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Summary 

 

In biomedical research involving time-to-event data, individuals may be 

susceptible to several possible outcomes. When an individual experiences more 

than one event in the follow-up process, this gives rise to multiple failure time 

data. In the modeling of such data, a random effect or „frailty‟ term is often 

introduced to accommodate the dependence between event times. In this paper, we 

consider a semi-competing risks framework, where a subject may experience two 

distinct types of events - terminal or non-terminal. In particular, the terminal event 

censors the non-terminal event but not vice versa. We propose frailty modeling for 

such data, where the frailty corresponds to an unknown subject-specific quantity 

which affects both events, leading to a dependence in their times of occurrence. 

Given frailty, a three-path compartment model is used to describe such data. We 

investigated the dependence structure between the events, as well as the covariate 

effects on each event. Extensive simulation studies were conducted to assess the 

performance of the proposed method. We also applied our methodology to data 

from a randomized clinical trial of nasopharyngeal cancer, where a positive 

dependence between recurrence and death was observed, indicating that relapse 

quickens the occurrence of death. This indicates that the association between non-

terminal and terminal events needs to be taken into account, so as to achieve more 

accurate estimates, as shown in our study.  
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0BChapter 1: Introduction  
 

 

8B1.1 Competing risks 
 

Time-to-event data, which is usually encountered in prospective studies, 

are often handled using some form of survival analytical methods. In such studies, 

an individual provides follow-up information on the time-to-event of interest and 

the censoring indicator denoting whether or not the event has occurred. P

1
P However 

in clinical trials comparing therapeutic interventions involving multiple survival 

outcomes, a subject may experience several distinct types of failures. This type of 

data is commonly referred to as competing risks. A competing risk can be defined 

as an occurrence which may preclude the onset of the event of interest, or may 

modify the probability of the onset of the event of interest.P

2
P A special case of 

competing risks occurs if only the first of all possible outcomes is observed, with 

all other outcomes being competing events.  

 

Competing risks data can arise under various circumstances with different 

research objectives. One possible research aim will be to analyze how different 

events can occur in a disease process, without any specific interest in a particular 

outcome. For example, investigators may be interested in examining different 

responses that can occur in patients with respect to changing drug dosage in a 

treatment process, such as in a study looking at how cerebral blood flow changes 

with different dosages of inhaled xenon gas in xenon CT scanning. P

3
P Alternatively, 
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investigators may be interested in the occurrence of a specific event, with all other 

types of events being regarded as interferences or competing events in the process 

leading to the event of interest. As an example, investigators may be interested in 

comparing the incidence of distant metastasis between chemo-radiotherapy and 

radiotherapy in a nasopharyngeal clinical trial. P

4
P While some subjects may have 

experienced distant metastasis, others have experienced competing events such as 

local recurrence or intercurrent death as a first event. Further examples of 

endpoints encountered in competing risks data are found in Pintilie.P

5
P 

 

Table 1: Examples of endpoints together with their possible competing risks P

5
P 

 

Event of interest Possible competing risks 

Local relapse  Relapse at other sites or death 

without local relapse 

 

Distant relapse  Relapse at other sites or death 

without distant relapse 

 

Cause-specific survival Death due to other causes 

 

Non-fatal myocardial 

infarction (MI) 

Cardiovascular death  non-vascular 

death, non-fatal stroke and angina 

 

In the analyses of clinical trials involving time-to-event outcomes, disease-

free and overall survival distributions are often presented to provide an insight of 

treatment efficacy.P

5
P While overall survival gives an indication of how long a 

patient survives from randomization till death, disease-free survival gives an idea 

of how long a patient survives without any disease symptom till a relapse or death. 

It is no doubt that relapse is the only event we can influence by treatment P

6
P, and 

that it is also biologically plausible that the time to relapse is strongly correlated 
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with the time to death (i.e. the occurrence of relapse quickens the death process). 

Hence, it is of interest to investigate how treatment affects the chance of relapse, 

bearing in mind that an assessment of the effect of a particular intervention on 

relapse should not be isolated from its effect on progression to mortality, since 

censoring from mortality may be informative.  

 

 

  

9B1.2 Semi-competing risks 
 

If all types of failures are allowed to be observed until possibly censored 

for each subject, multivariate failure time data arises. However, an analysis of 

multivariate failure time data involving possible recurrent events may be 

complicated by dependent censoring from terminal events such as mortality or 

informative dropout. Events occurring due to this data structure are sometimes 

referred to as semi-competing risks, where a terminal event can censor a non-

terminal outcome, but not vice versa.P

7
P In contrast to the approach adopted in the 

popular competing risks methodology where only the first event is of interest, 

semi-competing risks considers all possible occurrences of events in a natural 

disease process. For example, if death (a terminal event) occurs earlier, it will 

preclude the occurrence of relapse (a non-terminal event). However if relapse 

occurs earlier, both relapse and death may be observed.  
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Where multiple events are observed, it may be of interest to estimate and 

compare treatment efficacy for every outcome, with emphasis on the intermediate 

event. The importance of understanding how therapeutic interventions can bring 

about the occurrence of an intermediate event is underscored by Fine.
7
 In the 

context of allogenic bone marrow transplants in leukemia patients, “the 

distribution of time without relapse corresponds to a setting where death from 

graft versus host disease is preventable”.
7

P In such instances, patients can either die 

following a relapse or following graft versus host disease (GVHD). Hence, it will 

be interesting to understand how bone marrow transplants affect the risk of relapse, 

GVHD, and death after the occurrence of these intermediate events. It will also be 

valuable to know the extent to which relapse hastens the occurrence of death. 

 

Currently, literature on semi-competing risks data is limited; and 

competing risks methods are often used to analyze semi-competing risks data. 

Hence in order to appropriately account for the semi-competing risks data 

framework, analytical methods for estimating and modeling such data are 

proposed and discussed in section 1.6. 
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10B1.3 Frailty 
 

 Most survival models assume that the risk of the study population for 

certain outcomes is homogeneous. However, the homogeneity assumption may 

not be valid as it is not possible to measure all covariates related to the disease of 

interest because of constraints in resources. The presence of unmeasured disease-

related covariates may result in a heterogeneous sample. Frailty accounts for the 

unexplained heterogeneity, which arises mainly due to related individuals or 

events, by introducing random effects into the survival models.P

8
P Examples of data 

describing related individuals are the Minnesota Twin Family Study which 

attempts to assess the impact of genetic and environmental effects on the 

development of psychological traits, Danish Twin Study, and the Twins and 

Multiple Births Association heritability study (TAMBAhs) in Birmingham.  

 

To elaborate on the meaning of frailty, consider multivariate survival data 

with possible correlation between clustered event times. In the context of survival 

times of related individuals, related individuals constitute a “cluster”. Where 

multiple events are observed for the same individual, the individual constitutes a 

“cluster”. Frailty models formulate the dependence of clustered event times by 

introducing a cluster-specific random effect, which is multiplicative on the 

baseline hazard function, to account for heterogeneity within the same cluster. 
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11B1.4 Objectives and Outline of thesis 
 

 

24B1.4.1 Objectives  

 

Semi-competing risks data arises when both non-terminal and terminal 

events occur and are of analytical importance. In survival data, a non-terminal 

event and a terminal event usually refer to morbidity and mortality respectively. 

These two events are usually correlated; and censoring of morbidity by mortality 

is informative. Hence, in this thesis, we want to get a more precise estimate of the 

effect size (in particular, treatment effect) for each clinical outcome, and also to 

characterize the correlation between morbidity and mortality.  

 

We consider strategies for analyzing covariate effects by using frailty 

models to describe the dependence structure and to assess treatment efficacy with 

respect to the terminal and non-terminal events. The compartment model is further 

described in Chapter 3.  It is similar to an illness-death modelP

9
P, which describes 

the risk of moving from one disease-state to another. While the illness-death 

model may be bi-directional (that is, a patient can progress from the state of 

recovery after treatment to disease recurrence and vice versa), the compartment 

model is uni-directional (that is, the change in state is from recovery to disease 

recurrence only).  
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25B1.4.2 Outline 

 

 We have given a description of competing risks in the previous sections. 

Sections 1.1 and 1.2 describe the type of data giving rise to the analytical 

framework of competing and semi-competing risks respectively. Where multiple 

events of an individual can be observed and only the first event is considered, this 

analytical framework constitutes a special case and the most common form of 

competing risks data. If all data points are involved in the analysis, then other 

analytical procedures are required. Section 1.3 briefly defines what is meant by 

“frailty”. Section 1.4 presents the aims and outline of this thesis. Section 1.5 

illustrates terminologies and analytical procedures associated with competing risks. 

Section 1.6 summarizes the development of methodologies proposed specifically 

for analyzing semi-competing risks data. Section 1.7 discusses why current 

competing risks methodologies may not be suitable for semi-competing risks data. 

In addition, it addresses the limitations of semi-competing risks methods proposed 

thus far, and describes how our proposed method can resolve some of these 

limitations. 

 

Chapter 2 illustrates the use of existing methods for semi-competing risks 

data with some clinical examples. Chapter 3 gives an overview of the proposed 

compartment model. The formulation of each path in the compartment model is 

explicitly characterized in this chapter, together with the algorithm used to derive 

the parameter estimates. In the same chapter, we also suggest a graphical method 

for checking the adequacy of the model. In Chapter 4, simulation studies are 
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conducted to evaluate the performance of the proposed model. Treatment effects, 

association between terminal and non-terminal outcomes, censoring proportions 

and sample sizes are varied to investigate their impact on the model. Results 

relating to the precision of the parameter estimates are presented and discussed. 

Chapter 5 applies the proposed method to a nasopharyngeal cancer clinical trial 

(NPC) dataset. We quantify the dependence between relapse and death, as well as 

compare the treatment effects (chemo-radiotherapy versus radiotherapy) on 

relapse and death respectively. In addition, adequacy of the overall model fit to the 

NPC data is checked. Finally, Chapter 6 summarizes and provides some 

discussion on the compartment model approach for analyzing semi-competing 

risks data. Further scope for future work extending our proposed method, is also 

discussed in this chapter.  

 

 

12B1.5 Methods for competing risks data 
 

The Kaplan-MeierP

10
P (KM) estimator is commonly used to report disease-

free and overall survival distributions. However, when competing risks exist, this 

approach may not be an appropriate measure for estimating the survival 

distribution of the primary event. An example involves distant recurrence as the 

primary event and local-regional recurrences as the competing type of failure. The 

Kaplan-Meier approach assumes that censoring is non-informative, that is,  the 

censoring mechanism is independent of the event of interest. P

2
P Hence, the 
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application of the KM method for estimating event-specific probability of 

competing risks can lead to a bias in the estimate.P

11
P 

 

 Referring to the nasopharyngeal clinical trial described in Section 1.1, it 

was observed that distant relapse was the most frequent site of first relapse (38 out 

of 48 first relapses were distant in R and 18 out of 27 in CRT).P

4
P Thus, it was of 

interest to examine the incidence of distant metastasis. However, other competing 

events, such as loco-regional recurrence or death, may preclude the observation of 

distant metastasis. Therefore, the assumption of non-informative censoring under 

the naive KM approach may not be appropriate in this study since it is anticipated 

that the occurrence of loco-regional recurrence may have an effect on distant 

metastasis, and vice versa. For instance, the occurrence of loco-regional 

recurrence may indicate a more rapid development of distant metastasis, should 

the course of treatment remain status quo. This change in risk for distant 

metastasis, after an occurrence of loco-regional recurrence, indicates a 

dependency between loco-regional recurrence and distant metastasis. Furthermore, 

if death occurs first, it will inherently prevent any future observation of distant 

metastasis. However, the KM method censors competing events and treats the 

occurrence of the competing events (death and loco-regional recurrence) as though 

they do not alter (or add information to) the probability of observing distant 

metastasis.  

 

 In view of the limitations of KM for analyzing competing risks data, 

appropriate tools were developed. In general, there are 2 approaches for analyzing 
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competing risks data. They are namely, the bivariate random variable and multiple 

decrement model methods, which are described in greater detail below.  

 

UBivariate random variable 

In this approach, time-to-event data is represented by the pair (T, C) for 

each individual, where T ≥ 0 is the observation time of the first event and C 

indicates the type of event which occurs at time T = t. C takes on a value of 0 if 

the observation is censored administratively, and i (i = 1, 2, …, p) if the first event 

that occurs is of type i.  

  

In the presence of competing risks, the corresponding cause-specific 

hazard (CSH, ( )ih t ), which describes the instantaneous rate of occurrence of the 

iP

th
P event at time t given covariate X, is written as 

0

Pr( , | , )
( ) lim{ }i

t

t T t t C i T t X
h t

t





    
  

 

 The cumulative incidence function (also called sub-distribution) is used to 

describe the probability that the iP

th
P event occurs before or at time t (CIFRiR), given X. 

It is expressed as  

( | ) Pr( , | )iCIF t X T t C i X    

 

CSH is different from the hazard of the sub-distribution (also called sub-

hazard) introduced by Gray (1988)P

12
P. For the iP

th
P event, the sub-hazard is defined 

as 
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0

Pr( , | ( ) ( ), )
( | ) lim{ }

( | )

( | )

i
t

i

i

t T t t C i T t T t C i X
t X

t

f t X

S t X








        




 

Where fRiR(t|X) and SRiR(t|X) are the sub-density and survival functions of the sub-

distribution respectively.  

 

This construction of the hazard function may sound “unnatural”, since it 

takes individuals who have failed from causes other than cause i before time t into 

its computation. However, in reality, individuals who have failed from cause j ≠ i 

may not be at risk of cause i at time t. Hence, this could lead to a difficulty in 

interpreting an individual‟s risk of failure from cause i at time t if he has died from 

other causes at time t - 1.  

 

While Gray‟s sub-hazard is introduced mainly to allow for testing and 

modeling of covariate effects, other tests for equality for cumulative incidence 

have been proposed by Pepe and MoriP

13
P and LunnP

5
P.   

 

 

UMultiple decrement model   

 In this approach, a multivariate survival model is used to analyze 

competing risks data, where each individual is assumed to have a potential time to 

event. An observation time T =  1 2min , ,  , pT T T  is defined, supposing that 

there are potentially p causes of failure and iT  is the time to the iP

th
P event where i = 
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1, 2, …, p. When the first event is observed, the times to the other remaining 

events are considered to be latent.  

 

 Given covariate effects X, a joint survival function (also known as the 

multiple decrement function) can be written as 

1 2 1 1 2 2( , ,..., ; ) Pr( , ,..., ; )p p pS T T T X T t T t T t X    . As it is still not clear how  

time-dependent effects may be incorporated in this multivariate model, covariate 

effects are assumed to be time-invariant.  

 

 Correspondingly, the sub-hazard for the iP

th
P event ( )i t and cause-specific 

hazard ( )ih t in the multiple decrement model framework is  

0

1 2

1 2

Pr( , | ; )
( ) lim{ }

log( ( , ,..., ; ))

...

i
t

p

i
p

t T t t C i T t X
t

t

S t t t X

t
t t t t








    



 


   

 

and 

log( ( ; ))
( ) i

i

S t X
h t

t


 


. 

 

 It is noted that functions of 1 2( , ,..., ; )pS T T T X , which cannot be expressed 

in terms of the cause-specific hazards, are generally non-identifiable. One example 

is the marginal function of the latent failure time, which cannot be estimated from 

the data without making any assumption. The marginals can only be estimated by 
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assuming that event times are independent, so that the cause-specific hazard will 

be equal to the hazard of the marginal function for each event type.  

 

 

UChoice of method for competing risks data 

The choice of analytical method depends on the research question. If the 

objective of a study is to test if a covariate has any impact on the biological 

mechanism, it is suggested that the multiple decrement model be used. Results 

drawn from this model apply to a virtual world where competing risks are absent. 

In contrast, the bivariate random variable approach will probably be preferred if it 

is of interest to compare observed probabilities of events directly while accounting 

for competing risks.P

17
P  

 

 
 

13B1.6 Current methods proposed for semi-competing risks data 
 

There is currently limited literature for semi-competing risks dataP

7,18,19
P In 

order to evaluate the dependence structure between non-terminal and terminal 

event times, Fine et al. formulated the Clayton or gamma frailty copula model in 

the upper wedge where Y1R (time to non-terminal event) ≤ Y2 (time to terminal 

event)
7

P A copula is a function which associates a bivariate distribution function 

),( 21 yyH  to its one-dimensional marginal distribution functions )( 1yF  and 

)( 2yG  defined by the relationship ))(),((),( 2121 yGyFCyyH  P

20
P This means that 
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a copula is a multivariate distribution function defined on the space [0, 1] P

p
P such 

that each of its p marginal distribution follows a uniform distribution on [0, 1]. 

Fine et alP

7,18
P utilizes the marginal distribution of the non-terminal event under 

weaker, but similar assumptions, to those used in multiple decrement models for 

competing risks. Within the observable region of YR1 R≤ YR2R, the joint survival 

function of the two times is expressed as    1

1

21
}1)()({ 1

2

1

1 ySyS YY  where θ ≥ 

1 and 0 ≤ YR1 R≤ YR2 R≤ ∞. )( 11
ySY and )( 22

ySY are marginal survival functions for the 

times to the non-terminal and terminal events respectively.  

 

Figure 1: Diagram illustrating structure of semi-competing risks data
25

 

 

 

 

YR1 

YR2R= YR1 

 YR2R is observed, but  

YR1R is censored by YR2 

Both YR1R and YR2R are censored administratively. (?) 

YR1R is observed but YR2R is 

censored administratively. 

(?) 

Both YR1R 

and YR2R are 

observed. 

Arrow indicates direction of censoring. 

YR2 
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Since the joint survival function originates from the gamma frailty model, 

there are nice properties associated with it. For example, the association parameter 

in the Clayton‟s copula can also be interpreted as the predictive hazard ratio which 

measures the relative risk of death to relapse, apart from measuring the degree of 

dependence between the times to terminal and non-terminal events. In addition, it 

is associated with the conditional Kendall‟s tau, which is yet another measure of 

correlation.P

21
P The appropriateness of the Clayton model on the upper wedge is 

important since inferences pertaining to the marginal survival function of the non-

terminal event time rely on the model specification in the observable region. 

Hence, checking of model adequacy is performed through an extension of Oakes‟ 

estimatorsP

22,23
P A goodness-of-fit statistic can be obtained from the distance 

between two estimators from U(θ) with different weights W(.), where  

~ ~
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2, 2, 2,min( , )qv q vY Y Y P

24
P 

 

Fine et alP

7
P has shown that the estimates are robust to the misspecification 

of the copula. The Clayton model may provide a reasonably good approximation 

to other popular classes of distributions, such as the bivariate exponential, 

bivariate log-normal and Gumbel copulaP

25
P  
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It was not known how covariates influence the relationship between a non-

terminal and terminal outcome in Fine et alP

7
P Thus, GhoshP

19
P considered the testing 

of constant dependence across strata of a discrete covariate, by evaluating whether 

the dependence between the non-terminal and terminal event is the same for both 

treatment and placebo groups. Hypothesis testing of constant dependence on the 

upper wedge is facilitated through the cross-ratio function defined as  

1

1

2 2 1

2 1

2 2 1

( | )
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( | )

Y

Y

y Y y
y y

y Y y
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1
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      and (0, )H   . YR1R and YR2R are 

the times to the non-terminal and terminal events respectively. 

  

Hence, the null hypothesis that the dependence between the two event 

times is constant across levels of a discrete covariate can be written as: 

HR0R: θRdR = θ, 

where 1
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 and d corresponds to the level of the 

covariate. 

 

Testing the above hypothesis is also the same as testing for interaction 

between the covariate X and the association parameter θ in the observable region 

of the event times. However, it is noted that the above test is only valid if the 

Clayton gamma frailty copula model was true. Therefore, the appropriateness of 

using the Clayton copula for the data analyzed should be assessed before checking 

for constant dependenceP

19
P  
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While the degree of dependence between event times has been analyzed 

via the non-parametric concordance statistic, Dignam et al
26

P exemplified 

dependence between event times by using parametric models based on complete 

pairs of Y1 and Y2 event times. The marginal distributions are estimated by treating 

censored/ unobservable Y1‟s as missing data. EM algorithm was used to estimate 

the parameters governing the forms of the survival function of Y1 and of the 

survival function of Y2 conditional on Y1. However, the form of the dependence 

structure between Y1 and Y2 was not explicitly characterized in their paper. 

 

Although the Clayton copula has generally been used for semi-competing 

risks data, it may not be suitable for certain data structures. However, 

modifications can be made to it depending on the type of data. This is shown in 

JiangP

27
P where the Clayton‟s copula model was modified into a conditional one for 

left-truncated and right-censored registry data. Instead of the usual 

1
1

1 2

1 1

1 2{ ( ) ( ) 1}Y YS y S y       where θ ≥ 1 and 0 ≤ YR1 R≤ YR2 R≤ ∞ as postulated above, 

the model was modified as  
1

11 1

1 2{ ( ) ( ) 1}a aR y S y      where 2( )aS y is the 

conditional survival function given that YR2R is greater than a, and 1( )aR y is the 

survival function conditional on YR1R greater than a and dependent censoring by YR2R. 

The Lynden-Bell estimator was constructed to estimate marginal survival function 

for the non-terminal and terminal events under mild assumptions. It is a product-

limit estimator derived from non-parametric maximum likelihood arguments for 

truncated data Y1,nR, which is observable only if Y1,n ≥ YR2,n for n = 1, 2, …, N 

subjects. It is denoted as 
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28,29
P However, it was noted that the Lynden-Bell 

estimator may not be appropriate for the survival function for the non-terminal 

event, as the estimator may not be monotone or well-defined. This phenomenon 

occurs especially in its tail of the survival distribution where heavy censoring by 

the terminal event usually occurs. Therefore, restriction of the estimation interval 

was put in place to circumvent the problem. To reiterate, the conclusions inferred 

will be valid if (1) the copula model describing the joint survival functions of the 

non-terminal and terminal event times was correctly specified, and (2) the survival 

function for the non-terminal event defined on the upper wedge where Y1 R≤ Y2 

Rcorresponds to the marginal of Y1 Rdefined on the lower wedge YR1 ≥ Y2R, where no 

data can be observed.  

 

 The conventional Clayton copula model could also be extended into a 

time-dependent copula, characterizing the correlation between events, to capture 

the informative censoring of Y2 Ron Y1. Knowledge of the impact of covariate 

effects on event times could be evaluated through a regression model. Non-linear 

estimating equations were used to solve for the parameter estimates. In addition, 

model checking through a graphical technique similar to the idea of a Q-Q plot 

was proposedP

18
P  
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So far, all estimations made for the marginal distribution of the non-

terminal event time were formulated based on the framework of the Clayton 

gamma frailty copula. Besides looking at the estimation of the survival function of 

the non-terminal event, other authors have looked at areas which included 

generalizing the semi-competing approach to include other copulas and to make 

inferences in terms of hypothesis testing. For instance, Lakhal et al generalized 

Fine‟s approach by illustrating that the semi-competing risks idea could be applied 

to all Archimedean copulas through simulations and applying them to study the 

correlation between times to relapse and death in patients with bone marrow 

transplantsP

21
P An Archimedean copula is a function C which maps [0, 1] P

2
P to [0, 1] 

given by C(u, v) = ψP

[-1]
P(ψ(u)+ ψ(v)), where ψ is called the generator of C. ψ is a 

continuous monotonic decreasing convex function which maps [0, 1] to [0, ∞] 

such that ψ(1) = 0 and ψ(0) = ∞. ψP

[-1]
P is the pseudo-inverse of ψ, which means that 

ψP

[-1]
P(y) = ψP

-1
P(y) where y is an element in [0, ψ(0)] and ψP

[-1]
P(y) = 0 for y ≥ ψ(0).P

20
P 

Most of the Archimedean copulas, which include the Clayton, Gumbel and Frank 

copulas, have closed-form solutions for its estimators.  Apart from Lakhal
21

, Hsieh 

and Wang
30

 have also implemented Archimedean copulas in the analyses of semi-

competing risks data. However, in their paper, they have suggested the use of 

separate Archimedean copula models for each covariate group while maintaining a 

monotonically increasing hazard function for the disease progression time under 

dependent censoring. Model checking and selection via bootstrap methods are also 

proposed.P

30
P Subsequently, Xu et alP

31
P argued that the notion of latent failure times 

is entertained in previous approaches since they  usually construct mathematical 

models in both the observable and unobservable regions of the data. Hence, they 
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proposed a model constructed within the observable region of the data to 

accommodate covariates. In addition, frailty was used to account for the correlated 

endpoints (morbidity and mortality). Non-parametric maximum likelihood 

methods were used to estimate the parameters. 

 

Thus far, methods concerning semi-competing risks data have been 

discussed in the context of the copula function. It is also possible to consider 

solving for parameter estimates in relation to this type of data via a multi-state 

modeling approach as in Siannis et alP

32
P Using this approach, a continuous time 

model with Weibull time-varying hazards, assuming that transition rates depend 

only on the last state visited but not on the complete history of transitions, was 

adopted. The time for each subject used in the analysis was measured from the 

time since entry into the study to the starting time in the current state. It will be 

less appropriate to consider the analysis time as the time taken to travel in between 

any 2 states, i.e. having to reset to zero the time axis after the subject enters into a 

state, since the hazards vary with time. In addition, it was noted that estimates of 

the transition rates starting from censored events to a terminal event would be 

correlated and no unique solution of the likelihood would exist, without further 

model assumptions, in general.  
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14B1.7 Limitations of existing methods for semi-competing risks data 
 

Competing risks methods have often been used for analyzing semi-

competing risks data. The first-event methodology adopted in competing risks 

analysis is based on the premise that upon removal of one of the failures, the risks 

of failure on the remaining causes remain unchanged. That is, the development of 

the event of interest is independent of the progression of competing risks. In 

particular, the classical competing risk framework in which a subject may only fail 

from one of several distinct causes will probably be more applicable in a situation 

with several absorbing states. One such example, which considers death due to 

disease as the event of interest and death due to other causes as the competing risk 

event, is illustrated below.   

 

 While the first-event methodology will be appropriate for competing risks, 

it may not be the most suitable method for a data structure involving endpoints 

which follow a natural occurrence of events. Specifically in such naturally ordered 

 

Treatment 

Death due to 

disease 

Death due to 

other causes 

UCauses of failure: 
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data involving a terminal event (death) and non-terminal event (recurrence), death 

has the ability to preclude the occurrence of recurrence but not the other way 

round. Then, censoring from mortality becomes informative. Furthermore, in this 

instance, it may be of interest to know the dependence structure between 

recurrence and death (and hence, to understand the predictive value of recurrence 

for death). The use of the first-event approach limits our ability to do so since 

subsequent events after the first would not form part of the data analyzed.  

 

In order to utilize all subsequent events that occurred after the first so as to 

describe the data sufficiently, methods based on the weak assumption of marginals, 

which accounts for the dependence structure between all the occurrences of 

endpoints, have been proposed. They have been described in Section 1.6. In 

general, authors working on semi-competing risks methodology have considered 

variations within the basic model structure. These variations include the different 

types of copulas used to characterize the dependence between the non-terminal 

and terminal events, as well as the different types of survival models which can be 

used to describe the mathematical functions of the non-terminal and terminal 

events. Approaches, which could be used to incorporate covariates and to perform 

hypothesis testing, were also proposed.  

 

However, as pointed out by Xu et alP

31
P, these methods implied a kind of 

model formulation using latent times. Hence, the authors have proposed 

mathematical models which are constructed within the observable region of the 

event times. The models also allowed for varying hazards and treatment effects 
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depending on whether the non-terminal event has occurred prior to the terminal 

event. It is a generalization of the previous models put forward by other authors 

who have assumed that the effect of the occurrence of a non-terminal event on the 

terminal event has been fully explained by the correlation between the two events. 

The correlation is characterized by the copula model incorporated into the basic 

model formulation.  

  

 In this thesis, the idea conceptualized by Xu et alP

31
P is extended. Based on 

the original compartment model framework proposed, data is modeled within the 

observable region, that is, no marginal distribution for the non-terminal event is 

assumed. In the previous article, baseline hazards were regarded as a “nuisance” 

parameter in the solution of covariate effects such as treatment. However, it may 

be of interest to know the form of baseline hazards apart from the covariate effects. 

Therefore, we attempt to characterize the baseline hazards via parametric 

modeling in this thesis. In addition, goodness-of-fit assessments of the models, 

which have not been recommended by Xu et alP

31
P, are proposed. The methodology 

is described in detail in Chapter 3.  

 

 

 

15B 
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1.8 Contribution to medical research 
 

The work arising from this paper has been presented at the 29 P

th
P Annual 

Conference of the International Society for Clinical Biostatistics (Copenhagen, 

Denmark); as well as at a seminar in the Department of Medical Epidemiology 

and Biostatistics, Karolinska Institutet, both in 2008.  
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1BChapter 2: Analysis of semi-competing risks data in the 
medical literature 
 

 

While the Kaplan-Meier and Cox proportional hazards model are popular 

methods used to analyze survival data without competing events, the bivariate 

random variable method involving implementation of the cumulative incidence 

function is often used in analyses of competing risks data. However, these tools 

may not be reasonable for semi-competing risks data, which are widely 

encountered in the medical field. To our knowledge, no clinical paper has 

implemented the existing methods as described in Section 1.6. Current approaches 

used for analyzing semi-competing risks data are described in the following 

examples.  

 

 

16B2.1 ATAC (Arimidex, Tamoxifen, Alone or in Combination) clinical 
trial 
 

The ATAC (Arimidex, Tamoxifen, Alone or in Combination) randomized 

clinical trial involved 9366 postmenopausal women with localized breast cancer 

enrolled from 381 centers in 21 countries between 12 July 1996 and 24 March 

2000. The primary aim of the trial was to ascertain the efficacy of anastrozole 

(alone, or in combination with tamoxifen) as compared with tamoxifen alone. The 

primary endpoint was disease-free survival (DFS), which was defined as the time 
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to the earliest occurrence of local or distant recurrence, new primary breast cancer, 

or death due to any cause. Secondary endpoints were time to a recurrence which 

includes new contralateral tumors but not patients who died from non-breast 

cancer causes before recurrence; and time to an incidence of new contralateral 

primary breast tumor.P

33
P  

 

 In this ATAC trial, both the log-rank test and Cox proportional hazards 

model were used to analyze disease-free survival (DFS) and outcomes under 

investigation based on an intention-to-treat approach. It was shown that as 

compared with women treated with only tamoxifen, DFS was significantly higher 

for patients on anastrozole (Hazard ratio, HR: 0.83; 95% CI: 0.71 - 0.96; p = 0.013) 

or a combination of anastrozole and tamoxifen (HR: 0.81; 95% CI: 0.70 - 0.94; p 

= 0.006). Figure 2 shows the Kaplan-Meier curves for DFS in the intention-to-

treat population.  

 

Figure 2: Kaplan-Meier curves depicting disease-free survival (i.e., all first 

events) for each treatment arm in the intention-to-treat population in the 

ATAC trialP

33
P  
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There did not seem to be a substantial difference in the number of patients 

who died (regardless of any cause of death) before a breast cancer recurrence 

(Table 2). When these patients were censored upon death, the hazards for the time 

to recurrence (including new tumors) in the anastrozole group was lower than the 

tamoxifen group (HR: 0.79; 95% CI: 0.67 - 0.94; p = 0.008). The benefit appeared 

to be comparable between the combination and tamoxifen groups (Figure 3). 

 

Table 2: Distribution of events stratified by the 3 treatment groups in the 

ATAC trialP

3
PP

3
P 
 Anastrozole 

(n=3125) 

Tamoxifen 

(n=3116) 

Combination 

(n=3125) 

Total 

(n=9366) 

First events     

 

Local recurrence 

 

67 

 

83 

 

81 

 

231 

 

Distant recurrenceP

†
 

 

158 

 

182 

 

204 

 

544 

 

Contralateral breast cancer 

 

14 

 

33 

 

28 

 

75 

 

Invasive 

 

9 

 

30 

 

23 

 

62 

 

Ductal carcinoma in-situ 

 

5 

 

3 

 

5 

 

13 
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Deaths before recurrence 

 

78 

 

81 

 

70 

 

229 

 

Total 

 

317  

 

379 

 

383 

 

1079 

 

Events at any time 

    

 

Distant recurrenceP

† 

 

 

180 

 

203 

 

232 

 

615 

Deaths after recurrence 

 

122 122 145 389 

All deaths 200 203 215 618 
†: Includes 5 deaths (2 on anastrozole, 1 on tamoxifen, and 2 on the combination), which were attributed to 

breast cancer without prior information about recurrence. 

 

 

 

Figure 3: Probability of recurrence in the intention-to-treat population in the 

ATAC trialP

33
P 

 

 
 

 From Table 2, it was also noted that there was a substantial number of 

women who died after recurrence. Out of 618 deaths in the three treatment arms 

(Anastrozole, Tamoxifen and Combination), 389 of them (62.9%) occurred after 

recurrence. This indicated that recurrence could possibly quicken the occurrence 

of death. Furthermore, in a subsequent analysis of the trial data, there was a total 

of 831 deaths where 500 (60%) occurred after breast cancer recurrence and 331 
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(40%) without recurrence which was attributed to other causes P

34
P The considerable 

proportion of deaths after recurrence suggests that the predictive value of relapse 

for death is high. In this scenario, regarding death as a non-informative censoring 

mechanism for recurrence is likely to lead to a bias in the estimation of 

recurrence-free survival. Thus, it will be crucial to treat censoring of recurrence by 

death as being dependent so as to provide an accurate estimation of recurrence-

free survival. 

 

 Further, since the occurrence of death will inherently prevent any 

recurrence from being observed but not vice versa, a semi-competing risks data 

structure results.  Techniques for analyzing this type of data will have to be 

adopted. 

 

 

17B2.2 Hip fractures 
 

In a population-based study conducted to investigate the trend in 

recurrence of hip fractures, hip fractures that occurred among residents of the 

central city of Rochester from 1928 to 2006, and among residents of Olmsted 

County (including the rural areas) from 1980 to 2006 were identified via medical 

records linkage.P

35
P  
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 The cumulative incidence of a second hip fracture was calculated among 

those with a first-ever hip fracture. In order to calculate the recurrence of hip 

fractures, 2 calculations were carried out in this study – the first which censored 

observation time upon death, and the second which treated death as a competing 

event. In addition, since fracture recurrence might be reduced among people 

treated with hip arthroplasty, observation time for these individuals was censored 

at the time an arthroplasty was performed.  

 

 Out of 2434 patients (1832 women and 602 men) with a first-ever hip 

fracture, 219 patients experienced recurrent hip fractures over a follow-up period 

of 10000 person-years. The median time from the first to the second hip fracture 

was 2.7 years for all patients, 2.8 years for women and 2.1 years for men.  

 

 In the first analysis which censored observation time upon death, the 

cumulative incidence of a second hip fracture was 29% for all patients, 32% for 

women and 18% for men. However, it was noted that there was a high death rate 

among the patients, which could result in an overestimation of recurrence rate. 

Hence in order to obtain a more realistic estimate for recurrence rate, a second 

analysis was performed treating death as a competing event. In this analysis, the 

estimated cumulative incidence of a second hip fracture was 12% for all subjects, 

13% for women and 7% for men.  
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Figure 4: Cumulative incidence of a recurrent hip fracture among 2434 

patients who had a first-ever hip fracture in 1980–2006 with follow-up 

censored at death or with deaths treated as a competing risk P

35
P 

 

 
 

 

Hip fracture as an intermediate event does not preclude death from 

occurring, but when death occurs, it will inherently preclude any further 

observation of hip fractures; thereby fitting into the semi-competing risks 

framework. Approaches for semi-competing risks do not impose any assumption, 

but explicitly model the disease progression from hip fracture to death. All causes 

of death can be accommodated regardless of whether it is related to recurrent hip 

fractures. A schema of how the data for hip fractures and death is able to fit into 

the semi-competing risks paradigm is illustrated as below.  

 

 

 
Entry into 

study 

Hip Fracture 

Death 
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18B2.3 AIDS 
 

This example was derived from data of HIV-1 patients collected from the 

Concerted Action on SeroConversion to AIDS and Death in Europe 

(CASCADE).P

36
P The objective of the study was to assess the effect of gender on 

survival, progression to AIDS, as well as on the risk of developing each specific 

AIDS defining events (such as candidiasis, cryptococcosis, Kaposi‟s sarcoma, 

AIDS dementia complex, herpes simplex disease and HIV wasting syndrome) as 

first event and death without AIDS over time. The data was derived from a 

collaborative effort from 23 HIV seroconverter cohort studies in Europe, Australia 

and Canada. A total of 6923 subjects (3414 women and 3509 men) were entered 

into the study, where they were followed up from the latest of the three dates – 

seroconversion, entry into the cohort, and 1 December 1986.  

 

 In order to investigate the effect of sex on the progression to AIDS, as well 

as to each specific AIDS defining event as the event of interest, and death without 

AIDS as the competing event, modeling techniques involving cause-specific 

hazards and hazards of sub-distribution functions were used.  

 

 While there did not seem to be any gender differences in the progression to 

AIDS before 1997, females had a 24% (95% CI: 10 - 37) lower risk of developing 

AIDS as compared to the males after 1997, after adjusting for potential 

confounders - drug use via injections, sexual activity and age at seroconversion 

(Figure 5). Before 1997, there did not appear to be a prognostic value of gender on 
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the risk of each specific AIDS defining event or death without AIDS, except for 

Kaposi‟s sarcoma where it was shown that females had a lower risk of developing 

the disease. After 1997, it was observed that females were at a lower risk of 

developing AIDS dementia complex, tuberculosis, Kaposi‟s sarcoma and 

lymphomas. Throughout the study period, females were at a lower risk of death 

without AIDS than men.  

 

Figure 5: Cumulative incidence of AIDS, stratified by calendar period (pre-

1997 and 1997–2006) and gender, CASCADE collaboration.P

36
P 

 

 

In this study, competing risks analyses were used in the examination of the 

progression to AIDS, AIDS defining events and death without AIDS. However, it 

was noted that the occurrence of death after AIDS have been captured in the 

CASCADE study. Thus, it will be interesting to see how covariate effects compare 

in terms of the prognostic outlook before and after the development of AIDS (or 

AIDS defining events). Although AIDS, AIDS defining event and death were 

outcomes which have been captured in the study, the manner in which these 
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outcomes relate to one another, such as the predictiveness of AIDS (or AIDS 

defining event) on death, has not been assessed. Hence, a semi-competing risks 

approach can be used to analyze the progression to AIDS, taking into account 

possible dependent censoring by all-cause mortality. 
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2BChapter 3: Parametric modeling of semi-competing risks 
outcomes 
 

 

In this chapter, we describe a new method for analyzing semi-competing 

risks data. A compartment model approach is proposed to describe survival 

experiences and to examine the effect of each prognostic factor for each possible 

endpoint encountered in a disease progression pathway, and to estimate the 

correlation between any two event types (non-terminal and terminal) for each 

subject. To facilitate the discussion of the proposed method, we assume that the 

only outcomes that can arise are relapse (non-terminal) and death (terminal). 

Without loss of generality, we also assume that there is only a single covariate of 

interest (treatment) in the discussion of our proposed methodology. 

 

 

19B3.1  Compartment model 
 

For subject n, where n = 1, ..., N, let YR1,nR and YR2,nR be the time to non-

terminal and terminal events respectively,. Both times are measured from the time 

since entry into the study to the occurrence of each event. By convention, we 

allow YR1,nR to take on the value of infinity if the non-terminal event does not occur 

prior to death. The administrative censoring time is denoted by CRnR and the 

treatment covariate by xRnR. The observations consist of TR2,nR = min(YR2,nR, CRnR), TR1,nR = 

min(YR1,nR,TR2,nR), δR2,nR = I(YR2,nR ≤ CRnR), δR1,nR = I(YR1,nR ≤ TR2,nR) and xRnR, for n = 1, …, N. I(.) 
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is an indicator function which takes on values 1 if the event occurs and 0 

otherwise.  

 

In order to characterize the correlation between morbidity and mortality for 

each individual in the proposed compartment model, semi-competing risks data 

are analyzed using frailty models, where the frailty is denoted by w. The frailties 

are assumed to be independently and identically distributed with probability 

density function (pdf) gRθR(w), which follows a gamma distribution with mean 1 and 

variance θ. Note that the mean is set to be 1 to avoid the problem of non-

identifiability. 

1 1
11

( ) , 0
1

( )

wg w e


  







  

 



 

 

θ could be re-parameterized into eP

θ’
P to ensure that θ is strictly non-negative. 

The gamma density function for w is written as: 
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In this case, gRθ’R(w) follows a gamma distribution with mean = 1 and 

variance = eP

θ’
P.  

 

Although the gamma frailty is used here, other frailty models could also be 

used in the framework of the proposed method. In this scenario, the popular 

gamma frailty model is assumed because of its mathematical convenience.  
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The compartment model shown below is used to describe the disease 

process. Given ωRnR, we assume that for the nP

th
P individual, the conditional hazards 

of the 3 paths are of the following forms:  

 

 

(i) Hazard for non-terminal event 
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(ii) Hazard for terminal event without prior occurrence of non-terminal event 
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, 

 

(iii) Hazard for terminal event following the occurrence of a non-terminal event 
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In the above formulation, the covariate effect is incorporated through the 

Cox proportional hazards model for all 3 paths of the compartment model, with β 

representing the regression coefficient associated with the covariate vector xRnR. The 

baseline hazard associated with the non-terminal event is denoted by hR01R; and the 

baseline hazards associated with the terminal event without or after the occurrence 

of a non-terminal event are denoted by hR02R and hR03R respectively. Under this 

circumstance, it is assumed that frailty is unable to fully characterize the 

dependency between two very different types of events, namely relapse and death. 

Hence, a more general model, which accounts for possibly differing hazards of 

death depending on whether there was a prior occurrence of relapse (βR2 R≠ βR3R and 

hR02 R≠ hR03R), is used. We coin this as the “General compartment model”.  

 

When frailty fully accounts for the dependency between relapse and death 

(βR2 R= βR3R and hR02 R= hR03R), a “Restrictive compartment model” results. This is 

assumed by previous approaches which may not be valid in practice. P

7,18
P  

 

In this thesis, we discuss primarily the methodology of a General 

compartment model, since the Restrictive model is a special case of the former. 

The validity of a Restrictive model may also be assessed by testing if βR2 R= βR3R and 

hR02 R= hR03R simultaneously in the General compartment model using the likelihood 

ratio test.  

 

  In the General compartment model, the baseline hazard functions hR01R, hR02R 

and hR03R are assumed to be of Weibull form due to its wide applicability and 
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flexibility for survival data. We allowed hR01R, hR02R and hR03R to have different shape (γ) 

and scale (λ) parameters. To be more specific, the baseline hazard functions 

together with their respective cumulatives are defined as:  

 

1 1
1

01 1 1 11 1 1 11 01
( ) ( ) ( ) ( ) ;,y y y yHh

 
  



   

2 2
1

02 2 2 22 2 2 22 02
( ) ( ) ( ) ( ) ;,y y y yHh

 
  



   

1
3 3

03 3 3 32 2 2 23 03
( ) ( ) ( ) ( ),y y y yHh

 
  



                                      

(A) 

 

The hazard is monotonically decreasing for γ < 1, increasing for γ > 1 and 

constant for γ = 1. The exponential distribution is a special case of the Weibull 

distribution when both λ and γ are equal to 1. Similar to the re-parameterization of 

θ, λs and γs can also be re-parameterized into eP

λ’
 and eP

γ’
 to ensure that the scale 

and shape parameters are non-negative. Then, the formulations in (A) will become 

' '1 1
1 1 1 1

' ' ' '1
01 1 1 1 101

( ) ( ) ( ) ( ) ;,
e ey e e e y y e yHh
       

' '2 2
2 2 2 2

' ' ' '1
02 2 2 2 202

( ) ( ) ( ) ( ) ;,
e ey e e e y y e yHh
       

' '3 3
3 3 3 3

' ' ' '1
03 2 2 2 203

( ) ( ) ( ) ( ),
e ey e e e y y e yHh
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20B3.2   Likelihood estimation and algorithm 
 

Define 
1 1, 1 1,, exp{ , }| |( ) ( )n n n nn nx xw wS t H t  , 

2 1, 2 1,, exp{ , }| |( ) ( )n n n nn nx xw wS t H t   and 

03 2, 03 1, 33 2, 1, , , exp( ( ( ) ( )) ( ))|( ) T

n n n n n nn n w x H t H t w exp xS t t   , where tR1R and tR2R are 

the observed times.  

 

Conditional on the frailty wRnR, the likelihood L(λ, β, γ| w, x) from the 

observations {(tR1,nR, tR2,nR, δR1,nR, δR2,nR, xRnR), n = 1, …, N} is 
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n nT
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(1) 

 

Denote the parameters to be estimated by η = (θ, λR1R, γR1R, βR1R, λR2R, γR2R, βR2R, λR3R, 

γR3R, βR3R). 

 

 If the wRnR’s could be observed, the logarithm of the complete data 

likelihood is  



  - 47 -  

 

 

     1, 1, 2, 1, 2,

1

1

(1 )

01 1, 1 02 2, 2 03 2, 3
1

01 1, 1 02

log{

log ;  , ,  ..,  w  

 log { ,  ,  |  w,   ( )}

( ) ( ) ( ) ( ) ( ) ( )

exp( ( ) ( )) exp(

n n n n n

complete N

N

n

n

N
T T T

n n n n n n n n n
n

T
n n n n

L data w

L x g w

w w w

H H

h t exp x h t exp x h t exp x

w t exp x w



    



  

  













  





1,

1

1, 2

03 2, 03 1, 3

1 1
1

01 1, 1, 1 1, 2, 02 2,

1, 2, 2

}

log

1
{( 1) log log ( log(

( ) ( ))

exp( ( ( ) ( )) ( ))

1

1
( )

1
log( ( ))

( )) (1 ) ( ))

(1 )

N
n

n n

n

T
n n

T
n n n n

w

T
n n n n n n n n

T
n n n

w
w w w

t exp x

H t H t w exp x

N
N

h t x h t

x

w e  




 







 

   

   





  

    

 

  





   

 





1, 2, 03 2, 1, 2, 3

01 1, 1 02 1, 2 03 2, 03 1, 3

log( ( ))

( ) ( ) ( ) ( ) ( ( ) ( )) ( )}

T
n n n n n n n

T T T
n n n n n n n n n n

w

H H

h t x

w t exp x w t exp x H t H t w exp x

   

  



   

                   

 

(2) 

 

Both the Newton-Raphson (NR) and the Expectation-Maximization (EM) 

algorithms can be used for parameter estimation. P

37
P NR, which is the method 

adopted to compute parameter estimates in this thesis, is elaborated as follows.  

 

 

26B3.2.1 Newton-Raphson method 

 

The Newton-Raphson (NR) method aims to find estimates that maximize 

the observed full likelihood of the data. Under our current model framework, the 
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observed full likelihood can be obtained after integrating the complete data 

likelihood over the space of the frailty variable wRnR. The observed full likelihood 

( | )fullL data is 

 

     1, 1, 2, 1, 2,

1

(1 )

1 1, 2 2, 3 2, 1,
1

01 1, 1 02 1, 2

|

,..., )

( )

( | , ) ( | , ) ( | , , )

exp( ( ) ( ))exp( ( ) ( ))exp(

( ; ,

( , , | , )

n n n n n

n

N

n n n n n nn n n n
n

T T
n n n nn n

complete

L data
full

w dw

w dw

h t w x h t w x h t t w x

w H t exp x w H t exp x

L data w

L w x g

    



 



  











  







     1, 1, 2, 1, 2,

1, 2,

03 2, 03 1, 3

1

(1 )

01 1, 1 02 2, 2 03 2, 3
1

01 1, 1 02 1, 2

1
1

1
( )

( ( ) ( )) ( ))

1

( ) ( ) ( ) ( ) ( ) ( )

(1 ) {1 [ ( ) ( ) ( ) (

n n n n n

n n

T
n nn n

n

N
T T T

n n nn n n
n

T
nn n

nw

H t H t w exp x

dww e

h t exp x h t exp x h t exp x

H t exp x H t exp



    

 








  

   











 





   



31 2

1 1

1
1, 2,

1, 2,1, 1, 2,

1, 2,

11 1

1 1 1 2 2 2 3 3 21 2 3

( )

03 2, 03 1, 3

(1 )

1 2 3
1

( )

( ) ( ) ( )

) [( ( ) ( )] ( ))]}

( ) ( ) ( )

(1 ) {1 [

n n

n nn n n

n n

T T
n nn n

N
T T T

n n n
n

x H t H t exp x

exp x exp x exp x

t

t t t


 

   

 

 



  

  

       
 

  





    
    

     

 



  



3 31 2

2 1 3 2 3 1

1
1, 2,( )

1 2 3( ) ( ) ( )( ) ( ) [ ] ( ))]} n nT T T
n n nexp x exp x exp xt t t 

   
    

  
  

 

(3) 

 

After computing the observed full log-likelihood, log ( )fullL






 and  

2

log ( )
T fullL

 




 
 can be obtained by computing the row vector of first partial 

derivatives and matrix of second partial derivatives of log ( )fullL   respectively. 

log ( )fullL






 is known as the score function and 

2

log ( )
T fullL

 




 
 as the observed 
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information matrix. Details for computing the score and information matrix can be 

found in the appendix. The estimate of η can then be iteratively obtained via  

2
( 1) ( )

( ) ( )
( log log1( ) | ) ( ( ) | )

T full full

k k
k k

n n L L
   

   
  

 

  

where ηP

(k+1)
P and ηP

(k)
P are estimates obtained from the (k+1)P

th
P and kP

th
P iteration 

respectively. 

  

From the algorithm, the corresponding covariance matrix can also be 

obtained by taking the inverse of  
2

"( ) log ( , , , )
T fullU L

 
   


 

 
 evaluated at the 

maximum likelihood estimates 


. 

 

 

 

21B3.3  Model checking 
 

27B3.3.1 Assessment of overall model adequacy 

 

Estimation of the parameters will be valid if the model is correctly 

specified or is adequate. Overall model adequacy can be checked via graphical 

techniques. We propose a graphical model checking method based on Cox-Snell 

residuals. The idea behind Cox-Snell residuals is that if the model fits well, the 

estimated model-based cumulative hazard should behave like a censored sample 

from an exponential distribution with rate 1. They can be derived as follows.  
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Let S(t) denote a survival function. Since 0 ≤ S(t) ≤ 1, let U = S(T). 

Therefore, 0 ≤ U ≤ 1 and T = SP

-1
P(U). Since U is uniform in [0,1], -log(U) is 

exponential with rate 1. However, note that -log(U) = -log(S(T)) = H(T). Hence, 

0( ; ) ( )exp( )T

n n n nH T x H T x is the Cox-Snell residual for TRnR for subject n = 1,…, N. 

If the model is adequate, ( ; )n nH T x  will behave like a censored sample from an 

exponential distribution with rate 1.P

40
P  

 

Model checking is implemented for times to the non-terminal event, as 

well as that for the terminal event with or without the prior occurrence of the non-

terminal event. Cox-Snell residuals are first obtained by computing their estimated 

cumulative hazards denoted by rRniR = ĤRiR(.), for subject n = 1,…, N and type of 

event i = 1, 2, 3. The cumulative hazards can be derived from the respective 

marginal hazards ĥRiR(.)  as follows: 
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(i) Non-terminal event 
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(ii) Terminal event without prior occurrence of non-terminal event 
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(iii)  Terminal event following the occurrence of a non-terminal event   
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where y y 

 

 

Subsequently, the product-limit estimate of the cumulative hazard Ĥ(rRiR) for 

each event i = 1, 2, 3 can be computed from the censored sample (rRniR, δRniR). The 

plot of Ĥ(rRiR) against rRiR will approximately follow the 45P

o
P line if the model is 

appropriate.  

 

 

28B3.3.2 Choice of model 

 

In order to determine whether a restrictive compartment model can be used 

in place of the general model, a likelihood ratio test can be used. As in Section 3.2, 

the parameter estimates in the general model are denoted by η = (θ, λR1R, γR1R, βR1R, λR2R, 

γR2R, βR2R, λR3R, γR3R, βR3R). A test of whether a restrictive model is adequate is equivalent to 

testing whether βR2R= βR3R, λR2R= λR3R, and γR2R= γR3R (that is, βR2R - βR3 R= 0, λR2 R-R RλR3R = 0, and γR2 R- 

γR3R = 0). This test can be carried out via the construction of contrasts. 
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The contrast matrix involving the 3 linear hypotheses is first written 

as

0 0 0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0

C

 
 

  
  

. After which, the likelihood ratio 

test is implemented using the test statistic 1( ) ( )( )T TC d CV C C d   , where 

0

0

0

d

 
 

  
 
 

 and ''( )V U  . The statistic follows a chi-square distribution with 3 

degrees of freedom. 
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3BChapter 4: Simulation Studies 
 

 

22B4.1 Simulated data 
 

Simulation studies were conducted to assess the performance of the 

proposed method under different scenarios. For simplicity, we assumed that there 

was only one explanatory variable, treatment, which was coded as 1 or 0. Sample 

sizes of N = 200 and 300 were considered in the simulation studies. The covariate 

treatment was generated from a binomial distribution of size N with probability 

0.5; and YR1R and Y R2 Rwere generated from the compartment model in Section 3.1, 

where YR1R represented the time to relapse and YR2R represented the time to death. 

Throughout the simulation studies, the baseline hazard for relapse was of the form 

01 1( ) 2h y   where λR1R = 2 and γR1R = 1. Similarly, the baseline hazard for death 

without relapse was of the form 
02 2 2( ) 2h y y  where λR2R = 1 and γR2R = 2; and the 

baseline hazard for death after relapse (if applicable) was of the form 03 2( ) 1h y   

where λR3R = 1 and γR3R = 1. An independent administrative censoring time C was 

generated from a uniform distribution ~ Uniform (0, τ), where τ was a value 

chosen to yield censoring proportions of 30% and 50%.  

 

 Under the above-mentioned simulation settings, we evaluated the 

performance of the proposed method for different magnitudes of dependency 

between relapse and death. The parameter θ, which is associated with the 
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dependence structure, was varied to take values 0.5 representing weak dependence 

between relapse and death, 1 indicating moderate positive dependence and 2 

indicating large positive dependence. In addition, the performance of our model 

was evaluated under scenarios which considered an adverse, null or beneficial 

treatment effect on death. Under the general model formulation, we allowed the 

HR of relapse (denoted by HR RrelapseR = exp(βR1R)), and of death after relapse (denoted 

by HRRdeath_after_relapseR = exp(βR3R)) to take on values 0.5 or 1. The HR of death 

without any observation of relapse (denoted by HR Rdeath_without_relapseR = exp(βR2R)) was 

varied to take on values 0.5, 1 or 2. Under the restrictive model formulation, the 

HR of death, denoted by HR RdeathR = exp(βR2R), takes on values 0.5, 1 or 2. The 

treatment effect on relapse, (denoted by HRRrelapseR = exp(βR1R)) was assigned values 

of 0.5 and 1. 

  

The proposed approach was evaluated based on its bias, mean-squared 

error (MSE) and coverage probability (CP) at the nominal 95% level. For each 

simulation setting, 1000 replicates were generated. The MSEs were computed by 

taking the average of the squared bias resulting from the difference between the 

estimated and true parameter value. The coverage probability is the proportion of 

95% confidence intervals which contains the true parameter value, out of 1000 

replications. 
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23B4.2 Performance of proposed method 
 

UGeneral Compartment Model: 

Tables 3 to 6 present simulation results based on the General model 

obtained via NR algorithm, varying the effects of treatment on relapse (HRRrelapseR = 

0.5, 1), death without relapse (HRRdeath_without_relapseR = 0.5, 1, 2), or death after 

relapse (HRRdeath_after_relapseR = 0.5, 1). 

 

When there is no treatment effect, that is HR RrelapseR = HRRdeath_without_relapseR = 

HRRdeath_after_relapseR = 1, considering the simulation setting of n = 200 with 30% 

censoring, biases in the estimates are relatively close to zero as compared to the 

true parameter values with coverage probabilities approaching 95% for all degrees  

of dependence (θ) (Table 3).
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Table 3: Simulation results obtained from the General compartment model varying θ, exp(βR1R), exp(βR2R) and 

exp(βR3R) and constant λR1 R= 2, λR2 R= 1R,  RλR3  R= 1, γR1 R= 1R,  RγR2 R= 2, γR3 R= 1 for n = 200 with 30% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath_without_relapse R= 1 

HRRdeath_after_relapse R= 1 

HRRrelapse R= 1 

HRRdeath_without_relapse R= 2 

HRRdeath_after_relapse R= 0.5 

 

HRRrelapseR=1 

HRRdeath_without_relapseR=0.5 

HRRdeath_after_relapseR=0.5 

 

 

HRRrelapseR=0.5 

HRRdeath_without_relapseR=1 

HRRdeath_after_relapseR=0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.072 0.247 94.9 -0.070 0.249 94.4 -0.054 0.196 95.4 -0.077 0.285 94.4 

 βR1 0.006 0.047 95.4 0.005 0.048 95.5 0.004 0.046 95.9 -0.003 0.053 96.3 

 βR2 -0.005 0.126 95.0 0.020 0.112 95.4 -0.021 0.147 95.7 -0.003 0.104 95.4 

 βR3 -0.005 0.065 95.7 -0.018 0.078 95.1 -0.011 0.067 95.7 -0.018 0.092 95.5 

 λR1 -0.002 0.037 94.8 -0.003 0.036 95.0 -0.001 0.034 95.4 -0.002 0.038 94.4 

 λR2 0.003 0.030 93.9 0.002 0.029 94.5 0.003 0.026 95.1 0.003 0.030 94.5 

 λR3 0.025 0.041 96.6 0.025 0.042 96.5 0.022 0.038 96.3 0.029 0.043 96.5 

 γR1 0.015 0.010 94.9 0.014 0.011 94.6 0.013 0.009 95.2 0.015 0.012 94.9 

 γR2 0.056 0.066 94.8 0.052 0.061 94.2 0.060 0.069 94.8 0.055 0.064 94.0 

 γR3 0.017 0.027 94.9 0.017 0.027 93.9 0.015 0.023 94.0 0.018 0.031 94.3 

1 θ -0.002 0.086 95.4 -0.002 0.073 96.0 -0.007 0.076 95.2 -0.004 0.089 95.3 

 βR1 0.003 0.070 93.4 0.002 0.073 93.9 0.004 0.069 93.2 -0.010 0.077 93.5 

 βR2 0.003 0.156 94.5 0.032 0.144 94.7 -0.013 0.180 95.4 0.001 0.139 94.3 

 βR3 0.021 0.089 94.7 0.004 0.101 94.6 0.006 0.087 95.3 -0.002 0.118 94.5 

 λR1 0.009 0.053 94.5 0.008 0.052 93.4 0.004 0.051 94.8 0.009 0.055 93.1 

 λR2 0.005 0.036 94.7 0.003 0.034 94.7 0.000 0.033 94.8 0.004 0.037 94.1 

 λR3 0.002 0.051 94.1 0.000 0.050 93.7 0.002 0.049 93.8 0.003 0.052 93.8 

 γR1 0.024 0.012 95.5 0.022 0.011 96.4 0.021 0.011 95.3 0.025 0.013 94.9 

 γR2 0.056 0.057 95.2 0.056 0.053 96.0 0.051 0.057 95.9 0.058 0.056 95.1 

 γR3 0.029 0.026 95.1 0.032 0.025 94.1 0.026 0.021 95.2 0.037 0.030 94.8 

2 θ 0.014 0.046 94.1 0.016 0.046 94.2 0.016 0.039 95.4 0.018 0.051 93.7 

 βR1 0.012 0.107 95.0 0.012 0.110 95.2 0.011 0.104 95.3 -0.004 0.116 95.7 

 βR2 0.013 0.190 95.0 0.037 0.184 95.9 -0.010 0.212 94.7 0.017 0.180 95.3 

 βR3 0.023 0.117 95.1 0.004 0.130 95.9 0.010 0.115 95.7 0.000 0.146 95.1 

 λR1 0.016 0.075 95.5 0.017 0.073 95.8 0.015 0.069 95.5 0.020 0.076 95.7 

 λR2 0.006 0.044 94.8 0.007 0.043 94.4 0.006 0.038 95.8 0.009 0.045 93.8 

 λR3 -0.002 0.057 95.4 -0.001 0.058 95.2 -0.004 0.057 94.7 0.001 0.059 95.6 

 γR1 0.027 0.015 94.7 0.027 0.015 94.8 0.025 0.013 95.0 0.030 0.017 94.9 

 γR2 0.056 0.060 94.2 0.053 0.055 95.1 0.057 0.055 94.5 0.059 0.056 95.6 

 γR3 0.030 0.024 94.6 0.031 0.024 94.3 0.028 0.021 95.6 0.035 0.029 94.6 
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In particular, large MSEs for θ, ranging from 0.196 to 0.285, are observed 

when θ = 0.5. However, the MSE decreases as θ increases. The CPs of all 

parameters remain relatively close to the nominal level of 95% for all values of θ 

considered. A large bias in the association parameter θ is also noted especially 

when there is a weak/ moderate association between the terminal and non-terminal 

events. This bias in the association parameter θ is most likely due to the fewer 

number of observations, and hence lesser amount of information, used to estimate 

θ when the association is weaker. However, the bias in θ decreases with an 

increase in sample size, as shown in Tables 3 to 6. Convergence problem was not 

encountered in the simulation studies and real data application. 

 

 When θ increases, there seem to be increases in MSEs for β1R and β3R, with 

MSEs for βR2R remaining relatively substantial. In particular, the increase in MSEs 

seems to have been contributed by an increase in variance of the covariates.  

Generally, when θ increases from 0.5 to 2, the standard errors for βs increase from 

0.2 to 0.4. The increase in standard errors in the βs is most likely influenced by the 

degree of dependence between the terminal and non-terminal events. There is no 

1-to-1 relationship between the βs and θ. Instead, it is mediated by the number of 

observations and the influence of θ on the βs. An increase in dependence increases 

the difficulty in estimating βs, as it brings about an additional source of variability. 

In the extreme case where there is zero dependence between the different event 

types, the βs would have been independent. Therefore, estimation of βs in such 

instances will be more straightforward, without the need to account for an extra 

source of variation in the parameter estimation.  
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With substantial association between relapse and death, the proportion of 

deaths occurring with prior relapse is usually large (in our study, it is about 70%). 

Not accounting for informative censoring of relapse by death is expected to 

produce biases in the estimates relating to relapse.  

 

In the same table (Table 3), it was shown that even when treatment has an 

effect on the risk of relapse, and death with or without prior relapse, the trends and 

magnitudes of the biases and MSEs of the parameter estimates are fairly similar to 

that observed when HRRrelapseR = HRRdeath_without_relapseR = HRRdeath_after_relapseR = 1.  

 

  With the exception of θ, conclusions drawn with regards to the biases and 

MSEs of β1, β2 and β3 do not change, when the proportion of censoring increased 

from 30% to 50% (Table 4). Under all simulation settings, a rather large MSE of θ, 

ranging from 0.442 to 0.661, was observed under weak dependence. These MSEs 

were considerably larger than those obtained when the proportion of censored 

observations was 30%. Also, the 95% coverage was not reached – it ranged from 

92.9% to 93.9%. However, a decreasing MSE for θ, together with CP 

approximating the 95% nominal level, is observed as θ increases. 
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Table 4: Simulation results obtained from the General compartment model varying θ, exp(βR1R), exp(βR2R) and 

exp(βR3R) and constant λR1 R= 2, λR2 R= 1R,  RλR3  R= 1, γR1 R= 1R,  RγR2 R= 2, γR3 R= 1 for n = 200 with 50% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath_without_relapse R= 1 

HRRdeath_after_relapse R= 1 

HRRrelapse R= 1 

HRRdeath_without_relapse R= 2 

HRRdeath_after_relapse R= 0.5 

 

HRRrelapseR=1 

HRRdeath_without_relapseR=0.5 

HRRdeath_after_relapseR=0.5 

 

 

HRRrelapseR=0.5 

HRRdeath_without_relapseR=1 

HRRdeath_after_relapseR=0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.131 0.626 93.9 -0.119 0.563 93.4 -0.097 0.442 93.7 -0.123 0.661 92.9 

 βR1 0.007 0.051 95.1 0.006 0.052 95.6 0.004 0.050 95.3 -0.009 0.059 95.6 

 βR2 -0.011 0.154 95.5 0.020 0.131 96.5 -0.035 0.183 95.9 -0.016 0.123 96.6 

 βR3 -0.007 0.086 95.6 -0.028 0.106 95.7 -0.020 0.085 95.5 -0.036 0.130 95.7 

 λR1 0.005 0.048 94.4 0.004 0.046 94.3 0.004 0.043 94.6 0.010 0.048 95.3 

 λR2 0.011 0.041 95.1 0.010 0.040 94.5 0.008 0.036 94.4 0.016 0.041 94.5 

 λR3 0.033 0.053 96.9 0.032 0.053 97.2 0.031 0.046 96.8 0.038 0.058 96.8 

 γR1 0.021 0.014 94.3 0.020 0.014 93.6 0.019 0.012 94.4 0.024 0.016 93.7 

 γR2 0.073 0.091 94.3 0.069 0.082 95.1 0.071 0.091 94.7 0.074 0.084 95.5 

 γR3 0.027 0.042 92.7 0.025 0.043 94.1 0.021 0.034 94.6 0.030 0.051 93.8 

1 θ -0.014 0.166 93.9 -0.008 0.153 93.3 -0.013 0.138 94.1 -0.010 0.176 93.0 

 βR1 0.001 0.076 94.0 0.000 0.077 95.1 0.000 0.073 93.8 -0.018 0.085 94.3 

 βR2 0.008 0.189 94.5 0.031 0.174 95.0 -0.016 0.216 95.4 -0.001 0.165 95.7 

 βR3 0.022 0.107 95.0 0.002 0.124 95.7 0.008 0.105 95.3 -0.006 0.144 96.0 

 λR1 0.014 0.070 94.1 0.014 0.068 93.4 0.011 0.064 94.2 0.018 0.072 93.5 

 λR2 0.003 0.054 94.3 0.005 0.051 94.1 0.002 0.047 94.6 0.009 0.053 94.5 

 λR3 0.011 0.061 95.0 0.009 0.059 94.9 0.004 0.056 94.7 0.012 0.066 94.6 

 γR1 0.029 0.015 95.4 0.028 0.015 95.1 0.026 0.014 94.8 0.032 0.017 95.3 

 γR2 0.064 0.084 95.8 0.062 0.075 95.7 0.059 0.080 96.3 0.069 0.077 96.2 

 γR3 0.035 0.039 95.2 0.037 0.041 95.2 0.031 0.034 95.1 0.040 0.046 94.6 

2 θ 0.017 0.063 95.1 0.019 0.073 94.4 0.014 0.063 94.5 0.023 0.081 94.2 

 βR1 0.012 0.110 96.0 0.012 0.116 95.5 0.010 0.110 95.3 -0.008 0.122 95.3 

 βR2 0.020 0.215 95.3 0.043 0.218 95.3 -0.016 0.257 95.5 0.016 0.211 94.8 

 βR3 0.025 0.130 95.6 0.005 0.157 94.7 0.010 0.130 95.6 -0.003 0.176 95.2 

 λR1 0.021 0.081 95.1 0.024 0.088 94.2 0.019 0.080 95.3 0.030 0.092 94.6 

 λR2 0.005 0.053 94.3 0.008 0.059 94.5 0.003 0.052 95.1 0.013 0.061 94.6 

 λR3 0.001 0.063 95.5 0.005 0.065 96.1 0.002 0.062 95.8 0.007 0.065 96.3 

 γR1 0.031 0.017 94.4 0.033 0.018 94.5 0.029 0.016 93.9 0.037 0.020 95.2 

 γR2 0.064 0.077 95.2 0.065 0.080 94.6 0.063 0.082 94.1 0.071 0.079 94.7 

 γR3 0.035 0.032 94.2 0.034 0.036 94.6 0.035 0.032 94.5 0.041 0.041 94.9 



  61  

Increasing the sample size from n = 200 to n = 300 improves the precision 

of the parameter estimates. In general, biases for all estimates are even closer to 

zero with the increase in sample size. Additionally, a notable decrease in MSEs of 

the estimates are observed. The 95% coverage probability is also reached for 

almost all estimates (Tables 5 and 6). 
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Table 5: Simulation results obtained from the General compartment model varying θ, exp(βR1R), exp(βR2R) and 

exp(βR3R), and constant λR1 R= 2, λR2 R= 1R,  RλR3  R= 1, γR1 R= 1R,  RγR2 R= 2, γR3 R= 1 for n = 300 with 30% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath_without_relapse R= 1 

HRRdeath_after_relapse R= 1 

HRRrelapse R= 1 

HRRdeath_without_relapse R= 2 

HRRdeath_after_relapse R= 0.5 

 

HRRrelapseR=1 

HRRdeath_without_relapseR=0.5 

HRRdeath_after_relapseR=0.5 

 

 

HRRrelapseR=0.5 

HRRdeath_without_relapseR=1 

HRRdeath_after_relapseR=0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.027 0.125 96.3 -0.028 0.107 96.5 -0.023 0.104 95.5 -0.024 0.114 96.6 

 βR1 -0.001 0.033 94.8 -0.001 0.035 94.9 -0.002 0.033 94.7 -0.008 0.038 94.6 

 βR2 -0.007 0.082 94.3 0.004 0.073 95.2 -0.025 0.100 95.6 -0.004 0.071 94.4 

 βR3 0.000 0.046 94.4 -0.007 0.053 94.7 -0.010 0.045 95.2 -0.014 0.061 95.0 

 λR1 0.004 0.023 95.1 0.001 0.023 95.0 0.003 0.023 94.2 0.003 0.023 95.6 

 λR2 0.002 0.020 94.5 0.001 0.020 94.7 0.003 0.019 94.9 0.003 0.019 94.7 

 λR3 0.010 0.027 94.5 0.010 0.028 94.6 0.010 0.026 94.3 0.012 0.028 94.8 

 γR1 0.010 0.007 95.3 0.009 0.007 95.0 0.009 0.006 95.8 0.010 0.007 95.4 

 γR2 0.035 0.042 94.9 0.031 0.036 96.1 0.040 0.043 94.8 0.033 0.033 96.2 

 γR3 0.016 0.016 96.1 0.017 0.016 95.6 0.014 0.014 95.7 0.019 0.018 96.0 

1 θ 0.003 0.054 93.6 0.002 0.049 94.3 0.001 0.048 93.8 -0.002 0.057 94.5 

 βR1 0.014 0.041 95.3 0.013 0.042 94.9 0.014 0.040 95.7 0.005 0.047 95.9 

 βR2 0.004 0.096 95.4 0.016 0.088 96.0 -0.013 0.109 95.3 -0.001 0.084 95.7 

 βR3 0.015 0.057 95.0 0.010 0.065 95.1 0.004 0.055 95.2 0.004 0.079 95.0 

 λR1 -0.001 0.033 94.9 -0.002 0.032 95.1 -0.002 0.031 95.1 -0.003 0.035 94.5 

 λR2 0.005 0.023 94.9 0.004 0.021 95.4 0.004 0.021 94.7 0.004 0.023 94.7 

 λR3 -0.001 0.029 96.7 -0.002 0.029 96.7 -0.001 0.028 97.0 -0.001 0.029 96.7 

 γR1 0.016 0.008 95.1 0.014 0.008 95.0 0.015 0.007 95.1 0.015 0.009 94.7 

 γR2 0.042 0.039 95.2 0.041 0.037 95.1 0.039 0.038 94.2 0.039 0.039 94.6 

 γR3 0.020 0.017 95.2 0.020 0.016 94.4 0.017 0.015 94.5 0.021 0.019 94.7 

2 θ 0.011 0.033 93.6 0.017 0.031 93.2 0.008 0.029 93.6 0.015 0.035 92.8 

 βR1 0.009 0.068 94.9 0.011 0.070 94.7 0.008 0.067 94.5 -0.003 0.073 94.9 

 βR2 -0.005 0.130 95.2 0.015 0.127 95.8 -0.016 0.138 94.4 -0.006 0.118 94.8 

 βR3 0.001 0.090 93.4 -0.012 0.097 93.9 -0.009 0.086 93.7 -0.016 0.107 94.2 

 λR1 0.009 0.053 95.3 0.012 0.053 94.8 0.006 0.050 95.5 0.011 0.055 93.9 

 λR2 0.012 0.028 94.7 0.014 0.028 94.3 0.009 0.026 95.1 0.014 0.030 94.2 

 λR3 0.010 0.041 94.1 0.010 0.041 93.7 0.007 0.041 94.1 0.011 0.042 94.4 

 γR1 0.019 0.009 94.8 0.022 0.010 93.9 0.017 0.009 94.4 0.022 0.011 94.5 

 γR2 0.043 0.034 95.7 0.050 0.035 95.0 0.041 0.032 95.5 0.049 0.038 94.5 

 γR3 0.018 0.016 95.0 0.018 0.015 95.0 0.015 0.013 94.6 0.020 0.018 95.4 
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Table 6: Simulation results obtained from the General compartment model varying θ, exp(βR1R), exp(βR2R) and 

exp(βR3R), and constant λR1 R= 2, λR2 R= 1R,  RλR3  R= 1, γR1 R= 1R,  RγR2 R= 2, γR3 R= 1 for n = 300 with 50% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath_without_relapse R= 1 

HRRdeath_after_relapse R= 1 

HRRrelapse R= 1 

HRRdeath_without_relapse R= 2 

HRRdeath_after_relapse R= 0.5 

 

HRRrelapseR=1 

HRRdeath_without_relapseR=0.5 

HRRdeath_after_relapseR=0.5 

 

 

HRRrelapseR=0.5 

HRRdeath_without_relapseR=1 

HRRdeath_after_relapseR=0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.056 0.233 95.3 -0.049 0.203 97.0 -0.034 0.181 95.8 -0.058 0.241 95.8 

 βR1 0.000 0.036 94.8 0.001 0.037 95.0 -0.001 0.035 94.5 -0.010 0.042 94.8 

 βR2 -0.002 0.104 95.3 0.009 0.087 95.6 -0.020 0.120 95.8 -0.003 0.087 94.9 

 βR3 0.003 0.061 94.8 -0.009 0.070 95.0 -0.010 0.058 95.4 -0.015 0.080 95.7 

 λR1 0.005 0.029 95.7 0.004 0.027 95.4 0.007 0.027 95.2 0.006 0.029 95.6 

 λR2 0.001 0.028 95.0 0.000 0.026 95.0 0.004 0.024 95.0 0.002 0.028 95.6 

 λR3 0.013 0.034 95.2 0.012 0.033 95.1 0.013 0.031 95.0 0.015 0.034 95.2 

 γR1 0.013 0.008 95.3 0.012 0.008 95.0 0.012 0.007 96.1 0.013 0.008 95.6 

 γR2 0.044 0.057 96.1 0.037 0.046 96.1 0.048 0.056 95.3 0.041 0.048 95.8 

 γR3 0.020 0.026 95.3 0.021 0.025 95.5 0.018 0.021 95.7 0.023 0.030 95.1 

1 θ -0.001 0.094 94.0 -0.002 0.081 94.8 0.007 0.073 93.8 -0.005 0.099 94.4 

 βR1 0.012 0.045 94.6 0.012 0.046 94.9 0.014 0.043 95.5 0.000 0.052 95.1 

 βR2 0.000 0.117 94.9 0.015 0.104 96.3 -0.016 0.138 95.1 -0.005 0.100 95.1 

 βR3 0.017 0.070 95.9 0.011 0.085 95.9 0.004 0.071 95.4 0.001 0.102 94.1 

 λR1 0.003 0.042 95.1 0.001 0.040 95.6 0.003 0.038 94.8 0.002 0.044 94.9 

 λR2 0.006 0.033 94.9 0.005 0.030 95.2 0.007 0.028 94.6 0.007 0.032 95.1 

 λR3 0.001 0.034 96.0 0.000 0.034 95.6 -0.001 0.032 96.1 0.004 0.035 95.7 

 γR1 0.019 0.010 94.3 0.017 0.010 94.9 0.019 0.009 95.5 0.019 0.011 94.1 

 γR2 0.047 0.057 95.3 0.043 0.049 95.4 0.046 0.055 94.6 0.044 0.053 94.9 

 γR3 0.024 0.025 94.7 0.026 0.028 95.1 0.023 0.023 95.0 0.028 0.032 94.7 

2 θ 0.020 0.044 94.6 0.025 0.046 94.2 0.017 0.044 94.2 0.024 0.055 94.0 

 βR1 0.009 0.072 94.6 0.011 0.074 94.5 0.008 0.070 94.9 -0.009 0.079 94.7 

 βR2 -0.014 0.148 94.5 0.006 0.152 94.7 -0.024 0.169 94.3 -0.015 0.142 95.5 

 βR3 -0.003 0.098 93.2 -0.015 0.111 94.4 -0.012 0.099 93.9 -0.027 0.127 93.7 

 λR1 0.017 0.060 95.5 0.022 0.061 95.1 0.015 0.060 94.9 0.022 0.065 94.8 

 λR2 0.019 0.035 94.5 0.023 0.037 94.0 0.017 0.035 94.7 0.022 0.040 94.5 

 λR3 0.013 0.043 95.4 0.015 0.043 95.4 0.013 0.043 95.4 0.017 0.044 95.6 

 γR1 0.024 0.011 94.3 0.027 0.012 94.9 0.022 0.011 94.2 0.028 0.013 94.9 

 γR2 0.055 0.046 95.6 0.062 0.050 95.4 0.055 0.049 95.4 0.061 0.054 95.0 

 γR3 0.025 0.020 94.8 0.028 0.023 94.7 0.024 0.019 94.8 0.032 0.027 95.2 



  64  

URestrictive Compartment Model: 

Tables 7 to 10 present simulation results based on the Restrictive model 

obtained via the NR algorithm, varying the effects of treatment on relapse 

(HRRrelapseR = 0.5, 1) and on death (HRRdeathR = 0.5, 1, 2). 

 

When there is no treatment effect, that is HRRrelapseR = HRRdeathR = 1, 

considering the simulation setting of n = 200 with 30% censoring, biases in the 

estimates are relatively close to zero as compared to the true parameter values 

with coverage probabilities approaching 95% for all degrees of dependence (θ) 

(Table 7). The effect of treatment does not appear to have any influence on the 

magnitudes of the biases and MSEs of the parameter estimates.  

 

Similar to the General model, comparatively larger MSEs for θ, as 

compared to the other parameters, are observed when θ = 0.5. However, the MSE 

decreases as θ increases. The CPs of all parameters are close to the nominal level 

of 95% for all values of θ considered. In addition, the MSEs for β1R and β2R 

generally increase when θ increases.  
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Table 7: Simulation results obtained from the Restrictive compartment model varying θ, exp(β1R) and exp(β2R), λR1 = 

2, λR2R= 1R,  RλR3 = 1, γ1 R= 1R,  Rγ2 = 2, γR3 = 1 for n = 200 with 30% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath  R= 1 

HRRrelapse R= 1 

HRRdeath_ R= 2 

 

HRRrelapseR= 1 

HRRdeath_ R= 0.5 

 

 

HRRrelapseR= 0.5 

HRRdeath_ R= 0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.030 0.085 96.0 -0.028 0.087 97.3 -0.028 0.075 96.5 -0.031 0.087 96.3 

 βR1 -0.010 0.049 94.3 -0.010 0.052 95.3 -0.011 0.050 94.9 -0.018 0.054 94.9 

 βR2 -0.006 0.051 94.6 0.004 0.052 95.0 0.004 0.048 94.7 -0.016 0.054 94.0 

 λR1 0.012 0.029 94.4 0.011 0.030 95.1 0.010 0.028 94.6 0.011 0.029 94.6 

 λR2 0.000 0.007 94.3 0.001 0.008 94.3 0.000 0.007 94.3 0.000 0.007 94.3 

 γR1 0.012 0.007 95.4 0.011 0.007 95.3 0.010 0.007 94.9 0.011 0.007 95.2 

 γR2 0.026 0.024 94.9 0.026 0.024 95.1 0.023 0.022 94.4 0.026 0.024 94.9 

1 θ -0.004 0.042 94.9 -0.001 0.044 95.3 -0.004 0.041 95.2 -0.005 0.044 94.8 

 βR1 0.001 0.062 95.6 0.000 0.064 95.5 -0.001 0.063 95.9 -0.010 0.066 95.9 

 βR2 -0.010 0.063 95.0 -0.004 0.069 94.7 0.000 0.065 94.9 -0.014 0.066 95.0 

 λR1 0.006 0.039 94.9 0.007 0.039 95.1 0.006 0.038 94.6 0.006 0.038 94.5 

 λR2 0.009 0.009 95.4 0.010 0.009 95.0 0.008 0.009 94.7 0.008 0.009 94.6 

 γR1 0.014 0.008 94.0 0.014 0.009 93.5 0.013 0.008 93.7 0.014 0.009 93.3 

 γR2 0.020 0.026 94.9 0.021 0.026 94.2 0.020 0.025 94.6 0.020 0.026 94.4 

2 θ 0.006 0.026 95.2 0.005 0.026 95.0 0.003 0.025 94.4 0.004 0.027 94.4 

 βR1 0.007 0.096 94.8 0.006 0.101 94.6 0.004 0.098 95.0 -0.008 0.104 94.0 

 βR2 -0.001 0.096 95.7 0.009 0.098 95.5 0.008 0.097 95.5 -0.013 0.098 96.3 

 λR1 0.002 0.062 93.7 0.002 0.062 93.1 0.001 0.061 93.5 0.002 0.061 93.6 

 λR2 0.004 0.014 94.8 0.004 0.014 94.9 0.003 0.014 94.9 0.004 0.014 95.1 

 γR1 0.017 0.008 94.2 0.017 0.009 93.6 0.016 0.009 93.9 0.017 0.009 94.0 

 γR2 0.034 0.026 94.3 0.034 0.026 94.5 0.032 0.024 94.8 0.034 0.026 95.2 
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The conclusions drawn with regards to the biases and MSEs of θ, β1 Rand β2R 

remained similar to those obtained under the General model setting, when the 

proportion of censoring increased from 30% to 50% (Table 8). Under weak 

dependence, a comparatively larger MSE of θ in relation to the other parameters, 

ranging from 0.087 to 0.165, was observed. However, the CP was rather 

conservative. A decreasing MSE for θ is observed as θ increases.  
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Table 8: Simulation results obtained from the Restrictive compartment model varying θ, exp(β1R) and exp(β2R), λR1 R= 

2, λR2 R= 1R,  RλR3  R= 1, γR1 R= 1R,  RγR2 R= 2, γR3 R= 1 for n = 200 with 50% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath  R= 1 

HRRrelapse R= 1 

HRRdeath_ R= 2 

 

HRRrelapseR= 1 

HRRdeath_ R= 0.5 

 

 

HRRrelapseR= 0.5 

HRRdeath_ R= 0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.040 0.130 95.2 -0.049 0.165 95.2 -0.029 0.102 96.1 -0.031 0.087 96.3 

 β1 -0.011 0.052 94.6 -0.011 0.057 95.1 -0.010 0.054 95.1 -0.018 0.054 94.9 

 βR2 -0.010 0.059 94.7 0.002 0.065 94.4 0.003 0.056 94.9 -0.016 0.054 94.0 

 λR1 0.014 0.031 94.6 0.012 0.034 95.3 0.012 0.031 95.1 0.011 0.029 94.6 

 λR2 0.000 0.009 93.5 -0.001 0.011 94.6 0.001 0.009 94.4 0.000 0.007 94.3 

 γR1 0.014 0.008 96.0 0.014 0.008 95.8 0.013 0.008 95.1 0.011 0.007 95.2 

 γR2 0.029 0.029 95.3 0.028 0.031 96.1 0.029 0.027 95.6 0.026 0.024 94.9 

1 θ -0.011 0.065 94.7 -0.012 0.066 94.9 -0.008 0.052 95.1 -0.005 0.044 94.8 

 βR1 -0.002 0.066 95.8 -0.001 0.070 95.9 -0.001 0.066 96.1 -0.010 0.066 95.9 

 βR2 -0.014 0.072 95.6 -0.002 0.077 95.7 -0.002 0.071 95.5 -0.014 0.066 95.0 

 λR1 0.007 0.044 94.7 0.005 0.045 94.5 0.005 0.041 95.2 0.006 0.038 94.5 

 λR2 0.010 0.010 95.7 0.009 0.011 95.6 0.008 0.010 95.5 0.008 0.009 94.6 

 γR1 0.015 0.009 94.4 0.014 0.010 95.4 0.013 0.009 94.1 0.014 0.009 93.3 

 γR2 0.025 0.033 94.1 0.025 0.034 94.2 0.021 0.029 94.9 0.020 0.026 94.4 

2 θ 0.010 0.035 95.9 0.009 0.038 94.8 0.006 0.031 95.3 0.004 0.027 94.4 

 βR1 0.006 0.101 95.3 0.004 0.108 95.1 0.003 0.105 94.4 -0.008 0.104 94.0 

 βR2 0.001 0.108 96.0 0.016 0.114 95.6 0.011 0.106 95.7 -0.013 0.098 96.3 

 λR1 0.008 0.067 94.2 0.006 0.069 93.1 0.005 0.065 93.7 0.002 0.061 93.6 

 λR2 0.006 0.016 94.7 0.004 0.017 94.9 0.004 0.015 94.6 0.004 0.014 95.1 

 γR1 0.021 0.010 93.5 0.020 0.011 94.2 0.019 0.010 94.6 0.017 0.009 94.0 

 γR2 0.041 0.035 95.2 0.040 0.036 94.9 0.037 0.030 94.8 0.034 0.026 95.2 
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Increasing the sample size from n = 200 to n = 300 improves the precision 

of the parameter estimates. In general, biases for all estimates are even closer to 

zero with the increase in sample size. Additionally, a notable decrease in MSEs of 

the estimates are observed. The 95% coverage probability is also reached for 

almost all estimates (Tables 9 and 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  69  

Table 9: Simulation results obtained from the Restrictive compartment model varying θ, exp(β1) and exp(β2), λR1 R= 

2, λR2 R= 1R,  RλR3  R= 1, γR1 R= 1R,  RγR2 R= 2, γR3 R= 1 for n = 300 with 30% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath  R= 1 

HRRrelapse R= 1 

HRRdeath_ R= 2 

 

HRRrelapseR= 1 

HRRdeath_ R= 0.5 

 

 

HRRrelapseR= 0.5 

HRRdeath_ R= 0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.017 0.057 95.1 -0.020 0.062 96.1 -0.019 0.052 95.7 -0.023 0.061 96.1 

 βR1 0.010 0.032 95.0 0.012 0.034 95.3 0.012 0.032 95.3 0.009 0.035 94.9 

 βR2 0.004 0.035 93.3 0.007 0.037 94.3 0.008 0.034 94.2 0.000 0.036 93.9 

 λR1 -0.005 0.019 94.8 -0.004 0.019 94.9 -0.005 0.018 94.5 -0.006 0.019 95.0 

 λR2 0.000 0.005 94.8 0.001 0.005 94.5 0.000 0.004 95.1 0.000 0.004 95.1 

 γR1 0.005 0.005 93.6 0.006 0.005 95.1 0.005 0.005 95.0 0.006 0.005 95.2 

 γR2 0.013 0.015 95.7 0.013 0.016 94.8 0.012 0.014 96.3 0.010 0.015 95.7 

1 θ -0.006 0.028 95.6 -0.007 0.029 94.6 -0.008 0.026 95.1 -0.006 0.030 95.7 

 βR1 -0.008 0.045 94.6 -0.010 0.046 95.1 -0.009 0.045 94.8 -0.013 0.047 94.9 

 βR2 -0.013 0.043 95.2 -0.004 0.044 95.5 -0.003 0.043 95.3 -0.018 0.044 95.2 

 λR1 0.005 0.024 95.8 0.004 0.024 96.0 0.004 0.024 95.5 0.005 0.024 95.4 

 λR2 0.003 0.006 95.0 0.002 0.006 94.5 0.002 0.006 94.7 0.003 0.006 94.6 

 γR1 0.006 0.004 96.2 0.005 0.004 96.4 0.006 0.004 96.3 0.006 0.004 96.9 

 γR2 0.018 0.015 95.7 0.019 0.015 95.8 0.018 0.014 96.6 0.018 0.015 95.7 

2 θ 0.006 0.016 95.5 0.006 0.016 96.1 0.007 0.015 96.1 0.006 0.016 95.0 

 βR1 -0.011 0.067 95.1 -0.015 0.070 94.9 -0.013 0.069 95.1 -0.021 0.072 95.0 

 βR2 -0.006 0.067 94.9 0.002 0.070 94.4 0.000 0.069 94.5 -0.015 0.067 95.3 

 λR1 0.009 0.040 93.8 0.009 0.040 94.2 0.007 0.039 94.1 0.007 0.040 94.3 

 λR2 0.004 0.009 95.5 0.003 0.009 95.4 0.003 0.009 95.4 0.003 0.009 95.5 

 γR1 0.011 0.005 95.9 0.010 0.005 96.0 0.009 0.005 95.7 0.009 0.005 95.9 

 γR2 0.023 0.015 95.3 0.023 0.016 94.5 0.022 0.015 95.4 0.023 0.016 95.7 
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Table 10: Simulation results obtained from the Restrictive compartment model varying θ, exp(βR1R) and exp(βR2R), λR1 

R= 2, λR2 R= 1R,  RλR3  R= 1, γR1 R= 1R,  RγR2 R= 2, γR3 R= 1 for n = 300 with 50% censoring. 
 

  

HRRrelapse R= 1 

HRRdeath  R= 1 

HRRrelapse R= 1 

HRRdeath_ R= 2 

 

HRRrelapseR= 1 

HRRdeath_ R= 0.5 

 

 

HRRrelapseR= 0.5 

HRRdeath_ R= 0.5 

 

θ  BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) BIAS MSE CP(%) 

0.5 θ -0.024 0.081 96.3 -0.029 0.103 95.6 -0.024 0.072 96.0 -0.029 0.099 95.6 

 βR1 0.012 0.034 95.0 0.013 0.037 93.8 0.012 0.035 94.6 0.008 0.039 95.1 

 βR2 0.000 0.041 93.7 0.008 0.044 94.5 0.005 0.039 94.6 -0.005 0.046 93.5 

 λR1 -0.004 0.020 95.3 -0.003 0.022 95.9 -0.004 0.020 95.5 -0.003 0.021 95.1 

 λR2 0.002 0.006 93.9 0.001 0.007 94.5 0.002 0.005 94.3 0.002 0.006 93.8 

 γR1 0.007 0.006 94.7 0.008 0.006 94.3 0.006 0.005 95.6 0.007 0.006 94.5 

 γR2 0.015 0.018 94.9 0.015 0.020 94.8 0.014 0.017 95.3 0.015 0.020 94.7 

1 θ -0.004 0.044 94.4 -0.006 0.045 94.6 -0.004 0.035 95.5 -0.005 0.047 94.5 

 βR1 -0.009 0.048 94.9 -0.009 0.049 95.4 -0.009 0.047 94.7 -0.015 0.052 94.8 

 βR2 -0.009 0.050 95.2 -0.002 0.050 96.6 -0.002 0.046 95.7 -0.016 0.052 95.3 

 λR1 0.007 0.028 95.6 0.005 0.028 95.6 0.005 0.026 95.4 0.006 0.028 95.7 

 λR2 0.003 0.007 94.4 0.002 0.008 94.7 0.002 0.007 94.4 0.002 0.007 94.6 

 γR1 0.008 0.005 95.6 0.007 0.005 95.3 0.007 0.005 95.6 0.008 0.005 96.7 

 γR2 0.023 0.020 94.9 0.022 0.020 95.4 0.019 0.017 95.9 0.022 0.020 94.9 

2 θ 0.005 0.024 95.4 0.005 0.024 95.9 0.004 0.020 96.0 0.005 0.024 95.6 

 βR1 -0.015 0.069 95.3 -0.020 0.073 94.8 -0.016 0.071 94.7 -0.025 0.074 95.5 

 βR2 -0.007 0.076 94.8 0.000 0.080 94.5 0.003 0.074 93.8 -0.016 0.076 95.6 

 λR1 0.011 0.044 93.5 0.011 0.045 94.6 0.008 0.042 94.4 0.008 0.043 95.0 

 λR2 0.002 0.011 95.8 0.002 0.011 95.6 0.001 0.010 95.6 0.002 0.010 95.3 

 γR1 0.013 0.006 95.2 0.012 0.006 96.1 0.010 0.005 96.3 0.010 0.006 96.1 

 γR2 0.024 0.021 95.3 0.022 0.022 95.1 0.021 0.018 95.8 0.022 0.021 95.1 
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Similar to the General model, while the MSE of θ is relatively large under 

weak dependence, it decreases when θ increases. In addition, the MSEs of the 

estimates for treatment effects increase as θ increases. Nonetheless, the 

magnitudes of the MSE in the restrictive model are by and large smaller than 

those observed in the General model. Coverage probabilities of 95% are reached 

for all parameters in the Restrictive model on the whole. In the Restrictive model, 

an increase in the biases and MSEs of θ is observed when the proportion of 

censoring of death increases from 30% to 50%, regardless of the magnitude of 

treatment effect. However, the increase in the proportion of censored observations 

seemed to have little effect on the biases and MSEs of the other parameters. As 

the proportion of censored observations increase, a corresponding increase in the 

magnitude of biases and MSEs of the other parameters was also experienced. An 

increase in sample size also decreases the magnitude of the biases and MSEs of 

all parameters, which is similar to the conclusions drawn if the General model 

was used.  

 

To summarize, estimates of the degree of dependence between relapse and 

death are subjected to a greater bias and MSE if the underlying dependence is 

weak. Estimates of the treatment effects are probably less precise if the degree of 

dependence is at least moderate. It was noted that as θ increases, the variances of 

the covariates, in particular, increase. CPs are generally close to the nominal level 

of 95% for all simulation settings based on the Restrictive and General model. 

MSEs of small to moderate magnitudes are also observed for the parameters. 
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Hence, our simulation studies suggest that parameters estimated via our proposed 

method are relatively unbiased with small to moderate variances, depending on 

the degree of dependence.   
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Chapter 5: Application to the nasopharyngeal cancer 
clinical trial dataset 
 

 

 The incidence of nasopharyngeal cancer (NPC) among males hovered 

at a numerical value of 14 per 100,000 person-years in the period from 1968-1972 

to 1993-1997, until it showed a decline in 1998-2002. A similar trend was 

observed among females where the incidence remained at about 6.0 per 100,000 

person-years from 1968-1972 to 1993-1997, before decreasing to 3.7 per 100,000 

person-years in 1998-2002. Despite showing a decline, NPC is by far one of the 

most frequently occurring cancers among Singaporeans, and  one of the most 

common causes of death among cancer patientsP

39
P Hence, there is a need to 

explore treatment regimes for NPC.  

 

 Radiotherapy (RT) is expected to cure about 50% of patients inflicted 

with NPC. It is estimated that about 30% of patients will develop loco-regional 

recurrence after a full course of RT, and half of the patients with very large and/or 

supraclavicular lymph nodes will relapse distantly. P

40
P Chemotherapy has been 

used to treat metastatic or recurrent NPC, with overall response rates of 50-80% 

with the use of platinum based combinations. In the adjuvant setting, however, the 

results have been controversial.  
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 Therefore, a randomized clinical trial on NPC was conducted in 

Singapore to assess the therapeutic intervention of standard RT versus concurrent 

chemo-radiotherapy followed by adjuvant chemotherapy.P

4
P Eligible patients who 

were diagnosed with stage III or IV (non-metastatic) NPC were recruited between 

September 1997 and May 2003 following informed consent. Patients who had 

previous treatment for NPC, signs of distant metastasis, and other concomitant 

malignant disease were excluded from the trial. A total of 221 patients were 

randomly assigned to receive only radiotherapy (RT; n = 110) or concurrent 

chemo-radiotherapy followed by adjuvant chemotherapy (CRT; n = 111). For 

patients on CRT, they were treated with concurrent cisplatin (CDDP) and RT 

before proceeding on to adjuvant CDDP and fluorouracil (FU). Dose schedules 

for patients on CRT are presented in Table 11. All patients were required to be 

followed up every 4 months for the first year, every 6 months for the second and 

third year and every year thereafter. The median follow-up time was reported to 

be 3.2 years. Full details of the trial are provided by Wee et al.P

4
P 

 

Table 11: Dose schedules for patients on the CRT armP

4
P 
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 Typically, patients with NPC will undergo RT and/or CRT treatment, 

and then enjoy a disease-free period. During the course of treatment, they may 

develop a distant metastasis (disease-spread usually at the lung or the bone) or a 

local recurrence. It is also possible that the patient may even die before any of 

these events has occurred, for example from pneumonia or a treatment related 

cause such as neutropenic sepsis. 

 

 In this trial, two endpoints were of interest – time to relapse and time 

to mortality. Although death was the primary outcome, relapse was also 

considered to be an important endpoint because it has been found that a 

substantial proportion of patients with Stage III or IV endemic NPC relapsed 

locoregionally and/or systematically with RT alone.  

 

  Altogether, there were 75 relapses. Of these, 20 patients remained alive 

without any evidence of disease and 55 died following a relapse. In addition, there 

were 13 deaths without a prior relapse being reported. Table 12 gives a 

breakdown of the events which have occurred in each treatment group.  

 

Table 12: Breakdown of events in the CRT and RT groups 

Type of event occurred CRT RT Total 

Relapse, and then death 

 

16 39 55 

Death without relapse 

 

8 5 13 

Relapse without death 11 9 20 
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 With a substantial number of deaths following relapse, it is anticipated that 

death (terminal event) may be strongly related to relapse (non-terminal event). As 

a consequence, a semi-competing risks approach, which is intended to account for 

the correlation between relapse and death, will be appropriate for analyzing such 

data following a natural order of disease progression. Our proposed methodology 

was thus applied to the NPC data, by modeling the dependence between the 

relapse and death times via the frailty approach. 

 

Parameter estimates describing the relationship for relapse and death in the 

NPC dataset for the General Compartment model are presented in Table 13. A 

positive dependence structure was observed between relapse and death times, 

with an association parameter of 6.79 (95% CI: 3.70, 12.46). This indicates that 

relapse is highly associated with death. After accounting for the dependence 

between relapse and death, patients on CRT were observed to be at a lower risk of 

death after relapse than those on RT, with a HR = exp(βR3R) of 0.47 although this 

was not significant (95% CI: 0.15, 1.48). Among patients without relapse, patients 

on CRT were observed to be at a slightly higher risk of death than those on RT 

with a HR = exp(βR2R) of 1.26, but this difference was not significant (95% CI: 0.31, 

5.10). The HR of relapse comparing patients on CRT and those on RT = exp(βR1R) 

is 0.44 (95% CI: 0.16, 1.20). The shape parameters were also observed to be 

greater than 1, and were statistically significant. This suggests that the risk of a 

relapse or death increased over time. The risk of death increased, regardless of 

whether there was a previous occurrence of relapse. 
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Table 13: Parameter estimates based on the proposed General Compartment 

model (data from NPC trial by Wee et al.P

4
P) 

Parameters 

 

Estimate 95% CI exp(Estimate) (95% CI) 

θ’ 1.92 (1.31, 2.52) 6.79 (3.70, 12.46) 

βR1 -0.82 (-1.82, 0.18)  0.44 (0.16, 1.20)P

†
 

βR2 0.23 (-1.18, 1.63)  1.26 (0.31, 5.10)P

†
 

βR3 -0.75 (-1.89, 0.39)  0.47 (0.15, 1.48)P

†
 

 λ1’ -0.24 (-0.77, 0.29)  0.79 (0.47, 1.34) 

 λ2’ -1.44 (-2.60, -0.28)  0.24 (0.07, 0.75) 

 λ3’ -0.72 (-1.04, -0.40)  0.49 (0.35, 0.67) 

γ1’ 0.74 (0.42, 1.06) 2.10 (1.53, 2.89) 

γ2’ 0.61 (0.16, 1.06) 1.84 (1.17, 2.90) 

γ3’ 0.97 (0.64, 1.30) 2.64 (1.91, 3.68) 
P

†
P: Corresponds to hazards ratio (HR) 

 

 

The adequacy of our model was checked via Cox-Snell residuals. The 

following figures show the residuals for the event times in each of the 3 paths of 

the general compartment model.  
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Figure 6: Cox-Snell residuals for time to relapse, times to death without prior 

relapse, and following relapse based on the general compartment model 

using data from NPC trial by Wee et al.P

4
P 
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It was observed that the residuals for the path to relapse in the General 

compartment model generally lie closely on the line of identity, indicating an 

adequate model fit. However, there appears to be a slight deviation from the line 

of identity in the Cox-Snell residuals at the tail-end distribution of death times 

without relapse. The deviation is most likely to be contributed by individuals who 

were followed for a much longer period of time exceeding 5 years, without 

experiencing any relapse or death. In the same plot, we also noticed a “step-like” 

function. The study sample involved in this second plot are patients who were 

uncensored on both events (n = 133) and those who experienced only death (n = 

13). Hence, the “steps” are likely due to the substantial proportion of subjects 

being censored on both events – relapse and death. It was also noted that small 

residuals of magnitude very much less than 3 were observed for relapse and death 

without relapse. This could be due to the high probability of relapse and death 

without relapse. There were 75 relapses out of 220 patients, with 48 and 27 

relapses in RT and CRT groups respectively. When recurrence-free survival was 

considered, median time to relapse was reached at 4.1 years for the RT group. 

Patients on the CRT arm did not reach median relapse-free survival. Among 

patients who did not experience any relapse, median survival was not reached in 

any of the RT or CRT groups. A lack of fit was also observed for the path from 

relapse to death, since residuals did not fall near to the line of identity. The lack of 

fit could have come about when we constrained the shapes and scales for the 

baseline hazards for each treatment group to be the same for each compartment 

arm. When a sub-group analysis was performed for each RT and CRT group, a 
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difference in the shape parameters for relapse to death arm comparing between 

RT and CRT was observed. While a shape parameter of 3.75 (95% CI: 2.65, 5.30) 

was observed in the RT group, a shape parameter of 1.04 (95% CI: 0.32, 3.41) 

was observed in the CRT group. As the shape parameters are statistically greater 

than 1 among the patients on CRT and RT, it suggests that the risk of relapse and 

death both increase over time among these 2 groups of patients. Results are 

presented in Tables 14 and 15. 

 

Table 14: Parameter estimates based on the proposed General Compartment 

model for patients under radiotherapy (data from NPC trial by Wee et al.P

4
P) 

Parameters 

 

Estimate 95% CI exp(Estimate) (95% CI) 

θ’ 1.86 (1.16, 2.56) 6.42 (3.19, 12.95) 

 λR1R’ -0.13 (-0.66, 0.41) 0.88 (0.52, 1.51) 

 λR2R’ -1.19 (-2.31, -0.07) 0.30 (0.10, 0.94) 

 λR3R’ -0.71 (-0.97, -0.44) 0.49 (0.38, 0.64) 

γR1’ 0.84 (0.45, 1.24) 2.32 (1.56, 3.45)  

γR2’ 0.72 (0.12, 1.33) 2.06 (1.12, 3.79) 

γR3’ 1.32 (0.98, 1.67) 3.75 (2.65, 5.30) 

 

Table 15: Parameter estimates based on the proposed General Compartment 

model for patients under chemo-radiotherapy (data from NPC trial by Wee 

et al.P

4
P) 

Parameters 

 

Estimate 95% CI exp(Estimate) (95% CI) 

θ’ 2.28 (1.50, 3.06) 9.77 (4.46, 21.37) 

 λR1R’ -0.53 (-1.22, 0.15) 0.59 (0.30, 1.16) 

 λR2R’ -1.18 (-2.30, -0.06) 0.31 (0.10, 0.94) 

 λR3R’ -1.05 (-1.93, -0.17) 0.35 (0.15, 0.84) 

γR1’ 0.80 (0.29, 1.31) 2.23 (1.33, 3.71) 

γR2’ 0.67 (0.04, 1.30) 1.95 (1.04, 3.66) 

γR3’ 0.04 (-1.15, 1.23) 1.04 (0.32, 3.41) 

 

We further attempted to demonstrate that the scale parameter is similar 

between CRT and RT, while the shape parameter differs between the 2 treatment 
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groups via another alternative method. In this alternative method, we estimated 

the treatment effect on the scale and shape parameters via βR3R and *
3 in 

3'
'( )

X
X e

  
  and 

*
3'( ) '

X
X e

  respectively. From these 2 equations, we 

allowed the scale and shape parameters to vary with the covariate x, where x is the 

treatment covariate (given by CRT coded as 1; RT coded as 0) in this study. 

While the magnitude of the scale is similar between CRT and RT (βR3R = -1.05 – (-

0.71) = -0.34; 95% CI: -0.26, 0.57), the shape parameter differs between the 2 

treatment groups ( *
3 = log(1.04) - log(3.75) = -1.28; 95% CI: -2.52, -0.04). Hence, 

this suggests that the shape parameter for CRT is exp(-1.28) = 0.28 times that for 

RT in the relapse to death pathway in the compartment model, which corresponds 

to what we have observed in Tables 14 and 15. 

 

A special case of the General Model, which imposes more restrictive 

assumptions of βR2 R= βR3R and hR02 R= hR03R, was also considered. A likelihood ratio test 

comparing βR2 R= βR3R, as well as parameters relating to the hazards namely γR2 R= γR3R 

and λR2 R= λR3R simultaneously using the chi-square test statistic with 3 degrees of 

freedom as described in Section 3.3.2, shows that equality holds for all 3 sets of 

parameters ( 2

(3)  = 0.922; p = 0.82). Hence, it suggests that a reduced Restrictive 

model is sufficient for describing the data. The adequacy of the restrictive model 

was also checked via the Cox-Snell residuals in Figure 7. A lack of fit was also 

observed for the patients who died, regardless of whether they experienced a 

relapse. However, the inadequacy of model fit was more apparent in the relapse to 

death path of the compartment model. 
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Figure 7: Cox-Snell residuals for time to relapse and to death based on the 

restrictive compartment model using data from NPC trial by Wee et al.P

4
P 
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Under this Restrictive Model, it is shown that patients on CRT have a 

lower risk of death as compared to those on RT, regardless of whether they had a 

prior relapse (HR = exp(βR2R) = 0.59; 95% CI: 0.19, 1.82). In addition, patients on 

CRT have a lower risk of relapse as compared to those on RT (HR = exp(βR1R) = 

0.42; 95% CI: 0.14, 1.27). The amount of relatedness between relapse and death 

was quantified by an association parameter of 8.96 (95% CI: 6.31, 12.72) (Table 

16).  

 

When both the General and Restrictive models were implemented, the HR 

of relapse comparing CRT and RT patients were similar (HR of 0.44 based on the 

General model versus 0.42 based on the Restrictive model). The HR of death 

could not be directly compared between the two models, as we have allowed the 

hazards of death to vary after relapse for the General model. While the Restrictive 

model may be valid for the data from the likelihood ratio test, the General model 

probably provided more information on the hazards of death on the disease 

process in the NPC data. It was observed that treatment seemed to have a different 

impact on the risk of death among patients who have suffered a relapse, and those 

who had not. While it was observed that patients on CRT had a higher risk of 

death before relapse than those on RT alone (HR = 1.26; 95% CI: 0.31, 5.10), a 

protective effect was observed among patients who had relapsed (HR = 0.47, 95% 

CI: 0.15, 1.48). However, it should be noted that the elevated risk of death 

without relapse should be interpreted with caution, as there were only 13 deaths 

without relapse out of 220 patients. The Restrictive model showed that CRT 
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lowered the risk of death as compared to RT in general (HR = 0.59; 95% CI: 0.19, 

1.82). A substantial degree of correlation between relapse and death was observed, 

when both models were used. 

 

In a previous analysis where the association between relapse and death has 

not been taken into consideration and disease-free survival (DFS) was the 

outcome of interest, the HR comparing patients on CRT and RT was 0.57 (95% 

CI: 0.38, 0.87).P

4
P A re-analysis of the data showed that when recurrence-free 

survival was of interest, the HR was 0.51 (95% CI: 0.32, 0.82). When overall 

survival was the outcome of interest, the HR was 0.51 (95% CI: 0.31, 0.81).P

4
P 

While the magnitudes of the HR for death were similar using the restrictive 

compartment model or the Cox proportional hazards assuming non-informative 

censoring, a slightly larger protective treatment effect for relapse was conferred 

by the restrictive compartment model. However, whereas statistical significance 

was achieved in the analyses by Wee et alP

4
P, significance was not reached using 

either of the current parametric models.  

 

Table 16: Parameter estimates based on the proposed Restrictive 

Compartment model (data from NPC trial by Wee et al.P

4
P) 

 

Parameters 

 

Estimate 95% CI exp(Estimate) (95% CI) 

θ’ 2.19 (1.84, 2.54) 8.96 (6.31, 12.72) 

βR1 -0.87 (-1.98, 0.24) 0.42 (0.14, 1.27)P

† 

βR2 -0.53 (-1.65, 0.60) 0.59 (0.19, 1.82)P

† 

λ1’ -0.05 (-0.39, 0.30) 0.95 (0.67, 1.34)P

  

λ2’ -0.70 (-1.01, -0.38) 0.50 (0.36, 0.68) 

γ1’ 0.93 (0.72, 1.13) 2.52 (2.06, 3.09) 

γ2’ 0.99 (0.79, 1.20) 2.70 (2.20, 3.32) 
P

†
P: Corresponds to hazards ratio (HR) 

 



 - 87 - 

5BChapter 6: Discussion and Concluding remarks  
 

 

In biomedical studies, it is often of interest to evaluate the efficacy of 

treatment in a clinical trial or the effect of covariates such as stage of cancer. 

Although death is an important endpoint, investigation of intermediate events, 

such as relapse, are also essential as they provide additional information 

pertaining to the disease progression process. In the ATAC trial data example, 

while 60% of the patients died after recurrence, the remaining 40% of the patients 

died without recurrence and from other causes. Although it is anticipated that 

recurrence is a relatively strong indicator for death, some of the death causes may 

not be disease-related, and therefore not strongly predicted by recurrence. 

Therefore, it will also be useful to know whether reducing morbidity will reduce 

mortality to the same extent. And if the effects of treatment are different for the 

two different types of outcomes (morbidity and mortality), it will be of interest to 

quantify the relative efficacy of treatment on both mortality and morbidity.  

 

In addition, in cancer trials such as ATAC, radiotherapy is one of the usual 

treatment options for cancer patients. Although radiotherapy may be able to 

improve patient survival, its effect on normal tissue is not known. It will then be 

relevant to quantify the effect of the intermediate event (toxicity) by radiation, 

while accounting for the effect of radiotherapy on overall survival. P

25
P Therefore, 

this further corroborates the importance of looking at intermediate events in a 

disease progression process.  
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The type of survival data as mentioned above, where both morbidity (non-

terminal event) and mortality (terminal event) are of analytical importance, has 

been defined earlier in this thesis as semi-competing risks data. Due to the lack of 

an appropriate methodology, semi-competing risks data are sometimes analyzed 

based on a competing risks framework where treatment efficacy is evaluated 

using only first-event information from each individual, ignoring all subsequent 

events that follow. In this instance, apart from describing the events using 

cumulative incidence functionsP

15,43
P, Cox proportional hazards model is also 

frequently fitted to obtain the cause-specific hazard ratio estimate of the exposure 

for each event conditional on surviving all other failure types. While this first-

event only approach eliminates the need to address the association between 

multiple event times for the same subject, it is inefficient because it does not 

utilize all the available informationP

44
P. This postulate is supported in a study by 

Tai et alP

45
P,  which showed discrepancies in hazard ratio estimates between 

methods which consider only the first event that occurs, and those that utilize 

information on all subsequent events. The discrepancies were magnified in 

instances when event times are highly correlated, or when the relative mean 

lifetime of the events are about equal. Besides, based on the competing risks 

paradigm, the dependence structure and the marginal distributions are not 

identifiable.P

46
P Although much effort has been devoted to bounding the 

marginalsP

47-49
P, these methods are complex and have assumptions that are not 

testable.  
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In view of the association between relapse and death, appropriate 

methodologies will be needed to profile the risk of morbidity and mortality over 

time more realistically, with emphasis on the non-terminal event. This need to 

map morbidity on the disease progression was corroborated by Fine et al.
7
. In 

comparison to their method which considers the association between the non-

terminal and terminal events, it was observed that the Kaplan-Meier method 

consistently overestimated the survival curve for relapse. As a consequence, 

appreciable differences in the estimates for covariates can occur depending on 

whether dependent censoring has been accounted forP

18,26,31
P This is illustrated by a 

difference in treatment effect for relapse in the NPC data as presented in Chapter 

5 of this thesis, which was observed to be intensified as compared to the effects 

obtained by the naive Cox proportional hazards model assuming non-informative 

censoring in Wee et alP

4
P. In a similar study on nasopharyngeal cancer by Xu et 

alP

31
P, which accounts for possible dependence between relapse and death via a 

non-parametric approach, a reduced risk of relapse was also observed in patients 

on CRT as compared with RT. In the latter study, the log-hazards of relapse 

among patients on CRT was -0.82 (SE: 0.34) times as much as those on RT. The 

log-hazards of death and relapse-to-death among patients on CRT were 0.14 (SE: 

0.53) and -0.74 (SE: 0.35) times as much as patients on RT respectively. Their 

estimates were similar to those obtained in this thesis (Table 13), which suggested 

robustness of the parameter estimates against misspecification in the baseline 

hazard form. In another study by PengP

18
P, it was noted that the risk of first 

virologic failure amongst patients on Efavirenz (EFV) was 0.66 (Estimate (SE): -
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0.416 (0.222)) times that of those on Nelfinavir (NFV) when Cox proportional 

hazards model was used without taking potentially dependent censoring of first 

virologic failure by death into account. When dependent censoring was 

considered, the estimate (SE) of the treatment effect became -0.487 (0.226), 

indicating that EFV put patients at a much lower risk of first virologic failure as 

compared to NFV (39% as compared to the previous 34%). Similarly, in the 

National Surgical Adjuvant Breast and Bowel Project (NSABP)P

26
P, a difference in 

the effect of Tamoxifen on local-regional failure was observed, depending on 

whether possible dependent censoring of local-regional failure by distant failure, 

second primary cancers and non-cancer deaths was considered. When possible 

dependence was ignored, a HR of 0.411 (95% CI: 0.312, 0.541) was achieved. 

Accounting for possible dependence resulted in a HR of 0.528 (95% CI: 0.444, 

0.627). 

 

Methods for analyzing semi-competing risks data were proposed 

following Fine et alP

7
P. Assuming that the form of the marginal distribution for the 

time to the non-terminal event is known, approaches involving copula models and 

marginal distributions for the non-terminal event under weak assumptions have 

been put forth. However, in contrast to previous studies which have made 

assumptions about the marginal distribution for the time to the non-terminal 

outcome, no such assumption is made in this study and we limit our analysis to 

the observable region of the data. With observed pairs of morbidity and mortality 

data, we introduced a new method for semi-competing risks data to account for 
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the dependence structure between morbidity and mortality, while estimating their 

respective hazard functions using a frailty approach. We used the Clayton 

(gamma frailty) copula model in the joint modeling of morbidity and mortality 

because of its mathematical convenience, although more flexible models such as 

the ArchimedeanP

21
P and time-dependentP

18
P copulas may be adopted. We have not 

checked for the appropriateness in the usage of the Clayton copula model P

26
P, but it 

has been suggested that the estimates remain fairly robust even when copulas are 

mis-specified.P

25
P  

 

With the frailty model, covariate effects can be directly interpreted with 

explicit modeling of the baseline hazards via Cox proportional hazards model 

together with the association parameter between morbidity and mortality. This 

approach is similar to Xu et alP

31
P, Peng and FineP

18
P as well as Hsieh and WangP

30
. 

However, differences in the formulation of the regression models exist. While 

baseline hazards were assumed to be governed by a parametric form (Weibull 

distribution) in this thesis, a non-parametric method was used to describe the 

baseline hazards in Xu et al.P

31
P Although non-parametric hazards may offer more 

robust covariate estimates, parametric distributions offer a direct description of 

baseline hazards. Moreover, model fit could be easily checked using graphical 

techniques as suggested in Section 3. Furthermore, while Cox proportional 

hazards model was adopted for regression purposes in this thesis, Peng and Fine P

18
P 

as well as Hsieh and WangP

30
P, used a flexible monotone function, which 
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incorporates proportional hazards model as a special case, to describe the 

functional form for morbidity.  

 

Among other differences in the model formulation as compared to 

previous methods, we have also allowed for model parameters to vary depending 

on the state of disease progression. This is illustrated by the construction of the 

compartment model in Section 3.1. Apart from varying effects of covariates on 

outcomes based on whether the patient has a previous occurrence of morbidity 

(e.g. relapse), baseline hazards also varied according to the progression of disease. 

This approach is generally more flexible than other methods proposed previously. 

This is because we think that the risk of death are likely to be different among 

patients who have experienced a relapse than those who have not, and this 

correlation between relapse and death may not have been fully accounted for by 

frailty. Therefore, the unaccounted “excess” correlation will be manifested as a 

difference in model parameterizations in the compartment model as shown in 

Section 3.1. Previous methods have assumed that any dependency between the 

non-terminal and terminal events has been fully captured by frailty. Hence, the 

strength of our method lies in the adoption of a more general model formulation 

according to the state of disease. A test of model parameters can also be 

performed, in order to determine if a less complex model results.   

 

Computation of the model parameter estimates can be easily achieved 

using the NR algorithm. Simulation studies attested to the performance of the 
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proposed method, with small MSEs and CPs close to the nominal level. Checks of 

overall model adequacy are available with the implementation of the proposed 

method. One technique, such as that involving graphical assessment of the Cox-

Snell residuals, has been suggested to establish model fit here. Through the Cox-

Snell residuals, it was shown that a lack of fit was observed in the relapse-to-

death path of the compartment model for NPC data. This was possibly due to the 

difference in the shape parameters governing the baseline hazards for the relapse-

to-death arm in both RT and CRT, as shown by the subgroup analyses in Chapters 

5. However, for the proposed model in this thesis, we have imposed the constraint 

that the shape and scale parameters determining the baseline hazards only depend 

on the pathway of the compartment model and not on the covariate (treatment). 

Nevertheless, we believe that if the baseline hazards were correctly specified, the 

proposed model would work well in practical settings, as attested by the 

simulation results. Hence, other models with more suitable parametric baseline 

hazards could be considered when a lack of fit in the data was observed. 

  

The importance of accounting for the dependency between relapse and 

death was shown in both the simulated and NPC datasets. The magnitude of the 

dependency serves as an indication of the predictive value that an occurrence of 

relapse will have on death. If the dependency is strong, it implies that an 

occurrence of relapse will increase the risk of mortality substantially. Conversely, 

if the dependency is almost negligible, then it suggests that the prognostic outlook 

will probably not change even if a relapse were to occur. Referring to the scenario 
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relating to relapse and death at the beginning of this chapter, if there was indeed 

an association of substantial magnitude between these two events, it would then 

be necessary to develop or adopt appropriate treatment strategies which could 

lower the chances of relapse, since it would influence the progression to death. 

 

The proposed compartment model fits the structure of semi-competing 

risks data nicely, and provides an interpretable estimation of the covariate effects 

on morbidity. However, one limitation of the compartment model is that while the 

overall survival probability for the terminal event can be estimated using 

conventional methods, the survival probability for the non-terminal outcomes is 

not estimable as we do not assume that the form of the distribution on the lower 

wedge (where the non-terminal is censored by the terminal event) to be known. 

 

The current compartment model may be generalized to accommodate 

other forms of settings. In the proposed compartment model approach, we have 

assumed only one non-terminal event occurring before the terminal event. 

However, scenarios may arise which warrant investigation of the inter-

relationships between more than one non-terminal event, in addition to the 

possible occurrence of the terminal event. Local recurrence has been 

demonstrated to be an important indicator for metastasis; and survival patterns for 

metastatic breast cancer patients depend on whether local recurrence has occurred 

previously. However, prognostic outlooks may be different for women who have 

metastases at different anatomical locationsP

50
P Hence, it will be useful to explore 
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how the current proposed model can be further generalized to take into account all 

possible types of clinically important intermediate events which can occur before 

the occurrence of the terminal event.  

 

The current model also assumes that the covariate effects and the 

parameter estimates are time-invariant. However, the dependence between event 

times, as well as the covariate effects, may vary over time. Therefore, studies on 

how to employ techniques involving time-dependent copulas, such as that 

proposed in Peng and Fine
18

P, for modeling the dependence between non-terminal 

and terminal event times will be required. Furthermore, the current compartment 

model was proposed for right-censored data, such as that observed in a usual 

clinical trials setting. However, data subjected to left truncation and right 

censoring, such as those involving registries, may arise
27

P Hence, it will be useful 

to investigate how the current proposed model can be extended to accommodate 

data of this structure.  
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7BAppendix: 
 

 

The score equations and elements of the information matrix are written explicitly 

below. 

 

First, define: 

1

1 1 1 1( ) exp( )m t X  ; 2

2 2 1 2( ) exp( )m t X  ; 3

3 3 2 3( ) exp( )m t X
  ; 

3

4 3 1 3( ) exp( )m t X
  .  

m = mR1R + mR2R +mR3R – mR4 

k = 1 + mθ 
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1
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