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Summary

In this paper, we present a uni�ed framework to analyze rationalizable

strategic behavior in any arbitrary games by using Harsanyi�s notion of type.

(i) We investigate properties of rationalizability in general games. Speci�cally,

we show that the set of all the rationalizable strategy pro�les is the largest

rationalizable set in product form. Moreover, we show that the largest ratio-

nalizable set can be derived by the (possibly trans�nite) iterated elimination of

never-best responses (IENBR). In particular, IENBR is a well-de�ned order-

independent procedure. (ii) We investigate the relationship between rational-

izability and Nash equilibrium in general games. We provide a su¢ cient and

necessary condition to guarantee no spurious Nash equilibria in the reduced

game after the IENBR procedure. (iii) We formulate and prove that ratio-

nalizability is the strategic implication of common knowledge of rationality in

general games.

Keywords: Type space; Monotonicity; Rationalizability; Iterated elimination;

Nash equilibrium; Common knowledge; Rationality
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1. Introduction

The notion of rationalizability was introduced independently by Bernheim

(1984) and Pearce (1984) and thus far has become one of the most important

solution concepts in non-cooperative games. The basic idea behind this notion

is that rational behavior must be justi�ed by �rational beliefs�and conversely,

�rational beliefs�must be based on rational behavior. The notion of ratio-

nalizability captures the strategic implications of the assumption of �common

knowledge of rationality�(see Tan and Werlang (1988)), which is very di¤er-

ent from the assumption of �commonality of beliefs�or �correct conjectures�

behind an equilibrium (see Aumann and Brandenburger (1995)).

In the literature, the study of rationalizable strategic behavior is restricted

to �nite games with continuous payo¤functions. Since many important models

arising in economic applications are games with in�nite strategy spaces and

discontinuous payo¤ functions, e.g., models of price and spatial competition,

auctions, and mechanism design, it is clearly important and practically relevant

to extend the notion of rationalizability to very general situations with various

modes of behavior. Epstein (1997) provided a uni�ed �model of preference�to

allow for di¤erent categories of preferences such as subjective expected utility,

probabilistically sophisticated preference, Choquet expected utility and the

multi-priors model, and presented the notion of P�-rationalizability. However,

from a technical point of view, Epstein�s (1997) analysis relies on topological

assumptions on the game structure and, in particular, most of his discussion

on rationalizability is restricted to �nite games. Apt (2007) relaxed the �nite

set-up of games and studied rationalizability by an iterative procedure, but
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Apt�s (2007) analysis requires players�preferences to have a form of expected

utility. In this paper we study rationalizable strategic behavior in arbitrary

games with general preferences.

We o¤er a de�nition of rationalizability in general situations (De�nition

1). Roughly speaking, a set of strategy pro�les is regarded as �rationalizable�

if every strategy in this set is justi�ed by a type from the set. We show

that rationalizable strategies can be derived from an iterated elimination of

never-best responses (IENBR) (Theorem 1).

To de�ne the notion of rationalizability, we need to consider a system

of preferences/beliefs in every subgame. Following Epstein�s (1997) notion

of �model of preference,� by using Harsanyi�s (1967-68) notion of type, we

introduce the �model of type,�which speci�es a set of admissible and feasible

types for each of players in every contingencies. For each type of a player,

the player is able to make a decision over his own strategies. Our approach is

topology-free and is applicable to any arbitrary games.

In this paper, we investigate the relationship between rationalizability and

Nash equilibrium and present a necessary and su¢ cient condition for no spu-

rious Nash equilibria (Theorem 2). This paper is thereby closely related to

Chen et al.�s (2007) work on strict dominance in general games. In this paper,

we also study the epistemic foundation of rationalizability in general games;

in particular, we formulate and prove that rationalizability is the strategic

implication of common knowledge of rationality in general settings (Theorem

3).

The rest of this paper is organized into �ve sections. Section 2 is the set-
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up. Sections 3 and 4 present the main results concerning rationalizability with

IENBR and Nash equilibrium respectively. Section 5 provides the epistemic

foundation for rationalizability. Section 6 o¤ers some concluding remarks.

2. Set-up

Consider a normal-form game

G � (N; fSigi2N ; fuigi2N);

where N is an (in)�nite set of players, Si is an (in)�nite set of player i�s

strategies, and ui : S ! R is player i�s arbitrary payo¤ function where S �

�i2NSi. For s 2 S let s � (si; s�i). A strategy pro�le s� is a (pure) Nash

equilibrium in G if for every player i,

ui (s
�) � ui

�
si; s

�
�i
�
8si 2 Si.

The notion of �type�by Harsanyi (1967-68) is a simple and parsimonious

description of the exhaustive uncertainty facing a player, including the player�s

knowledge, preferences/beliefs, etc. Given one player i�s type, he has one

corresponding preference over his own strategies, according to which he can

make his decision. We consider a model of type (on G):1

T (�) � fTi(�)gi2N ;
1This is in the same spirit of Epstein�s (1997) �model of preference�; see also Chen and

Luo (2010).
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where Ti(�) is de�ned for every (nonempty) subset S 0 � S and every player

i 2 N . The set Ti(S 0) is interpreted as player i�s type space in the reduced game

GjS0 � (N; fS 0igi2N ; fuijS0gi2N), where uijS0 is the payo¤ function ui restricted

on S 0. Each type ti 2 Ti(S 0) has a corresponding preference relation %ti over

player i�s strategies in Si. The indi¤erence relation, �ti, is de�ned as usual,

i.e., si �ti s0i i¤ si %ti s0i and s0i %ti si. For instance, we may consider Ti(S 0) as

a probability space or a regular preference space de�ned on S 0. The following

example demonstrates that the analytical framework can be applied to �nite

games where the players have the standard subjective expected utility (SEU)

preferences.

Example 1. Consider a �nite game G. Player i�s belief about the strategies

his opponents play in the reduced game GjS0 is de�ned as a probability distri-

bution �i over S
0
�i, i.e., �i 2 �

�
S 0�i
�
where �

�
S 0�i
�
is the set of probability

distributions over S 0�i. For any �i, the expected payo¤ of si can be calculated

by Ui (si; �i) =
P

s�i2S0�i
ui (si; s�i) � �i (s�i) where �i (s�i) is the probability

assigned by �i to s�i. That is, �i generates an SEU preference over Si. For

our purpose we may de�ne a model of type (on G) as follows:

T (�) � fTi(�)gi2N ;

where, for every player i 2 N , Ti(S 0) = �
�
S 0�i
�
for every (nonempty) subset

S 0 � S.

Throughout this paper, we impose the following two conditions, C1 and

C2, for the model of type.
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C1 (Monotonicity) 8i, Ti(S 0) � Ti(S 00) if S 0 � S 00.

The monotonicity condition states that when one player faces greater strate-

gic uncertainty, the player possesses more types to be used for resolving un-

certainty. Under C1, Ti � Ti (S) can be viewed as the �universal�type space

of player i.

For s 2 S, player i�s Dirac type �i (s) is a type with the property:

8s0i; s00i 2 Si; ui(s0i; s�i) � ui(s00i ; s�i) i¤ s0i %�i(s) s00i :

A Dirac type �i (s) is a degenerated type with which player i behaves as if he

faces a certain play s�i of his opponents. The following condition states that

the type space on a singleton contains only a Dirac type. This condition seems

to be a rather natural requirement when strategic uncertainty is reduced to

the case of certainty.

C2 (Diracability) 8i, Ti(fsg) = f�i (s)g if s 2 S.

In �nite games, it is easy to see that C1 and C2 are satis�ed for the standard

SEU preference model de�ned in Example 1. Note that C1 and C2 imply that

8i, �i (s) 2 Ti(S 0) if s 2 S 0, i.e., the type space on S 0 contains all the possible

Dirac types on S 0.

A strategy si 2 Si is a best response to ti 2 Ti(S
0) if si %ti s0i for any

s0i 2 Si. Notice that even if a reduced game GjS0 is concerned, any strategy

of player i in the original game G can be a candidate for the best response.

Let BR (ti) denote the set of best responses to ti. The following lemma states
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that Nash equilibrium can be de�ned by the Dirac type.

Lemma 1. s� is a Nash equilibrium i¤, for every player i, s�i is a best response

to �i (s�).

Proof. s� is a Nash equilibrium i¤, for every player i, ui (s�) � ui
�
si; s

�
�i
�

8si 2 Si i¤, for every player i, s�i %�i(s�) si 8si 2 Si i¤, for every player i, s�i is

a best response to �i (s�). �

Next we provide the formal de�nition of rationalizability in general games.

The spirit of this de�nition is that for every strategy in a rationalizable set,

the player can always �nd some type in the type space de�ned over this set to

support his choice of strategy.

De�nition 1. A subset R � S is rationalizable if 8i and 8s 2 R, there exists

some ti 2 Ti(R) such that si 2 BR(ti).

The following lemma asserts that there is the largest rationalizable set.

Lemma 2. Let R� � [R is rationalizableR. Then R� is the largest rationalizable

set.

Proof: It su¢ ces to show that R� is a rationalizable set. Let s 2 R�. Then,

there exists a rationalizable set R such that s 2 R. Thus, for every player i,

there exists some ti 2 Ti(R) such that si 2 BR(ti). Since R � R�, by C1,

ti 2 Ti(R�): �

Although Cartesian-product form is not imposed on rationalizable sets, the

following lemma shows that the largest rationalizable set must be in this form.
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Lemma 3. If R is rationalizable, then �i2NRi is rationalizable, where Ri �

fsij s 2 Rg. Hence, R� = �i2N ([R is rationalizableRi).

Proof: Let s 2 �i2NRi. Then, for every player i, there exists ti 2 Ti(R) such

that si 2 BR(ti). Since R � �i2NRi, by C1, ti 2 Ti(�i2NRi).

SinceR�i = [R is rationalizableRi for all i, by Lemma 2,�i2N ([R is rationalizableRi)

is rationalizable and, hence, R� = �i2N ([R is rationalizableRi). �

3. IENBR and rationalizability

In the literature, rationalizability is also de�ned as the outcome of an iter-

ated elimination of never-best responses. We de�ne a trans�nite elimination

process that can be used for any arbitrary game.2 Let �0 denote the �rst

element in an ordinal �, and let � + 1 denote the successor to � in �. For

any S 0 and S 00 with S 00 � S 0 � S, S 0 is said to be reduced to S 00 (notation:

S 0 ! S 00) if, 8s 2 S 0nS 00, there exists some player i such that si =2 BR (ti) for

any ti 2 Ti (S 0).

De�nition 2. An iterated elimination of never-best responses (IENBR) is

a �nite, countably in�nite, or uncountably in�nite family fR�g�2� such that

R�
0
= S, R� ! R�+1, (and R� = \�0<�R�

0
for a limit ordinal �), and R1 �

\�2�R� ! R0 only for R0 = R1.

A central result of this paper is provided below, which tells that De�nitions

1 and 2 are equivalent.

2See Chen et al.�s (2007) Example 1 for the reason why we need a trans�nite process in
general games.
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Theorem 1. R1 = R�.

Proof. (i) By De�nition 2, 8s 2 R1, every player i has some ti 2 Ti(R1)

such that si 2 BR(ti). So R1 is a rationalizable set and, hence, R1 � R�.

(ii) By Lemma 2, R� is a rationalizable set and, by C1, survives every

round of elimination in De�nition 2. So R� � R1. �

The de�nition of IENBR procedure does not require the elimination of all

never-best response strategies in each round of elimination. This �exibility

raises a question whether any IENBR procedure results a unique outcome.

Theorem 1 implies that IENBR is a well-de�ned order-independent procedure.

Corollary 1. R1 exists and is unique. Moreover, R1 is nonempty if G has

a Nash equilibrium.

Proof. R� exists and is unique and, by Theorem 1, R1 exists and is unique

for any game.

Let s� be a Nash equilibrium in G. Since s�i is a best response to �i (s
�) for

every player i, by C2, fs�g is a rationalizable set. By Theorem 1, s� 2 R1. �

4. Nash equilibrium and rationalizability

Corollary 1 shows that every Nash equilibrium survives IENBR and hence

every Nash equilibrium is a rationalizable strategy pro�le. However, the fol-

lowing example taken from Chen et al. (2007) demonstrates that a Nash

equilibrium in the reduced game after an IENBR procedure may be a spurious

Nash equilibrium, i.e., it is not a Nash equilibrium in the original game.
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Example 2. Consider a two-person symmetric game: G �
�
N; fSigi2N ; fuigi2N

�
,

where N = f1; 2g, S1 = S2 = [0; 1], and for all xi; xj 2 [0; 1], i; j = 1; 2, and

i 6= j (cf. Fig. 1)

ui(xi; xj) =

8>>>><>>>>:
1, if xi 2 [1=2; 1] and xj 2 [1=2; 1],

1 + xi, if xi 2 [0; 1=2) and xj 2 (2=3; 5=6),

xi, otherwise.

xj

1/2

1/2

1

1

1+xi

xi

xi

1

xi

2/3

5/6

.

.

Figure 1. Payo¤ function ui (xi; xj).

It is easily veri�ed that R1 = [1=2; 1] � [1=2; 1] since every strategy si 2

[0; 1=2) is strictly dominated and hence never a best response. That is, IENBR

leaves the reduced game GjR1 �
�
N; fR1i gi2N ; fuijR1gi2N

�
that cannot be
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further reduced. Clearly, R1 is the set of Nash equilibria in the reduced game

GjR1. However, it is easy to see that the set of Nash equilibria in game

G is fs 2 R1j s1; s2 =2 (2=3; 5=6)g. Thus, IENBR generates spurious Nash

equilibria s 2 R1 where some si 2 (2=3; 5=6).

For any subset S 0 � S, we say that G � (N; fSigi2N ; fuigi2N) has well-

de�ned best responses on S 0 if 8i and 8s 2 S 0, BR (�i (s)) 6= ?. Let NE denote

the set of Nash equilibria in G, and NEjR1 the set of Nash equilibria in the

reduced game GjR1 � (N; fR1i gi2N ; fuijR1gi2N). A su¢ cient and necessary

condition under which rationalizability generates no spurious Nash equilibria

is provided below.

Theorem 2. NE = NEjR1 i¤ G has well-de�ned best responses on NEjR1.

Proof. (�Only if� part.) Let s� 2 NEjR1. Since NEjR1 = NE, s�i 2

BR (�i (s
�)) 8i. Thus, BR (�i (s�)) 6= ? for all i.

(�If� part.) (i) Let s� 2 NE. By Corollary 1, s� 2 R1 and, hence,

s� 2 NEjR1. SoNE � NEjR1 : (ii) Let s� 2 NEjR1 . SinceG has well-de�ned

best responses on NEjR1 , for every player i there exists some ŝi 2 Si such that

ŝi 2 BR (�i(s�)), which implies that ŝi %�i(s�) s�i and (ŝi; s��i) 2 R1. Since

s� 2 NEjR1, s�i %�i(s�) ŝi. Therefore, s�i ��i(s�) ŝi and, hence, s�i 2 BR (�i(s�)).

That is, s� 2 NE. So NEjR1 � NE. �

In Example 2, it is easy to verify that (i)G has no well-de�ned best response

on the set of spurious Nash equilibria �i.e. fs 2 R1j s1 2 (2=3; 5=6) or s2 2 (2=3; 5=6)g

and (ii) G has well-de�ned best responses on the set of non spurious Nash

equilibria � i.e. fs 2 R1j s1; s2 =2 (2=3; 5=6)g. This su¢ cient and necessary
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condition in Theorem 2 does not involve any topological assumption on the

original or the reduced games. In Chen et al.�s (2007) Corollary 4, some

classes of games with special topological structures were proved to �preserve

Nash equilibria�for the iterated elimination of strictly dominated strategies.

These results are also applicable to the IENBR procedure.

The following corollary asserts that if one game is solvable by the IENBR

procedure, the unique rationalizable strategy pro�le is the only Nash equilib-

rium.

Corollary 2. NE = R1 if jR1j = 1.

Proof. Let R1 = fs�g. By C2, s�i is a best response to �i (s�) for every player

i. So s� 2 NE and hence R1 � NE. By Corollary 1, NE � R1. �

5. Epistemic foundation

In this section we provide epistemic conditions for rationalizability in gen-

eral games. A model of knowledge for a game G is given by

M (G) � (
; fsigi2N ; ftigi2N) ;

where 
 is the space of states with typical element ! 2 
, si (!) 2 Si is player

i�s strategy at state !, and ti (!) 2 Ti is player i�s type at state !.

A subset E � 
 is referred to as an event. Denote by s (!) the strategy

pro�le at ! and let

SE � fs (!) j ! 2 Eg.
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We extend the model of type in Section 2 to the space of states as follows.

Consider a model of type on 
:

eT (�) � feTi(�)gi2N ;
where eTi(�) is de�ned over every (nonempty) subset E � 
. The set eTi(E) is
referred to as player i�s type space for event E, and each type ti 2 eTi(E) has a
preference relation %ti on player i�s strategies in Si. For our purpose, we need

the following conditions for the model of type on 
.

C3 (Continuity) For any sequence of events
�
El
	1
l=1
, \1l=1 eTi �El� � eTi �\1l=1El�

8i.

C4 (Consistency) For any event E � 
, eTi(E) = Ti(SE) 8i.
The continuity condition C3 requires that the intersection of type spaces

on a sequence of events is included in the type space on the intersection of

the sequence of events. This kind of condition is related to the property of

knowledge structure termed �limit closure� in Fagin et al. (1999), which is

satis�ed by most of type models discussed in the literature, e.g., (countably

additive) probability measure spaces and regular preference models. The con-

sistency condition C4 requires that the type space on an event is consistent

with the type space on the strategies projected from the event. This condition

is much in the same spirit of �marginal consistency� imposed on preference

models (see Epstein (1997)).
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Say �player i knows an event E at !�if ti (!) 2 eTi (E). Let
KiE � f! 2 
j i knows E at !g.

For simplicity, we assume the knowledge operator satis�es the axiom of knowl-

edge, i.e., KiE � E. An event E is called a self-evident event in E, if

K E = E � E. De�ne the event �E is mutual knowledge�as:

KE � \i2NKiE;

and the event �E is common knowledge�as:

CKE � \1l=1K lE

where K1E = KE and K lE = K
�
K l�1E

�
for l � 2. The following lemma

shows that some useful properties about the knowledge operator K and the

common knowledge operator CK. It is easy to see that these properties are

satis�ed by the standard semantic model of knowledge with partitional infor-

mation structures (see, e.g., Osborne and Rubinstein (1994, Chapter 5)).

Lemma 4. The operators K and CK satisfy the following properties:

1. E � F ) KE � KF .

2. \1l=1KEl = K
�
\1l=1El

�
.

3. ! 2 CKE i¤ ! 2 E for some self-evident E � E.
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Proof. (1) Let ! 2 KE. Then ti (!) 2 eTi (E) 8i. If E � F , by C1 and C4,eTi (E) � eTi (F ). Hence ti (!) 2 eTi (F ) 8i, i.e., ! 2 KF .
(2) By Lemma 4.1, it su¢ ces to show \1l=1KEl � K

�
\1l=1El

�
. Let ! 2

\1l=1KEl. Then ! 2 KEl for all l � 1 i¤, for all i, ti (!) 2 eTi �El� for all l � 1
i¤, for all i, ti (!) 2 \1l=1 eTi �El�. By C3, ti (!) 2 eTi �\1l=1El� for all i, i.e.,
! 2 K

�
\1l=1El

�
.

(3) (�Only if� part.) Let ! 2 CKE. By KE � E and Lemma 4.1,

K l+1E � K lE for all l � 1. By Lemma 4.2, K (CKE) = K
�
\1l=1K lE

�
=

\1l=2K lE = CKE. Let E = CKE. Then E is self-evident and ! 2 E .

(�If�part.) Let ! 2 E = K E � E. By Lemma 4.1, K l+1 E = K l E �

K lE for all l � 1. So ! 2 E � \1l=1K lE = CKE. �

Say player i is �rational at !�if si (!) is a best response to ti (!). Let

Ri � f! 2 
j i is rational at !g

and

R � \i2NRi.

That is, R is the event �everyone is rational.�The following Theorem 3 pro-

vides epistemic conditions for the notion of rationalizability. This result shows

that rationalizability is the strategic implication of common knowledge of ra-

tionality.

Theorem 3. For any model of knowledge, SCKR � R�. Moreover, there is a

model of knowledge such that SCKR = R�.
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Proof. Let s 2 SCKR. Then there exists ! 2 CKR such that s (!) = s.

By Lemma 4.3, ! 2 R for some self-evident event R � R. Therefore, for

any !0 2 R , si (!0) 2 BR (ti (!0)) and ti (!0) 2 eTi � R � for all i. By C4,
ti (!

0) 2 Ti

 
S
R
!
. Thus, S

R
is rationalizable and hence s 2 S

R
� R�.

De�ne 
 � R�. For any ! = fsigi2N 2 
, for every player i de�ne

si (!) = si and ti (!) = ti 2 Ti (R�) such that si 2 BR (ti). Clearly, every

player i is rational across states in 
. By C4, 
 � K
. Therefore, 
 = CKR

and, hence, SCKR = R�. �

6. Concluding remarks

In this paper we have presented a uni�ed framework to analyze rationaliz-

able strategic behavior in any arbitrary game. In particular, we introduce the

�model of type�to de�ne the notion of rationalizability in games with (in)�nite

players, arbitrary strategy spaces, and arbitrary payo¤ functions. One impor-

tant feature of this paper is that the framework allows the players to have

various preferences which include subjective expected utility as a special case.

We have investigated properties about rationalizability in general situa-

tions. More speci�cally, we have shown that the union of all the rationalizable

sets is the largest rationalizable set (Lemma 2) and is in the Cartesian-product

form (Lemma 3). Moreover, we have shown that the largest rationalizable set

can be derived by the (possibly trans�nite) iterated elimination process �i.e.,

IENBR (Theorem 1). As a by-product, we have obtained that IENBR is a

well-de�ned order-independent procedure in general situations (Corollary 1).

In this paper we have investigated the relationship between rationalizabil-
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ity and Nash equilibrium in general games. While every Nash equilibrium

survives the IENBR procedure, a Nash equilibrium in the �nal reduced game

after IENBR may fail to be a Nash equilibrium in the original game. That is,

the IENBR procedure may generate spurious Nash equilibria in in�nite games.

We have thus provided a su¢ cient and necessary condition to guarantee no

spurious Nash equilibria (Theorem 2). In this paper we have also formulated

and proved that rationalizability is the strategic implication of common knowl-

edge of rationality in general settings (Theorem 3).

To close this paper, we would like to point out some extensions of this

paper for future research. The exploration of the notion of extensive-form

rationalizability in dynamic games remains an interesting subject for further

study. The extension of this paper to games with incomplete information is

clearly an important subject for further research. The extension of this paper

to permit social and coalitional interactions in the notion of rationalizability

is also an intriguing topic worth further investigation; cf. Ambrus (2006) and

Luo and Yang (2009) for the related research on coalitional rationalizability.
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