may be viewed as being equivalent to a group of type-1 FLSs, referred

to as equivalent type-1 fuzzy logic systems (ET1FLSs), as long as both systems

have identical input-output relationships. To identify the ET1FLSs that can be

used in place of a type-2 FLS, the FOU is first reduced into a group of equivalent

type-1 sets (ET1Ss). By analyzing the characteristics of the ET1Ss and ET1FLSs,

conclusions about the contributions of the extra mathematical dimension provided

by the FOU can be drawn.

The rest of this Chapter is organized as follows: Section 5.1 introduces the

definitions of ET1Ss and ET1FLSs. The algorithms for identifying ET1Ss and

61
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ET1FLSs for a type-2 FLS is also provided. The ET1Ss and ET1FLSs of differ-

ent type-2 fuzzy logic controllers (FLCs) are presented in Section 5.2. Section 5.3

discusses the relationships between ET1Ss (ET1FLSs) and the input-output rela-

tionships of type-2 FLCs. Finally, conclusions are drawn in Section 5.4.

5.1 ET1FLSs: Concepts and Identification

In the following sub-sections, the concepts of ET1FLSs and ET1Ss as well as the

identification procedures are described.

5.1.1 Concepts

Type-2 fuzzy sets are characterized by three-dimensional MFs. The third dimen-

sion is the FOU that models the uncertainties in the shape and position of the

fuzzy sets. A type-2 fuzzy set, Ã, can be thought of as a collection of embedded

type-2 fuzzy sets, Ãe. Associated with each Ãe is an embedded type-1 set Ae [?].

The ability of type-2 FLSs to produce more complex input-output maps than their

type-1 counterparts may be attributed to the extra degree of freedom provided by

the FOU. Unlike type-1 FLSs which utilize certain MFs, the output of a type-

2 FLS may be obtained via different embedded type-1 sets as the input vector

varies. Despite the additional flexibility, the input-output relationship of a type-2

FLS is fixed once the system parameters, type reducer and defuzzifier are selected.

This characteristics is shared by a type-1 FLS, suggesting that it is possible to use

type-1 fuzzy logic theory to construct a system that has the same input-output

map as a type-2 FLS. The resulting ET1FLSs provide a platform from which the

relationship between the FOU shape and the modeling capability of type-2 FLSs

can be analyzed.
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The operation of using type-1 fuzzy theory to duplicate the input-output map

of a type-2 FLS may be interpreted as identifying the appropriate embedded type-1

sets from among the countless such sets associated with the type-2 fuzzy sets that

partition the input and output domains. While the limitless number of embedded

type-1 sets enables a type-2 FLS to model more complex systems, it also makes

the job of identifying suitable embedded type-1 fuzzy sets more daunting. The

proposed methodology for deriving the ET1FLSs utilizes the following measures

to make the problem more amenable :

• The universes of discourses are discretized. This step will reduce the number

of embedded type-2 sets, and their embedded type-1 sets, to a finite number.

• A type-2 fuzzy set that is used in the rule base is selected and replaced by an

embedded type-1 set chosen arbitrarily from the collection associated to the

particular type-2 set. The process is repeated until all but one of the type-2

sets appearing in the fuzzy inference has been replaced.

Since embedded type-1 sets are pre-assigned to all but one type-2 set, ET1FLSs

can be derived by identifying type-1 MFs that can be used, in place of the last

type-2 fuzzy set, to maintain the input-output relationship of the type-2 FLS.

The technique of designating the embedded type-1 set for all but one type-2 set

is akin to amassing in one set, the degrees of freedom provided by all the type-2

sets. Multiple type-1 MFs will, therefore, be needed in order to maintain the same

level of flexibility. The ensuing collection of type-1 sets is referred to collectively

as ET1Ss. Having introduced the concepts qualitatively, the terms ET1FLSs and

ET1Ss are formally defined in Definition 1 and 2 respectively.
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Definition 1 Equivalent type-1 fuzzy logic systems is the group of type-1

FLSs that, together, has the same input-output relationship as a type-2 FLS. For a

type-2 FLS that has N type-2 fuzzy sets, an ET1FLS comprises of N −1 embedded

type-1 set and one equivalent type-1 set.

Definition 2 The concept of equivalent type-1 sets is defined as the collection

of type-1 sets that can be used in place of the FOUs in a type-2 FLS.

To illustrate the idea more clearly, consider a two-inputs (x1 and x2) single-

output (y) type-2 FLS. The inputs and output domains are each partitioned by N

triangular interval type-2 fuzzy sets, as shown in Figure 5.1(a). Although trian-

gular MFs are used in this example, the same procedure can be applied to type-2

FLSs with different MF shapes and thus the conclusions drawn herein can be gen-

eralized. Figure 5.1(b) shows the ET1FLSs. The pre-specified embedded type-1

fuzzy sets are shown as the thick bold lines and the remaining lines are the ET1Ss.

The procedure for identifying ET1Ss, and consequently the ET1FLSs, is delineated

in the next sub-section.

5.1.2 Procedure for Identifying ET1FLSs

Consider a n-inputs single-output type-2 FLS. Each input domain is partitioned

by Nj (j = 1, 2, . . . , n) type-2 fuzzy sets. Suppose the rule base has
n∏

j=1

Nj rules

(all possible combinations of input sets) and the consequent part of each rule is a

distinct type-2 fuzzy set. The first step in deriving ET1FLSs is to select the type-2

fuzzy set that will be reduced to ET1Ss and replacing all other type-2 fuzzy sets

by embedded type-1 sets. Assume that ET1Ss are to be found to replace Ãkl, the
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(b) (3N −1) type-2 sets are replaced by (3N −1) embedded type-1 sets, respec-
tively. The remaining type-2 set is replaced by the ET1Ss of the type-2 FLS.
Thus the ET1FLSs of the type-2 FLS are found. Each ET1FLS has (3N − 1)
embedded type-1 sets and one of the ET1Ss as its MFs

Figure 5.1: The procedure for identifying ET1FLSs for a type-2 FLS
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lth type-2 set in the kth input domain. The
n∏

j=1(j 6=k)

Nj rules in the rule-base that

contain Ãkl become

Ri1i2... l...in : If x1 is Ae,1i1 , x2 is Ae,2i2 , . . . , xk is AET1S,kl . . . , and xn is

Ae,nin , then y is Yi1i2...l...in .

while the remaining rules in the rule-base may be expressed as

Ri1i2...ik...in : IF x1 is Ae,1i1 , . . . , xk is Ae,kik , . . . , and xn is Ae,nin ,

THEN y is Yi1i2...ik...in .

where Ae,jij is the embedded type-1 set selected to replace Ãjij (j = 1, . . . , k, . . . , n,

ij = 1, . . . , Nj, ik 6= l) and Yi1i2...in is a singleton located at the mid-point of the

generalized centroid (an internal type-1 set) for the corresponding type-2 conse-

quent set. Using sum-product inference and height defuzzification, the output of

the ET1FLS may be expressed as

yE =

N1∑

i1=1

. . .

Nk∑

ik=1(ik 6=l)

. . .

Nn∑

in=1

f1i1 . . . fkik
. . . fnin Yi1...ik...in

N1∑

i1=1

. . .

Nk∑

ik=1(ik 6=l)

. . .

Nn∑

in=1

f1i1 . . . fkik
. . . fnin +

N1∑

i1=1

. . .

Nk−1∑

ik−1=1

Nk+1∑

ik+1=1

. . .

Nn∑

in=1

f1i1 . . . f(k−1)ik−1
fklf(k+1)ik+1

. . . fnin

+

N1∑

i1=1

. . .

Nk−1∑

ik−1=1

Nk+1∑

ik+1=1

. . .

Nn∑

in=1

f1i1 . . . f(k−1)ik−1
fklf(k+1)ik+1

. . . fnin Yi1...ik−1 l ik+1...in

N1∑

i1=1

. . .

Nk∑

ik=1(ik 6=l)

. . .

Nn∑

in=1

f1i1 . . . fik
. . . fnin +

N1∑

i1=1

. . .

Nk−1∑

ik−1=1

Nk+1∑

ik+1=1

. . .

Nn∑

in=1

f1i1 . . . f(k−1)ik−1
fklf(k+1)ik+1

. . . fnin

(5.1)

where fjij is the firing level of the ijth embedded type-1 set in the jth input

domain and fkl is the firing level of the ET1S. As shown in Figure 5.2, the task

of identifying ET1Ss essentially boils down to identifying a point on the MF of

the ET1S fkl = feq, referred to as equivalent type-1 membership grade (ET1MG).

Suppose the crisp output of the n-inputs single-output type-2 FLS corresponding

to the input vector [x1, x2, ...xn] is y. Since the output should not be affected

when the type-2 FLS is switched to its ET1S, fkl = feq must be selected such that
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yET1FLS = y. Consequently, the mathematical expression for calculating fkl = feq

can be derived by substituting yE by y in Equation (5.1) and then solving for feq.

The resulting expression is

feq =

N1∑
i1=1

. . .

Nk∑

ik=1,ik 6=l

. . .
Nn∑

in=1

f1i1 . . . fnin(y − Yi1...ik...in)

N1∑
i1=1

. . .

Nk−1∑
ik−1=1

Nk+1∑
ik+1=1

. . .
Nn∑

in=1

f1i1 . . . f(k−1)ik−1
f(k+1)ik+1

. . . fnin(Yi1...ik−1l ik+1...in − y)

(5.2)

( 1)k lA −

�

klA
�

( 1)k lA +

�

( 1)kk lf −

kx
lowerf

upperf
eqf

Figure 5.2: Illustration of feq, the ET1MG

Each ET1MG, feq, re-produces a point on the input-output map. A ET1S is

identified by applying Equation (5.2) repeatedly for all discrete points in the kth

input domain, assuming that xi (i = 1, . . . , n, i 6= k) are constants. Geometrically,

a ET1S generates a plane on the input-output map of a type-2 FLS where xi (i =

1, . . . , n, i 6= k) are constants. By repeating the procedure for other planes in the

input-output map the complete group of ET1Ss can be obtained. In summary,

the procedure for finding ET1FLSs of a n-inputs single output type-2 FLS is as

follows :-

1. Discretize each input domain into Nj (j = 1, 2, . . . , n) points.



68

2. Equate Yi1i2...in (ij = 1, 2, . . . , Nj), the singleton output sets of the ET1FLSs,

to the mid-point of the interval type-1 set that is the generalized centroid of

the type-2 sets that partition the output domain.

3. Replace all but one (assume it is the lth input set in kth input domain)

type-2 sets used to characterize the input domains with embedded type-1

sets. The embedded type-1 sets can be arbitrarily selected from the collection

associated with the type-2 fuzzy set.

4. Apply Equation (5.2) recurrently to generate the ET1S corresponding to a

plane of the input-output map where xi (i = 1, . . . , n, i 6= k) are constants.

5. An ET1FLS is obtained by using the embedded type-1 sets and one of the

ET1Ss as its MFs. Repeat step (4) for other planes in the input-output map

of the type-2 FLS.

5.2 ET1FLSs of Type-2 FLCs

Having introduced the concepts of ET1Ss and ET1FLSs, they will be used to

analyze the characteristics of type-2 FLSs. Fuzzy logic controllers (FLCs) are

selected for this study because fuzzy control is one of the most common applications

of FLSs. First, a baseline type-1 FLC is introduced. Type-2 FLCs are then

obtained by introducing FOU to the baseline type-1 fuzzy sets.

Consider the baseline type-1 Proportional plus Integral (PI) FLC that has two

inputs (e and ė) and one output (u̇). It is assumed that each input domain consists

of three type-1 MFs, shown as the dark thick lines in Figure 5.3. The rule base

has 9 rules and assumes the following form :
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Rij: If e is ei and ė is ėj, then u̇ is u̇ij. i, j = 1, 2, 3

where

u̇ij = KI · P1i + KP · P2j i, j = 1, 2, 3 (5.3)

P1i is the apex of MF ei, and P2j is the apex of MF ėj, as illustrated in Figure 5.3.

The baseline type-1 FLC realizes the PI control law u̇ = KI · e+KP · ė [88], where

KI and KP are the integral and proportional gains respectively.

1e
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2e
�

3e
�

11uf

11lf
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12uf

12lfeqf
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12d 12d 12d'e

12f

(a) MFs of e

1e
�

�

2e
�

�

3e
�

�

21f21uf

21lf

22f
22lf

22uf

2 1P 22P 23P
22d 22d22d

'e
�

(b) MFs of ė

Figure 5.3: Input MFs of the baseline type-1 FLC and a type-2 FLC where all the
MFs are type-2

The results presented in this section were obtained when the FLC parameters

assume the values listed in Table 5.1. Table 5.2(a)-(c) contains the rule-bases for

the various PI configurations. Using product-sum inference and height defuzzifi-

cation, the output of the baseline type-1 FLC may be expressed as :

u̇type−1 =

3∑
i=1

3∑
j=1

f1if2ju̇ij

3∑
i=1

3∑
j=1

f1if2j

(5.4)

where fli (flj) is the firing level of the ith (jth) fuzzy set in the lth (l = 1, 2) input

domain.

A type-2 FLC is obtained by equipping the six fuzzy sets used to partition the
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Table 5.1: Parameters of the FLCs used in the analysis.
P11 = −1, P12 = 0, P13 = 1
P21 = −1, P22 = 0, P23 = 1
KP = 1, KI = {0.5, 1, 2}

Table 5.2: The different rule bases when KI changes

(a) KI = 0.5

ėPPPPPe ė1 ė2 ė3

e1 −1.5 −0.5 0.5
e2 −1 0 1
e3 −0.5 0.5 1.5

(b) KI = 1

ėPPPPPe ė1 ė2 ė3

e1 −2 −1 0
e2 −1 0 1
e3 0 1 2

(c) KI = 2

ėPPPPPe ė1 ė2 ė3

e1 −3 −2 −1
e2 −1 0 1
e3 1 2 3
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input domains of the baseline type-1 FLC with FOUs, shown as the shaded areas

in Figure 5.3. The output sets are defined in Table 5.2. By first reducing all type-2

sets, with the exception of ẽ2, to embedded type-1 sets that have the same shape

as the baseline type-1 fuzzy sets, the ET1FLSs associated with the type-2 FLC are

identified. ẽ2 is then replaced by ET1Ss that are found by calculating the ET1MGs

(feq) using Equation (5.5), which is derived by setting feq = f12, u̇type−1 = u̇type−2

and re-arranging Equation (5.4).

feq =

3∑
j=1

f11f2j(u̇type−2 − u̇1j) +
3∑

j=1

f13f2j(u̇type−2 − u̇3j)

3∑
j=1

f2j(u̇2j − u̇type−2)

(5.5)

where fij (i = 1, 2, j = 1, 2, 3) is the amount by which the embedded type-1 fuzzy

sets are fired and u̇type−2 is the output of the type-2 FLC. Each ET1S reproduces the

slice of the input-output map where ė is constant. Figure 5.4 shows the ET1FLSs of

the type-2 FLC when KI = 2 and d1 = d2 = 0.1. When KI = 2 and d1 = d2 = 0.2,

the ET1FLSs are plotted in Figure 5.5. The rule base used here is shown in

Table 5.2(c).

In order to examine how the ET1Ss shapes vary with the number of type-2

fuzzy sets used to construct the FLC, the simplest form of type-2 FLC comprising

of only one type-2 fuzzy set is analyzed. Figure 5.6 shows the antecedent fuzzy sets

of the type-2 FLC. The output sets remain unchanged. As there is only one type-2

fuzzy set, the step where embedded type-1 sets are specified may be skipped. The

ET1Ss are still calculated using Equation (5.5), where fij (i = 1, 2, j = 1, 2, 3) is

now the membership grades of type-1 fuzzy sets shown in Figure 5.6. ET1FLSs

of the simplified type-2 FLC when different KI values are used to set up the
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Figure 5.4: ET1FLSs of a type-2 FLC whose MFs are all type-2. KI = 2, d1 =
d2 = 0.1.
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Figure 5.5: ET1Ss of a type-2 FLC whose MFs are all type-2. KI = 2, d1 = d2 =
0.2.
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consequent fuzzy sets are shown in Figure 5.7. Only the MFs of the e domain are

plotted because the MFs of ė are those shown in Figure 5.6(b). Both the FOU and

the ET1Ss are plotted to better illustrate their relationships. The corresponding

input-output maps of the various FLCs are shown in Figure 5.8.
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Figure 5.6: Input MFs of the simplified type-2 FLC
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Figure 5.7: ET1Ss of the simplified type-2 FLC shown in Figure 5.6 with different
consequents.
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Figure 5.8: Input-output map of the simplified type-2 FLC shown in Figure 5.6
with different consequents



76

Lastly, the relationship between the ET1Ss characteristics and the shape of

the FOU is examined via FLCs that partition the input domains using the fuzzy

sets shown in Figure 5.9. In this case, the ET1FLSs and the input-output maps

of various type-2 FLCs with the output sets tabulated in Table 5.2 are shown in

Figure 5.10 and Figure 5.11.
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Figure 5.9: Input MFs of the simplified type-2 FLC with different shape of FOU

5.3 Analysis and Discussions

This section aims at analyzing the properties of type-2 FLS using the ET1FLSs

and ET1Ss shown in Figs. 5.7 and 5.10.

5.3.1 Relationship between ET1MG and the Type-2 FLC
Output

The input-output maps of type-2 FLSs shown in Figs. 5.8 and 5.11 are clearly

nonlinear and more complex than a type-1 FLC that is equivalent to a PI controller.

To analyze the relationship between the ET1MG, feq, and the output of the type-2

FLC shown in Figure 5.6, consider the following equation obtained by re-arranging
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Equation (5.5) :

u̇type−2 =

f11

3∑
j=1

f2ju̇1j + feq

3∑
j=1

f2ju̇2j + f13

3∑
j=1

f2ju̇3j

(f11 + feq + f13) · (f21 + f22 + f23)
(5.6)

where u̇type−2 is the output of the type-2 FLC, fij (i = 1, 2, j = 1, 2, 3) is the firing

level of the jth type-1 fuzzy sets in the ith input domain and feq is the ET1MG

for the set ẽ2.
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Figure 5.10: ET1Ss of the simplified type-2 FLC shown in Figure 5.9 with different
consequents
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Figure 5.11: Input-output map of the simplified type-2 FLC shown in Figure 5.9
with different consequents
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Substituting uij by Equation (5.3), the derivative of u̇type−2 (slope of the type-2

FLS) with respect to feq can be expressed as :

ütype−2 =
KI [f11(P12 − P11) + f13(P13 − P12)]

(f11 + feq + f13)2
(5.7)

Equation (5.7) indicates that |ü| is inversely proportional to feq. Hence, the

slope of u̇type−2 will be steeper than the baseline type-1 FLC when feq is smaller

than the amount by which the type-1 set is activated. As the membership grades of

the ET1Ss can be bigger or smaller than that of the baseline type-1 MF, the input-

output map of a type-2 FLC may have slopes that are steeper or gentler. This

conclusion is in-line with the findings drawn from Figure 5.12. The diagram shows

two slices of the input-output maps corresponding to different ė and KI . When

KI = 2, d1 = 0.6 and e ∈ (0, 0.8), the slice of the input-output map of the type-2

FLC is above that of the baseline type-1 FLC in Figure 5.12. Analogously, the

ET1Ss are below the baseline type-1 set (Refer to Figure 5.7(c)). Another obser-

vation is the ET1Ss intersect the baseline type-1 set at three points e = {0,±0.8}

in Figure 5.7. The two slices of the input-output map of the corresponding FLCs,

in Figure 5.12, also intersect at these 3 points.

Furthermore, the ET1Ss in Figs. 5.7 and 5.10 illustrate that a larger FOU gives

rise to a more complex input-output relationship. This observation is consistent

with intuitions. When the FOU is bigger, the difference between f12u and f12l is

larger (refer to Figure 5.6), which may result in more diverse output and hence

more complex input-output map. The various ET1Ss will also be more diverse.
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Figure 5.12: Illustration of the slope of the input-output map

5.3.2 Properties of the ET1Ss

The MFs of the type-2 FLCs studied in this Chapter is symmetric. When KP = 1,

KI = 0.11 and d1 = 0.5, as shown in Figure 5.13, the ET1S for ė = 0 is also

symmetric. However, the ET1S when ė = −0.2 is symmetric to the one when

ė = 0.2. It may be concluded that, taken as a group, ET1Ss are symmetric if

the corresponding type-2 set is symmetric. Otherwise, the ET1Ss will not be

symmetric.

Another important property is the ET1Ss may not lie within the FOU of the

corresponding type-2 set. Moreover, the ET1MGs of the ET1Ss may be larger

than 1 or smaller than 0. ET1Ss with some ET1MGs that are larger than the

upper membership grade are illustrated in Figure 5.13. More interesting ET1Ss

are presented in Figure 5.14(a), where some of the ET1MGs of the ET1Ss are

negative. To provide insights into why ET1MGs may assume negative values,

consider the input pair e = −0.2, ė = 0.2. The slice of the input-output map

where ė = 0.2 is shown in Figure 5.14(b). The point of interest is labelled by a

square. In this case, the input vector fires the sets e1, ẽ2, ė2 and ė3 by the following
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Figure 5.13: Illustration of symmetry

amounts :

e1 : f11 = 0.2

ẽ2 : f̃12 = [0, 0.8889]

ė2 : f22 = 0.8

ė3 : f23 = 0.2

Thus, rules in the rule base are activated with the following strengths :

Rule No: Firing Strength → Consequent

R12 : f11 × f22 = 0.16 → −0.2

R13 : f11 × f23 = 0.04 → 0.8

R22 : f̃12 × f22 = [0, 0.7111] → 0

R23 : f̃12 × f23 = [0, 0.1778] → 1

For the type-2 FLS, the bounds of the type-reduced interval type-1 set obtained
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using the Karnik-Mendel type-reducer [?] and the resulting crisp output are :

yl =
−0.16× 0.2 + 0.04× 0.8 + 0× 0 + 0× 1

0.04 + 0.16 + 0 + 0
= 0

yr =
−0.16× 0.2 + 0.04× 0.8 + 0× 0 + 0.1778× 1

0.04 + 0.16 + 0 + 0.1778
= 0.4722

u̇ =
yl + yr

2
= 0.2361 (5.8)

Suppose the ET1MG of the interval firing strength f̃e2 = [0, 0.8889] is feq. Then,

the rules in the ET1FLS are activated by the following amount :

Rule No: Firing Strength → Consequence

R12 : f11 × f22 = 0.16 → −0.2

R13 : f11 × f23 = 0.04 → 0.8

R22 : feq × f22 = 0.8feq → 0

R23 : feq × f23 = 0.2feq → 1

The expression governing the output of the ET1FLS is :

u̇ET1FLS =
0.16×−0.2 + 0.04× 0.8 + 0.8feq × 0 + 0.2feq × 1

0.16 + 0.04 + 0.8feq + 0.2feq

=
0.2feq

0.2 + feq

(5.9)

When feq is positive, the output of the ET1FLS, u̇ET1FLS, will increase and tend

towards 0.2 as feq → +∞ i.e.

lim
feq→+∞

0.2feq

0.2 + feq

= 0.2

Since the maximum u̇ET1FLS value is 0.2 if feq is constrained to be positive, the

resulting ET1FLS will not be able to replicate the crisp output of the type-2 FLC

which is 0.2361 (Equation (5.8)). The only way for the outputs of the ET1FLS

and the type-2 FLS to match is for feq to take on the negative value −1.3080. This
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analysis indicates that the extra dimension provided by the FOU enables a type-2

FLC to produce outputs that cannot be achieved by traditional type-1 FLCs.

From the above analysis, there are two main differences between type-1 and

type-2 FLCs. Firstly, a type-2 FLC can be viewed as a combination of many

different ET1FLSs. A different ET1FLS is utilized when the input is changed.

Secondly, a type-2 FLC may give rise to an ET1MG that is negative or larger than

unity. These two characteristics of a type-2 FLC enable it to model more complex

input-output relationships than its type-1 counterpart. The input-output map of a

type-2 FLC may not be achieved by a type-1 FLC with the same number of MFs.

5.3.3 Discontinuities in the Input-Output Map of Type-2
FLCs

Unlike the input-output map of a type-1 FLC, which is always piecewise continu-

ous, the input-output map of a type-2 FLC may have discontinuities under certain

circumstances. A detailed input-output map of the type-2 FLC shown in Figure 5.3

with d1 = d2 = 0.6 and KI = KP = 1 is illustrated in Figure 5.15(a). From the

slice of input-output map when ė = 0 shown in Figure 5.15(b), it may be observed

that discontinuities occur when ė = 0 and e = ±0.6.

To establish the condition under which discontinuities occur, the discontinuity

that occurs at (e, ė) = (−0.6, 0) is examined. Consider input pairs of the form

(e, ė) = (−0.6 + ω, 0), where ω ∈ [0, 0.2]. This range of ω is chosen because the

analysis is simpler as the firing level of the lower MF of ẽ2 is always 0. The firing
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levels of the MFs shown in Figure 5.16 are :

f̃11 = [0, 1.2−ω
1.6

] f̃21 = [0, 0.3750]

f̃12 = [0, 1+ω
1.6

] f̃22 = [1, 1]

f̃13 = [0, ω
1.6

] f̃23 = [0, 0.3750]

(5.10)
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Figure 5.16: Input MFs of the type-2 FLC shown in Figure 5.6 with d1 = d2 = 0.6

Although the rule base given in Table 5.2(b) consists of 9 rules, there are only

5 distinct consequent sets. Since fuzzy union is implemented as mathematical

addition, the firing levels of the rules with the same consequence can be summed.

Therefore, the activation levels of the 5 consequents are as follows :

Firing Strength → Consequent

f̃11 × f̃21 = [0, 0.3750(1.2−ω)
1.6

] → −2

f̃11 × f̃22 + f̃12 × f̃21 = [0, 1.5750−0.6250ω
1.6

] → −1

f̃11 × f̃23 + f̃12 × f̃22 + f̃13 × f̃21 = [0, 1.45+ω
1.6

] → 0

f̃12 × f̃23 + f̃13 × f̃22 = [0, 0.3750+1.3750ω
1.6

] → 1

f̃13 × f̃23 = [0, 0.3750ω
1.6

] → 2

(5.11)

The output of the inference engine is :

Y =
−2× f1 − 1× f2 + 0× f3 + 1× f4 + 2× f5

f1 + f2 + f3 + f4 + f5

= [yl, yr] (5.12)
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where yl is the lower bound of the interval type-1 set Y , yr is the upper bound of

Y and

f1 ∈ [0, 0.3750(1.2−ω)
1.6

]

f2 ∈ [0, 1.5750−0.6250ω
1.6

]

f3 ∈ [0, 1.45+ω
1.6

]

f4 ∈ [0, 0.3750+1.3750ω
1.6

]

f5 ∈ [0, 0.3750ω
1.6

]

Equation (5.12) can be simplified to :

Y =
−2f1 − f2 + f4 + 2f5

f1 + f2 + f3 + f4 + f5

= [yl, yr] (5.13)

yl and yr are, respectively, the smallest and largest values in the set found

by substituting all possible combinations of points in the firing sets into Equa-

tion (5.13). Since the lower bounds of the firing sets are all zeros, the smallest

value in the set Y corresponds to the case where only the fi corresponding to the

smallest coefficient is non-zero and all other fi are zeros. This may be understood

as that only the rules with the smallest consequent are fired while the firing levels

of all other rules are zero. In the numerator of Equation (5.13), f1 has the smallest

coefficient. Furthermore, f1 = 0.3750(1.2−ω)
1.6

> 0 when ω ∈ [0, 0.2] so the mini-

mum value correspond to the case where only f1 is non-zero and positive. Setting

f2 = f3 = f4 = f5 = 0 in Equation (5.13), yl = −2f1−f2+f4+2f5

f1+f2+f3+f4+f5
= −2f1

f1
= −2.

Similar arguments can be made to deduce yr. In this case the fi corresponding

to the largest coefficient should be non-zero while all other fi are zeros. f5 has the

largest coefficient in the numerator of Equation (5.13). When f1 = f2 = f3 = f4 =

0 and ω 6= 0 such that f5 = 0.3750ω
1.6

> 0, yr = −2f1−f2+f4+2f5

f1+f2+f3+f4+f5
= 2f5

f5
= 2. However,

the derivation fails when ω = 0 because f5 = 0. For the special case of ω = 0,
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the combination of fi terms that produces yr is f4 > 0 and f1 = f2 = f3 = 0 so

yr = −2f1−f2+f4+2f5

f1+f2+f3+f4+f5
= f4

f4
= 1. In summary :

yl = −2, w ∈ [0, 0.2] (5.14)

and

yr =

{
1, w = 0

2, w ∈ (0, 0.2]

(5.15)

Consequently, the output u̇ is :

u̇ =
yl + yr

2
=

{ −2+1
2

= −0.5, w = 0

−2+2
2

= 0, w ∈ (0, 0.2]

(5.16)

Equation (5.16) indicates that there is a discontinuity at ω = 0 or e = −0.6 +

ω = −0.6. The analytical result is consistent with the findings from the plots shown

in Figure 5.15(b). This study indicates that the discontinuities in the input-output

map may occur at the point where the lower bounds of all the firing sets are zeros

and the upper bound of the firing set corresponding to the largest or smallest

consequent changes from zero to a positive value.

5.4 Concluding Remarks

In this Chapter, the original concepts of ET1Ss and ET1FLSs are introduced and

the procedures to identify them are proposed. ET1Ss and ET1FLSs are then used

as a tool for analyzing the characteristics of type-2 FLS. The study demonstrated

that the FOU may be viewed as a collection of ET1Ss. For a given input vec-

tor, the type-reducer chooses a corresponding ET1FLS. Since type-2 FLSs has

the ability to switch between its ET1FLSs according to the input, more com-

plex input-output map than that of a single type-1 FLS can be modeled. Results
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reported herein may also help in determining the best FOU and designing new

type-reducers to meet specific requirements. In addition, the concepts of ET1Ss

and ET1FLSs provide a framework for extending the entire wealth of type-1 fuzzy

control/identification/design/analysis techniques to type-2 systems.



Chapter 6

Analysis of Interval Type-2 Fuzzy
PI Controllers

It has been shown in Chapters 3 and 4 that the control surface of a type-2 FLC

may be smoother than its type-1 counterpart, especially in the area around the

origin. This may be the reason why type-2 FLCs are generally better able to

eliminate oscillations. Utilizing the concept of ET1Ss proposed in Chapter 5, the

control surface of a type-2 FLC can be analyzed mathematically.

This Chapter focuses on using ET1Ss as a tool for analyzing the characteristics

of a type-2 fuzzy Proportional plus Integral (PI) controller. The work is meaningful

as control engineering is one of the most active and fruitful application of fuzzy set

theory. The analysis is performed by first determining the equivalent PI gains in

a fuzzy partition. By examining the equivalent PI gains, insights into why type-2

FLCs are better at handling modeling uncertainties are obtained.

The rest of this Chapter is organized as follows: Section 6.1 introduces the type-

2 fuzzy PI controller used in this paper. A theorem on how shifting the consequent

sets affect the output of a type-2 FLS is also introduced. Section 6.2 presents the

equivalent Proportional and Integral gains of the type-2 fuzzy PI controller. The

equivalent Proportional and Integral gains are then used to explain several traits

of the type-2 fuzzy PI controller in Section 6.3. Finally, conclusions are drawn in

Section 6.4.

91
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6.1 Type-2 Fuzzy PI Controllers

The structure of the type-2 fuzzy PI controller analyzed in this Chapter is similar

to the Mamdani FLC. The two inputs are also e and ė, and the output signal is

u̇. Instead of type-1 sets, the e and ė domains are partitioned by interval type-2

fuzzy sets, as illustrated in Fig. 6.1. The consequent part of the fuzzy rules in the

inference engine are type-1 fuzzy sets with centroid located at

u̇ij = KI · Pei
+ KP · Pėj

i, j = 1, 2, . . . , N (6.1)

where KP and KI are constants. Pei
and Pėj

are the apexes of the embedded type-

1 sets lying midway between the upper and lower MFs (the bold lines in Fig. 6.1).

The architecture of the type-2 fuzzy PI controller is designed such that it reduces

to a type-1 FLC, whose behavior is well-known, when the FOUs reduce to zero. In

this case, the type-1 FLC obtained when FOU = 0 is equivalent to a PI controller,

with proportional and integral gains of KP and KI respectively, under “Product-

Sum-Gravity Method” inference. The type-1 FLC is used as a basis for studying

the behavior of a type-2 fuzzy PI controller. Before presenting the main results, a

theorem showing that the output of a type-2 FLS may be shifted is introduced.

1e 2e 1Ne − Ne

1eP
2eP

1NeP
− NeP

Upper MFs

Lower MFs

(a) Input MFs of e

1e
�

2e
�

1Ne −
�
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�

1e
P�

2eP�

1NeP
−

�

NeP�

Upper MFs

Lower MFs

(b) Input MFs of ė

Figure 6.1: Input MFs of the fuzzy PI controllers
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6.1.1 Shift Property

Theorem 1 Let F̃LS1 be a N-inputs single-output type-2 FLS whose inference

engine comprises q rules of the following form :

R̃i1i2...iN
1 (R̃k

1) : If x1 is X̃i1 and x2 is X̃i2 and · · · and xN is X̃iN

then y is Y1,i1i2...iN

X̃ij (j = 1 . . . N) are interval type-2 fuzzy sets that partition the N input domains.

Y1,i1i2...iN is a type-1 fuzzy set whose centroid is located at Yk (k = 1, . . . , q). It is

assumed that the rules are enumerated such that Y1 < . . . < Yk < . . . Yq.

Suppose F̃LS2 is another type-2 FLS whose input spaces are characterized by

exactly the same type-2 fuzzy sets as F̃LS1. The q consequent sets are the output

sets for F̃LS1 shifted uniformly by a non-zero constant γ (γ may be positive or

negative). In summary, the q rules of F̃LS2 assume the following form :

R̃i1i2...iN
2 (R̃k

2) : If x1 is X̃i1 and x2 is X̃i2 and · · · and xN is X̃iN

then y is Y2,i1i2...iN

The centroids for Y2,i1i2...iN are located at Yk − γ.

Then, for the same input vector (x1, x2, . . . , xN), the output of F̃LS2 (y
F̃LS2

) is

equal to y
F̃LS1

−γ, where y
F̃LS1

is the output of F̃LS1. ¥

Proof : Suppose the input vector is (x1, x2, . . . , xN). Then, the firing set asso-

ciated with the kth (R̃i1i2...iN
1 ) rule of F̃LS1 is the interval type-1 set

f̃k = [f
k
(x1, x2, . . . , xN), fk(x1, x2, . . . , xN)] ≡ [f

k
, fk] (6.2)

where f
k

= µ
X̃i1

(x1) ? . . . ? µ
X̃iN

(xN) and fk = µX̃i1
(x1) ? . . . ? µX̃iN

(xN). Using

center-of-sets type reduction, the type-reduced output set of F̃LS1 is the following
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interval type-1 set :

[y
F̃LS1,l

, y
F̃LS1,r

] =

∫

f1∈[f
1
,f1]

. . .

∫

fq∈[f
q
,fq ]

1

∣∣∣∣
∑q

k=1 fkYk∑q
k=1 fk

(6.3)

The Karnik-Mendel iterative method is usually used to determine the bounds.

y
F̃LS1,l

and y
F̃LS1,r

are, respectively, the smallest and largest centroid of all the

embedded type-1 sets associated with the type-2 output set. It has been proved

that the embedded type-1 sets that lead to y
F̃LS1,l

and y
F̃LS1,r

only involve the

lower and upper MFs, and there is only one switch between them [89,90]. Hence,

y
F̃LS1,l

and y
F̃LS1,r

can be expressed mathematically as follows :

y
F̃LS1,l

= min
L∈1,...,q

(∑L
k=1 fkYk +

∑q
k=L+1 f

k
Yk∑L

k=1 fk +
∑q

k=L+1 f
k

)
(6.4a)

y
F̃LS1,r

= max
R∈1,...,q

(∑R
k=1 f

k
Yk +

∑q
k=R+1 fkYk∑R

k=1 f
k
+

∑q
k=R+1 fk

)
(6.4b)

The defuzzified output of F̃LS1 is then

y
F̃LS1

=
y

F̃LS1,l
+ y

F̃LS1,r

2
(6.5)

Since the antecedents for both FLSs are identical, the firing set associated with

the kth (R̃i1i2...iN
2 ) rule of F̃LS2 is the expression in Equation (6.2). The centroids

of the consequent type-1 sets are uniformly shifted by γ so the bounds of the
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type-reduced output set is :

y
F̃LS2,l

= min
L∈1,...,q

(∑L
k=1 fk(Yk − γ) +

∑q
k=L+1 f

k
(Yk − γ)

∑L
k=1 fk +

∑q
k=L+1 f

k

)

= min
L∈1,...,q

(∑L
k=1 fkYk +

∑q
k=L+1 f

k
Yk∑L

k=1 fk +
∑q

k=L+1 f
k

− γ

)

= min
L∈1,...,q

(∑L
k=1 fkYk +

∑q
k=L+1 f

k
Yk∑L

k=1 fk +
∑q

k=L+1 f
k

)
− γ

= y
F̃LS1,l

− γ (6.6a)

y
F̃LS2,r

= max
R∈1,...,q

(∑R
k=1 f

k
(Yk − γ) +

∑q
k=R+1 fk(Yk − γ)

∑R
k=1 f

k
+

∑q
k=R+1 fk

)

= y
F̃LS1,r

− γ (6.6b)

Thus, the output of F̃LS2 is :

y
F̃LS2

=
y

F̃LS2,l
+ y

F̃LS2,r

2
=

y
F̃LS1,l

− γ + y
F̃LS1,r

− γ

2
=

y
F̃LS1,l

+ y
F̃LS1,r

2
−γ = y

F̃LS1
−γ

(6.7)

which is the output of F̃LS1 shifted by γ. ¥

The theorem is useful because the input-output relationship corresponding to

a particular fuzzy partition of a FLS may be analyzed by shifting the input sets

to a more convenient point i.e.

y
F̃LS1

(x1, . . . xN) = y
F̃LS2

(x′1, . . . x
′
N)− γ (6.8)

where xi = x′i − Γi (i = 1, . . . , N) and Γi is a constant.

Consider the type-2 fuzzy PI controller described in Section 6.1, and denoting

it as F̃LC1. Suppose the input vector (e, ė), where Pei
≤ e ≤ Pei+1

and Pėj
≤ ė ≤

Pėj+1
, fires the four type-2 sets labeled as ẽi, ẽi+1, ˜̇ej and ˜̇ej+1 in Fig. 6.2(a). The

shaded regions are the FOU, while the dark thick lines are the MFs of type-1 sets

when FOU is reduced to zero. As defined by Equation (6.1), the consequent sets



96

are type-1 fuzzy sets whose centroids are located at :

u̇i,j = KIPei
+ KP Pėj

u̇i+1,j = KIPei+1
+ KP Pėj

u̇i,j+1 = KIPei
+ KP Pėj+1

u̇i+1,j+1 = KIPei+1
+ KP Pėj+1

Consider another type-2 fuzzy PI controller (F̃LC2) with antecedent sets shown in

Fig. 6.2(b). The type-2 sets are generated by shifting the input sets of F̃LC1 (ẽi,

ẽi+1, ˜̇ej and ˜̇ej+1) such that the resulting fuzzy partition is centered at the origin.

Let the centroids of the consequent sets for F̃LC2 be :

u̇′i,j = KIP
′
ei

+ KP P ′
ėj

= KI(Pei
− de) + KP (Pėj

− dė) = u̇i,j − γ

u̇′i+1,j = KIP
′
ei+1

+ KP P ′
ėj

= KI(Pei+1
− de) + KP (Pėj

− dė) = u̇i+1,j − γ

u̇′i,j+1 = KIP
′
ei

+ KP P ′
ėj+1

= KI(Pei
− de) + KP (Pėj+1

− dė) = u̇i,j+1 − γ

u̇′i+1,j+1 = KIP
′
ei+1

+ KP P ′
ėj+1

= KI(Pei+1
− de) + KP (Pėj+1

− dė) = u̇i+1,j+1 − γ

where γ = (KIde + KP dė), de =
Pei+Pei+1

2
and dė =

Pėj
+Pėj+1

2
. According to the

theorem, the output of F̃LC2 is smaller than that of F̃LC1 by γ if the input

vector is (e′, ė′) = (e − de, ė − dė). This relationship between F̃LC1 and F̃LC2

implies that any results derived for the antecedent sets shown in Fig. 6.2(b) can

be extended to fuzzy partitions that are not symmetrical about zero. For this

reason, the remaining sections of this Chapter only focuses on input spaces that

are centered on the origin.
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Figure 6.2: Illustration of shift invariant property

6.2 Equivalent Proportional and Integral Gains

of a Type-2 FLC

This section aims at providing insights into the characteristics of a type-2 fuzzy PI

controller. The type-2 fuzzy PI controller is essentially a non-linear PI controller

that reduces to the classical PI controller when FOU is zero. As its behavior

can be analyzed by examining how the equivalent proportional and integral gains

vary with input and FOU sizes, the first step is to derive expressions for the

equivalent proportional and integral gains. Fig. 6.3 shows the symmetric type-2

sets used in this study, where Pe1 = Pė1 = −D and Pe2 = Pė2 = D. As defined in

Equation (6.1), the centroids of the type-1 consequent sets are placed at :

u̇11 = −KID −KP D (6.9a)

u̇12 = −KID + KP D (6.9b)

u̇21 = KID −KP D (6.9c)

u̇22 = KID + KP D (6.9d)

First, consider the input space that is bounded by the following inequalities :

|e| ≤ D − d (6.10)

|ė| ≤ D − d (6.11)
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Figure 6.3: Input MFs of the type-2 fuzzy PI controller

A graphical illustration of the region is shown in Fig. 6.4. In this domain, the

firing levels corresponding to the input vector (e, ė) are as follows:

fẽ1 = [fe1min
, fe1max ] =

[
D − d− e

2D
,
D + d− e

2D

]

fẽ2 = [fe2min
, fe2max ] =

[
e + D − d

2D
,
e + D + d

2D

]

f˜̇e1
= [fė1min

, fė1max ] =

[
D − d− ė

2D
,
D + d− ė

2D

]

f˜̇e2
= [fė2min

, fė2max ] =

[
ė + D − d

2D
,
ė + D + d

2D

]
(6.12)

D

D

D−
D−

0

0

dd

d

d

e

e
�

Figure 6.4: The region of the input domain determined by Inequalities (6.10) and
(6.11)
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The firing set associated with the four rules are :

f̃11 = fẽ1 ? f˜̇e1
= [f

11
, f 11] (6.13a)

=

[
(D − d− e)(D − d− ė)

4D2
,
(D + d− e)(D + d− ė)

4D2

]
(6.13b)

f̃12 = fẽ1 ? f˜̇e2
= [f

12
, f 12] (6.13c)

=

[
(D − d− e)(D − d + ė)

4D2
,
(D + d− e)(D + d + ė)

4D2

]
(6.13d)

f̃21 = fẽ2 ? f˜̇e1
= [f

21
, f 21] (6.13e)

=

[
(D − d + e)(D − d− ė)

4D2
,
(D + d + e)(D + d− ė)

4D2

]
(6.13f)

f̃22 = fẽ2 ? f˜̇e2
= [f

22
, f 22] (6.13g)

=

[
(D − d + e)(D − d + ė)

4D2
,
(D + d + e)(D + d + ė)

4D2

]
(6.13h)

Using center-of-sets type reduction, the type-reduced output of the inference

engine for the type-2 fuzzy PI controller is the following interval type-1 set :

˜̇u =
f̃11u̇11 + f̃12u̇12 + f̃21u̇21 + f̃22u̇22

f̃11 + f̃12 + f̃21 + f̃22

= [u̇l, u̇r]

The bounds of the interval type-1 set, u̇l and u̇r, may be found using the Karnik-

Mendel iterative procedure. The algorithm first arranges the centroid of the con-

sequent sets, u̇ij (Equation (6.9)), in ascending/descending order. As the relative

positions of the centroids depend on KP and KI , two cases need to be considered.

6.2.1 Case 1 : KP ≥ KI

In this case, u̇11 ≤ u̇21 ≤ u̇12 ≤ u̇22. To derive closed-form solutions for the

equivalent Proportional and Integral gains, it is necessary to express the Karnik-

Mendel type reducer in closed-form. A closed-from expression cannot be derived

for the general case. Nevertheless, the problem can be simplified by imposing the
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following constraint :

u̇21 ≤ u̇l ≤ u̇r ≤ u̇12 (6.14)

Theorem 1 in [90] proves that the switch points that lead to the bounds of the type-

reduced set [u̇l, u̇r] coincides with the centroid of the corresponding embedded type-

1 set. Hence, Equation (6.14) dictates that the switch points will occur between

u̇12 and u̇21. Substituting L = 2 and R = 2 into Equations (6.4a) and (6.4b), the

bounds of the type-reduced set may be expressed as :

u̇l =
f 11u̇11 + f 21u̇21 + f

12
u̇12 + f

22
u̇22

f 11 + f 21 + f
12

+ f
22

(6.15)

=
−2D2dKP + D2KIe + D2KP ė

D2 + d2 − ėd
(6.16)

u̇r =
f

11
u̇11 + f

21
u̇21 + f 12u̇12 + f 22u̇22

f
11

+ f
21

+ f 12 + f 22

(6.17)

=
2D2dKP + D2KIe + D2KP ė

D2 + d2 + ėd
(6.18)

Hence, the output of the type-2 FLC is :

u̇ =
u̇l + u̇r

2

=
D2(D2 − d2)KP ė + D2(D2 + d2)KIe

(D2 + d2)2 − d2ė2

=
D2(D2 − d2)KP

(D2 + d2)2 − ė2d2
ė +

D2(D2 + d2)KI

(D2 + d2)2 − ė2d2
e

= αKP ė + βKIe (6.19)

where

α =
D2(D2 − d2)

(D2 + d2)2 − ė2d2
(6.20)

β =
D2(D2 + d2)

(D2 + d2)2 − ė2d2
(6.21)

αKp is the equivalent Proportional gain of the resulting type-2 FLC and βKI is

the equivalent Integral gain. Equations (6.20) and (6.21) show that the equivalent
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Proportional and Integral gains will be smaller than those of the baseline type-1

fuzzy PI controller when |ė| ≤ √
D2 + d2 since both α and β are smaller than

unity. The relationships between α, β and ė for different FOU sizes (d) are shown

in Fig. 6.7. Here D = 1. The plot indicates that the values of α and β, and conse-

quently the equivalent Proportional and Integral gains, will become smaller as the

input vector approaches the origin. Since smaller PI parameters give rise to more

sluggish performances, the conclusion is consistent with experimental observations

suggesting that a type-2 fuzzy PI controller is better able to eliminate steady-state

oscillations [70,83,91,92].
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Figure 6.5: Relationship between α, β and ė

6.2.2 Case 2 : KI ≥ KP

When KI > KP , then u̇11 ≤ u̇12 ≤ u̇21 ≤ u̇22. Under the assumption that

u̇12 ≤ u̇l ≤ u̇r ≤ u̇21, the bounds of the type-reduced set may be written as

u̇l =
f 11u̇11 + f 12u̇12 + f

21
u̇21 + f

22
u̇22

f 11 + f 12 + f
21

+ f
22

(6.22)

u̇r =
f

11
u̇11 + f

12
u̇12 + f 21u̇21 + f 22u̇22

f
11

+ f
12

+ f 21 + f 22

(6.23)
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By repeating the mathematical manipulations described in the previous sub-section,

the output of the type-2 fuzzy PI controller is found to be :

u̇ = α′KP ė + β′KIe (6.24)

where

α′ =
D2(D2 + d2)

(D2 + d2)2 − e2d2
(6.25)

β′ =
D2(D2 − d2)

(D2 + d2)2 − e2d2
(6.26)

Again, α′Kp is the equivalent Proportional gain and β′KI is the equivalent Inte-

gral gain. It may be observed that there are the following differences between

Equation (6.19) and Equation (6.24) :

1. ė in the denominator of α and β is replaced by e in the denominator of α′

and β′.

2. The numerators of Equation (6.24) are interchanged, compared with those

in Equation (6.19).

Since the equivalent Proportional and Integral gains in Equation (6.19) and

Equation (6.24) are similar, it is sufficient to focus only on one of the two cases.

6.2.3 Range Where Equivalent Gains Are Valid

In order to derive closed-form expressions for the equivalent Proportional and In-

tegral gains, Equation (6.14) was introduced. The condition imposes a constrain

on the input region where the equations for the equivalent Proportional and In-

tegral gains are valid. This subsection presents the accurate input ranges where

Equation (6.19) is applicable.
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Consider the first part of Equation (6.14), which states that u̇21 ≤ u̇l. For the

case where KP > KI , u̇l =
f11u̇11+f21u̇21+f

12
u̇12+f

22
u̇22

f11+f21+f
12

+f
22

(Equation (6.15)). Hence,

f 11u̇11 + f 21u̇21 + f
12

u̇12 + f
22

u̇22

f 11 + f 21 + f
12

+ f
22

≥ u̇21

f 11u̇11 + f
12

u̇12 + f
22

u̇22

f 11 + f
12

+ f
22

≥ u̇21 (6.27)

Replacing fij and u̇ij (i, j = 1, 2) by the expressions in Equations (6.13) and (6.9)

and re-arranging, Equation (6.27) reduces to :

DKIe+(dKI+DKP−dKP )ė−(D2KI+d2KI−D2KP−d2KP +2DdKP ) ≥ 0 (6.28)

Repeating the above steps for u̇12 ≥ u̇r, the second part of Equation (6.14), the

following expression is obtained :

DKIe+(dKI+DKP−dKP )ė+(D2KI+d2KI−D2KP−d2KP +2DdKP ) ≤ 0 (6.29)

Equations (6.28) and (6.29), together with Equations (6.10) and (6.11), com-

pletely define the range of e and ė where the equivalent Proportional and Integral

gains shown in Equation (6.19) are applicable. The corresponding constraints when

KI > KP (Equation (6.24)) are as follows :

DKP ė + (DKI + dKP − dKI)e + (D2KI + d2KI −D2KP − d2KP − 2DdKI) ≥ 0

DKP ė + (DKI + dKP − dKI)e− (D2KI + d2KI −D2KP − d2KP − 2DdKI) ≤ 0

6.3 Analysis of a Type-2 Fuzzy PI Controller

In this section, the objective is to analyze the traits of a type-2 fuzzy PI controller.

As the focus is on understanding the controller characteristics and not its ability

to control complex systems, the following simple first-order plus dead-time plant is
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employed as the nominal system and used to design the type-2 fuzzy PI controller :

G(s) =
K

τs + 1
e−Ls =

1

10s + 1
e−2.5s (6.30)

Two sets are used to characterize each input domain, e and ė. The type-2

sets used are shown in Fig. 6.3, where |D| = 1. According to the ITAE setpoint

tracking tuning rule [93], the PI parameters for G(s) are as follows :

u̇ = 0.586K

(
L

τ

)−0.916
[
ė +

1.03− 0.165L
τ

τ
e

]
= 2.086ė + 0.2063e (6.31)

Hence, centroids of the four consequent sets for the type-2 fuzzy PI controller are

generated by substituting KP = 2.086 and KI = 0.2063 into Equation (6.9).

As KP > KI , the equivalent Proportional and Integral gains are determined

by Equation (6.24). The closed-form solutions of the equivalent Proportional and

Integral gains are derived using the assumption shown in Equation (6.14). Us-

ing Equations (6.28) and (6.29), Equations (6.10) and (6.11), the range in which

the equivalent Proportional and Integral gains are valid when d = 0.2 and 0.5

are plotted and shown in Fig. 6.6. The diagram indicates that the assumption

may impose further restriction on the region where the equivalent gains are valid.

Fig. 6.7 shows how α, β vary with ė in the range where the equivalence is valid.

Fig. 6.7 demonstrates that the extra degree of freedom provided by the FOU

results in varying equivalent Proportional and Integral gains. Unlike a type-1 FLC

(triangular MFs) whose input-output relationship is linear within a fuzzy partition,

a type-2 fuzzy PI controller realizes a non-linear PI controller within each fuzzy

partition. As the values of α and β are both smaller than unity, the equivalent

Proportional and Integral gains are smaller than the PI parameters used to place

the centroid of the consequent sets. The deviation from the type-1 FLC becomes
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Figure 6.6: The input regions where Equation (6.19) is applicable
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larger as d increases. This observation is supported by the partial derivative of α

and β with respect to d :

∂α

∂d
=

−2D2d[(D2 + d2)2 + 2(D4 − d4)−D2ė2]

[(D2 + d2)2 − d2ė2]2
(6.32)

∂β

∂d
=

−2D2d[(D2 + d2)2 −D2ė2]

[(D2 + d2)2 − d2ė2]2
(6.33)

|ė| ≤ D− d (Equation (6.10)) is a condition used to derive the equivalent Propor-

tional and Integral gains. This condition, together with D > 0 mean that both α̇

and β̇ are negative. Hence, an increase in d will cause the values of α and β to

decrease, when the other variables are held constant.

Another interesting observation is α < β. Dividing Equation (6.21) by Equa-

tion (6.20) yields

β

α
=

D2 + d2

D2 − d2
> 1 (6.34)

It indicates that the equivalent proportional gain decreases relatively faster, com-

pared to the equivalent integral gain, as the FOU becomes larger. The reverse

is true when KI > KP because the following inequality may be deduced from

Equations (6.25) and (6.26) :

β′

α′
=

D2 − d2

D2 + d2
< 1 (6.35)

In order to examine whether the equivalent gains correlate with control per-

formances, step responses were obtained using type-2 fuzzy PI controllers for the

nominal plant (Equation (6.30)) when d = 0 (type-1 fuzzy PI controller), d = 0.2

and d = 0.5. The plots are shown in Fig. 6.8. Fig. 6.9 contains step responses

that illustrate how type-2 PI controllers (d = 0, 0.2, 0.5) copes with parameter

uncertainty. From the diagrams, the following traits can be observed :
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• The larger the FOU, the better the ability to eliminate oscillations about the

setpoint (Figs 6.9(a) and 6.9(c)) [70, 83,91,92].

• The type-2 fuzzy PI controller cannot outperform its type-1 counterpart when

the dynamics of the plant is slow (Figs. 6.9(b) and 6.9(d)).

Both characteristics may be attributed to more conservative PI parameters, which

is consistent with the equivalent gains shown in Fig. 6.7. The step responses also

show that differences in the control performances obtained using type-2 and type-1

fuzzy PI controllers may be small. This is because the factors that modulate the

effective gains, α and β, are close to unity when d is small.
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Figure 6.8: Control performances of the type-2 and type-1 fuzzy PI controllers on
the nominal plant, G(s) = Y (s)

U(s)
= 1

10s+1
e−2.5s

6.4 Concluding Remarks

The type-2 fuzzy PI controller is introduced. By deriving and examining the

equivalent Proportional and Integral gains, the impact of the additional degree of
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Figure 6.9: Control performances of the type-2 and type-1 fuzzy PI controllers for
different plant
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freedom provided by the FOU is studied. Results show that a type-2 fuzzy PI con-

troller realizes a non-linear PI controller within each fuzzy partition. In addition,

the equivalent Proportional and Integral gains of a type-2 fuzzy PI controller are

smaller than the type-1 FLC obtained when the FOU is removed. Since smaller PI

parameters gives rise to more sluggish performances, the findings provide theoret-

ical explanation for the experimental observations suggesting that a type-2 fuzzy

PI controller is better able to eliminate steady-state oscillations. The results pre-

sented in this Chapter is a step towards a better understanding of type-2 fuzzy PI

controllers.



Chapter 7

Conclusions and Future Research
Directions

In this Thesis, extensive simulations and experiments were conducted to study the

properties of type-2 FLSs. The following conclusions are drawn :

1. A type-2 FLC may be able to outperform type-1 FLCs that have more design

parameters. Thus, a type-2 FLC is more appealing than its type-1 counter-

parts with regards to accuracy and interpretability. The main advantage of

a type-2 FLC appears to be its ability to eliminate persistent oscillations, es-

pecially when unmodelled dynamics were introduced. This ability to handle

model uncertainties is particularly useful when FLCs are tuned offline using

GA and a model as the impact of unmodelled dynamics is reduced.

2. The most important part of a type-2 PI-like FLC seems to be the MFs around

the origin. Thus a simplified type-2 FLC where only the MFs near the origin

are type-2 and all other MFs are type-1 may have the similar performance

as a traditional type-2 FLS whose all MFs are type-2. Furthermore, the

computational cost may be greatly saved. Experimental results in this Thesis

verified that the simplified type-2 FLC is able to bring about computational

savings without sacrificing the ability to handle modeling uncertainties.

3. The FOU of a type-2 set may be viewed as a collection of ET1Ss. For a

given input vector, the type-reducer chooses a corresponding ET1FLS. Since

110
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type-2 FLSs has the ability to switch between its ET1FLSs according to the

input, more complex input-output map than that of a single type-1 FLS can

be modeled. The concept of ET1S will also help in determining the best

FOU and designing new type-reducers to meet specific requirements.

4. For a double-input single-output PI-like type-2 FLC, in each fuzzy partition

there exists an area near the origin where the equivalent proportional and

integral gains are smaller than these of the baseline type-1 FLC. Besides, the

two gains will change with the change of inputs. This explains why type-

2 FLCs generally have better ability to eliminate oscillations, and provide

insights into how to evolve faster type-reducers theoretically.

Based on the results obtained in this Thesis, possible future research directions

are :

1. The Karnik-Mendel type-reducer need further study in order to understand

them better. It is noticed that when the FOUs are introduced to a baseline

type-1 FLS which has a monotonic input-output map, the input-output map

of the resulting type-2 FLS may become non-monotonic. Besides, discon-

tinuities may occur in the input-output map. These may be disadvantages

when type-2 FLSs are applied to control. Hence, it is interesting to study the

conditions under which the non-monotonicity and discontinuities will occur.

2. The Karnik-Mendel type-reducer has very high computational cost besides

the disadvantages pointed out above. It may be possible to find out faster

and better type-reducers based on the concept of ET1Ss and ET1MGs.
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3. Another interesting topic is to find a relationship between the appropriate

FOUs for a type-2 FLC and the uncertainties in the plant parameters. If it

is solved, the applications of type-2 FLCs will be greatly promoted.
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