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SUMMARY 
 

The injuries of the ligament and tendon are very common. Surgical reconstruction is often 

recommended because of poor intrinsic healing. The current methods of surgical 

treatment, including allografts, autografts and synthetic graft replacement exhibit limited 

success. Some limitations for these methods are donor site morbidity, rejection, infection, 

and fatigue failure. Tissue engineering offers the possibility of replacing damaged human 

tissue with functional neotissue (engineered tissue) with similar mechanical and functional 

characteristics. One approach of tissue engineering for replacing damaged tissue is to 

culture the cell–scaffold composite in a bioreactor in-vitro for a period of time before 

transplantation. 

The aim of this research is to design a bioreactor and to investigate the effect of cyclic 

strain on cell growth and effect of strain frequency on cellular morphology. A bioreactor 

was designed and fabricated using polycarbonate. Human dermal Fibroblast cells (HDFs) 

seeded on knitted PLGA scaffolds were strained with 1.8% strain and 0.1 Hz frequency. 

After two weeks straining at 4 hours per day, cell seeded scaffolds were harvested and 

analyzed for cell morphology, cell proliferation rate and RT-PCR analysis. 

When compared with unstrained samples, the shapes of cells are more elongated in 

strained sample and show alignment due to cyclic straining. The mean nuclei lengths of 

cells from strained and unstrained samples are 8.05 ± 2.39 µm and 7.46 ± 2.35 µm 

respectively. The cell proliferations in strained samples are also higher than in unstrained 

samples. The mRNA level of Collagen type I, collagen type III and Tenascin-C are also 

higher in strained sample. These show that cyclic mechanical straining has positive effects 

on cell growth. 
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NOMENCLATURE 

ACL,                                                   Anterior Cruciate Ligament 

CMFDA/CFDA,           5-Chloromethyl Fluorescein Diacetate 

DMEM,     Dulbecco’s Modified Eagle’s Medium 

DNA     deoxy-ribonucleic acid 

dNTP,      deoxynucleotides 

ECM,      Extracellular Matrix 

FBS,      Foetal Bovine Serum 

GAPDH,     Glyceraldehyde Phosphate Dehydrogenase 

ILM,      Inverted Light Microscopy 

LAD                                                  Ligament-Augmentation Device 

LSCM,      Laser Scanning Confocal Microscopy 

mRNA                                                 messenger ribonucleic acid 

PBS,      Phosphate Buffered Saline 

PCR,      Polymerase Chain Reaction 

PGA,      Poly (glycolic acid) 

PLA,      Poly (lactic acid) 

PLGA,     Poly (lactide-co-glycolide) 

PLLA,      Poly (l-lactic acid) 

RT-PCR,     Reverse-Transcriptase-mediated PCR 

SD,      Standard Deviation 

SEM,      Scanning Electron Microscopy 

UTS,     Ultimate Tensile Strength 
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Chapter 1. Introduction 
 
 

Ligaments and tendons are connective tissues in the body, joining bone to bone and bone 

to skeletal muscles, respectively and transmitting tensile forces between them. Injuries to 

ligaments and tendons are among the most common injuries in the body. Surgical 

reconstruction is often recommended because of poor intrinsic healing. The current 

methods of surgical treatments are allografts, autografts and synthetic graft replacement. 

Despite many improvements in these techniques, there remains significant limitation in 

our management of these conditions and substitutes are far from ideal and each technique 

has their specific problems and limitations. Some limitations for these methods are donor 

site morbidity, rejection, infection, and fatigue failure.  

Advances in tissue engineering now allow for new approaches to treat these ligament and 

tendon injuries. Tissue engineering offers the possibility of replacing damaged human 

tissue with functional neotissue (engineered tissue) with similar mechanical and functional 

characteristics. Currently there are two approaches to tissue engineering: one is to implant 

a cell–scaffold composite directly into the injured site, as such, the body acts like a 

“bioreactor”; the other is to culture the cell–scaffold composite in a bioreactor in-vitro for 

a period of time before transplantation. The in vitro bioreactor allows controlled 

introduction of biochemical and physical regulatory signals to guide cell differentiation, 

proliferation, and tissue development. As such, engineering of tissue ex vivo in a 

bioreactor offers several exciting prospects, such as better understanding of tissue 

development and the mechanisms of disease, off-the-shelf provision of essential 

transplantable tissue, and possible scale-up for commercial production of engineered 

tissues. 
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Mechanical stress plays a significant role in tissue formation and repair in vivo. Recently, 

more focus has been given to the utilization of mechanical signals in vitro either in the 

form of shear stress generated by fluid flow, hydrodynamic pressure or as direct 

mechanical stress applied to the cell seeded scaffold. 

Most of the previous studies are done on the investigation of the effect of mechanical 

stress on cell seeded collagen matrices. Only a few researchers [Altman et al, 2002 and 

Kwan, 2003] study the effect of cyclic mechanical strain on the cell seeded biodegradable 

polymer scaffolds. Therefore in this research, knitted PLGA scaffold was chosen to study 

the effect of cyclic mechanical strain on that cell seeded scaffolds. 

 

1.1  Objectives of this Study 

In this study, an attempt is made in designing a bioreactor for the study of the effect of 

mechanical straining parameters on cellular morphology, to provide a better understanding 

of condition for the in-vitro growth of engineering tissue by using knitted PLGA scaffold. 

The objectives are: 

(1) to design and fabricate a bioreactor for in-vitro engineering tissue and 

(2) to investigate the effect of cyclic mechanical strain on fibroblast cell growth in-vitro 

condition 

 

1.2 Thesis Organization 

The present chapter describes the background and objectives of this study. A brief 

summary of relevant literature survey on ligament and tendon tissues and existing 

bioreactor are discussed in chapter 2. The preliminary studies on the effect of cyclic 
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mechanical strain on different scaffold forms are described in chapter 3. Chapter 4 

describes the design and fabrication of the new bioreactor. Next, description of 

experimental work is given in chapter 5. In chapter 6, the results of the experiments and 

discussion are presented. Finally the conclusions and recommendation for future study are 

provided in chapter 7. 
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Chapter 2. Literature Survey 
 
 

2.1 Ligament and Tendon 
 
 
Ligaments and tendons are soft collagenous tissues. Ligaments connect bone to bone and 

tendons connect skeletal muscles to bone. The function of ligament is to maintain the 

stability of the joints in the musculoskeletal system and tendons serve to transmit tensile 

loads between muscles (Figure 2.1). Contraction of a muscle results in transmission of the 

load from muscle, via its tendon, to a bone across a joint, resulting in movement of the 

bone around the joints. This subjects the ligaments between the bones to strain. Thus, 

tendons operate to bring around movements of the joints, and ligaments prevent excessive 

movement of the joints and thereby provide stability. 

 

 
(a)                                                                            (b) 

 

Figure 2.1: (a) Tendons of the foot (b) Ligaments of the knee joints. 
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Ligaments and tendons are collagenous tissues with their primary building unit being the 

tropocollagen molecule [Viidik, 1973]. Tropocollagen molecules are organized into long 

cross-striated fibrils that are arranged into bundles to form fibers. Fibers are further 

grouped into bundles called fascicles which group then together to form the ligament 

(Figure 2.2). Collagen fiber bundles are arranged in the direction of functional need and 

act in conjunction with elastic and reticular fibers along with ground substance, which is a 

composition of glycosaminoglycans (GAG) and tissue fluid, to give ligaments their 

mechanical characteristics. In unstressed ligaments, collagen fibers take on a sinusoidal 

pattern. This pattern is referred to as a "crimp" pattern and is believed to be created by the 

cross-linking or binding of collagen fibers with elastic and reticular fibers. 

 

 

Figure 2.2: Schematic diagram of the structural hierarchy of ligament. 
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2.2 Biochemical Constituents 

The major constituents of ligaments and tendon are collagen, elastin, glycoproteins, 

protein polysaccharides, glycolipids, water and cells [Akeson et al, 1984]. Water makes up 

about 55% of wet weight of tendons and 60-80 % of wet weight of ligaments. Collagen is 

arranged in the form of fibers within a matrix of GAGs, thus imparting “fiber reinforced 

composite” like properties to the tissues [Ker et al, 1999]. The approximate compositions 

are given in Table 2.1. 

 

Table 2.1: Extra cellular matrix composition of tendons and ligaments (modified from 
Harrison’s Principle of Internal Medicine [Fauci et al, 2001]) 
 

 
Major constituents 

 
Approximate amount, 

% dry weight 
Characteristics or 

functions 

Type I collagen 80 Bundles of fibrils 

Type III collagen 5-15 Thin fibrils 

Type IV collagen, laminin, 
nidogen 

<5 In basal laminae under 
epithelium and endothelium 

Types V, VI, and VII 
collagens <5 

VII forms anchoring 
fibrils; others unknown 

Elastin, fibrillin <5 Provides elasticity 

Fibronectin <5 Associated with collagen 
fibers and cell surfaces 

Proteoglycans, hyaluronate 0.5 
Provide resiliency 
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2.3 Biomechanics 
 

The main function of ligaments and tendons is to transmit tensile loads across joints, 

largely in a uniaxial direction. Consistent with this function, their structure of aligned 

collagen fibers provides for load bearing primarily in one direction and contributes to 

highly anisotropic material properties. Their properties are usually described in the axial 

direction, and can be classified into two sub categories (1) structural properties and        

(2) viscoelastic properties. 

 

2.3.1 Structural Properties 

Structural properties of tendons/ligaments are extrinsic measures of the tensile 

performance of the overall structure. As a result, they depend on the size and shape of the 

tendons/ligaments, in addition to the variations of the unique properties from tissue to the 

insertion into bone. These properties are obtained by loading a tendon/ligament to the 

failure limit and are represented in the resulting load-elongation curve and stress- strain 

curve as shown in Figure 2.3. 

 
 

 

Figure 2.3: A
tendon/ligame

                  
 

              (a)                                                                   (b)
 typical (a) load-elongation curve and (b) stress- strain curve for 
nt. [Woo et al, 1998] 
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From the load-elongation curve (Figure 2.3(a)) the ultimate load P0 (N) is the highest 

load placed on the complex before failure; the ultimate elongation (mm) is the maximum 

elongation of the complex at failure; the stiffness (N/mm) is the slope of the load-

elongation curve between two defined limits of elongation; and energy absorbed at 

failure (N-mm) is the area under the entire curve which represents the maximum energy 

stored by the complex. At forces above 50% of ultimate load, tissue stiffness was nearly 

constant, and a pronounced “toe region” was observed only at forces below ~25% of 

ultimate load. Stiffness increased as the muscle–tendon unit was lengthened. 

 

The cross-sectional areas of tissues are measured with laser micrometry method, which 

was employed for accurate measurement of the tissues without deforming the cross 

section of tissues [Lee et al, 1988]. Figure 2.3(b) represents a typical stress-strain curve for 

tendons/ligaments. The ultimate tensile strength (UTS; N/mm2) is the maximum stress 

achieved; the ultimate strain is the strain at failure; the Young’s modulus (E; N/mm2 or 

MPa) is the tangent modulus in the linear region of the stress–strain curve; the strain 

energy density (MPa) is the area under the stress-strain curve. The peak stress to which a 

tendon is subjected varies according to its anatomical site and the species. Values obtained 

vary with the testing protocol and conditions, and are enumerated in Table 2.2 for some 

tendons and ligaments. 

 

Among adult mammalian limb tendons, the stress-in-life ranges from 10 to 70 MPa, with 

the most common stress value being approximately 13 MPa. Higher values of stress-in-life 

are found in few tendons such as the human Achilles tendon (67 MPa) [Ker et al, 2000]. 

The data for ultimate tensile strength in a ramp test to rupture are mostly in the range 50–
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100 MPa, ultimate strain has been reported to be in the range of 2–5% [Monti et al, 2003]. 

Human ACL has been shown to possess values of Young’s Modulus of 345.0 ± 22.4 MPa, 

UTS of 36.4 ± 2.5 MPa and ultimate strain of 15.0 ± 0.8 %[Weiss et al,2001]. 

 

Table 2.2: Structural properties of human tendons and ligaments (UTS: Ultimate 
Tensile Strength; E: Young’s modulus) [Woo et al, 1998]   
 

Tissue UTS (MPa) Ultimate Strain (%) E (MPa)

Anterior cruciate 
ligament (Knee) 13-46 9-44 65-541 

Patellar tendon (Knee) 24-69 14-27 143-660 

Achilles tendon 
(Ankle) 

14-61 24-59 65 

Inferior glenohumeral 
ligament (Shoulder) 

5-6 8-15 30-42 

Anterior Longitudinal 
ligament (Spine) 

8-37 10-57 286-724 

 

 

 

2.3.2 Viscoelastic Properties 

 

Biological materials, like ligaments and tendons, possess viscoelastic properties [Weiss et 

al, 2001]. Thus, the loading and unloading of a specimen yields different paths of the load-

elongation curve for each testing cycle, forming a hysteresis loop that represents the 

energy lost as a result of a non-conservative or dissipative process, as shown in Figure 2.4. 

This viscoelastic behavior is assumed to be due to complex interactions of the constituents 
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of the tissues, i.e. collagen, water, surrounding protein, and ground substance 

(composition of GAG). 

 

Figure 2.4: Cyclic load-elongation behavior shows that during cyclic loading, the loading 
and unloading curves do not follow the same path and create hysteresis loops indicating 
the absorption of energy; [Weiss et al, 2001]. 
 

Viscoelastic behavior is illustrated by two classic experimental tests: stress relaxation and 

creep tests. A stress relaxation test involves stretching the specimen to a constant length 

and allowing the stress to relax with time. A creep test involves subjecting a specimen to a 

constant force while the length gradually increases with time. Many researchers 

[Dehoff,1978 and Fung,1972] have modeled the results of these tests mathematically in 

order to better understand the time-dependent and nonlinear behaviors of ligaments and 

tendons. 

Stress relaxation properties are important characteristics of the dimensional stability of a 

given material. Observing mechanical properties is important in tissue engineering since 

engineered scaffold should mimic function of natural tendons/ligaments. It is expected 
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that after tissue regeneration, the scaffolds would simulate the viscoelastic behavior of 

natural tissues. 

 

2.4 Tendon/Ligament Injury 
 
2.4.1 Prevalence 
 
Tendons, such as the patellar tendon of the knee, the Achilles tendon of the foot, flexor 

digitorum profundus tendons of the hand, and ligaments, such as the collateral and 

cruciate ligaments of the knee, are frequently injured. Specifically, the anterior cruciate 

ligament (ACL) and the medial collateral ligament (MCL) of the knee (Figure 2.1(b)) 

account for as much as 90% of all ligament injuries at the knee in young and active 

individuals, primarily during sports activities. In the United States, more than 100,000 

patients per year undergo surgery to repair tendon or ligament injuries [Goulet et al, 

1997]. Tendon injuries can consist of tendinitis, which is an inflammation of the tendon, 

tendon laceration, or tendon rupture. 

 

2.4.2 Mechanism of injury 

Tendons and ligaments are injured primarily by two mechanisms: 

1). Single impact macro-trauma: Rupture of a tendon like the Achilles tendon generally 

occurs due to a sudden overload strain (more than about 8%, as shown in Figure 2.5) in 

the occasional athlete during an explosive push-off maneuver. Most frequently, these 

athletes are middle-aged males who are involved in only intermittent athletic activities. 

However, this injury has also been seen in young, high performance athletes. Another 

possible etiologic factor is a direct blow to the tendon during contraction.  
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Figure 2.5: Graph showing the stress-strain curve for tendon. Wavy lines indicate the 
wavy configuration of the tendon at rest, straight unbroken lines indicate the effect of 
tensile stresses, one or two broken lines indicate that the collagen fibers are starting to 
slide past one another as the intermolecular cross-links fail, and the set of completely 
broken lines indicate macroscopic rupture due to the tensile failure of the fibers and the 
interfibrillar shear failure. [Maffullin, 1999] 

 

2). Repetitive exposure to low magnitude force: Normal healthy individuals are estimated 

to walk approximately 1million–1.5 million strides per year. During locomotion, the in 

vivo repetitive loading of tendons in the lower limbs may induce damage. Extensive 

physical activity will incur damage which may exceed the regenerative ability of tendons 

and, therefore result in overuse injuries [Schechtman et al, 2002]. 

Tendinitis is one of the most common problems both in occupational and athletic settings. 

It has been estimated that overuse injuries are responsible for 30% to 50% of all sports 

injuries. Although the majority of patients respond well to conservative treatment 

following weeks or months of rest and therapeutic exercises, a percentage of patients do 
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not recover satisfactorily with this protocol and require surgery to restore function. The 

etiology of tendinitis is unknown but is thought to be related to repetitive overloads or 

overuse demands placed on tendons, leading to microscopic failure of collagen fibrils or 

bundles, and an inflammatory process usually ensues in symptomatic tissues [Woo et al, 

2000]. 

 

2.4.3 Healing and Re-injury 
 

Healing has been found to be a long and complex process that is subjected to local and 

external influences. Generally, the process involves several overlapping but discrete 

phases: the acute inflammatory or reactive response phase, the regenerative or repair 

phase, and the tissue remodeling phase. In the acute inflammatory response, the cellular 

and tissue responses to injury occur within approximately the first 72 hours following a 

given insult. The formation of healing matrix consisting of randomly aligned collagen, and 

amorphous ground substance can be seen during this early stage of the body’s response to 

injury. The repair and regeneration phase occurs from 48 to 72 hours until roughly 6 

weeks post injury. The healed matrix becomes progressively more organized with time, 

although electron microscopy has confirmed that the collagen fibrils laid down by the 

fibroblasts remain relatively disorganized within an amorphous ground substance. 

Subsequently, the remodeling phase is marked by tissue remodeling, lasting up to one year 

or longer after the time of the initial injury while never regaining the properties of the 

normal tendon/ligament, thus demonstrating the need for tissue engineering approaches. 

During the course of healing, the level of pain decreases gradually below a threshold when 

the patient feels comfortable again. During this period, which is usually around 3 to 5 
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weeks post-injury, the mechanical properties are still quite subnormal and exercising leads 

to re-injury (Figure 2.6). 

 

 

Figure 2.6: Re-injury in tendon and ligaments may occur when the pain-level is lower than 
pain threshold and healing is not complete. [Woo et al, 1988] 
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2.5 Current Therapy for Ligament 

Currently the therapeutic options to treat ligament injuries are autograft, allograft and 

synthetic material replacement. Autografts (tissue taken from the patient) of patellar 

tendons or hamstring tendons harvested from the patient at the time of surgery have 

produced the most satisfactory long-term results and are referred to as the “gold standard” 

[Fu et al, 1999]. The autografts have many advantages, such as avoidance of 

immunological and infectious problems of grafts rejection or disease transmission, quick 

incorporation, and good remodeling. Donor site morbidity remains the limiting factor of 

patellar tendon grafts, because it is often associated with pain, muscle atrophy, and 

tendonitis, resulting in prolonged rehabilitation periods [Weitzel et al, 2002]. 

 

Allografts (tissue taken from donor) is accompanied by immunological rejection, disease 

transmission and limited availability. Frozen allografts of ligaments with bony 

attachments frequently result in an immunological foreign-body response [Jackson et al, 

1993] that hinders tissue remodeling [Noyes et al, 1984 and Woo et al, 1988]. The risks of 

disease transmission and a lack of donors are significant problems of allografts. 

 

A variety of synthetic materials have been used for ligament replacement (e.g., Dacron, 

Gore-Tex, polypropylene-based Kennedy Ligament-Augmentation Device), but with 

limited success [Richmond et al, 1992, Moyen et al, 1992 and Amiel et al, 1990]. The 

Gore-Tex® ACL is made of a single strand of expanded polytetrafluorethylene that is 

wound into multiple loops. This prosthesis was designed to give immediate fixation with 

early load-bearing capabilities, thus promising early mobilization and return to activity. 
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Gore-Tex® graft ultimately failed from material fatigue owing to the lack of tissue 

ingrowth, likely the result of both the graft design and material properties; fraying at the 

bone tunnels and chronic effusions were observed [Markolf et al, 1989 and McCarthy et 

al, 1993]. 

The Dacron® ligament was designed as a hybrid prosthesis to solve the problems of 

stiffness (i.e., stress shielding) that led to high failure rates in previous devices[Richmond 

et al, 1992]. Although tissue ingrowth was significant, the graft did not provide knee 

stability because organized collagenous ingrowth was not observed, likely owing to stress 

shielding and the nondirectionality of the sheath covering. The Kennedy Ligament-

Augmentation Device® (LAD) was designed to provide protection to a weak portion of 

the quadriceps patellar tendon autograft using an over-the-top reconstruction as well as to 

the primary repair of the (e.g., partially torn) ACL. LADs had high rate of complications 

in primary ACL reconstructions (up to 63%) and experienced a delay in maturation 

because of stress shielding [Kumar et al, 1999]. 

 

2.6 Tissue Engineering 

 

Tissue engineering has been defined as “an interdisciplinary field that applies the 

principles of engineering and the life sciences toward the development of biological 

substitutes that restore, maintain or improve tissue function” [Langer et al, 1993]. There 

are two approaches in tissue engineering: (i) repair of small-scale injuries, such as damage 

to blood vessels or to walls of intestines, can be made by injecting individual patients or 
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donor cells, or small aggregates of these cells, together with a degradable scaffold directly 

into damaged tissue such that host cells are stimulated to promote local tissue repair; 

(ii) repair or replacement of more complex organs depends on growing tissues or organs in 

vitro by seeding synthetic scaffolds with patient or donor cells. Thus, there are three basic 

components in tissue engineering: (1) Cells; (2) Scaffold; (3) Bioreactors. 

 

2.6.1 Cells 

 

A key factor in the tissue-engineering approach to tissue repair and regeneration is the 

availability of appropriate cells. The presence of cells is crucial; this is because of their 

proliferation potential, cell-to-cell signaling, biomolecule production, and formation of 

extracellular matrix. The number of cells initially seeded strongly influence the nature of 

cell-mediated processes involved in tissue formation and the rate at which these 

developmental and physiological processes occur. It seems clear that some minimum 

threshold of the quantity of cells may be required at the repair site for normal neotissue 

formation. The cells can be autogeneic, allogeneic or xenogeneic; they can be 

differentiated cells, stem or progenitor cells, or cells that have been genetically modified 

to make specific molecules [Laurencin et al, 1999]. Cells used for ligament regeneration 

include skin fibroblasts, ACL fibroblasts, bone marrow stromal cells (BMSCs) [Van Eijk 

et al,2004]. 
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2.6.2 Scaffolds 

 

Paramount to an engineered tissue is the biomaterial from which the scaffold is created, its 

biological inertness, as well as its overall three-dimensional (3-D) architecture. As a result 

of the inherent difficulties associated with tissue grafts, several biodegradable polymeric 

systems have been used as materials for the engineering of load-bearing biological tissues. 

These include polyesters, polyanhydrides, poly(orthoesters), polyurethanes and 

polycarbonates among others. 

An ideal scaffold should possess the following characteristics: 

1. Biocompatibility and biodegradability; 

2. Porosity; 

3. Sufficient surface area for cell attachment, growth and proliferation; and 

4. Geometry that imparts the required mechanical properties; as new tissues 

generate, the cell-scaffold construct should closely simulate the mechanical 

properties of the natural tissue. 

In short, it has to mimic the natural extra-cellular matrix. 
 

Typically, scaffolds created from biodegradable polymers are fabricated using particulate 

leaching, textile technologies, or three-dimensional (3D) printing techniques. In the 

traditional particulate leaching method, a matrix is created by casting a polymer solution 

over water-soluble particles such as NaCl salt, evaporating the solvent, and leaching out 

the salt afterwards to yield a porous scaffold. However, the interconnectivity between the 

pores is low and difficult to control, and the pore walls often have uncontrollable 

morphologies [Yang et al, 2001]. Textile technologies can be used to fabricate woven or 
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non-woven fabrics as scaffolds [Karamuk et al, 1999]. Knitted PLGA scaffolds [Ouyang 

et al, 2003] have high porosity and internal connective spaces compared with a braided 

structure, especially when it is under tension. These spaces allow enough cells to be 

seeded initially and permit ECM to form and deposit therein during the repair process; this 

helps in functional integration of the engineered tissue into the surrounding tissues.  

 

2.6.3 Bioreactor 

 

Currently there are two approaches to tissue engineering: one is to implant a cell–scaffold 

composite directly into the injured site, as such the body acts like a “bioreactor”; the other 

is to culture the cell–scaffold composite in a bioreactor ex vivo for a period of time before 

transplantation. The ex vivo bioreactor allows controlled introduction of biochemical and 

physical regulatory signals to guide cell differentiation, proliferation, and tissue 

development. Engineered tissue, cultured in a bioreactor can provide a basis for 

quantitative in vitro studies of tissue development. It is also possible to produce 

engineered tissues commercially by using appropriate bioreactor. 

 

2.7 Existing Straining Bioreactors 

2.7.1 Cell Stretcher 

The dual-stretch device as shown in figure 2.7 was designed by Yost et al (2000). This 

device applied a linear strain by displacing a 3-cm x 6-cm rectangular membrane that was 

clamped along the short sides (3cm) with the long sides (6cm) left free. Two versions of 

the device had been built: a single and dual unit. Each device used standard 150-mm 
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culture dishes as the cell culture vessel. The dual-stretch unit consisted of a poly amide-

imide base plate that fits inside a standard laboratory 150-mm culture dishes. The fixed 

end of the clamping mechanism was a press-fit poly-ether-etherk-etone (PEEK, DSM) rod 

assembly. The silicone rubber stretch membrane (0.01 in. thick, gloss finish) was attached 

using polytetrafluorethylene (PTFE) snap-on clamps. The displacement end of the 

clamping mechanism was a PEEK dual-rod slider mechanism. The membrane was 

clamped to one rod on the slider. A Tin -coated stainless steel yoke assembly [C] was 

attached to the other rod on the dual-rod slider. Motion was applied to the slider through 

the yoke assembly by a 0.1-in. per turn lead screw cartridge assembly. A hybrid stepping 

motor (1.8° step) [A] was attached to the lead screw [B] to supply the force to rotate the 

screw. The motor was controlled by a hybrid stepping motor indexer and programmable 

controller. The indexer was set to micro-step at 1/125 step per pulse. The indexer used a 

proximity switch to identify the mechanical home position. The culture dish and lead 

screw were attached to an aluminum base plate with a polycarbonate dust cover and could 

be installed in an incubator. The motion profile was programmed into the controller with a 

laptop. Two motion profiles were programmed: static and cyclic. For constant or static 

stretch, the user provided the required displacement. The stretcher operated to that 

displacement and held it there until the user ended the test, at which time the stretcher 

returned to the zero position. For cyclical stretch, the user provided the stretch 

displacement, frequency, and duration. After the set duration, the stretcher returned to the 

zero displacement position. The cardiac fibroblasts were allowed to attach for 24 h and 

then loaded in the stretcher apparatus to begin stretching. Stretch conditions were 3%, 6%, 

and 12% stretch at frequencies of 0 (static), 5 and 10 cycles/min. Cells were stretched for 

12 h and then harvested at the end of the 12-h period. All stretch frequencies were 
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continuous throughout the 12-h period. The experimental controls were cells plated on the 

aligned collagen-coated membranes but not stretched. The fibroblasts responded with an 

increase in β1- integrin at 3% stretch and a decrease at 6% and 12% stretch. 

The limitation of this system is that only two samples could be strained in this system and 

thus poses a limited number of test samples available for analysis after each testing. 

 

 

 

Figure 2.7: Schematic of the cell stretcher. The cell stretch membrane is placed in between 
the PEEK slider components and clamped with PTFE clamps. [Yost et al, 2000] 
 

2.7.2 Cell Straining system driven by Linear Actuators 

 

Figure 2.8 shows the schematic diagram of the cell straining system designed by Cacou et 

al (2000) from University College London medical school. There are two main 

components: a controlled loading system and culture chambers within a tissue culture 

incubator, creating six loading stations. The tissue culture incubator contained two level 

platforms, each supporting three Perspex culture chambers. Each of the chambers was 

                  
  21                        



held between two restraining bars, and was linked by parallel shafts to two linear motors. 

The two linear motors with limit switches were placed one above the other on two 

platforms outside the incubator. Displacements of each linear motor, controlled by 

appropriate software, were transmitted via a single shaft through the incubator to each of 

the stations. Latex bellows were attached to each shaft and the incubator. Six identical 

dermal fibroblasts-seeded collagen gels were tested simultaneously in tension, each 

gripped within a chamber. The gripping mechanism comprised two 3mm-diameter 

stainless steel posts mounted vertically to loop through the specimen. Six 5N load cells 

were conditioned and amplified by a multi-channel transducer conditioner and amplifier, 

digitised by a 12 bit analogue to digital converter and stored on the hard disk of a PC. A 

program, written in C++, was used for data acquisition and processing. The specimens 

were subjected to strain regimes for 24 hours at a frequency of 1Hz. These gels were 

subjected to a cyclic strain of 10% superimposed on two separate tare loads of 2 and 

10mN, while being maintained in cell culture conditions. The computer controlled 

apparatus was shown to be capable of monitoring the individual loads on six specimens 

simultaneously, to an accuracy of 0.02mN. Following cyclic loading, the cell seeded 

collagen gels exhibited an increase in structural stiffness compared with the unloaded 

controls. 

In this system the shafts were used to join the motors (outside the incubator) and cell 

chambers (inside the incubator) and thus modification of incubator was needed. Moreover 

proper sealing of the holes, where the shafts passed through, is very crucial in maintaining 

the sterility of the cell culture environment. 
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Figure 2.8 Schematic diagram of the cell straining system, showing the arrangement for 
data acquisition and control [Cacou et al, 2000] 
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eccentric disk that was driven by a motor and connected to the crank rotated. The 

frequency and amplitude of cyclic strain were regulated by controlling the speed of motor 

rotation with a controller and the position of the crank connection to the eccentric disk, 

respectively. SMCs were subjected to cyclic strain in vitro using custom-made strain units. 

The seeded PGA fibre-based scaffolds were clamped in the tissue culture chamber and 

subjected to cyclic strain by movement of the crank back and forth as the eccentric disk 

connected to the crank rotates. The strain units were placed in a humidified incubator with 

5 percent CO2 at 37°C. The seeded scaffolds were subjected to cyclic strain at a frequency 

of 1 Hz (1 cycle per second) and amplitude of 7 percent of initial length, which are similar 

to those of SM tissues in vivo for up to 20 weeks. As a control, seeded scaffolds were 

fixed at only one end of the clamps and moved back and forth at the same frequency and 

amplitude as the mechanical strain conditions. Smooth muscle tissues engineered with 

type I collagen sponges subjected to cyclic strain were found to contain more elastin than 

control tissues, and the SMCs in these tissues exhibited a contractile phenotype. In 

contrast, SMCs in control tissues exhibited a structure more consistent with the non-

differentiated, synthetic phenotype. 

The actuating mechanism of this system is based on crank system, so the system limits the 

range of extension that can be applied to the scaffold according to the size of eccentric 

disk. In addition, the design and fabrication of the crank and eccentric disk require precise 

accuracy for a smooth straining movement. 
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Figure 2.10: Apparatus utilized to subject scaffolds to cyclic strain. The scaffolds were 
subjected to cyclic strain by periodical movement of a crank back and forth as an eccentric 
disk that was driven by a motor and connected to the crank rotated. [Kim et al, 2000] 
 

2.7.4 Spool design Bioreactor 

 

Figure 2.11: Spool design bioreactor 

 

Kwan, (2003) from National University of Singapore designed a bioreactor with spool. 

The actuating unit from that design is made up of a stepper motor (PM 35S-024, Minebea 

Hamamatsu) actuating via a pair of spur gear with the gear ratio of 0.33. The motor is 

controlled by standalone microprocessor where the control program can be stored. The 
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knitted PLGA scaffolds seeded with Human dermal fibroblast cells (HDFs) were attached 

to spool. Another end of cell seeded scaffold is fixed in Petri dish and scaffolds were 

strained by rotating of spool in a 1.8% strain amount and 1 Hz frequency. A force and 

displacement monitoring system is integrated in this system. Cell seeded scaffolds were 

strained 4 hour per day for two week period. The bioreactor can strained three tubular 

form scaffolds together. Another set of cell seeded scaffolds are clamp on the clamp 

fixture for control (without strain). After two week straining, the results show that cell in 

strained sample have more elongated morphology and better alignment as compared to  

control sample. 

The design of this bioreactor is very simple and easy to fabricate. The limitation of this 

system is that the straining frequency of the bioreactor could not be set to lower than 1 Hz 

frequency. 

 

2.7.5 Advanced Bioreactor 

 

Figure 2.12: An overview of the bioreactor (left), the cylindrical testing compartment 
(middle) and the collagen gel scaffold (right).[Altman et al, 2001] 
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Altman et al (2001) from Tufts University had designed a bioreactor (Figure 2.12) that can 

accommodate up to 12 individual tubes (2.5 cm in diameter × 4 cm long), each providing 

an environment for the growth of one vertically oriented ligament attached between two 

anchors positioned 2 cm apart. Tube dimensions and anchor placement were selected 

based on culture volumes previously used to grow ligaments (20 ml per ligament), and the 

dimensions of anterior cruciate ligaments in goats (approximately 16 mm long). This 

novel bioreactor was capable to provide a combined tensile-compressive and torsional 

loading to mimic the unique combination of forces to which a ligament is exposed during 

physiological function and repair in vivo. Translational strain (10%, 2 mm) and rotational 

strain (25%, 90º) were applied concurrently at a frequency of 0.0167 Hz (one full cycle of 

stress and relaxation per minute) to collagen gels seeded with bone marrow-derived cells. 

The complete bioreactor system was placed in an incubator (37˚C, humidified, 5% CO2) 

and operated by using an external computer. Software used to control the device was 

written by using C programming language and Borland C++ Compiler Version 5.0. For 

both bovine and human cell studies, mechanical stimulation was applied after an initial 

period of 2 days allowed for gel hardening. Coral and cancellous bone anchors were used 

in the reactor tubes to mimic ligament-bone attachment in vivo and to support tissue in 

growth in vitro. Collagen gels of 2-cm long between anchors were seeded in a 2.54 cm 

tube with human bovine bone marrow-derived cells and were cultured up to 21 days, with 

or without mechanical loading.  

The application of mechanical stress over a period of 21 days up-regulated ligament 

fibroblast markers, including collagen types I and III and Tenascin-C, fostered statistically 

significant cell alignment and density and resulted in the formation of oriented collagen 
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fibers, all features characteristic of ligament cells. Mechanical stimulation of ligaments 

based on bone marrow-derived cells induced elongated, ligament-like cell morphology, 

and cell alignment in the direction of loading, in contrast to the round and randomly 

distributed cells in static controls. Cell alignment in the direction of mechanical loading 

was 2.5-fold higher as compared to that found in the control. Helically organized collagen 

fibres formed in the direction of the applied load at the periphery of the mechanically 

stimulated ligaments, a feature absent in the controls.  

Another version of the same bioreactor is shown in Figure 2.14 (Altman et al, 2002). 

Twenty-four silk fiber matrices seeded with human bone marrow stromal cells (hBMSCs) 

housed within reactor vessels were maintained at constant temperature (37°C), pH (7.4), 

and pO2 (20 %) over 14 days in culture. The system supported cell spreading and growth 

on the silk fiber matrices based on SEM characterization, as well as the differentiation of 

the cells into ligament-like cells and tissue.  

In this modified version, a multi-component environmental chamber (Figure 2.13b) was 

built to provide precise pH and pO2 control to all 24 reactor vessels via silicone tubing gas 

exchangers. Environmental chamber components included 12 individual chamber sections 

designed to house two coils per section, an additional chamber to house two 

thermocouples to measure chamber wall and internal temperature, a gas mixing plenum 

with 3 gas inlets, a gas distribution manifold and a chamber outlet port. Each chamber 

section provided, on opposite faces, an inlet and outlet port for recirculating vessel 

medium. The chamber sections were designed as independent components to provide 

flexibility to the system. Chamber sections were stackable and removable for quick turn-

around, sterilization without entire system shutdown, and easy clean up in the case of 

leaks. The entire chamber or individual sections, including inlet and outlet ports, could be 
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steam sterilized. Hose dimensions and length were chosen to achieve vessel medium 

equilibrium with the gas environment of the environmental chamber over the range of 

possible medium flow rates provided by the pump system. Vessel medium was 

recirculated via a multi-drive micro bore peristaltic pump (12 channels per pump). 

Chamber atmosphere was maintained equilibrium through the silicone gas permeable hose 

at 1.7 ml/min; therefore, control over inlet gas flow rates could be used to adjust the 

dissolved gas concentrations of the reactor vessels. Independent mass flow controllers 

individually controlled the flow rates of the three gasses into the mixing plenum. The 

ratiometrically correct mixture was then distributed into the chamber by the orifices of the 

gas inlet distribution manifold that had been sized for even distribution of the gas into the 

chamber taking into account the mass flow rate and the associated drag of the gas mixture. 

The gas permeable platinum-cured silicone hose of the coils allowed diffusion of the gases 

into the medium. Thus, pH and dissolved pO2 were maintained at the same levels in all 

reactor vessels. The chamber gas outlet tube remains opened to allow gas flow through the 

chamber maintaining steady state. Low inlet gas flow rates were maintained such that 

inexpensive commercially available CO2, O2, and N2 tanks would last for approximately 3 

weeks. 

In this system, there is a possibility for serum proteins to deposit on the interior wall of 

tubes. Any proteins deposition will affect the flow of the medium and thus compromise 

the proper functioning of the nutrient and gaseous exchange system. 
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Figure 2.13: (a) Schematic illustration of the bioreactor system, (b) Environmental 
chamber prior to closure to show the internal silicone hose coils and gas inlet distribution 
manifold [Altman et al, 2002] 

 

 

Figure 2.14: Functioning bioreactor system includes: (a) peristaltic pump,(b) 
environmental gas chamber and, (c) the two bioreactors containing 24 vessels. [Altman et 
al, 2002] 
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Chapter 3. Preliminary Study 
 

 
Before  designing and fabricating the new bioreactor, a preliminary study was done by 

using existing bioreactors [Darrel, L.C.L., 2002/2003 and Kwan, M. S.,2003].The 

objective of this study is to investigate the effect of cyclic mechanical strain on different 

forms of scaffolds (Tubular form and sheet form scaffolds). Histology examination was 

done after two weeks straining on the cell seeded scaffolds. The cell morphology was 

investigated and results of strained samples were compared with unstrained samples in 

both forms of scaffolds. 

 

3.1 Scaffold preparation and Cell Culture 

 

One sheet form scaffold for each strained and unstrained group was used and two tubular 

form scaffolds were used for both groups. All the scaffolds were knitted from 3-yarns 

PLGA fibres. (Refer to section 5.2 for more details). For tubular form scaffold, 12 needles 

from knitting machine were used to knit the scaffold. The width of scaffold was around 

2cm before rolling it up into the tubular form. When rolled up, the diameter of scaffold is 

about 5 mm. For sheet form scaffold, 24 needles from knitted machine were used. The 

width of sheet form scaffold was approximately 35 mm (Figure 3.1). 

 

 Human dermal fibroblasts (HDFs) cells were used in this experiment. Cells were cultured 

and sub cultured until it reached the required amount. (Refer to section 5.1 for more 

detail). Approximately 12 millions cells were seeded on the 50mm length of tubular form 
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scaffold in both strained and unstrained group. In sheet form scaffolds, approximately 20 

millions cells were seeded to cover larger area (50mm × 20mm). 

 

     

 

 

3.2 Bioreactor setup and Cell see

 

All parts of bioreactors were sterilised

followed by the swabbing of 70% ethano

for 1 hour. After that, all bioreactors part

The basic straining mechanism of biore

scaffolds are the same. One end of the 

scaffolds was fixed to the load cells wh

directly connected to the stepper motor 

bioreactor for tubular form scaffold, the

gears. By turning on the motor, the cycli

For unstrained samples, the clamping fix

tubular form and sheet form scaffolds. T

samples had the similar stretched profile

                                              
                                                                  
Figure 3.1: Tubular form and Sheet form
scaffold used in preliminary study. 
 
 

ding 

 under ultraviolet radiation for 30 minutes and 

l. The scaffolds were sterilised with 70% ethanol 

s are assembled inside a biological safety cabinet. 

actors for tubular form scaffolds and sheet form 

scaffolds was fixed in spools and another end of 

ich were then placed in a Petri dish. The spool is 

in the bioreactor for sheet form scaffolds. In the 

 spool is connected to the motor by a pair of spur 

c strain was applied on the scaffolds. 

tures as shown in figure 3.2(a) were used for both 

his was to ensure that both strained and unstrained 

 during the whole experiment. 
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Fibrin Glue, 1 ml kit, (TisseelTM Co. Hyland Immuno, Baxter) was used as a temporary, 

biodegradable adhesive for the cells onto the scaffolds. (Figure 3.2) 

 
 
 

   
  (a)    (b)    (c) 
 
Figure 3.2: Cell seeded scaffolds; (a) unstrained samples, (b) bioreactor for sheet form 
scaffold, (c) bioreactor for tubular form scaffold  
 
 
3.3 Cyclic Straining and Histology examination 
 

All the samples were placed in humidified incubator (5% CO2, 37˚C, and 95% humidity). 

After cells seeding, no cyclic straining was applied to the scaffolds within the first 3 days 

to allow a good cell adherence to be established before any straining was conducted. The 

system was programmed to apply a cyclic strain of 1.8% with a frequency of 1 Hz. Three 

days after cell seeding, cyclic mechanical strain was then applied to the scaffolds. The 

cyclic straining was set up constantly for 4 hours per day for a 2 week period. The culture 

medium was changed every three days to maintain a balanced level of nutritional contents 

of the medium. 

Upon completion of two weeks of cyclic straining, scaffolds from strained and unstrained 

groups were washed with PBS and then fixed in 4% Formalin for one day. The samples 

were then stained with Haematoxylin & Eosin (H & E) stain using paraffin sectioning. 
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Histology examination was conducted on both transverse and longitudinal sections. 

Quantitative measurements (cell nuclei length and orientation angle) were conducted from 

longitudinal section in both tubular form and sheet form scaffolds.  

For the measurement of length, the longest dimension of the selected cell nuclei was 

considered as the length of the cell. The average length of a normal cell nucleus without 

elongation falls in the range between 5µm and 10µm. For a more realistic analysis, cells 

with their lengths that fall between 5µm and 15µm were chosen for all quantitative 

measurements. 

In the case of the orientation of the cell nuclei, the direction of the straining axis (as in 

strained group) or longitudinal axis (as in unstrained group) was needed to be defined. The 

orientation angle was defined as the angle between the major axis of each cell nucleus and 

straining axis or longitudinal axis in strained group and unstrained group respectively. The 

clockwise angle from straining axis and longitudinal axis was measured as positive 

orientation angle and anticlockwise angle from these axes was measured as negative 

orientation angle (Figure 5.11). The orientation angle was then expressed as ±0-90°. The 

number of cells whose orientation angles fall in the range of ±5°, ±10° and ±30° was 

counted and compare to each group. (Refer to section 5.5.3 for details on procedure) 
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Major axis of cell 

(- Orientation angle) 

(+ Orientation angle) 

Straining axis or longitudinal axis 

Figure 3.3: Explanation of cell orientation angle 
 

 

3.4 Results and discussion 
 
 
3.4.1 Transverse section 
 
       

  

Scaffolds Cells 

  (a)       (b) 
Figure 3.4: Transverse section of tubular form scaffolds from strained group after two 
weeks of straining shows cell growth was mainly found at the periphery;(a) 40X 
magnification ,scale bar = 500 µm, (b) 100X magnification, scale bar = 250 µm 
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Scaffolds

Cell

 
Figure 3.5: Transverse section of sheet form scaffolds from strained group after two weeks 
of cyclic straining (Magnification 100X, scale bar = 200 µm) 
 
 
Transverse sections of tubular form scaffold show that the cell growth was mainly found 

at the periphery (Figure 3.3(a)). One possible reason for this observation is that the 

nutrients (CO2, O2) available for the cells from the interior part of the scaffold may not be 

enough. In this condition, nutrients diffusion into the construct resulted in a gradient of 

nutrients from exterior to interior. Cells in the interior of the matrices were likely to grow 

slower than those on the surfaces of the matrix, and this enhanced the lower cellularity and 

less even cell distribution. [Kim et al, 1997]. In sheet form scaffolds, similar problem did 

not occur because nutrients could reach to every part of the scaffolds. This kind of nutrient 

gradient problem may be solved by using perfusion system which allows the nutrients to 

pass through to the core of the scaffolds. 

 

3.3.2 Longitudinal Section 

 
Figure 3.5 shows the longitudinal sections of histology staining for all groups of scaffolds. 

The cells of strained samples from both tubular form and sheet form scaffolds show more 

elongated morphology and better alignments than cells from unstrained samples. 
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According to the quantitative measurements, the length of cell nuclei in strained and 

unstrained samples of tubular form scaffolds are 7.95 ± 2.93 µm (Mean ± Standard 

Deviation) (n=1855) and 7.19 ± 2.33 µm (n=1933) respectively. That is the cell from 

strained samples is 10.8% longer than that of unstrained sample.  

 

In sheet form scaffold, the cell nuclei length of strained samples is about 8.87 ± 2.91 µm 

(n=1825) while cells from unstrained sample have length of 7.46 ± 2.35 µm (n=1935). 

This finding shows that the cells from strained samples are 18.9 % longer than that of 

unstrained sample in sheet form scaffolds.  

 

These observations suggested that the cyclic mechanical strain affects cell morphology as 

it causes a more elongated cell. In the sheet form scaffolds, the mean cell nuclei length of 

strained samples is 18.9% longer than that of unstrained sample. In the tubular form 

scaffolds, the mean cell nuclei length of strained samples is only 10.8% longer than that of 

unstrained sample. These findings suggested that the better effect of cyclic mechanical 

strain occurred for sheet form scaffolds. Actually, there is more space for cell growth 

inside the tubular form scaffolds as compare to sheet form scaffold. The cells from tubular 

form scaffolds also can growth to the perpendicular direction of the straining direction 

while the cells from sheet form scaffold can growth only on the scaffold surface. So the 

cell from tubular form scaffold processes more chance to growth to the other directions 

rather than strained direction as compare to sheet form scaffolds. This fact may be the 

reason of why the better effect of cyclic mechanical strain occurred for sheet form 

scaffolds. 
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    (a: scale bar=100µm)   (b: scale bar = 200 µm ) 

(Longitudinal section of Tubular form scaffolds, 100X) 
 

  
 (c: scale bar=100µm)    (d: scale bar=100µm) 

(Longitudinal section of Sheet form scaffolds, 200X) 
 

Figure 3.6: Longitudinal section of tubular form scaffolds and sheet form scaffolds after 
two weeks of cyclic straining; (a & c) Strained samples, (b& d) Unstrained sample. 
 
 
In the case of cell alignment, the orientation angles of cells were measured and the number 

of cells where orientation angle fall in the specific ranges was counted and compared in 

each group. Table 3.1 shows percentage of cells from each group which fall in the specific 

orientation angle range. More cell populations from strained samples fall in the specific 

orientation angle compared with unstrained samples in both tubular form and sheet form 

scaffolds. It shows that the cells from strained sample are more aligned than unstrained 

sample in both forms of scaffolds due to applied cyclic strain. The difference of cell 
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population in each orientation angle between strained and unstrained samples of sheet 

form scaffold is larger than that in tubular form scaffolds. This seems that cyclic 

mechanical strain is more effective on sheet form scaffolds. 

 

 
Table 3.1: Percentage of cells in each orientation angle for all sample groups 
 
 
 

Orientation angle  
±30˚ ±10˚ ±5˚ 

Strained sample 65.2% 28.7% 14.1% 

Unstrained sample 63.7% 25.8% 13.4% Tubular-form 
Scaffold 

% difference 1.5% 2.9% 0.7% 

Strained sample 50.3 % 19.8 % 9.5 % 

Unstrained sample 38.1 % 13.2 % 5.9 % Sheet-form 
Scaffold 

% difference 12.2 % 6.6 % 3.6 % 
 
 
 
According to the results of this preliminary study, it is clear that application of cyclic 

mechanical strain cause more elongated cells and better alignment as compared with 

unstrained samples. Moreover the effect of cyclic mechanical strain is more significant for 

sheet form scaffolds. 
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Chapter 4. Design and Fabrication of Bioreactor 
 

One of the objectives of this research is to develop a bioreactor for the in-vitro engineering 

of soft tissues. The existing bioreactor have some limitations; (i) the bioreactor could 

strain only one sheet form scaffold, (ii) the minimum straining frequency is limited at 1-

Hz. To fulfill the objective of this research and to solve the limitation of existing 

bioreactor, a new bioreactor was designed and fabricated. This design will assist in the 

study of the effect of varying straining parameters on the cellular response. By studying 

the effect of straining parameter on cellular response, we will know the optimum 

condition for the cell growth under in-vitro conditions. 

 
4.1 Design Criteria 
 
According to the preliminary study, the results show that cyclic mechanical strains have a 

better effect on sheet form scaffolds as compared to tubular form scaffold. The cell from 

sheet form scaffolds show more elongated cells and better alignment. In this study, sheet 

form PLGA scaffolds were chosen for the whole experiment. 

 

Ideally, a tissue engineering bioreactor must provide; 

1- an appropriate environment (temperature, humidity), the maintenance of 

biochemical condition (pH, pO2, concentration of nutrients ); 

2- sufficient metabolic transport to and from the developing tissue; 

3- Structurally defined support for cell attachment and tissue formation; [Altman et 

al, 2002] 
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In this research, all the cell cultures were done inside an incubator (Sanyo) which can 

maintain the appropriate environment for cell culture (5% CO2, 37˚C and 95% humidity). 

To get sufficient metabolic transport for the growing tissue, sheet form scaffolds are used 

and the culture medium is changed (100%) every 3 days. The designed bioreactor can 

support various straining parameters. The straining frequency and straining value are 

adjustable. 

 

The following criteria are used in the design of the bioreactor; 

1- The bioreactor must be able to stimulate at least three scaffolds at the same time. 

2- It must be possible to operate for at least a two-week time period without the need 

for any maintenance in a humid incubator environment. 

3- All material used in this design must be biocompatible and resistant to corrosion. 

4- The straining parameters (frequency and amount of strain) must be adjustable.  

5- The design must be simple and easy to assemble. 

 

 
4.2 Material selection 
 
 
The material used in the bioreactor must withstand the highly humid environment in the 

bioreactor as well as high temperature and pressure in the steam autoclave machine. 

Moreover, the selection for the parts that come into direct contact with the culture medium 

and scaffolds is also crucial. The incubator environment is constantly maintained at 5% 

CO2, 37˚C and 95% humidity. In such a highly humid environment, most of the metals 

will corrode. The steam autoclave operates at a temperature range of 110-120˚C and 0.1 
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MPa. Hence, materials used in the design must be able to withstand such a high 

temperature and pressure level without any distortion. The dimensional stability of the 

bioreactor parts is also important as the input strain is directly portion to the size of the 

spool. 

The material selection is done based on following requirements: 

1. Materials must be biocompatible 

2. Must possesses good machinability 

3. Must be able to autoclave  

4. Must be corrosion resistant 

5. Must have low water absorption and be able to withstand high temperature 

6. Must be compatible with alcohol used in sterilization 

 

After some consideration, plastics are preferred to metals due to its better machinability 

and biocompatibility. Table 3.1 shows some physical properties of some possible plastics 

to be used in this design. Among these plastics, polycarbonate is chosen for all parts of the 

bioreactor because the properties of polycarbonate meet the design requirements. Medical 

grade stainless steel screws (Stainless steel grade 316L) are chosen for the screws needed 

in the bioreactor. 
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Table 4.1: Physical properties of various suitable plastics; (· · mean steam Autoclavable, X 
mean not autoclavable) [extracted from www.nuncbrand.com] 
 

 

 

4.3 Proposed Bioreactor design 
 
 
A proposed design was made during this research. This design is a modified design of the 

bioreactor proposed by a final year undergraduate [Darrel, 2002/03]. In this design, 4 

sheet form scaffolds could be strained at the same time. The spool is directly connected to 

the stepper motor at one end and another end of the spool is supported by a RVDT. One 

end of the scaffolds is attached to spool and another end attached to the scaffolds clamp 

system (Figure 4.1). The cyclic mechanical strain is applied to the scaffolds by rotating the 

motor. 
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Scaffolds 
Clamp system 

Spool system 

RVDT 

Stepper Motor 

Petri Dish 

 

Figure 4.1: Proposed Bioreactor design. 

 

There are two main disadvantages in this design:  

a) The fabrication for scaffolds clamp system and spool assembled parts may too 

complicated and the part will face distortion after fabrication and  

b) All scaffolds are stimulated in the same chamber 

The scaffold clamp system and spool assemble parts from this design include many teeth 

which may be difficult to fabricate. When the scaffolds are attached to this part, these 

teeth may break some PLGA fibres from the scaffolds. The length of this clamp system is 

quite long while the thickness and width is quite small (Figure 4.2). This system will face 

distortion after fabrication. Another disadvantage of this proposed design is that all the 

scaffolds are stimulated in the same chamber (Petri dish). This may cause cross 
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contamination. If one scaffold gets contaminated, the rest of the scaffolds will be affected. 

If small separate chambers are used for each scaffold, we can reduce the chance of cross 

contamination. 

 

   
        (a)            (b) 
 
Figure 4.2: (a) Spool assembled parts; (b) Scaffolds clamp system  
 
 
 
4.4 Fabricated Bioreactor design 
 
In this design, the cyclic mechanical strain is applied to the scaffolds by the rotation of the 

spool, which is driven by a stepper motor. Three scaffolds can be loaded simultaneously in 

this design. Figure 4.3 shows the schematic diagram of the fabricated bioreactor. 

 

 
Figure 4.3: Schematic diagram of the bioreactor   

Petri Dish 
Cell seeded scaffold 

Spool 
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4.4.1 Overall design 
 

Stepper motor 

RVDT 
Spool

Petri Dishes 
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Figure 4.4: Design of the bioreac
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Clamping System 

SpoolRVDT Motor 

Load cell 

Micrometer Head 

Figure 4.5: Picture of the bioreactor 

 

4.4.2 The Actuating System 

 

After considering various kinds of actuating system such as servo motor, rotary stepper 

motor and linear stepper motor, the rotary steeper motor is chosen. The circular motion of 

rotary motor can easily be converted to the required linear motion by means of the spool. 

The rotary stepper motor can give better torque than servo motor. Moreover, more 

accurate movement is achieved by using this rotary stepper motor instead of the linear 

stepper motor. The rotation of the motor is controlled through pulses sent to the motor 

which move the rotor by a basic step. There are two common types of stepper motor, the 2 

phase stepper motor and 5 phase stepper motor. The 5 phase stepper motor has an 

additional pair of magnetic poles which give it the ability to run considerably smoother. 

There is less torque ripple and higher running torque. 
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The 5 phase stepper motor (MYCOM, PEE-535B) was used in this bioreactor. This motor 

has 500 basic steps per revolution (step angle = 0.72˚), giving smooth rotation and a very 

small rotor inertia to minimize vibrations.(Refer to Appendix-D for more detail 

specifications) 

 

 

ScaffoldPetri dish 

Spool

Clamping System 

Figure 4.6: Schematic diagram of the bioreactor; blue colour shows the original length of 
scaffold. 
 
 
The length of scaffold between the centre of the spool and the edge of the clamping 

system from petri dish was assumed as the original length of the scaffold (Figure 4.6). The 

strain amount can be calculated as follows; 

 

Strain = 
scaffold oflength  Original

scaffold ofExtension                                               -------------------------(1) 

 

The original scaffold length is set to 59mm in this experiment. The strain value of 1.8% is 

used for the whole experiment, so the linear extension of 1.062mm is required to get this 

strain value. In this design, the extension of the scaffold is directly related to the rotation 

of spool by; 
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Rotation angle (degree) = ο360
(mm) spool ofDiameter   

(mm)extension  Desired
×

×π
     -------------------------(2) 

 

The diameter of spool in this bioreactor is 34mm, so when the spool is turned 3.58˚, the 

desired extension of 1.062mm will occur. In this experiment, the bioreactor is 

programmed to turn 3.6˚ at a frequency of 0.1 Hz. (10 seconds for one complete cycle). 

The strain amount can be changed easily by changing the rotation angle of the spool. 

 

4.4.3 Petri Dish- Base Assembly 

 

An alternative way of adjusting the value of strain is to change the original scaffold 

length. The length of the scaffold is adjusted by translating the petri dish, to which one 

end of the scaffold is fixed, nearer or farther away from the spool. Figure 4.7 shows the 

petri dish-base assembly. A small piece of polycarbonate (Petri dish base) was glued 

under the petri dish. One aluminium ring, (micrometer head holder) was fixed at the shaft 

of micrometer head. By turning the micrometer head, the micrometer head holder will 

move forward and backward. The movement of the micrometer head holder makes the 

movement of the petri dish by pushing the petri dish base. There are two “grooves” on the 

base and two “legs” under petri dish which guide the movement of the petri dish (Figure 

4.8). 
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Figure 4.7: Photos of Petri dish-base assembly 

 

  

Movement 
of Petri dish 

Grooves Base 

Legs 

   (a)      (b) 

Figure 4.8: Petri dish-base assembly; (a) before assembly (b) after assembly 
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4.4.4 The clamping system 

 
 

 

Scaffold fittings

Grooves

 
Figure 4.9: The clamping system on the spool and petri dish 
 
 
The scaffold must be clamped properly to the set-up so as to prevent slipping. Grooves 

were created on both the spool and petri dishes. After the scaffold was placed in these 

grooves, scaffold fittings were used to clamp the scaffold (Figure 4.9). During the 

experiment, no scaffold slippage was detected. 

 For the unstrained samples, the clamping fixture as show in figure 4.10 is designed and 

fabricated. This is to ensure both strained and unstrained sample had similar stretched 

profile during the experiment. 
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Figure 4.10: Clamping fixture for unstrained sample 

 

4.4.5 The Control system 

 

  
            (a)                (b) 

Switch Box 

Motor Controller 

Control Unit 

Motor nano driver 

 
Figure 4.11: Control system: (a) Control unit and switch box, (b) Inside the control unit 
 

The control system consists of a motor controller (mycom, SNC 11), a motor nano driver 

(mycom, INS500-020), input switches and output light emitting diodes (LED). The motor 

controller and motor nano driver are wired inside the control unit. The nano driver 

INS500-020 can give high resolution (up to 500,000 steps per revolution). The custom 
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made motion control program was written using the “Hyper–Terminal Software” from the 

Window 95-98 operation system. These motion control programs can be downloaded to 

the motor controller with RS 232 cable. 

The resolution of the motor nano driver is set to 50,000 steps per revolution in this 

experiment. The motion control program is set for motor rotation of 3.6˚ in a 5 second 

time period and then goes back to original position with the same time interval. A total of 

10 second is taken for one complete cycle (0.1 Hz). In the switch box, there are 4 input 

switches and 4 output LEDs, to indicate the working function. (Refer to Appendix-F for 

more detail programs and functions of control system). 

 

4.4.6 Load and Displacement Monitoring System 

 

A force and displacement monitoring system is integrated in the bioreactor system. To 

monitor the displacement input, a rotary variable differential transducer (RVDT, model R-

30 D, sensitivity of 0.125V / degree of rotation, full range reading of ±30˚, Schaevitz 

Sensors) is fixed in another end of spool. This can counter check the reliability of the 

control system. To detect the load acting on the scaffold, the load cell (PCB, 

Piezoelectrics, Model 208C01, a sensitivity of 110mV / N, maximum 450N in tension) 

was fixed at another end of scaffold in one petri dish. 

The output signals from the load cell and RVDT are being fed into the digital oscilloscope 

(4 Ch 100 Mhz Oscilloscope, model 54624A, Agilent Technologies). The output voltage 

results were recorded manually and results are analysed with calibration certificate 

supported by the producer. 
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From the results of RVDT, it shows that the strain input was fairly constant within 4 hour 

period. (As written program, 3.6˚ rotation and go back to its original position). 

 

From the results of load cell, during the 1.8% strain value (1.06mm linear movement) no 

load was detected on the scaffold. The possible reason for this fact is that the knitted 

structure of scaffold was used in this experiment, which is not a rigid structure and only 

very few amount of movement was used.  Another possible reason is that the sensitivity of 

the load cell used in this setup is quite high for the load acting on the scaffold. The 

possible way to overcome this problem is to use the more sensitive load cell (e.g. max 

load sensitivity 10 N). 

 
 

  
 

RVDT Load cell 

   
 
Figure 4.12: Photos for load and displacement monitoring system. 
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Chapter 5. Experimental Work 

5.1 Cell Culture 

Human dermal fibroblasts (HDFs) were used in this research. Cells were isolated from a 

26 year-old female human skin samples. These isolated human dermal fibroblasts were 

then cultured and subcultured to get sufficient number of cells. HDFs cells were cultured 

in tissue culture flask at 37˚C in a humidified incubator (SANYO) under 5% CO2 in air. 

The culture medium, Dulbecco’s Modified Eagles medium ( DMEM ) supplemented with 

10% heat-inactivated fetal bovine serum (FBS, Hyclone Laboratories, Inc), penicillin-G 

(100 IU/ml), Streptomycin Sulfate (100 µg/ml ), L-Glutamine (2 M/ml) and Fungizone 

(1.25 µg/ml ) (Gibco/BRL Life Technologies, Inc) was used in cells culture. The medium 

was changed every three days to make sure that the nutrients were replenished and by 

products removed at regular intervals. When culture dishes became nearly confluent after 

about 7 days, the cells were detached with 0.25% trypsin and serially sub-cultured. Semi-

confluent cells of ninth and tenth passage (P-9 and P-10) were used for cell seeding 

experiments. 

 
 
Figure 5.1: HDFs; Human Dermal Fibroblasts at sub-confluence (Magnification 100X, 
scale bar = 200 µm) 
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5.2 Scaffold Preparation 
 

The use of biodegradable material as scaffolds is essential in tissue-engineering grafts 

both in vitro and in vivo environments [Ouyang et al, 2003]. Previous studies explored the 

use of different biodegradable materials as collagen, chitin, poly-glycolic acid (PGA) and 

poly-lactice acid (PLA) for tendon and ligament repair. Because of the limited internal 

space of braided fiber scaffold, new tissue ingrowths among the braided fibers were poor. 

[Zange et al, 1997]. Using collagen gel as scaffolds showed little ability to hold its three 

dimensional structure and resist mechanical strength [Young et al, 1998]. However, 

knitted scaffold was shown to possess sufficient porosity and mechanical strength 

[Zdrahala et al, 1996]. With regard to scaffold material, biocompatibility and toxicity 

studies suggest that PLA–PGA copolymers may be more suitable for orthopedic 

applications than PLA or PGA [Athanasiou et al, 1996]. Ouyang et al, (2002) also showed 

that bone marrow stromal cells (bMSCs) adhered to and grew faster on poly-lactice-co-

glycolice (PLGA) film than on polycaprolactone (PCL), polylactic acid (PLA), or their 

copolymer films [Ouyang et al, 2002]. The PLGA fibre is able to maintain its mechanical 

integrity for a period of at least one month and the complete biodegradation duration is 

about 65-90 days. Base on these reasons, it was decided to use knitted PLGA scaffolds for 

all experiments. 

The fibres used are made of PLGA fibre, produced by Tian Qing Biomaterials Co. Ltd, 

Shanghai, China. Each PLGA yarn is made of 16 filaments. The average diameter of each 

filament is 28 µm. The ratio of Poly lactic Acid (PLA) and Poly Glycolic Acid (PGA) in 

this PLGA co-polymer is 10:90. The scaffolds were knitted with 3 yarns of PLGA fibres 

on a knitting machine (Silver-reed SK270, Suzhou, China) (Figure 5.2) by using 12 
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needles to get 20mm scaffold width. The sizes of scaffolds are about 20mm × 60mm for 

unstrained group and 20mm × 80mm for strained group although the cell seeding area is 

same (20mm × 50mm). These scaffolds have a tendency to curl onto themselves into a 

tubular form. So, they were kept uncurled on custom-made U-shaped stainless steel wire 

frames, fabricated from 1mm diameter K wires (Global Orthopaedics, Hampshire, 

England.). (Figure 5.3) 

 

 
Figure 5.2: Knitting machine used to fabricate knitted scaffolds from PLGA fibres; 
Inset: Bundle of PLGA yarn. 
 

 

Figure 5.3: Scaffold in custom-made U-shaped stainless steel K wire frame; 
Inset:  Curly scaffold without K wire frame 
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5.3 Bioreactor Setup 

 

The whole bioreactor and clamping fixtures for unstrained samples were thoroughly 

sterilised prior to the commencement of experiment. All the polycarbonate parts of 

bioreactor and clamping fixtures were steam autoclaved. The rest metal parts of the 

bioreactor, e.g. motor, RVDT, micrometer head were sterilised by 30 minutes exposure to 

ultraviolet radiation, followed by the swabbing of 70% ethanol. After sterilising all the 

parts of bioreactor, the bioreactor was assembled in biological safety cabinet (BSC) and 

then all scaffolds were attached to bioreactor and clamping fixtures (Figure 5.4). To 

sterilise all PLGA scaffolds properly, all petri dishes in bioreactor were filled with 70% 

ethanol for 1 hour while round petri dish were used for control samples. After removing 

70% ethanol from each petri dish, the scaffolds were left about 15 minutes to dry to make 

sure all ethanol were evaporated. Then the scaffolds were rinsed three times with 1X 

Phosphate-Buffered Saline (PBS). 

 

 

   
   (a)      (b) 
 
Figure 5.4: (a) Bioreactor setup with scaffolds in BSC (b) Clamping fixture for unstrained 
samples 
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After cells seeding, no cyclic straining was applied on the scaffolds within the first 3 days 

for a good cell adherence to be established before any straining was conducted. The U 

shaped K wire frames were removed from scaffolds two days after cell seeding. The 

machine was programmed to apply a cyclic strain of 1.8% for a period of 4 hours daily 

across a period of two weeks. The straining frequency used in straining regime was 0.1 

Hz. Figure 5.5 shows the experimental setup inside the incubator and the data acquisition 

system and control system for bioreactor. In order to maintain a balanced level of 

nutritional contents of the medium, the culture medium was changed every three days. 

  
       (a)       (b) 
 

 
      (c) 
Figure 5.5: Experimental Setup (a) strained samples (b) unstrained samples (c) data 
acquisition and control system 
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5.4 Cell seeding 

 

The cells were harvested upon reaching semi confluent condition in tissue culture flask 

around 7 days after sub culture. To harvest, the cells were washed with Phosphate-Buffer 

Saline (PBS) and dislodged from the tissue flask with 0.25% trypsin (Sigma, Chemical 

Co.). All the cell suspension from tissue culture flasks was collected in 50ml centrifuge 

tube and then counted with a Hemacytometer (Improved Neubauer Bright Light Counting 

Chamber, Hausser Scientific) to obtain the cell density. After cell counting, cell 

suspension was aliquot into 1.5ml tubes for each scaffold. Cell pellets were obtained by 

centrifuging the cell suspension at a speed of 1500 rpm for 5 minutes. 

 

Fibrin glue (TisseelTM Co. Hyland Immuno, Baxter) was used as a temporary 

biodegradable adhesive for the cells onto the scaffolds. Fibrin glue is a two components 

system, separate solutions of tisseel and thrombin/calcium. When the two solutions are 

combined, the resultant mixture mimics the final stages of the clotting cascade to form a 

fibrin clot within a short period of 3 minutes. According to the specification given by the 

producer, the biomatrix is developed by the glue and it can maintain for 7-10 days and 

beyond which it will begin to restore naturally through the process of hydrolysis.  

 

The scaffolds were coated with 100µl tissel solution and followed by 100µl thrombin 

solution and left for 3 minutes. At this stage all the holes of scaffold were filled with fibrin 

glue (Figure 5.6). Then the cell pellet for each scaffold was mixed with 200µl of thrombin 

solution and loaded on each scaffold followed by 200µl tisseel solution by using 
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micropipette. Then all petri dishes were gently filled with 10% FBS complete culture 

medium (DMEM) and placed in the incubator. Approximately 6 millions HDFs cells were 

seeded on each scaffold, both strained and unstrained. (Figure 5.7) 

 

 

Figure 5.6: Filling with fibrin glue onto the strained samples scaffolds 

  

   
   (a)      (b) 
 

Figure 5.7: Scaffolds after cells seeding (a) strained samples (b) unstrained samples 
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5.5 Assessment of the Engineered Tissue 

The “engineered tissues” were then assessed for: 

a) Cell attachment, proliferation, ECM (SEM, LSCM)                     Days  17 

b) Cell proliferation (Alamar Blue Assay)  Days  3,17 

c) Cell morphology, ECM (with H&E staining)           Days  17 

d) ECM synthesis 

• RT-PCR for ECM proteins            Days 17 

• Collagen measurement ( soluble collagen , Insoluble)       Days 3,17 

• Immunohistochemistry(Antibody staining)           Days 17 

e) Mechanical testing                                                                          Days 0,10 

 

 

5.5.1 Cell attachment, proliferation (SEM/ LSCM) 

 

After two weeks period of applying cyclic strain on the scaffolds, all the scaffolds from 

both groups (strained and unstrained) were taken out and assessed by Scanning Electron 

Microscope (SEM) and Laser Scanning Confocal Microscope (LSCM, Leica TCS SP2, 

Germany). 

 

For Laser Scanning Confocal Microscope (LSCM), CMFDA stain was employed for live 

cells. The stock solution of CMFDA was warmed to 37°C, and 50 µl was diluted in 50ml 

of serum-free DMEM. Medium was pipette out from the wells of two scaffolds of each 

group, and replaced with this CMFDA-DMEM solution. After incubating for 30 minutes, 
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the medium was again changed to fresh DMEM, and the samples incubated for another 

30-60 min in the CO2 incubator at 37°C. The scaffolds were then taken out, rinsed with 

PBS, and fixed with 4% formaldehyde for 30 min, and rinsed with PBS again. They were 

then visualized under the LSCM. For LSCM, A/E of 492/517nm was employed. 

For SEM, the samples were rinsed with PBS, fixed with 4% formaldehyde for 30 min and 

then rinsed with tap water. The samples were then dehydrated in graded concentrations of 

ethanol (30%, 50%, 70%, 90% and 100%), 10 minutes at each concentration, and then air 

dried for 30-60 min. The dried samples were sputter-coated with gold at 10mA, 10 psi, 50-

60s (JFC-1200 Fine Coater, JEOL) and observed under the SEM at an accelerating voltage 

of 15 kV. (SEM, JEOL JSM-5800LV scanning microscope; Figure 5.8). 

 
 

 
 
Figure 5.8: SEM, JEOL JSM-5800LV scanning electron microscope, Inset: JFC-1200 Fine 
coater, JEOL 
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5.5.2 Cell proliferation studies (Alamar Blue Assay) 

 

Alamar Blue™ Assay (US Biological) was used to assess cell proliferation because it is 

non-destructive to the cells so it allows continuous monitoring of the same piece of cells-

scaffold construct [Neidlinger et al, 2002]. Alamar Blue™ is composed of a blue dye 

called “resazurin”, which can be reduced by the metabolic products of viable cells to form 

a fluorescent red dye called “resorufin”. The amount of resazurin can be measured at 

600nm absorbance wavelength while resorufin at 570nm wavelength. The percentage 

reduction of resazurin to resorufin was calculated with compensation for the culture 

medium background absorbance and this value will be reflective of cells viability [Phoo, 

2003/04]. (Refer to appendix G for more detail) 

Cells proliferation was studied on both strained and unstrained groups at Day 3 (before 

straining the scaffolds) and Day 17 (after two weeks straining). The Alamar Blue 

concentration used in this study was 5%. Procedure: Prepare 5% Alamar Blue with 

DMEM containing 5% FBS and put 15ml of that solution to each scaffold and incubated 3 

hours in the incubator. For control, another 3-5 ml of 5% Alamar Blue was placed in 

round Petri dish and also incubated for 3 hours. Then mixtures from all scaffolds and 

control mixture were transferred to 96-well assay plate (100µl per well, 5 wells per 

samples), protected from light to record the absorbance value. The absorbance value at 

570nm and 600 nm were recorded by using microplate reader (TECAN Microplate 

Reader, Magellan Instrument Control and data Analysis Software).The percentage 

reduction can calculate from these reading and this value give an indirect estimate of the 

number of cells in the scaffold. 
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5.5.3 Cell morphology, ECM (Histology with H&E staining) 

 

The objective of histological observation is to investigate any possible cell morphology 

differences between the strained and unstrained samples. The observance of any cell 

morphology differences will be an indication of positive effect of the straining on the cell-

seeded scaffolds. The cell morphology is being studied with the aid of Hematoxylin & 

Eosin staining. Histology was conducted after two weeks of straining. With the effect of 

straining, it was hypothesised that a change of cell morphology i.e. the alignment of cells 

in a particular direction should be observed at the end of the straining. 

 

After two weeks straining, cell seeded scaffolds from both strained and unstrained groups 

were washed with PBS and then fixed in 4% formalin for one day. This was then followed 

by the dehydration process where the samples would go through 50%, 70%, 90% and 

100% (twice) ethanol on an hourly basis. The samples were soaked in a solution of 

ethanol and toluene (volume ratio of 50:50) overnight and then in 100% toluene for 24 

hours. The scaffolds were then paraffin embedded by transferring the samples through 

progressive grades of paraffin baths. The blocked paraffin samples were sectioned by 

microtome (Figure 5.9(a)) into 5 µm thickness and then mounted on microscope slides 

(Superfrost ® plus, ERIE Scientific Company, USA). 

 

Histology was performed on both the transverse and longitudinal sections of the scaffolds. 

All the paraffin-embedded slide sections were dewaxed by transferring them sequentially 

to xylene (twice), xylene and toluene (volume ratio of 50:50), 100% (twice), 90%, 70% 

and 50% ethanol for 1 minute at each stage. Then, the slides were placed under tap water 
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and stained with Haematoxylin stain for 2-3 minute. After that, slides were differentiated 

in dilute HCL solution for 5-10 seconds. The slides were washed with water again and 

followed by Eosin stain for 30-45 seconds. After staining with H&E, all slides were 

dehydrated by transferring them sequentially to 70%, 90%, 100% alcohol (twice), xylene 

+ 100 % alcohol (50:50, volume) and 100% xylene (twice) for 1 minute at each stage. 

Then xylene based mounting medium (permount) was applied on the slide and cover with 

coverslip. In H&E staining, the fibrin glue and ECM were stained red by Eosin while the 

cell nuclei became dark purplish blue by the Haematoxylin. 

  
   (a)      (b) 
 
Figure 5.9: (a) Microtome to section paraffin block (b) Paraffin embedded scaffolds 
 

Changes in the shape and alignment of the cells were examined using Inverted Light 

Microscopy (ILM) (Olympus Optical) after being stained with H&E stain. Quantitative 

analysis like measurement of the length and orientation of the cell nuclei was done with 

the help of image-processing software (MicroImage 4.5.1, Olympus Optical Co). The cell 

nuclei of interest were selected by colour selection as defined by the user. In this context, 

purplish blue was used as the selection tool (Figure 5.10).  
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(a) 

 

 
(b) 

 
Figure 5.10: Colour selection was used to select the cell nuclei of interest ;(a) Before 
colour selection, (b) after colour selection. 
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5.5.4 PCR Analysis of ECM Proteins 

 

5.5.4.1 RNA Extraction using Qiagen RNeasy Kit®: 

 

After two weeks of straining, 2 samples from each of strained and unstrained groups were 

separately washed with PBS, cut into half and the wet weights of engineered tissue were 

recorded. In this experiment the wet weight of engineered tissues were adjusted to 0.3g 

each. The total RNA was isolated from the engineered tissue by using “Qiagen Rneay 

Kit®”. This kit consists of (i) buffer RLT, (ii) buffer RW 1, (iii) buffer RPE (iv) RNase-

free water and (v) RNeasy mini spin columns. 

 

The weighted engineered tissue samples were cut into small pieces with scissors and 

placed in labeled 2ml micro centrifuge tubes. 600µl of lysis buffer RLT was added to 

these tubes and the samples were homogenized with tissue homogenizer (TH-220, Omni 

International, Inc) with separate generator probes. The samples were then centrifuged at 

13,000 rpm for 3 minutes and the supernatant was transferred to new tubes and an equal 

volume of 70% ethanol was added to these tubes.  

 

About 700µl of the solution was applied to RNeasy mini spin columns in 2 ml centrifuge 

tubes and the column were centrifuged at 13,000 rpm for 15 seconds. The flow through 

was discarded. The rest of the solution (buffer RLT + 70% ethanol) was loaded again and 

centrifuged again. 700µl of buffer RW1 was added to the columns and centrifuged at 

13,000 rpm for 15 seconds. The flow through was discarded.  
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The RNeasy mini spin columns were transferred to new 2ml centrifuge tubes. Then, the 

column was washed with buffer RPE by adding 500µl of buffer RPE and centrifuged at 

13,000 rpm for 15seconds and the flow through was discarded. The washing step with 

buffer RPE is repeated again with 500µl of buffer RPE and centrifuged at 13,000 rpm for 

2 minutes.  

 

After discarding the flow through, the column was transferred to new 1.5ml centrifuge 

tube. 50µl of RNase-free water was pipette directly onto the silica-gel membrane of the 

column and the tube was centrifuged at 13,000 rpm for 1 minute to elute. The elution step 

was repeated with another 50µl of RNase-free water. The final RNA solution was then 

assessed for its purity and concentration of RNA by spectrophotometer (Biowave S2100 

UV/Vis Diode Array Spectrophotometer, WPA Ltd, UK), and stored at -80°C. 

 

 

5.5.4.2 Reverse Transcriptase–PCR using “Qiagen® One-Step RT-PCR Kit” 

 

RT-PCR was performed for the following ECM proteins: Collagen I, Collagen III, 

Tenascin-C, β-actin, and Glyceraldehyde Phosphate Dehydogenase (GAPDH). Normally 

both β-actin and GAPDH can be employed as the reference house-keeping gene. In this 

research only GAPDH gene was used as the reference house-keeping gene. The primer 

sequences were obtained from published literature, Collagen I, GAPDH [Martin et al, 

2001], Collagen III, Tenascin-C [Altman et al, 2001] and were synthesized by Research 

Biolabs, Singapore. The details of the primers are given in Table 5.1. 
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Table 5.1: Primer sequences used in RT-PCR; 1: Forward primer; 2: Reverse primer;  

bp: base pairs; AT: Annealing Temperature; Cycle: number of PCR cycles; GAPDH: 

Glyceraldehyde Phosphate Dehydogenase. 
 

Primer Sequence bp 
AT     

( ˚C ) 
Cycle 

Collagen I 1-CAG CCG CTT CAC CTA CAG C 
2- TTT TGT ATT CAA TCA CTG TCT TGC C 

83 55 30 

Collagen III 1- ACA CGT TTG GTT TGG AGA GTC C 
2- CTG CAC ATC AAG GAC ATC TTC AG 

88 60 30 

Tenascin C 1-TCT CTG CAC ATA GTG AAA AAC AAT ACC 
2-TCA AGG CAG TGG TGT CTG TGA 

118 60 30 

β-actin 1- CTG GAA CGG TGA AGG TGA CA 
2- AAG GGA CTT CCT GTA ACA ATG CA 

139 55 30 

GAPDH 1-ATG GGG AAG GTG AAG GTC G 
2-TAA AAG CAG CCC TGG TGA CC 

70 55 30 

 
 

 

RT-PCR was performed using “Qiagen® One-Step RT-PCR Kit”. This kit consists of (i) 

RT-PCR Enzyme mix (ii) dNTP Mix (iii) 5X RT-PCR buffer and (iv) Rnase-free 

water.The template RNA, primer solutions, deoxynucleotides (dNTP) mix, 5X Buffer 

solution and RNase-free water were thawed. A master-mix was prepared by adding 5X 

Qiagen buffer (10 µl), dNTP mix (2µl), RT-PCR Enzyme mix (2µl) for each PCR 

reaction. Primer solution (3µl, both forward and reverse primers, 100 uM) was diluted 10 

times. Then 14 µl of master-mix, 3 µl of diluted primer solution and 5 µl of RNA were 

mixed thoroughly in each labeled PCR tube and make a total volume of 50µl with RNase-

free water. For negative control, extra 5 µl of RNase-free water was used instead of RNA 

solution. All these reactions were set up on ice. The PCR machine (iCycler, Bio-Rad 
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Laboratories, Inc) was programmed and pre-heated to 50˚C, and then the PCR tubes were 

placed in it and RT-PCR was performed. 

 
 

5.5.4.3 Analysis of RT-PCR products by Agarose Gel Electrophoresis 

 

The RT-PCR products were analyzed by separation on 2% agarose gel electrophoresis. 

Procedure; 2.5g of agarose was added to 125ml 1X TBE electrophoresis buffer in a 

conical flask and dissolved by boiling in a microwave oven. The solution was allowed to 

cool to about 55˚C when ethidium bromide was added to it at a concentration of 0.5µg/ml. 

The gel tray was set-up on a horizontal surface and a 20 teeth comb was placed in it. The 

agarose solution was poured into the gel-tray and allowed to gel for around 30 min. The 

comb was then removed; the gel-tray was transferred into the horizontal electrophoresis 

chamber and submerged under 1X TBE buffer with ethidium bromide at a concentration 

of 0.5µg/mL. 2µl of 6X Gel loading dye was mixed with 10 µl of PCR product (DNA 

solution) and loaded into each well. 2µl of the loading dye was mixed with 10µl of the 

100bp DNA ladder (Promega Corp, USA) and loaded to the outermost wells on both 

sides. The pattern of sample loading was recorded. The electrodes were connected and 

electrophoresis was started at a voltage of 100V. It was stopped when the orange band 

from the loading dye reached the end of the gel. The gel was then visualized and 

photographed in a Gel Documentation system (Gel Doc 2000, Bio Rad) (Figure 5.12). 

 

The Densitometry analysis of PCR products bands was performed with the help of 

imaging software (Quality-one 4.4.0, Bio Rad). First, create lane frames on photo, detect 
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all the bands and then the average density of bands were measured (Figure 5.13). GAPDH 

gene was used as house keeping gene in this research, the average density of each target 

gene was normalized with that of GAPDH gene (both in strained and unstrained sample). 

The resulting data of strained sample was expressed as a ratio to the value of unstrained 

sample denoted as one. 

 

Figure 5.11: Gel Documentation system (Gel Doc 2000, Bio Rad) 

 

 
  72 



 

Figure 5.12: Detection and measuring the average density of PCR product Bands; 
E=strained sample band, C=unstrained sample band, N= negative control band (no RNA 
template) 
 

 

5.5.5 Collagen Assay (Soluble & Insoluble) 

 

The total soluble collage synthesized and secreted into the culture medium and insoluble 

collagen deposited on the scaffold after two weeks straining were determined by 

biochemical assay using commercial kit, Sircol® Assay for collagen (Biocolor Ltd, 

Northern Ireland). 
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5.5.5.1 Collagen Assay (Soluble collagen released into Medium) 

 

The collagen released into the medium was measured on 3rd and 17th day of experiment. 

The Sircol® Collagen Assay, a dye-binding method, does not require the isolation of 

collagens from other soluble tissue proteins; the collagen released into the medium can be 

directly measured, without any prior extraction, a minimum concentration of 2.5µg/100µl. 

The Sircol®
 Dye Reagent selectively binds to the [Gly-X-Y]n tripeptide sequence found 

within the triple helix sequence of mammalian collagens. The culture medium was 

replaced on day 1 (for 3rd day measurement) and 15th day (for 17th day measurement) with 

fresh DMEM with 5%FBS. On the 3rd  day and 17th day, the medium was collected from 

the petri dish into separate labeled 1.5 ml centrifuge tubes. Collection of 2 days’ medium 

ensures that only freshly synthesized soluble collagen is obtained.  

To obtain standards values and a reagent blank, 25, 50, and 100µL of Standard Collagen 

(rat-tail; 0.5 mg/ml standard in 0.5ml acetic acid) and 200 µL of fresh culture medium 

respectively, were taken in duplicate 1.5 ml centrifuge tubes. Distilled water was added to 

make a total volume of 200 µl. For test samples, 200 µL of culture medium from three 

strained samples and three unstrained samples were taken in separate labeled micro 

centrifuge tubes. 1 ml of the Sircol Dye Reagent was added and the contents of the tube 

mixed by inversion, and then in a mechanical mixer for 30 min. After that centrifuged at 

13,000 rpm for 10 minutes, the supernatant was decanted away, and any excess 

supernatant was removed by an absorbent paper. Then, 1 ml of Alkali reagent was added, 

and the tubes were vortexed for 5 min. 200 µL of the solution obtained was aliquot into 

separate wells of a 96-well microplate (3 well per sample), and the absorbance values of 

the samples were measured with a microplate reader at a wavelength of 540nm. 
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Comparing the absorbance values with the standard curve, the concentration of collagen in 

the medium was known and results were expressed as µg/ml of collagen secreted in 2 

days. 

 

5.5.5.2 Collagen Assay (Insoluble collagen deposited on the scaffold) 

 

The amount of insoluble collagen deposited on the scaffolds after two weeks straining 

were also measured by using Sircol®
 Collagen Assay. After two weeks straining, 1 sample 

each from both strained and unstrained groups were taken and wash separately with PBS 

and cut it half. The wet weight of samples is adjusted to 0.22g. Then the scaffolds were 

cut into small pieces with scissors and placed in labeled 2ml micro centrifuge tubes. 900 

µl of PBS was added to the tube and scaffolds were homogenized with tissue homogenizer 

(TH-220, Omni International, Inc) with separate generator probes. 

Dissolve pepsin from porcine mucosa (4000U/mg, Sigma) in 0.5M acetic acid to a stock 

concentration of 1mg/ml and vortex frequently. After all pepsin dissolve in 0.5M acetic 

acid, add 100 µl of pepsin solution to labeled 2ml micro centrifuge tubes and incubate for 

2 hour at room temperature. This makes the working concentration of pepsin 100 µg/ml in 

0.5M acetic acid. Then 100 µL of 1N NaOH (equal amount with pepsin solution) was 

added to stop pepsin digestion. By this stage all non-collagenous proteins should have 

been shredded and only collagen triplehelix should have survived. Then 200 µl of that 

solution was taken and followed the procedure as mention in section 5.5.5.1. The results 

were expressed in µg, amount of collagen deposited in 0.22g of engineering tissue. 
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5.5.6 Immunohistochemistry (Antibody Staining) 

 

Immunohistochemistry was conducted on the micro-sections of scaffolds from both 

strained and unstrained groups, harvested on the 17th
 day of the straining regime. The 

detection kit used in this research constituted a labeled Streptavidin-biotin 

immunoenzymatic antigen detection system (CHEMICON IHC Select TM). This technique 

involved the sequential incubation of the specimen with an unconjugated primary antibody 

specific to the target antigen, a biotinylated secondary antibody (Goat Anti-Mouse) which 

reacted with the primary antibodies, enzyme-labeled streptavidin and substrate-

chromogen. The primary antibodies used were mouse anti-human collagen type I and 

collagen type III for the detection of collagen type I and III respectively.  

 

After two week of straining, engineered tissues were washed with PBS and then fixed in 

4% Formalin for one day. Then the specimens were transferred into 15% sucrose solution 

until the specimens sinks. Place samples on freezing medium and solidified by liquid 

nitrogen. Then the samples were section into 5µm thickness using cryostat (Leica CM 

3050 S) (Figure 5.14). All slides were divided into three groups: one group will be stained 

with the antibody for collagen type I, one with collagen type III and the last group without 

any primary antibody (Table 5.2). 

 

The cut sections were then blocked with 5% normal goat serum for one hour in an 

enclosed, highly humid environment. After blotting the serum, the sections were incubated 

in primary antibody (Dilution 1:100) overnight. After washing with PBS for 4 times, all 
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the sections were then incubated with the secondary antibody, biotinylated goat anti-

mouse IgG, for 10 minutes at room temperature, followed by washing with PBS and the 

incubation with streptavidin horseradish peroxidase (HRP) for another 10 minutes. After 

washing with PBS for 4 times, all the slides were incubated with a DAB solution {1:25 

ratio of DAB chromogen A (3,3’ Diaminobenzidine) and DAB chromogen B (hydrogen 

peroxide)}. The cell nuclei for all the slides were then counterstained with Hematoxylin 

(appear dark purplish). Then all the slides were placed in deionizer water after that apply 

aqueous-based mounting media to the slide and apply coverslip. Both collagen types were 

stained brown in the immunohistology.  

 

Figure 5.13: Cryostat (Leica CM 3050 S) 

Table 5.2: Grouping of specimens for immunohistochemistry. 
 

Group Treatments 

Collagen Type I Treated with mouse anti-human collagen type I primary 
antibody, followed by anti mouse secondary antibody 

Collagen Type III Treated with mouse anti-human collagen type III primary 
antibody, followed by anti mouse secondary antibody 

BLANK Treated with PBS (instead of a primary antibody), followed by 
anti mouse secondary antibody 
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5.5.7 Biomechanical Testing 

 

The scaffold fibres bear the mechanical load before the engineering tissue can be 

generated by the cells. In an ideal case, the scaffolds should degrade in-vivo at a 

predefined rate so that the 3D space occupied by the initial scaffold material is replaced by 

regenerated host tissue. Prior to the complete regeneration of the engineered tissues, the 

cell-polymer constructs need to withstand the hostile in-vivo physiological conditions. For 

an example, in the case of the anterior cruciate ligament, the estimated force that the 

ligament experiences in ascending a ramp is 67N [Wright et al, 1993]. By understanding 

the tensile strength prior to in-vivo implantation, appropriate rehabilitation programs can 

be planned to improve the recovery rate of the implants. 

 

The biomechanical tests were done on cell-scaffold constructs of both strained and 

unstrained groups (n=3 each) at 10th day experiment (after 1 week straining) and PLGA 

scaffold alone at day 0(n=4, without cell and any other treatment). Mechanical properties 

were measured with a universal testing machine , UTM, (Instron® 3345 Tester, Series IX 

and Merlin Software, Instron Corp., MA, USA) (Figure 5.15) with a 1000 N load cell, by 

loading to failure at room temperature. Test specimens of width of 20mm, a gauge length 

of 10mm were stretched to failure at a crosshead speed 10mm/minute, without any 

pretension and preconditioning. Masking tape was used to prevent any slippage of the 

scaffold from the machine grips during testing (Figure 5.16). The samples were kept moist 

by spraying PBS and the load (N) and extension (mm) were recorded. The data of load 

and extension from the Instron machine were recorded by the computer, and the load-
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extension graph was drawn by using these data. The ultimate tensile load (Fmax ) is defined 

as the highest load in load-extension graph. The structural stiffness of the scaffolds was 

obtained from the gradient of the line which fitted to the best linear region of the load-

extension graph (Refer to Appendix H) and expressed in N mm-1 [Cacou et al, 2000]. 

 

Data were analyzed by statically analysis software, SPSS release 11.5, and mean, standard 

deviation and level of significance (p-values) obtained by Paired Sample T-tests (when 

samples are of same size) or Independent Sample T-tests (if samples are of different 

sizes). P values in excess of 0.05 were considered to be insignificant. 

 

 
 

Figure 5.14: Universal testing machine (UTM) (Instron® 3345 Tester) 
Inset: Close up view of sample on clamp 
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Figure 5.15: Samples for mechanical test with masking tape 
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Chapter 6. Results and Discussions 

6.1 Cell attachment, proliferation (SEM/ LSCM) 

 

After two weeks straining, HDFs cell seeded scaffolds were observed under phase contract 

microscope. On phase contrast microscopy, the cell seeded scaffold revealed that cells 

were attached and growing well on scaffold. Most of the pore areas of scaffolds were 

covered with cell and fibrin gel matrix. Fibrin gel also still remains in some parts of 

scaffold after 17 days period. In strained sample scaffold, the shape of pore becomes more 

elongated due to the cyclic strain while the shape of unstrained sample still remains in 

round shape. 

 

   

Fibrin gelPLGA fiber 

  (a)      (b) 
 
Figure 6.1: Cell attachment on the PLGA scaffolds after two weeks straining 
(Magnification 40 X, scale bar =200 µm ).(a) Unstrained sample, rounded pore shape, (b) 
Strained sample, elongated pore shape, red colour arrow shows the direction of straining  
 

SEM analysis (Figure6.2) also shows that the cells were growing both on PLGA fibre and 

on the fibrin gel. As the cells were embedded within the fibrin gel, SEM analysis did not 
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reveal cell morphology and cell alignment. The SEM images show that there is slightly 

higher cell density in strained sample compare with unstrained sample. 

   

   
(Unstrained sample)                                        (Strained sample) 

 
Figure 6.2 SEM digital image done on Day 17: (left) Unstrained sample (right) Straining 
sample showing slightly higher cell density 
 
  

After fluorescent staining with CMFDA at day 17, cell seeded scaffolds from both groups 

were observed under Laser Scanning Confocal Microscope (LSCM). CMFDA is a specific 

dye stained to viable cell only and show green colour under 492/517nm. LSCM images 

(Figure 6.3) shows cell density was slightly higher in strained sample. The presence of 

viable cells in both groups after the experiment period also indicated the biocompatibility 

of the bioreactor. According to SEM images and LSCM images, cell density in strained 

sample is slightly higher than unstrained sample. 
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   (a)      (b) 

(Magnification 100 X) 

  
     (c)      (d) 

(Magnification 200 X) 

Figure 6.3: LSCM images in different magnification (100X & 200X): (a, c) Unstrained 
sample, (b, d) Straining sample showing slightly higher cell density 
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6.2 Cell proliferation studies (Alamar Blue Assay) 

 

The cell proliferation was studied by using Alamar Blue assay. 3 samples each from both 

strained and unstrained group were conducted for cell proliferation study on day 3 (before 

straining) and day 17 (after two weeks straining). An increase in percentage of Alamar 

Blue reduction between two time points demonstrates the cell proliferation of the sample 

within this time interval. 
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Figure 6.4: Comparison of % Reduction of Alamar Blue on both groups at different times  
 

 

At day 3, percent reduction of Alamar Blue in strained and unstrained samples were 63.0 

± 1.62 and 69.57 ± 3.58 respectively (Mean value ± Standard Deviation). After two weeks 

straining, percent reduction of Alamar Blue in strained sample group reach to 78.67 ± 

1.06, while that of unstrained sample group remain in 76.46 ± 3.59. Within this two weeks 

period, percent reduction of Alamar Blue in strained sample increase 24.86%. On the 
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other hand, percent reduction of Alamar Blue in unstrained sample increase only 9.9% in 

two weeks period.  

The results show higher proliferation rate occurs in strained sample. This observation 

suggests that cyclic strain on the cell seeded scaffolds have positive effect on cell 

proliferation.  

 

6.3 Cell morphology (Histology with H&E staining) 

6.3.1 Transverse section 

     

 

        

 
 

Figure 6.5: Transverse Section Histology in different magnificatio
unstrained sample, (right column) strained sample 
 

  
  
(Magnification       
40 X),    
Scale bar = 500 µm
 

(Magnification 
200 X),          
Scale bar = 50 µm  

n ;( left column) 
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Figure 6.5 shows the transverse sections of cell seeded scaffolds with Hematoxylin & 

Eosin staining. These photos show that HDFs cell are growing well on the PLGA 

scaffolds. Cells are filled to the area between PLGA fibers.  

 

6.3.2 Longitudinal Section 

 

 

  

Straining axis Longitudinal axis 

   (a)      (b) 
(Magnification 100X, Scale bar = 100 µm) 

 

        

Longitudinal axis Straining axis 

       

  
   (c)      (d) 

(Magnification 200X, Scale bar = 50 µm)  
 

Figure 6.6: Longitudinal sections Histology of scaffold at Day 17 ;( a, c) unstrained 
sample, (b, d) strained samples 
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Under microscopic view of longitudinal sections, samples harvested after 2 weeks 

straining show different cell morphology (Figure 6.6). The cells from strained sample 

show slightly more elongated morphology. Moreover, most of the cell from strained 

sample also aligned in the straining axis. This observation may suggest that there are a 

change in the cell alignment and morphology under the effect of mechanical straining. 

 

According to quantitative measurements results, the cells from unstrained samples were 

found to have a mean nuclei length of 7.46µm (n=1935) with a standard deviation of 

2.35µm. For the strained sample, the mean nuclei length of cell is 8.05µm (n=1776) with a 

standard deviation of 2.39 µm. That is the cell length in strained sample is 7.9% longer 

than unstrained sample (Figure 6.7). 

 

In the case of cell alignment, more cell population from strained sample fall in specific 

orientation angles compare with unstrained sample. For example, 19% of cell population 

falls in the orientation angle of ±5˚ while only 5.9% of cell population from unstrained 

sample falls in this orientation angle. This observation suggests that the cells from strained 

sample have better alignment than that of unstrained sample due to apply cyclic strain. 

 

Weiss et al (1945) suggested that cells in many cases oriented and migrated along fibres or 

ridges in the surface and this phenomenon was known as contact guidance. The observed 

alignment in strained sample might be the product of contact guidance, especially when 

the fibres were made to align in the straining direction by the straining mechanism. The 

  
  87                         



difference between strained sample and unstrained sample is that the fibres in strained 

sample will be further stretched during the straining regime (Figure 6.1). 

Eastwood et al (1998) predicted that the orientation of the fibroblasts along the maximum 

strain will reduce the perceived strain across the cell. This will be further minimized by 

the long thin bipolar morphology. This cell arrangement is often seen in the densest 

collagenous tissues such as tendons and ligaments. Altman et al (2001) also observed that 

the mechanical stimulation of ligaments based on bone marrow-derived cells had induced 

elongated, ligament-like cell morphology, and cell alignment in the direction of loading, in 

contrast to the round and randomly distributed cells in static controls. Cell alignment in 

the direction of the mechanical loading is 2.5 times higher than that of the controls. 

 

Margolis and Popov (1991) proved cell processes can be induced by the action of a local 

force. They induce cell processes in round mouse embryo fibroblasts by pulling the cells 

with two tungsten microelectrodes. This forced caused cell processes to be formed within 

20 seconds of its application and parallel with the applied force. The model of Margolis 

and Popov (1991) thus supported the hypothesis of cells aligned along the direction of 

principal strain. The cell processes formed were in the direction of the applied force, 

which would also be the direction of the maximum principal strain. Takakuda et al (1996) 

suggested that the alignment of collagen fibres in the direction of the tensile stress will 

have a positive feedback loop on the adhered cells to align in the similar direction as they 

proliferate. 

The finding of this research suggested that HDFs cell had response to the cyclic 

mechanical strain by aligning themselves in the direction of straining and forming more 

elongated morphology compare with unstrained sample. 
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Figure 6.7: Graph showing cell nuclei length from different groups 
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 Figure 6.8: % of cells in each orientation angles for all groups 
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6.3.3 Comparative Study on Different Frequency of Straining (0.1 Hz & 1 Hz) 

  
               (a; scale bar= 200 µm)    (b; scale bar= 100 µm) 

(Magnification 100X) 
 

  
 (c; scale bar =100 µm )   (d; scale bar = 50 µm) 
           (Magnification 200X) 

 
Figure 6.9: Longitudinal sections Histology of scaffolds in different frequency at Day 17; 
(a, c) Strained sample with 1Hz, (b, d) Strained samples with 0.1 Hz 
 

The comparative study was conducted on scaffolds from strained samples which are 

strained at different frequencies. The rest straining parameters are the same in both groups. 

(e.g. Strain amount =1.8%, strain period = 4 hours  per day for 2 weeks.) The effect of 

strain frequency on the cell morphology was investigated by observing the cell nuclei 

length and cell orientation angle. Figure 6.9 shows longitudinal sections of scaffold from 

different strain frequencies groups. 
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Figure 6.10: Graph showing cell nuclei length from different strain frequency groups 
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Figure 6.11: Percentages of cells from different frequencies strained groups in each 
orientation angle 
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The quantitative results show that the cells from 0.1Hz frequency strained samples were 

found to have a mean nuclei length of 8.05 µm (n=1776) with a standard deviation of 

2.39µm. For the 1 Hz frequency strained sample, the mean nuclei length of cell is 8.87 µm 

(n=1825) with a standard deviation of 2.91µm (Figure 6.10). In the case of cell orientation 

angle, 19 % of cell from 0.1 Hz frequency strained sample fall in ± 5˚ orientation angle 

while only 9.5 % cell from 1 Hz frequency strained sample fall in this range. Figure 6.11 

shows percentage of cells from different frequencies strained groups in each orientation 

angle. From this observation, it seems that lower frequency may give better cell 

alignment. However more experiments will be needed to confirm this finding. By 

observing effect of other straining parameters (e.g. strain value, strain frequency) we may 

find out the optimal strain parameters for engineering tissue in-vitro condition. 

 
 
6.4 PCR Analysis of ECM Proteins 
 

The observation on mRNA expression of collagen type I, collagen type III and tenascin-C 

was done in this research. These genes, collagen type I, collagen type III and tenascin-C 

are typical markers of ligament cells [Amiel et al, 1986, Mackie et al, 1996]. All negative 

control lanes from both sample-1 and sample-2 did not show any bands (Figure 6.12). 

This proves that the whole RT-PCR process was free from cross contamination. As 

GAPDH genes was used as house keeping gene in this research, all mRNA expression of 

targeted gene were normalized with GAPDH value. The resulting data were then 

expressed and illustrated as a ratio of the unstrained sample. Table 6.1 shows detail 

calculation of mRNA expression and figure 6.13 shows the final results of mRNA 

expression. The ratio of strained sample to unstrained sample values of collagen type I, 
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collagen type III and tenascin-C are 1.136, 1.076 and 1.143 respectively. According to 

limited sample number, only two samples were done for RT-PCR analysis, statically 

analysis could not do for this result. 

 
(a) 

 
(b) 

 
Figure 6.12: Gel-electrophoresis images after separation of RT-PCR products; (a) sample-
1, (b) Sample-2. E: Strained scaffold, C: Unstrained scaffold, N: negative control (no 
DNA template)    
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Table-6.1: The result data of RT-PCR products: S: strained sample, US: unstrained sample 
 
  Collagen-I Collagen-III Tenascin-C GAPDH 
  S US S US S US S US 

Average 
Density 
value 

114.59 101.49 112.10 114.49 37.94 31.91 113.27 112.79 

Normalize 
with 
GAPDH 
value 

1.012 0.900 1.078 1.015 0.335 0.283 1.000 1.000 

Sa
m

pl
e-

1 

Normalize 
with US 
value 

1.124 1.000 1.062 1.000 1.184 1.000   

Average 
Density 
value 

100.50 91.48 134.73 129.06 124.03 117.55 116.58 121.73 

Normalize 
with 
GAPDH 
value 

0.862 0.751 1.156 1.060 1.064 0.966 1.000 1.000 

Sa
m

pl
e-

2 

Normalize 
with US 
value 

1.148 1.000 1.091 1.000 1.101 1.000   

Average value 
of S-1 & S-2  1.136 1.000 1.076 1.000  1.143 1.000   
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Figure 6.13: The resulting data of RT-PCR for Collagen type I, Type III and Tenascin-C 
expressed as a ratio of unstrained sample 
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Similar observations were done by Altman et al (2001) and Kim et al (2002). Altman et al 

(2001) seeded the Bovine bone marrow cell (BMSC) on type I collagen gel and stimulated 

translationally (10% strain, 2mm) and torsionally (25%, 90˚) at a frequency of 0.0167 Hz 

over a period of 21 days. Real-time RT-PCR was done on day 14 and the mRNA levels of 

collagen type I, collagen type III and tenascin-C were normalized with GAPDH value and 

results are expressed as a fraction of the average expression levels measured in native 

ligaments. After 14 days of culture, the difference of mRNA levels became statistically 

significant (P< 0.05) and mRNA levels in mechanically stimulated ligaments approached 

those quantified in native ligaments [Altman et al, (2001)]. 

Kim et al (2002) built a system which can applied for uniaxial cyclic stretch to cultured 

ACL fibroblasts cells on a silicon membrane. Uniaxial cyclic stretch was applied on ACL 

fibroblasts cells at 10 cycles/min with 10% length strength for 24 hour and RT-PCR was 

done for collagen type I and collagen type III. GAPDH was used as an internal control. 

Densitometric analysis was performed using NIH imaging after resolving on 2% agarose 

gel strained with ethidium bromide. The resulting data were expressed as a ratio to the 

control value denoted as one. The results show that the ratio of stretch to control values of 

collagen type I and collagen type III were 1.63±0.21 and 2.69±0.39 respectively. These 

observations show that mechanical stimulation cause increased in mRNA levels of 

collagen type I, collagen type III and tenascin-C. Our finding shows consistency with 

these observations. 
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6.5 Collagen Assay (Soluble & Insoluble) 

6.5.1 Collagen Assay (Soluble collagen released into Medium) 

 

The results of Sircol®
 Collagen Assay show that the cell seeded scaffold from strained 

sample synthesized an average of 86.2 µg/ml (SD=9) of soluble collagen between 1st day 

and 3rd day, while an average of 58 µg/ml (SD=6.1) was synthesized by unstrained 

samples. Between 15th day and 17th day, the strained sample synthesized 97.3 ± 13.5 

µg/ml (Mean ± SD) and only 50.5 ± 0.4 µg/ml was synthesized by unstrained samples. 

This results show that the amount of soluble collagen synthesized by strained sample was 

increased 12.8% after 2 weeks straining. On the other hand, the amount of soluble 

collagen synthesized by unstrained sample was decreased 12.9% after the same period. 
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Figure 6.14: Total soluble collagen production from strained and unstrained scaffold 
between 1st to 3rd day and 15th to 17th day. 
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6.5.2 Collagen Assay (Insoluble collagen deposited on the scaffold) 
 
 
The study of amount of insoluble collage deposited on the scaffold was done after two 

weeks straining. The investigation was done on one sample from both strained and 

unstrained groups. The wet weight of tissue sample for this study is 0.22g. The results 

were shown in mg of collagen based on 0.22g wet tissue weight. Figure 6.15 shows 

747.2µg was deposited from strained sample while only 548.45 µg was deposited from 

unstrained sample. 
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Figure 6.15: Amount of insoluble collagen deposited from strained and unstrained scaffold 
at day 17 
 
 
 
According to the results of collagen assay, both soluble and insoluble, it suggest that the 

cyclic mechanical strain on the cell seeded scaffold have positive effect on collagen 

formation of engineered tissue in vitro condition. 
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6.6 Immunohistochemistry (Antibody Staining) 

 
 
Extra-Cellular Matrix (ECM) is a molecular complex surrounding living cells that has as 

basic components collagens and other proteins, hyaluronic acid, proteoglycans, 

glysaminoglycans, and elastins. Cell-ECM interactions are believed to be directly 

involved in promoting cell-adhesion, mitigation, growth, differentiation, and programmed 

cell death, as well as in modulation of the activities of cytokines and growth factors, and 

in directly activating intracellular signaling [Boudreau et al, 1995]. The presence of ECM 

could be used as a good indication of the viability of the cells. Collagens comprise a 

family of fibrous glycoproteins that are only present in ECM. Collagen types I and type III 

in the extra cellular matrix were observed in this study as they are the major collagens 

found in skin tissue primarily produced by the fibroblasts.  

 

The results had indicated the presence of collagen types I and III (stained brownish in 

colour) in the extra cellular spaces (Figures 6.16). No specific stain (brown) was found in 

blank sample. Both collagen type I and type III were detected in both unstrained and 

strained sample. The Immunohistochemistry images did not reveal any alignment of 

collagen in this result. 
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Straining axis 
Longitudinal axis 

(Blank) 
 

   
(Collagen Type I) 

 

  
(Collagen Type III) 

 
Figure 6.16: Immunohistochemistry (Antibody Staining) (left column) Unstrained sample, 
(right column) Strained sample. (Magnification 200X, scale bar = 50 µm) 
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6.7 Biomechanical Testing 

According to the biomechanical test results, (Table 6.2, Figure 6.17, and Figure 6.18) the 

cell seeded scaffold from strained samples had lower structural stiffness (12.01 ± 1.35) 

than that of the unstrained samples (16.51 ± 1.34) .i.e. approximately 37.5% lower 

(P=0.015). On the other hand, the ultimate tensile force of that strained sample is slightly 

higher (31.9 ± 3.1) than that in unstrained samples (30.3 ± 1.6). The difference is 

insignificant (P=0.489). 

 

The alignment formation of the fibroblast due to the mechanical straining is similar as slip 

plane manner, which is common in engineering materials [Eastwood et al, 1998]. 

Engineering materials fail along these slip planes as it represent the minimum energy 

required for failure to occur. When fibroblasts became aligned due to the applied 

mechanical load they themselves would create local minimum potential energy wells in a 

similar manner to that seen in the slip planes. It may be seen that cells will be 

energetically drawn towards the same slip planes and, further increasing the alignment. 

According to the existence of this slip plane, the fewer loads are required to deform the 

cells in this slip plane as compare to the absence of the slip plane. This may be one reason 

of why the strained samples occupied lower structural stiffness. Another possible reason is 

that the straining did increase the degradation of the PLGA fibres itself in the culture 

medium and so the structural stiffness of strained samples is lower than unstrained 

samples. 

PLGA was degrading in aqueous medium according to hydrolysis action, where PLGA 

were broken down into by–products, Lactic acid and Glycolic acid. This reaction causes 
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reduction in its mechanical integrity. Our results also argue on this, the initial ultimate 

tensile load for PLGA scaffold is 70.8 ± 7.8 N. After 10 day in culture medium, the cell 

seeded PLGA scaffold possesses only 42% of its original ultimate tensile load.  

 

Table 6.2: Ultimate Tensile Force and Structural Stiffness for each group (mean ± SD) 
 

Groups Ultimate Tensile Force, Fmax 
(N) 

Structural Stiffness, M       
(N/mm) 

PLGA scaffold at day 0 
(n=4) 70.8 ± 7.8 18.16 ± 1.24 

Scaffold from strained 
sample at day 10 

(n=3) 
31.9 ± 3.1 12.01 ± 1.35 

Scaffold from unstrained 
sample at day 10 

(n=3) 
30.3 ± 1.6 16.51 ± 1.34 
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  101                         



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

5

10

15

20

25

30

35

0

Lo
ad

 in
 N

ew
to

ns

Extension in mm
Control 1
Control 2
Control3 
C1 segment 
C1 segment linear
C2 segment
C2 segment Linear
C3 segment 
C3 segment Linear

 
 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

5

10

15

20

25

30

35

40

0

Lo
ad

 in
 N

ew
to

ns

Extension in mm
Expe rime nt 1
Expe rime nt 2
Expe rime nt 3
E1 se gment
E1 Se gment Linea r
E2 se gment
E2 se gment linea r
E3 se g
E3 se g Linea r

 
 
Figure 6.18 Load-Extension graphs for cell seeded PLGA scaffold at day 10 (top) 
unstrained samples (bottom) strained samples: Thick line segments show the segments of 
most linear region of the graph 
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Chapter 7. Conclusions and Recommendations 
 
 

7.1 Conclusions 
 
 
According to the LSCM images, there are viable cells in both strained and unstrained 

group. This finding shows that the whole experimental setting is biocompatible. In this 

study, application of cyclic mechanical strain on the cell seeded PLGA scaffold shows 

positive effect on cell growth in-vitro condition. According to microscopic examination 

and cell proliferation study, it is clear that cell proliferation rate in strained sample is 

higher than unstrained sample. Alamar Blue assay result shows the percent of reduction 

of Alamar Blue, which reflect the cell proliferation, of strained sample group increased 

24.86% after two weeks period of straining while unstrained samples increase only 9.9% 

in the same period. The results show that higher proliferation rate occurs in strained 

samples. 

In the study of cell morphology, cell from strained sample (0.1 Hz frequency) possesses 

more elongated morphology than unstrained sample. The mean nuclei length of cell from 

strained sample is 7.9% longer than unstrained sample. The mean cell nuclei lengths of 

strained and unstrained sample are 8.05±2.39 µm and 7.46 ± 2.35 µm respectively. 

Moreover, the more percentage of cells from strained sample fall in specific orientation 

angle than unstrained sample. This finding suggests that cyclic mechanical strain also 

causes better alignment of cell formation.  

In comparatives study of different strain frequencies sets (0.1 Hz and 1 Hz), lower strain 

frequency cause better alignment while higher frequency result in more elongated cell 

nuclei length. 
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The observation on mRNA expression level by RT-PCR analysis show that the mRNA 

level of typical markers of Ligament gene, i.e. Collagen type I, Collagen type III and 

Tenascin–C are higher in strained samples. That suggests that cyclic mechanical strain 

possible to induce the fibroblast cell to ligament like cells. Moreover, cyclic mechanical 

strain help in formation of collagen on the scaffold and released soluble collagen. The 

collagen assay results show higher amount of collagen are detected in culture medium 

and also on the scaffold for strained sample. 

In immunohistochemistry study, antibody staining, both collagen type I and collagen type 

III are detected in both strained and unstrained group. The results images did not reveal 

any alignment of collagen. 

The biomechanical result shows that the strained sample has lower structural stiffness and 

slightly higher in ultimate tensile force as compare with unstrained sample. The 

difference of this ultimate tensile force between strained sample and unstrained sample is 

not significant. Another finding suggested that PLGA scaffolds degrade in the culture 

medium. After 10 day culture, the ultimate tensile force of PLGA scaffold possesses only 

42% of its original ultimate tensile load. Previous degradation test shows that the ultimate 

tensile force of PLGA scaffold at day 18 is 1.06±0.32 N only [Lau, 2003-04]. This fact 

shows that mechanical integrity of pure PLGA scaffold is not enough for tissue 

implantation. 

Generally the main advantage of the designed bioreactor is all the straining parameters 

(both frequency and strain amount) could be changed easily. By changing the motor 

speed, the frequency of straining could be set up easily. The possible minimum frequency 

of straining in this system is 0.01 Hz. The straining amount also easily can set up by 

changing the rotation angle of motor. Another advantage of the system is biocompatible, 
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compactable and easy to access. More machines could be fabricated for muti-station 

testing. 

 

7.2 Recommendations for Future Research 

 

According to biomechanical test result and previous degradation test results, PLGA fiber 

shows short time degradation. After two weeks in culture medium, PLGA lose most of 

the mechanical integrity. This shows that another polymer which has longer degradation 

time is required in future experiment. Poly -l-lactic acid is recommended for future 

experiment because of its slower degradation rate. Hybrid scaffolds such as 2 yarns of 

PLLA and 2 yarns of PLGA will be ideal structure because PLLA possess longer 

degradation rate and good mechanical integrity while PLGA is recommended for better 

cell attachment. 

 

/Another find out in this research is cell seeding technique. In this research, Fibrin Glue 

(Tisseel) is used for cell seeding. The usage of fibrin glue is not an ideal technique for cell 

seeding. Although it has a lots advantage, there are also some limitations. First, by using 

fibrin glue for cell seeding, it is difficult to achieve uniform cell distribution on the entire 

scaffolds area. Another disadvantage is that some fibrin glue still remains in tissue 

formation process after two weeks period. Sometimes, the remaining fibrin glue interfere 

the staining process of tissue slides. This may be because of using extra amount of fibrin 

glue. So we need to find out the optimal amount of fibrin glue base on scaffold area and 

seeded cell numbers. Another recommended way to solve this problem is using nano 
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scale fibre scaffolds instead of micro scale fibre scaffolds. Now a day, nano scale fibre 

scaffolds are achieved by using electro spinning technology. 

 

According to limited specimen numbers for the bioreactor, only two sets of straining 

frequency are tested in this research. In future some more experiments should be done for 

different straining parameters such as strain amount, straining period (e.g. increasing 

straining period to 8 hour per day instead of 4 hour per day). Then, we may find out the 

optimal straining parameters for tissue growth in-vitro condition. 
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Appendix A. Technical drawing of the Bioreactor( all dimensions are in  mm )  
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Appendix B- Technical Specifications of RVDT 
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Appendix C- Technical Specifications of Load cell 
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Appendix D-Technical Specifications of the 5 Phase stepper motor 
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Appendix E- Technical Specifications of  Controller   
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Appendix F- Program for Stepper Motor 
 
 

 
 

XU1 XU2 XU4 XU127 Resolution = 1/100 
OT1XXX OTX1XX OTXX10 SE1  
VL100 VL100 AC1000 OE4 Movement = 500 pps 
MR-250 MR250 VL100 MX1 

  = °=×
×

6.3360
100500

500
 GO GO MR-500 VB50 

GO VL100 OT0XXX OTX0XX 

  = mm34
100500

500
××

×
π  WT100 AC1000 

OTXX01 RL0 
MR500 ES7    
GO EP2   = 1.06 mm 
WT100 SN50  

59 mm * 1.8% = 1.06 mm 

 
According to the above programs written and stored in the controller, the following 

actions were enabled: 

 

Switch 1; Turn the spool (1.8˚ in reverse direction) within 2.5 second and LED-1 will ON. 

Switch 2: Turn the spool (1.8˚ in forward direction) within 2.5 second and LED-2 will 

ON. 

Switch 3: Turn the spool (3.6˚ in reverse direction) within 5 seconds and LED 3 will ON 

then turn the spool back(3.6˚ in forward direction) within 5 seconds and LED 4 

will ON. 

Switch 4: emergency stop 

 

Switch 1 and switch 2 are used to adjust the tension of scaffold before start stimulation. 
Switch 3 is used for continuous stimulation. 
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Appendix G - Alamar Blue Assay Protocol 
 
 

 
ALAMAR BLUE ASSAY PROCEDURES: 
 
1) Prepare 5% Alamar Blue in culture medium( 5% FBS), Submerge every test 
sample in     15 ml of dilute mixture . Wrap the container with aluminum foil and shake 
for a few second (10-15 s) 
 
2) Set up for control, put 3-5 ml of 5% Alamar Blue medium in round Petri dish and   
covered with aluminum foil . 
 
3) Incubate both setups at 37oC for 3 hours inside the incubator. 
 
4)         Transfer mixtures from both setups into 96-well assay plate (5 wells per sample at    
100µL to each well ). 

5)          Shake plate for 10 seconds and record absorbance at 570nm and 600nm. 

 
 
 
ALAMAR BLUE ASSAY CALCULATIONS: 
 

 
Figure G-1. Absorbance spectra of alamar blue at 600nm and 570nm 

 
 
Figure G-1.above show that  there is concesiderable overlap  in the absorption spectra of 

the oxidized and reduced forms of Alamar blue . When there is no region in which just 

one component absorbs, it is still possible to determine the two substances by making two 

wavelengths. The two component must have different powers of light absorption at some 

points in the spectrum. Since absorbance is directly proportional the product of the molar 
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extinction coefficient and concentration, a pair of simultaneous equations may obtained 

from which two unknown concentration may be determined. [www.sereotec.co.uk] 

CRED(εRED)λ1 + COX(εOX) λ1 = A λ1       (1) 

CRED(εRED)λ2 + COX(εOX) λ2 = A λ2       (2) 

 
To solve for the concentration of each component: 
 

CRED = 
( ) ( )

( ) ( ) ( ) ( ) 2121

2112

λελελελε
λλελλε

REDOXOXRED

OXOX AAA
−
−

      (3) 

 

COX =
( ) ( )

( ) ( ) ( ) ( ) 2121

1221

λελελελε
λλελλε

REDOXOXRED

REDRED AA
−
−       (4) 

 
 
To determine the percent reduction of alamar blue: 
 

% Reduction =  
ntrolWellNegativeCoC

TestWellC

OX

RED       (5) 

 
 
Since the samples are read at  

nm
nm

600
570

2

1

=
=

λ
λ

 

( )( ) ( )( )
( )( ) ( )( ) 100

''
Re%

1222

2112 ×
−
−

=
λλελλε

λλελλε
AA

AA
duction

redred

oxox                                                (6) 

 
where 
 
( 1 )λε redx  = 155,677 (Molar extinction coefficient of reduced Alamar Blue at 570nm) 
( 2 )λε red  = 14,652 ((Molar extinction coefficient of reduced Alamar Blue at 600nm) 
( 1 )λε ox  = 80,586 (Molar extinction coefficient of oxidized Alamar Blue at 570nm) 
( 2 )λε ox  = 117, 216 ((Molar extinction coefficient of oxidized Alamar Blue at 600nm) 
( 1 )λA  = Absorbance of tests wells at 570nm 
( 2 )λA  = Absorbance of tests wells at 600nm 
( 1' )λA  = Absorbance of negative control wells which contain medium plus Alamar Blue 
but to which no cells have been added at 570nm. 
( 2' )λA  = Absorbance of negative control wells which contain medium plus Alamar Blue 
but to which no cells have been added at 600nm. 
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Table G-1: Alamar Blue reading and % reduction calculation for Day 3 
 

Samples Absorbance 
Wavelength 

Average 
Absorbance 

Reading 

Percentage 
Reduction 

(%) 

Average % 
reduction ± SD   

( %)for each 
group 

 
570nm 0.3898Control  
600nm 0.3174 - -

570nm 0.3682Strained Sample-1 
600nm 0.1978 62.29 

570nm 0.3896Strained Sample-2 
600nm 0.215 64.85 

570nm 0.3716Strained Sample-3 
600nm 0.205 61.87 

63.0 ± 1.62

570nm 0.4392Unstrained Sample-1 
600nm 0.2548 70.82 

570nm 0.41Unstrained Sample-2 
600nm 0.241 65.53 

570nm 0.443Unstrained Sample-3 
600nm 0.252 72.35 

69.57 ± 3.58

 
 
 
Table G – 2 Alamar Blue reading and % reduction calculation for Day 17 
 

Samples Absorbance 
Wavelength 

Average 
Absorbance 

Reading 

Percentage 
Reduction 

(%) 

Average % 
reduction ± SD   

( %)for each 
group 

 
570nm 0.3817Control  
600nm 0.306 - -

570nm 0.4245Strained Sample-1 
600nm 0.2133 77.47 

570nm 0.427Strained Sample-2 
600nm 0.2063 79.50 

570nm 0.4325Strained Sample-3 
600nm 0.2168 79.02 

78.67 ± 1.06

570nm 0.4056Unstrained Sample-1 
600nm 0.2096 72.90 

570nm 0.4156Unstrained Sample-2 
600nm 0.206 76.38 

570nm 0.4322Unstrained Sample-3 
600nm 0.2108 80.09 

76.46 ± 3.59
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Appendix H- Data Analysis for mechanical testing 

 
  
The peak load and stiffness of the scaffolds in elastic region need to be obtain from the 

data points recorded from the instron machine. The peak load was found by plotting the 

graph of load (N) versus extension (mm) of the scaffold. 

 

The stiffness in the elastic region wass found by the following method: 

 

1. The data for the load and extension up to the first peak ( load) were extracted. 

2. The gradients betwwen successive points were calculated i.e. g1 and g2 in Figure H-1 

3. The difference in gradients calculated as a persentage of the first gradient. 

    i.e.( g2 - g1 )/ g1  × 100 %. 

4. The graph of x2 versus the difference in successive gradients was plotted . Figure H-2 

5.From the graph x2  versus the difference in successive gradients , the region of best 

linerity was signed out. 

6. If more than one region of linerity were found, the regions were compared using the 

correlation method to single out the more linear region. 

7. The region  selected was tested with the correlation formula to ensure a square of 

correlation factor of more than 0.99( 1.0 being a perfectly fitting straight line) 

8. With the best linear region, a straight line was fitted using linear regression ( least 

square method)  and the gradient of the line would be the stiffness of the elastic region.  

( Figure H-3) 
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Figure H-1: Calculation of gradient betwween two successive points 

 
 
Figure H-2: Graph of percentage gradient changeversus extension. Region of least change 
in gradient can be deduced to be between X=4.0mm and X= 7.5 mm 

 
Figure H-3 :The blue colour line is the best fitted straight between X= 4mm and X= 
7.5mm. Gradient of this blue line yields the elastic stiffness of the scaffold. 
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