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Summary

This work presents the development of a numerical strategy to combine the Fast

Fourier Transform on Multipoles (FFTM) method and the Boundary Element Method

(BEM) to study the dynamics of multiple bubbles physics in a moving boundary prob-

lem. The disadvantage of the BEM is to solve the boundary integral equation by

generating a very dense matrix system which requires much memory storage and

calculations. The FFTM method speeds up the calculation of the boundary in-

tegral equation by approximating the far field potentials with multipole and local

expansions. It is demonstrated that FFTM is an accurate and efficient method.

However, one major drawback of the method is that its efficiency deteriorates quite

significantly when the problem is full of empty spaces if the multiple bubbles are

well-separated. To overcome this limitation, a new version of FFTM Clustering is

proposed. The original FFTM is used to compute the potential contributions from

the bubbles within its own group, while contributions from the other separated groups

are evaluated via the multipole to local expansions translations operations directly.

We tested the FFTM Clustering on some multiple bubble examples to demonstrate

its improvement in efficiency over the original method. The efficiency of the FFTM

and FFTM Clustering allows us to extend the number of bubbles in a simulation.

v



Physical behavior of multiple bubbles is also presented in this work.
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Chapter 1

Introduction

1.1 Motivation

A better understanding of the physics of multiple bubble dynamics is important for

a wide range of applications including underwater warfare, biomedical and chemi-

cal processes [1]-[8]. Previous works have identified the violent collapse of multiple

cavitation bubbles thereby causing damages to the solid surface. Various techniques

have been developed to model the dynamics of bubble in a fluid. Among them, the

Boundary Element Method (BEM) is touted as one of the most effective tools for

solving the dynamical boundary value problem and can be found in Wang et at. [9],

[10], Zhang et al. [11], [12], Rungsiyaphornrat et al. [13], Best and Kucera [17],

Blake and Gibson [2], Guerri et al. [8], and others.

BEM has the distinct feature of reducing the problem dimension by one. In

bubble-structure interaction, only the boundaries of the bubble and structure need

to be discretized. The cost of preprocessing and mesh generation is thus greatly
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reduced. But this advantage is often compromised by the fact that BEM solves

the boundary integral equation by generating a very dense matrix system, which

requires O(N2) memory storage requirements and O(N2) operations to solve with

iterative methods [32, 33]. This poses new challenges to the simulations with the

of large problems, such as in multiple bubble dynamics, where problem size can

easily exceeds several thousands. Hence, this provides the motivation to search for

more efficient methods that scale significantly better than O(N2). Generally, these

methods are collectively known as the fast algorithms.

Various fast algorithms have been developed for solving the boundary integral

equation in electrostatic problem including the Fast Mutipole Method (FMM) [28]

-[30] and the fast Fourier transform on multipoles (FFTM) [40],[41]. These methods

are specially used in electrostatics to calculate the potential due to all the charges

of a large system. The efficiency of the former comes from the use of multipole

approximations and the highly effective hierarchical structures, where multipole and

local expansions are translated efficiently up/down the oct-tree during evaluation

of far field potentials. As for the FFTM methods, the speedup is obviously gained

from the use of the Fast Fourier Transform algorithms for computing the discrete

convolutions.

In this thesis, the Fast Fourier Transform on Multipoles (FFTM) coupled with

BEM is chosen to solve the boundary integral equation which governs the dynamics

of the multiple bubbles. The developed algorithm based FFTM is employed. It is

demonstrated that the said method is accurate and efficient. The FFTM is much

faster than the traditional BEM for large-scale problems and allows the application

2



to a large number of bubbles with refined mesh. However, its efficiency deteriorates

significantly when the problem is spatially sparse or full of voids, that is much of

the problem domain is empty as for the case where the bubbles were placed widely

apart. Here, we suggested a simple fix to improve on the situation with the cluster-

ing approach. The new algorithm called FFTM Clustering first identifies and groups

closely positioned bubbles which is based on their relative separation distances. Then

the elements interactions within the self contained groups are evaluated rapidly us-

ing FFTM, while the interactions among the different groups are evaluated directly

via the multipole to local translation operations. It is demonstrated that the new

approach performs significantly faster than the original FFTM method without com-

promising the accuracy.

1.2 Previous work

The bubble dynamics was observed almost century ago, when Rayleigh (1917) con-

sidered the growth and collapse of spherical bubble in an infinite fluid [18]. The

physical observation of the dynamics of cavitation bubble was carried out by Ben-

jamin and Ellis [19]. Their experimental results show the collapse of an asymmetric

bubble near a rigid boundary in which the jet was directed towards the rigid bound-

ary. Other contributions on cavitation bubble were made by Kling and Hamitt [21],

Lauterborn and Bolle [20], and Gibson and Blake [2]. In their paper, Gibson and

Blake show the interaction between the collapsing bubble and the free surface.

To provide more in-depth understanding on this subject, Chapman and Plesset
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[22] to develop the numerical modelling of cavitation bubble near rigid boundary

with the assumption that 1) the liquid is incompressible, 2) the flow is invisid, 3)

the vapor pressure inside the bubble is uniform and constant, 4) the ambient fluid

pressure remains constant with time, 5) surface tension effects are neglected. Their

method of solving Laplace equation is via finite difference integration method. The

results show the formation of bubble jet which can explain the damage caused by

cavitation bubble collapse.

Benvir and Fielding [1] successfully used the approximate integral scheme to

model the early stage of the collapse phase of cavitation bubble, but it fails to

compute for the latter stages of the collapse phase. Subsequently an improvements

to this method was introduced by Blake and Gibson [2]. Their method is able to

show the growth and collapse of a cavitation bubble near a rigid boundary and a free

surface.

An alternate numerical technique was also proposed by Guerri, Lucca and Pros-

peretti [8]. In their work, the now-familiar boundary integral numerical method

was used for the simulation of non-spherical cavitation bubble in an inviscid, incom-

pressible liquid. Their work shows the efficiency of Boundary Integral Method in

solving the Laplace equation. In essence, Boundary Integral Method avoids solving

the problem for the entire fluid domain and limits the calculation to the boundaries.

In recent years, more advanced techniques have been proposed to improve the

simulation of bubble dynamics in three-dimensions using Boundary Element Method

[11], [12]. The conventional BEM generates a dense matrix system, which requires

O(N3) and O(kN2) (k is the number of iterations) operations if solved using direct

4



methods such as Gaussian Elimination and iterative method such as GMRES [25],

respectively. The computation obviously becomes prohibitively large if the problem

size N exceeds several thousands.

To improve the computation, various fast algorithms have been developed in-

cluding the Fast Mutipole Method (FMM) [28] which is one of the most widely

implemented algorithms. FMM was developed by Greengard and Rohnklin [28] for

solving potential fields in a N -body system. Later on, Nabor and White [31] imple-

mented it in electrostatic analysis, mainly to calculate the capacitance of complex

three-dimensional structure.

The efficiency of FMM comes from the effective usage of the multipole and local

expansions. Greengard and Roklin [28][29] developed a new version of FMM for the

Laplace equation by using the diagonal form of translation operator with exponential

expansion, which reduces the O(p4) scaling factor to O(p2), where p is the order of

expansion. On the other hand, Elliott and Board reduced the scaling factor to

O(p2logp) by performing Fast Fourier Transfrom (FFT) on the multipole and local

expansions, which required special technique to deal with the numerical instability for

large values of p. The brief overview the FMM is presented on the above. However,

we employ the FFTM method [40], [41] instead of FMM method due to the fact that

FMM require higher order of expansion than FFTM does. For example, FMM [29]

needs p = 8 to achieve 3-digits accuracy, whereas FFTM [41] needs only p = 2.

Alternatively, using multipole expansion alone can give rise to a fast algorithm,

generally known as the tree algorithm [27] [26]. The basic idea is very similar to

FMM algorithm, except that local expansion is not used. Instead, the multipole
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expansion is evaluated directly on the potential node point. Hence, to a certain

extent, FMM can bee seen as an enhancement of the tree algorithm.

Another group of fast methods utilizes FFTs to accelerate the potential evaluation

task. They include the particle-mesh-based approach [35] and the precorrected-FFT

method [36]. Generally, these methods approximate a given distribution of charges

by an equivalent system of smoothed charge distribution that fall on a regular grid.

Subsequently, the potential at the grid points due to the smoothed charge distribution

is derived by discrete convolution, which is done rapidly using FFTs. However, local

corrections are required for the ”near” charges evaluations because these potential

contributions are not accurately represented by the grid charges.

Alternative fast method that can also perform the potential evaluation rapidly

called Fast Fourier Transform on Multipole (FFTM) is proposed [40], [41]. This

method arises from an important observation that the multipole-to-local expansions

translation operator can be expressed as series of discrete convolutions of the mul-

tipole moments with their associated spherical harmonic function. And the FFT

algorithm can be employed to evaluate these discrete convolutions rapidly. It is

demonstrated that FFTM performs efficiently and accurately for solving the Laplace

equation in electrostatics problem [40],[41]. In this thesis, the Fast Fourier Transform

on Multipoles (FFTM) coupled with BEM is chosen to solve the boundary integral

equation which governs the dynamics of the multiple bubbles.

6



1.3 Outline of contents

This dissertation is divided into six chapters. Each of them consists of various sub-

sections. A brief summary for each chapter is given as follows.

In Chapter 1 (Introduction), the motivation and scopes of the present work are

presented. There is a brief on the background of bubble dynamics simulation, in

which attention is centered on bubble dynamics simulation using BEM. Past works

on bubble dynamics and fast algorithms like FMM and FFTM are also presented. In

Chapter 2, we outline the mathematical modelling of bubble dynamics and bound-

ary element method (BEM). In Chapter 3, the basic theory of FFTM is reiterated

with sufficient details required for the development of the following section. Here,

we present some results of implementation of FFTM for single and multiple bubbles

simulation and compare efficiency with previous methods in term of accuracy and

efficiency. The single bubble arrangement was chosen to compare with the theo-

retical solution. Several arrangement of multiple bubbles not previously computed

via the standard BEM are presented to further illustrate the feasibility with FFTM

incorporated. In Chapter 4, the new version of FFTM Clustering is presented. Dis-

cussion on the accuracy and efficiency of FFTM Clustering is also given. Numerical

results for several examples of multiple bubble configurations are shown in Chapter

5. Finally, conclusions are drawn and the directions for future work are discussed in

Chapter 6.
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Chapter 2

BEM for Bubble Simulation

2.1 Mathematical Formulations

Mathematical formulation is used to describe the physical problem under certain

assumptions. The mathematical formulations are derived from the conservation laws

of momentum and mass with other assumptions that flow is irrotational and incom-

pressible. As such, the Bernoulli’s and Laplace’s equation are the basic governing

equation used to model and describe the physical behavior of bubble dynamics in a

fluid.

Take the z-axis direct in the fluid as along the direction of gravity, the pressure

inside the fluid domain can be evaluated by the unsteady Bernoulli’s equations:

p = p∞ − ρ
∂Φ

∂t
− 1

2
ρ|u|2 + ρgz. (2.1)

Here p is the pressure at a point in the fluid domain Ω, p∞ is the reference pressure or
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pressure at a large distance from the bubble on the plane z = 0 (which can be given

as atmospheric pressure), ρ is the density of the liquid, g is the gravity acceleration

and z is the vertical component of the position vector −→r .

We consider the evolution of gas bubble inside the fluid, as shown in Fig. 2.1.

The pressure inside bubble is a combination of: vapor and non-condensing gas. The

gas pressure inside the bubble is assumed to be uniform and adiabatic. Pressure

inside the bubble is therefore computed by:

p = pv + pg,0

(
V0

V

)λ

,

where pv is vapor pressure of the bubble, V0 is the initial volume, V is the current

volume of the bubble, pg,0 is the initial internal gas pressure, and λ is the adiabatic

constant or specific heat. λ is set to 1.25 for the gaseous explosion products resulting

from an TNT explosion [6], and equals 1.4 for an ideal diatomic gas.

For the explosion bubble, the vapor pressure is much smaller compared with the

gas pressure term inside the bubble. Therefore, pressure inside bubble explosion is

determined by:

p = pg,0

(
V0

V

)λ

. (2.2)

Assume that the fluid domain Ω is inviscid, incompressible and irrotational, the

governing equation for such potential flow is the Laplace equation:

∇2Φ = 0, (2.3)
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where Φ is the velocity potential. The velocity must be a gradient of the potential

which we define as:

u = ∇Φ. (2.4)

Provided that either the potential Φ (Dirichlet condition) or the normal velocity,

∂Φ/∂n (Neumann condition) is given on the boundaries of the problem, solution

can always be computed since (2.3) is an elliptic equation. According to the Green’s

theorem, the potential at every point on the boundary ∂Ω must satisfies the boundary

integral equation:

c(x)Φ(x) =

∫

∂Ω

(
∂Φ(y)

∂n
G(x,y)− Φ(y)

∂G(x,y)

∂n

)
dS, (2.5)

where x is the field point and y is the source point on boundary Ω; The normal

derivative at the boundary Ω is given by ∂/∂n = n · ∇, where n is directed out of

the fluid. The solid angle at location x is represented by c(x):

c(x) =





2π, x ∈ ∂Ω

4π, x ∈ Ω

(2.6)

G is the Green function or kernel function defined in a three-dimensional domain as:

G(x,y) =
1

|x− y| , (2.7)

10



and the normal derivative of the Green function can be written as:

∂G(x,y)

∂n
= n · ∇

(
1

(x− y)

)
= n · x− y

|x− y|3 . (2.8)

An axis-symmetrical formulation as described in Wang et al. [10] can be used.

Liu and Rudolphi [42] suggested new identities for the fundamental solution that

can be imposed in the integral representation of internal problem to eliminate the

strongest singularity. Equation (2.5) is integrated using linear approximation of the

value of normal velocity and potential at the discretized point on the boundary. This

procedure gives us a system of linear equations

G
∂Φ

∂n
= HΦ. (2.9)

Matrices G and H contain singular integrals with respect to the Green’s function.

Once the distribution of potential on the boundary is known, its normal derivative

can be calculated by solving the matrix Eq. (2.9). The unsteady Bernoulli equation

valid at the bubble interface is written as:

p = pref − ρ
∂Φ

∂t
+

1

2
ρ|u|2 + ρg(z −H), (2.10)

where pref is the referenced pressure, and H is the depth of the inception of the

bubble with respect to the z-datum.

For non-dimensionalization purpose, it is suitable to choose the maximum radius

Rm of the Rayleigh bubble to be the scaling factor. According to Wilkerson [5],
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the maximum radius Rm of the bubble is obtained in an infinite fluid domain un-

der the uniform pressure p∞. The reference pressure at the depth H is defined as:

pref = p∞+ρgH, where g is the gravitational acceleration and p∞ is the atmospheric

pressure, and ρ is the density of the surrounding fluid. The other scaling factors for

the velocity potential and time are Φref = Rm

√
pref/ρ and tref = Rm

√
ρ/pref , re-

spectively. A dimensionless strength parameter ε is defined by the ratio of the initial

gas pressure inside the bubble, p0, at the inception and the hydrostatic pressure,

pref , at the depth H: ε = p0/pref . Pressure inside bubbles in dimensionless form is:

p′ = ε

(
V ′

0

V ′

)λ

. (2.11)

Here the superscript (’), and henceforth, denotes the dimensionless variable. V ′
0 and

V ′ are the initial and instantaneous volumes of the gas bubble in dimensionless form,

and λ is the ratio of specific heats.

On the solid surface, the boundary condition in dimensionless form is expressed

with the normal velocity set equal to zero:

∂Φ′

∂n′
= 0. (2.12)

The bubble deforms with time according to the following kinematic and dynamic
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boundary conditions:

Dx′

Dt′
= ∇Φ′ (2.13)

DΦ′

Dt′
= 1− ε

(
V ′

0

V ′

)λ

+
1

2
∇′Φ′2 + δ2(z′ − γ), (2.14)

where the vector x denotes the spatial position of the discretized point on the

bubble interface; the terms δ =
√

ρgRm/pref and γ = H/Rm are non-dimensional

parameters which characterize the buoyancy and the initial inception position, re-

spectively.

In Eq. (2.14), the term κ/We can be added on the right side to incorporate

the discontinuity in pressure across the bubble surface due to surface tension ef-

fects, where κ is the sum of the principal curvatures of the bubble surface and the

Weber number, We = Rmp0/σ, is a function of the surface tension σ. As shown

by Rungsiyaphornrat et al. [13], surface tension has a very small influence on the

calculations for explosion bubbles, giving almost indistinguishable results.

2.2 Initial Conditions

It is shown by Rungsiyaphornrat [13] that there is an empirical formulation for

estimating the maximum radius of the bubble in term of the amount of charges

(TNT) used, W , and the depth of explosion, H, which is expressed as:

Rm = 3.38

(
W

H + 10

)1/3

. (2.15)
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Another empirical relationship for the pressure of the explosion products of TNT

is:

p0 = 1.39× 105

(
W

V0

)λ

. (2.16)

The bubble is assumed to be initially spherical, thus

V0 =
4

3
πR3

0. (2.17)

As pointed out in Best and Kucera [17], this assumes that the initial radial velocity

of the explosion bubble is zero, with the motion driven from rest by very high initial

partial pressure p0. The initial velocity potential on the bubble surface is assumed to

be zero. The initial radius of the bubble is chosen such that the maximum radius to

which the bubble would expand in an infinite fluid is unity and this value is obtained

from the solution of the Rayleigh-Plesset equation (written in dimensionless form)

R′d
2R′

dt′2
+

3

2

(
dR′

dt′

)2

= ε

(
R′

0

R′

)3λ

− 1, (2.18)

where R′
0 and R′ are the initial and instantaneous radius of the gas bubble in di-

mensionless form. The initial gas pressure p0 can be calculated with Eq. (2.16).

In summary, all the parameters for the model are known. For example a 500

kg TNT explosion at a depth of 100 m gives rise to a maximum bubble radius

Rm = 5.6m and p0 = 1.07× 108Pa. The dimensionless parameters for this case are

λ = 1.25, ε = 98.49, and R′
0 = 0.1495. A typical time scale is tref = 0.17s.

At the inception time t = 0, the free surface is quiescent. Therefore, the initial
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velocity and potential are equal to zero.

2.3 Mesh discretization

If the geometry is simple the integral can be approximated directly. However, with

the even more complex geometry such as the spherical bubble surface, we have to

discretize the boundary to approximate the integral in Eq. (2.5) accordingly. In

this part, we present the grid generation on the bubble surface in a three dimension

problem.

The icosahedron is taken to be the approximated bubble shape at the first level

of discretization. This shape consists of 20 equal-sized equilateral triangles and 12

nodes, all of which lie on the surface of a sphere (see Fig. 2.2-a). The mesh can be

refined by dividing each of original triangles into small one and projecting the new

nodes on the spherical surface. To generate a second mesh level, the original triangle

is divided into 4 sub-triangles. On each edge of the original triangles at the first

level of approximation, the midpoint is chosen. From the midpoint we draw a line

perpendicular to the original triangle which the node belong to. The intersection

of this line and the spherical surface is the new node. The process of level two

refinement is plot in the Fig. 2.2.

In the discretization of mesh level three, each side of the original triangle is divided

equally by two new points and the triangle of the first approximation is divided into

9 sub-triangles in Fig. 2.3. From the new points on the apexes of the 9 sub-triangles,

we plot the line perpendicular to the origin triangles. The intersections between
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theses line and the spherical surface are the location of new nodes on the bubble

surface. Fig. 2.3 shows the bubble grid surface at mesh level 6.

The higher mesh level is obtained by dividing more sub-triangles with more nodes

on each side of each original triangle. The level of mesh is defined as the number of

nodes on each side of the original triangle. The total number of nodes Nn is obtained

from the relation Nn = 10 ∗n2 + 2, where n is an integer representing the mesh level

refinement. Similarly, the total number of triangles is determined from the relation

Nt = 20 ∗ n2. Fig. 2.4 shows the bubble surface with mesh discretization at various

levels of 4, 5, 6, 7, 8 and 12. The higher the mesh level generation the more accurate

approximation of the bubble shape is possible.

2.4 Numerical Procedures

The physical state of the problem is fully specified when the position of the boundary

∂Ω and the distribution of the velocity potential Φ are known. With these, the ve-

locity v = ∇Φ = (∂Φ/∂n, ∂Φ/∂τ) on the nodes are evaluated. The normal velocity

∂Φ/∂n can be obtained directly by solving the boundary integral equation (2.5). The

tangential velocity ∂Φ/∂τ is estimated using the interpolation of potential values at

the nodes on the boundary. Then, Equations (2.13) and (2.14) are numerically in-

tegrated in time to find the new position of the boundary and a corresponding new

velocity potential Φ. The forward time integration is carried out using the 2nd-order

predictor-corrector scheme. To maintain the stability of the solution, the time-step

size is controlled such that the changes in potential are bounded at each time step.
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Each subsequent time step forward is calculated using [10]:

∆t′ =
∆Φ′

max|1 + 1
2
|u′|2 + δ2(z′ − γ) + ε

(
V ′0
V ′

)λ

|
. (2.19)

This procedure ensures that the maximum potential change anywhere is limited to

∆Φ′ in order to avoid the development of numerical instabilities. Unless otherwise

stated ∆Φ′ = 0.003 is used in this work. This procedure ensures that the change

in the potential at each node on the boundary is bounded by ∆Φ′. Details of the

overall implementation are given in [9], [10], [12].
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Figure 2.1: Bubble in Cartesian coordinate system.
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Figure 2.2: Mesh refinement at level 2.
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Mesh level 1: 20 triangles and
12 nodes

Split each triangle into 9
sub-trinangles Mesh level 3

Figure 2.3: Mesh refinement at level 3.
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Mesh level 12Mesh level 8Mesh level 7

Mesh level 4 Mesh level 5

Figure 2.4: Mesh refinement at higher level.
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Chapter 3

Bubbles simulation using FFTM

3.1 Implementation of FFTM in bubbles simula-

tion

First we will briefly present the implementation of BEM. The implementation of

BEM for solving boundary equation (2.5) comprises the following step: 1) Bound-

ary element discretization, 2) solving the dense linear matrix system of equations

generated by BEM.

The starting point of the discretization process consists of approximating the

boundary by a set of elements, such that: Γ =
⋃Γe

e , where Γ is boundary of the

problem domain: Γ = ∂Ω. Both the geometry and field variables are approximated

by simple basis function, that is

Φ̂(x) =
N∑

i=1

Φ̃(x)Ψi(x) (3.1)
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where Φ̂(x) is represented as a linear combination of a set of N linearly independent

expansion function Ψi(x) that is weighed by Φ̃(x) at N discrete points. After the

discretization, (2.5) becomes:

c(x)Φ(x) =
N∑

i=1

∫

Γi

(
∂Φk

∂n
ΨΦ

i (y)G(x,y)

)
dΓ−

N∑
i=1

∫

Γi

(
ΦkΨ

V
i (y)

∂G(x,y)

∂n

)
dΓ,

(3.2)

where ΨV
i (y) and ΨΦ

i (y) are the expansion functions of potential and its normal

potential respectively; x and y correspond to the field and source points, respectively.

Applying the boundary conditions, the problem is reduced to a dense linear sys-

tem of equations:

Ax = b (3.3)

where A is a fully-populated N ×N matrix.

Standard BEM (Std-BEM) solves the dense linear system (3.3) with iterative

methods [32], [33], such as Gauss Iterative method and Generalized Minimal Residual

(GMRES). These solvers need to compute a dense matrix-vector multiplication at

every iteration. It is noted that the multiplication step is equivalent to the potential

field calculation of (3.2), which comprises the single layer and dipole layer sources

(first and second terms in (3.2), respectively). It is also noted that this operation

is the most computationally expensive part of the method. However, this process

is matrix-free, that is, the dense coefficients matrix need not be explicitly formed.

FFTM is a fast algorithms which exploits this feature to accelerate the resolution

of the dense linear system with various approximations techniques. This algorithm
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speeds up the resolution of the boundary integral equation by approximating the far

field potentials with multipole and local expansions.

In this work, we will couple the FFTM with BEM to simulate the dynamics of

bubbles. We briefly present the algorithm of FFTM for moving boundary problem

simulation. At beginning of each step, all the source points on the bubble surface

are known. Then, FFTM is employed to calculate the normal velocity of the bubble

surfaces by solving the dense linear system (3.3). The location of every node on

the boundary is updated from values of all nodes computed by FFTM. The final

calculation entails the updating of bubble volume, pressure and others physical values

of bubbles. As noted above, we can use FFTM to simulate a problem with moving

boundary.

In the following section, we present the multipole expansions approximation

method, which is the basis of the FFTM algorithms.

3.2 Multipole translation theory for Laplace equa-

tion

3.2.1 Inner and Outer functions

First, we define two basic functions to simplify the mathematical expressions for the

various translation operators used in the multipole approximation method. They are
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referred to as the inner and outer functions, and given respectively by:

In
m(x) =

rnY −m
n (θ, φ)√

(n− |m|)(n + |m|) , (3.4)

On
m(x) =

√
(n− |m|)(n + |m|)Y

−m
n (θ, φ)

rn+1
, (3.5)

where x = (r, θ, φ) ∈ R3, and Y −m
n (θ, φ) corresponds to the spherical harmonic

function of degree n and order m [44], given by:

Y m
n (θ, φ) =

√
(n− |m|)
(n + |m|)P

|m|
n (cos(θ))eimφ, (3.6)

and P
|m|
n (cos(θ)) is the associated Legendre functions of the first kind with degree n

and order m. Recurrence formulas for these two functions can be obtained from the

recurrence relations of the associated Legendre functions [31], and they are summa-

rized in the Appendix.

3.2.2 Multipole and local expansions and their translation

operators

Multipole expansion

Given a set of ne elements, be it single layer or dipole layer sources, which are

clustered about the origin and bounded with a sphere of radius a. The potential

generated at some arbitrary field point y, where ‖y‖ is significantly larger than a,
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can be approximated by the multipole expansion,

Φ(y) =

p∑
n=0

n∑
m=−n

Mm
n Om

n (y), (3.7)

where p is the order of expansion, and the multipole moments Mm
n is given by:

Mm
n =

ne∑
i=1

∫

Γi

∂Φ

∂n
(xi)I

m
n (xi)dΓ(xi), for the single layer source, (3.8)

and

Mm
n =

ne∑
i=1

∫

Γi

Φ(xi)∇Im
n (xi)ndΓ(xi), for the dipole layer source. (3.9)

Equations 3.8 and 3.9 can be evaluated numerically with the standard Gaussian

quadrature schemes [45], since both the integrands are non-singular functions. Re-

currence formulas for the spatial derivatives of the inner function in 3.9 are also

derived and presented in the Appendix.

Formula (3.8) or (3.8) defines the linear operator converting a system of source

points that is arbitrarily distributed within a sphere centered at the origin into its

multipole moments Mm
n defined at the origin. This linear mapping is denoted by

TS2M .

Local expansion

Given a set of ne elements, be it single layer or dipole layer sources, which are located

outside a sphere Sa of radius a. The potential they generate at some arbitrary field

24



point y, where ‖y‖ is significantly smaller than a, can be approximated by the local

expansion,

Φ(y) =

p∑
j=0

j∑

k=−j

Lk
j I

k
j (y), (3.10)

where the local expansion coefficients, which are essential the potential gradients

defined about the origin, are given by:

Lk
j =

ne∑
i=1

∫

Γi

∂Φ

∂n
(xi)O

m
n (xi)dΓ(xi), for the single layer source (3.11)

and

Lk
j =

ne∑
i=1

∫

Γi

Φ(xi)∇Om
n (xi)ndΓ(xi), for the dipole layer source. (3.12)

The physical interpolations of local expansion coefficients correspond to the po-

tential and its gradient evaluated at the origin, which are generated by N source

points outside Sa. Formula (3.10) is the linear operator converting the local ex-

pansion coefficients defined at the origin into the potential at any arbitrary points

y ∈ Sa. This linear mapping is denoted by TL2P .

Note that the local expansion is not used directly in the FMM and FFTM algo-

rithms, and hence we did not derive the spatial derivatives of the outer functions.

Nevertheless, we have presented it here so as to keep the multipole expansion theory

complete.
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3.2.3 Translation of multipole expansion

Given a set of ne elements which are clustered around some arbitrary point x, and

their multipole moments evaluated with respect to x (using (3.8) or (3.9)) is denoted

by Nm
n . Then the multipole moments Mk

j for the same set of elements but defined

at another point y can be derived from Nm
n by using the following multipole to

multipole translation operator

Mk
j =

j∑
n=0

n∑
m=−n

i|k|−|m|−|k−m|Im
n (x− y)Nk−m

j−n . (3.13)

Formula 3.13 defines the linear operator converting the multipole expansion coef-

ficients Nm
n into the multipole expansion coefficients Mk

j . This linear mapping is

denoted by TM2M .

3.2.4 Conversion of multipole expansion to local expansion

Given a set of ne elements which are clustered around some arbitrary point x, and

their multipole moments evaluated with respect to x (using (3.8) or (3.9)) is denoted

by Mm
n . Then the local expansion coefficients Lk

j due to Mm
n at some arbitrary distant

point y can be obtained by the following multipole moments to local expansion

coefficients conversion operator

Lk
j =

p∑
n=0

n∑
m=−n

(−1)ni|k|−|m|−|k−m|Om−k
j+n (x− y)Mm

n . (3.14)
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Formula 3.14 defines the linear operator converting the multiple moments Mm
n into

the local expansion coefficients Lk
j . This linear mapping is denoted by TM2L.

It is mentioned here that this operation is a series of discrete convolutions of the

multipole moments and the signed outer functions. The FFTM algorithm exploits

this feature to speed up the computation of (3.14) by using FFT algorithms [45]. A

more detail description of the FFTM algorithm is given later in section 3.3.

3.2.5 Translation of local expansion

Given the local expansion coefficients Km
n defined with respect to some point x,

which is due to a set of ne elements that are located at faraway from x (computed

using (3.11) and (3.12)). Then the local expansion coefficients Lk
j due to effects of

the same set of elements but defined at another point y can be derived from Km
n by

using the following local to local translation operator

Lk
j =

p∑
n=0

n∑
m=−n

(−1)n+ji|k|−|m|−|k−m|Im
n (x− y)Kk−m

j−n . (3.15)

Formula 3.15 defines the linear operator converting the local expansion coefficients

Km
n into the local expansion coefficients Lk

j . This linear mapping is denoted by TL2L.

With this translation operator, we have completed the multipole expansion ap-

proximation theory. It is worth to mention that Greengard and Rokhlin [29] had

devised new FMM algorithm that is based on a new exponential representations.

The method was demonstrated to be more efficient than its original version [28],

but at the expenses of having more complicated operations, such as rotating the
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multipole and local coefficients, and also their transformations between the original

spherical harmonics form and the exponential representation. We did not consider

this new approach in this study because it is not suitable for the implementation of

the FFTM algorithm. In the next section, we will describe the FFTM algorithm,

and also perform some numerical studies to evaluate its accuracy and efficiency.

3.2.6 Accuracy of multipole expansion approximation

All the expressions given above are truncated to a finite order of expansion p, and the

errors incurred by doing so are theoretical bounded by the following relation (3.7),

(3.10):

|Φexact − Φmultipole| ≤ K

(
1

c− 1

)(
1

c

)p+1

, (3.16)

where K is a constant related to the strengths of the sources field, and c is a measure

of the relative distance between the centers of the multipole expansion (for sources

fields) and local expansion (for the potential field points). It is important to note

from (3.16) that the accuracy of the multipole expansion approximation improves

when: (a) a higher order of expansion p is used, or/and (b) the separation between

the expansions centers c increases. Then for a given order of expansion p, it was

shown that FFTM can be significantly more accurate than FMM [28], [29], due to

the second factor (b). In other words, FMM would need to use a higher order of

expansion than FFTM in order to achieve the same level of accuracy. From the

previous studies in [40], FFTM required p = 2, 8 to attain 3- and 6-digits accuracy,

respectively. Whereas for FMM [29], it needs p = 8, 19 for the same accuracy levels,
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respectively. However, one should not jump into the conclusion that FFTM is more

efficient than FMM, because their computational complexities scale differently with

p. We would like to remark that it is not our objective here to prove that FFTM is

better FMM, or visa versa. Hence, there is no explicit comparison between the two

algorithms.

3.3 Fast Fourier Transform on Multipoles (FFTM)

FFTM has been known as a fast method for evaluating the potential field rapidly.

The main different between FMM and FFTM is that FFTM adopt the complicated

hierarchical in FMM, which is the main procedure that provides the efficiency of

FMM algorithms. Besides, FFTM used the Fast Fourier Transformation (FFT) to

convert directly multipole expansion to local expansion at highest level. It does not

require to compute the multipole and local expansion at lower level.

3.3.1 FFTM algolrithm

The FFTM algorithm comprises of the following four steps, which are more easily

understood with the illustrations of a two-dimensional problem in Fig. 3.1. The

steps for the FFTM algorithm are given below as follows:

A. Spatial discretization: this step subdivides the problem domain into many

smaller cells, and assigns the elements among them, which are to be represented by

multipole moments. It also helps to identify the ”near” and ”distant” elements with

respect to any given cell. By definitions, two cells are considered as neighbors if they
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share at least one common vertex. Hence, a cell has at most 27 nearest neighbors

(in 3-D context), including itself. Only those elements that belong to the nearest

neighboring cells of that given cell are considered ”near”, and their potential effects

are deal with in the conventional way as in standard BEM. The rest of the elements

are considered ”distant” ones, and are approximated by multipole expansions.

B. Conversion of elements sources to multipole moments: this step con-

verts the clustered groups of elements within each of the cells into multipole moments

M. This is accomplished with the transformation operators TS2M in (3.8) and (3.9),

according to the type of element sources.

C. Calculating local expansions due to multipole moments: this step

evaluates the local expansion coefficients L at all the cells centers due to the multipole

moments. This is accomplished with the transformation operators TM2L in (3.14).

Convolution theorem. Suppose {ui} and {vi} are sequences of period N with

coincide Fourier transforms given by {Ui} and {Vi}, respectively. Then the discrete

Fourier transform of {u⊗ v} is {UkVk}, where {u⊗ v =
∑N−1

j=0 ujvj−m} denotes the

cyclic convolution of {ui} and {vi}.

The multipole moments to local expansion coefficients conversion operator (3.14)

is convolution in nature, which can be written as:

Lt
s '

p∑
n=0

n∑
m=−n

[∑

x′

∑

y′

∑

z′
T t,m

s,n (x− x′, y − y′, z − z′)Mm
n (x′, y′, z′)

]
, (3.17)

where y = (y1, y2, y3) and x = (x1, x2, x3) are the centers of the local expansion

cell and multipole moment cells, respectively, and T t,m
s,n (x) = (−1)ni|k−m|−|k|−|m|Om−k

j+n .
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Since these two sets of centriods coincide and are regularly positioned, the series of

discrete convolutions can be evaluated rapidly using the FFT algorithms (c.f. discrete

convolution theorem [34]). Note that (3.17) is used to compute the ”distant” elements

contributions only.

D. Calculating potentials at nodal positions: with the local expansion co-

efficients computed at all the cells centers using (3.17), the potentials at the nodal

positions can be then computed using the local expansion (3.10) via transformation

operator TL2P in 3.11, and this accounts only for the effects of the ”distant” ele-

ments. The ”near” elements potential contributions are finally added onto the nodal

points directly via the conventional BEM approach. With this completes the FFTM

algorithm.

3.3.2 Algorithmic complexity of FFTM

This section give estimates on the time and memory complexities of the FFTM

algorithm associated with order of expansion p. The analysis looks at two parts,

namely at the initialization and iteration stages. At the initial stage, we are interested

in the time complexity.

Complexity at initialization stage

The main computational cost at this stage is due to the formations of the various

transformation matrices, which include TQ2M , TP2P and TQ2P (defined in 3.2), and

also computation of the response functions T t,m
s,n and their Fourier transforms.

The complexities for computing and storing TS2M and TL2P are O((p+1))2N , and

31



TQ2P is O(NMs), respectively, where s denotes the average number source points or

elements on one cell, and M is the maximum number of near by neighboring cells.

Computing the response funtions and their Fourier transforms have complexities

O((p+1))4Nc) and O((p+1)4NclogNc), respectively, where Nc is the total number of

cells used to discretize the problem. Finally, the total time and memory complexities

at the initialization stage are given as

Time = O(2(p + 1)2N + (p + 1)4[Nc + NclogNc] + NMs), (3.18)

Memory = O(2(p + 1)2N + (p + 1)4Nc + NMs). (3.19)

Complexity at iteration stage

At the iteration stage, the main concern is the time complexity as it determines the

efficiency of the algorithm. The memory complexity is considerably less as compared

to the initialization stage. The major memory requirement are:

1. O((p + 1)28Nc) matrices to store the FFTs of the multipole moments Mm
n and

local expansion Lt
s

2. One matrix for storing the basis vector generated by the GMRES at each

iteration. Generally, the memory required is O(KitersN), where Kiters is the

number of iterations for the solution to converge to the desired accuracy.

Time complexity at the iteration stage comprises the following components:

1. O((p + 1)2N)operation to compute the multipole moments using TQ2M , and to

compute the ”distant potential contribution using TL2P

32



2. O(2(p+1)2(8Nclog8Nc))+(p+1)48Nc) operations to compute the discrete con-

volutions, which includes performing (p + 1)2 FFTs of the multipole moments,

(p + 1)2 times of complex multiplication of the associated pairs of multipole

moment and the response functions.

3. (O(NMs) operation to compute the ”near” potential contribution using TQ2P .

The total time and memory complexities for one iteration is given by:

Time = O(2(p + 1)2N + NMs + (p + 1)16Nclog(8Nc) + (p + 1)4(8Nc)),

Memory = O((p + 1)28Nc + KitersN).

3.4 Results and discussion

In this section, we present results of implementation of FFTM for single and multiple

bubbles simulation and compare with the standard BEM in term of accuracy and

efficiency. The single bubble arrangement was chosen to compare with the theoretical

solution. Several arrangement of multiple bubbles not previously computed before

via the standard BEM are presented to further illustrate the feasibility with FFTM

incorporated.

3.4.1 Single bubble

Let us consider a single explosion bubble far away from any boundaries and no

gravitational effect. The charge is given as 500 kg of TNT placed at a depth of 100

m away from the free water surface. The bubble reaches its maximum radius of
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5.6m. The bubble is generated with an initial dimensionless radius of R′
0 = 0.149856

and a strength parameter ε = 97.526715 and ratio of specific heat λ = 1.25. The

initial condition and initial velocity is Φ′ = 0 at t′ = 0 on the bubble surface. The

initial dimensionless time step taken is dt′ = 0.000304. At the first time step the

dimensionless potential and dimensionless velocity are equal to zero: Φ′t′ = 0 and

u′ = 0. The potential at the first time step is: Φ′t′+dt′ = Φ′t′ + (1 − ε)dt′. Solving

Laplace equation ∇2Φ′ = 0 for spherical bubble, we have the relationship

Φ′dt′+t′ = −Φ′(dt′)
R′

0

=
(1− ε)dt′

R0

. (3.20)

Formula (3.20) shows the normal velocity normal velocity at the first step. (The

results do not include the error made by approximating the boundary integral equa-

tion (2.5) and error associated with solving the linear system equation (3.3). From

formula (3.20), the exact solution for normal velocity at any point on the bubble

surface is:

∂Φ′

∂n exact
= −0.196128. (3.21)

The average error of the normal velocity between numerical results and exact results

is measured in the L2 norm as:

Aver. Error =

(∑N
i=1 |∂Φ′

∂n exact
− ∂Φ′

∂n

i

numr
|2

∑N
i=1 |∂Φ′

∂n exact
|2

) 1
2

× 100%, (3.22)

where ∂Φ′
∂n

i

numr
is the value of the normal velocity of node i produced by the

numerical methods of FFTM and standard BEM.
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The bubble is discretized by 642 nodes and 1280 elements. We carried out differ-

ent tests of FFTM with different values of order of expansion p which is defined in

Section 3.2.5. The accuracy of the FFTM improves when a higher order of expansion

p is used. The test is run on a single computer IBM p690 Regatta 1.3 GHz CPU

speed, 250Mb RAM memory. The efficiency of FFTM is evaluated by the speed-up

factor which is defined as:

SP =
Tstd.BEM

TFFTM

. (3.23)

Here, Tstd.BEM and TFFTM are the CPU time taken by standard BEM and FFTM

on the above at first time step, respectively.

The standard BEM needed Tstd.BEM = 5.26 seconds of CPU time of computation.

The average error and maximum error of the standard BEM method compared to

the exact results are 0.334% and 0.465%, respectively.

Table 3.1 shows the performance of FFTM method for differences value of p.

It is obvious from Table 3.1 that higher order of expansion of FFTM gives more

accurate results FFTM. Both the maximum and average errors pertaining to the

FFTM tends towards to the standard BEM. The order of expansion p = 4 gives

about an optimal result in term of accuracy and efficiency. The FFTM(4) (ie. p=4)

is faster than the standard BEM by 4.87 times. The average error for the FFTM(4)

and the standard BEM is 0.342% and 0.344%, respectively, as compared to the exact

solution. The difference between the standard BEM and exact solution is attributed

to the spatial discretization of the mesh approximating the bubble surface. A higher

mesh would produce more accurate results. Henceforth, the performance of FFTM
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will be carried out by choosing the order of expansion p = 4. Fig. 3.2 shows the

comparison of normal velocities of 642 nodes on bubble surface for the FFTM(4) and

standard BEM.

Next, we compare the numerical results computed by the FFTM and standard

BEM with the analytic results of the Rayleigh bubble. Both numerical methods

were carried out with 2200 steps and dimensionless time-step size is taken to be

constant ∆t = 0.001. This time-step size is small enough to ensure stability of the

numerical scheme. The purpose of choosing constant time-step is to compare the

results conducted by FFTM, standard BEM at the same time. The test was ran on

a single computer IBM p690 Regatta 1.3 GHz CPU speed, 250Mb RAM memory.

While, the standard BEM took 11572 seconds of CPU time to compute 2200 steps,

the FFTM needed only 2376 seconds. In this sample, the FFTM performed faster

than the standard BEM by about 4.9 times.

During the life time, the Rayleigh bubble remains spherical in shape. The bubble

is initiated as a small sphere and it expands until reaches the maximum volume.

Then, the bubble contracts symmetrically in the collapse phase. The evolution of

bubble is shown in Fig. 3.3.

A comparison of the bubble radius in its evolution is made between the numerics

and theoretical results (as governed by the Rayleigh–Plesset equation (2.18). Since

the bubble remains spherical in shape throughout its lifetime, we can calculate its

radius by computing its volume. Fig. 3.4 shows the bubble radius as a function of

time obtained from the FFTM and standard BEM together with the solution of the

Rayleigh Plesset equation (using the fourth-order RungeKutta method). As shown
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in Fig. 3.4, the FFTM curve agrees well with the analytic curve and it practically

coincides with the results from the standard BEM.

The dimensionless maximum radius of bubble calculated by the FFTM and the

standard BEM are 1.006741 and 1.006739, respectively. The numerical errors pro-

cedured by the FFTM at the maximum bubble radius (which is 1.0 according to

analytic solution), is thus 0.6741%, while for the BEM is 0.6739%. Both the maxi-

mum bubble radius and the oscillation period are well predicted by the FFTM and

standard BEM with no more than 1% error or derivation from the exact solution.

The numerical error in the maximum bubble radius between FFTM and standard

BEM solver is 0.02%. This suggests that FFTM is a good approximation to the

standard BEM solver.

Further comparison is made with respect to the relationship between the bubble

surface velocity dR′/dt′ and radius R′. The analytic solution is provided in the

equation [7]:

3

2

(
dR′

dt′

)2

= −1 + R′−3

[
1 +

εR′3λ
0

λ− 1
(1−R′−3(λ−1))

]
. (3.24)

Fig. 3.5 shows the results of the numerics and analysis. There are three curves:

the theoretical curve from analysis and the curves computed by the FFTM and

the standard BEM. Numerical results provided by the FFTM mostly or effectively

coincides with the standard BEM’ resutls. It is apparent that there is reasonably

good agreements between the analysis and numerics with slightly larger over pre-

diction of dR′/dt′ at the maximum and minimum. The analytic curve in Fig. 3.5
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is symmetrical with respect to the R′-axis. It is perceptible from the same figure

that the numerical results of positive section is not symmetrical to the negative sec-

tion taken with respect to the R′-axis. The positive and negative values of dR′/dt′

represent the expansion phase and collapse phase of bubble evolution, respectively.

At the extreme of the negative part we have relatively larger error because error is

accumulated during the bubble simulation all the way right from the beginning.

The results show that the bubble surface velocity reduces to zero when its radius

attains the maximum value. The present numerical results on the Rayleigh bubble

suggest that the FFTM is a fast and accurate solver. In the following simulation, we

will use FFTM to solve multiple bubbles where the usual BEM method would have

required inordinately much computational time and memory.

3.4.2 Multiple bubbles

In this section, we present both the efficiency and accuracy of FFTM as applied to

the simulation of multiple bubbles. As there is no analytic solution for the different

arrangement of multiple bubbles, the reference is taken from the standard BEM and

the deviation for the FFTM solver is reckoned to be the error incurred. The stan-

dard BEM used iterative solvers like Gauss Iterative Method, Generalized Minimal

Residual (GMRES) to solve the explicit matrix generated from Eq. (3.2). FFTM

is an approximate method and does not form the explicit matrix directly; instead it

forms the corresponding multipole moments and local moments and then solve the

linear matrix system implicitly.
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Performance of the FFTM on two bubbles with dimensionless distance

between the centers of them initially at d′ = 2.6785.

First, we consider two explosion bubbles far away from any boundaries and no grav-

itational effect. Each charge is given as 500 kg of TNT placed at a depth of 100

m away from the free water surface, and strength parameter ε = 97.52 and ratio

of specific heat λ = 1.25. The centers of the two bubbles are initially placed on

the x-axis at a distance of d = 15 m apart equivalent to dimensionless distance of

d′ = 2.6785. Each bubble is generated with 642 nodes and 1280 triangle elements

on its surface. We will compare the normal velocity ∂Φ/∂n on the bubbles surface

between the FFTM and standard BEM at a typical time instance. Both the methods

were carried out with 2200 time steps and the dimensionless time-step size is taken to

be a constant at ∆t′ = 0.001. This time-step size is small enough to ensure stability

of the numerical scheme.

At each time step, both the FFTM and standard BEM solve the boundary integral

equation (3.2) and return the value of normal velocity ∂Φ′
∂n

for all the nodes on the

bubbles surface. The average error incurred for the FFTM solver is measured in the

L2 norm as:

Aver. Error =

(∑N
i=1 |∂Φ′

∂n

i

FFTM
− ∂Φ′

∂n

i

std.BEM
|2

∑N
i=1 |∂Φ′

∂n

i

std.BEM
|2

) 1
2

× 100% (3.25)

where ∂Φ′
∂n

i

FFTM
and ∂Φ′

∂n

i

std.BEM
are the normal velocity value of node i produced

by FFTM solver and standard BEM, respectively. N is the total number of nodes.

A quantitative comparison of the FFTM and standard BEM is given in Table 3.2.
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As seen in Table 3.2, the percentage numerical error between FFTM and standard

BEM solver during the simulation is less than 1% which is considered acceptable in

most engineering applications.

Figures 3.7 and 3.8 show the bubbles shapes during its expansion and collapse

phase based on FFTM and standard BEM solver, respectively. It is obviously that

there is essentially no difference in the deformation of the bubbles shapes between the

two methods. During the expansion phase, the bubbles expand rather symmetrically.

When the maximum is reached, both the bubbles start to contract. During the

contraction or collapse phase, not only are the bubbles contracting non-symmetrically

with a jet developing or originating on the bubble surfaces on the outer sides away

from the center, the bubbles are also attracted towards each other. The direction of

the bubble induced jet points towards each other.

Next, the bubble volume is compared to test further the accuracy of the FFTM

method. Figure 4.5 shows the dimensionless volume of one bubble produced by the

FFTM and standard BEM. There are not much differences between the two methods.

The standard BEM produces the maximum dimensionless volume V ′ at 4.3308 while

the FFTM gives the corresponding V ′ at 4.3313 at dimensionless time t′ = 1.153.

FFTM is a good approximation solver that produces 0.012% error, compared with

the standard BEM.

The tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed.

While the standard BEM took about 17843 seconds of CPU time to run 2200 steps,

FFTM took only 3964 seconds. In this example, the FFTM performed faster than

the standard BEM by about 4.5 times. While the standard BEM utilized 16.5 Mb
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of memory storage, FFTM needed only 5.1 Mb; this is a savings of about 3.1 times.

The efficiency of the FFTM at each time step is evaluated by the speed-up factor

which is defined as:

speed-up =
Tstd.BEM

TFFTM

, (3.26)

where, Tstd.BEM and TFFTM are the CPU time taken by the standard BEM and

FFTM at each time step, respectively.

Fig. 3.9 shows the time taken for one-time step computation of the two methods

during bubble evolution. Fig. 3.10 shows the speed-up factor of the FFTM method

during bubble simulation. It is obviously from this figure that FFTM runs faster

than standard BEM throughout even at the initial stage. It is interesting to note

that the time taken by FFTM reduces as the bubble volume increases, the speed-up

factor increases when the bubbles expand. When the bubble volume reaches the

maximum state at dimensionless time t′ = 1.153, the FFTM solver took least time

to solve the problem. After the bubbles reach their maximum volume, they start to

contract. Then the percentage of blank space or void in the domain increases. This

is the reason why the time required by the FFTM algorithm rises and the speed-up

factor reduces beyond the bubble maximum volume.

Performance of the FFTM on two bubbles with dimensionless distance

between centers of them initially at d′ = 5.357.

Next, we consider two explosion bubbles from two charges with the centers further

apart. The centers of the two bubbles are initially placed on the x-axis at a distance
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of d = 30 m apart equivalent to dimensionless distance of d′ = 5.357. Each charge is

given as 500 kg of TNT placed at a depth of 100 m away from the free water surface,

and strength parameter ε = 97.52 and ratio of specific heat λ = 1.25. The maximum

bubble radius will be 5.6 m for the 500 kg TNT charge placed at a depth of 100 m

away from the free water surface. Each bubble is generated with 642 nodes and 1280

triangle elements on its surface. Both the methods were carried out with 2200 time

steps and dimensionless time-step size is taken to be constant at ∆t′ = 0.001. This

time-step size is small enough to ensure stability of the numerical scheme.

To test the accuracy, we show the average error in normal velocity field computed

by the FFTM and standard BEM. A quantitative comparison of the FFTM and

standard BEM is provided in Table 3.3. The average error incurred is limited to less

than 0.8%, while most of the time the error is less than 0.40%.

The evolution of the bubbles shapes from the FFTM calculation is shown in Fig.

3.11; the counterpart for the standard BEM is provided in Fig. 3.12 for comparison.

Both the methods give almost the same bubbles shapes. It is obvious that during

the expansion, the bubble expands rather symmetrically. When these reach the

maximum, both the bubbles start to contract and keep to the fairly symmetrical

shapes till about t′ = 2.109.

Next, the bubble volume is compared to test further the accuracy of the FFTM

method. Fig. 3.13 shows the dimensionless volume of one bubble produced by

the FFTM and standard BEM. There are not much differences between the two

methods. Both the methods produce the maximum dimensionless volume V ′ at

4.3083 at dimensionless time t′ = 1.077.
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The tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed.

While the standard BEM took about 17843 seconds of CPU time to run 2200 steps,

the FFTM took 5916 seconds. In this example, the FFTM performed faster than

the standard BEM by about 3 times. While the standard BEM utilized 16.5 Mb of

memory storage, FFTM needed 9.3 Mb; this is a savings of about 1.78 times. In

this test, the distance between the centers of the two bubbles increases by doubling,

the speed-up factor reduces by 1.5 times and the saving memory reduces 1.74 times

compared to previous test. Fig. 3.14 shows the time taken for one-time step com-

putation of the two methods during bubble evolution. Fig. 3.15 shows the speed-up

factor of the FFTM method during bubble simulation. (Here the speed-up factor

term is defined as in 3.26). Similar to the previous test, the time taken by FFTM re-

duces as the bubble volume increases, the speed-up factor increases when the bubble

expand. In each time step, when the bubbles are placed further apart, the FFTM

solver requires more CPU time.

Performance of the FFTM on two bubbles with dimensionless distance

between centers of them initially at d′ = 7.95.

Next, the two explosion bubbles are positioned even further apart. Center of two

bubble are initially placed on the x-axis at a distance d = 45 m apart equivalent to

dimensionless distance of d′ = 7.95. Each charge is given as 500 kg of TNT placed at

a depth of 100 m away from the free water surface, and strength parameter ε = 97.52

and ratio of specific heat λ = 1.25. Each bubble is generated with 642 nodes and

1280 triangle elements on its surface. Both the methods were carried out with 2200
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time steps and the dimensionless time-step size is taken to be constant at ∆t = 0.001.

This time-step size is small enough to ensure stability of the numerical scheme.

Once again, we show the average error in the normal velocities computed via the

FFTM and standard BEM. A quantitative comparison of the FFTM and standard

BEM is provided in Table 3.4. The average error incurred is limited to less than

0.95%, while most of the time the error is less than 0.40%.

The evolution of the bubbles shapes from the FFTM calculation is shown in Fig.

3.16; the counterpart for the standard BEM is provided in Fig. 3.17 for comparison.

Both the methods give almost the same bubbles shapes. It is obvious that during

the expansion, the bubble expands rather symmetrically. When these reach the

maximum, both the bubbles start to contract and keep to the fairly symmetrical

shape till about t′ = 2.109.

Next, the bubble volume is compared to test further the accuracy of the FFTM

method. Fig. 3.18 shows the dimensionless volume of one bubble produced by the

FFTM and standard BEM. There are not much differences between the two methods.

Both the two methods produce the maximum dimensionless volume V ′ at 4.310 at

dimensionless time t′ = 1.050.

The tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed.

While the standard BEM took about 17843 seconds of CPU time to run 2200 steps,

the FFTM took 8874 seconds. In this example, the FFTM took longer time than

previous tests. The FFTM performed faster than the standard BEM by only about

2 times. While the standard BEM utilized 16.5 Mb of memory storage, FFTM

needed 18.0 Mb. In this test, FFTM required more memory storage than standard
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BEM, and the time taken has also increased comparatively to previous FFTM versus

standard BEM. Fig. 3.19 shows the time taken for one-time step computation of the

two methods during bubbles evolution. Fig. 3.20 shows the speed-up factor of the

FFTM method during bubble simulation. Similar to the previous test, the time taken

by FFTM reduces as the bubble volume increases, the speed-up factor increases when

the bubbles expand. In each time step, when the bubbles are placed further apart,

the FFTM solver requires more CPU time.

Performance of the FFTM on three bubbles

Consider three charges placed under water far away from any boundaries and no

gravitational effect. The location of initial first charge is (0, 0, 0) and the weight

of the first charge is 500 kg TNT placed at a depth of 100 m away from the free

water surface. The location of second charge in the dimensionless value is (2.68, 0, 0)

and the weight of the second charge is 500 kg TNT placed at a depth of 100 m

away from the free water surface. The location of the third charge is (8.93, 5.36, 0)

and the weight of the third charge is 2000 kg TNT. The maximum bubble radius

will be 5.6 m for the 500 kg TNT charge placed at a depth of 100 m away from

the free water surface. The maximum bubble radius will be 8.9 m for the 2000 kg

TNT charge. The dimensionless initial radius of bubble for the 500 kg TNT charge

is 0.1499. The dimensionless initial radius of bubble for the 2000 kg TNT charge

is 0.2379. Some parameters for all the bubbles are strength parameter ε = 97.52

and ratio of specific heat λ = 1.25. Each bubble is generated with 362 nodes and

720 triangle elements on its surface. Both the methods were carried out with 2200
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steps and the dimensionless time-step size is taken to be constant ∆t′ = 0.001. This

time-step size is small enough to ensure stability of the numerical scheme.

A quantitative comparison of the FFTM and standard BEM for the normal ve-

locity field is provided in Table 3.5. The maximum average error incurred is less

than 1.01%, while most of the time the error is less than 0.60%.

Fig. 3.21-3.23 shows the variation of the dimensionless volume of the three bub-

bles with time produced by the FFTM and standard BEM. There is hardly any

perceived difference between the two methods. For the first bubble, the standard

BEM produces the maximum V ′ at 3.92210 while the FFTM gives V ′ = 3.92215

at t′ = 1.143. The deviation is a only about 0.001%. For the second bubble, both

methods produce the maximum V ′ = 3.83493 at t′ = 1.165. For the third bubble,

the standard BEM produces the maximum V ′ at 17.9816 while the FFTM gives

V ′ = 17.9818 at t′ = 1.725. The deviation is less than 0.001%. This show that

FFTM is a good approximation solver, compared with the standard BEM.

For bubbles shapes comparison, there are not much difference between the results

produced by the FFTM and standard BEM. Bubbles start to grow at the same time

with small spherical shape with dimensionless radii of 0.1499. Fig. 3.24 shows the

bubbles shapes at the dimensionless time t′ = 0.271. At this time bubbles are in the

expansion phase and three of them keep to their spherical shapes. Fig. 3.25 shows

the bubbles shapes at the dimensionless time t′ = 2.221. The first bubble forms a

jetting directed towards the second bubble. The second bubble is strengthened by

the effect of the third bubble. The simulation stop at the time t′ = 2.3014. Fig. 3.26

shows the bubbles shapes at t′ = 2.3014. Fig. 3.27 shows the shapes of the the two
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bubbles at t′ = 2.3014 for better view.

The tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed.

While the standard BEM took about 13231 seconds of CPU time to run 2200 steps,

the FFTM took 6547 seconds. In this example, the FFTM performed faster than

the standard BEM by about 2.0 times. Fig. 3.28 shows time taken using FFTM

and standard BEM in each time step during the bubble evolution. It is obvious

from Fig. 3.28 that as bubbles evolve, the time taken in each time step by the

FFTM reduces rapidly while standard BEM does not change much. Fig. 3.29 shows

the speed-up factor of the FFTM method during bubble simulation. The speed-

up factor term is defined in 3.26. The speed-up factor increases until it reaches

the maximum at dimensionless time around 1.25 and then it reduces. The main

reason for the change in the trend of the speed-up factor is due to the changes of

the blank spaces or voids between the bubbles in the domain. When the bubbles

reach maximum volume, bubble become closer, therefore there are less blank spaces

or voids in the computational domain. In this case, FFTM work more efficiently.

During the bubbles dynamics simulation, there are relatively more blank spaces or

voids between the bubbles during the initiate phase or in the contraction phase when

the bubble volumes become smaller under those circumstances, the FFTM performed

less efficiently. This is the drawback of FFTM that it does not work efficiently when

there are too much black spaces or voids between the bubbles.

47



Table 3.1: Summary of performance of FFTM on single bubble with 642 nodes and
1280 elements at first step using IBM p690 Regatta, 1.3 GHz CPU speed, 250Mb
RAM memory. Comparison of error is made with regards to exact solution.

Order of expansion CPU time SP Aver. Error Max. Error
(sec) (times) ( % ) ( % )

2 0.63 8.34 2.014 5.584
3 1.02 5.15 0.488 1.846
4 1.08 4.87 0.342 0.481
5 1.91 2.75 0.334 0.472
6 2.78 1.89 0.334 0.466
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Table 3.2: Average error produced by FFTM of the normal velocities on two bubbles
with separate distance between centers d′ = 2.6785 .

Dimensionless time Average Error (% )

0.015 0.21
0.045 0.17
0.075 0.12
0.180 0.14
0.285 0.19
0.315 0.17
0.375 0.22
0.465 0.33
0.585 0.34
0.615 0.34
0.765 0.40
0.855 0.55
0.915 0.72
1.015 0.98
1.290 0.99
1.365 0.72
1.440 0.52
1515 0.42
1.665 0.34
1755 0.50
1845 0.43
1.965 0.58
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Table 3.3: Average error produced by FFTM of the normal velocities on two bubbles
with separate distance between centers d′ = 5.357.

Dimensionless time Average Error (% )
0.015 0.14
0.045 0.15
0.075 0.21
0.180 0.26
0.285 0.14
0.315 0.15
0.375 0.20
0.465 0.24
0.585 0.25
0.615 0.26
0.765 0.31
0.855 0.38
0.915 0.57
1.015 0.78
1.290 0.49
1.365 0.36
1.440 0.31
1515 0.26
1.665 0.28
1755 0.23
1845 0.23
1.965 0.31
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Table 3.4: Average error produced by FFTM of the normal velocities on two bubbles
with separate distance between centers d′ = 7.95 .

Dimensionless time Average Error (% )

0.015 0.16
0.045 0.19
0.075 0.13
0.180 0.17
0.285 0.17
0.315 0.14
0.375 0.17
0.465 0.23
0.585 0.24
0.615 0.23
0.765 0.25
0.855 0.47
0.915 0.76
1.015 0.92
1.290 0.40
1.365 0.28
1.440 0.28
1515 0.30
1.665 0.36
1755 0.33
1845 0.29
1.965 0.59
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Table 3.5: Average error of the normal velocities on three bubbles produced by the
FFTM method.

Dimensionless time Average Error (% )
0.015 0.21
0.045 0.21
0.075 0.12
0.180 0.12
0.285 0.20
0.315 0.21
0.375 0.22
0.465 0.23
0.585 0.27
0.615 0.30
0.765 0.34
0.780 0.34
0.915 0.49
1.065 0.76
1.290 0.101
1.365 0.74
1.440 0.60
1515 0.48
1.665 0.31
1755 0.34
1845 0.30
1.965 0.32
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Figure 3.1: Two-dimensional pictorial representation of the FFTM algorithm. Step
A: Division of problem domain into many smaller cells. Step B: Computation of
multipole moments M for all cells. Step C: Evaluation of local expansion coefficients
L at cell centers by discrete convolutions via FFT. Step D: For a given cell, compute
the potentials contributed from distant and near sources.
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Figure 3.2: Distribution of dimensionless normal velocity on single bubble with 642
node and 1280 triangle elements at first time step. Circle and triangle represent
solutions given by FFTM and standard BEM, respectively.
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Figure 3.3: Evolution of Rayleigh bubble at mesh level 8, with 642 node and 1280
triangle elements. Solutions are given by FFTM. (a) is bubbles shapes during expan-
sion phase at dimensionless time t′ = 0.06. (b) is bubbles shapes at dimensionless
time t′ = 1.00. (c) and (d) are bubbles shapes during collapse phase t′ = 1.50 and
t′ = 1.80, respectively.
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Figure 3.4: Comparison of analytic Rayleigh bubble radius R′ with FFTM and stan-
dard BEM. For the numerics, the bubble was generated with 642 nodes and 1280
triangle elements.
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Figure 3.5: Comparison of dR′/dt′ vs R′ with FFTM and standard BEM. For the
numerics, the bubble was generated with 642 nodes and 1280 triangle elements.
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Figure 3.6: Comparison in dimensionless bubble volume produced by the FFTM and
standard BEM.
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Figure 3.7: Evolution of two bubbles with initial dimensionless distance d′ = 2.6785.
Each bubble has 642 node and 1280 triangle elements on its mesh. Solutions are given
by the FFTM. (a) and (b) are bubbles shapes during expansion phase at dimension-
less time t′ = 0.080 and t′ = 0.851 respectively; (c) and (d) are bubbles shapes during
collapse phase at dimensionless time t′ = 2.010 and t′ = 2.449 respectively.
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Figure 3.8: Evolution of two bubbles with initial dimensionless distance d′ = 2.6785
. Each bubble has 642 node and 1280 triangle elements on its mesh. Solutions are
given by the standard BEM. (a) and (b) are bubbles shapes during the expansion
phase at dimensionless time t′ = 0.080 and t′ = 0.851, respectively; (c) and (d) are
bubbles shapes during collapse phase at dimensionless time t′ = 2.010 and t′ = 2.449,
respectively.
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Figure 3.9: Comparison of CPU time for each time step taken by the FFTM method
and standard BEM method during the bubbles evolution. Distance between the
centers of two initial bubbles is d′ = 2.6785.
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Figure 3.10: The speed-up factor of the FFTM method during bubbles simulation.
Distance between the centers of two initial bubbles is d′ = 2.6785.
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Figure 3.11: Evolution of two bubbles with initial centers distance of d′ = 5.357. Each
bubble has 642 node and 1280 triangle elements on its mesh. Solutions are given by
the FFTM. (a) and (b) are bubbles shapes during expansion phase at dimensionless
time t′ = 0.083 and t′ = 0.881 respectively. (c) and (d) are bubbles shapes during
collapse phase at dimensionless time t′ = 2.109 and t′ = 2.138 respectively.

62



x’

y’

-1 0 1 2 3 4 5 6-1

0

1

(c)

x’

y’

-1 0 1 2 3 4 5 6-1

0

1

(d)

x’

y’

-1 0 1 2 3 4 5 6-1

0

1

(c)

x’

y’

-1 0 1 2 3 4 5 6-1

0

1

(d)

Figure 3.12: Evolution of two bubbles with initial centers distance of d′ = 5.357.
Each bubble has 642 node and 1280 triangle elements on its mesh. Solutions are
given by the standard BEM. (a) and (b) are bubbles shapes during expansion phase
at dimensionless time t′ = 0.083 and t′ = 0.881 respectively. (c) and (d) are bub-
bles shapes during collapse phase at dimensionless time t′ = 2.109 and t′ = 2.138
respectively.
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Figure 3.13: Comparison of dimensionless bubble volume produced by the FFTM
and standard BEM.
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Figure 3.14: Comparison of CPU time for each time step taken by the FFTM method
and the standard BEM method during the bubbles evolution. Distance between the
centers of two initial bubbles is d′ = 5.357.
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Figure 3.15: The speed-up factor of the FFTM method during bubbles simulation.
Distance between the centers of two initial bubbles is d′ = 5.357.
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Figure 3.16: Evolution of two bubbles with initial centers distance of d′ = 7.95. Each
bubble has 642 node and 1280 triangle elements on its mesh. Solutions are given by
the FFTM. (a) and (b) are bubbles shapes during expansion phase at dimensionless
time t′ = 0.083 and t′ = 0.887 respectively. (c) and (d) are bubbles shapes during
collapse phase at dimensionless time t′ = 2.109 and t′ = 2.103 respectively.
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Figure 3.17: Evolution of two bubbles with initial centers distance of d′ = 7.95. Each
bubble has 642 node and 1280 triangle elements on its mesh. Solutions are given by
the standard BEM. (a) and (b) are bubbles shapes during expansion phase at dimen-
sionless time t′ = 0.083 and t′ = 0.887 respectively. (c) and (d) are bubbles shapes
during collapse phase at dimensionless time t′ = 2.109 and t′ = 2.103 respectively.
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Figure 3.18: Comparison of dimensionless bubble volume produced by the FFTM
and standard BEM.
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Figure 3.19: Comparison in time taken during bubbles evolution in each time step
between the FFTM and standard BEM. Two bubbles with initial dimensionless dis-
tance d′ = 7.95.
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Figure 3.20: The speed-up factor of the FFTM method during bubbles simulation.
Distance between the centers of two initial bubbles is d′ = 7.95.
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Figure 3.21: Comparison of dimensionless volume of the first bubble produced by
the FFTM and standard BEM method.
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Figure 3.22: Comparison of dimensionless volume of the second bubble produced by
the FFTM and standard BEM method.
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Figure 3.23: Comparison of dimensionless volume of the third bubble produced by
the FFTM and standard BEM method.
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Figure 3.24: Bubbles shapes at dimensionless time t’ = 0.271.
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Figure 3.25: Bubbles shapes at dimensionless time t’ = 2.221.
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Figure 3.26: Bubbles shapes at dimensionless time t’ = 2.3014.
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Figure 3.27: Zoom in of bubbles 1 and 2 at dimensionless time t’ = 2.3014.
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Figure 3.28: Comparison of time taken by using the FFTM and standard BEM in
each step during evolution of three bubbles.
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Figure 3.29: The speed-up factor of the FFTM method during evolution of three
bubbles.
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Chapter 4

New version of FFTM: FFTM

Clustering

As shown in the previous chapter, the original version of FFTM does not work

efficiently when the problem domain has much blank spaces or voids between the

multiple bubbles. The efficiency of FFTM depends very much on the relative position

of two bubbles and their radii. During inception time, each bubble is usually initiated

as a small spheroids and the distance between two bubbles is usually much larger

than subsequence states. For bubbles placed far away from each other, or bubbles

radii are very small compared to the distance between the bubbles centers, the gain

in speed up factor using the FFTM reduces.

The deterioration in the efficiency is largely due to the fact that FFTM has to

perform calculations even for the empty cells. In other words, the computational

efforts for evaluating the discrete convolutions have to be increased unnecessarily

with many zero entries. In Fig 4.1(a), we shall use an example to describe the
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problem domain and form multiple expansion coefficients of the FFTM algorithm.

In usual practice, FFTM determine the smallest box with its edges parallel to the

x, y, z axis. This box is the computational domain and is divided into many smaller

cells as described in the FFTM algorithm encompassing all the multiple bubbles.

Then it follows that multipole expansion coefficient and calculations are required for

each cells. Where there are much blank spaces between the bubbles, we have many

”zero cells” and an indiscriminate employment of the FFTM would be very wasteful.

On the other hand, FMM is noted to be hardly affected by this sparseness issue

[29], since it ignores all the empty cells. Hence, this seems to suggest that FMM is

a preferred fast solver for sparse problems over the FFT-based methods, including

FFTM. But due to the accuracy requirement, where FMM needs significantly higher

order of expansion than FFTM to achieve the same order of accuracy (see [41] for

more detail discussions on this accuracy issue), the actual outcome may not be as

desirable. To be more explicit, FMM [29] needs p = 8 to achieve 3-digits accuracy,

whereas FFTM [41] needs only p = 2. An obvious impact is that the computational

efforts for computing and storing the multipole and local expansion coefficients and

also their related transformation matrices would be significantly more expensive for

FMM than FFTM, since they scale like O(p2). From the above discussions, it seems

that neither FMM nor FFTM are suitable for solving spatially sparse problems. To

alleviate this sparseness issue, we propose the following FFTM Clustering method.

The main difference between FFTM Clustering and standalone FFTM is FFTM

Clustering does the grouping of ”near” bubbles together into one group and carries

out all the calculation on this group domain. That is, FFTM Clustering will group
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all the nearby bubbles together, and then the necessary calculations on the sub-

domains containing bubbles. A brief pictoral comparison between the algorithms of

standalone FFTM and FFTM Clustering is plotted in Fig. 4.1.

4.1 FFTM clustering algorithm

Basically, FFTM clustering includes the following steps:

I) Clustering the domain into ”well-separated” groups (see Fig. 4.3-A). The

formation of each groups depends on the distance between the bubbles and their

radii.

First, we define a group. A group can contain one single bubble or multiple nearby

bubbles. Each group is marked by a spheroid that contain all affected bubbles inside.

The spheroid may not coincide with the bubble shape because bubbles deform and

will not always keep to the spherical shape. When a group contains only single

spherical bubble, the spheroid coincides with the spherical bubble.

Secondly, we describe the grouping process. Initially, each bubble is considered

as a group surrounded by a spheroid. Assume that the radii of two spheroids sur-

rounding group 1 and 2 are R1 and R2 with the centers at O1 and O2, respectively.

The distance between their centers is D. If the distance between centers of the two

spheroids is smaller than a critical distance, the two groups will be joined together

and form a new group. The critical distance of forming a new group will be defined

in the next part. The new group is represented as a spheroid with its new center O12

located at the midpoint of O1 and O2 and the radius R12 = (R1 + R2 + D)/2. Fig.
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4.2 shows the grouping process of two bubbles centered at O1 and O2 with radii R1

and R2, respectively.

The relative distance of the new spheroid with other groups R12 is considered

next during the grouping process. Hence, we will have separated groups after the

clustering process.

II) Calculate the total contribution from the outside groups and the contribution

within the group. To calculate the contribution of all source points in each group on

a point within itself, the FFTM method is employed here.

To calculate the contribution of all sources outside the group, first we define

sub-groups for all the groups, such that each sub-groups forms a hierarchical oct-

tree. This is to facilitate the use of the various translation operators discussed in

Section 3.1. The hierarchical oct-tree is formed in each cluster. A cluster is a parent

cell, then each cell is divided into eight smaller child cells at the higher level. At

the highest level, there are not sub-cells inside each cell. Now, the procedures of

computing the multipole interactions among the sub-groups are identical to that

used in FMM. First, the multipole expansion at the highest level is calculated, then

the multipole expansions at the lower level are translated step by step until it reached

the lowest level (as in Fig. 4.3-b) by using translation 3.13. Next step involves the

conversions of multipole expansions to local expansions due to contribution of other

cells outside the group via (3.14) and translations of the local expansion to local

expansion coefficients at higher level using translation 3.15 (as in Fig. 4.3-c). In

the figure, the larger M corresponds to the multipole moments at the higher levels

of the oct-tree, which are used to compute the local expansion coefficients L at the
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respective higher levels. The order of expansions used for each cell interactions can

be different, which depends on the desired accuracy and the relative distance between

the interacting cells. It is important to note that the number of multipole to local

expansions conversion operations, which is the most computationally expensive of the

FMM algorithm [28]-[29], is not an issue here. This is because most of the multipole

interactions would be at the coarsest level (since the groups are well-separated).

Hence, this part of the algorithm only scales like O(NSG), where NSG is the total

number of sub-groups, which is significantly lesser than the number of multipole cells

in the original discretization. Note also that the order of expansions used to compute

the various sub-groups cells interactions are not fixed, but rather vary according to

the desirable accuracy and also their relative distances.

Finally, the local expansion coefficients L on the smallest cells are finally derived

by summing the contributions from the FFTM computation of its self-group, and

also the local expansions from the higher level cell interactions due to multipole

moments from the other groups (Fig. 4.3-c).

Remark: FFTM Clustering is a generalized method which encompasses the origi-

nal FFTM method. When the problem at hand has only one group, the FFTM Clus-

tering is simply the original FFTM. This is because the contribution of all sources

within one group is itself.

Critical distance

The efficiency of the FFTM Clustering algorithm depends on the critical distance

of the grouping process. Consider two spherical bubbles of radius R1 = R2 = r = 1,

with the distance between their centers is D. The velocity potential on each node
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on the two bubble are set at 1. Each bubble contains 642 nodes on the surface.

The centers of the two bubbles will be varied at different tests from D = 2.5r to

D = 6.0r. The efficiency of FFTM Clustering in terms of accuracy and efficiency

will be compared between two examples: grouping and non-grouping. For the non-

grouping examples, the FFTM Clustering performs in the two individual groups,

each group represents one bubble. For the grouping examples, the is only one group

containing the two bubbles on the problem domain, the FFTM Clustering will then

become the standalone FFTM. The previous chapter has shown that the standalone

FFTM is an accurate method. The results produced by the FFTM Clustering in the

two groups will be compared with the results from standalone FFTM to measure the

accuracy the performance of the FFTM Clustering in the non-grouping example. The

average error incurred for the FFTM Clustering solver in the non-grouping example

is measured in the L2 norm as:

Average Error =




∑N
i=1 |∂Φ′

∂n

i

non−grouping
− ∂Φ′

∂n

i

grouping
|2

∑N
i=1 |∂Φ′

∂n

i

grouping
|2




1
2

× 100% (4.1)

where ∂Φ′
∂n

i

non−grouping
and ∂Φ′

∂n

i

grouping
are the normal velocity value of node i pro-

duced by FFTM Clustering solver in non-grouping and grouping example, respec-

tively. N is the total number of nodes.

The tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed.

The average error defined in 4.1 will be used to measure the FFTM Clustering solver

in the non-grouping example. Table 4.1 shows the comparison between the two

methods in term of in accuracy and CPU time taken.
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As seen from Table 4.1, while the CPU time taken in the grouping example

increases, the CPU time taken by the non-grouping examples reduces and converges

to a constant value as the bubbles are placed further apart. The average error also

reduces when the bubbles are more further apart. From that table, when D = 4r the

FFTM Clustering performs the most efficiently in terms of accuracy and CPU time

taken. From this, we suggest that the critical grouping distance between centers of

two bubbles is about optimal at D = 2(R1 +R2), where R1 and R2 are radius of two

bubbles.

4.2 Results and discussion

In this section, we test the efficiency and accuracy of FFTM Clustering on the same

examples as in Section 3.4.2. The accuracy of the FFTM Clustering method is

measured by the average error of the normal velocity between results produced by

the FFTM Clustering and standard BEM which is defined as:

Aver. Error =




∑N
i=1 |∂Φ′

∂n FFTM−Clt
− ∂Φ′

∂n

i

Stand.BEM
|2

∑N
i=1 |∂Φ′

∂n

i

Stand.BEM
|2




1
2

× 100%, (4.2)

where ∂Φ′
∂n

i

FFTM−Clt
and ∂Φ′

∂n

i

std.BEM
are the normal velocity value of node i pro-

duced by FFTM Clustering solver and standard BEM respectively. N is total number

of nodes.

The efficiency of the FFTM Clustering at each time step is evaluated by the

speed-up factor which is defined as:
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speed-up =
Tstd.BEM

TFFTM−Clt

, (4.3)

here, Tstd.BEM and TFFTM−Clt are the CPU time taken by the standard BEM and

FFTM Clustering at each time step, respectively.

4.2.1 Performance of the FFTM Clustering on two bubbles

We consider two explosion bubbles far away from any boundaries and no gravitational

effect. Each charge is given as 500 kg of TNT placed at a depth of 100 m away from

the free water surface, and strength parameter ε = 97.52 and ratio of specific heat

λ = 1.25. Center of two bubble are initially placed on the x-axis at a distance d = 15

m equivalent to dimensionless distance d′ = 2.6785 (same example as described in

Section 3.4.2). Each bubble is generate with 642 nodes and 1280 triangle elements

on its surface. We will compare the normal velocity field ∂Φ/∂n between the FFTM

Clustering and standard BEM at a typical time instant. Both the methods were

carried out with 2200 time steps and the dimensionless time-step size is taken to be

constant at ∆t′ = 0.001. This time-step size is small enough to ensure stability of

the numerical scheme.

Table 4.2 shows the numerical error of normal velocity field between the FFTM

Clustering method and standard BEM method. Compared to Table 3.2, the average

error is almost same. The average error incurred is limited to less than 1%, while

most of the time the error is less than 0.60%.

The evolution of the bubbles shapes from the FFTM Clustering calculation is
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shown in Figure 4.4. The method gives almost the same bubbles shapes compared

to the the former methods. Next, the bubble volume is compared to test further

the accuracy of the FFTM Clustering method. Figure 4.5 shows the dimensionless

volume of one bubble produced by the FFTM, FFTM Clustering and standard BEM

method. There are not much differences between the three methods. The FFTM

Clustering produces the dimensionless maximum 4.3313 at dimensionless time t′ =

1.153, it makes only 0.012% error, compare with standard BEM.

The test were carried out on the single IBM p690 Regatta 1.3 GHz CPU speed.

In this examples, the FFTM Clustering took 3748 seconds of CPU time to perform

2200 time-steps. The FFTM Clustering performed faster than standard BEM by

about 4.8 times.

Fig. 4.6 shows the time taken for one-time step computation of the two methods

during bubble evolution. Fig. 4.7 shows the speed-up factor of the FFTM method

during bubble simulation. Bubbles are initiated with a small spheroid of the initial

radius R0 = 0.149. The distance between two bubble compared to the their radius is

large enough to make two separated groups, and the CPU time taken by the FFTM

Clustering in each time-step is about 1.67 seconds, while the standalone FFTM one

changes rapidly. As the bubbles evolve, their radii increase and at dimensionless time

t′ = 0.257, their radius reaches r′ = 0.674, while the separation distance between the

centers is d′ = 2.67. From this time instant onward, the bubbles are sufficiently close

to form one group in the whole domain. Then FFTM Clustering automatically turn

to standalone FFTM to solve the problem.

Next, consider two bubbles with the same flow conditions, but the separation dis-
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tance between centers of initial bubbles further apart: at the dimensionless distance

d′ = 5.357 (see also Section 3.4.2). Table 4.3 show the relative error between the

FFTM Clustering and standard BEM method. Table 3.3 shows the numerical error

of normal velocity field between the FFTM Clustering method and standard BEM

method. The average error incurred is limited to less than 1%, while most of the

time the error is less than 0.50%.

The evolution of the bubbles shapes from the FFTM Clustering calculation is

shown in Figure 4.8. The method gives almost the same bubbles shapes compared

to the the former methods. Next, the bubble volume is compared to test further

the accuracy of the FFTM Clustering method. Figure 4.9 shows the dimensionless

volume of one bubble produced by the FFTM, FFTM Clustering and standard BEM

method. There are not much differences between the three methods. Similar to

the previous two methods, the FFTM Clustering method produces the maximum

dimensionless volume V ′ at 4.3083 at dimensionless time t′ = 1.077.

The tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed.

While the standard BEM took about 17843 seconds of CPU time to run 2200 steps,

the FFTM took 5916 seconds, FFTM Clustering took 3674 seconds. In this example,

the FFTM Clustering performed faster than the standard BEM by about 4.86 times.

Comparison of the CPU time taken by FFTM Clustering, FFTM and standard BEM

for each time step of calculation is shown in Figure 4.10. While the CPU time taken

by the FFTM varied, the FFTM Clustering did not change much in each time-step

during the simulation. Fig. 4.11 shows the comparison of the speed-up factor of the

two methods FFTM and FFTM Clustering. It is shown in Fig. 4.11 that the FFTM
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Clustering method ran faster than the standard BEM by above 5 times in each time

step, while the FFTM ran faster than the standard BEM by only 3 times.

Further comparison is made for two bubbles in which the centers are separated

at the dimensionless distance on the x-axis with d′ = 7.95 (see also Section 3.4.2).

Table 4.4 shows the relative error between the FFTM Clustering and standard BEM

methods. The average error incurred is limited to less than 1%, while most of the

time the error is less than 0.60%.

The evolution of the bubbles shapes from the FFTM Clustering calculation is

shown in Figure 4.12. The method gives almost the same bubbles shapes compared

to the former methods. Next, the bubble volume is compared to test further the

accuracy of the FFTM Clustering method. Figure 4.13 shows the dimensionless

volume of one bubble produced by the FFTM, FFTM Clustering and standard BEM

method. There are not much differences between the three methods. Similar to

the previous two methods, the FFTM Clustering method produces the maximum

dimensionless volume V ′ at 4.310 at dimensionless time t′ = 1.050.

Comparison of CPU taken by the FFTM Clustering, FFTM and standard BEM

during bubble simulation for each time step calculation is shown in Fig. 4.14. The

tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed. While the

standard BEM took about 17843 seconds of CPU time to run 2200 steps, FFTM took

8874 seconds, FFTM Clustering took 3674 seconds. In this example, the CPU time

taken by FFTM Clustering is constant in each time step. In this example, the FFTM

Clustering performed faster than the standard BEM by about 4.86 times and the

FFTM performed faster than the standard BEM only by about 2 times. Comparison
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of the CPU time taken by FFTM Clustering, FFTM and standard BEM for each

time step of calculation is shown in Figure 4.14. While the CPU time taken by the

FFTM varied, the FFTM Clustering did not change much in each time-step during

the simulation. Fig. 4.15 shows the comparison of the speed-up factor of the two

methods FFTM and FFTM Clustering. It is shown in Fig. 4.15 that the FFTM

Clustering method ran faster than the standard BEM by around 5 times in each

time step, while the FFTM ran faster than the standard BEM by around only 2

times.

4.2.2 Performance of the FFTM Clustering on three bubbles

In this section, we employ the FFTM Clustering for modelling three explosion bub-

bles far away from any boundaries and no gravitational effect. Centers of three

bubbles are initially placed on the z-plane and located at the corners of an equilat-

eral triangle of dimensionless length a′ = 3.57 (see also Section 3.4.2). Each bubble

starts to expand from initial bubble radius R′
0 = 0.1499. Other parameters of all the

bubbles are strength parameter ε = 97.52 and ratio of specific heat λ = 1.25. Each

bubble is generate with 362 nodes and 720 triangle elements on its surface. FFTM

Clustering method was carried out with 2200 time steps and the dimensionless time-

step size is taken to be constant at ∆t′ = 0.001. This example is as same as the

example carried out for the FFTM test (see Section 3.4.2).

A quantitative comparison of the FFTM Clustering and standard BEM in normal

velocity field is provided in Table 4.5. The average error incurred is limited to less

than 1.02%, while most of the time the error is less than 0.60%. For bubbles shapes
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comparison, there are not much difference between the results produced by the FFTM

Clustering and the former methods.

The tests were conducted on a single IBM p690 Regatta 1.3 GHz CPU speed.

While the standard BEM took about 13231 seconds of CPU time to run 2200 steps,

the FFTM took 6547 seconds, the FFTM Clustering took about 3388 seconds. In

this example, the FFTM Clustering performed faster than the standard BEM by

about 4.0 times, while the FFTM performed faster than the standard BEM by only

2.0 times. Comparison of the CPU time taken by FFTM Clustering, FFTM and

standard BEM for each time step of calculation is shown in Fig. 4.16. While the

CPU time taken by the FFTM varied, the FFTM Clustering did not change much

in each time-step during bubbles simulation. Fig. 4.17 shows the comparison of the

speed-up factor of the two methods FFTM and FFTM Clustering. It is shown in

Fig. 4.17 that the FFTM Clustering method ran faster than the standard BEM by

around 4 times in each time step, while the speed-up factor of the FFTM varied from

0.5 to 3 times.

4.2.3 The efficiency of the FFTM Clustering on multiple

bubbles

The efficiency of the FFTM Clustering comes from the use of the multipole expan-

sions and local expansions on each group. The standard BEM solves the boundary

integral equation by generating a dense matrix system which requires O(N2) opera-

tions to solve with iterative methods such as Gauss Iterative or Generalized Minimal
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Residual (GMRES). While the FFTM Clustering requires only O(N logN) opera-

tions.

In the previous sections, the FFTM Clustering has shown its superb performance

on the test cases for two or three bubbles. It performs better by around three times to

five times faster than the standard BEM in those tests. In this section, further tests

for cases with more bubbles are carried out. The FFTM Clustering and the Standard

BEM are used in each test on the single IBM p690 Regatta 1.3 GHz CPU speed. The

FFTM has not been implemented in this test because the efficiency of the FFTM

depends on the distribution of the bubbles and defers very much during bubbles

simulation. We consider five examples for two, four, six, eight and twelve bubbles,

respectively. The locations of bubbles in the two-bubbles example in dimensionless

form are: (0,0,0) and (0,0,5). The locations of bubbles in the four-bubbles example in

dimensionless form are: (0,0,0), (0,0,5), (0,5,5), (0,5,0) and (5,0,0). The locations of

bubbles in the six-bubbles example in dimensionless form are: (0,0,0), (0,0,5), (0,5,5),

(0,5,0), (5,0,0) and (5,0,5). The locations of bubbles in the eight-bubbles example

in dimensionless form are: (0,0,0), (0,0,5), (0,5,5), (0,5,0), (5,0,0), (5,0,5), (5,5,5)

and (5,5,0). The locations of bubbles in the twelve-bubbles example in dimensionless

form are: (0,0,0), (0,0,5), (0,5,5), (0,5,0), (5,0,0), (5,0,5), (5,5,5) , (5,5,0), (10,0,0),

(10,0,5), (10,5,5) and (10,5,0). Each bubble was initiated from a charge of 500 kg

TNT placed at a depth of 100 m away from the free water surface, and exploded

under water at a depth of H = 100 m. Other parameter for bubbles are strength

parameter ε = 97.52 and ratio of specific heat λ = 1.25. The maximum bubble

radius is 5.6 m corresponding to the dimensionless value of 1.0. All the bubbles
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were exploded or initiated from a spheroid with the initial radius R′
0 = 0.149. In

all the tests, each bubble is generated with 642 nodes and 1280 triangle elements on

its surface. The CPU time taken by the standard BEM method in the large scale

problem (for example: eight bubbles, twelve bubbles) does not permit to undertake

2200 time step as in the previous sections. Therefore, we conducted only 50 time

steps in these said tests. It is noted that the time taken by the FFTM Clustering

method and the standard BEM does not differ much in each time step during the

simulation. The efficiency of the FFTM Clustering is measured in term of speed-up

factor which is defined as:

speed-up =
Tstd.BEM

TFFTM−Clt

. (4.4)

Here Tstd.BEM and TFFTM−Clt are the average CPU time in one time step taken by

the standard BEM and FFTM Clustering, respectively.

Table 4.6 and Fig. 4.18 show the average CPU time taken in one time step

of the FFTM Clustering and standard BEM. In the twelve-bubbles example, the

FFTM Clustering needed 8.1 seconds of CPU time, while the standard BEM needed

547.1 seconds. To capture the evolution of the bubbles accurately, one must choose

small time-step size. With the number time steps taken to be, say 2000, the FFTM

Clustering needed only 4.5 hours while the standard BEM would need 254 hours

corresponding to 10.5 days. As seen in Fig. 4.19, the speed-up factor increases

significantly when the number of bubbles or problem size increases.

It is shown that the FFTM Clustering performs efficiently on the problem which
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has large number of nodes or bubbles. The FFTM Clustering method is able to

simulate the multiple bubbles with large scale problem size which is difficult to solve

using the standard BEM.
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Table 4.1: Comparison the performance of FFTM Clustering in term of accuracy
and CPU time taken on the two examples: Grouping and Non-grouping.

CPU time CPU time
D Average Error Non-grouping (seconds) Grouping (seconds)

2.5 r 0.35 1.54 1.26
3.0 r 0.22 1.37 1.44
4.0 r 0.05 1.16 1.67
5.0 r 0.04 1.16 1.88
6.0 r 0.05 1.16 2.89

Table 4.2: Average error produced by the FFTM Clustering method of the normal
velocities on two bubbles with separate distance between centers d′ = 2.6785.

Dimensionless time Average Error (% )
0.015 0.12
0.045 0.12
0.075 0.13
0.180 0.23
0.285 0.22
0.315 0.22
0.375 0.24
0.465 0.35
0.585 0.36
0.615 0.34
0.765 0.40
0.855 0.58
0.915 0.79
1.015 0.89
1.290 0.99
1.365 0.73
1.440 0.54
1515 0.42
1.665 0.45
1755 0.51
1845 0.45
1.965 0.60
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Table 4.3: Average error produced by the FFTM Clustering method of the normal
velocities on two bubbles with separate distance between centers d′ = 5.357 .

Dimensionless time Average Error (% )
0.015 0.11
0.045 0.12
0.075 0.15
0.180 0.18
0.285 0.10
0.315 0.25
0.375 0.26
0.465 0.21
0.585 0.19
0.615 0.19
0.765 0.42
0.855 0.63
0.915 0.84
1.015 0.89
1.290 0.45
1.365 0.42
1.440 0.40
1515 0.36
1.665 0.26
1755 0.22
1845 0.29
1.965 0.27
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Table 4.4: Average error produced by the FFTM Clustering method of the normal
velocities on two bubbles with separate distance between centers d′ = 7.95.

Dimensionless time Average Error (% )
0.015 0.11
0.045 0.13
0.075 0.17
0.180 0.18
0.285 0.10
0.315 0.13
0.375 0.21
0.465 0.26
0.585 0.19
0.615 0.19
0.765 0.33
0.855 0.62
0.915 0.94
1.025 0.89
1.290 0.34
1.365 0.33
1.440 0.34
1515 0.33
1.665 0.23
1755 0.20
1845 0.30
1.965 0.33
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Table 4.5: Average error of the normal velocities on three bubbles produced by the
FFTM Clustering method.

Dimensionless time Average Error (% )
0.015 0.13
0.045 0.29
0.075 0.14
0.180 0.16
0.285 0.20
0.315 0.21
0.375 0.21
0.465 0.25
0.585 0.29
0.615 0.31
0.765 0.33
0.855 0.45
0.915 0.50
1.025 0.65
1.290 1.02
1.365 0.77
1.440 0.62
1515 0.49
1.665 0.31
1755 0.30
1845 0.34
1.965 0.33

Table 4.6: The average CPU time taken in each time step by the FFTM Clustering
and the standard BEM.
Number of bubbles TFFTM−Clt (secs) Tstd.BEM (secs) speed-up factor (times)

2 1.7 8.1 4.80
4 3.1 55.9 18.0
6 4.2 119.7 28.5
8 5.4 202.7 37.5
12 8.1 457.1 56.4
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Figure 4.1: Comparison between FFTM (a) and FFTM Clustering (b) in discretizing
the problem domain and calculations on each cell.

94



R1

R2

D

O1

O2

O12

R12

Figure 4.2: Grouping process of two spheroid centered at O1 and O2, radii R1 and
R2.
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Figure 4.3: Two-dimensional illustration of FFTM Clustering method. (a) Domain
Clustering. (b) Computing the multipole interactions among the sub-groups. (c)
Computing the local expansion coefficients due to other groups. (d) Computing the
local expansions due to contribution from cells inside group and outside group
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Figure 4.4: Evolution of two bubbles with initial dimensionless distance d′ = 2.6785.
Each bubble has 642 node and 1280 triangle elements on its mesh. Solutions are
given by the FFTM Clustering method. (a) and (b) are the bubbles shapes during
expansion phase at dimensionless time t′ = 0.080 and t′ = 0.851 respectively; (c) and
(d) are the bubbles shapes during collapse phase at dimensionless time t′ = 2.010
and t′ = 2.449 respectively.
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Figure 4.5: Comparison in dimensionless bubble volume produced by the FFTM,
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Figure 4.6: Comparison of CPU time for each time step taken by the FFTM, FFTM
Clustering and the standard BEM method during the bubbles evolution. Distance
between the centers of two initial bubbles is d′ = 2.6785.
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Figure 4.7: The speed-up factor of the FFTM and FFTM Clustering method during
bubbles simulation. Distance between the centers of two initial bubbles is d′ = 2.6785.
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Figure 4.8: Evolution of two bubbles with initial centers distance of d′ = 5.357. Each
bubble has 642 node and 1280 triangle elements on its mesh. Solutions are given
by the FFTM Clustering method. (a) and (b) are bubbles shapes during expansion
phase at dimensionless time t′ = 0.083 and t′ = 0.881 respectively. (c) and (d) are
bubbles shapes during collapse phase at dimensionless time t′ = 2.109 and t′ = 2.138
respectively.
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Figure 4.9: Comparison in dimensionless bubble volume produced by the FFTM,
FFTM Clustering and standard BEM.
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Figure 4.10: Comparison of time during the bubbles evolution for each time step
taken by the FFTM, FFTM Clustering method and the standard BEM method.
Distance between the centers of two initial bubbles is d′ = 5.357.
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Figure 4.11: The speed-up factor of the FFTM and FFTM Clustering method during
bubbles simulation. Distance between the centers of two initial bubbles is d′ = 5.357.
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Figure 4.12: Evolution of two bubbles with initial centers distance of d′ = 7.95.
Each bubble has 642 node and 1280 triangle elements on its mesh. Solutions are
given by the FFTM Clustering. (a) and (b) are bubbles shapes during expansion
phase at dimensionless time t′ = 0.083 and t′ = 0.887 respectively. (c) and (d) are
bubbles shapes during collapse phase at dimensionless time t′ = 2.109 and t′ = 2.103
respectively.
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Figure 4.13: Comparison of dimensionless bubble volume produced by the FFTM,
FFTM Clustering and standard BEM.
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Figure 4.14: Comparison of CPU time taken by the FFTM, FFTM Clustering
method and the standard BEM method. .
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Figure 4.15: The speed-up factor of the FFTM and FFTM Clustering method during
bubbles simulation. Distance between the centers of two initial bubbles is d′ = 7.95.
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Figure 4.16: Comparison of time taken by using the FFTM, FFTM Clustering and
standard BEM in each step during evolution of three bubbles.
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Figure 4.17: The speed-up factor of the FFTM and FFTM Clustering method during
simulation of three bubbles.
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Figure 4.18: Comparison of CPU time taken in one step taken by the FFTM Clus-
tering and the standard BEM.
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Figure 4.19: The speed-up factor of the FFTM Clustering.
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Chapter 5

Multiple Bubbles Simulation

The finding on the direction of bubble-induced jet in the midst of multiple bubbles

dynamics has important implication in various engineering applications. Take, for

example, in ultrasonic cleaning of electronic or medical equipments and components,

multiple bubbles of various sizes are created with accompanying bubble-induced jets

directed towards the solid rigid surfaces for the removal of foreign bodies or oth-

erwise. An optimum or closed-to optimum timing of bubbles initiation and distri-

bution has yet to be worked out. Similarly, too, in the bio-medical application of

shock lithotripsy treatment or the removal of kidney stone. It is suggested that the

impact pressure of induced jets due to bubbles collapse near the solid wall is the

main mechanism for the destruction of kidney stone. Therefore, a study of multiple

bubble behavior is critical to our better understanding of the subject.

Simulation of multiple bubbles with large number of nodes have not been pre-

sented before due to the immense computational time and memory requirement of

standard BEM. FFTM Clustering is an accurate and efficient method which allows
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the simulation of multiple bubbles with high number of nodes on each bubble. In

this section, we will present several case examples to study the physics of multiple

explosion bubbles.

5.1 Three bubbles

Consider three explosion bubbles far away from any boundaries without gravitational

effect. Centers of three bubbles are initially placed on the z-plane and at the three

apexes of an equilateral triangle of dimensionless length a′ = 3.57. Three bubble

exploded at the same time. Each bubble is initiated from a charge of 500 kg of TNT

placed at a depth of 100 m away from the free water surface. The maximum bubble

radius will be 5.6 m for the 500 kg TNT charge. The parameter for all the bubbles

are strength parameter ε = 97.52 and ratio of specific heat λ = 1.25. Each bubble

starts to expand from the initial radius R′
0 = 0.1499. Each bubble is generated with

362 nodes and 720 triangle elements on its surface.

Figures 5.1(a)-(b) show the bubbles shapes during the expansion phase and Fig-

ures 5.2(a)-(b) show the bubbles shapes during the collapse phase. Three bubbles

initially start to expand from very small volume until reaching the maximum volume

at V ′ = 4.2711 (corresponding R′
m = 1.011) at t′ = 1.225. Bubbles have spheri-

cal shape during the expansion phase then they collapse and form jetting directed

towards the geometrical center.

In the next test, we consider three explosion bubbles far away from any boundaries

without gravitational effect. The three bubbles were initiated from three identical
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charges of 500 kg of TNT placed at a depth of 100 m away from the free water

surface. The maximum bubble radius of each bubble will be 5.6 m. Three bubble

exploded at the same time. Each bubble starts to expand from the initial bubble

radius R′
0 = 0.1499. Other parameters for all the bubbles are strength parameter

ε = 97.52 and ratio of specific heat λ = 1.25. Each bubble is generated with 362

nodes and 720 triangle elements on its surface. The initial centers location of each

bubbles are (0, 0, 0), (2.68, 0, 0), (5.36, 0, 0). These parameter have been chosen, in

such a way, that the bubbles would not contact each other during their evolution.

Fig. 5.3 shows the bubbles shapes at the dimensionless time t′ = 0.459. At this

time bubbles are in the expansion phase and each of them keeps to their spherical

shape. Fig. 5.4 shows the bubbles shapes at the dimensionless time t′ = 2.221. It is

obvious from Fig. 5.4 that three bubbles contract but the center bubble is stretched

along the x-axis due to the presence of the outer bubbles. Figure 5.5 shows the

bubbles shapes at the dimensionless time t′ = 2.303. At the time t′ = 2.303, the

outer bubbles is in the collapse phase and these have the jets directed towards the

center of the system.

Fig. 5.6 shows the bubbles volume during the simulation. The outer bubble

reaches its maximum of V ′ = 4.246 at dimensionless time t′ = 1.182, while the inner

bubble reaches its maximum of V ′ = 4.494 at dimensionless time t′ = 1.509.
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5.2 Four bubbles

We consider four explosion bubbles placed under water far away from any boundaries

without gravitational effect. Four bubbles was initiated at the same time from five

charges of 500 kg of weight. Each bubble starts to expand from the initial bubble

radius R′
0 = 0.1499. Other bubble parameters are strength parameter ε = 97.52

and ratio of specific heat λ = 1.25. Each bubble is generated with 362 nodes and

720 triangle elements on its surface. The initial centers location of each bubbles are

(2.68, 0, 0), (−2.68, 0, 0), (0, 2.68, 0), (0,−2.68, 0). The reason for placing the bubbles

so far away from each other is to add an additional fifth bubble in the next section,

without the bubbles touching each other. Figs. 5.7 - 5.10 show the evolution of

four bubbles from beginning until some part of the collapse phase. It is noted that

the four bubbles expand with the fairly symmetrically shape until they reach about

their maximum radii. Then each bubble begins its phase with the bubble surface

deforming and rising a jet directed towards the center of the system.

5.3 Five bubbles

We consider five charges placed under water far away from any boundaries without

gravitational effect. Five bubbles was initiated from five charges of 500 kg of weight.

Each bubble starts to expand from the initial bubble radius R′
0 = 0.1499. Other bub-

ble parameters are strength parameter ε = 97.52 and ratio of specific heat λ = 1.25.

Each bubble is generated with 362 nodes and 720 triangle elements on its surface.

The initial centers location of each bubbles are (0, 0, 0), (2.68, 0, 0), (−2.68, 0, 0),
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(0, 2.68, 0), (0,−2.68, 0). The location of five initial bubbles is shown in Fig. 5.11.

In this figure, there is one bubble located at the center and surrounded by four other

bubbles. Figures 5.11 - 5.14 show the evolution of five bubbles from beginning until

some part of the collapse phase. It is noted that the five bubbles expand until they

reach about their maximum radii. Then the outer four bubbles begin their collapse

phase with the bubble surface deforming and rasing a jet directed towards the cen-

ter of the system. At the meantime, the center bubble still keep to its relatively

symmetrical shape.

Fig. 5.15 shows the bubbles volumes during the simulation. The outer bubbles

reach its maximum of V ′ = 3.893 at dimensionless time t′ = 1.276, while the inner

bubble reaches its maximum of V ′ = 5.0344 at dimensionless time t′ = 1.775.

In the next test, we simulate for five bubbles but do not explode or initiated all

at the same time. The initial centers location of the four bubbles are (2.68, 0, 0),

(−2.68, 0, 0), (0, 2.68, 0), (0,−2.68, 0). The outer four bubbles explode at the same

time first, then at the dimensionless time of t′ = 1 when the four bubbles nearly

reach their maximum, the fifth bubble is initiated at the center of the system. The

initial center location of the fifth bubble is (0, 0, 0). Fig. 5.16 shows the shapes

of the four bubbles at the dimensionless time t′ = 0.198. The four bubbles expand

symmetrically with spherical shapes. Then the fifth bubble initiated at dimensionless

time t′ = 1, and it also expanded symmetrically with spherical shape. Fig. 5.16 shows

the shapes of the five bubbles at the dimensionless time t′ = 1.042. Previous test of

five bubble exploded at the same time demonstrated that the jetting of four outer

bubble directed into the system. In this test, when the inner bubble exploded latter,
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the jetting outer bubbles direct outward of the system. Figures 5.18 and 5.19 show

the bubbles shapes at the dimensionless time t′ = 2.022 and t′ = 2.194, respectively.

Figure 5.20 shows the shape of the outer bubble at time t′ = 2.194 in different views.

Fig. 5.21 shows the dimensionless volumes of the inner bubble and the outer

bubble. The outer bubble reaches its maximum of V ′ = 4.182 at dimensionless time

t′ = 1.080, while the inner bubble can reach the dimensionless volume of V ′ = 9.795.

The maximum of the inner bubble is large than the outer bubble while they initiated

from the same weight of charges. By initiating the fifth bubble at different time, it

is possible to create jets directed away from the geometrical center. This is opposed

to the center-directed jets as observed in Fig. 5.14. The implication for simulating

multiple bubbles is, needles to say, tremendous.
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Figure 5.1: Evolution of three bubbles. Each bubble has 362 node and 720 triangle
elements on its mesh. Solutions are given by FFTM. (a) and (b) are the bubbles
shapes during the expansion phase at dimensionless time t′ = 0.011 and t′ = 0.840,
respectively.
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Figure 5.2: Evolution of three bubbles. Each bubble has 362 node and 720 triangle
elements on its mesh. Solutions are given by FFTM. (a) and (b) are the bubbles
shapes during the expansion phase at dimensionless time t′ = 2.176 and t′ = 2.243,
respectively.
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Figure 5.3: Bubbles shapes at dimensionless time t’ = 0.459.
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Figure 5.4: Bubbles shapes at dimensionless time t’ = 2.139.
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Figure 5.5: Bubbles shapes at dimensionless time t’ = 2.303.
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Figure 5.6: Dimensionless volume of bubbles during their evolution.
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Figure 5.7: The location of four initial explosion bubbles under water at the same
time and no gravitational effect.
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Figure 5.8: The shapes of five explosion bubbles under water at the same time and
no gravitational effect at dimensionless time t’ = 0.830.
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Figure 5.9: The shapes of five explosion bubbles under water at the same time and
no gravitational effect at dimensionless time t’ = 2.231.
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Figure 5.10: The shapes of five explosion bubbles under water at the same time and
no gravitational effect at dimensionless time t’ = 2.479.
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Figure 5.11: The location of five initial explosion bubbles under water at the same
time and no gravitational effect.
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Figure 5.12: The shapes of five explosion bubbles under water at the same time and
no gravitational effect at dimensionless time t’ = 0.7683.
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Figure 5.13: The shapes of five explosion bubbles under water at the same time and
no gravitational effect at dimensionless time t’ = 2.191.
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Figure 5.14: The shapes of five explosion bubbles under water at the same time and
no gravitational effect at dimensionless time t’ = 2.4736.
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Figure 5.15: Dimensionless volume of bubbles during their evolution.
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Figure 5.16: The shapes of four explosion bubbles under water without gravitational
effect at dimensionless time t’ = 0.198.
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Figure 5.17: The shapes of five explosion bubbles under water without gravitational
effect at dimensionless time t’ = 1.042.
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Figure 5.18: The shapes of five explosion bubbles under water without gravitational
effect at dimensionless time t’ = 2.022.
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Figure 5.19: The shapes of five explosion bubbles under water without gravitational
effect at dimensionless time t’ = 2.194.
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Figure 5.20: The shapes of outer bubbles at dimensionless time t’ = 2.194 from
different views.
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Figure 5.21: Dimensionless volume of bubbles during their evolution.
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Chapter 6

Conclusions

The objective of the thesis is to provide an efficient simulation tool to study the

physics of multiple bubbles. The major contributions of this thesis are briefly sum-

marized below, and possible future work will be suggested, where appropriate.

Boundary Element Method provides a model with a high level of accuracy, but

its computation is very intensive, and therefore not efficient and cost effective when

simulating multiple bubbles with large number of nodes to approximate the bubbles

surface. The numerical cost of the BEM is significantly reduced by coupling FFTM

with standard BEM. Instead of setting up the fully populated BEM matrices, the

matrix vector product is evaluated via multipole expansion and local expansion. In

Chapter 3, the implementation of the FFTM algorithm to solve the boundary inte-

gral equation is presented. The comparison between the theoretical results and the

numerical results produced by the FFTM on the Rayleigh bubble shows that FFTM

is an accurate and efficient method. Further tests on two and three bubbles are

conducted to compare the performance of the FFTM and the standard BEM. It is
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shown that FFTM is an accurate and efficient method to simulate multiple bubbles

dynamics. However, several tests on two bubbles placed at different distances apart

show the drawback of the FFTM method. The efficiency of the FFTM deteriorates

quite significantly when the problem is full of empty spaces if the multiple bubbles

are well-separated. To overcome this limitation, a new version of FFTM Clustering

is proposed in Chapter 4. FFTM Clustering is a generalized method which encom-

passes the original FFTM method. When the problem at hand has only one group,

the FFTM Clustering is simply the original FFTM. The improvement of the FFTM

Clustering arises from the clustering process and then compute the potential con-

tributions from the bubbles within its own group, while the contributions from the

other separated groups are evaluated via the multipole to local expansions trans-

lations operations directly. Comparisons between results produced by the FFTM

Clustering method and the standard BEM on multiple bubbles show that FFTM

Clustering method is an accurate method and has the same order of accuracy as the

original FFTM method. The FFTM Clustering run faster than the original version

and its efficiency is not reduced when there are plenty of blank spaces in the problem

domain. The significant feature of the FFTM Clustering is to simulate the multiple

bubbles in large scale problem in which the standard BEM is hardly employed due

to the tremendous CPU time. In chapter 5, the physics of the multiple explosion

bubbles under water is explored. It is shown that the jet direction depends on the

bubbles configuration such as the weight of charges, and time of initiation of bubble

explosion.

The present work is seen as a contribution to promote a fast BEM for industrial
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applications. It is shown that the use of advanced numerical algorithms can signif-

icantly improve the efficiency of multiple bubble simulations. With the efficiency

of the FFTM Clustering method, it is feasible to study the dynamics of multiple

bubbles like the jet directions in future works.
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Appendix A

Recurrence formulas

Given x = (x1, x2, x3) ∈ R3 and y = ||x|| , the recurrence formulas for the inner and

outer functions can be derived from those of the associated Legendre functions [44].

The inner function, Im
n (x) is written in the form:

Im
n =

1

2m
(−x1 + ix2)I

m−1
n−1 , (A.1)

Im
n =

1

(n−m)(n + m)
(−x1 + ix2)[(2n− 1)x2I

m
n−1 − r2Im

n−2]. (A.2)

The Outer function, Om
n (x) is written in the form:

Om
n =

(2m− 1)

r2
(−x1 − ix2)O

m−1
n−1 , (A.3)

Om
n =

1

r2

[
(2n− 1)x2O

m
n−1 − (n−m− 1)(n + m− 1)Om

n−2

]
. (A.4)

The derivative of inner function Im
n (x), is written as:
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∂

∂x1

In
n =

1

x2
1 + x2

2

[
(nx1 + imx2)I

n
m − x1x3I

n
n−1

]
, (A.5)

∂

∂x2

In
n =

1

x2
1 + x2

2

[
(nx2 + imx1)I

n
m − x2x3I

n
n−1

]
, (A.6)

∂

∂x3

In
n = In

n−1. (A.7)
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