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Summary

In this study we propose a procedure to approximately compute the stationary distribution

of the number of transmitting information flows in a communication network.

The flows arrive to the network according to Poisson processes with exponentially

distributed flow volumes, and traverse through a fixed path of transmission links in the

network. The links have finite transmission capacities which are allocated to the informa-

tion flows concurrently transmitting in the network according to some dynamic bandwidth

sharing rule, which ensures the stability of the total number of information flows ongoing

in the network.

The procedure is based on dynamic approximation of the bandwidths allocated to

concurrent information flows in the network. Numerical examples show that the procedure

produces the numerical solution of the network within 2% of the true values.
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Chapter 1

Introduction

1.1 Background

This thesis proposes an approximation algorithm for computing the stationary joint dis-

tribution of the number of ongoing connections (or information flows) in a communication

network. This type of communication network is widely used to model the modern data

transmitting communication network such as today’s Internet, rather than the telecom-

munication network and manufacture job shop, etc. In the latter cases, the traditional

queueing network such as the Jackson network or the BCMP network is used.

In recent years, the increasing volume of digital media file transmitting in the network

and the heavy visiting rate to some news websites upon the occurrence of some worldwide

events such as the 911 have deteriorated the previously high performance of the Inter-

net, because the current network traffic control mechanism is designed for the small file

transmission situation, rather than today’s demanding situation. Therefore the network

is once again put up on the researchers’ table.

An abstract framework of this communication network comprises a set of routes con-

1



2 CHAPTER 1. INTRODUCTION

necting a pair of nodes that are the possible source and destination of information flows,

which can be voice conversations in a telephone network, or the digital documents in a

data network like the Internet, and a set of transmission links. A simplified example of

this communication network with two links and three routes is illustrated in Figure 1.1,

associated with its abstraction in Figure 1.2. Each route carrying an amount of infor-

mation flows traverses through a fixed subset of links; while each link has a transmission

bandwidth capacity, which will by some dynamic bandwidth allocation rule, be shared

among the routes that traverse through it. The bandwidth allocated to each route is

uniquely determined accordingly, facilitating the transmission of these information flows.

Figure 1.1: Communication Network

When an information flow carrying an amount of data arrives on a given route, a

connection is established on that route. After the transmission is finished, the connection

is terminated. The same as the traditional queueing network such as the manufacturing

or service network, the communication network can be characterized by the fluctuation

of the number of ongoing connections on each route in the network. However, different

from a job in a manufacturing job shop or a customer in a service system that visits the
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Figure 1.2: Communication Network Model

service stations along its route one at a time, an information flow in the communication

network takes up resources simultaneously at all the links along its transmission route.

A fundamental issue about this communication network is how to allocate the link’s

bandwidth capacity to the routes that traverse through it. If we imagine the transmission

process on each route as a queueing system, it can be seen that the bandwidth allocation

according to some bandwidth allocation rules determines the service rate associated with

each queue (route).

An Additive Increase Multiplicative Decrease bandwidth allocation algorithm is im-

plemented in the TCP (the traffic control protocol) of the Internet (see Chiu and Jian

1989, Chiu 2000). However, it is observed that the TCP algorithm favors shorter round

trip time. Bertsekas and Gallager (1992) discussed the Max-min fairness bandwidth allo-

cation algorithm which intended to maximize the minimum bandwidth allocated to each

route.

Kelly (1997, 1998) proposed the concept of proportional fairness bandwidth allocation

and developed a decentralized algorithm to implement it. The objective of the allocation

rule was to maximize the overall utility of the bandwidth allocations by assuming each

route had the logarithmic utility function.
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Mo and Walrand (2000) generalized the above results. They proposed a general form

of optimization problem that solved the bandwidth allocations. They referred it as the α

proportional fairness allocation. The Max-min and Kelly’s proportional fairness alloca-

tions are then the special cases of the α allocation rule.

These fairness bandwidth allocation rules are critical to another important aspect of

the network, the stability of the network: whether or not the bandwidth allocated to

each route is enough to digest the workload. It may be intuitive that the normal offered

load condition is sufficient, that is the total traffic load on each link is within the link’s

capacity. Unfortunately, Bonald and Massoulie (2000) presented some examples showing

that for some priority bandwidth allocation rules, the condition is insufficient. However,

many studies show that when the various fairness allocation rules are applied instead, the

normal offered load condition is sufficient. See De Veciana et.al (2001)’s discussion for

the max-min fairness allocation, Bonald and Massoulie (2000)’s for the general α fairness

bandwidth allocation, and Ye (2003)’s for the more general utility maximizing bandwidth

allocation under general traffic conditions.

1.2 Motivation

Although many studies have been conducted for this communication network, compared

to the rich analytical results for the traditional queueing network, little has been available

for this network. Lying at the bottom line of those analytical results is the stationary

distribution of the queueing length of each queue in the network. However, even for most

traditional queueing networks, the analytical solutions are not permitted. It adds on

extra difficulty for this communication network due to its special bandwidth allocation
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characteristics. It is the complexity introduced by the bandwidth allocation rule in the

network that precludes to derive the simple closed form solution, e.g. a product form

solution, for the stationary distribution of the system. In particular, Chiu (2000) showed

the solution is not of product form for a particular network example.

Up to now, only for a few networks with simple structure and certain bandwidth

allocation rule, the closed form solutions are derived (see Fayolle et.al 2001). Masoullie

and Roberts (1998) showed the closed from solution for the linear network, Bonald and

Massoulie (2000) further found the solution for the grid network by solving the same full

balance equations. They suggested that the closed form solution for the network that

violates the strict underlying assumptions is unavailable.

Instead, we may resort to the numerical solution by solving the Markov transition rate

matrix. However, when the state space is too large, such as a network with too many

routes, solving the huge matrix is impractical due to the ”curse of dimensionality”.

It thus stimulates our interests to design an approximation method to fill the gap,

as what has long been done for those traditional non-product form queueing networks.

The underlying idea of our algorithm is to decompose the network into disjoint routes

with each one being represented by an M/M/1 processor sharing (PS) queue. The service

capacity is random in that it is dynamically approximated by taking into account the

interdependence of the bandwidth allocations on all the other transmission routes. In

particular, the transmission bandwidth on each route is estimated based on the current

states of all the other routes in the network. The procedure is then iterative: it first

computes the marginal distribution of the number of ongoing connections on one route,

which provides the base to compute the joint distribution of two routes, etc.

The same idea of decomposition approach was developed to approximately compute
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the stationary distributions of the traditional queueing network that does not permit

the closed form solution. The seminal works include Bitran and Tirupati (1988) and

Whitt (1983), and the more recent ones can be found in Whitt (1995) and (1999). The

procedure we construct here is a first attempt to compute (approximately) the stationary

distribution for a queueing network with the simultaneous resource consumption (SRC)

characteristics. The decomposition approach is modified here in that each isolated queue

is not statically separated from the others but rather dynamically linked in the estimation

of the processing capacity.

1.3 Research contribution

As we have mentioned, the data transmitting communication network such as the Inter-

net is once again a hot topic today. In recent years, the increasing volume of digital file

transmitting in the network and the heavy visiting rate to some websites have largely

deteriorated the previously high performance of the Internet, because the current net-

work traffic control mechanism is not suitable for today’s demanding situation. Thus

improvements are introduced, such as the new bandwidth allocation rules other than the

TCP.

Consequently how to evaluate the performance of the network in the context of these

new improvements becomes an urgent subject. But the very few analytical results avail-

able up to now is disappointing. Although we have the closed form solutions for some

simple networks, there is still no clues how the solution looks like for the general network.

Our approximation method is trying to fill the gap. It provides a very accurate nu-

merical solution to this network. Numerical examples indicate that the approximation

error falls within a very small margin of the true solution. As another feasible method,
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even the most effective modern statistical method, namely the Gibbs Sampling method

under-performs. Thus we can expect that those communication networks with the modest

size could now be solved with a high degree of accuracy. To best of our knowledge our

method is the first general approximation procedure that provides the numerical solution

to this communication network.

Our algorithm has two advantages over those analytical results that are currently

available. One is that it is independent of the specific structure of the network in that it

can be applied to any such communication network without adjusting the algorithm to

accommodate its specific structure. The network structure is automatically reflected in

the dynamic bandwidth allocation rule, a subfunction in our algorithm.

Another advantage is that it is independent of the specific bandwidth allocation rule.

The bandwidth allocation rule is packaged in a sub-function and called by the main

function in our algorithm. This feature is of practical use. Because those newly developed

bandwidth allocation rules can be tested here in terms of their distinctive impact on the

network performance. We just modify the subfunction to accommodate the specific rule.

There are some practical usages as well. For example, in a large network, the accurate

solution of the system is not the first concern. The network administrator is concerning

with the bottleneck of the network. In this case, we pursue the speed of the solution rather

than the accuracy by introducing larger truncation error. Then the marginal distribution

of each route, which is more accurate than the joint distribution of the system when

the truncation error is large, will provide information about the dynamics of each route,

indicating where the network is in heavy traffic condition and where light traffic. This

result is definitely not achievable through the inefficient simulation method, or any other

local approximation methods that isolate routes for tractability.

Given the information of the traffic on each route, we can further adjust the settings
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of the algorithm, such that the truncation on each route is treated individually. This ad-

justment will improve the computational efficiency as well as the accuracy of the solution

of the system.

1.4 Organization of the thesis

The organization of this thesis is as follows. The following chapter of literature review will

provide the well round background of our study. We will first study the communication

network which is the subject of this study. The network structure, various bandwidth

allocation rules, and the current achievement of some analytical results will be covered.

Since the analytical results for the communication network are relatively rare, we will

resort to the traditional queueing networks such as the Jackson and BCMP network to

search for insights from their rich numerical approximation toolbox. The most effective

approximation methods for the non-product form queueing network will be reviewed.

Finally some modern statistical tools developed in the last decade as a very effective way

to compute the complex probability distribution will be briefly introduced. In particular,

we will briefly investigate the modern sampling method, namely the Gibbs sampling

method, which makes computing the complex probability distribution easy by using the

modern computational power.

Chapter 3 formulates the framework of the communication network under study, and

discusses the various issues that are critical to the network. In Chapter 4, we proposes

the approximation algorithm to compute the solution of the network numerically. The

modified Gibbs Sampling which provides an alternative method, other than the ineffec-

tive simulation method, to derive the benchmark solution of the network for comparison

purpose is the subject of Chapter 5. Numerical results are presented in Chapter 6, in
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which we compare the results of our approximation algorithm with those from the Gibbs

sampling method and the rare analytical results. Chapter 7 concludes our study.
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Chapter 2

Literature Review

This chapter consists of three parts. Section 2.1 discusses this communication network

under study. Various issues critical to the network and some current achievements will

be covered. Section 2.2 resorts to the rich set of the approximation methods for the

traditional queueing network to look for insights. Two major approximation methods

for the non-product form queueing network are discussed in detail. The development of

the modern statistical method as an alternative but very effective method to compute a

complex probability distribution is the subject in Section 2.3. Section 2.4 summaries this

chapter.

2.1 Communication network

The data transmission communication network such as the Internet has been there for a

decade. In recent years, it is observed that the increasing volume of large file transmitting

in the network and the heavy network traffic have seriously deteriorated the previously

high performance of the network, because the current network traffic control mechanism

is designed for the small file transmission situation, not suitable for today’s demanding

11
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situation. Therefore the network is once again a hot topic.

2.1.1 Bandwidth allocation

One of the fundamental questions related to improving the network performance in the

new environment is how to allocate each link’s bandwidth capacity among those trans-

mission routes that traverse through it, such that the network can effectively handle the

workload on each route.

Bertsekas and Gallager (1992) discussed the Max-min bandwidth allocation algorithm

which intended to maximize the minimum bandwidth allocated to each route such that

the minimum transmission rate is improved. It was later proved that this allocation is

the fairest bandwidth rule. (De Veciana et.al 2001)

Kelly (1997, 1998) proposed another, namely the Proportional fairness rule. This

bandwidth allocation maximized the overall utility of the network by assuming a loga-

rithmic utility function. From the mathematic perspective, Kelly’s study suggested that

the bandwidth allocation could be obtained by solving an optimization problem, pre-

assuming the number of ongoing connections on each route was fixed.

Later on, this idea was further developed by Mo and Walrand (2000). They consid-

ered a more general optimization problem. The corresponding bandwidth allocation was

referred as the α proportional fairness bandwidth allocation rule. This allocation rule

includes a wide range of allocation rules, such as the max-min rule, Kelly’s proportional

fairness rule, etc. Moreover, a weighting factor wr was introduced into the optimization

problem of the α allocation rule. (see Bonald and Massoulie 2000)

Ye (2003) considered a more general bandwidth allocation rule, named the U- utility

maximizing allocation rule, based on Kelly (2001) and Low (2003)’s work. This rule

maximized a more general form utility function aiming to approximate the current TCP
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allocation rule.

2.1.2 Stability conditions

Another important issue is the stability condition of the network, under which the mean

number of ongoing connections on each route will remain finite, not grow into infinite in

the long run. Intuitively, it is expected that the normal capacity constrain on each link

is a sufficient condition, which is also referred as the normal offered load condition.

Unfortunately, Bonald and Massoulie (2000) showed for some networks with the pri-

ority bandwidth allocation rules, this condition is insufficient. They concluded that in the

absence of the fairness prerequisite, the bandwidth allocation rules of Pareto efficiency was

not sufficient to guarantee the stability of the network under the normal traffic condition.

According to their suggestion, the stability problem was then studied when some

certain fairness bandwidth allocation rule was applied. Some recent results were found in

Massoulie and Roberts (1998) for Kelly’s rule, De Veciana et.al (2001) for max-min rule.

Bonald and Massoulie (2000) provided the stability results under the general α bandwidth

allocation rule, by using a Fluid model. Ye (2003) provided similar stability results for a

more general bandwidth allocation, the U-utility maximizing allocation. Ye et.al (2003)

extended the results to the network with general stationary arrival process.

2.1.3 Stationary distribution

Rich studies are conducted in the static context, in that the number of ongoing connec-

tions on each route is fixed during the period of study. Little has been done to study

the stochastic behavior of the network (Massoulie and Roberts 1998), of which the fun-

damental question is the dynamic of the state of the system.

In rare cases where the full balance equations are applicable, the system is solved
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by using the traditional Markov chain technique. For example, Massoulie and Roberts

(1998) provided the close form solution for the linear network under Kelly’s Proportional

fairness rule. Bonald and Massoulie (2000) extended the above results to Grid network,

the generalization of the linear network.

They added on that the analytical result was not available for the more general network

where the strict underlying assumptions were not satisfied. See Fayolle et.al (2001) for

the similar comments and their study of the approximation method to the star shaped

network.
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2.2 Approximation methods

Long before the fast development of the communication network, the traditional queueing

network has been extensively studied since Jackson’s seminar work (Jackson 1957,1963),

and later the BCMP theory (Baskett et.al 1975). These networks have an attractive

property that the stationary joint distribution of the system could be explicitly expressed

in a product form. But in more general cases where the local balance equations are

not available, most queueing networks do not permit the product form solution. Only

by approximation methods can we obtain an approximated solution. Among them, the

most effective approximation method, namely the decomposition method, borrowed the

underlying idea of Jackson’s product form solution.

2.2.1 Decomposition method

Although the queueing network is difficult to analyze in a whole, it can be divided into

several small subnetworks, in the extreme case each subnetwork consisting of only one

queue. Then each subnetwork is analyzed individually. Finally by taking into account

the interaction between the different subnetworks, the individual results are combined

together to obtain the approximated solution to the entire network.

Based on this idea, this method is widely used when the queues of the network can

be divided into weakly interrelated groups. The advantage of this method is that it

requires little on the computational time which is independent of the size of the entire

network. While the disadvantage is that the uncertainty of the accuracy level of the

solution remains, and the convergence of the solution is not guaranteed (Gelenbe and

Pujolle 1987).

As noted by Harrison and Petal (1993), the decomposition method gave a very accu-
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rate approximation when the system was almost of product form. It also gave remarkably

good results even when many product form assumptions were violated.

The most often used decomposition method is found in Kuehn (1979), later in Bi-

tran and Dasu (1990), and is especially applied to the open queueing network. It first

decomposes the network into a set of single queues, and then analyzes the effective input

and output process of each queue. The interaction among the separated queues is re-

flected by square of coefficient of variations of arrival processes at each queue. (see Whitt

1983,1984’s a series of superior work and the reference therein)

With some normal assumptions, the method consists of three steps: flow aggregating

(see Bitran and Tirupati 1988, Whitt 1982,1983), flow analysis (see Pujolle and Ai 1986),

flow splitting (see Whitt 1984, Disney and Konig 1985). Finally by combining the three

steps, we obtain the system of linear equations (see Bitran and Tirupati 1988) that solve

the effective arrival rates and their interrelationship, which are used to compute the

various performance measures of the system (see Albin 1984, Bitran and Dasu 1990).

Whitt (1983) developed a software, namely the QNA (Queueing Network Analyzer)

to implement the above procedures. The advantage of the QNA over other similar solvers

such as the PANACEA is that it requires only renewal arrivals rather than Poisson arrivals

as in the other solvers, thus the modelling error is largely eliminated. The drawback is that

it assumes un-correlated and un- autocorrelated arrivals, thus may encounters difficulties

in the heavy traffic bottleneck situation. (see Kim et.al 2000, Suresh and Whitt 1990,

and Whitt 1995).

Bitran and Tirupati (1988) considered the decomposition method for the multiple

product network with deterministic routing, where the interaction among the different

types of product streams is a concern in the splitting step. They proposed a way to take



2.2. APPROXIMATION METHODS 17

into account this interaction.

2.2.2 Diffusion approximation

The decomposition method is successful for the queueing network with normally discrete

arrivals. When the arrivals are intensive, each increase or decrease of the population

comparing to the total population is relatively small. Thus it is suggested by Harrison

(1985), Reiman (1984) to model the population as a Brownian Motion. Because of its

similarity to the diffusion equations for the ideal gas, this approximation method is as

well called the diffusion approximation.

It was shown (Reiman 1984) that under the heavy traffic condition, the J- dimension

queue length process associating with a certain type of open J- dimension queueing net-

work, when properly normalized, converges to a corresponding reflected Brownian Motion

(RBM) with drift.

Many studies have been done to identify the underlying RBM model of the single

class queueing network, and to convert parameters of the network to the inputs of the

corresponding RBM model. See Harrison and Williams (1987) and Harrison et.al (1990)

for the survey of work on open and close queueing network respectively.

The justification of this approximation method is based on the ”heavy traffic limit

theorem”. For example, Dai and Dai (1999) proved the theorem be valid for the finite

buffer single class queueing network.

For two dimensional RBMs, the analytical solutions were derived in Harrison et.al

(1985), Foddy (1983). In higher dimension, RBMs with exponential form solutions were

identified in Harrison and Williams (1987), Williams (1987). In general, we have to iden-

tify and then solve a set of Partial Differential Equations (PDEs) to obtain the numerical

solution.
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Dai and his colleagues have done a lot of work on identifying a unique set of PDEs, and

exploring efficient methods to solve the RBM model, see Dai and Harrison (1991,1992),

Dai et.al (1994)’ SBD method, Harrison and Nguyen (1990)’s QNET, Chen et.al (2002)’s

using of the finite element method for the finite buffer network. Recent applications of

the RBM model to multiple product queueing network can be found in Chen et.al (2001).

2.3 Gibbs sampling method

In our experiments, we found that the simulation results are unsatisfying for providing

the benchmark solution to evaluate the accuracy of our approximation algorithm, in

absence of analytical solution of the network. The reason is that although in practice,

the simulation method is most of time used to provide the benchmark of mean queue

length, in our case the solution of the system is a set of huge number of values. Thus to

obtain an accurate solution by conducting the naive simulation method is not satisfying.

In order to quantify the accuracy of our approximation algorithm, we resort to the more

effective modern statistical method, in particular the Gibbs sampling method (Germen

and German 1984, Liu 1996), which provides the benchmark solution.

Gibbs sampling was first developed by Geman and Geman (1984) for simulating pos-

terior distribution in image reconstruction. As a family member of the modern sampling

methods (the Monte Carlo Markov Chain technique), it gives a way to approximate the

probability distributions through sampling. In particular, it gives a convenient way to

sample from a complex distribution.

The Gibbs technique can be theoretically justified by the Monte Carlo Markov Chain

(MCMC) theory, and it does do an excellent job in assisting statisticians to compute the

posterior marginal distribution efficiently and accurately. For the complicated applica-
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tions and additional references, see Casella and George (1992), Gelfand et.al (1990), and

Gelfand and Smith (1990) and references therein.

For the case of discrete sample space, Liu (1996) modified the naive Gibbs sampler, and

proved that the modified Gibbs sampler was statistically more efficient than the random

scan Gibbs sampler (a type of the naive Gibbs sampler). It was essentially a random

sampler, which updated the sample in each cycle with an acceptance probability, as that

of the MCMC sampler.

2.4 Chapter summary

This chapter reviews a rich collection of the literatures relative to our study. For the

communication network that once again becomes a hot topic in recent years, the band-

width allocation rule, stability condition, and the stationary solution are among the most

important issues of theoretical and practical interests. At present time, the bandwidth

allocation issue is under extensive studies, but the stationary solution remains to be a

challenging problem.

To search for the approximation method to compute that stationary solution which is

similar to that of the the traditional queueing network, classic Jackson network provides

the theoretical insights to our understanding of a network system. Although it fails to fit

into more realistic network, its product form solution does suggest the availability of the

decomposition approximation method for a wide range of the traditional networks. Up

to now, the decomposition method still dominates the approximation area of most of real

life networks due to its relatively easy formation. In the parallel side, reflected Brownian

motion approximation is used to approximate the solution of networks with heavy traffic

feature. Modern statistical method such as the MCMC and Gibbs sampling methods
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provides a new angle to look at the difficult problem.



Chapter 3

The Communication Network Model

In this chapter, we will introduce the communication network model, which is often used

to model today’s data transmission network such as the Internet, WAN, LAN, etc. The

fundamental issues about this network will be covered, including the bandwidth allocation

rule, the stability condition, and some analytical results available up to date.

3.1 The Network framework

The communication network comprises a set of L transmission links, which provide the

bandwidth for the information flows transmitting on the network; and a set of routes

r’s carrying information flows, with each one be a non- empty subset of L, in the sense

that each route r traverses a set of links l’s. Denote the set of all possible routes as R

such that r ∈ R, with a total of M routes. Conversely, let a fixed 0− 1 incidence matrix

A = (Alr, l ∈ L, r ∈ R) indicate which links are in a particular route, and let R(l) indicate

all the routes that have link l on their path.

A simple abstraction of a real-life communication network (linear network) is illus-

trated in Figure 3.1. This network consists of two links and three routes, with route 1

21
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and 2 traverse through link 1, 2 respectively, and route 3 through both link 1 and 2.

Figure 3.1: Linear network model

Another basic network is an extension of the linear network, the grid network, Figure

3.2. It consists of several horizontal routes rk and vertical routes rl, (in the linear network

case, there are only one horizontal route: the longest route traverses all links).

Figure 3.2: Grid network model

The third basic network most often studied is the cyclic network in Figure 3.3 . In

this simple cyclic network, it consists of 6 links and 6 routes, with each route traverses 3

links in a symmetric fashion.

Information flows arrive to route r according to a Poisson process with rate λr; and

the flow’s volume (i.e. the size of the file that will be transmitted) is an iid exponential

random variable with mean v−1
r . On each route, an arriving information flow will be
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Figure 3.3: Cyclic network model

immediately transmitted through the link, no matter whether there is any other flows

being transmitting. In other words, the flows are transmitted simultaneously upon their

arrival. The above transmission mechanism can be well modelled by a traditional M/M/1

Processor Sharing (PS) queue in that the service capacity (the bandwidth here) is equally

shared among the present ongoing information flows on that route, with the bandwidth

Λr being determined by the bandwidth allocation rule (defined later).

Note that the difference of this type of communication network with the traditional

queueing network lies only in that the transmitting information flows in route 3 simul-

taneously consume the link capacity on both link 1 and 2 which lie on the path of that

route. In other words, every bit of the flow that has been transmitted through link 1 will

immediately goes to link 2 and be transmitted as if the link 1 and 2 are seamlessly linked;

rather than being transmitted by only one of the link 1 and 2 at a time, like a customer

being served by two bank tells one by one. Thus the bandwidth for route 3 is in effect

restricted to be the minimum of bandwidth given by link 1 and 2.

The number of information flows being transmitting on each route fluctuates. It
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increases when a new flow arrives, decreases when a flow is completely transmitted through

the link(s) on the its path. Same as for the traditional queueing network, one of the

fundamental questions concerning to evaluating the network performance is the stationary

distribution of the number of the ongoing transmitting flows in the network (the analogy to

the number of queueing customers in a queueing network). At time t > 0, let nr(t) denote

the number of flows that are currently transmitting on route r, and n(t) = {nr(t) : r ∈ R}

be the vector of the numbers of ongoing flows in the network. We are interested in the

probability distribution of the n(t) in the long run.

3.2 Bandwidth allocation rule

We now consider a remaining issue that completes the construction of the network, that

is how the link allocates its bandwidth capacity to each route that traverses through it.

Each link l ∈ L has a bandwidth capacity Cl > 0, that is the volume of information

flow that can be transmitted through the link per unit of time. The bandwidth capacity

of each link is allocated to the routes that traverse through this link according to some

dynamic bandwidth allocation rules in the sense that the rule re-adjusts the allocation as

the number of transmitting information flows on each route fluctuates.

In particular, let Λ(n(t)) = {Λr(n(t)) : r ∈ R} denote the bandwidth allocated to each

route, determined by the generic bandwidth allocation rule, with Λr(n(t)) be the amount

of bandwidth allocated to route r at time t when the numbers of transmitting flows on all

routes in the network are n(t) = {nr(t), r ∈ R}. Here we implicitly assume the allocation

rule depends only on the number of transmitting flows on each route at time t, which may

ignore some realistic consideration, but is widely adopted in the present literatures.

People have developed some bandwidth allocation rules that achieve these two goals as
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much as possible, such as the max-min fairness rule (Bertsekas and Gallager 1992), which

maximizes the minimum bandwidth allocated to each route such that to some extent the

minimum service rate is guaranteed.

Later on Kelly proposed another fairness rule, the proportional fairness rule, that

mathematically corresponds to an optimization model that determines the bandwidth

allocations. Now almost all bandwidth allocation could be determined by solving this op-

timization model as extended by Mo and Wolrand (2000), including some rules developed

after Kelly’s rule. That optimization model reads:

Max
∑

r∈R

U(nr, Λr)

subject to
∑

r∈R(l)

Λr ≤ Cl for l ∈ L

Λr = 0, if nr = 0

Kelly’s proportional fairness rule corresponds to the logarithm utility maximization func-

tion.

Given nr’s , the bandwidth allocation rule based on this optimization model is aimed

to maximize the overall utility of the network. The constrain simply states that the

bandwidth allocations cannot exceed the link’s capacity. Therefore the specific forms of

the utility functions differentiate those various bandwidth allocation rules. For example

Kelly’s proportional fairness rule maximizes the following utility function:

Max
∑

r∈R

nrlog(Λr/nr)

That reads the rule maximizes the total benefit all over the flows in the network by

assuming each flow possess logarithm utility upon the bandwidth it shares.

Mo and Walrand (2000) developed a very general utility function, the α- proportional

fairness rule, that includes many specific cases we have mentioned. It takes the form as
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following:

Max
∑

nr
Λ1−α

r

1− α

with α be an adjustable parameter. This framework includes many bandwidth allocation

rules, such as the max-min fairness allocation as α → ∞, Kelly’s proportional fairness

rule as α → 0, and the potential delay allocation as α → 2.

It should be mentioned here that the determination of the bandwidth for each route

by solving the optimization problem is conducted in a static context in that the number

of currently transmitting flows on each route is pre-fixed. Although it is hard to believe

this scheme could really be implemented in a realistic network, it does not impair the

fundamental study of the network (see Ye et.al 2003). Thus to study the dynamic behavior

of the network (that is the fluctuation of the number of transmitting flows), we take this

mechanism as granted, that is the bandwidth allocation is immediately determined by

re-solving the optimization problem once the number of transmitting flows on any route

fluctuates, and remains unchange until the next fluctuation occurs.

For the three basic networks we have presented before, we can obtain their weighted

α proportional fairness bandwidth allocation in a close form by solving the optimization

problem. These three network cases will be used to test our approximation algorithm

later in the chapter of numerical study, thus it is worth here to derive their bandwidth

allocations respectively. (Note that for Kelly’s proportional fairness rule, it is simply that

wi = 1, α = 1)

Here we list the bandwidth allocation only for the linear network with unit capacity

links (that is Cl = 1), (more on the bandwidth allocations for the grid, cyclic network

later). The weighted α proportional fairness bandwidth are:
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Λ0 =
(w0n

α
0 )1/α

(w0nα
0 )1/α + (

∑
wrnα

r )1/α

Λr = 1− Λ0

where

Λ0: bandwidth rate allocated to the go-through-all-links route R0

Λr: bandwidth rate allocated to each go-through-one-link route Rr

nr: number of transmitting information flows on route Rr

wr: weighting factor for route Rr

For the grid network as well with unit capacity links, the α proportional fairness

bandwidth rates are derived in the same way:

Λk =
(
∑K

k=1 wkn
α
k )1/α

(
∑K

k=1 wknα
k )1/α + (

∑L
l=1 wlnα

l )1/α

Λl = 1− Λk

with nk be the number of transmitting flows on the horizontal route Rk, and nl be that

on the vertical route Rl.

For the cyclic network, which consists of 2L links and 2L routes of length L, and route

l crosses link l + 1, . . . , l + L, the α proportional fairness allocation is:

Λr =
(wln

α
l + wl+Lnα

l+L)1/α

∑L
l=1(wlnα

l + wl+Lnα
l+L)1/α

, 1 ≤ l ≤ 2L

3.3 Stationary distribution

Up to now most of studies are focused on the static analysis of the network, that is

to assume the number of transmitting flows on each route is fixed during the period of
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study, such as the determination of the bandwidth allocation. The dynamic behavior of

the network is not yet studied. What if the state (the number of transmitting flows on

each route) fluctuates? How does this fluctuation affect the network performance?

As the same for the traditional queueing system, the state of the system fluctuates with

the time. Given the stability condition
∑

r∈R(l) ρr < Cl, which guarantees the long run

stationary status of the network exists under the various fairness bandwidth allocation

rules, we are interested in the long run behavior of the system, that is the stationary

distribution of these states.

Continuous time Markov chain technique is still the root to derive any exact solution

of a queueing system other than various approximation methods. The communication

network studied here is also the case.

By assuming Poisson arrivals on each route, and iid exponential flow volume, the state

of the system can be modelled as a continuous time Markov chain as follows:

The state space is well defined, that is ~n(t) = {nr(t), r ∈ R}. The transition rates

depend on the state through the bandwidth allocation rule (Λr(n)), as well as on the

arrival rates (λr), mean flow volume (µ−1
r ). Specifically (see Ye 2003):

q(n, n′) =





λr n′ = n + er

µr · Λr(~n) n′ = n− er and nr ≥ 1

0 otherwise

where Λr(~n) is the bandwidth rate allocated to route Rr, depending on the states of the

system (~n), and er is a vector having the same dimension with ~n(t), with 1 at the r-th

position and 0 for all the others.

For the linear network under Kelly’s proportional fairness allocation rule, the transition
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rates from state ~n to ~n′ are:

q(~n, ~n + ei) = λi

q(~n, ~n− e0) = µ0
n0

n0 +
∑L

i ni

q(~n, ~n− ei) = µi(1− n0

n0 +
∑L

i ni

)

Note that n0

n0+
∑L

i
ni

is the bandwidth rate allocated to the longest route R0, i.e. Λ0 in the

linear network case, where α = 1, wi = 1. (see section 3.2)

For the grid network with the same settings, let the state be {(xk, yl)}, representing

the pair of horizontal and vertical routes, the transition rates are then:

q ((x, y) → (x + ek, y)) = λk

q ((x, y) → (x− ek, y)) = µk

∑
xk∑

xk +
∑

yl

It is then proved by Massoulie and Roberts (1998) that for the linear network with

unit capacity link (Cl = 1) and under Kelly’s proportional fairness rule, if the normal

offered load condition is satisfied, that is: Max1≤i≤L ρ0 + ρi < 1, where ρi = λi/µi is the

traffic load on route i, then the process n(t) is reversible, and has stationary distribution:

π(n0, . . . , nL) = C−1

(∑
ni

n0

) ∏
ρni

where C =
(1− ρ0)

L−1

∏L
1 (1− ρ0 − ρi)

where C is the normalization constant.

For the grid network, the similar result could be derived by solving the balance equa-

tions of the continuous time Markov chain. The Markov process (xk, yl) is reversible, and

with the stationary distribution:

π(x, y) = C−1

(∑
xk +

∑
yl∑

xk

) ∏
ρxk

k

∏
ρyl

l
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where C =
K∑

k=1

L∑

l=1

ρK−1
k ρL−1

l∏
k′ 6=k(ρk − ρk′)

∏
l′ 6=l(ρl − ρl′)

1

1− ρk − ρl

However, for the networks other than the simple linear and grid network, to derive the

close form solution by solving the balance equations of the Markov chain is impossible.

Even for the linear and grid network, if other bandwidth allocation rule than Kelly’s

proportional fairness rule is adopted, the close form solution is as well impossible. See

comments by Massoulie and Roberts (1998) and Bonald and Massoulie (2000), and Fayolle

et.al (2001)’s review.

Even trying to derive the numerical solution by solving the Markov transition rate

matrix is impractical. One of the reasons is that the size of the transition rate matrix

increases exponentially with the number of routes and number of states. For example,

for a simple linear network with K routes, and let the state (the number of transmitting

flows) on each route be the same: {0, 1, . . . , N − 1}. Thus the state of the system as a

whole (that is to consider the routes jointly) is a K dimensional vector (n1, . . . , nK) with

ni = 0, 1, . . . , N − 1. The size of the transition rate matrix is then NK by NK . When N

and K are too large, it far exceeds the capability of the computer to solve the matrix.

3.4 Chapter summary

In this chapter, we formulate the framework of the communication network under study.

It consists of a set of routes and links, on which the very important bandwidth allocations

are determined by solving an optimization problem. Next the state of the system, namely

the number of transmitting flows on each route, is modelled by a continuous time Markov

chain, with the transition rates be determined by the arrival rates and bandwidth alloca-

tions exclusively. By solving the balance equations of the Markov chain, the closed form

solution to the stationary distribution of the state of the system is derived for only a few
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networks up to date. In general, by solving the Markov transition rate matrix numerically

is impractical as well.
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Chapter 4

Approximation Procedure

It is impossible to derive a closed form solution for more general network cases, and even

impractical to solve the equation system involving the huge transition rate matrix. As for

the tradition queueing network, approximation methods are more often considered as an

effective way to deal with various complex queueing networks. Among them, the decom-

position method is probably the best. Thus in this section, we propose an approximation

algorithm in a decomposition fashion, that approximates the exact numerical solution of

the network.

4.1 Modelling processor sharing queues

In particular, the algorithm decomposes the network into disjoint transmission routes with

each one being represented by an M/M/1 processor sharing (PS) queue. Different from

the traditional queueing networks, where a set of queues are interrelated by the effective

arrival process and departure processes, this collection of processor sharing queues have

independent arrival and departure processes, but are interrelated by their service rates.

Specifically, consider a linear network for example (see Figure 4.1, Figure 4.2). As

33
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Figure 4.1: Linear network model

Figure 4.2: Modelling as a set of PS queues
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have been mentioned in the Section 3.1, each route in the network could be considered

as a processor sharing queue. Information flows arrive on each route according to a

Poisson process, simultaneously be served (processor sharing), and then leave (flow be

transmitted, connection terminated). On the path of the Route 3, the link 1 and 2 are in

effect seamlessly linked (simultaneous resource consumption), thus Route 3 has essentially

only one server with the service rate being determined by the smaller bandwidth given

by link 1 and 2.

The service rate of each queue (each route) is equivalent to the bandwidth allocated

to that route. Note that every time when the number of transmitting flows on each

route fluctuates (due to a new arrival or a finished transmission), the bandwidth on all

routes are totally re-allocated by solving that optimization problem given the altered state

n(t) = {n1(t), . . . , nk(t)}.

The bottom line of this approximation algorithm is the decomposition principle, that

means to analyze each queue individually as if all the other queues do not exist. Since

the arrival process of each queue is an independent Poisson process, the only remaining

uncertainty of each queue is its service rate, which dynamically fluctuates with the state of

the system. Thus in our algorithm, each queue’s service rate is dynamically approximated

by taking into account the interdependence of the bandwidth allocations on all the other

transmission routes. In particular, the transmission bandwidth on each route is calculated

conditioning on the concurrent status of the queueing lengths on all the other routes in

the network.
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4.2 Approximation algorithm

We first define the following notations used below to describe the procedure:

S−r = the set of routes{1, 2, · · · , r}, r = 1, 2, · · · ,M ;

S+r = the set of routes{r + 1, r + 2, · · · ,M}, r = 1, 2, · · · ,M − 1;

πr|S+r(nr|S+r) = the conditional marginal distribution of nr(t)

for given numbers of flows on routes in S+r, r = 1, 2, · · · ,M − 1;

πS−r|S+r(n1, · · · , nr|S+r) = the conditional joint distribution of (n1(t), · · · , nr(t))

for given numbers of flows on routes in S+r, r = 1, 2, · · · ,M − 1;

π(n1, n2, · · · , nM) = the stationary distribution of the system n(t);

Firstly, we order the set of queues (which queue or route comes first does not matter

because of the symmetry of the system), and divide them at queue r into two parts: the

S−r, S+r. Then we compute the conditional distribution π(n1, . . . , nr|nr+1, . . . , nM), given

the state on the latter set of queues, i.e. S+r(= nr+1, · · ·). Here the joint distribution is

calculated simply by the conditional probability formula:

π(n1, . . . , nr|S+r) = π(n1, . . . , nr−1|nr, S+r)π(nr|S+r)

where the marginal distribution π(nr|S+r) needs to be calculated first.

For example, we first calculate π(n1|n2, · · ·) using a given formula (more on this formula

in Step 1 of the algorithm). Then we need to find a way to calculate π(n2|n3, · · ·),

i.e. π(n2|S+2), which is where our algorithm contributes (Step 2-A). Finally, the joint

distribution of the first two routes, given the states on S+2 fixing, is simply:

π(n1, n2|S+2) = π(n1|n2, · · ·)π(n2|S+2)

Working in this fashion, of course a backward fashion, we can finally obtain π(n1, · · · , nM),

the unconditional distribution of the system. The key point lies in how to calculate the
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π(nr|S+r). Below we provide the details for each step of the algorithm. (Next we use

queue and route interchangeably)

Step 1 Compute π1|S+1(n1|S+1)

We begin from the first queue. Here we will also meet the most important part of our

algorithm.

For a single M/M/1 processor sharing queue, where the arrival process is a Poisson

process with rate λ, the service rate is the exponential random variable with mean E[x],

or rate µ = E[x]−1, the stationary distribution is easy to find:

P (n = k) = C−1 λk

µk

where C is the normalization constant.

However in our case, even we fix the state on routes 2, . . . , M , every time when the state

on route 1 fluctuates, the bandwidth has to be re-allocated. Thus the service rate for queue

1 is not fixed as µ in the single M/M/1 processor sharing queue case. Therefore when

n1 = i, and the state on all the other routes fixed, the service rate µi = min {Λ1(i, ·), Cl}

(Cl is the capacity of the link where route 1 traverses.)

Thus from the result of Roberts (2004), when the state of route 2, . . . , M fixed, the

stationary distribution of queue 1 is readily derived from the above M/M/1 processor

sharing queue’s formula with a replacement of µ:

P (n = k) = C−1 λk

∏k
i=1 Λ1(i, ·)

Using the above result, we can formulate the first step of our algorithm as follows:

For given the number of flows on route in S+1, we approximate (in the sense that we

artificially fixed the state on all the other routes) the dynamic behavior of n1(t) as a
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processor sharing queue with arrival rate λ1 and service rate Λ1(n1, S+1). Specifically, we

have

π1|S+1(n1|S+1) =
λn1

1∏n1
k=0 Λ1(k, S+1)

( ∞∑

n=0

λn
1∏n

k=0 Λ1(k, S+1)

)−1

, n1 = 0, 1, · · · ,

The latter term of the right hand is just a normalization factor.

Step 2-A Compute π2|S+2(n2|S+2)

For route 2, we again want to model the dynamic behavior of n2(t) as a processor

sharing queue as we did for route 1. However, even we fix the state on routes in S+2,

the service rate when the state on route 2 is n2 = i, cannot be uniquely determined since

the number of flows on route 1 still randomly fluctuates. Thus here we make the state

of route 1 fixed in the sense of taking the expectation of Λ2 upon the fluctuation of n1.

(see Figure 4.3) Specifically we approximate the service rate of route 2 with the following

mean value, based upon the probability distribution π1(n1|S+1) which is what we have

just calculated:

E[Λ2(·, n2, S+2)] =
∞∑

n1=0

Λ2(n1, n2, S+2)π1|S+1(n1|n2, S+2)

Having the service rate, we can apply the single processor sharing queue formula on

route 2 to derive the marginal distribution of n2:

π2|S+2(n2|S+2) =
λn2

2∏n2
k=0 E[Λ2(·, k, S+2)]

( ∞∑

n=0

λn
2∏n

k=0 E[Λ2(·, k, S+2)]

)−1

, n2 = 0, 1, · · ·

Step 2-B Compute πS−2|S+2(n1, n2|S+2)

From Step 1 where we calculated the conditional distribution of n1 given n2 and S+2,

and Step 2-A where we obtain the marginal distribution of n2 (given S+2 as well), the joint

distribution of n1 and n2 is readily obtained from the conditional probability formula:

πS−2|S+2(n1, n2|S+2) = π1|S+1(n1|n2, S+2)π2|S+2(n2|S+2)
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Figure 4.3: Taking E[Λ2(·, n2, S+2)] upon fluctuation on route 1

.

Thus we have built the key part of our approximation algorithm. The principle of

fixing S+2, and fixing n1 by taking expectation, then computing the marginal distribution

of n2 is then readily extended to latter routes. See Figure 4.4. For example for a 3 routes

network, the above procedures (step 1 and step 2-AB) are conducted for each state of n3

repeatedly, that is for n3 = 0, we calculate π(n1, n2|n3 = 0) using the above procedure;

then for n3 = 1, we calculate π(n1, n2|n3 = 1), and so forth. When they are readily

prepared, we can obtain the service rate Λ3(·, ·, n3) for route 3 through fixing n1, n2 in

terms of taking their expectation:

Λ3(·, ·, n3) =
∑

n1,n2

Λ3(n1, n2, n3)π(n1, n2|n3)

Then the single processor sharing queue formula is applied on route 3 to derive its marginal

distribution π(n3). Finally we multiply it with the calculated conditional distribution

π(n1, n2|n3) to obtain the joint distribution of the 3 queue system as a whole.
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Figure 4.4: Flow chart of the Algorithm
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The above procedure can be formulated into a general form:

Step (r+1)-A Compute πr+1|S+(r+1)
after obtaining πS−r|S+r in Step r-B

We approximate the service rate on route r + 1 with its expected value:

E[Λr+1(· · · , nr+1, S+(r+1))]

=
∑

n1,···,nr

Λr+1(n1, · · · , nr, nr+1, S+(r+1))πS−r|nr+1,S+(r+1)
(n1, · · · , nr|nr+1, S+(r+1))

Then compute the marginal distribution of queue r + 1 based on its service rate

exclusively:

πr+1|S+(r+1)
(nr+1|S+(r+1))

=
λ

nr+1

r+1∏nr+1

k=0 E[Λr+1(· · · , k, S+(r+1))]

( ∞∑

n=0

λn
r+1∏n

k=0 E[Λr+1(· · · , k, S+(r+1))]

)−1

nr+1 = 0, 1, · · · ,

Step (r+1)-B Compute πS−(r+1)|S+(r+1)
(n1, · · · , nr+1|S+(r+1))

The joint distribution πS−(r+1)|S+(r+1)
(n1, · · · , nr+1|S+(r+1)) uses what have been calcu-

lated already:

πS−(r+1)|S+(r+1)
(n1, · · · , nr+1|S+(r+1))

= πS−r|S+r(n1, · · · , nr|nr+1, S+(r+1))πr+1|S+(r+1)
(nr+1|S+(r+1))

Finally, in Step M-B we will obtain π(n1, n2, · · · , nM).

In summary, the algorithm works in the following way:

Step 1: Compute π1|S+1(n1|S+1)

π1|S+1(n1|S+1) =
λn1

1∏n1
k=0 Λ1(k, S+1)

( ∞∑

n=0

λn
1∏n

k=0 Λ1(k, S+1)

)−1

, n1 = 0, 1, · · · ,
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Step 2-A: Compute π2|S+2(n2|S+2)

E[Λ2(·, n2, S+2)] =
∞∑

n1=0

Λ2(n1, n2, S+2)π1|S+1(n1|n2, S+2)

π2|S+2(n2|S+2) =
λn2

2∏n2
k=0 E[Λ2(·, k, S+2)]

( ∞∑

n=0

λn
2∏n

k=0 E[Λ2(·, k, S+2)]

)−1

, n2 = 0, 1, · · ·

Step 2-B: Compute πS−2|S+2(n1, n2|S+2)

πS−2|S+2(n1, n2|S+2) = π1|S+1(n1|n2, S+2)π2|S+2(n2|S+2)

Step (r+1)-A Compute πr+1|S+(r+1)

E[Λr+1(· · · , nr+1, S+(r+1))]

=
∑

n1,···,nr

Λr+1(n1, · · · , nr, nr+1, S+(r+1))πS−r|nr+1,S+(r+1)
(n1, · · · , nr|nr+1, S+(r+1))

πr+1|S+(r+1)
(nr+1|S+(r+1))

=
λ

nr+1

r+1∏nr+1

k=0 E[Λr+1(· · · , k, S+(r+1))]

( ∞∑

n=0

λn
r+1∏n

k=0 E[Λr+1(· · · , k, S+(r+1))]

)−1

nr+1 = 0, 1, · · · ,

Step (r+1)-B Compute πS−(r+1)|S+(r+1)
(n1, · · · , nr+1|S+(r+1))

πS−(r+1)|S+(r+1)
(n1, · · · , nr+1|S+(r+1))

= πS−r|S+r(n1, · · · , nr|nr+1, S+(r+1))πr+1|S+(r+1)
(nr+1|S+(r+1))

Up to r + 1 = M , we obtain π(n1, n2, · · · , nM).

END
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Note that in the formula that computes the marginal distribution of nr, we in fact

replace the normalization constant C with a finite truncation sum instead of the infinity

sum:

πr|S+r(nr|S+r) =
λnr

r∏nr
k=0 E[Λr(· · · , k, S+r)]

C−1

=
λnr

r∏nr
k=0 E[Λr(· · · , k, S+r)]

(
N∑

n=0

λn
r∏n

k=0 E[Λr(· · · , k, S+r)]

)−1

The finite sum is always smaller than the infinite sum. Thus when dividing by the

underestimated normalization constant, the marginal probability distribution is in effect

consistently overestimated slightly, that is every probability value of the state will be

overestimated by a same marginal percentage. And the effect will be passed on to the

final joint distribution by the intermediate multiplication operations. We anticipate that

the overestimation effect will diminish as N includes more and more number of states.

(that N →∞ in effect) In the section of numerical examples, we will verify this judgement.

4.3 Chapter Summary

In this chapter, we proposed an approximation algorithm to compute the stationary dis-

tribution of the communication network numerically. We model the network as a set

of processor sharing queues, which have independent arrival processes, only interrelated

through their service rates which are determined by the bandwidth allocations. The algo-

rithm works in a decomposition’s fashion: It first computes the conditional distribution

of the first set of queues given the states on the second set of queues, then it provides

the basis to compute the marginal distribution of second set of queues. By multiplying

the marginal and conditional distributions, we get the joint distribution of the system as

a whole. Of course the computational time increases exponentially with the number of

states of the system.
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Chapter 5

Gibbs Sampling Method

In the cases where close form solution of the network are available, we can compare our

approximation results with the close form solutions directly. However such cases are rare,

only the linear network and grid network with unit capacity links. In absence of the closed

form solutions, we have to find some benchmark to evaluate our approximation solutions.

Simulation is the most often used benchmark to evaluate a queueing system. It does

a good job to produce the mean value estimations for the system. However in our case,

what we are computing are not several mean values, but NR probability values for the

total states of the system. That is, essentially NR parameters (e.g. mean value) need to

be evaluated. As verified by our numerical experiments (see the chapter of the numerical

examples), the simulated results are not satisfying in this situation due to the huge number

of values it has to evaluate. Marginal improvement of the simulation results requires huge

extra computational effort, thus it is inefficient, and impractical.

We notice that the simulation method is essentially a sampling method by mimicking

the realistic physical system. Specifically, we generate the periods of time when the

system stays in state i, sum them up, then divide it by the whole period of time the

system operates to obtain the long run average percentage of time in state i, taking it as

45
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the stationary probability value of the system in state i. The merit of this method is that

we do not require any information about the probability distribution of the system before

doing the simulation.

If fortunately we have some information about the distribution of the system before-

hand, then we could resort to some computationally intensive statistical methods (i.e. the

Monte Carlo Markov Chain technique, MCMC) that have become very popular since the

last decade. These methods provide another simulation (i.e. sampling) scheme to find

the probability distribution of the system, but work in a much more efficient and effec-

tive manner than the engineer’s simulation method. In particular, these methods directly

generate (sample) the states repeatedly to establish a large enough pool of samples (i.e.

states), then count the frequency of every state ~i, taking it as the stationary probability

of state ~i.

In this chapter we will use a very effective method of the MCMC toolbox, the Gibbs

sampling method, to obtain the benchmark solution for the network. It thus helps the

comparison of the numerical solutions for any general network cases where the closed

form solutions are not available. Next we just list the final Gibbs sampling algorithm, the

detailed deduction is left in the thesis.

Next we will first introduce the generic Gibbs sampling method, and then some mod-

ifications, in order to make it more efficient for our cases.

5.1 Generic Gibbs sampling method

The generic Gibbs sampling method samples the states, requiring only the information

about the conditional distribution of the system. Specifically, the Gibbs sampling method
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is to sample a random vector

U = (U1, . . . , Uk)

having a joint distribution F (u) in an iterative fashion. Here F (u) is either unknown or

very complicated, but for each i, the conditional distribution F (ui|u1, . . . , ui−1, ui+1, . . . , uk),

or in short

Ui|(U1, . . . , Ui−1, Ui+1, . . . , Uk)

is known and relatively easy to sample from. (Sampling simply means to transform a

computer generated random number (a uniform r.v) into any one of the feasible values of

the random variable by using its probability distribution function. )

The sampling process works in the following way:

Step 0: Start from an arbitrary value u0 = (u01, . . . , u0k) from the feasible value set

of the U vector. (Here the first subscript 0 denotes the 0-th cycle of the procedure, and

the second one denotes the 1-th element of the vector.) Let it be the outcome of the first

round sampling.

Step 1: Compute the first cycle:

1. First, u01 is updated by sampling U1, with realized value u11, from the conditional

distribution:

U1|(U2 = u02, . . . , Uk = u0k)

2. Then update u02 by simulating U2, with realized value u12, from the condition

distribution

U2|(U1 = u11, U3 = u03, . . . , Uk = u0k)

Note that now U1 is using the updated value u11, not u01.
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3. Continue in this fashion until u0k is updated by sampling Uk, with realized value

u1k, from the conditional distribution

Uk|(U1 = u11, . . . , Uk−1 = u1,k−1)

Note that at any point, we always use the most recently updated value for any

random variable, so that when updating u05, we use (u11, . . . , u14) and (u06, . . . , u0k).

At this point, the first cycle of the Gibbs sampling procedure is finished. We record

the result as:

~u1 = (u11, . . . , u1k)

Here the ~u1 is the realized value of the random vector U . Since this is the first round

sampling of U , we record U as U (1). If we repeat this procedure many times, we could

expect u1s are not necessarily the same, but we use the same U (1) to denote these realized

random values from the first round sampling, the same case as for a single random variable.

Step 2: Then the second cycle begins: Further updating u11 by sampling U1 from the

conditional distribution

U1|(U2 = u12, . . . , Uk = u1k)

with realized value u21; then updating u12 by sampling U2 from the conditional distribution

U2|(U1 = u21, U3 = u13, . . . , Uk = u1,k)

with realized value u22. Continue in this fashion, the procedure generates the second cycle

u2 = (u21, . . . , u2k)

Step n: Continue in this fashion, the sampler generates the n-th cycle, un and the

corresponding random vector U (n).

END
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Under fairly general conditions, the distribution of the random vector U (n) converges

to that of U , the original distribution, that is

U (n) → U

for large enough n. In other words if we sample U (i) for a large number of cycles, the

procedure will generate a random vector whose distribution is very the same as that of

U . We then count the frequency of the vector (U1 = s1, . . . , Uk = sk) from the sample

set {~un : n = 1, 2 . . .} as the best estimation of the probability distribution of U in the

steady state:

P (~U = ~s) =
1

N −M + 1

N∑

j=M

I~s(uj)

I~s(~u) =





1 if ~u = ~s

0 otherwise

5.2 Modified Gibbs sampler

We call the conditional distribution Ui|(U1, . . . , Ui−1, Ui+1, . . . , Uk) a sampler, in the sense

that we generate (sample) uj = (uj,1, . . . , uj,k) from it.

Different samplers can be constructed, but have very distinctive degree of efficiency.

Up to now, the best sampler for the case of discrete random variable is due to Liu (1996).

Next we will use Liu’s sampler to achieve the better efficiency. First suppose the current

cycle is j, the sample is uj = (uj,1, . . . , uj,k), we modify the updating procedure of the

generic Gibbs method in cycle j as follow:

Step j: Randomly choose i from {1, . . . , k}, and let {yi} be the set of the feasi-

ble values of Ui other than uj,i, and do a sampling from this set with the probability

distribution:

P (yi) =
π(yi|u[−i])

1− π(uj,i|u[−i])
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where u[−i] = (uj,1, . . . , uj,i−1, uj,i+1, . . . , uj,k),

and π() is just the Ui|(U1, . . . , Ui−1, Ui+1, . . . , Uk).

Suppose the sample we draw is Y . We update uj,i with Y with the following acceptance

probability:

min

{
1,

1− π(uj,i|u[−i])

1− π(Y |u[−i])

}

otherwise uj,i remains unchanged. That reads:

uj,i =





Y with probability min
{
1,

1−π(uj,i|u[−i])

1−π(Y |u[−i])

}

uj,i otherwise

Now the cycle j finishes, the sample uj is updated.

Note there is another difference between the generic Gibbs sampling method and the

modified Gibbs sampling besides of the sampler aspect of the two methods. In each cycle,

the former method updates uj,1, . . . , uj,k totally and subsequently; while the latter method

updates only one (uj,i) by randomly choosing from the k candidates. Thus it is expected

the latter method will require more cycles.

5.3 Multiple path sampling

Another shortfall of the generic Gibbs sampling method is that we have to sample a large

number of cycles in order to count the frequency, and since which point the samples are

stationary is not clear. Gelfand (1990) suggested the above Gibbs sampling procedure

be conducted on several independent parallel paths simultaneously. This improvement

produces faster convergence of the estimators.

In particular, we will run the sampling on m independent parallel paths simultaneously,

on each path we sampling n cycles as the generic Gibbs sampling, that is we construct
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the following m independent parallel sampling chains:

j = 1 : u
(1)
1 → u

(1)
2 . . . → u(1)

n → . . .

j = 2 : u
(2)
1 → u

(2)
2 . . . → u(2)

n → . . .

...

j = m : u
(m)
1 → u

(m)
2 . . . → u(m)

n → . . .

where u(j)
n = (u

(j)
n,1, . . . , u

(j)
n,k) is the n- th cycle of sample on the j-th independent parallel

path.

The probability estimation of each state is then simply averaged over all these paths:

P (~U = ~s) =
1

(N −M + 1)m

m∑

j=1

N∑

i=M

I~s(u
(j)
i )

Now only one question remains: What is the condition sampler Ui|(U1, . . . , Ui−1, Ui+1,

. . . , Uk) in our case? That is exactly the conditional distribution π1|S+1(n1|S+1) in the Step

1 of our approximation algorithm (Note that the order of those processor sharing queues

does not matter, thus we can put any queue at the first), the conditional distribution of

the number of flows on any single route given the fixed numbers of flows on all the other

routes. That reads:

Ni|(N1, . . . , Ni−1, Ni+1, . . . , Nk) ∼ π1|S+1(n1|S+1)

=
λni

i∏ni
k=0 Λi(k, S+1)

· C−1

where Ni represents the number of flows on route i.
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5.4 Modified Gibbs sampling algorithm

The modified Gibbs sampling method is constructed as follow: Let

π() = π(Ni|N1, . . . , Ni−1, Ni+1, . . . , Nk)

=
λni

i∏ni
k=0 Λi(k, S+1)

· C−1

For m = 1, 2, . . . ,M , doing the following:

• Initialize:

Starting from an arbitrary value u
(m)
1 = (u1,1, . . . , u1,k), with u1,i be from the feasible

value set of Ni. We drop (m) next for simplicity.

• For j = 1, 2, . . . , N , do the following:

1. Randomly choose i from {1, . . . , k}, and let {yi} be the set of the feasible values

of Ui other than uj,i, and do a sampling from {yi} according to the probability

distribution:

P (yi) =
π(yi|u[−i])

1− π(uj,i|u[−i])

where u[−i] = (uj,1, . . . , uj,i−1, uj,i+1, . . . , uj,k).

2. Suppose the sample we draw is Y . We update uj,i with the following acceptance

rule:

uj,i =





Y with probability min
{
1,

1−π(uj,i|u[−i])

1−π(Y |u[−i])

}

uj,i otherwise

3. Set u
(m)
j+1 = u

(m)
j

Count the frequency of every state ~s:

P ( ~N = ~s) =
1

NM

M∑

j=1

N∑

i=1

I~s(u
(j)
i )
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where I~s(~u) =





1 if ~u = ~s

0 otherwise

END

5.5 Chapter summary

In this chapter, instead of using the naive simulation method, we resort to the modern

statistical sampling method to provide a benchmark to evaluate the numerical solution of

our approximate algorithm. The modified Gibbs sampling method based on Liu (1996)’s

modification of the generic Gibbs sampling method tailored to the discrete random vari-

ables provides the best solution in this communication network context.
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Chapter 6

Numerical Study

In this chapter, we present in section 6.1 three network models where analytical solutions

of the stationary distribution are available, and compare the results of our approximation

method and the Modified Gibbs sampling method with these exact solutions. Next in

section 6.2 we consider two network models where analytical solutions are not available,

and apply our approximation method and Modified Gibbs method to them. The reason

that we use instead the Modified Gibbs sampling method as the benchmark solution has

been mentioned in the chapter of the Gibbs sampling method.

To measure the accuracy of our approximation algorithm, in addition to the naive

one-to-one comparison, we may consider some often used error estimators based on the

set of discrete probability values we have calculated, such as the CAE, RMSE, etc. (see

the definition below) However, in experiments, it is observed that these error estimators

are not reliable because they are diluted significantly after being divided by the huge

number of the values (N), meaning that they become too small. Only the RCSE and

MAPE are the reliable error estimators that we will thus use to evaluate the accuracy of

the approximation results.

55
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Mean Absolute Error MAE = 1
N

∑N
1 εi

Cumulative Absolute Error CAE =
∑

εi

Root Mean Squared Error RMSE =

√∑
ε2i

N

Root Cumulative Squared Error RCSE =
√∑

ε2
i

Mean Absolute Percentage Error MAPE2 = 1
N

∑ εi

|xi| , for all xi > 0.01

Mean Absolute Percentage Error MAPE3 = 1
N

∑ εi

|xi| , for all xi > 0.001

From the definition, we can see that from the geometrical perspective, the RCSE

represents the straight line distance between the calculated value (a vector) and the true

value in the N - dimensional Euclid space, with the i-th coordinate of the vector be

εi = |x̂i − xi|. And notice that RCSE > max{εi}.

In addition to the numerical comparison results, we add on the graphical comparison

to test the validity of the numerical results. In particular, we will compare the distribution

of the percentage error (rather than the absolute error) of each calculated value, and the

marginal distribution of each route.

In the following examples, we denote the k routes: r1, . . . , rk with Poisson arrivals

of information flows with arrival rates: p1, . . . , pk respectively, and with flow volume of

iid exponential distribution with mean 1 . Kelly’s proportional fairness allocation rule is

applied exclusively in all cases.

Some additional technical specifications are that: we truncate each ni (the number

of ongoing flows on route i) at the 95th percentile of its realized values according to

simulation; and for the Modified Gibbs sampling method, we set M = 1000 parallel

independent paths, each with N = 30 cycles sampling, such that the computational time

is modest, and the accuracy level is at 0.001.
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6.1 Networks with analytical solution

In this section, we consider three networks where exact analytical solutions are available,

which are the standard (that is of unit capacity link) linear network, the standard grid

network, and the single bottleneck; and compare our approximation results and Modi-

fied Gibbs results with the exact solutions. These examples of network models are not

chosen for simplicity, but rather for their representativeness. As suggested in Bonald and

Massoulie (2000), we consider networks whose performance are limited by several criti-

cal bottlenecks, and where the bottlenecks share similar characteristics of link capacity

and offer load. In the cases where bottlenecks have widely different characteristics, one

could expect the performance is driven by bottlenecks which are imposed the tightest

capacity constraint, and then the preceding results could be applied by ignoring those

unconstrained bottlenecks.

6.1.1 Standard linear network

Consider a standard linear network with two unit capacity links and three routes. see

Figure 6.1. The link’s capacity is by Kelly’s proportional fairness rule, shared among

those routes that traverse through it. The bandwidth allocated to each route is then

equally shared among the information flows transmitting on that route.

Assume the information flows arrive as a Poisson process, each carrying an amount

of data as an iid exponential random variable with mean 1, and the Kelly’s proportional

fairness bandwidth allocation rule, the exact solution is given by Massoulie and Roberts

(1998):

π(n1, . . . , nk) = C

(∑
ni

nk

) ∏
pni

i

where C =
(1− ρ0)

L−1

∏L
1 (1− ρ0 − ρi)
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Figure 6.1: The Linear network

where C is the normalization constant, and nk represents the number of ongoing flows on

the longest route.

Error Measure Approximation Gibbs generic Gibbs Simu(1K/2K/3K)

MAE 4.63E-06 2.22E-04 - -

CAE 1.00E-03 4.80E-02 - -

RMSE 3.20E-05 9.53E-04 - -

RCSE 4.70E-04 1.40E-02 1.6E-02 3/2/1.5E-02

MAPE3 0.1% 13% 18% 38/26/19%

MAPE2 0.1% 4.7% 7% 15/9/7%

Table 6.1: Error estimation for linear network

The numerical results of our approximation algorithm and Gibbs sampling method

are summarized in Table 6.1, for arrival rates (0.2, 0.2, 0.2). The Gibbs refers to the

Modified Gibbs method, which is indeed more accurate than the generic Gibbs, i.e. the

plain Gibbs method without Liu (1996)’s Modification. It is further confirmed that the

averaged error estimations MAE and RMSE are largely diluted, with both seeming too

small at the level of 10−5 ∼ 10−6. It appears that the errors are numerically insignificant,

suggesting excellent approximation results.
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RCSE:

However, as we have pointed out, the error estimator RCSE is instead the more reasonable

estimator in our case. The approximation algorithm produces a RCSE at the level of 10−4.

In other words, this suggests that the calculated value (a vector in nk dimensional space)

deviates from the true value at a distance of 10−4. In plain English, if the true value is

0.5, the approximated result is within (0.5 − 0.0001, 0.5 + 0.0001). The Gibbs method

yields a RCSE at the level of 10−2.

MAPE:

On the relative error side, the approximation algorithm produces an excellent result with

the percentage error averaged only at 0.1% (MAPE), based on the comparison with all

true values that are larger than 10−3. This extreme small MAPE may be resulted from

the very low arrival rate on each route. For even smaller true values that are below 10−3,

such as those below 10−5, 10−8 or even lower, the MAPE’s are still 0.1% without any

tendency to increase.

For the Modified Gibbs method, the average percentage error (MAPE) is at 4.7%

compared with true values that are larger than 10−2, and about 13% for true values

that are larger than 10−3. The generic Gibbs sampling method produces larger errors:

7%MAPE2, 18%MAPE3 respectively. The acceptable 4% MAPE at the 10−2 level sug-

gests that M = 1000 parallel paths and N = 30 cycles sampling are good enough to

provide a practically accurate result in our case. Whereas the 13% error requires more

sampling either by increasing the number of parallel paths or the number of cycles to

reduce the relative error for small true values (those within (10−3, 10−2)). For exam-

ple, when we sample 10, 000 cycles in each parallel path, the Gibbs method produces

6%MAPE3, a large improvement.
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We notice the simulation method is inefficient here due to the large number of values

to be evaluated: with 1000 simulated arrivals on each route, the MAPE2 = 15%; when

simulate 3000 arrivals, the MAPE2 approaches 6%, close to the Modified Gibbs result,

but costs much more computational time.

Distribution of individual Percentage Errors:

ordered states (significance of E-03)
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Figure 6.2: PE distribution of linear network

As the supplement to the MAPE and other aggregated error estimations, further

insights could be obtained from Figure 6.2, the detailed distribution of the percentage

errors (rather than the absolute error) of our approximation results for the values larger

than 10−3. The x-axis represents those states (n1, . . . , nk) whose associated values are

larger than 10−3, being labelled into one dimension; y-axis is the percentage error of each

individual approximated value compared with its true counterpart.

Surprisingly, the percentage error is the same! Fixing at the 0.1% level, regardless
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of the specific state. In other words, whatever the state is, (n1, n2, n3) = (2, 3, 4), or =

(3, 4, 5), the errors of our approximated results compared with the true solution are always

0.1%. This is consistent with the previous observation that the MAPE of the approxima-

tion result does not change no matter how significant the underlying values are, that is,

we get the same MAPE for values that are larger than either 10−2, or 10−3, etc.

The fact that the percentage errors of each individual values are the same, in other

words, our approximation results consistently overestimate the true values for a same per-

centage, must suggest something. Recall that in the chapter of building the approximation

algorithm, we use a finite sum to approximate the normalization constant:

πr|S+r(nr|S+r) =
λnr

r∏nr
k=0 E[Λr(· · · , k, S+r)]

C−1

=
λnr

r∏nr
k=0 E[Λr(· · · , k, S+r)]

(
N∑

n=0

λn
r∏n

k=0 E[Λr(· · · , k, S+r)]

)−1

Thus it is expected that our approximation results will consistently overestimate the

true values for a same margin. And we anticipate that the margin will diminish as we

increase N gradually.

We test this judgement by increasing N (that to reduce the truncation error). The

result is shown in Figure 6.3.

We now see the effect, that the percentage error decreases to 1.205880E−004%, almost

zero, when we increase the number of state. As we increase the number of state further,

the percentage error indeed diminishes.

The findings may be summarized as that for standard network such as the linear

network (later we will see the same for the grid network), our approximation algorithm

is numerically accurate (see Figure 6.3), if excluding the implementation error, i.e. ap-

proximating the normalization constant with a finite sum, although it is impossible in

practice.
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Figure 6.3: PE distribution after reducing truncation error

Marginal distribution of each route:
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Figure 6.4: Marginal distribution comparison of linear network

The marginal distribution of each route is another very important concern to the
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system. The marginal distribution of each route is simply:

πi(ni) =
∑

for all nj ,nj 6=ni

π(n1, . . . , nk)

In Figure 6.4, we present the comparison of the marginal distributions of all the three

routes, under the approximation method (the lower panel), and the exact results (the

upper panel) respectively. The curves in the two panels are basically the same, suggest-

ing that the approximation method yields even more accurate results for each individual

queues in the network.

6.1.2 The grid network

Next we considered the standard grid network, essentially a generalization of the standard

linear network. See Figure 6.5 for a four route, four unit capacity link case.

Figure 6.5: The grid network

Under the same assumptions, its exact solution is given by Bonald and Massoulie

(2000):

π(x, y) = C

(∑
xk +

∑
yl∑

xk

) ∏
pxk

k

∏
pyl

l

where C =
K∑

k=1

L∑

l=1

ρK−1
k ρL−1

l∏
k′ 6=k(ρk − ρk′)

∏
l′ 6=l(ρl − ρl′)

1

1− ρk − ρl
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where xk is the number of flows on the horizontal route k, yl is that on vertical route l.

Error Measure Approximation Gibbs

RCSE 4.00E-03 1.00E-02

MAPE3 2 13

MAPE2 2 4

Table 6.2: Error estimation for grid network I

Error Measure Approximation Gibbs

RCSE 4.00E-03 1.10E-02

MAPE3 1.42 14

MAPE2 1.42 4

Table 6.3: Error estimation for grid network II

The results with two sets of different input rates are summarized in Table 6.2 for arrival

rates (0.2, 0.3, 0.2, 0.3), and Table 6.3 for (0.1, 0.3, 0.1, 0.3) respectively. The RCSE is still

very small, at the level of 10−3 for the approximation method, and 10−2 for the Gibbs

method.

In addition, the MAPE of our approximation method remains at about 2% in both

cases; and the Modified Gibbs method at the 4%, 14% level respectively as well. It is worth

noting that on the relative error side, MAPEs of the Gibbs method remain unchanged

compared with the results for the linear network with 4.7% and 13% respectively. This

confirms the fact that the Gibbs sampling method is a very general method as well as the

simulation method, regardless of the specific problems.

For certain truncation setting, the percentage error distribution of the approximation

results, e.g. for the first set of input rates (0.2, 0.3, 0.2, 0.3), tells the same story as that
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Figure 6.6: PE distribution of grid network

of the linear network, see Figure 6.6. This time the result consistently overestimates the

true value by 1.42%.

The marginal distributions are shown in Figure 6.7, indicating close enough curves

with the true ones.

6.1.3 Single bottleneck

Another rarely available network that has analytical solution is the simple single bottle-

neck, which consists of only one link. It is also a special case of the classic BCMP network,

see Figure 6.8 for a three route example. In this simple case, the link’s capacity is thus

proportionally shared among the three routes in accordance with the number of trans-

mitting flows on each route, and subsequently equally shared among all the transmitting

flows within each route.

The analytical solution of stationary distribution is simply given by the BCMP for-
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Figure 6.7: Marginal distribution comparison of grid network

Figure 6.8: Single bottleneck
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mula:

π(n1, . . . , nk) = (1−∑
pi)(

∑
ni)!

∏ pni
i

ni!

where ni is the number of transmitting flows on route i.

Error Measure Approximation Gibbs

RCSE 7.00E-03 1.70E-02

MAPE3 2.1 13

MAPE2 2.1 4

Table 6.4: Error estimation for single bottleneck I

Error Measure Approximation Gibbs

RCSE 3.00E-03 1.90E-02

MAPE3 0.73 14

MAPE2 0.73 4

Table 6.5: Error estimation for single bottleneck II

The numerical results of our approximation algorithm and Gibbs method are summa-

rized in Table 6.4 for arrival rates , and Table 6.5 with two sets of different arrival rates

(0.2, 0.2, 0.3), (0.1, 0.2, 0.3) respectively as input parameters.

The approximation algorithm produces a RCSE at the level of 10−3, and the Gibbs

method yields a value at the level of 10−2.

On the relative error side, the approximation algorithm produces an excellent result

with the percentage error averaged only at 2.1% (MAPE), (and even lower 0.73% for the

second case), based on the comparison with all true values that are larger than 10−3. For

the Modified Gibbs method, the average percentage error (MAPE) is at 4% compared

with true values that are larger than 10−2, and about 12 ∼ 13% for true values that are

larger than 10−3.
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ordered states (significance of E-03)
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Figure 6.9: PE distribution of single bottleneck

The percentage error distribution is shown in Figure 6.9. The approximation result

consistently overestimates 2.1% as we can expected.

The marginal distribution of each route is shown in Figure 6.10, (for the (0.2, 0.2, 0.3)

input rates). Note it is expected because of the same arrival rates on two routes, the

marginal distributions of the two routes are exactly the same, thus they overlap in the

Figure. The curves in the two panels are still basically the same, suggesting the ap-

proximation method yields even more accurate results for each individual queues in the

network.

6.2 Network without analytical solution

In this section, we consider a cyclic network (Figure 6.11) where the exact bandwidth

allocation is available, but the exact solution is not. We will compare our approxima-
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Figure 6.10: Marginal distribution comparison of single bottleneck

tion method with the Gibbs sampling method. In the non-exact solution case, instead

of comparing the difference between the approximated values and the true values, we

compare the approximated values with Gibbs sampling values which is similar to the sim-

ulation, and evaluate the difference using the preceding error estimators. If both of these

two methods approximate the true values, we shall expect not much divergence from the

preceding results.

The result is listed in Table 6.6, for arrival rates (0.2, 0.2, 0.2, 0.2, 0.2, 0.2). For each

MAPE, the left hand side value is the percentage error calculated based on the approx-

imated values, that is to divide the absolute error by the approximated values, and the

right hand side is based on Gibbs values.

We can see that the results 5%MAPE2 and 19%MAPE3are quite consistent with the

preceding results: 4%MAPE2 and 13%MAPE3 of the Gibbs sampling method, suggesting

that the approximation method does approximate the true values at a slight margin
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Figure 6.11: The cyclic network

Error Measure Approximation − Gibbs

MAE 1.21E-05

CAE 5.65E-01

RMSE 5.32E-05

RCSE 1.15E-02

MAPE3 19 / 22

MAPE2 5.7 / 5.5

Table 6.6: Error estimation for the cyclic network
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near the 1 ∼ 2%MAPE, whereas the Gibbs method approximates the true values at

4%MAPE2 regardless of the specific type of network. The slightly higher 19%MAPE3

may be due to inaccuracy from the increased dimensionality and the 2% inaccuracy of the

approximated values. Thus it is not surprised that the result is very close to the Gibbs

results in preceding examples. In addition, the RCSE which is at the level of 10−2 also is

quite close to the preceding results for the linear, grid and single bottle networks.
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Figure 6.12: PE distribution of cyclic network

The percentage error distribution of the approximation result compared with the Gibbs

result for those values larger than 10−2 is shown in Figure 6.12. In this case, we see

relatively wide error distribution, due to the randomness of the Gibbs sampling results.

The Marginal distribution comparison of these two methods is shown in Figure 6.13.

The six marginal distributions are exactly the same, overlapping at a single curve, all

because of the symmetric network structure and the same input rates.
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Figure 6.13: Marginal distribution comparison of cyclic network

6.3 Truncation error

In previous section, we showed that as the truncation error diminishes, the percentage

error approaches zero as well. In this section, we consider how bad the truncation error

could be if we do not reduce it purposely, that is what is the worst impact of truncation

of ni on the accuracy. We conduct the experiments under the heavy traffic load condition,

namely the
∑

pi → 1, where the truncation error has a major effect.

First we consider two extreme cases of a linear network (see Figure 6.14) where arrival

rate on exactly one route is 0. The first one is (p1, p2, p3) = (0.8, 0, 0.15) where the rates

p1, p3 differ significantly. In this case, the maximum number of flows on route 1 and route

3 are 100, 25 respectively, the 99th percentile of the outcomes according to simulation.

We choose to truncate N1, N2 at lower values for computational savings, and compare the

MAPEs under different scenarios, such that we will see the impact of truncation on the
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Figure 6.14: Linear network under heavy traffic

accuracy of the approximation results.

N1 N3 MAPE

100 25 0.11%

70 25 1.25%

60 25 2.31%

50 25 4.52%

40 25 8.84%

Table 6.7: Impact of truncation error I

N1 N3 MAPE

70 70 0.12%

60 60 0.33%

50 50 0.88%

40 40 2.35%

30 30 6.36%

Table 6.8: Impact of truncation error II

The results are shown in Table 6.7. We see that N1 decreases by 10 each time, which

incur larger truncation error, while the MAPE only increases marginally.
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For the second case where (p1, p2, p3) = (0.5, 0, 0.45), where the rates p1, p3 are close to

each other, similar comparison results are summarized in Table 6.8. In this case, even we

truncate the N1, N2 half from 70 to 30, the MAPE is still practically acceptable. Thus

it is worth to sacrifice some accuracy to obtain significant computational savings.

Finally we consider when p2 6= 0, that is in a higher dimension, how is the truncation

effect. Suppose (p1, p2, p3) = (0.5, 0, 0.4), (0.5, 0.5, 0.4), named set1 and set2 respectively.

The result is summarized in Table 6.9. For each truncation, the MAPE of the three

route network (set2) is about as 2.5 times large as that of set1, a two route network,

suggesting the increasing dimensionality makes the approximation results worse under

the same truncation settings.

N1 (and N2) N3 MAPE

set1 set2

40 40 0.05% -

30 30 0.37% 0.90%

20 20 2.47% 6.62%

10 10 18.20% 48%

Table 6.9: Impact of truncation error III

6.4 Chapter summary

In this chapter, we present some numerical examples to compare the approximation results

with those of the Modified Gibbs method and exact results, if available. In all these cases,

it is observed that some error estimators such as RCSE and MAPE provide more reliable

comparison results for the accuracy of the approximation algorithm. In particular, the

RCSE of the approximation results maintain at the level of 10−3, indicating the deviation
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from the exact results is at the 0.001 level in absolute terms, and the MAPE suggests

a quite small, less than 2% relative error within the true values. Further investigation

suggests that our approximation algorithm consistently overestimates the true values only

at a margin, due to the truncation error involved in the algorithm. The overestimation

diminished as we reduce the truncation error, suggesting that the approximation algorithm

is quite accurate.

The analysis of truncation error suggests that the approximation algorithm is robust.

The percentage error MAPE increases only marginally when we truncate the state in

modest range. This provides room for computational savings.
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Chapter 7

Conclusion

7.1 Overview

This concluding chapter provides a summary of the findings as well as the implications

of the results. The limitations of the study are discussed next and finally suggestions for

future research will round up the study.

7.2 Summary of findings

According to the results of the numerical analysis, our algorithm provides a highly accurate

approximation for some simple networks, as comparing with their analytic solutions. The

percentage error is limited below 2%. One of the sources of error is from the approximation

of the normalization constant. If excluding this error factor, the percentage error is further

significantly reduced.

The Modified Gibbs method provides slightly larger error of 4%, depending on the

number of rounds of sampling we set. But it provides the benchmark solutions for those

complex networks where the analytic solutions are not available. Thus we can evaluate the

77
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accuracy of the approximation solutions, and come to the conclusion that the algorithm

is widely applicable.

7.3 Implications of study

This study suggests that due to the special characteristic of this type of network, instead

of resorting to traditional Markov Chain technique, we can solve it in a decomposition

fashion. Our approximation algorithm proved the feasibility.

Based on the numerical study on networks with analytic solutions, and later numerical

comparison with Gibbs method on some non-analytic-solution networks, we firmly believe

that this algorithm is applicable in solving a wide range of networks which share the same

characteristics. In other words, this decomposition method indeed provides another way

to approach this type of network.

7.4 Limitations of study

The algorithm is designed for network with Poisson arrivals, each carrying exponentially

distributed file size, because only for these cases, analytic results are abundant for use.

Thus theses analytic results largely reduce the modelling error. But this simplification

cause concerns about the applicability of the algorithm to more realistic network cases,

where numerous observations show that most of time the arrival process is definitely not

Poisson, and the file size distribution is heavy tailed.

However, the analytic results are not available for those more complex networks, thus

our numerical studies are mainly conducted on a few simple networks, where the analytic

solutions provide the benchmark for evaluation of accuracy.

On the other hand, the computation effort of the algorithm exponentially increases
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with the number of states of the system. Thus in our study the algorithm is implemented

for networks with relatively light traffic. For heavy traffic cases, the usefulness of the

algorithm is limited.

7.5 Suggestions for future research

Future research on this subject may go to two directions. One is to lessen the assumptions

of Poisson arrivals, exponential file size. This may require introducing additional steps

to numerically approximate the realistic arrival process and its impacts. In these cases,

simulation results may be used as benchmark solutions.

For the simple light traffic networks, our algorithm provides very accurate approxima-

tion to the solution, i.e. the probability of every state. For more practical cases, where

the heavy traffic dominates, the probability of the intervals of states, i.e. P (~n ∈ Ai) is

instead of more interest. Thus another improvement is to design methods calculating

the cumulative probabilities, i.e. P (n1 < x, n2 < y, · · ·), instead of the discrete point

probabilities.
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