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Summary

Currently simulation optimization techniques are widely used to identify the best

levels of the input parameters that will yield the optimal expected performance of

the stochastic system. Response Surface Methodology (RSM) is one of the main

statistical approaches to search for the best input parameters. In the early stages of

RSM, the steepest ascent is locally estimated and the iterative hill-climbing procedure

is involved. To improve the method of steepest ascent, Kleijnen et al. [1] propose

a technique which they call adapted steepest ascent (ASA). Although the search

method for hill-climbing is efficient, simulation itself can be very time consuming and

expensive. Moreover, when there are budget constraints little research is done on

determining the best allocation of the replications at each design point.

In this thesis, we apply ASA technique to the simulation optimization problems,

improve on it by considering the more realistic case where there are computing budget

constraints, and look into the important question of experimental design. We assume

the initial design structure for every iteration of hill-climbing is a two-level factorial

design and propose a two-stage approach to determine the allocation of replications

for this factorial design. In stage 1, a regular two-level factorial design is applied, and

a small portion of the limited computing budget is used to estimate the true response

function. In stage 2, the rest of the budget is allocated in the local region to maximize

the lower bound of predicted response at the next design point, which is determined

by the technique of Kleijnen et al. [1]. In order to demonstrate the advantages of our

two-stage computing budget allocation approach, we compare it with the approach

which allocates the simulation runs equally to each design point. The numerical

results show that our two-stage allocation outperforms the equal allocation especially

when the system noise is large, and if we have more replications to be allocated by

the second stage, the efficiency of hill-climbing will be even higher.

(Computing Budget Allocation; Experimental Design; Response Surface Method-

ology; Simulation Optimization)
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Chapter 1

Introduction

1.1 Motivation

Currently simulation is widely used to design a system that will yield optimal

expected performance. In a typical simulation optimization study, it is assumed

that the performance of the system of interest depends on the values of a few input

parameters chosen for the system, and experimenters want to determine the optimal

values of these input parameters using simulation. (Without loss of generality, we

only consider maximization problems in this thesis.)

Sequential response surface methodology (RSM) is one of the main statistical

procedures to help experimenters search for the optimal values of input parameters,

see Box and Draper [2], Myers and Montgomery [3] and Khuri and Cornell [4]. In the

early stages of RSM, two-level factorial or fractional factorial designs are extensively

used to locally fit a first-order model, and an iterative steepest ascent (SA) search

procedure is involved. The iterative steepest ascent search procedure is also known

as hill-climbing, and it can be illustrated by a two-dimensional model. Figure 1.1

represents the contour plot of a two-dimensional response function, d1 and d2 are the

two input parameters, and point A marked with ‘*’ is the initial design point. In the

first iteration, point A is the center of the region of experimentation, a 22 factorial

design is used and four design points d1, d2, d3, d4 marked with ‘·’ are determined.

The local square region that contains all the four design points is called the region of
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Figure 1.1: Two-dimensional model for the method of steepest ascent

experimentation. If low and high values of d1 in the local region of experimentation

are d11 and d12 respectively, and those of d2 are d21 and d22, then d1 = (d11, d21),

d2 = (d11, d22), d3 = (d12, d21) and d4 = (d12, d22). With the observations at d1,

d2, d3, and d4, a first-order regression model ŷ = β̂0 + β̂1d1 + β̂2d2 is estimated,

where β0, β1 and β2 are the unknown coefficients and y is the response. Then the

direction of steepest ascent (β̂1, β̂2) is determined. In the direction of steepest ascent,

an arbitrary step size is chosen and the next design point B is identified. In the

second iteration, point B becomes the center of region of experimentation, and four

new design points of the two-level factorial design are chosen. The same procedure

to climb the response surface is then repeated and the next design point moves to

point C. This hill-climbing procedure will continue until a termination criteria is met.

Although steepest ascent is the most efficient path to improve response values based

on the local observations, the direction of steepest ascent is scale-dependent and its

step size is always chosen arbitrarily, which means if the scale of d1 or d2 is different,
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or a different step size is chosen, the values of next design points (B and C in this

example) can be different (see Myers and Montgomery [3]).

To tackle the above two drawbacks of steepest ascent, Kleijnen et al. [1] suggest a

novel technique which they call Adapted Steepest Ascent (ASA) technique. In their

study, they consider the lower, one-sided 1 − α confidence interval for the predictor

ŷ based on the first-order model, and this interval will range from infinity down to

the lower bound ŷmin. The authors prove that ŷmin is a concave function and they

derive the design point d+ which maximizes ŷmin. The authors refer to the maximal

point d+ as the next design point because it includes both a search direction and a

step size. Furthermore, the authors prove that their technique is scale-independent

and they also illustrate that their suggested adapted steepest ascent (ASA) direction

is better than the SA direction through Monte Carlo experiments. If we apply the

ASA technique to conduct hill-climbing in Figure 1.1, then the next design point B

after experimentation in the local region of A can be obtained mathematically by

computing d+. Similarly, C can be determined by computing d+ after experimenta-

tion in local region of B is conducted. The details of this technique will be discussed

in Chapter 3.

While the searching method to improve the response of a simulation model is very

efficient, the simulation experiment itself can be very time consuming and expensive

(Law and Kelton [5]). In order to obtain a good statistical estimate at each design

point, a large number of simulation replications is usually required. The ultimate

accuracy (typically expressed as a confidence interval) of a performance estimator

cannot improve faster than O(1/
√

M), where M is the number of simulation repli-

cations (see Fabian [6]). If the accuracy requirement is high, the total number of

simulation replications can easily become prohibitively large. Besides the large num-

ber of replications, one single replication can also be very time consuming for a

large-scale simulation due to the large number of random occurrences and the long

run length required to obtain stable estimates. Typical simulation studies of sea

port operations or air traffic systems can take an average of 10 to 12 hours, and

Kleijnen [7] also reported a simulation study of a manufacturing system where one

3



design could take six hours of computer time. In addition, although the computer

hardware is getting cheaper and faster, the cost of simulation software alone can also

make simulation experiments very expensive. All of these make computing budget

constraints a significant concern when conducting simulation experiments.

When there is insufficient budget to carry out all the necessary experiments, most

of the literature seeks the designs to reduce the design points directly, such as the

fractional factorial design (Kleijnen [8]), or to screen out unimportant factors and

reduce the design points indirectly, such as the Plackett-Burman designs (Plackett

and Burman [9] and Ahuja et al. [10]). Unfortunately, little research is done on de-

termining the optimal allocation of replications at the fixed design points of factorial

design when there are budget constraints.

Here we define the computing budget allocation problem as the experimental

design problem specialized in allocating the replications among the design points of a

two-level factorial design in every iteration of hill-climbing. Referring to Figure 1.1,

if we consider the first iteration only (i.e. moving from region A to region B), the

computing budget allocation problem means how to decide the number of replications

at d1, d2, d3 and d4 given the total number of replications.

Thus it is important to study the computing budget allocation problem as simu-

lation can be both time consuming and expensive, and the regular response surface

designs rarely consider the problem of allocating replications at each design point

when there are computing budget constraints. Even in Kleijnen et al. [1], although

the authors show that their ASA technique improves the efficiency of the traditional

SA method, the authors assume the design is fixed and do not consider the computing

budget allocation problem either.

1.2 Problem Statement

In this thesis, we focus on the early stages of RSM and consider a more realistic

case in which budget constraints are present. Instead of studying how to reduce

design points to save computing budget, we study how to allocate the given number

4



of replications for the two-level factorial designs and further improve the efficiency of

the ASA technique. In short, while the ASA technique studies into how to identify

the maximal point d+ of ŷmin without considering budget constraints, we will study

how to design experiments that maximize ŷmin at the next design point d+ given a

fixed budget. More specifically, we are considering the following problem:

(P) given design points d1, d2, · · · , dm of a factorial design, find the best allocation

of n1, n2, · · · , nm, so that the lower bound of the predicted response ŷmin at the

next design point d+ is maximized with the constraint that n1 +n2 + · · ·+nm =

N , where ni is the number of replications at point di, m is the number of design

points, and N is the total number of replications for the factorial design in the

region of experimentation.

Intuitively, if we know the next design point when we are still in the local region

of experimentation, we can design experiments in the local region to maximize the

lower bound of predicted response ŷmin at the next design point. In that case, when

we move to the next design point, we can be more assured that the expected response

ŷ is better improved because ŷmin is the worst prediction of ŷ at level α.

As the ASA technique, which is used to determine the next design point, can

be applied only after the true response function is estimated, the main challenge in

solving problem (P) is: how to estimate the true response function and determine

the next design point, in order to find the best allocation of replications to maximize

ŷmin at the next design point.

1.3 Research Contributions

The main contribution in this thesis is: we apply the ASA technique to simulation

optimization problems, and consider the case where there are computing budget

constraints. We develop a two-stage computing budget allocation approach for one

single iteration of hill-climbing. In stage 1, a traditional two-level factorial design is

used, a limited computing budget is equally distributed to all the design points in the

5



region of experimentation and a linear response function is estimated; in stage 2, the

rest of the budget is distributed among the design points of that factorial design to

maximize the lower bound of predicted response at the next design point d+. A series

of numerical experiments are carried out for linear models and nonlinear models to

test the performance of our two-stage computing budget allocation approach. The

numerical results show that our two-stage approach outperforms the equal allocation

especially when the noise is large, and the efficiency of hill-climbing can be further

improved if we leave more budget to be determined by the second stage of our two-

stage approach.

1.4 Organization of this Thesis

The rest of this thesis is divided into 4 parts. In Chapter 2, a literature review

of simulation optimization techniques is presented, followed by a survey of response

surface designs, where we can find optimal design, robust design and some new de-

velopments, and then an important contribution in computing budget allocation, the

Optimal Computing Budget Allocation (OCBA), is reviewed. Chapter 3 first intro-

duces the main idea of adapted steepest ascent (ASA) technique proposed by Kleijnen

et al. [1]. Then we develop our two-stage computing budget allocation approach, ex-

plain how it works for simulation optimization problems and do some pilot studies to

validate its advantages. Chapter 4 contains the numerical experiments used to com-

pare our two stage allocation approach to the equal allocation approach for nonlinear

models. In Chapter 5, we summarize this thesis and propose the future work.
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Chapter 2

Literature Review

As we focus on using RSM to optimize the simulation output under computing

budget constraints, we review the following three topics: simulation optimization,

response surface designs and computing budget allocation.

We first outline simulation optimization and its main techniques in section 2.1.

Next we discuss the response surface designs for response surface methodology in

section 2.2, and finally we review the research work to tackle the problem of computing

budget allocation in section 2.3.

2.1 Simulation Optimization Techniques

Simulation has been recognized as a very powerful tool to evaluate and justify

a stochastic system. In the last decade, however, ‘optimization’ routines have been

prominently adopted by many simulation packages, and simulation optimization has

thus become widespread. Fu [11] defined simulation optimization as ‘optimization of

performance measures based on outputs from stochastic simulations’, and he divided

the simulation techniques into the following main categories:

• Statistical procedures: sequential response surface methodology, ranking & se-

lection procedures, and multiple comparison procedures;

• Metaheuristics: methods directly adopted from deterministic optimization search

strategies, such as simulated annealing, tabu search, and genetic algorithms;
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• Stochastic optimization: random search, stochastic approximation;

• Others, including ordinal optimization and sample path optimization.

The detailed introduction about these techniques can be found in Fu [12].

2.2 Response Surface Designs

Myers et al [13] defined response surface methodology (RSM) as a collection of

tools in design or data analysis that enhance the exploration of a region of design

variables in one or more responses. By this definition, it highlights two important

aspects of RSM, one is response surface design and another is data analysis. Response

surface design is the main concern in this thesis and it will be further discussed in

the later part of this section. For data analysis, a distinction can be made between

analysis whose goals are to explore the response surface and that whose goals are to

estimate the optimal input levels. The method of steepest ascent (SA) is a viable

technique for exploring the response surface and sequentially moving toward the

optimum response. And it is also the main technique to do data analysis in this

thesis. To study the optimal point, the canonical analysis is the most popular tool.

One can write the true second-order response model as the canonical form y = β0 +

xT β + xTBx, where x denotes k control factors xT = [x1, x2, · · · , xk], β is a k × 1

vector containing the regression coefficients of the control factors, and B is a k × k

matrix whose main diagonals are the regression coefficients associated with the pure

quadratic effects of the control factors and whose off-diagonals are one-half of the

mixed quadratic (interaction) effects of the control factors. With this canonical form,

experimenters may compute the stationary point, the response at the stationary point

and the confidence region for the location of the stationary point, as well as analyze

the characterization of the stationary point (i.e., as a point of maximum or minimum

response or a saddle point). Another important characteristic of RSM is that most

of its applications are sequential in nature. At first, many factors or variables may

be taken in account as potential important effects that affect the response, and a

8



screening experiment is designed to investigate these factors with a view toward

eliminating the unimportant ones. A response surface analysis should never be done

until a screening experiment has been performed, and fractional factorial designs

are powerful tools to identify the important factors. Once the important variables

are identified, the next phase is to determine if the current setting of input variables

results in a value of the response that is near the optimum or if the process is operating

in some other region which is remote from the optimum. If the current setting is

not consistent with the optimum performance, the experimenter must decide how

to adjust the process variables that will move the response toward the optimum.

This phase of response surface methodology makes considerable use of the first-order

model and an optimization technique known as the method of steepest ascent. If the

process is near the optimum, the final phase is carried out. Because the true response

surface usually exhibits curvature near the optimum and the regression model must

accurately approximate the true response function, a second-order or higher-order

model will be used. Once an appropriate approximating model has been estimated,

this model can be analyzed to determine the optimum conditions for the process.

More details on RSM can be found in books like Box and Draper [2], Myers and

Montgomery [3], and Khuri and Cornell [4].

While RSM is one of the main statistical procedures to maximize the process, re-

sponse surface design is a critical issue within the context of RSM because it addresses

the problem to fit the response surface and represent the surface mathematically. For

good response surface designs, Box and Draper [14] suggested the following desirable

properties. The design should:

1. Generate a satisfactory distribution of information throughout the region of

interest, R.

2. Ensure that the fitted value be as close as possible to the true value.

3. Give good detectability of lack of fit.

4. Allow transformations to be estimated.
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5. Allow experiments to be performed in blocks.

6. Allow designs of increasing order to be built up sequentially.

7. Provide an internal estimate of error.

8. Be insensitive to wild observations and to violation of the usual normal theory

assumptions.

9. Require a minimum number of experimental runs.

10. Provide simple data patterns that allow ready visual appreciation.

11. Ensure simplicity of calculation.

12. Behave well when errors occur in the setting of the predictor variables, the x’s.

13. Not require an impractically large number of levels of the predictor variables.

14. Provide a check on the “constant variance” assumption.

Although not all of the above properties are required in every RSM experience, most

of them must be considered seriously. When we design the two-stage computing

budget allocation approach, we also consider some of the above properties.

Since Box and Wilson [15], substantial progress has been made in the area of

response surface designs for both first- and second-order models. The review first

goes through the two main categories of response surface design - optimal design and

robust design, and then briefly discusses two useful designs, sequential design and

Bayesian design. Because this thesis concentrates on the earlier stage of RSM, we

will pay more attention to those response surface designs for first-order model in the

review.

2.2.1 Optimal Design

If we consider the linear model

y = β0 + β1d1 + β2d2 + · · ·+ βkdk + ε,
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we can express it in matrix notation as

Y = Xβ + ε,

where vector Y is an n× 1 vector of observations; X is an n× q matrix, with row i

containing xi
T , and q = k + 1; xi is a q × 1 vector of predictor variables for the ith

input combination (1 d1i d2i · · · dki)
T ; β is a q× 1 vector of unknown parameters

(β0 β1 · · · βk)
T ; ε is an n× 1 vector of independently and identically distributed

random variables, with mean zero and variance σ2.

We assume that least squares estimates of the parameter β are to be obtained,

so that

β̂ = (XTX)−1XTY,

and the variance-covariance matrix of β̂ is

var(β̂) = σ2(XTX)−1.

Then the predicted response at point x∗ ∈ χ, where χ denotes design space, is

ŷ(x∗) = x∗T β̂,

with variance

var(ŷ|x∗) = σ2x∗T (XTX)−1x∗.

The design problem consists of selecting vectors xi, i = 1, 2, · · · , n from χ such that

the design defined by these n vectors is, in some defined sense, optimal.

Smith [16] was one of the first to state a criterion and obtain optimal experimental

designs for regression problems. She proposed the criterion

minxi,i=1,2,··· ,nmaxx∈χvar(ŷ(x)).

This criterion was later called G-optimality by Kiefer and Wolfowitz [17]. Wald

[18] proposed the criterion of maximizing the determinant of XTX as a means of

maximizing the local power of the F-ratio for testing a linear hypothesis on the

parameters of certain fixed-effects analysis of variance model. Kiefer and Wolfowitz
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[17] later called this criterion D-optimality and extended its use to regression models

in general.

Later, Kiefer and Wolfowitz [19] proved the equivalence of D- and G-optimality.

Based on their contributions, people could easily verify whether or not a specific

design is D-optimal, and many efficient algorithms were proposed to construct D-

optimal designs. A dedicated book, Fedorov [20], discussed extensively on construct-

ing optimal designs.

Besides D- and G-optimality, there are a few other variance-optimal designs, such

as A- and E-optimality, and sometimes they are called alphabetic optimality as a

whole. More details about variance-optimal design in the response surface context

can be found in Chapter 14 of Box and Draper [2].

Because optimal designs are only concerned with optimality of a very narrow

kind and they assume the estimated model exactly represents the true model, Box,

Hunter and Hunter [21] criticized that “in recent years the study of optimal design

has become separated from real experimentation with the predictable consequence

that its limitations have not been stressed, or, often, even realized” (p.472). Thus, a

lot of works were proposed to study the robustness of response surface design, which

is reviewed in the next section.

2.2.2 Robust Design

Steinberg and Hunter [22] divided the robust designs for RSM into the following

categories: (a) protection against model misspecification, (b) designs for extrapola-

tion under conditions of model misspecification, (c) robustness to errors in the design

levels, and (d) robustness to outliers or missing observation. Aside from the above

model-robust designs and error-robust designs, Steinberg and Hunter [22] also re-

garded the designs whose purpose was to discriminate among candidate models as a

kind of robust designs and those designs were referred as model-sensitive designs.

Here we review the designs dealing with protection against model misspecification

and the designs for extrapolation under conditions of model misspecification. As we
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mentioned before, this review focuses on the first-order model and model misspecifi-

cation in this context means that the true model is a two- or higher-order model.

Box and Draper [23, 24] first introduced the notion of robustness of response

surface design to model misspecification. The fundamental philosophy of their work

is to consider the integrated weighted mean squared error (IMSE)

J =
NK

σ2

∫

R

w(x)E[ŷ(x)− g(x)]2 dx,

where ŷ(x) is the fitted polynomial of order o1 and g(x) is a model of order o2 (o2 > o1)

which is regarded as the “true” response, R is the region of interest—that is, a region

in which it is important for ŷ to predict well, K is the reciprocal of the volume of R,

N is the total number of observations, w(x) is a weight function, and σ2 is the error

variance. One important work that extended the IMSE criterion to simulation design

was done by Donohue, Houck and Myers [25]. They considered the strategy for the

assignment of pseudorandom number streams proposed by Schruben and Margolin

[26] and investigated how to select simulation designs so that bias due to possible

model misspecification as well as error variance in first-order response surfaces could

be reduced.

Another important topic is about designs for extrapolation that are insensitive

to the possible bias from a higher-order model. This is particularly important in

RSM since a response surface is often used for extrapolation purpose. Draper and

Herzberg [27] studied a special type of extrapolation problem using “variance plus

bias” methods. Later, the same authors [28] investigated if the region of extrapolation

was a k-dimensional hyperspherical shell with inner radius one and outer radius Θ,

how one could choose a design which would provide some protection against bias from

a higher-order model and also would be suitable for extrapolation in all directions

outside the k-dimensional hypersphere. In the last decade, researchers considered

not only the model misspecification but also the heteroscedasticity in the errors. The

details can be referred to the works, such as Wiens [29] and Fang [30].
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2.2.3 Sequential Design and Bayesian Design

Sequential design is a very important and very effective approach. Within such

a multiple stage design, additional experimental costs can be saved if no further ex-

periments are needed and the experienced professional can modify the chosen design

strategy at a certain stage. Thus this approach is very suitable for practical exper-

iments and it often results in more efficient experiments. Sequential design can be

dated back to Box and Wilson [15], who suggested that the central composite design

be deployed sequentially, with the first stage being a 2-level factorial or fractional fac-

torial design and the axial points forming a second stage. The axial points are used

if curvature is found in the model by a lack-of-fit test. Some recent work also applies

this sequential approach to screen factors and de-alias effects of potential interest.

For example, Mee and Peralta [31] described semifolding, a technique using half of

a standard fold-over design (see also Barnett et al [32]). Chipman and Hamada [33]

advocated an effect-based approach and illustrated how the follow-up design selected

depends on the family of models selected. Nelson et al. [34] compared augmentation

strategies for both 2k−p and Plackett-Burman designs.

When there are uncertainties in model selection and model parameters, Bayesian

design might be necessary. DuMochel and Jones [35] assumed that there were two

types of model terms, certain terms and potential terms, and set a prior distribu-

tion on the potential terms. Then they proposed a Bayesian D-optimal design that

maximizes the determinant of the posterior information matrix. For the case of un-

certainties in model parameters, Chanoler and Verdinelli [36] reviewed the Bayesian

approach to design. Lin, Myers and Ye [37] utilized a two-stage approach to Bayesian

design where the prior information was updated at the completion of the first stage.

2.3 Optimal Computing Budget Allocation

A technique known as the Optimal Computing Budget Allocation (OCBA) that

tackles the computing budget allocation problem has been done within the context

of Ranking and Selection (R&S).
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The R&S procedures are developed to select the best system or a subset that

contains the best system from a set of k competing alternatives (Goldsman and Nelson

[38]). When the goal of the simulation study is to select the best system design from

a finite set of competing alternatives, R&S procedures become applicable.

Generally, R&S defines selecting the best system or a subset that contains the

best system as the correct selection. Chen [39] and Chen [40] proposed a technique

to make a correct selection using a multistage approach and allocating the simulation

runs in an optimal manner. Later they called it the Optimal Computing Budget Al-

location, in which clearly inferior designs were identified and discarded in the earlier

stage of sampling, and then those alternatives that might increase the probability of

correct selection would be allocated with incremental computing budget. Chen et

al. [41] extended this work by presenting a different method for estimating gradient

information, and they also discussed how to choose the initial simulation replica-

tion number n0 and one-time incremental computing budget ∆. Chen et al. [42]

reported a further extension of this work that accounted for simulation experiments

with different sampling costs. Through numerical experimentation, they observed

this approach to be more efficient than the method discussed in Chen et al. [41].

Chen et al. [43] [44] offered an asymptotic allocation rule to enhance the efficiency

of their allocation scheme.
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Chapter 3

Two-stage Computing Budget

Allocation Approach

Since the ASA technique is used as the fundamental technique to conduct the

hill-climbing in this thesis, we first introduce it in section 3.1. Then we develop our

two-stage computing budget allocation approach for the ASA technique in section

3.2. In order to justify the advantages of our two-stage computing budget allocation

approach, a pilot study for a two-dimensional linear model is done in section 3.3.

We highlight the assumptions in this thesis as follows:

1. The cost to conduct one simulation run at any design point is similar, and we

can thus measure the computing budget in terms of the number of replications;

2. The noise of each simulation replication all follows independent and identically

distributed (i.i.d.) normal distribution with zero mean and constant variance;

3. For each two-level factorial design in the region of experimentation, the design

points are fixed;

4. The size of the region of experimentation is the same for all the iterations;

5. In each iteration of hill-climbing, the total number of replications is the same.
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3.1 Adapted Steepest Ascent Technique

Our two-stage computing budget allocation approach is mainly motivated by the

Adapted Steepest Ascent (ASA) technique proposed by Kleijnen et al. [1]. We explain

this technique first, and then propose our two-stage computing budget allocation

approach in the next section.

The work of Kleijnen et al. [1] focuses on the early stages of Response Surface

Methodology (RSM), in which RSM locally fits a first-order polynomial and the

steepest ascent (SA) path is estimated by this polynomial. However, SA suffers from

two well-known problems: (i) the search direction is scale-dependent; (ii) the step

size along its path is selected intuitively (see Myers and Montgomery [3]). To tackle

these two problems, Kleijnen et al. [1] derive the adapted steepest ascent (ASA)

technique which is scale-independent, and mathematically obtain a step size in the

ASA direction.

The local first-order polynomial approximation is given as:

y = β0 + β1d1 + β2d2 + · · ·+ βkdk + ε, (3.1)

where y is the response or the observation of simulation run, βi is the unknown

coefficient, di is the regressor variable or the controllable factor, and ε is white noise,

i.e. ε is normally, identically, and independently distributed with zero mean and

constant variance σ2.

Define the design point d = (d1 d2 · · · dk)
T , vector xT = (1 dT ), vector

β = (β0 β1 · · · βk)
T , and the model can then be written in the matrix form.

Ordinary least squares (OLS) is a normal approach to estimate the coefficients β′is,

and the Best Linear Unbiased Estimator (BLUE) of β is

β̂ = (XTX)−1XTY, (3.2)

with

d vector with the k regressor variables in the regression model

q number of regressor variables including the intercept β0 (q = 1 + k in Equation

3.1)
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x vector with the q regressor variables including the ‘dummy’ variable d0 with

constant value 1

β̂ vector with the q estimated coefficients in the regression model

X the design matrix, an N×q matrix of independent regressor variables including

the ‘dummy’ variable d0; X is assumed to have linearly independent columns

so X has full column rank

Y N×1 vector, including all the observations of simulation runs

N
∑m

i=1 ni: total number of replications in the simulation runs

ni number of replications at input combination or point i. If n1 = n2 = · · · = nm,

we refer to this special allocation as equal allocation

m number of different design points in the region of experimentation. If we consider

a full factorial design, then m = 2k.

The variance-covariance matrix of β̂ is

cov(β̂) = σ2(XTX)−1 = σ2


 a bT

b C


 , (3.3)

where a is a scalar, b is a k-dimensional vector, and C is a k × k matrix.

The unknown parameter σ2 can be estimated through the mean squared residual

(MSR) or the mean squared pure error (MSPE) (see Myers and Montgomery [3]).

The predicted response ŷ at point d is

ŷ(d) =
(
1 dT

)
β̂, (3.4)

and the variance of this predictor is

var(ŷ|d) =
(
1 dT

)
cov(β̂)


 1

d


 , (3.5)
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Kleijnen et al. [1] proved that given a design point d, the lower bound of one-sided

1− α confidence interval for ŷ

ŷmin(d) = ŷ(d)− tαN−q

√
var(ŷ|d)

=
(
1 dT

)
β̂ − tαN−q

√√√√√(1 d)T (XTX)−1


 1

d


 · σ̂2, (3.6)

is a concave function in d, where tαN−q denotes the 1−α quantile of the t distribution

with N − q degrees of freedom, and σ̂2 denotes the estimate of constant variance σ2.

The point d+ that maximizes the minimum output ŷmin(d) can be obtained easily

by solving ŷ′min(d) = 0, and it is given by

d+ = −C−1b + λC−1β̂−0, (3.7)

where −C−1b is the starting point in the region of experimentation, C−1β̂−0 is the

Adapted Steepest Ascent (ASA) direction (β̂−0 equals β̂ excluding the intercept β̂0),

and λ is the step size specified by

λ =

√√√√ a− bTC−1b

(tαN−q)
2σ̂2 − β̂−0

T
C−1β̂−0

, (3.8)

(see also Kleijnen et al. [1]).

The maximal point d+ gives both a search direction and a step size, and Kleijnen

et al. [1] refer to it as the optimal input values of the next design point. Kleijnen

et al. [1] prove that d+ is scale-independent attributed to the identical lower bound

surfaces of predicted response in different scale systems. They also demonstrate the

superiority of ASA compared to SA through Monte Carlo experiments. They first

define a truly optimal search direction which is the vector starting at the initial

design point and ending at the true optimum, and they apply SA technique and

ASA technique to the same Input/Output (I/O) data. Then they find that the angle

between the true search direction and ASA search direction is significantly smaller

than the one between the true search direction and SA search direction.

The ASA technique offers a scale-independent next design point d+, and its search

direction is superior to the traditional SA direction. However, when Kleijnen et al. [1]
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propose the ASA technique, they assume the design matrix X is fixed, and their only

concern is the point d+ that maximized the lower bound surface of predicted response.

They do not consider the situation when there are computing budget constraints, and

also the issue of experimental design.

3.2 The Algorithm of Two-stage Computing Bud-

get Allocation

Here we apply the ASA technique to the simulation optimization problems, and

consider a more realistic case where there is a limited computing budget. Then we

develop the two-stage computing budget allocation approach.

Since we consider our approach in the simulation optimization scenario, it is

reasonable to measure the computing budget in terms of the number of simulation

replications. We define a feasible region for the input parameters of the simulation

models, in which the simulation model is well defined. In most simulation studies,

the inputs of a simulation model is valid only within a certain region. Outside this

region, either the simulation model becomes invalid or there does not exist such a

system in the real world. For example, the capacity of an inventory system must be

finite, or the service time of a queueing model must be positive, etc.

Given the same estimates of β and σ2, we note that in Equation 3.6 the value

of ŷmin at a given design point d is determined by the design matrix X, and the

maximal point d+ of ŷmin in Equation 3.7 is also determined by the design matrix X

through b and C in Equation 3.3. Since we consider the case where the design points

in the region of experimentation are fixed, the different allocations n1, n2, · · · , nm

can construct different design matrixes, and this results in different values of d+ and

ŷmin(d+). Thus after we have the estimation of β and σ2 it is possible for us to

compare all the allocations of n1, n2, · · · , nm and pick the one that gives the maximal

value of ŷmin(d+). Here we consider maximizing the lower bound of the predicted

response as a criterion for comparison. The idea is that when the lower bound ŷmin is
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maximized at the next design point d+, the expected response ŷ is likely to be better

improved when the region of experimentation moves from the original region to the

next one as ŷmin is the worst prediction of ŷ at level α.

Let ŷmin(d|n1, n2, · · · , nm) denote the lower bound of predicted response ŷmin at

design point d with the allocation of n1, n2, · · · , nm. Then the computing budget

allocation problem in every iteration of hill-climbing can be rewritten as

(P) max
n1,n2,··· ,nm

F (n1, n2, · · · , nm)

with n1 + n2 + · · ·+ nm = N

and F (n1, n2, · · · , nm) = max
d+

(ŷmin(d+|n1, n2, · · · , nm))

where n1, n2, · · · , nm are the decision variables, the values of d+ and ŷmin(d+) are

determined by the allocation of n1, n2, · · · , nm, and F (n1, n2, · · · , nm) denotes the

lower bound of predicted response ŷmin at its maximal point given the allocation of

n1, n2, · · · , nm. The value of F (n1, n2, · · · , nm) can be computed using Equations

3.6 and 3.7, where β̂ and σ̂2 are assumed to be known and X solely depends on

n1, n2, · · · , nm in the local region of experimentation.

The above discussion is based on the assumption that we have the estimation of

β and σ2, and therefore the major issue in addressing the problem (P) is before we

determine the best allocation of n1, n2, · · · , nm, how we can estimate β and σ2.

To tackle this issue, we propose a two-stage computing budget allocation ap-

proach.

Stage 1. A two-level factorial design is used, which equally distributes n0 runs to

all the design points in the region of experimentation. β and σ2 are estimated

using these n0 observations;

Stage 2. We compare all the allocations for the rest of N − n0 runs and pick the

best one that gives the maximal value of F (n1, n2, · · · , nm)

After the allocation problem in stage 2 is settled, we will estimate the linear response

function again using all the N observations, and the value of the next design point
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will be updated to be d+. For the next iteration, d+ is the center of the region of

experimentation.

Intuitively, stage 1 helps to roughly estimate the true response function. In stage

2, given the estimation of β and σ2 in stage 1, we can compare all the alloca-

tions and select the best one with the maximal value of F (n1, n2, · · · , nm). Since

F (n1, n2, · · · , nm) is the worst prediction of expected response at the next design

point at level α, if its value is improved, then when we move to the next design point,

we can be more assured that the response at the next design point is improved. Af-

ter we have all N observations, d+ is the point that maximizes the value of lower

bound function ŷmin, and therefore d+ becomes the center point of the region of

experimentation in the next iteration.

We can also use Figure 1.1 to illustrate the basic idea of our two-stage approach.

In the first iteration, point A is the center of the region of experimentation, and the

four design points d1, d2, d3 and d4 of a 22 factorial design are determined. In stage

1, n0 runs are equally distributed to these four design points. β0, β1, β2 and σ2 are

estimated by these n0 observations. In stage 2, we generate all the possible allocations

of n1, n2, n3, n4 where n1 + n2 + n3 + n4 = N − n0. For each allocation, we construct

the design matrix and use the estimates of βi and σ2 in stage 1 to compute the values

of F (n1, n2, n3, n4). Then we select the best allocation which gives the maximal value

of F (n1, n2, n3, n4). Next we distribute the rest of N − n0 runs according to this

best allocation, run the simulations and compute the value of d+ based on all the

N observations. Suppose the value of d+ is point B, then we move to point B in

the second iteration and make it as the center of the new region of experimentation.

In the following iterations, the same procedure will be repeated until a terminating

condition is met.

In the study of Kleijnen et al. [1], the authors assume the design matrix is given,

the maximal point of d+ has offered an ASA search direction and a possible step size,

and the ASA direction is shown to be superior to the traditional SA direction. In

our approach, their design matrix is only one option to determine the allocation of

n1, n2, · · · , nm, and thus we can expect our approach to further improve their ASA
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technique.

In this two-stage allocation, because we are trying to find the allocation with

the maximal value of F (n1, n2, · · · , nm), the variance of the predicted response ŷ

throughout the region of interest may suffer and the predicted response ŷ in certain

regions becomes inaccurate, which is not desired by good response surface designs.

However, we focus on the early stages of RSM, whose main objective is to find the

most effective path to improve the response. In our approach, we find the next design

point to improve the response directly by Equation 3.7, and allocate the replications

to improve the worst prediction of expected response at level α. Thus our approach

is much more conservative. Moreover, the numerical results in Chapter 4 show that

our two-stage approach performs better than the traditional approach.

In addition, according to the results of Kleijnen et al. [1], the next design

point of the ASA technique might be at infinity in certain situations which makes

F (n1, n2, · · · , nm), the maximal value of the lower bound of predicted response, in-

finite also. In this case we are not able to identify the allocation that maximizes

F (n1, n2, · · · , nm). However, we focus on the early stages of RSM where the main

objective is to find the most effective path to improve the response. We see from

Equation 3.7 that since b, C and β̂−0 are determined from the design matrix X,

these values and Y are always finite. Thus the infinite next design point can only be

due to the infinite step size λ. In this case, we propose an asymptotic approach to

decide the allocation. We choose a design point d∗ in the ASA direction, and study

the behavior of ŷmin(d∗) when the step size of d∗ approaches infinity.

Let d∗ = −C−1b + λ∗C−1β̂−0, where C, b and β̂−0 are the same as in Equation

3.7, and the step size λ∗ is fixed. Substitute d∗ into ŷmin in Equation 3.6, we will get

ŷmin(d∗) = β̂0−β̂−0
T
C−1b+λ∗β̂−0

T
Cβ̂−0−tαN−q

√
(a− bTC−1b + λ∗2β̂−0

T
C−1β̂−0)σ̂2.

(3.9)

When the step size approaches infinity (λ∗ →∞), the ratio of ŷmin(d∗) and λ∗ is

lim
λ∗→∞

ŷmin(d∗)
λ∗

= β̂−0
T
C−1β̂−0 − tαN−q

√
β̂−0

T
C−1β̂−0 · σ̂2. (3.10)

This ratio depends on the allocation as C is determined by n1, n2, · · · , nm through

23



the design matrix X in Equation 3.3, and thus we may choose a particular allocation

to maximize this ratio.

In our two-stage approach, β̂ and σ̂2 are estimated in stage 1, and in stage 2

we can identify an allocation with the maximal value in Equation 3.10. We define

this allocation as the dominating allocation as it makes the value of ŷmin, the lower

bound of predicted response, always larger or equal to the value of ŷmin of other

allocations when the design point approaches infinity in the ASA direction. The idea

of dominating allocation is consistent with our original idea to find the allocation

that gives a better value of the lower bound of predicted response.

As a result, in the case that the next design point is determined to be at infinity,

we formulate the computing budget allocation problem as

(P1) max
n1,n2,··· ,nm

(
β̂−0

T
C−1β̂−0 − tαN−q

√
β̂−0

T
C−1β̂−0 · σ̂2

)

with n1 + n2 + · · ·+ nm = N

where C is determined by n1, n2, · · · , nm through design matrix X, and β̂ and σ̂2 are

the estimates of β and σ2.

If some allocations make the value of F (n1, n2, · · · , nm) infinite in stage 2, we will

allocate the rest of runs according to the dominating allocation. If the value of next

design point d+ is determined to be at infinity or outside the feasible region after

stage 2, we will set the intersection of the boundary of feasible region and the ASA

direction as the next design point.

Our suggested procedure to conduct hill-climbing in the early stages of RSM with

computing budget constraints is summarized as follows:

Step 1. A two-level factorial design is used, which equally distributes n0 runs to all

the design points. β̂ and σ̂2 are estimated using these n0 observations;

Step 2. Identify the best allocation for the rest of runs using brute force search;

Step 2.1 Generate all possible allocations of {n1, n2, · · · , nm−1, nm} for the remain-

ing N−n0 runs: Λ = {{0, 0, · · · , 0, N−n0}, {0, 0, · · · , 1, N−n0−1}, · · · , {N−
n0, 0, · · · , 0, 0}};
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Step 2.2 Select an allocation from Λ and reconstruct the design matrix X using the

total of N replications;

Step 2.3 Compute a, b, C from (XTX)−1 =


 a bT

b C


;

Step 2.4 Use β̂, σ̂2 and current allocation to compute F (n1, n2, · · · , nm).

Step 2.5 If the value of F (n1, n2, · · · , nm) is infinite, add this allocation as a poten-

tial dominating allocation into the variable set ‘n temp’; otherwise, compare the

value of F (n1, n2, · · · , nm) with the previous maximal value of F (n1, n2, · · · , nm).

If the new F (n1, n2, · · · , nm) is larger than the previous maximal value, replace

the previous maximal value with the new F (n1, n2, · · · , nm) and record the

current allocation as the best allocation;

Step 2.6 If all the possible allocations in Λ have been searched, go to step 2.7;

otherwise go to step 2.2 and select another allocation from Λ which is not

previously selected;

Step 2.7 If ‘n temp’ is not empty, use brute force search for all the allocations in

‘n temp’ and choose the dominating allocation which maximizes Equation 3.10

from ‘n temp’ as the best allocation;

Step 2.8 Return the best allocation;

Step 3. Conduct the rest of runs, estimate the true response function using all the

observations, and compute the next design point d+. If an infinite d+ is iden-

tified or d+ is outside the feasible region, set the intersection of the boundary

of feasible region and the ASA direction as the next design point;

Step 4. If the terminating condition is met, stop the procedure. Otherwise, move

to the next design point, make it as the center of the two-level factorial design

and go back to step 1.
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Here, the terminating condition will be the maximal number of iterations is

reached or the response at the final design point is within certain percentage of

the true optimum, which will be discussed later in this thesis.

The flowchart for step 2, i.e. identifying the best allocation for the rest of runs

using brute force search, is given in figure 3.1 at the end of this chapter.

A special case for our two-stage computing budget allocation approach is the one-

dimensional model because there is only one dimension in the search direction. If

the next design point of the ASA technique is at infinity, given a finite number of

runs, we can find a unique dominating allocation, and this dominating allocation is

the equal allocation. We prove this in Appendix C. Correspondingly, the flowchart

to identify the best allocation for a one-dimensional model is given in figure 3.2, and

the procedure to conduct hill-climbing with budget constraints is similar.

3.3 Two-dimensional Linear Model

Since our approach locally approximates the true response function using a linear

model, we first apply our two-stage computing budget allocation approach to a linear

model to validate its advantages. In this case, the effect of model misspecification is

removed. In Chapter 4, we will test our approach for nonlinear models.

As the optimal point for a linear model is at infinity, we consider the infinite

feasible input region. However, in order to compare the different allocation schemes,

we consider only the cases where the noise is large enough for the ASA technique to

yield a finite next design point. When the noise is too small, the next design point is

infinite and no allocation comparisons can be made. In Equation 3.8, we can always

choose a large σ2 so that the step size λ is finite for the next design point d+.

The main concern here is the performance of different computing budget allocation

schemes. We compare the traditional 2k factorial design which allocates runs equally

to each design point to our two-stage allocation. Both allocation schemes will use the

ASA technique to determine the next design point. We also fix some general settings

such as the true response function, the initial design point and the size of region of
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experimentation to make the testing conditions homogeneous.

Here we summarize the general settings for the numerical experiment:

(1). the true response function: y = 0.5 + 0.25 · d1 + 0.25 · d2 + ε, where ε follows

i.i.d. N(0, σ2);

(2). the initial point: (0, 0), which is the initial level of input variables (d1,d2) for

all the experiments;

(3). the length of the region of experimentation: l = 2. In the two-dimensional

model, the four design points of 22 design are (d∗1− l/2, d∗2− l/2), (d∗1− l/2, d∗2 +

l/2), (d∗1 + l/2, d∗2 − l/2) and (d∗1 + l/2, d∗2 + l/2), where (d∗1, d
∗
2) is the center

point of current region of experimentation;

(4). the standard deviation of noise: σ = 50. σ = 50 is a large noise compared to

the coefficients of the true response function;

(5). α = 0.05 which is used to determine the t-value when computing the step size

λ in Equation 3.8;

and the adjustable factors:

(1). the number of iterations (N.O.I.): as the design moves from the original region

to the future design point, we say the design moves one step. The number of

iterations indicates how many steps the design moves;

(2). the total number of runs in each iteration (N), or the number of runs in stage

1 v.s. the number of runs in stage 2 {n0, N − n0};

In simulation optimization study, the key output of interest is the final expected

response after using up all the budget. Therefore we compare the final expected

responses of two-stage allocation and the final expected responses of traditional equal

allocation at the end of all the iterations.

The following hypothesis for each setting is tested at level 0.05:

H0 : µ1 − µ2 = 0 v.s. H1 : µ1 − µ2 > 0
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where µ1 is the average response at the final points for two-stage allocation and µ2

is the average response at the final points for equal allocation. To compute µ1 and

µ2, we replicate the experiment and obtain 100 final responses for both two-stage

allocation and equal allocation. The final responses are computed from the true

response function at the final points that each allocation scheme obtains. Similar as

the study of Lawson, Keats and Montgomery [45], we assume that the outliers in our

study are the samples which fall outside the 3% tail area of the sampling distribution,

which means we treat the largest three and the smallest three samples as the outliers

and delete them before we proceed to the statistical analysis. In this study, we use the

two-sample t-test. Since we do not assume equal variance for this test, the degrees

of freedom will be determined by not only the sample size but also the variances

of the two samples (see Devore [46]). If the hypothesis H0 is finally rejected, then

we can conclude that the observations strongly suggest that the two-stage allocation

improves the response much faster than the equal allocation.

We first investigate whether the two-stage allocation can improve significantly

the expected response over the traditional equal allocation when the true response

is used to compute F (n1, n2, · · · , nm) (i.e. the true response function is known when

we search for the best allocation, in step 1 and step 2). Since we use the true

response function to compute F (n1, n2, · · · , nm), there is no estimation error. The

best allocation determined by the two-stage allocation is the theoretically optimal

solution for problem (P). Experiments are done based on this theoretically optimal

allocation, the true response function is estimated and then the next design point

is computed (i.e. in step 3). When we move to the next region of experimentation,

the best allocation is always determined by the true response function. In this case,

the two-stage allocation should be better than the equal allocation. If two-stage

allocation does not perform significantly better we would expect it not to work well

when the true response function is estimated. We give the numerical results for two-

dimensional known models in section 3.3.1. Next we test its performance for fixed but

unknown linear models since in reality most of the response functions are unknown

and need to be estimated. The numerical results are given in section 3.3.2 for the
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two-dimensional unknown model.

3.3.1 Computing Budget Allocation with Known Model

Here we assume the true response function is known. In step 2.4 of the iterative

procedure, we will compute the next design point based on the true β and σ2 and

then determine the best allocation. We run different settings to test the performance

of the two-stage allocation, and the different levels of the adjustable factors are:

(1). the number of iterations (N.O.I.): 1 or 5. When N.O.I.=1, 100% of the experi-

ments get finite d+. After 5 iterations (N.O.I.=5), about 30% of the experiments

get infinite d+. Although we have set the noise to be large, the step size in

Equation 3.8 is a random variable, and there is a nonzero probability that it

gets an infinite value. We compute d+ in each iteration, and the more iterations

we have, the larger the probability that the next design point is determined to

be at infinity. Since we drop all the infinite observations in this study, hence if

many experiments fail to get finite d+ at the end of all iterations, the compar-

ison is biased because the sample sizes of µ1 and µ2 are different and we only

keep those biased samples with smaller step sizes. To prevent our results from

having such a large bias, we fix the maximal N.O.I. to be 5.

(2). the total number of runs in each iteration (N) : 20, or 40, or 80.

Table 3.1 shows the results for varying N.O.I., N , µ1, µ2, σ1 - the standard

deviation of µ1 over 94 samples, σ2 - the standard deviation of µ2 over 94 samples,

and gives the P-value of the hypothesis test. DOF is the degrees of freedom for the

two-sample t-test with unequal variance. Here, DOF =
(

σ2
1

94
+

σ2
2

94
)2

(σ2
1/94)2

93
+

(σ2
2/94)2

93

. If the

value of DOF is not an integer, it will be rounded down to the nearest integer (see

page 366 of Devore [46]).
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Table 3.1: The comparison of final responses for a known

two-dimensional linear model

N.O.I. σ N Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

1 50 20 0.873 0.142 0.482 0.230 0.000 154

1 50 40 0.932 0.126 0.444 0.306 0.000 123

1 50 80 0.978 0.088 0.529 0.212 0.000 123

5 50 20 2.515 0.496 0.439 0.736 0.000 162

5 50 40 2.741 0.300 0.565 0.671 0.000 128

5 50 80 2.840 0.272 0.550 0.588 0.000 131

From table 3.1 we can observe that:

1. Two-stage allocation always gives higher final responses (µ1 > µ2), and the

final design points of equal allocation remain close to the initial point (the

initial point is (0, 0), the response at (0, 0) is 0.5 and µ2 is always around 0.5).

2. For this particular model, N = 40 seems good. The difference between the final

responses of N = 40 and the final responses of N = 80 is less than 10% while

N = 40 only costs half of the runs for N = 80.

3. The variability of the final responses for the equal allocation is much larger

than the variability of two-stage allocation (σ2 > σ1).

For observation 1, when the noise σ2 is large (σ2 = 2500 while the responses µ1

and µ2 are less than 3), the step size of the ASA technique in Equation 3.8 is very

small, which makes the next design point d+ close to the starting point −C−1b.

However, the starting points −C−1b for equal allocation and two-stage allocation are

quite different. For equal allocation, we show that the starting point is the center of

the region of experimentation in Appendix B. For two-stage allocation, the starting

point is close to the point with the largest response in the local region. First, when

the next design point d+ is close to the starting point −C−1b, the value of ŷ(d+) is
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close to the value of ŷ(−C−1b). Second, ŷmin(d+) is likely to be large when ŷ(d+)

is large. Therefore the value of ŷ(−C−1b) is expected to be as large as possible so

that ŷ(d+) would be large, and consequently ŷmin(d+) would be large. However,

the starting point −C−1b must be inside the region of experimentation because it

is the point with minimal variance of predicted response (see Kleijnen et al. [1]),

and therefore the ‘ideal’ starting point for two-stage allocation is the point with the

largest response in the local region. Two-stage allocation will search for such an

allocation that makes the starting point close to that ‘ideal’ point. In summary, for

equal allocation, the small step size makes the next design point close to the center

of region of experimentation, while for two-stage allocation, it makes the next design

point close to the point with the largest response in the local region. After we move

to the next design point and climb the response surface for several iterations, these

two designs will show significant difference.

For observation 3, it implies that the performance of our two-stage computing

budget allocation approach is much more stable. Since the true response function is

linear, it also implies that the final design points of two-stage allocation are close to

each other while the final design points of equal allocation are more widely spread

out.

Since our two-stage allocation works well for the large noise case when the true

response function is known, we apply it to the unknown case in section 3.3.2 to further

show its advantages.

3.3.2 Two-stage Approach with Unknown Model

When the true response function is unknown, we will use the estimates of stage 1

as the true response function and determine the best allocation that makes the lower

bound of predicted response maximized.

We run different settings to test the performance of the two-stage allocation, and

the different levels of the adjustable factors are:

(1). the number of iterations (N.O.I.): 1 or 5.
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(2). the total number of runs in stage 1 v.s. the total number of runs in stage 2,

{n0, N − n0}: {12, 28}, {20, 20}, {28, 12}.

We choose 40 runs as the total number of runs in one iteration, N , based on the

observations in section 3.3.1. The results of the experiment are given in table 3.2.

The structure of this table is identical to table 3.1 except that {n0, N − n0} replaces

N .

Table 3.2: The comparison of final responses for an un-

known two-dimensional linear model

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

1 50 12 28 0.615 0.184 0.521 0.236 0.001 175

1 50 20 20 0.583 0.150 0.521 0.236 0.016 157

1 50 28 12 0.536 0.172 0.521 0.236 0.314 169

5 50 12 28 0.973 0.410 0.502 0.735 0.000 145

5 50 20 20 0.790 0.346 0.502 0.735 0.000 132

5 50 28 12 0.610 0.418 0.502 0.735 0.109 147

From table 3.2, we can observe that

1. {12, 28} seems to be the best combination among the three combinations of

{n0, N − n0}. When noise is large in this case, the final responses of {12, 28}
are always the largest. {28, 12} is the worst; there is no significant difference

between {28, 12} and the equal allocation.

2. The performance of two-stage allocation seems to be more robust than the equal

allocation. When the setting is the same, the variability of final responses for

two-stage allocation is always smaller than the equal allocation (σ1 < σ2).

For observation 1, it is not surprising that {28, 12} performs similarly as equal

allocation, because most of the runs (28 out of 40 runs) are equally distributed in
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stage 1. For observation 2, this may be due to the different step sizes of two-stage

allocation and equal allocation.

We draw the following conclusions for this particular two-dimensional linear model:

When the true response function is known two-stage allocation is always the best.

The final response is larger and the variability of final responses is smaller. This study

helps us assure that the two-stage allocation will work. However, it is necessary to

test the performance of the two-stage allocation for unknown response function since

the true response function is always unknown.

When the true response function is unknown, our two-stage allocation outperforms

the equal allocation when the noise is large. If we assign more runs in stage 1, the

performance of two-stage allocation gets worse.

In this chapter, we introduce our two-stage computing budget allocation approach

in detail. We also compare it to the traditional equal allocation for a linear model,

and observe that our two-stage approach significantly outperforms the traditional

equal allocation when the noise is large. In the following chapter, we will conduct

more numerical studies to validate its advantages.
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Chapter 4

Numerical Results for Nonlinear

Model

It is important to investigate how our two-stage computing budget allocation ap-

proach performs with nonlinear models so that we can be more assured our approach

works under different circumstances. This chapter lists all the experimental settings

and results for the comparison of our two-stage allocation and traditional equal allo-

cation. As there is no standard response function in the literature to test the different

hill-climbing methods, we select several different shaped low order responses for the

testing, such as y = − (d−10)2

50
+ 2 and y = e−

(d−10)2

50
+2. In Kleijnen et al. [1], the au-

thors also use an arbitrary second-order polynomial to compare their ASA technique

with the SA technique.

As this thesis concentrates on the earlier stages of RSM, we use linear models

to approximate the nonlinear response functions. Thus the main idea of two-stage

computing budget allocation for nonlinear models is the same as the one in linear

model case. The iterative procedure to conduct hill-climbing with computing budget

constraints is also the same as stated in Chapter 3.

There is a feasible region for all the nonlinear models. Our approach does not

intend to distinguish the local optimum, and therefore we consider the cases in which

there is only one optimum in the feasible region. The general settings for numerical

experiments are:
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(1). the initial point: the origin;

(2). the length of the region of experimentation: l = 2;

(3). α = 0.05 which is used to determine the t-value when computing the step size

λ;

(4). the value of N : 20 for the one-dimensional models and 40 for the two-dimensional

models. From table 3.1, we have found that N = 40 seems good for the two

dimensional model when noise is large. On average there are 10 runs at each

design point in one iteration, and this setting appears to work well for our

numerical study. For the rest of experiments we will make this as the general

setting. There are two design points for the one-dimensional models in one

iteration, hence N equals 20 for the one-dimensional models.

For nonlinear cases, the key output of interest is still the final expected response

after using up all the budget. In addition, we consider how many iterations each

design needs to get to the true optimum. Since we consider only first-order model

in this thesis, which will be inadequate when the design is close to the optimum, we

define a neighborhood of the true optimum and compare how many iterations each

design needs to get to this fixed neighborhood of the true optimum. In short, we

consider:

Method 1. Which allocation obtains a better final response after using up the fixed

budget.

Method 2. With an unlimited budget, which allocation requires less number of

iterations to obtain a final response within t% of the true optimum.

For method 1, the adjustable factors are:

(1). the number of iterations (N.O.I.);

(2). the standard deviation of noise (σ);

(3). the total number of runs in stage 1 v.s. the total number of runs in stage 2.
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For method 2, the adjustable factors are:

(1). the standard deviation of noise (σ);

(2). the total number of runs in stage 1 v.s. the total number of runs in stage 2.

We list all the experimental settings and the numerical results for one-dimensional

models in section 4.1, and two-dimensional models in section 4.2. We can see that our

two-stage computing budget allocation approach outperforms the traditional equal

allocation approach when the system noise is large.

4.1 One-dimensional Nonlinear Model

We run different settings to test the performance of the two-stage allocation, and

four different response surfaces are tested:

(1). Model 1: y = −(d− 10)2

50
+ 2 + ε =

2

5
· d− 1

50
· d2 + ε

• the feasible region for d is (−2, 22), the range of response is (−0.88, 2),

and the response at the starting point is 0.

• the gradient at the starting point is
2

5
, and it is continuously decreasing

to 0 with the ratio 1
25

.

(2). Model 2: y = −(d− 10)2

20
+ 5 + ε = d− 1

20
· d2 + ε

• the feasible region for d is (−2, 22), the range of response is (−2.2, 5), and

the response at the starting point is 0.

• the gradient at the starting point is 1, and it is continuously decreasing to

0 with the ratio 1
10

.

(3). Model 3: y = e−
(d−10)2

50
+2 + ε = e

2
5
·d− 1

50
·d2

+ ε

• the feasible region for d is (−2, 22), the range of response is (0.415, 7.39),

and the response at the starting point is 1.

• the gradient: 0.4 (starting point) → 0.896 (largest) → 0 (optimum).
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(4). Model 4: y = e−
(d−10)2

20
+3 + ε = e−2+d− 1

20
·d2

+ ε

• the feasible region for d is (−2, 22), the range of response is (0.015, 20.09),

and the response at the starting point is 0.14.

• the gradient: 0.14 (starting point) → 3.85 (largest) → 0 (optimum).

The response surfaces for these four models are given in figure 4.1.
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Figure 4.1: The response surfaces for one-dimensional models 1 ∼ 4

For Model 1 and Model 3, they both represent the flat response surfaces, whose

gradient changes slowly near the optimum. But Model 1 is linear in β and Model 3

is nonlinear in β.

For Model 2 and Model 4, they both represent the steep response surfaces, whose

gradient changes quickly near the optimum. But Model 2 is linear in β and Model 4

is nonlinear in β.

Although these four models are nonlinear, we use a linear model y = β0 + β1d to

approximate the response surface locally. Through these four models, we are going
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to examine how our two-stage allocation improves the expected response compared

to the traditional equal allocation.

For the comparison by method 1, the adjustable factors are:

(1). the number of iterations (N.O.I.): 10 or 50;

(2). the standard deviation of noise (σ): 10 or 50;

(3). the total number of runs in stage 1 v.s. the total number of runs in stage 2,

{n0, N − n0}: {8, 12}, {12, 8}, {16, 4}.

The variable of interest is the expected response at the final point. And the

following hypothesis for each setting is tested at level 0.05:

H0 : µ1 − µ2 = 0 v.s. H1 : µ1 − µ2 > 0

where µ1 is the average response at the final points for two-stage allocation and µ2

is the average response at the final points for equal allocation. To compute µ1 and

µ2, we replicate the experiment and obtain 100 final responses for both two-stage

allocation and equal allocation. We assume that the largest three samples and the

smallest three samples are outliers, and they are deleted afterwards. If the hypothesis

H0 is rejected, then we can conclude that the observations strongly suggest that the

two-stage allocation improves the response much faster than the equal allocation.

The results for the comparison using method 1 are given in tables 4.1 to 4.4. The

structure of these four tables is identical to table 3.2.

(1). Model 1

Table 4.1: The comparison of final responses for one-

dimensional nonlinear model 1

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 -0.068 0.767 -0.128 0.691 0.287 184

10 10 12 8 -0.110 0.737 -0.128 0.691 0.429 185
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10 10 16 4 -0.152 0.755 -0.128 0.691 0.590 184

10 50 8 12 -0.290 0.645 -0.046 0.761 0.991 181

10 50 12 8 -0.253 0.693 -0.046 0.761 0.974 184

10 50 16 4 -0.250 0.686 -0.046 0.761 0.973 184

50 10 8 12 0.068 0.776 -0.340 0.578 0.000 171

50 10 12 8 -0.007 0.865 -0.340 0.578 0.001 162

50 10 16 4 -0.271 0.680 -0.340 0.578 0.225 181

50 50 8 12 -0.327 0.631 -0.536 0.487 0.006 174

50 50 12 8 -0.127 0.738 -0.536 0.487 0.000 161

50 50 16 4 -0.167 0.747 -0.536 0.487 0.000 159

(2). Model 2

Table 4.2: The comparison of final responses for one-

dimensional nonlinear model 2

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 0.400 2.120 -0.580 1.660 0.000 175

10 10 12 8 0.050 2.000 -0.580 1.660 0.010 179

10 10 16 4 0.190 2.040 -0.580 1.660 0.003 178

10 50 8 12 -0.370 1.740 -0.640 1.820 0.143 185

10 50 12 8 -0.670 1.690 -0.640 1.820 0.535 184

10 50 16 4 -0.300 1.900 -0.640 1.820 0.102 185

50 10 8 12 0.200 2.090 0.120 2.160 0.398 185

50 10 12 8 0.460 2.310 0.120 2.160 0.155 185

50 10 16 4 0.560 2.370 0.120 2.160 0.097 184

50 50 8 12 -0.190 1.910 -0.770 1.550 0.011 178

50 50 12 8 -0.170 2.050 -0.770 1.550 0.012 173

50 50 16 4 -0.420 1.900 -0.770 1.550 0.080 178
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(3). Model 3

Table 4.3: The comparison of final responses for one-

dimensional nonlinear model 3

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 1.160 1.180 0.917 0.884 0.056 172

10 10 12 8 1.320 1.450 0.917 0.884 0.012 153

10 10 16 4 0.929 0.832 0.917 0.884 0.462 185

10 50 8 12 0.924 0.838 1.004 0.922 0.733 184

10 50 12 8 0.972 0.737 1.004 0.922 0.604 177

10 50 16 4 1.073 0.905 1.004 0.922 0.304 185

50 10 8 12 1.470 1.640 1.440 1.890 0.453 182

50 10 12 8 1.450 1.710 1.440 1.890 0.476 184

50 10 16 4 1.160 1.210 1.440 1.890 0.882 158

50 50 8 12 1.220 1.300 0.884 0.688 0.015 141

50 50 12 8 0.796 0.540 0.884 0.688 0.834 176

50 50 16 4 0.928 0.731 0.884 0.688 0.337 185

(4). Model 4

Table 4.4: The comparison of final responses for one-

dimensional nonlinear model 4

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 0.318 0.984 0.237 0.686 0.255 166

10 10 12 8 0.286 0.659 0.237 0.686 0.307 185

10 10 16 4 0.231 0.586 0.237 0.686 0.524 181

10 50 8 12 0.660 2.090 0.390 1.140 0.136 143

10 50 12 8 0.335 0.833 0.390 1.140 0.645 170
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10 50 16 4 0.206 0.608 0.390 1.140 0.914 141

50 10 8 12 0.241 0.666 0.126 0.283 0.063 125

50 10 12 8 0.161 0.382 0.126 0.283 0.238 171

50 10 16 4 0.231 0.482 0.126 0.283 0.036 150

50 50 8 12 1.180 2.920 0.520 1.410 0.025 134

50 50 12 8 0.750 2.370 0.520 1.410 0.215 151

50 50 16 4 0.313 0.919 0.520 1.410 0.883 159

From the above numerical results, although some P-values are significant, the

conclusion is not very consistent. Unlike the linear models, there is only one optimum

in the feasible region for the nonlinear models considered. However, in this thesis, we

do not take the convergence to the optimum into account. When the design point

reaches the optimum during the hill-climbing procedure, it still can jump away in the

next iteration. Here we only compare a particular response when the design finishes

moving its last (10th or 50th) step.

In the following experiments, we will compare the best response that each al-

location ever gets during its 10-step or 50-step hill-climbing. Correspondingly, the

variable of interest becomes the best response during the hill-climbing. It is reason-

able as in reality the experimenter is only concerned with the best response during

the hill-climbing. The following hypothesis is tested at level 0.05:

H0 : µ1 − µ2 = 0 v.s. H1 : µ1 − µ2 > 0

where µ1 is the average response at the best points during hill-climbing for two-stage

allocation and µ2 is the average response at the best points for equal allocation. The

rest of the settings are the same as the comparison of the final responses.

The results for comparing the best responses are given in tables 4.5 to 4.8.

43



(1). Model 1

Table 4.5: The comparison of best responses for one-

dimensional nonlinear model 1

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 0.645 0.512 0.453 0.383 0.002 172

10 10 12 8 0.713 0.470 0.453 0.383 0.000 178

10 10 16 4 0.591 0.522 0.453 0.383 0.020 170

10 50 8 12 0.601 0.548 0.376 0.514 0.002 185

10 50 12 8 0.456 0.435 0.376 0.514 0.123 181

10 50 16 4 0.526 0.473 0.376 0.514 0.019 184

50 10 8 12 1.407 0.454 1.148 0.561 0.000 178

50 10 12 8 1.469 0.422 1.148 0.561 0.000 172

50 10 16 4 1.356 0.465 1.148 0.561 0.003 179

50 50 8 12 1.223 0.473 1.015 0.513 0.002 184

50 50 12 8 1.236 0.487 1.015 0.513 0.001 185

50 50 16 4 1.192 0.535 1.015 0.513 0.011 185

(2). Model 2

Table 4.6: The comparison of best responses for one-

dimensional nonlinear model 2

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 2.080 1.270 1.480 1.370 0.001 184

10 10 12 8 2.040 1.400 1.480 1.370 0.003 185

10 10 16 4 1.930 1.440 1.480 1.370 0.014 185

10 50 8 12 1.520 1.220 0.990 1.140 0.001 185
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10 50 12 8 1.330 1.280 0.990 1.140 0.027 183

10 50 16 4 1.290 1.270 0.990 1.140 0.045 183

50 10 8 12 3.992 0.901 3.710 1.170 0.032 174

50 10 12 8 4.064 0.768 3.710 1.170 0.008 160

50 10 16 4 3.965 0.970 3.710 1.170 0.052 179

50 50 8 12 3.340 1.240 2.750 1.420 0.001 182

50 50 12 8 3.160 1.160 2.750 1.420 0.014 178

50 50 16 4 2.960 1.080 2.750 1.420 0.126 173

(3). Model 3

Table 4.7: The comparison of best responses for one-

dimensional nonlinear model 3

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 2.120 1.280 1.737 0.907 0.010 167

10 10 12 8 1.940 1.120 1.737 0.907 0.085 178

10 10 16 4 2.310 1.600 1.737 0.907 0.002 147

10 50 8 12 1.920 1.130 1.664 0.988 0.048 182

10 50 12 8 2.050 1.300 1.664 0.988 0.011 173

10 50 16 4 1.657 0.898 1.664 0.988 0.522 184

50 10 8 12 5.040 1.930 3.850 1.990 0.000 185

50 10 12 8 4.290 1.960 3.850 1.990 0.063 185

50 10 16 4 4.380 2.040 3.850 1.990 0.037 185

50 50 8 12 3.720 1.750 2.950 1.560 0.001 183

50 50 12 8 3.940 1.870 2.950 1.560 0.000 180

50 50 16 4 3.390 1.760 2.950 1.560 0.036 183
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(4). Model 4

Table 4.8: The comparison of best responses for one-

dimensional nonlinear model 4

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 8 12 1.470 2.300 1.030 2.020 0.081 182

10 10 12 8 1.030 1.710 1.030 2.020 0.498 181

10 10 16 4 1.000 1.670 1.030 2.020 0.553 179

10 50 8 12 1.360 2.800 1.090 2.250 0.235 177

10 50 12 8 1.560 2.720 1.090 2.250 0.101 179

10 50 16 4 1.200 2.490 1.090 2.250 0.379 184

50 10 8 12 6.720 6.530 4.860 5.370 0.017 179

50 10 12 8 5.860 6.650 4.860 5.370 0.130 178

50 10 16 4 6.120 6.360 4.860 5.370 0.072 180

50 50 8 12 6.200 6.100 4.660 5.440 0.035 183

50 50 12 8 6.600 6.570 4.660 5.440 0.014 179

50 50 16 4 6.470 6.920 4.660 5.440 0.024 176

From tables 4.5 to 4.8, we can observe that:

1. Two-stage allocation works very well for all the four response surfaces. For

model 4, because the initial gradient is very flat and the step size in Equation

3.8 is very small when the gradient is flat, therefore the design points of both

allocations move very slowly. After 10 iterations most of the design points

are still in the flat region and there is no significant difference between two-

stage allocation and equal allocation. However, after 50 iterations, two-stage

allocation excels again.

2. {8, 12} seems to be the best combination of {n0, N−n0} for two-stage allocation.

In most cases, {16, 4} is the worst combination, and sometimes there is no
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significant difference between {16, 4} and equal allocation, which may be due

to most of the runs being equally distributed in stage 1.

For the comparison by method 2, we choose t% = 90%, and the adjustable factors

are:

(1). the standard deviation of noise (σ): 10 or 50;

(2). the total number of runs in stage 1 v.s. the total number of runs in stage 2,

{n0, N − n0}: {8, 12}, {12, 8}, {16, 4}.

We fix an upper bound for the computing budget, which means for each setting

of σ and {n0, N − n0}, a maximum of 300 iterations is carried out. If the allocation

fails to improve the response within 90% of the true optimum after 300 iterations,

then 300 is recorded as the lower bound for the number of iterations.

The variable of interest is the number of iterations required by each design to get

to 90% of the true optimum. The following hypothesis is tested at level 0.05:

H0 : ν1 − ν2 = 0 v.s. H1 : ν1 − ν2 < 0

where ν1 is the average number of iterations to get to 90% of the true optimum for

two-stage allocation and ν2 is the average number of iterations to get to 90% of the

true optimum for equal allocation. To compute ν1 and ν2, we replicate the experiment

for 300 times for both two-stage allocation and equal allocation. We also delete the

largest three samples and the smallest three samples as outliers. If the hypothesis

H0 is rejected, then we can conclude that the observations strongly suggest that the

two-stage allocation improves the response much faster than the equal allocation.

Tables 4.9 to 4.12 show the results for varying σ, {n0, N−n0}, ν1, ν2, σ1 - the stan-

dard deviation of ν1 over 294 samples, σ2 - the standard deviation of ν2 over 294 sam-

ples, and give the P-value of the hypothesis test. Here, DOF =
(

σ2
1

294
+

σ2
2

294
)2

(σ2
1/294)2

293
+

(σ2
2/294)2

293

.

If the value of DOF is not an integer, it will be rounded down to the nearest integer.
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(1). Model 1

Table 4.9: The comparison of N.O.I. for one-dimensional

nonlinear model 1

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 8 12 139.5 97.9 170.0 107.0 0.000 581

10 12 8 138.1 97.3 170.0 107.0 0.000 580

10 16 4 157.0 103.0 170.0 107.0 0.065 585

50 8 12 168.0 104.0 206.0 102.0 0.000 585

50 12 8 183.0 107.0 206.0 102.0 0.004 584

50 16 4 185.0 107.0 206.0 102.0 0.008 584

(2). Model 2

Table 4.10: The comparison of N.O.I. for one-

dimensional nonlinear model 2

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 8 12 96.0 73.9 130.0 100.0 0.000 538

10 12 8 94.1 73.7 130.0 100.0 0.000 537

10 16 4 102.0 82.0 130.0 100.0 0.000 563

50 8 12 156.0 103.0 188.0 103.0 0.000 585

50 12 8 159.0 107.0 188.0 103.0 0.000 585

50 16 4 171.0 105.0 188.0 103.0 0.021 585
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(3). Model 3

Table 4.11: The comparison of N.O.I. for one-

dimensional nonlinear model 3

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 8 12 131.2 94.3 180.0 106.0 0.000 578

10 12 8 143.0 100.0 180.0 106.0 0.000 584

10 16 4 151.0 103.0 180.0 106.0 0.000 585

50 8 12 194.0 105.0 226.5 97.7 0.000 583

50 12 8 197.0 104.0 226.5 97.7 0.000 583

50 16 4 204.0 107.0 226.5 97.7 0.004 581

(4). Model 4

Table 4.12: The comparison of N.O.I. for one-

dimensional nonlinear model 4

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 8 12 198.0 106.0 236.9 92.0 0.000 575

10 12 8 197.0 108.0 236.9 92.0 0.000 572

10 16 4 208.0 102.0 236.9 92.0 0.000 580

50 8 12 198.0 102.0 230.0 97.6 0.000 585

50 12 8 202.0 105.0 230.0 97.6 0.000 582

50 16 4 220.0 101.0 230.0 97.6 0.116 585

From tables 4.9 to 4.12, we can observe that:

1. Two-stage allocation needs less iterations to reach the fixed neighborhood of

the true optimum.
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2. When the noise becomes smaller, the ASA technique results in larger step sizes

(see Equation 3.8). Hence when σ is smaller, both allocations require less

iterations to reach the fixed region for Models 1, 2 and 3. However, the N.O.I.

is larger for Model 4 when σ is smaller. It may be due to the particular shape

of Model 4. Its fixed region is small because its gradient near the optimum is

steep. The large step sizes may make the design points jump over the fixed

region, and eventually fail to get into the fixed region, which can be seen also

in table 4.13.

3. {16, 4} is still the worst combination of {n0, N − n0} for most of the cases.

Table 4.13 shows the results that in those 300 trials, how many trials successfully

reach the fixed neighborhood of the true optimum within 300 iterations for varying

σ and allocations.

Table 4.13: The comparison of the number of successful

trials for one-dimensional nonlinear models

Two-stage Allocation {n0, N − n0} Equal Allocation

σ {8, 12} {12, 8} {16, 4}
Model 1 10 253 259 234 220

50 219 200 191 169

Model 2 10 291 290 284 254

50 232 221 217 199

Model 3 10 258 248 234 205

50 193 180 162 142

Model 4 10 180 174 164 125

50 191 165 143 131

From table 4.13, we can observe that there are many trials for equal allocation

that do not reach the fixed neighborhood after running out of 300 iterations. This

may be due to the reason that it is easier for equal allocation to obtain an infinite
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step size, and since we have a finite feasible input region for those nonlinear models,

if an infinite next design point is identified, then we will move to the boundary of

the feasible region. Thus for equal allocation the design points will bounce on the

boundaries of the feasible region and fail to get into the fixed neighborhood of the

true optimum at the end of all iterations.

Since we record 300 as the lower bound for the number of iterations if the ex-

periment fails to obtain 90% of the true optimum after 300 iterations, we can also

conclude that the value of N.O.I. from tables 4.9 to 4.12 has been under estimated.

However, from table 4.13 we can see that the underestimation for equal allocation is

more serious than the case for two-stage allocation, and equal allocation may need

much more runs to reach the fixed neighborhood of the true optimum than the value

of ν2 as shown from tables 4.9 to 4.12.

From tables 4.9 to 4.13, we can conclude that for those one-dimensional nonlinear

models, our two-stage allocation can reach the optimal region much faster than the

equal allocation, and thus the efficiency of our two-stage approach to conduct hill-

climbing is higher than the equal allocation.

4.2 Two-dimensional Nonlinear Model

For two dimensional nonlinear model, the procedure to select the optimal alloca-

tion is identical as the procedure in two dimensional linear model case, and we also

consider four different response surfaces besides the previous adjustable factors:

(1). Model 5: y = −(d1 − 10)2 + (d2 − 10)2

40
+5+ε =

1

2
·d1+

1

2
·d2− 1

40
d2

1−
1

40
d2

2+ε

• the feasible region is a circle with center {10, 10} and radius 12
√

2, the

range of response is (−2.2, 5), and the response at the starting point is 0.

• the gradient at the starting point is 0.71, and it is continuously decreasing

to 0.

The response surface for this model is given in figure 4.2
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Figure 4.2: The response surface for two-dimensional model 5

(2). Model 6: y = −(d1 − 10)2 + (d2 − 10)2

20
+ 10 + ε = d1 + d2 − 1

20
d2

1 −
1

20
d2

2 + ε

• the feasible region is a circle with center {10, 10} and radius 12
√

2, the

range of response is (−4.4, 10), and the response at the starting point is 0.

• the gradient at the starting point is 1.41, and it is continuously decreasing

to 0.

The response surface for this model is given in figure 4.3

(3). Model 7: y = e−
(d1−8)2+(d2−8)2

40
+2 + ε = e−1.2+0.4·d1+0.4·d2− 1

40
d2
1− 1

40
d2
2 + ε

• the feasible region is a circle with center {8, 8} and radius 10
√

2, the range

of response is (0.05, 7.39), and the response at the starting point is 0.3.

• The gradient: 0.17 (starting point) → 1 (largest) → 0 (optimum).

The response surface for this model is given in figure 4.4

(4). Model 8: y = e−
(d1−8)2+(d2−8)2

20
+3 + ε = e−3.4+0.8·d1+0.8·d2− 1

20
d2
1− 1

20
d2
2 + ε

• the feasible region is a circle with center {8, 8} and radius 10
√

2, the range

of response is (0.001, 20.09), and the response at the starting point is 0.03.
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Figure 4.3: The response surface for two-dimensional model 6
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Figure 4.4: The response surface for two-dimensional model 7

• The gradient: 0.04 (starting point) → 3.85 (largest) → 0 (optimum).

The response surface for this model is given in figure 4.5

Similar to the one-dimensional case, Model 1 and Model 3 represent the flat

response surfaces, whose gradient changes slowly near the optimum, while Model 2

and Model 4 represent the steep response surfaces, whose gradient changes quickly

near the optimum. Also Model 1 and Model 2 are linear in β, and Model 3 and
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Figure 4.5: The response surface for two-dimensional model 8

Model 4 are nonlinear in β.

The local approximation is y = β0 + β1d1 + β2d2. Through these four models, we

are going to examine how our two-stage allocation improves the expected response

compared to the traditional equal allocation.

For the comparison by method 1, the adjustable factors are:

(1). the number of iterations (N.O.I.): 10 or 50;

(2). the standard deviation of noise (σ): 10 or 50;

(3). the total number of runs in stage 1 v.s. the total number of runs in stage 2,

{n0, N − n0}: {12, 28}, {20, 20}, {28, 12}.

The variable of interest is the best expected response during the hill-climbing

procedure. The following hypothesis is tested at level 0.05:

H0 : µ1 − µ2 = 0 v.s. H1 : µ1 − µ2 > 0

where µ1 is the average response at the best points during the hill-climbing procedure

for two-stage allocation and µ2 is the average response at the best points for equal

allocation. To compute µ1 and µ2, we replicate the experiment and obtain 100 samples

for both two-stage allocation and equal allocation. The largest three samples and the
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smallest three samples are deleted as outliers. If the hypothesis H0 is rejected, then

we can conclude that the observations strongly suggest that the two-stage allocation

improves the response much faster than the equal allocation.

The results for comparison using method 1 are given in tables 4.14 to 4.17. The

table structure is the same as the structure of tables 4.5 to 4.8

(1). Model 5

Table 4.14: The comparison of best responses for two-

dimensional nonlinear model 5

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 12 28 2.032 0.921 0.560 1.290 0.000 178

10 10 20 20 1.631 0.657 0.560 1.290 0.000 146

10 10 28 12 1.435 0.957 0.560 1.290 0.000 182

10 50 12 28 1.768 0.839 0.140 1.030 0.000 190

10 50 20 20 1.281 0.739 0.140 1.030 0.000 179

10 50 28 12 1.066 0.869 0.140 1.030 0.000 192

50 10 12 28 4.052 0.876 1.500 1.300 0.000 173

50 10 20 20 4.019 0.721 1.500 1.300 0.000 154

50 10 28 12 3.520 1.060 1.500 1.300 0.000 190

50 50 12 28 3.866 0.925 1.130 1.410 0.000 170

50 50 20 20 3.566 0.975 1.130 1.410 0.000 176

50 50 28 12 2.110 1.310 1.130 1.410 0.000 196
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(2). Model 6

Table 4.15: The comparison of best responses for two-

dimensional nonlinear model 6

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 12 28 4.560 1.420 1.330 2.260 0.000 156

10 10 20 20 3.980 1.340 1.330 2.260 0.000 151

10 10 28 12 4.280 1.830 1.330 2.260 0.000 178

10 50 12 28 3.920 1.450 0.490 1.970 0.000 170

10 50 20 20 2.960 1.400 0.490 1.970 0.000 167

10 50 28 12 2.220 1.830 0.490 1.970 0.000 184

50 10 12 28 8.170 1.280 3.790 2.060 0.000 155

50 10 20 20 9.019 0.886 3.790 2.060 0.000 126

50 10 28 12 8.330 1.650 3.790 2.060 0.000 177

50 50 12 28 8.160 1.410 1.980 1.820 0.000 174

50 50 20 20 7.370 1.890 1.980 1.820 0.000 185

50 50 28 12 5.160 2.290 1.980 1.820 0.000 177

(3). Model 7

Table 4.16: The comparison of best responses for two-

dimensional nonlinear model 7

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 12 28 1.345 0.844 0.387 0.242 0.000 108

10 10 20 20 1.035 0.575 0.387 0.242 0.000 125

10 10 28 12 0.842 0.515 0.387 0.242 0.000 132

10 50 12 28 1.331 0.634 0.492 0.618 0.000 185
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10 50 20 20 0.882 0.506 0.492 0.618 0.000 178

10 50 28 12 0.746 0.439 0.492 0.618 0.001 167

50 10 12 28 5.130 1.830 0.896 0.992 0.000 143

50 10 20 20 4.320 2.310 0.896 0.992 0.000 126

50 10 28 12 3.590 2.820 0.896 0.992 0.000 115

50 50 12 28 4.340 2.020 0.697 0.760 0.000 118

50 50 20 20 3.540 1.930 0.697 0.760 0.000 121

50 50 28 12 2.080 1.800 0.697 0.760 0.000 125

(4). Model 8

Table 4.17: The comparison of best responses for two-

dimensional nonlinear model 8

N.O.I. σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

µ1 σ1 µ2 σ2

10 10 12 28 0.910 1.030 0.144 0.362 0.000 115

10 10 20 20 0.535 0.658 0.144 0.362 0.000 144

10 10 28 12 0.690 1.570 0.144 0.362 0.001 102

10 50 12 28 1.000 1.190 0.082 0.155 0.000 96

10 50 20 20 0.436 0.529 0.082 0.155 0.000 108

10 50 28 12 0.218 0.258 0.082 0.155 0.000 152

50 10 12 28 12.100 6.270 0.311 0.733 0.000 95

50 10 20 20 13.210 7.960 0.311 0.733 0.000 94

50 10 28 12 5.870 7.450 0.311 0.733 0.000 94

50 50 12 28 7.950 6.270 0.430 1.220 0.000 100

50 50 20 20 8.810 7.190 0.430 1.220 0.000 98

50 50 28 12 4.710 6.780 0.430 1.220 0.000 99

From tables 4.14 to 4.17, we can observe that:
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1. Two-stage allocation outperforms equal allocation significantly.

2. {12, 28} is still the best combination of {n0, N − n0} for two-stage allocation.

This observation is consistent with the one-dimensional case. If we leave more

runs to be determined by the second stage of the two-stage allocation approach,

the efficiency of improving the response is higher.

3. From the raw data (not shown here), we observe that for equal allocation many

experiments end on the boundary of the feasible region at the end of all iter-

ations. Since the response values on the boundary are all the same and very

small, therefore the variability σ2 is much smaller and µ2 is small also. This

observation may also be due to the reason that it is easier for equal allocation

to obtain an infinite step size, and the feasible input region restricts the next

design point of equal allocation.

For the comparison by method 2, we choose t% = 80%. Because the search space

for two-dimensional models is very large, we choose a smaller t% so that the design

point is easier to get into the fixed region. As all the settings are the same for two-

stage allocation and equal allocation, the smaller t% will not affect the conclusions.

The adjustable factors are:

(1). the standard deviation of noise (σ): 10 or 50;

(2). the total number of runs in stage 1 v.s. the total number of runs in stage 2,

{n0, N − n0}: {12, 28}, {20, 20}, {28, 12}.

We also fix an upper bound for the computing budget, which means for the same

σ and {n0, N −n0}, a maximum of 500 iterations is carried out. If the allocation fails

to improve the response within 80% of the true optimum after 500 iterations, 500 is

recorded as the lower bound for the number of iterations.

The variable of interest is the number of iterations required by each design to get

to 80% of the true optimum. The following hypothesis is tested at level 0.05:

H0 : ν1 = ν2 v.s. H1 : ν1 < ν2
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where ν1 is the average number of iterations to get to 80% of the true optimum for

two-stage allocation, and ν2 is the average number of iterations to get to 80% of the

true optimum for equal allocation. To compute ν1 and ν2, we replicate the experiment

for 300 times for both two-stage allocation and equal allocation. The largest three

samples and the smallest three samples are deleted as outliers. If the hypothesis

H0 is rejected, then we can conclude that the observations strongly suggest that the

two-stage allocation improves the response much faster than the equal allocation.

The results for comparison using method 2 are given in tables 4.18 to 4.21. The

table structure is the same as the structure of tables 4.9 to 4.12

(1). Model 5

Table 4.18: The comparison of N.O.I. for two-

dimensional nonlinear model 5

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 12 28 73.9 93.2 103.7 94.8 0.000 585

10 20 20 94.0 114.0 103.7 94.8 0.126 567

10 28 12 98.9 99.8 103.7 94.8 0.274 584

50 12 28 103.0 132.0 133.0 129.0 0.003 585

50 20 20 150.0 138.0 133.0 129.0 0.930 583

50 28 12 230.0 183.0 133.0 129.0 1.000 526

(2). Model 6

Table 4.19: The comparison of N.O.I. for two-

dimensional nonlinear model 6

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 12 28 61.6 88.4 82.5 75.9 0.001 573

10 20 20 46.2 70.0 82.5 75.9 0.000 582

10 28 12 43.1 37.1 82.5 75.9 0.000 425
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50 12 28 92.0 119.0 128.0 123.0 0.000 585

50 20 20 140.0 138.0 128.0 123.0 0.863 578

50 28 12 181.0 168.0 128.0 123.0 1.000 536

(3). Model 7

Table 4.20: The comparison of N.O.I. for two-

dimensional nonlinear model 7

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 12 28 145.0 174.0 275.0 172.0 0.000 585

10 20 20 126.0 156.0 275.0 172.0 0.000 580

10 28 12 184.0 185.0 275.0 172.0 0.000 582

50 12 28 160.0 177.0 310.0 181.0 0.000 585

50 20 20 254.0 200.0 310.0 181.0 0.000 580

50 28 12 319.0 193.0 310.0 181.0 0.726 583

(4). Model 8

Table 4.21: The comparison of N.O.I. for two-

dimensional nonlinear model 8

σ n0 N − n0 Two-stage Allocation Equal Allocation P-value DOF

ν1 σ1 ν2 σ2

10 12 28 171.0 182.0 381.0 163.0 0.000 579

10 20 20 132.0 178.0 381.0 163.0 0.000 581

10 28 12 268.0 210.0 381.0 163.0 0.000 552

50 12 28 214.0 193.0 357.0 176.0 0.000 581

50 20 20 225.0 187.0 357.0 176.0 0.000 583

50 28 12 298.0 198.0 357.0 176.0 0.000 577

From tables 4.18 to 4.21, we can observe that:
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1. For Models 5, 6 and 7, both allocations require less iterations to reach the

fixed region of the true optimum when the noise is smaller. Similar to the one-

dimensional case, this does not hold for Model 8 because its gradient near the

optimum is steep also.

2. {12, 28} performs consistently well. {28, 12} is the worst combination of {n0, N−
n0} for two-stage allocation. In some cases of combination {28, 12}, we fail to

reject H0 and conclude that the data do not show significant difference between

{28, 12} and equal allocation. Since {28, 12} allocates most of the runs (28 out

of 40 runs) equally in stage 1, it will perform similarly as equal allocation.

Table 4.22 shows the results that in those 300 trials, how many trials successfully

reach the fixed neighborhood of the true optimum within 500 iterations for varying

σ and allocations.

Table 4.22: The comparison of the number of successful

trials for two-dimensional nonlinear models

Two-stage Allocation {n0, N − n0} Equal Allocation

σ {12, 28} {20, 20} {28, 12}
Model 5 10 287 287 296 298

50 272 275 231 292

Model 6 10 289 295 300 299

50 279 276 262 289

Model 7 10 243 263 243 233

50 238 192 163 195

Model 8 10 235 245 188 133

50 212 215 176 155

From table 4.22, we can observe that among the three combinations of {n0, N −
n0}, {28, 12} always has the worst performance when σ = 50 for all the models.

The number of successful trials for {28, 12} when σ = 50 is always the smallest,
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even smaller than the value of equal allocation sometimes. Therefore we must be

very careful to choose the combination of {n0, N − n0}. Furthermore, the different

shapes of the response surfaces seem to affect the performance. For model 5 and

model 6, it is easier for equal allocation to reach the fixed neighborhood of the true

optimum, while for model 7 and model 8, it becomes easier for two-stage allocation.

The combination {12, 28} always works well, as it is comparable to equal allocation

for model 5 and model 6, and it is better than equal allocation for model 7 and model

8. Similar to table 4.13, from table 4.22, we can conclude that the values of N.O.I.

from tables 4.18 to 4.21 are underestimated.

From tables 4.18 to 4.22, we can conclude that for those two-dimensional nonlinear

models, our two-stage allocation can reach the optimal region faster than the equal

allocation for most of the cases, and the combination {12, 28} consistently works well.

In this chapter, we consider one- and two- dimensional nonlinear models. Accord-

ing to the numerical results, our two-stage allocation can always get a better response

in a fixed number of iterations. Most of the time, it needs less iterations to reach the

fixed neighborhood of the true optimum.

If we assign less runs in stage 1, and leave more runs to be decided by our two-stage

allocation, the efficiency of hill-climbing is much higher. These observations are very

obvious and consistent in these numerical results, such as {8, 12} for one-dimensional

nonlinear models and {12, 28} for two-dimensional nonlinear models. Since our two-

stage allocation can get a higher efficiency if it has more runs to be decided by its

second stage, these observations also assure us that our two-stage approach is a very

good design to distribute the simulation runs.

If we assign more runs in stage 1, the two-stage allocation is close to equal al-

location since the runs in stage 1 are equally distributed. Thus it is not surprising

that {16, 4} for one-dimensional cases and {28, 12} for two-dimensional cases perform

similarly as equal allocation for most of the time.

In the next chapter, we will conclude this thesis and propose the research work

that can be done in the future.
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Chapter 5

Conclusion and Future Research

This chapter concludes this thesis in section 5.1 and proposes directions for future

research in section 5.2.

5.1 Summary and Conclusion

When we apply the ASA technique to simulation optimization problems with

computing budget constraints, our two-stage computing budget allocation approach

becomes applicable. When we compare it to the approach which allocates the runs

equally to each design point, the numerical results show that:

1. For most of the cases, our two-stage allocation outperforms the equal allocation.

After using up the same number of iterations, our two-stage allocation obtains

a larger response than equal allocation, and our two-stage allocation needs less

number of iterations to reach the fixed neighborhood of the true optimum.

2. For two-stage allocation, if we assign less runs in stage 1 and more runs in

stage 2, the performance of the two-stage allocation will be even better. These

observations are very obvious and consistent, such as {n0, N − n0} = {8, 12}
for one-dimensional cases and {n0, N − n0} = {12, 28} for two-dimensional

cases. These observations assure us that our two-stage approach is a good

experimental design to distribute the computing budget because its efficiency
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to conduct hill-climbing is much higher if it can have more budget to be decided

in its second stage.

3. For two-stage allocation, if we assign more runs in stage 1 and less runs in stage

2, we always draw the conclusion that there is no significant difference between

two-stage allocation and equal allocation. This is not surprising because the

runs in stage 1 of two-stage allocation are equally distributed. If most of the

runs are assigned to stage 1, then computing budget allocation by our two-stage

approach will be close to equal allocation.

The ASA technique considers the lower bound of predicted response, the worst

case of prediction. Thus it is expected to work well in the worst case in which the

system noise is very large. Our conclusion would be:

Our two-stage allocation approach is a good experimental design for the simu-

lation optimization problems with computing budget constraints. When the system

noise is observed or known to be large, our two-stage allocation approach will work

significantly better than the equal allocation. If we allocate less runs in stage 1 and

more runs in stage 2, the performance of our two-stage allocation will be even better.

5.2 Future Research

In our two-stage allocation approach, we apply brute force search to identify the

best allocation, which will be very time-consuming when the number of design point

increases or the linear model is a higher-dimensional one. In the optimization liter-

ature, there are a few alternatives for brute force search, such as genetic algorithms,

tabu search or simulated annealing. These algorithms may be adopted by our two-

stage allocation.

We do not discuss the ratio of n0 and N−n0 in this thesis. Based on the numerical

results and the experience that we acquired in this study, we would suggest that when

applying this two-stage computing budget allocation approach, less than half of the

total budget should be used in the first stage. However, less n0 may cause the
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estimates of β and σ2 to be inaccurate. The tradeoff between accuracy of estimates

and the efficiency of improving response values is an important and interesting area

for further research.

The performance of the hill-climbing method may rely on the shape of the selected

response surface (e.g. the Model 4 and the Model 8 in Chapter 4). In our experiments,

only a few types of models that are representative of different shaped low order

responses have been tested. Closer studies of the relationship with the shape of the

response functions and further experiments on higher order more complicated models

are avenues for further research.

In this thesis, we focus on the computing budget allocation problem, and we sug-

gest a feasible allocation scheme when the next design point d+ is at infinity. However

we do not solve the infinite d+ problem completely. When d+ is infinite, we drop the

observations or use a feasible region to restrict the input variables. Regularization

seems to be a good method to resolve this. Previously, we only maximize ŷmin. When

the noise is very small, or the gradient is very large, the maximal point d+ is infinite

(see Appendix A for the one-dimensional case). We may add a penalty term to the

objective function ŷmin to penalize the distance from the original center of the region

of experimentation because the further away the design point is from the original

center, the less reliable the predicted response. However, more work should be done

to properly choose the penalty term and regularization parameter.

We always assume the true response function can be sufficiently approximated by

a first-order homoscedastic model in this thesis. However, from the point of view of

robust design, this design can be improved. There are two possible ways to improve

the current approach. The first one is to consider the model misspecification in this

design, and then determine how to allocate the simulation runs so that the lower

bound of predicted response can be maximized. The second one is to consider the

heteroscedastic case. Generalized linear models can be applied in this case. The

main idea of two-stage allocation, which is to improve the lower bound of predicted

response so that we can have more confidence to move to the next design point is the

same, and our two-stage computing budget allocation can be applied similarly.
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Our approach is a limited form of sequential design because it involves two stages.

However, the information we gather during the hill-climbing is not utilized when we

consider this two-stage approach. Bayesian designs may offer us an opportunity to

consider the historical data along with the hill-climbing. These data can be regarded

as the prior information, and we can update these prior information at the completion

of stage 1 so that we can allocate the runs in stage 2 in a more optimal manner.
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Appendix A One-dimensional case

We study the general solution when the ASA technique is applied to the one-

dimensional linear model, and investigate why and how the step size will be infinity.

The linear model is:

y = β0 + β1d + ε ε ∼ i.i.d.N(0, σ2),

where y is the response, d is the regressor variable, and β0 and β1 are the unknown

coefficients.

Assume the two levels of the regressor variable d are d1 and d2, and n1 and n2

runs are allocated to d1 and d2 respectively. Hence we have the observations y11, y12,

· · · , y1n1 , and y21, y22, · · · , y2n2 . The regression model and OLS solution become:


 Y1

Y2


 = Y = X · β + ε =


 I1 D1

I2 D2





 β0

β1


 + ε,

with

Y1 =




y11

y12

...

y1n1




n1×1

Y2 =




y21

y22

...

y2n2




n2×1

I1 =




1

1

...

1




n1×1

D1 =




d1

d1

...

d1




n1×1

I2 =




1

1

...

1




n2×1

D2 =




d2

d2

...

d2




n2×1

The OLS estimates are

β̂ = (XTX)−1XTY =
1

n1n2(d1 − d2)2




∑n1

i=1 y1in2d2(d1 − d2)−
∑n2

j=1 y2jn1d1(d1 − d2)
∑n1

i=1 y1in2(d1 − d2)−
∑n2

j=1 y2jn1(d1 − d2)


 .

Therefore,

β̂1 =
1

n1n2(d1 − d2)2
(n2(d1−d2)

n1∑
i=1

y1i−n1(d1−d2)

n2∑
j=1

y2j) =
1

d1 − d2

(∑n1

i=1 y1i

n1

−
∑n2

j=1 y2j

n2

)
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and

(XTX)−1 =
1

n1n2(d1 − d2)2


 n1d

2
1 + n2d

2
2 −(n1d1 + n2d2)

−(n1d1 + n2d2) n1 + n2


 =


 a b

b C


 .

The lower bound of the one-sided 1− α confidence interval for the predictor ŷ at

d is

ŷmin = β̂0 + β̂1d− tαN−2σ̂

√√√√√(1 d)(XTX)−1


 1

d




where tαN−2 denotes the 1 − α quantile of the t distribution with N − 2 degrees of

freedom and N = n1 + n2.

Because ŷmin is concave in d, we can find d+ which is the point that maximizes

ŷmin.

∂ŷmin

∂d
|d+ = β̂1 −

tαN−2σ̂√
a + 2bd+ + Cd+2

· (b + Cd+) = 0.

Solving for d+, we get

d+ = − b

C
+

β̂1

C

√
aC − b2

tαN−2
2σ̂2C − β̂2

1

.

Substitute a, b and C into d+, then

d+ =
n1d1 + n2d2

n1 + n2

+ β̂1
n1n2(d1 − d2)

2

n1 + n2

√
1

(n1 + n2)tαN−2
2σ̂2 − β̂2

1n1n2(d1 − d2)2
.

From the above formula, we can know

starting point
n1d1 + n2d2

n1 + n2

ASA direction β̂1
n1n2(d1 − d2)

2

n1 + n2

step size

√
1

(n1 + n2)tαN−2
2σ̂2 − β̂2

1n1n2(d1 − d2)2

From the formula of step size, it is easy to see that if noise σ is too small or the

gradient β1 is too big, the step size is infinite. Intuitively, if the noise is too small,

the linear regression model becomes a deterministic linear model, and the maximum

point is at infinity, so that the step size can be very large. When the gradient is very

steep, it is reasonable to believe that the maximal point is far away from the current

region, and hence the step size can also be very large.
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Appendix B Examples for unequal

allocation in two-dimensional case

We study into how we would allocate the simulation runs when the ASA direction

happens to be four special directions, and we conclude that equal allocation might

not be the best choice when d+ is at infinity for the two-dimensional case.

The regression model is assumed to be

y = β0 + β1 · d1 + β2 · d2 + ε ε ∼ i.i.d.N(0, σ2).

In the 22 factorial design, the two levels of d1 are d11 and d12, and the two levels of d2

are d21 and d22, which are all fixed in the region of experimentation. Thus the four

design points are X1, X2, X3 and X4, and there are n1, n2, n3 and n4 runs done at

each design point respectively.

- d1

6

d2

r
X1(d11, d21)

rX2(d11, d22)

r
X3(d12, d21)

rX4(d12, d22)

Then it is easy to know that the design matrix is

X =




1 D1

1 D2

1 D3

1 D4




,
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where

D1 =




d11 d21

d11 d21

...
...

d11 d21




n1×1

D2 =




d11 d22

d11 d22

...
...

d11 d22




n2×1

D3 =




d12 d21

d12 d21

...
...

d12 d21




n3×1

D4 =




d12 d22

d12 d22

...
...

d12 d22




n4×1

The observations are given as

Y =




Y1

Y2

Y3

Y4




,

where

Y1 =




y11

y12

...

y1n1




n1×1

Y2 =




y21

y22

...

y2n2




n2×1

Y3 =




y31

y32

...

y3n3




n3×1

Y4 =




y41

y42

...

y4n4




n4×1

The OLS estimator of β is

β̂ = (XTX)−1XTY,

and given (d1, d2), the predictor ŷ is

ŷ = β̂0 + β̂1d1 + β̂2d2.

The lower bound of the one-sided 1− α confidence interval for the predictor ŷ at

(d1 d2) is

ŷmin = β̂0 + β̂1d1 + β̂2d2 − tαN−3σ̂

√√√√√√√√
(

1 d1 d2

)
(XTX)−1




1

d1

d2



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where tαN−3 denotes the 1−α quantile of the t distribution with n1 +n2 +n3 +n4− 3

degrees of freedom and (XTX)−1 =
1

det




a b c

b d e

c e f


 =


 a bT

b C


 with

det = (d11 − d12)
2(d21 − d22)

2(n2n3n4 + n1n3n4 + n1n2n3 + n1n2n4)

b = (d22(d11n1 + d12n3)(n2 + n4)− d21(d11n2 + d12n4)(n1 + n3)) (d21 − d22)

c = (d12(d21n1 + d22n2)(n3 + n4)− d11(d21n3 + d22n4)(n1 + n2))(d11 − d12)

d = (n1 + n3)(n2 + n4)(d21 − d22)
2

e = (n2n3 − n1n4)(d11 − d12)(d21 − d22)

f = (n1 + n2)(n3 + n4)(d11 − d12)
2

Simplifying ŷmin, we get

ŷmin = β̂0 + β̂1d1 + β̂2d2 − tαN−3σ̂
√

(a + 2bd1 + 2cd2 + 2ed1d2 + dd2
1 + fd2

2)/det.

The next design point d+ is

d+ = −C−1b + λC−1β̂−0,

and the starting point −C−1b can be simplified as

−C−1b =




d11(n1 + n2) + d12(n3 + n4)

n1 + n2 + n3 + n4
d21(n1 + n3) + d22(n2 + n4)

n1 + n2 + n3 + n4


 .

If it is the equal allocation n1 = n2 = n3 = n4, then the starting point is the center

of region of experimentation

−C−1b =




d11 + d12

2
d21 + d22

2


 .

Now we consider when d+ is at infinity and given the same estimators β0, β1, β2

and σ, how to select n1, n2, n3 and n4 so that the ŷmin of this allocation will dominate

that of any other allocations along the following four special directions:

1. d1 is fixed and d2 →∞
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2. d2 is fixed and d1 →∞

3. d1 = d2 = r →∞

4. d1 = −d2 = r →∞

Case 1.

ŷmin|d1=h, d2→∞ = β̂2d2 − tαN−3σ̂

√
f

det
|d2|

where
f

det
=

(n1 + n2)(n3 + n4)

(n2n3n4 + n1n3n4 + n1n2n3 + n1n2n4)
· 1

(d21 − d22)2
and h denotes a

fixed but finite value.

Given β̂2 and σ̂, the dominating allocation has the minimal value of
f

det
. Because

f > 0, det > 0 and n1 + n2 + n3 + n4 = N , to solve this mathematical programming

problem, we get when n1 = n2 and n3 = n4, min(
f

det
) =

2

N
· 1

(d21 − d22)2
and

ŷmin|d1=h, d2→∞ is maximized.

Case 2.

ŷmin|d1→∞,d2=h = β̂1d1 − tαN−3σ̂

√
d

det
|d1|

where
d

det
=

(n1 + n3)(n2 + n4)

(n2n3n4 + n1n3n4 + n1n2n3 + n1n2n4)
· 1

(d11 − d12)2
and h denotes a

fixed but finite value.

Given β̂1 and σ̂, the dominating allocation has the minimal value of
d

det
.

Because d > 0, det > 0 and n1 + n2 + n3 + n4 = N , to solve this mathematical pro-

gramming problem, we get when n1 = n3 and n2 = n4, min(
d

det
) =

2

N
· 1

(d11 − d12)2

and ŷmin|d1→∞,d2=h is maximized.

Case 3.

ŷmin|r→∞ = (β̂1 + β̂2)r − tαN−3σ̂

√
(
2e + d + f

det
)|r|

where

2e + d + f

det

=
2(n2n3 − n1n4)(d11 − d12)(d21 − d22)

(n2n3n4 + n1n3n4 + n1n2n3 + n1n2n4)(d11 − d12)2(d21 − d22)2
+

(n1 + n3)(n2 + n4)(d21 − d22)
2 + (n1 + n2)(n3 + n4)(d11 − d12)

2

(n2n3n4 + n1n3n4 + n1n2n3 + n1n2n4)(d11 − d12)2(d21 − d22)2
.
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When d11 − d12 = d21 − d22, then

2e + d + f

det
=

4n2n3 + n1n2 + n3n4 + n1n3 + n2n4

(n2n3n4 + n1n3n4 + n1n2n3 + n1n2n4)
· 1

(d11 − d12)2
.

Because X2 and X3 are symmetric along this direction, we assume n2 = n3 = N1,

then

2e + d + f

det
=

4N1 + 2(N −N1)

(N −N1)N1 + 2n1n4

· 1

(d11 − d12)2
.

To find the dominating allocation is equivalent to minimize
2e + d + f

det
.

When N1 is fixed, it is easy to know when n1 = n4 =
N − 2N1

2
,

2e + d + f

det
is

minimized.

As a result, when n2 = n3 = N1 = 0 and n1 = n4 = N/2, min(
2e + d + f

det
) =

4

N
· 1

(d11 − d12)2
and ŷmin|r→∞ is maximized.

Case 4. Similar to case 3, when n1 = n4 = 0 and n2 = n3 = N/2, min(
−2e + d + f

det
) =

4

N
· 1

(d21 − d22)2
and ŷmin|r→∞ is maximized.

Conclusion: from the above four special cases, we can conclude that given a

particular direction, equal allocation might not be the optimal allocation which makes

the lower bound of predictor dominate the other lower bounds of any other allocations.

Moreover, given a direction, we can determine the dominating allocation by using

mathematical programming.
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Appendix C The dominating

allocation for one-dimensional

model

Theorem 1 For one-dimensional linear model, given the same estimates of βi and

σ2, when the selected design point d approaches infinity, the lower bound of predicted

response of equal allocation always dominates the lower bound of predicted response

of any other allocations.

Proof. Since this is a one-dimensional linear model, there are only two design

points. Assume the two levels of local design point to be d1 and d2, n1 runs and n2

runs are allocated to d1 and d2 respectively and there are a total of N runs. For equal

allocation, n1 = n2 = N/2; for unequal allocation, n′1 6= n′2 and n′1 + n′2 = N .

Denote β̂0, β̂1 and σ̂2 to be the estimates of β0, β1 and σ2 respectively. Then the

response at the given point d is

ŷ(d) = β̂0 + β̂1d.

The lower bound of predicted response at d can be expressed as

ŷmin(d) = ŷ(d)− tαN−q

√
var(y|d) = β̂0 + β̂1d− tαN−q

√√√√√
(

1 d
)

(XTX)−1


 1

d


 · σ̂2

where (XTX)−1 =
1

n1n2(d1 − d2)2


 n1d

2
1 + n2d

2
2 −(n1d1 + n2d2)

−(n1d1 + n2d2) n1 + n2


 .

Therefore ŷmin(d) can be simplified as

ŷmin(d) = β̂0 + β̂1d− tαN−q

√
(n1 + n2)d2 + (−2n1d1 − 2n2d2)d + (n1d2

1 + n2d2
2)

n1n2(d1 − d2)2
· σ̂2.

When d →∞,

ŷmin(d) = β̂0+β̂1d−tαN−q

√
n1 + n2

n1n2(d1 − d2)2
· σ̂2|d| = β̂0+β̂1d−tαN−q

√
N

n1n2(d1 − d2)2
· σ̂2|d|.
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Compare the ŷmin(d) of equal allocation with the ŷ′min(d) of unequal allocation given

the selected design point d and the same estimates of βi and σ2:

ŷmin(d)− ŷ′min(d) = β̂0 + β̂1d− tαN−q

√
N

n1n2(d1 − d2)2
· σ̂2|d|

−
(

β̂0 + β̂1d− tαN−q

√
N

n′1n
′
2(d1 − d2)2

· σ̂2|d|
)

= tαN−q

√
N

(d1 − d2)2
σ̂2|d|

(√
1

n′1n
′
2

−
√

1

n1n2

)

∵ n1n2 > n′1n
′
2 ∴

√
1

n′1n
′
2

−
√

1

n1n2

> 0

As a result, ŷmin(d) is always greater than ŷ′min(d) when d →∞. ¤
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