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Summary

This thesis collects all results about pseudo-splines given in the three papers

[20, 21, 22] written by me and Professor Shen Zuowei.

The first type of pseudo-splines were introduced in [17] (see also [55]) to con-

struct tight framelets with desired approximation orders via the unitary extension

principle of [51]. In the spirit of the first type of pseudo-splines, we shall consider

here the second type (see also [55]) of pseudo-splines to construct symmetric or

antisymmetric tight framelets with desired approximation orders. Pseudo-splines

provide a rich family of refinable functions. B-splines are one of the special classes

of pseudo-splines; orthogonal refinable functions (whose shifts form an orthonormal

system given in [16]) are another class of pseudo-splines; and so are the interpo-

latory refinable functions (which are the Lagrange interpolatory functions at Z

and were first discussed in [23]). The other pseudo-splines with various orders fill

in the gaps between the B-splines and orthogonal refinable functions for the first

type, and between B-splines and interpolatory refinable functions for the second

type. This gives a wide range of choices of refinable functions that meets various

demands for balancing the approximation power, the length of the support, and

the regularity in applications.

vi



Summary vii

This thesis will give a regularity analysis, as well as detailed discussions of

some other basic properties, of pseudo-splines of both types and provide various

constructions of wavelets and framelets. It is easy to see that the regularity of the

first type of pseudo-splines is between B-spline and orthogonal refinable function

of the same order. However, there is no precise regularity estimate for pseudo-

splines in general. In this thesis, an optimal estimate of the decay of the Fourier

transform of all pseudo-splines is given. The regularity of pseudo-splines can then

be deduced and hence, the regularity of the corresponding wavelets and framelets.

The asymptotical regularity analysis, as the order of the pseudo-splines goes to

infinity, is also provided.

In this thesis, we will also show that the shifts of a pseudo-spline are linearly

independent. This is stronger than the (more obvious) statement that the shifts

of a pseudo-spline form a Riesz system. In fact, the linear independence of a

compactly supported (refinable) function and its shifts has been studied in several

areas of approximation and wavelet theory (see e.g. [4, 18, 19, 32, 33, 38, 47]).

Furthermore, the linear independence of the shifts of a pseudo-spline is a necessary

and sufficient condition for the existence of a compactly supported function whose

shifts form a biorthogonal dual system of the shifts of the pseudo-spline.

From a given pseudo-spline, a short support Riesz wavelet (that has the same

length of support as that of the pseudo-spline) is constructed. The construction

is rather simple and natural, however, the proof of the Riesz property of the cor-

responding wavelet system is highly nontrivial. Furthermore, this short support

wavelet is one of the tight framelets constructed from the same pseudo-spline by

a method provided both in [17] and this thesis. This reveals that in almost all

pseudo-spline tight frame systems constructed so far, there is one framelet whose

dilations and shifts already form a Riesz basis for L2(R).



Summary viii

Finally, we introduce a construction of smooth compactly supported biorthogo-

nal Riesz wavelets using pseudo-splines. In fact, we give an implementable scheme

to derive a dual refinable function from pseudo-splines, which satisfies any pre-

scribed regularity. This automatically gives a construction of smooth biorthogonal

Riesz wavelets with one of them being a linear combination of a pseudo-spline.

As an example, an explicit formula of biorthogonal dual refinable functions of the

interpolatory refinable function is given.
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Chapter 1
Introduction

Pseudo-splines were first introduced in [17, 55] in order to construct tight

framelets with required approximation order of the truncated frame series. Pseudo-

splines are refinable and compactly supported. They give a wide variety of choices

of refinable functions and provide numerous flexibilities in wavelet and framelet

constructions and filter designs. Functions such as B-splines, interpolatory, or

orthogonal refinable functions are special cases of them. An optimal regularity

analysis of pseudo-splines does not come easily, as it has already been illustrated

in a regularity estimate of the orthonormal refinable functions, which is a special

case of pseudo-splines (see [5], and [15]). This thesis gives a complete optimal

regularity analysis of both types of pseudo-splines. We also construct short Riesz

wavelets from pseudo-splines in this thesis. (A short wavelet is the one whose

support has the same length as that of the pseudo-spline from which the wavelet

is derived.) Then, we connect the short Riesz wavelets with the tight framelets

derived from pseudo-splines. It turns out that the short Riesz wavelet is one of the

tight framelets derived from the same pseudo-spline. This reveals that the tight

frame systems derived from the methods given both in [17] and this thesis have

one framelet whose dilations and shifts already form a Riesz basis for L2(R), and

1
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this also leads to a new understanding of the structure of pseudo-spline tight frame

systems.

A function φ ∈ L2(R) is refinable if it satisfies the refinement equation

φ = 2
∑

k∈Z
a(k)φ(2 · −k), (1.1)

for some sequence a ∈ `2(Z), which is called refinement mask of φ.

By Lp(R), for 1 ≤ p ≤ ∞, we denote all the functions f(x) satisfying

‖f(x)‖Lp(R) :=
( ∫

R
|f(x)|pdx

) 1
p

< ∞;

and `p(Z) the set of all sequences c defined on Z such that

‖c‖`p(Z) :=
( ∑

j∈Z
|c(j)|p

) 1
p

< ∞.

The Fourier-Laplace transform of a compactly supported (measurable) function

f is defined by

f̂(ζ) :=

∫

R
f(t)e−iζtdt, ζ ∈ C.

When f is compactly supported and bounded, the Fourier-Laplace transform of f

is analytic. When ζ is restricted to R, f̂ becomes the Fourier transform of f . Note

that Fourier transform can be defined for non-compactly supported measurable

functions, such as L1(R) functions, which can be extended to more general function

spaces (e.g. L2(R)) naturally.

For a given finitely supported sequence c, its corresponding Laurent polynomial

is defined by

c̃(z) :=
∑

j∈Z
c(j)zj, for z ∈ C \ {0}.

The corresponding trigonometric polynomial or Fourier series is

ĉ(ξ) = c̃(e−iξ), ξ ∈ R.
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With these, the refinement equation (1.1) can be written in terms of its Fourier

transform as

φ̂(ξ) = â(ξ/2)φ̂(ξ/2), ξ ∈ R.

We also call â the refinement mask or just mask of φ for convenience.

The refinement equation (1.1) can also be written in terms of its Fourier-Laplace

transform as

φ̂(ζ) = ã(e−iζ/2)φ̂(ζ/2), for all ζ ∈ C, (1.2)

if φ is compactly supported and a finitely supported. We call ã a symbol of φ.

Pseudo-splines are defined in terms of their refinement masks. It starts with,

for given nonnegative integers l and m with l ≤ m− 1,

(
cos2(ξ/2) + sin2(ξ/2)

)m+l
. (1.3)

The refinement masks of pseudo-splines are defined by the summation of the first

l + 1 terms of the binomial expansion of (1.3). In particular, the refinement mask

of a pseudo-spline of type I with order (m, l) is given by, for ξ ∈ [−π, π],

|1â(ξ)|2 := |1â(m,l)(ξ)|2 := cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2) (1.4)

and the refinement mask of a pseudo-spline of type II with order (m, l) (see also

[55]) is given by, for ξ ∈ [−π, π],

2â(ξ) := 2â(m,l)(ξ) := cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2). (1.5)

Except for some special circumstances, we always drop the subscript “(m, l)” in

1â(ξ)(m,l) and 2â(ξ)(m,l) for simplicity. We note that the mask of type I is obtained

by taking the square root of the mask of type II using the Fejér-Riesz lemma (see

e.g. [15] and [45]), i.e. 2â(ξ) = |1â(ξ)|2, and 1â is a real-valued trigonometric

polynomial. Pseudo-splines of type I was introduced and used in [17] in their

constructions of tight framelets.
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The corresponding pseudo-splines can be defined in terms of their Fourier trans-

forms, i.e.

kφ̂(ξ) :=
∞∏

j=1

kâ(2−jξ), k = 1, 2. (1.6)

The pseudo-splines with order (m, 0) for both types are B-splines. Recall that a

B-spline with order m and its refinement mask are defined by

B̂m(ξ) = e−ij ξ
2

(
sin(ξ/2)

ξ/2

)m

and â(ξ) = e−ij ξ
2 cosm(ξ/2),

where j = 0 when m is even, j = 1 when m is odd (for detailed discussions about

B-splines, one may refer to [1]). The pseudo-splines of type I with order (m,m−1)

are the refinable functions with orthonormal shifts (called orthogonal refinable

functions) given in [16]. The pseudo-splines of type II with order (m,m − 1)

are the interpolatory refinable functions (which were first introduced in [23] and

a systematic construction was given in [16]). Recall that a continuous function

φ ∈ L2(R) is interpolatory if φ(j) = δ(j), j ∈ Z, i.e. φ(0) = 1, and φ(j) = 0, for

j 6= 0 (see e.g. [23]). The other pseudo-splines fill in the gap between the B-splines

and orthogonal or interpolatory refinable functions.

For fixed m, since the value of the mask |kâ(ξ)|, for k = 1, 2 and ξ ∈ R, increases

with l (by part 1 of Lemma 2.2 in Chapter 2), and the length of the mask ka also

increases with l, we conclude that the decay rate of the Fourier transform of a

pseudo-spline decreases with l and the support of the corresponding pseudo-spline

increases with l. In particular, for fixed m, the pseudo-spline with order (m, 0) has

the highest order of smoothness with the shortest support, the pseudo-spline with

order (m,m−1) has the lowest order of the smoothness with the largest support in

the family. When we move from B-splines to orthogonal or interpolatory refinable

functions, we sacrifice the smoothness and short support of the B-splines to gain

some other desirable properties, such as orthogonality or interpolatory property.

What do we get for the pseudo-splines of the other orders? When we move from B-

splines to pseudo-splines, we gain the approximation power of the truncated tight
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frame systems derived from them, as we will discuss below.

For a given φ ∈ L2(R), a shift (integer translation) invariant space generated

by φ ∈ L2(R) is defined by

V0(φ) := Span{φ(· − k), k ∈ Z}. (1.7)

Let

Vn(φ) := {f(2n·) : f ∈ V0(φ), n ∈ Z}. (1.8)

The function φ is the generator of V0, hence the generator of Vn(φ), n ∈ Z. It is easy

to see that for fixed m and type, pseudo-splines of all orders (m, l), 0 ≤ l ≤ m− 1,

satisfy the same order of the Strang-Fix (SF) condition. (The type I pseudo-splines

are of order m and type II are of order 2m) Recall that a function φ satisfies the

SF condition of order m if

φ̂(0) 6= 0, φ̂(j)(2πk) = 0, j = 0, 1, 2, ..., m− 1, k ∈ Z\{0}.

Assume that φ satisfies the SF condition of order m0. Then, the best approximation

of a sufficiently smooth function f from (Vn)n∈Z is m0. Recall that (Vn(φ))n∈Z pro-

vides approximation order m0 (or we can say that the refinable function φ provides

approximation order m0), if for all the f in the Sobolev space Wm0
2 (R),

dist(f, Vn) := min{‖f − g‖L2(R) : g ∈ Vn} = O(2−nm0).

Therefore, even though the (Vn)n∈Z may be generated by a different pseudo-spline

for the fixed type with order (m, l), 0 ≤ l ≤ m − 1, the corresponding spaces

(Vn)n∈Z provide the same approximation order. However, in many applications of

wavelets and framelets, we normally use

Pn : f 7→
∑

k∈Z
〈f, φn,k〉 φn,k (1.9)

to approximate f , where φn,k := 2
n
2 φ(2n ·−k) and φ ∈ L2(R) is a refinable function

with mask a. The operation Pnf may not provide the best approximation of f
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from Vn. We say that the operator Pn provides approximation order m1, if for all

f in the Sobolev space Wm1
2 (R)

‖f − Pnf‖L2(R) = O(2−nm1).

As shown in [17], the approximation order of Pnf depends on the order of the zero

of

1− |â(ξ)|2

at the origin. In fact, if 1−|â|2 = O(| · |m2) at the origin, then m1 = min{m0,m2}.
For B-splines, m2 never exceeds 2. This indicates that the approximation order of

Pn can never exceed 2 even if a high order B-spline is used. On the other hand, for

the pseudo-spline of either type with order (m, l), 0 ≤ l ≤ m−1, the corresponding

m2 = 2l + 2 (see Theorem 3.10). Therefore, the approximation order of Pn, with

a pseudo-spline with order (m, l), 0 ≤ l ≤ m − 1, as the underlying refinable

function, is min{m, 2l + 2} for type I and 2l + 2 for type II. More importantly, the

approximation order of Pn determines the approximation order of the truncated

series of a tight frame system. For given Ψ := {ψ1, ψ2, . . . , ψr}, the system

X(Ψ) := {ψn,k = 2
n
2 ψ(2n · −k), ψ ∈ Ψ, n, k ∈ Z}

is a tight frame for L2(R) if

∑

g∈X(Ψ)

|〈f, g〉|2 = ‖f‖2
L2(R), ∀f ∈ L2(R).

For X(Ψ), define the truncated operator as

Qn : f 7→
∑

ψ∈Ψ,k∈Z,j<n

〈f, ψj,k〉 ψj,k. (1.10)

When the tight framelets Ψ are obtained via the unitary extension principle (see

e.g. Section 5.2) from the multiresolution analysis generated by the same φ, then

Lemma 2.4 in [17] shows that Pnf = Qnf , for all f ∈ L2(R). Recall that for
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a compactly supported refinable function φ ∈ L2(R), we define V0 and Vn as in

(1.7) and (1.8). Then, the sequence of spaces (Vn)n∈Z forms a multiresolution

analysis (MRA) generated by φ, i.e. (i) Vn ⊂ Vn+1,∀n ∈ Z; (ii)
⋃

n∈Z Vn =

L2(R),
⋂

n∈Z Vn = {0} (see e.g. [3] and [36]). The wavelet system X(Ψ) is said to

be MRA-based if there exists a MRA (Vn)n∈Z, such that Ψ ∈ V1. If, in addition,

the system X(Ψ) is a (tight) frame system, we refer to the elements of Ψ as (tight)

framelets.

Therefore, the tight frame system derived from a pseudo-spline normally gives

better approximation order when the truncated series is used to approximate the

underlying functions than that derived from B-splines. For fixed m, the choice of l

depends entirely on applications. One needs to balance among the approximation

order, the length of support of the wavelet, and regularity according to the practical

problems in hand.

For a compactly supported function φ ∈ L2(R) and some sequence b ∈ `(Z),

where `(Z) denotes the space of all complex valued sequences defined on Z, the

semi-convolution of φ and b is defined by

φ ∗′ b :=
∑

j∈Z
b(j)φ(· − j).

Note that for any b ∈ `(Z) and a compactly supported function φ ∈ L2(R), φ ∗′ b
converges uniformly on any compact set (see e.g. [3]).

In order to introduce the concept of the linear independence of the shifts of a

compactly supported function φ, we first recall the notion of stability of φ which is

related to, somehow weaker than, the linear independence. A function φ ∈ L2(R)

is stable if there exist 0 < C1, C2 < ∞, such that for any sequence b ∈ `2(Z),

C1‖b‖`2(Z) ≤
∥∥φ ∗′ b

∥∥
L2(R)

≤ C2‖b‖`2(Z). (1.11)

Note that the stability of φ is equivalent to that {φ(· − k)}k∈Z forms a Riesz basis

for V0(φ), where V0(φ) is defined by (1.7). The stability of function φ ∈ L2(R) can
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also be characterized by its bracket product (see e.g. [3] and [35]). Recall that the

bracket product of L2(R) functions f and g is defined by

[f̂ , ĝ](ξ) :=
∑

k∈Z
f̂(ξ + 2πk)ĝ(ξ + 2πk).

It is also well known that (see e.g. [3, 15, 35, 50]) a function φ ∈ L2(R) is stable if

and only if there exist two constants 0 < C1, C2 < ∞ such that

C1 ≤ [φ̂, φ̂](ξ) ≤ C2 (1.12)

holds for almost every ξ ∈ R.

When φ is compactly supported in L2(R), it was shown by Jia and Micchelli

in Theorem 2.1 of [35] that the upper bound of (1.11) always holds. Furthermore,

Theorem 3.5 of [35] asserts that the lower bound of (1.11) is equivalent to

(
φ̂(ξ + 2πk)

)
k∈Z 6= 0 for all ξ ∈ R, (1.13)

where 0 denotes the zero sequence in `(Z). Hence, Jia and Micchelli proved that

the stability of a compactly supported function φ ∈ L2(R) is equivalent to (1.13).

A compactly supported function φ ∈ L2(R) and its shifts are linearly indepen-

dent if, for b ∈ `(Z),

φ ∗′ b = 0 implies b(j) = 0, for all j ∈ Z.

The linear independence of a compactly supported function was first studied

by Dahmen and Micchelli in [18] and [19], and Jia in [32] and [33] in the context of

box splines. Ron in [47] (also see [4]) studied the linear independence of compactly

supported distributions in terms of their Fourier-Laplace transforms. Applying

Proposition 2.1 of [47] (also see [38]), one obtains that for an arbitrary compactly

supported single variable distribution, which is not identically zero, there are at

most finitely many ζ ∈ C such that

(
φ̂(ζ + 2πk)

)
k∈Z = 0.
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Furthermore, Ron proved in Theorem 1.1 of [47] that the shifts of a compactly

supported distribution are linearly independent if and only if the Fourier-Laplace

transform of φ satisfies

(
φ̂(ζ + 2πk)

)
k∈Z 6= 0 for all ζ ∈ C. (1.14)

Comparing (1.13) and (1.14), we can see immediately that for a compactly sup-

ported function φ ∈ L2(R), linear independence of the shifts of φ implies the

stability of φ. More recently, Jia and Wang characterized the linear independence

of single variable refinable functions in terms of their masks (see [38]).

The rest of the thesis is organized as follows: Chapter 2 gives some technical

lemmata used in other chapters. Chapter 3 focuses on the analysis of regularity of

pseudo-splines and the analysis of approximation order. In particular, the exact

decay of the Fourier transforms of the pseudo-splines of both types with all orders

are given. The asymptotical analysis is also provided. Chapter 4 proves that the

shifts of an arbitrary pseudo-spline are linearly independent. In Chapter 5, a short

Riesz wavelet, which has the same length of support as that of the corresponding

pseudo-spline, is derived. Furthermore, (anti)symmetric tight framelets, which

have the short Riesz wavelet as one of the framelets, are designed. In the last

chapter, we introduce an implementable scheme of deriving compactly supported

biorthogonal dual refinable functions from pseudo-splines, which can satisfy any

prescribed regularity. This directly leads to a construction of compactly supported

smooth biorthogonal Riesz wavelet bases for L2(R).



Chapter 2
Two Lemmas

This chapter gives two key technical lemmata that will be used to prove several

key results of this thesis. We start with the following lemma on binomial coeffi-

cients, where part 1 is well known (see e.g. [12]) and the proof of part 3 is rather

technical but needed in Chapter 5.

Lemma 2.1. For given nonnegative integers m, j, l, we have:

1.
(

m+1
j

)
=

(
m
j

)
+

(
m

j−1

)
for j ≥ 1 and (j + 1)

(
m+j
j+1

)
= (m + j)

(
m−1+j

j

)
.

2. 2(m + 1)
∑l−1

j=0

(
m+l

j

)− l
∑l

j=0

(
m+l

j

) ≥ 0, for m ≥ 1 and 1 ≤ l ≤ m− 1.

3.
2l(m+l

l )
1
2

∑l
j=0 (m+l

j )
≤ 1, for all m ≥ 1 and 0 ≤ l ≤ m− 1.

Proof. The identities in part 1 are well known and can be proven directly by the

definition of the binomial coefficients.

For part 2, since m > l, we have

(m + 1)
l−1∑
j=0

(
m + l

j

)
− l

l−1∑
j=0

(
m + l

j

)
≥ 0.

Subtracting this inequality from part 2, we conclude that it remains to check if

(m + 1)
l−1∑
j=0

(
m + l

j

)
− l

(
m + l

l

)
≥ 0

10
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holds, in order to verify part 2. Since (m + 1)
(

m+l
l−1

)
= l

(
m+l

l

)
, we have

(m + 1)
l−1∑
j=0

(
m + l

j

)
> (m + 1)

(
m + l

l − 1

)
= l

(
m + l

l

)
.

This gives part 2 immediately.

Finally, we prove part 3 by induction with respect to m. Since part 3 is obvi-

ously true for l = 0, we now focus on 1 ≤ l ≤ m− 1. When m = 1, the inequality

trivially holds. Assume part 3 holds when m = m0, i.e

22l

(
m0 + l

l

)
≤

( l∑
j=0

(
m0 + l

j

))2

,

for all 1 ≤ l ≤ m0 − 1. Consider the case m = m0 + 1. We first show that part 3

holds for all l, where 1 ≤ l ≤ m0 − 1. For 1 ≤ l ≤ m0 − 1, we have

22l

(
m0 + l + 1

l

)
=

m0 + l + 1

m0 + 1
22l

(
m0 + l

l

)

≤ m0 + l + 1

m0 + 1

( l∑
j=0

(
m0 + l

j

))2

(by induction hypothesis)

=

( l∑
j=0

(
m0 + l

j

)
+

(√m0 + l + 1

m0 + 1
− 1

) l∑
j=0

(
m0 + l

j

))2

=

( l∑
j=0

(
m0 + l

j

)
+

l

m0 + 1 +
√

(m0 + l + 1)(m0 + 1)

l∑
j=0

(
m0 + l

j

))2

<

( l∑
j=0

(
m0 + l

j

)
+

l

2m0 + 2

l∑
j=0

(
m0 + l

j

))2

≤
( l∑

j=0

(
m0 + l

j

)
+

l−1∑
j=0

(
m0 + l

j

))2

(from part 2)

=

(
1 +

l∑
j=1

(
m0 + l

j

)
+

l∑
j=1

(
m0 + l

j − 1

))2

=

( l∑
j=0

(
m0 + l + 1

j

))2

(from part 1).
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This shows that part 3 holds for all 1 ≤ l ≤ m0 − 1, it remains to show part 3

holds for l = m0, i.e. to show

22m0

(
2m0 + 1

m0

)
≤

( m0∑
j=0

(
2m0 + 1

j

))2

. (2.1)

Observe that

m0∑
j=0

(
2m0 + 1

j

)
=

1

2

(
m0∑
j=0

(
2m0 + 1

j

)
+

m0∑
j=0

(
2m0 + 1

j

))

=
1

2

(
m0∑
j=0

(
2m0 + 1

j

)
+

2m0+1∑
j=m0+1

(
2m0 + 1

j

))
(by

(
n

j

)
=

(
n

n− j

)
)

=
1

2

2m0+1∑
j=0

(
2m0 + 1

j

)
= 22m0 .

Then (2.1) is equivalent to

(
2m0 + 1

m0

)
≤

m0∑
j=0

(
2m0 + 1

j

)
,

which is obviously true. This concludes the proof of part 3.

Define

Pm,l(y) :=
l∑

j=0

(
m + l

j

)
yj(1− y)l−j (2.2)

and

Rm,l(y) := (1− y)mPm,l(y), (2.3)

where y = sin2(ξ/2) and m, l are nonnegative integers with l ≤ m− 1. Then, it is

obvious that

Rm,l(sin
2(ξ/2)) = 2â(ξ).

Next, we give several basic properties of the polynomials Pm,l(y) and Rm,l(y).

Part 2-4 of the following lemma are mainly used in Chapter 3.3 and Chapter 5.

Lemma 2.2. For nonnegative integers m and l with l ≤ m − 1, let Pm,l(y) and

Rm,l(y) be the polynomials defined in (2.2) and (2.3). Then:
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1. Pm,l(y) =
∑l

j=0

(
m−1+j

j

)
yj.

2. R′
m,l(y) = −(m + l)

(
m+l−1

l

)
yl(1− y)m−1.

3. Define Q(y) := Rm,l(y) + Rm,l(1− y). Then,

min
y∈[0,1]

Q(y) = Q(
1

2
) = 21−m−l

l∑
j=0

(
m + l

j

)
.

4. Define S(y) := R2
m,l(y) + R2

m,l(1− y). Then,

min
y∈[0,1]

S(y) = S(
1

2
) = 21−2m−2l(

l∑
j=0

(
m + l

j

)
)2.

Proof. For fixed m, we prove part 1 by induction with respect to l. It is obviously

true for l = 0. Now suppose part 1 holds for l0. Consider l = l0 + 1,

Pm,l(y) =

l0+1∑
j=0

(
m + l0 + 1

j

)
yj(1− y)l0−j+1

= (1− y)l0+1 +

l0+1∑
j=1

(
m + l0 + 1

j

)
yj(1− y)l0−j+1.

Applying the first identity in part 1 of Lemma 2.1, we have,

Pm,l(y) = (1− y)l0+1 +

l0+1∑
j=1

(
m + l0

j

)
yj(1− y)l0−j+1

+

l0+1∑
j=1

(
m + l0
j − 1

)
yj(1− y)l0−j+1

=

l0+1∑
j=0

(
m + l0

j

)
yj(1− y)l0−j+1 +

l0+1∑
j=1

(
m + l0
j − 1

)
yj(1− y)l0−j+1

=

l0∑
j=0

(
m + l0

j

)
yj(1− y)l0−j+1 +

(
m + l0
l0 + 1

)
yl0+1

+

l0∑
j=0

(
m + l0

j

)
yj+1(1− y)l0−j
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= (1− y)Pm,l0(y) +

(
m + l0
l0 + 1

)
yl0+1 + yPm,l0(y)

= Pm,l0(y) +

(
m + l0
l0 + 1

)
yl0+1

=

l0∑
j=0

(
m− 1 + j

j

)
yj +

(
m + l0
l0 + 1

)
yl0+1 (by induction hypothesis)

=

l0+1∑
j=0

(
m− 1 + j

j

)
yj.

We prove part 2 by induction with respect to l for given m. It is obviously true

when l = 0. Suppose part 2 holds for l0, i.e.

R′
m,l0

(y) = −(m + l0)

(
m + l0 − 1

l0

)
yl0(1− y)m−1,

and consider the case l = l0 + 1 ≤ m− 1. Using part 1 and definition of Rm,l(y) in

(2.3), we have

Rm,l0+1(y) = (1− y)mPm,l0+1(y)

= (1− y)m
(
Pm,l0(y) +

(
m + l0
l0 + 1

)
yl0+1

)
.

Since Rm,l0(y) = (1− y)mPm,l0(y), we have

Rm,l0+1(y) =

(
m + l0
l0 + 1

)
yl0+1(1− y)m + Rm,l0(y).

Then,

R′
m,l0+1(y) = (l0 + 1)

(
m + l0
l0 + 1

)
yl0(1− y)m −m

(
m + l0
l0 + 1

)
yl0+1(1− y)m−1

+R′
m,l0

(y)

= (l0 + 1)

(
m + l0
l0 + 1

)
yl0(1− y)m −m

(
m + l0
l0 + 1

)
yl0+1(1− y)m−1

−(m + l0)

(
m + l0 − 1

l0

)
yl0(1− y)m−1.
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Pulling the common factor yl0(1− y)m−1 out, one obtains

R′
m,l0+1(y) = yl0(1− y)m−1

(
(l0 + 1)

(
m + l0
l0 + 1

)
(1− y)−m

(
m + l0
l0 + 1

)
y

−(m + l0)

(
m + l0 − 1

l0

))

= yl0(1− y)m−1

(
(l0 + 1)

(
m + l0
l0 + 1

)
− (l0 + 1)

(
m + l0
l0 + 1

)
y

−m

(
m + l0
l0 + 1

)
y − (m + l0)

(
m + l0 − 1

l0

))

Combining the second and the third term, one obtains

R′
m,l0+1(y) = yl0(1− y)m−1

(
(l0 + 1)

(
m + l0
l0 + 1

)
− (m + l0 + 1)

(
m + l0
l0 + 1

)
y

−(m + l0)

(
m + l0 − 1

l0

))
.

By the second identity in part 1 of Lemma 2.1, one obtains (l0 + 1)
(

m+l0
l0+1

)
=

(m + l0)
(

m+l0−1
l0

)
. Hence

R′
m,l0+1(y) = −(m + l0 + 1)

(
m + l0
l0 + 1

)
yl0+1(1− y)m−1.

This concludes the proof of part 2.

For part 3, we compute Q′(y), i.e.

Q′(y) = R′
m,l(y) + (Rm,l(1− y))′ = R′

m,l(y)−R′
m,l(1− y).

Applying part 2, one obtains

Q′(y) = (m + l)

(
m + l − 1

l

)(
ym−1(1− y)l − (1− y)m−1yl

)
.

Now we show that Q′(y) ≤ 0 on [0, 1
2
], Q′(y) ≥ 0 on [1

2
, 1]. Note that

ym−l−1 ≤ (1− y)m−l−1, for all y ∈ [0,
1

2
].

Multiplying both sides by yl(1− y)l,

ym−1(1− y)l ≤ (1− y)m−1yl, for all y ∈ [0,
1

2
].



16

Similarly we have

ym−1(1− y)l ≥ (1− y)m−1yl, for all y ∈ [
1

2
, 1].

We conclude that

Q′(y)




≤ 0, y ∈ [0, 1

2
]

≥ 0, y ∈ [1
2
, 1].

This means that Q(y) reaches its minimum value at point y = 1
2
. Now we compute

Q(1
2
). Note that Q(1

2
) = 2Rm,l(

1
2
) = 21−mPm,l(

1
2
). Recall that Pm,l(y) is defined in

(2.2), i.e. Pm,l(y) =
∑l

j=0

(
m+l

j

)
yj(1− y)l−j. Then

min
y∈[0,1]

Q(y) = Q(
1

2
) = 21−m2−l

l∑
j=0

(
m + l

j

)
= 21−m−l

l∑
j=0

(
m + l

j

)
.

With part 3, the proof of part 4 is simpler. Since

S ′(y) = 2Rm,l(y)R′
m,l(y) + 2Rm,l(1− y)

(
Rm,l(1− y)

)′
,

using the identities

Rm,l(y) = (1− y)mPm,l(y),

R′
m,l(y) = −(m + l)

(
m + l − 1

l

)
yl(1− y)m−1

and
(
Rm,l(1− y)

)′
= (m + l)

(
m + l − 1

l

)
ym−1(1− y)l,

we obtain

S ′(y)

2(m + l)
(

m+l−1
l

) = ymPm,l(1− y)ym−1(1− y)l − (1− y)mPm,l(y)yl(1− y)m−1

= y2m−1

l∑
j=0

(
m− 1 + j

j

)
(1− y)l+j − (1− y)2m−1

×
l∑

j=0

(
m− 1 + j

j

)
yl+j

=
l∑

j=0

(
m− 1 + j

j

)(
(1− y)l+jy2m−1 − yl+j(1− y)2m−1

)
.



17

Since, for each 0 ≤ j ≤ l, when y ∈ [0, 1
2
], y2m−l−j−1 ≤ (1− y)2m−l−j−1, and when

y ∈ [1
2
, 1], y2m−l−j−1 ≥ (1 − y)2m−l−j−1, then by similar arguments in part 2 we

conclude,

S ′(y)




≤ 0, y ∈ [0, 1

2
]

≥ 0, y ∈ [1
2
, 1].

Thus miny∈[0,1] S(y) = S(1
2
). Since Rm,l(

1
2
) = 2−m−l

∑l
j=0

(
m+l

j

)
, we have

min
y∈[0,1]

S(y) = S(
1

2
) = 2R2

m,l(
1

2
) = 21−2m−2l

( l∑
j=0

(
m + l

j

))2

.

Remark 2.3. From part 1 of Lemma 2.2 we know that the refinement mask of

pseudo-spline of type I in (1.4) can be written as

|1â(ξ)|2 = cos2m(ξ/2)
l∑

j=0

(
m− 1 + j

j

)
sin2j(ξ/2).

Hence, the pseudo-spline of type I with order (m,m − 1) is indeed the refinable

function whose shifts form an orthonormal system constructed in [16] and the

pseudo-spline of Type II with order (m,m− 1) is indeed the autocorrelation of the

orthogonal refinable function, which is interpolatory.



Chapter 3
Basics of Pseudo-splines

This chapter is devoted to a systematic analysis of the regularity of pseudo-

splines and approximation order of quasi-interpolatory operator Pn (see (1.9)) de-

fined by pseudo-splines. These two are basic and essential properties of pseudo-

splines. Indeed, the regularity of pseudo-splines determines the regularity of the

corresponding wavelets and framelets; and the approximation order of Pn deter-

mines that of the truncated wavelet and framelet series. These two properties,

together with the length of support, are the key criteria in selecting wavelets or

framelets in various applications.

3.1 Regularity

In this section the regularity of the pseudo-splines is analyzed. For α = n +

β, n ∈ N, 0 ≤ β < 1, the Hölder space Cα (see e.g. [15]) is defined to be the set

of functions which are n times continuously differentiable and such that the nth

derivative f (n) satisfies the condition,

|f (n)(x + h)− f (n)(x)| ≤ C|h|β, ∀x, h.

18
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It is well known (see [15]) that if

∫

R
|f̂(ξ)|(1 + |ξ|)α < ∞,

then f ∈ Cα. In particular, if |f̂(ξ)| ≤ C(1 + |ξ|)−1−α−ε, for any ε > 0, then

f ∈ Cα. We shall call α the regularity (exponent) of f .

The main idea here is to estimate the decay of the Fourier transform of pseudo-

splines with order (m, l) in order to get the lower bound of the regularity of the

pseudo-splines. It turns out that this lower bound coincides with the upper bound

when m goes to infinity, as shown in section 3.2.

Since for any compactly supported refinable function φ in L2(R) with φ̂(0) = 1,

the refinement mask a must satisfy â(0) = 1 and â(π) = 0 (see e.g. [15] or [37]).

Then it can be factorized as

â(ξ) =
(1 + e−iξ

2

)n

L(ξ),

where n is the maximum multiplicity of zeros of â at π and L(ξ) is a trigonometric

polynomial with L(0) = 1. Hence, we have

φ̂(ξ) =
∞∏

j=1

â(2−jξ) =
∞∏

j=1

(
1 + e−i(2−jξ)

2

)n ∞∏
j=1

L(2−jξ) =
(1− e−iξ

iξ

)n
∞∏

j=1

L(2−jξ).

This shows that any compactly supported refinable function in L2(R) is the con-

volution of a B-spline of some order, say n, with a distribution (see [46]). Indeed,

a B-spline of order n can also be defined via its Fourier transform by

B̂n :=
(1− e−iξ

iξ

)n

.

The B-spline of order n is a piecewise polynomial of degree n− 1 in Cn−1−ε(R), is

supported on [0, n], and has refinement mask

(1 + e−iξ

2

)n

.
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Since L(ξ) is bounded, L(ξ) is actually the refinement mask of a refinable distribu-

tion. Therefore, φ is the convolution of the B-spline Bn with the distribution. The

regularity of φ comes from the B-spline factor while the distribution factor takes

away the regularity. But the distribution component also provides some desirable

properties for φ, such as interpolatory properties, orthogonality of its shifts and

approximation order of certain quasi-interpolants.

The decay of |φ̂| can be characterized by |â| as stated in the following theorem.

The proof of this theorem can be found in [15]. Note that in the following theorem,

we write |â| in the form of

|â(ξ)| =
∣∣∣
(1 + e−iξ

2

)n

L(ξ)
∣∣∣ = cosn(ξ/2)|L(ξ)|, ξ ∈ [−π, π].

Theorem 3.1. Let a be the refinement mask of the refinable function φ of the form

|â(ξ)| = cosn(ξ/2)|L(ξ)|, ξ ∈ [−π, π].

Suppose that

|L(ξ)| ≤ |L(
2π

3
)| for |ξ| ≤ 2π

3
,

|L(ξ)L(2ξ)| ≤ |L(
2π

3
)|2 for

2π

3
≤ |ξ| ≤ π.

(3.1)

Then |φ̂(ξ)| ≤ C(1 + |ξ|)−n+κ, with κ = log(|L(2π
3

)|)/ log 2, and this decay is opti-

mal.

This theorem allows us to estimate the decay of the Fourier transform of a

refinable function via its refinement mask. Since |1φ̂|2 = |2φ̂|, the decay rate of

|1φ̂| is half of that of |2φ̂|. Thus we can focus on the analysis of the decay of the

Fourier transforms of pseudo-splines of type II. Based on part 1 of Lemma 2.2, we

will show that Pm,l(y), defined in (2.2), satisfies (3.1). This will lead directly to the

estimate of the regularity of pseudo-splines. Note that the corresponding result for

l = m− 1 was proven in [5] which led to the optimal estimates of the regularity of

the orthogonal and interpolatory refinable functions.
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Proposition 3.2. Let Pm,l(y) be defined as in (2.2), where l,m are nonnegative

integers with l ≤ m− 1. Then

Pm,l(y) ≤ Pm,l

(3

4

)
, for y ∈ [0,

3

4
], (3.2)

Pm,l(y)Pm,l(4y(1− y)) ≤
(

Pm,l

(3

4

))2

, for y ∈ [
3

4
, 1]. (3.3)

Proof. It is clear that (3.2) is true. Indeed, by using part 1 of Lemma 2.2 we

have that Pm,l(y) is monotonically increasing on [0, 3
4
] (in fact, it is monotonically

increasing on (0,∞)). Hence, we focus on the proof of (3.3).

Throughout this proof, we let m be fixed. Let

Wm,l(y) := Pm,l(y)Pm,l(4y(1− y))−
(

Pm,l

(3

4

))2

.

Then, the inequality (3.3) is equivalent to

Wm,l(y) ≤ 0 for all y ∈ [
3

4
, 1]. (3.4)

In order to show (3.4), we show, instead,

Wm,l+1(y)−Wm,l(y) ≤ 0, for all y ∈ [
3

4
, 1], l = 0, 1, . . . , m− 2. (3.5)

Note that since for l = 0, Pm,0(y) = 1 for all y ∈ [0, 1], (3.4) is obviously true for

l = 0. Hence, (3.4) follows from (3.5) and (3.3) follows from (3.4).

We now compute Wm,l+1(y)−Wm,l(y). By part 1 of Lemma 2.2, one obtains

Wm,l+1(y)−Wm,l(y) =

(
l+1∑
j=0

(
m− 1 + j

j

)
yj

)(
l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

−
(

l∑
j=0

(
m− 1 + j

j

)
yj

)(
l∑

j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

+P 2
m,l

(3

4

)− P 2
m,l+1

(3

4

)
.
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Splitting the sum
∑l+1

j=0

(
m−1+j

j

)
yj, one obtains

Wm,l+1(y)−Wm,l(y) =

(
l∑

j=0

(
m− 1 + j

j

)
yj

)(
l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

+

(
m + l

l + 1

)
yl+1

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

−
(

l∑
j=0

(
m− 1 + j

j

)
yj

)(
l∑

j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

+P 2
m,l

(3

4

)− P 2
m,l+1

(3

4

)
.

Combining the first and the third term, one obtains

Wm,l+1(y)−Wm,l(y) =

(
m + l

l + 1

)
(4y(1− y))l+1

l∑
j=0

(
m− 1 + j

j

)
yj

+

(
m + l

l + 1

)
yl+1

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+P 2
m,l

(3

4

)− P 2
m,l+1

(3

4

)

=

(
m + l

l + 1

)(
(4y(1− y))l+1

l∑
j=0

(
m− 1 + j

j

)
yj

+yl+1

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

)
(3.6)

+P 2
m,l

(3

4

)− P 2
m,l+1

(3

4

)
.

Since

Wm,l+1

(3

4

)−Wm,l

(3

4

)
= 0− 0 = 0,

it suffices to show that

Wm,l+1(y)−Wm,l(y)

monotonically decreases on [3
4
, 1], in order to show (3.5) (Wm,l+1(y)−Wm,l(y) ≤ 0,
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y ∈ [3
4
, 1]). It is equivalent to show that

G(y) := (4y(1− y))l+1

l∑
j=0

(
m− 1 + j

j

)
yj + yl+1

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

monotonically decreases on [3
4
, 1] by (3.6), for which it suffices to show that

G′(y) ≤ 0 for all y ∈ [
3

4
, 1]. (3.7)

Next, we derive G′ as follows:

G′(y) = (l + 1)(4− 8y)(4y(1− y))l

l∑
j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1

l∑
j=0

(
m− 1 + j

j

)
jyj−1

+(l + 1)yl

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+yl+1(4− 8y)
l+1∑
j=0

(
m− 1 + j

j

)
j(4y(1− y))j−1

= (l + 1)(4− 8y)(4y(1− y))l

l∑
j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1

l∑
j=1

(
m− 1 + j

j

)
jyj−1

+(l + 1)yl

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+yl+1(4− 8y)
l+1∑
j=1

(
m− 1 + j

j

)
j(4y(1− y))j−1.

Substituting j for j − 1 in the second and the fourth term above, one obtains,

G′(y) = (l + 1)(4− 8y)(4y(1− y))l

l∑
j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1

l−1∑
j=0

(
m + j

j + 1

)
(j + 1)yj
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+(l + 1)yl

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+yl+1(4− 8y)
l∑

j=0

(
m + j

j + 1

)
(j + 1)(4y(1− y))j.

Applying part 1 of Lemma 2.1 to the second and the fourth term above, one obtains

G′(y) = (l + 1)(4− 8y)(4y(1− y))l

l∑
j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1

l−1∑
j=0

(
m− 1 + j

j

)
(m + j)yj

+(l + 1)yl

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+yl+1(4− 8y)
l∑

j=0

(
m− 1 + j

j

)
(m + j)(4y(1− y))j

= (l + 1)(4− 8y)(4y(1− y))l

l∑
j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1

l∑
j=0

(
m− 1 + j

j

)
(m + j)yj

−(m + l)

(
m− 1 + l

l

)
yl(4y(1− y))l+1

+(l + 1)yl

l∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+(l + 1)

(
m + l

l + 1

)
yl(4y(1− y))l+1

+yl+1(4− 8y)
l∑

j=0

(
m− 1 + j

j

)
(m + j)(4y(1− y))j.

Since (l + 1)
(

m+l
l+1

)
= (m + l)

(
m−1+l

l

)
by part 1 of Lemma 2.1, we have

(l + 1)

(
m + l

l + 1

)
yl(4y(1− y))l+1 − (m + l)

(
m− 1 + l

l

)
yl(4y(1− y))l+1 = 0.
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Hence,

G′(y) =(l + 1)(4− 8y)
(
4y(1− y)

)l
l∑

j=0

(
m− 1 + j

j

)
yj

+
(
4y(1− y)

)l+1
l∑

j=0

(
m− 1 + j

j

)
(m + j)yj

+ (l + 1)yl

l∑
j=0

(
m− 1 + j

j

)(
4y(1− y)

)j

+ yl+1(4− 8y)
l∑

j=0

(
m− 1 + j

j

)
(m + j)

(
4y(1− y)

)j
.

Rewriting G′(y), one obtains

G′(y) =
l∑

j=0

(
m− 1 + j

j

)(
(l + 1)(4− 8y)(4y(1− y))lyj + (m + j)(4y(1− y))l+1yj

+ (l + 1)yl(4y(1− y))j + (m + j)(4− 8y)yl+1(4y(1− y))j

)
.

Pulling the common factor yj(4y(1 − y))j out from each term of the above sum-

mation, one obtains

G′(y) =
l∑

j=0

(
m− 1 + j

j

)
yj(4y(1− y))j

(
(l + 1)(4− 8y)(4y(1− y))l−j

+ (m + j)(4y(1− y))l+1−j + (l + 1)yl−j + (m + j)(4− 8y)yl+1−j

)
.

(3.8)

For 0 ≤ j ≤ l ≤ m− 2, consider

gl,j(y) :=(l + 1)(4− 8y)
(
4y(1− y)

)l−j
+ (m + j)

(
4y(1− y)

)l+1−j

+ (l + 1)yl−j + (m + j)(4− 8y)yl+1−j.
(3.9)

The inequality (3.7) is verified if one can show that for all 0 ≤ j ≤ l ≤ m− 2

gl,j(y) ≤ 0, for all y ∈ [
3

4
, 1], (3.10)

because the common factors yj(4y(1− y))j in (3.8) are always nonnegative for all

y ∈ [3
4
, 1].
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Now consider the sum of the second and the fourth terms in (3.9). Since

2 ≤ 8y − 4 and 4y(1− y) ≤ y, y ∈ [3
4
, 1], we have

(4y(1− y))l+1−j ≤ yl+1−j ≤ 2yl+1−j ≤ (8y − 4)yl+1−j.

This leads to the fact that

(4y(1− y))l+1−j − (8y − 4)yl+1−j ≤ 0.

This in turn gives that

(m+j)(4y(1−y))l+1−j+(m+j)(4−8y)yl+1−j = (m+j)
(
(4y(1−y))l+1−j−(8y−4)yl+1−j

)

decreases as m increases. We further note that m is always ≥ l + 2. Hence,

(m + j)(4y(1− y))l+1−j + (m + j)(4− 8y)yl+1−j

≤ (l + 2 + j)
(
(4y(1− y))l+1−j − (8y − 4)yl+1−j

)

= (l + 2 + j)(4y(1− y))l+1−j + (l + 2 + j)(4− 8y)yl+1−j

Putting this back to (3.9), one obtains

gl,j(y) ≤ (l + 1)(4− 8y)(4y(1− y))l−j + (l + 2 + j)(4y(1− y))l+1−j + (l + 1)yl−j

+(l + 2 + j)(4− 8y)yl+1−j

= (l + 2 + j)(4y(1− y))l+1−j − (l + 1)(8y − 4)(4y(1− y))l−j + (l + 1)yl−j

−(l + 2 + j)(8y − 4)yl+1−j.

Let

f1(y) := (l + 2 + j)(4y(1− y))l+1−j − (l + 1)(8y − 4)(4y(1− y))l−j

and

f2(y) := (l + 1)yl−j − (l + 2 + j)(8y − 4)yl+1−j.



3.1 Regularity 27

Finally, we show that for 0 ≤ j ≤ l

f1(y) ≤ 0 and f2(y) ≤ 0 for all y ∈ [
3

4
, 1]. (3.11)

This will lead to gl,j(y) ≤ 0 for all 0 ≤ j ≤ l ≤ m− 2, which in turns implies (3.7),

and that would conclude the proof.

For the first inequality of (3.11), since 4y(1− y) < 1 for y ∈ [3
4
, 1] we have

f1(y) ≤ (l + 2 + j)(4y(1− y))l−j − (l + 1)(8y − 4)(4y(1− y))l−j

= (4y(1− y))l−j
(
(l + 2 + j)− (l + 1)(8y − 4)

)
.

Since 8y − 4 ≥ 2 for y ≥ 3
4
, we have

f1(y) ≤ (4y(1− y))l−j
(
(l + 2 + j)− 2(l + 1)

)

= (4y(1− y))l−j(j − l) ≤ 0

by j ≤ l.

For the second inequality of (3.11), note that

f2(y) = (l + 1)yl−j − (l + 2 + j)(8y2 − 4y)yl−j

= (l + 1)yl−j − (l + 2 + j)(8y2 − 4y − 1)yl−j − (l + 2 + j)yl−j

= −(j + 1)yl−j − (l + 2 + j)(8y2 − 4y − 1)yl−j

≤ −(l + 2 + j)(8y2 − 4y − 1)yl−j.

Since 8y2 − 4y − 1 ≥ 0, for y ≥ 1+
√

3
4

and since 1+
√

3
4

< 3
4
, 8y2 − 4y − 1 ≥ 0, for

y ∈ [3
4
, 1]. Therefore, f2(y) ≤ 0, for y ∈ [3

4
, 1].

Remark 3.3. It is clear that Wm,0(y) = 0, y ∈ [3
4
, 1], because Pm,0 = 1. It was

also proven by [5] that Wm,m−1(y) ≤ 0, y ∈ [3
4
, 1], which is equivalent to (3.3).

The decreasing of Wm,l(y), for y ∈ [3
4
, 1], as l increases shown above indicates the

difficulties when one tries to prove (3.3) directly for an arbitrary l, 0 < l < m− 1,

since it has a smaller margin than the case when l = m−1 and (3.3) is already very
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difficult to prove for this special case. In fact, to some extent, the proof of (3.3)

for the case when l = m− 1 relies on a numerical check for m ≤ 12 (see [15] page

225). Inequality (3.3) for the case l = m−1 as proven in [5] (also see [15]) is one of

the cornerstones of the wavelet theory, because it immediately leads to the optimal

estimate of the decay of the Fourier transforms (hence, the regularity) of both

interpolatory and orthogonal refinable functions. We take a different approach here

by proving that Wm,l(y), y ∈ [3
4
, 1], decreases as l increases. As a result, we obtain

(3.3) for all 0 ≤ l ≤ m − 1 by the fact that Wm,0(y) = 0, y ∈ [3
4
, 1]. This shows

that introducing the concepts of the pseudo-splines gives a better understanding

and a more complete picture of the proof of (3.3) and also, we hope, enriches the

theory of wavelets. Note that the proof of (3.3) for all 0 ≤ l ≤ m − 1 given here

does not rely on any numerical computation.

With this proposition, one obtains the regularity of pseudo-splines by applying

Theorem 3.1.

Theorem 3.4. Let 2φ be the pseudo-spline of type II with order (m, l). Then

|2φ̂(ξ)| ≤ C
(
1 + |ξ|)−2m+κ

,

where κ = log(Pm,l

(
3
4

)
)/ log 2. Consequently, 2φ ∈ Cα2−ε with α2 = 2m − κ − 1.

Furthermore, let 1φ be the pseudo-spline of type I with order (m, l). Then

|1φ̂(ξ)| ≤ C
(
1 + |ξ|)−m+κ

2 .

Consequently, 1φ ∈ Cα1−ε with α1 = m− κ
2
− 1.

Proof. Since

Pm,l(sin
2(ξ)) =

l∑
j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2),
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the refinement mask of pseudo-spline of type II with order (m, l) is

2â(ξ) = cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2)

=
(
cos(ξ/2)

)2m
Pm,l(sin

2(ξ/2)).

Hence, |L(ξ)| in Theorem 3.1 is exactly Pm,l(sin
2(ξ/2)) here. Let y = sin2(ξ/2).

Applying (3.2) of Proposition 3.2

Pm,l(y) ≤ Pm,l

(3

4

)
, y ∈ [0,

3

4
].

we have

|L(ξ)| = Pm,l(sin
2(ξ/2))

= Pm,l(y) ≤ Pm,l

(3

4

)
= Pm,l(sin

2(
π

3
)) for |ξ| ≤ 2π

3
.

Note that

|L(2ξ)| = Pm,l(sin
2(ξ)) = Pm,l(4 sin2(ξ/2)(1− sin2(ξ/2))) = Pm,l(4y(1− y)).

Applying (3.3) of Proposition 3.2

Pm,l(y)Pm,l(4y(1− y)) ≤ (
Pm,l

(3

4

))2
, y ∈ [

3

4
, 1],

we have

|L(ξ)L(2ξ)| = Pm,l(sin
2(ξ/2))Pm,l(4 sin2(ξ/2)(1− sin2(ξ/2)))

= Pm,l(y)Pm,l(4y(1− y))

≤ (
Pm,l

(3

4

))2
=

(
Pm,l(sin

2(
π

3
))

)2
, for

2π

3
≤ |ξ| ≤ π.

Hence, by Theorem 3.1, 2φ̂ satisfies

|2φ̂(ξ)| ≤ C
(
1 + |ξ|)−2m+κ

,

where κ = log(Pm,l

(
3
4

)
)/ log 2. This leads to 2φ ∈ Cα2−ε, where α2 = 2m− κ− 1.
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Since the decay of |1φ̂| is exactly half of |2φ̂|, we have

|1φ̂(ξ)| ≤ C
(
1 + |ξ|)−m+κ

2 ,

consequently, 1φ ∈ Cα1−ε, where α2 = m− κ
2
− 1.

Table 3.1 gives the decay rates βm,l of the Fourier transform of pseudo-splines

of type II with order (m, l), for 2 ≤ m ≤ 8 and 0 ≤ l ≤ m − 1. The regularity

exponent of the corresponding pseudo-spline is, at least, α2 = βm,l − 1 − ε. The

decay rate of the Fourier transform of pseudo-spline of type I with the same order

is
βm,l

2
and its regularity exponent α1 is α2−1

2
. Therefore, the table shows that

for either type of pseudo-spline and fixed order m, the decay rate of their Fourier

transform decreases as l increases, while for fixed l, it increases as m increases.

This is true indeed as shown in the following proposition.

Table 3.1: The followings are the decay rates βm,l = 2m − κ of pseudo-splines of

type II with order (m, l), for 2 ≤ m ≤ 8 and 0 ≤ l ≤ m− 1.

(m, l) l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

m = 2 2.67807

m = 3 4.29956 3.27208

m = 4 6.00000 4.73321 3.82507

m = 5 7.75207 6.27890 5.19506 4.35316

m = 6 9.54057 7.88626 6.64465 5.66363 4.86449

m = 7 11.35614 9.54057 8.15608 7.04717 6.13261 5.36349

m = 8 13.19265 11.23182 9.71691 8.48992 7.46770 6.59988 5.85310

Proposition 3.5. Let βm,l = 2m − κ with κ = log Pm,l

(
3
4

)
/ log 2 as given in

Theorem 3.4. Then:

1. For fixed m, βm,l decreases as l increases.
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2. For fixed l, βm,l increases as m increases.

3. When l = m− 1, βm,l increases as m increases.

Consequently, the pseudo-spline of type I with order (2, 1) has the lowest regularity

exponent, which is, at least, 0.339, among all the pseudo-splines (of either type)

with order (m, l), m ≥ 2 and 0 ≤ l ≤ m− 1.

Proof. Part 1 follows directly from (1) of Lemma 2.2, which shows that Pm,l

(
3
4

)

increases as l increases for fixed m.

For part 2, note that

βm,l = 2m− log Pm,l

(
3
4

)

log 2
.

Consider

2βm,l = 22m− log Pm,l

(
3
4

)
log 2 =

4m

Pm,l

(
3
4

) =
1

4−mPm,l

(
3
4

) .

Hence, part 2 is equivalent to that

Im := 4−mPm,l

(3

4

)

decreases as m increases for fixed l, which is equivalent to show that for fixed

0 ≤ l ≤ m− 1,

Im+1 − Im < 0. (3.12)

Note that

Im+1 − Im = 4−m−1Pm+1,l

(3

4

)− 4−mPm,l

(3

4

)

= 4−m−1

l∑
j=0

(
m + j

j

)(3

4

)j − 4−m

l∑
j=0

(
m− 1 + j

j

)(3

4

)j

= 4−m−1

l∑
j=0

((
m + j

j

)
− 4

(
m− 1 + j

j

))(3

4

)j
.
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Inequality (3.12) follows from the fact that for 0 ≤ j ≤ m− 1,
(

m + j

j

)
=

m + j

m

(
m− 1 + j

j

)
= (1 +

j

m
)

(
m− 1 + j

j

)
< 4

(
m− 1 + j

j

)
.

(3.13)

This concludes the proof of part 2.

For part 3, using a similar argument in the proof of part 2, one can derive that

it is equivalent to show that

Jm := 4−mPm,m−1

(3

4

)

decreases as m increases, which, in turn, is equivalent to show that

Jm+1 − Jm < 0 for m ≥ 1. (3.14)

Note that, similar to the proof of part 2, we have

Jm+1 − Jm = 4−m−1

( m∑
j=0

(
m + j

j

)(3

4

)j − 4
m−1∑
j=0

(
m− 1 + j

j

)(3

4

)j
)

.

Let

M :=
m∑

j=0

(
m + j

j

)(3

4

)j − 4
m−1∑
j=0

(
m− 1 + j

j

)(3

4

)j
.

Then, (3.14) is equivalent to M < 0 for m ≥ 1. It is easy to check that M < 0,

when m = 1. We consider now the case when m ≥ 2. First, we note that

M =
m−1∑
j=0

(
m + j

j

)(3

4

)j − 4
m−1∑
j=0

(
m− 1 + j

j

)(3

4

)j
+

(
2m

m

)(3

4

)m

=
m−1∑
j=0

((
m + j

j

)
−

(
m− 1 + j

j

))(3

4

)j − 3
m−1∑
j=0

(
m− 1 + j

j

)(3

4

)j
+

(
2m

m

)(3

4

)m

=
m−1∑
j=1

(
m− 1 + j

j − 1

)(3

4

)j − 3
m−1∑
j=0

(
m− 1 + j

j

)(3

4

)j
+

(
2m

m

)(3

4

)m
,

where the last identity follows from part 1 of Lemma 2.1. Substituting j for j − 1

in the first term, one obtains that

M =
3

4

m−2∑
j=0

(
m + j

j

)(3

4

)j − 3
m−1∑
j=0

(
m− 1 + j

j

)(3

4

)j
+

(
2m

m

)(3

4

)m
, (3.15)



3.1 Regularity 33

Splitting the second term in (3.15), one obtains

M =
3

4

m−2∑
j=0

(
m + j

j

)(3

4

)j − 3
m−2∑
j=0

(
m− 1 + j

j

)(3

4

)j

+

(
2m

m

)(3

4

)m − 3

(
2m− 2

m− 1

)(3

4

)m−1

(3.16)

For the last two terms of (3.16), we have

(
2m

m

)(3

4

)m − 3

(
2m− 2

m− 1

)(3

4

)m−1
=

(3

4

)m
((

2m

m

)
− 4

(
2m− 2

m− 1

))

=
(3

4

)m
(

(4− 2

m
)

(
2m− 2

m− 1

)
− 4

(
2m− 2

m− 1

))

< 0.

Therefore,

M <
3

4

m−2∑
j=0

(
m + j

j

)(3

4

)j − 3
m−2∑
j=0

(
m− 1 + j

j

)(3

4

)j

<
m−2∑
j=0

(
m + j

j

)(3

4

)j − 3
m−2∑
j=0

(
m− 1 + j

j

)(3

4

)j

=
m−2∑
j=0

((
m + j

j

)
− 3

(
m− 1 + j

j

))(3

4

)j
.

Applying (3.13), one obtains, for 0 ≤ j ≤ m− 2,

(
m + j

j

)
= (1 +

j

m
)

(
m− 1 + j

j

)
< 3

(
m− 1 + j

j

)
.

Therefore, we conclude that M < 0 and part 3 follows.

Since the decay rate of the Fourier transform of the pseudo-spline of type I with

order (2, 1) is
βm,l

2
≈ 1.33903, it belongs to, at least C0.339. Hence, it follows from

parts 1-3 that an arbitrary pseudo-spline of either type with order (m, l), m > 2,

0 ≤ l ≤ m− 1 has higher regularity exponent.
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3.2 Asymptotical Analysis

Proposition 3.5 reveals that the decay rates of the Fourier transforms of pseudo-

splines of either type increase as m increases for fixed l and decrease as l increases

for fixed m. In this section, we give an asymptotical analysis of the decay rate

which, in turn, gives an asymptotical analysis of the regularity of 1φ and 2φ as the

order (m, l) →∞.

Theorem 3.6. Let 1φ and 2φ be the pseudo-splines of type I and II respectively

with order (m, l). Fix l = bλmc, 0 ≤ λ ≤ 1, where bλmc denotes the largest integer

which is smaller than or equal to λm. Then, we have

|1φ̂(ξ)| ≤ C(1 + |ξ|)−µ
2
m and 1φ ∈ C

µ
2
m;

and

|2φ̂(ξ)| ≤ C(1 + |ξ|)−µm and 2φ ∈ Cµm,

where µ =
log ( 4

1+λ
)λ+1(λ

3
)λ

log 2
, asymptotically for large m. This means that the asymp-

totic rate of pseudo-spline of type I and type II are µ
2

and µ respectively.

Proof. As the estimate of the type I follows immediately from that of type II, we

only give the estimate for pseudo-splines of type II. We first prove the following

fact:

x−lPm,l(x) ≥ y−lPm,l(y), for 0 < x ≤ y ≤ 1. (3.17)

Indeed, assertion part 1 of Lemma 2.2 gives for 0 < x ≤ y ≤ 1,

x−lPm,l(x) =
l∑

j=0

(
m− 1 + j

j

)
xj−l ≥

l∑
j=0

(
m− 1 + j

j

)
yj−l = y−lPm,l(y).

The key step to compute the asymptotic rate is to estimate the upper and lower

bound of Pm,l

(
3
4

)
in terms of m and l. For this, let x = 3

4
and y = 1 in (3.17), we

obtain

Pm,l

(3

4

) ≥ (3

4

)l

Pm,l(1) =
(3

4

)l
(

m + l

l

)
. (3.18)
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Next, let x = 1
2

and y = 3
4

in (3.17), we obtain

Pm,l(
3

4
) ≤ (3

2

)l
Pm,l(

1

2
).

Since

Pm,l(
1

2
) =

l∑
j=0

(
m + l

j

)
2−j2j−l = 2−l

l∑
j=0

(
m + l

j

)
,

one obtains

Pm,l

(3

4

) ≤ (3

4

)l l∑
j=0

(
m + l

j

)
. (3.19)

Putting (3.18) and (3.19) together, we obtain the following estimates of Pm,l

(
3
4

)
,

(3

4

)l
(

m + l

l

)
≤ Pm,l

(3

4

) ≤ (3

4

)l l∑
j=0

(
m + l

j

)
.

Since for l ≤ m− 1,
l∑

j=0

(
m + l

j

)
≤ m

(
m + l

l

)
.

Hence,
(3

4

)l
(

m + l

l

)
≤ Pm,l

(3

4

) ≤ m
(3

4

)l
(

m + l

l

)
. (3.20)

Next, we will use this estimate to analyze the decay of 2φ̂ with order (m, l) as m

goes to infinity. The upper bound of Pm,l

(
3
4

)
in (3.20) gives

2m− log Pm,l

(
3
4

)

log 2
≥ 2m− log

(
m(3

4
)l
(

m+l
l

))

log 2
.

We estimate the right hand side of the above inequality asymptotically for large

(m, l) to obtain the asymptotical lower bound of 2m − log Pm,l

(
3
4

)
log 2

. For this, we

first recall the Stirling approximation, i.e. m! ∼ √
2πe(m+ 1

2
) log m−m (see e.g. [24]),
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where am ∼ bm means that am

bm
→ 1, m →∞. By Stirling approximation,

log m! ∼ log
√

2πe(m+ 1
2
) log m−m

∼ log
√

2π + (m +
1

2
) log m−m

∼ (
m log m−m

) log
√

2π + (m + 1
2
) log m−m

m log m−m

∼ (
m log m−m

)(1 + 1
2m

) log m− 1

log m− 1

∼ m log m−m. (3.21)

Applying (6.20), one obtains

log

(
m + l

l

)
= log(m + l)!− log m!− log l!

∼ (m + l) log(m + l)− (m + l)− (m log m−m)− (l log l − l)

∼ (m + l) log(m + l)−m log m− l log l.

Thus,

2m− log
(
m3

4

l(m+l
l

))

log 2
= 2m− log m + l log 3

4
+ log

(
m+l

l

)

log 2

∼ m

(
2−

l
m

log 3
4

+ (1 + l
m

) log(m + l)− log m− l
m

log l

log 2

)
.

By the assumption, l = bλmc, 0 ≤ λ ≤ 1. Hence, when m is sufficiently large,

l
m
∼ λ and therefore,

2m− log
(
m3

4

l(m+l
l

))

log 2
∼ m

(
2− λ log 3

4
+ (1 + λ) log(1 + λ)m− log m− λ log λm

log 2

)

∼ m

(
2− log (1 + λ)

(
3+3λ
4λ

)λ

log 2

)

∼ m

(
log ( 4

1+λ
)λ+1(λ

3
)λ

log 2

)
.

Now we obtain the asymptotical lower bound of 2m− log Pm,l

(
3
4

)
log 2

, i.e. asymptotically,

for large m with l = bλmc,

2m− log |Pm,l

(
3
4

)|
log 2

≥ m

(
log ( 4

1+λ
)λ+1(λ

3
)λ

log 2

)
. (3.22)



3.2 Asymptotical Analysis 37

Next, we use the left hand side of (3.20) to obtain the asymptotical upper

bound of 2m− log Pm,l

(
3
4

)
log 2

. First note that (3.20) gives

2m− log Pm,l

(
3
4

)

log 2
≤ 2m− l log 3

4
+ log

(
m+l

l

)

log 2
.

Applying arguments similar to the estimate of the lower bound by using (6.20), we

will obtain the following

2m− l log 3
4

+ log
(

m+l
l

)

log 2
∼ m

(
2−

l
m

log 3
4

+ (1 + l
m

) log(m + l)− log m− l
m

log l

log 2

)

∼ m

(
log ( 4

1+λ
)λ+1(λ

3
)λ

log 2

)
.

This leads to the asymptotical lower bound of 2m− log Pm,l

(
3
4

)
log 2

, i.e. asymptotically,

for large m with l = bλmc,

2m− log Pm,l

(
3
4

)

log 2
≤ m

(
log ( 4

1+λ
)λ+1(λ

3
)λ

log 2

)
. (3.23)

Combining (3.22) and (3.23), we conclude that for large m, the asymptotical

upper and lower bounds coincide and equal to

µm = 2m− log Pm,l

(
3
4

)

log 2
∼ m

(
log ( 4

1+λ
)λ+1(λ

3
)λ

log 2

)
. (3.24)

Therefore the equation (3.24) gives that, fixing l = bλmc and asymptotically, for

large m, we have

|2φ̂(ξ)| ≤ C(1 + |ξ|)−µm and 2φ ∈ Cµm;

and

|1φ̂(ξ)| ≤ C(1 + |ξ|)−µ
2
m and 1φ ∈ C

µ
2
m,

where µ =
log ( 4

1+λ
)λ+1(λ

3
)λ

log 2
.

Remark 3.7. The proof of Theorem 3.6 also leads to the following two observations:
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1. Consider pseudo-splines of type II with order (m,m− p), where p is a fixed

positive integer independent of m, the asymptotic rate of which is 2− log 3
log 2

≈
0.4150. Indeed, when l = m − p, λ ∼ l

m
= m−p

m
∼ 1 for sufficiently large m.

Similarly, for pseudo-splines of type I with order (m,m−p), the corresponding

asymptotic rate is 1− log 3
2 log 2

≈ 0.2075.

2. Assume that l is fixed for all m. The asymptotic rates of pseudo-splines

of type I and II with order (m, l) are 1 and 2 respectively. This is simply

because, for the fixed integer l, λ ∼ l
m
∼ 0 for sufficiently large m.

Table 3.2: Asymptotically for large m, 2φ ∈ Cµm.

m →∞ l = 0 l = m
10

l = m
8

l = m
6

l = m
4

l = m
2

l = m− 1

µ ≈ 2.0000 1.5581 1.4857 1.3789 1.2013 0.8301 0.4150

Example 3.8. In Table 3.2, we give µ, the asymptotical rate of pseudo-spline

of type II with order (m, bλmc), as m goes to infinity and the parameter λ =

1
10

, 1
8
, 1

6
, 1

4
, 1

2
, 1. The asymptotic rate µ0 for pseudo-spline of type I with the same

order is just µ0 = µ
2
.

3.3 Approximation order

We follow [17] to give a brief discussion of the approximation order of Pn

through Qn where Pn is given by (1.9) with the underlying refinable function φ

and Qn is given by (1.10) with the underlying tight framlets Ψ. Characterizations

of approximation order of Qn were given in Theorem 2.8 of [17]. Furthermore,

Lemma 2.4 of [17] says that Pn = Qn on L2(R) when the tight framelets Ψ are

obtained via the unitary extension principle (see Chapter 5 for the UEP) from
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the MRA generated by the same refinable function φ. The following theorem is a

special case of Theorem 2.8 in [17] with the understanding Pn = Qn.

Theorem 3.9. Let φ be a pseudo-spline of order (m, l) with refinement mask a. Let

Pn be the operator as defined in (1.9) with φ as the underlying refinable function.

Then the approximation order of the operator Pn is min{m,m1}, with m1 the order

of the zero of 1− |â|2 at the origin.

With this, we have the followings:

Theorem 3.10. For given nonnegative integer m and l, with l ≤ m− 1.

1. Let 1φ be the pseudo-spline of type I with order (m, l) and 1â be its refinement

mask. Then the corresponding operator Pn provides approximation order

min{m, 2l + 2}.

2. Let 2φ be the pseudo-spline of type II with order (m, l) and 2â be its refinement

mask. Then the corresponding operator Pn provides approximation order

2l + 2.

Proof. It was shown in [17] that 1 − |1â| = O(| · |2l+2). Therefore, Theorem 3.9

gives the rest of the proof of part 1. For part 2, we compute the order of zeros of

1− |2â|2 at origin. We rewrite 1− |2â|2 as

1− |2â|2 = 1−R2
m,l(sin

2(ξ/2)),

where Rm,l(y) was defined in (2.3). It is obvious that for ξ = 0, 1−R2
m,l(sin

2(ξ/2)) =

0. Recall that the derivative of Rm,l(y) was given by part 2 of Lemma 2.2, i.e.

R′
m,l(y) = −(m + l)

(
m + l − 1

l

)
yl(1− y)m−1. (3.25)
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Applying (3.25) to take the first derivative of 1 − R2
m,l(sin

2(ξ/2)) with respect to

ξ, one obtains

(
1−R2

m,l(sin
2(ξ/2))

)′
= −2Rm,l(sin

2(ξ/2))R′
m,l(sin

2(ξ/2))(sin2(ξ/2))′

= 2Rm,l(sin
2(ξ/2))

(
(m + l)

(
m + l − 1

l

)

· sin2l(ξ/2) cos2m−2(ξ/2)

)
(sin2(ξ/2))′

= 2(m + l)

(
m + l − 1

l

)
Rm,l(sin

2(ξ/2))

· sin2l+1(ξ/2) cos2m−1(ξ/2).

Since Rm,l(sin
2(ξ/2)) and cos2m−1(ξ/2) is 1 when ξ = 0, and since sin2l+1(ξ/2) has

zero at ξ = 0 of order 2l + 1, we conclude that

1− |2â(ξ)|2 = 1−R2
m,l(sin

2(ξ/2)) = O(|ξ|2l+2).

Then Theorem 3.9 shows that the approximation order of Pn with pseudo-spline

of type II as the underlying refinable function is min{2m, 2l + 2} = 2l + 2, for

0 ≤ l ≤ m− 1.

Remark 3.11. The above result says that when l ≤ m
2
−1, the approximation order

of a pseudo-spline of type I with order (m, l) and one of type II with the same order

are the same, although the support of the type I is half of that of type II. When

l > m
2
− 1, the approximation order of type I is m and type II is 2l + 2 > m. The

regularity of the type II is about two times that of the type I with the same order.

Furthermore, one can obtain symmetric short Riesz Wavelets and tight framelets

from pseudo-splines of type II, as we will see in Chapter 5.



Chapter 4
Linear Independence of Pseudo-splines

This chapter is to verify the linear independence of the shifts of pseudo-splines.

It is easy to see from the definition of linear independence that when the function

φ is a pseudo-spline of type I or II with order (m,m− 1) (which is the orthogonal

refinable function for the first type or interpolatory refinable function for the second

type), its shifts are linearly independent. It is also well known that a pseudo-spline

of either type with order (m, 0), which is a B-spline, and its shifts are linearly

independent. It is very natural to ask whether an arbitrary pseudo-spline and its

shifts are linearly independent. This is one of our motivations, but not the only one.

The linear independence of the shifts of a compactly supported refinable function

φ ∈ L2(R) is a necessary and sufficient condition for the existence of a compactly

supported dual refinable function φd ∈ L2(R) of φ. The proof of the necessity is

simple. Recall that a compactly supported refinable function φd ∈ L2(R) is a dual

of φ, if

〈φ, φd(· − k)〉 = δ(k) (4.1)

holds for all k ∈ Z (see e.g. [6, 7]). Indeed, if there is a compactly supported

function φd ∈ L2(R) that is dual to φ, then for b ∈ `(Z) satisfying φ ∗′ b = 0, we

41
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have

0 = 〈φ ∗′ b, φd(· − k)〉 =
∑

j∈Z
b(j)〈φ(· − j), φd(· − k)〉 = b(k) for all k ∈ Z.

However, the proof of the sufficiency is more complicated and we refer to [41] and

[42] for the details. It is well known that the construction of a compactly supported

dual refinable function is a key step to construct a pair of biorthogonal wavelet

systems from the given refinable function.

Next, we observe that since 1â(m,l)(ξ) is a trigonometric polynomial with real

coefficients, we have

2â(m,l)(ξ) = |1â(m,l)(ξ)|2 = 1â(m,l)(ξ) · 1â(m,l)(−ξ).

This leads to

|1φ̂(m,l)(ξ)|2 = 1φ̂(m,l)(ξ) · 1φ̂(m,l)(−ξ) = 2φ̂(m,l)(ξ), ξ ∈ R. (4.2)

Since both 1φ(m,l) and 2φ(m,l) are compactly supported and bounded, their Fourier-

Laplace transforms 1φ̂(m,l)(ζ) and 2φ̂(m,l)(ζ) are analytic on C. Hence, (4.2) holds

for all ζ ∈ C, i.e.

1φ̂(m,l)(ζ) · 1φ̂(m,l)(−ζ) = 2φ̂(m,l)(ζ), ζ ∈ C. (4.3)

The identity (4.3) implies that the set of all zeros of 1φ̂(m,l)(ζ) is contained in that

of 2φ̂(m,l)(ζ) for ζ ∈ C.

Applying (1.14), we conclude the following proposition:

Proposition 4.1. Assume that the shifts of pseudo-spline 2φ(m,l) of type II with

order (m, l) are linearly independent. Then the shifts of pseudo-spline 1φ(m,l) of

type I with the same order are linearly independent.

In the rest of this chapter, we will focus on the verification of the linear inde-

pendence of the shifts of the pseudo-splines of type II.
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We start with two Lemmata. The first Lemma is implied by Theorem 1 and 2

of a paper of Jia and Wang (see [38]). Instead of stating both theorems of [38] and

deducing the following lemma by using them, we include here a direct proof which

is essentially derived from Jia and Wang’s proof of Theorem 1 and 2 in [38].

We say that a Laurent polynomial ã has symmetric zeros on C \ {0} if there is

a z0 ∈ C \ {0} such that

ã(z0) = ã(−z0) = 0.

Lemma 4.2. Let φ ∈ L2(R) be a compactly supported refinable function with

(finitely supported) refinement mask a. The shifts of φ are linearly independent if

and only if:

1. φ is stable;

2. the symbol ã does not have any symmetric zeros on C \ {0}.

Proof. We first show the necessity of (1) and (2). Condition (1) is necessary for the

linear independence of the shifts of φ implied by (1.13) and (1.14). The necessity

of (2) is proven by contradiction. Suppose there exists z0 = e−iζ0 ∈ C \ {0} such

that ã(e−iζ0) = ã(−e−iζ0) = 0. Applying the Fourier-Laplace transform given in

(1.2), one obtains, for any k ∈ Z,

φ̂(2ζ0 + 4kπ) = φ̂(ζ0 + 2kπ)ã(e−iζ0) = 0

and

φ̂(2ζ0 + (4k + 2)π) = φ̂(ζ0 + 2kπ + π)ã(−e−iζ0) = 0.

These two identities imply that φ̂(2ζ0 + 2kπ) = 0 for all k ∈ Z, which contradicts

to the linear independence of the shifts of φ by (1.14).

Next, we show the sufficiency of (1) and (2), which is again shown by contra-

diction. Suppose that φ and its shifts are not linearly independent. Then, there
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is a ζ0 ∈ C, such that φ̂(ζ0 + 2kπ) = 0 for all k ∈ Z. Since (φ̂(2kπ))k∈Z 6= 0,

ζ0 ∈ C \ {0}. Applying (1.2) again, one obtains, for any k ∈ Z,

0 = φ̂(ζ0 + 4kπ) = φ̂(ζ0/2 + 2kπ)ã(e−iζ0/2)

and

0 = φ̂(ζ0 + (4k + 2)π) = φ̂(ζ0/2 + π + 2kπ)ã(−e−iζ0/2).

Since ã(z) does not have symmetric zeros on C\{0}, we conclude that at least one

of the two sets of identities φ̂(ζ0/2 + 2kπ) = 0, k ∈ Z and φ̂(ζ0/2 + π + 2kπ) = 0,

k ∈ Z holds. Let ζ1 = ζ0/2 or ζ1 = ζ0/2 + π. (The choice here depends on whether

φ̂(ζ0/2+2kπ) = 0, k ∈ Z or φ̂(ζ0/2+π+2kπ) = 0, k ∈ Z.) Repeating this process,

one obtain ζ2 = ζ1/2 or ζ2 = ζ1/2 + π. Continuing the process, one obtains a set

of numbers A := {ζ0, ζ1, ζ2, · · · } such that (φ̂(ζj + 2kπ))k∈Z = 0 for j = 0, 1, 2, · · · .
However, by Proposition 2.1 of Ron in [47], the set A must be finite (also see

[38]). Hence, there must exist some integers 0 ≤ p < q, such that ζp = ζq. Since

ζp = ζ0
2p + rπ, ζq = ζ0

2q + sπ for some rational number r and s, we have

ζ0

2p
+ rπ =

ζ0

2q
+ sπ.

This leads to that ζ0 is a real number which implies that

(
φ̂(ζ0 + 2kπ)

)
k∈Z = 0 with ζ0 ∈ R.

This contradicts to the stability of φ (which is (1)) by (1.13).

Lemma 4.2 says that, in order to show the linear independence of the shifts

of pseudo-splines of type II, we need to verify: (i), pseudo-splines of type II are

stable; (ii), the symbol of an arbitrary pseudo-spline of type II does not have any

symmetric zeros on C \ {0}. We first prove the stability in the following lemma.
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Lemma 4.3. Pseudo-splines of type II are stable.

Proof. Since pseudo-splines are compactly supported and belong to L2(R) (see

Proposition 3.5), the stability of φ is equivalent to (1.13). Let φ(m,l) be the pseudo-

spline of type II with order (m, l) and â(m,l) be its refinement mask. By Definition

(1.5), for each fixed m ≥ 1 and for every 0 ≤ l ≤ m− 1, the following inequality

cos2m(ξ/2) ≤ â(m,l)(ξ)

holds for all ξ ∈ R. Therefore, by (1.6), we have for all ξ ∈ R,

|B̂2m(ξ)| ≤ |φ̂(m,l)(ξ)|. (4.4)

Since B2m is stable, the vector (B̂2m(ξ + 2kπ))k∈Z 6= 0 for every ξ ∈ R. Hence,

(φ̂(m,l)(ξ + 2kπ))k∈Z 6= 0, for every ξ ∈ R, which is equivalent to that φ(m,l) is

stable.

By Lemma 4.2 and 4.3, to show that the shifts of the corresponding pseudo-

spline of type II are linearly independent, we only need to show that the symbol

of it has no symmetric zeros on C \ {0}. Now we compute the symbols of pseudo-

splines of type II. Recall that the refinement mask of a pseudo-spline of type II

with order (m, l) is given by (1.5), i.e.

2â(ξ) = cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2). (4.5)

Using

cos2(ξ/2) =
1 + cos(ξ)

2
=

2 + eiξ + e−iξ

4
=

(1 + e−iξ)2

4e−iξ
(4.6)

and

sin2(ξ/2) =
1− cos(ξ)

2
=

2− eiξ − e−iξ

4
=
−(1− e−iξ)2

4e−iξ
, (4.7)

one obtains

2â(ξ) :=
(1 + e−iξ)2m

(4e−iξ)m

l∑
j=0

(
m + l

j

)(−(1− e−iξ)2

4e−iξ

)j(
(1 + e−iξ)2

4e−iξ

)l−j

, for ξ ∈ R.
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Extending the above trigonometric polynomial to the Laurent polynomial, one

obtains the symbol of the pseudo-spline of type II with order (m, l):

2ã(z) :=
(1 + z)2m

(4z)m

l∑
j=0

(
m + l

j

)(−(1− z)2

4z

)j(
(1 + z)2

4z

)l−j

, z ∈ C \ {0}.

(4.8)

Before proving the main theorem of this chapter, we need to give the following

proposition first. The proof of it employs Rouché’s theorem (see e.g. [2]), which

states as: Suppose two functions f(z) and g(z) are analytic inside and on a simple

closed contour C and suppose

|f(z)| > |g(z)| for all z ∈ C,

then f and f + g have the same number of zeros, counting multiplicities, inside C.

Proposition 4.4. Let

P (z) =
l∑

j=0

cjz
j

be a polynomial with real coefficients satisfying

cl > cl−1 > · · · > c0 > 0.

Then, all the zeros of P (z) are contained within the unit disk D := {z ∈ C : |z| <
1}.

Proof. Let

ρ := max
1≤j≤l

{cj−1

cj

}.

Since cj is strictly greater than cj−1, 0 < ρ < 1 and ρcj ≥ cj−1 for all 1 ≤ j ≤ l.

Consider

Q(z) := (ρ− z)P (z).
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Then,

Q(z) = ρP (z)− zP (z)

= ρc0 + (ρc1 − c0)z + (ρc2 − c1)z
2 + · · ·+ (ρcl − cl−1)z

l − clz
l+1

= g(z) + f(z),

where

f(z) := −clz
l+1, and g(z) := ρc0 +(ρc1−c0)z+(ρc2−c1)z

2 + · · ·+(ρcl−cl−1)z
l.

Note that when |z| = 1, we have

|g(z)| ≤ ρc0 + (ρc1 − c0) + (ρc2 − c1) + · · ·+ (ρcl − cl−1)

= (ρ− 1)c0 + (ρ− 1)c1 + · · ·+ (ρ− 1)cl−1 + ρcl

= ρcl − (1− ρ)
l−1∑
j=0

cj

< cl = | − clz
l+1| = |f(z)|.

Since f and g are analytic on {z ∈ C : |z| ≤ 1}, the Rouché’s theorem asserts that

Q = f + g has the same number of zeros as that of f in D = {z ∈ C : |z| < 1}.
Since f has l + 1 zeros in D, Q must have exactly l + 1 zeros in D. Since Q has

only l + 1 zeros and since zeros of P is a subset of the zeros of Q, all zeros of P

must be in D.

Next, we prove the main theorem of this chapter.

Theorem 4.5. The shifts of a pseudo-spline of type II are linearly independent.

Proof. Since Lemma 4.3 shows that pseudo-splines of type II with arbitrary orders

are stable, in order to prove the linear independence of the shifts of a given pseudo-

spline of type II, one needs to show that the symbol 2ã(z) of it has no symmetric

zeros on C \ {0}, by Lemma 4.2.
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The symbol 2ã(z) given by (4.8) can be rewritten as

2ã(z) =
(1 + z)2m

(4z)m

l∑
j=0

(
m + l

j

)(−(1− z)2

4z

)j(
(1 + z)2

4z

)l−j

=
(1 + z)2m

(4z)m+l

l∑
j=0

(
m + l

j

)(− (1− z)2
)j

(1 + z)2(l−j)

=
(1 + z)2m+2l

(4z)m+l

l∑
j=0

(
m + l

j

)(−(1− z)2

(1 + z)2

)j

.

Since z = −1 is a zero of 2ã(z), while 2ã(z) = 1 when z = 1, 2ã(z) having no

symmetric zeros on C \ {0} is equivalent to

h(z) :=
l∑

j=0

(
m + l

j

)(−(1− z)2

(1 + z)2

)j

(4.9)

having no symmetric zeros on C \ {0, 1,−1}.
Consider

P (x) =
l∑

j=0

bjx
j, with bj =

(
m + l

j

)
, x ∈ C.

We first show that Proposition 4.4 can be applied to P to conclude that the zeros

of P lies inside of the unit disk of C. For this, we need to show that for given

m > 0, 0 ≤ l ≤ m− 1,

bj+1 > bj > 0, 0 ≤ j ≤ l − 1. (4.10)

Note that (
m + l

j + 1

)
=

m + l − j

j + 1

(
m + l

j

)
.

Since j ≤ l − 1, replacing j by l − 1 in m+l−j
j+1

, the right hand side of the above

identity decreases and becomes

m + 1

l

(
m + l

j

)
,

which is larger than
(

m+l
j

)
by l ≤ m−1. This shows that bj+1 > bj, j = 0, . . . , l−1.

It is clear that b0 = 1 > 0. With (4.10), applying Proposition 4.4, one concludes
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that all zeros of P (x) must be in {x ∈ C : |x| < 1}. Let z0 be an arbitrary zero of

h in C \ {0, 1,−1}. Then, the above conclusion on the zeros of P implies that z0

must satisfy ∣∣∣∣
−(1− z0)

2

(1 + z0)2

∣∣∣∣ < 1. (4.11)

Suppose h has symmetric zeros z0 and −z0. Then, −z0 must also satisfy

∣∣∣∣
−(1 + z0)

2

(1− z0)2

∣∣∣∣ < 1.

Since ∣∣∣∣
−(1− z0)

2

(1 + z0)2

∣∣∣∣ =
1∣∣∣−(1+z0)2

(1−z0)2

∣∣∣
,

we conclude that ∣∣∣∣
−(1− z0)

2

(1 + z0)2

∣∣∣∣ > 1,

which contradicts to (4.11). This leads to that h has no symmetric zeros on C \
{0, 1,−1}, and hence, 2ã(z) has no symmetric zeros on C\{0}. This, together with

the stability of the pseudo-splines, proves the linear independence of the shifts of

an arbitrary given pseudo-spline by Lemma 4.2.



Chapter 5
Riesz Wavelets and Framelets

In this chapter, we focus on the short supported Riesz wavelets and framelets

derived from pseudo-splines. The study here reveals that in almost all pseudo-

spline tight frame systems constructed both in [17] and here, there is one framelet

whose dilations and shifts already form a Riesz basis for L2(R).

5.1 Riesz Wavelets

For a given ψ, define the wavelet system

X(ψ) := {ψn,k = 2n/2ψ(2n · −k) : n, k ∈ Z}.

We call X(ψ) a Bessel system if for some C1 > 0, and for every f ∈ L2(R),

∑

g∈X(ψ)

|〈f, g〉|2 ≤ C1‖f‖2
L2(R).

A Bessel system X(ψ) is a Riesz basis if there exists C2 > 0 such that,

C2‖{cn,k}‖`2(Z2) ≤
∥∥∥∥∥

∑

(n,k)∈Z2

cn,kψn,k

∥∥∥∥∥
L2(R)

, for all {cn,k} ∈ `2(Z2)

50
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and the span of {ψn,k : n, k ∈ Z} is dense in L2(R). The function ψ is called Riesz

wavelet if X(ψ) forms a Riesz basis for L2(R) and X(ψ) is also called the Riesz

wavelet system.

This section is devoted to the construction of short Riesz wavelets via the

MRA generated by pseudo-splines. As all pseudo-splines are compactly supported,

refinable and in L2(R), the sequence of spaces (Vn)n∈Z defined via (1.8) forms a

MRA. Since the objective here is to construct Riesz wavelets, one needs to start

with stable refinable functions, which is satisfied for all pseudo-splines as shown in

Chapter 4.

We note that since constructions of exponential decay orthonormal wavelets

and compactly supported pre-wavelets in the literature (see e.g. [14] and [49])

only assume the stability of refinable function φ, they can be applied to pseudo-

splines automatically. Here we omit the details of these constructions and, instead,

focus on the construction and analysis of the short Riesz wavelets. They are

short because the wavelets have the same lengths of supports as the corresponding

refinable functions, while other Riesz wavelets normally have longer supports than

the corresponding refinable functions.

For a given stable refinable function φ ∈ L2(R), the key step in the construction

of the Riesz wavelet ψ is to select some desirable sequence b, called a wavelet mask.

The wavelet ψ is then defined by b and the corresponding refinable function φ as

ψ := 2
∑

k∈Z
b(k)φ(2 · −k),

It can be written equivalently in the Fourier domain as

ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2).

When {φ(· − k) : k ∈ Z} forms an orthonormal basis for V0(φ), e.g. φ is a

pseudo-spline of type I with order (m,m− 1), define

ψ := 2
∑

k∈Z
b(k)φ(2 · −k) with b(k) = (−1)k−1a(1− k), k ∈ Z, (5.1)
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or equivalently,

b̂(ξ) = e−iξâ(ξ + π).

Then the corresponding wavelet system X(ψ) with the pseudo-spline of type I with

order (m,m−1) being the underlying refinable function forms an orthonormal basis

for L2(R). We are interested to know whether the function ψ defined in (5.1) is

a Riesz wavelet, when the refinable function φ is chosen to be the pseudo-splines

with other orders. In fact, it was shown in [30] that it is true, when φ is a B-spline,

i.e. a pseudo-spline with order (m, 0) or when φ is a pseudo-spline of type II with

order (m,m−1). In the rest of this section we will show that for all pseudo-splines,

the wavelet defined by (5.1) is a Riesz wavelet. To prove this, we use the following

theorem which is the special case of Theorem 2.1 of [30]. When both refinement

masks are finitely supported similar result was already obtained before in [6], [7]

and [13].

Theorem 5.1. Let a be a finitely supported refinement mask of a refinable function

φ ∈ L2(R) with â(0) = 1 and â(π) = 0, such that â can be factorized into the form

|â(ξ)| =
∣∣∣∣
(

1 + e−iξ

2

)n

L(ξ)

∣∣∣∣ = cosn(ξ/2)|L(ξ)|, ξ ∈ [−π, π], (5.2)

where L is the Fourier series of a finitely supported sequence with L(π) 6= 0. Sup-

pose that

|â(ξ)|2 + |â(ξ + π)|2 6= 0, ξ ∈ [−π, π].

Define

ψ̂(2ξ) := e−iξâ(ξ + π)φ̂(ξ)

and

L̃(ξ) :=
L(ξ)

|â(ξ)|2 + |â(ξ + π)|2 . (5.3)

Assume that

ρL := ‖L(ξ)‖L∞(R) < 2n− 1
2 and ρL̃ := ‖L̃(ξ)‖L∞(R) < 2n− 1

2 , (5.4)
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Then X(ψ) is a Riesz basis for L2(R).

As we will show, the key step in the application of the above theorem is to

estimate the upper bound of |L(ξ)| and |L̃(ξ)|. Recall that the refinement masks

of pseudo-splines of type I and II are, for ξ ∈ [−π, π],

|1â(ξ)| := cosm(ξ/2)

( l∑
j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2)

) 1
2

(5.5)

and

2â(ξ) := cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2). (5.6)

Hence, the corresponding L function in (5.2) for pseudo-splines of type I is

|1L(ξ)| =
( l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2)

) 1
2

,

and for pseudo-splines of type II is

|2L(ξ)| =
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

For Pm,l(y) be given by (2.2) with y = sin2(ξ/2),

|1â| =
(

(1− y)mPm,l(y)

) 1
2

, 2â = (1− y)mPm,l(y), (5.7)

and

|1L| = (Pm,l(y))
1
2 , |2L| = Pm,l(y). (5.8)

For Rm,l(y) be given in (2.3),

|1â(ξ)|2 + |1â(ξ + π)|2 = Rm,l(y) + Rm,l(1− y)

and

|2â(ξ)|2 + |2â(ξ + π)|2 = R2
m,l(y) + R2

m,l(1− y),
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with y = sin2(ξ/2). Hence,

|1L̃| = (Pm,l(y))
1
2

Rm,l(y) + Rm,l(1− y)
and |2L̃| = Pm,l(y)

R2
m,l(y) + R2

m,l(1− y)
. (5.9)

The estimation of ‖1L̃‖L∞(R) and ‖2L̃‖L∞(R) are based on the following result:

Proposition 5.2. Let m and l be given nonnegative integers with l ≤ m − 1 and

|1L̃| and |2L̃| be defined in (5.9). Then,

1. ‖1L̃‖L∞(R) = supy∈[0,1]
(Pm,l(y))

1
2

Rm,l(y)+Rm,l(1−y)
< 2m− 1

2 .

2. ‖2L̃‖L∞(R) = supy∈[0,1]
Pm,l(y)

R2
m,l(y)+R2

m,l(1−y)
< 22m− 1

2 .

Proof. Note that from part 1 of Lemma 2.2,

Pm,l(y) =
l∑

j=0

(
m + l

j

)
yj(1− y)l−j =

l∑
j=0

(
m− 1 + j

j

)
yj, y ∈ [0, 1], (5.10)

hence both (Pm,l(y))
1
2 and Pm,l(y) attain their maximum on [0, 1] at point 1 and

the maximum values are:

(Pm,l(1))
1
2 =

(
m + l

l

) 1
2

and Pm,l(1) =

(
m + l

l

)
.

By part 3 of Lemma 2.2, one obtains

‖1L̃‖L∞(R) = sup
y∈[0,1]

(Pm,l(y))
1
2

Rm,l(y) + Rm,l(1− y)

≤
(

m + l

l

) 1
2

max
y∈[0,1]

1

Rm,l(y) + Rm,l(1− y)

≤ 2m+l−1
(

m+l
l

) 1
2

∑l
j=0

(
m+l

j

) .

Applying part 3 of Lemma 2.1, i.e.

2l
(

m+l
l

) 1
2

∑l
j=0

(
m+l

j

) ≤ 1, (5.11)
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one obtains

‖1L̃‖L∞(R) ≤ 2m−1 < 2m− 1
2 .

The proof of part 2 is similar to that of part 1. Indeed, by part 4 of Lemma 2.2

‖2L̃‖L∞(R) = sup
y∈[0,1]

Pm,l(y)

R2
m,l(y) + R2

m,l(1− y)

≤
(

m + l

l

)
max
y∈[0,1]

1

R2
m,l(y) + R2

m,l(1− y)

=
22m+2l−1

(
m+l

l

)
(∑l

j=0

(
m+l

j

))2 .

Applying (5.11) again, we have

‖2L̃‖L∞(R) ≤ 22m−1 < 22m− 1
2 .

Theorem 5.3. Let kφ, k = 1, 2 be the pseudo-spline of type I and II with order

(m, l). The refinement masks ka, k = 1, 2, are given in (1.4) and (1.5). Define

kψ̂(2ξ) := e−iξ
kâ(ξ + π)kφ̂(ξ), k = 1, 2, (5.12)

then X(kψ) forms a Riesz basis for L2(R).

Proof. To apply Theorem 5.1, we first note that

|1â(ξ)|2 + |1â(ξ + π)|2 = Rm,l(sin
2(ξ/2)) + Rm,l(cos2(ξ/2)) 6= 0

and

|2â(ξ)|2 + |2â(ξ + π)|2 = R2
m,l(sin

2(ξ/2)) + R2
m,l(cos2(ξ/2)) 6= 0,

for all ξ ∈ [−π, π], where Rm,l is defined in (2.3) (by part 3 and 4 of Lemma 2.2).

Next, one needs to check whether

ρ1L = ‖1L‖L∞(R) < 2m− 1
2 , ρ2L = ‖2L‖L∞(R) < 22m− 1

2 , (5.13)
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ρ
1L̃ = ‖1L̃‖L∞(R) < 2m− 1

2 and ρ
2L̃ = ‖2L̃‖L∞(R) < 22m− 1

2 , (5.14)

hold. Inequalities in (5.14) follows from Proposition 5.2.

For (5.13), we note that for both k = 1 and k = 2, we have

|kâ(ξ)|2 + |kâ(ξ + π)|2 ≤ 1 for all ξ ∈ R.

Hence,

|kL(ξ)| ≤ |kL̃(ξ)| for all ξ ∈ R.

This concludes the proof.

Remark 5.4. The Riesz wavelet constructed in the above theorem has the same

length of support and at least the same order of smoothness as that of the cor-

responding pseudo-spline. Its order of the vanishing moments is the same as the

order of the B-spline factor of the pseudo-spline. But, in general, its dual wavelet

system is not compactly supported. However, this is not a problem in some ap-

plications. In applications like image compression, the short Riesz wavelet system

can be applied to obtain fast reconstruction algorithm, while the decomposition is

obtained by solving a linear system of equations (see [39]). On the other hand, a

compactly supported dual system can be achieved by constructing a tight frame

system such that one of the generators is the Riesz wavelet defined here. This will

be discussed in section 5.2.

5.2 Framelets

In this section, we connect our findings here to the tight framelets constructed

from pseudo-splines in [17] via the unitary extension principle of [51] and also give

a new construction. We first review the generic construction of tight frames via

the unitary extension principle. The results of the previous section then reveal

that every tight frame system obtained from the pseudo-spline of type I in [17]
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has one framelet ψ such that X(ψ) itself already forms a Riesz basis for L2(R).

Since the pseudo-splines of type I are not symmetric, the tight frame systems given

in [17] are not symmetric. In this section, we make use of the symmetry of the

pseudo-splines of type II to obtain symmetric tight framelets.

The construction here is based on the unitary extension principle (UEP) of [51].

We give a brief discussion here while the more general version and comprehensive

discussions of the UEP can be found in [17] and [51].

Let â be the refinement mask of φ ∈ L2(R) with â(0) = 1 and let b̂j, j =

1, 2, . . . , r, be wavelet masks. If â and b̂j are trigonometric polynomials that satisfy

â(ξ)â(ξ + ν) +
r∑

j=1

b̂j(ξ)̂bj(ξ + ν) =





1, ν = 0

0, ν = π,
(5.15)

for all ξ ∈ [−π, π], and Ψ := {ψ1, ψ2, . . . , ψr} ⊂ L2(R) are given by

ψ̂j(2ξ) := b̂j(ξ)φ̂(ξ), j = 1, 2, . . . , r,

then the UEP asserts that X(Ψ) is a tight frame for L2(R).

In [17], three constructions of tight framelets were given for pseudo-splines of

type I. The number of framelets is either two or three. Interested readers may

consult [17] Section 3.1 for details. We observe that in all the three constructions,

one of the framelets ψ1 is defined by

ψ̂1 := b̂1(ξ/2)φ̂(ξ/2),

where

b̂1 := e−iξâ(·+ π)

and â is the refinement mask of a pseudo-spline. It was shown in Theorem 5.3

that X(ψ1) forms a Riesz basis for L2(R). This implies that all pseudo-spline tight

frame systems constructed in [17] already have one of the subsystems form a Riesz

basis for L2(R). We further remark that it was observed in [30] that the same
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phenomenon occurs for the tight spline frame systems constructed in [17]. This,

together with our new finding here, gives insight into the redundant structure of

tight frame systems given in [17].

We further illustrate this phenomenon by one of the constructions given in [17].

The construction is generic and can be applied to refinable function φ ∈ L2(R),

whose refinement mask â satisfies:

|â|2 + |â(·+ π)|2 ≤ 1. (5.16)

Construction 5.5. Let φ ∈ L2(R) be a compactly supported refinable function

with its trigonometric polynomial refinement mask â satisfying â(0) = 1 and (5.16).

Let

T := 1− |â|2 − |â(·+ π)|2,

and τ :=
√

T where τ is obtained via the Fejér-Riesz lemma. Define

b̂1(ξ) := e−iξâ(ξ + π),

b̂2(ξ) :=
τ√
2
, b̂3(ξ) := eiξ b̂2(ξ).

Then the masks satisfy (5.15), hence, X(Ψ) forms a tight frame in L2(R) where

Ψ := {ψ1, ψ2, ψ3} are defined by

ψ̂j(ξ) := b̂j(ξ/2)φ̂(ξ/2), j = 1, 2, 3. (5.17)

Since ψ1 is defined exactly the same as (5.12) in Theorem 5.3, X(ψ1) forms a Riesz

basis for L2(R) when φ is a pseudo-spline. Furthermore, since b̂2 and b̂3 have zeros

at both 0 and π. One can check easily that neither the shifts of ψ2 nor those of ψ3

can form a Riesz system. Hence, X(ψ2) and X(ψ3) can not form a Riesz basis for

L2(R).

When the above construction is applied to pseudo-splines of type I, it leads to

one of the constructions of [17]. However, the framelets are neither symmetric nor
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antisymmetric. One can obtain symmetric or antisymmetric framelets by applying

Construction 3.4 in [25] which converts any tight frame system into another one

with symmetric and antisymmetric framelets. However, the new tight frame system

is generated by a different MRA since pseudo-splines of type I are not symmetric,

unless the order is (m, 0). A detailed discussion can be found in Section 4 of [25].

It is clear that pseudo-splines of type II also satisfy (5.16). One can apply

Construction 5.5 to obtain a set of tight framelets. We note that ψ1 obtained in

Construction 5.5 is already symmetric, however, ψ2 and ψ3 are not, which is due

to the fact that τ is not symmetric. Applying Construction 3.4 in [25], one can

convert ψ1, ψ2 and ψ3 to a set of five symmetric or antisymmetric tight framelets.

It was further shown in [25] that the Construction 3.4 leads to new tight framelets

from the same MRA as the old tight framelets whenever the old ones are derived

from the MRA generated by a symmetric refinable function. We forgo the idea of

giving the details of this construction and leave it to readers by consulting [25],

because next we will give a different approach that leads to a symmetric tight

frame system with only three generators. The ideas of this construction are based

on those of [10] and one of the constructions of [17]. Again, the construction is

generic and can be applied to any symmetric refinable function whose mask is a

trigonometric polynomial and satisfies (5.16).

Construction 5.6. Let φ ∈ L2(R) be a compactly supported refinable function

with its trigonometric polynomial refinement mask â satisfying â(0) = 1 and (5.16).

Moreover we assume that φ, hence its refinement mask â, is symmetric about the

origin. Let

T = 1− |â|2 − |â(·+ π)|2 and A :=

√
T

2
,

where
√

T is obtained via the Fejér-Riesz lemma. Define

b̂1(ξ) := e−iξâ(ξ + π), b̂2(ξ) := A(ξ) + e−iξA(−ξ) and b̂3(ξ) := e−iξ b̂2(ξ + π).
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Let Ψ := {ψ1, ψ2, ψ3}, where

ψ̂j(ξ) := b̂j(ξ/2)φ̂(ξ/2), j = 1, 2, 3. (5.18)

Then X(Ψ) is tight frame for L2(R). Moreover, ψ1 is symmetric about 1
2
, ψ2 is

symmetric about 1
4

and ψ3 is antisymmetric about 1
4
. We also note that since ψ1

is defined exactly the same as (5.12) in Theorem 5.3, X(ψ1) forms a Riesz basis

for L2(R) when φ is a pseudo-spline. Furthermore, since b̂2 and b̂3 have zeros at

both 0 and π. One can check easily that neither the shifts of ψ2 nor those of ψ3

can form a Riesz system. Hence, X(ψ2) and X(ψ3) cannot form a Riesz basis for

L2(R).

Proof. In order to verify that X(Ψ) is a tight frame for L2(R), one needs to show

that the masks {â, b̂1, b̂2, b̂3} satisfy (5.15). Note that

b̂1 = e−iξâ(·+ π) and b̂3 = e−iξ b̂2(·+ π),

Hence,

ââ(·+ π) +
3∑

j=1

b̂j b̂j(·+ π) = ââ(·+ π)− ââ(·+ π) + b̂2b̂2(·+ π)− b̂2b̂2(·+ π) = 0.

Next, we show that

|â|2 +
3∑

j=1

|̂bj|2 = 1. (5.19)

Since

|â|2 + |̂b1|2 = |â|2 + |â(·+ π)|2,

it remains to show that

|̂b2|2 + |̂b3|2 = 1− |â|2 − |â(·+ π)|2 = T.

Since

|A(ξ)|2 =
1

4
T (ξ) =

1

4

(
1− |â(ξ)|2 − |â(ξ + π)|2

)
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and since T is π-periodic, the spectral factorization (which is based on the Fejér-

Riesz lemma) leads to the function A(ξ) also to be π-periodic. Furthermore, the

Fourier coefficients of A(ξ) are real. Hence, we have

A(ξ) = A(ξ + π), and |A(ξ)|2 = |A(−ξ)|2, for all ξ ∈ R. (5.20)

Since

b2(ξ) = A(ξ) + e−iξA(−ξ) and b̂3(ξ) = e−iξ b̂2(·+ π) = e−iξA(−ξ)−A(ξ),

applying (5.20), one obtains

|̂b2(ξ)|2 =
(
A(ξ) + e−iξA(−ξ)

)(
A(ξ) + eiξA(−ξ)

)

= |A(ξ)|2 + |A(−ξ)|2 + eiξA(ξ)A(−ξ) + e−iξA(−ξ)A(ξ)

= 2|A(ξ)|2 + eiξA(ξ)A(−ξ) + e−iξA(−ξ)A(ξ)

and

|̂b3(ξ)|2 =
(
e−iξA(−ξ)−A(ξ)

)(
eiξA(−ξ)−A(ξ)

)

= |A(ξ)|2 + |A(−ξ)|2 − eiξA(ξ)A(−ξ)− e−iξA(−ξ)A(ξ)

= 2|A(ξ)|2 − eiξA(ξ)A(−ξ)− e−iξA(−ξ)A(ξ).

Hence,

|̂b2(ξ)|2 + |̂b3(ξ)|2 = 4|A(ξ)|2 = T (ξ),

which gives (5.19) and thus concludes that the masks {â, b̂1, b̂2, b̂3} satisfy (5.15).

Therefore, X(Ψ) is indeed a tight frame for L2(R) by the unitary extension prin-

ciple.

Now we show that ψ1 is symmetric about 1
2

while ψ2 is symmetric about 1
4

and ψ3 is antisymmetric about 1
4
. It is well known that a function f ∈ L2(R), is

symmetric about the point γ1 ∈ R if and only if

f(x) = f(2γ1 − x) a.e.,
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which is equivalent to

f̂(ξ) = e−i2γ1ξf̂(−ξ) a.e.. (5.21)

Similarly, a function f ∈ L2(R) is antisymmetric about the point γ2 ∈ R if and

only if

f(x) = −f(2γ2 − x) a.e.,

which is equivalent to

f̂(ξ) = −e−i2γ2ξf̂(−ξ) a.e.. (5.22)

By the definition of b̂1 and the fact that â is symmetric about the origin and

2π-periodic, one obtains

b̂1(ξ) = e−iξâ(ξ + π) = e−2iξ
(
eiξâ(−ξ + π)

)
= e−2iξ b̂1(−ξ).

Since φ is symmetric about the origin, then by (5.21) one obtains

φ̂(ξ) = φ̂(−ξ), for all ξ ∈ R. (5.23)

Therefore,

ψ̂1(ξ) = b̂1(ξ/2)φ̂(ξ/2) = e−iξ b̂1(−ξ/2)φ̂(−ξ/2) = e−iξψ̂1(−ξ),

which, by (5.21), means that ψ1 is symmetric about 1
2
. Similarly by the definition

of b̂2, one obtains

b̂2(ξ) = A(ξ) + e−iξA(−ξ) = e−iξ
(A(−ξ) + eiξA(ξ)

)
= e−iξ b̂2(−ξ).

Applying (5.23) and the definition of ψ̂2, one obtains,

ψ̂2(ξ) = b̂2(ξ/2)φ̂(ξ/2) = e−i ξ
2 b̂2(−ξ/2)φ̂(−ξ/2) = e−i ξ

2 ψ̂2(−ξ),

which, by (5.21), means that ψ2 is symmetric about 1
4
. Similarly, we can show that

ψ3 is antisymmetric about 1
4
.
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The approximation order provided by a tight frame X(Ψ) can be characterized

by the approximation order of the corresponding operator Qn (see [17]), which is

defined in (1.10). We have shown in Section 3.3 that, for the operator Pn defined

in (1.9), we have Qnf = Pnf , for f ∈ L2(R), provided that Ψ is derived from

the UEP and the underlying MRA is generated by the same φ as that defines Pn.

Therefore, by Theorem 3.10, if we start from the pseudo-spline of type II with order

(m, l) in Construction 5.6, the tight frame system X(Ψ) provides approximation

order 2l + 2.

In the end, we give one example of (anti)symmetric tight framelets constructed

from Construction 5.6 using pseudo-splines of type II with order (3, 1).

Example 5.7. Let â to be the mask of pseudo-spline of type II with order (3, 1)

i.e.

â(ξ) = cos6(ξ/2)
(
1 + 3 sin2(ξ/2)

)
.

We define

b̂1(ξ) := e−iξâ(ξ + π) = e−iξ sin6(ξ/2)
(
1 + 3 cos2(ξ/2)

)
,

b̂2(ξ) := A(ξ) + e−iξA(−ξ) and b̂3(ξ) := e−iξA(−ξ)−A(ξ),

where

A =
1

2

(
0.00123930398199e−4iξ + 0.00139868605052e−2iξ − 0.22813823298962

+ 0.44712319189971e2iξ − 0.22162294894260e4iξ
)
.

The graphs of Ψ are given by (b)-(d) in Figure 5.1. The tight frame system has

approximation order 4.



5.2 Framelets 64

−4 −3 −2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−3 −2 −1 0 1 2 3 4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

−4 −3 −2 −1 0 1 2 3 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 5.1: (a) is the pseudo-spline of type II with order (3, 1) and (b)-(d) are the

corresponding (anti)symmetric tight framelets.



Chapter 6
Compactly Supported Biorthogonal

Wavelets

In this chapter, we will construct pairs of smooth compactly supported biorthog-

onal Riesz wavelets using pseudo-splines. As we will see in a minute that this can

be done by constructing dual refinable functions from pseudo-splines, which satisfy

any prescribed regularity. Recall that two wavelet systems X(ψ) and X(ψd) are

said to be biorthogonal (Riesz) wavelet bases, if they are Riesz wavelet systems and

for all f ∈ L2(R),

f =
∑

j,k∈Z
〈f, ψj,k〉ψd

j,k.

Moreover, we call ψ and ψd biorthogonal (Riesz) wavelets and call ψd the dual

wavelet of ψ. The difference between the Riesz wavelets constructed in this chapter

and those constructed in the last chapter is that both the Riesz wavelets and its dual

wavelets constructed here are compactly supported, while the dual Riesz wavelets

of the short Riesz wavelets constructed in Section 5.1 are not compactly supported

in general. However, by starting from the same pseudo-spline, both of the wavelets

in each pair of compactly supported biorthogonal Riesz wavelets constructed in

this section have longer supports than that of the underlying short Riesz wavelet.

65
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We first give a general framework of the MRA-based construction of biorthogo-

nal wavelets starting from a given refinable function. Constructions of biorthogonal

wavelets have been extensively studied in the literature. The interested reader can

find general discussions in [6, 7, 11, 15, 27, 30] and the references there.

Let φ ∈ L2(R) be a compactly supported stable refinable function with finitely

supported refinement mask a. The first step of the construction of a pair of com-

pactly supported biorthogonal wavelets is to find a compactly supported stable

refinable function φd ∈ L2(R) with finitely supported refinement mask ad satisfy-

ing

〈φ, φd(· − k)〉 = δ(k), k ∈ Z. (6.1)

If a stable refinable function φd ∈ L2(R) satisfies (6.1), we call it the (biorthogonal)

dual refinable function of φ, or just dual of φ for simplicity. A necessary condition

for φ and φd to satisfy (6.1) is

ââd + â(·+ π)âd(·+ π) = 1. (6.2)

We call ad a dual refinement mask, or just dual mask for convenience. Most of

constructions starts with finding ad to satisfy (6.2). Suppose we have the dual mask

ad in hand. We then need to check whether the corresponding refinable function

φd is in L2(R) and stable, which can be done through the transition operator (see

e.g. [7, 43, 53]). With the stable dual pair φ and φd and their refinement masks a

and ad satisfying (6.2), the dual pair of wavelets can be constructed (see e.g. [7]

and [15]) as

ψ̂(2ξ) = b̂(ξ)φ̂(ξ), and ψ̂d(2ξ) = b̂d(ξ)φ̂d(ξ), (6.3)

where

b̂(ξ) = e−iξâd(ξ + π) and b̂d(ξ) = e−iξâ(ξ + π). (6.4)

Then the corresponding wavelet systems X(ψ) and X(ψd) form biorthogonal Riesz

wavelet bases for L2(R) (see e.g. [6, 7, 30]). Since the mask a is assumed through
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out this chapter to be finitely supported, the wavelet mask bd is also finitely sup-

ported. Therefore, ψd can be written as a finite linear combination of shifts of φd,

which means that ψd has the same regularity as φd.

As we see from this framework, the key step in construction is to design a

desirable pair of stable refinable functions satisfying (6.1). The existence of smooth

dual refinable function for pseudo-splines is guaranteed by the linear independence

of the shifts of them (see e.g. [41]). We shall talk about this in details in the

following section. In the rest of this chapter, we shall focus on the constructions

of dual refinable functions φd from pseudo-splines with prescribed regularity.

6.1 Duals of Pseudo-splines

In this section, we construct biorthogonal dual refinable functions from pseudo-

splines, which can satisfy arbitrarily high order of regularity. The regularity here

is the same as defined in Chapter 3.

We first give the existence of dual refinable functions with the prescribed reg-

ularity which immediately follows from the result of [41].

Theorem 6.1. [41]. Let φ ∈ L2(R) be compactly supported refinable function

whose shifts are linearly independent. Then, for an arbitrary α > 0, there exists a

compactly supported refinable function φd ∈ L2(R) with regularity α, such that φd

is the biorthogonal dual refinable function of φ.

Applying this theorem together with the fact that the shifts of pseudo-splines

are linearly independent, we have:

Corollary 6.2. Let φ be a pseudo-spline. Then, for an arbitrary α > 0, there

exists a compactly supported refinable function φd ∈ L2(R) with regularity α, such

that φd is the biorthogonal dual refinable function of φ.
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Remark 6.3.

1. The original theorem of [41] is stated in a different way. The compactly

supported refinable function φ is assumed in [41] to be stable and have a

minimal support. (A stable refinable function φ having a minimal support

means, according to [41], that its symbol does not have symmetric zeros on

C \ {0}.) This is equivalent to that φ has linearly independent shifts by

Lemma 4.2 (see also [38]).

2. In the approach taken by [41], for a given compactly supported refinable func-

tion φ ∈ L2(R) with linearly independent shifts, the existence of a compactly

supported dual refinable function satisfying any desired regularity is reduced

to the existence of a compactly supported dual refinable function in L2(R).

The proof of existence of a compactly supported dual refinable function in

L2(R) for a given φ starts with a finitely supported dual mask of some refin-

able distribution, which is derived by solving (6.6) numerically and may not

even be pre-stable. Then use this mask and another sequence obtained by

truncating the standard infinite dual mask of a to derive a finitely supported

dual mask of a whose corresponding refinable function is in L2(R) and sta-

ble. To obtain a dual refinable function with higher regularity, it repeats the

above processing by constructing an L2 dual of function Bm ∗ φ instead of

φ. To see this (see also [41]), let us consider Bm ∗ φ, with any given m ≥ 1,

where Bm is B-spline of order m whose Fourier transform is

B̂m :=

(
1− e−iξ

iξ

)m

.

It can be easily verified that Bm ∗ φ has linearly independent shifts. If there

is a compactly supported dual refinable function g ∈ L2(R) of Bm ∗ φ, then

φd := Bm(−·) ∗ g is a compactly supported dual of φ with regularity at least
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m− 1− ε. Indeed, since for compactly supported functions φ, φd ∈ L2(R),

〈φ, φd(· − k)〉 = δ(k), k ∈ Z,

is equivalent to

[φ̂, φ̂d] = 1,

(see e.g. [7] and [15]), we have

[φ̂, B̂mĝ] = [B̂mφ̂, ĝ] = 1.

Next, we explore a constructive way to get duals of pseudo-splines with pre-

scribed regularities. For this, we first note that if the pseudo-spline of type II with

order (m, l) has a compactly supported dual refinable function with regularity α,

then we can obtain a compactly supported refinable function with regularity at

least α that is dual to the pseudo-spline of type I with the same order. Indeed,

for the pseudo-spline 2φ(m,l) of type II with order (m, l), let 2φ
d ∈ L2(R) be its

compactly supported dual refinable function with regularity α. Since 2φ̂(m,l) =

|1φ̂(m,l)|2 = 1φ̂(m,l) · 1φ̂(m,l), we have

1 = [2φ̂(m,l), 2φ̂
d] = [1φ̂(m,l) · 1φ̂(m,l) , 2φ̂

d] = [1φ̂(m,l) , 1φ̂(m,l) · 2φ̂
d].

Therefore,

1φ̂
d := 1φ̂(m,l) · 2φ̂

d (6.5)

is a compactly supported dual refinable function with the regularity at least α by

the fact that 1φ̂(m,l) ∈ L∞(R). Hence, we only need to construct dual refinable

functions of pseudo-splines of type II. In the rest of this section, we focus on dis-

cussions of dual refinable functions of pseudo-splines of type II with any prescribed

regularity.

Construction of compactly supported dual refinable function φd always starts

from constructing a dual mask ad from a such that (6.2) is satisfied. This can be
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done whenever the symbol ã(z) does not have symmetric zeros on C \ {0}. In fact,

it is well known that in this case (see e.g. [7], [15] and [31]) one can always find

ãd(z) such that

ã(z)ãd(z−1) + ã(−z)ãd(−z−1) = 1, z ∈ C \ {0}. (6.6)

Indeed, let

ãe(z
2) :=

∑

j∈Z
a(2j)z2j and ão(z

2) :=
∑

j∈Z
a(2j + 1)z2j.

Then,

ã(z) = ãe(z
2) + zão(z

2) and ã(−z) = ãe(z
2)− zão(z

2). (6.7)

Since ã(z) does not have symmetric zeros on C\{0}, ãe(z
2) and ão(z

2) do not have

common zeros on C \ {0} by (6.7). Then the Hilbert’s Nullstellensatz assures the

existence of Laurent polynomials q̃e and q̃o such that

ãe(z
2)q̃e(z

2) + ão(z
2)q̃o(z

2) =
1

2
z2k, for all z ∈ C \ {0} and k ∈ N. (6.8)

Let

q̃(z) := q̃e(z
2) + z−1q̃o(z

2),

and define

ãd(z) := z2kq̃(z−1).

Then, ã and ãd satisfy (6.6) by applying (6.7) and (6.8). Let ad be the coefficients

of ãd(z). We conclude that â and âd satisfy (6.2).

The solutions to (6.6) can be obtained by solving a polynomial equation utilizing

Maple and Singular [26], which is an Ad-hoc construction, although sometimes

it can be very efficient in both univariate and multivariate constructions (see e.g.

[49]). The more efficient and systematic way of solving equation (6.6) is the method

called construction by cosets (CBC), which was suggested in [11] and [27]. The

method starts with a dual mask of a given refinement mask, then lifts the dual mask
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to a new dual mask whose underlying refinable function satisfies a desired order

of the Stang-Fix condition. It should also be pointed out that the CBC algorithm

gives the minimal support of the dual refinable functions for a given order of the

Strang-Fix condition. All approaches of solving equation (6.6) normally derive dual

refinable functions that satisfy given order of Strang-Fix condition. The regularity

has to be checked one by one numerically using methods given in [9, 15, 28, 34, 52],

although the regularity of a refinable function seems to increase as the order of

Strang-Fix condition increases by numerical tests. Furthermore, since (6.6) is only

a necessary condition for the underlying refinable functions φ and φd to be a dual

pair for any given solution of equation (6.6), one needs to further check the stability

of φd, which can also be done numerically by methods given in [15] and [43].

Our method for pseudo-splines is similar to the both methods above in the

aspect that we also start with a dual refinement mask satisfying very mild condi-

tions, then create new dual masks from it. The difference is that we obtain new

dual masks from this initial mask, whose underlying refinable functions are stable

and have prescribed regularities. Since the regularity of a compactly supported re-

finable function implies its order of the Strang-Fix condition (see e.g. [8, 44, 48]),

and since once the prescribed regularity is given, the method gives a dual with the

given regularity by choosing a proper parameter, our approach gains more than

what the above methods may offer to pseudo-splines.

We start from an arbitrary pseudo-spline φ of type II with order (m, l), m ≥ 2,

0 ≤ l ≤ m−1, whose refinement mask is a. The first step is to find an initial finitely

supported dual mask b. As we will see that for the case m = 1, the construction

and the regularity analysis have already been considered in [7] (also see [15]).

Condition 6.4. Let b be a finitely supported mask satisfying:

1. b is a (real-valued) dual mask of a, i.e.

â(ξ)̂b(ξ) + â(ξ + π)̂b(ξ + π) = 1;
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2. b̂ is real-valued and nonnegative;

3. The refinable distribution ϑ, corresponding to the refinement mask b, is pre-

stable.

Remark 6.5. Note that we did not require ϑ to be a function, and just require that

it is pre-stable. Actually, by Corollary 6.2, there always exists a mask b such that

ϑ is a compactly supported stable refinable function in L2(R), which is a much

more strong condition than part (3) above. For a given refinement mask a, it is

not difficult to find such an initial dual mask b by CBC method of [11] and [27].

Once we have this b, the prescribed regularity dual refinable function can be built

up.

The idea here is to use the mask ĉ := âb̂. Let η be the corresponding refinable

distribution of c. We will show that c and η satisfy the following properties:

Proposition 6.6. Let φ be a pseudo-spline of type II with mask a and ϑ be the

refinable distribution corresponding to the mask b, which satisfies all the conditions

in Condition 6.4. Let ĉ = âb̂ and η be the corresponding refinable distribution.

Then:

1. ĉ is real-valued and nonnegative;

2. η belongs to L2(R);

3. η is stable.

Proof. Part 1 is immediate by the fact that both â and b̂ are real-valued and

nonnegative.

Part 2 can be established by using Lemma 6.2.1 of [15]. Indeed, since the

trigonometric polynomial ĉ is nonnegative, symmetric, i.e. ĉ(ξ) = ĉ(−ξ), and

ĉ(ξ)+ ĉ(ξ+π) = 1, there exists (by Fejér-Riesz Lemma) a trigonometric polynomial
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ĥ such that |ĥ|2 = ĉ and |ĥ(ξ)|2 + |ĥ(ξ + π)|2 = 1. Let f be the corresponding

refinable distribution to mask h. Lemma 6.2.1 of [15] gives that f̂ ∈ L2(R). Since

|f̂ |2 = η̂, we conclude that η̂ ∈ L1(R). Hence, η is compactly supported and

continuous, which gives that η ∈ L2(R).

For part 3, since η is compactly supported and belongs to L2(R), we only need

to show that η is pre-stable by checking whether η̂ has 2π-periodic zeros or not (see

e.g. [35]). We first prove that the set of all zeros of φ̂ is {2πp}p∈Z\{0}. Note that

φ̂ can be written as φ̂ = B̂2mĝ where g is a refinable distribution with refinement

mask d defined by

d̂(ξ) :=
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

Applying the following identity of Lemma 2.2 and letting y = sin2(ξ/2),

l∑
j=0

(
m + l

j

)
yj(1− y)l−j =

l∑
j=0

(
m− 1 + j

j

)
yj, y ∈ R, (6.9)

the mask d̂ can be rewritten as

d̂(ξ) =
l∑

j=0

(
m− 1 + j

j

)
sin2j(ξ/2).

Then it is obvious that d̂ ≥ 1 on R, which implies that ĝ > 0 on R. Therefore, the

set of all zeros of φ̂ is the same as that of B̂2m which is exactly {2πp}p∈Z\{0}.

Now we shall prove the pre-stability of η by contradiction. Suppose that ξ0 is

a 2π-periodic zero of η̂, i.e.

η̂(ξ0 + 2πk) = φ̂(ξ0 + 2πk)ϑ̂(ξ0 + 2πk) = 0,

for all k ∈ Z. Since by assumption, ϑ̂ does not have 2π-periodic zeros, there must

be some k0 ∈ Z, such that φ̂(ξ0 +2πk0) = 0. Since the zero set of φ̂ is {2πp}p∈Z\{0},

there exists p0 ∈ Z\{0} such that ξ0 +2πk0 = 2πp0, i.e. ξ0 = 2π(p0−k0) =: 2πm0.
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This gives that η̂(ξ0 +2πk) = η̂(2πm0 +2πk) = 0 for all k ∈ Z. In particular, when

k = −m0, we have η̂(0) = 0. Since φ̂(0) = 1, we must have ϑ̂(0) = 0. However,

since b̂(0) = 1, we should have that ϑ̂(0) = 1. This is a contradiction.

Having the mask c in hand, we first note by the construction of c and the fact

that b is a dual mask of a, we have

ĉ(ξ) + ĉ(ξ + π) = 1.

Thus
(
ĉ + ĉ(·+ π)

)2n−1
= 1, for n ≥ 2. (6.10)

The first n terms of the binomial expansion in (6.10) is

n−1∑
j=0

(
2n− 1

j

)
ĉ2n−1−j ĉj(·+ π) = ĉn

n−1∑
j=0

(
2n− 1

j

)
ĉn−1−j ĉj(·+ π). (6.11)

Since ĉ = âb̂, we can factorize one â out from the right hand side of (6.11) and the

rest is denoted as âd. As we shall see in a moment that the mask ad is indeed a

dual mask of a and the corresponding refinable function φd is indeed a dual of φ.

The detailed construction is given as the followings.

Construction 6.7. Let φ be pseudo-spline of type II with order (m, l) and a be

its refinement mask. Let b be the initial dual mask of a satisfying all the conditions

in Condition 6.4, and ĉ = âb̂. Then define mask ad as

âd := b̂ · ĉn−1 ·
n−1∑
j=0

(
2n− 1

j

)
ĉn−1−j

(
1− ĉ

)j

. (6.12)

The corresponding refinable function is defined as

φ̂d(ξ) :=
∞∏

j=1

âd(2−jξ).
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Remark 6.8. The idea here is not new. Similar idea as given in the above construc-

tion can also be found in [29, 54, 56, 57]. Furthermore, this idea was used in [31]

to construct multivariate biorthogonal wavelets via the multivariate interpolatory

refinable functions, which also leads to the dual refinable functions of box splines

with arbitrarily high regularity. The interested reader may consult these papers

for details. Here, we not only give a construction, but also give a more precise

regularity analysis for the construction. It is also worth to point out that one can

choose the power 2n instead of 2n− 1 in (6.10). The argument presented here still

works after a proper adjustment of the last term in the summation of the definition

of âd(see e.g. [31]). Finally, we note that all the dual refinable functions obtained

by Construction 6.7 are symmetric, which is desirable in many applications.

To ensure that the corresponding refinable functions φd is indeed a dual of φ,

we need to verify that (see e.g. [7] or [53]): (1), ad is a dual mask of a, i.e. a and ad

satisfy (6.2); (2), φd is stable. For the first condition, we note that the first n terms

of the expansion of (6.10) is exactly ââd and the last n terms of the expansion of

(6.10) is exactly â(·+ π)âd(·+ π) by applying the identity ĉ(·+ π) = 1− ĉ. Thus,

the first condition follows from identity (6.10). For the second condition, since

φd is compactly supported, the stability of φd will follow from that: (1), φd is

pre-stable; (2), φd ∈ L2(R). We will prove the pre-stability of φd in Proposition

6.10 and φd ∈ L2(R) in Theorem 6.11. In fact, Theorem 6.11 says more than

φd ∈ L2(R). It shows that the regularity exponent of φd increases as we choose

larger n in Construction 6.7.

The proof of the following proposition employs the following lemma of [31].

Lemma 6.9. [31]. Let φ1 and φ2 be two compactly supported refinable functions in

L2(R) with refinement masks a1 and a2. Suppose the set of all zeros of â1 contains

that of the mask â2. If φ1 is pre-stable, then φ2 is pre-stable.
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Proposition 6.10. Let φd be the compactly supported refinable distribution with

refinement mask ad given in (6.12). Then φd is pre-stable.

Proof. To show the the pre-stability of φd, we prove that the set of all zeros of

âd coincides with that of ĉ. With this, the pre-stability of φd follows from the

pre-stability of η by applying Lemma 6.9. In fact, since for ξ ∈ R

ĉ(ξ) ≥ 0, and ĉ(ξ) + ĉ(ξ + π) = 1,

one obtains that 0 ≤ ĉ ≤ 1. Applying (6.9) with m = n, l = n− 1, y = 1− ĉ and

by the fact that ĉ ≤ 1, one obtains

n−1∑
j=0

(
2n− 1

j

)
ĉn−1−j(1− ĉ)j =

n−1∑
j=0

(
n− 1 + j

j

)
(1− ĉ)j ≥ 1.

Since

âd = b̂ · ĉn−1 ·
n−1∑
j=0

(
2n− 1

j

)
ĉn−1−j(1− ĉ)j,

we have that the set of all zeros of âd coincides with that of b̂ĉn−1. Furthermore,

since ĉ = âb̂ and since

b̂ĉn−1 = b̂(âb̂)n−1 = ân−1b̂n,

the set of all zeros of ĉ coincides with that of b̂ĉn−1 and, hence, coincides with that

of âd.

Now we shall analyze the regularity of φd by estimating the decay of |φ̂d|, and

show that the regularity of φd increases as the parameter n in Construction 6.7

increases.

Let

L :=
n−1∑
j=0

(
2n− 1

j

)
ĉn−1−j(1− ĉ)j. (6.13)

Then,

âd = b̂ĉn−1L.
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This gives that

φ̂d(ξ) = ϑ̂(ξ)η̂n−1(ξ)
∞∏

j=1

L(2−jξ). (6.14)

Since |ϑ̂| is uniformly bounded and since η̂ = ϑ̂φ̂, we have

|ϑ̂η̂n−1| = |ϑ̂nφ̂n−1| ≤ C|φ̂n−1|.

Recall that the optimal decay of |φ̂| was given in Theorem 3.4, i.e.

|φ̂(ξ)| ≤ C(1 + |ξ|)−s,

where

s := 2m− log Pm,l(
3
4
)

log 2
(6.15)

and

Pm,l(y) =
l∑

j=0

(
m + l

j

)
yj(1− y)l−j. (6.16)

Consequently we have

|ϑ̂(ξ)η̂n−1(ξ)| ≤ C(1 + |ξ|)−s(n−1). (6.17)

Since, by (6.9),

L =
n−1∑
j=0

(
n− 1 + j

j

)
(1− ĉ)j,

and since 0 ≤ ĉ ≤ 1, one can see that L reaches its maximum value at ĉ = 0 (note

that ĉ(π) = 0). Therefore

max
ξ∈[0,2π]

|L(ξ)| =
(

2n− 1

n

)
.

Then Lemma 7.1.1 of [15] gives that

∞∏
j=1

L(2−jξ) ≤ C(1 + |ξ|)
log (2n−1

n )
log 2 ,

and hence, by (6.14), (6.17) and the above inequality, one obtains,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−γ, (6.18)



6.1 Duals of Pseudo-splines 78

where

γ := s(n− 1)− log
(
2n−1

n

)

log 2
. (6.19)

Hence φd ∈ Cγ−1−ε.

We note that the estimate given here is not optimal. It leads to a lower bound

of the regularity of φd. We remark that the optimal Sobolev regularity of a given

refinable function can be obtained via its mask by applying transfer operator (see

[15], [52] and references in there). Although the transfer operator approach is very

efficient to compute the exact Sobolev regularity for each given refinable function,

it cannot be used to analyze the regularity for a set of refinable functions obtained

through a systematic construction.

In the following theorem we will show that for pseudo-splines of type II with

order m ≥ 2, the decay rate γ of |φ̂d| increases as n increases. Moreover, an

asymptotical analysis of the regularity of φd is provided.

Theorem 6.11. Let φd be the compactly supported refinable functions with refine-

ment mask ad given in (6.12). The decays of φ̂d is given by (6.18). Then:

1. The decay rate γ of φ̂d given in (6.19) increases as n increases. Consequently,

φd is continuous for all n ≥ 2 and its regularity exponent increases as n

increases, where φd ∈ Cγ−1−ε for all ε > 0. In particular, φd ∈ L2(R) for all

n ≥ 2.

2. Asymptotically for large n with fixed m, the decay rate γ is µn, where µ = s−2

with s defined in (6.15). Consequently we have,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−µn, φd ∈ Cµn,

asymptotically for large n

Proof. For part 1, we first show that γ increases as n increases, which is equivalent
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to show that

M := sn− log
(
2n+1
n+1

)

log 2
− s(n− 1) +

log
(
2n−1

n

)

log 2
> 0.

Simplifying M , one obtains

M = s−
log

(2n+1
n+1 )

(2n−1
n )

log 2

= s− log 4n+2
n+1

log 2

= s− 2− log
n+ 1

2

n+1

log 2

> s− 2.

Since the decay rate s decreases as l increases and increases as m increases (see

Proposition 3.5), and s > 2.678 for m = 2, l = 1, we have that s > 2.678 for all

m ≥ 2 and 0 ≤ l ≤ m − 1. Hence, we have M > s − 2 > 0. Consequently, the

regularity exponent γ − 1 − ε of φd increases as n increases. Since for n = 2 we

have that

γ = s− log 3

log 2
> 2.678− log 3

log 2
> 1.09,

this proves that φd is continuous for all n ≥ 2 and, hence, φd ∈ L2(R) for all n ≥ 2.

For part 2, we consider the asymptotic behavior of γ when n is large. Note that

γ = (n− 1)s− log
(
2n−1

n

)

log 2
= n

(
(1− 1

n
)s−

1
n

log
(
2n−1

n

)

log 2

)
.

By Stirling approximation, i.e. n! ∼ √
2πe(n+ 1

2
) log n−n (see e.g. [24]), we have

log n! ∼ log(
√

2πe(n+ 1
2
) log n−n)

∼ log
√

2π + (n +
1

2
) log n− n

∼ (
n log n− n

) log
√

2π + (n + 1
2
) log n− n

n log n− n

∼ (
n log n− n

)(1 + 1
2n

) log n− 1

log n− 1

∼ n log n− n. (6.20)
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Applying (6.20) one obtains,

log

(
2n− 1

n

)
= log(2n− 1)!− log n!− log(n− 1)!

∼ (2n− 1) log(2n− 1)− n log n− (n− 1) log(n− 1).

Applying the above approximation to the estimate of β one obtains

γ ∼ n

(
s−

1
n

(
(2n− 1) log(2n− 1)− n log n− (n− 1) log(n− 1)

)

log 2

)

∼ n

(
s− 2 log(2n− 1)− log n− log(n− 1)

log 2

)

∼ n
(
s− 2 log 2

log 2

)
= n(s− 2).

Thus we have shown that γ ∼ (s− 2)n, asymptotically for large n. Consequently,

one obtains that for large n,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−µn, φd ∈ Cµn,

with µ = s− 2.

So far we have shown in Proposition 6.10 that φd is pre-stable and proved in

part 1 of Theorem 6.11 that φd ∈ L2(R). Furthermore, φd is compactly supported

as one can easily see from the Construction 6.7. Therefore, we conclude that φd is

stable. Having the stability of φd, together with a and ad satisfying (6.2), Theorem

3.14 of [53] (also see [7]) leads to the conclusion that φ and φd is a pair of dual

refinable functions, i.e.

〈φ, φd(· − k)〉 = δ(k).

Therefore the corresponding pair of biorthogonal Riesz wavelets ψ and ψd can be

constructed by (6.3) and (6.4), and the systems X(ψ) and X(ψd) form a pair of

biorthogonal Riesz wavelet bases for L2(R).
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Remark 6.12. The pair of masks â, âd in Construction 6.7 can be viewed as one of

many possible factorizations of the trigonometric polynomial

n−1∑
j=0

(
2n− 1

j

)
ĉ2n−1−j ĉj(·+ π)

given by (6.11). In fact, we can choose factorization ĥ and ĥd arbitrarily such that

ĥĥd =
n−1∑
j=0

(
2n− 1

j

)
ĉ2n−1−j ĉj(·+ π).

When the compactly supported refinable functions corresponding to the masks h

and hd are in L2(R) and pre-stable, a dual pair of compactly supported biorthogonal

wavelet systems can be derived from them. For example, let n′ > 0 and define

ĥ := ĉn′ and ĥd :=
n−1∑
j=0

(
2n− 1

j

)
ĉ2n−2−n′−j(1− ĉ)j, n′ ≥ 1.

As long as n and n′ are chosen properly, one can get a desired dual pair of refinement

masks for a dual pair of compactly supported refinable functions. In particular,

let ĉ = cos2(ξ/2) be the mask of piecewise linear B-spline which is interpolatory.

Then, the construction here coincides with the biorthogonal wavelet construction

given in [7].

For the dual mask ad given in Construction 6.7, we cannot have an explicit

form of it in general, because we need to find mask b numerically first. For some

special pseudo-splines, however, we do have an explicit form for all the dual masks

constructed from Construction 6.7. In the next section we will give a detailed

construction of dual refinable functions from pseudo-splines of type II with order

(m,m− 1).

6.2 Duals of a Special Case

Let φ be pseudo-spline of type II with order (m,m − 1) with m ≥ 1, i.e.

an interpolatory refinable function, and let a be its refinement mask. Since φ is
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interpolatory, the mask â satisfies â + â(·+ π) = 1. Hence, b̂ in Condition 6.4 can

be simply chosen to be 1, and the corresponding refinable distribution is ϑ̂ = 1.

Then all the conditions in Condition 6.4 are satisfied. Following the construction

given by (6.12), one can obtain the dual mask âd as

âd := ân−1

n−1∑
j=0

(
2n− 1

j

)
ân−1−j

(
1− â

)j

. (6.21)

The corresponding refinable function φ̂d can be defined as

φ̂d(ξ) :=
∞∏

j=1

âd(2−jξ).

Since b̂ = 1, we have ĉ = b̂â = â, where c given in Proposition 6.6. Therefore, the

trigonometric polynomial L defined in (6.13) can now be written as,

L =
n−1∑
j=0

(
2n− 1

j

)
ân−1−j

(
1− â

)j

.

This gives that

φ̂d(ξ) = φ̂n−1(ξ)
∞∏

j=1

L(2−jξ).

Since â satisfies 0 ≤ â ≤ 1 and since ϑ̂ = 1, following a similar argument in Section

6.1 we have that

|φ̂d(ξ)| ≤ C(1 + |ξ|)−β, (6.22)

where the decay rate β satisfies

β = s(n− 1)− log
(
2n−1

n

)

log 2
(6.23)

with s′ = 2m− log Pm,m−1( 3
4
)

log 2
, and Pm,l(y) defined in (6.16). Hence φd ∈ Cβ−1−ε.

The decay estimates for |φ̂d| here are not accurate. However, for the simplest

case when m = 1, i.e. â = cos2(ξ/2), we do have optimal decay estimate for |φ̂d|.
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Indeed, in this case

âd = cos2n−2(ξ/2)
n−1∑
j=0

(
2n− 1

j

)
cos2(n−1−j)(ξ/2) sin2j(ξ/2)

= cos2n−2(ξ/2)
n−1∑
j=0

(
2n− 1

j

)
sin2j(ξ/2)(1− sin2(ξ/2))(n−1−j).

The optimal decay of φ̂d is

|φ̂d(ξ)| ≤ C(1 + |ξ|)−ρ, (6.24)

where

ρ := 2(n− 1)− log Pn,n−1(
3
4
)

log 2
. (6.25)

The complete construction and analysis for this special case have already been

given by [7] (see also [15]). In fact, by applying the approach in Remark 6.12 this

leads to their construction of a pair of biorthogonal compactly supported symmetric

wavelets with any prescribed regularity.

The following table gives the decay rates of |φ̂d| in (6.23) with some choices of

m and n.

β n=2 n=3 n=4 n=5 n=6

m = 2 1.0931 2.0342 2.9049 3.7350 4.5386

m = 3 1.6871 3.2222 4.6870 6.1110 7.5086

m = 4 2.2411 4.3282 6.3459 8.3230 10.2736

Table 6.1: In the above estimates of β, |φ̂d(ξ)| ≤ C(1 + |ξ|)−β.

Next, we will give an asymptotical analysis of the decay of φ̂d given in (6.22)

in terms of its refinement mask âd given in (6.21). For m = 1, the asymptotical

analysis of decay of φ̂d given in (6.24) can be done by following the analysis in [7]

or [15], which leads to the optimal decay rate 0.4150 · · · .
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Proposition 6.13. Let φd be the refinable function with the refinement mask

adgiven in (6.21). The decay of φ̂d is given by (6.22). Then:

1. For fixed m ≥ 2 and asymptotically for large n, we have

|φ̂d(ξ)| ≤ C(1 + |ξ|)−νn and φd ∈ Cνn,

where ν = 2(m− 1)− log Pm,m−1( 3
4
)

log 2
.

2. For fixed n ≥ 2 and asymptotically for large m, we have

|φ̂d(ξ)| ≤ C(1 + |ξ|)−σm and φd ∈ Cσm,

where σ =
(
2− log 3

log 2

)
(n− 1).

Proof. Part 1 is immediate from part 2 of Theorem 6.11 by letting s = 2m −
log Pm,m−1( 3

4
)

log 2
.

For part 2, let m be asymptotically large and n be fixed. Then,

β = (n− 1)

(
2m− log Pm,m−1(

3
4
)

log 2

)
− log

(
2n−1

n

)

log 2

∼ m(n− 1)

(
2−

1
m

log Pm,m−1(
3
4
)

log 2

)
.

Recall that we have already shown in Theorem 3.6 (see also [15, 58, 40]) that

1

m
Pm,m−1

(3

4

) ∼ log 3. (6.26)

Applying (6.26) one obtains

β ∼ m(n− 1)

(
2− log 3

log 2

)
=: σm.

Thus we have shown that with fixed n,

|φ̂d(ξ)| ≤ C(1 + |ξ|)−σm and φd ∈ Cσm,

with σ = (n− 1)
(
2− log 3

log 2

)
.
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m=1 m=2 m=3 m=4 m=5

ν 0.4150 0.6781 1.2721 1.8251 2.3532

Table 6.2: In the above estimates of ν, |φ̂d(ξ)| ≤ C(1 + |ξ|)−νn, asymptotically for

large n.

n=2 n=3 n=4 n=5 n=6

σ 0.4150 0.8301 1.2451 1.6601 2.0752

Table 6.3: In the above estimates of σ, |φ̂d(ξ)| ≤ C(1 + |ξ|)−σm, asymptotically for

large m.

Table 6.2 and 6.3 provide some numerical results for the asymptotic rates µ

and σ given by Proposition 6.13.

We shall now give two examples of biorthogonal Riesz wavelets constructed in

this section. In the first example, we start with pseudo-spline of type II with order

(2, 1) and n = 2; in the second one, we start with pseudo-spline of type II with

order (3, 2) and n = 2.

Example 6.14. We first choose â to be the refinement mask of a pseudo-spline of

type II with order (2, 1), i.e.

â = cos4(ξ/2)(1 + 2 sin2(ξ/2)).

By Construction 6.7 with n = 2 we have that

âd := â
(
3− 2 · â)

.

Define wavelet masks and wavelets as

b̂(ξ) = e−iξâd(ξ + π) and b̂d(ξ) = e−iξâ(ξ + π);

ψ̂(2ξ) = b̂(ξ)φ̂(ξ) and ψ̂d(2ξ) = b̂d(ξ)φ̂d(ξ),
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where φ̂ and φ̂d are the refinable functions corresponding to the refinement masks

â and âd. The systems X(ψ) and X(ψd) form a pair of biorthogonal wavelet bases

for L2(R). The figures of φ, φd, ψ and ψd are given in Figure 6.1.

Example 6.15. We first choose â to be the refinement mask of a pseudo-spline of

type II with order (3, 2), i.e.

â = cos6(ξ/2)(1 + 3 sin2(ξ/2) + 6 sin4(ξ/2)).

By Construction 6.7 with n = 2 we have that

âd := â
(
3− 2 · â)

.

Define wavelet masks and wavelets as

b̂(ξ) = e−iξâd(ξ + π) and b̂d(ξ) = e−iξâ(ξ + π);

ψ̂(2ξ) = b̂(ξ)φ̂(ξ) and ψ̂d(2ξ) = b̂d(ξ)φ̂d(ξ),

where φ̂ and φ̂d are the refinable functions corresponding to the refinement masks

â and âd. The systems X(ψ) and X(ψd) form a pair of biorthogonal wavelet bases

for L2(R). The figures of φ, φd, ψ and ψd are given in Figure 6.2.
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Figure 6.1: The figures of φ and φd in Example 6.14 are given in graphs (a) and

(b). Figures of the corresponding Riesz wavelets ψ and ψd are given in (c) and (d).
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Figure 6.2: The figures of φ and φd in Example 6.15 are given in graphs (a) and

(b). Figures of the corresponding Riesz wavelets ψ and ψd are given in (c) and (d).
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