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Summary

Wavelet analysis has been proved to be a powerful tool in both theoretical and applied

mathematics. It cuts up data or functions or operators into different frequency com-

ponents and then studies each component with a resolution matched to its scale. In

order to give such analysis more flexibility, the concept of frame was introduced into this

area. Frame is a redundant system which preserves more useful information for analysis.

In 1997, Ron and Shen [34] gave a systematical way for constructing tight affine frame

system based on multiresolution analysis which makes the construction of tight frame

painless. The application using tight frame system also becomes much easier.

However, the tight affine system is not shift invariant and hence restricts the application

of the tight frame system in some aspects where shift invariance is a key requirement.

To take over this matter, Ron and Shen put forward the concept of quasi-affine system.

This system is shift invariant and satisfies the tight frame property if and only if its

affine counterpart does. The first aim of this work is to give a systematical study of the

quasi-affine tight frame system, to give the explicit formula of decomposition and recon-

struction in such a system. We also connect this system with filter bank representation

to give a discrete description of the quasi-affine tight frame system, which is desirable

in application. Moreover, we give a necessary and sufficient condition on the initial low
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Summary vii

pass filter, from which a tight frame system can be constructed.

Next we use the properties of quasi-affine tight frame system to analyze deconvolution

problem, which is the second aim of this work. Deconvolution problem is an important

topic in inverse problems and arises in many applications, especially in those visual

communication related areas. We start from the low pass filter of the given convolution

equation to construct a corresponding tight frame system. The convolution equation

is then interpreted in the quasi-affine system derived from the constructed tight frame

using the idea of multiresolution analysis and its approximation. In such formulation,

deconvolution becomes a process of filling missing wavelet coefficients. This approach

is different from other available methods and give a new angle of view to deconvolution

problem. We analyze the convergence of the algorithms derived from this new approach

and the minimization properties of the solutions. Numerical simulation is conducted

to show the effectiveness of the algorithms. Furthermore, as a direct application of the

deconvolution algorithms, the connection with high resolution image reconstructions is

briefly discussed.



Introduction

This thesis mainly discusses the tight wavelet frame system and the deconvolution prob-

lem. In this chapter, we briefly review these two areas and describe our research problems.

Wavelet Frame: Redundant Wavelet System

The development of wavelet theory cannot go without Fourier analysis. Fourier analysis

is the core of pure and applied mathematics and the orthogonal property of the Fourier se-

ries plays a crucial role in various applications. Analogous to such classic theory, wavelet

analysis inherits the key properties of its ancestor and at the same time, it is able to

locate the information of functions or signals in both time and frequency domains. Since

there exist real-time algorithms to obtain the coefficients of wavelet series and recover

the original functions from such coefficients, wavelet analysis becomes popular in many

applications and in some aspects, performs better than Fourier analysis. The examples

of application can be found in signal processing (denoising, singularity detecting), image

compression (JPEG 2000) and numerical analysis (numerical integration).

Although most applications of wavelets use orthonormal wavelet bases, especially the

wavelet family constructed by Daubechies [18], we do have some types of applications

1



Introduction 2

which desire a redundant wavelet family. The typical examples are those applications

related to signal denoising and image compression. Moreover, the orthonormal “restric-

tion” makes it difficult to construct wavelets adaptive to specific application problems.

These, together with other reasons, motivate people to find redundant wavelet family, in

which more information is hoped to be kept.

As an easy way, the concept of frame is brought into wavelet analysis. Similar to the

orthonormal one, the wavelet frame (also called affine frame) guarantees the perfect de-

composition and reconstruction of the given signals or functions. We are particularly

interested in the tight wavelet frames (tight affine frames), especially those constructed

by the multiresolution analysis, since such wavelet frames guarantee the existence of fast

decomposition and reconstruction algorithms. A systematic study of the construction

of such frames can be found in [15, 20, 34]. The unitary extension principle (see Theo-

rem 1.1) in [34] and more generally, the oblique extension principle in [15, 20] make the

construction of tight wavelet frames painless once the low pass filter is given. Further, we

can get symmetric or antisymmetric tight wavelets (framelets) from such constructions

with only one multiresolution analysis, which is difficult (even impossible) for orthonor-

mal wavelets.

The tight wavelet frame system is dilation invariant but not shift invariant. There is a

sampling process in the data sequence. However, in some applications the size of data set

needs to be stationary during the decomposition and reconstruction process. This leads

to the Algorithm à Trous [33, Chapter 5] in which the sampling process is transferred to

the filters and the size of data is kept. One the other hand, Ron and Shen introduced the

concept of quasi-affine system [34] to overcome the difficulties in the study of construction

of wavelet frames. Such system is then restudied in [16] to remove a minor assumption.

But in neither paper is the decomposition and reconstruction algorithm in quasi tight

wavelet frame (quasi-affine tight frame) discussed. Our first main goal of this work is

to fully study the decomposition and reconstruction of a function in a quasi-system. As

shown by our result, the decomposition and reconstruction algorithm in a quasi-affine

tight frame system coincide with the Algorithm à Trous. We also give a discrete form of
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the decomposition and reconstruction process. This is important not only for our later

analysis but also for real-time implementation.

Deconvolution: Ill-posed Inverse Problem

The second purpose of this work is to give a new approach to reconstruct a solution of

the convolution equation

h0 ∗ v = b + ǫ = c (♣)

where h0 is a low pass filter (i.e.
∑

k∈Z
h0[k] = 1) and b, c, ǫ are sequences in ℓ2(Z) and

ǫ being the error term satisfying ‖ǫ‖ℓ2(Z) ≤ ε.

There are many real life problems which can be modelled by a deconvolution process.

For example, measurement devices and signal communication can introduce distortions

and add noise to the original signal. Inverting the degradation is often modelled by a

deconvolution process, i.e. a process of finding a solution in (♣). In fact, the deconvo-

lution problem is a critical factor in many applications, especially visual-communication

related applications including remote sensing, military imaging, surveillance, medical

imaging and high resolution image reconstructions.

Solving equation (♣) is an inverting process, which is often numerically unstable and thus

amplifies the noise considerably. Hence, an efficient process of noise removal must be built

in the numerical algorithms. The earlier formulation of the problem was proposed in [37]

using linear algorithm and in [26] and [36] applying the regularization idea to solve a

system of linear equations the coefficient matrix of which is ill-conditioned. Since then,

there are many papers devoted to this method in the literature. Because this approach

is not the focus of this thesis, instead of a detailed count, we simply refer readers to [25]

and [30] and the references there for a complete reference.

The focus of this thesis is to use wavelet (more generally, tight wavelet frame) to solve (♣).

Recently, there are several papers on using wavelet methods to solve inverse problems,

and in particular, deconvolution problems. One of the main ideas is to construct a

wavelet or “wavelet inspired” basis that can almost diagonalize the given operator. The
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underlying solution has a sparse expansion with respect to the chosen basis. The Wavelet-

Vaguelette decomposition proposed in [21], [23] and [24] and the deconvolution in mirror

wavelet bases in [30] and [31] can be both viewed as examples of this strategy. Another

approach is to apply Galerkin-type methods to inverse problems using an appropriate,

but fixed wavelet basis (see e.g. [1] and [17]). Again, the idea there is that if the given

operator has a sparse representation and the solution has a sparse expansion with respect

to the wavelet basis, then the inversion is reduced approximately to the inversion of a

truncated operator. A few new iterative thresholding algorithms which are different

from other wavelet approaches and are developed simultaneously and independently are

proposed in [8, 10, 11, 19, 21]. It only requires that the underlying solution has a sparse

expansion with respect to a given system without any attempt to “almost diagonalize”

the convolution operators.

The main idea of [19, 21] is to expand each iteration with respect to the chosen orthonor-

mal basis for a given algorithm such as the Landweber method. Then a thresholding

algorithm is applied to the coefficients of this expansion. The result is used to form

the next iteration. The algorithm is shown to converge to the minimizer of certain cost

functional.

In the studies of high resolution image reconstructions, the wavelet-based (in fact the

frame-based) reconstruction algorithms are developed in [7, 8, 9], and later [10, 11]

through the perfect reconstruction formula of a bi-frame or tight frame system which

has h0 as its primary low pass filter. The algorithms approximate iteratively the co-

efficients of wavelet frame folded by the given low pass filter. By this approach, many

available techniques developed in the wavelet literatures, such as wavelet-based denoising

schemes, can be built in the iteration. When there are no displacement errors, the high

resolution image reconstruction is exactly the deconvolution problem. Here, we extend

the algorithms in the above mentioned papers to solve the equation (♣). Algorithm 5.1 is

used in papers mentioned above, in particular in [8, 10]. This method has been extended

to algorithms for high resolution image reconstructions with displacement errors in [10]

and [11]. Algorithm 4.1 is given in [11] as one of the options which is motivated by
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the approaches taken by [19, 21]. Algorithms given in [12, 13] is based on Algorithm

4.2 where high resolution images are constructed from a series of video clips. The main

ideas of all three algorithms are the same. i.e. an iterative algorithm combined with a

denoising scheme applied to each iterate. The differences are different denoising schemes

applied to different algorithms which in turn minimizes different cost functionals.

The convergence analysis of Algorithm 2.1 (the iteration without built-in denoising

scheme) has already been established in [8] and [11]. However, the convergence of Al-

gorithm 2.2, 2.3, 4.1, 4.2, 5.1 has not been discussed so far. The current work aims to

build up a complete theory for these algorithms. We will first give a solid and complete

formulation of reconstructions of a solution to equation (♣) in terms of multiresolution

analysis and its associated frame system. Then the convergence of all algorithms will be

given. A complete analysis of minimization properties, i.e. in which sense the solution

derived from the algorithms attains its optimal property, will be given. Finally, the sta-

bility of the algorithms are also given, which shows that numerical solution approaches

the exact solution when the noise level decreases to zero. As it has already been shown

many times in the papers [8, 10, 11, 12, 13], algorithms are very numerically efficient,

easy to implement and adaptive to many different applications such as high resolution

image reconstructions with displacement errors (see e.g. [10] and [11]). In this thesis, a

theoretical foundation of the underlying algorithms used in those papers is fully laid out.

The thesis is organized as follows: Chapter 1 gives the notation and proves basic results

of tight frame system that will be used in this thesis. Chapter 2 devotes a formulation of

the deconvolution problem in terms of multiresolution analysis and its associated wavelet

frame. Algorithms will be derived from this formulation. Chapter 3 gives a complete

analysis of the algorithms, including the convergence and minimization properties of

the algorithms. Chapter 4 focuses on the finite dimensional data set, i.e. the data set

has only finitely many entries. Algorithms 2.2 and 2.3 for infinite dimensional data

set can be converted for this case by imposing proper boundary conditions. Since any

numerical solution of deconvolution ultimately deals with finite dimensional data sets,

such conversion is necessary. As we will see, in many cases, the discussion will be
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simpler and we are able to obtain better results for many cases. Since the numerical

implementations and simulations are discussed in details in [8, 10, 11] and our focus here

is to lay the foundation of the algorithms, we omit the detailed discussions of numerical

implementations here. Finally, the deconvolution algorithms are connected with high

resolution image reconstructions in Chapter 5, where the way to generalize algorithms

for data in higher dimensional spaces is also included.



Chapter 1
Affine and Quasi-affine Tight Frame

This chapter focuses on the properties of affine and quasi-affine tight frame systems. We

first review the definition and basic properties of affine tight frame system. After that, the

quasi-affine tight frame system is introduced and the decomposition and reconstruction

algorithm is given paralleled to the affine counterpart.

1.1 Tight Wavelet Frame

We give here a brief introduction of the tight wavelet frame and its quasi-affine coun-

terpart. The decompositions and reconstructions for the affine tight frame system are

known (e.g. [20]); however, the analysis of decomposition and reconstruction of quasi-

affine systems is not systematically given. Since these results are crucial for our analysis,

we introduce them here and give out the proofs in details. At the same time, we set the

notations used in this thesis.

By the space Lp(R), we mean that all the functions f(x) satisfy

‖f‖Lp(R) :=





(∫
R
|f(x)|p dx

) 1

p <∞, 1 ≤ p <∞;

ess supx∈R |f(x)| <∞, p = ∞;

7



1.1 Tight Wavelet Frame 8

and ℓp(Z) is the set of all sequences defined on Z which satisfy that

‖h‖ℓp(Z) :=





(∑
k∈Z

|h[k]|p
) 1

p <∞, 1 ≤ p <∞;

supk∈Z |h[k]| <∞, p = ∞.

The Fourier transform of a function f ∈ L1(R) is defined as usual by:

f̂(ω) =

∫

R

f(x)e−iωx dx, ω ∈ R,

and its inverse transform is

f(x) =
1

2π

∫

R

f̂(ω)eiωx dω, x ∈ R.

They can be extended to the functions in L2(R). Similarly, we can define the Fourier

series for a sequence h ∈ ℓ2(Z) by

ĥ(ω) =
∑

k∈Z

h[k]e−ikω, ω ∈ R.

For any function f ∈ L2(R), the dyadic dilation operator D is defined by Df(x) :=
√

2f(2x) and the translation operator T is defined by Taf(x) := f(x − a) for a ∈ R.

Given j ∈ Z, we have TaD
j = DjT2ja. Further, a space V is said to be integer-shift

invariant if given any function f ∈ V, Tjf ∈ V for j ∈ Z.

A system X ⊂ L2(R) is called a tight frame of L2(R) if

‖f‖2
L2(R) =

∑

g∈X

| 〈f, g〉 |2,

holds for all f ∈ L2(R), where 〈·, ·〉 is the inner product in L2(R) and ‖ · ‖L2(R) =
√

〈·, ·〉.
This is equivalent to

f =
∑

g∈X

〈f, g〉 g, f ∈ L2(R).

It is clear that an orthonormal basis is a tight frame.

For given Ψ := {ψ1, . . . , ψr} ⊂ L2(R), define the affine system

X(Ψ) := {ψℓ,j,k : 1 ≤ ℓ ≤ r; j, k ∈ Z},
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where ψℓ,j,k = DjTkψℓ = 2
j/2

ψℓ(2
j · −k). When X(Ψ) forms an orthonormal basis of

L2(R), then ψℓ, ℓ = 1, . . . , r, are called the orthonormal wavelets. When X(Ψ) forms a

tight frame of L2(R), then ψℓ, ℓ = 1, . . . , r, are called the tight framelets.

The tight framelets can be constructed by the unitary extension principle (UEP) given

in [34], which uses the multiresolution analysis (MRA). The MRA starts from a refinable

function φ. A compactly supported function φ is refinable if it satisfies a refinement

equation

φ(x) = 2
∑

k∈Z

h0[k]φ(2x − k), (1.1)

for some sequence h0 ∈ ℓ2(Z). By the Fourier transform, the refinable equation (1.1) can

be given as

φ̂(ω) = ĥ0(ω/2)φ̂(ω/2), a.e. ω ∈ R.

We call h0 the refinement mask of φ and ĥ0(ω) the refinement symbol of φ.

For given finitely supported h0 with ĥ0(0) = 1, the refinement equation (1.1) always has

distribution solution which can be written in the Fourier domain as

φ̂(ω) =

∞∏

j=1

ĥ0(2
−jω), a.e. ω ∈ R.

In the following discussion, we require h0 being finitely supported. Then the correspond-

ing refinable function φ satisfies that

ess supω∈R

∑

k∈Z

|φ̂(ω + 2kπ)|2 <∞, (1.2)

whenever φ ∈ L2(R) (see [28]).

To build up a multiresolution analysis, we need the refinable function φ ∈ L2(R). For a

compactly supported refinable function φ ∈ L2(R), let V0 be the closed shift invariant

space generated by {φ(· − k) : k ∈ Z} and Vj := {f(2j ·) : f ∈ V0}, j ∈ Z. It is known

that when φ ∈ L2(R) is a compactly supported refinable function, then {Vj}j∈Z forms

a multiresolution analysis. Recall that a multiresolution analysis is a family of closed

subspaces {Vj}j∈Z of L2(R) that satisfies: (i) Vj ⊂ Vj+1, (ii)
⋃

j Vj is dense in L2(R),

and (iii)
⋂

j Vj = {0} (see [6] and [29]).
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For given MRA of nested spaces Vj , j ∈ Z with the underlying refinable function φ and

the refinement mask h0, it is well known that (e.g. see [6]) for any ψ ∈ V1, there exists

a 2π periodic function ϑ, such that

ψ̂(2·) = ϑφ̂.

Let Ψ := {ψ1, . . . , ψr} ⊂ V1, then

ψ̂ℓ(2·) = ĥℓφ̂, ℓ = 1, . . . , r, (1.3)

where ĥ1, . . . , ĥr are 2π periodic functions and are called framelet symbols. In the time

domain, (1.3) can be written as

ψℓ(x) = 2
∑

k∈Z

hℓ[k]φ(2x − k). (1.4)

We call h1, . . . ,hr framelet masks. We also call the refinement mask h0 the low pass

filter and h1, . . . ,hr the high pass filters of the system. The UEP gives conditions on

{ĥℓ}r
ℓ=0, such that Ψ becomes a set of tight framelets with X(Ψ) being a tight frame of

L2(R).

Theorem 1.1 (Unitary Extension Principle, [34]). Let φ ∈ L2(R) be the refinable func-

tion with the refinement mask h0 satisfying ĥ0(0) = 1 that generates an MRA {Vj}j∈Z.

Let (h1, . . . ,hr) be a set of sequences with
(
ĥ1, . . . , ĥr

)
being a set of 2π-periodic mea-

surable functions in L∞[0, 2π]. If the equalities

r∑

ℓ=0

|ĥℓ(ω)|2 = 1 and

r∑

ℓ=0

ĥℓ(ω)ĥℓ(ω + π) = 0 (1.5)

hold for almost all ω ∈ [−π, π], then the system X(Ψ) where Ψ = {ψ1, . . . , ψr} defined

in (1.3) by (h1, . . . ,hr) and φ forms a tight frame in L2(R).

We will use (1.5) in terms of sequences h0, . . . ,hr. The first condition

r∑

ℓ=0

|ĥℓ(ω)|2 = 1

in terms of corresponding sequences is

r∑

ℓ=0

∑

k∈Z

hℓ[k]hℓ[k − p] = δ0,p, p ∈ Z, (1.6)
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where δ0,p equals 1 when p = 0 and 0 otherwise. The second condition

r∑

ℓ=0

ĥℓ(ω)ĥℓ(ω + π) = 0

can be written in terms of the sequences as

r∑

ℓ=0

∑

k∈Z

(−1)k−phℓ[k]hℓ[k − p] = 0, p ∈ Z. (1.7)

With the UEP, the construction of tight framelets become painless. For example, one

can construct tight framelets from spline easily. Next, we give some examples that will

be used in our numerical simulations and the high resolution image reconstructions in

[8, 10, 11].

Example 1.1. Let h0 = [14 ,
1
2 ,

1
4 ] be the refinement mask of the piecewise linear function

φ(x) = max (1 − |x|, 0). Define h1 = [−1
4 ,

1
2 ,−1

4 ] and h2 = [
√

2
4 , 0,−

√
2

4 ]. Then ĥ0, ĥ1

and ĥ2 satisfy (1.5). Hence, the system X(Ψ) where Ψ = {ψ1, ψ2} defined in the way

of (1.3) by using h1, h2 and φ is a tight frame of L2(R). This is the first example

constructed via the UEP in [34].

Example 1.2. Let h0 = [ 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16 ] be the refinable mask of φ. Then φ is the

piecewise cubic B-spline. Define h1, h2, h3, h4 as follows:

h1 = [ 1
16 ,−1

4 ,
3
8 ,−1

4 ,
1
16 ], h2 = [−1

8 ,
1
4 , 0,−1

4 ,
1
8 ],

h3 = [
√

6
16 , 0,−

√
6

8 , 0,
√

6
16 ], h4 = [−1

8 ,−1
4 , 0,

1
4 ,

1
8 ].

Then ĥ0, . . . , ĥ4 satisfy (1.5) and hence the system X(Ψ) where Ψ = {ψℓ}4
ℓ=1, defined

in the way of (1.3) by h1,h2,h3,h4 and φ is a tight frame of L2(R). This is also first

constructed in [34].

The UEP construction is also true for the dilation other than 2. Following is an exam-

ple constructed by the UEP with dilation 4. The low pass filter h0 is modelled as the

convolution kernel for the case of 4×4 sensor arrays in high resolution image reconstruc-

tion. The tight frame system was constructed in [11] to use their framelet approach to

reconstruct high resolution images.
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Example 1.3. Let h0 = [18 ,
1
4 ,

1
4 ,

1
4 ,

1
8 ] be the refinable mask of φ. The other seven filters

are given by:

h1 = [18 , 0, 0, 0,−1
8 ], h2 = [18 , 0,−1

4 , 0,
1
8 ], h3 = [18 ,−1

4 , 0,
1
4 ,−1

8 ],

h4 =
√

2
8 cos(π

8 )[1,
√

2, 0,−
√

2,−1], h5 =
√

2
8 sin(π

8 )[1,−
√

2, 0,
√

2,−1],

h6 =
√

2
8 [cos(π

8 ),−
√

2 sin(π
8 ),−2 sin(π

8 ),−
√

2 sin(π
8 ), cos(π

8 )],

h7 =
√

2
8 [sin(π

8 ),−
√

2 cos(π
8 ), 2 cos(π

8 ),−
√

2 cos(π
8 ), sin(π

8 )].

Then h0,h1,h2,h3,h4,h5,h6,h7 satisfy that

7∑

ℓ=1

ĥℓ(ω)ĥℓ(ω +
2pπ

4
) = δ0,p, p = 0, 1, 2, 3.

The UEP implies the corresponding {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7} defined by

ψ̂ℓ(ω) = ĥℓ(
ω

4
)φ̂(

ω

4
), ℓ = 1, 2, 3, 4, 5, 6, 7,

are the tight framelets and the system X(Ψ) is a tight frame system of L2(R).

The deconvolution process has to be formulated by quasi-affine systems that were first

introduced in [34]. A quasi-affine system from level J is defined as

Definition 1.1. Let Ψ = {ψ1, . . . , ψr} be a set of functions. A quasi-affine system from

level J is defined as

Xq
J(Ψ) = {ψq

ℓ,j,k : 1 ≤ ℓ ≤ r; j, k ∈ Z},

where ψq
ℓ,j,k is defined by

ψq
ℓ,j,k :=





DjTkψℓ, j ≥ J ;

2
j−J

2 T2−JkD
jψℓ, j < J.

The quasi-affine system is obtained by over sampling the affine system. More precisely,

we over sample the affine system starting from level J − 1 and downward to a 2−J -shift

invariant system. Hence, the whole quasi-affine system is a 2−J -shift invariant system.

The quasi-affine system from level 0 was first introduced in [34] to convert a non-shift

invariant affine system to a shift invariant system. Further, it was shown in [34, Theorem



1.1 Tight Wavelet Frame 13

5.5] that the affine system X(Ψ) is a tight frame of L2(R) if and only if Xq
J (Ψ) is a tight

frame of L2(R).

In our analysis, we use the quasi-interpolatory operator. Let {Vj}, j ∈ Z be a given MRA

with underlying refinable function φ and Ψ = {ψ1, . . . , ψr} be the set of corresponding

tight framelets derived from the UEP. The quasi-interpolatory operator in the affine

system X(Ψ) generated by Ψ is defined, for f ∈ L2(R),

Pj : f 7→
∑

k∈Z

〈f, φj,k〉φj,k.

It is clear that Pjf ∈ Vj . As shown in [20, Lemma 2.4], this quasi-interpolatory operator

is the same as truncated representation

Qj : f 7→
r∑

ℓ=1

∑

j′<j,k∈Z

〈f, ψℓ,j′,k〉ψℓ,j′,k.

Furthermore, a standard framelet decomposition given in [20] says that

Pj+1f = Pjf +
r∑

ℓ=1

∑

k∈Z

〈f, ψℓ,j,k〉ψℓ,j,k and Pjf = Qjf. (1.8)

When we consider the MRA based quasi-affine system Xq
J(Ψ) generated by Ψ, the spaces

Vj , j < J in the former MRA for the affine system are replaced by V q,J
j , j < J , for the

quasi-affine system. Compared to the space Vj which is spanned by function φj,k, each

space V q,J
j is spanned by functions φq

j,k, where φq
j,k is defined by

φq
j,k :=





DjTkφ, j ≥ J ;

2
j−J

2 T2−JkD
jφ, j < J.

The spaces V q,J
j , j < J are 2−J -shift invariant. We can define the quasi-interpolatory

operator P q,J
j and the truncated operator Qq,J

j for the quasi-affine system similarly:

P q,J
j : f 7→

∑

k∈Z

〈f, φq
j,k〉φ

q
j,k (1.9)

and

Qq,J
j : f 7→

r∑

ℓ=1

∑

j′<j,k∈Z

〈f, ψq
ℓ,j′,k〉ψ

q
ℓ,j′,k. (1.10)
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The quasi-interpolatory operator P q,J
j maps f ∈ L2(R) to V q,J

j . From the definition of

φq
j,k, we can see that P q,J

j = Pj when j ≥ J and these two operators are different only

when j < J . Moreover, since for an arbitrary f ∈ L2(R) and j < J ,

P q,J
j f =

∑

k∈Z

〈f, φq
j,k〉φ

q
j,k

=
∑

k∈Z

〈f, 2
j−J

2 T2−JkD
jφ〉2

j−J
2 T2−JkD

jφ

= 2j−J−0
∑

k∈Z

〈f,DJD−JT2−JkD
jφ〉DJD−JT2−JkD

jφ

= DJ
∑

k∈Z

〈D−Jf, 2
j−J−0

2 TkD
j−Jφ〉2 j−J−0

2 TkD
j−Jφ

= DJP q,0
j−JD

−Jf,

one only needs to understand the case J = 0. In this case we simplify our notation by

setting

P q
j := P q,0

j , Qq
j := Qq,0

j (1.11)

for the quasi-interpolatory operators and

V q
j := V q,0

j

for the nested spaces. From now on, we only give the properties for P q
j and corresponding

spaces V q
j and the associated quasi-affine system Xq(Ψ) := Xq

0(Ψ). The corresponding

results for the over sampling rate of 2−JZ can be obtained similarly. Thus we only

consider the case of quasi-affine system Xq(Ψ).

From the following result we can see that for operator P q
j , a decomposition and recon-

struction formula similar to (1.8) holds in quasi-affine tight frame system.

Lemma 1.1. Let X(Ψ), where the framelets Ψ = {ψ1, . . . , ψr}, be the affine tight frame

system obtained from h0 and φ via the UEP and Xq(Ψ) be the quasi-affine frame derived

from X(Ψ). Then we have

P q
j+1f = P q

j f +

r∑

ℓ=1

∑

k∈Z

〈f, ψq
ℓ,j,k〉ψ

q
ℓ,j,k, f ∈ L2(R). (1.12)
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Proof. When j ≥ 0, we have φq
j,k = DjTkφ = φj,k and ψq

j,k = DjTkψ = ψj,k, which imply

that

Pjf =
∑

k∈Z

〈f, φj,k〉φj,k =
∑

k∈Z

〈f, φq
j,k〉φ

q
j,k = P q

j f,

and
r∑

ℓ=1

∑

k∈Z

〈f, ψq
ℓ,j,k〉 =

r∑

ℓ=1

∑

k∈Z

〈f, ψℓ,j,k〉.

Since in [20, Lemma 2.4], it has already been proved that

Pj+1f = Pjf +

r∑

ℓ=1

∑

k∈Z

〈f, ψℓ,j,k〉ψℓ,j,k,

we have

P q
j+1f = Pj+1f = Pjf +

r∑

ℓ=1

∑

k∈Z

〈f, ψℓ,j,k〉ψℓ,j,k = P q
j f +

r∑

ℓ=1

∑

k∈Z

〈f, ψq
ℓ,j,k〉ψ

q
ℓ,j,k,

i.e. the identity (1.12) holds when j ≥ 0. Next we show (1.12) also holds for j < 0. We

first denote φ as ψ0.

By the definitions of refinable equation (1.1) and framelet (1.4), one obtains that for

ℓ = 0, 1, . . . , r,

ψℓ(x) = 2
∑

k∈Z

hℓ[k]φ(2x − k).

This leads to

ψq
ℓ,j,k = 2jTkψℓ(2

j ·)

= 2j+1Tk(
∑

k′∈Z

hℓ[k
′]ψ0(2

j+1 · −k′))

=
∑

k′∈Z

hℓ[k
′]2j+1ψ0(2

j+1(· − k − 2−j−1k′))

=
∑

k′∈2−j−1Z

hℓ[2
j+1k′]2j+1ψ0(2

j+1(· − k − k′)).

We define the dilated sequence hℓ,j by

hℓ,j[k] =





hℓ[2
j+1k], k ∈ 2−j−1Z;

0, k /∈ 2−j−1Z.
(1.13)
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Such sequence hℓ,j is obtained inductively by inserting 0 between every two entries in

hℓ,j+1 with hℓ,−1 = hℓ. With the dilated sequence, we have

ψq
ℓ,j,k =

∑

k′∈Z

hℓ,j[k
′]ψq

0,j+1,k+k′,

and moreover, the right hand side of (1.12) can be written as follows:

r∑

ℓ=0

∑

k∈Z

〈f, ψq
ℓ,j,k〉ψ

q
ℓ,j,k

=

r∑

ℓ=0

∑

k∈Z

(∑

k′∈Z

hℓ,j[k′]〈f, ψq
0,j+1,k′+k〉

)( ∑

k′′∈Z

hℓ,j[k
′′]ψq

0,j+1,k′′+k

)

=
∑

k′∈Z

∑

k′′∈Z

( r∑

ℓ=0

∑

k∈Z

hℓ,j[k]hℓ,j[k + k′′ − k′]
)
〈f, ψq

0,j+1,k′〉ψq
0,j+1,k′′.

Next, we check that
∑r

ℓ=0

∑
k∈Z

hℓ,j[k]hℓ,j[k + k′′ − k′] = δ0,k′−k′′ . When k − k′′ ∈
2−j−1Z, there exists p ∈ Z such that k′ − k′′ = 2−j−1p and we have

r∑

ℓ=0

∑

k∈Z

hℓ,j[k]hℓ,j[k + k′′ − k′] =
r∑

ℓ=0

∑

k∈Z

hℓ,j[k]hℓ,j[k − 2−j−1p]

=
r∑

ℓ=0

∑

k∈2−j−1Z

hℓ,j[k]hℓ,j[k − 2−j−1p]

=
r∑

ℓ=0

∑

k∈Z

hℓ[k]hℓ[k − p] = δ0,p.

The last identity follows by (1.6). The sum is nonzero if and only if p = 0, which is

exactly k′ = k′′. When k′ − k′′ 6∈ 2−j−1Z, there exist p1, p2 ∈ Z and p2 6∈ 2−j−1Z such

that k′ − k′′ = 2−j−1p1 + p2. Then we have

r∑

ℓ=0

∑

k∈Z

hℓ,j[k]hℓ,j[k + k′′ − k′] =
r∑

ℓ=0

∑

k∈Z

hℓ,j[k]hℓ,j[k − 2−j−1p1 − p2]

=
r∑

ℓ=0

∑

k∈2−j−1Z

hℓ,j[k]hℓ,j[k − 2−j−1p1 − p2].

Since k−2−j−1p1−p2 6∈ 2−j−1Z when k ∈ 2−j−1Z, we have hℓ,j[k−2−j−1p1−p2] = 0 for

any k ∈ 2−j−1Z and hence the last identity is equal to 0. In conclusion, for the dilated

filters h0,j,h1,j , . . . ,hr,j, we still have a similar result as (1.6)

r∑

ℓ=0

∑

k∈Z

hℓ,j[k]hℓ,j[k − p] = δ0,p, p ∈ Z. (1.14)
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Thus we have
r∑

ℓ=0

∑

k∈Z

〈f, ψq
ℓ,j,k〉ψ

q
ℓ,j,k =

∑

k∈Z

〈f, ψq
0,j+1,k〉ψ

q
0,j+1,k = P q

j+1f.

This is the identity we need to prove when j < 0. In all, identity (1.12) holds for any

j ∈ Z.

We note here that in the proof of identity (1.8) for the affine system, one needs both

conditions in (1.5); while in the proof of identity (1.12), when the quasi-affine system is

used, one only needs (1.6) if j < 0. More general, it was proven in [20, Lemma 2.4] that

the identity Pjf = Qjf holds for all f ∈ L2(R). Next result shows that a similar result

also holds for the quasi-affine systems.

Proposition 1.1. Let X(Ψ) with Ψ = {ψ1, . . . , ψr} be the affine tight frame system

obtained from h0 and φ via the UEP and Xq(Ψ) be the corresponding quasi-affine frame.

Then we have P q
j f = Qq

jf for all f ∈ L2(R).

Proof. First we consider the case j ≥ 0. In this case, since φq
j,k = DjTkφ = φj,k, we have

Pjf =
∑

k∈Z

〈f, φj,k〉φj,k =
∑

k∈Z

〈f, φq
j,k〉φ

q
j,k = P q

j f.

Next, we show that Qjf = Qq
jf when j ≥ 0. Since X(Ψ) is a tight frame, Xq(Ψ) is also

a tight frame by [34, Theorem 5.5]. On the other hand, j ≥ 0 implies ψq
ℓ,j,k = DjTkψℓ =

ψℓ,j,k. Thus we have

r∑

ℓ=1

∑

j<0

∑

k∈Z

〈f, ψℓ,j,k〉ψℓ,j,k = f −
r∑

ℓ=1

∑

j≥0

∑

k∈Z

〈f, ψℓ,j,k〉ψℓ,j,k

=
r∑

ℓ=1

∑

j<0

∑

k∈Z

〈f, ψq
ℓ,j,k〉ψ

q
ℓ,j,k.

Hence, when j ≥ 0,

Qq
jf =

r∑

ℓ=1

∑

j′<0,k∈Z

〈f, ψq
ℓ,j′,k〉ψ

q
ℓ,j′,k +

r∑

ℓ=1

j∑

j′=0

∑

k∈Z

〈f, ψℓ,j′,k〉ψℓ,j′,k

=
r∑

ℓ=1

∑

j′<0,k∈Z

〈f, ψℓ,j′,k〉ψℓ,j′,k +
r∑

ℓ=1

j∑

j′=0

∑

k∈Z

〈f, ψℓ,j′,k〉ψℓ,j′,k

= Qjf.
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Since Pjf = Qjf by [20, Lemma 2.4], we have P q
j f = Qq

jf for j ≥ 0.

Next we show that P q
j f = Qq

jf holds when j < 0. Applying Lemma 1.1 inductively for

any f ∈ L2(R) and j < 0, we have

P q
j f = P q

j′′f +
r∑

ℓ=1

j∑

j′=j′′

∑

k∈Z

〈f, ψq
ℓ,j′,k〉ψ

q
ℓ,j′,k. (1.15)

Thus the proof of P q
j f = Qq

jf is transferred to the proof of P q
j′′f → 0 as j′′ → −∞. The

proof below is essentially the same as that of [29, Theorem 2.2].

Since h0 is finitely supported, the refinable function φ derived from h0 satisfies (1.2),

which implies that the integer shifts of φq
j′′,0 is a Bessel sequence. Because

P q
j′′f =

∑

k∈Z

〈f, φq
j′′,k〉φ

q
j′′,k,

the norm of P q
j′′f satisfies

‖P q
j′′f‖2

L2(R) ≤ C
∑

k∈Z

|〈f, φq
j′′,k〉|2, (1.16)

where the constant C is independent of j′′. Based on the result in approximation theory,

we only need to check the value of ‖P q
j′′f‖L2(R) when f is supported on an interval

[−R,R] for some R > 0. By the Cauchy-Schwartz inequality we have for j′′ < 0 and |j′′|
sufficiently large,

‖P q
j′′f‖2

L2(R) ≤ C‖f‖2
L2

∫

Ej′′

|φ(x)|2 dx, (1.17)

where

Ej′′ =
⋃

k∈Z

(
k + 2j′′ [−R,R]

)
.

Now P q
j′′f → 0 follows by letting j′′ → −∞ in (1.17). Then (1.15) becomes

P q
j f =

r∑

ℓ=1

∑

j′<j

∑

k∈Z

〈f, ψq
ℓ,j′,k〉ψ

q
ℓ,j′,k = Qq

jf.

Thus we complete our proof of P q
j f = Qq

jf for any j ∈ Z.
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1.2 Discrete Form

The identity (1.12) essentially gives the decomposition and reconstruction of a function

in quasi-affine tight frame systems. In the implementation, one needs a complete discrete

form of the decomposition and reconstruction and we give such form below.

We introduce the Toeplitz matrix to describe the discrete form of the decomposition

and reconstruction procedure. Given a sequence h0 = {h0[k]}k∈Z, the Toeplitz matrix

generated by h0 is a matrix satisfying

H0 = (H0[l, k]) = (h0[l − k]),

i.e. the (l, k)th entry in H0 is fully determined by the (l−k)th entry in h0. The Toeplitz

matrix is also called the convolution matrix since it can be viewed as the matrix repre-

sentation of linear time invariant filter which can be written as a convolution. Hence the

convolution of two sequences can be expressed in terms of matrix vector multiplication,

i.e.

h0 ∗ v = H0v. (1.18)

In the following, we will denote the Toeplitz matrix generated from h0 by

H0 = Toeplitz(h0).

Let the infinite dimensional matrix Hℓ = Toeplitz(hℓ) be the Toeplitz matrix generated

from the sequence hℓ for ℓ = 1, . . . , r. Using the matrix notation, the UEP condition

(1.6) can be written as

H
∗
0H0 + H

∗
1H1 + · · · + H

∗
r Hr = I , (1.19)

where I is the identity operator. To write the decomposition and reconstruction algo-

rithms in convolution form, the filters used in the decomposition below the 0th level need

to be dilated. In level j < 0, the dilated filter is denoted by hℓ,j, which is defined by

(also see (1.13))

hℓ,j[k] =





hℓ[2
j+1k], k ∈ 2−j−1Z;

0, k 6∈ 2−j−1Z.
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The corresponding Toeplitz matrix is Hℓ,j = Toeplitz(hℓ,j). By the definition of hℓ,j, we

have ĥℓ,j = ĥℓ(2
−j−1·) and hence |ĥℓ,j| ≤ 1 a.e. ω ∈ R. Moreover, as a byproduct in the

proof of Lemma 1.1, we have a condition similar to (1.19) for dilated filters h0,j , . . . ,hr,j,

j < 0:

H
∗
0,jH0,j + H

∗
1,jH1,j + · · · + H

∗
r,jHr,j = I . (1.20)

We can see that when j = −1, (1.19) and (1.20) are the same.

The discrete forms of decomposition and reconstruction from level j1 to level j2, where

j1, j2 ≥ 0, are the same as those in the affine system, which are given in [20]. We only

consider the discrete form of decomposition and reconstruction from level j1 to level j2,

where j1, j2 < 0. For a function f ∈ L2(R), we decompose f in Xq(Ψ) and collect the

coefficients in each level j < 0 to form an infinite column vector

vℓ,j := [. . . , 〈f, ψq
ℓ,j,k〉, . . .]t,

where ψq
0 := φq and [· · · ]t means transpose of a row vector to a column form. Set the

Toeplitz block matrix

Hj := [H0,j ,H1,j , . . . ,Hr,j]
t .

With this, condition (1.20) implies H∗
jHj = I . The decomposition process (1.12) can be

written in the matrix form as:

vℓ,j = Hℓ,jv0,j+1, ℓ = 0, . . . , r,

or

[v0,j, . . . ,vr,j]
t = Hjv0,j+1. (1.21)

Because of (1.20), the reconstruction process of Lemma 1.1 can be interpreted in the

discrete form as

v0,j+1 = H∗
jHjv0,j+1

= H
∗
0,jH0,jv0,j+1 + H

∗
1,jH1,jv0,j+1 + · · · + H

∗
r,jHr,jv0,j+1

= H
∗
0,jv0,j + H

∗
1,jv1,j + · · · + H

∗
r,jvr,j.

(1.22)
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The identities (1.21) and (1.22) together give the equivalent discrete representation of

(1.12).

The above discussion essentially is one level decomposition and reconstruction. Next, we

introduce the notation of several to infinite levels decomposition and reconstruction. For

any sequence v, it is decomposed by H−1v first, then the low frequency component H0v

is further decomposed by the same procedure. The same process goes inductively. To

describe this discrete process, we define the decomposition operator AJ , J < 0 and A.

They are composed of matrix block like Hℓ,j

−1∏
j′=j

H0,j′ where
∏−1

j′=j H0,j′ is the composition

of |j| Toeplitz matrices H0,j′ , j ≤ j′ ≤ −1, satisfying that for any sequence v ∈ ℓ2(Z),

−1∏
j′=j

H0,j′v = H0,jH0,j+1 · · ·H0,−1v.

The decomposition operator AJ is a (rectangular) block matrix defined as:

[
( −1∏

j=J

H0,j

)
,
(
H1,J

−1∏
j=J+1

H0,j

)
, . . . ,

(
Hr,J

−1∏
j=J+1

H0,j

)
, . . . ,H1,−1, . . . ,Hr,−1]

t (1.23)

and A is defined as

[. . . ,
(
H1,J−1

−1∏
j=J−1

H0,j

)
, . . . ,

(
Hr,J−1

−1∏
j=J−1

H0,j

)
,
(
H1,J

−1∏
j=J

H0,j

)
, . . . ,

(
Hr,J

−1∏
j=J

H0,j

)
,

(
H1,J+1

−1∏
j=J+1

H0,j

)
, . . . ,

(
Hr,J+1

−1∏
j=J+1

H0,j

)
, . . . ,H1,−1, . . . ,Hr,−1]

t.

(1.24)

In (1.23) and (1.24), Hℓ,−1 = Hℓ, ℓ = 0, 1, . . . , r and thus A−1 = H−1.

As we will see that both AJ and A are the operators defined on ℓ2(Z) into the tensor

product space
r,|J |⊗

ℓ=0,j=1

ℓℓ,j2 (Z) and

r,∞⊗

ℓ=0,j=1

ℓℓ,j2 (Z),

respectively, where ℓℓ,j2 (Z) = ℓ2(Z). The reconstruction operators

A∗
J = [

( J∏
j=−1

H
∗
0,j

)
,
( J+1∏

j=−1
H

∗
0,jH

∗
1,J

)
, . . . ,

( J+1∏
j=−1

H
∗
0,jH

∗
r,J

)
, . . . ,H∗

1,−1, . . . ,H
∗
r,−1] (1.25)
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and

A∗ = [ . . . ,
( J−1∏

j=−1

H
∗
0,jH

∗
1,J−1

)
, . . . ,

( J−1∏

j=−1

H
∗
0,jH

∗
r,J−1

)
,
( J∏

j=−1

H
∗
0,jH

∗
1,J

)
, . . . ,

( J∏

j=−1

H
∗
0,jH

∗
r,J

)
,
( J+1∏

j=−1

H
∗
0,jH

∗
1,J+1

)
, . . . ,

( J+1∏

j=−1

H
∗
0,jH

∗
r,J+1

)
, . . . ,H∗

1,−1, . . . ,H
∗
r,−1]

(1.26)

are the adjoint operators of AJ and A respectively.

The operators AJ and A are closely related to P0 and Qq
0. By Lemma 1.1 we have the

identity

P0f = P q
Jf +

r∑

ℓ=1

−1∑

j=J

∑

k∈Z

〈f, ψq
ℓ,j,k〉, J < 0.

The corresponding coefficients in the right hand side is AJv0,0 with v0,0 = {〈f, φ0,k〉}.
Similarly, the coefficients in the right hand side of the identity used in analysis

P0f = Qq
0f

can be obtained by Av0,0. Furthermore, the next proposition shows that the decompo-

sition and reconstruction process is perfect, i.e. A∗
JAJ = I and A∗A = I .

Proposition 1.2. The decomposition operators AJ and A, as defined in (1.23) and

(1.24) respectively, satisfy A∗
JAJ = I and A∗A = I where I is the identity operator.

Proof. The result on AJ can be proved by induction. When J = −1, this follows from

(1.19). For arbitrary J < 0, we start from the definition of AJ . By (1.23), we have

A∗
JAJ =

( J+1∏
j=−1

H
∗
0,jH

∗
1,J

)(
H1,J

−1∏
j=J+1

H0,j

)
+ · · · +

( J+1∏
j=−1

H
∗
0,jH

∗
r,J

)(
Hr,J

−1∏
j=J+1

H0,j

)

+
( J∏

j=−1
H

∗
0,j

)( −1∏
j=J

H0,j

)
+

−1∑
j=J+1

r∑
ℓ=1

( j+1∏
j′=−1

H
∗
0,j′H

∗
ℓ,j

)(
Hℓ,j

−1∏
j′=j+1

H0,j′

)

=
( J+1∏

j=−1
H

∗
0,j

)( −1∏
j=J+1

H0,j

)
+

−1∑
j=J+1

r∑
ℓ=1

( j+1∏
j′=−1

H
∗
0,j′H

∗
ℓ,j

)(
Hℓ,j

−1∏
j′=j+1

H0,j′

)

= A∗
J+1AJ+1.
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In the above,
∏−1

j′=j H0,j′ = H0,jH0,j+1 · · ·H0,−1 and
∏j

j′=−1 H0,j′ = H0,−1H0,−2 · · ·H0,j.

The last equality can be viewed as the reconstruction process from Jth level to (J +1)th

level and identity A∗
JAJ = I holds for J < 0 by induction.

For operator A, we note that proving A∗A = I is equivalent to proving 〈Av,Av〉 = 〈v,v〉
holds for any sequence v ∈ ℓ2(Z). We next note that

〈v,v〉 = 〈AJv,AJv〉

=
(
v∗

J∏
j=−1

H
∗
0,j

)( −1∏
j=J

H0,jv
)

+
−1∑
j=J

r∑
ℓ=1

(
v∗

j+1∏
j′=−1

H
∗
0,j′H

∗
ℓ,j

)(
Hℓ,j

−1∏
j′=j+1

H0,j′v
)

(1.27)

and

〈Av,Av〉 =
−1∑

j=−∞

r∑
ℓ=1

(
v∗

j+1∏
j′=−1

H
∗
0,j′H

∗
ℓ,j

)(
Hℓ,j

−1∏
j′=j+1

H0,j′v
)
. (1.28)

Thus to show 〈Av,Av〉 = 〈v,v〉 we only need to prove that
−1∏
j=J

H0,jv → 0 as J → −∞.

Since the matrix H0,j are Toeplitz matrices generated by filters h0,j, we have

̂−1∏
j=J

H0,jv =
−1∏
j=J

ĥ0,jv̂.

Since |ĥ0,j | ≤ 1, ∣∣∣∣∣
̂−1∏

j=J

H0,jv

∣∣∣∣∣ ≤ |v̂|, a.e. ω ∈ R.

Note that the compactly supported refinable function φ obtained from the finite length

low pass filter h0 can be written as φ̂(ω) =
∏∞

j=0 ĥ0(2
−j−1ω). Since φ ∈ L2(R) is

compactly supported, we have φ ∈ L1(R) and φ̂ 6= 0 a.e. ω ∈ R with φ̂→ 0 as ω → ±∞.

Suppose zero set of φ̂ is Z, which is a zero measure set. Next we consider any ω ∈ R\Z
such that φ̂(ω) 6= 0. Because ĥ0,j(ω) = ĥ0(2

−j−1ω), we have

̂−1∏
j=J

H0,jv =
−1∏
j=J

ĥ0,j v̂ =
−1∏
j=J

ĥ0(2
−j−1·)v̂ = 1

∞Q
j=0


h0(2−j−1·)

∞∏
j=J

ĥ0(2
−j−1·)v̂ =

1

φ̂
φ̂(2−J ·)v̂.

Thus

lim
J→−∞

−1∏
j=J

ĥ0,jv̂ =
v̂

φ̂
lim

J→−∞
φ̂(2−J ·) = 0.
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So for any ω ∈ R, |∏−1
j=J ĥ0,j||v̂| → 0 a.e. as J → −∞. Applying the Dominated

Convergence Theorem, we obtain

‖
−1∏
j=J

H0,jv‖ℓ2(Z) =
1√
2π

‖
−1∏
j=J

ĥ0,jv̂‖L2[−π,π] → 0, J → −∞.

Let J → −∞ in (1.27), we have 〈v,v〉 = limJ→−∞〈AJv,AJv〉 = 〈Av,Av〉, which

completes our proof.



Chapter 2
Formulation and Algorithms

This chapter is to formulate the deconvolution problem via the multiresolution analysis

and the framelet analysis. It converts the deconvolution problem to the problem of filling

the missing framelet coefficients. Consider the convolution equation

h0 ∗ v = b + ǫ = c, (2.1)

where h0 is a low pass filter with finite support and b, c are the sequences in ℓ2(Z). The

error term ǫ ∈ ℓ2(Z) satisfies ‖ǫ‖ℓ2(Z) ≤ ε. To simplify our notation, we use ‖ · ‖ :=

‖ · ‖ℓ2(Z).

Our approach starts with the refinable function generated by the low pass filter h0. There

are many sufficient conditions on the low pass filter h0 with ĥ0(0) = 1, under which φ is

in L2(R). Here we assume that h0 satisfies the following condition

|ĥ0(ω)|2 + |ĥ0(ω + π)|2 ≤ 1, a.e. ω ∈ R. (2.2)

The following proposition shows that the corresponding refinable function φ generated

from h0 by assuming (2.2) is in L2(R).

Proposition 2.1. Suppose h0 is finitely supported and satisfies the following condition:




|ĥ0(ω)|2 + |ĥ0(ω + π)|2 ≤ 1, a.e. ω ∈ R;

ĥ0(0) = 1.
(2.3)

25
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The solution φ of the refinement equation

φ(x) = 2
∑

k∈Z

h0[k]φ(2x − k)

is in L2(R).

Proof. Since h0 is finitely supported and ĥ0(0) = 1, the compactly supported refinable

function φ exists in the sense of distribution with the Fourier transform of φ given by

φ̂(ω) =

∞∏

j=1

ĥ0(
ω

2j
), (2.4)

satisfying φ̂(0) = 1. Further, the distribution solution φ is unique. In the following, we

will prove φ ∈ L2(R) whenever h0 satisfies (2.3).

Our proof uses the cascade algorithm defined by

φ̂n(ω) = ĥ0(
ω

2
)φ̂n−1(

ω

2
) =

n∏

j=1

ĥ0(
ω

2j
)φ̂0(

ω

2n
), n > 0, (2.5)

with initial function φ0 satisfying φ̂0(ω) = χ[−π,π)(ω). It is known that the cascade

algorithm always converges to φ as a distribution. Because φ̂0(ω) satisfies

∑

k∈Z

|φ̂0(ω + 2kπ)|2 = 1, a.e. ω ∈ R,

it can be proven inductively that for any φn, n > 0,

∑

k∈Z

|φ̂n(ω + 2kπ)|2 ≤ 1, a.e. ω ∈ R.

Thus we have

‖φ̂n‖2
L2(R) =

∫

R

|φ̂n(ω)|2 dω =

∫ π

−π

∑

k∈Z

|φ̂n(ω + 2kπ)|2 dω ≤ 2π.

Since the sequence {‖φ̂n‖L2(R)} is bounded for each n, there exists a subsequence {φ̂nj}
which converges weakly to some function ĝ ∈ L2(R). As shown in [18], when h0 is finitely

supported, φ̂n in (2.5) converges absolutely and uniformly on compact sets. Thus the

function φ̂ is uniformly continuous on compact sets. Since φ̂(0) = 1, in a neighborhood of
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0, we have φ̂ 6= 0. Thus each φ̂nj 6= 0 in such a neighborhood. It leads to the weak limit

ĝ 6= 0 in this neighborhood. On the other hand, because the sequence {φn} converges to

the function φ in the sense of distribution, which is stronger than the weak convergence,

we have φ = g ∈ L2(R).

Remark 2.1. It was shown in [14] that if h0 satisfies (2.3) and if the corresponding

refinable function φ is in L2(R), then there is constructive way to derive a set of tight

framelets. Further, if φ is symmetric, the framelets are symmetric or antisymmetric.

Constructions of tight frames when the refinement mask h0 satisfies (2.3) are also given in

[20] in their construction of tight frames from pseudo-splines (also available in [22]). The

above proposition shows that condition (2.3) on h0 implies the corresponding refinable

function φ ∈ L2(R).

We further remark that (2.2) is not a strong assumption. For example, all refinement

masks of B-splines, the refinable functions whose shifts form an orthonormal system

derived in [18], the base functions of interpolatory functions, and more general, pseudo-

splines introduced by [20] and [22] satisfy this assumption. In fact, many low pass filters

used in practical problems satisfy (2.2). For example, the low pass filters used in high

resolution image reconstructions satisfy (2.2). Furthermore, with this assumption, we

can construct a corresponding tight frame system via unitary extension principle of [34]

which is used in our algorithm.

To make our ideas work here, the crucial step is to construct a tight frame system via a

multiresolution analysis with underlying refinement mask being the given low pass filter.

The assumption (2.2) is a necessary and sufficient condition to have a tight frame system

associated with the given low pass filter. When the refinable function φ is in L2(R), whose

refinement mask is the given low pass filter in (2.1), together with some additional minor

conditions, we can always obtain a bi-frame system via the mixed unitary extension

principle of [35] and more generally the mixed oblique extension principle of [15] and

[20]. For example, let

h0(z) :=
∑

k∈Z

h0[k]z
−k.
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Then (2.2) can be replaced by the condition that h0(z) and h0(−z) have no common

zeros in complex domain. With this, one can construct a bi-frame system by using the

mixed unitary extension principle. This is essentially the approach taken by [8]. Our

analysis can be carried out with some efforts. To simplify our discussion here, we only

use the tight frame system, hence assuming (2.2).

Finally, since our approach based on denoising schemes that threshold of framelet coef-

ficients, we implicitly assume that the underlying function of the data set has a sparse

representation by the tight frame system used and the errors are small and spread in the

frame transform domain.

2.1 Formulation in MRA

This section is to formulate the problem of solving

h0 ∗ v = b + ǫ = c (2.6)

via the multiresolution analysis framework. As we will see, the approach here reduces

solving equation (2.6) to the problem of filling the missing framelet coefficients. This

approach was first taken by [8], however, we give a complete analysis and formulation

here.

As we mentioned before, by using

PJf = DJP0D
−Jf and P q,J

J−1f = DJP q
−1D

−Jf,

we may assume that data set is given on level J = 0 without loss of generality. In fact,

when the data set is given in 2−JZ, we consider function f(2−J ·) instead of f . The

approximation power of a function f in space VJ is the same as that of the function

f(2−J ·) in space V0.

Let φ ∈ L2(R) be the refinable function with refinement mask h0 and h1, . . . ,hr be high

pass filters obtained via the UEP which are the framelet masks of ψ1, . . . , ψr. First we

suppose that the given data set contains no error, i.e. ǫ = 0. The convolution equation
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h0 ∗ v = b implies that b is obtained by passing the original sequence v through a low

pass filter h0. Assume that b = {〈S, φq
−1,k〉}, where S ∈ L2(R) is the underlying function

from that the data set b is obtained. Then we are given

P q
−1S =

∑

k∈Z

〈S, φq
−1,k〉φ

q
−1,k =

∑

k∈Z

b[k]φq
−1,k. (2.7)

Let vS = {〈S, φ0,k〉}, then

P0S =
∑

k∈Z

〈S, φ0,k〉φ0,k =
∑

k∈Z

vS [k]φ0,k. (2.8)

Applying the framelet decomposition algorithm (1.12), one obtains that h0∗vS = b. This

implies that solving equation (2.6) is equivalent to reconstructing the quasi-interpolation

P0S ∈ V0 from the quasi-interpolation P q
−1S ∈ V q

−1. Since

P0S = P q
−1S +

r∑

ℓ=1

∑

k∈Z

〈S,ψq
ℓ,−1,k〉ψ

q
ℓ,−1,k,

to recover vS = {〈S, φ0,k〉} from given b, we need the framelet coefficients {〈S,ψq
ℓ,−1,k〉}.

This leads to an iterative algorithm that restores vS from data b iteratively by updating

the framelet coefficients {〈S,ψq
ℓ,−1,k〉} in each iteration. All these have been given in [8]

and consequent papers [10, 11] in their reconstructions of high resolution images. In fact,

it motivates the algorithms developed in [8, 10, 11].

By this approach, we not only give a solution of (2.6), but also give an interpretation in

terms of the underlying function S where we view the data b = {〈S, φq
−1,k〉} as the given

sample of S. Under this setting, we are given P q
−1S ∈ V q

−1, and the solution of (2.6)

leads to P0S ∈ V0, which is a higher resolution subspace in the multiresolution analysis.

Although there are more than one function whose quasi-interpolations is P q
−1S and P0S

given as (2.7) and (2.8), we never get the underlying function S. One can only expect

to obtain a better approximation P0S of S from the given P q
−1S approximation. The

approximation power of P0S and P q
−1S and their difference can be established for smooth

functions by applying the corresponding results in [20] which depends on the properties

of the underlying refinable function; more general for piecewise smooth functions, it can
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be studied by applying results and ideas from [2] and [3] which depends on the properties

of the framelets. We omit the detailed discussion here.

Roughly speaking, the idea of solving equation (2.6) here can be understood as for a

given coarse level approximation P q
−1S to find a finer level approximation P0S which

is reduced to find the coefficients vS = {〈S, φ0,k〉}. The derivation of vS is an iterative

process which recovers P0S from P q
−1S as discussed before and detailed in the algorithms

given in the next section. Then h0 ∗ vS = b by the decomposition algorithm (1.12) and

we conclude that vS is a solution of (2.6).

However, the data given may contain errors, i.e. instead of b, the data is given by

c = b + ǫ. Furthermore, the given data set b may not be necessary of the form of

{〈S, φq
−1,k〉}, for some S ∈ L2(R). In both cases, the exact ℓ2(Z) solution of h0 ∗ v = c

may not exist or it may not be desirable or not be possible to get the exact solution.

Nevertheless, there is a need to have

s̃ =
r∑

ℓ=1

∑

j<0,k∈Z

s̃ℓ,j,kψ
q
ℓ,j,k ∈ V0

to approximate the underlying function where the sample data set c comes from. Let

s̃ = {s̃ℓ,j,k}, and s = A∗s̃, (2.9)

where A∗ is the reconstruction operator given in (1.26). For the vector s being a can-

didate of the solution of (2.6), it requires h0 ∗ s within the ǫ ball of c and the function

s̃ has some smoothness. The smoothness of the function is reflected by the decay of

the framelet coefficients which is measured by the ℓp norm of s̃. Given any sequence v

determined by three indices (ℓ, j, k) with ℓ = 1, . . . , r, j < 0 and k ∈ Z, we say v is in

space ℓp, for a given p, if
∑r

ℓ=1

∑
j<0,k∈Z

|vℓ,j,k|p <∞.

Assuming that there exists function S such that s̃ℓ,j,k = 〈S,ψq
ℓ,j,k〉, then function s̃ = Qq

0S.

For given 1 ≤ p ≤ 2, we say that the pair (s, s̃) defined in (2.9) is the solution of (2.6)

(and s̃ is an approximation of the underlying function of the data set) if for all g ∈ L2(R),

let g̃ =
∑r

ℓ=1

∑
j<0,k∈Z

〈g, ψq
ℓ,j,k〉ψ

q
ℓ,j,k = Qq

0g with g̃ = {〈g, ψq
ℓ,j,k〉} in ℓp and let g = A∗g̃,
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the following inequality

‖h0 ∗ g − c‖2 +
r∑

ℓ=1

∑

j<0,k∈Z

λj|〈g, ψq
ℓ,j,k〉|p ≥ ‖h0 ∗ s − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj|〈S,ψq
ℓ,j,k〉|p

(2.10)

holds. Here γ ≤ λj ≤ γ′, j ∈ Z, where 0 < γ ≤ γ′ ≤ ∞, are parameters which will be

determined by the error level.

The function s̃ is considered as an approximation of the underlying function whose sample

is given by c. The first term measures the residue of the solution s and the given data set

c. The second term is a penalization term using a weighted (with weights λj) ℓp-norm

of the coefficients of framelets. Since the framelet coefficients are closely related to the

smoothness of the underlying function (see [2, 3]), minimization problem (2.10) balances

the fitness of the solution and the smoothness of the solution function s̃.

The minimization condition (2.10) can be stated as following: for a fixed 1 ≤ p ≤ 2, the

pair (s, s̃) defined in (2.9) is a solution of (2.6) (the function s̃ is an approximation of the

underlying function of the data) if for all η ∈ L2(R) with η̃ = {η̃ℓ,j,k} = {〈η, ψq
ℓ,j,k〉} ∈ ℓp,

the pair (η, η̃), where η = A∗η̃, satisfies the following inequality

‖h0 ∗ (s + η)− c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj |s̃ℓ,j,k + η̃ℓ,j,k|p ≥ ‖h0 ∗ s− c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj|s̃ℓ,j,k|p.

(2.11)

However, as we will see that the sequence s̃ is uniquely determined by algorithm, it may

not be of the form {〈S,ψq
ℓ,j,k〉} for any S ∈ L2(R), since {ψq

ℓ,j,k}j<0 is redundant which

implies that the representation s̃ is not unique. Nevertheless, the pair (s, s̃) can still be

considered as a solution of equation (2.6) if (2.11) holds with the pair (η, η̃) satisfying

η̃ = {η̃ℓ,j,k} = {〈η, ψq
ℓ,j,k〉} ∈ ℓp and η = A∗η̃, for all η ∈ L2(R). Here, we remark that

since η̃ = {〈η, ψq
ℓ,j,k〉}, η = A∗η̃ implies that η̃ = Aη by the decomposition algorithm.

The function s̃ enters the discussion to give an analysis in the function form of the

underlying solution. The underlying function and s̃ play a role of analysis, but does

not enter the algorithm. Next, we link the formulation to a direct discrete form of

minimization problem (2.11). The minimization problem (2.11) can be stated as follows:

for a given 1 ≤ p ≤ 2, a pair of sequences (s, s̃), satisfying s̃ ∈ ℓp and s = A∗s̃, is
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the solution of (2.6) if for arbitrary pair (η, η̃) satisfying η̃ = Aη ∈ ℓp, the following

inequality holds:

‖h0 ∗ (s + η)− c‖2 +
r∑

ℓ=1

∑

j<0,k∈Z

λj |s̃ℓ,j,k + η̃ℓ,j,k|p ≥ ‖h0 ∗ s− c‖2 +
r∑

ℓ=1

∑

j<0,k∈Z

λj|s̃ℓ,j,k|p.

(2.12)

We should remark here the condition s = A∗s̃ on the pair (s, s̃) is different from the

condition η̃ = Aη on the pair (η, η̃). The condition η̃ = Aη implies η = A∗η̃, since

A∗η̃ = A∗Aη = η by A∗A = I . However,the condition s = A∗s̃, in general, does not

implies s̃ = As, unless AA∗ = I or s̃ happens to be As. Note that the identity AA∗ = I

does not hold for any redundant system. The reasons for imposing the different conditions

are due to that (s, s̃) is obtained by the algorithm which only satisfies s = A∗s̃, while

for given η, there is more than one η̃ such that A∗η̃ = η. We choose the canonical pair

(η, η̃) with η̃ = Aη.

2.2 Algorithms

We give the algorithms to solve (2.6) with the formulation in MRA. In our approach,

the algorithm iteratively improves the framelet coefficients using the previous iterative

result in each iteration. Let h1, . . . ,hr be the sequences derived from h0 via the UEP

and H0,H1, . . . ,Hr be the corresponding Toeplitz matrices. Our algorithms based on the

UEP condition

H
∗
0H0 +

r∑

ℓ=1

H
∗
ℓ Hℓ = I . (2.13)

Let vn be the solution for the nth iteration, then

H
∗
0H0vn +

r∑

ℓ=1

H
∗
ℓ Hℓvn = vn. (2.14)

First, we consider the case that b = {〈S, φq
−1,k〉}, where S is the underlying function

and b is the given data as a set of the samples of S, and ǫ = 0. Then by h0 ∗ vS = b

with vS = {〈S, φ0,k〉}, we have vS is a solution to equation (2.6). In each iteration, we

can replace H0vn by the known data b to improve the approximation. This can also
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be viewed as that we use the framelet coefficients of the nth iteration to approximate

the framelet coefficients of the underlying function S. We summarize the algorithm as

follows:

Algorithm 2.1.

(i) Choose an initial approximation v0 (e.g. v0 = b);

(ii) Iterate on n until convergence:

vn+1 = H
∗
0b +

r∑

ℓ=1

H
∗
ℓ Hℓvn. (2.15)

As will see in the next section, Algorithm 2.1 converges, but it converges very slowly. We

need to adjust the iteration in Algorithm 2.1 to quicken the convergence. This motivates

us to introduce the acceleration factor 0 < β < 1 into the above algorithm and the new

iteration with β is given below:

vn+1 = β(H∗
0c +

r∑

ℓ=1

H
∗
ℓ Hℓvn) = H

∗
0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvn. (2.16)

This scheme can be viewed as the traditional regularization method used in noise removal,

the solution of which satisfies the matrix equation

(
H

∗
0H0 + (1 − β)

r∑

ℓ=1

H
∗
ℓ Hℓ

)
v = H

∗
0βc.

Here β is a regularization parameter. The solution of the original convolution equation

(2.6) is v = vβ/β with vβ the solution to the above matrix equation. The solution v

minimizes the following functional:

‖H0v − c‖2 +
(1 − β)2

β2
‖v‖2.

This is the standard regularization form with a special regularization operator, which was

more or less the [8, Algorithm 2] given to us. The parameter β has to be carefully chosen

to balance the error and smoothness of the solution. It plays a role in both convergence

acceleration and error removal. However, when a different penalty functional instead
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of ℓ2 norm of the solution (e.g. the one given in the formulation), which is desirable

in many applications, is used, we need a different approach. In our new algorithms,

the acceleration factor β is mainly used to accelerate the convergence and leave the

“regularization” part to a threshold process. Finally, we remark that, as will see in

§4, in the numerical implementation, when proper boundary conditions (e.g. periodic

boundary condition) are used, the matrix H0 becomes a nonsingular finite order matrix.

The iteration in Algorithm 2.1 converges with a rate 1 − λ, where λ is the minimum

eigenvalue of H
∗
0H0. Hence, we do not need to introduce the acceleration factor β.

Next, we introduce the following denoising operators to the iteration (2.16).

Denoising Operator. When data are contaminated with errors, we need to remove the

error term from each iteration before putting it into the next iteration. The denoising

scheme is needed to prevent the limit of iteration (2.16) from following the noise residing

in c. For any vector v, let threshold operator be

Dp
λ(v) :=

(
tpλ(v[0]), tpλ(v[1]), . . .

)
, 1 ≤ p ≤ 2, (2.17)

where tpλ(x) is the threshold function. When p = 1, tλ(x) := t1λ(x) is the soft-threshold

function sgn(x)max(|x| − λ/2, 0); when 1 < p ≤ 2, the threshold function is defined by

the inverse of function

Fp
λ(x) := x+

pλ

2
sgn(x)|x|p−1. (2.18)

Function Fp
λ(x) is a one-to-one differentiable function with unique inverse. For 1 < p ≤ 2,

the explicit formula of the inverse of function Fp
λ is not always available. Numerical

method may be needed to calculate the value of tpλ(x) := (Fp
λ)−1(x). Further, the thresh-

old function is nonexpansive, i.e. for any x ∈ R, we have |tpλ(x)| ≤ |x|. As we will see,

the difference of the threshold operators Dp
λ according to different values of p is that the

limit of the algorithm has different optimal properties.

When a sequence v is given, normal procedure is first transforming v to the framelet

domain via the decomposition operator A to decorrelate the signal, and then applying the

threshold operator Dp
λj

with the threshold parameter λj depending on the decomposition

level j. For a given sequence v ∈ ℓ2(Z), the denoising operator T p which applies the
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threshold operator Dp
λj

on Av with the threshold parameters {λj} is defined as:

T pA(v) = [Dp
λj

(Hℓ,j

−1∏
j′=j+1

H0,j′v)]tℓ,j, 1 ≤ p ≤ 2, ℓ = 1, 2, . . . , r, j < 0. (2.19)

This noise removal scheme will then be applied at each iteration before applying the next

iteration in Algorithm 2.1.

Algorithm 2.2 is motivated by [19]. At the nth step, the threshold operator is applied

to the framelet decomposition of H
∗
0βc +

∑r
ℓ=1 H

∗
ℓ Hℓβvn. The parameters λj are fixed

during the iteration.

Algorithm 2.2.

(i) Choose an initial approximation v0 (e.g. v0 = c);

(ii) Iterate on n until convergence:

vn+1 = A∗T pA(H∗
0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvn); (2.20)

(iii) Suppose the limit of step (ii) is vβ. Then the final solution is

sβ =
1

β
vβ.

We will prove that the pair (sβ, s̃β) where s̃β = 1
βT pA(H∗

0βc+
∑r

ℓ=1 H
∗
ℓ Hℓβvβ), obtained

from step (iii) of Algorithm 2.2 satisfies the inequality (2.12) (up to arbitrary small ε).

Next algorithm has a different denoising scheme from Algorithm 2.2. Instead of applying

the denoising operator to each iteration before it is put into the next iteration, the

denoising operator only acts on the approximation of the missing framelets coefficients.

This is the process suggested by [8, 10, 11].
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Algorithm 2.3.

(i) Choose an initial approximation v0 (e.g. v0 = c);

(ii) Iterate on n until convergence:

vn+1 = H
∗
0βc +

r∑

ℓ=1

H
∗
ℓ (A∗T pA) (βHℓvn); (2.21)

(iii) Let vβ be the final iterative solution from (ii). Then the solution to the algorithm

is

sβ = vβ/β.

For better denoising effect, we may apply the denoising scheme to the final result sβ , i.e.

we take an additional step

(iv) υ = A∗T pA(sβ)

to further remove the error effect arose by c, which is used in [8, 10, 11].



Chapter 3
Analysis of Algorithms

This chapter focuses on the analysis of the algorithms given in §2.2. We first show that

all algorithms converge. Secondly, we prove that the solutions of Algorithm 2.2 and 2.3

satisfy some minimization property.

3.1 Convergence

In this section, we will show the convergence of Algorithm 2.1, 2.2 and 2.3. The proof of

the convergence of Algorithm 2.1 was given in [8] and [11]. We include the proof here for

the sake of the self completeness of the paper. However, the proofs of the convergence

of Algorithm 2.2 and 2.3 are new. This is important, since both algorithms are the ones

used in practice.

Proposition 3.1. Let h1, . . . ,hr be the high pass filters of a tight frame system derived

by the UEP with finitely supported h0 being the given low pass filter which satisfies (2.2).

Suppose there exists a function S such that c = {〈S, φq
−1,k〉}. Then for arbitrary v0 ∈

ℓ2(Z), the sequence vn defined by (2.15) converges to v = {〈S, φq
0,k〉} with h0 ∗ v = c.

Proof. The proof was given in [8]. Writing (2.15) in frequency domain, one obtains

v̂n+1 = ĥ0ĉ +

r∑

ℓ=1

ĥℓĥℓv̂n.

37
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Let v = {〈S, φ0,k〉}. Since c = {〈S, φq
−1,k〉}, v is the solution to (2.6). Using the UEP

condition, we have

v̂ = ĥ0ĉ +

r∑

ℓ=1

ĥℓĥℓv̂.

For arbitrary v0 ∈ ℓ2(Z), applying the iteration n times, we have

v̂n − v̂ =

(
r∑

ℓ=1

ĥℓĥℓ

)n

(v̂0 − v̂).

From (2.2), we have 0 ≤ |ĥ0(ω)| ≤ 1 a.e. ω ∈ R and |ĥ0(ω)| = 0 only holds on a zero

measure set since ĥ0(ω) is a polynomial the zero points of which are finite. Because

h1, . . . ,hr satisfy (1.5), it follows that

r∑

ℓ=1

|ĥℓ(ω)|2 ≤ 1, a.e. ω ∈ R

and the equality only holds on a zero measure set. Thus we have |v̂n − v̂| ≤ |v̂0 − v̂|
and v̂n − v̂ → 0 a.e. ω ∈ R as n → ∞. Then by Dominated Convergence Theorem,

‖vn − v‖ℓ2(Z) = 1√
2π
‖v̂n − v̂‖L2[−π,π] → 0, i.e. vn converges to v as n→ ∞.

Since |
∑r

ℓ=1 ĥℓĥℓ| = 1 at π, the convergence of the algorithm is slow. That is the reason

we introduce the acceleration factor β into iteration. The convergence of iteration (2.16)

can be proved similarly. Next we show the convergence of the iterations in Algorithm 2.2

and Algorithm 2.3. The following lemma is needed, the proof of which is given in [19,

Lemma 2.2].

Proposition 3.2. The denoising operator Dp
λ is non-expansive, i.e. for any two se-

quences v1 and v2 in ℓ2(Z),

‖Dp
λ(v1) −Dp

λ(v2)‖ ≤ ‖v1 − v2‖.

Furthermore, since T p is defined via Dp
λ, it also satisfies that

‖T pA(v1) − T pA(v2)‖ ≤ ‖v1 − v2‖.

In particular, we have

‖T pAv1‖ ≤ ‖v1‖.
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Now we are ready to show the convergence of Algorithm 2.2.

Theorem 3.1. Let h1, . . . ,hr be the high pass filters of a tight frame system derived by

the UEP with h0 being the given low pass filter which satisfies (2.2). Then the sequence

vn defined by (2.20) in Algorithm 2.2 converges for arbitrary initial seed v0 ∈ ℓ2(Z) to

vβ which satisfies

vβ = A∗T pA(H∗
0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvβ). (3.1)

Proof. The idea of the proof is to show that the sequence {vn} is a Cauchy sequence.

We first note that ‖A∗‖ ≤ 1. Let

vn = A∗T pA(H∗
0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvn−1)

and for m > 0

vn+m = A∗T pA(H∗
0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvn+m−1).

For convenience, denote

u = H
∗
0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvn−1

and

u′ = H
∗
0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvn+m−1.

Then using Proposition 3.2 we have:

‖vn+m−vn‖ = ‖A∗(T pAu′−T pAu)‖ ≤ ‖T pAu′−T pAu‖ ≤ ‖u′−u‖ ≤ β‖vn+m−1−vn−1‖.

Inductively, we finally obtain that

‖vn+m − vn‖ ≤ βn‖vm − v0‖. (3.2)

Then sequence {vn} is a Cauchy sequence if {vn} is bounded. Since 0 < β < 1, indeed

due to Proposition 3.2 we have

‖vn‖ = ‖A∗T pAu‖ ≤ ‖T pAu‖ ≤ ‖u‖ ≤ β‖c‖ + β‖vn−1‖ ≤ β

1 − β
‖c‖ + ‖v0‖. (3.3)

Hence the limit of the iteration (2.20) exists. The limit vβ satisfying vβ = A∗T pA(H∗
0βc+

∑r
ℓ=1 H

∗
ℓ Hℓβvβ) follows the continuity of denoising operator T p at 0 and T pA(0) =

0.
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Here we note that the limit vβ of iteration (2.20) satisfies (3.1). Let ṽβ be the se-

quence T pA(H∗
0βc +

∑r
ℓ=1 H

∗
ℓ Hℓβvβ), then the pair (vβ, ṽβ) satisfies vβ = A∗ṽβ. As a

consequence, the pair (sβ, s̃β) where sβ = 1
β vβ and

s̃β =
1

β
T pA(H∗

0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβvβ)

also satisfies sβ = A∗s̃β. We will prove in the next subsection that the pair (sβ, s̃β)

satisfies the inequality (2.12) up to a small ε > 0 when β is close to 1. Hence, sβ is the

solution of equation (2.6).

A similar proof shows the convergence of Algorithm 2.3, i.e. iteration (2.21) converges,

as stated in the following proposition.

Theorem 3.2. Let h1, . . . ,hr be the high pass filters of a tight frame system derived by

the UEP with h0 being the given low pass filter which satisfies (2.2). Then the sequence

vn defined by (2.21) in Algorithm 2.3 converges for arbitrary initial seed v0 ∈ ℓ2(Z) to

vβ which satisfies

vβ = H
∗
0βc +

r∑

ℓ=1

H
∗
ℓ A∗T pA(Hℓβvβ). (3.4)

3.2 Minimization Property of Algorithm 2.2

In this section, we discuss to what extend that the solution sβ obtained from Algo-

rithm 2.2 satisfies (2.12). Without further clarification, p ∈ [1, 2] in the following discus-

sion.

By Algorithm 2.2,

sβ =
1

β
vβ and s̃β =

1

β
ṽβ,

where ṽβ = T pA(H∗
0βc +

∑r
ℓ=1 H

∗
ℓ Hℓβvβ) and vβ = A∗ṽβ are obtained by the limit of

iteration (2.20). First, if s̃β 6∈ ℓp, then for any pair (η, η̃) with η̃ = Aη ∈ ℓp, the values

of both sides in (2.12) are infinite and the inequality holds. For the case s̃β ∈ ℓp, what

we will prove is a slightly weaker result than (2.12) for the pair (sβ , s̃β) as stated below.
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For given constants C > 0 and ε > 0, the pair (sβ, s̃β) satisfies the following equality

‖h0∗(sβ+η)−c‖2+

r∑

ℓ=1

∑

j<0,k∈Z

λj |s̃β
ℓ,j,k + η̃ℓ,j,k|p ≥ ‖h0∗sβ−c‖2+

r∑

ℓ=1

∑

j<0,k∈Z

λj|s̃β
ℓ,j,k|p−ε,

(3.5)

for any pair (η, η̃) satisfying η̃ = Aη ∈ ℓp with ‖η‖ ≤ C, as long as the acceleration

factor β is close enough to 1.

As we will see in next section, when certain boundary condition is imposed in numerical

implementations, the solution will satisfy (2.12).

We first prove the following statement: for given constants C > 0 and ε > 0, the pair

(vβ, ṽβ) satisfies the following inequality

‖H0(v
β + η) − βc‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |(ṽβ)ℓ,j,k + η̃ℓ,j,k|p + (1 − β)2
r∑

ℓ=1

‖Hℓ(v
β + η)‖2

≥ ‖H0v
β − βc‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj|(ṽβ)ℓ,j,k|p + (1 − β)2
r∑

ℓ=1

‖Hℓv
β‖2 − ε,

(3.6)

whenever the pair (η, η̃) satisfying η̃ = Aη ∈ ℓp with ‖η‖ ≤ C and the acceleration

factor β is close enough to 1. Note that the threshold parameters β2−pλj are less than

those in (3.5). It is reasonable because the use of acceleration factor β helps to damp

out the noise residing in c.

To show (3.6), we introduce the following functionals. For a given pair of sequences

(v, ṽ) satisfying v = A∗ṽ and a sequence a, define

Φ(v) := ‖H0v − βc‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |ṽℓ,j,k|p + (1 − β)2
r∑

ℓ=1

‖Hℓv‖2. (3.7)

and

Φ̃(v;a) := ‖H0v − βc‖2 +
r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj|ṽℓ,j,k|p +
r∑

ℓ=1

‖Hℓ(v − βa)‖2. (3.8)

It is clear that when a = v, we have Φ̃(v,v) = Φ(v). Furthermore, the following result

on Φ̃(v,a) holds.
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Proposition 3.3. Suppose ã = Aa ∈ ℓp and c̃ = Ac ∈ ℓp. Let h1, . . . ,hr be the high

pass filters obtained from h0 by the UEP and H0,H1, . . . ,Hr be the corresponding matrix

counterparts of these filters as defined in (1.18). Let

ṽ⋆
β = T pA(H∗

0βc +

r∑

ℓ=1

H
∗
ℓ Hℓβa) = T pA(βa + β(H∗

0c − H
∗
0H0a)) (3.9)

and v⋆
β = A∗ṽ⋆

β. Then the pair (v⋆
β, ṽ

⋆
β) satisfies that for any pair (η, η̃) satisfying

η̃ = Aη ∈ ℓp,

Φ̃(v⋆
β + η;a) ≥ Φ̃(v⋆

β;a) + ‖η‖2. (3.10)

Proof. The (ℓ, j, k)th entries of sequences ṽ⋆
β and η̃ = Aη are denoted by (ṽ⋆

β)ℓ,j,k and

η̃ℓ,j,k respectively.

From the definition of Φ̃(v;a) by (3.8), we have

Φ̃(v⋆
β + η;a) = ‖H0(v

⋆
β + η) − βc‖2 + ‖v⋆

β + η − βa‖2 − ‖H0(v
⋆
β + η) − βH0a‖2

+
r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |(ṽ⋆
β)ℓ,j,k + η̃ℓ,j,k|p

= ‖H0v
⋆
β − βc‖2 + 2〈H0η,H0v

⋆
β − βc〉 + ‖H0η‖2 + ‖v⋆

β − βa‖2 + ‖η‖2

+ 2〈η,v⋆
β − βa〉 − ‖H0v

⋆
β − βH0a‖2 − 2〈H0η,H0v

⋆
β − βH0a〉 − ‖H0η‖2

+

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |(ṽ⋆
β)ℓ,j,k + η̃ℓ,j,k|p

= ‖H0v
⋆
β − βc‖2 + ‖v⋆

β − βa‖2 − ‖H0v
⋆
β − βH0a‖2

+
r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |(ṽ⋆
β)ℓ,j,k|p + ‖η‖2

+ 2〈η,H∗
0 (H0v

⋆
β − βc)〉 + 2〈η,v⋆

β − βa〉 − 2〈η,H∗
0 (H0v

⋆
β − βH0a)〉

+

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj(|(ṽ⋆
β)ℓ,j,k + η̃ℓ,j,k|p − |(ṽ⋆

β)ℓ,j,k|p)

= Φ̃(v⋆
β;a) + ‖η‖2 + 2〈η,v⋆

β − βa − H
∗
0βc + H

∗
0H0βa〉

+

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj(|(ṽ⋆
β)ℓ,j,k + η̃ℓ,j,k|p − |(ṽ⋆

β)ℓ,j,k|p).

(3.11)
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Since A∗A = I by Lemma 1.2, the inner product in (3.11) can be further extended as

〈η,v⋆
β − βa − H

∗
0βc + H

∗
0H0βa〉 = 〈η,A∗ṽ⋆

β −A∗Aβa −A∗AH
∗
0βc + A∗AH

∗
0H0βa〉

= 〈Aη, ṽ⋆
β −Aβa −A(H∗

0 (βc − H0βa))〉.

(3.12)

By this, together with the simplified notation
∑

ℓ,j,k :=
∑r

ℓ=1

∑
j<0

∑
k∈Z

and λβ
j :=

β2−pλj , Φ̃(v⋆
β + η;a) becomes:

Φ̃(v⋆
β + η;a) = Φ̃(v⋆

β;a) + ‖η‖2

+
∑

ℓ,j,k

λβ
j (|(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k|p − |(ṽ⋆
β)ℓ,j,k|p)

+
∑

ℓ,j,k

2η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k − βaℓ,j,k − (βH

∗
0 (c − H0a))ℓ,j,k).

(3.13)

Next we prove the inequality

Φ(v⋆
β + η;a) ≥ Φ(v⋆

β;a) + ‖η‖2

for 1 ≤ p ≤ 2. For this we only need to show the nonnegativity of

∑

ℓ,j,k

λβ
j (|(ṽ⋆

β)ℓ,j,k+ η̃ℓ,j,k|p−|(ṽ⋆
β)ℓ,j,k|p)+

∑

ℓ,j,k

2η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k−βaℓ,j,k−(βH

∗
0 (c−H0a))ℓ,j,k).

(3.14)

Since ã and c̃ are in ℓp, when ṽ⋆
β ∈ ℓp, by applying the Minkowski’s and Young’s in-

equalities as well as the nonexpansive property of the threshold function tpλ(x), we have

{(ṽ⋆
β)ℓ,j,k − βaℓ,j,k − (βH

∗
0 (c − H0a))ℓ,j,k} ∈ ℓp(Z). Because η̃ ∈ ℓp and q = p

p−1 ≥ 1, we

have η̃ ∈ ℓq(Z) and by Hölder inequality,

{η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k − βaℓ,j,k − (βH

∗
0 (c − H0a))ℓ,j,k)} ∈ ℓ1(Z).

Thus the sequences in (3.14) are absolutely convergent and hence we can prove (3.14)

term by term, i.e. we prove

λβ
j |(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k|p − λβ
j |(ṽ⋆

β)ℓ,j,k|p + 2η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k − βaℓ,j,k − (βH

∗
0 (c−H0a))ℓ,j,k) ≥ 0.

(3.15)
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First we consider the case p = 1. The threshold function is the soft-threshold function

and the (ℓ, j, k)th entry of ṽ⋆
β satisfies that (ṽ⋆

β)ℓ,j,k = t
λβ

j
(βaℓ,j,k + (βH

∗
0 (c − H0a))ℓ,j,k).

We show (3.15) case by case.

1. (ṽ⋆
β)ℓ,j,k = 0, then |βaℓ,j,k + (βH

∗
0 (c − H0a))ℓ,j,k| ≤ λβ

j /2.

λβ
j |η̃ℓ,j,k| + 2η̃ℓ,j,k(−βaℓ,j,k − (βH

∗
0c − βH

∗
0H0a)ℓ,j,k) ≥ λβ

j (|η̃ℓ,j,k| − η̃ℓ,j,k) ≥ 0;

2. (ṽ⋆
β)ℓ,j,k > 0, then (ṽ⋆

β)ℓ,j,k = βaℓ,j,k + (βH
∗
0 (c − H0a))ℓ,j,k − λβ

j /2.

λβ
j |(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k| − λβ
j (ṽ⋆

β)ℓ,j,k

+ 2η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k − βaℓ,j,k − (βH

∗
0c − βH

∗
0H0βa)ℓ,j,k)

= λβ
j |(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k| − λβ
j (ṽ⋆

β)ℓ,j,k + 2η̃ℓ,j,k(−λβ
j /2)

= λβ
j

(
|(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k| − ((ṽ⋆
β)ℓ,j,k + η̃ℓ,j,k)

)
≥ 0;

3. (ṽ⋆
β)ℓ,j,k < 0, then (ṽ⋆

β)ℓ,j,k = βaℓ,j,k + (βH
∗
0 (c − H0a))ℓ,j,k + λβ

j /2.

λβ
j |(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k| + λβ
j (ṽ⋆

β)ℓ,j,k

+ 2η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k − βaℓ,j,k − (βH

∗
0c − βH

∗
0H0a)ℓ,j,k)

= λβ
j |(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k| + λβ
j (ṽ⋆

β)ℓ,j,k + 2η̃ℓ,j,k(λ
β
j /2)

= λβ
j

(
|(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k| + ((ṽ⋆
β)ℓ,j,k + η̃ℓ,j,k)

)
≥ 0.

Thus when p = 1 the sum in (3.13) is nonnegative and hence the inequality holds.

Next we consider the case 1 < p ≤ 2. When 1 < p ≤ 2, the value of v⋆
β is given by

(ṽ⋆
β)ℓ,j,k = (Fp

λβ
j

)−1(βaℓ,j,k + (βH
∗
0 (c − H0a))ℓ,j,k) and we have

λβ
j |(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k|p − λβ
j |(ṽ⋆

β)ℓ,j,k|p + 2η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k − Fp

λβ
j

((ṽ⋆
β)ℓ,j,k))

= λβ
j |(ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k|p − λβ
j |(ṽ⋆

β)ℓ,j,k|p − η̃ℓ,j,kpλj sgn((ṽ⋆
β)ℓ,j,k)|(ṽ⋆

β)ℓ,j,k|p−1.

If (ṽ⋆
β)ℓ,j,k = 0, then (3.15) holds clearly. If (ṽ⋆

β)ℓ,j,k 6= 0, we check it using function

θ(t) = |t|p where p > 1. The second order derivative is θ′′(t) = p(p − 1)|t|p−2, which is

nonnegative for any value of t except 0. By Taylor expansion,

λβ
j |(ṽ⋆

β)ℓ,j,k+η̃ℓ,j,k|p−λβ
j |(ṽ⋆

β)ℓ,j,k|p−2η̃ℓ,j,k((ṽ
⋆
β)ℓ,j,k−Fp

λβ
j

(ṽ⋆
ℓ,j,k)) =

1

2
λβ

j p(p−1)|ξ|p−2η̃2
ℓ,j,k,
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where ξ is between (ṽ⋆
β)ℓ,j,k and (ṽ⋆

β)ℓ,j,k + η̃ℓ,j,k. Thus (3.15) still holds when 1 < p ≤ 2.

In conclusion, when 1 ≤ p ≤ 2, we always have (3.15) and hence (3.14). Therefore, the

inequality Φ̃(v⋆
β + η;a) ≥ Φ̃(v⋆

β;a) + ‖η‖2 holds for 1 ≤ p ≤ 2.

A similar proposition is proved in [19], where the underlying system used in denoising is

orthonormal basis and their proof depends on the fact A∗A = AA∗ = I . However, for

the tight frame system, one only has A∗A = I (AA∗ is not I ). This adds the difficulties

of the proof and it also leads the conditions on the pairs (v⋆
β , ṽ

⋆
β) and (η, η̃). As we

pointed out before, the condition on the pair (η, η̃) is stronger than that on (v⋆
β , ṽ

⋆
β).

To give the minimization property of (vβ , ṽβ), we need that vβ is uniformly bounded

regardless of β. This will be true if we assume the threshold parameters λj satisfy that

infβ infj λj ≥ γ > 0, j < 0 and 0 < β < 1. This condition is natural in applications.

Indeed, this assumption requires to discard the framelet coefficients when |j| is sufficiently

large. It is reasonable because for a given signal, when |j| is large enough, the coefficients

of the low frequency subband are very small and can be discarded anyway. We first prove

the following lemma:

Lemma 3.1. Let h1, . . . ,hr be the high pass filters of a tight frame system derived by

the UEP with h0 being the given low pass filter. Suppose the threshold parameters λ > 0,

then there exists a constant 0 < ρ < 1 such that for any sequence v ∈ ℓ2(Z)

‖Dp
λ(v)‖ ≤ ρ‖v‖,

where Dp
λ is the threshold operator defined in (2.17). Further, let T pA be the denoising

operator. Assuming that infj λj ≥ γ > 0, we have

‖T pA(v)‖ ≤ ρ‖v‖, 0 < ρ < 1.

Proof. By (2.17), we have

‖Dp
λ(v)‖2 =

∑

k∈Z

|tpλ(v[k])|2.

When p = 1, it is the soft-threshold function tλ(x) := t1λ(x) = sgn(x)max(|x| − λ/2, 0).

If λ ≥ 2 supk∈Z |v[k]|, then Dp
λ(v) = 0 and hence the inequality |tλ(v[k])| ≤ ρ|v[k]| holds



3.2 Minimization Property of Algorithm 2.2 46

for any 0 < ρ < 1. If λ < 2 supk∈Z |v[k]|, then for a given k ∈ Z, we have
∣∣∣∣
tλ(v[k])

v[k]

∣∣∣∣ ≤ 1 − λ

2|v[k]| ≤ 1 − λ

2‖v‖ .

Since v ∈ ℓ2(Z), we have ρ = supk∈Z

∣∣∣ tλ(v[k])
v[k]

∣∣∣ ≤ 1 − λ
2‖v‖ < 1.

Next, when 1 < p ≤ 2, by (2.18), we have tpλ(x) = (F p
λ )−1(x) where F p

λ (x) = x +

pλ
2 sgn(x)|x|p−1. For given v[k], k ∈ Z, assume (F p

λ )−1(v[k]) 6= 0. Let y = (F p
λ )−1(v[k]).

Since 1 < p ≤ 2, we have

∣∣∣∣
(F p

λ )−1(v[k])

v[k]

∣∣∣∣ =
∣∣∣∣∣

y

y + pλ
2 sgn(y)|y|p−1

∣∣∣∣∣ =
1

1 + pλ
2 |y|p−2

≤ 1

1 + pλ
2 ‖v‖p−2

< 1.

When (F p
λ )−1(v[k]) = 0, it is clear that

|(F p
λ )−1(v[k])| ≤ 1

1 + pλ
2 ‖v‖p−2

|v[k]|.

Thus when 1 < p ≤ 2, we choose

ρ = sup
k∈Z

∣∣∣∣∣
(F p

λj
)−1(v[k])

v[k]

∣∣∣∣∣ ≤
1

1 + pλ
2 ‖v‖p−2

< 1.

Thus threshold operator Dp
λ satisfies

‖Dp
λ(v)‖ ≤ ρ‖v‖, 1 ≤ p ≤ 2.

For the denoising operator, by (2.19),

‖T pA(v)‖2 =
r∑

ℓ=1

−1∑
j=−∞

‖Dp
λj

(Hℓ,j

−1∏
j′=j+1

H0,j′v)‖2,

then for each sequence Hℓ,j

∏−1
j′=j+1 H0,j′v, there exists ρℓ,j such that

‖Dp
λj

(Hℓ,j

−1∏
j′=j+1

H0,j′v)‖ ≤ ρℓ,j‖Hℓ,j

−1∏
j′=j+1

H0,j′v‖.

Since ‖Hℓ,j
∏−1

j′=j+1 H0,j′v‖ ≤ ‖v‖ and infj λj ≥ γ > 0, we can take

ρ = sup
ℓ,j

ρℓ,j ≤





1 − γ
2‖v‖ < 1, when p = 1;

1
1+ pγ

2
‖v‖p−2 < 1, when 1 < p ≤ 2.

Thus we have ‖T pA(v)‖2 ≤
r∑

ℓ=1

−1∑
j=−∞

ρ2
ℓ,j‖Hℓ,j

∏−1
j′=j+1 H0,j′v‖2 ≤ ρ2‖v‖2, which com-

pletes the proof.
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Note that since Dp
λ is not linear, we do not have

‖T pA(v1) − T pA(v2)‖ ≤ ρ‖v1 − v2‖,

although we have

‖T pA(v1) − T pA(v2)‖ ≤ ‖v1 − v2‖

by Proposition 3.2.

Based on Lemma 3.1, we can derive that the iterative sequence is uniformly bounded.

More precisely, we have the following proposition.

Proposition 3.4. Let h1, . . . ,hr be the high pass filters of a tight frame system derived

by the UEP with h0 being the given low pass filter and vβ be the limit of iteration (2.20)

for 0 < β < 1. Assume that the the threshold parameters λj , j < 0 are independent of

iteration with infβ infj λj ≥ γ > 0. Then there exists C > 0, such that ‖vβ‖ ≤ C, for all

0 < β < 1.

Proof. For any given initial value v0 ∈ ℓ2(Z) and a fixed β ∈ (0, 1), let {vβ
n} be the

sequence obtained by iteration (2.20) in Algorithm 2.2. Applying Lemma 3.1 and the

argument used in (3.3) lead to

‖vβ
n‖ ≤ ρ(‖c‖ + ‖vβ

n−1‖) ≤
ρ

1 − ρ
‖c‖ + ‖v0‖.

Let C = ρ
1−ρ‖c‖ + ‖v0‖, then ‖vβ

n‖ ≤ C. Hence, the limit vβ to v
β
n also satisfies that

‖vβ‖ ≤ C.

A consequence of Proposition 3.3 is the following result which states that the minimiza-

tion property of vβ.

Proposition 3.5. Suppose c̃ = Ac ∈ ℓp. For given ε > 0 and C > supβ ‖vβ‖, there

exists δ > 0, which only depends on ε and C, such that for all β ∈ (1 − δ, 1), the

corresponding limit (vβ, ṽβ) of iteration (2.20) in Algorithm 2.2 satisfies the inequality

(3.6) for an arbitrary pair (η, η̃) satisfying η̃ = Aη ∈ ℓp and ‖η‖ ≤ C.
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Proof. Note inequality (3.6) for an arbitrary β is equivalent to

Φ(vβ + η) ≥ Φ(vβ) − ε

for all (η, η̃), satisfying η̃ = Aη and ‖η‖ ≤ C.

Applying Proposition 3.3 by letting a = vβ, we have inequality

Φ̃(v⋆
β + η;vβ) ≥ Φ̃(v⋆

β;vβ) + ‖η‖2 (3.16)

for any pair (η, η̃) satisfying η̃ = Aη. Since the limit vβ satisfies (3.1) by Theorem 3.1

and v⋆
β is given by (3.9) in Proposition 3.3, we have

v⋆
β = A∗T pA(H∗

0βc +
r∑

ℓ=1

H
∗
ℓ Hℓβvβ) = vβ.

Hence Φ̃(v⋆
β;vβ) = Φ̃(vβ;vβ) = Φ(vβ). By the definition of Φ̃(v;a), one obtains that

Φ̃(v⋆
β + η;vβ) = ‖H0(v

β + η) − βc‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |(ṽβ)ℓ,j,k + η̃ℓ,j,k|p

+

r∑

ℓ=1

‖(1 − β)Hℓ(v
β + η) + βHℓη‖2.

Since

‖(1 − β)Hℓ(v
β + η) + βHℓη‖2 ≤ (1 − β)2‖Hℓ(v

β + η)‖2 + β2‖Hℓη‖2

+ 2β(1 − β)‖Hℓη‖‖Hℓ(v
β + η)‖,

this leads to

Φ̃(v⋆
β + η;vβ) ≤ ‖H0(v

β + η) − βc‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |(ṽβ)ℓ,j,k + η̃ℓ,j,k|p

+ (1 − β)2
r∑

ℓ=1

‖Hℓ(v
β + η)‖2 + β2

r∑

ℓ=1

‖Hℓη‖2

+ 2β(1 − β)
r∑

ℓ=1

‖Hℓη‖‖Hℓ(v
β + η)‖.

Note that

Φ(vβ + η) = ‖H0(v
β + η) − βc‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

β2−pλj |(ṽβ)ℓ,j,k + η̃ℓ,j,k|p

+ (1 − β)2
r∑

ℓ=1

‖Hℓ(v
β + η)‖2.
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So we have

Φ(vβ + η) + β2
r∑

ℓ=1

‖Hℓη‖2 + 2β(1 − β)

r∑

ℓ=1

‖Hℓη‖‖Hℓ(v
β + η)‖ ≥ Φ(vβ) + ‖η‖2.

This leads to the following equality

Φ(vβ + η) ≥ Φ(vβ) + ‖η‖2 − β2
r∑

ℓ=1

‖Hℓη‖2 − 2β(1 − β)

r∑

ℓ=1

‖Hℓη‖‖Hℓ(v
β + η)‖.

Using

‖η‖2 = ‖H0η‖2 +

r∑

ℓ=1

‖Hℓη‖2,

one obtains

‖η‖2 − β2
r∑

ℓ=1

‖Hℓη‖2 − 2β(1 − β)

r∑

ℓ=1

‖Hℓη‖‖Hℓ(v
β + η)‖

= ‖H0η‖2 + (1 − β2)

r∑

ℓ=1

‖Hℓη‖2 − 2β(1 − β)

r∑

ℓ=1

‖Hℓη‖‖Hℓ(v
β + η)‖

= ‖H0η‖2 +

r∑

ℓ=1

(1 − β)‖Hℓη‖
(
(1 + β)‖Hℓη‖ − 2β‖Hℓ(v

β + η)‖
)

≥ ‖H0η‖2 + 2β(1 − β)
r∑

ℓ=1

‖Hℓη‖
(
‖Hℓη‖ − ‖Hℓ(v

β + η)‖
)

≥ ‖H0η‖2 + 2β(1 − β)
r∑

ℓ=1

‖Hℓη‖
(
‖Hℓη‖ − ‖Hℓv

β‖ − ‖Hℓη‖
)

= ‖H0η‖2 − 2β(1 − β)
r∑

ℓ=1

‖Hℓη‖‖Hℓv
β‖.

This leads to

Φ(vβ + η) ≥ Φ(vβ) + ‖H0η‖2 − 2β(1 − β)

r∑

ℓ=1

‖Hℓη‖‖Hℓv
β‖. (3.17)

Because vβ is bounded by Lemma 3.1 and η is also bounded, the term
∑r

ℓ=1 ‖Hℓη‖‖Hℓv
β‖

is bounded by rC2. So given arbitrary ε > 0, we can take δ ≤ ε
2rC2 and then for any

β ∈ (1 − δ, 1),

Φ(vβ + η) ≥ Φ(vβ) + ‖H0η‖2 − ε ≥ Φ(vβ) − ε, (3.18)

which completes the proof.
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Based on the minimization of vβ, the minimization property of sβ is straightforward. It

is given by the following theorem.

Theorem 3.3. Suppose c̃ ∈ ℓp. For given ε > 0 and C > supβ ‖vβ‖, there exists δ > 0,

which only depends on ε and C, such that for all β ∈ (1 − δ, 1), the solution (sβ, s̃β) of

Algorithm 2.2 satisfies the inequality (3.5) for any pair (η, η̃) satisfying η̃ = Aη ∈ ℓp

and ‖η‖ ≤ C.

Proof. For given (η, η̃), set η1 = βη and η̃1 = βη̃ which satisfy that ‖η1‖ ≤ C and

η̃1 ∈ ℓp. Then, for arbitrary ε > 0, applying Proposition 3.5, there exists δ1 > 0 such

that for any β ∈ (1 − δ1, 1) the pair (vβ , ṽβ) satisfies

Φ(vβ + η1) ≥ Φ(vβ) − ε

8
, (3.19)

as long as (η1, η̃1) satisfies η̃1 = Aη1 ∈ ℓp and ‖η1‖ ≤ C. From Algorithm 2.2, we have

sβ = v
β

β and s̃β = ṽ
β

β . Dividing β2 on both sides of (3.19), we have

‖H0(s
β + η) − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj|s̃β
ℓ,j,k +

(η̃1)ℓ,j,k
β

|p +
(1 − β)2

β2

r∑

ℓ=1

‖Hℓ(v
β + η1)‖2

≥ ‖H0s
β − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj |s̃β
ℓ,j,k|p +

(1 − β)2

β2

r∑

ℓ=1

‖Hℓv
β‖2 − ε

8β2
.

(3.20)

Because vβ and η1 are bounded, for any given ε > 0, we can take δ2 ≤ 1
4C

√
ε
r and then

any β ∈ (1 − δ2, 1) satisfies (1 − β)2
∑r

ℓ=1(‖Hℓ(v
β + η1)‖2 − ‖Hℓv

β‖2) < ε
8 . Taking δ =

min(δ1, δ2,
1
2 ) and combining with (3.20), the pair (sβ, s̃β) satisfies for any β ∈ (1− δ, 1)

‖H0(s
β + η) − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj |s̃β
ℓ,j,k + η̃ℓ,j,k|p

≥ ‖H0s
β − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj|s̃β
ℓ,j,k|p −

ε

4β2

≥ ‖H0s
β − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj|s̃β
ℓ,j,k|p − ε,

as long as the pair (η, η̃) satisfies η̃ = Aη ∈ ℓp and ‖η‖ ≤ C.
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Remark 3.1. We note that since each iteration solution pair (vβ
n, ṽ

β
n) satisfy v

β
n ∈ ℓ2(Z)

and ṽβ
n ∈ ℓ2, and (vβ, ṽβ) is the limit to the iteration pair, it leads to vβ ∈ ℓ2(Z) and

ṽβ ∈ ℓ2, and furthermore sβ ∈ ℓ2(Z) and s̃β ∈ ℓ2. The minimization property (3.5) holds

with finite value on both sides whenever p = 2. For 1 ≤ p < 2, as we have proved, when

s̃β is an ℓp, 1 ≤ p < 2 sequence, the solution satisfies the minimization inequality (3.5).

In fact, the values on the both sides of inequality (3.5) are finite.

In the proof of Theorem 3.3 (See (3.20)), when β is chosen to be small (say smaller than

1/2) instead of closing to 1, we have

‖H0(s
β + η) − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj |s̃β
ℓ,j,k + η̃ℓ,j,k|p + λ

r∑

ℓ=1

‖Hℓ(s
β + η)‖2

≥ ‖H0s
β − c‖2 +

r∑

ℓ=1

∑

j<0,k∈Z

λj |s̃β
ℓ,j,k|p + λ

r∑

ℓ=1

‖Hℓs
β‖2 − ε.

In this case, in addition to penalize the functional in (2.12) we also penalize

r∑

ℓ=1

‖Hℓs‖2, (3.21)

the high frequency information of the solution. However, as we discussed in the formula-

tion, since the deconvolution processing is essentially to recover the term
∑r

ℓ=1 Hℓs, we

do not want to penalize (3.21). This motivates us to suggest that β to be chosen close

to 1, although smaller β will give a fast convergence rate. Our numerical simulation

also shows that when smaller β is chosen, the corresponding solution is over smoothed.

This leads to inefficient deconvolution. We summarize the numerical results in Table 3.1

where the filters in Example 1.2 are used and the original signal is given in Figure 4.1

(a).

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9

RE 0.0643 0.0633 0.0622 0.0611 0.0599 0.0585 0.0571 0.0555 0.0537

PSNR 31.1299 31.2889 31.4560 31.6336 31.8439 32.0849 32.3537 32.6583 32.9811

Table 3.1. Numerical results of Algorithm 2.2 when β changes from 0.1 to 0.9

As can be seen, when β is small, the algorithm only removes the noise from the data

but does not deconvolve the signal significantly. When β becomes close to 1, relative
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error becomes smaller and peak signal-to-noise ratio is much better. These numerical

data coincide with our analysis because smaller β penalizes more the high frequency

components which are needed to be recovered from the algorithms.

In practice, we are given the data of finite dimension. As will see in §4, we can make the

finite dimensional matrix H
∗
0H0 nonsingular and hence the iteration (2.20) will converges

without the acceleration factor β. In such a case, we can directly prove inequality (2.12).

3.3 Minimization Property of Algorithm 2.3

In this section, we discuss the minimization property of the solution sβ obtained in

Algorithm 2.3. We use the similar approach to that used in the last section.

We characterize the minimization property of solution sβ paralleled to that of Algo-

rithm 2.2. From the iteration (2.21), we obtain the limit vβ which satisfies

vβ = H
∗
0βc +

r∑

ℓ=1

H
∗
ℓ A∗T pA(Hℓβvβ). (3.22)

Define

ṽ
β
ℓ = T pA(Hℓβvβ) and v

β
ℓ = A∗ṽβ

ℓ , ℓ = 1, . . . , r. (3.23)

If we further denote βc by v
β
0 , the limit of iteration (2.21) satisfies vβ = A∗

−1{vβ
ℓ }r

ℓ=0

where A∗
−1 is given by (1.25). We denote the quantities that determine the limit vβ by

the (r + 1)-tuple be (vβ, ṽβ
1 , . . . , ṽ

β
r ).

The solution of Algorithm 2.3 is given by another (r + 1)-tuple (sβ, s̃β
1 , . . . , s̃

β
r ) with

s̃
β
ℓ =

ṽ
β
ℓ

β
and s

β
ℓ = A∗s̃β

ℓ , ℓ = 1, . . . , r. (3.24)

Since vβ satisfies (3.22), we have

sβ = A∗
−1{sβ

ℓ }r
ℓ=0 = H

∗
0c +

r∑

ℓ=1

H
∗
ℓ A∗s̃β

ℓ , (3.25)

where s
β
0 := c and vβ, ṽ

β
ℓ are given in (3.22) and (3.23). In the following, we denote the

(ℓ′, j, k)th entries in s̃
β
ℓ , ℓ = 1, . . . , r, by (s̃β

ℓ )ℓ′,j,k where ℓ′ = 1, . . . , r, j < 0 and k ∈ Z.
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The solution of Algorithm 2.3 has different minimization property from the solution of

Algorithm 2.2. Given any ε > 0 and C > 0, the (r + 1)-tuple (sβ, s̃β
1 , . . . , s̃

β
r ) satisfies

the following inequality

‖h0 ∗ (sβ + η) − c‖2 +
r∑

ℓ=1

r∑

ℓ′=1

∑

j<0,k∈Z

λj|(s̃β
ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p

≥ ‖h0 ∗ sβ − c‖2 +
r∑

ℓ=1

r∑

ℓ′=1

∑

j<0,k∈Z

λj|(s̃β
ℓ )ℓ′,j,k|p − ε.

(3.26)

for any (r+1)-tuple (η, η̃1, . . . , η̃r) satisfying η̃ℓ = A(Hℓη), η̃1, . . . , η̃r ∈ ℓp and ‖η‖ ≤ C.

Note that η̃ℓ = A(Hℓη) implies that Hℓη = A∗A(Hℓη) = A∗η̃ℓ for ℓ = 1, . . . , r. The

high frequency components Hℓη, ℓ = 1, . . . , r, are further decomposed by decomposition

operator A. More precisely, A(Hℓη) is the coefficients of framelet packet in canonical

form (see [5] and [32]). From the penalty terms in (3.26), we can also see that the terms

s̃
β
ℓ , ℓ = 1, . . . , r are no longer framelet coefficients in (3.5) but coefficients of framelet

packet decomposition of the high frequency component s
β
ℓ = A∗s̃β

ℓ , ℓ = 1, . . . r, which

also reflect certain smoothness of the underlying functions. It is nature to penalize the ℓp-

norm of framelet packet coefficients of each high frequency component Hℓs
β, ℓ = 1, . . . r,

since as pointed out in the formulation that the deconvolution is essentially to put back

the missing components Hℓs
β, ℓ = 1, . . . r and we do not want them too rough. In fact,

we can put it into a similar formulation as Algorithm 2.2 in terms of the framelet packets.

However, we omit the details.

As we did for Algorithm 2.2, we can derive the following result on the minimization

property of (r+1)-tuple (sβ, s̃β
1 , . . . , s̃

β
r ). Since the proof is similar to that of Theorem 3.3,

and since we will give a full proof of this result for the finite data set, we omit it here.

Theorem 3.4. For given ε > 0 and C > supβ ‖vβ‖, there exists δ > 0, which only

depends on ε and C, such that for all β ∈ (1 − δ, 1), the corresponding (r + 1)-tuple

(sβ, s̃β
1 , . . . , s̃

β
r ) of iteration (2.21) in Algorithm 2.3 satisfies inequality (3.26) for any

(r + 1)-tuple (η, η̃1, . . . , η̃r) satisfying η̃ℓ = A(Hℓη), η̃1, . . . , η̃r ∈ ℓp and ‖η‖ ≤ C.



Chapter 4
Deconvolution of Finite Data Set

In the previous sections, our algorithms and analysis are given for the infinite data set

which is of theoretic interests and connects to multiresolution analysis. However, in

application, given data sets are always finite, a vector in e.g. RN0 . Thus it is necessary

to adjust our approach for these cases. This is achieved by extrapolating the data out

of the boundary. The numerical simulation shows that the algorithms work well under

different boundary conditions as shown in [8, 10, 11].

4.1 Algorithms for Finite Data

In this section, we convert the algorithms given in previous chapters to the ones which

deal with the finite data. The convolution equation becomes

h0 ∗ v = b + ǫ = c

with the finite given data set c and ‖ǫ‖2 = ε < ∞ where ‖ · ‖2 is the spectral norm

of vector or matrix. Since our data are no longer infinite, the boundary conditions are

needed to extend the data beyond their original domain. Basically, there are three types

of boundary conditions: zero-padding, periodic and symmetric. Since the zero-padding

boundary condition simply adds zeros out of the original domain, it is more or less

reduced to the case discussed in the previous section and it normally gives boundary

54
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artifacts, we omit discussions on this case. We focus on more detailed discussions on

periodic boundary condition and the discussion of symmetric boundary condition can be

carried out similarly.

When the given data α is extended using the periodic boundary condition, i.e.

α[n] = α[nmodN0], n ∈ Z,

where N0 is the length of data α, the convolution of data α with given filter h0 then

becomes a special kind of convolution, circular convolution. We denote such circular

convolution by

h0 ∗ α := h0 ⊛ α.

The circular convolution can also be written as a matrix-vector multiplication where the

matrix is a circulant matrix, a special kind of Toeplitz matrix, i.e. the entries of matrix

H0 generated from h0 are

H0[l, k] = h0[(l − k)modN0], 0 ≤ l, k < N0. (4.1)

Using periodic boundary condition to extend data implies that matrices H0, H1, . . . ,Hr

used in convolution are now circulant matrices of finite order generated from the filters

h0,h1, . . . ,hr. Further, we have dilated filters h0,j , . . . ,hr,j for the jth level decomposi-

tion, where hℓ,j is obtained by inserting 2−j−1 − 1 zeros between every two entries in hℓ.

With these, we define the discrete decomposition and reconstruction operators AJ and

A∗
J analog to (1.23) and (1.25) for a finite J by

AJ = [
( −1∏

j=J
H0,j

)
,
(
H1,J

−1∏
j=J+1

H0,j

)
, . . . ,

(
Hr,J

−1∏
j=J+1

H0,j

)
, . . . ,H1, . . . ,Hr]

t (4.2)

and

A∗
J = [

( J∏
j=−1

H∗
0,j

)
,
( J+1∏

j=−1
H∗

0,jH
∗
1,J

)
, . . . ,

( J+1∏
j=−1

H∗
0,jH

∗
r,J

)
, . . . ,H∗

1 , . . . ,H
∗
r ]. (4.3)

They are essentially block matrices with circulant blocks. Each entry in AJ and A∗
J is

the product of a series of circulant matrices Hℓ,j generated from filter hℓ,j. Similar to

Proposition 1.2, it can be proved that A∗
J is the adjoint operator of AJ and A∗

JAJ = I,

where I is the identity matrix.
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The finiteness of data makes it possible to remove the acceleration factor from the itera-

tions in both Algorithm 2.2 and 2.3. From the proof of the convergence of Algorithm 2.2

and 2.3, to remove the acceleration factor, we need that the largest eigenvalues of the

matrix
r∑

ℓ=1

H∗
ℓHℓ

are less than 1. Since
r∑

ℓ=1

H∗
ℓHℓ = I −H∗

0H0,

the convergence of the iteration depends on the nonsingularity of matrix H∗
0H0. We note

that in the case when the data are infinite dimension as discussed in §3, the spectrum of

corresponding operator H0 contains zero. Hence, we have to use the acceleration factor

in this case.

To implement our algorithms on the data of finite dimension, we decompose to a finite

level to denoise. Hence in the iteration, operators AJ and A∗
J are used instead of A and

A∗. Moreover, we need in the algorithms the following denoising operator for data of

finite dimension: given a finite sequence v, define

T pAJ(v) = [(
−1∏
j=J

H0,jv), Dp
λJ

(H1,J

−1∏

j=J+1

H0,jv), . . . ,Dp
λJ

(Hr,J

−1∏

j=J+1

H0,jv),

. . . ,Dp
λ−1

(H1v), . . . ,Dp
λ−1

(Hrv)]t,

where the threshold operator Dp
λ is given in (2.17). With these notations, we can give

out the algorithms for finite data set.

Algorithm 4.1 (Algorithm 2.2 for finite data).

(i) Choose an initial approximation v0 (e.g. v0 = c);

(ii) Iterate on n until convergence:

vn+1 = A∗
JT pAJ(H∗

0c +

r∑

ℓ=1

H∗
ℓHℓvn). (4.4)
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Algorithm 4.2 (Algorithm 2.3 for finite data).

(i) Choose an initial approximation v0 (e.g. v0 = c);

(ii) Iterate on n until convergence:

vn+1 = H∗
0c +

r∑

ℓ=1

H∗
ℓ (A∗

JT pAJ ) (Hℓvn). (4.5)

(iii) Let vn0
be the final iterative solution from (ii). Then the solution to the algorithm

is

v = A∗
JT pAJ(vn0

).

As we can see the difference between Algorithm 4.1 and 4.2 is the different denoising

schemes used in the iteration. The above algorithms can be understood as Algorithm 2.2

and 2.3 being applied to finite data. The underlying framelet analysis can also be car-

ried out by using the framelets on intervals, e.g. periodic framelets when the periodic

boundary conditions are imposed. We omit the discussion here. On the other hand, the

above algorithms can be also viewed as algorithms to solve the equation:

H0v = b + ǫ = c, (4.6)

whereH0 is the matrix depends on the boundary condition imposed, e.g. H0 is a circulant

matrix generated by h0 when the periodic boundary conditions are imposed. We note

that we can always make H0 to be nonsingular by Proposition 4.1 given in the next

section and hence the linear system always has a unique solution.

4.2 Convergence and Minimization Properties

In this section, we analyze the convergence of the algorithms given in §4.1 and discuss

the minimization properties of the corresponding solutions.

The analysis is based on the nonsingularity of the matrix H0. We consider the finite

dimension data with periodic boundary condition which leads H0 to be circulant. The
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eigenvalues of the circulant matrix H0 generated from h0 can be given out explicitly as

follows:

λp[H0] =

K−1∑

k=0

h0[k] exp

(
− i2kpπ

N0

)
, p = 0, 1, · · · , N0 − 1, (4.7)

where N0 is the length of given data and K is the length of filter h0. Here we assume,

without loss of generality, K < N0. To see why the eigenvalues of matrix H0 are in form

of (4.7), we need to notice that the data set is extended periodically and the finite filter

h0 is extended to be an infinite one h̃0 by adding zeros beyond the finite length, i.e.

h̃0 = [· · · , 0, · · · , 0,h0[0], · · · ,h0[K − 1], 0, · · · , 0, · · · ].

Since the eigenvalues of circulant matrix H0 generated by h0 are

λp[H0] =

N0−1∑

k=0

h̃0[k] exp

(
− i2kpπ

N0

)
, p = 0, 1, · · · , N0 − 1,

removing the zero entries from the above expression we get the eigenvalues of H0 which

are the same as (4.7).

Furthermore, we can see that the eigenvalues of the matrix H0 are the values of poly-

nomial ĥ0(ω) at ω = 2pπ
N0

, p = 0, . . . , N0 − 1. The matrix H0 is nonsingular, whenever

ĥ0(
2pπ
N0

) is not equal to zero for each p = 0, . . . , N0 − 1. Since ĥ0 only has finitely many

zeros, we can extend the data set to increase the length of the data from N0 to N1 (be-

fore making a periodical extension of the data) to avoid the zero eigenvalue of H0. This

observation is summarized in the following result.

Proposition 4.1. Let h0 be the given low pass filter with length K and the given data

having length N0 > K. Then the data set can always be extended to have the length

N1 > N0 such that the corresponding circulant matrix H0 generated from h0 with the

data set of length N1 is nonsingular. Consequently, the matrices H∗
0 and H∗

0H0 are

nonsingular.

Proof. We start the proof from the explicit form of the eigenvalues of the circulant matrix

H0 generated from filter h0 with the data of length N . The eigenvalues of the N -by-N
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circulant matrix H0 are:

λp[H0] =
K−1∑

k=0

h0[k] exp

(
− i2πkp

N

)
= ĥ0(

2pπ

N
), p = 0, 1, · · · , N − 1.

If ĥ0(2πω) 6= 0, for ω ∈ Q with Q the set of rational numbers, then λp[H0] 6= 0 for

p = 0, 1, . . . , N − 1. Since h0 is finitely supported, the polynomial ĥ0(ω) has finitely

many zeros. Suppose those zeros of ĥ0(ω) in terms of rational multiples of 2π are

{
2π
qi
pi

: i = 1, 2, · · · , n
}
, (4.8)

where for each i, gcd(qi, pi) = 1. Because ĥ0(ω) is 2π-periodic, we can take the rationales

being proper fractions, i.e. qi < pi. It is not necessary to consider the case pi = qi since

ĥ0(2π) = ĥ0(0) = 1. To make the matrix H0 nonsingular, the value of N should satisfy

p

N
/∈
{
qi
pi

: i = 1, 2, · · · , n
}
, p = 0, 1, · · · , N − 1. (4.9)

One sufficient condition on N such that (4.9) holds is

pi ∤ N, i = 1, 2, · · · , n. (4.10)

This is because, if (4.9) is not true, i.e. there exist pi0 and qi0 in the set given in (4.9)

such that p
N =

qi0
pi0

, then ppi0 = Nqi0. Since gcd(pi0, qi0) = 1, it leads to pi0 |N , which is

a contradiction of pi0 ∤ N . Hence, for a given filter h0, there are infinitely many N such

that as long as the data length N satisfies (4.10), the corresponding circulant matrix

H0 is nonsingular. For a given data with length N0, if N0 dose not satisfies (4.9), we

just simply extend the data to the the length N1 satisfying (4.9). For example, one

can take N1 prime to each pi. Then the circulant matrix H0 generated from h0 with

respect to the extended data of length N1 is nonsingular. Since det(H∗
0 ) = det(H0) and

det(H∗
0H0) = det(H0)

2, the matrices H∗
0 and H∗

0H0 are nonsingular once H0 is.

Remark 4.1. In fact, the processing is constructive once all the zeros in terms of rational

multiples of 2π as those in (4.8) are available. Based on the sufficient condition (4.10),
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we first factorize pi, i = 1, · · · , n, in (4.8) as:





p1 = me11

1 me12

2 · · ·me1l
l ;

p2 = me21

1 me22

2 · · ·me2l
l ;

...
...

pn = men1

1 men2

2 · · ·menl
l ,

where mi, i = 1, . . . , l are prime numbers. Then N1 ≥ N0 satisfying (4.10) means that

mi ∤ N1, i = 1, · · · , l.

Starting from above criterion, we can find the minimum N1 by directly computation, e.g.

using sieve of Eratosthenes. The value of N1 generated in such a way is smaller than

taking N1 prime to each pi.

After we calculate the value of N1, we need to extend the data by N1 −N0 entries. To

make the extension meaningful, a possible way is to repeat the entries in the original

data set. For instance, we can append the first N1 − N0 entries to the end of the data

set. If h0 is a refinement mask of a spline, pseudo-spline or one of those used in high

resolution image reconstructions, then N1 − N0 ≤ 1, since ĥ0(2ωπ) = 0 with ω ∈ Q

only when ω = 1
2 . Thus, as long as N0 is odd, the corresponding circulant matrix H0 is

nonsingular. This implies that we can simply append at most the first entry in the data

set to guarantee the nonsingularity of H0.

As shown in the proof and remark above, the extension results in a small difference

between the number N0 and N1. In fact, for many cases, whenever the length of the

data is odd, the corresponding circulant matrix H0 is nonsingular. In the following,

we assume that the length of data is N1 such that the corresponding circulant matrix is

nonsingular. As we will see, the nonsingularity ofH0 ensures the convergence of iterations

without using the acceleration factor β. Furthermore, the threshold parameters λj no

longer need to satisfy the additional condition infj λj > 0 imposed in last section.

The convergence of iteration (4.4) in Algorithm 4.1 and iteration (4.5) in Algorithm 4.2

can be proved based on the nonsingularity of the circulant matrix H0.
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Theorem 4.1. Let h0 be the low pass filter in the convolution equation and h1, . . . ,hr be

the high pass filters generated from h0 via the UEP. The corresponding circulant matrices

are H0, . . . ,Hr with H∗
0H0 being nonsingular. Then iteration (4.4) in Algorithm 4.1

converges for any initial seed v0 and the limit satisfies

s = A∗
JT pAJ(H∗

0c +

r∑

ℓ=1

H∗
ℓHℓs). (4.11)

Similarly, iteration (4.5) in Algorithm 4.2 converges for any initial seed v0 and the limit

satisfies

s = H∗
0c +

r∑

ℓ=1

H∗
ℓA

∗
JT pAJ(Hℓs). (4.12)

Proof. Because H∗
0H0 is nonsingular and I = H∗

0H0 +
∑r

ℓ=1H
∗
ℓHℓ, the eigenvalues

of I − H∗
0H0 are strictly less than 1, i.e. there exists a constant µ < 1 such that

‖∑r
ℓ=1H

∗
ℓHℓ‖2 = ‖I −H∗

0H0‖2 ≤ µ.

Following the proof of Theorem 3.1, given any v0, for any positive integers m and n,

‖vn+m−vn‖2 ≤ ‖
r∑

ℓ=1

H∗
ℓHℓ‖2‖vn+m−1−vn−1‖2 ≤ µ‖vn+m−1−vn−1‖2 ≤ µn‖vm−v0‖2.

and

‖vn‖2 ≤ ‖c‖2 + µ‖vn−1‖2 ≤ 1

1 − µ
‖c‖2 + ‖v0‖2.

Thus the iteration sequence {vn} is a Cauchy sequence and the limit exists and satisfies

(4.11).

Next we prove the convergence of iteration (4.5). Let H = [H1, . . . ,Hr]
t, then we have

‖H‖2
2 = max

‖u‖2=1
‖Hu‖2

2 = max
‖u‖2=1

u∗
r∑

ℓ=1

H∗
ℓHℓu = ‖

r∑

ℓ=1

H∗
ℓHℓ‖2 ≤ µ.

Denote g(v,v′) = [(T pAJH1v − T pAJH1v
′), . . . , (T pAJHrv − T pAJHrv

′)]t for any two

vectors v and v′. Following the proof of Theorem 3.1, given any v0, for any positive
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integers m and n,

‖vn+m − vn‖2 = ‖
r∑

ℓ=1

H∗
ℓA

∗
J(T pAJHℓvn+m−1 − T pAJHℓvn−1)‖2

= ‖H∗A∗
Jg(vn+m−1,vn−1)‖2

≤ ‖H∗‖2‖g(vn+m−1,vn−1)‖2

≤ ‖H∗‖2‖H‖2‖vn+m−1 − vn−1‖2

≤ µ‖vn+m−1 − vn−1‖2.

Similarly, one can prove by using (4.5)

‖vn‖2 ≤ ‖c‖2 + µ‖vn−1‖2 ≤ 1

1 − µ
‖c‖2 + ‖v0‖2. (4.13)

Thus the iteration sequence {vn} is a Cauchy sequence and the limit exists and satisfies

(4.12).

Paralleled to the minimization properties given in §3.2 and §3.3, we have the following

results about the minimization properties of the limits to iterations (4.4) and (4.5).

Theorem 4.2. Let h1, . . . ,hr be the high pass filters obtained from h0 by the UEP

and H0,H1, . . . ,Hr be the corresponding circulant matrices of these filters. Let s̃ =

T pAJ(H∗
0c +

∑r
ℓ=1H

∗
ℓHℓs) where s is the limit of iteration (4.4) satisfying s = A∗

J s̃.

Then given fixed 1 ≤ p ≤ 2 the pair (s, s̃) satisfies for any pair (η, η̃) with η̃ = AJη,

‖H0(s + η) − c‖2
2 +

r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

λj|s̃ℓ,j,k + η̃ℓ,j,k|p

≥ ‖H0s − c‖2
2 +

r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

λj |s̃ℓ,j,k|p.

Proof. We prove this theorem by the method used in the proof of Proposition 3.3. First

we define the following two functionals of finite sequences. For arbitrary sequence a and

any given (v, ṽ) satisfying v = A∗
J ṽ, define

Φfinite(v) := ‖H0v − c‖2
2 +

r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

λj|ṽℓ,j,k|p
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and

Φ̃finite(v;a) := ‖H0v − c‖2
2 +

r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

λj|ṽℓ,j,k|p +

r∑

ℓ=1

‖Hℓv −Hℓa‖2
2.

In Φfinite and Φ̃finite, the coefficients of framelet decomposition are used. Moreover, if we

take a = v, then Φ̃finite(v;v) = Φfinite
1 (v).

Note that the statement we need to prove in Theorem 4.2 is equivalent to inequality of

Φfinite(s + η) ≥ Φfinite(s) for any (η, η̃) satisfying η̃ = AJη. We prove this inequality

of Φfinite via functional Φ̃finite. Given arbitrary sequence a, let ṽ⋆ = T pAJ(H∗
0c +

∑r
ℓ=1H

∗
ℓHℓa) and v⋆ = A∗

J ṽ⋆. We will show that for any (η, η̃) where η̃ = AJη,

(v⋆, ṽ⋆) satisfies

Φ̃finite(v⋆ + η;a) ≥ Φ̃finite(v⋆;a) + ‖η‖2. (4.14)

Taking a = s with s the limit of iteration (4.5), we have v⋆ = A∗
JT pAJ(H∗

0c +
∑r

ℓ=1H
∗
ℓHℓs) = s and (4.14) implies that

Φfinite(s+η)+‖η‖2
2−‖H0η‖2

2 = Φ̃finite(s+η; s) ≥ Φ̃finite(s; s)+‖η‖2
2 = Φfinite(s)+‖η‖2

2,

which leads to the minimization property of s. In the following we show that (4.14) holds

for arbitrary a.

Given (η, η̃), we have:

Φ̃finite(v⋆ + η;a) = Φ̃finite(v⋆;a) + ‖η‖2
2

+

r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

λj

(
|ṽ⋆

ℓ,j,k + η̃ℓ,j,k|p − |ṽ⋆
ℓ,j,k|p

)

+ 2〈η,v⋆ −H∗
0c −

r∑

ℓ=1

H∗
ℓHℓa〉,

(4.15)

where η̃ = AJη. From the definition of v⋆ and A∗
JAJ = I, the inner product can be

written as

〈η,v⋆ −H∗
0c −

r∑

ℓ=1

H∗
ℓHℓa〉 = 〈η, A∗

J ṽ⋆ −A∗
JAJa −A∗

JAJ(H∗
0 (c −H∗

0H0a))〉

= 〈AJη, ṽ⋆ −AJa −AJ(H∗
0 (c −H∗

0H0a))〉.
(4.16)
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Then replacing the inner product in (4.15) by (4.16), we have

Φ̃finite(v⋆ + η;a) = Φ̃finite(v⋆;a) + ‖η‖2
2

+

r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

λj

(
|ṽ⋆

ℓ,j,k + η̃ℓ,j,k|p − |ṽ⋆
ℓ,j,k|p

)

+ 2〈AJη, ṽ⋆ −AJa −AJ(H∗
0 (c −H∗

0H0a))〉.

(4.17)

Comparing (4.17) and (4.14), we only need to show

r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

λj

(
|ṽ⋆

ℓ,j,k + η̃ℓ,j,k|p − |ṽ⋆
ℓ,j,k|p

)
+ 2〈AJη, ṽ⋆ −AJa −AJ(H∗

0 (c −H∗
0H0a))〉

is nonnegative to prove inequality (4.14). We further set the simplified notation
∑

ℓ,j,k :=
∑r

ℓ=1

∑−1
j=J

∑N1−1
k=0 and expand the inner product (4.21) using the definition of AJ and

the denoising operator T p for finite case. Then we finally obtain that

∑

ℓ,j,k

λj

(
|ṽ⋆

ℓ,j,k + η̃ℓ,j,k|p − |ṽ⋆
ℓ,j,k|p

)
+ 2

∑

ℓ,j,k

η̃ℓ,j,k

(
ṽ⋆
ℓ,j,k − aℓ,j,k − (H∗

0 (c −H∗
0H0a))ℓ,j,k

)
.

(4.18)

The remaining part is to check the nonnegativity of

λj

(
|ṽ⋆

ℓ,j,k + η̃ℓ,j,k|p − |ṽ⋆
ℓ,j,k|p

)
+ 2η̃ℓ,j,k

(
ṽ⋆
ℓ,j,k − aℓ,j,k − (H∗

0 (c −H∗
0H0a))ℓ,j,k

)
,

which follows the same way as that in the proof of Proposition 3.3.

Theorem 4.3. Let h1, . . . ,hr be the high pass filters obtained from h0 by the UEP

and H0,H1, . . . ,Hr be the corresponding circulant matrices of these filters. Let s̃ℓ =

T pAJ(Hℓs) for ℓ = 1, . . . , r, where s is the limit of iteration (4.5) satisfying s =

A∗
−1{sℓ}r

ℓ=0 with sℓ = A∗
J s̃ℓ for ℓ = 1, . . . , r and s0 = c. Then given fixed 1 ≤ p ≤ 2, the

(r + 1)-tuple (s, s̃1, . . . , s̃r) satisfies the following inequality

‖H0(s + η) − c‖2
2 +

r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj|(s̃ℓ)ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p

≥ ‖H0s − c‖2
2 +

r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj |(s̃ℓ)ℓ′,j,k|p,

for any (r + 1)-tuple (η, η̃1, . . . , η̃r) with η̃ℓ = AJ(Hℓη) for ℓ = 1, . . . , r.
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Proof. We prove this theorem by proving a more general inequality. First for given

sequence a, we define ṽ⋆
ℓ = T pAJ (Hℓa) and v⋆

ℓ = A∗
J(ṽ⋆

ℓ ) for ℓ = 1, . . . , r. Denote c by

v⋆
0 for the simplicity, then the (r + 1)-tuple (v⋆, ṽ⋆

1, . . . , ṽ
⋆
r) satisfies

v⋆ = A∗
−1{v⋆

ℓ}r
ℓ=0 = H∗

0c +
r∑

ℓ=1

H∗
ℓA

∗
JT pAJ(Hℓa).

We will then show below that the inequality

‖H0(v
⋆ + η) − c‖2

2 +

r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj |(ṽ⋆
ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p

+

r∑

ℓ=1

‖Hℓ(v
⋆ + η) −Hℓa‖2

2

≥ ‖H0v
⋆ − c‖2

2 +

r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj |(ṽ⋆
ℓ )ℓ′,j,k|p

+

r∑

ℓ=1

‖Hℓv
⋆ −Hℓa‖2

2 + ‖η‖2
2,

(4.19)

holds for any (r+ 1)-tuple (η, η̃1, . . . , η̃r) with η̃ℓ = AJ(Hℓη) for ℓ = 1, . . . , r. Note that

if we take a = s, where s is the limit to iteration (4.5) satisfying (4.12), then

v⋆ = H∗
0c +

r∑

ℓ=1

H∗
ℓA

∗
JT pAJ(Hℓs) = s,

and (4.19) becomes the inequality we need to prove in the theorem. In the following we

give the proof of (4.19), which is similar to that of Proposition 3.3.
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Given the (r+ 1)-tuple (η, η̃1, . . . , η̃r), we expand the left hand side of (4.19) as follows:

‖H0(v
⋆ + η) − c‖2

2 +
r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj|(ṽ⋆
ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p

+
r∑

ℓ=1

‖Hℓ(v
⋆ + η) −Hℓa‖2

2

= ‖H0v
⋆ − c‖2

2 +
r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj|(ṽ⋆
ℓ )ℓ′,j,k|p

+
r∑

ℓ=1

‖Hℓv
⋆ −Hℓa‖2

2 + ‖η‖2
2

+

r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ )ℓ′,j,k|p

)

+ 2〈η,v⋆ −H∗
0c −

r∑

ℓ=1

H∗
ℓHℓa〉.

(4.20)

Compared with (4.19), we only need to show

r∑
ℓ=1

r∑
ℓ′=1

−1∑
j=J

N1−1∑
k=0

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ )ℓ′,j,k|p

)
+2〈η,v⋆−H∗

0c−
r∑

ℓ=1

H∗
ℓHℓa〉 ≥ 0.

From the definition of v⋆ and A∗
JAJ = I, the inner product in (4.20) can be written as

〈η,v⋆ −H∗
0c −

r∑

ℓ=1

H∗
ℓHℓa〉 = 〈η,

r∑

ℓ=1

H∗
ℓ (A∗

JT pAJ(Hℓa) −Hℓa)〉

=
r∑

ℓ=1

〈AJ(Hℓη),T pAJ(Hℓa) −AJ(Hℓa)〉

=
r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

(η̃ℓ)ℓ′,j,k((ṽ
⋆
ℓ )ℓ′,j,k − (aℓ)ℓ′,j,k).

(4.21)

With this, we only need to show

r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ)ℓ′,j,k|p

)

+2
r∑

ℓ=1

r∑

ℓ′=1

−1∑

j=J

N1−1∑

k=0

(η̃ℓ)ℓ′,j,k((ṽ
⋆
ℓ )ℓ′,j,k − (aℓ)ℓ′,j,k) ≥ 0.

(4.22)

This is proved by showing term by term the nonnegativity of the following sum:

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ )ℓ′,j,k|p

)
+ 2(η̃ℓ)ℓ′,j,k((ṽ

⋆
ℓ )ℓ′,j,k − (aℓ)ℓ′,j,k).
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We do not need to consider the convergence of the above series since it is only a finite

sum. The proof is same as that in the proof of Proposition 3.3 by using the definition of

threshold function tpλ(x) with respect to different value of p, which we omit here.

When the symmetric boundary condition is used, the filter h0 also needs to be symmetric.

The matrix form of the convolution equation generated from h0 according to symmetric

boundary condition is of Toeplitz plus pseudo-Hankel type or Toeplitz plus Hankel type,

where the (l, k)th entry in a Hankel matrix depends only on the (l + k)th entry in

the generation sequence. More precisely, when the low pass filter h0 is whole point

symmetric, i.e.

h0 = [h0[n], . . . ,h0[1],h0[0],h0[1], . . . ,h0[n]], K = 2n+ 1,

the corresponding convolution matrix is of Toeplitz plus pseudo-Hankel type:

H0 =




h0[0] h0[1] . . . h0[n] 0 . . . 0 0

h0[1] h0[0] . . . h0[n− 1] h0[n] . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 0 . . . h0[0] h0[1]

0 0 . . . 0 0 . . . h0[1] h0[0]




+




0 h0[1] . . . h0[n− 1] h0[n] 0 . . . 0 0 0

0 h0[2] . . . h0[n] 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...

0 0 . . . 0 0 0 . . . h0[3] h0[2] 0

0 0 . . . 0 0 0 . . . h0[2] h0[1] 0




;

when the low pass filter h0 is half point symmetric, i.e.

h0 = [h0[n− 1], . . . ,h0[1],h0[0],h0[0],h0[1], . . . ,h0[n− 1]], K = 2n,
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the corresponding matrix is of Toeplitz plus Hankel type:

H0 =




h0[0] h0[1] . . . h0[n] 0 . . . 0 0

h0[1] h0[0] . . . h0[n− 1] h0[n] . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 0 . . . h0[0] h0[1]

0 0 . . . 0 0 . . . h0[1] h0[0]




+




h0[1] . . . h0[n− 1] 0 . . . 0 0

h0[2] . . . 0 0 . . . 0 0
...

...
...

...
...

0 . . . 0 0 . . . h0[3] h0[2]

0 . . . 0 0 . . . h0[2] h0[1]




.

We can still prove that for many filters h0, e.g. refinement masks of splines, the cor-

responding matrix H∗
0H0 is nonsingular with H0 being the matrix generated from h0.

Hence the algorithms converge without the acceleration factor β and the limits to the

iterations have the same minimization properties. If the nonsingularity of the matrix

H∗
0H0 does not hold, we then return to the method of embedding the acceleration factor

into the iteration to ensure the convergence. We need to choose β close to 1 in order for

better data recovering as discussed in §3.2. We omit the detailed discussion here.

4.3 Stability Analysis

In this section, we discuss the stability of the algorithms given in §4.1. An algorithm of

solving H0v = b + ǫ = c is stable if the result of the algorithm approaches to the exact

solution of the equation H0v = b, as ‖ǫ‖2 = ε → 0. We give the stability analysis of

Algorithm 4.1, and the analysis of Algorithms 4.2 is similar.

Let the threshold λj = Cjε for some constant Cj , J ≤ j < 0. Let C = maxJ≤j<0Cj and

without loss of generality, we take C = 1 below. For a given pair (v, ṽ) with v = A∗
J ṽ,
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we denote

|ṽ|p :=
r∑

ℓ=1

−1∑

j=J

N1−1∑

k=0

Cj|ṽℓ,j,k|p.

Let the pair (sε, s̃ε) be the limit of iteration (4.4) associated with the error bound ε and let

ν be the exact solution to linear system H0v = b which satisfies ‖H0ν − c‖2 = ‖ǫ‖2 = ε.

Here, we note that the existence of ν follows from the nonsingularity of H0.

Proposition 4.2. Let sε be the limit of iteration (4.4) associated with error bound

‖ǫ‖2 = ε and ν be the exact solution to H0v = b. Then we have

lim
ε→0

‖sε − ν‖2 = 0.

Proof. We only need to consider the case when ε ≤ 1. Based on the proof of Theorem 4.1

(see (4.13)), sε is bounded by a constant independent of ε once the initial seed v0 is fixed

for all ε ≤ 1. Since s̃ε = T pAJ(H∗
0c +

∑r
ℓ=1HℓH

∗
ℓ sε), we have ‖s̃ε‖ℓ2 ≤ ‖c‖2 + ‖sε‖2,

i.e. its ℓ2 norm is bounded independent of ε by Proposition 3.2. This leads to |s̃ε|p ≤ B

with B independent of ε and of p, 1 ≤ p ≤ 2, because s̃ε is a finite dimensional vector.

From the boundedness of sε and s̃ε and vector ν, for any ε there is a pair (ηε, η̃ε) with

η̃ε = AJηε such that ‖sε + ηε − ν‖2 < ε and |s̃ε + η̃ε|p ≤ B′. The pair (ηε, η̃ε) depends

on ε; however, the constant B′ can be chosen to be independent of ε. By minimization

property of sε given in Theorem 4.2, we have

‖H0s
ε − c‖2

2 ≤ ‖H0s
ε − c‖2

2 + ε|s̃ε|p

≤ ‖H0(s
ε + ηε) − c‖2

2 + ε|s̃ε + η̃ε|p

≤ 2‖H0(s
ε + ηε) −H0ν‖2

2 + 2‖H0ν − c‖2
2 + ε|s̃ε + η̃ε|p

< 4ε2 + εB′.

Thus we derive that

‖H0s
ε − c‖2 <

√
4ε2 + εB′.

Since matrix H0 is nonsingular, we can show our statement by proving ‖H0(s
ε−ν)‖2 → 0

as ε→ 0. For arbitrary ε, we have

‖H0(s
ε − ν)‖2 ≤ ‖H0s

ε − c‖2 + ‖H0ν − c‖2 <
√

4ε2 + εB′ + ε.



4.4 Comparison of Algorithm 4.1, 4.2 and 5.1 70

Then the stability holds by letting ε→ 0.

4.4 Comparison of Algorithm 4.1, 4.2 and 5.1

We implement the iterative deconvolution algorithms developed in in §4.1. We give here

the simple illustration of the performance of these algorithms applied to 1D signals. The

method is evaluated by the relative error (RE), the peak signal-to-noise ratio (PSNR)

and signal-to-noise ratio (SNR). Relative error is defined by

RE =
‖vn − v‖2

‖v‖2
,

PSNR is defined by

PSNR = 10 log10

N0 maxk∈Z(vn[k])2

‖vn − v‖2
2

,

where vn[k] is the kth entry in data vn, and SNR is defined by

SNR = 20 log10
‖vn‖2

‖vn − v‖2
,

where vn is the iterative solution, v is the original data and N0 stands for the length of

signal. We test the algorithms using the periodic boundary condition. For the simulation

of 2D data set, the similar method can be carried out using the tensor product technique

mentioned in §4.1 and we refer the readers to the numerical results available in [8, 10, 11]

and the discussion in §5.1.

We take the signals which have sparse representation under the tight wavelet frame in

the WaveLab Toolbox developed by Donoho’s research group. Two of these signals are

shown in Figure 4.1 (a) and Figure 4.2 (a). The signals are then blurred using the cubic

spline and contaminated with white noise at SNR = 25, see Figure 4.1(b) and Figure

4.2(b). We process the contaminated signals by Algorithm 4.1, 4.2 and Algorithm 5.1,

which will be given in next chapter, using periodic boundary condition with proper pre-

extension of the data to ensure the convergence of the iterations (4.4) and (4.5). The

results are given in Figure 4.1 and Figure 4.2. Other numerical results of different signals

are given in Table 4.1.
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Figure 4.1 Numerical results for periodic boundary condition after 12 iterations. (a)

Original signal; (b) Signal blurred by filter in Example 1.2 and contaminated by

white noise at SNR=25; (c) Reconstructed signal by Algorithm 4.1 (RE=0.048856,

PSNR=34.113632dB, SNR=26.221678dB); (d) Reconstructed signal by Algorithm 4.2

(RE=0.049799, PSNR=33.855047dB, SNR=26.055584dB); (e) Reconstructed signal by Algo-

rithm 5.1 (RE=0.221711, PSNR=20.171143dB, SNR=13.084247dB).
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Figure 4.2 Numerical results for periodic boundary condition after 12 iterations. (a)

Original signal; (b) Signal blurred by filter in Example 1.3 and contaminated by

white noise at SNR=25; (c) Reconstructed signal by Algorithm 4.1 (RE=0.067718,

PSNR=32.882431dB, SNR=23.385962dB); (d) Reconstructed signal by Algorithm 4.2

(RE=0.070475, PSNR=32.443317dB, SNR=23.039271dB); (e) Reconstructed signal by Algo-

rithm 5.1 (RE=0.270130, PSNR=20.086519dB, SNR=11.368543dB).
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Type of Algorithm 4.1 Algorithm 4.2 Algorithm 4.3

Signal Rel. Err. PSNR SNR Rel. Err. PSNR SNR Rel. Err. PSNR SNR

HeaviSine 0.028460 33.217871 30.915279 0.028670 33.156742 30.851414 0.069625 25.455757 23.144756

Bumps 0.069254 39.577640 23.191044 0.075530 38.491668 22.437622 0.618064 17.970758 4.179333

Blocks 0.062193 30.895391 24.125186 0.067464 30.187947 23.418590 0.258222 19.087661 11.760150

Doppler 0.049995 30.580579 26.021500 0.048172 30.905828 26.344157 0.277670 15.688367 11.129433

Ramp 0.031575 32.332058 30.013089 0.039259 30.610982 28.121127 0.157946 17.146609 16.029819

Cusp 0.024914 36.003742 32.070983 0.024833 36.054969 32.099584 0.031825 33.847170 29.944680

Sing 0.089109 46.888308 21.001552 0.089637 46.860294 20.950295 0.805165 22.317274 1.882298

Piece-Polynomial 0.067718 32.882431 23.385962 0.070475 32.443317 23.039271 0.270130 20.086519 11.368543

Piece-Regular 0.048856 34.113632 26.221678 0.049799 33.855047 26.055584 0.221711 20.171143 13.084247

Table 4.1 Numerical Results of Three Algorithms.
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From Figures 4.1 and 4.2 as well as Table 4.1, we can see that Algorithm 4.1 and Algo-

rithm 4.2 give almost the same results on the given data sets with noise. Algorithm 5.1

can also recover the original data from the noised ones; however, the denoising effect is

not compatible with Algorithm 4.1 and Algorithm 4.2. This may be due to the less of

multiscale property in the algorithm. See Chapter 5 for detail.



Chapter 5
High Resolution Image Reconstruction

via Deconvolution

In this chapter, we focus on the generalization of the algorithms given in §2.2 to the 2D

case and the use of these deconvolution algorithms in high resolution image reconstruc-

tions.

5.1 Deconvolution in High Dimensional Space

In this section, the algorithms are extended to deal with the data set in 2D spaces.

The higher dimensional cases other than 2D can be achieved by the similar approach

inductively.

Here we assume the 2D low pass filter can be generated by two 1D low pass filters via

tensor product. Suppose hx
0 and h

y
0 are refinement masks (low pass filters) along x

and y directions of the refinable functions φx and φy. Both of these two filters satisfy

the assumption stated in (2.2) such that two separate MRA based tight frames can be

constructed via the UEP. Let the nested MRA space sequences be {V x
j } and {V y

j } and

hx
ℓ , ℓ = 1, . . . , r and h

y
ℓ′ , ℓ

′ = 1, . . . , r′, be high pass filters obtained via the UEP from

hx
0 and h

y
0 respectively. For convenience we assume r = r′. The corresponding tight

74
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framelets are given by

ψx
ℓ = hx

ℓ ∗′ φ, and ψy
ℓ = h

y
ℓ ∗′ φ, ℓ = 1, . . . , r.

Here we introduce the concept of semi-convolution which is defined for a sequence h and

a function f by

h ∗′ f =
∑

k∈Z

h[k]f(· − k).

The multiresolution analysis in L2(R2) is obtained by using the tensor product technique.

Define Vj by

V x
j ⊗ V y

j := span{F (x, y) = f1(x)f2(y) : f1 ∈ V x
j , f2 ∈ V y

j },

and Wℓ,j, ℓ = 1, . . . , (r + 1)2 − 1, by

Vj ⊗W y
ℓ2,j, W

x
ℓ1,j ⊗ Vj, W

x
ℓ1,j ⊗W y

ℓ2,j, ℓ1, ℓ2 = 0, . . . , r, ℓ1 + ℓ2 6= 0.

Then the space sequence {Vj} forms an MRA in L2(R2) and

Vj+1 ⊖Vj = Wj := ⊕(r+1)2−1
ℓ=1 Wℓ,j.

The corresponding refinable functions and framelets are given by

φ(x, y) := φx(x)φy(y), ψℓ(x, y) := ψx
ℓ1(x)ψ

y
ℓ2

(y), ℓ1, ℓ2 = 0, . . . , r, ℓ = 1, . . . , (r+ 1)2 − 1.

The formulation of the 2D deconvolution problem can be carried out using the MRA in

L2(R2). A similar result can be obtained. We omit the details here since we concern

more on the discrete form of the algorithms.

The convolution equation we are to solve is h0 ∗ v = c with h0 = hx
0 ⊗ h

y
0 where v,

c ∈ R2. This is the convolution with indices in Z2 which is defined by

h0 ∗ v[i1, i2] =
∑

p1,p2

h0[i1 − p1, i2 − p2]v[p1, p2].

The corresponding high pass filters obtained via UEP and tensor product are

hℓ = hx
ℓ1 ⊗ h

y
ℓ2
, ℓ1, ℓ2 = 0, . . . , r, ℓ = 1, . . . , (r + 1)2 − 1.
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Suppose the matrices generated from hx
ℓ and h

y
ℓ be Hx

ℓ and Hy
ℓ , ℓ = 0, . . . , r. Then the

2D convolution can be written in a matrix-vector multiplication form using the tensor

product of these matrices. First the convolution equation is rewritten in the following

matrix equation as

Hy
0v(Hx

0 )∗ = c.

This equation is equivalent to the linear system H0v̇ = ċ where H0 = Hx
0 ⊗Hy

0 , v̇ and

ċ are obtained by rearranging the corresponding matrices v and c according to column,

i.e. v̇ = [v∗
(1), . . . ,v

∗
(N0)]

∗ with v = [v(1), . . . ,v(N0)] and v(k), k = 1, . . . , N0, the column

vectors of v; ċ is obtained in a same manner. The 2D deconvolution problem is hence

reduced to solving a 1D linear equation system. The matrix form of other 2D high pass

filters is given by

Hℓ = Hx
ℓ1 ⊗Hy

ℓ2
, ℓ1, ℓ2 = 0, . . . , r, ℓ = 1, . . . , (r + 1)2 − 1.

Moreover we have the following identity on Hℓ, ℓ = 0, . . . , (r + 1)2 − 1:

H∗
0H0 +H∗

1H1 + · · · +H∗
(r+1)2−1H(r+1)2−1 = I.

So all the analysis used in Chapter 2 and Chapter 3 can be carried over with some

efforts. If the given data set is in ℓ2(Z2), we can use Algorithm 2.2 and 2.3 to solve the

2D convolution equation h0 ∗v = c or equivalent the linear system H0v̇ = ċ derived from

this convolution equation. Moreover, we always have the convergence of Algorithm 2.2

and 2.3 with acceleration factor β.

When we only consider the finite data set, we can remove the acceleration factor by prop-

erly modifying the size of the given data. For the 1D case, we know by Proposition 4.1

that when the periodic boundary condition is considered, given a low pass filter, the

length of data can be properly extended such that the matrix generated from the filter

is nonsingular. Thus in the following we assume Hx
0 and Hy

0 are nonsingular. Because

H∗
0H0 = ((Hx

0 )∗ ⊗ (Hy
0 )∗)(Hx

0 ⊗Hy
0 ) = ((Hx

0 )∗Hx
0 ) ⊗ ((Hy

0 )∗Hy
0 ),

the nonsingularity of (Hx
0 )∗Hx

0 and (Hy
0 )∗Hy

0 guarantees that H∗
0H0 is also nonsingular

(more detailed discussion can be found in [27]). It implies that the analysis used in the
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proof of Theorem 4.1 can be applied and the algorithms converge without the acceler-

ation factor β. After we obtain the solutions ṡ to these algorithms, we can reverse the

arrangement process to get the two dimensional solutions form s.

The method using tensor product to extend the algorithms to deal with the 2D data set

can be generalized for the data set in higher dimensional space by applying the tensor

product technique inductively. Furthermore, as long as the finite data set with periodic

boundary condition is considered, we always have the convergence of algorithms without

using the acceleration factor β.

5.2 High Resolution Image Reconstruction

In this section, we will show how to transfer a high resolution image reconstruction

problem into the 2D deconvolution problem.

High resolution images are desired in many situations, but made impossible because

of hardware limitations. Increasing the resolution by image processing techniques is

therefore of great importance. The high resolution image reconstruction can be obtained

by mapping several low resolution images onto a single high resolution image plane, then

interpolating it between the nonuniformly spaced samples. It can also be put into a

Bayesian framework by using a Huber Markov random field. In this thesis, we follow

the approach in [4] and consider creating high resolution images of a scene from the low

resolution images of the same scene, where the low resolution images are obtained from

sensor arrays which are shifted from each others with subpixel displacements.

Suppose the image of a given scene is obtained by the sensors with N1 ×N2 pixels with

the length and width of each pixel being T1 and T2. Such sensors are called the low

resolution sensors and the image captured by them are the low resolution images. We

are going to construct a high resolution image from an array of K1 ×K2 low resolution

images captured by a sensor array. The resolution of the constructed image depends

on the array of the sensors, i.e. the image constructed is with M1 ×M2 pixels, where

M1 = K1N1 and M2 = K2N2. Since the length and width of the original scene we are
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interested in are fixed, or say our region of interest is stationary, the length and width

of each high resolution image pixel is

P1 =
T1N1

K1N1
=
T1

K1
and P2 =

T2N2

K2N2
=
T2

K2
.

In other words, the sampling block of the scene changes from T1 × T2 to P1 × P2, which

is smaller and hence we can hope for a high resolution result of the scene.

Let the function G(x1, x2) be the intensity function of the underlying scene (real existed

image without sampling) in the region of interest with 0 ≤ x1 < T1N1 and 0 ≤ x2 < T2N2.

Then the M1 × M2 high resolution image means that we need to calculate for each

sampling block:

K1K2

T1T2

∫ (i+1)T1/K1

iT1/K1

∫ (j+1)T2/K2

jT2/K2

G(x1, x2) dx1dx2, 0 ≤ i < M1, 0 ≤ j < M2. (5.1)

This can be viewed as we average the intensity of the original scene in each 2D sampling

interval P1 × P2.

To have enough information to construct such high resolution one, we introduce the

subpixel displacements between each two consecutive sensor arrays. For sensor (k1, k2),

0 ≤ k1 < K1, 0 ≤ k2 < K2, the horizontal and vertical displacements with respect to the

(0, 0)th sensor are given by

dx
k1k2

=
(
k1 +

1 −K1

2

) T1

K1
and dy

k1k2
=
(
k2 +

1 −K2

2

) T2

K2
.

Thus the intensity at (n1, n2)th pixel of the low resolution image captured by this sensor

is given by:

Gk1k2
[n1, n2] =

1

T1T2

∫ T1(n1+1)+dx
k1k2

T1n1+dx
k1k2

∫ T2(n2+1)+dy
k1k2

T2n2+dy
k1k2

G(x1, x2) dx1dx2 + ǫk1k2
[n1, n2],

(5.2)

where 0 <≤ n1 < N1, 0 ≤ n2 < N2 and ǫk1k2
[n1, n2] is the noise term. By applying the

mid-point quadrature rule, we have

Gk1k2
[n1, n2] ≈ G

( T1

K1
(K1n1 + k1 +

1

2
),
T2

K2
(K2n2 + k2 +

1

2
)
)
.
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Furthermore, we rearrange the indices of all K1 × K2 low resolution images with the

approximated intensity value given above in the following way:

G̃[K1n1 + k1,K2n2 + k2] = Gk1k2
[n1, n2],

to form an M1 ×M2 image G̃

G̃[i, j] ≈ G
( T1

K1
(i+

1

2
),
T2

K2
(j +

1

2
)
)
, 0 ≤ i < M1, 0 ≤ j < M2,

which can be viewed as applying the mid-point quadrature rule to approximate the

integral value in (5.1). So the function G̃ obtained by such approximation is an approx-

imation to the high resolution image modelled by (5.1) and it is already better than any

one of K1 ×K2 low resolution images. The high resolution image obtained in such a way

is called the observed high resolution image.

To get a much better image than the observed one, we use the quadrature rule of higher

order to approximate the integral (5.2) for each sensor (k1, k2) and then add all the

approximation of the sensor array together with weight matrices for the sensors. Here

we take rectangular rule. By doing this we can set up a linear system of the high

resolution pixel value G(i, j) to the observed low resolution pixel value G̃(i, j) with (i, j)

the high resolution pixel in the region of interest. Since the region of interest is a finite

domain, we need the boundary conditions to extrapolate G out of the boundary. We use

the periodic boundary condition here. The rectangular quadrature rule is given in [4] and

we omit the derivation in this thesis. The linear system obtained from the quadrature

rule is defined by M1 ×M1 matrix Hx
0 and M2 ×M2 matrix Hy

0 with the rows given by

1

K1

[1
2
, 1, . . . , 1︸ ︷︷ ︸

K1−1

,
1

2

]
, and

1

K2

[1
2
, 1, . . . , 1︸ ︷︷ ︸

K2−1

,
1

2

]
.

We call these two matrices the blurring matrix. They are the combination of blurring

matrices for each sensor in the array using the weight matrices. The use of periodic

boundary condition implies that Hx
0 and Hy

0 are circulant matrices generated by the low

pass filters hx
0 and h

y
0 which are exact the rows of these two matrices shown above. It

can be easily checked that these two filters satisfy the UEP condition (1.5) and hence

two corresponding tight frame system can be constructed.
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The linear system obtained in such a way is M1M2 ×M1M2 and the known/unknown

M1M2 × 1 vectors are derived from G and G̃ by the way given in last section to convert

the matrices G and G̃ to the vectors G and G̃. More precise, let G = [G(1), . . . , G(M1)]

and G̃ = [G̃(1), . . . , G̃(M1)], where Gi and G̃i are column vectors of matrices G and G̃.

Then the vectors generated from these two matrices are

G = [G∗
(1), . . . , G

∗
(M1)]

∗ and G̃ = [G̃∗
(1), . . . , G̃

∗
(M1)]

∗.

The linear system is
(
Hx

0 ⊗Hy
0

)
G = G̃.

By the analysis in last section, such linear system is equivalent to a 2D convolution

equation because we have

(
Hx

0 ⊗Hy
0

)
G ⇐⇒ Hy

0G(Hx
0 )∗,

which is the convolution of G by filter h0 := hx
0 ⊗ h

y
0. So the 2D deconvolution algo-

rithms can be applied to solve out the value of G. Finally, the high resolution image

is constructed by rearranging G to G. The algorithms discussed before are also called

the high resolution image reconstruction algorithms in [8, 10, 11], in which quite a lot of

simulation results are available.

5.3 Differences in Denoising Schemes

In the end of this chapter, we discuss the algorithm used in papers [8, 10, 11] on high

resolution image reconstructions with a comparison of the denoising scheme used in our

algorithms given in previous chapters. The convergence of the algorithm, the minimiza-

tion of the solution and the stability property are also given. In the later discussion,

without further notification, the periodic boundary condition is implemented to the fi-

nite data set.

The algorithm used in high resolution image reconstructions in [8, 10, 11] applies a

different decomposition operator in denoising scheme. Let h1, . . . ,hr be the high pass
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filters generated from the known low pass filter h0 using UEP. Let H0, . . . ,Hr be the

matrices generated from these filters. The decomposition operator used is defined as:

BJ = [HJ
0 , H1H

J−1
0 , . . . ,HrH

J−1
0 , . . . ,H1, . . . ,Hr]

t (5.3)

and the reconstruction operator is its adjoint operator

B∗
J = [(HJ

0 )∗, (HJ−1
0 )∗H∗

1 , . . . , (H
J−1
0 )∗H∗

r , . . . ,H
∗
1 , . . . ,H

∗
r ]. (5.4)

It can be easily seen that the difference between AJ and BJ is in the blocks. In AJ , each

block is of form

Hℓ,j

−1∏
j′=j−1

H0,j′,

which is a product of matrices generated from up sampled filters hℓ,j, ℓ = 0, . . . , r; while

in BJ , each block is of form

HℓH
j
0 ,

which is a product of matrices generated from filters hℓ, ℓ = 0, . . . , r, without up sam-

pling. This difference implies the filters in decomposition BJ are stationary without up

sampling process. Nevertheless, the identity B∗
JBJ = I still hold. In fact, one can prove

this identity easily by modifying the proof of Proposition 1.2. The denoising scheme is

formed by applying the threshold operator T p to BJv, i.e.

[HJ
0 v, Dp

λJ
(H1H

J−1
0 v), . . . ,Dp

λJ
(HrH

J−1
0 v), . . . ,Dp

λ1
(H1v), . . . ,Dp

λ1
(Hrv)]t.

With these we have the following algorithm which is used in high resolution image re-

constructions, see [8, 10, 11].

Algorithm 5.1.

(i) Choose an initial approximation v0 (e.g. v0 = c);

(ii) Iterate on n until convergence:

vn+1 = H∗
0c +

r∑

ℓ=1

H∗
ℓ (B∗

JT pBJ) (Hℓvn). (5.5)
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Since c contains noise, it was suggested by the numerical simulations in [8, 10, 11], one

needs to take a additional step of denoising from the final iteration:

(iii) v = B∗
JT pBJ(vn0

).

The convergence of iteration (5.5) in Algorithm 5.1 can be proved based on the nonsin-

gularity of the circulant matrix H0. This convergence property is stated in the following

result.

Theorem 5.1. Let h0 be the low pass filter in the convolution equation and h1, . . . ,hr be

the high pass filters generated from h0 via the UEP. The corresponding circulant matrices

are H0, . . . ,Hr with H∗
0H0 being nonsingular. Then iteration (5.5) in Algorithm 5.1

converges for any initial seed v0 and the limit satisfies

s = H∗
0c +

r∑

ℓ=1

H∗
ℓB

∗
JT pBJ(Hℓs). (5.6)

Proof. Because H0 is a nonsingular circulant matrix and I = H∗
0H0 +

∑r
ℓ=1H

∗
ℓHℓ, there

exists a constant µ < 1 such that ‖∑r
ℓ=1H

∗
ℓHℓ‖2 = ‖I − H∗

0H0‖2 ≤ µ. Let H =

[H1, . . . ,Hr]
t, then we have

‖H‖2
2 = max

‖u‖2=1
‖Hu‖2

2 = max
‖u‖2=1

u∗
r∑

ℓ=1

H∗
ℓHℓu = ‖

r∑

ℓ=1

H∗
ℓHℓ‖2 ≤ µ.

Denote g(v,v′) = [(T pBJH1v − T pBJH1v
′), . . . , (T pBJHrv − T pBJHrv

′)]t for any two

vectors v and v′. Following the proof of Theorem 3.1, given any v0, for any positive

integers m and n,

‖vn+m − vn‖2 = ‖
r∑

ℓ=1

H∗
ℓB

∗
J(T pBJHℓvn+m−1 − T pBJHℓvn−1)‖2

= ‖H∗B∗
Jg(vn+m−1,vn−1)‖2

≤ ‖H∗‖2‖g(vn+m−1,vn−1)‖2

≤ ‖H∗‖2‖H‖2‖vn+m−1 − vn−1‖2

≤ µ‖vn+m−1 − vn−1‖2.
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Similarly, one can prove by using (5.5)

‖vn‖2 ≤ ‖c‖2 + µ‖vn−1‖2 ≤ 1

1 − µ
‖c‖2 + ‖v0‖2.

Thus the iteration sequence {vn} is a Cauchy sequence and the limit exists and satisfies

(4.12).

Let

s̃ℓ = T pBJ(Hℓs), ℓ = 1, . . . , r.

Since solution s of iteration (5.5) satisfies (5.6), we have the (r + 1)-tuple (s, s̃1, . . . , s̃r)

satisfies s = H∗
0c +

∑r
ℓ=1H

∗
ℓB

∗
J s̃ℓ. We will prove this tuple of finite data sets satisfies a

similar property to its infinite counterpart and hence s is a solution to (2.6).

Theorem 5.2. Let h1, . . . ,hr be the high pass filters obtained from h0 by the UEP and

H0,H1, . . . ,Hr be the corresponding circulant matrices of these filters. Then given fixed

1 ≤ p ≤ 2, the (r + 1)-tuple (s, s̃1, . . . , s̃r) satisfies the following inequality

‖H0(s + η) − c‖2
2 +

r∑

ℓ=1

J∑

j=1

N0−1∑

k=0

λj |s̃ℓ,j,k + η̃ℓ,j,k|p

≥ ‖H0s − c‖2
2 +

r∑

ℓ=1

J∑

j=1

N0−1∑

k=0

λj|s̃ℓ,j,k|p,
(5.7)

for any (r + 1)-tuple (η, η̃1, . . . , η̃r) satisfying η̃ℓ = BJ(Hℓη) for ℓ = 1, . . . , r, where BJ

is given in (5.3).

Proof. We prove this theorem by proving a more general inequality. For a given sequence

a, we define ṽ⋆
ℓ = T pBJ(Hℓa) and v⋆

ℓ = B∗
J(ṽ⋆

ℓ) for ℓ = 1, . . . , r. Next we denote c by

v⋆
0 and define v⋆ by

v⋆ = B∗
1{v⋆

ℓ}r
ℓ=0 = H∗

0c +
r∑

ℓ=1

H∗
ℓB

∗
JT pBJ(Hℓa).
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With this set up, we show that the inequality

‖H0(v
⋆ + η) − c‖2

2 +

r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

λj|(ṽ⋆
ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p +

r∑

ℓ=1

‖Hℓ(v
⋆ + η) −Hℓa‖2

2

≥ ‖H0v
⋆ − c‖2

2 +
r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

λj |(ṽ⋆
ℓ )ℓ′,j,k|p +

r∑

ℓ=1

‖Hℓv
⋆ −Hℓa‖2

2 + ‖η‖2
2,

(5.8)

holds for any (r + 1)-tuple (η, η̃1, . . . , η̃r) with η̃ℓ = BJ(Hℓη) for ℓ = 1, . . . , r. Note

that if we take a = s, where s is the limit to iteration (4.5) satisfying (4.12), then

v⋆ = H∗
0c +

∑r
ℓ=1H

∗
ℓB

∗
JT pBJ(Hℓs) = s, and inequality (5.7) can be easily deduced

from (5.8). In the following we give the proof of (5.8), which is similar to that of

Proposition 3.3.

Given the (r + 1)-tuple (η, η̃1, . . . , η̃r), we expand the left hand side of (5.8) as follows:

‖H0(v
⋆ + η) − c‖2

2 +

r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

λj|(ṽ⋆
ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p +

r∑

ℓ=1

‖Hℓ(v
⋆ + η) −Hℓa‖2

2

= ‖H0v
⋆ − c‖2

2 +
r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

λj|(ṽ⋆
ℓ )ℓ′,j,k|p +

r∑

ℓ=1

‖Hℓv
⋆ −Hℓa‖2

2 + ‖η‖2
2

+

r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ )ℓ′,j,k|p

)

+ 2〈η,v⋆ −H∗
0c −

r∑

ℓ=1

H∗
ℓHℓa〉.

(5.9)

Compare with (5.9), we only need to show

r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ )ℓ′,j,k|p

)
+2〈η,v⋆−H∗

0c−
r∑

ℓ=1

H∗
ℓHℓa〉 ≥ 0.

(5.10)
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Using the definition of v⋆ and B∗
JBJ = I, we can simplify the inner product in (5.9) as

〈η,v⋆ −H∗
0c −

r∑

ℓ=1

H∗
ℓHℓa〉 = 〈η,

r∑

ℓ=1

H∗
ℓ (B∗

JT pBJ(Hℓa) −Hℓa)〉

=

r∑

ℓ=1

〈BJ(Hℓη),T pBJ(Hℓa) −BJ(Hℓa)〉

=

r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

(η̃ℓ)ℓ′,j,k((ṽ
⋆
ℓ )ℓ′,j,k − (aℓ)ℓ′,j,k).

(5.11)

With this, (5.10) becomes

r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ)ℓ′,j,k|p

)

+ 2

r∑

ℓ=1

r∑

ℓ′=1

J∑

j=1

N1−1∑

k=0

(η̃ℓ)ℓ′,j,k((ṽ
⋆
ℓ )ℓ′,j,k − (aℓ)ℓ′,j,k) ≥ 0,

which we will be proven by showing each summand is nonnegative, i.e.

λj

(
|(ṽ⋆

ℓ )ℓ′,j,k + (η̃ℓ)ℓ′,j,k|p − |(ṽ⋆
ℓ )ℓ′,j,k|p

)
+ 2(η̃ℓ)ℓ′,j,k((ṽ

⋆
ℓ )ℓ′,j,k − (aℓ)ℓ′,j,k) ≥ 0.

The rest of the proof follows the same discussion in the proof of Proposition 3.3.

Based on the minimization property of the solution, the stability of Algorithm 5.1 can be

established using the similar technique in Proposition 4.2. We only list the result below.

Proposition 5.1. Let sε be the limit of iteration (5.5) associated with error bound

‖ǫ‖2 = ε and ν be the exact solution to H0v = b. Then we have

lim
ε→0

‖sε − ν‖2 = 0.
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