

AN ONTOLOGY-BASED P2P INFRASTRUCTURE TO SUPPORT
CONTEXT DISCOVERY IN PERVASIVE COMPUTING

CHIN CHUNG YAU
(B.Eng.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

 i

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors, Dr. Zhang Daqing and

Dr. Mohan Gurusamy, for their advice and encouragement throughout the research and

the thesis writing process. I want to thank the Department of Electrical and Computer

Engineering for offering me this possibility to pursue a Master degree in the

Engineering field at the National University of Singapore. I also appreciate Institute

for Infocomm Research for this opportunity to do research in the area of Pervasive

Computing.

I would also like to thank my colleagues in I2R including Dr. Jit Biswas, Wang

Xiaohang, Yu Zhiwen, Aming, Thang, Sanka, Zheng Song, Ni Xiao, Thng Haw,

Kailash, Dzung, Shen Tat, Chun Yong and Bryan. Not only have they provided me

with useful feedback and suggestions on my work, they have also helped me to enjoy

myself doing research in the institute, and made it a very fruitful experience for me.

Last but not least, I dedicate this work to my parents and siblings, as well as my girl

friend Lay Keat, who have stood by me during these years, whose love and support

have seen me through ups and downs in life. To all of you I want to say, I love you.

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... I

TABLE OF CONTENTS ..II

SUMMARY ..V

LIST OF TABLES ..VII

LIST OF FIGURES .. VIII

CHAPTER 1 INTRODUCTION...1

1.1 Research Background ...1
1.1.1 Pervasive Computing...1
1.1.2 Context and Context-Awareness ...3

1.1.2.1 What is Context?...3
1.1.2.2 What is Context-Aware Applications? ...4

1.2 Motivation...7
1.3 Objectives ...12
1.4 Research Challenges ...12
1.5 Contributions ..13
1.6 Outline ..14

CHAPTER 2 BACKGROUND AND RELATED WORK16

2.1 Peer-to-Peer Network ...16
2.1.1 P2P Overview ..16
2.1.2 Centralized Search in P2P Network...17
2.1.3 Decentralized Search in Unstructured-Based P2P Network........................18
2.1.4 Decentralized Search in Structured-Based P2P Network22

2.2 Semantic Web Ontology Modeling and Reasoning..23
2.3 Related Work in Context Discovery ...26

2.3.1 Context Toolkit ..26
2.3.2 Gaia Context Infrastructure ...27
2.3.3 Solar ...27
2.3.4 Strathclyde Context Infrastructure...28
2.3.5 Context-Aware Applications Platform ..28
2.3.6 Discussion..29

2.4 Chapter Summary ...30

CHAPTER 3 ORION: CONTEXT DISCOVERY PLATFORM31

3.1 Context Discovery ..31
3.1.1 Context Discovery Model ..31
3.1.2 Context Discovery Platform ..33

3.1.2.1 Centralized Model...34
3.1.2.2 Broadcast-based Model...35
3.1.2.3 Hybrid Centralized-Decentralized Model...36

3.2 Platform Requirements ...37

 iii

3.3 Orion Architecture Overview ...38
3.3.1 Peer-to-Peer Consideration in Smart Spaces ...39
3.3.2 Discovery Gateway..42
3.3.3 P2P-based Overlay Network..44
3.3.4 Ontology Modeling and Reasoning ...47
3.3.5 Context Discovery Operations in Orion ..49

3.4 Chapter Summary ...51

CHAPTER 4 P2P NETWORK IN ORION..52

4.1 Orion Network (ONet)..52
4.1.1 Bootstrapping ONet ...53
4.1.2 Leaving ONet...54
4.1.3 Search in ONet...54

4.2 Semantic Community (SeCOM)...58
4.2.1 Meta-context as the Membership Requirement ...60
4.2.2 Join SeCOM...62
4.2.3 Leave SeCOM..65

4.3 Supporting Context Discovery Events..66
4.3.1 Context Publishing Event Support...66
4.3.2 Context Lookup Event Support ...67

4.4 Evaluation ...69
4.4.1 Evaluation Objectives ..69
4.4.2 Simulation Methodology ...70

4.4.2.1 Simulator...70
4.4.2.2 ONet Topology ...71
4.4.2.3 SeCOM Topology...72
4.4.2.4 Simulation Process..73
4.4.2.5 Performance Metrics...73

4.4.4 Result Analysis ..74
4.4.4.1 Query Response Efficiency ..74
4.4.4.2 Message Communication Cost ...79
4.4.4.3 Discussion...84

4.5 Chapter Summary ...85

CHAPTER 5 MATCHMAKING IN ORION ..86

5.1 What is Matchmaking? ...86
5.1.1 Element 1 – Context Representation ...87
5.1.2 Element 2 – Matching Techniques ..89

5.2 Representation Model ...90
5.2.1 Context Advertisement ..90
5.2.2 Context Lookup Query ..93

5.3 Semantic Matching ...95
5.3.1 Step-1: Identifying the Triple Groups Having Domain Class Equivalence.97
5.3.2 Step-2: Selecting the Most Appropriate Context Provider100

5.4 Chapter Summary ...101

CHAPTER 6 IMPLEMENTATION...102

6.1 Implementation Methodology...102
6.1.1 JXTA P2P Framework...103
6.1.2 Jena2 Semantic Web Framework ..104

 iv

6.2 Discovery Gateway Prototype ..105
6.3 Evaluation ...110

6.3.1 Query Response Time Within Local Space...110
6.3.2 Query Response Time Across Multiple Spaces...112

6.4 Chapter Summary ...117

CHAPTER 7 CONCLUSION AND FUTURE WORK...118

7.1 Conclusion ..118
7.2 Future Work..120

BIBLIOGRAPHY...122

APPENDIX A COAO VER0.1B XML REPRESENTATION134

APPENDIX B RDQL GRAMMAR ..139

 v

SUMMARY

The advancement in today’s computer hardware and software technologies have

moved us one step closer to materialize the pervasive computing vision, the vision that

computer systems, from embedded devices to large scale infrastructure, exist

anywhere at anytime. Context-awareness is perhaps the most salient feature to turn

such pervasive computing environment into smart space, where computer systems are

able to exploit context of users, devices, and environment to offer value-added

services that personalize application behaviors. In a smart space, embedded sensors

and information sources form the pool of context information providers that offer

plenty of context information. Through a process called context discovery, context-

aware services and applications are able to find the suitable context information

providers that can give the necessary context information to them. The existing context

discovery schemes, however, are limited to functioning within a single smart space.

This has greatly prohibited the proliferation of inter-space context-awareness in

pervasive computing.

In this dissertation, we address the issue of context discovery in context-aware

computing beyond single smart space. We propose a hybrid decentralized-centralized

context discovery model, which leads to the design of a context discovery platform

called Orion. In this model, all computing entities in a smart space are peers to one

another, playing the role of both context provider and context requester simultaneously.

A Discovery Gateway (DG) serves as the super-peer in a smart space, which is

responsible to match a context provider to a context requester in the context discovery

process. The DGs in different smart spaces form a peer-to-peer (P2P) ad-hoc message

routing overlay network, known as the Orion Network (ONet). As a result, a lookup

 vi

query searching for context providers located in other smart spaces can be

appropriately forwarded across the ONet to reach the relevant DG. To reduce the

amount of duplicate messages as a result of the flooding-based message forwarding in

the ONet, the DGs that share common interest in the context information they are

registered with are clustered into a Semantic Community (SeCOM). As such, queries

are only forwarded to DGs within a SeCOM that is able to resolve them. Simulation

results reveal a significant reduction of duplicate messages in Orion compared to an

overlay network that uses pure flooding search mechanism. On top of that, to promote

interoperability between heterogeneous devices, we introduce a semantic matching

technique in the provider-requester matchmaking procedure. This technique makes use

of the class equivalence semantics inherited from the ontological description of the

information.

This dissertation identifies the issue of inter-space context discovery, and presents

Orion as the solution to the issue. The platform enables discovery and retrieval of

context information from distant smart spaces, thereby allowing more flexible design

of context-aware applications and more dynamic use of a wide range of context

information from multiple sources. We believe that the achievement in inter-space

context lookup and retrieval can overcome the single-space limitation of context usage

in current literature, as well as foster new research initiatives that deal with wide-area

context.

 vii

LIST OF TABLES

Table 1. Parameters used in generating the two ONet topologies72
Table 2. Details of the DG prototype deployed for experiment 2..............................113
Table 3. Average query processing latency in each DG prototype node114

 viii

LIST OF FIGURES

Figure 1. Context-Aware System Model ...5
Figure 2. Context requesters acquire context information from different context
providers that exist independently from one another..9
Figure 3. Inter-space context utilization ..11
Figure 4. The Semantic Web layer language model, where each layer is building on
the layer below..24
Figure 5. Context discovery model involving the context provider, context requester
and context discovery platform...32
Figure 6. Context discovery model with centralized server; (a) Without context
caching; (b) With context caching ..35
Figure 7. Broadcast-based context discovery model ...35
Figure 8. P2P-based centralized-decentralized context discovery model (adopted in
Orion architecture) ..37
Figure 9. Examples of computing entity peers based on processing capability and
mobility classification...41
Figure 10. The architectural diagram of a Discovery Gateway43
Figure 11. A sensor is discovered by the smart phone application located in another
smart space via the Orion Network (ONet) ..45
Figure 12. Lookup query is flooded only within the relevant Semantic Community
(SeCOM) before reaching the destination DG. ..46
Figure 13. Overview of context discovery operations in Orion. (a) Context publishing,
(b) Context Lookup...50
Figure 14. Node coverage at different depth range under the Iterative Deepening
Search mechanism (with h = 1). ...55
Figure 15. Six DGs in Orion (d1 to d6) form their own neighbourhood in ONet and
SeCOM, in which the membership requirements include m1, m2 and m359
Figure 16. Hierarchical Location Taxonomy (HLT) based on geographical location in
Singapore. (a) graph representation (b) OWL Ontology definition of HLT.................61
Figure 17. Query response (hop count to reach destination DG) in topology 176
Figure 18. Query response (hop count to reach destination DG) in topology 276
Figure 19. Hop count breakdown analysis for k = 10000 ..77
Figure 20. Hop count breakdown analysis for k = 75000 ..78
Figure 21. Hop count breakdown analysis for k=150000 ..78
Figure 22. Number of visited nodes per query in topology 1 at θ = 0%, 1%, 10%, 50%
..79
Figure 23. Number of visited nodes per query in topology 2 at θ = 0%, 1%, 10%, 50%
..80
Figure 24. Message Efficiency in topology 1 with k=10000 at various θ values.......82
Figure 25. Message Efficiency in topology 2 with k=10000 at various θ values.......82
Figure 26. Message Efficiency in topology 1 with k=150000 at various θ values.....83
Figure 27. Message Efficiency in topology 2 with k=150000 at various θ values....83
Figure 28. Matchmaking between context requester and context provider87
Figure 29. Graph representation showing fragment of Context Advertisement
Ontology (CoAO) ...90

 ix

Figure 30. Context advertisement (XML representation) published by a road traffic
monitoring system in Clementi district...93
Figure 31. Context lookup query for discovering context provider that provides road
traffic condition context in Clementi ..95
Figure 32. An Advertisement Cache (AC) containing X subset of triple groups97
Figure 33. Various scenarios of class equivalence and non-equivalence between
classes in the context domain hierarchical ontology...99
Figure 34. Discovery Gateway prototype architecture overview106
Figure 35. Sequence diagram shows the interactions between objects in handling
context publishing event ...109
Figure 36. Query response time within a single smart space.....................................111
Figure 37. The topology created for evaluating query response time........................113
Figure 38. The query response time measured when query is resolved in a DG
prototype that is 8 hops away from DG node 1. ...115
Figure 39. Message transmission link latency at each overlay link that contributes to
the overall query response time ..116

 1

CHAPTER 1 INTRODUCTION

Overwhelmed with seamlessly integrated and interoperable embedded devices and

services, pervasive computing applications need to be context-aware. This chapter

introduces background on context-aware pervasive computing, followed by discussion

of the motivation, goal and contribution of this research – a scalable context discovery

platform for the context-aware computing systems.

1.1 Research Background

1.1.1 Pervasive Computing

Weiser unveiled the vision of ubiquitous computing (later also known as pervasive

computing) more than a decade ago as the emerging model for the computing world in

the 21st century [1]. In pervasive computing environment, massive amount of

embedded computing devices and autonomic services gracefully integrate with human

users, performing any task in an unobtrusive manner, such that their existence is taken

for granted in everyday life. Using wearable mobile devices to control electronic

appliances at home remotely, reading email from large display monitor mounted on

the wall, issuing commands to machine with only hand gestures, monitoring home

security alarm system from the office, and managing personal medical profile over the

Internet, are merely a few of the exemplary scenarios that paint the picture of a

pervasive computing environment. Compared to the current computing paradigm,

pervasive computing sees the migration of computing from general purpose computers

(e.g. desktop, workstation, mainframe) to customized mobile terminals (e.g. notebook,

personal digital assistants, mobile phone, etc). It also exhibits the trend towards the

 2

pro-active interaction among the computing devices and the surrounding system

infrastructure, often without explicit control.

As a result, our living environment is transforming into a smart space. A space can be

an enclosed area such as house, vehicle and office room, or it can be a well-defined

open area such as campus, sports stadium and outdoor parking lots. Smart space brings

together two disjoint worlds – computing infrastructure and physical infrastructure,

and enables sensing and control of one world by another. The smart home

environment, for example, is a smart space where all in-home appliances are

connected, either through wired or wireless medium, and the functions of which can be

automatically customized to an occupant’s needs.

Pervasive computing smart space is a vision too far ahead of itself in the early 90’s,

and it is not until now in the 21st century that we are in a better position to pursue it.

As wireless communication technologies, personal communication devices, feature-

rich mobile terminals, and easily accessible network infrastructures develop rapidly,

we now have the necessary technological platform to materialize the vision. Many

projects were started since the late 90’s. Some well known projects in the industry

include, to name a few, the DigitalHome1 at Intel, the CoolTown2 at HP, the Easy

Living at Microsoft [2] and the Digital World3 at SAMSUNG. In the academic arena,

we have the Project Aura4 at Carnegie Mellon University, the Oxygen5 at MIT, the

Project GAIA [3] at University of Illinois Urbana-Champagne, the AwareHome6 at

1 The DigitalHome – Intel Corporation, http://www.intel.com/technology/digitalhome
2 CoolTown – HP, http://www.cooltown.com/cooltown
3 The DigitalWorld – SAMSUNG, http://www.samsung.com/HomeNetwork
4 http://www.cs.cmu.edu/~aura
5 http://oxygen.lcs.mit.edu
6 http://www.cc.gatech.edu/fce/ahri

 3

Georgia Institute of Technology, the Portalano7 at the University of Washington, and

many more.

1.1.2 Context and Context-Awareness

A minimally intrusive pervasive computing smart space has to be context-aware [4].

But what really constitutes a “context”? Oxford Dictionary defines “context” as

“circumstances in which an event occurs”. While this is a general definition, the term

has been interpreted differently in computer science and engineering principle.

1.1.2.1 What is Context?

Everything in the world happens in certain context, and such context can be exploited

in the computing world as implicit input to the computing systems [5]. It can greatly

enhance the functionality of the computing systems in terms of decision making and

output adaptation, shaping the smart space to become intelligent in reacting naturally

and unobtrusively to human needs. Schmidt et al. define context as the knowledge

about user’s and IT device’s state, which includes the state of the surroundings,

situation, and location [6]. To be more general, Dey defines context as any information

that can be used to characterize the situation of the inhabited entities (including person,

computational object and environment) and the circumstances under which

interactions between these entities take place [7]. The interpretation of context

throughout this thesis is mainly based on the widely accepted Dey’s definition of

context.

Different category of contexts has been identified in the literatures. Schilit et al., in the

notable work PARCTAB, divide the types of context into three categories, namely the

7 http://portolano.cs.washington.edu

 4

location of user, the identity of user, and the state of computing resources [8]. This,

however, does not cover extensively all context types in a smart space. On the contrary,

Dey classifies the context in a smart space to be the location (e.g. place, room number,

post code, etc), the identity (e.g. user ID, preferences, personal information, etc), the

activity (e.g. meeting, sleep, lunch, watching TV, etc) and the time (e.g. date, +GMT,

time span period, etc) [7]. On the other hand, we may view a pervasive computing

smart space as a contextual environment scattered with contextual object - user object,

location object, computing entity object, and activity object. Each and every instance

of these objects is associated with its very own context category [9]. For instance,

given a person (i.e. user object), he may provide context such as personal profile,

medical record, to-do activities, etc. Given a meeting situation (i.e. activity object), the

meeting duration, number of participants, meeting venue, agenda, etc, are considered

as its associated context.

1.1.2.2 What is Context-Aware Applications?

Since the notion of context-aware computing was introduced by Schilit et al. in 1994

[8], context-awareness has gradually become an essential element in ubiquitous

computing [4]. It denotes the situation where an entity is cognizant of the context of

itself, of its surrounding environment, and of the entities it is interacting with.

Therefore, a context-aware system is able to interpret and adapt to the input context,

and provides any relevant information or adaptive services to the user in response to

the changing context [7].

We modified Lieberman and Selker’s diagram in [5] that represents context to

formulate the schematic view of a general context-aware application in Figure 1. Any

 5

computing application, including the context-aware application, can be abstracted as a

black box that generates various kinds of outputs depending on the input to the system.

Figure 1. Context-Aware System Model

A traditional computing application would only accept explicit input that is presented

by the user (e.g. keyboard typing, mouse clicking, gesture, etc), or by a pre-defined set

of input data (e.g. spreadsheet, files, functional parameters, etc). After processing,

explicit output is generated, that includes displaying information, performing actions,

and providing services. The application model is expanded in the context-aware

computing, where context information contributes as the implicit input to the

computing black box and becomes part of the processing parameters. That is, the

application now can decide what to do based on the explicitly presented input and the

context. As a result, not only the explicit output is well adapted to the context, but the

output may also iteratively alter the state of context in the form of implicit output.

The context-aware application model has offered a wide range of context-aware

applications and features. [8] describes 4 classes of context-aware applications,

namely:

♦ Proximate selection of nearby object with user-interface techniques

 6

♦ Automatic contextual reconfiguration of object components via adding,

removing and altering actions

♦ Contextual information displays and commands issuing according to the

context in which they are issued

♦ Context-triggered actions based on IF-THEN rules to specify the adaptation

behavior

Opposed to the above class category, Pascoe proposes taxonomy of context-aware

features, including contextual sensing, contextual adaptation, contextual resource

discovery and contextual augmentation [10]. Dey combines these ideas and lists three

general categories of context-aware features that a context-aware application may

support: presenting information and services to a user, automatic execution of a

service, and tagging context to data for later retrieval [7]. The first category, Context

Presentation, denotes the application that displays context information to the user. The

second category, Context Execution, indicates the ability to execute an action or

modify a behavior based on the changing context. The third category, Context Tagging,

associates data with related context so that the data can be viewed when the user is in

that context.

A few examples of context-aware applications are listed below. Each application is

classified according to Dey’s 3-category classification of context-aware features:

♦ Changing cell phone functional behavior automatically based on combination

of sensed context [11] – (category 2)

♦ Presenting localized exhibition information to visitors based on visitors’

location and preference [12] – (category 2 and 3)

 7

♦ Selecting appropriate network channel for establishing communication based

on service availability and bandwidth requirement [13] – (category 1 and 3)

♦ Routing an incoming phone call to a fixed-line phone that is nearest to the call

recipient’s current location [14] – (category 2)

♦ Guiding office visitors with directional map instructions and meeting schedule

[15] – (category 1 and 2)

1.2 Motivation

Context-aware smart spaces are rich in context information, ranging from low-level

basic context such as temperature, noise level, device status, weight, and location

coordinates, to high-level complex context such as activity schedule, medical profile,

relations between people, user preference and road traffic condition. In terms of

context information processing, we broadly classify the entities participating in a

context-aware smart space into two categories: the context provider and the context

requester.

A context provider is any entity that supplies context information. Environment

sensors, information sources, monitoring software and context knowledge base, for

example, are categorized as the context provider. A context requester is any entity that

consumes context information for its context-aware processing. Examples of context

requester include context-aware applications and services, context-sensitive agents and

context processing operators. A single computing entity can take up dual roles as a

provider or a requester at different time, for different tasks. For example, a mobile

phone may, at one hand, act as a context requester who modifies its profile settings

 8

automatically based on different input situational context; while on the other hand, be

a context provider revealing the user’s current location.

The existence of both providers and requesters can be in one of the two forms: co-

existing in a single device, or existing independently from one another [16]. The first

form of existence results in the sensors (i.e. context provider) being embedded onto the

same device the context-aware application (i.e. context requester) is residing on. For

example, handheld devices are often integrated with motion sensors to capture

gestures and device orientation information for graphical user interface adaptation (see

[16], [17] and [18]). The second form of existence includes context-aware applications

that can acquire context from external sources, either from independent sensors (e.g.

temperature sensor, location beacon, application peers, etc) embedded in the smart

spaces, or from the context infrastructure (e.g. Gaia [3], Context Toolkit [19], Context

Fabric [20], Solar [21], CoBra [22], Semantic Space [9], etc) that handles the

acquisition, interpretation, storage, and dissemination of context information. Figure 2

outlines a scenario of the second form of existence, where context information is

constantly flowing from m context providers to n context requesters, whose existence

is independent from one another.

Due to the drawbacks in the first form of existence (e.g. hardware constraint,

limitation on sensor type, battery level, accuracy, etc) and the flourishing of embedded

sensors in the pervasive computing smart spaces, the second form emerges as the

preferred channel for context-aware applications to acquire context information. This

ensures greater flexibility in system design, and more variety of context information

can be manipulated at the same time. Consequently, context-aware applications can be

rapidly developed, while context sources can be easily deployed.

 9

Figure 2. Context requesters acquire context information from different context
providers that exist independently from one another

However, smart spaces are overwhelmed with heterogeneous and volatile context

resources (i.e. both context provider and requester). It is not feasible and not scalable

for an individual application to maintain connections to the sensors and information

sources statically or via pre-defined setting. Such static connectivity approach is

especially undesirable for resource-constrained devices with low memory capacity,

low processing power, and low communication capability.

To ensure dynamic connectivity and flexible use of context information from multiple

sources, the context requesters need to automatically locate the appropriate set of

context providers which can produce the desired and necessary context information [4].

Such discovery process is known as context discovery. “Discovery” is recognized as a

fundamental operation for determining the global state of a distributed system with

minimal user intervention in the process [23]. Similarly, context discovery allows

appropriate context information to be located and retrieved from a set of independent

context providers scattered in the pervasive computing smart spaces. Therefore,

context discovery enables a context-aware application to gain access to and to adapt to

the broad spectrum of dynamic context information without prior knowledge about the

respective context providers.

 10

The current work in context discovery (e.g. [19], [21], [24], [25]) has been focusing in

the discovery of context resources within a single smart space. However, the need to

scale context discovery across different smart spaces remains relatively unexplored.

The need for inter-space context discovery is supported with the following 3

observations:

♦ Observation 1: We observe that, types of context in different category of

smart spaces can be very diverse. In home smart space, for example, context

information is related to family activities, relationship of family members,

placement of devices, and state of electronic appliances. On the other hand,

context generated in vehicle smart space includes driver status, location within

city, relevant distance to approximating objects and conditions of various

elements in the vehicle. Therefore, the type of context information a provider

produces to a large extend depends on the smart space it is residing in or

associated with. For instance, it is unlikely that John’s working schedule can

be found in his car’s engine monitoring system; similarly, it is inappropriate to

find road traffic condition from any of the sensors within a house smart space.

♦ Observation 2: As a context-aware application moves from one space to

another (e.g. from building level 1 to level 2, from house to office, etc), it can

be cognizant of contexts in both the “been-to” spaces, as well as the “going-

to” spaces. For example, an individual’s health status measured by the various

heterogeneous ubiquitous sensors in the smart spaces he/she has been to is an

essential input for a context-aware healthcare advisor system in generating

relevant healthcare advices from time to time. On the other hand, the current

status of the printing service and the network access service in the spaces a

 11

person is heading to, for instance, is required for his/her laptop to decide on

where and how to print a document upon arrival.

♦ Observation 3: Context provider of specific context information of interest can

be ubiquitously available in different smart spaces. For instance, a medical

officer, upon an emergency medical treatment, needs to acquire the patient’s

medical profile that is stored in his home gateway, and to retrieve his

hospitalization records possibly maintained by different hospital web

databases.

These observations bring forward the need for inter-space context utilization, i.e.

deriving and retrieving context of different smart spaces, possibly provided by context

providers residing in other spaces. Figure 3 provides a schematic overview

representing the utilization of context information via inter-space context retrieval.

Figure 3. Inter-space context utilization

The observations mentioned above outline a few of the scenarios for context

requesters to locate different context information from different smart spaces. As we

will be explaining in Section 2.3.6, the existing context discovery schemes can hardly

 12

perform well when dealing with inter-space context discovery, due to the limitation in

their architecture design meant for single space functionalities. Consequently, context

discovery across various smart spaces needs to be addressed as well. Therefore, we

anticipate a context discovery platform that can enable the lookup of context beyond

local smart space boundary.

1.3 Objectives

In this thesis, we focus on the issue of inter-space context discovery. After analyzing

related work, we realize that current approaches and protocols do not scale well to

handle context discovery across many smart spaces. As a result, we propose a Context

Discovery Platform, called Orion, to fulfill this purpose. Orion is a set of context

discovery protocols operating on a peer-to-peer infrastructure, which is capable of

mediating context requester with the relevant context providers regardless of their

localities in space. Orion allows context publishing and context lookup to take place,

thereby facilitating the discovery of context information. Context providers, such as

sensors and information sources, can advertise about their existence in Orion; while

context requesters, such as context-aware applications, can easily locate the necessary

and appropriate set of context providers by querying Orion.

1.4 Research Challenges

The scalability of inter-space context discovery platform needs to be ensured.

Discovery across many smart spaces implies that the platform needs to accommodate

large number of sensors, devices, applications and users. The nature of pervasive

computing dictates that these entities can join and leave the spaces, and traverse both

geographical as well as network boundaries, at anytime, anywhere. On top of that, it is

 13

essential to have performance scalability, so that query processing and resource

utilization remains efficient as the system size increases. Besides that, it also needs to

handle huge information processing load as and when it is necessary.

Device and service interoperability must be addressed as well. Different versions,

vendors, specifications, and standardizations may cause serious interoperability issue

when these devices and services are to interact with one another. There are two key

elements to successful interoperation. First, a common representation model needs to

be established to represent the context information, so that any two autonomous

computing entities can communicate with one another. Various context modeling

techniques have been established, for example [22] and [9] use ontology modeling and

reasoning over context information, [26] proposes a context modeling language similar

to entity-relations UML modeling adopted in the object-oriented computing, Gaia uses

prolog-based context predicates [27], and Solar adopts key-value attribute pairs [21].

After ensuring the devices and services share a common vocabulary in publishing the

context information, they then need to understand the semantics of the vocabulary. For

example, context descriptions <location = washroom> and <location = toilet>

share the common semantics, although they are different in their syntactic labeling.

The devices and services need to be equipped with semantics reasoning techniques in

order to achieve interoperability at the semantics level. This become the second key

element to interoperability.

1.5 Contributions

The areas of research that are being identified and addressed in this thesis include

architectural support for inter-space context discovery, peer-to-peer infrastructure for

 14

query distribution, and context modeling for the resource matchmaking. The

contributions of this dissertation are summarized below:

♦ A generic architecture for context publishing and lookup that is scalable

across different smart spaces

♦ A query forwarding mechanism for efficient context lookup using P2P-based

semantic overlay network techniques

♦ An ontology-based context modeling for meta-context representation and

resource matchmaking using Semantic Web ontology modeling and reasoning

technologies.

♦ A development framework that gives leverage to context-aware application

developers.

1.6 Outline

The thesis is structured in the following way. Chapter 2 provides introductory

overview about the Peer-to-Peer computing system and the Semantic Web, the two

technologies that Orion is based on. Then, the various related work in context

discovery is reviewed, and their ability to support inter-space context discovery is

highlighted.

Chapter 3 reveals the insights into Orion context discovery platform. First, the

different context discovery models are introduced. The hybrid centralized-

decentralized model presents the model that Orion is based on. Following that, the

architectural overview of Orion is presented. The key elements in Orion, namely the

Discovery Gateway, the P2P message forwarding overlay network and the ontology-

 15

based matchmaking procedure are put together to support the context discovery

operations that made up of context publishing and context lookup.

In Chapter 4, the details of the P2P network infrastructure in Orion are covered. The

concepts of Orion Network (ONet) and Semantic Community (SeCOM) are

established, and a set of algorithms is derived to maintain and to support the various

network operations, especially the search mechanism in Orion. The P2P network

infrastructure is evaluated via simulation. The results are analyzed at the end of this

chapter.

Chapter 5 looks into the matchmaking procedure in Orion. The ontology-based

advertisement template, as well as the corresponding query language, is presented in

details. Based on the advertisement and the lookup query specification, the semantic

matching technique is derived and introduced.

The prototype architecture of the Discovery Gateway is presented in Chapter 6. This

chapter also reports the results of query response time analysis based on the overlay

network constructed on the public TCP/IP network infrastructure using the Discovery

Gateway prototype.

The conclusion in Chapter 7 summarizes the contributions made in the thesis. Future

research directions are listed as well.

 16

CHAPTER 2 BACKGROUND AND RELATED
WORK

In this chapter, we look at some of the technical ground that Orion is based upon,

namely the Peer-to-Peer Network, and the Semantic Web ontology modeling and

reasoning techniques. We also examine the various related work on context discovery.

2.1 Peer-to-Peer Network

Peer-to-peer (P2P) network has become one of the fastest growing and most popular

Internet applications over the past few years. In this section, we provide a brief

overview of P2P network systems, and look into the decentralized search mechanisms

in the unstructured-based P2P network.

2.1.1 P2P Overview

A peer-to-peer (P2P) network does not have the notion of clients and servers. Each

peer node in the network simultaneously functions as both client and server to the

other peer nodes. Comparing to the traditional client-server model, such as FTP file

sharing and webpage servers, P2P computing model decentralizes the traditional

centralized model to the distributed service-to-service model.

As described by Roussopoulos et al., P2P network exhibits three characteristics: self-

organization, symmetric communication and distributed control [28]. P2P network is

self-organized, because there is no global directory that dictates the connection

between any two peers. The network is formed in an ad hoc manner through the peer

discovery process. Overlay communication channel is laid between two peer nodes,

and the channel is symmetrical. Information can flow in two directions, depending on

 17

whether the peer node acts as the content provider or requester. Finally, the course of

action and behavior of each peer node is independently controlled without any central

controller.

P2P research can be divided into 4 groups – search, storage, security and applications

[29]. Among them, the search capability of a P2P system is leveraged in Orion. Search

methods in P2P network can be either centralized or decentralized. The centralized

approach requires the use of a centralized directory service. In decentralized approach,

P2P network is broadly classified into unstructured-based P2P and structured-based

P2P, based on the P2P overlay topology setting and the placement of the resources.

In the coming sections, the various search mechanisms devoted for each of the P2P

network type are examined and compared. The term “resource” is used in this section

to commonly denote the items (e.g. files, contents, services, etc) being provided and

requested by the peers.

2.1.2 Centralized Search in P2P Network

In this search approach, a centralized search facility is established to keep track of the

index to the resources available in the peers. Although queries to search for relevant

resources are resolved by the central server, communication between peers during the

resource retrieval is performed in a P2P manner. The first widely successful P2P file

sharing system that employed the centralized lookup approach is Napster8. Skype9, a

voice-over-IP Internet telephony system, also adopts such centralized P2P

communication model.

8 Napster, http://www.napster.com
9 Skype, http://www.skype.com

 18

The centralized search architecture offers powerful and responsive query processing,

allows easy management (e.g. user login, billing, resource monitoring, etc) and

inherits the scalability and flexibility properties of the P2P network. However, the

central needs to handle high query load, and remains as a single point of failure. From

a commercial standpoint, centralized approach requires a sizable capital investment in

the infrastructure as well. Consequently, most recent P2P search methods have

adopted the decentralized search architectures.

2.1.3 Decentralized Search in Unstructured-Based P2P Network

In unstructured-based P2P network, the overlay connections between the peer nodes

are random, i.e. no fixed topology or node placement policies are applied in

establishing the communication links. Each node discovers its own sets of

neighbouring nodes, and forms the one-hop neighbourhood. While each node holds its

own limited set of resources, query for locally unavailable resources can be searched

among the neighbours. The queries are relayed from one node to another, until the

resource is found, or until the forwarding TTL (time to live) expires.

In Gnutella10, the resources are only indexed by the peer that caches them, and query

for the resource can be resolved by probing at the proper peer. The peers are probed

using pure flooding mechanism, i.e. query is forwarded to all neighbouring peers if it

cannot be resolved locally. Gnutella marks the birth of flooding-based query

distribution in unstructured P2P network, no doubt offering many rooms for

improvement for its heavy network traffic, high message redundancy and inefficient

probing mechanisms.

10 Gnutella, http://www.gnutella.com

 19

As a result, various heuristics in the forwarding strategies are proposed. One way is to

minimize the number of hosts that has to be probed whenever an unresolvable query

needs to be forwarded (i.e. heuristic in forwarding strategy). Freenet11 uses random

walk technique, whereby a query is only sent to one randomly selected neighbour. Lv

et al. extends the technique to k-walker random walk, which means at one time k

random neighbours are selected instead [30]. Furthermore, to increase the likelihood of

response from a random neighbour, [31] and [32] used biased random walk, where

their selected neighbours are those with higher flow capacity and higher outgoing

degree respectively. Other heuristics include Directed Breadth First Search (Directed

BFS) technique, where each node maintains simple statistic on its neighbours, and

queries are only forwarded to neighbours that have produced many quality results in

the past (e.g. returning the most results, processing query with shortest message queue,

etc) [33]. Rather than “who to send”, expanding ring decides on “how far to send” by

successively broadcasting queries to neighbours with an increasing TTL in each

successive iteration [30]. Such method is also known as iterative deepening search

[33].

To improve heuristic in routing decision, Crespo and Garcia-Molina introduces

Routing Indices (RI) that provides “hint” as to which “direction” can better lead to the

destination node [34]. Given a query, RI returns a list of neighbours ranked according

to their goodness for the query, as measured by the number of documents found in a

path. Similar to RI, Yang and Garcia-Molina propose to use Local Indices for indexing

over data of all nodes within r hops [33]. Thus, a node can process the query on behalf

of every node within r hops. Instead of indexing the actual data, Rhea and

Kubiatowicz present a probabilistic location algorithm that associates a probability of

11 Freenet, http://freenet.souceforge.net

 20

finding a document in each neighbour with the use of the attenuated Bloom filters [35].

Probabilistic information about the location of content can also be specified by

Exponentially Decaying Bloom Filter, which encodes the content hosted by all

neighbours for each forwarding direction [36].

Some researchers propose heuristic in the peer neighbourhood formation. Semantic

Overlay Network (SON) clusters peer nodes that share semantically related resources

into a sub-overlay network [37]. Queries are only broadcasted within SON that is able

to answer them. Acquaintances [38] applies similar approach, but semantic relations

are discovered spontaneously at runtime, without having to explicitly classify the

resources compared to SON. DiCAS [39] labels each cluster from number 1 to M, and

all peers in the same cluster cache response to query where the equation -

cluster ID = hash (query) Mod M is satisfied. Subsequently, queries are only

forwarded within cluster of which the group ID matches the hash value of the query.

To organize the peers in the semantic cluster, RATTAN adopts tree-like logical

structure [40]. Query destined to a specific cluster is always issued to the root of the

associated tree overlay network, and then transmitted down the tree towards the leaves.

FloodNet, on the contrary, proposed to organize unstructured P2P network into

multiple tree-like low-diameter clusters, and forward the messages using the

LightFlood technique [41]. Instead of clustering, Sripanidkulchai et al. explore

interest-based locality (i.e. if a peer has a piece of information that another peer is

interested in, it is also likely to have other information that is of interest), and establish

interest-based shortcut between the peer nodes that share similar interest locality. [42].

Unstructured P2P network also faces the issue of topology mismatching [43]. Two

neighbouring peers may actually be placed far away in the low level physical network.

 21

To overcome the problem, the unstructured P2P network topology has to be adaptive

to the underlying physical network. Landmarking technique is introduced [44] where

all nodes at bootstrap locate the landmark node of a bin, and measure distance (i.e.

round trip time (RTT)) to landmark. Peer subsequently decides to join the bin where

all nodes in the same bin are physically close to one another. mOverlay [45] proposes

to use dynamic landmark instead, where the group ID of each peer group is the

landmark itself. Peer groups are formed by peers that are physically close to one

another. A joining node will locate a dynamic landmark that is the closest to itself and

join the group where the landmark belongs to. Instead of relying on landmark, Liu et

al. introduce Location-aware Topology Matching (LTM) [46]. Each node actively

probes its one-hop and two-hop neighbour for the latest communication RTT (i.e.

TTL2 probing), and chooses to disconnect peer with poor RTT response during

runtime. Iteratively, this ensures all paths are within the shortest distance (in terms of

latency delay).

While different kinds of heuristics are proposed, another form of unstructured P2P

network has emerged - the super-peer P2P Network. A super-peer is a peer node that

acts as a centralized server to a subset of client peers [47]. These client peers submit

queries to and receive results from the super-peer. Super-peers are connected to one

another in a P2P manner, forming the P2P message routing overlay network. They are

responsible to route messages over the overlay network and answering queries on

behalf of the clients. The super-peer network model is adopted in the Gnutella212

network.

12 http://www.gnutella2.com

 22

2.1.4 Decentralized Search in Structured-Based P2P Network

In structure-based P2P network, the P2P overlay topology is tightly controlled and the

placement of contents/files is not random but is determined at specific locations. This

tightly controlled overlay topology structure enables the P2P systems to resolve query

very efficiently by limiting the searching hop within a bounded number of hops.

Structured-based P2P network typically support distributed hash table (DHT)

functionality in mapping key to node, i.e. the lookup operation returns the identity of

the node storing the resource associated with the key. The notable structured-based

P2P networks include Chord [48], Content Addressable Network (CAN) [49] and

Pastry [50]. In these systems, each node is responsible for storing a range of keys and

the corresponding resources. The nodes are connected into an overlay network with

each node knowing several other nodes as neighbours. Chord organizes the nodes into

a ring network topology, while nodes in CAN are arranged as a virtual d-dimensional

Cartesian coordinate space on a d-torus. When a lookup request is issued from one

node, the message is routed through the overlay network to the node responsible for

the key. As for Pastry, replication of published resources is placed on nodes which the

ID of nodes is the closest in the ID namespace of the resource, and prefix addressing

routing is used. As a result, Chord, CAN and Pastry guarantee lookup to be

accomplished within ()NO log , ()dNO /1 and ()NO b2
log hop counts respectively (N

is the total number of nodes, d is the dimension value and b is the configuration

parameter).

While DHT-based P2P systems show efficient lookup and failure resilience, they

exhibit certain drawbacks. Only single-key based lookup is supported in DHT, and

multi-attribute key and range queries are not allowed. This affects the flexibility in

 23

formulating expressive query, especially when generating a precise query.

Furthermore, excessive overhead is needed to maintain the overlay network when

dealing with transient peers. Different degrees of topology restructuring and resource

redistribution are required whenever any peer joins and leaves the system.

2.2 Semantic Web Ontology Modeling and Reasoning

To date, information on the World Wide Web is designed merely for human reading,

but not for computer programmes to manipulate meaningfully, i.e. computers have no

way to process the semantics of the web contents. The Semantic Web turns the table

by bringing meaningful structure to the content of the Web pages.

Semantic Web is defined as “the conceptual structuring of the Web in an explicit

machine-readable way” [51]. Semantic Web aims at enabling computer machines with

the capabilities to “understand” the semantics of web content, and therefore allowing

machine to process them automatically in cooperation with other machines and users.

Marshall and Shipman summarize the three visions of the Semantic Web [52]:

1. Semantic Web organizes the loosely connected networks of digital documents

that make up the Web.

2. Semantic Web creates a networked knowledge ontology that allows knowledge

to be acquired, represented and utilized.

3. Semantic Web offers an infrastructure for sharing of data and knowledge

developed and distributed by different domain-oriented applications.

To realize Semantic Web, computer machine first needs to represent web content as

knowledge, and subsequently needs to interpret its semantics. W3C has initiated a set

 24

of knowledge representation standards. Figure 4 outlines the layer model of

knowledge representation language in the Semantic Web.

Figure 4. The Semantic Web layer language model, where each layer is building on
the layer below

The foundation of knowledge representation is the eXtensible Markup Language

(XML). XML has been widely adopted in today’s Web as flexible information markup

language, in which the grammars are described in the XML-Schema. However, XML

and XML-Schema only allow specification of syntactic conventions, but do not

impose semantic constraints on the meaning of a document.

Based on XML syntax, the Resource Description Framework (RDF) defines a data

model to represent data’s machine-processable semantics, making interoperable

exchange of semantic information possible between the machines [53]. RDF is

expressed in a (subject, predicate, object) triple, where each triple outlines the relation

property (i.e. predicate) of a resource (i.e. subject) to an object, which can be either

another resource or certain value. RDF Scheme [54] lets developers to define

particular vocabulary for RDF data and specify relationships between properties and

resources.

Semantic Web uses ontology to present heterogeneous semantic information.

Ontology is an explicit, machine readable specification of a shared conceptualization

in terms of entities, relations, instances, functions and axioms [55]. Ontology

 25

vocabulary requires an expressive language, such as the Web Ontology Language

(OWL) [56] (a W3C’s recommendation for ontology language). Based on the RDF

and RDFS framework, OWL is a knowledge representation language for defining,

instantiating, interpreting, and reusing ontology knowledge. It adds formal vocabulary

for describing concepts and their properties, such as equivalence, disjoint, transitive,

symmetric, functional and inverse property to one another.

With the language model and the relevant knowledge reasoning tools, software agents

are able to understand the semantics of the Web content and to interact intelligently to

one another and to the users. Web resources can be defined and relations between

resources, terms, and properties can be established. The ontology language can be

further analyzed for consistency and inferences can be made. Consequently,

inconsistent facts can be reconciled, while implicit facts can be discovered. The use of

OWL-DL, for example, enables semantic reasoning of the concepts and relation

properties to be performed via the Description Logic reasoning features.

Semantic Web technologies are not limited to the Web, and context-aware computing

is one area where these technologies can be exploited. OWL is expressive enough to

model the rich feature of context information and contextual entities in the smart

spaces. It promotes knowledge sharing and reuse, and interoperates between the

heterogeneous context resources at the semantic level. Ontology-defined context can

also support expressive query and automated inference with its explicit semantic

representations. Therefore, the use of Semantic Web tools (e.g. inferencing engine,

Knowledge Base storage, etc) facilitates different management and processing tasks

for the context-aware applications in acquisition, interpretation and dissemination of

context information. A few example of context-aware systems that leveraged the

 26

Semantic Web technologies include the SOUPA [57], Semantic Space middleware [9],

Semantic e-Wallet [58], Task Computing Environment [59] and InforMa [60].

2.3 Related Work in Context Discovery

Context discovery is a key feature in many context-aware system infrastructures (i.e.

known as “context infrastructure”) that provides architectural supports for developing

and deploying context-aware applications. We first present a brief overview of the

various context infrastructures, highlighting the approaches taken for supporting

context discovery. We then analyze these approaches, especially on their ability to

scale context discovery across many smart spaces.

2.3.1 Context Toolkit

The Context Toolkit [19] developed at Georgia Institute of Technology is one of the

pioneer context infrastructures that support systematic and rapid building of context-

aware applications, by hiding away the complexity of the sensing and gathering of

context information. It introduces four categories of components in a context-aware

system: Context Widget, Context Aggregator, Context Interpreter and Context

Discoverer. Context Widget enables applications to access to context data sensed by

sensor, Context Aggregator merges different streams of related context data for

representing context information related to specific entities (e.g. user, devices,

environment, etc), and Context Interpreter interprets the raw context data into high-

level context. For context-aware application to discover the different components, the

Context Discoverer is deployed. Context Discoverer is a centralized directory system

that registers the existence of the various components available for use by applications.

 27

Applications can find a particular component with a specific name (i.e. white page

lookup), or with a set of matching attributes (i.e. yellow page lookup).

2.3.2 Gaia Context Infrastructure

Gaia [3] is a middleware infrastructure for smart spaces, where physical spaces and the

ubiquitous computing devices available in smart spaces are converted into a

programmable computing system. The Gaia extension for context-awareness, i.e. Gaia

Context Infrastructure [27], enables computer agents in smart spaces to easily acquire

context information from the different distributed context providers. Context providers

can advertise the set of context they provide to the Context Provider Lookup Service,

so that they are discoverable by the agents. Context is represented as context predicate,

specified using the DAML+OIL ontology language, such that the name of the

predicate is the type of context being described. The advertisement is in the form of

first order expression, and the matching between advertisement and the context

predicates set is performed in the Lookup Service.

2.3.3 Solar

Solar [21] is a Context Fusion Network (CFN) infrastructure for context aggregation,

composition and dissemination. Solar is formed by a distributed set of event operators

that at one end connects to the data sources (i.e. sensors) while the other end to the

data sinks (i.e. applications). Sensed context information is pushed into the Solar via

one of the operators as an event. An event operator accepts one or more events,

aggregates them based on predefined operator functions, and pushes the aggregated

event (i.e. high level context) to the input of another event operator. Solar introduces

name advertisement [61], a naming service for the data sources by using a set of

descriptive attribute-value pair. The advertisements are stored in a directory service

 28

based on Intentional Naming System (INS) [62], which composes of a distributed,

self-configuring overlay network of name resolvers. It provides attribute-based

registration and lookup interfaces. The data source for relevant context information is

therefore discovered by name pattern matching in the resolver name space.

2.3.4 Strathclyde Context Infrastructure

The Strathclyde Context Infrastructure (SCI) [63] deploys Context Server in a Range

(i.e. a similar notion for “smart space”) to manage the distributed Context Entities,

which are software components for representing entities (e.g. people, software, places,

devices, etc) in a Range. Context information associated for each entity is represented

as the entity’s configuration, an event subscription graph between the entities. The

Context Server also plays the role of Context Trader (similar to the concept of Service

Trader) that can accept a request for context information and return a list of possible

configuration based on behavioral specification matching techniques and automatic

semantic reasoning about the configuration of each entity [25]. Such context discovery

mechanism is performed based on the component trading approach.

2.3.5 Context-Aware Applications Platform

A Context-aware application platform is proposed by Efstratiou et al. [24] to support

adaptive mobile applications to adapt to changes in the environment context. Mobile

context-aware applications expose their adaptive mechanism to the platform with

adaptation policies specified by the users. When context changes are detected and

updated in the Context Database, the Adaptation Control coordinates the coexisting

applications according to changes of the context. To locate the services that provide

 29

the relevant contextual information, the platform relies on the UPnP architecture13. A

service describes itself using an XML description template, outlining the service

category, the access points for communications, and the information exchange format.

Advertising of services is performed using broadcast announcement. The platform

discovers the services, and receives notification events when the contexts of the

services change.

2.3.6 Discussion

Context Toolkit, Gaia Context Infrastructure and SCI are using central repository for

handling context discovery in a smart space. The centralized directory architecture is

not scalable to handle large data volume and high query load, but unfortunately these

are essential when we are dealing with wide-area context management. Although

centralized server allows easy management and normally enjoys efficient query

processing performance, it faces the risk of single point of failure. Consequently,

centralized directory approach is not an ideal architecture for inter-space context

discovery.

On the other hand, Solar adopts the decentralized approach by using distributed

namespace resolver directory service based on the Intentional Naming System (INS).

Architectural wise, a decentralized approach scales well to handle inter-space context

discovery. However, each resolver in the INS needs to maintain an identical copy of

the hierarchical representation of Solar’s naming description, which results in

constraining INS to support only limited range of service lookup.

Efstratiou et al.’s Context-aware application platform adopts the broadcast-based

UPnP service discovery, which clearly lacks the scalability to make announcement

13 http://www.upnp.org

 30

beyond the local network boundaries. On top of that, when multiple context providers

constantly broadcast about their existence, the network can be easily congested with

broadcast messages. The frequency of broadcasting can also affect the lookup

efficiency of a context requester. Clearly, broadcast-based approach is inappropriate to

support inter-space context discovery.

In terms of representation model, all except Gaia adopts the keyword-based attribute-

value context representation. Matching techniques are therefore constraint to string-

based matching, and this could lead to semantic conflicts as identified in [64].

Resource interoperability among heterogeneous resources would need to be carefully

dealt with by strict standardization on the names of the attributes and the range of the

values for each attribute. Orion overcomes semantic conflicts by applying ontological

description as semantic representation of the context resources, and by adopting

semantic-based pattern matching for the matchmaking process.

2.4 Chapter Summary

In this chapter, background information about peer-to-peer (P2P) computing and

Semantic Web, as well as related work in context discovery are presented. The readers

are provided with a comprehensive survey about the variety of search mechanisms in

P2P network, and the introductory overview about ontology modeling and reasoning

techniques in the Semantic Web. The review of various related work outlines the

different context discovery approaches in current context-aware computing research.

The lack of inter-space context discovery support in the current approaches draws the

needs for an inter-space context discovery platform, such as the Orion infrastructure.

The Orion infrastructure is introduced, analyzed, and evaluated in the subsequent

chapters.

 31

CHAPTER 3 ORION: CONTEXT DISCOVERY
PLATFORM

Orion is a context discovery platform dedicated for pervasive computing smart spaces.

Context requester can rely on Orion to locate the necessary context provider,

regardless of its locality. In this chapter, we first look at the context discovery model

in general, and what constitute the requirements of a context discovery platform.

Following that, the Orion architecture is presented.

3.1 Context Discovery

Context discovery is the process of automatic locating the whereabouts of the

necessary context providers that are able to provide the desired context information

[19]. It involves the interaction between three entities in the smart spaces, namely the

context provider, context requester, and the context discovery platform. A general

model that describes the interaction within and among these entities is introduced.

3.1.1 Context Discovery Model

Figure 5 outlines a general model that depicts the interactions between different

entities in the context discovery process. These entities include the set of context

provider P, the set of context requester R, and the context discovery platform C.

A context provider px, where px∈P and x =1, 2, …, m, is any entity in a smart space

that supplies context information. Each px operates one or more context generating

function fp,x: ∆ c Æ Ix, which denotes that the generated set of context information Ix is

an abstraction of the context of happening ∆ c. Environment sensors, information

sources, monitoring software and context knowledge base are examples of px.

 32

Figure 5. Context discovery model involving the context provider, context requester
and context discovery platform.

A context requester ry, where ry∈R and y = 1, 2, ..., n, is any entity that consumes

context information for its context-aware processing. The consumed context

information Iy
’ may be provided by one or more context providers, such that

Iy
’ U

m

x 1=
⊆ ix, where ix∈ Ix. ix is the context information provided by the context

provider px. For every input ix from provider px, the context-aware process function

fr,y: ix X S Æ S’ carries out the context-aware processing that changes the requester’s

state from S to S’. A change of system state can be the adaptation of the system

behavior or outputting of relevant context sensitive information [7], as well as waiting

of another set of input context information. Examples of ry may include context-aware

applications, context-sensitive agents and context processing operators.

In ubiquitous computing, the number of context providers and requesters can be

finitely large. To prevent static configuration of connectivity between px and ry, the

context discovery platform, C, can play the role of mediator between them. C is a set

of protocols and necessary infrastructure to handle the discovery of context

information. It allows ry to locate the necessary and appropriate set of resource

providers P’, where P’ ⊆ P, with minimal user intervention in the process. A px can

 33

publish its metadata-based context advertisement adx to C for advertising the

availability of its Ix. On the other end, ry can look up the relevant P’ from C by

submitting a context lookup query ly delineating the provider discovery requirements.

The executing ground of C is the context discovery function fd : ly X AD Æ idx.

fd matches the submitted ly against the set of published advertisement AD, where

AD U
m

x 1=
⊆ adx, and identifies the registered context provider that can satisfy the

needs of the requesting context requester, through the process known as matchmaking

[65], [66]. Upon successful matchmaking, the identity idx of the matched px is returned

to ry, carrying the access protocol information such as provider’s IP address and port

number. Upon a successful discovery, ry can establish communication channel with

the located px, and send over a context retrieval request qy for retrieving of ix from px.

3.1.2 Context Discovery Platform

A context discovery platform, C, facilitates two operations: context publishing and

context lookup. The context publishing operation is accomplished in each context

provider px by executing the embedded function publish(Node, msgx), where

attribute Node is one or more network entities to which the published message msgx is

sent. Attribute msgx is the submitted information, which mainly contains adx. In some

implementation where C caches context information aggregated from the providers in

Node, msgx may carry the updated context information Ix as well.

On the other hand, the context lookup operation is the execution of the embedded

function lookup(Node, msgy), where attribute Node, similar to the function publish,

is one or more network entities that handle the context lookup in C, and attribute msgy

is the lookup message submitted to Node. msgy contains mainly the context lookup

 34

query ly, and optionally may contain the context retrieval query qy if Node is able to

request for context retrieval on behalf of the requester ry.

Based on the context discovery model in Figure 5, there are different variations of C in

terms of its architecture. We describe the centralized model and broadcast-based

model here, and introduce the hybrid centralized-decentralized model adopted in Orion.

3.1.2.1 Centralized Model

C can be a centralized directory where there is a sole database, d, that maintains a set

of registered advertisement AD, where AD U
m

x 1=
⊆ adx, and all matchmaking

processes are taking place in the centralized server (Figure 6). The yellow-page and

white-page context discoverer in Context Toolkit [19] is one such kind of centralized

platform architecture. In the centralized architecture, attribute Node in both publish

and lookup function is featuring the same centralized server, and both the msgx and

msgy are headed to the d. Figure 6a is a variation of the centralized server where the

context retrieval query qy can be forwarded to the located context provider px by d. In

some implementations, msgx carries the context information ix, so that it can be cached

by d and later retrieved by the context requester (Figure 6b). While centralized

approach enjoys great query response performance and easy management, it suffers

from reliability (e.g. single point of failure) and scalability (e.g. inefficient in handling

large query load at the same time, huge memory space for advertisement registration,

etc) issues which are undesirable for inter-space scale context discovery.

 35

Figure 6. Context discovery model with centralized server; (a) Without context
caching; (b) With context caching

3.1.2.2 Broadcast-based Model

On the other extreme, a broadcast-based architecture of C may exist. There is no

special network entities that handle the publish and lookup operations, but the

provider and requester themselves are responsible for it. As a result, attribute Node in

both publish and lookup function is the broadcast address. adx is broadcasted at

periodic interval to notify any listening context requester regarding the existence of Ix;

while ly is broadcasted as well to let the relevant context provider who is listening to

the broadcast channel to indicate that a matching request is located (see Figure 7).

Figure 7. Broadcast-based context discovery model

 36

The context discovery function fd is therefore carried out by all context providers

independently. Universal Plug n Play (UPnP) and the Bluetooth Service Discovery

Protocol are adopting such fully decentralized architecture. While broadcast-based

approach avoids the single point of failure and performance bottleneck at a centralized

location, the broadcast range can be limited within an enclosed network boundary.

This, again, is not ideal for handling inter-space context discovery.

3.1.2.3 Hybrid Centralized-Decentralized Model

We propose a hybrid centralized-decentralized context discovery model (see Figure 8)

which is suitable for inter-space context discovery. In every smart space, a centralized

directory service is deployed, such that context publishing and lookup query take place

at this centralized directory. To scale context discovery across many smart spaces,

these centralized directory services from different smart spaces are linked together

forming the service overlay network. Specifically, Orion employs P2P-based

decentralized architecture to connect the distributed directory services, where each

directory is a super-peer [47] to the set of context resources peers (i.e. both context

requester and provider) in a smart space. As a result, the attribute Node in publish and

lookup function denotes the directory service associated to the smart space in which

the context resources are located in. At each directory service, the set of registered

advertisement AD’, where AD’ ⊆ AD, is published by the context providers that reside

in the local smart space. Upon receiving a lookup query ly that cannot be resolved

locally, ly is appropriately forwarded via the service overlay network to the remote

directory service where the requested context is registered with. Context retrieval

query qy is carried along in msgy, and is forwarded to the located context provider px

directly upon the successful matching in the directory service in the remote smart

 37

space. Finally, the service overlay network also serves to propagate the retrieved

context information ix back to the context requester.

Figure 8. P2P-based centralized-decentralized context discovery model (adopted in
Orion architecture)

3.2 Platform Requirements

An inter-space context discovery platform has to be dynamic and scalable to deal with

the ubiquitous nature of context providers and context requesters. The research

challenges outlined in Chapter 1 result in several requirements that a context discovery

platform needs to adhere to. The paragraphs below summarize the various

requirements when designing Orion:

♦ Context discovery platform has to accommodate the ubiquitous nature of both

context providers and requesters, which may dynamically join and leave the

platform at unpredicted time.

 38

♦ The platform has to be scalable to handle large number of sensors, devices,

query loads, data volumes and users.

♦ The infrastructure has to enable devices and users to initiate a discovery for

specific context regardless of their current space locality.

♦ Query response time should fall within reasonable range up to user

expectation.

♦ Representation model needs to be expressive and flexible to deal with data

heterogeneity.

3.3 Orion Architecture Overview

Orion is a peer-to-peer (P2P) network infrastructure that facilitates context discovery

in the context-rich smart spaces. A context provider may publish a context

advertisement to Orion for announcing about its existence and about the context

information it provides. A context requester, on the other hand, can query Orion to

look up for context provider that is able to provide the desired context information. A

great emphasis of the Orion architecture is its ability to scale context discovery across

many smart spaces, which was highlighted in Chapter 1 as a missing element in

current context-aware computing research.

Orion architecture centers on a set of distributed Discovery Gateway (DG). A DG

serves the context discovery operations in a smart space. Each DG maintains a set of

context advertisements published by context providers in the associated smart space.

The DGs from different smart spaces are peers to each other, forming a P2P-based

message routing overlay network. As a result, lookup queries for context in remote

 39

smart spaces can be appropriately forwarded to the relevant DG via the overlay

network, and thus enable inter-space context discovery to take place.

To interoperate with the heterogeneous context resources, ontology modeling and

reasoning technologies from the Semantic Web [51] are employed in Orion. All

information is represented with semantics annotation in ontology. Semantic reasoning

and matching technique are applied in the DG to perform the matchmaking of the

context resources.

3.3.1 Peer-to-Peer Consideration in Smart Spaces

The number of computing entities in our living environment is growing everyday.

These entities include, for example, electronic appliances, computers, mobile handheld

devices, sensors, digital equipments, as well as software applications such as Web

Services, home monitoring software, and personal digital diary. They are independent

to one another, but interconnected via wired or wireless network technologies.

These computing entities, when properly enabled with context information

communication capability, form a large pool of context providers and context

requesters. Under different circumstances and requirements, each entity can be either a

context provider or a context requester. For example, a Conference Assistance

application [67] running on a handheld device, such as mobile phone and PDA, not

only serves as context requester requesting context information about the conference

session (e.g. conference schedule, building location layout, participant’s particulars,

etc), but also providing context information such as location of user and identity of

audience during the presentation. When comparing such communication model and

information management features with those in peer-to-peer (P2P) network, striking

 40

similarities can be discovered. We therefore see great opportunities in employing P2P

techniques in context-aware computing.

In P2P system, each peer plays an equal role in exchanging information and services to

one another. A peer manages its own set of information and services, provides them to

other when being approached, and also retrieves others information and services for

own use. This can ensure the correctness and real-time updating of information at all

time. A P2P infrastructure enables context information to be self-contained and self-

managed by distributed computing entities. This prevents the requirement of mass

storage space in a centralized device, and avoids the performance bottleneck

frequently encountered in the single server architecture. The P2P computing model

can also handle gracefully the ad-hoc nature of pervasive computing devices, with

minimal overhead incurred in managing the joining and leaving of devices to and from

the smart spaces.

We can analyze the computing entities in pervasive computing smart spaces using two

parameters: mobility and computing capability. Along the mobility axis, a static entity

is one whose physical location must be fixed at all time in order to function normally,

due to either power limitation or unwieldy size. At the other end of the mobility

spectrum is a mobile entity, which can conveniently roam from one space to another

and still remain in operation. Along the computing capability axis, a low computing

capability entity is equipped with limited memory space and is often used to handle

simple task due to its low computing speed. On the other hand, a high computing

capability entity has large memory space for data storage in addition to executable

code storage, and its computing speed can support the execution of multiple complex

tasks in real time. There are, of course, a set of computing entities whose computing

 41

capability falls between the two extremes. Examples based on these analyses are

shown in Figure 9.

Figure 9. Examples of computing entity peers based on processing capability and
mobility classification

To enable communication and interaction between these context resource peers (i.e.

both context providers and requesters) distributed in different smart spaces, we adopt a

super-peer message routing overlay network [47] approach. A super-peer, elected

among the context resource peers in a smart space, operates as a server to a set of

client peers. The super-peer in each smart space serves as the gateway of the smart

space to communicate with other spaces through an overlay network constructed and

maintained among the super-peers. The super-peer overlay network therefore lays the

communication infrastructure for the low-end context resource peers (e.g. peers with

limited communication range and limited processing power) residing in different smart

spaces to communicating with one another. Such approach inherits the self-managing,

distributed, low-cost and localized characteristics of a peer-to-peer system, while also

 42

features high manageability and efficiency of a centralized system in a local area. The

super-peer overlay network forms the core of the proposed hybrid centralized-

decentralized context discovery model. The super-peer in a smart space is known as

the Discovery Gateway (DG) in the Orion architecture.

3.3.2 Discovery Gateway

Discovery Gateway (DG) is a super-peer in a smart space that serves as the gateway

for the context resource peers in the space to access the Orion context discovery

service. The set of DGs from many smart spaces form the message routing overlay

network, and they cooperatively provide the following functionalities:

♦ Registering context advertisement announced by context provider peers

residing in the hosting smart space,

♦ Matching the context lookup query with the advertisement set in a context

lookup process,

♦ Self-organizing into a message routing overlay network in order to provide a

context discovery platform that scales across many smart spaces,

♦ Performing query message routing from one DG to another during the search

for remote space context information.

Orion adopts a service-oriented architecture to meet the software engineering

challenges. Therefore, the various functionalities in a DG are performed by a

cooperative set of service components that operate in the DG architecture. The DG

architectural diagram is shown in Figure 10.

 43

Figure 10. The architectural diagram of a Discovery Gateway

The core service component in a DG is the Query Processor that performs the

matchmaking of the received lookup query with the advertisement set maintained in

the Advertisement Cache. It relies on the semantic matching and reasoning algorithm

implemented in the Semantic Matching component, and refers to the knowledge

ontology, such as advertisement template and domain ontology, stored in the Ontology

Knowledge Base. Context advertisement announced by local context providers are all

analyzed and processed by the Advertisement Processor, and subsequently stored and

maintained in the Advertisement Cache.

While the Discovery Service Handler layer takes care of the context discovery service,

the P2P communication and message routing service are offloaded to the P2P Handler

layer. The Message Dispatcher pre-processes any incoming messages and routes the

messages to the relevant service components in the upper layer. For example, lookup

queries are transferred to the Query Processor, and context advertisement is sent to the

Advertisement Processor. It also performs the task of message routing in the overlay

network, such as forwarding query that cannot be resolved locally to the neighbour

peers, and relaying reply message back to the sending DG. The Neighbourhood

 44

Directory maintains the list of neighbour peers, mapping their peerID to the respective

communication channel. All messages are sent through the TCP/IP communication

protocols.

By adopting the component-based development methodology, the DG architecture

becomes extensible and flexible. By defining the appropriate service interface, the

object-oriented service components can be easily upgraded with different service

implementations. Extra functionalities can be introduced by simply installing new

service components into the architecture. The layered architecture also ensures loose

coupling with the low-level transportation protocol, which is essential for maintaining

reliability and connectivity of the overlay network.

The generic architecture of DG has enabled a wide range of computing entity peers to

become a candidate DG in a smart space. To become a DG, the peer needs to be

equipped with sufficient memory for advertisement storage, and be able to perform

semantic matching in the lookup process. On top of that, the candidate peer must be

able to establish and maintain overlay communication channel with other DGs,

preferably over a long period of time. Judging from these criteria, the computing entity

with medium to high processing capability as presented in Figure 9 are all suitable

candidate DG in a smart space. To minimize the handover and mobility issue in

mobile devices, static-based computing entity is more desirable for its ability to

maintain stable overlay links. In current stage, we assume a single DG exists in every

smart space, and DG election is not within the current scope of Orion.

3.3.3 P2P-based Overlay Network

All DGs manage local context advertisements relevant to their associated smart space.

It is therefore a challenge in Orion to ensure the lookup query searching for context

 45

provider in a remote space can be appropriately and efficiently forwarded to the

relevant DG. Orion adopts a decentralized P2P architecture in organizing the DGs,

connecting them into a self-organized unstructured peer-to-peer network, called the

Orion Network (ONet). Each DG peer in ONet maintains its own set of neighbour DGs

(i.e. neighbourhood). As a result, ONet provides path connectivity between any two

DGs through message relay among the peers. Whenever a sending DG needs to

forward a message to a remote DG whose location in ONet is unknown, the message is

forwarded to its one-hop neighbours. The forwarding process continues from one DG

to another, until finally when the message reaches the destination DG. With ONet,

lookup queries can be successfully forwarded to the destined smart space and resolved

by the appropriate remote DGs. Figure 11 provides a snapshot of ONet, showing the

query message forwarding activities when a smart phone application launches a

lookup query to search for sensor information located in a smart space two hops away.

Figure 11. A sensor is discovered by the smart phone application located in another
smart space via the Orion Network (ONet)

 46

The unstructured-based ONet is facing similar drawback in Gnutella P2P network –

high redundant processing and low message efficiency [41] [46], [68]. In the

forwarding process, a query message may be duplicated many times, and a DG may

need to process the same query message more than once. To overcome the problems,

Orion introduces the Semantic Community (SeCOM). A SeCOM is a cluster of DGs

that shares similarity in the semantic of context information they are registered with.

These DGs form the semantic overlay network, such that lookup queries are routed to

and forwarded only within the appropriate SeCOM that is able to resolve them (Figure

12). The size of a SeCOM is fractional compared to the overall size of ONet, and

therefore the number of message flooding can be reduced significantly, and so does

the over message redundancy in ONet.

Figure 12. Lookup query is flooded only within the relevant Semantic Community
(SeCOM) before reaching the destination DG.

 47

SeCOM exploits geographical location of the context in its clustering criteria.

Therefore, DGs registered with context information related to the same geographical

location are clustered into the same SeCOM.

Message efficiency reflects the message and process redundancy incurred when

forwarding a message to the neighbour peers [41]. Message efficiency drops

significantly when the forwarding depth increases. Therefore, we adopt Iterative

Deepening Search (IDS) [33] approach when flooding message in ONet. IDS ensures

the forwarding depth would not go beyond the forwarding depth level where the

destination DG is reached. It minimizes the amount of redundant messages, and

therefore improves message efficiency of the flooding-based search operation.

Finally, when the destination DG is reached, a “shortcut link” is established between

the sending DG and the destination DG, i.e. destination DG becomes the newest

neighbour peer of the sending DG. As such, the result is returned within one-hop

distance. It also increases the likelihood of finding destination DG within single hop in

future search operation [42].

3.3.4 Ontology Modeling and Reasoning

Smart spaces are scattered with ad-hoc and heterogeneous context resources. To

facilitate interoperability between the resources, Orion adopts ontological modeling

techniques to model the context information. Ontology provides the autonomous

context resources with a common semantic understanding of the represented

contextual information, even without prior agreements on how they should

interoperate. As a result, it promotes easier context information exchange between the

context resources, and accurate matchmaking in the discovery process.

 48

Semantic Web technologies [51] are adopted in defining, interpreting and matching

the ontological description. We use the Web Ontology Language (OWL) [56] to define

the advertisement template, called the Context Advertisement Ontology (CoAO), for

composing the context advertisement. Each context advertisement is an instance of the

CoAO, describing the published context information in terms of the provider profile,

context domain, access information and matching quality. OWL ontology can be

viewed as a set of context triple. Context triple consists of (subject, predicate,

object) that outlines the relationship between a subject and an object through the

relations predicate. An advertisement contains one or more triples stored and

maintained in the Advertisement Cache. For example, context information “Mobile

phone runs out of battery” is represented using the triple set “(MPhone, hasBattery,

Battery), (Battery, hasPowerLevel, 0)” or “(MPhone, powerStatus, 0)”. By using

semantic reasoning techniques, the two triple sets are interpreted as equivalence in

terms of their semantics (i.e. transitive equivalence).

Ontology modeling provides the ground for semantic matching in the matchmaking

process. We use triple-matching techniques, coupled with semantic reasoning, to

match the lookup query with advertisement. Context lookup query, built on the SQL-

like RDF Data Query Language (RDQL) [69], supports query over semantic model

based on matching of the triple patterns. For example, when the context requester is to

check the battery level of the user’s mobile phone, a RDQL with triple pattern

“(MPhone, powerStatus, ?x)” is generated. The pattern matches perfectly with the

context information described in the previous example, and therefore the value “?x =

0” is returned.

 49

3.3.5 Context Discovery Operations in Orion

Context discovery operations include both the context publishing and context lookup.

Orion provides the necessary network infrastructure and semantic matching platform

to perform the operations.

The context publishing operation takes place whenever a new context provider is

newly deployed in a smart space. The context provider px invokes the function

publish(dlocal, msgx<adx>) to register the context advertisement adx with the local

space DG dlocal. After adx is stored in the Advertisement Cache, the geographical

location meta-context semantics of the adx is analyzed to identify the SeCOM where

the advertisement is associated to. If dlocal is not a member of the identified SeCOM,

the joinSeCOM operation is initiated to join as the member of the relevant SeCOM.

In context lookup operation, the context requester ry executes the function

lookup(dlocal, msgy<ly, qy>) to query the local space DG dlocal for the availability of

context provider that matches the description in the lookup query ly. If dlocal is unable

to resolve the query (i.e. a remote space context is queried), ly is analyzed for its

geographical location meta-context semantics for identifying the relevant SeCOM that

can resolve the query. Function forward(D’, msgy<ly, qy>) is called to forward

msgy<ly, qy> to the set of neighbour DG peers D’. If the forwarding DG is a member of

the identified SeCOM, D’ will consist only the neighbours in the SeCOM. Otherwise,

D’ will include all one-hop neighbours in the ONet. When msgy<ly, qy> reaches the

destination DG ddest, the lookup query ly is able to be resolved, and retrieval query qy is

forwarded to the located context provider. A shortcut link is established between ddest

and dlocal in order to facilitate the provision of the retrieved context information within

single hop latency.

 50

The operations are summarized and presented as an operation flow chart in Figure 13.

The details are discussed, analyzed and evaluated in Chapter 4 and Chapter 5.

Figure 13. Overview of context discovery operations in Orion. (a) Context publishing,
(b) Context Lookup

 51

3.4 Chapter Summary

In this Chapter, the reader is guided through an overview of the Orion architecture.

The operation model in Orion is derived from the general context discovery model that

involves the context provider, context requester and context discovery platform. We

argue that computing entities in pervasive computing fit well into the notion of peer-

to-peer computing system, and therefore the Orion architecture is built upon a P2P-

based message routing overlay network infrastructure. Specifically, a Discovery

Gateway is introduced to function as the super-peer to the resource peers in each smart

space, which handles the publishing and lookup of context information, as well as

routes message across the overlay network. The context discovery operations

supported by Orion are derived, and will be further elaborated and analyzed in Chapter

4 and 5.

 52

CHAPTER 4 P2P NETWORK IN ORION

One of the challenges in inter-space context discovery is to make localized context

information discoverable and retrievable across the local smart space boundary. Orion

addresses this challenge by using peer-to-peer (P2P) system approach for inter-space

and inter-resource communication. In this chapter, the P2P message routing overlay

network, called the Orion Network (ONet), is introduced. To ensure scalability of the

flooding-based search mechanism, several techniques used in unstructured P2P

network are modified and incorporated in Orion, which include the RTT probing,

Iterative Deepening Search, Semantic Clustering Overlay Network and Shortcut Link.

We formalize the search mechanism in Orion, and evaluate the performance via

simulations.

4.1 Orion Network (ONet)

Orion Network (ONet) is an unstructured P2P message routing overlay network

formed by the set of distributed, autonomous and self-managing Discovery Gateway

(DG). DG acts as the super-peer for a set of context provider peers and context

requester peers in a smart space, handling advertisement caching, lookup

matchmaking and query forwarding across ONet.

We model ONet O as a set of k DGs, D, such that O = {di | di ∈D, for i = 1, 2, …, k}.

A DG di manages its own set of ki neighbour DGs Di’, where Di’ ⊆ (D \ {di}), and

forms the neighbourhood Ni, where Ni = {di,j | di,j∈Di’, for j = 1, 2, …, ki, ki < k}, such

that ∃ linko (di, di,j). linko (di, di,j) is the overlay link that connects di to its neighbour

 53

di,j, and the link is a bidirectional TCP/IP communication channel,

i.e. linko (di, di,j) = linko (di,j,di) .

Two assumptions are made when establishing an ONet. First, ∀i, we assume Ni φ≠ .

This means there is no isolated di. The second assumption supposes that O is a fully

connected graph network with all DGs connected to one another via at least one

message forwarding path.

4.1.1 Bootstrapping ONet

Bootstrapping process enables a newly emerged di to establish its Ni. di obtains an

initial list of di,j through the broadcasting mechanism, an approach similar to the

Gnutella14 peer-to-peer system. A ping message is broadcasted, and several pong reply

messages are received from a set of potential neighbour DGs who have heard the ping

message. The ping and pong message carry the timestamp15 information indicating the

time the message is generated. As a result, based on the replied pong messages, the

round trip time (RTT) for each communication channel connected to the potential

neighbours is calculated and sorted. We employ RTT as a simple but realistic

measurement metric in an attempt to ensure topology matching between ONet overlay

links and underlying physical network [46]. Based on the list of potential neighbour

DGs sorted according to the measured RTT, ki neighbour DGs (where ki<<k) whose

communication RTT are the shortest, are selected to form the neighbourhood Ni.

A Neighbourhood Directory (NDir) is maintained in di to manage the 1-hop

neighbourhood information. NDir is a collection of 3-tuple <IP address, port number,

RTT>. Each entry in the NDir maps the communication channel to neighbour di,j, i.e.

14 http://www.gnutella.com
15 The clock in DGs can be synchronized by different well-known techniques, such as using the Network Time

Protocol (http://www.ntp.org).

 54

linko (di, di,j), with the IP address and port number, as well as message propagation

RTT for the channel.

4.1.2 Leaving ONet

DGs in O conduct RTT-probing to all neighbours in every time period tp. Other than to

update the RTT for each communication link recorded in the NDir, it could also

response to the unexpected leave of a neighbour DG from Orion. Unexpected leave

can be caused by the sudden failure of a DG, or network connection problem. We

conclude a neighbour DG di,j has left ONet unexpectedly when no reply to RTT–

probing is received after 3 tp periods. This results in the removal of linko (di, di,j).

On the other hand, if di leaves O expectedly (e.g. when no other context resources

remain in the smart space), di will terminate all linko (di, di,j) by sending a bye message

to all neighbours in Ni.

4.1.3 Search in ONet

ONet is an unstructured P2P network. A message is forwarded to a destination DG by

relaying the message from one DG to another until the destination is reached, or until

TTL (time-to-live) of the message expires. As highlighted in Chapter 2, such flooding-

based search mechanism causes a great amount of redundant messages and redundant

processings at each intermediate relay node. Furthermore, message redundancy

increases significantly for each hop increment in the message forwarding [41].

To minimize message redundancy in ONet, the Iterative Deepening Search (IDS) is

adopted in Orion. IDS is a well known technique in the field of Artificial Intelligence

for searching over state space [70], while [30] and [33] apply it for searching in a P2P

file sharing system.

 55

IDS performs successive breadth-first search with increasingly larger depth range. A

depth range is a logical boundary that encapsulates the DGs to be reached during a

message forwarding process in one search iteration. When a DG (i.e. the query

initiating DG) initiates a query, the query message is only forwarded for h hops. Those

DGs that receive the message falls within the level 1 depth range. If the requested

resource is not located by DGs in level 1 depth range, search iteration 2 begins at level

2 depth range by further forwarding the query for another h hops. The expanding of

depth range continues until the search reaches the destination DG, or when it reaches

the maximum depth level. Figure 14 shows the example of two depth ranges when the

query initiating DG performs IDS. With IDS, we can ensure that when the destination

DG is located in depth range of depth level γ, DGs in depth range beyond depth level γ

do not need to process and forward the query.

Figure 14. Node coverage at different depth range under the Iterative Deepening
Search mechanism (with h = 1).

To execute IDS, each DG in ONet adheres to a deepening policy ρ, where

ρ = {h, ωmax, tγ}. h is the number of hops a message is forwarded in every search

 56

iteration (i.e. searching depth in each depth level), ωmax is the maximum number of

search iteration to be executed, and tγ is the basic waiting time between successive

iterations. The DGs at the range boundary of depth level γ caches a query message for

a period Tγ, where Tγ = γ x tγ. If the StopSearch message from the query initiating DG

is not received within Tγ, the query message forwarding will be continued in the level

γ +1 depth range.

Algorithm 1. Initiating the IDS by a query initiating DG dinit
 who wants to search

for the resource φ.
1: Input: query for resource Qφ, NeighbourList
2: Output: located resource φ
3: Procedure: Init_IDS
4: Begin
5: search depth per iteration h  deepening policy ρ
6: basic wait time per iteration tγ  deepening policy ρ
7: search depth level γ  1
8: Broadcast (NeighbourList, Qφ , h, γ)
9: For each γ < ωmax  deepening policy ρ
10: Wait (γ x tγ)
11: If resource φ found then
12: send StopSearch to DGs with h = 0
13: Break
14: Else
15: If receive duplicate Qφ then
16: Discard(Qφ)
17: depth level γ  γ + 1
18: Send ContinueSearch to DGs with h = 0
19: Wait (γ x tγ)
20: Return φ
21: End.

Algorithm 1 formalizes the execution order in the DG that initiates the IDS (i.e. the

initiating DG, dinit, where dinit ∈D). The procedure relies on two parameters: Qφ is the

query for the resource φ (e.g. lookup query, join SeCOM query, etc), and

NeighbourList is the set of one-hop neighbour DGs. In the first search iteration, the

DGs in NeighbourList are broadcasted with Qφ, together with the IDS parameters h

and γ (line 8). dinit waits for a period of (γ x tγ) before proceeding to the next step (line

 57

10). When φ is not found in this search iteration, the DGs at the current depth range

boundary are notified with a ContinueSearch message. It signals to them to carry on

the search with an incremented depth level (line 15-18). If dinit
 is replied with the

discovered φ, the search will end at the current iteration, and StopSearch message will

be sent to DGs at the depth range boundary (line 11-13). φ is returned as a result (line

21). For resource φ that does not exist in any smart spaces, the search ends after ωmax

number of iterations are completed.

Algorithm 2. Performing the IDS by relay DGs drelay
1: Input: Qφ , h, γ, NeighbourList, VisitedNeighbours
2: Procedure: Perform_IDS
3: Begin
4: If h > 0 then
5: decrement h  h - 1;
6: Forward (NeighbourList \ VisitedNeighbours, Qφ, h, γ)
7: Else
8: basic wait time per iteration tγ deepening policy ρ
9. maximum search iteration ωmax  deepening policy ρ
10: Wait (γ x tγ)
11: If receive ContinueSearch then
12: h  deepening policy ρ
13: γ  γ + 1
14: Forward (NeighbourList \ VisitedNeighbours, Qφ , h, γ)
15: Else
16: If receive StopSearch OR duplicate Qφ OR γ equals to ωmax then
17: Discard (Qφ)
18: End.

When a DG is able to resolve Qφ, the located resource φ is returned to dinit. On the

other hand, when Qφ cannot be resolved, the function Perform_IDS (Algorithm 2) is

executed to continue the forwarding of Qφ. The DG therefore becomes the relay DG,

drelay, where drelay ∈(D \ {dinit}). When hop count h is not zero, it indicates that drelay is

not a DG at the depth range boundary, and therefore Qφ is forwarded to all one-hop

neighbour DGs that have not processed the query before (line 4-6). For drelay
 at the

search range boundary (i.e. when h = 0), the forwarding process is paused for (γ x tγ)

 58

period of time (line 10). The reception of ContinueSearch message during this waiting

period denotes that the searching has not ended, and therefore Qφ is forwarded to one-

hop neighbour DGs that are yet to process the query (line 11-14). On the other hand, if

StopSearch message is received, or when the maximum search iteration has reached,

the search process will be terminated and Qφ is discarded.

4.2 Semantic Community (SeCOM)

Other than Iterative Deepening Search, we aim to reduce the redundancy by limiting

the number of DGs in ONet that can involve in the process of relaying a message to

the destination DG. This can be achieved effectively by restricting the flooding of

message within a sub-set of DGs.

As a result, multiple semantic clustering overlay networks, known as the Semantic

Community (SeCOM), are formed. SeCOM is formed by grouping a set of DGs that

are registered with context information that has identical membership requirement

features. To join a SeCOM, a DG needs to satisfy the membership requirement of the

specific SeCOM. It is extracted from the meta-context of the registered context. With

SeCOM, we can forward a lookup query only within the SeCOM whose membership

requirement matches the meta-context of the requested context information, and

resolve the query by one of the member DG in the SeCOM.

SeCOM with membership requirement m is modeled as a set of km member DGs, Dm,

where Dm ⊆ D, such that SeCOM Sm = {dm,j | dm,j∈Dm, for j = 1,2,..., km, km ≤ k}. dm,j is

a member of SeCOM Sm, and ∃ dm,j’ where dm,j’ ∈Dm, j’ = 1,2,..., km , j’ ≠ j, such that

linkm (dm,j, dm,j’) is the semantic overlay link between member dm,j and dm,j’ , established

 59

based on membership requirement m. Semantic overlay link is bidirectional, therefore

linkm (dm,j ,dm,j’) = linkm (dm,j’ ,dm,j).

Similar to ONet, we make the following assumption:∀ j’, j, such that j’ ≠ j, j’, j =

1,2,..,km, km ≤ k, we assume pathm (dm,j, dm,j’) always exists, where pathm (dm,j, dm,j’) is

the message forwarding path between dm,j and dm,j’ in SeCOM Sm. Therefore, Sm is a

fully connected graph network.

Figure 15 presents a snippet of the Orion P2P overlay infrastructure. d1 to d6 are the

DGs in ONet. Each of them has at least 2 neighbour DGs, and they are connected via

the ONet overlay link. On top of that, d1, d4 and d6 are the member of SeCOM with

membership m1. Therefore, they form Sm1 and establish semantic overlay link that is

identified by m1. d1 is also the member of Sm2, and a semantic overlay link is set up

between d1 and d3 who is also a member of Sm2.

Figure 15. Six DGs in Orion (d1 to d6) form their own neighbourhood in ONet and
SeCOM, in which the membership requirements include m1, m2 and m3

 60

4.2.1 Meta-context as the Membership Requirement

Meta-context represents the metadata features that identify the locality of interest of

the context information. For all context information, it contains meta-context that

answers these questions - What is the context about? Where and when does the context

take place? Who is the context for? How is the context generated? For example, the

context “John is in Room 1 at noon” contains the following meta-context:

♦ What: Indoor location context

♦ Where: Building A (where Room 1 is located)

♦ When: 12 – 1 pm

♦ Who: John

♦ How: Produced by RFID location tracking system

Orion exploits the semantics in the meta-context as the membership requirement m in

forming SeCOM Sm. Specifically, we observe that a context requester is likely to look

up for context related to specific spaces of interest, such as the context in the “been-to”

and “going-to” spaces. For that reason, Orion adopts geo-location meta-context as the

membership requirement of a SeCOM. Geo-Location meta-context denotes the

geographical location of the smart space where the context information is relevant to,

i.e. the Where factor. Therefore Orion forms a SeCOM by clustering DGs that are

registered with context information relevant to certain geographical area.

To begin with, Orion classifies geo-location meta-context based on the proposed

Hierarchical Location Taxonomy (HLT) defined according to the geographical

location of Singapore. HLT defines areas, districts, and roads segment of Singapore in

hierarchical order based on its granularity level. Figure 16 provides a fragment of the

 61

classification tree. The classification is modeled using OWL Web Ontology Language

[56], such that the hierarchical relationships between the class entities can be

semantically represented and interpreted by the intelligence in the computer.

Figure 16. Hierarchical Location Taxonomy (HLT) based on geographical location in
Singapore. (a) graph representation (b) OWL Ontology definition of HLT

Consequently, the geo-location meta-context in the context information can be

extracted by classifying and mapping the context into one or more concept class in the

HLT ontology. The classification is performed by two functions implemented in a DG:

 62

classifyc (adx, ix, HLT), and classifyq (ly, qy, HLT). The context classification function,

classifyc (adx, ix, HLT), classifies the context information ix and its corresponding

context advertisement adx that are registered by the context provider px. The query

classification function, classifyq (ly, qy, HLT), on the other hand, classifies the context

lookup query ly and the context retrieval query qy that are submitted by the context

requester ry. The result of the classification is the mapping to a concept class in HLT

ontology that matches the geo-location meta-context in the presented context

information or query. The mapping outcome (i.e. the mapped class name in HLT) is

used as the membership requirement m of SeCOM Sm. For example, context “Meeting

is going on in Room3” would be classified into the “BuonaVista” class in HLT,

because Room3 is a meeting room in the Building A, which is located at BuonaVista.

The DG that is registered with this context information will therefore become a

member DG in SBuonaVista.

4.2.2 Join SeCOM

Orion adopts a conservative strategy for a DG to decide when to join a SeCOM.

Whenever a DG is registered with the context advertisement adx and the context

classification function classifyc (adx, null, HLT) returns m1, the DG will decide to join

SeCOM Sm1, given that it is not a member of Sm1. This strategy ensures that whenever

query classification function classifyq (ly, ry, HLT) returns m1, the context lookup

operation is able to locate the appropriate context provider from one of the member

DGs of Sm1.

To join as the member of the SeCOM Sm1, the joining DG djoin, where djoin∈(D \ Dm1)

will require the cooperation from the relay DG drelay and the existing SeCOM member

DG dmem, where drelay∈ (D \ ({djoin} ∪ Dm1)), dmem∈ Dm1. Algorithm 3 outlines the

 63

events taking place in djoin during the SeCOM joining process. The joining process

happens in two phases. The first phase (line 4-7) is to locate at least one dmem using the

Iterative Deepening Search approach described in Algorithm 1 and 2. IDS results in a

list of SeCOM’s member DGs being discovered, and their ID is returned in

MemberID_List. For each located dmem in the list, the request to join as a SeCOM

member is sent over, and linkm1(djoin, dmem) is established when a reply is received (line

9-11). The process ensures that djoin is accepted as a member of Sm1 by establishing

semantic overlay link to at least one of the existing SeCOM members. The

Secom_directory that maintains the SeCOM neighbourhood information in djoin is

updated consequently (line 14). If no member of Sm1 is found in all ωmax search

iteration, djoin will establish Sm1 with itself as the sole member in Sm1.

Algorithm 3. Initiating the Join_SeCOM request by a joining DG djoin who wants
to join as the member of SeCOM Sm1.
1: Input: membership requirement m1
2: Procedure: Init_Join_SeCOM
3: Begin
4: Enumeration MemberID_List  null
5: JoinSecom  Init_Join_Message (m1)
6: ONet_NeighbourList  ONet_Directory()
7: MemberID_List  Init_IDS(JoinSecom, ONet_NeighbourList)
8: If MemberID_List is not empty then
9: For each dmem∈ MemberID_List
10: Send_Join_Secom_Request (dmem)
11: Establish_Secom_Link (linkm1(djoin, dmem))
12: If Secom_Directory is full then
13: Break
14: Update_Secom_Directory(m1);
15: End.

Algorithm 4 is applied for all DGs (i.e. drelay and dmem) that take part in the SeCOM

joining process. When a DG who is not a member of Sm1 receives the JoinSecom

message, it functions as the relay DG drelay that is responsible for forwarding the

JoinSecom message. The IDS process specified in Algorithm 2 takes place (line 6-9).

 64

On the other hand, when the JoinSeCOM message is received by dmem, the joining

request will be processed. The ID of dmem is returned to djoin (line 11-14), and followed

by establishing a semantic overlay link between the two if djoin requests for it (line 15-

17). However, if the joining request is not accepted due to limitation in neighbourhood

size, the JoiningSecom message is forwarded to the neighbours of dmem in SeCOM for

further consideration (line 18-20). By establishing a semantic overlay link to dmem, djoin

is able to participate in the subsequent query forwarding events that take place in Sm1.

Algorithm 4. Handling the Join_SeCOM request by relay DGs drelay
 and SeCOM

member DGs dmem.
1: Input: JoinSecom, h, γ
2: Procedure: Handle_Join_SeCOM
3: Begin
4: If JoinSecom is not duplicate then
5: m1  Get_Mem_Req (JoinSecom)
6: If Not_SeCOM_Member (m1) then
7: ONet_NeighList  ONet_Directory()
8: NonFwdNeighList  Record_Duplicate_Requesting_DG ()
9: Perform_IDS (JoinSecom, h, γ,ONet_NeighList, NonFwdNeighList)
10: Else
11: If Secom_Directory is not full then
12: djoin

  Get_Joining_DG (JoinSecom)
13: MemberID  Get_ID()
14: Reply_Joining_DG (djoin, MemberID)
15: If Receive_Join_Request(djoin) then
16: Establish_Secom_Link (linkm1(dmem, djoin))
17: Update_Secom_Directory(m1)
18: Else
19: For each dsneigh ∈Secom_NeighList  Secom_Directory(m1)
20: Forward (dsneigh, JoinSecom, h, γ)
21: Else
22: Discard (JoinSecom)
23: End.

 65

4.2.3 Leave SeCOM

When a current member DG of Sm1
 no longer maintains any context advertisement

classified as m1, the DG (i.e. dquit, where dquit∈Dm1) needs to leave the SeCOM to

avoid taking part in any message forwarding events in Sm1. Algorithm 5 and 6 are

derived for this purpose.

Algorithm 5 is executed in dquit, such that all neighbours in Sm1 are notified about the

leave. The LeaveSecom message, together with the Sm1 neighbour list, is sent to each

and every SeCOM neighbour of dquit (line 4-6). When the leave request is

acknowledged, the semantic overlay link is disconnected (line 7-8).

Algorithm 5. Launching the Leave_SeCOM request by a leaving DG dleave to
leave SeCOM Sm1.
1: Input: membership requirement m1
2: Procedure: Request_Leave_SeCOM
3: Begin
4: LeaveSecom  Init_Leave_Message (m1)
5: For each dsneigh ∈Secom_NeighList  Secom_Directory(m1)
6: Notify_Leave_Secom (dsneigh , LeaveSecom, Secom_NeighList)
7: Wait_Acknowledgement()
8: Disconnect (linkm1(dquit, dsneigh))
9: End.

Algorithm 6 is executed by the neighbours of dquit in Sm1, i.e. dsneigh, where

dsneigh∈(Dm1 \ {dquit}) . When the LeaveSecom message is received, the leaving process

is acknowledged (line 6) and the semantic overlay link to dquit
 is disconnected as well

(line 7). Line 8-14 is to ensure SeCOM graph connectivity by establishing semantic

overlay link between the neighbours of dquit in Sm1
 (line 8-14).

 66

Algorithm 6. Handling the Leave_SeCOM request by the SeCOM neighbour DG
dsneigh in SeCOM Sm1.
1: Input: LeaveSecom, Secom_NeighList from dquit
2: Procedure: Handle_Leave_SeCOM
3: Begin
4: m1  Get_Mem_Req (LeaveSecom)
5: dquit  Get_Leaving_DG(LeaveSecom)
6: Acknowledge_Leave (dquit)
7: Disconnect (linkm1(dsneigh, dquit))
8: For each dmem∈Secom_NeighList
9: If Not_Secom_Neighbour (dmem) Then
10: Send_Join_Secom_Request (dmem)
11: Establish_Secom_Link (linkm1(dsneigh, dmem))
12: Update_Secom_Directory(m1)
13: If Secom_Directory is full then
14: Break
15: End.

4.3 Supporting Context Discovery Events

With ONet and SeCOM established, the infrastructure is ready to support the two

context discovery events: context publishing event and context lookup event.

4.3.1 Context Publishing Event Support

Context publishing event is the series of actions taken place in Orion in response to the

publishing of context advertisement by a context provider. Algorithm 7 outlines the

activities in the local space DG that handles the context publishing event. Context

provider px executes function publish(dlocal, msgx<adx>) for registering a context

advertisement adx to the local space DG dlocal, where dlocal∈D. First, dlocal interprets

and inserts the adx into local knowledge base (line 5). Then the context classification

function analyzes adx for its associated meta-context, which results in identifying the

relevant membership requirement m1 (line 6). If dlocal is not a member of the identified

SeCOM Sm1, the function Init_Join_SeCOM(m1) (Algorithm 3) is invoked for dlocal.

 67

Algorithm 7. Initiating the context publishing event advertised by context
provider px at the local DG dlocal
1: Input: msgx<adx>
2: Procedure: Context_Publish
3: Begin
4: adx  Get_Advertisement (msgx<adx>)
5: Insert_KB (adx);
6: m1  classifyc (adx, null, HLT)
7: If (Not_SeCOM_Member (m1)) then
8: Init_Join_SeCOM (m1);
9: End.

4.3.2 Context Lookup Event Support

The context lookup event is driven by Algorithm 8 and 9. During the context lookup, a

context requester ry first executes function lookup(dlocal, msgy<ly, qy>) to submit the

lookup and retrieval query to a local space DG, dlocal, where dlocal ∈ D. The

Context_Lookup function in dlocal (Algorithm 8) is performed to resolve the lookup

query. dlocal attempts to resolve the context lookup query ly (line 7), by going through

the matchmaking procedure based on local Advertisement Cache (see Chapter 5).

When the relevant context provider px is available in local space, the context retrieval

query qy is forwarded to px to retrieve the updated context information (line 8-10). On

the other hand, if ly cannot be locally resolved, dlocal will need to search for the

appropriate remote space DG (i.e. dremote, where dremote ∈ (Dm1 \ {dlocal})) that is

registered with the searching context. Depending on whether dlocal is a member of Sm1

(m1 being the membership requirement that ly is classified into), dlocal initiates the

search in either ONet or SeCOM Sm1(line 12-17). The Init_IDS function derived from

Algorithm 1 is invoked to perform the search for dremote (line 17). Once dremote is found,

a shortcut link can be established between dremote and dlocal in order to facilitate the

retrieval of context information from the discovered context provider that is resides in

the remote smart space (line 18-21).

 68

Algorithm 8. Initiating the context lookup event submitted by context provider px
at the local space DG dlocal
1: Input: msgy<ly, qy>
2: Output: the context information ix
3: Procedure: Context_Lookup
4: Begin
5: ly  Get_Context_Lookup_Query (msgy<ly, qy>)
6: qy  Get_Context_Retrieval_Query (msgy<ly, qy>)
7: idx  Resolve (ly);
8: If idx is not null then
9: Forward (idx, qy)
10: ix  Wait_Provider_Reply()
11: Else
12: m1  classifyq (ly, qy, HLT);
13: If Not_SeCOM_Member (m1) then
14: NeighbourList  ONet_Directory()
15: Else
16: NeighbourList  Secom_Directory(m1)
17: dremote  Init_IDS (msgy<ly, qy>, NeighbourList)
18: If dremote is not null then
19: If linko(dlocal, dremote) does not exists then
20: Create_Shortcut_Link (linko(dlocal, dremote))
21: ix  Receive_Context(dremote)
22: Else
23: ix  null
24: Return ix
25: End.

Algorithm 9 is executed by DGs that perform the IDS message relay (i.e. drelay, where

drelay∈(D \ ({dlocal} ∪ Dm1))), as well as by the remote space DG that can resolve the

query (i.e. dremote). A drelay in ONet would execute line 10-12 to relay the query

message to its ONet neighbour based on Algorithm 2. When the query message

reaches Sm1, the member DG would attempt to resolve the query (line 14). If the query

cannot be resolved, IDS is performed within SeCOM (line 22-24). When the query

message finally reaches dremote, the matchmaking procedure would have resolved ly,

and qy is subsequently forwarded to the discovered context provider px for retrieval of

the updated context information ix (line 14-17). ix is sent back to dlocal via the shortcut

link established between them (line 18-20).

 69

Algorithm 9. Performing the context lookup event initiated by local DG dlocal at the
remote DG dremote and the relay DG drelay
1: Input: msgy<ly, qy>, h, γ
2: Output: Reply dlocal with the located context information ix
3: Procedure: Remote_Context_Lookup
4: Begin
5. If msgy<ly, qy> is not duplicate then
6: ly  Get_Context_Lookup_Query (msgy<ly, qy>)
7: qy  Get_Context_Retrieval_Query (msgy<ly, qy>)
8: m1  classifyq (ly, qy, HLT)
9: If (Not_SeCOM_Member(m1)) then
10: NeighbourList  ONet_Directory()
11: NonFwdNeighList  Record_Duplicate_Requesting_DG()
12: Perform_IDS (msgy<ly, qy>, h, γ, NeighbourList, NonFwdNeighList)
13: Else
14: idx  Resolve (ly);
15: If idx is not null then
16: Forward (idx, qy)
17: ix  Wait_Provider_Reply()
18: If link0(dremote, dlocal) does not exists then
19: Create_Shortcut_Link (linko(dremote, dlocal))
20: Forward (dlocal, ix)
21: Else
22: NeighbourList  Secom_Directory(m1)
23: NonFwdNeighList  Record_Duplicate_Requesting_DG()
24: Perform_IDS (msgy<ly, qy>, h, γ, NeighbourList, NonFwdNeighList)
25: Else
26: Discard (msgy<ly, qy>)
27: End.

4.4 Evaluation

We analyze the scalability issue of the Orion network infrastructure in terms of its

query response efficiency and message communication cost. We would like to

evaluate the effect of deploying SeCOM of variable sizes in reducing message

redundancy. The analysis is carried out based on the results from simulations.

4.4.1 Evaluation Objectives

In this evaluation, we are interested in answering the following questions:

 70

♦ What is the query response efficiency under different network sizes (of both

ONet and SeCOM) and different operation parameters?

♦ What is the impact of introducing SeCOM on reducing redundant message

processing?

♦ What is the effect on system performance when the overlay network topology

changes?

The simulation results are studied and analyzed in two aspects. The query response

efficiency shows the hop count required for completing a query under various network

conditions and topology settings. The message communication cost studies the effect

of SeCOM in reducing the redundant processing in each DG and improving the

message efficiency. Message efficiency is the ratio of the message coverage and

number of forwarded message in each hop. It reflects the message and process

redundancy incurred when forwarding a message to the neighbour peers. We compare

the results against the performance of Gnutella P2P searching mechanism, one of the

most widely adopted techniques in current P2P file sharing applications, such as Kazaa

and Bit Torrent.

4.4.2 Simulation Methodology

4.4.2.1 Simulator

The Orion simulation platform was developed using the Peersim P2P Simulator16.

Peersim is an open-source component-based Discrete Event Simulator (DES) for

simulating P2P network and application. The development framework was written in

Java programming language.

16 http://peersim.sourceforge.net

 71

4.4.2.2 ONet Topology

Based on [43] and [71], a Gnutella-like unstructured-based P2P network exhibits a

power-law distribution. Therefore, in the simulation, the ONet topology follows the

power law distribution. In Power Law network, most nodes have only a few out links

and a tiny number of nodes have a large number of out links, i.e. graph metrics follow

the distribution αxy ∝ [32].

The Power-Law Out-Degree Algorithm (PLOD) [72] is implemented to generate a

graph of DG nodes that obeys power-law. In step 1 of PLOD, each DG is assigned a

neighbourhood size, based on the distribution αβ −= xn , where n is the neighbourhood

size (i.e. node outdegree) and x is a random number picked from uniformly distributed

range [1, k] (k is the total number of simulated DGs in ONet). Parameter β and α

shape the distribution of average neighbourhood size, where the value of α can

influence the mean out-degree of each node, while the value of β can shape the curve

of the out-degree exponential distribution [32]. Two ONet topologies are used in the

simulation process, and the topology parameters are tabulated in Table 1. As k

increases, the values of β and α in each topology are adjusted so that the

neighbourhood size distribution remains unchanged despite changes in the network

size. The values in Table 1 were obtained through experiment.

The step 2 of PLOD is to establish links between the DGs. First, all DGs with no

connected neighbours are placed in the “unconnected” set. Subsequently, the DGs with

at least one connected neighbour are placed in the “connected” set. Two DGs, one

from each set, are picked randomly and a link between them is formed if neither

reaches the outdegree limit. Eventually, when the “unconnected” set is empty, two

 72

DGs from the “connected” set are chosen instead. The DGs that reach the outdegree

limit are removed from the “connected” set. This iterative process ends when all DGs

are connected up to the neighbourhood size allocated in step 1. As a result of this

iterative process, the established ONet is a fully connected graph which obeys the

Power Law.

Table 1. Parameters used in generating the two ONet topologies

Network size
(k)

β α Average outdegree
(n)

Max n
(nmax)

Min n
(nmin)

Topology 1

10000 40 0.29 3.3283 25 2
25000 34 0.245 3.284 26 2
50000 28 0.208 3.303 26 2
75000 28 0.2 3.305 25 2
100000 26 0.19 3.256 26 2
125000 26 0.185 3.251 24 2
150000 24 0.175 3.258 24 2

Topology 2

10000 30 0.2 5.278 23 4
25000 28 0.175 5.258 24 4
50000 26 0.155 5.267 26 4
75000 26 0.149 5.268 23 4
100000 24 0.138 5.223 24 4
125000 24 0.135 5.245 22 4
150000 24 0.133 5.223 24 4

4.4.2.3 SeCOM Topology

A single SeCOM is established in the simulation process. The number of member DGs

in the SeCOM is θ % of the total number of DGs in ONet (i.e. SeCOM size

ks = k Xθ %). These SeCOM members are randomly chosen among the DGs in ONet.

The SeCOM topology is established using step 2 of PLOD, based on the maximum

outdegree assigned for each DGs when establishing the ONet. In the simulation, we

 73

use θ =0% to denote an ONet without any SeCOM, which resembles the pure

flooding-based unstructured P2P network such as the Gnutella.

4.4.2.4 Simulation Process

The resource searching operation in Orion is simulated under different ONet size k,

different SeCOM size ks, and different ONet topology (i.e. topology 1 and topology 2

under different β and α values (see Table 1)). In every operation, a lookup object is

placed in a randomly picked SeCOM node (i.e. the “destination DG”), and a random

node in ONet is selected as the query node that would initiate a lookup event (i.e. the

“sender DG”). The searching process follows the message forwarding strategies

presented in Algorithm 1, 2, 8 and 9. A deepening policy ρ = {1, 10, 3} was used in

the simulation, which indicates that a single hop for each depth range, a maximum of

10 search iterations are made, and 3 simulation cycles of waiting time in each iteration.

The deepening policy is resetted when the search proceeds with flooding within the

SeCOM. Various performance metrics, such as the traversal path of message, message

duplication count, new node discovery count, etc, are recorded by all participating

nodes and by the query message in each simulation cycle.

In the simulation, we assume fixed P2P network topology, which is a gross simplified

assumption. However, if one assumes that the time to complete a search is short

compared to the time and frequency of change in the network topology (i.e. node

joining and leaving), the results obtained using these settings are still reflective of

performance in real systems.

4.4.2.5 Performance Metrics

3 performance metrics are used in the evaluation:

 74

♦ Hop count (htotal) is the number of DG-to-DG links a query has to traverse

before it reaches the destination DG. Due to the fact that each link is

established between neighbour DGs with the shortest RTT, hop count has

direct proportional relation with the query response time. Two types of hop

count were measured: hop count in ONet (honet) and hop count in SeCOM

(hsecom). honet is the hop count for the query to travel from sender DG to one of

the nearest member DG of the SeCOM. hsecom is the path length the query

takes to traverse SeCOM before it reaches the destination DG. Clearly, we

have htotal = honet + hsecom.

♦ Message coverage in hop i is the number of first-time-visiting node that is

reached when the query is forwarded from hop (i – 1) to i. Message coverage

in hop 1 is therefore equal to neighbourhood size n of the sender DG. At any

other relay nodes, message coverage is less than or equal to (n - 1).

♦ Message count in hop i is the total number of message being duplicated when

the message is forwarded from hop (i – 1) to i.

♦ Visited node count is the total number of nodes that has been involved in

forwarding the query message at least once before it reaches the destination

DG.

4.4.4 Result Analysis

4.4.4.1 Query Response Efficiency

Query response is a measure of the efficiency with which Orion is able to resolve a

lookup query. It is defined to be the time taken for a query to be resolved and sent

 75

back to the requester. In the simulation, the hop count that a query takes to reach the

destination DG (htotal) reflects the query response efficiency of Orion.

Figure 17 and Figure 18 shows the query response in terms of htotal when operating in

topology 1 and topology 2 respectively. The flooding-based search mechanism results

in the linear increment of htotal as the network size k increases. It is obvious that htotal in

topology 1 is generally larger than that in topology 2. This is because the average

outdegree of each DG in topology 1 is small in average when compared to DGs in

topology 2. Consequently, in order to accommodate the growth in network diameter,

the hop count increases. Similarly, this also explains the much lower linear increment

rate in topology 2 compared to topology 1.

When varying the SeCOM size ks, it is observed that the smaller theθ , the shorter the

htotal. With a small SeCOM size of about θ =1% in topology 1, htotal is shorter by 8% to

27% when k increases from 10000 to 150000. The reduction in hop count, however, is

only 6% -14% for topology 2 under similar condition. As ks increases, the hop count

reduction becomes minimal, especially for topology 2.

 76

Hop count to reach destination DG vs Network size (n=3.2)

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000 120000 140000 160000
network size

ho
p

co
un

t

θ=0%

θ=1%
θ=10%

θ=50%

Figure 17. Query response (hop count to reach destination DG) in topology 1

Hop count to reach destination DG vs Network size (n=5.2)

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000 120000 140000 160000
network size

ho
p

co
un

t

θ=0%
θ=1%
θ=10%
θ=50%

Figure 18. Query response (hop count to reach destination DG) in topology 2

We further analyze htotal by separating the hop count into honet and hsecom, i.e. hop count

when the query has to travel from sender DG to one of the nearest SeCOM’s member

 77

DGs, and hop count when the query traverses SeCOM to reach the destination DGs

respectively. It can be observed from Figure 19, Figure 20 and Figure 21 that as θ

rises from 1% to 50%, honet reduces while hsecom increases. This phenomenon applies to

both topology settings. This is especially true when θ is at 50% value, during which a

great portion of htotal is actually contributed by the traversal in SeCOM itself.

Interestingly, the value of honet is small in general for all the three SeCOM sizes. Since

SeCOM is just another ONet-like overlay network with less number of nodes, the

values of hsecom at any θ value are also less than htotal of ONet at θ = 0%. The

cumulative effect results in the reduction of htotal when SeCOM is deployed.

hop count breakdown (k=10000)

0

2

4

6

8

10

12

14

16

θ=0%
n=3.2

θ=0%
n=5.2

θ=1%
n=3.2

θ=1%
n=5.2

θ=10%
n=3.2

θ=10%
n=5.2

θ=50%
n=3.2

θ=50%
n=5.2

secom size, neighbourhood size

ho
p

co
un

t

hop (SeCOM)
hop (ONet)

Figure 19. Hop count breakdown analysis for k = 10000

 78

hop count breakdown (k=75000)

0

2

4

6

8

10

12

14

16

θ=0%
n=3.2

θ=0%
n=5.2

θ=1%
n=3.2

θ=1%
n=5.2

θ=10%
n=3.2

θ=10%
n=5.2

θ=50%
n=3.2

θ=50%
n=5.2

secom size, neighbourhood size

ho
p

co
un

t

hop (SeCOM)
hop (ONet)

Figure 20. Hop count breakdown analysis for k = 75000

hop count breakdown (k=150000)

0

2

4

6

8

10

12

14

16

θ=0%
n=3.2

θ=0%
n=5.2

θ=1%
n=3.2

θ=1%
n=5.2

θ=10%
n=3.2

θ=10%
n=5.2

θ=50%
n=3.2

θ=50%
n=5.2

secom size, neighbourhood size

ho
p

co
un

t

hop (SeCOM)
hop (ONet)

Figure 21. Hop count breakdown analysis for k=150000

 79

4.4.4.2 Message Communication Cost

Message communication cost is the communication overhead incurred as a result of

performing search in Orion. It can be measured and analyzed in various dimensions.

Here, we only emphasize the effect of SeCOM in reducing message redundancy in

ONet.

An unstructured-based P2P network, such as ONet with θ = 0%, will encounter great

message redundancy when performing flooding-based search. As shown in Figure 22,

in order to forward the query message to the destination DG in a ONet of topology 1

with θ =0%, more than 80% of DG peers are involved in relaying the query message

at least once. The number of DG peers involved rises to 90% when the forwarding

takes place in ONet of topology 2 with θ =0%(see Figure 23). Furthermore, duplicated

messages can visit the same DG for more than once throughout the flooding process.

Percentage of Visited Node per query VS Network size (n=3.2)

0

10

20

30

40

50

60

70

80

90

100

0 20000 40000 60000 80000 100000 120000 140000 160000
network size

pe
rc

en
ta

ge
 o

f v
is

ite
d

no
de

 p
er

 q
ue

ry

0% 1% 10% 50%

Figure 22. Number of visited nodes per query in topology 1 at θ = 0%, 1%, 10%, 50%

 80

Percentage of Visited Node per query VS Network size (n=5.2)

0

10

20

30

40

50

60

70

80

90

100

0 20000 40000 60000 80000 100000 120000 140000 160000
network size

Pe
rc

en
ta

ge
 o

f V
is

ite
d

N
od

e
pe

r q
ue

ry
0% 1% 10% 50%

Figure 23. Number of visited nodes per query in topology 2 at θ = 0%, 1%, 10%, 50%

By introducing SeCOM of variable sizes in Orion, we see a sharp decrease in the

number of nodes being visited in both topologies. For example, the deployment of a

small SeCOM with θ = 1% can reduce the number of visited DGs to a mere 1% and

2% of k for topology 1 and topology 2 respectively. This is because members of the

SeCOM can be located with minimal honet of about 3 to 4 hop counts. Furthermore, the

subsequent flooding within the SeCOM only involves the member DGs that sum up to

at most 1% of the total populations. As concluded in [41], the majority of redundant

messages are produced by nodes that are placed further away (in terms of number of

hops) from the sender node. Therefore, by ensuring that the member nodes of a

SeCOM can be discovered within several hops, as well ensuring that flooding in ONet

does not happen beyond honet by the use of IDS, the percentage of nodes being visited

in the search process can be greatly reduced. The results also show that, for a medium

(θ = 10%) and large (θ = 50%) scale SeCOM, the percentage of visited node can

 81

drop to within 8%-11% and 30%-40% respectively. This implies that the smaller the

SeCOM size (i.e. smallθ value), the greater the reduction in redundant processing.

Furthermore, the message efficiency at various SeCOM sizes is analyzed. Message

efficiency is measured as the ratio of the message coverage and number of forwarded

message. It reflects the overhead produced by redundant messages in each forwarding

hop in the flooding process. The message efficiency at various stages of the flooding

process is shown in Figure 24, Figure 25, Figure 26, and Figure 27. Generally, ONet

with topology 1 enjoys greater message efficiency in all stages of the flooding process

when compared to ONet with topology 2. DGs in ONet with topology 2 have larger

outdegree in average. This implies that, whenever a message is to be forwarded to the

neighbours, more messages are to be duplicated, and the probability of forwarding the

message to a neighbour DG who has been visited before via another path is therefore

higher. The cumulative effect is a drop in message efficiency in topology 2.

If we observe the message efficiency rate in SeCOM of various sizes, we can conclude

that the smaller the SeCOM size, the better the message efficiency is at different stages

of the flooding process. For SeCOM of θ = 1%, message efficiency rate stays higher

than 80% for at least the first 65% of the forwarding hop. The query message enters

the SeCOM of θ =1% in about hop 3 to hop 4, and the subsequent flooding process in

the SeCOM ensures the message efficiency remains high. This explains the sudden

spike observed in all four figures for message efficiency in SeCOM of θ =1%. As for

SeCOM of θ =10% and θ =50%, the message efficiency at each stage of the flooding

process is observed to be higher than that in pure flooding search without SeCOM.

However, the extra gain in message efficiency for such medium to large SeCOM is

insignificant when compared to the gain obtained in smaller SeCOM of size θ <10%.

 82

Message Efficiency VS Hops (k=10000 n=3.2)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9
Hops

M
es

sa
ge

 E
ffi

ci
en

cy
 (%

)

θ=0%
θ=1%
θ=10%
θ=50%

Figure 24. Message Efficiency in topology 1 with k=10000 at various θ values

Message Efficiency VS Hops (k=10000 n=5.2)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9
Hops

M
es

sa
ge

 E
ffi

ci
en

cy
 (%

)

θ=0%
θ=1%
θ=10%
θ=50%

Figure 25. Message Efficiency in topology 2 with k=10000 at various θ values

 83

Message Efficiency VS Hops (k=150000 n=3.2)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Hops

M
es

sa
ge

 E
ffi

ci
en

cy
 (%

)
θ=0%
θ=1%
θ=10%
θ=50%

Figure 26. Message Efficiency in topology 1 with k=150000 at various θ values

Message Efficiency VS Hops (k=150000 n=5.2)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Hops

M
es

sa
ge

 E
ffi

ci
en

cy
 (%

)

θ=0%
θ=1%
θ=10%
θ=50%

Figure 27. Message Efficiency in topology 2 with k=150000 at various θ values

 84

4.4.4.3 Discussion

The experimental results have quantified the performance of the proposed heuristic to

improve the scalability of Orion in more detail. In general, the existence of SeCOM of

variable sizes can reduce the hop count to reach the destination DG. The reduction is

more drastic when the SeCOM size is smaller. However, it is clear that the

maintenance overhead of a smaller-sized SeCOM can be high. So, there is a need to

strike a balance between the hop count to reach the destination DG and the SeCOM

maintenance overhead.

The motivation for introducing SeCOM in Orion is to reduce message redundancy.

The series of analysis clearly showed, with SeCOM, only a small number of DGs

needs to participate in the message forwarding process, as compared to more than 80%

of participating DGs in Orion without SeCOM. SeCOM, in particular SeCOM of size

θ < 10%, can also maintain high message efficiency. High message efficiency means

that in each forwarding hop, the messages are more likely to reach a DG that has not

been visited before. Therefore, it is less likely for a DG to process the duplicated

messages multiple times if message efficiency remains high for most part of the

forwarding process.

The series of analysis also shows that SeCOM size should be kept small in order to

maximize the benefit of deploying SeCOM. Although the size of SeCOM depends on

the availability of context information and cannot be easily controlled otherwise, we

may carefully design the membership classification function (i.e. the context

classification function and query classification function) in order that popular context

information can be classified at higher granularity. However, the overhead incurred

due to maintaining small-size SeCOM should also be considered in the process.

 85

Finally, the analysis results for both topologies show similar trend in most

experimental cases. This is encouraging because it shows the robustness of the P2P-

based architecture, which is able to give similar performance even if the underlying

topology changes. When comparing the two topologies, it is obvious that topology 2

(with average outdegree n = 5.2) enjoys up to 45% less hop count in trying to reach the

destination DG, at the expense of 5%-12% more DGs participating in the relay of

query messages, as well as decreasing message efficiency at each hop level

Some parameter considerations are omitted in this simulation, such as nodes coming

into and leaving the network, latency for each link, processing load on each node, etc.

Furthermore, the DGs in each smart space will be connected at different bandwidths

from low to high during actual deployment. However, the absolute numbers that we

observe in these simulation results can be used to reflect and compare the tradeoffs

between different parameters and different approaches. It helps us to understand the

fundamental properties of the various techniques we apply in Orion.

4.5 Chapter Summary

The distributed DGs in Orion can self-organize into an unstructured-based P2P

message routing overlay network. Various techniques, such as Iterative Deepening

Search (IDS) and Semantic Community (SeCOM), are incorporated for the main

purpose of reducing message redundancy when performing context discovery

operations using the flooding-based search mechanism. Algorithms were derived to

carry out the various network operations in Orion, such as the forwarding of messages

through IDS, joining and leaving of SeCOM, and search operations for supporting the

context lookup events. Through simulations, the various performance metrics of the

Orion P2P network are evaluated.

 86

CHAPTER 5 MATCHMAKING IN ORION

In context discovery process, a context provider announces its existence by putting up

a context advertisement. On the other hand, a context requester specifies the discovery

requirements in a context lookup query during the searching of the appropriate context

providers. A match between the advertisement and the query will result in the

matchmaking between the context requester and the relevant context provider. In this

chapter, we look into the ontological representation model for context advertisement,

as well as the semantic matching technique derived for the matchmaking process.

5.1 What is Matchmaking?

Matchmaking is the process in which a party is put in contract with potential

counterparts [65]. The matchmaking process acts on the match of interest that is

required by one party and provided by another. Matchmaking in Orion introduces a

context requester to the appropriate context provider during the context lookup

operations.

Figure 28 gives an overview of the matchmaking process. In a context provider, the set

of context information Ix, that it can provide is stored and maintained in a knowledge

base known as the context knowledge base. The existence of the provider and the Ix it

provides can be made publicly known through the announcement of the context

advertisement adx. adx is a meta-context abstraction and other relevant attributes of the

context information set a context provider can provide. On the other hand, a context

requester prepares two types of queries. The first one is the context retrieval query qy

for querying the information set in the context knowledgebBase of the relevant context

provider. The second query type is the context lookup query ly that delineates the

 87

matching criteria that can be extracted from qy, such as meta-context categories and

context quality requirements, which must be matched in the process of discovering the

appropriate context provider.

Figure 28. Matchmaking between context requester and context provider

In Orion, the context discovery function, fd : ly X AD Æ idx, where AD U
m

x 1=
⊆ adx,

handles the matching of ly against a set of registered adx. Each and every Discovery

Gateway (DG) executes fd based on its own set of registered advertisement localized to

its residing smart space. The outcome is the identity, idx, of a suitable context provider,

based on its semantic similarities to the lookup requirements. To properly execute fd,

we first need to properly represent the context information. Then, based on the

representation model, matching techniques can be applied. These two elements,

context representation and matching techniques, constitute the elements of a

successful matchmaking process.

5.1.1 Element 1 – Context Representation

In context-aware computing, various context models are proposed in order to represent

the wide spectrum of context information in smart spaces and to facilitate context

 88

sharing and interoperability among heterogeneous context resources. Strang and

Linnhoff-Popien classified context modeling approaches into the following 6

categories: Key-Value Model, Markup Scheme Model, Graphical Model, Object

Oriented Model, Logic Based Model, and Ontology Based Model [73].

In Orion, ontology based modeling technique is adopted for its well-known

capabilities in expressive representation, logic inference, as well as knowledge sharing

and reuse. The term ontology in Computer Science refers to the formal, explicit

description of concepts, which are often conceived as a set of classes, relations,

instances, functions and axioms [55]. The use of ontology enables the heterogeneous

context resources to communicate and exchange information. Shared ontology defines

a common understanding of specific terms, and this make it possible to communicate

between systems on a semantic level.

The Context Advertisement Ontology (CoAO) is developed for modeling context

advertisement. We use the W3C’s recommendation for Semantic Web ontology

language, Web Ontology Language (OWL) [56], for building CoAO. OWL offers

expressive vocabulary for annotating the semantics of a contextual entity and its

properties, as well as relationships with other entities. For example, properties of a

class is described using either owl:DatatypeProperty for specifying string lateral

and numeric value, or owl:ObjectProperty for relating to other ontology instances.

OWL also has a semantic equivalence to description logics, which allows for

consistency checking and contextual reasoning using inference engine developed for

description logics.

 89

5.1.2 Element 2 – Matching Techniques

With context advertisement properly described using ontological representation

vocabularies, matching between lookup query and advertisement set is carried out

using ontology-based semantic matching techniques. Semantic matching matches the

concepts represented in the ontology, rather than mere string matching based on

similarity in syntactic label. Semantic matching is important in ad-hoc environments,

such as smart spaces, for interoperating the spontaneous and heterogeneous resources

without a prior knowledge about each other.

Trastour et al. define the semantic matching algorithm for determining whether there

is a match between two concepts C1 and C2 while performing matchmaking in

ontology-based service description [65]. The algorithm concludes that “C1 matches

C2” if:

♦ C1 is equivalent to C2, or

♦ C1 is a sub-concept of C2, or

♦ C1 is a super-concept of a concept subsumed by C2, or

♦ C1 is a sub-concept of a direct super-concept of C2 whose intersection with

C2 is satisfiable

Ranganathan et al. enhance the algorithm by associating certain similarity-level in

ascending order for the 4 matching criteria, such that the search result can be

efficiently filtered based on different similarity-level requirements [74].

By adapting the concept matching algorithm, together with the concept ontology

defined in the CoAO, we propose a set of matching rules that decides what constitutes

 90

a match between a lookup query and the “relevant” advertisement description. The

outcome is a successful discovery of an appropriate context provider.

5.2 Representation Model

5.2.1 Context Advertisement

The vocabularies that compose a context advertisement are defined in the ontological

advertisement template, known as the Context Advertisement Ontology (CoAO). Each

advertisement announced by a context provider is an instance of the CoAO that

outlines the profile of the provider, types of context information generated, ways of

retrieving the information and choices of quality preferences for accurate matching.

The 5 main classes in CoAO that model such advertisement attributes include

ContextProvider, ProviderProfile, ContextDomain, ContextQuality and AccessModel.

Figure 29 presents a graph representation that shows a snippet of the CoAO. The

complete CoAO definition in OWL representation is available in Appendix A.

Figure 29. Graph representation showing fragment of Context Advertisement
Ontology (CoAO)

 91

A brief description of the 5 main classes is given next:

♦ ContextProvider – This class conceptualizes a context provider instance.

The associated class properties include various identification attributes, as

well as the locality of the residing space. Context provider identification is a

uniquely assigned URN17 using the Orion namespace.

♦ ProviderProfile – This class abstracts several possible types of context

provider categories available in smart spaces. Subclasses SensorProfile and

SoftwareProfile represent hardware-based provider and software-based

provider respectively. Each subclass is associated with profile characteristic

properties. For example, characteristic properties of the SensorProfile include

physical location, sensor type, firmware version, etc.

♦ ContextDomain - ContextDomain class outlines the type and classification of

the provided context information. The Upper Level Context Ontology (ULCO)

defined in the Context Ontology model proposed in [9] is adopted in defining

the hierarchical class relations in the ContextDomain class. ULCO is the

common ontology for context information across different smart spaces,

specifying three classes of real-world context (user, location, and computing

entity) and one class of conceptual context (activity) [9]. ULCO can be

suitably extended with class and property inheritance to customize the context

requirements of every different smart spaces.

♦ ContextQuality – ContextQuality captures nonfunctional attributes that

explains the context information quality preferences, such as correctness

probability, provider capacity and communication cost. It links to the

17 Refer to RFC2141: URN Syntax

 92

Resolution class to denote the granularity of information, such as the

measurement unit and value precision, and also the Validity class to answer

the availability duration and updating frequency of the information. Context

requesters express quality preferences in their lookup query to assist in the

production of accurate matchmaking.

♦ AccessModel – This class describes the protocols used for establishing

communication upon successful lookup. The AccessMethod subclass specifies

communication protocol (e.g. HTTP, SOAP, etc) and port number to

communicate with the context provider. The AccessModel also relates to the

Policy class, which defines criteria for access rights based on privacy and trust

considerations.

The CoAO presents an advertisement template that allows a context provider to

advertise various meta-contexts that best describe the context it provides. As an

illustration, Figure 30 shows an example context advertisement published by a road

traffic monitoring system that monitors the road activity context in the Clementi

district (i.e. <spaceLocation rdf:resource=”&hlt;Clementi”/>). From the

published advertisement, it is clear that the monitoring system has a sensor-based

profile with sampling rate of 60 seconds. The current set of context information is

valid from 8:15am onwards for a duration of 600 seconds, and the correctness

probability is 0.97. Finally, to retrieve the updated context information, the monitoring

system can be accessed via HTTP communication channel with the URI

“http://road.ex.org:19800”.

 93

<rdf:RDF
 …
 xmlns:htl=”http://.../HierarchicalLocationTaxonomy#”
 xmlns:ulco=”http://.../SemanticSpace/ulco#”
 xmlns=”http://.../Orion/coao#” >
 …
 <ContextProvider rdf:ID=”ClementiTrafficMonitor”>
 <providerID> urn:orion:xxxxxxxxxxxxx </providerID>
 <spaceLocation rdf:resource=”&hlt;Clementi "/>
 <hasProfile rdf:resource=”#SP” />
 <provides rdf:resource=”#context”/>
 <accessModel rdf:resource=”#aModel”/>
 </ContextProvider>

 <SensorProfile rdf:ID=”SP”>
 <samplingRate> 10.0 </samplingRate>
 <samplingUnit rdf:resource=”#Second” />
 …
 </SensorProfile>

 <Context rdf:ID=”context”>
 <hasDomain rdf:resource=”#roadActivity”/>
 <hasQuality rdf:resource=”#quality”/>
 </Context>

 <RoadActivity rdf:ID=”roadActivity”/>

 <ContextQuality rdf:ID=”quality”>
 <correctness> 0.97 </correctness>
 …
 <valid rdf:resource=”#validity”/>
 </ContextQuality>

 <Validity rdf:ID=”validity”>
 <validFrom>2005-06-09T08:15:59</validFrom>
 <validPeriod>600</validPeriod>
 </Validity>

 <AccessModel rdf:ID=”aModel”>
 <accessMethod rdf:resource=”#aMethod”/>
 </AccessModel>

 <HTTPAccess rdf:ID=”aMethod”>
 <Protocol>HTTP</Protocol>
 <HTTPURL>http://road.ex.org </HTTPURL>
 <PortNumber> 19800 </PortNumber>
 </AccessMethod>
 …

</rdf:RDF>

Figure 30. Context advertisement (XML representation) published by a road traffic
monitoring system in Clementi district

5.2.2 Context Lookup Query

The context advertisement OWL description is maintained in the Advertisement Cache

of the local space DG as a set of RDF context triples, i.e. (subject, predicate,

 94

object) triple. Each triple outlines the relational property (i.e. predicate) of a

resource (i.e. subject) with an object that can be either another resource or a certain

value. Using the context advertisement in Figure 30 as an example, the triple set in the

Advertisement Cache that the advertisement is registered with would contain the

context triples shown below:

...
(‘ClementiTrafficMonitor’, rdf:type, coao:ContextProvider),
(‘ClementiTrafficMonitor’, coao:providerID, urn:orion:xxxxxxxx),
(‘ClementiTrafficMonitor’, coao:spaceLocation, hlt:Clementi),
(‘ClementiTrafficMonitor’, coao:hasProfile, ‘SP’),
(‘SP’, rdf:type, coao:SensorProfile),
(‘SP’, coao:samplingRate, 10)
(‘SP’, coao:samplingUnit, coao:Second)
...

As a result, the context lookup query can make use of the triple pattern query

specification in a RDQL query language. RDQL (RDF Data Query Language) [69] is

the de facto reference implementation of RDF query language. It is a SQL-styled

query statement used to extract triple information from a RDF graph (i.e RDF triple set)

based on a list of triple patterns. Each triple pattern consists of named variables and

RDF values (i.e. URIs or literals). For example, matching of triple pattern “... (?x,

rdf:type, ns:User),(?x, ns:hasName, ‘Bob’)...” with the triple set in

Advertisement Cache will result in the variable ?x to get the return value of all

matching entity of type ns:User that has the attribute name “Bob”. Additional set of

constraints can be specified to limit the value range and type of the variables. The

detailed grammar of RDQL is listed in Appendix B.

Context lookup query is built upon the RDQL query language to allow context

requester to specify the criteria for a match in terms of triple pattern with one or more

named variables. Figure 31 shows a self-explanatory context lookup query that is used

to search for a road traffic monitoring system that observes the traffic condition in

 95

Clementi (refer to example in Figure 30 for the relevant context advertisement). The

query outcomes ?id, ?x and ?y are respectively the context provider identification,

access URL and port of the matching context provider respectively. Reasoning

technique is applied to deduce implicit relations before the pattern matching begins.

For example <coao:validUntil> can be deduced from <coao:validFrom> and

<coao:validPeriod>. The rules for matchmaking decision will be further elaborated in

the next section.

 SELECT ?id ?x ?y
 WHERE
 (?p, <rdf:type>, <coao:ContextProvider>),
 (?p, <coao:providerID>, ?id),
 (?p, <coao:spaceLocation>, <hlt:Clementi>),
 (?p, <coao:hasProfile>, ?profile),
 (?profile, <rdf:type>, <coao:SensorProfile>),
 (?p, <coao:provides>, ?context),
 (?context, <coao:hasDomain >, ?domain),
 (?domain, <rdf:type>, <coao:RoadActivity>),
 (?context, <coao:hasQuality>, ?quality),
 (?quality, <coao:validUntil>, ?t),
 (?p, <coao:hasAccessURL>, ?x),
 (?p, <coao:hasAccessPort>, ?y)
 AND
 (t > 2004-06-09T08:20:00)
 && (t < 2004-06-09T08:2 5:00)
 USING
 coao FOR <http://.../Orion/coao#>
 hlt FOR <http://.../HierarchicalLocationTaxonomy#>
 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#">

Figure 31. Context lookup query for discovering context provider that provides road
traffic condition context in Clementi

5.3 Semantic Matching

Semantic matching ensures the successful matching of concepts between the context

lookup query and the relevant context advertisement. Such process fits into the notion

of semantic discovery for pervasive computing entities as described in [75] and [74],

where the semantic discovery process is classified into three phases:

 96

1. Discovery of all suitable classes that match a query

2. Discovery of all the entity instances of these classes

3. Filtering the instances to match the exact query

The 3-phase semantic discovery process resembles the matching procedure when

querying over the semantics similarities of the ontological description. We therefore

adapt the algorithm into a two-step semantic matching procedure in Orion. Step 1

encompasses the phase 1 and phase 2 of the semantic discovery. It identifies and

selects the relevant subset of context advertisement triples in the Advertisement Cache

which matches the context domain requirement specified in the triple pattern. And, in

Step 2, the most appropriate context provider, among those context providers found in

the previous step, is chosen based on various selection heuristic.

To illustrate the two-step semantic matching procedure, we consider an Advertisement

Cache (AC) registered with X context advertisements. By assuming a context provider

to publish only a single context advertisement to local space DG, the AC would have

X instances of ContextProvider class. We therefore expect X subset of triple groups

available in the AC, with each triple group containing an instance of a

ContextProvider class and its associated set of context advertisement triples (see

Figure 32).

We describe the two-step semantic matching procedure in the following sections.

 97

(‘CP1’, rdf:type, coao:ContextProvider),
 (‘CP1’, coao:hasProfile, ...),
 (‘CP1’, coao:describes, ...),
 ...

(‘CP2’, rdf:type, coao:ContextProvider),
 (‘CP2’, coao:hasProfile, ...),
 (‘CP2’, coao:describes, ...),
 ...

(‘CPX’, rdf:type, coao:ContextProvider),
 (‘CPX’, coao:hasProfile, ...),
 (‘CPX’, coao:describes, ...),
 ...

Figure 32. An Advertisement Cache (AC) containing X subset of triple groups

5.3.1 Step-1: Identifying the Triple Groups Having Domain Class Equivalence

Step-1 in semantic matching is interested in locating the relevant triple groups that

match the context domain requirement. This is achieved by semantically matching the

context domain of interest specified in the lookup query with the context domain

registered in the advertisement. The context domain of interest is made clear in the

triple pattern (?x, coao:provides, contexta), where contexta is the context

domain of the context information that the context requester is searching for. Similarly,

the ContextDomain class in the CoAO allows the context providers to specify their

related context domain in the context advertisement. The outcome of Step-1 is such

that the identified one or more triple groups contains the registered context domain

that poses either exact class equivalence or subsumption class equivalence with the

context domain of interest specified by the context requester.

Exact class equivalence denotes two classes are exactly identical, such that both

classes are mapped to the same class definition. For example, the class ulco:User in

the ULCO ontology [9] and the class soupa:Person in the SOUPA ontology [57]

Triple group 1

Triple group 2

Triple group X

...

 98

have exact class equality because they are referring to the same human entity in the

smart space.

On the other hand, subsumption class equivalence implies that two domain classes

posses subsumption relations to one another. Specifically, for two domain classes,

subsumption class equivalence happens when one domain class is the superclass of

another. This is an essential consideration when performing semantic matching. For

example, if the context requester is searching for context provider that can reveal

location of devices (e.g. position of devices) in the house, the lookup query would

specify the domain of interest to be “ObjectIndoorLocationContext”. As a result, the

context providers that are able to present object tracking context information within

the “IndoorLocationContext” domain (where “ObjectIndoorLocationContext” is a

subclass of “IndoorLocationContext”) can be a possible candidate context provider in

the discovery process.

However, to preserve the hierarchical granularity of the domain ontology, subsumption

class equivalence does not apply to context domain which belongs to the Upper-Level

Domain (comprises the top level “ContextDomain” and followed by the second-level

major domains including “LocationContext”, “UserContext”, “ActivityContext” and

“ComputingEntityContext”). As a result, both context provider and context requester

should not annotate domain information based on the context domains that belong to

the Upper-Level Domain group.

Figure 33 presents the various possible scenarios of exact and subsumption class

equivalence in the ContextDomain hierarchical ontology. Basically, two domain

classes are of exact class equivalence relations when both of them have exactly the

same path (i.e. total overlapping) that leads to an Upper-level domain class. Whereas,

 99

when one domain class is placed in the middle of the path originated from the other

domain class that leads to an Upper-level domain class, the two domain classes are of

subsumption class equivalence. Finally, if the two paths started from two domain

classes contain portions of the path segment which are not overlapped, we know that

the two domains are non class equivalence. This is reflected in Algorithm 10 that is

derived to identify class equivalence between two context domain classes.

Figure 33. Various scenarios of class equivalence and non-equivalence between
classes in the context domain hierarchical ontology

 100

Algorithm 10. Matching rules for identifying class equivalence
1: Input: triple pattern(?x, coao:describes, contexta),
2: triple (cpi, coao:describes, contexti)
3: Output: True if contexti and contexta are class equivalence.
4: Procedure: Equivalence_Match
5: Begin
6: c1  (?x, coao:describes, contexta)
7: c2  (cpi, coao:describes, contexti)
8: If ExactEquality (c1, c2) then
9: Return True
10: Else
11: upper_level_domain_classes  Get_Domain_Class (coao:ContextDomain)
12: c1_superclass_list  SuperclassOf (c1) \ upper_level_domain_classes
13: For each c1

s ∈ c1_superclass_list
14: If ExactEquality (c1

s, c2) then
15: Return True
16: c2_superclass_list  SuperclassOf (c2) \ upper_level_domain_classes
17: For each c2

s ∈ c2_superclass_list
18: If ExactEquality (c2

s, c1) then
19: Return True
20: Return False
21: End.

5.3.2 Step-2: Selecting the Most Appropriate Context Provider

If a relevant context provider exists in the smart space, at least one triple group will be

identified in Step-1. Nonetheless, no triple groups being identified simply means none

of the context providers in the smart space is qualified for providing the requested

context information, and therefore the lookup query can be forwarded to the

neighbours DGs directly.

The identified triple groups in Step-1 will need to be examined in Step-2 in order to

ensure the appropriateness of the context provider to provide what is asked for. Triple

matching technique is applied in matching the triple pattern in the lookup query

against the context triples in each identified triple group. The various properties stated

in the ContextQuality class and ProviderProfile class need to be matched in the triple

matching process. The condition statements in the RDQL can also filter the irrelevant

 101

matching results. We adopt a conservative approach whereby all triple patterns must

be able to find the exact matching in a triple group before the context provider that

registers the triple group advertisement is reckoned as the appropriate context provider.

Consequently, the more triple patterns that a context lookup query specifies, the more

accurate the search result would be, but it also causes probability of a successful

lookup to be lower.

The exemplary context advertisement and context lookup query presented in Figure 30

and Figure 31 respectively can provide a walkthrough of the semantic matching

process. In Step-1, the triple group that contains the context triples for the published

advertisement is chosen as a result of the exact class equivalence in the

“RoadActivity” context domain. Subsequently, in Step-2, all the named variables

specified in the triple pattern can be successfully matched to the context triples in the

selected triple group. Therefore, a successful matchmaking is established.

5.4 Chapter Summary

The key to a successful matchmaking lies in the ability to match the context lookup

query with the most suitable context advertisement. In this chapter, we overcome the

challenge by the proposal to use a semantic matching technique based on class

equivalence relations. To facilitate the semantic matching process, we presented an

ontology-based advertisement template for composing context advertisement using

OWL ontology language. This matchmaking outcome ensured that the context domain

of the discovered context information has class equivalence with the context domain

of interest as specified by the context requester.

 102

CHAPTER 6 IMPLEMENTATION

To validate the concepts of Orion in real life, a Discovery Gateway prototype is built

and tested. In this chapter, we describe the implementation of the Orion architecture.

The DG prototype is put into actions on the physical IP network infrastructure to

measure the performance latency.

6.1 Implementation Methodology

In the simulation, we varied several parameters such as ONet size, SeCOM size and

overlay network topology in order to evaluate the performance of the Orion

architecture (see Chapter 4). To further verify the operations of Orion in real life, the

Orion prototype is built.

A prototype of the Discovery Gateway (DG) is designed based on the DG architecture

described in Section 3.3.2. The service-oriented architecture of the DG benefits from

various open-source technologies. The P2P Handler is implemented with the JXTA

P2P framework18 to manage the neighbourhood information and to handle the message

routing in the overlay network. In the Discovery Service Handler, we use the Jena2

Semantic Web framework 19 to process the OWL ontology, to maintain the

Advertisement Cache knowledge base, as well as to perform reasoning over the

ontology semantics.

The DG prototype is developed in Java programming environment. Therefore, the

operation of the prototype is platform independent. It can operate on any computer that

has a Java Virtual Machine (JVM), and a Network Interface Card. By running the DG

18 Project JXTA, http://www.jxta.org
19 Jena2 Semantic Web Framework, http://jena.sourceforge.net/

 103

prototype on different desktops, we are able to implement the Orion P2P message

routing overlay network using the public IP network infrastructure.

6.1.1 JXTA P2P Framework

JXTA (short for juxtapose) is a set of protocols that facilitates P2P communication

over the existing physical network infrastructure [76]. It aids in the development and

deployment of P2P applications and services without needing us to understand or

manage the physical network topologies.

The smallest addressable entity in a JXTA network is a peer that implements one or

more of the JXTA protocols. Peer resides in one or more peer groups (by default, all

peers belong to the Net Peer Group) whose members have agreed upon a common set

of services, such as enforcement of specific security policy, and sharing of certain

specialized domain content. The peers are connected by pipes, which are the

asynchronous and unidirectional communication channels for transferring messages

(e.g. data strings, binary codes, documents, etc) to one another. A single pipe can have

several endpoints that connect to the input pipe (the receiving end) and the output pipe

(the sending end). To the peers, the pipe endpoints correspond to P2P network

interfaces that can be used to send and receive message.

JXTA framework has six protocol suites that handle various P2P network operations.

The protocols include the Peer Discovery protocol, Peer Information protocol, Peer

Resolver protocol, Peer Binding protocol, Endpoint Routing protocol, and Rendezvous

protocol. However, in prototyping the Orion architecture, not all protocol suites are

utilized. Some protocol modules are also modified in order to adhere to the Orion

architecture specifications. The JXTA P2P framework is mainly employed to provide

the following functionalities:

 104

♦ Maintaining DG peers information, such as peerID, update time, pipe

advertisements, connection status, neighbourhood information, etc,

♦ Discovering potential neighbour DGs during bootstrap operations,

♦ Handling the physical network connection by establishing pipe connections

with the neighbour DGs,

♦ Relaying messages during the search forwarding operations.

6.1.2 Jena2 Semantic Web Framework

Jena2 is an open-source Java programming framework for building Semantic Web

applications [77]. It provides a set of APIs for the manipulation, storage, interpretation

and query of RDF and OWL documents. These are accomplished by using its ability to

support expressive RDF query, to perform generic rule-based inference, and to offer

scalable persistent storage.

Internally, Jena2 manages the OWL ontologies as the RDF Graph data structures,

where every two vertices joined by an edge in the graph represent a RDF triple. A rich

set of APIs are provided to manipulate the RDF Graph, therefore enabling application

programmers to easily gain access to the triple structure. The RDF Graph is stored as a

graph model in the memory, and the model can be reasoned, via built-in or plug-in

rule-based inference engine, in order to check for data consistency and to deduce

implicit class relations and instances.

Jena2 supports RDF Data Query Language (RDQL) [69] for programmers to extract

information from the RDF graph. One or more graph patterns, in the form (subject,

predicate, object), are presented to the query engine in RDQL, and all possible

 105

valid bindings of the variables in the patterns over the statements in the graph are

returned.

In the Orion prototype, we benefited from the Jena2 Semantic Web framework in the

following area:

♦ Storing the context advertisements as set of context triples,

♦ Checking for model consistency based on the defined CoAO ontology and the

HLT ontology,

♦ Performing ontology reasoning to deduce subsumption relations between the

class instances when checking for class equivalence, and to reason out

transitive relations when extracting the SeCOM membership requirements,

♦ Performing triple matching during the semantic matching process.

6.2 Discovery Gateway Prototype

We design and implement the prototype of the Discovery Gateway in an object-

oriented fashion. Though independent object components handle different tasks,

cooperatively they execute the set of operations to support context publishing and

context lookup. The schematic overview of the Discovery Gateway prototype

architecture is presented in Figure 34. The rectangular boxes represent the various

object components while their interactions are indicated by the arrows.

 106

Figure 34. Discovery Gateway prototype architecture overview

The two-layer architecture presented in Section 3.3.2 is preserved in the prototype

implementation. In the P2P Handler layer, the JXTA P2P framework is used for

handling the P2P communication between the DG peers. The NetworkInterface

component is responsible for message reception from and transmission to other DG

peers over the public network infrastructure. Many features of the JXTA framework

are relied upon. For example, the net.jxta.discovery.DiscoveryListener

interface is implemented to respond to new DG node discovery event;

net.jxta.pipe.PipeMsgListener interface is used to asynchronously handle

message reception via the JXTA pipe established between the neighbour DGs; while

net.jxta.pipe.OutputPipe interface is implemented to send messages to the

neighbours via the Output pipes.

 107

The P2PManager is the main component that takes care of the peer neighbourhood

management. It implements the DG peer boostrap and leave process (in Section 4.1.1

and Section 4.1.2) as well as Algorithm 1 and 2 (in Chapter 4.1.3) for Iterative

Deepening Search. It decides when and where the message is to be forwarded to

(either to the upper level for query or advertisement processing, or to the neighbour

peers in an IDS process).

For messages that need to be processed by the upper layer, the MessageDispatcher

analyzes the message header to categorize the messages, and to dispatch them to the

appropriate processing unit accordingly. Whenever a message has to be forwarded, the

MessageDispatcher is also responsible for composing the appropriate message format

before passing the message to the P2PManager.

In the Discovery Service Handler layer, two sets of object components are

implemented. The first set handles the context discovery services, including the

context advertisement and the context lookup. The AdvertisementProcessor executes

the context publishing operations as outlined in Algorithm 7, while the

QueryProcessor implements Algorithm 8 and 9 for the context lookup operations, as

well as Algorithm 10 for the semantic matching procedure.

The second set consists of mainly objects that maintain and manipulate the ontology

instances. It performs query and reasoning over the ontology knowledge base (e.g. the

Advertisement Cache). The APIs provided by the Jena2 Semantic Web framework are

used in this implementation. For example, the Triple Groups in the Advertisement

Cache are stored and managed in the com.hp.hpl.jena.rdf.model.Model object;

the RDQL query initialization and execution during the triple pattern matching in the

matchmaking process is handled by the com.hp.hpl.jena.rdql.QueryEngine object.

 108

To further illustrate the interactions between the object components in the prototype

architecture, we analyze the operational sequences for handling the context publishing

event. The interactions between the object components are clearly indicated in the

sequence diagram in Figure 35. When the context provider publishes a context

advertisement (step1), the published message will be received by the NetworkInterface

and passed directly to the P2PManager (step2). The function Analyze(msg<ad>)

decides whether the message has to be processed by the Discovery Service Handler

layer (step3). Then the MessageDispatcher object is contacted (step4). Here, the

message is assigned a unique messageID, which is active throughout the publishing

event, and is cached locally to prepare for future use (step5). Subsequently, the

message is inspected to determine the message type (step6). If it is then known that the

message contains the context advertisement, the ProcessAd(ad) function in the

AdvertisementProcessor object will be executed (step7). The advertisement

registration procedures include updating the Advertisement Cache (step8-11), as well

as extracting the membership information to determine the geo-location meta-context

the context is having (step12-14). The request to perform JoinSeCOM operation is

executed then (step15-19) (the details of JoinSeCOM operations that involve other

DGs are not presented in the sequence diagram in Figure 35).

 109

Figure 35. Sequence diagram shows the interactions between objects in handling
context publishing event

The DG prototype is implemented on Java programming platform, and thus it is

platform independent. It can operate on any computer that is equipped with a Java

Virtual Machine (JVM), together with a Network Interface Card that can connect to

the Internet.

 110

6.3 Evaluation

The various performance metrics of Orion consisting of over thousands of DGs are

evaluated in the simulation (refer to Section 4.4). In the prototype system, we continue

the evaluation with emphasis on two areas: the query response time for a single DG,

and the aggregated query response time for a DG placed several hops away. Query

response time is defined in this evaluation as the time difference between the instant

the local DG starts processing the lookup query and the instant the processing ends (i.e.

when the access information of the discovered context provider is received).

6.3.1 Query Response Time Within Local Space

We are interested to find out the query response time for a local space DG to be able to

resolve the lookup query without forwarding to its neighbours. We have developed a

script that generates variable numbers of context triples (i.e. by generating different

number of unique class and property instances) in the Advertisement Cache ontology

knowledge base. We then evaluated the query response time at variable size of the

knowledge base.

We carefully tweak the provider lookup requirement such that there is always one

context advertisement in the Advertisement Cache that satisfies the lookup

requirements. Upon a successful match, the IP address and the port number of the

discovered context provider are returned and verified. We use the getTime() method

in the Java j2sdk’s Date class to obtain the system clock, and record the time spent on

processing a query in the knowledge base. The results are compiled to produce the

graph in Figure 36.

 111

Query response time within a single DG

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Size of Advertisement Cache (number of triples)

R
es

po
ns

e
tim

e
(m

s)

Figure 36. Query response time within a single smart space

The graph shows that the response time of DG is linear to the size of the ontology

knowledge base. When the number of context triples increased from 1000 triples to

10000 triples, the response time steadily increases from 300ms to 1700ms.

In [9], we see that a Context Knowledge Base of a Semantic Space Server that

manages all context information in a single workplace smart space can accumulate up

to approximate 3000 context triples. Since context advertisement is an abstraction of

the available context information in the smart space, we expect the triple counts of the

Advertisement Cache knowledge base would be a lot smaller than the triple counts of

the Context Knowledge Base. This also justifies the need to launch a context discovery

operation to query the lightweight Advertisement Cache prior to querying the huge

Context Knowledge Base. This is especially essential as the query is relayed from one

 112

DG to another. Until there is a successful matchmaking of the context lookup query

that takes place in the lightweight Advertisement Cache knowledge base, a DG will

only need to process the context retrieval query in the Context Knowledge Base.

6.3.2 Query Response Time Across Multiple Spaces

In the second experiment, we would like to evaluate the query response time for a

lookup query to be resolved by a DG placed in a smart space several hops away. The

query response time therefore includes the lookup query processing time in each

participating DG, and the aggregated propagation delay in all DG-to-DG overlay links.

We have chosen 9 desktops running on Windows XP operating systems to run the DG

prototype. The desktops are placed at different locations in Singapore, and the

particulars about the connection type and communication bandwidth are tabulated in

Table 2. Each DG prototype maintains TCP/IP connection to 2 neighbour DGs, and an

overlay network of 8 hops is formed on top of the IP networking public infrastructure

(see Figure 37). The mixture of broadband network access services with different

bandwidth as well as the dialup connection in DG node 5 resembles the bandwidth

variation for the overlay links in a message routing overlay network, which is formed

across the public network infrastructure.

Each of the 9 DGs maintains an Advertisement Cache of about 2000 context triples

contributed by around 80 context advertisements. The average lookup query

processing latency in each DG node is measured and tabulated in Table 3.

 113

Table 2. Details of the DG prototype deployed for experiment 2

DG IP Address Physical
Location

ISP * Avg up-link
b/w
(kbps)

Avg down-
link b/w
(kbps)

1 59.189.27.65 Clementi Ave 5 SM 117 573
2 218.186.179.77 Clementi Ave 3 SM 109 452
3 218.186.66.101 Jurong West

Ave 5
SM 97 398

4 218.186.74.140 Bukit Batok
West Ave 5

SM 126 513

5 165.21.57.67 Stirling Road D 36 45
6 202.156.186.85 Serangoon Ave1 SM 107 389
7 218.186.170.230 Queensway SM 120 368
8 219.74.169.164 Amber Road SB256 153 324
9 220.255.206.54 Hougang Ave 7 SB1500 168 416

* SM: Starhub MaxOnline 2000 D: dialup
 SB1500: SingNet Broadband 1500 SB256: SingNet Broadband 256

Figure 37. The topology created for evaluating query response time

 114

Table 3. Average query processing latency in each DG prototype node

DG node i Average query processing latency
(ms)

1 343
2 403
3 611
4 412
5 373
6 294
7 365
8 421
9 639

Total 3861

DG node 1 in the overlay network serves as the sender node where a lookup query is

initiated. On the other hand, DG node 9 stores a context advertisement that matches

with the lookup query requirement. Therefore, starting from DG node 1, the query

message is forwarded from node i to node (i+1). The Advertisement Cache lookup

processing would have been unsuccessful except in node 9. When the query is finally

resolved in DG node 9, a reply message is returned to DG 1 via a shortcut link

established between them (the shortcut link is not shown in Figure 37). All DGs are

assumed to be in the same SeCOM where the query can be resolved.

The overall query response time is recorded in DG node 1 and presented in the line

chart in Figure 38. It can be observed that the response time fluctuated at around 5

seconds, where the respond time before 1200 hrs dropped slightly below 5 seconds

while the rest were between 5 to 5.5 seconds. Since the size of the Advertisement

Cache remains the same throughout the experiments, the fluctuation in the overall

query response time is mainly contributed by the change of network link latency over

the course of a day

 115

Response time per query VS Hours in a day

0

1000

2000

3000

4000

5000

6000

0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
Hour (hrs)

R
es

po
ns

e
tim

e
(m

s)

Figure 38. The query response time measured when query is resolved in a DG
prototype that is 8 hops away from DG node 1.

As a result, we also measure the message transmission latency at each overlay link. At

each time interval, DG node i performs a RTT probing to node i+1 in order to measure

the round trip time (RTT) for link(i, i+1) (i.e. the overlay link connecting node i and

node i+1). The shortcut link between node 9 and node 1 is denoted as link(9,1). By

equally dividing the RTT of link(i, i+1) into half, we get a rough estimation of the one-

way link latency between node i and node i+1.

The measured link latency is shown in the stacked histogram in Figure 39. The height

of each coloured portion indicates the message transmission link latency, and the

specific overlay links are differentiated by the colour scheme. The height of each stack

is therefore the accumulated link latency for all the 9 overlay links set up in the

experimental topology. It is observed that before 1200hrs, the overall network

 116

transmission latency is well within the 800ms range. However, as the time progresses

beyond 1200hrs, the overall link latency varies between 1100ms and 1400ms. The

differences of about 75% in link latency between morning and evening is a direct

result of different usage levels of the Internet network infrastructure at different

periods of time.

Network Link Latency per trip VS hours in a day

0

200

400

600

800

1000

1200

1400

1600

0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
Hours (hrs)

N
et

w
or

k
Li

nk
 L

at
en

cy
 (m

s)

link(9,1)
link(8,9)
link(7,8)
link(6,7)
link(5,6)
link(4,5)
link(3,4)
link(2,3)

link(1,2)

Figure 39. Message transmission link latency at each overlay link that contributes to
the overall query response time

In this simulation, about 20%-30% of the overall query response time is contributed by

the network link latency incurred in each overlay link. Therefore, although network

link latency varies by about 75% throughout the day, the overall query response time

only fluctuates at 18% difference (i.e. from 4.5ms to 5.5ms). This is the case when

about 11% of the participating DGs (i.e. 1 out of 9) are connected with low-bandwidth

 117

dial up connection. We expect the fluctuation to become larger when more low-

bandwidth connections are involved.

6.4 Chapter Summary

In this chapter, we make use of the open-source JXTA P2P framework and Jena2

Semantic Web framework to build the prototype of Discovery Gateway. The prototype

is put into action for measuring the query response time of a small scale overlay

network laid across the Singapore island.

 118

CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

Pervasive computing smart spaces are rich in context information produced by various

interconnected sensors and software sources. To maximize usage of the context

information widely distributed across different smart spaces, the context providers

need to be efficiently tracked by the context-aware applications with minimal user

intervention. This dissertation addressed the issue of system infrastructure needed to

support the discovery of context information, in particular context discovery beyond

local smart space boundaries.

A hybrid centralized-decentralized context discovery model was proposed. Compared

to the traditional centralized model and broadcast-based model, the proposed model

was superior in terms of its ability to handle high computational load and large

information storage space requirement, to provide reliable discovery service, to ensure

timely update of localized information, and to scale well beyond a single smart space

boundary. The model was materialized in a P2P-based context discovery platform,

named Orion. We focused on two areas in the Orion architecture, namely the

searching in P2P network and the matchmaking procedure in each Discovery Gateway

(DG).

The P2P message routing overlay network successfully formed a message

communication platform to connect the context resource peers (i.e. both context

providers and context requesters) to one another. To reduce duplicate message in the

overlay network due to flooding-based search mechanism, Iterative Deepening Search

(IDS) was introduced to limit the forwarding range, and Semantic Community

 119

(SeCOM) was incorporated to confine the flooding of message within a subset of DGs

that shared similar interest in the context they were registered with. A set of distributed

algorithms were created as the heuristic in query forwarding. In our deployment, at

least 60% of nodes (can go up to 95% if SeCOM size were small) were spared from

taking part in the flooding (as compared to only 10% of spared nodes in pure flooding

approach), and average hop counts to reach the destination DG were also lowered by

at least 16% when the SeCOM size was kept very small (at 1% of the total ONet size).

Therefore, Orion has successfully optimized the unstructured-based P2P message

routing overlay network by reducing message redundancy and minimizing the number

of hops to reach destination DG.

The second focus was the matchmaking process. We proposed an ontology-based

advertisement template, known as the Context Advertisement Ontology (CoAO), to

model the context advertisement with ontological descriptions, of which the semantics

could be interpreted by the computer. Such semantics reasoning capabilities led to the

matchmaking procedure based on semantic matching of the class equivalence between

the lookup query and the advertisement set. This is a mechanism far superior

compared to string matching approach, because we ensured that the matchmaking was

done based on the similarity in semantics, rather than the resemblance of keyword

string. For example, the string “room” could be interpreted differently by various

computing agents, and ontology provided the semantics necessary for understanding

the concept of “room” as how human would interpret it.

Finally, the DG prototype had not only verified the design, it also contributed as a

development platform that other researchers could make use of. This would facilitate

 120

new research initiatives in wide-area context management, which are greatly beneficial

to mobile and wireless communication technologies.

7.2 Future Work

There are other challenging issues in inter-space context discovery, which are not dealt

with in the current Orion architecture.

In a context-aware computing system, the distribution of different query type is not

uniform. This means that some types of context information can be highly demanded,

while some types can be unpopular. This poses performance bottleneck issue at the

DG registered with highly demanded context information types because the query

frequency will be much higher than DGs registered with unpopular context

information types. As a result, the computational load is not distributed equally in all

the DGs, and that affects the overall query response efficiency in Orion. To overcome

this problem, one approach is to suitably replicate the Advertisement Cache of a DG

and store each duplicate copy on one or more of the SeCOM member DG.

Consequently, for m replications made, the query load at each DG will be reduced to

1/m of the initial load [78]. Different replication strategies in P2P network were

studied in [30], [31], [78] and [79].

Methods to safeguard information privacy are also an issue that tops the to-do list.

Context information with sensitive contents needs to be kept confidential, and only

parties with sufficient clearance have rights to discover and retrieve them. This would

prevent fraudulent use of context information by unauthorized users and misbehaving

applications. We may extend the Policy class in the CoAO ontology to support

semantic policy language used in the Semantic Web to define security requirements in

 121

terms of permissions, prohibitions, obligations and dispensation [80]. Then, only

context requesters with the proper rights defined in the context advertisements are

allowed to gain access to the requested context information.

Other future work in the agenda includes expanding the CoAO to support more

comprehensive classification of the provider’s profile and context domain, imposing

structured-based topology in SeCOM for efficient routing of query message, and

incorporating leader election algorithms for automatic selection of new DG when the

current DG fails to operate.

 122

BIBLIOGRAPHY

[1] M. Weiser, “The Computer of the 21st Century”, Scientific American, Vol.

265, No. 3, pp. 66-75, Janunary 1991.

[2] B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer. “EasyLiving:

Technologies for Intelligent Environments”, In Proceedings of the 2nd

International Symposium on Handheld and Ubiquitous Computing, Vol. 1927,

pp. 12-29, Bristol, UK, September 25-27, 2000. Springer Verlag.

[3] M. Roman, et al., “Gaia: A Middleware Infrastructure to Enable Active

Spaces”, In IEEE Pervasive Computing, Vol. 1, No. 4, pp. 74-83, October-

December 2002.

[4] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges”, In IEEE

Personal Communications, Vol. 8, No. 4, pp. 10-17, January – March, 2001.

[5] H. Lieberman, T. Selker, “Out of Context: Computer Systems that Adapts to,

and Learn From, Context”, IBM Systems Journals, Vol. 39, No. 3-4, pp. 617-

632, 2000.

[6] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, W.

V. Velde, “Advanced interaction in context”. In Proceedings of First

International Symposium on Handheld and Ubiquitous Computing, HUC'99,

pp. 89-101, Karlsruhe, Germany, September 1999. Springer Verlag.

[7] A. K. Dey, “Understanding and Using Context”, Personal and Ubiquitous

Computing Journal, Vol. 5, No. 1, pp. 4-7, 2001.

 123

[8] B. Schilit, N. Adams, R. Want, “Context-aware computing applications. In

Proceedings of IEEE Workshop on Mobile Computing Systems and

Applications, pp. 85-90, Santa Cruz, California, December 1994. IEEE

Computer Society Press.

[9] X. Wang, J. S. Dong, C. Y. Chin, S. R. Hettiarachchi, D. Zhang, “Semantic

Space: An Infrastructure for Smart Spaces”, In IEEE Pervasive Computing,

Vol. 3, pp. 3, pp. 32-39, July- September, 2004.

[10] J. Pascoe, “Adding generic contextual capabilities to wearable computers”. In

Proceedings of the Second International Symposium on Wearable Computers,

Pittsburgh, Pennsylvania, October 1998. IEEE Computer Society Press.

[11] D. Siewiorek et. al., “SenSay: A Context-Aware Mobile Phone”, 7th IEEE

International Symposium on Wearable Computers, October, 2003.

[12] M. Reinhard, Specht and I. Jaceniak, “Hippie: A Nomadic Information

System”, In Proceedings of 1st International Symposium on Handheld and

Ubiquitous Computing (HUC '99), pp. 330-333, Karlsruhe, Gerrmany, 1999.

[13] K. Yang et al., “Network-centric context-aware service over integrated

WLAN and GPRS Networks,” In 14th IEE International Symposium on

Personal, Indoor And Mobile Radio Communications, Beijing, China,

September 7-10, 2003.

[14] B. Schilit, M. Theimer, “Disseminating Active Map Information to Mobile

Hosts”, In IEEE Network, Vol. 8, No. 5, pp. 22-32, 1994.

 124

[15] H. Yan, T. Selker, “Context-aware Office Assistant”, In Proceedings of the

2000 International Conference on Intelligent User Interfaces, pp. 276-279,

New Orleans, LA, January 2000. ACM Press.

[16] A. Schmidt, M. Beigl, H-W. Gellersen, “There is more to Context than

Location”, In Computers & Graphics Journal, Vol. 23, No.6, pp. 893-902,

December 1999. Elsevier.

[17] B. L. Harrison, K.P. Fishkin, A. Gujar, C. Mochon, R. Want, “Squeeze Me,

Hold Me, Tilt Me! An Exploration of Manipulative User Interfaces”, In

Proceedings of the ACM SIGCHI conference on Human Factors in

Computing Systems, pp. 17-24 , Los Angeles, CA, USA, April 18-23, 1998.

[18] J. Rekimoto, “Tilting Operations for Small Screen Interfaces”, In

Proceedings of the 9th Annual ACM Symposium on User Interface Software

and Technology, pp. 167-168, Seattle, Washington, USA, 1996.

[19] A. K. Dey, G. D. Abowd, D. Salber, “A Conceptual Framework and a Toolkit

for Supporting the Rapid Prototyping of Context-Aware Applications”.

anchor article in Human-Computer Interaction (HCI) Journal, Vol. 16, No.

2-4, pp. 97-166, 2001

[20] J. Hong, J. A. Landay, “An Infrastructure Approach to Context-Aware

Computing”, Human-Computer Interaction Journal, Vol. 16, No. 2-4, 2001.

[21] G. Chen, “Solar: Building a Context Fusion Network for Pervasive

Computing”, Ph.D. Dissertation, Department of Computer Science,

Dartmouth College, August 2004.

 125

[22] H. Chen, T. Finin, A. Joshi, “An Context Broker for Building Smart Meeting

Rooms”, In Proceedings of the Knowledge Representation and Ontology for

Autonomous Systems Symposium, 2004 AAAI Spring Symposium. AAAI,

March 2004.

[23] R. E. McGrath. “Discovery and Its Discontents: Discovery Protocols for

Ubiquitous Computing”. Presentation to the Center for Excellence in Space

Data and Information Science, UIUCDCS-R-2000-2154, April 2000

[24] C. Efstratiou, K. Cheverst, N. Davies, A.. Friday. “An architecture for the

effective support of adaptive context-aware applications”. In Proceedings of

the 2nd International Conference in Mobile Data Management (MDM 2001),

pp. 15-26, Hong Kong, 2001. Springer LNCS 1987.

[25] G. Thomson, M. Richmond, S. Terzis, and P. Nixon, “An Approach to

Dynamic Context Discovery and Composition”, In Proceedings of UbiSys '03,

System Support for Ubiquitous Computing Workshop at UbiComp 2003,

Seattle, Washington, USA. October 2003.

[26] K. Henricksen, J. Indulska, A. Rakotonirainy, “Modeling Context

Information in Pervasive Computing”, In Proceedings of 1st International

Conference Pervasive Comuting (Pervasive2002), pp. 167-180, 2002.

Springer-Verlay LNCS2414.

[27] A. Ranganathan, Roy H. Campbell, “A Middleware for Context-Aware

Agents in Ubiquitous Computing Environments”, In ACM/IFIP/USENIX

International Middleware Conference 2003, Rio de Janeiro, Brazil, June 16-

20, 2003

 126

[28] M. Roussopoulos, M. Baker, D. Rosenthal, T. Guili, P. Maniatis, J. Mogul, “2

P2P or Not 2 P2P?”, In Proceedings of 3rd International Workshop on Peer-

to-Peer Systems, San Diego, CA, USA, February 26-27, 2004.

[29] J. Risson, T. Moors, “Survey of Research Towards Robust Peer-toPeer

Networks: Search Methods”, Technical Report UNSW-EE-P2P-1-1,

University of South Wales, Sydney, Australia, September 2004.

[30] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and Replication in

Unstructured Peer-to-Peer Networks”, In Proceedings of 16th ACM

International Conference on Supercomputing (ICS’02), pp. 84-95, New York,

NY, June 2002

[31] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker, “Making

Gnutella-like P2P Systems Scalable”, In Proceedings of the ACM SIGCOMM

2003, pp. 407-418, Karlsruhe, Germany, August 2003.

[32] L. A. Adamic, R. M. Lukose, A. R. Puniyani, B. A. Huberman, “Search in

Power-Law Networks”, In Physical Review E, Vol. 64, 2001.

[33] B. Yang, H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks”,

In Proceedings of 22nd International Conference on Distributed Computing

Systems (ICDCS 2002), Vienna, Austria, 2002.

[34] A. Crespo, H. Garcia-Molina, “Routing Indices for Peer-to-Peer Systems”, In

Proceedings of 22nd International Conference on Distributed Computing

Systems (ICDCS 2002), Vienna, Austria, 2002.

 127

[35] S. C. Rhea, J. Kubiatowicz, “Probabilistic Location and Routing”, In

Proceedings of 21st IEEE INFOCOM 2002, June 2002.

[36] A. Kumar, J. Xu, E. W. Zegura, “Efficient and Scalable Query Routing for

Unstructured Peer-to-Peer Networks”, In Proceedings of 24th IEEE

INFOCOM 2005, Miami, US, March 3-17, 2005.

[37] A. Crespo, H. Garcia-Molina, “Semantic Overlay Network for P2P Systems”,

Technical Report, Computer Science Department, Stanford University, 2003.

[38] V. Cholvi, P. Felber, E. Biersack, “Efficient Search in Unstructured Peer-to-

Peer Networks”, In European Transaction on Telecommunications, Special

Issues on P2P Networking and P2P Services, Vol. 15, No. 6, November-

December 2004

[39] C. Wang, L. Xiao, Y. Liu, P. Zheng, "Distributed Caching and Adaptive

Search in Multilayer P2P Networks", In Proceedings of the 24th

International Conference on Distributed Computing Systems (ICDCS 2004),

Tokyo, Japan, March 2004.

[40] H.-C. Hsiao, C.-T. King, S.-Y. Gao. "Making Exploitation of Peers

Heterogeneity as a First Class Citizen for Resource Discovery in Peer-to-Peer

Networks," In Proceedings of 1st International Conference on Embedded and

Ubiquitous Computing (EUC'04), pp. 952-961, Aizu, Japan, August 25-27,

2004, LNCS Springer 3207.

[41] S. Jiang, L. Guo, X. Zhang, “LightFlood: an Efficient Flooding Scheme for

File Search in Unstructured Peer-to-Peer Systems”, In Proceedings of

 128

International Conference on Parallel Processing (ICPP’2003), Kaohsiung,

Taiwan, ROC, October 6-9, 2003.

[42] K. Sripanidkulchai, B. Maggs, H. Zhang, “Efficient Content Location using

Interest-based Locality in Peer-to-Peer Systems, In Proceedings of 22nd IEEE

INFOCOM 2003, April 2003.

[43] M. Ripeanu, I. Foster, A. Iamnitchi, “Mapping the Gnutella Network:

Properties of Large-Scale Peer-to-Peer Systems and Implications for System

Design”, in IEEE Internet Computing Journal special issue on peer-to-peer

networking, Vol. 6, No. 1, 2002.

[44] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, “Topologically-aware

Overlay Construction and Server Selection”, In Proceedings of 21st

INFOCOM 2002, pp. 1190-1199, June 2002.

[45] X. Y. Zhang, Q. Shang, Z. Zhang, G. Song, W. Zhu, “A Construction of

Locality-Aware Overlay Network: mOverlay and Its Performance”, In IEEE

Journal on Selected Area in Communications, Vol. 22, No. 1, January 2004.

[46] Y. Liu, X. Liu, L. Xiao, L. Ni, X. Zhang, “Location-Aware Topology

Matching in P2P Systems", In Proceedings of 23rd IEEE INFOCOM 2004,

Hong Kong, March 7-11, 2004.

[47] B. Yang, H. Garcia-Molina, “Designing a Super-Peer Network”, In

Proceedings of the 19th International Conference on Data Engineering

(ICDE’03), Bangalore, India, March 05-08, 2003.

 129

[48] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, “Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications”, In ACM

SIGCOMM 2001, San Diego, California, USA, August 27-31, 2001

[49] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable

Content Addressable Network”, In ACM SIGCOMM 2001, San Diego,

California, USA, August 27-31, 2001

[50] A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized Object Location,

and Routing for Large Scale Peer-to-Peer Network”, In Proceedings of 18th

IFIP/ACM International Conference on Distributed Systems Platforms

(Middleware 2001), Heidelberg, Germany, November 2001.

[51] T. Berners-Lee, J. Handler, O. Lassila, “The Semantic Web”, Scientific

American, pp. 34-43, May 17, 2001.

[52] C. C. Marshall, F. M. Shipman, “Which Semantic Web”, In Proceedings of

14th ACM Conference on HyperText and HyperMedia, pp. 57-66, Nottingham,

UK, August 26-30, 2003. ACM Press.

[53] O. Lassila, R. Webick, “Resource Description Framework (RDF) Model and

Syntax Specification”, W3C Recommendation, February 1999. Available at

http://www.w3.org/TR/REC-rdf-syntax

[54] D. Brickley, R. V. Guha, “Resource Description Framework (RDF) Schema

Specification”, W3C Recommendation, March 1999. Available at

http://www.w3.org/TR/PR-rdf-schema

 130

[55] T. R. Gruber, “A Translation Approach to Portable Ontologies”, Knowledge

Acquisition, Vol. 5, No. 2, pp. 199-220, 1993.

[56] OWL Web Ontology Language Reference, W3C Recommendation, February

2004. Available at http://www.w3.org/TR/owl-ref

[57] H. Chen, F. Perich, T. Finin, A. Joshi, "SOUPA: Standard Ontology for

Ubiquitous and Pervasive Applications", In Proceedings of the First Annual

International Conference on Mobile and Ubiquitous Systems: Networking

and Services (Mobiquitous 2004), Boston, MA, August 22-26, 2004.

[58] F. B. Gandon, N. M. Sadeh, “Semantic Web Technologies to Reconcile

Privacy and Context Awareness”, Web Semantics Journal, Vol. 1, No. 3,

November 2003.

[59] R. Masuoka, Y. Labrou, B. Parsia, E. Sirin, “Ontology-Enabled Pervasive

Computing Applications”, In IEEE Intelligent Systems, Vol. 18, No. 5, pp.

68-72, Sept-Oct, 2003.

[60] F. Perich, A. Joshi, T. Finin, Y. Yesha, “Profile Driven Data Management for

Pervasive Environments”, In 13th International Conference on Database and

Expert Systems Applications (DEXA 2002), Aix en Provence, France,

September 2002.

[61] G. Chen, D. Kotz, “Context-Sensitive Resource Discovery”, In Proceedings

of the First IEEE International Conference on Pervasive Computing and

Communications, pp. 243-252, Fort Worth, Texas, March 2003. IEEE

Computer Society Press.

 131

[62] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, “The design and

implementation of an intentional naming system”, In Proceedings of17th

ACM SOSP, Kiawah Island, SC, December 1999.

[63] R. Glassey, G. Stevenson, M. Richmond, F. Wang, P. Nixon, S. Terzis, I.

Ferguson, “Towards a middleware for generalised context management.” In

1st International Workshop on Middleware for Pervasive and Ad-Hoc

Computing (MPAC03), co-located with Middleware 2003, Rio de Janeiro,

Brazil, June 17, 2003.

[64] H.G. Cheng, “Representing and Reasoning about Semantic Conflicts in

Heterogeneous Information Sources”, doctoral dissertation, Sloan School of

Management, MIT, Cambridge, Mass., 1997.

[65] J. Gonzalez-Castillo, D. Trastour, C. Bartolini, “Description logics for

Matchmaking Services”, HP Laboratories Bristol, Bristol, HPL-2001-265,

October 30, 2001.

[66] D. Trastour, C. Bartolini, J. Gonzalez-Castillo, “A Semantic Web Approach

to Service Description for Matchmaking of Services”, First International

Semantic Web Working Symposium (SWWS2001), Stanford University,

California, USA, pp. 447-462, July 30- August 1, 2001.

[67] A. K. Dey, M. Futakawa, D. Salber, G.D. Abowd, “The Conference Assistant:

Combining Context-Awareness with Wearable Computing”, In Proceedings

of 3rd International Symposium on Wearable Computing (ISWC’99), pp. 21-

28, San Francisco, CA, USA, October 18-19, 1999.

 132

[68] John Ritter, “Why Gnutella can’t scale. No, really”, February 2001, available

at http://www.darkridge.com/~jpr5/doc/gnutella.html

[69] Libby Miller, Andy Seaborne, Alberto Reggiori, “Three Implementations of

SquishQL, a Simple RDF Query Language”, In First International Semantic

Web Conference (ISWC’02), Sardinia, Italy, June 9-12, 2002.

[70] S. Russel, P. Norvig, “Artificial Intelligence: A Modern Approach”, Prentice-

Hall, 1995.

[71] Clip2.com Inc., “Bandwidth barriers to Gnutella scalability,” September 2001.

[72] C. R. Palmer, J. G. Steffan, “Generating Network Topologies That Obey

Power Laws,” In IEEE Globecom 2000, San Francisco, USA, November 27 –

December 1, 2000.

[73] T. Strang, C. Linnhoff-Popien, “A Context Modeling Survey”, Workshop on

Advanced Context Modelling, Reasoning and Management, In the Sixth

International Conference on Ubiquitous Computing (Ubicomp2004),

Nottingham/England, September 2004.

[74] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, M. D. Mickunas,

“Olympus: A High-Level Programming Model for Pervasive Computing

Environments”, In third annual IEEE International Conference on Pervasive

Computing and Communications (PerCom 2005), Kauai Island, Hawaii,

March 8-12, 2005.

[75] R. E. McGrath, A. Ranganathan, R. H. Campbell, M. D. Mickunas,

“Incorporating "Semantic Discovery" into Ubiquitous Computing

 133

Infrastructure”, In System Support for Ubiquitous Computing Workshop at

the Fifth Annual Conference on Ubiquitous Computing (UbiComp 2003),

Seattle, WA, October 12, 2003

[76] L. Gong, “JXTA: A Network Programming Environment”, IEEE Internet

Computing, Vol. 5, No. 3, pp. 88-95, May-June 2001.

[77] J.J. Carroll, et al., “Jena: Implementing the Semantic Web

Recommendations”, In Proceedings of 13th International World Wide Web

Conference, pp. 74-83, New York, NY, USA, May 17-22, 2004.

[78] E. Cohen, S. Shenker, “Replication Strategies in Unstructured Peer-to-Peer

Networks”, In Proceedings of the ACM SIGCOMM 2002, Pittsburgh,

Pennsylvania, USA, August 19-23, 2003.

[79] C. Gkantsidis, M. Mihail, A. Saberi, “Hybrid Search Schemes for

Unstructured Peer-to-Peer Networks”, In Proceedings of 24th IEEE

INFOCOM 2005, Miami, USA, March 13-17, 2005..

[80] L. Kagal, T. Finin, A. Joshi, “A Policy Based Approach to Security for the

Semantic Web”, In Proceedings of the 2nd International Semantic Web

Conference (ISWC’03), pp. 402-418, Florida, USA, October 20-23, 2003,

Springer-Verlag LNCS2870.

 134

APPENDIX A CoAO ver0.1b XML
REPRESENTATION

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:hlt="http://www.i2r.a-star.edu.sg/Orion/htl.owl#/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#/"
 xmlns="http://www.i2r.a-star.edu.sg/Orion/coao.owl#"
 xml:base="http://www.i2r.a-star.edu.sg/Orion/coao.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Network">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="ComputingEntitiy"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="ContextDomain"/>
 <owl:Class rdf:ID="Resolution"/>
 <owl:Class rdf:ID="ContextQuality"/>
 <owl:Class rdf:ID="AccessMethod"/>
 <owl:Class rdf:ID="HTTPAccess">
 <rdfs:subClassOf rdf:resource="#AccessMethod"/>
 </owl>
 <owl:Class rdf:ID="Policy"/>
 <owl:Class rdf:ID="ProviderProfile"/>
 <owl:Class rdf:ID="SoftwareProfile">
 <rdfs:subClassOf rdf:resource="#ProviderProfile"/>
 </owl:Class>
 <owl:Class rdf:ID="AdHocActiviy">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Activity"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Device">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#ComputingEntitiy"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="ScheduledActivity">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Activity"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="SemWebProf">
 <rdfs:subClassOf rdf:resource="#SoftwareProfile"/>
 </owl:Class>
 <owl:Class rdf:ID="Agent">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#ComputingEntitiy"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="WebServiceProf">
 <rdfs:subClassOf rdf:resource="#SoftwareProfile"/>
 </owl:Class>
 <owl:Class rdf:ID="Application">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#ComputingEntitiy"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Location">
 <rdfs:subClassOf rdf:resource="#ContextDomain"/>
 </owl:Class>
 <owl:Class rdf:ID="SensorProfile">
 <rdfs:subClassOf rdf:resource="#ProviderProfile"/>
 </owl:Class>
 <owl:Class rdf:ID="Validity"/>
 <owl:Class rdf:ID="Context"/>
 <owl:Class rdf:ID="ImageSen">

 135

 <rdfs:subClassOf rdf:resource="#SensorProfile"/>
 </owl:Class>
 <owl:Class rdf:ID="User">
 <rdfs:subClassOf rdf:resource="#ContextDomain"/>
 </owl:Class>
 <owl:Class rdf:ID="OutdoorLocation">
 <rdfs:subClassOf rdf:resource="#Location"/>
 </owl:Class>
 <owl:Class rdf:ID="ContextProvider"/>
 <owl:Class rdf:ID="AccessModel"/>
 <owl:Class rdf:ID="IndoorLocation">
 <rdfs:subClassOf rdf:resource="#Location"/>
 </owl:Class>
 <owl:Class rdf:ID="Time"/>
 <owl:Class rdf:ID="Hour"/>
 <owl:Class rdf:ID="Minute"/>
 <owl:Class rdf:ID="Second"/>
 <owl:Class rdf:ID="Date"/>
 <owl:Class rdf:ID="Service">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#ComputingEntitiy"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#ComputingEntitiy">
 <rdfs:subClassOf rdf:resource="#ContextDomain"/>
 </owl:Class>
 <owl:Class rdf:about="#Activity">
 <rdfs:subClassOf rdf:resource="#ContextDomain"/>
 </owl:Class>
 <owl:Class rdf:ID="KBaseProf">
 <rdfs:subClassOf rdf:resource="#SoftwareProfile"/>
 </owl:Class>
 <owl:Class rdf:ID="AudioSen">
 <rdfs:subClassOf rdf:resource="#SensorProfile"/>
 </owl:Class>
 <owl:Class rdf:ID="MotionSen">
 <rdfs:subClassOf rdf:resource="#SensorProfile"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="accessModel">
 <rdfs:domain rdf:resource="#ContextProvider"/>
 <rdfs:range rdf:resource="#AccessModel"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="provides">
 <rdfs:domain rdf:resource="#ContextProvider"/>
 <rdfs:range rdf:resource="#Context"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="accessMethod">
 <rdfs:range rdf:resource="#AccessMethod"/>
 <rdfs:domain rdf:resource="#AccessModel"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="time">
 <rdfs:range rdf:resource="xsd:time"/>
 <rdfs:domain rdf:resource="#Time"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hour">
 <rdfs:domain rdf:resource="#Time"/>
 <rdfs:range rdf:resource="#Hour"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="minute">
 <rdfs:domain rdf:resource="#Time"/>
 <rdfs:range rdf:resource="#Minute"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="second">
 <rdfs:domain rdf:resource="#Time"/>
 <rdfs:range rdf:resource="#Second"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID=”hasHour”>
 <rdfs:domain rdf:resource=”#Hour/>
 <rdfs:range>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="23"/>
 </xsd:restriction>
 </rdfs:range>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID=”hasMinute”>

 136

 <rdfs:domain rdf:resource=”#Minute/>
 <rdfs:range>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="59"/>
 </xsd:restriction>
 </rdfs:range>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID=”hasSecond”>
 <rdfs:domain rdf:resource=”#Second>
 <rdfs:range>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="59"/>
 </xsd:restriction>
 </rdfs:range>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="giveRightTo">
 <rdfs:domain rdf:resource="#Policy"/>
 <rdfs:range rdf:resource="#User"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasQuality">
 <rdfs:domain rdf:resource="#Context"/>
 <rdfs:range rdf:resource="#ContextQuality"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="resolution">
 <rdfs:range rdf:resource="#Resolution"/>
 <rdfs:domain rdf:resource="#ContextQuality"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="policy">
 <rdfs:range rdf:resource="#Policy"/>
 <rdfs:domain rdf:resource="#AccessModel"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasProfile">
 <rdfs:range rdf:resource="#ProviderProfile"/>
 <rdfs:domain rdf:resource="#ContextProvider"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="valid">
 <rdfs:range rdf:resource="#Validity"/>
 <rdfs:domain rdf:resource="#ContextQuality"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasDomain">
 <rdfs:range rdf:resource="#ContextDomain"/>
 <rdfs:domain rdf:resource="#Context"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="samplingRate">
 <rdfs:range rdf:resource="xsd:float"/>
 <rdfs:domain rdf:resource="#SensorProfile"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="samplingUnit">
 <rdfs:range rdf:resource="#Time"/>
 <rdfs:domain rdf:resource="#SensorProfile"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="ValidFrom">
 <rdfs:domain rdf:resource="#Validity"/>
 <rdfs:range rdf:resource="xsd:dateTime"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="ValidUntil">
 <rdfs:domain rdf:resource="#Validity"/>
 <rdfs:range rdf:resource="xsd:dateTime"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="ValidPeriod">
 <rdfs:range rdf:resource="xsd:int"/>
 <rdfs:domain rdf:resource="#Validity"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="date">
 <rdfs:range rdf:resource="xsd:string"/>
 <rdfs:domain rdf:resource="#Validity"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="vendor">
 <rdfs:domain rdf:resource="#ProviderProfile"/>
 <rdfs:range rdf:resource="xsd:string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="lengthPrecision">
 <rdfs:domain rdf:resource="#Resolution"/>
 <rdfs:range rdf:resource="xsd:string"/>

 137

 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="weightUnit">
 <rdfs:range rdf:resource="xsd:string"/>
 <rdfs:domain rdf:resource="#Resolution"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="serviceDomain">
 <rdfs:domain rdf:resource="#WebServiceProf"/>
 <rdfs:range rdf:resource="xsd:string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="Protocol">
 <rdfs:domain rdf:resource="#AccessMethod"/>
 <rdfs:range><owl:DataRange><owl:oneOf>
 <rdfs:List>
 <rdf:first rdf:datatype=”&xsd;string”>HTTP</rdf:first>
 <rdf:rest>
 <rdfs:List>
 <rdf:first rdf:datatype=”&xsd;string”>SOAP</rdf:first>
 <rdf:rest>
 <rdf:List>
 <rdf:first rdf:datatype=”&xsd;string”>FTP</rdf:first>
 <rdf:rest rdf:resource=”&rdf;nil”/>
 </rdf:List></rdf:rest>
 </rdf:List></rdf:rest>
 </rdf:List></rdf:rest>
 </owl:oneOf></owl:DataRange></rdf:range>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="ip">
 <rdfs:range rdf:resource="xsd:string"/>
 <rdfs:domain rdf:resource="#AccessMethod"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="to">
 <rdfs:range rdf:resource="xsd:int"/>
 <rdfs:domain rdf:resource="#Validity"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="channel">
 <rdfs:range rdf:resource="xsd:string"/>
 <rdfs:domain rdf:resource="#AccessModel"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="weightPrecision">
 <rdfs:domain rdf:resource="#Resolution"/>
 <rdfs:range rdf:resource="xsd:string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sensorType">
 <rdfs:domain rdf:resource="#ProviderProfile"/>
 <rdfs:range rdf:resource="xsd:string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="samplingRate">
 <rdfs:range rdf:resource="xsd:float"/>
 <rdfs:domain rdf:resource="#ProviderProfile"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="lengthUnit">
 <rdfs:domain rdf:resource="#Resolution"/>
 <rdfs:range rdf:resource="xsd:string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="physicalLocation">
 <rdfs:range rdf:resource="xsd:string"/>
 <rdfs:domain rdf:resource="#ProviderProfile"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="HTTPURL">
 <rdfs:domain rdf:resource="#HTTPAccess"/>
 <rdfs:range rdf:resource="xsd:anyURI"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="PortNumber">
 <rdfs:domain rdf:resource="#HTTPAccess"/>
 <rdfs:range>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1024"/>
 <xsd:maxInclusive value="65535"/>
 </xsd:restriction>
 </rdfs:range>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="providerID">
 <rdfs:domain rdf:resource="#ContextProvider"/>
 <rdfs:range rdf:resource="xsd:anyURI"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="spaceLocation">

 138

 <rdfs:domain rdf:resource="#ContextProvider"/>
 <rdfs:range rdf:resource="&hlt;Singapore"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="port">
 <rdfs:range rdf:resource="xsd:int"/>
 <rdfs:domain rdf:resource="#AccessMethod"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sampleRate">
 <rdfs:domain rdf:resource="#Resolution"/>
 <rdfs:range rdf:resource="xsd:float"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="reasoningTechnique">
 <rdfs:domain rdf:resource="#KBaseProf"/>
 <rdfs:range rdf:resource="xsd:string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="timeUnit">
 <rdfs:domain rdf:resource="#Resolution"/>
 <rdfs:range rdf:resource="xsd:string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="correctness">
 <rdfs:range>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0.0"/>
 <xsd:maxInclusive value="1.0"/>
 </xsd:restriction>
 </rdfs:range>
 <rdfs:domain rdf:resource="#ContextQuality"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="capacity">
 <rdfs:range rdf:resource="xsd:int"/>
 <rdfs:domain rdf:resource="#ContextQuality"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="cost">
 <rdfs:range rdf:resource="xsd:float"/>
 <rdfs:domain rdf:resource="#ContextQuality"/>
 </owl:DatatypeProperty>
</rdf:RDF>

 139

APPENDIX B RDQL GRAMMAR*

CompilationUnit ::= Query <EOF>

CommaOpt ::= (<COMMA>)?

Query ::= SelectClause (SourceClause)? TriplePatternClause
(ConstraintClause)? (PrefixesClause)?

SelectClause ::= (<SELECT> Var (CommaOpt Var)* | <SELECT> <STAR>)

SourceClause ::= (<SOURCE> | <FROM>) SourceSelector (CommaOpt
SourceSelector)*

SourceSelector ::= QName

TriplePattern
Clause

::= <WHERE> TriplePattern (CommaOpt TriplePattern)*

ConstraintClause ::= <SUCHTHAT> Expression ((<COMMA> | <SUCHTHAT>)
Expression)*

TriplePattern ::= <LPAREN> VarOrURI CommaOpt VarOrURI CommaOpt
VarOrConst <RPAREN>

VarOrURI ::= Var

 | URI

VarOrConst ::= Var

 | Const

Var ::= "?" Identifier

PrefixesClause ::= <PREFIXES> PrefixDecl (CommaOpt PrefixDecl)*

PrefixDecl ::= Identifier <FOR> <QuotedURI>

Expression ::= ConditionalOrExpression

ConditionalOr
Expression

::= ConditionalAndExpression (<SC_OR>
ConditionalAndExpression)*

ConditionalAnd
Expression

::= StringEqualityExpression (<SC_AND>
StringEqualityExpression)*

StringEquality
Expression

::= ArithmeticCondition (<STR_EQ> ArithmeticCondition |
<STR_NE> ArithmeticCondition | <STR_MATCH>
PatternLiteral | <STR_NMATCH> PatternLiteral)*

Arithmetic
Condition

::= EqualityExpression

Equality
Expression

::= RelationalExpression (<EQ> RelationalExpression |
<NEQ> RelationalExpression)?

Relational
Expression

::= AdditiveExpression (<LT> AdditiveExpression | <GT>
AdditiveExpression | <LE> AdditiveExpression | <GE>
AdditiveExpression)?

Additive
Expression

::= MultiplicativeExpression (<PLUS>
MultiplicativeExpression | <MINUS>
MultiplicativeExpression)*

Multiplicative
Expression

::= UnaryExpression (<STAR> UnaryExpression | <SLASH>
UnaryExpression | <REM> UnaryExpression)*

UnaryExpression ::= UnaryExpressionNotPlusMinus

 | (<PLUS> UnaryExpression | <MINUS> UnaryExpression)

UnaryExpression
NotPlusMinus

::= (<TILDE> | <BANG>) UnaryExpression

 | PrimaryExpression

PrimaryExpression ::= Var

 | Const

 | <LPAREN> Expression <RPAREN>

Const ::= URI

 | NumericLiteral

 | TextLiteral

 | BooleanLiteral

 | NullLiteral

* Available at “http://jena.sourceforge.net/RDQL/rdql_grammar.html”

 140

NumericLiteral ::= (<INTEGER_LITERAL> | <FLOATING_POINT_LITERAL>)

TextLiteral ::= (<STRING_LITERAL1> | <STRING_LITERAL2>) (<AT>
Identifier)? (<DATATYPE> URI)?

PatternLiteral ::=

BooleanLiteral ::= <BOOLEAN_LITERAL>

NullLiteral ::= <NULL_LITERAL>

URI ::= <QuotedURI>

 | QName

QName ::= <NSPrefix> ':' (<LocalPart>)?
Unlilke XML Namespaces, the local part is optional

Identifier ::= (<IDENTIFIER> | <SELECT> | <SOURCE> | <FROM> |
<WHERE> | <PREFIXES> | <FOR> | <STR_EQ> | <STR_NE>)

