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Summary

The problem of tracking control for linear systems has been investigated for a fairly

long time. When actuator saturates, the controller designed based on ideal assumptions

without saturation will cause system performance degrade and even destabilize the whole

system. In this thesis, the author aims at proposing a simple control structure yet with

improved performance for set-point tracking as in the literature very few works have

been done on transient performance improvement. The reason lies in that it is difficult

to consider transient performance for more general references tracking. As for set-point

tracking, indices like settling time, rise time, overshoot and so on are well defined.

Based on any linear feedback law found using previously proposed methods in the

literature which solves the tracking problem under actuator saturation, a so-called Com-

posite Nonlinear Feedback control method is proposed. Both the state feedback case and

the measurement feedback case are considered without imposing any restrictive assump-

tion on the given systems, i.e., the systems considered are controllable and also observable

for measurement back cases. The composite nonlinear feedback control consists of a lin-

ear feedback law and a nonlinear feedback law without any switching element. Typically,

the linear feedback part is designed to yield a closed-loop system with a small damping

ratio for a quick response, while at the same time not exceeding the actuator limits for

the desired command input levels. This can be done by using any previously developed

methods in the literature. The nonlinear feedback law is used to increase the damping

ratio of the closed-loop system as the system output approaches the target reference to

reduce the overshoot caused by the linear part.

The results for linear continuous-time systems follow some previously reported results

vi



Summary vii

where they all consider only certain special cases. Either they consider only some specific

class of systems like second-order systems, or only state feedback case for more general

systems yet with a restrictive condition imposed on the systems, or although they con-

sider state feedback and measurement feedback cases the systems under investigation are

single variable systems. The first objective of my work is to generalize this CNF scheme

to its most general form for linear systems. The author considers linear continuous-time

and discrete-time systems and all cases of state feedback and measurement feedback.

Examples will be given to show the effectiveness of this methodology. A fairly complete

theory for CNF control technique has been established.

To go a step further, it is possible to apply this CNF scheme to more general sys-

tems. Firstly, it is applied to nonlinear linearizable systems under actuator saturation.

Next, the author extends the CNF scheme to be applicable to partially linear composite

systems. The partially linear composite system includes two parts, the linear one with

actuator saturation and the nonlinear zero dynamics. The output of the linear system

is connected to the nonlinear zero dynamics as input. It turns out that by making the

output of the saturated linear part decrease faster than a certain exponential rate, the

stability of the whole connected system is sustained with improved transient performance.

Finally the author discusses the possible applications of the CNF control scheme and

points out some further topics for future research.



Chapter 1

Introduction

Control theory and engineering plays a more and more important role in everyday life

nowadays and quite a complete theory has been established in this field. However, in

practice, when a controller is implemented, saturation of elements may cause system

performance degrade a lot, which has to be investigated carefully in order to obtain

satisfactory performance. Due to both its theoretical and practical importance, tracking

control, together with tracking control under saturation, has been studied for a fairly

long time (Saberi et al., 1999 [63]). From the 1950’s many important advancements

have been achieved by several researchers, yet the controller structures proposed tend

to be rather complex. The author’s focus, however, will be exclusively on proposing

a simple controller structure while at the same time improving transient performance

for set-point tracking or constant reference/signal tracking problem of input constrained

linear systems or, linear systems with actuator saturation or constrained input.

I will review some related important results for tracking problem under saturation.

Then I will propose my own solution to this classical problem. Especially, I will look into

the problem of improving the closed-loop transient response, which is rather important

from a practical point of view and rarely considered in the literature. The controller

design is based on linear feedback controllers proposed already in other researchers’

papers. The reason for using linear controller as a base is obvious as it has a very simply

controller structure and thus can be very easily implemented. Based on this linear

1
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feedback controller which gives exact tracking under saturation, let one add additional

nonlinear law so that by tuning some gains carefully one gets better performance. This

idea is not new but we fully explore it and extend previous results to its most general

case. Eventually, an easily constructed controller with a simple structure can then be

obtained which gives better performance than its linear counterpart. It will also be

extended to some classes of nonlinear systems with actuator saturation. I believe that

it will contribute to the development of many real application controllers and provide

insights into improving transient response for even more general systems.

This chapter serves to give the background and motivation for this research. The

research scope and contributions of this research and the organization of this thesis will

also be briefly explored.

1.1 Background and Motivation

Control engineering is a fundamental and important field of technology which is applied

in almost any man-made systems nowadays. Although many significant achievements

(Bennett, 1993 [7]), e.g., spacecraft motion control, satellite status control, high-precision

positioning control in micro-electronic manufacturing plant, have been reached in this

fascinating area, there are still quite a lot of unsolved problems. For example, as a very

central topic in modern as well as classical control theory, tracking control still remains

not fully understood (Saberi et al., 1999 [63]). On the other hand, even though we have

a good tracking controller design at hand, when it is applied in real applications, system

performance usually degrades a lot from what one expects. The presence of saturations,

especially actuator saturation is one major reason (Hu and Lin, 2001 [36]). In order to

reduce the adverse effect caused by actuator saturation, many efforts have been done on

the topic of tracking control of systems with actuator saturation.

Roughly speaking, there are two methods adopted in the literature in order to deal

with the adverse effect caused by saturation in tracking problems. One is an indirect

approach which, based on controller designed by ignoring saturations at first, modifies

this controller by considering saturations. It turns out that the indirect approach tends
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to produce fairly complex controllers, called anti-windup scheme and typically, these con-

trollers are not easily implemented in practice. The other approach, the direct approach,

considers saturations at the onset of controller design and hence provides a straightfor-

ward method which can take into consideration of many performance requirements. The

controller turns out to be much less complex. Along this latter line, a lot of significant

results have been obtained during the last two decades. The author’s work, falls in this

latter approach too and in fact, this approach dated back to time-optimal control in the

1950’s.

Bang-bang control or time-optimal control may be the first attempt to tackle actu-

ator saturation in set-point tracking and naturally this is a direct approach. Although

theoretically this scheme can achieve exact point-to-point tracking with shortest time,

the controller obtained is a nonlinear one and is non-robust to parameter uncertainty

and thus it is rarely implemented in real applications (Athans and Falb, 1966 [4]). Later

as a modification to Bang-bang control, PTOS or Proximal Time-Optimal Control was

proposed by Workman (1987) [78] in order to get fast and accurate positioning perfor-

mance in Hard Disk Drives. In order to deal with uncertainty, adaptive PTOS scheme

was also proposed. The limitation of PTOS is obvious as it is applicable only to double

integrator systems.

As a continual effort to find effective alternatives to Bang-bang control, except the

above-mentioned PTOS, many other control schemes dealing with actuator saturation

have been proposed, Berstein and Michel (1995) [8]. As a major breakthrough, Gutman

and Hagander (1986) [30] presented a systematic (and also direct) method to find stabi-

lizing saturated linear state feedback controllers for linear continuous-time and discrete-

time systems. The method is theoretically sound and applicable to tracking not only

constant signals and considers general actuator and state saturations whether they be

symmetric or not, but it is not easily applied in actual controller design as no explicit

and numerically efficient algorithm has been proposed. Trial and error seems inevitable

and this can become a tedious job.

Another important result was due to Blanchini and Miani (2000) [11]. Starting
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from the stabilization problem for linear systems with control and state constraints,

the authors proved that any domain of attraction for linear systems with state and

actuator constraints is actually also a constant constraint-admissible reference tracking

domain of attraction. They showed that the tracking controller can be inferred from

the stabilizing (possibly nonlinear) controller associated with the domain of attraction.

The main contributions of this paper is that it gives a clear connection between domain

of attraction and set-point tracking domain of attraction for linear constrained systems

and also gives some relation between the constant constraint-admissible tracking output

sets and the tracking domain of attraction (of initial conditions). Again these results

are more of theoretical significance and the proposed controller design procedure is quite

complex.

Some researchers, however, investigated this sort of tracking problem from other

perspectives and offered interesting insights (e.g., Teel, 1992 [71] and Romanchuck, 1995

[61]). Teel (1992) [71] considered nonlinear tracking of an integrator chain of arbitrary

order while Romanchuck (1995) [61] examined tracking for linear constrained systems

from an input output point of view. Some other literature has been concerned with how

a linear feedback can be constructed so that control constraints are not violated, for

example Bitsoris (1998 a,b) [9,10]. The merits of a linear controller are obvious as it can

be implemented easily due to its simple structure and thus practically attractive.

It is worth noting that when dealing with set-point tracking, the so-called reference

management approach was also proposed in the framework of model predictive control

(Bemporad et al., 1997 [5]) and uncertain linear systems (Bemporad and Mosca, 1998 [6]).

An improved error governor and a reference governor based on the concept of maximal

output admissible sets were adopted to track reference signals inside some constraint

set for the output in Gilbert and Tan (1991) [26] and Gilbert et al. (1995) [27] respec-

tively. In Graettinger and Krogh (1992) [29], the authors considered the computation of

reference signal constraints for guaranteed tracking performance in supervisory control

environment. These ideas were also adopted in Blanchini and Miani (2000) [11].

Although there seem to be many schemes proposed for set-point tracking, many
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are rarely implemented in practice due to either their complicated and computationally

expensive structure, or their lack of correspondence to practical engineering systems. So

far the only schemes designed to cope with control limits and to be implemented are

the retro-fitted anti-windup compensators (Turner et al., 2000) [74]. Thus controllers

with simple structure become very appealing in real applications and thus the method

proposed by Lin et al. (1998) [53], which was later called Composite Nonlinear Feedback

(CNF) control, has attracted much attention.

1.2 Composite Nonlinear Feedback (CNF) Control

Rather recently, a new method of achieving accurate tracking in linear systems, while

heeding control constraints was suggested by Lin et al. (1998) [53], which was built on

previous work found in Lin and Saberi (1995) [56]. They proposed a nonlinear state

feedback control which was the composition of a nominal linear feedback, superposed

with a novel nonlinear feedback (this scheme, was named Composite Nonlinear Feedback

(CNF) control by Chen et al. (2003) [19]). They showed that for an arbitrary nonnegative

nonlinear element in the nonlinear feedback, the system would asymptotically track a

constant reference signal, and that the state would be confined to a certain ellipsoidal

domain of attraction. Furthermore, they gave a great deal of insight on how to choose the

nonlinear parameter in their feedback scheme. Of course, the size of the reference signal

which could be tracked was bounded by an a priori determined amount, but simulations

on a flight control system indicated excellent results (Lin et al., 1998 [53]).

Indeed, the power of Lin et al’s results was only limited by their scope: they were

confined to single-input-single-output (SISO) second-order linear systems. Later Turner

et al (2000) [74] generalized many of Lin et al’s results to higher order and multivariable

systems and simulations on a helicopter pitch control and an MIMO missile control

showed better performance than conventional linear controllers. And Chen et al. (2003)

[19] extended it to general linear SISO systems but considered state feedback case as

well as measurement feedback cases. However, Chen et al. (2003) [19] didn’t consider

MIMO systems and the extension reported in Turner et al. (2000) [74] was made under
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a pretty odd assumption (Chen et al., 2003 [19]) on the system that excludes many

systems including those originally considered in Lin et al. (1998) [53]. Also as in Lin

et al. (1998) [53], only state feedback is considered in Turner et al. (2000) [74]. The

author’s work, will remove all these restrictions, and will extend this CNF control to

general linear continuous-time or discrete-time SISO or MIMO systems with state or

measurement feedback control and thus make this scheme complete (Lin et al., 1998 [53]).

1.3 Towards Improving Transient Performance

Even though many results have been obtained about how to design a controller for a

saturated linear systems, the transient performance is not considered in most of these

works. It is a tough task to study the transient performance of the general tracking

problem, especially when the reference inputs are time-varying signals. On the other

hand, since it is well understood in the literature that certain performance indexes can

be established for set-point tracking purposes, for example, settling time, rise time, over-

shoot, undershoot and so on, let me limit the scope to considering in this work a tracking

control problem with a constant (or step) reference. Namely, I will consider the following

multivariable linear system Σ with an amplitude-constrained actuator characterized by




δ(x) = A x + B sat(u), x(0) = x0

y = C1 x

h = C2 x + D2 sat(u)

(1.1)

where δx = ẋ if Σ is a continuous-time systems, or δx = x(k + 1) if Σ is a discrete-time

systems. As usual, x ∈ Rn, u ∈ Rm, y ∈ Rp and h ∈ R` are respectively the state, control

input, measurement output and controlled output of the given system Σ. A, B, C1 and

C2 are appropriate dimensional constant matrices, and the saturation function is defined

by

sat(u) =




sat(u1)

sat(u2)
...

sat(um)




, (1.2)
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with

sat(ui) = sign(ui) min(|ui|, ūi), (1.3)

where ūi is the maximum amplitude of the i-th control channel. The objective of this work

is to design an appropriate control law for (1.1) using the CNF approach such that the

resulting controlled output will track some desired step references as fast and as smooth

as possible. I will address the CNF control system design for the given system (1.1) for

three different situations, namely, the state feedback case, the full order measurement

feedback case, and the reduced order measurement feedback case. For tracking purpose,

the following assumptions on the given system are required: i) (A, B) is stabilizable; ii)

(A, C1) is detectable; and iii) (A, B, C2, D2) is right invertible and has no invariant zeros

at s = 0 (for continuous-time systems), or z = 1 (for continuous-time systems). The

objective here is to design control laws that are capable of achieving fast tracking of

target references under input saturation. As such, it is well understood in the literature

that these assumptions are standard and necessary.

We note that this approach is based on a linear feedback controller found with any

previously proposed method in the literature (see, e.g., Blanchini and Miani, 2000 [11];

Gutman and Hagander, 1986 [30]; Bitsoris, 1988a,b [9, 10]), but the resulting controller

outperforms these linear controllers by adding additional nonlinear feedback law to the

original linear control law which doesn’t violate the control constraints. It is noted that

when the gains in the nonlinear feedback law vanish, the whole controller reverts to the

linear controller. Therefore, one has additional freedom in choosing these gains in order to

get better transient performance. The issues regarding domain of attraction, admissible

tracking reference signals and other related problems can be explored similarly by using

the methods suggested in the literature (see, e.g., Gutman and Hagander, 1986 [30]);

Blanchini and Miani, 2000 [11]; Gilbert and Tan, 1991 [26] and the references therein).

Of course, the initial conditions should be met and thus must be investigated carefully

when one applies this CNF control scheme.

In Blanchini and Miani (2000) [11], the authors suggested also possible nonlinear

controllers as their controller was inferred from original stabilizing (possibly nonlinear)
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controller yet the procedure may not be easily implemented. The CNF controller, how-

ever, has a very simple structure and is quite easily constructed.

Finally, it is worth emphasizing that in the literature, much research has been con-

ducted on stabilization problem for systems under actuator saturation or even state

saturation, output saturation. It is a common approach when dealing with tracking

problem without saturation by transforming it into a stabilization problem. However,

when saturation occurs, this approach is not so seemingly available. Rather, people try

to solve the tracking problem directly. Although there are many results on stabilization,

semi-global and even global stabilization for systems with actuator saturation, their re-

sults are mostly limited to the so-called Asymptotical Null Controllable linear systems

with Bounded Control (ANCBC), and a recent book Hu and Lin (2001) [36] reflects

most updated results achieved during the past years. My focus, is exclusively on a con-

troller with simple structure yet provides one certain freedom to improve closed-loop

transient performance and this approach can be applied to general systems, not neces-

sarily ANCBC systems. The simple structure of linear controller is of special interest to

practitioners and researchers, which hopefully may be used extensively in practice.

1.4 Contributions of This Research

As a matter of fact, this work will help to complete the theory for CNF control for

continuous-time and discrete-time, SISO or MIMO linear systems with state feedback or

measurement feedback control. Thus, it is possible for control engineers to adopt this

scheme like other practically popular methods, say PID, Model Predictive Control and

so on. I believe that this work will benefit them by providing a new choice of design

tools in order to obtain improved performance.

The major theoretical contribution of this work is that for the first time, from a rather

general perspective, the problem of improving system transient tracking performance

under actuator saturation is fully discussed and the CNF controller proves to be effective

to reach this target with its simple structure. In fact, by setting the saturation level to

very high values, it is easy to see that one can improve transient tracking performance
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for systems without saturation also. Thus one can explore this possibility when doing

normal controller design.

In order to show the effectiveness of the CNF scheme, I will apply it to some real

application problems. One is an air-air missile autopilot system which was also considered

in Turner et al. (2000) [74] but I will apply this method and see whether the simulation

results are at least as good as those given by Turner et al. (2000) [74] or even better. We

will also consider measurement feedback cases which were not covered in Turner et al.

(2000) [74]. The other example is a Magnetic-Tape-Drive system cited from a standard

textbook Franklin et al. (1998) [24], which is a discrete-time system application and

compare both performances. These simulation examples will serve to verify the theory

and also give one certain practical experience about how to tune the parameters for

nonlinear feedback law, which, like gains tuning in multivariable control theory, is far

from maturity. Rather the tuning method is mainly based on users’ experience.

Although I will try to extend the CNF control scheme to its most general form pos-

sible, I will study only the set-point tracking problem for linear systems with symmetric

actuator saturation. Similar results regarding asymmetric saturations may be sought

by shifting the center of the saturation limits. For tracking a group of reference signals

not necessarily constant ones, other methods for example, those developed for output

regulation (see, e.g. Saberi et al., 1999 [63]) or those proposed in the works previously

mentioned may be used. Also, it is still too early to expect satisfactory results on im-

proving transient performance for general reference tracking problem.

Finally, it is also of interest for one to apply this control scheme to nonlinear systems.

I will extend it to a class of nonlinear linearizable SISO systems and simulation on a pen-

dulum system is given in this thesis. It should also be extended to nonlinear linearizable

MIMO systems but the result may be quite restricted. Still further, I will extend this

method to partially linear systems where its zero dynamics is nonlinear in nature. It

might also be extended to even more general nonlinear systems. However, this is not so

easy due to the complex nature of general nonlinear systems. Typically researchers in

nonlinear tracking control focus on the so-called output regulation problem without any
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saturation in the system (Byrnes et al., 1997 [13]). Also they consider only reference

signals produced by an exo-system which are neutrally stable, and thus excluding step

function signals. For step function signals tracking, people tend to convert this problem

to a nonlinear regulation or stabilization problem. When actuator saturation comes into

picture, very few works have been done. We hope that the CNF control approach may

provide some insights into solving nonlinear tracking problem and improving its tracking

transient performance as well.

1.5 Organization of Thesis

This thesis is organized as follows.

In Chapter 2, I will extend the CNF control to linear continuous-time MIMO system,

which still renders asymptotic tracking in state feedback case and measurement feedback

case. I will also give some guidelines for selecting the key parameter in the proposed

controller. An application in an air-air missile autopilot system and a numerical example

are included to show the effectiveness of the proposed design methodology.

Parallel to Chapter2, I will extend the CNF control to linear discrete-time MIMO system

in Chapter 3. Again, three cases of feedback laws are considered. An application in a

Magnetic-Tape-Drive system shows significant transient performance improvement.

Chapter 4 applies the developed CNF control scheme to nonlinear linearizable continuous-

time SISO systems. It is applied in a pendulum system. Further extension to nonlinear

linearizable continuous-time MIMO systems is possible but the results will be restricted.

Similarly, extension to discrete-time systems is quite obvious but not explored in detail

in this Chapter.

In the next two chapters, extension of CNF to be applied in partial linear systems is

presented. Results for continuous-time systems are reported in Chapter 5 while those for

discrete-time systems are presented in Chapter 6. For partial linear systems, since their

zero dynamics is nonlinear, the problem of peaking phenomenon in linear part should be
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examined carefully in order not to drive the zero dynamics to infinity which destabilizes

the whole system. Simulation examples will be included to verify the results.

In Chapter 7, I will discuss a so-called asymptotical time-optimal tracking control prob-

lem for double integrator systems, which was originally posed in [18] as an open problem.

Interestingly, CNF controller can be a good candidate for practically solving this prob-

lem. I will give detailed results with rigorous analysis to this problem and propose some

suboptimal yet practical controller designs.

Finally, conclusions, discussions and recommendation for future work will be discussed

in the last chapter, Chapter 8.



Chapter 2

CNF Control for

Continuous-Time Systems with

Input Saturation

In this chapter, I will present a design procedure of composite nonlinear feedback control

for general multivariable systems with actuator saturation. I will consider both the

state feedback case and the measurement feedback case without imposing any restrictive

assumption on the given systems. The composite nonlinear feedback control consists

of a linear feedback law and a nonlinear feedback law without any switching element.

The linear feedback part is designed to yield a closed-loop system with a small damping

ratio for a quick response, while at the same time not exceeding the actuator limits for

the desired command input levels. The nonlinear feedback law is used to increase the

damping ratio of the closed-loop system as the system output approaches the target

reference to reduce the overshoot caused by the linear part. The application of this

technique to an air-to-air missile autopilot system and a numerical example shows that

the proposed design method yields a very satisfactory performance.

12



Chapter 2. CNF Control for Continuous-Time Systems with Input Saturation 13

2.1 Introduction

Every physical system in our real life has nonlinearities and very little can be done to over-

come them. Many practical systems are sufficiently nonlinear so that important features

of their performance may be completely overlooked if they are analyzed and designed

through linear techniques (see e.g., Hu and Lin [36]). For example, in the computer

hard disk drive (HDD) servo systems (see e.g., Chen et al. [18]), major nonlinearities

are friction, high frequency mechanical resonance and actuator saturation nonlinearities.

Among all these, the actuator saturation could be the most significant nonlinearity in

designing an HDD servo system. When the actuator is saturated, the performance of the

control system designed will seriously deteriorate. As such, the topic of linear and non-

linear control for saturated linear systems has attracted considerable attentions in the

past (see e.g., Garcia et al. [25], Henrion et al. [35], Suarez et al. [69], and Wredenhagen

and Belanger [79] to name a few). Most of these works are using approaches based on

certain parameterized Riccati equations.

Typically, when dealing with “point-and-shoot” fast-targeting for single-input and

single-output (SISO) systems with actuator saturation, one would naturally think of

using the well known time optimal control (TOC) (known also as the bang-bang control),

which uses maximum acceleration and maximum deceleration for a predetermined time

period. Unfortunately, it is well known that the classical TOC is not robust with respect

to the system uncertainties and measurement noises. It can hardly be used in any real

situation. For SISO systems with input saturation, another commonly used controller for

target tracking is known as the proximate time-optimal servomechanism (PTOS), which

was originally proposed by Workman [78] to overcome the above mentioned drawback of

the TOC design.

Inspired by a work of Lin et al. [53], which was introduced to improve the tracking

performance under state feedback laws for a class of second order systems subject to

actuator saturation, Chen et al. [19] have recently extended the technique to general SISO

systems with measurement feedback. The work of Chen et al. [19] has been successfully

applied to design an HDD servo system, which outperforms conventional methods by
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more than 30%. The extension of the results of [53] to multi-input and multi-output

(MIMO) systems under state feedback was reported in a nice work by Turner et al. [74].

However, the extension was made under a pretty odd assumption on the system that

excludes many systems including those originally considered in [53]. The restrictiveness

of the assumption of [74] will be discussed later. Also, as in [53], only state feedback is

considered in [74].

In this chapter, I will present a design procedure of composite nonlinear feedback

(CNF) control for general multivariable systems with actuator saturation. I will consider

both the state feedback case and the measurement feedback case without imposing any

restrictive assumption on the given systems. As in the earlier works [19, 53, 74], the

CNF control consists of a linear feedback law and a nonlinear feedback law without any

switching element. The linear feedback part is designed to yield a closed-loop system

with a small damping ratio for a quick response, while at the same time not exceeding

the actuator limits for the desired command input levels. The nonlinear feedback law

is used to increase the damping ratio of the closed-loop system as the system output

approaches the target reference to reduce the overshoot caused by the linear part.

This chapter is organized as follows. In Section 2.2, the theory of the composite

nonlinear feedback control is developed. Three different cases, i.e., the state feedback,

the full order measurement feedback, and the reduced order measurement cases, are

considered with all detailed derivations and proofs. I will also address the issue on

the selection of nonlinear gain parameter in this section. The application of the CNF

technique to an air-to-air missile autopilot system will be presented in Section 2.3, which

shows that the proposed design method yields a very satisfactory performance. Finally,

some concluding remarks will be drawn in Section 2.4.
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2.2 Composite Nonlinear Feedback Control for MIMO Sys-

tems

I will present in this section the CNF controller design for the following multivariable

linear system Σ with an amplitude-constrained actuator characterized by




ẋ = A x + B sat(u), x(0) = x0

y = C1 x

h = C2 x + D2 sat(u)

(2.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and h ∈ R` are respectively the state, control input,

measurement output and controlled output of the given system Σ. A, B, C1 and C2 are

appropriate dimensional constant matrices, and the saturation function is defined by

sat(u) =




sat(u1)

sat(u2)
...

sat(um)




, (2.2)

with

sat(ui) = sign(ui) min(|ui|, ūi), (2.3)

where ūi is the maximum amplitude of the i-th control channel. The objective of this

chapter is to design an appropriate control law for (2.1) using the CNF approach such

that the resulting controlled output will track some desired step references as fast and

as smooth as possible. I will address the CNF control system design for the given

system (2.1) for three different situations, namely, the state feedback case, the full order

measurement feedback case, and the reduced order measurement feedback case. For

tracking purpose, the following assumptions on the given system are required:

i) (A, B) is stabilizable;

ii) (A, C1) is detectable; and

iii) (A, B, C2, D2) is right invertible and has no invariant zeros at s = 0.

The objective here is to design control laws that are capable of achieving fast tracking

of target references under input saturation. As such, it is well understood in the literature

that these assumptions are standard and necessary.
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2.2.1 State Feedback Case

Let us first proceed to develop a composite nonlinear feedback control technique for the

case when all the state variables of the plant Σ are measurable, i.e., y = x. The design

will be done in three steps, which is a natural extension of the results of Chen et al. [19].

One has the following step-by-step design procedure.

Step s.1: Design a linear feedback law,

uL = Fx + Gr, (2.4)

where r ∈ Rm contains a set of step references. The state feedback gain ma-

trix F ∈ Rm×n is chosen such that the closed-loop system matrix A + BF is

asymptotically stable and the resulting closed-loop system transfer matrix, i.e.,

D2 + (C2 + D2F )(sI − A − BF )−1B, has certain desired properties, e.g., having

a small dominating damping ratio in each channel. Note that such an F can be

worked out using some well-studied methods such as the LQR, H∞ and H2 opti-

mization approaches (see, e.g., Anderson and Moore [1], Chen [17] and Saberi et

al. [62]). Furthermore, G is an m × m square constant matrix and is given by

G := G′
0

(
G0G

′
0

)−1
, (2.5)

with G0 := D2− (C2 +D2F )(A+BF )−1B. Here note that both G0 and G are well

defined because A + BF is stable, and (A, B, C2, D2) is right invertible and has no

invariant zeros at s = 0, which implies (A+BF, B, C +D2F, D2) is right invertible

and has no invariant zeros at s = 0 (see e.g., Lemma 2.5.1 of Chen [17]).

Step s.2: Next, compute

H :=
[
I − F (A + BF )−1B

]
G (2.6)

and

xe := Ge r := −(A + BF )−1BG r. (2.7)

Note that the definitions of H , Ge and xe would become transparent later in the

derivation. Given a positive definite matrix W ∈ Rn×n, solve the following Lya-
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punov equation:

(A + BF )′P + P (A + BF ) = −W, (2.8)

for P > 0. Such a P exists since A + BF is asymptotically stable. Then, the

nonlinear feedback control law uN is given by

uN = ρ(r, y)B′P (x − xe), (2.9)

where

ρ(r, y) = diag{ρ1, · · · , ρm} =




ρ1 · · · 0
...

. . .
...

0 · · · ρm


 , (2.10)

and ρi = ρi(r, y), i = 1, 2, · · · , m, are respectively some nonpositive functions,

uniformly bounded and locally Lipschitz in y, which are used to change the closed-

loop system damping ratios as the outputs approach the targets. The choice of

these nonlinear functions will be discussed at the end of this section.

Step s.3: The linear and nonlinear feedback laws derived in the previous steps are now

combined to form a CNF controller:

u = uL + uN = Fx + Gr + ρ(r, y)B′P (x − xe). (2.11)

This completes the design of the CNF controller for the state feedback case.

For further development, partition B ∈ Rn×m, F ∈ Rm×n and H ∈ Rm×m as follows:

B = [B1 · · · Bm ] , F =




F1

...

Fm


 , H =




H1

...

Hm


 . (2.12)

The following theorem shows that the closed-loop system comprising the given plant in

(2.1) and the CNF control law of (2.11) is asymptotically stable. It also determines the

magnitudes of the step functions in r that can be tracked by such a control law without

exceeding the control limit.

Theorem 2.1. Consider the given system in (2.1) with y = x, which satisfies the as-

sumptions i) and iii), the linear control law of (2.4) and the composite nonlinear feedback



Chapter 2. CNF Control for Continuous-Time Systems with Input Saturation 18

control law of (2.11). For any δ ∈ (0, 1), let cδ > 0 be the largest positive scalar such

that for all x ∈ Xδ, where

Xδ :=
{

x : x′Px ≤ c
δ

}
, (2.13)

the following property holds,

| Fi x |≤ (1 − δ)ūi, i = 1, · · · , m. (2.14)

Then, the linear control law of (2.4) is capable of driving the system controlled output

h(t) to track asymptotically a set of step references, i.e., r, provided that the initial state

x0 and r satisfy:

x̃0 := (x0 − xe) ∈ Xδ, |Hi r| ≤ δūi, i = 1, · · · , m. (2.15)

Furthermore, for any nonpositive function ρ(r, y), uniformly bounded and locally Lips-

chitz in y, the composite nonlinear feedback law in (2.11) is capable of driving the system

controlled output h(t) to track asymptotically the step command input of amplitude r,

provided that the initial state x0 and r satisfy (2.15).

Proof. Let us first define a new state variable x̃ = x− xe. It is simple to verify that the

linear feedback control law of (2.4) can be rewritten as

uL(t) = Fx̃(t) + [I − F (A + BF )−1B]Gr (2.16)

= Fx̃(t) + Hr, (2.17)

and hence for all x̃ ∈ Xδ and, provided that |Hi r| ≤ δūi, i = 1, · · · , m, the closed-loop

system is linear and is given by

˙̃x = (A + BF )x̃ + Axe + BHr. (2.18)

Noting that

Axe + BHr =
{
B[I − F (A + BF )−1B]G − A(A + BF )−1BG

}
r

=
{
[I − BF (A + BF )−1]BG − A(A + BF )−1BG

}
r

=
{
I − BF (A + BF )−1 − A(A + BF )−1

}
BGr

= 0, (2.19)
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the closed-loop system in (2.18) can then be simplified as

˙̃x = (A + BF )x̃. (2.20)

Similarly, the closed-loop system comprising the given plant in (2.1) and the CNF control

law of (2.11) can be expressed as

˙̃x = (A + BF )x̃ + Bw, (2.21)

where

w = sat(Fx̃ + Hr + uN) − Fx̃ − Hr. (2.22)

Clearly, for the given x0 satisfying (2.15), one has x̃0 = (x0−xe) ∈ Xδ. Note that (2.21)

is reduced to (2.20) if ρ(r, y) = 0.

Next, define a Lyapunov function V = x̃′Px̃ and evaluate the derivative of V along

the trajectories of the closed-loop system in (2.21), i.e.,

V̇ = ˙̃x
′
Px̃ + x̃′P ˙̃x

= x̃′(A + BF )′Px̃ + x̃′P (A + BF )x̃ + 2x̃′PBw

= −x̃′Wx̃ + 2x̃′PBw. (2.23)

Note that for all

x̃ ∈ Xδ = {x̃ : x̃′Px̃ ≤ c
δ
} ⇒ |Fi x̃| ≤ (1− δ)ūi, i = 1, · · · , m. (2.24)

In the remainder of this proof, I will adopt similar lines of reasoning as those of Turner

et al. [74] by considering the following different scenarios. For simplicity, I will drop the

dependent variables of the nonlinear function ρ in the rest of this proof.

Case 1. All input channels are unsaturated. It is obvious that one has

V̇ = −x̃′Wx̃ + 2x̃′PBρB′Px̃ ≤ −x̃′Wx̃. (2.25)

Case 2. All input channels are exceeding their upper limits. In this case, one has

Fix̃ + Hir + ρiB
′
iPx̃ ≥ ūi, i = 1, · · · , m. (2.26)
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For all x̃ ∈ Xδ, which implies (2.24) holds, and r satisfying (2.15), one has

Fix̃ + Hir ≤ ūi, i = 1, · · · , m, (2.27)

and thus

wi = sat(Fix̃ + Hir + ρiB
′
iPx̃) − Fix̃ − Hir = ūi − Fix̃ − Hir ≥ 0 (2.28)

and

ρiB
′
iPx̃ ≥ ūi − (Fix̃ + Hir) ≥ 0 ⇒ B′

iPx̃ = x̃′PBi ≤ 0. (2.29)

Hence,

V̇ = −x̃′Wx̃ + 2
m∑

i=1

x̃′PBiw̄i ≤ −x̃′Wx̃. (2.30)

Case 3. All input channels are exceeding their lower limits. For this case, one has

Fix̃ + Hir + ρiB
′
iPx̃ ≤ −ūi, i = 1, · · · , m. (2.31)

For all x̃ ∈ Xδ, which implies (2.24) holds, and r satisfying (2.15), one has

Fix̃ + Hir ≥ −ūi, i = 1, · · · , m, (2.32)

and thus

wi = sat(Fix̃ + Hir + ρiB
′
iPx̃) − Fix̃ − Hir = −ui − Fix̃ − Hir ≤ 0 (2.33)

and

ρiB
′
iPx̃ ≤ −ūi − (Fix̃ + Hir) ≤ 0 ⇒ B′

iPx̃ = x̃′PBi ≥ 0. (2.34)

Hence,

V̇ = −x̃′Wx̃ + 2
m∑

i=1

x̃′PBiwi ≤ −x̃′Wx̃. (2.35)

Case 4. Some control channels are saturated and some are unsaturated. In view of

Cases 1 to 3, it is simple to note that for those unsaturated channels, one has

x̃′PBiwi = ρix̃
′PBiB

′
iPx̃ ≤ 0, (2.36)

and those input channels whose signals exceeding their upper limits, one has

wi ≥ 0, x̃′PBi ≤ 0 ⇒ x̃′PBiwi ≤ 0, (2.37)
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and finally for those channels whose signals exceeding their lower limits,

wi ≤ 0, x̃′PBi ≥ 0 ⇒ x̃′PBiwi ≤ 0. (2.38)

Thus, for this case, again one has

V̇ = −x̃′Wx̃ + 2
m∑

i=1

x̃′PBiwi ≤ −x̃′Wx̃. (2.39)

In conclusion, I have shown that

V̇ ≤ −x̃′Wx̃, x̃ ∈ Xδ, (2.40)

which implies that Xδ is an invariant set of the closed-loop system in (2.21). Noting

that W > 0, all trajectories of (2.21) starting from inside Xδ will converge to the origin.

This, in turn, indicates that, for all initial state x0 and the step command input r that

satisfy (2.15), one has

lim
t→∞

x(t) = xe, (2.41)

which implies

lim
t→∞

u(t) = F lim
t→∞

x(t) + Gr + lim
t→∞

ρB′P [x(t) − xe] = Fxe + Gr, (2.42)

since ρ(r, y) is uniformly bounded. Hence,

lim
t→∞

h(t) = C2 lim
t→∞

x(t) + D2 lim
t→∞

u(t)

= C2xe + D2(Fxe + Gr)

= (C2 + D2F )xe + D2Gr

= −(C2 + D2F )(A + BF )−1BGr + D2Gr

= [D2 − (C2 + D2F )(A + BF )−1B]Gr

= G0G
′
0(G0G

′
0)

−1r = r. (2.43)

This completes the proof of Theorem 2.1.

Lastly, assuming that the dynamic equation of the given system is transformed into

the following form,

ẋ =

[
A11 A12

A21 A22

]
x +

[
0

B̄

]
sat(u), (2.44)
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where B̄ is nonsingular, Turner et al. [74] have solved the problem under a rather strange

condition, i.e., A11 is nonsingular. It was suggested in [74] to add some small pertur-

bations to A11 if it is singular. Recently, it has been pointed by Turner and Postleth-

waite [73] for the case when the system is stabilizable and B is of full rank, there exists

nonsingular state transformation that would convert the given system with the form of

(2.44) with A11 being nonsingular. Nonetheless, it is obvious from the development that

such a transformation is totally unnecessary. Please note further that the above approach

to the CNF design is much more elegant compared to that given in [74], and it carries

over nicely to the measurement feedback cases in the following subsections.

2.2.2 Full Order Measurement Feedback Case

The assumption that all the state variables of the given system Σ are measurable is,

in general, not practical. For example, in HDD servo systems (see Chen et al. [18]),

the velocity of the actuator is usually hard to be measured. As such, in this subsection

and the next subsection, I will proceed to develop CNF design using only measurement

information. Let us first deal with the full order measurement feedback case, in which

the dynamical order of the controller is exactly the same as that of the given plant. The

following is a step-by-step procedure for the CNF design using full order measurement

feedback.

Step f.1: First construct a linear full order measurement feedback control law,
{

ẋv = (A + KC1)xv − Ky + B sat(uL)

uL = F (xv − xe) + Hr,
(2.45)

where r is the set of step reference signals and xv is the state of the controller.

As usual, K, F are gain matrices and are chosen such that (A + KC1) and (A +

BF ) are asymptotically stable and the resulting closed loop system having desired

properties. Finally, H and xe are as defined in (2.6)–(2.7).

Step f.2: Given a positive definite matrix WP ∈ Rn×n, solve the Lyapunov equation

(A + BF )′P + P (A + BF ) = −WP, (2.46)



Chapter 2. CNF Control for Continuous-Time Systems with Input Saturation 23

for P > 0. As in the state feedback case, the linear control law of (2.45) obtained in

the above step is to be combined with a nonlinear control law to form the following

CNF controller:
{

ẋv = (A + KC1)xv − Ky + B sat(u)

u = F (xv − xe) + Hr + ρ(r, y)B′P (xv − xe),
(2.47)

where ρ(r, y) is as given in (2.10) with all its diagonal elements being respectively

a nonpositive function, locally Lipschitz in y, which are to be chosen to improve

the performance of the closed-loop system.

It turns out that, for the measurement feedback case, the choice of ρi(r, y), i =

1, . . .m, the nonpositive scalar functions, are not totally free. They are subject to certain

constraints. One has the following result.

Theorem 2.2. Consider the given system in (2.1), which satisfies the standard assump-

tions i) to iii), the full order linear measurement feedback control law of (2.45) and the

composite nonlinear measurement feedback control law of (2.47). Given a positive define

matrix WQ ∈ Rn×n with

WQ > F ′B′PW−1
P PBF, (2.48)

let Q > 0 be the solution to the Lyapunov equation,

(A + KC1)′Q + Q(A + KC1) = −WQ. (2.49)

Note that such a Q exists as A + KC1 is asymptotically stable. For any δ ∈ (0, 1), let

c
δ

> 0 be the largest positive scalar such that for all

(
x

xv

)
∈ XFδ, where

XFδ :=

{(
x

xv

)
:

(
x

xv

)′ [P 0

0 Q

](
x

xv

)
≤ cδ

}
, (2.50)

the following property holds

∣∣∣∣∣[ Fi Fi ]

(
x

xv

)∣∣∣∣∣ ≤ (1 − δ)ūi, i = 1, · · · , m. (2.51)

Then, the linear measurement feedback control law in (2.47) will drive the system’s

controlled output h(t) to track asymptotically a set of step references, i.e., r, from an
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initial state x0, provided that x0, xv0 = xv(0) and r satisfy:

(
x0 − xe

xv0 − x0

)
∈ XFδ and |Hi r| ≤ δūi, i = 1, · · · , m. (2.52)

Furthermore, there exist positive scalars ρ∗i > 0, i = 1, . . .m, such that for any nonposi-

tive functions ρi(r, y), i = 1, · · · , m, locally Lipschitz in y and |ρi(r, y)| ≤ ρ∗i , i = 1, · · · , m,

the CNF control law of (2.47) will drive the system controlled output h(t) to track asymp-

totically the reference r from an initial x0, provided that x0, xv0 and r satisfy (2.52).

Proof. For simplicity, again I drop r and y in ρ(r, y) throughout the proof of this

theorem. Let x̃ = x− xe and x̃v = xv − x. The linear feedback control law of (2.45) can

be written as

˙̃xv = (A + KC1)x̃v, uL = [F F ]

(
x̃

x̃v

)
+ Hr. (2.53)

Hence, for all
(

x̃

x̃v

)
∈ XFδ ⇒

∣∣∣∣∣[Fi Fi ]

(
x̃

x̃v

)∣∣∣∣∣ ≤ (1 − δ)ūi, i = 1, · · · , m, (2.54)

and for any r satisfying

|Hi r| ≤ δūi, i = 1, · · · , m, (2.55)

each channel of uL, say uL,i, has the following property

uL,i =

∣∣∣∣∣[ Fi Fi ]

(
x̃

x̃v

)
+ Hi r

∣∣∣∣∣ ≤
∣∣∣∣∣[ Fi Fi ]

(
x̃

x̃v

)∣∣∣∣∣+ |Hi r| ≤ ūi. (2.56)

Thus, for all x̃ and x̃v satisfying the condition as given in (2.54), the closed-loop system

comprising the given plant and the linear control law of (2.45) can be rewritten as
( ˙̃x

˙̃xv

)
=

[
A + BF BF

0 A + KC1

](
x̃

x̃v

)
. (2.57)

Similarly, the closed-loop system with the CNF control law of (2.47) can be expressed as
( ˙̃x

˙̃xv

)
=

[
A + BF BF

0 A + KC1

](
x̃

x̃v

)
+

[
B

0

]
w, (2.58)

where

w = sat

[
[F F ]

(
x̃

x̃v

)
+ Hr + ρ [B′P B′P ]

(
x̃

x̃v

)]
− [ F F ]

(
x̃

x̃v

)
−Hr. (2.59)
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Clearly, for x0 and xv0 satisfying (2.52), one has
(

x̃0

x̃v0

)
∈ XFδ, (2.60)

where x̃0 = x̃(0) and x̃v0 = x̃v(0). Note that (2.57) and (2.58) are identical when ρ = 0.

Again, the results of Theorem 2.2 for both the linear and the nonlinear feedback case

can be proved in one shot.

Next, define a Lyapunov function:

V =

(
x̃

x̃v

)′ [P 0

0 Q

](
x̃

x̃v

)
, (2.61)

and evaluate the derivative of V along the trajectories of the closed-loop system in (2.58),

i.e.,

V̇ =

(
x̃

x̃v

)′ [ −WP PBF

F ′B′P −WQ

](
x̃

x̃v

)
+ 2x̃′PBw. (2.62)

Note that for all
(

x̃

x̃v

)
∈ XFδ ⇒

∣∣∣∣∣[ Fi Fi ]

(
x̃

x̃v

)∣∣∣∣∣ ≤ (1− δ)ūi, i = 1, · · · , m. (2.63)

Again, as done in the full state feedback case, let us find the above derivative of V for

four different cases.

Case 1. All input channels are unsaturated. For this case, one has
∣∣∣∣∣[Fi Fi ]

(
x̃

x̃v

)
+ Hir + ρi [ B′

iP B′
iP ]

(
x̃

x̃v

)∣∣∣∣∣ ≤ ūi, i = 1, · · · , m, (2.64)

which implies

wi = ρi [B′
iP B′

iP ]

(
x̃

x̃v

)
, (2.65)

and

V̇ =

(
x̃

x̃v

)′ [ −WP PB(F + ρB′P )

(F + ρB′P )′B′P −WQ

](
x̃

x̃v

)
+ 2ρx̃′PBB′Px̃

≤
(

x̂

x̃v

)′ [−WP 0

0 −W̃Q

](
x̂

x̃v

)
, (2.66)

where

x̂ = x̃ − W−1
P PB(F + ρB′P )x̃v (2.67)
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and

W̃Q = WQ − (F + ρB′P )′B′PW−1
P PB(F + ρB′P ). (2.68)

Noting (2.48), i.e., WQ > F ′B′PW−1
P PBF , and ρi is locally Lipschitz, it is clear that

there exist positive scalars ρ∗i,1 > 0, i = 1, · · · , m, such that for any scalar function

satisfying |ρi| ≤ ρ∗i,1, i = 1, · · · , m, one has W̃Q > 0 and hence V̇ ≤ 0.

Case 2. All input channels are exceeding their upper limits. In such a situation, one

has for all i = 1, · · · , m,

[Fi Fi ]

(
x̃

x̃v

)
+ Hi r + ρi [B′

iP B′
iP ]

(
x̃

x̃v

)
≥ ūi. (2.69)

For all the trajectories inside XFδ,
∣∣∣∣∣[Fi Fi ]

(
x̃

x̃v

)
+ Hir

∣∣∣∣∣ ≤ ūi, (2.70)

one has for i = 1, · · · , m,

0 ≤ wi ≤ ρi [B′
iP B′

iP ]

(
x̃

x̃v

)
. (2.71)

Next, let us express

wi = qiρi [B′
iP B′

iP ]

(
x̃

x̃v

)
, (2.72)

for some appropriate positive continuous function matrix qi(t) bounded by 1 for all t. In

this case, the derivative of V becomes

V̇ =

(
x̃

x̃v

)′ [ −WP PB(F + qρB′P )

(F + qρB′P )′B′P −WQ

](
x̃

x̃v

)
+ 2qρx̃′PBB′Px̃

≤
(

x̂+

x̃v

)′ [−WP 0

0 −W̃Q+

](
x̂+

x̃v

)
, (2.73)

where

q = diag
{
q1, · · · , qm

}
, (2.74)

x̂+ = x̃ − W−1
P PB(F + qρB′P )x̃v (2.75)

and

W̃Q+
= WQ − (F + qρB′P )′B′PW−1

P PB(F + qρB′P ). (2.76)
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Again, noting (2.48), i.e., WQ > F ′B′PW−1
P PBF , and ρi is locally Lipschitz, it is clear

that there exist positive scalars ρ∗i,2 > 0, i = 1, · · · , m, such that for any scalar function

satisfying |ρi| ≤ ρ∗i,2, i = 1, · · · , m, one has W̃Q+
> 0 and hence V̇ ≤ 0.

Case 3. All input channels are exceeding their lower limits. In this case, one has for

i = 1, · · · , m,

[ Fi Fi ]

(
x̃

x̃v

)
+ Hi r + ρi [ B′

iP B′
iP ]

(
x̃

x̃v

)
≤ −ūi. (2.77)

For all the trajectories inside XFδ,
∣∣∣∣∣[Fi Fi ]

(
x̃

x̃v

)
+ Hir

∣∣∣∣∣ ≤ ūi, (2.78)

one has for i = 1, · · · , m,

ρi [B′
iP B′

iP ]

(
x̃

x̃v

)
≤ wi ≤ 0. (2.79)

Next, let us express

wi = qiρi [B′
iP B′

iP ]

(
x̃

x̃v

)
, (2.80)

for some appropriate positive continuous function matrix qi(t) bounded by 1 for all

t. Following the similar arguments as in the previous case, one can show that there

exist positive scalars ρ∗i,3 > 0, i = 1, · · · , m, such that for any scalar function satisfying

|ρi| ≤ ρ∗i,3, i = 1, · · · , m, the corresponding V̇ ≤ 0.

Case 4. Some control channels are saturated and some are unsaturated. Following the

similar arguments as those in Cases 1 to 3, one can express that for i = 1, · · · , m,

wi = qiρi [B′
iP B′

iP ]

(
x̃

x̃v

)
, (2.81)

for some appropriate positive continuous function matrix qi(t) bounded by 1 for all t,

and show that there exist positive scalars ρ∗i,4 > 0, i = 1, · · · , m, such that for any scalar

function satisfying |ρi| ≤ ρ∗i,4, i = 1, · · · , m, the corresponding V̇ ≤ 0.

Finally, let ρ∗i = min{ρ∗i,1, ρ∗i,2, ρ∗i,3, ρ∗i,4}. Then, one has for any scalar function ρi

satisfying |ρi| < ρ∗i , i = 1, · · · , m,

V̇ ≤ 0, ∀

(
x̃

x̃v

)
∈ XFδ. (2.82)
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Thus, XFδ is an invariant set of the closed-loop system in (2.58), and all trajectories

starting from XFδ will remain inside and asymptotically converge to the origin. This, in

turn, indicates that, for the initial state of the given system x0, the initial state of the

controller xv0, and step command input r that satisfy (2.52),

lim
t→∞

x̃v(t) = 0 and lim
t→∞

x(t) = xe, (2.83)

and then it follows from (2.43) that the controlled output h(t) converges asymptotically

to the target reference r. This completes the proof of Theorem 2.2.

2.2.3 Reduced Order Measurement Feedback Case

For the given system in (2.1), it is clear that there are p state variables of the system,

which are measurable if C1 is of maximal rank. Thus, in general, it is not necessary to

estimate these measurable state variables in measurement feedback laws. As such, I will

proceed in this subsection to design a dynamic controller that has a dynamical order less

than that of the given plant. For simplicity of presentation, assume that C1 is already

in the form

C1 = [ Ip 0 ] . (2.84)

Then, the system in (2.1) can be rewritten as




(
ẋ1

ẋ2

)
=

[
A11 A12

A21 A22

] (
x1

x2

)
+

[
B1

B2

]
sat(u)

y = [ Ip 0 ]

(
x1

x2

)

h = C2

(
x1

x2

)
+ D2sat(u), x0 =

(
x10

x20

)

(2.85)

where the original state x is partitioned into two parts, x1 and x2 with y ≡ x1. Thus, one

will only need to estimate x2 in the reduced order measurement feedback design. Next,

let F be chosen such that i) A + BF is asymptotically stable, and ii) (C2 + D2F )(sI −

A− BF )−1B + D2 has desired properties, and let KR be chosen such that A22 + KRA12

is asymptotically stable. Here note that it can be shown that (A22, A12) is detectable if
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and only if (A, C1) is detectable. Thus, there exists a stabilizing KR. Again, such F and

KR can be designed using an appropriate control technique. One then partitions F in

conformity with x1 and x2:

F = [F1 F2 ] . (2.86)

Let us further partition F2 as follows:

F2 =




F2,1

...

F2,m


 . (2.87)

Also, let G, H and xe be as given in (2.5)–(2.7). The reduced order CNF controller is

given by

ẋv = (A22+KRA12)xv + (B2 +KRB1) sat(u)+
[
A21+KRA11−(A22+KRA12)KR

]
y (2.88)

and

u = F

[(
y

xv−KRy

)
−xe

]
+Hr + ρ(r, y)B′P

[(
y

xv−KRy

)
−xe

]
, (2.89)

where ρ(r, y) is as given in (2.10).

Next, given a positive definite matrix W ∈ Rn×n , let P > 0 be the solution to the

Lyapunov equation

(A + BF )′P + P (A + BF ) = −WP. (2.90)

Given another positive definite matrix WR ∈ R(n−p)×(n−p) with

WR > F′
2B

′PW−1
P PBF2, (2.91)

let QR > 0 be the solution to the Lyapunov equation

(A22 + KRA12)′QR + QR(A22 + KRA12) = −WR. (2.92)

Note that such P and QR exist as A + BF and A22 + KRA12 are asymptotically stable.

For any δ ∈ (0, 1), let c
δ

be the largest positive scalar such that for all
(

x

xv

)
∈ XRδ :=

{(
x

xv

)
:

(
x

xv

)′[P 0

0 QR

](
x

xv

)
≤ c

δ

}
(2.93)

the following property holds:
∣∣∣∣∣[ Fi F2,i ]

(
x

xv

)∣∣∣∣∣ ≤ ūi(1− δ), i = 1, · · · , m. (2.94)

One has the following theorem.
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Theorem 2.3. Consider the given system in (2.1), which satisfies the usual assumptions

i) to iii). Then, there exist positive scalars ρ∗i ≥ 0, i = 1, · · · , m, such that for any

nonpositive function ρi(r, y), i = 1, · · · , m, locally Lipschitz in yi and |ρi(r, y)| ≤ ρ∗i , the

reduced order CNF law given by (2.88) and (2.89) will drive the system controlled output

h(t) to asymptotically track the reference r from an initial state x0, provided that x0,

xv0 and r satisfy
(

x0 − xe

xv0 − x20 − KRx10

)
∈ XRδ, |Hir| ≤ δūi, i = 1, · · · , m. (2.95)

Proof. Let x̃ = x−xe and x̃v = xv−x2−KRx1. Then, the closed-loop system comprising

the given plant in (2.1) and the reduced order CNF control law of (2.88) and (2.89) can

be expressed as
( ˙̃x

˙̃xv

)
=

[
A + BF BF2

0 A22 + KRA12

](
x̃

x̃v

)
+

[
B

0

]
w (2.96)

where

w = sat

{
[ F F2 ]

(
x̃

x̃v

)
+Hr+ρ(r, y)B′P

[
x̃+

(
0

x̃v

)]}
−[ F F2 ]

(
x̃

x̃v

)
−Hr. (2.97)

The rest of the proof follows along similar lines to the reasoning given in the full order

measurement feedback case.

2.2.4 Selecting the Nonlinear Gain ρ(r, y)

The freedom to choose the function ρ(r, y) is used to tune the control laws so as to improve

the performance of the closed-loop system as the controlled output h approaches the set

point. Since the main purpose of adding the nonlinear part to the CNF controllers is to

speed up the settling time, or equivalently to contribute a significant value to the control

input when the tracking error, r − h, is small. The nonlinear part, in general, will be in

action when the control signal is far away from its saturation level, and thus it will not

cause the control input to hit its limits. Under such a circumstance, it is straightforward

to verify that the closed-loop system comprising the given plant in (2.1) and the three

different types of control law can be expressed as

˙̃x = (A + BF )x̃ + ρ(r, y)BB′Px̃. (2.98)
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Note that the additional term ρ(r, y) does not affect the stability of the estimators. It

is now clear that eigenvalues of the closed-loop system in (2.98) can be changed by the

function ρ(r, y). There are different types of nonlinear gains that have been suggested in

the literature (see e.g., [19, 53,74]). Assuming that h is available, let us follow the work

of [19] to propose the following nonlinear gains,

ρi(ri, hi) = − βi

1 − e−1

(
e−|1−[hi−hi(0)]/[ri−hi(0)]| − e−1

)
, i = 1, · · · , m, (2.99)

when hi(0) 6= ri (for the trivial case of hi(0) = ri, no control input is needed). Or, one

may choose

ρi(r, h) = −βi

∣∣∣e−αi||h(t)−r|| − e−αi||h(0)−r||
∣∣∣, i = 1, · · · , m, (2.100)

which starts from 0 and gradually increases to a final gain of −βi

∣∣∣1 − e−αi||h(0)−r||
∣∣∣ as

h approaches to the target reference r. αi is used to determine the speed of change

in ρi. Thus, one could properly select scalar gains βi, i = 1, · · · , m, to yield a desired

performance. Note further that for the case when (A, B, C2, D2) is a SISO system, Chen

et al. [19] have recently shown a nice interconnection on the mechanism of the nonlinear

gain ρ with the classical root-locus theory. They have also shown that W can actually

be connected to the zero placement for an auxiliary system. Unfortunately, these nice

properties generally do not carry over to the MIMO systems.

To examine the behavior of the closed-loop system (2.98) more explicitly, let us define

an auxiliary system Gaux(s) as

Gaux(s) := Caux(sI − Aaux)−1Baux := B′P (sI − A − BF )−1B. (2.101)

Obviously, Gaux(s) is stable. The closed-loop system (2.98) can then be cast under the

framework of the multivariable root locus theory as shown in Figure 2.1 (let us hereafter

drop the dependent variables of ρ for simplicity). Note that

CauxBaux = B′PB > 0, (2.102)

which implies Gaux(s) is a square, invertible and uniform rank system with m infinite
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zeros of order 1 and with n − m invariant zeros. Noting that

det(sI − Aaux − Baux · ρ · Caux) = det(ρ) · det




sI − Aaux Baux

Caux ρ−1


 , (2.103)

it is clear that for any eigenvalue of the closed-loop system (2.98), i.e., s ∈ λ(A + BF +

BρB′P ),

det




sI − Aaux Baux

Caux ρ−1


 = 0. (2.104)

f - --
6

-0 output
Gaux(s)−ρ

−

Figure 2.1: Interpretation of the nonlinear function ρ(r, y).

Thus, when all diagonal elements of ρ, i.e., ρi, i = 1, 2, · · · , m, approach to −∞, the

closed-loop eigenvalues of (2.98) approach to the zeros of Gaux(s) including the invariant

zeros of (Aaux, Baux, Caux) and those at infinity. Since it was shown that the closed-loop

system remains stable for any ρ whose diagonal elements are nonpositive, the invariant

zeros of Gaux(s) have to be stable. Hence, Gaux(s) is of minimum phase.

It should be noted that there is freedom in pre-selecting the locations of these in-

variant zeros by selecting an appropriate W in (2.8). In general, one should select the

invariant zeros of Gaux(s), which are corresponding to the closed-loop poles of (2.98) for

large |ρ|, such that the dominated ones have a large damping ratio, which in turn will

generally yield a smaller overshoot. The following procedure for selecting an appropriate

W is adopted from that reported in [19]:

Given the pair (Aaux, Baux) and the desired locations of the invariant zeros of Gaux, let

us follow the result reported in Chapter 9 of Chen et al. [20] on finite and infinite

zero assignment to obtain an appropriate matrix Caux such that (Aaux, Baux, Caux)

has the desired relative degree and invariant zeros.
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Solve Caux = B′P for a P = P ′ > 0. In general, the solution is non-unique as there are

n(n + 1)/2 elements in P available for selection. However, if the solution does not

exist, one goes back to the previous step to re-select the invariant zeros.

Calculate W using (2.8) and check if W is positive definite. If W is not positive definite,

one goes back to the previous step to choose another solution of P or go to the

first step to re-select the invariant zeros.

Another method for selecting W is based on a trial and error approach by limiting the

choice of W to a diagonal matrix and adjusting its diagonal weights through simulation.

The software package for realizing the CNF design reported in Cheng et al. [22] was

implemented based on such an approach. Generally, it will also yield a satisfactory

result. I will illustrate such a design approach in two examples in the following section.

2.3 Illustrative Examples

To illustrate the concept of the CNF control, I will present in this section two examples.

One is a real application example while the other one is a numerical example.

Example 2.1. The first example is a roll-yaw autopilot system for the Extended Medium

Range Air-to-Air Technology (EMRAAT) airframe. I will compare the performance of

the CNF design with a corresponding LQR design. The airframe is a generic, non-

axisymmetrical airframe and as such, lends itself to highly g coordinated bank-to-turn

maneuvers. The linearized roll-yaw state space model for the EMRAAT airframe for

the flight conditions of Mach = 2.5, Velocity = 2420 ft/sec, Dynamic Pressure = 1720

lbs/ft2, and Angle of Attack = 10◦, is given by

ẋ =




−0.501 −0.985 0.174 0 0.109 0.007

16.83 −0.575 0.0123 0 −132.8 27.19

−3227 0.321 −2.10 0 −1620 −1240

0 0 1 0 0 0

0 0 0 0 −179 0

0 0 0 0 0 −179




x+




0 0

0 0

0 0

0 0

179 0

0 179




sat(u), (2.105)
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where

x =




β

α

p

∫
p

δr

δa




, u =

(
δrc

δac

)
. (2.106)

and where β is sideslip, α is yaw rate, p is roll rate,
∫
p is roll angle, δr is rudder position,

δa is aileron position, and δrc and δac are respectively the controls applied to the rudder

and aileron. The measurement of the system is given by

y =




β

α

p

∫
p




=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0




x. (2.107)

This air-to-air missile system is taken from the work of Wilson et al. [77], in which the

authors had designed an autopilot system based on a Lyapunov-constrained eigenstruc-

ture assignment approach. Note that in [77], they did not consider any input saturation

in their formulation. The same system was adopted by Turner et al. [74] for illustration

of their work, although they had added a small perturbation in the (4, 4) entry in the

system matrix A into order to make A11 nonsingular. However, in [74], the authors had

assumed that all the state variables of the system are measurable and assumed that both

input channels are bounded by ±20o. The controlled output of the system is defined as

the sideslip and the the roll angle, i.e.,

h =

(
h1

h2

)
=

(
β

∫
p

)
=

[
1 0 0 0 0 0

0 0 0 1 0 0

]
x +

[
0 0

0 0

]
u. (2.108)

To demonstrate the results, let us choose a a command reference:

r =

(
r1

r2

)
=

(
9

50

)
. (2.109)

The aim is to design appropriate CNF controllers with full state feedback, full order

measurement feedback and reduced order measurement feedback, which would control

the controlled output of the system to track the command reference as fast as possible
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and as smooth as possible. Following the procedures given in the previous section and

with appropriate selections of design parameters, I have obtained the following CNF

control laws. Note that the linear parts of the control laws are carried out using the

standard LQR design.

1. CNF controller using full state feedback:

u = Fx + Gr + ρ(r, y)Fn(x − xe), (2.110)

where

F =

[−2.573875 0.124261 0.037199 1.891459 −0.351318 −0.186503

−0.039226 −0.131115 0.037657 1.192637 −0.186503 −0.235628

]
,

G =

[
1.675090 −1.891459

−2.656604 −1.192637

]
,

Fn =

[
2.573875 −0.124261 −0.037199 −1.891459 0.351318 0.186503

0.039226 0.131115 −0.037657 −1.192637 0.186503 0.235628

]
,

xe = [9 4.117493 0 50 −2.897455 −19.635324 ]′

and

ρ(r, y) = diag
{
ρ1(r1, h1), ρ2(r2, h2)

}
,

and where

ρ1(r1, h1) = − 0.5
1 − e−1

(e−|1−h1−h1(0)
r1−h1(0)

| − e−1), (2.111)

ρ2(r2, h2) = − 1.5
1 − e−1

(e−|1−h2−h2(0)
r2−h2(0)

| − e−1). (2.112)

2. CNF controller using full order measurement feedback:
{

ẋv = (A + KC1)xv − Ky + B sat(u)

u = F (xv − xe) + Hr + ρ(r, y)Fn(xv − xe),
(2.113)

where F , Fn, xe, ρ(r, y) are as given in the state feedback case, and

K =




−29.6237 0.7142 −0.1485 0

−46.2737 119.3702 −0.6416 0

3495.4107 18.1069 105.4275 0

0 0 −1 −60

−20.7195 131.5970 2.0269 0

56.8973 −169.5411 13.2893 0




, H =

[−0.321939 0

−2.181703 0

]
.
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3. CNF controller using reduced order measurement feedback:

ẋv = Acmpxv + Kcmpy + Bcmp sat(u) (2.114)

and

u = F

[(
y

xv−KRy

)
−xe

]
+Hr + ρ(r, y)Fn

[(
y

xv−KRy

)
−xe

]
, (2.115)

where

Acmp =

[−15 0

0 −20

]
, Kcmp =

[
52.553834 −14.061997 −0.287191 0

347.215285 23.940526 −1.796177 0

]
,

Bcmp =

[
179 0

0 179

]
, KR =

[
0.000578 −0.974320 −0.021364 0

−0.000730 1.234094 −0.101165 0

]
,

and F , H , xe, ρ(r, y) and Fn are the same as those given in the previous two cases.

Using Simulink in Matlab, I obtain a set of simulation results in Figures 2.2–2.4,

which are done under the following initial condition,

x0 = [−10 0 0 10 0 0 ]′ , (2.116)

together with initial conditions for both full and reduced order controllers being set to

zero. The results clearly show that the control laws with the nonlinear components, i.e.,

the CNF controllers, outperform their linear counterparts a great deal. It is interesting

to note that the results for the CNF state feedback case and the CNF reduced order

measurement feedback case are almost identical, and have almost no overshoot at all in

their controlled output responses. The controlled output responses in the CNF full order

measurement feedback case are, however, having some small overshoot.

Example 2.2. Now let us consider a numerical example. The system considered is a

two-input and two-output system characterized by (2.1) with

A =




0 1 0 −1 −1 0

0 0 1 1 1 0

0 0 0 0 −1 0

−1 −2 −2 −2 −1 −2

1 2 2 2 2 3

−1 −2 −2 −2 −2 −2




, B =




1 −1

−1 1

1 −1

0 1

0 −1

0 1




, x0 =




−0.6

0

0

0.5

0

0




, (2.117)
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Figure 2.2: Input and output responses under state feedback.
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Figure 2.3: Input and output responses under full order measurement feedback.
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Figure 2.4: Input and output responses under reduced order measurement feedback.
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and

C1 = C2 =

[
1 1 0 0 0 0

0 0 0 1 1 0

]
, D2 =

[
0 0

0 0

]
. (2.118)

The maximum amplitudes of both control channels are given by ū1 = ū2 = 1. The

target references are

r =

(
1

−1

)
. (2.119)

The aim is to design appropriate CNF controllers with full state feedback, full order

measurement feedback and reduced order measurement feedback, which would control

the controlled output of the system to track the command reference as fast as possible and

as smooth as possible. Following the procedures given in the previous section and with

appropriate selections of design parameters, I have obtained the following CNF control

laws. Note that the state feedback gain F is carried out by carefully examining the

structural properties of the given system using the techniques reported in [20] whereas

the full order and reduced order observer gain matrices are computed using the H2

optimization technique given in [62].

1. CNF controller using full state feedback:

u = Fx + Gr + ρ(r, y)Fn(x − xe), (2.120)

where

F =

[−1 −1 −3 −2 2 2

1 2 2 0 −1 −3

]
, G =

[
2 0

0 2

]
,

and

Fn = B′P =

[
0.25 3.75 4.75 2.50 0.25 −1.75

−1.75 −3.75 −2.75 0.25 9.00 10.75

]
,

where P is the solution of the Lyapunov equation (2.8) with W = I . Finally,

xe = [ 2 −1 1 −1 0 0 ]′

and

ρ(r, y) = diag
{
ρ1(r1, h1), ρ2(r2, h2)

}
, (2.121)

and where

ρ1(r, h) = −2.8
∣∣∣e−||h(t)−r|| − e−||h(0)−r||

∣∣∣, (2.122)

ρ2(r, h) = −1.7
∣∣∣e−||h(t)−r|| − e−||h(0)−r||

∣∣∣. (2.123)
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2. CNF controller using full order measurement feedback:
{

ẋv = (A + KC1)xv − Ky + B sat(u)

u = F (xv − xe) + Hr + ρ(r, y)Fn(xv − xe),
(2.124)

where F , Fn, xe, ρ(r, y) are as given in the state feedback case, and

K =




65.9921 −65.9537

−57.5639 64.9515

92.5836 −73.3967

−27.4805 38.5006

26.4782 −30.0729

−34.9271 65.0887




, H =

[
1 1

1 1

]
,

and ρ(r, y) is slightly adjusted from that of (2.121) with ρ1(r, y) being modified as

ρ1(r, h) = −2.5
∣∣∣e−||h(t)−r|| − e−||h(0)−r||

∣∣∣. (2.125)

3. CNF controller using reduced order measurement feedback:

ẋv = Acmpxv + Kcmpy + Bcmp sat(u) (2.126)

and

u = F

[(
y

xv−KRy

)
−xe

]
+Hr + ρ(r, y)Fn

[(
y

xv−KRy

)
−xe

]
, (2.127)

where

Acmp =

[−15 0

0 −20

]
, Bcmp =




1 −1

1 0

1 −2

0 1




,

Kcmp =

[
52.553834 −14.061997 −0.287191 0

347.215285 23.940526 −1.796177 0

]
,

Kcmp = 103 ×




−1.4088 1.3335

−1.1589 0.1610

−1.4815 2.4787

0.1749 −1.2475




, KR =




99.0046 −87.7874

74.1569 −12.6217

98.4364 −160.9248

−13.1539 86.8591




,

and F , H , xe and Fn are the same as those given in the previous two cases whereas

ρ(r, y) is identical to that given in the full order measurement feedback case.
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Figure 2.5: Simulation result for the full state CNF case.
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Figure 2.6: Simulation result for the full state H2 linear feedback case.
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Figure 2.7: Simulation result for the full order measurement CNF case.
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Figure 2.8: Simulation result for the reduced order measurement CNF case.
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Using Simulink in Matlab, I obtain a set of simulation results in Figures 2.5-2.8.

The initial conditions for both full and reduced order controllers are set to zero. The

results are very satisfactory for all three cases. Note that the settling times for the full

order and reduced order measurement feedback cases are slightly longer compared to

those of the full state feedback case. For comparison, I include in Figure 2.6 the simula-

tion result of a carefully tuned state feedback linear control law using an H2 optimization

approach. Obviously, the CNF controller has a better performance compared to that of

a best tuned linear controller.

2.4 Conclusion

I have proposed a nonlinear tracking control technique, i.e., the so-called composite non-

linear feedback (CNF) control design, which consists of two parts, a linear component

and a nonlinear component. The former is usually chosen to give fast rising time while

the latter is added to smooth out the transient peaks or overshoots when the controlled

output is approaching the target reference. The technique is applicable to general multi-

variable system with some standard assumptions and a natural extension of some recent

work in the field. It was successfully demonstrated by a practical example on an air-to-

air missile system. Finally, note that unlike the SISO case, the relationship between the

physical meaning and the tuning mechanism of the nonlinear gains in the CNF design

for MIMO systems is still not clearly captured due to coupling of channels. It requires

more investigations and research.



Chapter 3

CNF Control for Discrete-Time

Systems with Input Saturation

From previous chapter, one knows that the CNF controller is based on any linear feedback

law which solves the tracking problem under actuator saturation. By adding additional

nonlinear term, one is able to improve transient performance. The CNF controller has

a very simple structure and is easily implemented. It is, of course, natural for one to

ask whether this scheme will be extended to linear discrete-time systems. The answer

is positive and in this chapter, I will present the composite nonlinear feedback control

technique for linear discrete-time multivariable systems with actuator saturation. The

goal of this chapter is to complete the theory for general discrete-time systems. Again,

I will consider both the state feedback case and the measurement feedback case with-

out imposing any restrictive assumption on the given systems. It will be applied to a

Magnetic-Tape-Drive servo system design and yields an improvement of more than 50%

in settling time compared to that of standard LQ controller which doesn’t violate control

constraints.

3.1 Introduction and Problem Formulation

Since the CNF control scheme has been derived for continuous-time systems, it should be

natural to extend it to discrete-time systems as in practice more and more controllers are

45
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of digital types. Although people may transform continuous-time controllers into digital

controllers using zero-order hold, first-order hold or bi-linear transformation methods,

it is still of interest for one to explore discrete-time counterpart for CNF scheme as in

many cases, when one designs the controller based on discrete-time model, it has special

properties which may not be captured by transformed controller.

Note that for designing tracking controller for linear discrete-time systems, certain

results can be found in the literature. In fact, some researchers proposed methods which

deal with both continuous-time and discrete-time systems either in a single work or in

some separate papers. However, with no exception, their proposed controllers are very

complex and even hard to be designed as they lack of clear design steps, it is again

appealing to find a simple controller like linear controller, as in continuous-time setting.

Unfortunately, along the same line as that of CNF control, very little has been done

for linear discrete-time systems besides the work of Venkataramanan et al. [75], which

is only applicable to linear single-input and single-output (SISO) systems with state

feedback. In this chapter, I will present a complete CNF control technique for discrete-

time multivariable systems with actuator saturation. Both the state feedback case and

the measurement feedback case without imposing any restrictive assumption on the given

systems are considered. This work aims to complete the theory for general discrete-time

systems. As mentioned earlier in the abstract, the CNF control consists of a linear

feedback law and a nonlinear feedback law without any switching element. The linear

feedback part is typically designed to yield a quick response at the initial stage (obviously

any method in the literature can be adopted to seek such a linear feedback law which

does not violate the control constraints), while the nonlinear feedback law is used to

smooth out overshoots in the system output when it approaches the target reference.

As such, the resulting closed-loop system generally has very fast transient response and

minimal overshoot.

To be specific, let us consider in this chapter the following multi-input and multi-

output (MIMO) discrete-time system Σ with an amplitude-constrained actuator charac-
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terized by




x(k + 1) = Ax(k) + B sat(u(k)), x(0) = x0

y(k) = C1x(k)

h(k) = C2x(k) + D2 sat(u(k))

(3.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and h ∈ R` are respectively the state, control input,

measurement output and controlled output of the given system Σ. A, B, C1 and C2 are

appropriate dimensional constant matrices, and the saturation function is defined by

sat(u) =




sat(u1)

sat(u2)
...

sat(um)




(3.2)

with

sat(ui) = sign(ui) min(|ui|, ūi), (3.3)

where ūi is the maximum amplitude of the i-th control channel. The objective of this

chapter is to design an appropriate control law for (3.1) using the CNF approach such

that the resulting controlled output will track some desired step references as fast and

as smooth as possible. I will address the CNF control system design for the given

system (3.1) for three different situations, namely, the state feedback case, the full order

measurement feedback case, and the reduced order measurement feedback case. For

tracking purpose, the following assumptions on the given system are made:

1. (A, B) is stabilizable.

2. (A, C1) is detectable.

3. (A, B, C2, D2) is right invertible (and hence m ≥ l) and has no invariant zeros at

z = 1.

Note that these assumptions are necessary for tracking control of discrete-time systems.

This chapter is organized as follows. Section 3.2 deals with the theory of the composite

nonlinear feedback control for the state feedback case, whereas Section 3.3 deals with

the detailed development of the CNF design with the full order measurement feedback
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and the reduced order measurement feedback cases. I will address the issue on the

selection of nonlinear gain parameters in Section 3.4. The technique is then illustrated

in a Magnetic-Tape-Drive design example in Section 3.5, which shows that the proposed

design method yields an improvement of more than 50% in settling time compared to

that of conventional linear state feedback design approaches. Finally, I will draw some

concluding remarks in Section 3.6.

3.2 State Feedback Case

Let us first proceed to develop a composite nonlinear feedback control technique for the

case when all the state variables of the plant Σ are measurable, i.e., y = x. The design

will be done in three steps. One has the following step-by-step design procedure.

Step s.1: Design a linear feedback law,

uL(k) = Fx(k) + Gr, (3.4)

where r ∈ Rm contains a set of step references. The state feedback gain matrix F ∈

Rm×n is chosen such that the closed-loop system matrix A + BF is asymptotically

stable and typically the resulting closed-loop system transfer matrix, i.e., D2 +

(C2 + D2F )(zI −A−BF )−1B, has certain desired properties, e.g., having a small

dominating damping ratio in each channel. Note that such an F can be worked

out using some well-studied methods such as the LQR, H∞ and H2 optimization

approaches (see, e.g., Anderson and Moore [1], Chen [17] and Saberi et al. [62]).

Furthermore, G is an m × l constant matrix and is given by

G := G′
0

(
G0G

′
0

)−1
, (3.5)

with G0 := D2 + (C2 + D2F )(I −A−BF )−1B. Here note that both G0 and G are

well defined because A + BF is stable, and (A, B, C2, D2) is right invertible and

has no invariant zeros at z = 1, which implies (A + BF, B, C2 + D2F, D2) is right

invertible and has no invariant zeros at z = 1 (see e.g., Lemma 2.5.1 of Chen [17]).
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Step s.2: Next, compute

H :=
[
I + F (I − A − BF )−1B

]
G (3.6)

and

xe := Ge r := (I − A − BF )−1BG r. (3.7)

Note that the definitions of H , Ge and xe would become transparent later in the

derivation. Given a positive definite matrix W ∈ Rn×n, solve the following Lya-

punov equation:

P = (A + BF )′P (A + BF ) + W, (3.8)

for P > 0. Such a P exists since A + BF is asymptotically stable. Then, the

nonlinear feedback control law uN(k) is given by

uN(k) = ρ(r, y)B′P (A + BF )(x(k) − xe), (3.9)

where

ρ(r, y) = diag{ρ1, · · · , ρm} =




ρ1 · · · 0
...

. . .
...

0 · · · ρm


 , (3.10)

and ρi = ρi(r, y), i = 1, 2, · · · , m, are some nonpositive functions, locally Lipschitz

in y, which are used to change the closed-loop system damping ratios as the outputs

approach the targets. The choice of these nonlinear functions will be discussed in

Section 3.4.

Step s.3: The linear and nonlinear feedback laws derived in the previous steps are now

combined to form a CNF controller:

u(k) = uL(k) + uN(k) = Fx(k) + Gr + ρ(r, y)B′P (A + BF )(x(k) − xe). (3.11)

This completes the design of the CNF controller for the state feedback case.

For further development, let us partition B ∈ Rn×m, F ∈ Rm×n and H ∈ Rm×l as

follows:

B = [B1 · · · Bm ] , F =




F1

...

Fm


 , H =




H1

...

Hm


 . (3.12)



Chapter 3. CNF Control for Discrete-Time Systems with Input Saturation 50

The following theorem shows that the closed-loop system comprising the given plant in

(3.1) and the CNF control law of (3.11) is asymptotically stable. It also determines the

magnitudes of the step functions in r that can be tracked by such a control law without

exceeding the control limit.

Theorem 3.1. Consider the given system Σ in (3.1) with y = x, which satisfies As-

sumptions 1 and 3, the linear control law of (3.4) and the composite nonlinear feedback

control law of (3.11). For any δ ∈ (0, 1), let c
δ

> 0 be the largest positive scalar such

that for all x(k) ∈ Xδ, where

Xδ :=
{

x : x′Px ≤ c
δ

}
, (3.13)

the following property holds,

| Fi x(k) |≤ (1 − δ)ūi, i = 1, · · · , m. (3.14)

Then, the linear control law of (3.4) is capable of driving the system controlled output

h(k) to track asymptotically a set of step references, i.e., r, provided that the initial state

x0 and r satisfy:

x̃0 := (x0 − xe) ∈ Xδ, |Hi r| ≤ δūi, i = 1, · · · , m. (3.15)

Furthermore, for any nonpositive function ρ(r, y), locally Lipschitz in y, which satisfies

2ρ + ρB′PBρ ≤ 0, or ρ−1 ≤ −1
2
B′PB (3.16)

if ρ is selected to be non-singular, the composite nonlinear feedback law in (3.11) is

capable of driving the system controlled output h(k) to track asymptotically the step

command input of amplitude r, provided that the initial state x0 and r satisfy (3.15).

Proof. Let us first define a new state variable x̃(k) = x(k) − xe. It is simple to verify

that the linear feedback control law of (3.4) can be rewritten as

uL(k) = Fx̃(k) + [I + F (I − A − BF )−1B]Gr = Fx̃(k) + Hr, (3.17)

and hence for all x̃(k) ∈ Xδ and, provided that |Hi r| ≤ δūi, i = 1, · · · , m, the closed-loop

system is linear and is given by

x(k + 1) = (A + BF )x̃(k) + Axe + BHr. (3.18)
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Noting that

Axe + BHr =
{

A(I − A − BF )−1BG + B[I + F (I − A − BF )−1B]G
}
r

=
{

A(I − A − BF )−1BG + [I + BF (I − A − BF )−1]BG
}
r

=
[
A(I − A − BF )−1 + I + BF (I − A − BF )−1

]
BGr

= (I − A − BF )−1BGr = xe, (3.19)

the closed-loop system in (3.18) can then be simplified as

x̃(k + 1) = (A + BF )x̃(k). (3.20)

Similarly, the closed-loop system comprising the given plant in (3.1) and the CNF control

law of (3.11) can be expressed as

x̃(k + 1) = (A + BF )x̃(k) + Bw(k), (3.21)

where

w(k) = sat(Fx̃(k) + Hr + uN(k))− Fx̃(k) − Hr. (3.22)

Clearly, for the given x0 satisfying (3.15), one has x̃0 = (x0−xe) ∈ Xδ. Note that (3.21)

is reduced to (3.20) if ρ(r, y) = 0.

Next, let us define a Lyapunov function V (k) = x̃′(k)Px̃(k) and evaluate the incre-

ment of V (k) along the trajectories of the closed-loop system in (3.21), i.e.,

4V (k + 1) = x̃′(k + 1)Px̃(k + 1) − x̃′(k)Px̃(k)

= x̃′(k)(A + BF )′P (A + BF )x̃(k)− x̃′(k)Px̃(k)

+ 2x̃′(k)(A + BF )′PBw(k) + w
′
(k)B′PBw(k)

= −x̃′(k)Wx̃(k) + 2x̃′(k)(A + BF )′PBw(k) + w′(k)B′PBw(k). (3.23)

Note that for all

x̃(k) ∈ Xδ = {x̃(k) : x̃′(k)Px̃(k) ≤ cδ} ⇒ |Fi x̃(k)| ≤ (1− δ)ūi, i = 1, · · · , m.

(3.24)

In the remainder of this proof, let us consider the following different scenarios. For

simplicity, I will drop the dependent variables of the nonlinear function ρ in the rest of

this proof.
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Case 1. All input channels are unsaturated. It is obvious that one has

w(k) = uN(k) = ρB′P (A + BF )x̃(k) (3.25)

and thus

4V (k + 1) = −x̃′(k)Wx̃(k) + 2x̃′(k)(A + BF )′PBρB′P (A + BF )x̃(k)

+ x̃′(k)(A + BF )′PBρB′PBρB′P (A + BF )x̃(k)

= −x̃′(k)Wx̃(k)

+ x̃′(k)(A + BF )′PB(2ρ + ρB′PBρ)B′P (A + BF )x̃(k) (3.26)

In view of (3.16), one has

4V (k + 1) ≤ −x̃′(k)Wx̃(k) < 0. (3.27)

Case 2. All input channels are exceeding their upper limits. In this case, let

uNi(k) = ρiB
′
iP (A + BF )x̃(k). (3.28)

Thus, the assumption that all input channels are exceeding their upper limits, i.e.,

Fix̃(k) + Hir + uNi(k) ≥ ūi, i = 1, · · · , m, (3.29)

implies that

uNi(k) ≥ ūi − Fix̃(k)− Hir, i = 1, · · · , m (3.30)

and

wi(k) = ūi − (Fix̃(k) + Hir). (3.31)

For all x̃(k) ∈ Xδ, which implies that (3.24) holds, and r satisfies (3.15), one has

Fix̃(k) + Hir ≤ ūi, i = 1, · · · , m, (3.32)

Hence,

0 ≤ wi(k) ≤ uNi(k). (3.33)
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4V (k + 1) = −x̃′(k)Wx̃(k) + w′(k)[2B′P (A + BF )]x̃(k) + w′(k)B′PBw(k)

= −x̃′(k)Wx̃(k) +
m∑

i=1

wi(k)[2ρ−1
i uNi(k)] + w′(k)B′PBw(k)

≤ −x̃′(k)Wx̃(k) +
m∑

i=1

wi(k)[2ρ−1
i wi(k)] + w′(k)B′PBw(k)

= −x̃′(k)Wx̃(k) + w′(k)(2ρ−1)w(k) + w′(k)B′PBw(k)

= −x̃′(k)Wx̃(k) + w′(k)(2ρ−1 + B′PB)w(k) < 0. (3.34)

Case 3. All input channels are exceeding their lower limits. For this case, one has

Fix̃(k) + Hir + ρiB
′
iP (A + BF )x̃(k) ≤ −ūi, i = 1, · · · , m. (3.35)

Following similar arguments as in the previous case, one can show that

4V (k + 1) ≤ −x̃′(k)Wx̃(k) < 0. (3.36)

Case 4. Some control channels are saturated and some are unsaturated. In view of

Cases 1 to 3, the increment is just a combination of the above three cases. For those

unsaturated channels, one has

wi(k) = uNi(k) = ρiB
′
iP (A + BF )x̃(k) (3.37)

and

wi(k)(2ρ−1
i )uNi(k) = wi(k)(2ρ−1

i )wi(k). (3.38)

On the other hand, for those saturated channels, one has either

0 ≤ wi(k) = ūi(k) − (Fix̃(k) + Hir) ≤ uNi(k) (3.39)

or

uNi(k) ≤ wi(k) = −ūi(k)− (Fix̃(k) + Hir) ≤ 0. (3.40)

Thus, one has

wi(k)[2ρ−1
i uNi(k)] ≤ wi(k)(2ρ−1

i )wi(k). (3.41)

It is then straightforward to verify that for this case, again, one has

4V (k + 1) ≤ −x̃′(k)Wx̃(k) < 0. (3.42)
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In conclusion, I have shown that

4V (k + 1) ≤ −x̃′(k)Wx̃(k), x̃(k) ∈ Xδ, (3.43)

which implies that Xδ is an invariant set of the closed-loop system in (3.21). Noting

that W > 0, all trajectories of (3.21) starting from inside Xδ will converge to the origin.

This, in turn, indicates that, for all initial state x0 and the step command input r that

satisfy (3.15), one has

lim
k→∞

x(k) = xe, (3.44)

which implies

lim
k→∞

u(k) = F lim
k→∞

x(k) + Gr + ρB′P (A + BF )[ lim
k→∞

x(k) − xe] = Fxe + Gr. (3.45)

Hence,

lim
k→∞

h(k) = C2 lim
k→∞

x(k) + D2 lim
k→∞

u(k)

= C2xe + D2(Fxe + Gr)

= (C2 + D2F )xe + D2Gr

= (C2 + D2F )(I − A − BF )−1BGr + D2Gr

= [D2 + (C2 + D2F )(I − A − BF )−1B]Gr

= G0G
′
0(G0G

′
0)

−1r = r. (3.46)

This completes the proof of Theorem 3.1.

3.3 Measurement Feedback Case

The assumption that all the state variables of the given system Σ are measurable is

generally neither feasible nor practical. In this section, let us proceed to design CNF

control laws using only measurement information. Both full order and reduced order

control laws are considered.
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3.3.1 Full Order Measurement Feedback Case

Let us first deal with the full order measurement feedback case, in which the dynamical

order of the controller is exactly the same as that of the given plant. The following is a

step-by-step procedure for the CNF design using full order measurement feedback.

Step f.1: First construct a linear full order measurement feedback control law,
{

xv(k + 1) = (A + KC1)xv(k)− Ky(k) + B sat(uL(k))

uL(k) = F (xv(k) − xe) + Hr,
(3.47)

where r is the set of step reference signals and xv(k) is the state of the controller.

As usual, K, F are gain matrices and are chosen such that (A + KC1) and (A +

BF ) are asymptotically stable and the resulting closed loop system having desired

properties. Finally, H and xe are as defined in (3.6)–(3.7).

Step f.2: Given a positive definite matrix WP ∈ Rn×n, solve the Lyapunov equation

P = (A + BF )′P (A + BF ) + WP, (3.48)

for P > 0. As in the state feedback case, the linear control law of (3.47) obtained in

the above step is to be combined with a nonlinear control law to form the following

CNF controller:
{

xv(k + 1) = (A + KC1)xv(k) − Ky(k) + B sat(u(k))

u(k) = F (xv(k) − xe) + Hr + ρ(r, y)B′P (A + BF )(xv(k) − xe),
(3.49)

where ρ(r, y) is as given in (3.10) with all its diagonal elements being respectively

a nonpositive function, locally Lipschitz in y, which are to be chosen to improve

the performance of the closed-loop system.

One has the following result.

Theorem 3.2. Consider the given system in (3.1), which satisfies the standard As-

sumptions 1–3, the full order linear measurement feedback control law of (3.47) and

the composite nonlinear measurement feedback control law of (3.49). Given a positive

definite matrix WQ ∈ Rn×n with

WQ > F ′[B′PB + B′P (A + BF )W−1
P (A + BF )′PB]F, (3.50)
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let Q > 0 be the solution to the following Lyapunov equation:

Q = (A + KC1)′Q(A + KC1) + WQ. (3.51)

Note that such a Q exists as A + KC1 is asymptotically stable. For any δ ∈ (0, 1), let

c
δ

> 0 be the largest positive scalar such that for all

(
x(k)

xv(k)

)
∈ XFδ :=

{(
x(k)

xv(k)

)
:

(
x(k)

xv(k)

)′ [P 0

0 Q

](
x(k)

xv(k)

)
≤ cδ

}
, (3.52)

the following property holds

∣∣∣∣∣[Fi Fi ]

(
x(k)

xv(k)

)∣∣∣∣∣ ≤ (1− δ)ūi, i = 1, · · · , m. (3.53)

Then, there exist nonpositive scalars ρ∗i ≤ 0, i = 1, . . . , m, such that for any nonpositive

functions ρi(r, y), i = 1, · · · , m, locally Lipschitz in y and ρ∗i ≤ ρi(r, y) ≤ 0, i = 1, · · · , m,

the control law in (3.49) will drive the system’s controlled output h(k) to track asymptoti-

cally a set of step references, i.e., r, from an initial state x0, provided that x0, xv0 = xv(0)

and r satisfy:

(
x0 − xe

xv0 − x0

)
∈ XFδ and |Hi r| ≤ δūi, i = 1, · · · , m. (3.54)

Proof. For simplicity, I will again drop r and y in ρ(r, y) throughout the proof of this

theorem. Let x̃ = x− xe and x̃v = xv − x. The linear feedback control law of (3.47) can

be written as

x̃v(k + 1) = (A + KC1)x̃v(k), uL(k) = [F F ]

(
x̃(k)

x̃v(k)

)
+ Hr. (3.55)

Hence, for all
(

x̃(k)

x̃v(k)

)
∈ XFδ ⇒

∣∣∣∣∣[Fi Fi ]

(
x̃(k)

x̃v(k)

)∣∣∣∣∣ ≤ (1− δ)ūi, i = 1, · · · , m, (3.56)

and for any r satisfying

|Hi r| ≤ δūi, i = 1, · · · , m, (3.57)

each channel of uL, say uL,i, has the following property

uL,i(k) =

∣∣∣∣∣[Fi Fi ]

(
x̃(k)

x̃v(k)

)
+ Hi r

∣∣∣∣∣ ≤
∣∣∣∣∣[Fi Fi ]

(
x̃(k)

x̃v(k)

)∣∣∣∣∣ + |Hi r| ≤ ūi. (3.58)
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Thus, for all x̃(k) and x̃v(k) satisfying the condition as given in (3.56), the closed-loop

system comprising the given plant and the linear control law of (3.47) can be rewritten

as (
x̃(k + 1)

x̃v(k + 1)

)
=

[
A + BF BF

0 A + KC1

](
x̃(k)

x̃v(k)

)
. (3.59)

Similarly, the closed-loop system with the CNF control law of (3.49) can be expressed as
(

x̃(k + 1)

x̃v(k + 1)

)
=

[
A + BF BF

0 A + KC1

](
x̃(k)

x̃v(k)

)
+

[
B

0

]
w(k), (3.60)

where

w(k) = sat

[
[F F ]

(
x̃(k)

x̃v(k)

)
+ Hr + ρ [B′P B′P ] (A + BF )

(
x̃(k)

x̃v(k)

)]

− [F F ]

(
x̃(k)

x̃v(k)

)
− Hr. (3.61)

Let us consider the following possible situations that could happen to the control

input channels.

Case 1. If an input channel, say channel i, is unsaturated, i.e.,

−ūi ≤ [Fi Fi ]

(
x̃(k)

x̃v(k)

)
+ Hir + ρi [B′

iP B′
iP ] (A + BF )

(
x̃(k)

x̃v(k)

)
≤ ūi, (3.62)

then one has

wi(k) = ρi [ B′
iP B′

iP ] (A + BF )

(
x̃(k)

x̃v(k)

)
. (3.63)

Case 2. If an input channel is exceeding its upper limit, i.e.,

[Fi Fi ]

(
x̃(k)

x̃v(k)

)
+ Hir + ρi [B′

iP B′
iP ] (A + BF )

(
x̃(k)

x̃v(k)

)
≥ ūi, (3.64)

then for all trajectories inside XFδ, one has
∣∣∣∣∣[Fi Fi ]

(
x̃(k)

x̃v(k)

)
+ Hi r

∣∣∣∣∣ ≤
∣∣∣∣∣[Fi Fi ]

(
x̃(k)

x̃v(k)

)∣∣∣∣∣+ |Hi r| ≤ ūi, (3.65)

and thus

0 ≤ wi(k) = ūi−[Fi Fi ]

(
x̃(k)

x̃v(k)

)
−Hir ≤ ρi [B′

iP B′
iP ] (A+BF )

(
x̃(k)

x̃v(k)

)
. (3.66)

Case 3. Similarly, for the case when an input channel is exceeding its lower limits, one

has

ρi [B′
iP B′

iP ] (A + BF )

(
x̃(k)

x̃v(k)

)
≤ wi(k) ≤ 0. (3.67)
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Clearly, for all the above cases, one can express

wi(k) = qiρi [B′
iP B′

iP ] (A + BF )

(
x̃(k)

x̃v(k)

)
(3.68)

for some scalar function qi ∈ [0, 1]. Defining a diagonal matrix q := diag{q1, · · ·qn}, one

has

w(k) = ρ̃ [B′P B′P ] (A + BF )

(
x̃(k)

x̃v(k)

)
(3.69)

where ρ̃ = qρ.

Next, note that (3.59) and (3.60) are identical when ρ = 0. Again, the results of

Theorem 3.2 for both the linear and the nonlinear feedback case can be proved in one

shot. Let us proceed to prove the result by defining a Lyapunov function:

V (k) =

(
x̃(k)

x̃v(k)

)′ [P 0

0 Q

](
x̃(k)

x̃v(k)

)
, (3.70)

and evaluating the increment of V (k) along the trajectories of the closed-loop system in

(3.60), one obtains

4V (k + 1) =

(
x̃(k + 1)

x̃v(k + 1)

)′ [P 0

0 Q

](
x̃(k + 1)

x̃v(k + 1)

)
−

(
x̃(k)

x̃v(k)

)′ [P 0

0 Q

](
x̃(k)

x̃v(k)

)

=

(
x̃(k)

x̃v(k)

)′ [ −WP (A + BF )′PBF

(BF )′P (A + BF ) −WQ + (BF )′PBF

](
x̃(k)

x̃v(k)

)

+ w′(k)

[
(A + BF )′PB

(BF )′PB

]′( x̃(k)

x̃v(k)

)
+

(
x̃(k)

x̃v(k)

)′ [ (A + BF )′PB

(BF )′PB

]
w(k)

+ w′(k)B′PBw(k). (3.71)

Substituting (3.69) into 4V (k + 1), one has

4V (k + 1) =

(
x̃(k)

x̃v(k)

)′ [ −WP (A + BF )′PBF

(BF )′P (A + BF ) −WQ + (BF )′PBF

](
x̃(k)

x̃v(k)

)

+

(
x̃(k)

x̃v(k)

)′ [ (A + BF )′PB

(A + BF )′PB

]
ρ̃[B′P (A + BF ) B′PBF ]

(
x̃(k)

x̃v(k)

)

+

(
x̃(k)

x̃v(k)

)′ [ (A + BF )′PB

(BF )′PB

]
ρ̃[B′P (A + BF ) B′P (A + BF )]

(
x̃(k)

x̃v(k)

)

+

(
x̃(k)

x̃v(k)

)′ [ (A + BF )′PB

(A + BF )′PB

]
ρ̃B′PBρ̃

[
(A + BF )′PB

(A + BF )′PB

]′( x̃(k)

x̃v(k)

)
.(3.72)
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Letting T := B′P (A + BF ), one gets

4V (k + 1) =

(
x̃(k)

x̃v(k)

)′ [−WP T ′F

F ′T −WQ + (BF )′PBF

](
x̃(k)

x̃v(k)

)

+

(
x̃(k)

x̃v(k)

)′ [ 0 T ′ρ̃B′PBF

T ′ρ̃T T ′ρ̃B′PBF

](
x̃(k)

x̃v(k)

)

+

(
x̃(k)

x̃v(k)

)′ [ 0 T ′ρ̃T

F ′B′PBρ̃T F ′B′PBρ̃T

](
x̃(k)

x̃v(k)

)

+

(
x̃(k)

x̃v(k)

)′ [ 0 T ′ρ̃B′PBρ̃T

T ′ρ̃B′PBρ̃T T ′ρ̃B′PBρ̃T

](
x̃(k)

x̃v(k)

)

+ x̃(k)′T ′ρ̃(2I + B′PBρ̃)Tx̃(k)

= −

(
x̃(k)

x̃v(k)

)′ [ WP −Wd

−W ′
d Wm

](
x̃(k)

x̃v(k)

)

+x̃(k)′T ′ρ̃(2I + B′PBρ̃)Tx̃(k), (3.73)

where

Wd = T ′(I + ρ̃B′PB)(F + ρ̃T ) (3.74)

and

Wm = WQ − (F + ρ̃T )′B′PB(F + ρ̃T ). (3.75)

Defining

x̂m(k) :=

(
x̃(k)− W−1

P Wdx̃v(k)

x̃v(k)

)
, (3.76)

one has

4V (k + 1) = −x̂m(k)′
[

WP 0

0 W̃Q

]
x̂m(k) + x̃(k)′T ′ρ̃(2ρ̃−1 + B′PB)ρ̃T x̃(k), (3.77)

where

W̃Q := Wm − W ′
dW

−1
P Wd

= WQ − (F + ρ̃T )′
[
B′PB + (I + ρ̃B′PB)B′P (A + BF )W−1

P

· (A + BF )′PB(I + ρ̃B′PB)
]
(F + ρ̃T ). (3.78)

Noting that (3.50), i.e.,

WQ > F ′[B′PB + B′P (A + BF )W−1
P (A + BF )′PB]F,
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and ρi is locally Lipschitz, it is clear that there exist nonpositive scalars ρ∗i ≤ 0, i =

1, · · · , m, such that for any scalar function satisfying ρ∗i ≤ ρi ≤ ρ̃i ≤ 0, one has

W̃Q > 0 and 2ρ̃−1 + B′PB < 0.

and hence 4V (k + 1) ≤ 0.

Thus, XFδ is an invariant set of the closed-loop system in (3.60), and all trajectories

starting from XFδ will remain inside and asymptotically converge to the origin. This, in

turn, indicates that, for the initial state of the given system x0, the initial state of the

controller xv0, and step command input r that satisfy (3.54), one has
(

x̃0

x̃v0

)
∈ XFδ, (3.79)

where x̃0 = x̃(0) and x̃v0 = x̃v(0), and

lim
k→∞

x̃(k) = 0 and hence lim
k→∞

x(k) = xe, (3.80)

and on the other hand,

lim
k→∞

x̃v(k) = 0 and hence lim
k→∞

xv(k) = lim
k→∞

x(k) = xe, (3.81)

which implies

lim
k→∞

u(k) = F [ lim
k→∞

xv(k)−xe]+Hr+ρB′P (A+BF )[ lim
k→∞

xv(k)−xe] = Hr = Fxe +Gr

(3.82)

and then it follows from (3.46) that the controlled output h(k) converges asymptotically

to the reference, r. This completes the proof of Theorem 3.2.

3.3.2 Reduced Order Measurement Feedback Case

For the given system in (3.1), it is clear that there are p state variables of the system,

which are measurable if C1 is of maximal rank. Thus, in general, it is not necessary to

estimate these measurable state variables in measurement feedback laws. As such, I will

proceed in this subsection to design a dynamic controller that has a dynamical order less

than that of the given plant. For simplicity of presentation, let us assume that C1 is

already in the form

C1 = [ Ip 0 ] . (3.83)
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Then, the system in (3.1) can be rewritten as




(
x1(k + 1)

x2(k + 1)

)
=

[
A11 A12

A21 A22

] (
x1(k)

x2(k)

)
+

[
B1

B2

]
sat(u(k))

y(k) = [ Ip 0 ]

(
x1(k)

x2(k)

)

h(k) = C2

(
x1(k)

x2(k)

)
+

[
D21

D22

]
sat(u(k)), x0 =

(
x10

x20

)

(3.84)

where the original state x is partitioned into two parts, x1 and x2 with y ≡ x1. Thus, one

will only need to estimate x2 in the reduced order measurement feedback design. Next,

let F be chosen such that i) A+BF is asymptotically stable, and ii) D2+(C2+D2F )(zI−

A − BF )−1B has desired properties, and let KR be chosen such that A22 + KRA12 is

asymptotically stable. Here note that it can be shown that (A22, A12) is detectable if

and only if (A, C1) is detectable. Thus, there exists a stabilizing KR. Again, such F and

KR can be designed using an appropriate control technique. One then partitions F in

conformity with x1 and x2:

F = [F1 F2 ] . (3.85)

Let us further partition F2 as follows:

F2 =




F2,1

...

F2,m


 . (3.86)

Also, let G, H and xe be as given in (3.5)–(3.7). The reduced order CNF controller is

given by

xv(k+1) = (A22+KRA12)xv(k)+ (B2+KRB1) sat(u(k))+
[
A21+KRA11−(A22+KRA12)KR

]
y(k)

(3.87)

and

u(k) = F

[(
y(k)

xv(k)−KRy(k)

)
−xe(k)

]
+Hr+ρ(r, y)B′P (A+BF )

[(
y

xv(k)−KRy(k)

)
−xe(k)

]
,

(3.88)

where ρ(r, y) is as given in (3.10).
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Next, given a positive definite matrix WP ∈ Rn×n, let P > 0 be the solution to the

Lyapunov equation

P = (A + BF )′P (A + BF ) + WP. (3.89)

Given a positive definite matrix WR ∈ Rn×n with

WQ > F′
2[B

′PB + B′P (A + BF )W−1
P (A + BF )′PB]F2, (3.90)

let QR > 0 be the solution to the Lyapunov equation

QR = (A22 + KRA12)′QR(A22 + KRA12) + WR. (3.91)

Note that such P and QR exist as A + BF and A22 + KRA12 are asymptotically stable.

For any δ ∈ (0, 1), let cδ be the largest positive scalar such that for all
(

x(k)

xv(k)

)
∈ XRδ :=

{(
x(k)

xv(k)

)
:

(
x(k)

xv(k)

)′[P 0

0 QR

](
x(k)

xv(k)

)
≤ cδ

}
(3.92)

the following property holds:
∣∣∣∣∣[Fi F2,i ]

(
x(k)

xv(k)

)∣∣∣∣∣ ≤ ūi(1− δ), i = 1, · · · , m. (3.93)

One has the following theorem.

Theorem 3.3. Consider the given system in (3.1), which satisfies the standard Assump-

tions 1–3. Then, there exist nonpositive scalars ρ∗i ≤ 0, i = 1, . . .m, such that for any

nonpositive functions ρi(r, y), i = 1, · · · , m, locally Lipschitz in y and ρ∗i ≤ ρi(r, y) ≤ 0,

i = 1, · · · , m, the reduced order CNF law given by (3.87) and (3.88) will drive the system

controlled output h(k) to asymptotically track the reference r from an initial state x0,

provided that x0, xv0 and r satisfy
(

x0 − xe

xv0 − x20 − KRx10

)
∈ XRδ, |Hi r| ≤ δūi, i = 1, · · · , m. (3.94)

Proof. Let x̃(k) = x(k)−xe and x̃v(k) = xv(k)−x2(k)−KRx1(k). Then, the closed-loop

system comprising the given plant in (3.1) and the reduced order CNF control law of

(3.87) and (3.88) can be expressed as
(

x̃(k + 1)

x̃v(k + 1)

)
=

[
A + BF BF2

0 A22 + KRA12

](
x̃(k)

x̃v(k)

)
+

[
B

0

]
w (3.95)
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where

w = sat

{
[F F2 ]

(
x̃(k)

x̃v(k)

)
+Hr+ρ(r, y)B′P (A + BF )

[
x̃(k)+

(
0

x̃v(k)

)]}

− [F F2 ]

(
x̃(k)

x̃v(k)

)
− Hr. (3.96)

The rest of the proof follows along similar lines to the reasoning given in the full order

measurement feedback case.

3.4 Selecting the Nonlinear Gain ρ(r, y)

The key component in designing the CNF controllers is the selection of ρ and W . The

freedom to choose the function ρ(r, y) is used to tune the control laws so as to improve

the performance of the closed-loop system as the controlled output h approaches the

set point. Since the main purpose of adding the nonlinear part to the CNF controllers

is to speed up the settling time, or equivalently to contribute a significant value to the

control input when the tracking error, r − h, is small, it is appropriate for one to select

a nonlinear gain matrix such that the nonlinear part will be in action when the control

signal is far away from its saturation level, and thus it will not cause the control input

to hit its limits. Under such a circumstance, it is straightforward to verify that the

closed-loop system comprising the given plant in (3.1) and the three different types of

control law can be expressed as

x̃(k + 1) = (A + BF )x̃(k) + Bρ(r, y)B′P (A + BF )x̃(k). (3.97)

Note that the additional term ρ(r, y) does not affect the stability of the estimators. It

is now clear that eigenvalues of the closed-loop system in (3.97) can be changed by the

function ρ(r, y). In fact, for such a situation, it follows from Case 1 in the proof of

Theorem 3.1 that the nonlinear gain matrix ρ is not necessary to be in a diagonal form.

It is only required to satisfy the following condition

−2(B′PB)−1 ≤ ρ ≤ 0. (3.98)

Assuming that h(0) 6= r (for the trivial case when h = r, there is no need to add any

nonlinear gain to the control), let us propose the following nonlinear gain
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ρ(r, h) = (B′PB)−
1
2 diag

{
ρ̃1(r, h), · · · , ρ̃m(r, h)

}
(B′PB)−

1
2 , (3.99)

with

ρ̃i(r, y) = ρ̃i(r, h) = −βi
2
π

arctan
(
αi

∣∣∣||h(k) − r| | − ||h(0)− r| |
∣∣∣
)

(3.100)

where 0 ≤ βi ≤ 2, i = 1, . . . , m. Obviously the value of ρi starts from 0 and

gradually decreases to a constant

−2βi(B′PB)−1arctan(αi |h(0) − r|)/π > −βi(B′PB)−1

as h approaches to the target reference r. The parameter αi is used to determine the

speed of change in ρi.

To examine the behavior of the closed-loop system (3.97) more explicitly, let us define

an auxiliary system Gaux(z) as

Gaux(z) := Caux(zI − Aaux)−1Baux := B′P (zI − A − BF )−1B. (3.101)

Obviously, Gaux(z) is stable. Note that

CauxBaux = B′PB > 0, (3.102)

which implies Gaux(z) is a square, invertible and uniform rank system with m infinite

zeros of order 1 and with n − m invariant zeros. I will show that this auxiliary system

is in fact of minimum phase, i.e., all its invariant zeros are stable. Note that for such a

system, it follows from the result reported in Chapter 5 of Chen et al. [20] that there exist

nonsingular transformations Γs ∈ Rn×n , Γi ∈ Rm and Γo ∈ Rp such that the transformed

system has the following special form,

(
Γ−1

s AauxΓs, Γ−1
s BauxΓi, Γ−1

o CauxΓs

)
=

([
Aaa Lad

Eda Add

]
,

[
0

Im

]
, [0 Im]

)
, (3.103)

where the eigenvalues of Aaa are the invariant zeros of the auxiliary system Gaux(z),

Lad, Eda and Add are some constant matrices. Next, I will proceed to show that all

the eigenvalues of Aaa are inside the unit circle and thus Gaux(z) is of minimum phase.

Note that at the steady state when h = r, the nonlinear function matrix ρ of (6.48) with
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an appropriately chosen β can be set to ρ = −(B′PB)−1 and the closed-loop system of

(3.97) can be expressed as

x̃(k + 1) = (A + BF )x̃(k)− B(B′PB)−1B′P (A + BF )x̃(k)

= [I − B(B′PB)−1B′P (A + BF )]x̃(k)

= [I − Baux(CauxBaux)−1Caux]Aauxx̃(k)

=


I − γs

[
0

I

]
Γ−1

i

(
Γo[0 I ]Γ−1

s Γs

[
0

I

]
Γ−1

i

)−1

Γo[0 I ]Γ−1
s




×Γs

[
Aaa Lad

Eda Add

]
Γ−1

s x̃(k)

=

(
Γs

[
Aaa Lad

0 0

]
Γ−1

s

)
x̃(k). (3.104)

Clearly, the closed-loop system has n−m eigenvalues at λ(Aaa) and the rest at 0. Thus,

the stability of the closed-loop system with ρ = −(B′Pb)−1 implies the eigenvalues of

Aaa are all inside the unit circle. This shows that Gaux(z) is indeed of minimum phase.

It should be noted that there is freedom in pre-selecting the locations of these in-

variant zeros by selecting an appropriate W in (3.8). In general, one should select the

invariant zeros of Gaux(z), which are corresponding to the closed-loop poles of (3.97) for

the steady state nonlinear gain matrix, with dominating ones having a large damping

ratio, which in turn generally yield a smaller overshoot. The following procedure might

be used for such a purpose.

1. Given a set of n − m self-conjugated complex scalars, which should include all

the uncontrollable modes, if any, of (A, B), one must determine an appropriate

W > 0 such that the resulting auxiliary system Gaux(z) has its invariant zeros

placed exactly at the locations given in the set.

Firstly, use the singular value decomposition technique to find a unitary matrix

U ∈ Rn×n and a non-singular matrix Ti ∈ Rm×m such that

B̃aux = U ′BauxTi = U ′BTi =

[
0

Im

]
(3.105)
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and partition accordingly

Ãaux = U ′AauxU = U ′(A + BF )U =

[
A11 A12

A21 A22

]
. (3.106)

It is straightforward to verify that the stabilizability of (A, B) implies the stabiliz-

ability of (A11, A12). In fact, their uncontrollable modes, if any, are identical.

Next, for determining an appropriate matrix P = P ′ > 0, let us partition it

accordingly as follows

P̃ = U ′PU =

[
P11 P ′

11

P21 P22

]
. (3.107)

Then, Caux can be expressed as

Caux = B′P = (T−1
i )′[0 Im]U ′U

[
P11 P ′

11

P21 P22

]
U ′ = T−1

i )′[P21 P22]U ′

= [T−1
i )′P22][P−1

22 P21 Im]U ′ := To[P−1
22 P21 Im]U ′. (3.108)

Using the results of Chen et al. [20] (see e.g., Chapters 8 and 9), one can show that

the invariant zeros of the auxiliary system Gaux(z) are given by the eigenvalues of

A11 − A12P
−1
22 P21. Since (A11, A12) is stabilizable and the given set of conjugated

complex scalars include all uncontrollable modes, there exists a constant matrix,

say F∗ such that A11 − A12F∗ has its eigenvalues placed exactly at the locations

given in the set. Obviously, one can select P22 and P21 such that

P−1
22 P21 = F∗. (3.109)

2. Select an appropriate P22 = P ′
22 > 0, P21 = P22 × F∗, and an appropriate P11 =

P ′
11 > P ′

21P
−1
22 P21 to ensure that

P = U

[
P11 P ′

11

P21 P22

]
U ′ > 0. (3.110)

3. Compute

W = P − (A + BF )′P (A + BF ). (3.111)
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If W is not positive definite, one has to go back to Step 2 to choose another solution

of P or go to the first step to re-select another set of desired invariant zeros.

Another method for selecting W is based on a trial and error approach by limiting the

choice of W to a diagonal matrix and adjusting its diagonal weights through simulation.

Generally, such an approach would yield a satisfactory result as well. I will illustrate

such a design approach in the following section.

It is noted that there are different types of nonlinear gains that have been suggested

in the literature (see e.g., [19,53,74]). One can also propose the following nonlinear gains,

ρi(ri, hi) = −βi

∣∣∣||hi(k) − ri| |αi − ||hi(0)− ri| |αi

∣∣∣, i = 1, · · · , m, (3.112)

or

ρi(r, h) = −βi

∣∣∣||h(k)− r| |αi − ||h(0)− r| |αi

∣∣∣, i = 1, · · · , m. (3.113)

If h(0) 6= r, it is also possible to choose

ρi(r, h) =
−κ1i(B′PB)−1

||h(0)− r| |κ2

∣∣∣||h(k)− r| |κ2i − ||h(0)− r| |κ2i

∣∣∣, 0 ≤ κ1i ≤ 1, i = 1, · · · , m.

(3.114)

However, in order to make sure the closed-loop system (3.97) to remain stable, all the

poles should be inside the unit circle during the whole transient as well as steady state

periods.

3.5 A Design Example

To illustrate the concept of the CNF control, let us apply the technique to design a

Magnetic-Tape-Drive servo system. The dynamics of the system are given in Franklin

et al. [24]. The goal of the control system is to enable commanding the tape to specific

positions over the read/write head while maintaining a specified tension in the tape at

all times. The time-scaled dynamics of the drive is given by

ẋ(t) =




0 0 −10 0

0 0 0 10

3.315 −3.315 −0.5882 −0.5882

3.315 −3.315 −0.5882 −0.5882




x(t)
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+




0 0

0 0

8.533 0

0 8.533




sat(u) (3.115)

where x = (x1 x2 ω1 ω2 )′ with x1 and x2 being the positions of the tape at capstans

(in mm), and ω1 and ω2 being angular rates of motors/capstan assemblies (in rad/sec);

and u = ( i1 i2 )′ with i1 and i2 being electric currents supplied to drive motors (in A).

The saturation levels of the actuators are ī1 = ī2 = 1 A. The measurement of the system

is the positions of the tape, i.e.,

y(t) =

(
y1(t)

y2(t)

)
=

(
x1(t)

x2(t)

)
=

[
1 0 0 0

0 1 0 0

]
x(t), (3.116)

and the controlled output of the system is given by

h(t) =

(
h1(t)

h2(t)

)
=

(
x̄(t)

Te(t)

)
=

[
0.5 0.5 0 0

−2.113 2.113 0.375 0.375

]
x(t) (3.117)

where x̄ = (x1 + x2)/2 is the position of the tape over read/write head (in mm), and Te

is the tension in the tape (in N).

The design specifications are as follows: (i) the 1% settling time due to a 1 mm

step change in position of the tape head, x̄, should be less than 2.5 seconds for the

time-scaled system of (3.115), which is equivalent to 250 ms for the actual system; (ii)

overshoot should be less than 20%; (iii) the tape tension, Te, should be controlled to 2 N

with the constraint that 0 < Te < 4 N; and (iv) the input current should not exceed 1 A

at each drive motor.

As suggested in [24], let us follow and select a sampling T = 0.05 sec to carry out

the controller design. The discretized dynamical equation is then given by

x(k + 1) =




0.95992 0.04008 −0.48614 0.01386

0.04008 0.95992 −0.01386 0.48614

0.15656 −0.15656 0.93214 −0.06786

0.15656 −0.15656 −0.06786 0.93214




x(k)
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+




−0.10492 0.00175

−0.00175 0.10492

0.41482 −0.01183

−0.01183 0.41482




sat(u(k)). (3.118)

The measurement output and controlled output are respectively given by

y(k) =

[
1 0 0 0

0 1 0 0

]
x(k), (3.119)

and

h(k) =

(
h1(k)

h2(k)

)
=

[
0.5 0.5 0 0

−2.113 2.113 0.375 0.375

]
x(k). (3.120)

The aim is to design appropriate CNF controllers with full state feedback, full order

measurement feedback and reduced order measurement feedback, which would control

the controlled output of the system to track the command reference as fast as possible

and as smooth as possible. For easy comparison, the linear state feedback gain, F , is

selected precisely the same as that given by [24]. The following are detailed parameters

for the CNF controllers:

1. CNF controller with full state feedback:

u(k) = Fx(k) + Gr + ρ(r, y)Fn[x(k)− xe], (3.121)

where

F =

[
0.210 −0.018 −0.744 −0.074

0.018 −0.210 −0.074 −0.744

]
, G =

[−0.192 0.2378

0.192 0.2378

]
,

Fn =

[−1.387214 −1.045337 2.442275 −1.673712

0.762558 0.998011 −1.582986 1.881035

]
,

xe = (0.526739 1.473261 0 0 )′

and

ρ(r, y) = ρ(r, h) = (B′PB)−
1
2 diag

{
ρ̃1(r, h), ρ̃2(r, h)

}
(B′PB)−

1
2 , (3.122)

with

ρ̃i(r, h) = −βi
2
π

arctan
(
αi

∣∣∣|h(k)− r| − |h(0) − r|
∣∣∣
)
, i = 1, 2,

where α1 = α2 = 8, β1 = 0.4 and β2 = 0.15.
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2. CNF controller with full order measurement feedback:
{

xv(k + 1) = (A + KC1)xv(k)− Ky(k) + B sat(u(k))

u(k) = F (xv(k)− xe) + Hr + ρ(r, y)Fn(xv(k)− xe),
(3.123)

where F , Fn, xe, ρ(r, y) are as given in the state feedback case, and

K =




−1.754890 −0.197135

−0.201561 −1.721682

1.384781 0.517239

−0.528328 −1.322550




, H =

[
0 0.183858

0 0.183858

]
.

3. CNF controller with reduced order measurement feedback:

xv(k + 1) = Acmpxv(k) + Kcmpy + Bcmp sat(u(k)) (3.124)

and

u(k) = F

[(
y(k)

xv(k)−KRy(k)

)
−xe

]
+Hr + ρ(r, y)Fn

[(
y(k)

xv(k)−KRy(k)

)
−xe

]
,

(3.125)

where

Acmp =

[
0.023518 0

0 0.011109

]
, Kcmp =

[
1.907907 −0.000872

−0.000533 −1.955276

]
,

Bcmp =

[
0.218834 0.000492

0.000460 0.216155

]
, KR =

[
1.866598 0.086366

−0.085638 −1.892142

]
,

and F , H , xe, ρ(r, y) and Fn are the same as those given in the previous two cases.

Using Simulink in Matlab, one obtains a set of simulation results in Figures 3.1–3.3,

which are done under the following initial condition,

x0 = (−0.1 0.1 0 0 )′ , (3.126)

together with initial conditions for both full and reduced order controllers being set to

zero. The reference, r, is chosen as

r =

(
r1

r2

)
=

(
1

2

)
. (3.127)

The results clearly show that the control laws with the nonlinear components, i.e., the

CNF controllers, outperform their linear counterparts a great deal. The first channel,
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the step response of the position of the tape head, has almost no overshoot with faster

settling time and the second one, the response of the tape tension, has smaller overshoot

and is kept within the neighborhood of 2 N. Finally, note that for all three cases, the

step responses of the position of the tape head have a 1% settling time of 0.65 seconds

under the CNF control. The settling time under the linear control laws is 1.55 seconds.

The resulting overall improvement of the step responses in the first channel is more than

50%.

Although the tension of the tape is not critical for this magnetic-tape-drive system

so long as it is kept within 0 and 4N, I will present in Figures 3.4–3.6 the results of the

linear and CNF control with α1 = α2 = 6, β1 = β2 = 1, to demonstrate the powerfulness

of the CNF control technique. For this case, both the position and the tension of the

tape under the CNF control have quite impressively fast settling times (0.95 and 0.4

seconds, respectively) and have no overshoot at all.

The results of the linear and CNF control with α1 = α2 = 4, β1 = β2 = 0.8 are also

shown in Figures 3.7–3.9.

Lastly, one sees that control inputs in the previous situations are actually unsaturated,

therefore it is reasonable for one to choose the ρ as in (3.99). Here, however I would like

to choose ρ as a diagonal matrix following the proof of Theorem 3.1, which is

ρ(r, y) = diag
{
ρ1(r1, y), 0

}
,

and where

ρ1(r1, y) = −0.35

∣∣∣∣∣

∣∣∣∣
1
2
[y1(k) + y2(k)]− r1

∣∣∣∣
3

−
∣∣∣∣
1
2
[y1(0) + y2(0)]− r1

∣∣∣∣
3
∣∣∣∣∣ .

The results are shown in Figures 3.10–3.12.

3.6 Conclusion

I have presented a nonlinear tracking control technique, i.e., the CNF control design

for discrete-time multivariable systems. The CNF control law consists of two parts, a

linear component and a nonlinear component. The former is chosen to give fast rising
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Figure 3.1: Input and output responses under state feedback.
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Figure 3.2: Input and output responses under full order measurement feedback.
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Figure 3.3: Input and output responses under reduced order measurement feedback.
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Figure 3.4: Input and output responses under state feedback: α1 = α2 = 6, β1 = β2 = 1
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Figure 3.5: Input and output responses under full order measurement feedback: α1 =

α2 = 6, β1 = β2 = 1
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Figure 3.6: Input and output responses under reduced order measurement feedback:

α1 = α2 = 6, β1 = β2 = 1
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Figure 3.7: Input and output responses under state feedback: α1 = α2 = 4, β1 = β2 = 0.8
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Figure 3.8: Input and output responses under full order measurement feedback: α1 =

α2 = 4, β1 = β2 = 0.8
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Figure 3.9: Input and output responses under reduced order measurement feedback:

α1 = α2 = 4, β1 = β2 = 0.8
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Figure 3.10: Input and output responses under state feedback.
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Figure 3.11: Input and output responses under full order measurement feedback.
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Figure 3.12: Input and output responses under reduced order measurement feedback.
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time while the latter is added to smooth out the transient peaks or overshoots when

the controlled output is approaching the target reference. The technique is applicable

to linear general multivariable system with some standard assumptions, and has been

successfully demonstrated to yield a nice tracking performance in a real application.



Chapter 4

CNF Control for Linearizable

Systems with Input Saturation

In previous chapters, I have addressed the complete theory for the CNF control method-

ology. This completeness is limited to linear systems. Yet one knows there are quite

a lot of nonlinear systems which are similar to linear systems in nature after a diffeo-

morphism and/or state transformations, called nonlinear linearizable systems. It seems

obvious that one may apply CNF scheme to this kind of systems also. Therefore, in

this chapter, as an application of CNF control technique, I will explore the possibility

of its use in nonlinear linearizable systems with actuator saturation. It turns out that a

certain condition relating the actual control input for original systems and the one after

transformation has to be established. So long as this condition is met, the CNF controller

design can be carried out easily. For simplicity, I will consider only the state feedback

case. It can be easily extended to measurement feedback cases. Also, the extension to

multivariable systems is possible although the results may be rather restrictive. The

application of the technique to a pendulum system will be addressed in order to show

the effectiveness of the extension, which shows that the proposed design method indeed

yields a very satisfactory performance.

85
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4.1 Introduction

So far one knows that saturation may cause the performance of linear saturated systems

degrade and sometimes even the stability may be lost. Similarly, for nonlinear systems

with actuator saturation, the closed-loop system performance may deteriorate as well

if not more severely. Unfortunately little has be done on this topic although nonlinear

control theory has been explored for a long time and is a very hot research area today.

Nevertheless, since tracking theory for general linear systems with input saturation has

been established during the past few years, it is possible for one to extend it to feed-

back linearizable nonlinear systems. Typically researchers in nonlinear control consider

stabilization and/or regulation problems, or, based on inverse dynamics of the original

system, they consider tracking certain signals which can be produced by a linear neu-

trally stable reference model while very few consider step signals tracking. The reason

may lie in that by inverse dynamics one need to know some orders of derivatives of the

reference signal which should be bounded yet this is not the case for a step function.

In this chapter, I will present a design procedure of composite nonlinear feedback

(CNF) control for SISO nonlinear feedback linearizable systems with actuator saturation.

I will only consider the state feedback case. After a feedback linearizable transformation,

the original nonlinear system becomes a linear system. As in the earlier works [19,53,74],

the CNF control consists of a linear feedback law and a nonlinear feedback law without

any switching element. The linear feedback part is designed to yield a closed-loop system

with a small damping ratio for a quick response, while at the same time not exceeding

the actuator limits for the desired command input levels. The nonlinear feedback law

is used to increase the damping ratio of the closed-loop system as the system output

approaches the target reference to reduce the overshoot caused by the linear part.

This chapter is organized as follows. In Section ??, the theory of the composite

nonlinear feedback control is developed. The application of the CNF technique to an

air-to-air missile autopilot system will be presented in Section 4.3, which shows that the

proposed design method yields a very satisfactory performance. Finally, I will draw some

concluding remarks in Section 4.4.
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4.2 Problem Formulation and Controller Design

Let us consider the following single variable nonlinear system Σ with an amplitude-

constrained actuator characterized by




ẋ = f(x) + g(x)sat(v), x(0) = x0

h = h(x)
(4.1)

where x ∈ Rn, v ∈ R, y ∈ Rp and h ∈ R are respectively the state, control input, mea-

surement output and controlled output of the given system Σ. The saturation function

is defined by

sat(v) = sign(v) min(|v|, v̄), (4.2)

where v̄ is the maximum amplitude of the control channel.

The aim to design certain controller, with all the state information known, which

renders the whole (closed-loop) system will track a step function with amplitude of r

under the input constraint. Due to the difficulty in solving this problem, instead of

dealing with general case let us consider a more specific case where

f(x) = Ax − g(x)α(x) (4.3)

and also

g(x) = B(x). (4.4)

If one considers further by confining g(x) to

g(x) = Bγ(x), (4.5)

one actually gets into a standard form of nonlinear linearizable system described by




ẋ = A x + Bγ(x)[sat(v)− α(x)], x(0) = x0

y = x

h = C2 x

(4.6)

where x ∈ Rn, v ∈ R, y ∈ Rp and h ∈ R are respectively the state, control input,

measurement output and controlled output of the given system Σ, and the functions

α : Rn → R and γ : Rn → R are defined in a domain D ⊂ Rn of interest, and γ(x) 6= 0
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for every x ∈ D. In addition, A, B, C1 and C2 are appropriate dimensional constant

matrices and the saturation function, again, is defined by

sat(v) = sign(v) min(|v|, v̄), (4.7)

where v̄ is the maximum amplitude of the control channel.

For this simplified system, I will present the so-called CNF controller based on the

results regarding linear systems with input saturation.

It is easily seen that one can linearize this system via the state feedback

sat(v) = α(x) + β(x)u (4.8)

where β(x) = γ−1(x), to obtain the linear state equation

ẋ = Ax + Bu (4.9)

Further, assuming that for x ∈ Da where Da ⊂ D denotes the largest domain of

attraction of the system containing the origin, one has

|α(x)| ≤ α (4.10)

where α ≥ 0, and

|γ(x)| ≥ γ (4.11)

where again γ ≥ 0.

If u is subjected to

|u| ≤ γ(v̄ − α), (4.12)

where v̄ − α ≥ 0, then one has

|α(x) + β(x)u| ≤ v̄. (4.13)

Under the above condition, one has

v = sat(v) = α(x) + β(x)u = α(x) + β(x) sat(u), (4.14)
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with

sat(u) = sign(u) min(|u|, γ(v̄ − α)), (4.15)

and the following linear saturated system

ẋ = Ax + Bsat(u) (4.16)

is equivalent to the original plant (4.6). Furthermore, (4.8) becomes

v = α(x) + β(x)sat(u). (4.17)

For tracking purpose, the following assumptions on the given system are required: i)

(A, B) is stabilizable; and ii) (A, B, C2) is right invertible and has no invariant zeros at

s = 0. The objective here is to design control laws that are capable of achieving fast

tracking of target references under input saturation. As such, it is well understood in

the literature that these assumptions are standard and necessary.

Let us proceed to develop a composite nonlinear feedback control technique for the

case when all the state variables of the plant Σ are measurable, i.e., y = x. The design

will be done in three steps, which is a natural extension of the results of Chen et al. [19].

One has the following step-by-step design procedure.

Step s.1: Design a linear feedback law,

uL = Fx + Gr, (4.18)

where r ∈ R is the step reference. The state feedback gain matrix F ∈ R1×n is

chosen such that the closed-loop system matrix A + BF is asymptotically stable

and the resulting closed-loop system transfer matrix, i.e., C2(sI−A−BF )−1B, has

certain desired properties, e.g., having a small dominating damping ratio in each

channel. Note that such an F can be worked out using some well-studied methods

such as the LQR, H∞ and H2 optimization approaches (see, e.g., Anderson and

Moore [1], Chen [17] and Saberi et al. [62]). Furthermore, G is a scalar constant

and is given by

G := G′
0

(
G0G

′
0

)−1
, (4.19)
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with G0 := −C2(A + BF )−1B. Here note that both G0 and G are well defined

because A + BF is stable, and (A, B, C2) is right invertible and has no invariant

zeros at s = 0, which implies (A+BF, B, C) is right invertible and has no invariant

zeros at s = 0 (see e.g., Lemma 2.5.1 of Chen [17]).

Step s.2: Next, compute

H :=
[
I − F (A + BF )−1B

]
G (4.20)

and

xe := Ge r := −(A + BF )−1BG r. (4.21)

Note that the definitions of H , Ge and xe would become transparent later in the

derivation. Given a positive definite matrix W ∈ Rn×n, solve the following Lya-

punov equation:

(A + BF )′P + P (A + BF ) = −W, (4.22)

for P > 0. Such a P exists since A + BF is asymptotically stable. Then, the

nonlinear feedback control law uN is given by

uN = ρ(r, y)B′P (x − xe), (4.23)

where ρ(r, y) is some nonpositive function, locally Lipschitz in y, which is used to

change the closed-loop system damping ratio as the output approaches the target.

The choice of this nonlinear function will be discussed at the end of this section.

Step s.3: The linear and nonlinear feedback laws derived in the previous steps are now

combined to form a CNF controller:

u = uL + uN = Fx + Gr + ρ(r, y)B′P (x − xe). (4.24)

Finally, one obtains

v = α(x) + β(x) sat(u) = α(x) + β(x) sat[Fx + Gr + ρ(r, y)B′P (x − xe)]. (4.25)

This completes the design of the CNF controller for the state feedback case.
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The following theorem shows that the closed-loop system comprising the given plant

in (4.6) and the CNF control law of (4.25) is asymptotically stable. It also determines the

magnitudes of the step functions in r that can be tracked by such a control law without

exceeding the control limit.

Theorem 4.1. Consider the given system in (4.6) with y = x, which satisfies the as-

sumptions i) and ii), and also satisfies (4.10) and (4.11), and the composite nonlinear

feedback control law of (4.25). For any δ ∈ (0, 1), let c
δ

> 0 be the largest positive scalar

such that for all x ∈ Xδ, where

Xδ :=
{
x : x′Px ≤ c

δ

}
⊂ Da, (4.26)

the following property holds,

| F x |≤ (1 − δ)ū, (4.27)

where

ū = γ(v̄ − α) ≥ 0. (4.28)

Then, for any nonpositive function ρ(r, y), locally Lipschitz in y, the composite nonlinear

feedback law in (4.25) is capable of driving the system controlled output h(t) to track

asymptotically the step command input of amplitude r, provided that the initial state

x0 and r satisfy:

x̃0 := (x0 − xe) ∈ Xδ, |H r| ≤ δū. (4.29)

Proof. It is straightforward to show that the system represented by (4.6) is equivalent

to that by (4.16) and the third (output) equation of (4.6). It remains to show that the

latter meets the tracking goal.

Let us first define a new state variable x̃ = x − xe. It is simple to verify that the

linear feedback control law of (4.18) can be rewritten as

uL(t) = Fx̃(t) + [I − F (A + BF )−1B]Gr (4.30)

= Fx̃(t) + Hr, (4.31)
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and hence for all x̃ ∈ Xδ and, provided that |H r| ≤ δū, the closed-loop system is linear

and is given by

˙̃x = (A + BF )x̃ + Axe + BHr. (4.32)

Noting that

Axe + BHr =
{
B[I − F (A + BF )−1B]G − A(A + BF )−1BG

}
r

=
{
[I − BF (A + BF )−1]BG − A(A + BF )−1BG

}
r

=
{
I − BF (A + BF )−1 − A(A + BF )−1

}
BGr

= 0, (4.33)

the closed-loop system in (4.32) can then be simplified as

˙̃x = (A + BF )x̃. (4.34)

Similarly, the closed-loop system comprising the given plant in (4.6) and the CNF control

law of (4.24) can be expressed as

˙̃x = (A + BF )x̃ + Bw, (4.35)

where

w = sat(Fx̃ + Hr + uN) − Fx̃ − Hr. (4.36)

Clearly, for the given x0 satisfying (4.29), one has x̃0 = (x0−xe) ∈ Xδ. Note that (4.35)

is reduced to (4.34) if ρ(r, y) = 0.

Next, define a Lyapunov function V = x̃′Px̃ and evaluate the derivative of V along

the trajectories of the closed-loop system in (4.35), i.e.,

V̇ = ˙̃x
′
Px̃ + x̃′P ˙̃x

= x̃′(A + BF )′Px̃ + x̃′P (A + BF )x̃ + 2x̃′PBw

= −x̃′Wx̃ + 2x̃′PBw. (4.37)

Note that for all

x̃ ∈ Xδ = {x̃ : x̃′Px̃ ≤ c
δ
} ⇒ |F x̃| ≤ (1 − δ)ū. (4.38)
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In the remainder of this proof, I will adopt similar lines of reasoning as those of Turner

et al. [74] by considering the following different scenarios. For simplicity, let us drop the

dependent variables of the nonlinear function ρ in the rest of this proof.

Case 1. The input is unsaturated. It is obvious that one has

V̇ = −x̃′Wx̃ + 2x̃′PBρB′Px̃ ≤ −x̃′Wx̃. (4.39)

Case 2. The input is exceeding its upper limit. In this case, one has

Fx̃ + Hr + ρB′Px̃ ≥ ū. (4.40)

For all x̃ ∈ Xδ, which implies (4.38) holds, and r satisfying (4.29), one has

Fx̃ + Hr ≤ ū, (4.41)

and thus

w = sat(Fx̃ + Hr + ρB′Px̃) − Fx̃ − Hr = ū − Fx̃ − Hr ≥ 0 (4.42)

and

ρB′Px̃ ≥ ū − (Fx̃ + Hr) ≥ 0 ⇒ B′Px̃ = x̃′PB ≤ 0. (4.43)

Hence,

V̇ = −x̃′Wx̃ + 2x̃′PBw̄ ≤ −x̃′Wx̃. (4.44)

Case 3. The input is exceeding its lower limit. For this case, one has

Fx̃ + Hr + ρB′Px̃ ≤ −ū. (4.45)

For all x̃ ∈ Xδ, which implies (4.38) holds, and r satisfying (4.29), one has

Fx̃ + Hr ≥ −ū, (4.46)

and thus

w = sat(Fx̃ + Hr + ρB′Px̃) − Fx̃ − Hr = −u − Fx̃ − Hr ≤ 0 (4.47)

and

ρB′Px̃ ≤ −ū − (Fx̃ + Hr) ≤ 0 ⇒ B′Px̃ = x̃′PB ≥ 0. (4.48)
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Hence,

V̇ = −x̃′Wx̃ + 2x̃′PBw ≤ −x̃′Wx̃. (4.49)

In conclusion, I have shown that

V̇ ≤ −x̃′Wx̃, x̃ ∈ Xδ, (4.50)

which implies that Xδ is an invariant set of the closed-loop system in (4.35). Noting

that W > 0, all trajectories of (4.35) starting from inside Xδ will converge to the origin.

This, in turn, indicates that, for all initial state x0 and the step command input r that

satisfy (4.29), one has

lim
t→∞

x(t) = xe, (4.51)

which implies

lim
t→∞

u(t) = F lim
t→∞

x(t) + Gr + lim
t→∞

ρB′P [x(t) − xe] = Fxe + Gr. (4.52)

Hence,

lim
t→∞

h(t) = C2 lim
t→∞

x(t)

= C2xe

= −C2(A + BF )−1BGr

= [C2(A + BF )−1B]Gr

= G0G
′
0(G0G

′
0)

−1r = r. (4.53)

This completes the proof of Theorem 4.1.

Remark 4.1. When h(x) is not in the form just considered, things become more difficult.

However, if one can solve the equation

h(x) = r (4.54)

explicitly so that one knows the target state xe, one can still solve this problem. For

simplicity, let us assume that this xe is unique otherwise one has to confine the considering

state region to certain neighborhood of each xe in question. As a matter of fact, one

can transform this problem into a standard one solved in Theorem (4.1). It is possible
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that one can simply redefine a tracking target as hn(x) = C2nx and force it to track the

target rn = C2nxe. Thus eventually the state x will evolve to approach and finally stay

at xe so that one recovers h(xe) = r.

4.3 An Example

Consider the pendulum equation (taken from [47] p. 542):

ẋ1 = x2 (4.55)

ẋ2 = −asinx1 − bx2 + cv (4.56)

where x1 = θ, x2 = θ̇ and u = T is a torque input. The goal is to stabilize the pendulum

at the angle θ = δr. A linearizing-stabilizing feedback control is given by

v =
(a

c

)
sinx1 +

(
1
c

)
u, (4.57)

which transforms the original nonlinear system into a linear one

ẋ1 = x2 (4.58)

ẋ2 = −bx2 + u (4.59)

or

ẋ = Ax + Bu (4.60)

h = C2x (4.61)

with

A =




0 1

0 −b


 , B =




0

1


 , C2 = [1 0] (4.62)

By using pole-placement approach one designs the controller

u = Fx + Gθr = (f1x1 + f2x2) + Gθr (4.63)

where f1 and f2 are chosen such that

A + BF =




0 1

f1 f2 − b


 (4.64)



Chapter 4. CNF Control for Linearizable Systems with Input Saturation 96

is Hurwitz, which guarantees the system to be stable.

To demonstrate the result, let us choose a command reference:

θr = 4(≈ 5
4
π). (4.65)

and choose a = 10, b = 1 and c = 10. The saturation level is set to v̄ = 1.25, thus one

may choose ū = 2.

The aim is to design appropriate CNF controller with full state feedback, which would

control the controlled output of the system to track the command reference as fast as

possible and as smooth as possible. Following the procedures given in the previous section

and with appropriate selections of design parameters, I have obtained the following CNF

control law. Note that the linear part of the control law is carried out using the standard

pole-placement design.

CNF controller design:

v =
(a

c

)
sinx1 +

(
1
c

)
u = sinx1 +

(
1
10

)
u, (4.66)

with

u = Fx + Gθr + ρ(θr, y)Fn(x − xe), (4.67)

where

F = [−15 −2.5 ] ,

G = 15,

Fn = [−4530 −760 ] ,

xe = [ 4 0 ]′

and

ρ(θr, y) = −
∣∣∣e−0.0025|h(t)−θr | − e−0.0025|h(0)−θr |

∣∣∣ .

Using Simulink in Matlab, I obtain the simulation result in Figure (4.1), which is

done under the following initial condition

x0 = [0 0 ]′ . (4.68)
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Figure 4.1: Input and output signals under state feedback: h(x) = x1.

The result clearly shows that the control laws with the nonlinear components, i.e., the

CNF controller, outperform its conventional counterpart a great deal.

Now let us consider tracking a nonlinear control output h(x) = x3
1. Let r = 8 so that

xe1 = 2 and one can still use the above system but let it track a reference θr = 2 instead.

Nothing else changes but of course ρ should read as

ρ(θr, y) = −
∣∣∣e−0.0005|h(t)−r| − e−0.0005|h(0)−r|

∣∣∣

and xe as

xe = [2 0 ]′ .

as the reference signal for h is no longer θr . Below is the resulting figure, Figure (4.2).

If one let r = 4 so that xe1 = 41/3 and use the same system as before but let it track

another reference θr = 41/3. Again, nothing else changes but ρ should read as

ρ(θr, y) = −
∣∣∣e−0.0025|h(t)−r| − e−0.0025|h(0)−r|

∣∣∣
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Figure 4.2: Input and output signals under state feedback: h(x) = x3
1 → 8.

and xe as

xe = [1.587401 0 ]′ .

See Figure (4.3) for the result.

4.4 Conclusion

I have extended the so-called CNF control techniques for linear input-saturated systems

to SISO nonlinear feedback linearizable systems with actuator saturation. The closed-

loop is able to track step function signal which is rarely considered in the literature for

nonlinear systems. It has been shown that the performance is better compared to normal

linear approaches. Further extension to MIMO case and more general nonlinear systems

is possible and is still under investigation. Besides, output feedback can also be obtained

for feedback linearizable nonlinear systems either for SISO or MIMO linear systems by

imposing some observability conditions on the transformed linear systems. Obviously the

theory for discrete-time nonlinear feedback linearizable systems can also be established
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Figure 4.3: Input and output signals under state feedback: h(x) = x3
1 → 4.

similarly.



Chapter 5

CNF Control for

Continuous-Time Partial Linear

Composite Systems with Input

Saturation

This chapter studies the technique of the composite nonlinear feedback (CNF) control

for a class of cascade nonlinear systems with input saturation. In particular, the class

of systems under consideration consists of two parts, a linear portion and a nonlinear

portion with the output of the linear part connecting to the input of the nonlinear part

and with the input of the given system being saturated. The objective of this chapter

is to design a composite nonlinear feedback control law based on the linear portion such

that the output of the system tracks a step input rapidly with small overshoot and at the

same time maintains the stability of the whole cascade system. The specific attention

should be paid as the peaking phenomenon in the linear part may cause nonlinear zero

dynamics go to infinity within finite time period. Typically when one drives the linear

dynamics too fast it may destabilize the whole system. However, as indicated in [70], if

the output of the linear part can be made small enough, the nonlinear part will stay in

the domain of attraction.

100
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The result has been successfully demonstrated by numerical and application examples

including a flight control system for a fighter aircraft.

5.1 Introduction

When people talk about tracking control for nonlinear systems, it is natural that one

thinks about the semi-global and global stabilization problems, and output regulation

problem. Due to the vast diversity of nonlinear phenomenon, it is not possible for a

specific method to be applied to general nonlinear systems. Rather, many different

methods and schemes have been proposed to deal with different kinds of systems for

different purposes including tracking certain desired signals. In extending the CNF

methodology to more general systems, even nonlinear systems, without exception I have

to limit my scope to a very specific type of systems for a very specific control purpose.

Note that for nonlinear systems with input saturation, to my good knowledge so far,

very little work has been done if not any. Therefore, it is simpler and natural as well for

one to start with a class of partially linear composite systems with input saturation. In

line with CNF control for linear systems, let us consider only constant signal tracking

and the focus is, again, improvement of transient performance.

The class of systems under consideration consists of two parts, a linear portion and

a nonlinear portion with the output of the linear part connecting to the input of the

nonlinear part and with the input of the given system being saturated. Many nonlinear

systems can be transformed into partially linear composite systems via a state-space

diffeomorphism and/or a preliminary feedback transformations (see, for example, [42]).

In recent two decades, the semi-global and global stabilization problems for partially

linear composite systems have been extensively studied by many researchers such as [12],

[44], [45], [54], [55], [70] and [72], to name just a few. In particular, it was shown in [70]

that a nonlinear system which is zero input globally asymptotically stable (GAS) will

preserve its GAS property if its input decreases to zero with a very fast exponential rate.

It is not difficult to make the output of the linear part, which is the input of the nonlinear

part, to converge to zero with some exponential rate. However, the peaking phenomenon
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in linear systems may destroy the stability of the nonlinear systems before the output

rapidly decays to zero.

When constructing CNF controller for the linear part, particular attention is paid to

improve the transient performance of the closed-loop system. The research on nonlinear

output regulation problems has made great progress since the 1990s. Related results

have been extensively reported in the literature (see, for example, [14], [38], [40] and [41]).

However, the transient performance is not considered in most of these works. It is a tough

task to study the transient performance of the nonlinear output regulation problem,

especially when the reference inputs are time-varying signals. I will consider in this

chapter a tracking control problem with a constant (or step) reference. To improve the

tracking performance, Lin et al. proposed the CNF control technique in their pioneer

work [53] for a class of second order linear systems. Turner et al. [74] later extended the

results of [53] to higher order and multiple input systems under a restrictive assumption

on the system. However, both [53] and [74] considered only the state feedback case.

Recently, Chen et al. [19] have developed a CNF control to a more general class of systems

with measurement feedback, and successfully applied the technique to solve a hard disk

drive servo problem. The CNF control consists of a linear feedback law and a nonlinear

feedback law without any switching element. The linear feedback part is designed to

yield a closed-loop system with a small damping ratio for a quick response, while at

the same time not exceeding the actuator limits for desired command input levels. The

nonlinear feedback law is used to increase the damping ratio of the closed-loop system as

the system output approaches the target reference to reduce the overshoot caused by the

linear part. This chapter aims to design a CNF control law for partially linear composite

systems with input saturation based on the linear part of the composite system such

that the closed-loop system has desired performances, e.g., quick response and small

overshoot, and the tracking error decays to zero with sufficiently large exponential rate

to guarantee the stability of the whole system. The result will be illustrated by two

examples, one is an output regulation problem and the other is a step tracking problem

for a fighter aircraft.
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The remaining part of this chapter is organized as follows. Section 5.2 describes

the control problem and presents some relevant preliminary results. The CNF control

law design for the partially linear composite systems is given in Section 5.3. Section 5.4

illustrates the proposed design technique with numerical and application examples where

the performances of the closed-loop system are compared between the CNF control and

the corresponding linear control. Finally, Section 5.5 draws some concluding remarks.

5.2 Problem Description and Preliminaries

Consider a partially linear composite system with input saturation characterized by

ξ̇ = f(ξ, y), ξ(0) = ξ0 (5.1)

ẋ = Ax + B sat(u), x(0) = x0 (5.2)

y = Cx (5.3)

where (ξ, x) ∈ Rm × Rn is the state, u ∈ R the control input, and y ∈ R the output of

the system, f is a smooth (i.e., C∞) function, A, B and C are appropriate dimensional

constant matrices, and sat : R → R represents the actuator saturation defined as

sat(u) = sgn(u) min{umax, |u|} (5.4)

with umax being the saturation level of the input. I will aim to design a control law

for (5.1)–(5.3) such that the resulting closed-loop system is stable and the output of the

closed-loop system will track a step reference input r rapidly without experiencing large

overshoot. The CNF control law consists of a linear feedback control and a nonlinear

feedback control. The linear feedback law is designed to stabilize the system with a

small closed-loop damping ratio for quick tracking. The nonlinear feedback law is to

increase the closed-loop damping ratio as the system output approaches the reference

input to reduce the overshoot while it keeps the closed-loop stability. This problem is an

extension of the recent work of [19] and [53] on composite nonlinear feedback control for

linear systems by connecting a nonlinear zero dynamics (5.1) to the linear system (5.2).

To design a CNF control law, assume that
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A1: (A, B) is controllable;

A2: (A, B, C) is invertible and has no invariant zeros at s = 0; and

A3: There exists a C1 positive definite function Vξ(ξ) and class K∞ functions α1 and

α2 such that

α1(‖ξ‖) ≤ Vξ(ξ) ≤ α2(‖ξ‖), (5.5)

∂Vξ(ξ)
∂ξ

f(ξ, r) < 0, (5.6)

for all ξ ∈ Rm.

Remark 5.1. Assumption A3 is to ensure that the nonlinear system (5.1) is stable when

the system output y tracks exactly the step command input r.

Lemma 5.1. Consider the nonlinear control system of the form

ξ̇ = f(ξ, r + η(t)), (5.7)

which satisfies Assumption A3. Given any γ > 0 and β > 0, there exists a scalar a > 0

such that for any

|η(t)| ≤ βe−at, t ≥ 0, (5.8)

the solution ξ(t) of (5.7) exists and is bounded for all t ≥ 0 provided that ξ(0) ∈ Ωγ :=

{ξ : ‖ξ‖ ≤ γ}.

Proof. The proof of this Lemma follows the lines of reasoning as in Theorem 4.1 of [70].

Noting that Vξ(ξ) is a C1 positive definite function, let

c = max{Vξ(ξ) : ξ ∈ Ωγ}

for any given γ > 0. Since Vξ(ξ) is C1 and f(ξ, y) smooth, there exists a constant h > 0

such that, for all ξ ∈ Ωγ and |v| ≤ β,
∣∣∣∣
∂Vξ(ξ)

∂ξ
f(ξ, r + v)

∣∣∣∣ ≤ h.

Let τ = 1
h . Then for every solution ξ(t) of (5.7) under any admissible input such that

|η(t)| ≤ β and ξ(0) ∈ Ωγ ,

Vξ(ξ(t)) ≤ c + 1, 0 ≤ t ≤ τ.
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By the continuity of ∂Vξ(ξ)
∂ξ f(ξ, r) and (5.6), there exists an α > 0 such that

∂Vξ(ξ)
∂ξ

f(ξ, r + v) < 0 (5.9)

when c ≤ Vξ(ξ) ≤ c + 1 and |v| ≤ α.

Next, choose a such that

βe−aτ ≤ α. (5.10)

If η is an input satisfying (5.8), and ξ(t) is the solution of (5.7) with ξ(0) ∈ Ωγ , one can

claim that

Vξ(ξ(t)) ≤ c + 1, t ≥ 0. (5.11)

In fact, I have proved that Vξ(ξ(t)) ≤ c + 1 for 0 ≤ t ≤ τ . For t > τ , (5.8) and (5.10)

implies |η(t)| < α, and then by (5.9), one has

∂Vξ(ξ)
∂ξ

f(ξ, r + η) < 0.

Thus,

Vξ(ξ(t)) ≤ Vξ(ξ(τ)) ≤ c + 1, t > τ.

Moreover, ξ(t) is bounded by

‖ξ(t)‖ ≤ α−1
1 (Vξ(ξ)) ≤ α−1

1 (c + 1).

This completes the proof of Lemma 5.1.

Remark 5.2. a is said to be good for (γ, β) if a satisfies Lemma 5.1, which was introduced

in [70].

Remark 5.3. Assumption A3 can be relaxed to be satisfied locally, e.g., in Ωγ̄ . In this

case, it is clear that, from the proof of Lemma 5.1, by selecting 0 < γ < γ̄, and β > 0

such that

{ξ : Vξ(ξ) ≤ c + 1} ⊂ Ωγ̄ ,

then there exists an a > 0 which is good for (γ, β).
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5.3 Design of the Composite Nonlinear Feedback Control

Law

In this section, I will proceed to design a CNF control law for the system (5.1)–(5.3).

Let us assume that the given system (5.1)–(5.3) satisfies Assumptions A1 to A3, and all

the states of the linear system (5.2) are available for feedback. The CNF control law can

be constructed by the following step-by-step procedure.

Step S.1. Select appropriate scalars γ > 0, β > 0 and a > 0 such that a is good for

(γ, β). γ and β can be selected arbitrarily if Assumption A3 is satisfied globally.

Moreover, by Remark 5.3, γ, β and a can also be appropriately selected even

Assumption A3 is only satisfied locally.

Step S.2. Design a linear feedback law

uL = Fx + Gr (5.12)

where r is a step command input and F is chosen such that

1. A + BF is Hurwitz and the output of the following system,

ẋ = (A + BF )x, y = Cx, (5.13)

has ‖y(t)‖ ≤ ke−at for some k > 0; and

2. The closed-loop system C(sI − A − BF )−1B has certain desired properties,

e.g., having a small damping ratio.

The existence of such an F is guaranteed by Assumption A1, i.e., (A, B) is con-

trollable. In fact, it can be designed using methods such as the H2 and H∞ opti-

mization approaches, as well as the robust and perfect tracking technique. G is a

scalar given by

G = −[C(A + BF )−1B]−1. (5.14)

Note that G is well defined since A + BF is Hurwitz and the triple (A, B, C) is

invertible and has no invariant zeros at s = 0. Also, let

H := [1− F (A + BF )−1B]G (5.15)
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and

xe := Ger := −(A + BF )−1BGr. (5.16)

Step S.3. Given a positive-define matrix W ∈ Rn×n, solve the Lyapunov equation

(A + BF )′P + P (A + BF ) = −W (5.17)

for P > 0. Note that such a P exists since A+BF is asymptotically stable. Then,

the nonlinear feedback control law uN(t) is given by

uN = ρ(r, y)B′P (x − xe) (5.18)

where ρ(r, y) is any non-positive function locally Lipschitz in y. This nonlinear

control law is used to change the system closed-loop damping ratio as the output

approaches the step command input.

Step S.4. The CNF control law is given by combining the linear and nonlinear feedback

law derived in the previous steps,

u = uL + uN = Fx + Gr + ρ(r, y)B′P (x − xe). (5.19)

Theorem 5.1. Consider the given system (5.1)–(5.3) satisfies Assumptions A1 to A3.

Let scalars γ > 0, β > 0 and a > 0 be selected such that a is good for (γ, β), and let

N :=

{
x ∈ Rn : ‖x‖ ≤ β

||C||

√
λmin(P )
λmax(P )

}
. (5.20)

For any δ ∈ (0, 1), let cδ > 0 be the largest positive scalar satisfying the following condi-

tion:

|Fx| ≤ umax(1− δ) (5.21)

for all x ∈ Xδ, where

Xδ :=
{
x : x′Px ≤ cδ, x ∈ N

}
.

Then for any non-positive function ρ(r, y), locally Lipschitz in y, the state trajectory of

the closed-loop system comprising the given system (5.1)–(5.3) and the CNF control law
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(5.19) is bounded for all t ≥ 0, provided that the initial states ξ0 and x0, and amplitude

of step input r satisfy

ξ0 ∈ Ωγ , x̃0 := (x0 − xe) ∈ Xδ, |Hr| ≤ umax. (5.22)

Moreover, the system output y tracks asymptotically the step command input of amplitude

r.

Proof. The closed-loop system comprising the given plant (5.1)–(5.3) and the CNF

control law (5.19) is given by

ξ̇ = f(ξ, y) (5.23)

ẋ = Ax + B sat(Fx + Gr + ρ(r, y)B′P (x − xe)) (5.24)

y = Cx (5.25)

Let x̃ = x − xe. The closed-loop system (5.23)–(5.25) can be expressed as

ξ̇ = f(ξ, r + Cx̃) (5.26)

˙̃x = (A + BF )x̃ + Bw (5.27)

where

w = sat(Fx̃ + Hr + ρ(r, y)B′Px̃) − Fx̃ − Hr. (5.28)

Define a Lyapunov function Vx̃(x̃) = x̃′Px̃, then

λmin(P )‖x̃‖2 ≤ Vx̃(x̃) ≤ λmax(P )‖x̃‖ (5.29)

where λmin(P ) and λmax(P ) are the minimal and maximal eigenvalues of P , respectively.

Then,

V̇x̃(x̃) =
∂Vx̃(x̃)

∂x̃
((A + BF )x̃ + Bw)

= −x̃′Wx̃ +
∂Vx̃(x̃)

∂x̃
Bw.

It have been shown in [19] that,

∂Vx̃(x̃)
∂x̃

Bw = 2x̃′PBw ≤ 0
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for all x̃ ∈ Xδ and |Hr| ≤ δumax. Thus

V̇x̃(x̃) ≤ −x̃′Wx̃, x̃ ∈ Xδ (5.30)

i.e., Xδ is an invariant set of the system (5.27). Thus the solution of (5.27) exists and is

bounded for all t ≥ 0 and x̃0 ∈ Xδ. Noting that x = xe + x̃, x exists and is bounded for

all t ≥ 0 and x0 satisfies (5.22).

To show the existence and boundedness of the solution ξ of (5.26), it is sufficient to

show that ‖ỹ‖ := ‖Cx̃‖ ≤ βe−at. Noting that (5.30) gives

V̇x̃(x̃) ≤ −x̃′Wx̃ ≤ −λmin(W )‖x̃‖2 (5.31)

for all x̃ ∈ Xδ. According to the proof of Theorem 4.10 of [47], (5.29) and (5.31) yields

that

‖x̃(t)‖ ≤
(

λmax(P )
λmin(P )

)1/2

‖x̃(0)‖e−
λmin(W )

2λmax(P )
t

≤
(

λmax(P )
λmin(P )

)1/2

‖x̃(0)‖e−at

since a is selected such that 0 < a ≤ λmin(W )/(2λmax(P )). Then

‖ỹ(t)‖ = ‖Cx̃(t)‖ ≤ ‖C‖‖x̃(t)‖

≤ ‖C‖
(

λmax(P )
λmin(P )

)1/2

‖x̃(0)‖e−at

≤ βe−at

for all x̃(0) ∈ Xδ. Thus, by Remark 5.2, the solution of (5.26) exists and is bounded for

all t ≥ 0.

Moreover, noting that W > 0, all trajectories of (5.27) starting from Xδ will converge

to the origin. Thus,

lim
t→∞

x(t) = xe (5.32)

for all initial state x0 and the step command input of amplitude r that satisfy (5.22).

Therefore,

lim
t→∞

y(t) = Cxe = −C(A + BF )−1BGr = r. (5.33)

This completes the proof of Theorem 5.1.
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Remark 5.4. The CNF control law (5.19) is reduced to the linear feedback control law

(5.12) when the function ρ(r, y) = 0. Thus, Theorem 5.1 shows that the additional

nonlinear feedback control law (5.18) does not affect the ability of the closed-loop system

to track the command input. Any command input that can be asymptotically tracked

by the linear control law (5.12) can also be asymptotically tracked by the CNF control

law (5.19). However, this additional term uN in the CNF control law can be used to

improve the performance of the overall closed-loop system. This is the key property of

the control technique studied in this manuscript.

Remark 5.5. The main purpose of adding the nonlinear part to the CNF control law is to

speed up the settling time, or equivalently to contribute a significant value to the control

input when the tracking error, r − y, is small. The nonlinear part, in general, will be in

action when the control signal is far away from its saturation level and, thus, it will not

cause the control input to hit its limits. Under such a circumstance, it is straightforward

to verify that the closed-loop system comprising (5.2) and (5.19) can be expressed as

˙̃x = (A + BF )x̃ + ρ(r, y)BB′Px̃. (5.34)

It is clear that eigenvalues of the closed-loop system (5.34) can be changed by the function

ρ(r, y). In fact, define the auxiliary system Gaux(s) as

Gaux(s) := Caux(sI − Aaux)−1Baux := B′P (sI − A − BF )−1B. (5.35)

Then, the system (5.34) can be expressed as Figure 5.1. Using the well-known classical

root-locus theory. The poles of the closed-loop system (5.34) approach the location of

the invariant zeros of Gaux(s) as |ρ| becomes larger and larger.

f - --
6

-0 output
Gaux(s)−ρ

−

Figure 5.1: Interpretation of the nonlinear function ρ(r, y).
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Remark 5.6. It is shown in [19] that the auxiliary system Gaux is stable and invertible

with a relative degree equal to 1, and is of minimum phase with n − 1 stable invariant

zeros. It should be noted that there is freedom in pre-selecting the locations of these

invariant zeros by selecting an appropriate W in (5.17). In general, one should select

the invariant zeros of Gaux, which are corresponding to the closed-loop poles of (5.34)

for large |ρ|, such that the dominated ones have a large damping ratio, which in turn

will yield a smaller overshoot. Interested readers are referred to [19] for the detailed

procedure for the selecting of such a W . Another important step in designing the CNF

control law is the selection of the non-positive nonlinear function ρ(r, y). It is common

that one chooses ρ(r, y) as a function of the tracking error r− y, which in most practical

situations is known and available for feedback, such that ρ(r, y) has the following two

properties, 1) when the output y is far away from the final set point, |ρ(r, y)| is small

and thus the effect of the nonlinear part on the overall system is very limited; and 2)

when the output approaches the set point, |ρ(r, y)| becomes larger and larger, and the

nonlinear control law will become effective. Of course, the choice of ρ(r, y) is non-unique.

The following choice is one of the suitable candidates,

ρ(r, y) = −βn

∣∣∣e−αn|y(t)−r| − e−αn|y(0)−r|
∣∣∣ , (5.36)

where βn > 0 and αn > 0 are tuning parameters.

5.4 Illustrative Examples

In this section, I will illustrate the CNF design method with two examples. To compare

the performance of the CNF control law and the linear control law, let us first take the

example from [55] where the semi-global stabilization problem is solved by a linear state

feedback. Based on the linear control law given by [55], I will design a CNF control law

to improve the performance of the closed-loop system. The second example is the design

of a flight control system for a simplified model of a fighter aircraft reported in [81].

Example 5.1. Consider a partially linear composite system (see [55]) characterized by

ξ̇ = −ξ + ξ2y, (5.37)
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ẋ = Ax + B sat(u) (5.38)

y = Cx (5.39)

with

A =




0 1 0 0 0

−1 0 1 0 0

0 0 0 1 0

0 0 −1 0 1

0 0 0 0 0




, B =




0

0

0

0

1




, C =
[

0 0 0 0 1

]
, (5.40)

and umax = 0.2. For the stabilization problem of (5.37)–(5.39), let r = 0. It is simple

to verify that the triple (A, B, C) is controllable and has a relative degree of 1 and four

invariant zeros at {j,−j, j,−j}. Thus, Assumptions A1 and A2 are satisfied. Let γ = 1

and β = 1, then it can be shown that any a > 0 is weakly good for (γ, β). To design the

CNF control law, let us use the linear feedback control law,

uL = Fx =
[

0.403 −0.0001 −0.204 −4.06 −10.4

]
x, (5.41)

reported in [55]. Next, select W = I5 and solve the following Lyapunov equation

(A + BF )′P + P (A + BF ) = −W,

which yields a solution

P =




12.7439 −0.5000 −8.2902 −25.8924 −2.4813

−0.5000 12.8221 26.6781 4.4923 0.1934

−8.2902 26.6781 75.5045 26.7835 1.9341

−25.8924 4.4923 26.7835 70.7732 6.7201

−2.4813 0.1934 1.9341 6.7201 0.6942




> 0.

The nonlinear function ρ(r, y) is chosen as

ρ(r, y) = −15(e−5|y−r| − e−5|y(0)−r|).

Finally, the CNF control law is given by

u = Fx + ρ(r, y)B′Px. (5.42)
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The responses of the state variables of the closed-loop systems of the given systems with

the linear control law and with the CNF control law, respectively, are given in Figure 5.2

under the same initial conditions ξ(0) = −0.2 and x(0) = [−0.1, 0.1, −0.05, −0.08, 0.05]
′
.

Clearly, the CNF control has outperformed the linear counterpart significantly.

Example 5.2. Consider a simplified model of a fighter aircraft reported in [81], which

is characterized by

v̇ = 1.8254 cos(0.0175(α + 11.3404))− 1.9821× 10−3(0.0886 + 0.0175α)v2 (5.43)

α̇ = −0.5923α + 50.7296q − 0.1145sat(u) (5.44)

q̇ = −0.0178α− 0.3636q − 0.0676sat(u) (5.45)

where the airspeed v (m/s), angle of attack α (deg), and pitch angular rate q (rad/s)

are state variables, deflection of elevator u (deg) is control input with a saturation level

umax = 10◦. The model is extracted from the nonlinear model of six degree of freedoms

based on a steady flight condition with Mach = 0.3, height = 1000 meters, and with a

straight and horizontal flight. The control objective is to set the angle of attack to a

reference attitude 5◦ quickly without experiencing large overshoot.

Let ξ = v and x = (α, q)′, and let y = α. Then, the dynamics of the aircraft can be

rewritten as the form of (5.1)–(5.3), i.e.,

ξ̇ = 1.8254 cos(0.0175(y + 11.3404))− 1.9821× 10−3(0.0886 + 0.0175y)ξ2 (5.46)

ẋ = Ax + Bsat(u) (5.47)

y = Cx (5.48)

where

A =




−0.5923 50.7296

−0.0178 −0.3636


 , B =




−0.1145

−0.0676


 , C =

[
1 0

]
.

The triple (A, B, C) is controllable, and has a relative degree of 1 and an invariant zero

at −30.3140. Thus, Assumptions A1 and A2 are satisfied. Let r = 5, then the nonlinear

system (5.46) with y = r has an equilibrium point ξ = v0 = 70.8328. Let ξ̃ = ξ − v0.

One has

˙̃ξ = −0.0495ξ̃ − 3.4912× 10−4ξ̃2. (5.49)
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(a) State responses with the linear control law.
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(b) State responses with the CNF control law.
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Figure 5.2: State responses and control signals of the closed-loop systems.
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It is simple to verify that (5.49) is regionally asymptotically stable, e.g., Assumption A3

is satisfied locally in Ωγ̄ = {ξ̃ : ‖ξ̃‖ ≤ 60}. Thus, a CNF control law can be constructed,

which is given as follows

u = Fx + Gr + ρ(r, y)B′P (x − Ger) (5.50)

with F = [0.9253 35.5945] placing the eigenvalues of A + BF at −1.7677 ± j1.7677,

G = −1.5966, Ge = [1 0.0097 ]′,

ρ(r, y) = −(e−|y−r| − e−|y(0)−r|), (5.51)

and P is the positive define solution of the following Lyapunov equation

(A + BF )′P + P (A + BF ) = −W

where

W =




0.4 9.4

9.4 2568.7


 > 0 (5.52)

is selected, according to [19] and [21], such that the invariant zeros of Gaux(s) = B′P (sI−

A − BF )−1B is −0.5.

The simulation results shown in Figure 5.3(a) shows the system output (angle of

attack) under the CNF control law (5.50) and the linear control law which switches off

the nonlinear part of the CNF control law (5.50) under the initial conditions ξ(0) = 100

and x(0) = 0. Thanks to the nonlinear part of the CNF control law, the output can track

the reference command input rapidly, and the overshoot is reduced evidently, 4.31% for

the linear control law, 0.26% for the CNF control law. Figure 5.3(b) shows the control

input applied to the system under these two control laws.

5.5 Conclusion

The composite nonlinear feedback control technique is extended to the partially linear

composite system with input saturation. Simulation result shows that the nonlinear

control law greatly improved the performance of the closed-loop system. It should be

noted that, in this chapter, I have assumed that the linear part of the composite system
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(a) Output responses.
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Figure 5.3: Output responses and control signals of the flight control system.
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is SISO, and all the states of the linear part are available to feedback. It should not be

too difficult to extend the result of this chapter to MIMO systems with measurement

feedback using the result reported in [32].



Chapter 6

CNF Control for Discrete-Time

Partial Linear Composite Systems

with Input Saturation

In this chapter, the design procedure of composite nonlinear feedback control for SISO

discrete-time partially linear composite systems with actuator saturation will be ad-

dressed. Only the state feedback case will considered. The composite nonlinear feedback

control serves to improve the transient performance of the system output without exciting

the peaking phenomenon in linear part so that nonlinear zero dynamics will not become

unstable and hence guarantees the internal stability of the whole system. Although

no works in the literature discuss the so-called peaking phenomenon and its possible

destabilizing effect in discrete-time systems, it exists naturally as for many sampled-data

systems, during a single sampling period, the system behavior is itself a continuous-

time process. Thus, it is necessary for one to consider this peaking phenomenon and

its possible destabilizing effect in discrete-time systems. As such, the CNF scheme for

discrete-time partially linear composite systems will be addressed. Conditions on how to

use CNF control law are derived and an application of this technique to two examples

is presented, which shows that the proposed design method yields a very satisfactory

performance.

118
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6.1 Introduction

From previous chapter, one knows that a nonlinear system which is zero input globally

asymptotically stable (GAS) will preserve its GAS property if its input decreases to zero

with a very fast exponential rate [70]. However a bad transient performance may destroy

the stability of the nonlinear part before the output rapidly decays to zero. This is

also true for discrete-time systems since the inter-sampling behavior is equivalent to the

response of a continuous-time system with unchanging input. One also knows that, for

set-point tracking, settling time and overshoot are two important transient performance

indices, and quick response and small overshoot are desirable in the most of the target

tracking control problems. However, it is well known that, in general, quick response

results in a large overshoot. Thus, most of the design schemes have to make a trade-off

between these two transient performance indices.

In this chapter, I aim to design a CNF control law for discrete-time partially linear

composite systems with input saturation. Based on the linear part of the composite

system, the CNF control is designed such that the closed-loop system has desired per-

formances, e.g., quick response and small overshoot. Moreover, I will show that the

closed-loop system with improved transient performance preserves the stability of the

nonlinear part of the partially linear composite system. The result will be illustrated by

a numerical example and a fighter example.

This chapter is organized as follows. In Section 6.2, the theory of the composite

nonlinear feedback control for discrete-time partially linear SISO systems is developed.

The application of this technique to a numerical example will be presented in Section 6.4,

which shows that the proposed design method yields a very satisfactory performance.

Finally, some concluding remarks will be drawn in Section 6.5.
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6.2 Problem Formulation and Preliminaries

Consider a partially linear composite discrete-time systems with input saturation, Σ,

characterized by

ξ(k + 1) = f(ξ(k), y(k)), ξ(0) = ξ0 (6.1)

x(k + 1) = Ax(k) + Bsat(u(k)), x(0) = x0 (6.2)

y(k) = Cx(k) (6.3)

where (ξ, x) ∈ Rm × Rn, u ∈ R and y ∈ R are respectively the state, control input and

control output of the given system Σ, f is a smooth (i.e., C∞) function, A, B, C are

appropriate dimensional constant matrices, and the saturation function is defined by

sat(u) = sign(u) min(|u|, umax), (6.4)

where umax is the maximum amplitude of the control channel.

The aim is to design a certain controller, with all the state information known, which

renders the whole (closed-loop) system track a step function with amplitude of r under

the input constraint. Without loss of generality, let us assume f(0, r) = 0. In fact, if

f(ξ∗, r) = 0 with ξ∗ 6= 0, the state transformation ξ̃ = ξ − ξ∗ gives

˙̃
ξ = f(ξ̃ + ξ∗, r) := f̃(ξ̃, r)

then, one has f̃(0, r) = 0. For tracking purpose, the following assumptions on the given

system are required:

A1: (A, B) is controllable;

A2: (A, B, C) is invertible and has no invariant zeros at z = 1; and

A3: There exists a C1 positive definite function Vξ(·) and class K∞ functions α1, α2

and α3 such that

α1(||ξ(k)||) ≤ Vξ(ξ(k)) ≤ α2(||ξ(k)||), (6.5)

Vξ(ξ(k + 1))− Vξ(ξ(k)) ≤ α3(||ξ(k)||), (6.6)
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where ξ(k) ∈ Rm is the solution of

ξ(k + 1) = f(ξ(k), r), ξ(0) = ξ0. (6.7)

Remark 6.1. The objective here is to design control laws that are capable of achieving

fast tracking of target references under input saturation. As such, it is well understood

in the literature that assumptions A1-A2 are standard and necessary. Assumption A3

is to ensure that the nonlinear system (6.1) is asymptotically stable when the system

output y tracks exactly the step command input r.

Lemma 6.1. Consider the nonlinear control system of the form

ξ(k + 1) = f(ξ(k), r + η(k)), (6.8)

which satisfies Assumption A3. Given any γ > 0 and 0 < a < 1, there exists a scalar

β > 0 such that for any

|η(k)| ≤ β · ak, k ≥ 0, (6.9)

the solution ξ(k) of (6.8) exists and is bounded for all k ≥ 0 provided that ξ(0) ∈ Ωγ :=

{ξ : ||ξ|| ≤ γ}.

Proof. The proof of this Lemma follows the similar lines of reasoning as in Theorem

4.1 of [70]. Noting that Vξ(ξ) is a C1 positive definite function, let

c = max{Vξ(ξ) : ξ ∈ Ωγ} (6.10)

for any given γ > 0. Since Vξ(ξ) is C1 and f(ξ, y) is smooth, for all time instants k ≥ 0,

there exists a constant h > 0 such that, for all ξ ∈ Ωγ and |v| ≤ β, where β > 0 is any

positive real number,

|Vξ(ξ(k + 1))− Vξ(ξ(k))| = |Vξ(f(ξ(k), r + v))− Vξ(ξ(k))| ≤ h. (6.11)

Let τ > 0 be a specific time instant of interest. Then for every solution ξ(k) of (6.8)

under any input such that |η(k)| ≤ β and ξ(0) ∈ Ωγ ,

Vξ(ξ(k)) ≤ c + τh, 0 ≤ k ≤ τ. (6.12)
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On the other hand, by the continuity of Vξ(ξ) and (6.6), there exists an α > 0 such that

Vξ(ξ(k + 1))− Vξ(ξ(k)) = Vξ(f(ξ(k), r + v))− Vξ(ξ(k)) ≤ α3(||ξ(k)||), k ≥ 0, (6.13)

for all |v| ≤ α. Then, one can specify β such that

β · ak ≤ α, k ≥ τ. (6.14)

If η is an input satisfying (6.9), and ξ(k) is the solution of (6.8) with ξ(0) ∈ Ωγ , one can

claim that

Vξ(ξ(k)) ≤ c + τh, k ≥ 0. (6.15)

In fact, I have proved that Vξ(ξ(k)) ≤ c + τh for 0 ≤ k ≤ τ . For k ≥ τ , (6.9) and (6.14)

imply |η(k)| < α, and then by (6.13), one has

Vξ(ξ(k)) ≤ Vξ(ξ(τ)) ≤ c + τh, k > τ. (6.16)

Moreover, ξ(k) is bounded by

||ξ(k)|| ≤ α−1
1 (Vξ(ξ(k))) ≤ α−1

1 (c + τh). (6.17)

This completes the proof of Lemma 6.1.

Remark 6.2. In Sussmann and Kokotović [70], they say a is good for (γ, β) if a satisfies

Lemma 6.1. Here, however, I propose a similar discrete-time version. In fact, this lemma

considers when γ and a are given, there indeed exists a β such that a is good for (γ, β).

Remark 6.3. Assumption A3 can be relaxed to be satisfied locally, e.g., in Ωγ̄ := {ξ :

||ξ|| ≤ γ̄}. In this case, it is clear that, from the proof of Lemma 6.1, by selecting

0 < γ < γ̄, and 0 < a < 1 such that

{ξ : Vξ(ξ) ≤ c + τh} ⊂ Ωγ̄ , (6.18)

for some integer τ > 0, then there exists a β > 0 such that a is good for (γ, β).

6.3 Design of The Composite Nonlinear Feedback Control

Law

In this section, let us proceed to develop a composite nonlinear feedback control technique

for the case when all the state variables of the linear part of the plant Σ are measurable.
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The design will be done in four steps described in the following step-by-step design

procedure which is a natural extension of the results of [19].

Step s.1: Design a linear feedback law,

uL(k) = Fx(k) + Gr, (6.19)

where r ∈ R is the step reference. The state feedback gain matrix F ∈ R1×n is

chosen such that

1. the output of the closed-loop system (6.2) and (6.3) under the state feedback

u = Fx is such that A + BF is Schur,

2. the resulting closed-loop system transfer matrix, i.e., C2(zI − A − BF )−1B,

has certain desired properties, e.g., having a small dominating damping ratio.

Let G be a scalar constant and is given by

G := [C(I − A − BF )−1B]−1. (6.20)

Here note that G is well defined because A + BF is stable, and (A, B, C) is right

invertible and has no invariant zeros at z = 1, which implies (A+BF, B, C) is right

invertible and has no invariant zeros at z = 1 (see e.g., Theorem 3.8.1 of Chen et

al. [20]).

Step s.2: Next, one computes

H :=
[
I + F (I − A − BF )−1B

]
G (6.21)

and

xe := Ge r := (I − A − BF )−1BG r. (6.22)

Note that the definitions of H , Ge and xe would become transparent later in the

following derivation. Given a positive definite matrix W ∈ Rn×n, solve the following

Lyapunov equation:

P = (A + BF )′P (A + BF ) + W, (6.23)
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for P > 0. Such a P exists since A + BF is asymptotically stable. Then, the

nonlinear feedback control law uN is given by

uN(k) = ρ(r, y)B′P (A + BF )(x(k) − xe), (6.24)

where ρ(r, y) is some nonpositive function, locally Lipschitz in y, which is used to

change the closed-loop system damping ratio as the output approaches the target.

The choice of this nonlinear function will be discussed at the end of this section.

Step s.3: Given γ > 0 and a =
√

1 − λmin(W )
λmax(P ) , select β such that a is good for (γ, β).

Step s.4: The linear and nonlinear feedback laws derived in the previous steps are now

combined to form a CNF controller:

u(k) = uL(k) + uN(k) = Fx(k) + Gr + ρ(r, y)B′P (A + BF )(x(k) − xe). (6.25)

This completes the design of the CNF controller.

Theorem 6.1. Consider the given system (6.1) to (6.3) satisfying assumptions A1 to

A3. Define

N :=

{
x ∈ Rn : ||x|| ≤ β

‖C‖

(
λmin(P )
λmax(P )

)1/2
}

(6.26)

For any δ ∈ (0, 1), let c
δ

> 0 be the largest positive scalar satisfying the following

property:

| F x |≤ (1 − δ)umax, (6.27)

for all x ∈ Xδ, where

Xδ :=
{

x : x′Px ≤ cδ , x ∈ N
}
. (6.28)

Then, for any nonpositive function ρ(r, y), locally Lipschitz in y and |ρ(r, y)| ≤ ρ∗ :=

2(B′PB)−1, the solution of the closed-loop system under the CNF control law (6.25)

exists and is bounded for all k ≥ 0, provided that the initial state x0 = x(0) and r

satisfy:

x̃0 = x̃(0) := (x0 − xe) ∈ Xδ, |H r| ≤ δumax. (6.29)

Moreover, the system output y tracks asymptotically the step command input of ampli-

tude r.
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Proof. The closed-loop system compromising the given plant (6.1)–(6.3) and the CNF

control law (6.25) is given by

ξ(k + 1) = f(ξ(k), y(k)) (6.30)

x(k + 1) = Ax(k) + Bsat(Fx(k) + Gr + ρ(r, y)B′P (A + BF )(x(k) − xe))(6.31)

y(k) = Cx(k). (6.32)

Let x̃(k) = x(k) − xe. The closed-loop system (6.1)-(6.3) can be expressed as

ξ(k + 1) = f(ξ(k), r + Cx̃(k)) (6.33)

x̃(k + 1) = (A + BF )x̃(k) + Bw, (6.34)

where

w = sat(Fx̃(k) + Gr + ρ(r, y)B′P (A + BF )(x(k) − xe))− Fx̃(k) − Hr. (6.35)

Define a Lyapunov function V (x̃) = x̃′Px̃, then one has

λmin(P )||x̃||2 ≤ V (x̃) ≤ λmax(P )||x̃||2 (6.36)

where λmin(P ) and λmax(P ) are the minimal and maximal eigenvalues of P , respectively.

Then,

4V (x̃(k))=V (x̃(k+1))−V (x̃(k)) = −x̃′(k)Wx̃(k)+2x̃′(k)(A+BF )′PBw(k)+w′(k)B′PBw(k).

(6.37)

It has been shown in [75] that,

2x̃′(k)(A + BF )′PBw(k) + w′(k)B′PBw(k) ≤ 0, (6.38)

for all x̃ ∈ Xδ, |Hr| ≤ δumax and −ρ∗ ≤ ρ(r, y) ≤ 0. Thus

4V (x̃(k))=V (x̃(k + 1))−V (x̃(k)) ≤ −x̃′(k)Wx̃(k) ≤ 0, (6.39)

which implies that Xδ is an invariant set of the closed-loop system in (6.34). Thus

the solution of (6.34) exists and is bounded for all k ≥ 0 and x̃0 ∈ Xδ. Nothing that

x(k) = xe + x̃(k), x(k) exists and is bounded for all k ≥ 0 and x0 satisfies (6.29).
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To show the existence and boundedness of the solution ξ of (6.30), it suffices to show

that ||ỹ(k)|| = ||y(k) − Cxe|| = ||Cx̃(k)|| ≤ β · ak . To this end, by recalling a lemma

from [67], page 447, Lemma 13.2, one has 0 < λmin(W ) ≤ λmax(P ) and V (x̃(k + 1)) ≤

% · V (x̃(k)) where % = 1 − λmin(W )
λmax(P ) .

Therefore, one gets

V (x̃(k + 1)) ≤ %k · V (x̃(0)) (6.40)

and then

λmin(P )||x̃(k + 1)||2 ≤ %k · V (x̃(0)) (6.41)

so that

||x̃(k + 1)|| ≤
(

V (0)
λmin(P )

)1/2

· (√%)k ≤
(

λmax(P )
λmin(P )

)1/2

· ||x̃(0)|| · (√%)k, ∀k ≥ 0. (6.42)

Finally, note that a =
√

%,

||ỹ(k + 1)|| = ||Cx̃(k + 1)|| ≤ ‖C‖
(

λmax(P )
λmin(P )

)1/2

||x̃(0)||ak ≤ β · ak, (6.43)

for all x̃(0) ∈ Xδ. By Lemma 6.1, the solution of (6.30) exists and is bounded for all

k ≥ 0 and x0 ∈ Ωγ .

Moreover, noting that W > 0, all trajectories of (6.34) starting from inside Xδ will

converge to the origin. This, in turn, indicates that, for all initial state x0 and the step

command input r that satisfy (6.29), one has

lim
k→∞

x(k) = xe, (6.44)

which implies

lim
k→∞

u(k) = F lim
k→∞

x(k) + Gr + lim
k→∞

ρB′P [x(k) − xe] = Fxe + Gr. (6.45)

Hence,

lim
k→∞

y(k) = C lim
k→∞

x(k) = Cxe = C(I − A − BF )−1BGr = G−1Gr = r. (6.46)

This completes the proof of Theorem 6.1.
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Next, note that the key component in designing the CNF controllers is the selection

of ρ and W . The freedom in choosing the nonlinear function ρ is used to tune the control

laws so as to improve the performance of the closed-loop system as the controlled output

y approaches the target reference. Since the main purpose of adding the nonlinear part

to the CNF controller is to speed up the settling time and to reduce the overshoot,

or equivalently to contribute a significant value to the control input when the tracking

error, r − y, is small, it is appropriate for one to select a nonlinear gain matrix such

that the nonlinear part will be in action when the control signal is far away from its

saturation level, and thus it will not cause the control input to hit its limits. Under such

a circumstance, it is straightforward to verify that the closed-loop system comprising the

linear part of the plant, i.e., (6.2), and the CNF control law (6.25) can be expressed as

x̃(k + 1) = (A + BF )x̃(k) + ρBB′P (A + BF )x̃(k). (6.47)

It is clear that eigenvalues of the closed-loop system in (6.47) can be changed by the

nonlinear function ρ. Assuming that y(0) 6= r (for the trivial case when y = r, there is

no need to add any nonlinear gain to the control), let us propose the following nonlinear

gain

ρ(r, y) = −β(B′PB)−1 2
π

arctan
(
α
∣∣∣|y(k) − r| − |y(0)− r|

∣∣∣
)

(6.48)

with 0 ≤ β ≤ 2.

Obviously ρ starts from 0 and gradually decreases to a constant

−2β(B′PB)−1arctan(α |y(0)− r|)/π > −β(B′PB)−1

as y approaches to the target reference r. The parameter α is used to determine the

speed of change in ρ.

It can be shown that the closed-loop poles of (6.47) are related to the invariant zeros

of an auxiliary system characterized by

Gaux(z) := Caux(zI − Aaux)−1Baux := B′P (zI − A − BF )−1B, (6.49)

which is obviously stable, and which was shown in [34] to be a square, invertible and

uniform rank system with one infinite zero of order 1 and with n − 1 stable invariant
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zeros. In fact, if one selects β = 1, the closed-loop poles of (5.34) in the steady state when

y = r are precisely given by the invariant zeros of Gaux(z) together with additional one at

z = 0. Generally, the invariant zeros of Gaux(z) can be pre-assigned by the appropriate

choice of W , which can also be selected using a trial and error approach by limiting it to

be in a diagonal matrix and adjusting its diagonal weights through simulation. I would

like to refer interested readers to [34] for detail.

6.4 Design Examples

Example 6.1. To illustrate the effectiveness of the developed design methodology, con-

sider a simple discrete-time system characterized by

ξ(k + 1) = 0.99ξ(k) + ξ(k)ỹ(k) (6.50)

x(k + 1) =




1 0

0.5 1


 x(k) +




0.5

0.125


 sat (u(k)) (6.51)

y(k) = [0 1]x(k) or (6.52)

ỹ(k) = r − y(k). (6.53)

with umax = 1.

The aim is to design appropriate CNF controller with full state feedback, which

would control the controlled output of the system to track the command reference as

fast as possible and as smooth as possible while at the same time the zero dynamics

keeps bounded and stable. It is easy to see that when y(k) = r or equivalently ỹ(k) = 0,

(6.50) becomes ξ(k + 1) = 0.99ξ(k) which is asymptotically stable. Also it can be easily

verified that the linear part is controllable and right invertible and has no zero at z = 1.

Therefore, conditions A1 to A3 are met. Similarly, one can easily choose Ωγ̄ for (6.50),

say Ωγ̄ = {ξ : |ξ| ≤ 100} for the following design. By following the procedures given

in the previous section and with appropriate selections of design parameters, I have

obtained the following CNF control law. Please note that the linear part of the control

law is carried out using the standard LQR design.
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CNF controller design for r = 1:

u = Fx + Gr + ρ(r, y)Fn(x − xe), (6.54)

where

F = [−1.18614066163451 −0.70346483459137] ,

G = 0.70346483459137,

Fn = [0.81213814213564 0.46331007325138] ,

xe = [0 1 ]′ .

The nonlinear function ρ(r, y) is chosen as in (6.48) with α = 1 and β = 1.

Using Simulink in Matlab, one obtains the simulation result in Figure (6.1), which

is done under the following initial condition

x0 = x(0) = [ 0 0 ]′ and ξ0 = ξ(0) = 1. (6.55)

The result clearly shows that the control laws with the nonlinear components, i.e., the

CNF controller, outperform its conventional counterpart a great deal.

Also, the zero dynamics is indeed bounded, see Figure (6.2).

Example 6.2. Next, let us consider a system characterized by

ξ(k + 1) = 0.9ξ(k) + 0.1ξ2(k)y(k) (6.56)

x(k + 1) =




1 0.1 0 0 0

−0.1 1 0.1 0 0

0 0 1 0.1 0

0 0 −0.1 1 0.1

0 0 0 0 1




x(k) +




0

0

0

0

0.1




sat(u) (6.57)

y(k) =
[

0 0 0 0 1

]
x(k) (6.58)

with umax = 0.2. This model is obtained by discretizing the continuous-time model of

the example in [55] via Euler’s method with sampling period T = 0.1. I will consider a

tracking problem of the system (6.56)-(6.58) with constant reference r = 0.16. The aim
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Figure 6.1: Output and input signals: r = 1.
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is to design an appropriate CNF controller with state feedback to improve the transient

performance of the closed-loop system. It is not difficult to verify that Assumptions

A1-A3 are satisfied for the system (6.56)-(6.58). A linear feedback control law is firstly

designed using the low gain feedback technique [52]. Thus one obtains a linear control

law uL(k) = Fx(k) + Gr with

F = [ 0.7851 0.1370 −0.0432 −4.1191 −5.7906 ] , G = 5.0487.

Next, let us select W = I5 and solve the following discrete-time Lyapunov equation

(6.23), which gives a solution

P =




124.60 −10.99 −105.66 −167.56 −28.33

−10.99 120.46 163.87 33.12 0.98

−105.66 163.87 349.33 185.78 23.82

−167.56 33.11 185.78 300.34 50.24

−28.33 0.98 23.82 50.24 10.01




> 0.

The nonlinear function ρ(r, y) is chosen as in (6.48) with α = 6 and β = 1. Finally, the

CNF control law is given by

u(k) = Fx(k) + Gr + ρ(r, y)B′P (A + BF )(x(k) − xe). (6.59)

where xe =(I−A−BF )−1BG r. Using Simulink in Matlab, one obtains the simulation

result in Figure 6.3 and 6.4, which is done under the following initial condition x(0) = 0

and ξ(0) = −0.2. The simulation result shows that the control law with the nonlinear

components, i.e., the CNF controller, improved the transient performance significantly.

Specifically, Figure 6.3.(a) and 6.3.(b) show the trajectories of the closed-loop systems

under the linear control law and the CNF control law respectively. All the states of the

closed-loop system under the CNF control law convergence to the steady state quickly

in 15 seconds with much smaller amplitude. However, under the linear control law,

more than 45 seconds are required for all the trajectories convergence to the steady

state. Figure 6.4.(c) and 6.4.(d) compare the system outputs of the closed-loop systems

and the control inputs under the linear control and the CNF control respectively. The

overshoot under the linear control is 21.58%, but for the CNF control, it is only 0.45%.
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Figure 6.3: (State responses of the closed-loop system.
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Figure 6.4: Output and input of the closed-loop system.
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6.5 Conclusion

I have extended the so-called CNF control techniques for linear input-saturated discrete-

time systems to a class of SISO partially linear composite discrete-time systems with

actuator saturation. The closed-loop system is able to track step function signals yet the

whole system is stable. It has been shown that the transient performance is improved

comparing to normal linear approaches. Both CNF and linear controllers avoid adverse

effect of peaking-phenomenon. Further extension to MIMO case can be established

similarly by provoking the results of CNF control for linear MIMO discrete-time systems

(see [34]).



Chapter 7

Asymptotic Time Optimal

Tracking of a Class of Linear

Systems with Input Saturation

This chapter proposes the so-called asymptotic time-optimal tracking (ATOT) problem.

Typically one deals with “point-to-point” tracking, while in practice one usually needs

asymptotic tracking, or “point-to-region” tracking. As a matter of fact, the ATOT

problem was posed as an open problem in the book [18] about Hard Disk Drive servo

control. A simplified model for typical hard disk drives can be a double integrator and the

authors of [18] found that when using the CNF control the model shows faster tracking

performance than time-optimal control. I will rigorously define this ATOT problem and

propose a formula giving the optimal-settling time for this problem. Ideal controller

design as well as practical controller design will be explored. The interesting part lies in

that the CNF control technique can be used to approximate the optimal settling time

and it will be demonstrated by an illustrative example.

7.1 Introduction and Problem Statement

It is well known that the actuator saturation in a hard disk drive has seriously limited the

performance of its overall servo system, see Chen et al. [18, 19]. Traditionally, the most

136
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popular nonlinear control technique used in the design of servo systems, especially the

hard disk drive servo systems, is the so-called proximate time-optimal servomechanism

(PTOS) proposed by Workman [78], which achieves near time-optimal performance for

a large class of motion control systems characterized by a double integrator, e.g., hard

disk drives and spring-mass mechanical systems. The PTOS was actually modified from

the well-known time-optimal control or bang-bang control. However, it is made to yield

a minimum variance with smooth switching from the track seeking to track following

modes via a mode switching controller. It was shown in Workman [78] that by properly

adjusting the controller parameters, the settling time for tracking a step reference in the

resulting servo system with the PTOS controller can be made as close as possible to the

optimal time achieved by the bang-bang control.

Note that the time-optimal control or bang-bang control indeed yields the best perfor-

mance in point-to-point tracking, although such a technique cannot be used in practical

situations. It is well known that the resulting system is very sensitive to the uncertainties

and noises. Moreover, it is generally not necessary to have a precise point to point track-

ing in practical situations. Instead, it would be more preferable to consider asymptotic

tracking in which the tracking target is defined as a small neighborhood of a given set

point. I believe that such a consideration is very practical. For example, in a hard disk

drive servo system (see e.g., [18, 19]), it is a common practice to activate its read/write

head to read or write data once it enters ±5% of the data track-width of the target set

point.

Interestingly, it has been recently demonstrated by an example in [18,19] that the

time-optimal control or bang-bang control, and consequently the PTOS, do not neces-

sarily yield the best performance in asymptotic tracking situations. There are control

laws that would yield a better performance than that of the time-optimal control. This

is actually the motivation for the work of this paper. Our goals or contributions are two-

fold: 1) to derive the optimal settling for asymptotic tracking; and 2) to find a control

law that achieves this optimal performance.

To be more specific, let us consider a class of second order linear systems Σ charac-



Chapter 7. Asymptotic Time Optimal Tracking of a Class of Linear Systems with
Input Saturation 138

terized by

ẋ =

[
0 1

0 0

]
x +

[
0

a

]
sat(u), y = [1 0 ]x, x =

(
x1

x2

)
, x(0) = x0 =

(
x10

x20

)
,

(7.1)

where x is the state, y is the measurement output, a is a constant and sat(u) is control

input to the system with

sat(u) = sign(u) × min{umax, |u|}. (7.2)

As pointed out earlier, there are a large class of real life problems, such as hard disk

drives and spring-mass mechanical systems, can be approximately modeled as a double-

integrator system characterized by (7.1). The problem to be considered and solved in

this chapter is the following:

Definition 7.1. Consider the system of (7.1) with actuator nonlinearities. Let r be a

reference target and δ be a positive scalar and δ ∈ [0, 1]. Let

u = φ(y, r, δ) (7.3)

be an internally stabilizing controller for the system, i.e., the closed-loop system com-

prising of the given system Σ of (7.1) and the control law of (7.3) is asymptotically

stable. Let ts(x0, r, δ, φ) be the corresponding settling time for the resulting system out-

put y(t, φ) to enter the δ-neighborhood of the target reference, i.e, ts(x0, r, δ, φ) is the

smallest scalar such that for all t ≥ ts(x0, r, δ, φ),

|y(t, φ)− r| ≤ δ · |r| and lim
t→∞

y(t, φ) = r. (7.4)

Finally, let t∗s(x0, r, δ) be the optimal settling time over all the internally stabilizing

controllers, i.e.,

t∗s(x0, r, δ) := inf
{

ts(x0, r, δ, φ)
∣∣∣ φ(y, r, δ) internally stabilizes Σ

}
. (7.5)

The asymptotic time-optimal tracking (ATOT) control problem is to find a stabilizing

measurement feedback control law φ∗(y, r, δ) such that ts(x0, r, δ, φ
∗) = t∗s(x0, r, δ).

The detailed derivations for the optimal asymptotic tracking performance t∗s and the

optimal controller φ∗ are given respectively in Sections 7.2 and 7.3.
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7.2 Optimal Settling Time

I will derive in this section the optimal settling time t∗s(x0, r, δ) for the asymptotic time-

optimal tracking problem defined in Definition 7.1. The focus will be on the case when

the target reference r is a step function, i.e., r is a constant. First, note that x1 in

(7.1) usually represents the displacement of its corresponding physical system, while x2

represents its velocity. For simplicity of presentation, assume that the initial velocity of

the system is zero, i.e., x20 = 0. Without loss of generality, one can also assume that

the initial displacement is zero x10 = 0. If x10 6= 0, thus one can re-define a new target

reference rnew = r − x10. Nevertheless, the problem of tracking r with nonzero initial

condition is not equivalent to that of tracking rnew with zero initial condition. I will

deal with this case and other more general cases in the remarks following Theorem 7.1.

Similarly, for simplicity, let us assume a = 1 and umax = 1 in (7.1). This can be done by

a proper scaling on u and r. The first main result follows.

Theorem 7.1. Consider the given system Σ of (7.1) with a = 1, umax = 1 and x0 = 0.

Given a step target reference r (for simplicity, assume r ≥ 0) and a positive scalar

δ ∈ [0, 1], the optimal settling time for Σ under all possible stabilizing control laws (see,

e.g., Definition 7.1) is given by:

t∗s(r, δ) =

{
2(
√

r(1 + δ) −
√

rδ), 0 ≤ δ < 1
3 ,

√
2r(1− δ), 1

3 ≤ δ ≤ 1.
(7.6)

Note that x0 is dropped from the above expression as x0 is assumed to be zero.

Proof. Since the system is a double integrator system, if one figures out x2 versus time

t (see figure (7.1)), then the ouput y = x1 =
∫ Tt

0 x2(τ)dτ , where Tt ≥ 0 is the desired

time instant, is simply the net area (with ± signs) enclosed by t = 0, t = Tt, x2(t) and

the time axis x2 = 0.

Let us construct 4OAB as shown in the figure (7.2) where OA = AB and the slope

of OA is equal to max(u) = umax = +1 while the slope of AB is equal to min(u) =

umin = −umax = −1.

For the case of 1
3 ≤ δ ≤ 1, one first applies u(t) = umax = +1 from t = 0 to t =

tA = 2
√

1
3r and then apply u(t) = umin = −umax = −1 till t = tB = 4

√
1
3r, as shown in
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Figure 7.1: Plot of x2(t) versus t

Figure 7.2: Case 1: 1/3 ≤ δ ≤ 1

figure (7.2). Since umax = 1, x1 =
∫ t
0 au(τ)dτ ≤

∫ t
0 aumax(τ)dτ =

∫ t
0 adτ = 1

2at2 = 1
2 t2,

or t ≥
√

2x1 for x1 ≥ 0, t∗s is the time at which x1 arrives at (1 − δ)r along OA, which

is
√

2r(1− δ). At t = tB = 4
√

1
3r, the output x1 = 4

3r ≤ (1 + δ)r as 1
3 ≤ δ ≤ 1, so

the ouput is within the region of [(1 − δ)r, (1 + δ)r]. After that, if one removes any

control, x2 = 0 and x1 keeps unchanged, i.e., the ouput is always within the region of

[(1− δ)r, (1 + δ)r]. This justifies the calculation of t∗s for the case of 1
3 ≤ δ ≤ 1.

For the case of 0 ≤ δ < 1
3 , one first applies u(t) = +1 from t = 0 to t = tA =

√
(1 + δ)r where the time coordinate tA correponds to A, and then apply u(t) = −1 till

t = tB = 2
√

(1 + δ)r where, again, the time coordinate tB correponds to B, as shown

in figure (7.3). In this case, t∗s is the time at which x1 arrives at (1 − δ)r along OAB,
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which is, after some simple calculations, exactly 2(
√

(1 + δ)r −
√

δr). One must prove

that there exists no shorter settling time. First I claim that t∗s > tA. x1 =
∫ tA
0 au(τ)dτ ≤

∫ tA
0 aumax(τ)dτ =

∫ tA
0 adτ = 1

2at2A = 1
2 t2A = 1

2(1+δ)r < (1−δ)r for 0 ≤ δ < 1
3 . Therefore,

at tA, x1 will not arrive at (1 − δ)r and hence t∗s > tA.

Suppose there is another settling time t′s which satisfies t′s < t∗s , then, if let us indicate

the point corresponding to ts as P , there are only three possible cases for the location of

the point corresponding to t′s, namely Pa, Po or Pb, see figure (7.3), where Ha, H ′
p and

Hp are projection points corresponding to A, Po (or Pa and Pb) and P respectively. Now

one must prove that all these cases are impossible. To this sequel, I will first introduce a

proposition. This proposition shows that the trajectories leaving or enetring some point

x2(t0) can only take the slope between −a and +a, which complies with d
dtx2(t) = au(t).

Figure 7.3: Case 2: 0 ≤ δ < 1/3

Proposition Suppose x2(t0) is located at some point A, then the trajectories leaving (t > t0)

or entering (t > t0) A will be confined to the slanted shade area shown in the figure (7.4).

Proof of the Proposition First assume t > t0. x2(t) =
∫ t

t0
au(τ )dτ , but −1 ≤ u(τ ) ≤ +1,

which means
∫ t

t0
−adτ ≤ x2(t) =

∫ t

t0
au(τ )dτ ≤

∫ t

t0
adτ or, x2(t0) − a(t − t0) ≤ x2(t) ≤

x2(t0) + a(t− t0). Hence the result for the trajectories leaving A. For the case of t < t0, one has
∫ t

t0
adτ ≤ x2(t) =

∫ t

t0
au(τ )dτ ≤

∫ t

t0
−adτ or, x2(t0)+a(t− t0) ≤ x2(t) ≤ x2(t0)−a(t− t0). Hence

the result for the trajectories entering A.
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Figure 7.4: The Trajectories leaving or entering x2(t0)

Now let us go on with the proof of the theorem. Suppose that x2(t′s) stays at Pa,

let us draw a line PaBa parallel to PB. According to the above proposition, trajectories

leaving Pa will be on or above the line PaBa, which implies that the area of 4H ′
pPaBa

is the infimum for all possible x2(t), t ≥ t′s. Since at t′s, the area is already 1 − δ, the

area or the output x1 will definitely exceed 1 + δ as the area of 4H ′
pPaBa is larger than

that of 4HpPB, which contradicts the definition of settling time, see Definition 7.1.

Suppose now that x2(t′s) stays at Pb, let us draw a line PbAb parallel to BP . Again,

according to the above proposition, trajectories entering Pb will be on or below the line

PbAb, which implies that the area of the polygon OAbPbH
′
pO is the supremum for all

possible x2(t), 0 ≤ t ≤ t′s. Since at ts, the area is already (1− δ)r, one sees that the area

of OAbPbH
′
pO or the output x1(t′s) will be smaller than (1−δ)r, which, again, contradicts

the definition of settling time in Definition 7.1.

For the last case that x2(t′s) stays at Po, using the same argument as the case of

x2(t′s) staying at Pb shown above, one can claim too, that there doesn’t exist such a t′s

which satisfies t′s < ts. In summary, t∗s is indeed the desired optimal settling time for the

system.

Therefore, one has

t∗s =





2(
√

r(1 + δ)−
√

rδ), 0 ≤ δ < 1
3 ,

√
2r(1− δ), 1

3 ≤ δ ≤ 1.
(7.7)
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This completes the proof of the theorem.

In order to see clearly the relationships between ts and δ, one can plot the figure.

For example, for the case of r = 1, the relationship between ts and δ is plotted in Figure

(7.5):
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Figure 7.5: The Relationship between δ and ts, r=1

Assuming δ = 0.01, the corresponding optimal settling time is t∗s = 1.8100, which

will be used in the illustrative example in Section 7.4. Furthermore, assuming δ = 1
3 , the

corresponding optimal settling time is ts = 1.1547, which is the joint point for the two

different cases of δ.

Remarks

1. As shown in the proof for the case of 1
3 ≤ δ ≤ 1, let the output stay at x1 =

4
3r ∈ [(1 − δ)r, (1 + δ)r] while x2 = 0. As a matter of fact, one can set it to be any

x1 ∈ [2(1 − δ)r, (1 + δ)r], which can be realized by let x2(t) go along the lines PHa,

PP1, PP2, PP3, PB, PP4 · · · as shown in figure (7.2), corresponding to the decreasing

amplitude of control input gradually. Obviously, one has infinitely many choices.

2. For the general case when a > 0, r > 0, x20 = 0, x10 < (1 − δ)r where δ ≥ 0 is

desired tracking bound, and max(u) = u+ > 0, min(u) = −u− < 0 where u+ doesn’t



Chapter 7. Asymptotic Time Optimal Tracking of a Class of Linear Systems with
Input Saturation 144

necessarily equal u−, by introducing new tracking area of [(1− δ)r− x10, (1+ δ)r− x10]

and hence artificially set a new zero initial condition for x1, one has the following formula:

t∗s(r, δ, x10, u+, u−) =





√
2[(1+δ)r−x10]u−

au+(u++u−) +
√

2[(1+δ)r−x10]u+

au−(u++u−) − 2
√

rδ
au−

,

0 ≤ δ < u+(r−x10)
(u++2u−)r

;
√

2[(1−δ)r−x10]
au+

, u+(r−x10)
(u++2u−)r ≤ δ ≤ 1.

(7.8)

By applying max(u) first and then min(u), one obtains the desired control input.

3. For the case when a > 0, r > 0, x20 = 0, (1 − δ)r ≤ x10 ≤ (1 + δ)r where δ ≥ 0 is

desired tracking bound, obviously t∗s = 0.

4. For the case when a > 0, r > 0, x20 = 0, x10 > (1 + δ)r where δ ≥ 0 is desired

tracking bound, the settling time shall be the infimum of the time instant at which the

system output reaches (1 + δ)r. The formula for t∗s can be revised as follows.

t∗s(r, δ, x10, u−, u+) =





√
−2[(1−δ)r−x10]u+

au−(u−+u+) +
√

−2[(1−δ)r−x10]u−
au+(u−+u+) − 2

√
rδ

au+
,

0 ≤ δ < −u−(r−x10)
(u−+2u+)r

;
√

−2[(1+δ)r−x10]
au−

, −u−(r−x10)
(u−+2u+)r ≤ δ ≤ 1.

(7.9)

By applying min(u) first and then max(u), one obtains the desired control input.

5. For the case when a > 0, r < 0, x20 = 0, x10 > (1−δ)r where δ ≥ 0, by introducing

new tracking area of [(1 + δ)r− x10, (1− δ)r− x10] and hence artificially set a new zero

initial condition for x1, apply the following formula (7.10) to get the optimal settling

time.

t∗s(r, δ, x10, u−, u+) =





√
−2[(1+δ)r−x10]u+

au−(u−+u+)
+
√

−2[(1+δ)r−x10]u−
au+(u−+u+)

− 2
√

−rδ
au+

,

0 ≤ δ < u−(r−x10)
(u−+2u+)r ;

√
−2[(1−δ)r−x10]

au−
,

u−(r−x10)
(u−+2u+)r ≤ δ ≤ 1.

(7.10)

By applying min(u) first and then max(u), one obtains the desired control input.

6. For the case when a > 0, r < 0, x20 = 0, (1 + δ)r ≤ x10 ≤ (1− δ)r where δ ≥ 0 is

desired tracking bound, obviously t∗s = 0.

7. For the case when a > 0, r < 0, x20 = 0, x10 < (1 + δ)r where δ ≥ 0, apply the

following formula (7.11) to get the optimal settling time. Again, the settling time shall
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be the infimum of the time instant at which the system output reaches (1 + δ)r.

t∗s(r, δ, x10, u−, u+) =





√
2[(1−δ)r−x10]u−

au+(u++u−)
+
√

2[(1−δ)r−x10]u+

au−(u++u−)
− 2
√

−rδ
au−

,

0 ≤ δ < −u+(r−x10)
(u++2u−)r

;
√

2[(1+δ)r−x10]
au+

, −u+(r−x10)
(u++2u−)r ≤ δ ≤ 1.

(7.11)

By applying max(u) first and then min(u), one obtains the desired control input.

8. For the case when a < 0, r < 0, x20 = 0, x10 > (1 − δ)r where δ ≥ 0, one has

the following formula (7.8). By applying max(u) first and then min(u), one obtains the

desired control input.

9. For the case when a < 0, r < 0, x20 = 0, (1 + δ)r ≤ x10 ≤ (1− δ)r where δ ≥ 0 is

desired tracking bound, obviously t∗s = 0.

10. For the case when a < 0, r < 0, x20 = 0, x10 < (1 + δ)r where δ ≥ 0, the settling

time shall be the infimum of the time instant at which the system output reaches (1+δ)r.

The formula for t∗s is exactly the same as formula (7.9). By applying min(u) first and

then max(u), one obtains the desired control input.

11. For the case when a < 0, r > 0, x20 = 0, x10 < (1 − δ)r where δ ≥ 0 ,

apply formula (7.10) to get the optimal settling time. By applying min(u) first and then

max(u), one obtains the desired control input.

12. For the case when a < 0, r > 0, x20 = 0, (1 − δ)r ≤ x10 ≤ (1 + δ)r where δ ≥ 0

is desired tracking bound, obviously t∗s = 0.

13. For the case when a > 0, r > 0, x20 = 0, x10 > (1+ δ)r where δ ≥ 0 , one applies

formula (7.11) to get the optimal settling time. Again, the settling time shall be the

infimum of the time instant at which the system output reaches (1 + δ)r. By applying

max(u) first and then min(u), one obtains the desired control input.

14. So far one has given the formulae for all the possible cases when x20 = 0. When

x20 6= 0, things become more complicated as there are too many different combinations

of conditions regarding a, x10, r, and max(u) = u+ > 0, min(u) = −u− < 0. However,

for each specified case, using almost the same reasoning as the proof of Theorem 7.1, one

can obtain corresponding results accordingly.
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7.3 Asymptotic Time-Optimal Tracking Controller Design

Now let us proceed to design a controller that would achieve the optimal settling time

as given in Theorem 7.1.

I have already shown in the proof of Theorem 7.1 that by applying u = +1 from

t = 0 to t = tA =
√

(1 + δ)r and then apply u = −1 till t = tB = 2
√

(1 + δ)r for the

case of 0 ≤ δ ≤ 1
3 , one ends up with x1(tB) = (1 + δ)r and x2(tB) = 0. For the case

of 1
3 < δ ≤ 1, apply u = +1 from t = 0 to t = tA = 2

√
1
2r and then apply u = −1 till

t = tB = 4
√

1
2r and end up with x1(tB) = (1− δ)r and x2(tB) = 0.

The next step to drive the system output to the target r is a trivial design problem.

There are many available methods which can reach this goal, which further drives x1

to r and x2 to 0 asymptotically without making x1 exceeding the tracking region of

[(1− δ)r, (1 + δ)r]. A simple choice is to use time-optimal control. It drives the system

output to the target monotonically and hence will never exceed the tracking bound while

at the same time x2 reaches 0. One can use umax and umin for the time-optimal control

design or even one can use smaller control signals, say αumax and αumin where 0 < α < 1,

as saturation levels, which only makes the time to the target longer.

However, the above designed controller can not be used in practical situations as it

is a non-robust controller, almost the same as time-optimal controller. One may appeal

to other design methods although one may only obtain sub-optimal ATOT controllers.

I will try the CNF control scheme as indeed in [18] the authors give an example with an

(SISO) CNF controller. Along the same line, the following design procedure is adopted

from Chen et al. [18, 19] which was developed based on Lin et al. [53] .

Rewrite (7.1) in the following form:




ẋ = Ax + Bsat(u)

y = Cx
(7.12)

where A, B, C are the corresponding matrices in (7.1).

The CNF control consists of linear part control and nonlinear part control. I will

present the control algorithm step by step as following:
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Step 1: Linear part control

uL = Fx + Gr (7.13)

where F and G are chosen such that (1) (A + BF ) is an asymptotically stable matrix,

(2) The closed system C(sI − A − BF )−1B has certain properties, such as having a

small damping ratio, (3) G is a scalar given by G = −[C(A + BF )−1B]
−1

and r is the

command input.

Step 2: Nonlinear part control

uN = ρBT P (x − xe) (7.14)

where ρ is a nonpositive, Lipschitz continuous function and P is the solution of the

following Lyapunov equation,

(A + BF )TP + P (A + BF ) = −W (7.15)

W is a positive definite matrix, xe = −(A + BF )−1BGr and H := [1−F (A + BF )−1B]G.

For any δ ∈ (0, 1), let cδ be the largest positive scalar satisfying the following conditions:

|Fx| ≤ (1 − δ)ū, ∀x ∈ Xδ := {x′Px ≤ cδ} (7.16)

The following two conditions should be guaranteed in the CNF controller design.

x̂0 = x0 − xe ∈ Xδ (7.17)

|Hr| ≤ δū (7.18)

Step 3: Composite control

u = φcnf (y, r, δ, ε) = uL + uN

= Fx + Gr + ρBT P (x − xe)
(7.19)

The following theorem is adopted from Chen et al. [18].

Theorem 7.2. The control law (7.19) is capable of driving the controlled output y, to

track asymptotically a step command input r, provided that conditions (7.17) and (7.18)

are satisfied.
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There are many choices for ρ, only if ρ is a non-positive function, locally Lipschitz.

In Lin et al. ( [53]), it gave some ideas on how to choose the nonlinear part for a second

order SISO system, such that the damping ratio goes to infinity asymptotically. For this

purpose, let us choose ρ in (7.19) as follows, which is a non-positive function, locally

Lipschitz in y,

ρ = ε(e−r − e−|r−y|), ε > 0 (7.20)

The transient performance of this system can be improved dramatically: a faster rise

time, a shorter settling time, with less overshoot, which is inherently the advantage for

CNF control over the linear feedback control. Note that the above CNF controller (7.19)

is parameterized by another additional tuning parameter ε, which is to be adjusted to

achieve the optimal settling time. In Section (7.4), the simulation will show how this

parameter affects the settling time. Figure (7.9) shows that there seems to be one point,

where ε = ε∗, and ts = t∗s , although no rigorous proof can be given at the moment.

Nevertheless, it is easy to tune only one parameter in order to approximate the optimal

settling time by simulation.

In addition, I provide some guidelines to choose the parameters to achieve faster

tracking,

1. Choose F such that the closed-loop system has small damping ratio and the con-

ditions (7.17), (7.18) are satisfied.

2. First randomly choose an ε, if the overshoot is beyond the scope you expect, then

choose a smaller one ε accordingly. If the output reaches the destination increas-

ingly at infinity, choose a bigger one. However for the ε you have chosen, there

should have overshoot in order to get a faster settling time. When the overshoot

enters the tracking bounds, tune this parameter ε gradually and slightly around

this value.

Since one dynamic term has been added in the control signal, the system will move

the eigenvalues away from the imaginary axis, thanks to the nonlinear part, which will
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enhance the robustness of the system. And the only part one need to change is the

coefficient term ε in ρ after one chooses the feedback gain F .

7.4 Simulations

I now illustrate the results of previous section in the following example. I will use the

model in (7.1) with a = 1, δ = 0.01 and r = 1. I will also compare the results with those

of time optimal control.

The parameters chosen are:

W =




10 0

0 10


 , F = [−50 − 10], ε = 133.5 (7.21)

Figure (7.6) gives the controlled output y under the TOC (dot-dash line) and ATOT

(solid line) approaches. The settling time under ATOT is ts = 1.8110, which is very close
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Figure 7.6: Controlled output for the whole process

to the optimal value ts = 1.8100. While the settling time with TOC is 1.8586. One can

see there exists much difference.
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Figure 7.7: Controlled output for a selected period

In Figure (7.7), one sees that the ATOT is faster that the TOC under the same

definition of settling time. Although the time one can spare is very short, this little

improvement will be very useful in some actual physical systems, such as the hard disk

drive servo systems. Furthermore, the controller of ATOT is robust and is able to reject

noise as well. It shows the advantage over the TOC.

Figure (7.8) gives the controlled signal, which is continuous and will decay when the

output converges to the desired position. Both linear part and nonlinear part contribute

different weight to the CNF control law at different stages of the control.

Moreover, let us present a figure in (7.9) about the relationship between different

values of ε and settling time. It gives one some clues on how to choose appropriate ε for

practical use.

7.5 Conclusion

In this chapter, I proposed and defined the ATOT problem, and presented the formula of

the optimal settling time under ATOT control. The composite nonlinear feedback control
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Figure 7.8: The control signal
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Figure 7.9: Relationship between ε and settling time

serves as a solution to approximate the optimal settling time. Further research will be

focused on finding the possible rigorous relationship between the optimal settling time

Hyj
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and the adjusting parameter in CNF controllers. It will also be of interest to investigate

the ATOT problem for higher order systems and more general systems if applicable.



Chapter 8

Conclusion

In this study, the author developed a new method with a simple structure in order

to track set-point signals under actuator saturation for general continuous-time and

discrete-time linear systems under state feedback and measurement feedback. I proposed

a combination of a linear state feedback controller, uL, and a nonlinear controller, uN

with a tuning parameter ρ so that by tuning the parameter ρ, I were able to get better

performance than that obtained by using only a linear controller uL. Simulation examples

clearly showed the improvement of system performance and in some cases there was very

significant improvement. In this chapter, I will give a broader view of the CNF scheme,

refer to its possible applications and propose some possible future research directions.

8.1 Tuning Mechanism of ρ

The expectation for improved performance by using CNF control is reasonable as when

the parameter ρ vanishes, the combined controller, uL + uN, reverts to its linear counter-

part uL as if no additional nonlinear part uN has been added. Thus, by carefully tuning

the parameter ρ in uN, it is quite probable that one can get better performance. The

added nonlinear part, uN, changes the root loci of the closed-loop system by the tuning

parameter ρ and uN’s effect on the system performance has clear physical meaning in

SISO case as shown in Chen et al. (2003) [19] but in general, this clear physical meaning

cannot be carried over to MIMO case.

153
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The root loci of MIMO systems are changed but their effects on the system perfor-

mance are not clear due to the coupling of different channels. In the literature, no clear

physical meaning has been found for the relationship between the poles of the closed-

loop systems and the system performance in each channel (Skogestad and Postlethwaite,

1996) [65]. Thus, in general, the popular concepts like gain margin and phase margin in

SISO case are not similarly defined in MIMO systems.

In fact, Skogestad and Postlethwaite (1996) [65] also show that no generally good

methods have been developed to take care of channel coupling in MIMO systems. Nev-

ertheless, one can still seek assistance from decoupling control (Wang, 2002) [76] or some

conventional design methods like Rank Dominance Compensation Design (Stephanopou-

los, 1986 [68]; Skogestad and Postlethwaite, 1996 [65]). However one has to add a

certain pre-compensator to the plant and then design the controller based on this pre-

compensated plant. Consequently the controller including the pre-compensator becomes

more complex and will cause more difficulties when tuning ρ in uN. It is thus necessary

for one to make a reasonable trade-off between the merits of decoupling control and the

difficulties of parameter tuning.

On the other hand, the conditions regarding ρ are more mathematical although I did

give some detailed procedures on how to tune it. More practical guidelines are needed

which can only be obtained through further research. The reason is that for multivariable

control systems, no generally good loop gain tuning methods have been developed. All

currently available methods are typically rather problem-specific (Stephanopoulos, 1986)

[68]. However, one may still follow some of these methods such as sequential loop closing

method which takes care of each loop one by one according to certain loop index and

hopefully, one can tune ρ satisfactorily for his problem at hand.

Because of possible difficulties in tuning ρ, intensive simulations become very im-

portant in practice as simulation usually gives very useful information about system

behavior so that one can avoid certain adverse responses due to improper parameter se-

lection. Note that the MATLAB toolkit has been developed for this purpose, see Cheng

et al. 2004 [22]. The academic trial version can be downloaded from http://bmchen.net.
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8.2 Choice of Linear Controller

The CNF controllers are based on linear state feedback controllers which do not violate

control constraints. Therefore, for designing this linear controller, several methods de-

veloped in the literature (Gutman and Hagander, 1986 [30]; Lin, 1998 [52] and Blanchini

and Miani, 2000 [11]) can be used. The methods in Gutman and Hagander (1986) [30]

and Blanchini and Miani (2000) [11] are of more theoretical significance although they

are applicable to more general cases as the authors did not propose highly efficient algo-

rithms to find the controller. In other words, one can be sure that a controller exists so

long as certain conditions are met but one may not find a proper one.

The so-called low gain feedback control design methodology proposed in Lin (1998)

[52], however, is of much interest to the author. This systematic method with clear easy-

to-follow algorithms can be used to find a family of feedback gain matrices and thus gives

one more freedom to choose an appropriate one for his use. Therefore, low-gain feedback

design may well serve to expand the domain of attraction in the CNF design. In some

cases, the domain of the CNF controller may be too small, especially under measurement

feedback cases. One possible solution is to change the linear state feedback gain F so

that the domain of attraction will be expanded. Low-gain feedback thus offers a very

good choice of different linear controllers for use.

On the other hand, in the CNF designs I propose not only CNF controller uL + uN,

but also the linear controller uL which does not violate the control constraints. The

conditions imposing on the system for controllers design are some which connect initial

conditions of the plant, initial conditions of the observer (for measurement feedback cases

only), the reference levels and the saturation levels. They must all be checked in order

to get a proper CNF controller. When ρ is set to zero(s), one gets a linear controller

uL. By closely investigating the proposed conditions for CNF controller design, one

may find some effective algorithm. It is basically a problem of the determination of

domain of attraction. For this aim, several methods dealing with ellipsoidal, polyhedral

or smoothed domains suggested in Blanchini and Miani (2000) [11] may be used.

Obviously, the above-mentioned low-gain feedback may also be used to expand do-
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main of attraction so that one can get a controller with a larger domain of attraction

which is rather important in real applications.

8.3 Dealing with Asymmetric Saturation

Although the CNF schemes serve to offer improved performance for general linear systems

with actuator saturation, the actuator saturation under investigation is only symmetric

saturation while asymmetric saturation is not considered. This asymmetry may cause

certain problems which add difficulties to controller design (Gutman and Hagander,

1986) [30]. For example, the domain of attraction will be distorted due to this asymmetry.

In a recent paper, Hu et al. (2002) [37] reported that a totally different method than

that used for their previous results on linear SISO ANCBC systems with symmetric

saturation in Hu and Lin (2001) [36] had to be adopted when they considered asym-

metric saturation. The reason is that the symmetry property often simplifies theoretical

development but asymmetric saturation may cause great difficulties in this development.

One possible method to deal with asymmetric saturation is to cut down the saturation

levels if both saturation limits are of opposite signs so that one gets a restricted symmetric

saturation. One then carries out the CNF controller design but it can be easily seen that

the overall performance will not be good enough as one does not make use of the full

potential of the actual saturation levels. For example, since the magnitudes of both

limits are significantly different, say the upper limit is 1 while the lower limit is either

0.1 or -0.1, if one forces both limits to the same limit levels (in this example, 0 or 0.1)

one will end up with very bad performance as the control input has been confined to a

very small level or even zero.

Another possible modification to deal with this asymmetry for the CNF controller

design could be a shift of saturation center, which is the average of both saturation

limits. In that case, the effects of different control levels should be carefully examined

and simulation is important in order to understand how control limits affect the system

behavior. Trial and error seems unavoidable and further investigations are needed before

a systematic method may be obtained. In the case when one has to seek for a possible
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specific solution for the specific control problem at hand, simulations also play a key role

as one need to know the possible effects of change of certain parameters on the system

performance, which may give one some guidelines for controller design.

8.4 Potential Applications

Since I have proposed CNF controllers for both state feedback case and measurement

feedback cases, and for both continuous-time and discrete-time linear systems, I believe

that this method can be widely used in practice.

Measurement feedback is quite commonly used in practice, as it is rarely seen or

almost impossible that all states can be obtained. Also, digital computers and special

purpose digital control chips have been used extensively so far, and it seems that almost

no modern controllers use only continuous-time processing elements (Aström and Wit-

tenmark, 1997 [3]). Just as easy setup and convenient parameter tuning of PID control

leads to its usage in almost 85% loops in modern chemical plants and other large-scale

plants (Aström and Wittenmark, 1997 [3]), I believe that the CNF controller can offer

field control engineers a new choice of simple controller with improved performance.

Also, actuator saturation is almost unavoidable in practical situations. Thus the CNF

schemes may also be used to take good care of actuator saturation in many practical

control loops. In fact, even when no actuator saturation exists or the control signal can

never exceed the saturation limits, the CNF schemes may still offer improved performance

compared to those using only linear controller.

As shown previously, in order for the CNF schemes to play a more important role

in practice, more research should be focused on the tuning method of ρ in uN so that

convenient methods may be proposed. At least good tuning methods should be proposed

for certain specific commonly used control processes.

On the other hand, possible modifications for the CNF schemes to deal with dis-

turbance reduction or elimination should be pursued. PID has excellent property of

elimination of constant bias widely occurring in practical control processes by error in-

tegral control. It is possible also to introduce this error control in order to reduce or
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eliminate constant bias. The method is to augment the plant to include the error signals

of reference signals and controller outputs as augmented states and design an enhanced

CNF controller for this augmented plant in order to force the whole state vector to stay

within a compact neighborhood of the origin and thus recover the almost accurate track-

ing of the reference signals. If under some conditions, the augmented state vector does

stop at some point so that the error signal is forced to be zero(s), the accurate tracking

of the reference signals is achieved.

For disturbances other than constant bias, so long as they are slowly changing, this

enhanced CNF schemes can be still used but the performance may not be the same as

that for the case of constant bias.

For fast changing disturbances, further investigation must be done in order to see

whether the CNF schemes can be tailored to tackle them. Methods used in output reg-

ulation may be tried as they are good at tackling fast changing disturbances so long as

they are produced by some linear exo-systems. For other type of fast changing distur-

bances, other methods like PID control with input and output constraints (Glattfelder

and Schaufelberger, 2003 [28]), model predictive control with constraints (Maciejowski,

2002 [59]) seem quite promising. If these disturbances are of stochastic nature, methods

developed for stochastic control may be attempted (Aström, 1970 [2]).

8.5 Nonlinear Extension

Finally, I have extended the CNF schemes to nonlinear linearizable SISO systems under

state feedback. Extension to nonlinear linearizable MIMO systems under state feedback

is possible but the theoretical results may be rather restrictive and further research is

certainly needed to get a less restricted result. I also extended the state feedback CNF

scheme to partial linear systems which have nonlinear zero dynamics.

In practice it is quite possible that even though one cannot find rigorous stability

analysis for some controller design they work very well. This phenomenon occurs even

more often in simulations (Walkman, 1986 [78]). Therefore, in order to get theoretical re-

sults which apply to more general cases, one must pay close attention to these practically
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workable designs in order to generalize current results as they are typically not based on

rigorous theoretical analysis. These practically workable designs should be investigated

closely in order to generalize current results as they are typically not based on rigorous

theoretical analysis.

Till now, although there are some promising results on stabilization and output reg-

ulation of nonlinear systems (Byrnes et al., 1996 [13]; Kokotović and Arcak, 2001 [48]),

there are almost no discussions on the improvement of system performance. Further re-

search should be conducted on applying CNF control to other possible classes of nonlin-

ear systems in order to provide some insights into providing improved set-point tracking

performance for even more general nonlinear systems.

The basic ideas for CNF control may be modified for this improvement. A basic

controller should be found to solve the set-point tracking first as done in the literature

(Isidori, 1995 [42]; Khalil, 2002 [47]; and so on). The next step should be to include

additional controller action properly to get improved performance. Due to the compli-

cated system behavior of nonlinear systems, there is still a very long way to go before a

possible solution can be found.

8.6 Future: Towards Transient Performance Improvement

for More General Systems

Addtition to the possible refinement mentioned above, it is instructive also for one to

see the CNF scheme from a broader viewpoint. Specifically, from the point view of

feedback, this CNF simply explores the possibility of time-changing feedback laws in

improving system performance. By setting the saturation levels to be infinity, it can

be used in general linear systems without actuator saturation. This idea is not unusual

in time-varying systems where due to the time-varing nature of systems dynamics the

feedback gain may change accordingly, and in some finite-time discrete-time optimal

control systems, where a time-series of feedback gain must be sought to reach certain

optimal performance index. For linear time-invariant systems, fixed feedback gain is

usually adopted and most methods like pole placement, LQR, and H2, H∞ methods
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consider fixed feedback gain control only.

With today’s software and hardware capabilities such as high-potential calculating

capability and low prices of advanced control components, it is time for one to consider

using time-varying feedback gains in order to get better system performance especially in

very stringent situations like NANO dimension manufacturing. Similar to loop shaping, it

is possible for one to shape system performance stage by stage. Obviously, this should be

based on exact prediction of closed-loop system behavior. Nevertheless, it can be loosen

to be effective to certain range of performance so that performance robustness and hence

structural and controller robustness may be considered also. All these considerations

are based on the idea of changing feedback gains under different conditions, which is

common in gain scheduling in adaptive control. However, for each specific operating

condition of gain schedule control, the gain is still a fixed one. I hope that gradually,

with further research, the mechanism of how to tune the feedback gains will be more and

more evident so that it can be used easily and broadly in practice.
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