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Summary  

    Catalytic hydrogenation is a process for the reduction of chemical substances, and 

has found numerous applications in the chemical and petrochemical industries. The 

hydrogenation reaction can be carried out heterogeneously or homogeneously. The 

heterogeneous catalysts are in generally a metal supported on a solid that are prepared 

by using conventional methods, such as impregnation followed by hydrogen reduction. 

Such supported catalysts suffer from a number of problems, such as aggregation and 

leaching of the metal particles. Thus, new methods that afford the preparation of 

catalytically highly active, chemically and thermally stable, technically reusable, and 

cost-effective are highly desirable.  

In this thesis work, the template strategy was employed to prepare new 

heterogeneous catalysts. The catalysts were characterized using a number of 

techniques, such as extended X-ray absorption spectroscopy (XAS) and chemisorption 

of hydrogen and carbon monoxide. The catalytic properties of the catalysts were 

evaluated using the hydrogenation of D-glucose in a batch reactor.  

First, ruthenium nanoparticles embedded in the pore walls of templated carbon 

(denoted RuC) were prepared by using H-form zeolite Y and mesoporous silica SBA-

15 as templates. Compared with other ruthenium catalysts prepared using conventional 

methods, the RuC catalysts prepared using the template method exhibited a 

significantly improved catalytic performance because of the unique structure of the 

RuC catalysts.  

Second, bimetallic ruthenium-copper (Ru-Cu) nanoparticles embedded in the pore 

walls of mesoporous carbon were prepared. The presence of bimetallic entities was 

supported by the characterization data of both Ru LIII-edge and Cu K-edge X-ray 
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absorption. It was observed that additional active sites were created because of the 

spillover of H from Ru to Cu at low Cu contents while three-dimensional islands of 

segregated metallic Cu phase covering the surface of Ru nanoparticles appeared at 

high Cu contents.  

Third, alumina microfibers were also used as templates to prepare Ru nanoparticles 

embedded in mesoporous carbon fibers. In comparison with Ru nanoparticles 

supported on other carbon materials (e.g., multi-walled carbon nanotubes, carbon 

fibers, alumina microfibers, and the activated charcoals), the Ru catalyst prepared 

using the template method displayed a remarkably higher catalytic activity and a better 

stability, again attributed to the features of unblocked mesopores, hydrogen spillover, 

and unique surface contact between the Ru nanoparticles and the carbon supports. In 

addition, the incorporation of nitrogen significantly improved the catalytic 

performance due to the enhanced hydrogen adsorption, improved surface wettability, 

and modified electronic properties of the Ru nanoparticles.  

Fourth, the kinetics of D-glucose hydrogenation over a bimetallic catalyst was 

studied. In the operation regime studied, the reaction rate showed a first order 

dependency with respect to hydrogen. The rate dependence on D-glucose was found to 

be concentration-dependent: at low D-glucose concentrations the reaction rate showed 

a first order dependency while at higher concentrations a zero order behavior was 

observed. Experimental data were fitted to the kinetic model using the Matlab software 

with the fminsearch method. The kinetic model was found to nicely predict the 

experimental data.  

In short, the template method offers opportunities to prepare novel solid catalysts 

with unique properties, such as controllable catalyst particle size, enhanced catalyst 

dispersion, improved thermal stability, lowered diffusion resistance of both reagent 
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and product, and intimate interfacial contact between metal particles and the carbon 

support. In addition, the template method could be extended to the preparation of 

bimetallic or tri-metallic carbon nanocomposites. Furthermore the template method 

allows one to easily control the chemical properties of carbon by changing carbon 

precursor (incorporation of heteroatom such as nitrogen).  
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3D Three-dimensional 
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CHAPTER 1 

INTRODUCTION  

 
1.1 Hydrogenation reactions 

The catalytic hydrogenation of organic compounds is an important reaction in 

organic synthesis that can be dated back to 1897 when a French Chemist, Paul Sabatier 

(Sabatier, 1905), discovered that the introduction of a trace of nickel metal (a catalyst) 

facilitated the addition of hydrogen to molecules of hydrocarbon compounds. Since 

then catalytic hydrogenation has been widely used in various fields. Important 

examples of industrial hydrogenation processes are the synthesis of methanol, liquid 

fuels, hydrogenated oils, cyclohexanol and cyclohexane.  

In the food industry, hydrogenation is applied to process vegetable oils and fats 

(Patterson, 1983). Triglycerides are the main constituents of vegetable oils and fats, 

which consist of one molecule of glycerol combined with three molecules of fatty 

acids (as shown in Figure 1.1).  If the result is liquid at ambient temperature, it is 

commonly known as an oil and if it is solid, as a fat. In nature, fats are physical 

mixtures of various triglycerides. The proportions of the different triglycerides which 

go to make the complete fat and the different kinds of fatty acid combined in any one 

triglyceride will determine the chemical and physical nature of the fat. Unsaturated 

vegetable fats and oils can be hydrogenated by the catalytic addition of hydrogen at the 

ethylenic linkages of their acids to produce saturated or partially saturated fats and oils 

of higher melting point. The most common forms are shortening, margarines, and the 

partially hydrogenated fats used for frying and in processed food. These fats are 

desirable for its melting point, allowing for high temperature cooking and frying.  
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Figure 1.1 (a) Components of a fat molecule, (b) Fat triglyceride shorthand formula.  
 

In the petroleum industry, catalytic hydrogenation has become an important refining 

technique in upgrading low quality petroleum distillates to premium fuels (Dodgson, 

1993). Petroleum (crude oil) comprises not only alkanes, cyclic alkanes and aromatic 

hydrocarbons of different molecular weight, but also a small amount of sulfides, 

oxides, and nitrides, as well as some trance amounts of metal compounds of iron, 

nickel, copper and vanadium, etc. In the crude state, petroleum has little value but, 

when refined, it provides liquid fuels (gasoline, diesel fuel, aviation fuel), solvents, 

heating oil, lubricants, and the distillation residuum asphalt. Hydrogenation processes 

uses the principle that the presence of hydrogen during a thermal reaction of a 

petroleum feedstock will terminate many of the coke-forming reactions and enhance 

the yields of the lower-boiling components, such as gasoline, kerosene, and jet fuel. 

Hydrogenation is also used for improving product quality without appreciable 

alternation of the boiling range. Nitrogen, sulfur, and oxygen compounds undergo 
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reaction with the hydrogen, forming ammonia, hydrogen sulfide, and water, 

respectively.  

 

1.2 Importance of hydrogenation of D-glucose  

Sorbitol (C6H14O6) is a sugar alcohol, found in nature as the sweet constituent of 

many berries and fruit. It is available in both liquid and crystalline form with a world 

capacity of more 1 Mt/a (Eisenbeis et al., 2009). It was first isolated in 1873 by the 

French chemist, Joseph Boussingault (Fedor, 1960). Today, it is commercially 

produced by the catalytic hydrogenation of D-glucose (C6H12O6) over nickel and 

ruthenium catalysts. Because sorbitol is about 60 percent as sweet as sucrose with one-

third fewer calories, it is a sugar substitute for diabetics. In addition, sorbitol is used as 

a humectant in many types of products for protection against loss of moisture content. 

The moisture-stabilizing and textural properties of sorbitol are used in the production 

of confectionery, baked goods and chocolate where products tend to become dry or 

harden. Since sorbitol has no cariogenic activity, most toothpaste contains sorbitol. 

Moreover, it is also used as a feedstock for L-sorbose – an important intermediate in 

manufacture of L-ascorbic acid (vitamin C). Furthermore, sorbitol can be efficiently 

converted into H2, synthesis gas, alkanes, liquid fuels, and oxygenates (Huber et al., 

2003; Davda and Dumesic, 2004; Huber et al., 2004).   

 

1.3 Catalysts for hydrogenation reactions 

With rare exception, no reaction below 480 oC occurs between H2 and organic 

compounds in the absence of metal catalysts (Nishimura, 2001). The catalyst binds 

both the H2 and the unsaturated substrate and facilitates their union. There are two 

types of catalysts, homogeneous catalysts and heterogeneous catalysts. The 
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homogeneous catalysts are metal complexes that are soluble in the reaction medium. 

Such metal complexes consist of a central metal ion and organic ligands. The activity 

and selectivity of homogeneous catalysts are adjusted by changing the ligands. The 

catalytic cycle starts with oxidative additive of an H2 molecule to the metal centre to 

give a metal dihydride species and ends with reductive elimination of the product 

(Dwars and Oehme, 2002; Blaser et al., 2003). Because these complexes are difficult 

to remove and reuse, numerous attempts have been made to anchor of homogeneous 

system on organic or inorganic supports to combine the advantages of homogeneous 

catalytic systems (high activity, high selectivity, excellent reproducibility) with the 

advantages of heterogeneous catalytic systems (long life, recycling, continuous 

application).   

Heterogeneous transition metal catalysts for hydrogenation are usually employed in 

the states of metals, oxides, or sulfides that are either unsupported or supported. The 

physical form of a catalyst suitable for a particular hydrogenation is determined 

primarily by the type of reactions, such as fixed-bed, fluidized-bed, or batch reaction. 

For industrial purposes, unsupported catalysts are seldom employed since supported 

catalysts have many advantages over unsupported catalysts. One exception to this is 

Raney-type catalysts, which are effectively employed in industrial hydrogenations in 

unsupported states. In general, use of support allows the active component to have a 

large exposed surface area, which is particularly important in those cases where a high 

temperature is required or where the active component is very expensive. An active 

component may be incorporated with a carrier in various ways, such as, by deposition, 

impregnation, precipitation, coprecipitation, adsorption, or ion exchange. For these 

preparation methods catalyst pretreatment is often necessary, because the solid 

materials containing metal compounds in non-metallic state can exhibit only low 
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catalytic activity or be catalytically inactive. Catalyst pretreatment involves the catalyst 

calcination, catalyst reduction, and the catalyst aging. Unlike homogeneous 

hydrogenation, which takes place on a well-defined single metal centre, heterogeneous 

hydrogenation proceeds over a vast surface of a metal cluster. This gives rise to a large 

number of interaction possibilities and variety of relevant and irrelevant species 

present on the surface during the reaction. Hydrogenation over heterogeneous catalysts 

proceeds via several surface reaction steps, like adsorption, reaction and desorption. 

Additionally, the reaction mechanism is rather complicated including competitive/non-

competitive and dissociative/non-dissociative adsorption as well as adsorption of 

solvents, formation of coke etc. As a result, it is important to understand the catalyst 

structure and relate performance of the catalyst (e.g. activity) to its structure. Any 

small improvement of the performance and cost of the catalysts would help to cut the 

cost of these important processes.  

The most common catalyst in D-glucose hydrogenation is nickel promoted by 

electropositive metals, such as molybdenum and chromium (Gallezot et al., 1994; Li et 

al., 2000; Hoffer et al., 2003; Schimpf et al., 2007). However, due to the leaching of 

nickel and catalyst promoters into the product and fast deactivation of the catalyst, new 

catalysts, such as cobalt, copper, platinum, palladium, rhodium and ruthenium 

(Wisnlak and Simon, 1979; Makkee et al., 1985; Li et al., 2001) have been studied. 

Among these catalysts, ruthenium nanoparticles dispersed on solid supports, such as 

mesoporous silica, activated carbon, titania, and alumina oxides (Gallezot et al., 1998; 

van Gorp et al., 1999; Hoffer et al., 2003; Kusserow et al., 2003; Besson et al., 2005; 

Perrard et al., 2007; Yuan et al., 2008), have been found to display the best catalytic 

performance in D-glucose hydrogenation. However, these supported catalysts have a 

common issue, namely rapid deactivation (Arena, 1992; Besson and Gallezot, 2003; 
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Kusserow et al., 2003), partially due to sintering and/or migration of the Ru particles 

(Maris et al., 2006).  

 

1.4 Carbon-supported catalysts for hydrogenation reactions  

Many heterogeneous hydrogenation catalysts consist of metals or metal compounds 

supported on an appropriate support, the basic role of which is to maintain the 

catalytically active phase in a highly dispersed state to obtain a large active surface per 

unit weight used. In addition, a supported catalyst facilitates the flow of gases through 

the reactor and the diffusion of reactants through the pores to the active phase, 

improving the dissipation of reaction heat, retarding the sintering of the active phase 

and increasing the poison resistance. The selection of support is based on a series of 

desirable characteristics: inertness, stability under reaction, regeneration conditions, 

adequate mechanical properties, appropriate physical form for the given reactor, high 

surface area, porosity and chemical nature (Rodriguez-Reinoso, 1998). Carbon has 

been used as hydrogenation catalyst support for a long time because their specific 

properties, including (a) resistance to acid/basic media, (b) possibility to control, up to 

certain limits, the porosity and surface chemistry, and (c) easy recovery of precious 

metals by burning (Serp et al., 2003). The most common carbon support material is 

activated carbon, followed by carbon black and graphite or graphitized materials.   

However, the properties of these commercial use carbons are difficult to control and 

their microporosity has often hampered catalyst development. Furthermore, the impact 

of the chemical and physical properties of the carbon on the catalyst preparation and 

the catalytic performance are not yet sufficiently understood. New carbon materials, 

like carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and templated-

synthesized porous have been applied in hydrogenations in the scientific community.   
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1.5 Recent advance on template approach to preparing novel porous 

carbons and catalysts 

The template method has been widely used to prepare novel porous carbon with 

various structural, morphological, and compositional properties (Zhao et al., 2006a; Lu 

et al., 2006; Lee et al., 2006). Because of their uniform pore size, high surface area and 

interconnected pore network, templated carbon is a better catalyst carrier than 

traditional porous carbon. There are two types of template, namely soft template and 

hard template (Liang et al., 2008). The former refers to those organic species, which 

can be subsequently removed by calcination or solvent extraction. The latter refers to 

porous structures (e.g., zeolites, mesoporous silicas, and colloidal crystals), which 

guide the formation of the structure of a templated carbon. The hard template method 

works this way. First, the template pores are filled with a carbon precursor such as 

sucrose, furfuryl alcohol, ethylene, and propylene et al. After carbonization under 

proper conditions followed by removal of the template framework, a porous carbon 

with pores replicated from the template framework is obtained.   

On the other hand, this template approach to prepare porous carbon has also opened 

a new avenue to prepare novel catalysts (Lu et al., 2007). By embedding metal 

particles in the carbon walls of templated porous carbon, thermally stable and 

catalytically active catalysts can be obtained. Lu et al. (2007) reported that molecular-

level palladium clusters dispersed in the carbon walls can be synthesized by pyrolyzing 

palladium nitrate and polyacrylonitrile in the pores of SBA-15. The confined 

palladium clusters did not grow during the pyrolysis because they were stabilized by 

the carbon framework. Thus-prepared palladium catalysts were found to show a high 

selectivity of aldehydes in the catalytic oxidation of various alcohols and a high 

activity was maintained over multiple runs.  
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In our lab, Su et al. (2007, 2008) reported that porous carbon could act both as the 

support and the reducing agent for Ru nanoparticles, and the intimate interfacial 

contact between the Ru nanoparticles and the carbon support was believed to be 

responsible for the remarkably high catalytic activity and stability in the hydrogenation 

of benzene and toluene. The above studies suggest that the embedding of active 

component in carbon walls and the generating of a strong interaction between the 

active component and the support would help to yield a thermally stable and highly 

active catalyst. However, there are still a number of remaining challenges: i) for many 

target compositions, the chemistry of the target material is not compatible with the 

conditions of the template-removal process; ii) increasing metal loading is also a 

challenge; iii) it is necessary to ensure a rigid structure, thus avoiding collapse of the 

pore system after removal of the template.  

  

1.6 Objective of project 

    The main objective of this project is to use the template method to prepare highly 

active and stable heterogeneous catalysts, competing with  currently used catalyst for 

hydrogenation reaction (in general) and for hydrogenation of D-glucose (in particular). 

To accomplish the objective, the following work was carried out:  

• The template method was used to prepare Ru nanoparticles embedded in the 

pore walls of template microporous and mesoporous carbons. The catalysts 

were characterized using FESEM, TEM, XRD, nitrogen adsorption, and TGA 

analysis. The catalytic properties of the catalysts were evaluated using the 

hydrogenation of D-glucose. The effects of the particle size of Ru nanoparticles 

and pore structure on catalytic activity were investigated.  
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• The template method was used to prepare bimetallic Ru-Cu particles embedded 

in the pore walls of mesoporous carbon. The effect of the second metal (Cu) on 

the physicochemical properties and catalytic performance of the bimetallic Ru-

Cu catalysts was studied.  

• The template method was used to prepare Ru nanoparticles embedded in 

mesoporous carbon microfibers by using alumina microfibers as templates. The 

effect of carbon morphology on the catalytic performance was investigated. 

The influence of the nitrogen doping in the carbon fibers was examined.   

• The kinetics and mechanism of D-glucose hydrogenation over a bimetallic 

catalyst in aqueous solution were studied in a batch reactor. The experimental 

data were fitted to a kinetic model and important parameters were derived.   

 

1.7 Structure of thesis 

    This thesis is organized into eight chapters. With a brief introduction and a summary 

of the objectives of this project in chapter 1, an extensive literature review on the 

hydrogenation reactions, catalysts for the hydrogenation reactions, and carbon supports 

is presented in chapter 2. The details of chemicals, synthesis methods, characterization 

techniques used, and catalytic evaluation conditions are given in chapter 3. In chapter 4, 

the syntheses of RuC catalysts by using H-form zeolite HY and ordered mesoporous 

silica SBA-15 as templates are discussed. The catalytic performances of the RuC 

catalysts were compared with other Ru-C catalysts prepared by conventional method. 

Chapter 5 describes the fabrication of bimetallic Ru-Cu nanoparticles embedded in the 

pore walls of mesoporous carbon. The presence of bimetallic entities was characterized 

and the bimetallic catalysts were evaluated in D-glucose hydrogenation. Chapter 6 is 

the details of synthesis of the mesoporous carbon microfiber supported Ru catalysts by 
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using alumina microfibers as templates. The catalytic performances of the mesoporous 

carbon microfiber supported Ru catalysts were compared with Ru deposited on multi-

walled carbon nanotubes, carbon fibers, alumina microfibers, and the activated 

charcoals. In addition, the effect of nitrogen incorporation on the catalytic performance 

was investigated. Kinetics of D-glucose hydrogenation over RuCuC catalyst in 

aqueous solutions is presented in Chapter 7. The hydrogenation experiments were 

carried out batchwise, operating at 4.0-10.0 MPa and between 90 and 120 oC. Finally, 

in chapter 8 an overall summary and recommendations for further work are given. 
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1 Hydrogenation reactions 

Catalytic hydrogenation is one of the most useful and versatile tools available to the 

synthetic organic chemist. It can be meeting in the large scale chemical and 

petrochemical industry (removal of benzene from fuels, oils, etc.), the food processing 

industry (fat hardening), fine chemicals and pharmaceutical industries and in many 

laboratory-scale operations. Many books and reviews published in this area underscore 

the synthetic important of these reactions (Augustine, 1997; Singh and Vannice, 2001). 

The literature review below is organized around the functional group undergoing 

reduction.  

 

2.1.1 Hydrogenation of carbon-carbon multiple bonds 

The hydrogenation of carbon-carbon double and triple bonds is a very common 

reaction in heterogeneous catalysis. There are four types of hydrogenations (Kralik and 

Biffis, 2001): (i) total hydrogenation of unsaturated molecule without other 

hydrogenation moieties; (ii) partial hydrogenation of a molecule with more than one 

multiple bond, either conjugated or not; (iii) partial hydrogenation of alkynes to 

alkenes; (iv) selective hydrogenation of an unsaturated molecule bearing other 

unsaturated moieties, such carbonyl groups or halogen substituent. The hydrogenation 

of fatty oils is one of the most striking industrial application of hydrogenation of 

carbon-carbon multiple bonds. The classical heterogeneous catalysts for carbon-carbon 

multiple bond hydrogenations involve supported precious metals, activated base metal 

catalysts (such as Raney-Ni) and nickel supported on oxides. For fine chemicals 
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manufacture activated carbon is the most common support material. Aluminas and 

silicas as well as CaCO3 or BaSO4 are preferred for special applications (Molnar et al., 

2001).  

 

2.1.2 Hydrogenation of C=O bonds 

Hydrogenation of carbonyl groups occurs readily over most catalysts. However, 

hydrogenolysis of the resulting hydroxyl group and further reduced to methylene group 

must be careful to be prevented. The hydrogenation of carbonyl groups can be 

summarized to a few reaction types: i) hydrogenation of aliphatic aldehydes and 

ketones; ii) hydrogenation of unsaturated aldehydes; iii) hydrogenation of aromatic 

aldehydes and ketones; iv) sugar hydrogenation; v) enantioselective carbonyl 

hydrogenation; vi) hydrogenation of esters, anhydrides and carboxylic acids. The rates 

of hydrogenation of carbonyl compounds depend on the nature of catalyst, the 

structure of compounds, such as aliphatic or aromatic and hindered or unhindered, the 

reaction medium, as well as the reaction conditions. Carbonyl compounds are readily 

hydrogenated to alcohols under mild conditions with platinum catalysts preferably in 

acidic media as well as with rhodium and ruthenium most commonly under neutral or 

basic circumstances (Nishimura, 2001). Palladium catalysts are not usually used for 

these reductions however they have found utility in the selective hydrogenation of 

aromatic carbonyls. Carbonyl groups are also hydrogenated with base metals such as 

nickel, copper, and cobalt. Although the base metals tend to require higher hydrogen 

pressures, their cost-to-performance ratios are very good and they provide 

economically suitable alternatives to the precious metals. The base metals are usually 

used as either Raney-type or supported (e.g., Al2O3 and SiO2 supported) catalysts. 

Promoters typically enhance the activity and selectivity of both precious and base 
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metal catalysts for carbonyl reductions where the types and amounts of promoters need 

to be optimized for the desired reaction.     

 

2.1.3 Hydrogenation of nitrogen-containing multiple bonds 

The metal catalyzed hydrogenation of nitro-, nitroso-, azo-, and nitrile-groups 

represents a class of reactions widely employed in industrial organic synthesis which 

are commonly encountered in large-scale chemical production plants (e.g. in the 

preparation of aniline from nitrobenzene). Hydrogenation of multiple bonds containing 

nitrogen are relative easily accomplished and have been extensively reviewed (Gomez 

et al., 2002). These nitrogen compounds are relatively strongly adsorbed on most 

catalytic surfaces, so they resided on the surface sufficiently long enough to allow side 

reactions to occur. Catalytic hydrogenation of nitriles may result in several products: 

primary, secondary, and tertiary amines; imines; hydrocarbons; aldehydes; amides; and 

alcohols. The main product depends on the nature of catalyst, structure of substrate, 

basic and acidic additives, the reaction medium and other reaction conditions. 

Supported and unsupported palladium, platinum, and nickel are excellent catalysts for 

the hydrogenation of nitro functions. Rhodium is also effective, but a special 

requirement would be necessary to justify its use. The catalyst of choice for any 

particular reduction depends largely on other functional groups present and on the 

product required.  

 

2.2 Catalysts in hydrogenation reactions 

Most hydrogenations involve the direct addition of diatomic hydrogen under a high 

pressure in the presence of a catalyst. Hydrogen is activated by the catalyst to 

dissociate into two hydrogen atoms. The unsaturated hydrocarbon molecule is either 
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activated by the catalysts or directly reacts with the hydrogen atom. There are two 

types of catalysts used in hydrogenation reactions, namely homogeneous catalysts and 

heterogeneous catalysts. A homogeneous catalyst is a transition metal complex that is 

soluble in the reaction medium. A metal complex consists of a central metal ion and 

one or more ligands (Dwars et al., 2002). The natures of the ligand control the catalytic 

properties of a particular metal for a specific hydrogenation reaction. The detailed 

mechanism of the reaction is fairly well understood (Blaser et al, 2003). The catalytic 

cycle starts with oxidative additive of an H2 molecule to the metal center to give a 

metal dihydride species and ends with reductive elimination of the product.  

    A heterogeneous catalyst for hydrogenation reactions contains usually a metal 

supported on a carrier. The metal is the catalyst component that can activate hydrogen 

molecules. The metal is made as small particles (in order to increase surface area) 

dispersed on the carrier. In comparison with the homogeneous catalyst system, the 

heterogeneous catalyst system has a number of advantages, including 1) the stability of 

catalyst, 2) ease of separation of product from catalyst, 3) a wide range of applicable 

reaction conditions, and 4) high catalytic ability for the hydrogenation of hard-to-

reduce functional groups such as aromatic nuclei and sterically hindered unsaturations 

(Nishimura, 2002). Figure 2.1 schematically illustrates the mechanism of alkene 

hydrogenation over a metal catalyst surface (Blaser et al., 2003). The catalytic addition 

of hydrogen to an X=Y bond occurs stepwise. The first step is called dissociative 

adsorption. With the presence of a metal catalyst, the H-H bond in H2 cleaves, and 

each hydrogen atom attaches to the metal catalyst surface, forming metal-hydrogen 

bonds. A second function of the metal is the formation of complexes with the X=Y 

most probably via a π-bond thereby activating the second reactant and placing it close 

to the M-H fragments, allowing the addition to take place. The last step is desorption 
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of the product from the metal surface. Additionally, the reaction mechanism is rather 

complicated including competitive/non- competitive and dissociative/non-dissociative 

adsorption as well as adsorption of solvents, formation of coke etc. 

 

Figure 2.1 Schematic representation of catalytic hydrogenation mechanism (from 
website: 

http://chemwiki.ucdavis.edu/Organic_Chemistry/Hydrocarbons/Alkenes/Catalytic_Hy
drogenation).  

 

The catalyst structure-activity relationship is often explained on the basis of 

electronic and/or geometric effects (Coq and Figueras, 1998). The concept of 

electronic factors in catalysis deals with the interaction between the incomplete d-band 

of the surface metal sites with the molecular orbitals of reactants and products. The 

heat of adsorption of reactants and products, governed by the electronic factors, should 

be neither too strong nor too weak to give the optimum coverage for reactants 

competing at the surface, or for the products to desorb. The pioneering work of 
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geometric effect was conducted by Kobozev, and Boronin and Poltorak (Coq and 

Figueras, 1998). They showed that some reactions need more than one surface atom to 

proceed. Moreover, specific arrangements between these atoms are required to 

generate the active site. Therefore, hydrogenation rate is a function of the probability 

of finding an ensemble of n free and neighbor atoms on which the reactive adsorption 

of the reactants, and further transformations, can occur. Geometric and electronic 

influences cannot be separated as independent parameters. For instance, increasing the 

size of metallic particles results in an electron bandwidth increase, but the nature of the 

exposed planes and the topology of the surface sites change as well. The electronics 

and geometry effects, and further the catalytic properties of the metal catalytst depends 

on following factors (Kacer and Cerveny, 2002): i) type of a metal, ii) structure and 

morphology of metal particles; iii) surface association of two or more metals or other 

components; iv) surface ligands; v) role of a support; vi) effect of a metal distribution 

in a porous matrix of support.  

 

2.2.1 Methods for preparing heterogeneous catalysts 

There are several techniques applied in laboratory and industrial practice for catalyst 

preparation, such as coprecipitation, deposition/precipitation, impregnation, incipient 

wetness, ion-exchange, gas phase deposition method (atomic layer epitaxy), sol-gel 

method, metal introduction into mesoporous materials via in situ synthesis, and 

immobilizing homogeneous catalysts on solid supports (Augustine, 1996). Catalyst 

preparation method affects very much on the metal dispersion, which could be crucial 

for achieving high activity and selectivity.  

 

 



 Chapter 2. Literature Review 

   17 

2.2.1.1 Co-precipitation and deposition methods 

Coprecipitation involves the addition of a precipitating agent to a solution 

containing both a support precursor and a catalyst precursor. The resulting precipitate 

contains both the active component and the support material. Deposition describes the 

application of the catalytic component to a separately produced support. A 

coprecipitated catalyst has the active component distributed throughout the resulting 

catalyst particles. With catalysts prepared by deposition, the active component can be 

found primarily on the surface of the supporting material. Cu/SiO2 catalysts were 

synthesized by the ammonia-evaporation method, a kind of the homogeneous 

deposition-precipitation method which can conveniently and effectively disperse Cu 

species on silica, and the catalysts showed good activity in gas phase hydrogenation of 

dimethyl oxalate (Chen et al., 2008). 

 

2.2.1.2 Impregnation and incipient wetness methods 

Impregnation is properly defined as the adsorption of a catalyst precursor salt from 

solution onto a support material. The procedure calls for stirring a suspension of the 

support in the salt solution for a prescribed length of time followed by the separation of 

the modified support by filtration or centrifugation. The supported salt is then dried 

and, frequently, calcined before the salt is reduced to the metal. The concentration of 

the precursor salt, the type of salt, solvent, temperature, nature of the support, time of 

contact with the support and the presence of other materials can all influence both the 

metal loading and location of the material in the support particle. Incipient wetness, 

also referred to as dry impregnation, involves contacting a dry support with only 

enough solution of the impregnant to fill the pores of the support.  
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Supercritical carbon dioxide (scCO2) has been used in impregnation method.  

Chatterjee et al. (2006) reported the formation of Au nanoparticles into the channels of 

mesoporous material in scCO2 medium using a hydrogen reduction technique. ScCO2 

can provide a unique environment for stabilizing Au nanoparticles in the channels of 

the cubic mesoporous MCM-48 support. Furthermore, it was possible to control the 

desired particle size by simple tuning of the solvent density, without perturbing the 

support structure. The catalysts were tested in crotonaldehyde hydrogenation, which 

provided high selectivity to crotyl alcohol. Lee et al. (2006) reported the synthesis of 

Pd/SBA-15, in which the dispersion of Pd nanoparticles is highly improved by using 

scCO2. Compare with commercially Pd catalysts deposited on Al2O3 or carbon 

supports, Pd/SBA-15 shows similar catalytic activity but significantly higher 

selectivity for the hydrogenation of 4-methoxycinnamic acid benzyl ester. 

 

2.2.1.3 Ion-exchange method 

Ion-exchange means the surface of the support is modified to give a surface species 

that can chemically react with the precursor salt. The absorption character of a support 

material is governed by the nature of its surface functionality. For oxides these are 

generally hydroxyl groups and for carbon supports they are the acidic functions such as 

phenols and carboxylic acids. Depending on the acidity of these surface groups and the 

pH of the solution in which the support is suspended, the surface can be either 

positively or negatively charged. When the surface is negative, cationic species are 

attracted to it and become adsorbed. While a positive surface interacts with negative 

species.  
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2.2.1.4 Gas-phase deposition method  

    Gas-phase deposition method has also been used to prepare hydrogenation catalysts. 

A systematic comparative study of preparing catalysts via gas phase deposition and via 

wet impregnation and testing in cinnamaldehyde hydrogenation was performed by 

Lashdaf et al. (2003). Small Pd metal crystallites were formed by gas-phase deposition 

method even with high metal loadings, whereas larger Pd particles were achieved via 

impregnation. Additionally, Pd catalysts which were prepared by gas-phase deposition 

method were more selective to cinnamyl alcohol formation than the impregnated 

catalysts with larger metal particles. Ni/Al2O3 and Ni/SiO2 catalysts prepared by gas-

phase deposition method were tested in citral hydrogenation (Mäki-Arvela et al., 2003). 

The result showed that by this method a more even metal distribution can be achieved. 

A higher selectivity to citronellol was obtained over this new Ni/SiO2 catalyst than that 

over a conventional Ni/SiO2 catalyst.  

 

2.2.1.5 Sol-gel technique  

A sol-gel technique means direct inclusion of a metal precursor in the sols. The sol-

gel-derived Au/TiO2 catalyst was prepared by using tetrabutoxytitanium (IV), gold 

acetate, methanol, and distilled water as starting components (Claus et al., 2000). The 

resulting Au/TiO2 catalyst was tested in acrolein hydrogenation at 240 oC under 2 MPa, 

and the selectivity to allyl alcohol was 19% at 100% conversion. Additionally, 

Ag/SiO2 (Claus and Hofmeister, 1999) catalyst was prepared by sol-gel method with 

Ag particle size of 4.5 nm. The Ag/SiO2 was used in crotonaldehyde hydrogenation at 

140 oC and 2 MPa resulting in more than 60% selectivity to crotyl alcohol.  
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2.2.1.6 In-situ metal introduction method  

In-situ metal introduction into mesoporous materials method is an attractive method 

to prepare hydrogenation catalysts. Direct inclusion of metal particle in the synthetic 

gel of mesoporous materials has been studied in the cases of Ru (Kumar et al., 2004), 

Rh (Boutros et al., 2006), Pt (Song et al., 2006; Boualleg et al., 2009), Pd (Papp et al., 

2005; Mastalir et al., 2007; Dominguez-Dominguez et al., 2008), and Ir (Albertazzi et 

al., 2003) in hydrogenation reactions. Metal containing mesoporous materials with 

MCM-41 pore architecture have been prepared via a template directed hydrolysis-

polycondensation of tetraethoxysilane and rhodium (III) chloride in aqueous ammonia 

(Boutros et al., 2006). The resulting materials showed a good catalytic activity and 

stability in the hydrogenation of arene derivatives under mild pressure and temperature. 

Song et al. (2006) reported a preparation of Pt/SBA-15 by adding Pt colloidal solution 

to the synthesis gel. Monodispersed Pt nanoparticles of 1.7-7.1 nm were first 

synthesized by alcohol reduction methods, and then incorporated into mesoporous 

SBA-15 silica during hydrothermal synthesis. The Pt/SBA-15 catalysts were tested in 

ethylene hydrogenation, and the hydrogenation rates were invariant with particle size. 

This controlled growth by sol-gel process of a hierarchically organized silica matrix 

around a colloidal solution of metal nanoparticles using supramolecular interactions 

between a surfactant (used as the structure directing agents of the oxide matrix) and 

metal colloids could be an attractive way to get a highly disperse catalysts. Figure 2.2 

showed the schematic procedure of this method (Boualleg et al., 2009). However, 

sometimes the catalytic performances of these catalysts are not good as expected, 

which is due to the incomplete metal incorporation or to circumvent the presence of 

tricky stabilizing ligands such as PVP in the synthetic procedures. PVP are difficult to 
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remove from the metal particles without their sintering and not compatible with acidic 

media generally used for obtaining highly structured silica matrixes. 

 

Figure 2.2 Schematic presentation of in-situ metal introduction into mesoporous 
materials method (Boualleg et al., 2009). 

 
 

2.2.1.7 Immobilization of homogeneous catalysts on porous materials  

Immobilize homogeneous catalysts in porous materials is also a promising method 

for the preparation of supported metal catalysts, because fine tuning of the metal 

complexes in terms of electronic states and steric environment is substantially easier 

than with the metal salts used in the conventional catalyst preparation. However, the 

catalytic properties of these immobilized catalysts have shown an enormous variation 

and in many cases were significantly below those of the homogeneous analogues 

(Crosman and Hoelderich, 2007). Since the reasons for these differences in 

performance are usually not understood, it is still of interest to test different 

immobilization methods and supports in order to get a systematic picture of positive 

and negative effect. Pt nanoparticles in the size range of 1.7-7.1 nm protected by PVP 

were incorporated into mesoporous SBA-15 silica using low-power ultrasonication, the 
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catalysts used in the hydrogenation of ethylene (Rioux et al., 2005). Using dendrimer-

encapsulated metal nanoparticles as catalyst precursors offers the opportunity to 

control metal particle size and composition. Figure 2.3 (Lang et al., 2003) showed the 

schematic route to prepare dendrimer-derived supported nanoparticle catalysts. The 

resulting catalysts were active for both oxidation and hydrogenation reactions. Jiang et 

al. (2006) reported Pd nanoparticle catalysts stabilized by Gn-PAMAM-SBA-15 

organic-inorganic hybrid composites, and these catalysts showed highly catalytic 

activity for the hydrogenation of allyl alcohol. Crosman et al. (2005) present a 

straightforward method for immobilizing rhodium diphosphine complexes on 

aluminated SBA-15 based on ionic interaction between the negatively charged Al-

SBA-15 framework and the cationic rhodium of the organometallic complex.  

 

Figure 2.3 Schematic route to dendrimer-derived supported nanoparticle catalysts 
(Lang et al., 2003). 

 
    There is a growing interest in the application of ionic liquids in various field of 

catalyst preparation. For instance, Huang et al. (2004) reported the immobilization of 

Pd nanoparticles onto molecular sieves with a porous diameter of 6.7 nm using the 

ionic liquid (1,1,3,3-tetramethylguanidinium lactate) (as shown in Figure 2.4). The 
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catalytic system was used for solvent-free hydrogenation of olefins, and high activity 

and stability was achieved.   

 

Figure 2.4 Illustration of the immobilization of Pd nanoparticles at the surface of a 
molecular sieve with an ionic liquid layer (Huang et al., 2004). 

 
For these preparation methods catalyst pretreatment is often necessary, because the 

solid materials containing metal compounds in non-metallic state can exhibit only low 

catalytic activity or be catalytically inactive. Catalyst pretreatment involves the catalyst 

calcination, catalyst reduction, and the catalyst aging (Maki-Arvela et al., 2005). If the 

metal originates from chloride precursor the amount of residual chloride can be 

decreased with calcination. Catalyst reduction temperature has been very intensively 

investigated in the case of reducible supports exhibiting SMSI effect (Haller et al., 

1989). However, even over conventional supports, e.g. alumina and silica the catalyst 

reduction temperature can have dramatic effects on the catalytic performance. The 

nature of the support affects the mobility of different metals during catalyst 

pretreatment. Catalyst pretreatment affects both catalytic activity and selectivity, since 

it can change metal particle size, morphology, amount of residual chloride, influence 

alloy formation, lead to reduction of reducible oxides, which decorate the metal 

surface as well as in case of carbon can alter the amount of the oxygen containing 

surface groups.  
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2.2.2 Selection of metal catalysts 

The catalytic characteristics are determined mainly by the major metal component. 

Nickel (Ni), cobalt (Co), copper (Cu), platinum (Pt), palladium (Pd), ruthenium (Ru), 

rhodium (Rh), osmium (Os), iridium (Ir), and rhenium (Re) are used most often and 

each metal has its own activity and selectivity profile.       

Ni is used extensively in hydrogenation since Sabatier’s discovery of its activity. 

The preparation and activation of Ni catalysts have studied by numerous investigators 

(Fouilloux, 1983). It is frequently used in skeletal form as Raney nickel, which is 

produced by leaching away alumina from alloy of Ni and aluminum. The 

hydrogenation of almost all the functional groups can be accomplished over some form 

of Raney nickel. 

Co catalysts have been used not so widely as Ni catalysts in the usual 

hydrogenations, but their effectiveness over Ni catalysts has often been recognized in 

the hydrogenation of aromatic amines and nitriles to the corresponding primary amines 

(Nishimura, 2001). The methods of preparation for cobalt catalysts are very similar to 

those used for the preparation of nickel catalysts.  

Cu is usually not active as a hydrogenation catalyst and tends to lose its activity at 

high temperature. Adkins et al. (1931) have developed an efficient Cu catalyst for the 

liquid-phase hydrogenation by combining copper and chromium oxides, known as 

copper chromite oxide or copper chromite. It is active for the hydrogenation of esters 

to alcohols and amides to amines.   

The platinum group metals-ruthenium, rhodium, palladium, osmium, iridium and 

platinum- have all been used as hydrogenation catalysts. Among the platinum metals, 

Pt and Pd have been by far the most widely used catalysts since the earliest stages of 

the history of catalytic hydrogenation. Compared to the base metals, these metals are 
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active under mild conditions. It has been recognized that the second-row group VIII 

metals (Ru, Rh, Pd) often show behavior different from that of the third-row group 

VIII metals (Os, Ir, Pt) in catalytic hydrogenation (Bond et al., 1962).  

Pt is capable of promoting the hydrogenation of most functional group under 

relatively mild conditions. Esters, carboxylic acids, and amides are the only common 

functional groups not hydrogenated over this catalyst. 

Pd is the best catalyst for the hydrogenation of olefins and acetylenes. It is also 

useful for the hydrogenation of phenol to the corresponding cyclohexanone. However, 

Pd is a very bad catalyst for hydrogenation of carbonyl groups, which is due to a too 

weak adsorption of carbonyls under reaction conditions.  

    Ru can promote the hydrogenation of aromatic rings without the hydrogenolysis of 

any amino and hydroxyl groups present on the ring even though high temperatures and 

pressures are required for the reaction. Ru is also particularly effective for the low 

pressure hydrogenation of ketones and aldehydes especially in an aqueous 

environment. Therefore, Ru is particularly active for the hydrogenation of aqueous 

sugar solutions to polyols (e.g. glucose to sorbitol) and it maintains its activity for a 

long period (Kluson and Cerveny, 1995).     

    Rh is often used for the hydrogenation of carbonyl groups, carbocyclic aromatic, 

and heteraromatic systems at low temperatures and pressures.  

    Os is a less active catalyst than the other platinum metals but it has some advantages 

in certain hydrogenations such as the conversion of α, β-unsaturated aldehydes to the 

corresponding unsaturated alcohol and the hydrogenation of halonitrobenzenes to the 

halo anilines with little dehalogenation.  

Ir has been not widely used in catalytic hydrogenation. Recently, however, Ir-based 

catalysts have been shown to be effective in various hydrogenations, such as in 
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selective hydrogenation of α, β-unsaturated aldehydes to allylic alcohol, of aromatic 

nitro compounds to the corresponding hydroxylamines, of halonitrobenzenes to 

haloanilines without loss of halogen, and in the stereoselective hydrogenation of 

carbon to carbon double bonds (Savchenko et al., 1997).  

Re catalysts had found little attention until their attractive catalytic properties in 

hydrogenation have been revealed by a systematic study by Brodbent et al. (1954).  Re 

catalysts are effective catalysts for the hydrogenation of unsaturated carboxylic acids 

and amides.  

 

2.2.3 Selection of supports 

    The primary role of the support is to finely disperse and stabilize small metallic 

particles and thus provides access to a much larger number of catalytically active 

atoms than in the corresponding bulk metal. The choice of a suitable support is very 

important, because the interaction with the active phase may play a critical role in the 

final performance of the catalysts. The most conventional supports are acidic or basic 

oxides and different types of carbons.  Supports can have very different properties, like 

specific surface area, pore volume, acidities, electronic and geometrical properties. 

Additionally, the shape of catalyst particles can vary from powders and pastes to 

pellets, fibers and monoliths.  

 

2.2.3.1 Oxides  

    The most conventional oxide supports are alumina (Al2O3) (Echeverri et al., 2009; 

Hoxha et al., 2009) and silica (SiO2) (Chen et al., 2008; Manyar et al., 2009).  Basic 

magnesia (MgO) (Recchia et al., 1999; Sordelli et al., 1999), a variety of reducible 

oxides, like titania (TiO2) , ceric oxide (CeO2) (Fajardie et al., 1996; Campo et al., 
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2009), zirconia (ZrO2) (Claus et al., 2000; Gaspar et al., 2008), Gallia (Ga2O3) 

(Gebauer-Henke et al., 2007) (Dominguez et al., 2005) and alloy forming oxides, i.e. 

zinc oxide (ZnO) (Ramos-Fernandez et al., 2008), stannic oxide (SnO2) (Liberková 

and Touroude, 2002; Liberkova et al., 2002), have also been studied in hydrogenation 

reactions. A comparison of different oxides in hydrogenations were performed with Ru 

(Bachiller-Baeza et al., 2005), Pt (Kijenski et al., 2002), Pd (Pinna et al., 2001), and Cu 

(Saadi et al., 2000). In general oxide supports can provide stronger interactions with 

the main metal than carbon. Additionally, the full reduction of the metal might be more 

difficult on an oxide than on carbon. Furthermore, acidic oxides can promote side 

reactions, for instance alumina favors cyclization of citronellal in citral hydrogenation 

(Silva et al., 2003). Several metals supported on reducible oxides (TiO2, CeO2, ZrO2, 

or Ga2O3) have been applied in hydrogenations. In these cases, the possible interaction 

of the noble metal with the partially reduced oxide (strong metal-support interaction 

effect, SMSI) or even with the metal formed upon a reduction treatment, has been 

proposed to be responsible for the improved selectivity in hydrogenation of 

unsaturated aldehyde to unsaturated alcohols. For example, selective hydrogenation of 

crotonaldehyde was performed on 5% Pt/SnO2 catalysts, and the improvement of 

catalytic activity and selectivity of the catalysts were due to the formation of Pt-Sn 

alloy on the metal particles of Pt (Liberková and Touroude, 2002).  The alloy 

formation and the state of the active metal are very much dependent on the metal 

precursor and the type of support. 

    Supports with magnetic properties can be used as the supports for catalysts and 

facilitate their separation from the reaction media (Hu et al., 2005; Rossi et al., 2007). 

However, the low surface area and easy aggregation of magnetic nanoparticles cumber 

their practical applications as the supports of catalysts. To overcome these drawbacks, 
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magnetic nanoparticles have been introduced into silica (Li et al., 2009; Panella et al., 

2009) and carbon (Lu et al., 2004). These types of magnetic nanoparticle-based 

materials combine the advantage of both mesoporous materials and magnetic 

nanoparticles. Figure 2.5 showed the schematic procedure of preparation the magnetic 

Pt/SiO2 catalysts. First, the magnetite nanoparticles were prepared by coprecipitation 

method. Then the magnetite nanoparticles were coated with silica. After coating, the 

Pt/SiO2/Fe3O4 catalyst was prepared by incipient wetting impregnation. The magnetic 

catalyst modified with cinchonidine showed a catalytic performance (activity, 

enantioselectivity) in the asymmetric hydrogenation of various activated ketones in 

toluene comparable to the best known Pt/alumina catalyst used for these reactions. In 

addition, the magnetic catalyst can be easily separated from the reaction solution by 

applying an external magnetic field. 

 
 

Figure 2.5 Schematic presentation of preparation of the magnetic, chirally modified 
Pt/SiO2/Fe3O4 (M represents cinchonidine) (Panella et al., 2009). 

 

2.2.3.2 Zeolites and mesoporous materials 

    Zeolites and mesoporous materials, which exhibit structured ordering at the 

nanometer scale, have been used for a long time in petrochemical applications. Due to 

their channel system and shape selective properties these materials have a potential for 

synthesis of fine chemicals. Zeolites and mesoporous alumina-silicate materials have 

acid sites, which arise from the presence of accessible hydroxyl groups associated with 

tetrahedral framework aluminum in a silica framework. The existence of acid sites 
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causes an enhancement in the hydrogenation rate as compared to hydrogenation in the 

presence of metals resting on non-acidic support, such as silica and alumina (Masalska, 

2005). Two mechanisms have been proposed to explain this phenomenon. One of these 

involves the metal-support interactions, which modify the electronic state of the metal 

clusters on the support and make them more active for hydrogenation reactions. The 

other one, called hydrogen spillover, is based on the assumption that the hydrocarbons 

adsorbed on the acid sites of the support in the metal-acid interfacial region could be 

additionally hydrogenated by the spillover hydrogen which migrates from the surface 

of the metal particles to the surface of zeolite particles. The use of metal/zeolite 

systems in the hydrogenation reactions is of course limited to the molecules, which are 

small enough to enter into the zeolite pores. Zeolites such as ZSM-5, dealuminated Y 

zeolite, and alkali zeolite beta have been used as supports in toluene hydrogenation 

(Masalska, 2005), tetralin hydrogenation (Rocha et al., 2008), and chemoselective 

hydrogenation of citronellal (Kantam et al., 2006). Mesoporous materials have tunable 

pore sizes between 2 and 10 nm, therefore they can be more suitable for hydrogenation 

of large organic molecules than zeolite materials. Mesoporous materials such as 

MCM-41, MCM-48, and SBA-15 have been used in hydrogenation of alkynes (Papp et 

al., 2005), hydrogenation of arene derivatives (Boutros et al., 2006), hydrogenation of 

allyl alcohol (Jiang and Gao, 2006), propene hydrogenation (Boualleg et al., 2009), 

and hydrogenation of dimethyl itaconate (Crosman and Hoelderich, 2005).      

 

2.2.3.3 Clays  

    Clays also serve as supports for noble-metal catalysts used in hydrogenation 

reactions because of their high surface area and surface polarity. Clays may be divided 

into two broad groups: cationic clays, widespread in nature, and anionic clays, rarer in 
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nature but relatively simple and inexpensive to synthesize. The cationic clays have 

negatively charged alumino-silicate layers, which have cations in the interlayer space 

to balance the charge, while the anionic clays have positively charged metal hydroxide 

layers with balancing anions and water molecules located interstitially (Angelo, 1998). 

To date, a variety of methods have been developed to introduce catalytically active 

noble metal species into clays. Pd nanoparticles deposited on montmorillonite with 

surfactants exhibit a high selectivity for the partial hydrogenation of 1-phenyl-1-

pentyne to 1-phenyl-cis-1-pentene (Kiraly et al., 2001). Miao et al. (2006) reported that 

Ru nanoparticles were immobilized on montmorillonite by novel ionic liquid method 

and exhibited excellent activity for hydrogenation of benzene to cyclohexane, but Ru 

particles were found to tend to aggregate along the pore channels after several reaction 

runs. Metals supported on clays have also been used as catalysts in cinnamaldehyde 

(Szöllösi et al., 1998), crotonaldehyde (Kun et al., 2001), and dimethyl adipate 

hydrogenations (Figueiredo et al., 2009). 

 

2.2.3.4 Functional organic polymers  

Functional organic polymers can also be used as supports for metal nanoparticles in 

hydrogenation reactions. The polymer support can be a soluble linear or branched 

macromolecule or a micelle aggregate which “wraps” the metal nanoparticles in 

solution, thus, preventing metal sintering and precipitation. The protective polymers 

are usually functional macromolecules, which are able to give weak interactions with 

the metal nanoparticle surface in order to build a protective “shell” of polymer chains. 

The most commonly protective polymers are commercial poly-vinylpyrrolidone (PVP) 

(Yu et al., 1999), poly-ethyleneimine (PEI) (Bhattacharjee et al., 2009) and polyvinyl 

alcohol (PVA). Pt catalysts stabilized with PVP exhibited very high activities and 
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selectivities in cinnamaldehyde hydrogenation at 60 oC and 4 MPa in ethanol (Yu et al., 

1999).   

 

Figure 2.6 Schematic presentation of formation of Pt particles on the surface of the 
spherical polyelectrolyte brush particles (Sharma, et al., 2007).  

 

    On the other hand, it can be resin, i.e. an insoluble material consisting in a bundle of 

physically and/or chemically cross-linked polymer chains in which the metal 

nanoparticles are embedded (Kralik and Biffis, 2001). Resin-supported metal 

nanoparticles have been used in hydrogenation of citral (Centomo et al., 2005), 

dehydrolinalool (Sulman et al., 1999), and 2-ehtylanthraquinone (Drelinkiewicz et al., 
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1999). Sharma et al. (2007) reported the preparation of the Pt nanoparticles on the 

surface of spherical polyelectrolyte brush particles. As shown schematically in Figure 

2.6, the polyelectrolyte chains are generated on the surface of the polystyrene core with 

a thin shell of poly(2-methyl-propenoyloxyethyl)trimethylammonium chloride (I). (I) 

was exchanged with PtCl6
2- to give (II). After NaBH4 reduction Pt nanoparticles 

supported on spherical polyelectrolyte brushes particles (III) were formed. The catalyst 

showed good catalytic activity and recyclability in hydrogenation of butyraldehyde to 

1-butanol. Functional organic polymer supported metal catalysts provide the better 

control of the metal particles morphology (size and shape) compared to classical 

supported catalysts. However, there are several drawbacks for these catalysts such as 

their difficult preparation, a relatively low productivity and/or stability and separation 

problems 

 

2.2.3.5 Carbons  

    Several types of carbons have been applied in hydrogenation reactions. Application 

of carbon support is described in more detail in Section 2.4. 

 

2.2.4 Bi- and multi-metallic catalysts 

Bi- and multi-metallic catalysts have long been an important area of catalysis 

research. Certain combinations of metals are known to improve activity, selectivity, or 

catalyst lifetime. One classical example is the Lindlar catalysts (Pd-Pb/CaCO3) 

(Lindlar et al., 1973), where the addition of lead allows the selective hydrogenation of 

acetylenic bonds. Another example is the Nishimura catalyst (Rh-Pt oxide) (Nishimura, 

1544) for the mild hydrogenation of aromatic rings. The improvement of the bi- and 

multi-metallic catalysts is primarily due to changes in their geometric and electronic 
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structures introduced by the second element, which can exist as an adatom (Santori et 

al., 2002), in an alloy state (Liberkov and Touroude, 2002; Reyes et al., 2002), in an 

ionic state (Santori et al., 2002; Marchi et al., 2003), and as partially oxidized form 

(Reyes et al., 2002).  

Various typical structure models of bimetallic nanoparticles are shown in Figure 2.7. 

Core-shell segregated bimetallic nanoparticles (Figure 2.7a) consist of a shell of one 

type of atom B surrounding a core of another atom A, though there may some mixing 

between the shells. This mixing pattern is common to a large variety of systems. 

Subcluster segregated bimetallic nanoparticles (Figure 2.7b) consist of A and B 

subclusters, which may share a mixed interface (left) or may only have a small number 

of A-B bonds (right). Mixed A-B bimetallic nanoparticles (Figure 2.7c) may be either 

ordered (left) or random (i.e., a solid solution, right). Multishell bimetallic 

nanoparticles (Figure 2.7d) present layered or onion-like alternating –A-B-A- shells.  

 

Figure 2.7 Schematic representation of some possible mixing patterns of bimetallic 
nanoparticles: (a) core-shell, (b) subcluster segregated, (c) mixed, (d) three shell 

(Ferrando et al., 2008). 
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The degree of mixing and atomic ordering in AB bimetallic nanoparticles depends 

on the following factors (Ferrando et al., 2008). First one is relative strengths of A-A, 

B-B and A-B bonds. If A-B bonds are strongest, this favors mixing, otherwise, 

segregation is favored, with the species forming strongest homonuclear bonds tending 

to be at the center of the bimetallic nanoparticles. Second one is surface energies of 

bulk elements A and B. The element with lowest surface energy tends to segregate to 

the surface. Third one is relative atomic sizes. Smaller atoms tend to occupy the more 

sterically confined core. Fourth one is charge transfer. Electron transfer from less to 

more electronegative elements favors mixing. Fifth, the element that binds most 

strongly to the support or ligands may be pulled out toward the surface.  

The catalytic effect of the second metal element can often be explained in terms of 

an ensemble and/or a ligand effect in catalysis. When atoms surrounding a metal atom 

on the surface are replaced by other atoms, this will change the nature of 

chemisorption bond. This is called electronic or ligand effect. In the case of core/shell 

structured bimetallic nanoparticles, the shell element can provide a catalytic site and 

the core element can give an electronic effect (a ligand effect) on the shell element. 

The term ensemble effect refers to the number of active sites on the surface that are 

required for a particular reaction. It is well known that the modification of an active 

group VIII transition metal with IB metals greatly suppresses the catalytic activity for 

hydrocarbon reactions, which require a large number of neighboring surface atoms 

(ensembles). While the reaction, which needs one metal adsorption site, is not affected. 

Thus, reactions that require a large ensemble of active sites can be selectively 

suppressed by blocking a fraction of these active sites, improving in this way the 

selectivity toward reactions that require a small ensemble of active sites.  
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For supported bimetallic catalysts, metallic dispersion can also be modified by the 

addition of a second metal (Guczi, 2005). First, the formation of a mixed oxide phase 

could mutually prevent the surface mobility of both metals. This results in the 

formation of small oxide particles ultimately leading to the increased dispersion of the 

active metal component. Second, the formation of an oxide interface between the 

support and the active metal could also lead to a stabilization of the high dispersion. 

Third, the diminished deactivation of supported metal catalysts may lead to an 

increased metal dispersion. The deactivation is usually due to the formation of a large 

carbide phase, which needs a large ensemble size. In bimetallic particles dilution of the 

active metallic component with a non-active metal decreases the ensemble size, and 

further hinders the formation of carbide phase. In addition, enhanced amounts of 

weakly bound surface hydrogen also retard the surface deactivation processes.  

 

2.2.5 Catalyst promoters 

Small quantities of various substances that have favorable effects on activity, 

selectivity, or catalyst life may be loosely termed promoters (Rylander, 1979). The 

promoters are adsorbed on the catalyst, which can be solid acids, sulphur compounds, 

alkali metal oxide, or transition metal oxides. The beneficial effect of promoters is 

known for a long time, but there are many particular cases where the mechanism of 

promotion is still obscure. Cinchona alkaloids are efficient chiral surface promoters for 

enantioselective hydrogenation of various activated ketones over heterogeneous 

catalysts (Busygin et al., 2008).  Alkali metal oxides or transition metal oxides (MgO 

and CeO2) have been used as promoters in gas phase hydrogenation of crotonaldehyde 

and in liquid phase hydrogenation of citral (Bachiller-Baeza et al., 2001). In the 

hydrogenation of cinnamaldehyde, the activation of C=O was enhanced by using an 
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electropositive metal (Li+, Na+ and K+) with respect to Pt (Koo-amornpattana and 

Winterbottom, 2001). Cinnamaldehyde adsorbs on the promoter surface via donation 

of a lone pair electrons from the oxygen atom (Figure 2.8). The possible promoting 

mechanisms could be an increased electron density of the metal, and presence of Lewis 

acid sites near the metal particle. 

 

Figure 2.8 Schematic representation of promoter effect in hydrogenation of 
cinnamaldehyde (M+=Li+, Na+, or K+) (Koo-amornpattana and Winterbottom, 2001). 

 

2.2.6 Amorphous alloys 

Amorphous alloys represent a new class of powerful hydrogenation catalysts due to 

the higher activity, better selectivity, and stronger sulfur resistance than their 

corresponding crystalline metal catalysts (Li et al., 2007; Acosta et al., 2008; Meng et 

al., 2008). Amorphous alloys usually can be obtained by chemical reduction of metal 

salt with borohydride (BH4
-) or hypophosphite (H2PO2

-) (Chen, 1998; Deng et al., 

1999). Amorphous alloy catalysts have been used in sugar hydrogenation (Li et al., 

2000; Li et al., 2008; Meng et al., 2008), benzene hydrogenation (Li et al., 2001), and 

acetonitrile hydrogenation (Yang et al., 2008). The high catalytic activities and 

selectivities as well as poison resistance can be explained by the alloying effect of the 

metalloids boron or phosphorus on the surface electronic states and the surface 

structural properties. The low thermal stability of amorphous alloys restricts their 
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application in industry. In order to overcome the shortcoming while retaining their 

attractive characteristics, supported amorphous alloys were prepared.  

 

2.2.7 Catalyst deactivation  

The main causes of the catalyst deactivation in the liquid-phase were found to be 

phase transformations of active components (sintering or leaching), coking, poisoning 

of the active site by impurities in solvents and reagents or by-products, or by 

deposition of less active or totally inactive metal or metal oxide on noble metal surface 

(Besson and Gallezot, 2003).  

 

2.3 Hydrogenation of D-glucose 

Hydrogenation of aldoses to alditols (sugar alcohols such as sorbitol, mannitol, and 

xylitol) has been an industrially importance process, and many patents and articles may 

be found in the literature. Of these sugar alcohols, sorbitol is by far the most important 

and is manufactured in largest scale, since it finds numerous applications in various 

fields such as vitamin C production, cosmetics and dentifrices, foods, surfactants and 

adhesives, pharmaceuticals, and many other miscellaneous uses. Sorbitol is found in 

many natural products such as seaweed, tobacco, edible fruits, and plants. Sorb berries 

and mountain ash berries are particularly rich source of the sorbitol. It was first 

isolated in 1872 by the French chemist, Joseph Boussingault (Fedor, 1960). Atlas 

Powder was the first to make sorbitol commercially based on electrolysis of glucose in 

the early 1930’s (Fedor, 1960). In 1956 Merck entered the field using a process based 

on catalytic hydrogenation of glucose (Fedor, 1960). Today it is commercially 

produced by the hydrogenation of D-glucose and is available in both liquid and 

crystalline form with a world capacity of more 1 Mt/a (Eisenbeis et al., 2009). 
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Approximately 60% of the produced sorbitol is utilized in processed foods, confections, 

toothpaste and other personal care products such as humectants, stabilizers, softeners, 

emulsifiers and bodying agents. An additional 16% of the total market for sorbitol is 

utilized for the production of L-ascorbic acid (Vitamin C) (the process is shown in 

Figure 2.9) (Crezee et al., 2003). In tobacco industries, sorbitol may give mild effect in 

sniff, and avoid acrolein formation which formed in burned glycerine. Sorbitol is also 

used as softener and color stabilizer in textiles and as softener in leather industries. In 

addition, sorbitol can be efficiently converted into H2, synthesis gas, alkanes, liquid 

fuels, and oxygenates (Figure 2.10 shows the essential features of the bifunctional 

reaction pathway for the production of alkanes from sorbitol.) (Huber et al., 2003; 

Davda and Dumesic, 2004; Huber et al., 2004).  

 

Figure 2.9 Reichstein process for the production of ascorbic acid from D-glucose (from 
website: http://www.absoluteastronomy.com/topics/Reichstein_process). The reaction 

steps are: 1) microbial oxidation or fermentation of sorbitol to L-sorbose with 
acetobacter with pH 4-6 and 30 oC; 2) protection of the 4 hydroxyl groups in sorbose 

by formation of the acetal with acetone and an acid to Diacetone-L-sorbose; 3) organic 
oxidation with potassium permanganate followed by heating with water gives the 2-

Keto-L-gulonsäure; 4) the final step is a ring-closing step or gamma lactonization with 
removal of water. Intermediate 4 can also be prepared directly from 2 with oxygen and 

platinum.    
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Figure 2.10 Reaction pathways for the production of alkanes from sorbitol over 
catalysts with metal and acidic components (Huber et al., 2004). Hydrogen is produced 

on the metal by cleavage of C-C bonds followed by the water-gas shift reaction. 
Dehydrated species such as ring compounds like isosorbide or enolic species are 

formed on acid sites, which migrate to metal sites where they undergo hydrogenation 
reactions. Repeated cycling of dehydration and hydrogenation reactions in the presence 

of hydrogen leads to heavier alkanes (such as hexane) from sorbitol. Formation of 
lighter alkanes takes place by more rapid cleavage of C-C bonds compared to 

hydrogenation of dehydrated reaction intermediates.  
 

    In industrial hydrogenation of glucose can typically be performed batchwise in 

stirred tank reactors at temperatures ranging from 80 to 150 oC, pressures of 4-18 MPa, 

and pH values from 4.5 to 7 with 1-6wt% catalyst (Nishimura, 2001). The use of 

continuously operated trickle-bed reactors is less common in industry. The 

hydrogenation process is in principle straightforward, but it is complicated by the 

generation of small amounts of by-products, such as D-gluconic acid formed by the 
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Cannizaro reaction and D-mannitol formed by hydrogenation of D-fructose and D-

mannose (as shown in Figure 2.11a). The rate of hydrogenation of D-glucose is 

increased in alkaline solution, but these conditions also promote the isomerization of 

D-glucose to D-mannose and D-fructose (Lobry de Bruyn-van Ekenstein 

transformation, shown in Figure 2.11b) and the Cannizzaro reaction 

 
 

Figure 2.11 (a) Hydrogenation of D-glucose to D-sorbitol, (b) Lobry de Bruyn-van 
Ekenstein transformation of D-glucose (Hoffer et al., 2003). 
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2.3.1 Catalysts for the hydrogenation of D-glucose 

The most common catalysts in D-glucose hydrogenation are based on Ni as active 

metal. Historically, Raney Ni was used because of its economic price. Later supported 

Ni catalysts were more frequently used because they are more active (Schimpf et al., 

2007). To increase activity and stability, Ni was promoted with some catalyst 

promoters, such as molybdenum (Mo), chromium (Cr), iron (Fe), titanium (Ti), and tin 

(Sn) (Gallezot et al., 1994; Li et al., 2000; Hoffer et al., 2003; Schimpf et al., 2007; 

Acosta et al., 2008). The promoters in a low-valent state on the Ni surface act as Lewis 

adsorption sites for the oxygen atom of the carbonyl group which is then polarized and 

thus more easily hydrogenated via a nucleophilic attack on the carbon atom by hydride 

ions. However, due to the leaching of Ni and catalyst promoters into the product and 

fast deactivation of the catalyst, alternative heterogeneous catalysts have been tested, 

including supported metals such as cobalt (Co), copper (Cu), platinum (Pt), palladium 

(Pd), rhodium (Rh) and ruthenium (Ru) (Wisnlak and Simon, 1979; Makkee et al., 

1985; Li et al., 2001; Perrard et al., 2007).  

The general observed order of activity for the hydrogenation of D-glucose is as 

follows (Wisniak et al., 1974; Wisnlak and Simon, 1979): Ru > Ni > Rh > Pd. Among 

these catalysts, Ru is the most promising catalysts. Furthermore, Ru is not dissolved 

under the reaction conditions of the hydrogenation of D-glucose to D-sorbitol. Ru 

catalysts are most often supported on alumina, silica, titania or activated charcoal 

(Gallezot et al., 1998; van Gorp et al., 1999; Hoffer et al., 2003; Kusserow et al., 2003; 

Besson et al., 2005; Perrard et al., 2007; Yuan et al., 2008). Ru-B amorphous alloys 

(Guo et al., 2003) and water soluble Ru complex with sulfonated phosphine ligand 

(Kolaric and Sunjic, 1996) have also been used in D-glucose hydrogenation. While the 

low thermal stability of amorphous alloys and difficulty in removing and recovering of 
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the homogenous catalysts restrict their application in industry. Ruthenium (III) 

chloride is referred to as the most often used active component precursor. 

Conventional impregnation and the incipient wetness technique are the methods 

reported most frequently for the preparation of supported Ru catalysts.  

However, these supported Ru catalysts have a common issue, namely rapid 

deactivation (Kusserow et al., 2003). For example, Arena (1992) investigated the 

hydrogenation of D-glucose over Ru/Al2O3, whereas Gallezot et al. (2003) studied a 

Ru/C catalyst. Both groups concluded that deactivation of the catalyst could be 

attributed, in part, to poisoning of the Ru surface by metal impurities in solution. Arena 

also found that byproduct formation and increased levels of alumina crystallinity 

contributed to catalyst deactivation. Furthermore, Gallezot et al. postulated that 

deactivation also involved sintering of Ru particles. Maris et al. (2006) examined D-

glucose hydrogenation over Ru/SiO2, and they found that the mechanism of particle 

growth involves migration of Ru species during the hydrolysis of the silica surface. 

Thus, the choice of catalyst support and the preparation method are crucial in the 

hydrogenation of D-glucose. Because of the inert nature of carbon, Ru nanoparticles 

supported on carbon appear to be promising catalysts for D-glucose hydrogenation.  

 

2.3.2 Mechanism and kinetics in hydrogenation of glucose 

Hydrogenation kinetics of D-glucose has been studied over Ru/C (Crezee et al., 

2003), Ru/Al2O3 (Bizhanov and Drozdova, 1982), silica-alumina supported Ni 

catalysts (Dechamp et al., 1995) and Raney Ni catalyst (Brahme and Doraiswamy, 

1976). Literature about D-glucose hydrogenation kinetics is nicely summarized by 

Crezee et al. (2003) in the introduction part. Usually a Langmuir-Hinshelwood 

mechanism is a good approximation for the kinetics. In aqueous solution, D-glucose 
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exists as a mixture of α-, β-pyranose forms and the open aldehyde form. These forms 

will have different adsorption constants and their own characteristic rates of 

hydrogenation. These factors will determine which form is preferentially adsorbed and 

hydrogenated. Molecular models indicate that the adsorption of the β-pyranose form 

will more favorable through the coordination of O-1, O-5, and O-6 (Makkee et al., 

1985). It is proposed that the hydrogenation of D-glucose over Ru/C involves the 

formation of an ionized β-pyranose species adsorbed on the Ru surface by coordination 

of O-1, O-5, and O-6, which is susceptible to attack by hydrogen at the anomeric 

carbon (Figure 2.12).  

 

Figure 2.12 Schematic representation of the reaction mechanism between adsorbed β-
D-glucopyranose and hydrogen (Crezee et al., 2003). 

 

2.4 Porous carbon as a catalyst support  

Among the different types of supports used in heterogeneous catalysis carbon 

materials attract a growing interest due to their specific characteristics which are 

mainly: (i) resistance to acid/basic media, (ii) possibility to control, up to certain limits, 

the porosity and surface chemistry, (iii) easy recovery of precious metals by support 

burning resulting in a low environmental impact, and (iv) although carbon is usually 

hydrophobic, the chemical nature of the surface can be modified to increase the 

hydrophilicity, and even carbons with ion-exchange properties can be prepared. 
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Numerous publications have been written about carbon and its use as catalyst support 

or catalyst in its own right (Auer et al., 1998; Rodríguez-reinoso, 1998). The most 

common carbon support materials are activated carbon and carbon black. Besides the 

commercially used carbon, the appearance of novel carbon materials, such as carbon 

nanotubes (CNTs), carbon nanofibers (CNFs), and templated-synthesized porous 

carbons, has attracted tremendous attention.  

Although carbon is considered to be an inert material in comparison with other 

catalyst supports such as alumina and silica, its surface has a proportion of active sites, 

constituted by unsaturated valences at the edges and defects of the graphitic hexagonal 

crystallites (graphene layers). The proportion of these active sites will increase as 

porosity and surface area increase. The presence of heteroatoms (mainly oxygen, 

hydrogen, and nitrogen) also introduces active sites on the carbon surface, and 

consequently the carbon surface is not as inert as it could be expected. The 

functionalities present on the carbon surface in the form of surface oxides (e.g. 

carboxylic groups, phenolic groups, lactonic groups, etheric groups) are responsible 

both for the acid/base and the redox properties of the activated carbon (Figure 2.13). 

These surface groups act as nucleation centers for the generation of highly dispersed 

metallic crystallites.  

The preparation of carbon-supported catalysts is carried out mainly by impregnation, 

incipient-wetness or ion-exchange, thus the interaction of the solution with the carbon 

surface is critical. The adsorption capacity is determined by both the porous structure 

and the chemical nature of the surface. Thus carbons having the same surface area but 

prepared by different methods may show markedly different adsorption characteristics. 

Since carbon is essentially non-hydrophilic nature, it has a very low affinity for 

solvents of polar character such as water and high affinity for non-polar solvents such 
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as acetone. The metal precursor will be mostly located at the external surface of the 

carbon particle when using water, but it will penetrate to the interior of the porosity 

when using acetone, thus leading a more uniform distribution throughout the carbon 

particle.  

 
 

Figure 2.13 Some types of oxygen surface groups in activated carbon (Rodríguez-
reinoso, 1998). 

 

2.4.1 Activated carbons and carbon blacks      

    Activated carbons and carbon blacks are the most common carbon support materials. 

Activated carbons have a porous structure, usually with a relatively small amount of 

chemically bonded heteroatoms (mainly oxygen and hydrogen). The high surface area 

of activated carbons is mainly concentrated in microporosity, and this may be an 

inconvenience for both the preparation of the catalyst and the catalytic activity when in 

both cases large molecules are involved. Furthermore, the active phase particles placed 

on the support porosity can cause problems of micropore accessibility to reactants and 

products, thus limiting the effectiveness of microporosity. Activated carbon-supported 

Pt catalysts were highly active and selective for the production of crotyl alcohol in the 
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vapor-phase hydrogenation of crotonaldehyde (Coloma et al., 1997), and the metal 

particle size is related with the amount of oxygen surface groups. H2 spillover was 

observed at ambient temperature on activated carbon-supported Pt in benzene 

hydrogenation (Srinivas and Rao, 1994). Carbon blacks are manufactured by the 

pyrolysis of hydrocarbons such as natural gas or oil fractions from petroleum 

processing (Auer et al., 1998). Compared to activated carbons, carbon blacks only 

possess limited specific surface area in the range of 100-1500 m2/g, the porosity is 

built up from three-dimensional agglomeration of very small (5-100 nm), non-porous 

primary particles into branched chains and clusters. Carbon blacks supported Pd 

catalysts were prepared by an incipient wetness impregnation method and tested in 

benzene hydrogenation (Jen et al., 2007). The deactivation is found to be accompanied 

by Pd sintering, and the Pd sintering is due to the loss of Pd-C interaction.  

 

2.4.2 Carbon nanofibers (CNFs) and carbon nanotubes (CNTs) 

    CNFs and CNTs as supports have been carried on different catalytic reactions (De 

Jong and Geus, 2000; Serp et al., 2003). Such structures can display unusual behaviors 

compared to classical supports, especially for liquid-phase reactions, in which the 

diffusion of the reactants and products are significantly influenced by the external size 

of particles. The carbon nanofilaments are grown from carbon-containing gases using a 

metallic catalyst. Figure 2.14 showed the different types of CNFs and CNTs. In 1994, 

Rodriguez et al. (1994) first published an article in which they introduced active phase 

(Fe or FeCu) onto the CNFs via an incipient-wetness technique, followed by 

calcination and reduction. In comparison with alternative supports (γ-alumina and 

activated carbon), the FeCu/CNFs catalyst displayed an order of magnitude higher 

activity for ethene hydrogenation. This activity enhancement was due to a unique 
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metal-support interaction between the FeCu particles and the basal-plane regions of the 

CNFs. In the same year, Planeix et al. (1994) first reported the carbon nanotubes as 

supports for 3-7 nm Ru nanoparticles in the hydrogenation of cinnamaldehyde. 

Although the mechanism still remains unclear, the reaction involved a noticeably 

higher selectivity (>92%) for cinnamyl alcohol generation as compared with the use of 

Ru supported either on Al2O3 (20-30%) or active carbon (30-40%). Since then, the vast 

majority of applied studies involving metal-nanoparticle deposition on CNTs and 

CNFs have associated with Pt, Pd, Ru, Ag and Au (Pham-Huu et al., 2001; Vu et al., 

2006). Because as-synthesized CNFs and CNTs materials are hydrophobic, it is 

difficult to emplace an active phase. Therefore, pre-treatment procedures are needed to 

achieve optimal interaction between the support and the catalyst precursor (Toebes et 

al., 2003; Castillejos et al., 2009). 

 

Figure 2.14 Different types of CNTs and CNFs.  
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2.4.3 Templated-synthesized porous carbons  

    Templated-synthesized porous carbons with a uniform pore size, high surface area 

and interconnected network are a better catalysts carrier than traditional porous 

carbons (Zhao et al., 2006). There are two types of templates allowing one to achieve 

the template strategy, namely soft template and hard template as schematically 

illustrated in Figure 2.15. The former refers to those organic species, which can be 

subsequently removed by calcination or solvent extraction. The latter refers to porous 

structures, such as zeolites, mesoporous silicas, and colloidal crystals that are used to 

form porous frameworks. Using the preparation of porous carbons as an example, the 

hard template method works this way. First, the template pores are filled with a carbon 

precursor such as sugar, benzene, and furfuryl alcohol. After carbonization under 

proper conditions followed by removal of the template framework, a porous carbon 

with pores replicated from the template framework is obtained. 

 

Figure 2.15 Scheme of synthesis of the porous materials with the (a) soft template; (b) 
hard template. 
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Hard templates that can be used include zeolites, ordered mesoporous silicas and 

colloidal crystals. Knox et al. (1986) were the first to use the hard template method to 

synthesize porous glassy carbon. Since then, there have been rapid advances in 

template synthesis of ordered porous carbons, ranging from microporous to 

mesoporous carbons, and further to macroporous carbons. There are two strategies via 

which carbon precursors may be introduced into the pore channels of porous silica or 

aluminosilicate templates: liquid impregnation or chemical vapor deposition (CVD). 

Liquid impregnation is usually followed by polymerization and pyrolysis 

(carbonization) steps or cycles. In CVD, a carrier gas is used to deliver the carbon 

precursors into the pore channels of the porous template followed by thermal treatment 

at a target temperature to form the carbon framework. This allows the polymerization 

and carbonization of the carbon precursor to occur simultaneously in the pore channels 

of templates.  

Zeolites are microporous crystalline aluminosilicates with a channel-like and/or 

cage-like pore structure of pore-opening sizes in the range of 0.3-1.0 nm. The spatially 

periodic pore structure and well-defined nanospaces of zeolites offer one to control the 

nanostructure and morphology of microporous carbon materials at the nanometer level. 

In the past decades, many zeolite templates (e.g., zeolite Y, zeolite β, and ZSM-5) and 

carbon precursors (e.g., furfuryl alcohol, phenol-formaldehyde, and sucrose) have been 

employed to fabricate microporous carbons with a high specific surface area, a large 

pore volume, and various morphologies (Kyotani et al., 1997; Ma et al., 2000; Ma et 

al., 2001; Meyers et al., 2001; Ma et al., 2002; Barata-Rodrigues et al., 2003; Kyotani 

et al., 2003; Su et al., 2004; Hou et al., 2005; Matsuoka et al., 2005; Su et al., 2005; Su 

et al., 2005; Su et al., 2005; Tosheva et al., 2005). Figure 2.16 showed the structural 

models of ordered microporous carbons prepared using different zeolite templates.  
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Figure 2.16 Structural models of ordered microporous carbons prepared using different 
zeolite templates (Ma et al., 2001). 

 
The ordered mesoporous carbon is a unique porous carbon material that was first 

prepared by Ryoo et al. (1999) by hard templating method. Ordered mesoporous 

carbon (denoted CMK-1) was synthesized by using MCM-48 silica, which exhibits 

porous structures consisting of two disconnected interwoven three-dimensional (3-D) 

pore systems.  Following the first report on the synthesis of ordered mesoporous 

carbons using the MCM-48 silica template, various mesoporous carbon materials with 

different pore structures were synthesized using a variety of different mesoporous 

silica templates (Ryoo et al., 2001; Lee et al., 2006; Liang et al., 2008). Hexagonally 

ordered mesoporous silica SBA-15 was used as a template for a mesoporous carbon 
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designated as CMK-3 (Jun et al., 2000). Unlike CMK-1, the ordered structure of the 

CMK-3 carbon was the exact inverse replica of the SBA-15 silica without the 

structural transformation during the removal of the silica template. CMK-3 is 

composed of carbon nanorods arranged in a hexagonal pattern, with connecting 

bridges between them. The pore size of an ordered carbon material synthesized with a 

hard template is primarily determined by the pore wall thickness of the inorganic 

templates, which can be tailored by the synthetic conditions (Lee et al., 2002). Figure 

2.17 showed the structural models of ordered mesoporous carbons prepared using 

MCM-48 and SBA-15 as template, respectively.  

 

Figure 2.17 Structural models for ordered mesoporous carbons synthesized by using (a) 
MCM-48 as template (Lee et al., 1999); (b) SBA-15 silica as template (Lu and Schüth, 

2006). 
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    Colloidal-crystal-templated ordered macroporous carbon was first synthesized 

by Zakhidov et al. (1998), whereby using colloidal crystals as the template to fabricate 

highly ordered 3-D macroporous carbon. As schematically illustrated in Figure 2.18, 

spherical colloidal particles can self organize into a colloidal crystal, then the colloidal 

crystals serve as templates to fabricate ordered macroporous materials. Using volume-

templating approach, a carbon precursor is infiltrated into the interstitial space between 

the colloidal spheres. Carbonization and removal of the opal template leave behind a 

three dimensional periodical carbon structure. Normally, liquid-phase carbon 

precursors such as phenolic resin (Chai et al., 2004) and sucrose solution (Lei et al., 

2001; Yu et al., 2002) are used for infiltration. Alternately, CVD technique can be 

employed to enhance carbon infiltration. Both graphitic and diamond macroporous 

carbons were synthesized by using CVD and plasma techniques (Zakhidov et al., 

1998).  

 

Figure 2.18 Synthetic procedures for uniform porous carbons of tunable pore sizes 
through colloidal crystal template approach (Chai et al., 2004). 
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A few studies have examined templated-synthesized porous carbons as 

heterogeneous catalysts during the last few years. Typical preparation method to 

incorporate metal particles on carbon support involves loading with metal precursors 

by ion exchange, impregnation and incipient-wetness methods, followed by catalyst 

activation. Since such methods always involve contact between a precursor solution 

and the carbon surface, it is often necessary to perform some surface functionalization 

on the porous carbons to increase the hydrophilicity of the surface and guarantee 

efficient wetting of the templated-synthesized porous carbons, in particular for aqueous 

precursors. Ryoo et al. (2001) incorporated Pt into nanoporous carbon structures using 

the incipient wetness technique with hexachloroplatinic acid to generate nanoparticles 

of Pt within the pore structure. The Pt cluster diameter can be controlled to below 3 nm, 

and the high dispersion of these metal clusters gave rise to promising electrocatalytic 

activity for oxygen reduction. Ferdi et al. (2004) introduced ferromagnetism in carbon 

particles which made the catalyst powder to be easily separated from solution and 

possessed the high catalytic reproducibility. The catalyst of Pd loaded on magnetic 

ordered mesoporous carbon displayed a good performance in the hydrogenation of 

octene to octane. When performance advantages over other carbon supports are 

observed, they are usually related to enhanced catalytic dispersion and easy diffusion 

of reagent/product through the mesoporous carbon.  

Metal precursors can be introduced with carbon precursors at the templating stage to 

produce carbon-based nanocomposites with metals, such as Co, Pd, Pt, Ru (Holmes et 

al., 2005; Choi et al., 2005; Liu et al., 2006; An-Hui Lu et al., 2007; Su et al., 2007, Su 

et al., 2008). During carbonization in an inert atmosphere, metal salts/oxides are 

spontaneously reduced to metal nanoparticles.  The growth and aggregation of the 

metal nanoparticles were hindered inside the confined mesoporous channels, resulting 
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in the formation of highly dispersed nanoparticles. For example, Pt nanoparticles 

studded in the mesoporous carbon nanorods were synthesized using direct conversion 

method (Choi et al., 2005). Figure 2.19 shows the schematic drawing of two methods: 

a presents the Pt nanoparticles supported on CMK-3 prepared by conventional 

impregnation method, while b displays the PtC nanocomposite prepared by directly 

conversion method. The size of the Pt nanoparticles prepared by directly conversion 

method was smaller than the channel size of the SBA-15 silica, while the size of Pt 

nanoparticles synthesized by conventional impregnation on CMK-3 was larger than the 

channel size of SBA-15. The Pt nanoparticles of PtC nanocomposite were accessible to 

CO, which indicated that they were exposed to the gas via the micropores in the carbon 

rods. These PtC nanocomposite showed an excellent performance in direct methanol 

fuel cells.   

 

Figure 2.19 Schematic drawing of a) Pt/ordered mesoporous carbon prepared by a 
convention method, and b) the PtC-nanocomposite array synthesized using an SBA-15 

template nanoreactor (Choi et al., 2005). 
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    Despite the achievements reached by the aforementioned method, the synthesis of 

atomically dispersed metallic nanoparticles on ordered porous supports is still a 

challenge. For example, for many target compositions, the chemistry of the target 

material is not compatible with the conditions of the template-removal process. In 

addition, increasing metal loading without destroying structure is also a challenge. 

Furthermore, it is necessary to ensure a rigid structure, thus avoiding collapse of the 

pore system after removal of the template. Especially in the case of noble metals, it is 

important to prepare them with sizes as small as possible and highly dispersed 

throughout the support, in order to improve the catalytic efficiency and to minimize the 

cost.  

 

2.4.4 Nitrogen-containing carbons  

    Nitrogen-containing carbons are exciting materials, as the inclusion of nitrogen can 

improve the properties of bulk carbon, such as the conductivity, basicity, wettability, 

oxidation stability, and catalytic activity (Czerw et al., 2001; Matsuoka et al., 2004; 

Hou et al., 2005; Gorgulho et al., 2009; Ismagilov et al., 2009). The performance of 

these materials crucially depends on the amount of nitrogen in the carbon host as well 

as its mode of integration. Two classes of C, N materials can be identified: nitrogen-

rich compounds (CNx, x≥1) and nitrogen-doped carbon. Nitrogen-rich compounds, 

such as carbon nitride (C3N4), have recently gained much attention because of their 

promising properties, such as “superhardness” (predicted for cubic β-C4N4) or 

semiconductivity (for the graphitic form g-C3N4). The synthesis of these nitrogen-rich 

carbon nitrides generally includes thermal condensation of nitrogen-rich precursors. 

Nitrogen-doped carbons can be obtained using the following several methods (Lu et al., 

2004; Xia and Mokaya, 2004; Gorgulho et al., 2009): (i) reaction of porous carbon 
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with N-containing gases; (ii) co-carbonization of N-free and N-containing precursors; 

and (iii) carbonization of raw material containing N atoms. 

X-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS) 

measurements (Machnikowski et al., 2004; Huang et al., 2009) suggest that nitrogen 

atoms in the carbon networks could occupy five chemically different sites: (a) 

pyridinic, (b) pyrrolic, (c) pyridonic, (d) quaternary, and (e) oxidized nitrogen (Figure 

2.20).  

 

Figure 2.20 Nitrogen functionalities occurring in carbonaceous materials: a) pyridinic, 
b) pyrrolic, c) pyridonic, d) quaternary, and e) oxidized nitrogen (Machnikowski et al., 

2004). 
 

The variation in the relative intensity of these signals was found to be correlated 

with the catalytic activity. Pyridinic nitrogen bound to two carbon atoms at the edge of 

a layer retains a lone pair of electrons inducing electron donor properties to the layer. 

The quaternary nitrogen bound to three carbon atoms, either inside or at the periphery 

of the layers, is believed to generate a positive charge and acceptor properties. The 

pyridinic and quaternary nitrogen are the major forms distinguishable using XPS in the 

carbons produced between 800 and 1000 oC. The N-oxide and quaternary nitrogen are 

unreactive to chelate metal precursors, while pyrrolic nitrogen and pyridinic nitrogen 

are nitrogen groups that can efficiently anchor metal precursors and stabilize the final 
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nanocrystals (Li et al., 2006). CVD temperature will change chemical structures of 

nitrogen-doped carbon (Yang et al., 2001). Basically pyridinic nitrogens are formed at 

lower CVD temperature, and then converted to quaternary ones, which have higher 

thermal stability. In particular, the presence of quaternary nitrogens indicates alloying 

of nitrogen on the carbon. 

The catalytic activity of nitrogen-containing carbon has been studied for more than 

20 years, and I will summarize the existing literatures, which have compared the 

catalytic behavior of nitrogen-doped versus non-doped carbon supports. Amadou et al. 

(2008) reported a remarkable improvement of the catalytic activity in the liquid phase 

hydrogenation of cinnamaldehyde when Pd was supported on nitrogen-doped carbon 

nanotubes compared to catalysts based on Pd supported on carbon nanotubes and 

activated charcoal. The activity improvement was attributed to possible electronic or 

morphologic modifications of the active phase leading to a higher turnover frequency 

of the catalytic site. Nieto-Márquez et al. (2010) studied Ni supported on carbon and 

nitrogen-doped carbon nanospheres in the gas phase hydrogenation of butyronitrile, 

and the higher electron density on the surface of the supports delivered by nitrogen 

inclusion resulted in an enhanced catalytic activity. Furthermore, nitrogen, essentially 

in its quaternary form, led to an electron-enriched carbon surface, promoting the 

mobility of the metal and subsequent sintering. Raymundo-Piñero et al. (2003) 

reported the catalytic oxidation of SO2 over activated carbon fibers, where nitrogen 

incorporation, mainly in the form of pyridinic groups, increased the catalytic activity. 

García-García et al. (2010) reported the catalytic activity of Ru-carbon in the ammonia 

decomposition, the catalytic activity of Ru particles was significantly improved when 

supported on nitrogen-doped carbon nanotubes. The presence of nitrogen atoms in the 

graphitic structure of the bamboo-like carbon nanotubes improves the basicity and the 
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electronic density of the support, and nitrogen atoms also act as an important promoter 

of Ru nanoparticles increasing their activities in the ammonia decomposition reaction. 

Nitrogen inclusion in different carbon structures has also been reported to enhance the 

catalytic behavior towards oxygen reduction and methanol oxidation in fuel cells (Choi 

et al., 2007; Kim et al., 2007; Chetty et al., 2009; Lyth et al., 2009; Kim et al., 2010). 

These results open an exciting research path, where a controlled tuning of nitrogen 

functionalities may conduct to a catalytic improvement, both in terms of activity and 

selectivity.  
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CHAPTER 3 

EXPERIMENTAL SECTION 

3.1 Chemicals 

The chemicals used in this project are summarized in Table 3.1. All the chemicals 

were used as received without further purification.  

 
Table 3.1 Chemical used in this thesis work. 

Chemicals Grade Supplier 

Alumina nitrate hydrate 98.5% Merck 

Benzene ≥99% Sigma-Aldrich 

Copper (II) chloride 

dihydrate 
99+% Sigma-Aldrich 

Ethanol 99.5% Aldrich 

Glucose ACS reagent  Sigma-Aldrich 

Glucose HPLC Sigma-Aldrich 

H-form zeolite Y (HY)  
Zeolyst 

International Co.  

Hydrochloride acid 37% Merck 

Hydrofluoric acid 48-51% Tyco 

Ni65  Sigma-Aldrich 

Pyridine 99% Sigma-Aldrich 

5RuC  Sigma-Aldrich 

Ruthenium (III) chloride 

hydrate 
99.9% Strem 

Sorbitol HPLC Sigma-Aldrich 

Sulfuric acid 98% Merck 

Triblock copolymer 

P123 
Mw ~ 5800 Aldrich 

Tetraethyl orthosilicate 98% Aldrich 

Urea ACS reagent Sigma-Aldrich 
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3.2 Synthesis methods  

3.2.1 Preparation Ru nanoparticles embedded in templated porous carbon   

H-form zeolite Y (HY) was purchased from Zeolyst International Co. Mesoporous 

SBA-15 silica template was synthesized following the procedure described by Zhao et 

al (1998). In a typical synthesis, 8g of P123 (Aldrich, typical Mn=5800) was dissolved 

in 60 mL of deionized water and 240 g of hydrochloride acid solution (0.74M) to form 

a clear solution, to which 17.6 g of TEOS was added. The suspension was stirred for 

24 h at 40 oC. The final mixture was transferred to a Teflon-lined stainless-steel 

autoclave and placed in an oven at 100 oC for 24 h. After the hydrothermal treatment, 

the white precipitate was filtered, washed with deionized water, and dried at 80 oC in a 

vacuum oven for 24 h. The obtained sample was furthered calcined in air at 550 oC for 

8 h with a heating rate of 2 oC/min.  

Preparation of Ru/C catalysts. First, 0.5g of a dried hard template (either zeolite 

HY or SBA-15 silica) was impregnated with 2 mL of an aqueous solution containing 

0.075g of ruthenium chloride, and the suspension was dried in air at 120 oC overnight. 

Secondly, the Ru-impregnated solid was then placed in a quartz tube and heated from 

room temperature to 900 oC at 5 oC /min under a pure N2 flow (30cm3/min) (as shown 

in Figure 3.1). Subsequently, infiltration of carbon was conducted in the tube with 

benzene as a precursor using the CVD method for 3 h. During this step, the Ru species 

was thermally reduced to Ru metal by carbon species and/or hydrogen gas released 

from benzene dehydrogenation at 900 oC. Finally, the black sample was treated with a 

20% HF solution to remove the template, washed with deionized water, and dried at 

120 oC overnight. The Ru catalyst obtained using HY as template is designated as 

RuC(HY). The Ru catalysts obtained using SBA-15 as hard template are designated as 

Ru6C3, Ru8C3, and Ru12C3, indicating 6wt%, 8wt%, and 12wt% loadings of Ru on 
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the SBA-15 silica template, respectively, and 3 h of CVD time at 900 oC. Another two 

catalysts, designated as Ru8C2 and Ru8C4, were similarly prepared using SBA-15 

silica template with a Ru loading of 8wt%, CVD times of 2 and 4 h, respectively, at 

900 oC.  

 
 

Figure 3.1 A scheme showing the CVD setup used in this work. 
 

For comparison purposes, four Ru catalysts supported on zeolite HY- and SBA-15-

silica-templated carbons, zeolite HY, and SBA-15 silica were prepared using a 

conventional catalyst preparation method. 0.5g of supports HY, SBA-15, HY- and 

SBA-15-silica-templated carbons were impregnated with 2 mL of an aqueous solution 

containing 0.075g of RuCl3 followed by drying at 120 oC overnight. Hydrogen 

reduction was carried out at 300 oC for 2 h to obtain catalysts Ru/C-HY-H, Ru/C-

SBA15-H, Ru/HY-H, and Ru/SBA15-H, in which “H” denotes hydrogen reduction. 

Two commercial catalysts Ni65 (~65wt% Ni supported on silica/alumina) and 5RuC 

(~5wt% Ru supported on activated charcoal) were used in this study for comparison 

purposes.  
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3.2.2 Preparation Ru-Cu bimetallic nanoparticles embedded in porous carbon 

The preparation of bimetallic catalysts is described below. First, mesoporous SBA-

15 silica was impregnated with 0.1 M ruthenium chloride solution and 0.1 M copper 

chloride solution under sonication for 0.5 h. The ratio of the volume of RuCl3 solution 

over the mass of the solid was 4 mL over 1 g. The volume of CuCl2 solution used was 

varied to change the amount of Cu in the resultant catalysts. Second, the suspension 

was dried in air at 120 oC overnight. Third, a 0.5 g of Ru/Cu-impregnated solid was 

placed in a quartz tube and heated from room temperature to 900 oC with a heating rate 

of 5 oC /min under a pure N2 flow (30 mL/min). CVD was subsequently conducted at 

this temperature using benzene vapor for 2 h, which was carried into the tube by N2 

flow (30 mL/min) containing 5 wt% benzene. Finally, the black sample was treated 

with a 20 wt% HF solution to remove the silica template, washed with deionized water, 

and vacuum-dried at 120 oC overnight. The monometallic catalysts are designated as 

RuC and CuC. The RuCu bimetallic catalysts are designated as RuCu0.3C, RuCu0.5C, 

RuCu1.0C, and RuCu1.5C, indicating the molar ratio of Cu/Ru is 0.3, 0.5, 1.0, and 1.5.  

The results and discussion can be referred to chapter 5 and chapter 6.  

 

3.2.3 Preparation mesoporous carbon microfibers supported Ru catalysts.   

Preparation of porous alumina microfibers. The porous alumina microfibers 

(AFs) were synthesized according to our previous report (Bai et al., 2007). In a typical 

synthesis, 4.52 g of P123 (Aldrich, typical Mn=5800) was dissolved in 65.0 mL of 

deionized water to form a clear solution, to which 15.0g of Al(NO3)3·9H2O (Merck, 

98.5%) was added. After the alumina salt was totally dissolved, 24 g of urea (ACS 

reagent, Sigma-Aldrich, 99.0-100.5%) was added. The final mixture was transferred to 

a Teflon-lined stainless-steel autoclave and placed in an oven at 100 oC for 24 h. After 
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the hydrothermal treatment, the white precipitate was filtered, washed with deionized 

water, and dried at 80 oC in a vacuum oven for 24 h. The obtained sample was further 

calcined in air at 500 oC for 2 h with a heating rate of 1 oC/min. 

Preparation of mesoporous carbon microfibers supported Ru catalysts. In a 

typical synthesis, 1g of dried AFs was impregnated with 4 mL of ruthenium chloride 

solution (0.1M) under ultrasonic sonication for 0.5 h. The suspension was dried in air 

at 120 oC overnight. The dried Ru-impregnated solid was placed in a quartz tube and 

heated from room temperature to 900 oC at a heating rate of 5 oC /min under a pure N2 

flow (30 mL/min). CVD of carbon was subsequently conducted at 900 oC using 

benzene (or pyridine) vapor for 2 h. The vapor was carried into the tube by N2 flow (30 

mL/min) containing 5 wt% benzene (or pyridine). Finally, the black sample was 

treated with a 20 wt% HF solution to remove the alumina template, washed with 

deionized water, and vacuum-dried at 120 oC overnight. The Ru catalysts obtained 

using AFs as templates are designated as RuCMF, RuCMFN, where “N” denotes 

pyridine as carbon precursor. For comparison purpose, AFs, multi-walled carbon 

nanotubes (CNTs, Aldrich), and carbon microfibers (CFs) (Qingdao, China) were also 

used as Ru supports. In a typical synthesis, 1g of AFs, CNTs or CFs was impregnated 

with a 4 mL of  0.1 M RuCl3 solution followed by drying at 120 oC overnight. The Ru-

impregnated solids were treated at 300 oC for 2 h under hydrogen to obtain catalysts 

Ru/AF-H, Ru/CNT-H, and Ru/CF-H, in which “H” denotes hydrogen reduction.  

 

3.3 Characterization techniques 

Both the physical and the chemical structure of a catalyst must be known if 

relationships between the material structure of the catalyst and activity, selectivity, and 
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lifetime are to be revealed. Here, we will briefly introduce techniques for 

characterizing our catalysts.  

 

3.3.1 Nitrogen adsorption-desorption isotherms 

The study of the textural properties of catalyst supports is of primary importance in 

terms of understanding the catalytic phenomena. Gas (N2, CO2, Ar, etc.) sorption 

measurements are usually carried out for the determination of pore texture, such as the 

specific surface area, the specific pore volume, the shape of the pores and the pore size 

distribution (PSD). In N2 adsorption analysis, a sample is exposed to N2 gas of 

different pressures at a given temperature (usually at -196 oC, the liquid-nitrogen 

temperature). Increasement of pressure results in increased amount of N2 molecules 

adsorbed on the surface of the sample. The pressure at which adsorption equilibrium is 

established is measured and the universal gas law is applied to determine the quantity 

of N2 gas adsorbed. Thus, an adsorption isotherm is obtained. If the pressure is 

systematically decreased to induce desorption of the adsorbed N2 molecules, a 

desorption isotherm is obtained. The desorption isotherm can rarely be superimposed 

over the adsorption isotherm, this irreversibility in terms of adsorption shows up as a 

hysteresis phenomenon. The forms of the isotherms and the hysteresis loops have been 

subject to a classification initially proposed by Brunauer and taken up by the IUPAC 

(Kruk et.al., 2001). The interpretation of adsorption-desorption isotherms provides a 

wealth of information on the texture of the adsorbent. Specific surface areas are 

calculated by application of the Brunauer-Emmett-Teller (BET) method to nitrogen 

adsorption isotherms. Total pore volume is calculated by a single-point measurement 

at a high relative gas pressure (p/p0=0.99). Mesopore- and micropore-size distributions 
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are established by the Barrett-Joyner-Halenda (BJH) and Horvath-Kawazoe (HK) 

methods.  

In this project, the N2 sorption/desorption at the liquid-nitrogen temperature was 

carried out on an automatic volumetric sorption analyzer (Quantachrome, NOVA 1200) 

and a surface area and porosity analyzer (Micromeritics, ASAP2020). Before the 

measurement the sample was degassed at 200 ºC for 5 h.  

 

3.3.2 Chemisorption of hydrogen (H2) and carbon monoxide (CO)  

While the specific surface area of supports is often determined by using physical 

adsorption, the active phase of the catalysts (metal) can be studied by selective 

chemical adsorption. Chemical adsorption can be either dissociative: the molecule is 

adsorbed in a dissociated form- or associative: the atoms comprising the probe 

molecule remain bonded. This character depends on the probe molecule – active center 

combination and the temperature. The H2 and CO chemisorption can be used to 

determine the strong chemisorption uptake, the active metal area, the metal dispersion 

(ratio of surface metal to total metal content), and the average size of the metal 

crystallites. This method consists of adsorbing, on surface atoms of the active phase 

(e.g. a metal), a molecule likely to give rise to a balanced chemical reaction. The 

volume measured at saturation, converted to standard conditions, and corresponding to 

the formation of a complete monolayer, is used to determine the metallic surface, the 

average size of the crystallites and the dispersion of the metal, with the aid of the 

following equations: 

• Metallic surface area (m2/g):                                       (3.1) 

• Dispersion (%):                                                            (3.2) 

• Average diameter of the crystallites assumed to be spherical: 
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                                                                                               (3.3) 

where: 

n is the number of metal atoms on which a gas molecule is chemisorbed (The 

value of n depends on the nature of the gas and metal under consideration.) 

ρ is the specific mass of the metal (g/cm3) 

N is Avogadro’s constant 

v is the volume adsorbed per g of metal (cm3/g) 

σ is the surface area of a metallic atom (m2/atom) 

M is the molar mass of the metal (g/mol) 

VM is the molar volume (cm3/mol) 

In this project, the measurement of chemisorption of H2 and CO was carried out on a 

ChemBET Pulsar system (Quantachrome) (as shown in Figure 3.2) operated at room 

temperature. Prior to each analysis, an activation step is carried out. 0.1g of catalyst 

sample was reduced using 5%H2 in N2 at 120 oC for 2 h, followed by degassing at 300 

oC under N2 for 4 h, then cooling to room temperature. Measured pulses of H2 were 

then introduced from the built-in gas-sampling loop into the carrier gas stream and 

passed through the catalyst bed. The total volume of hydrogen not adsorbed was 

measured by thermal conductivity detector (TCD). After the H2 titration, the catalyst 

sample was degassed at 300 oC under helium for 4 h, cooled to room temperature, and 

titrated with CO. The Ru dispersion values was obtained using a stoichiometric ratio 

Ru:CO of 1:1, and the average particle size was calculated employing spherical model, 

d=0.45/D (Garcia et al., 2010).  
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Figure 3.2 Photo of ChemBET Pulsar system (Quantachrome).  
 

3.3.3 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) is a thermal analysis technique used to measure 

changes in the weight (mass) of a sample as a function of temperature under a 

controlled atmosphere. As materials are heated, they can loose weight from a simple 

process such as drying, or from chemical reactions that liberate gasses. Differential 

thermal analysis (DTA) is used to obtain information on the variation in temperature in 

a sample subject to heat treatment. It provides information on the thermal effects that 

accompany the heating of the sample. These are often linked to mass transfers between 

the liquid or solid phase and the gas phase (such as dehydration, oxidation, etc.). They 

may also appear without any variation in mass in the case of structural transformations 

(for example: phase transitions in crystals, glass transition in polymer, etc.).  

In this project, TGA was carried out on a thermal analyzer, TGA 2050 (Thermal 

Analysis Instruments, USA), with an air flow rate of 100 mL/min and a temperature 
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ramp of 10 oC/min. The Ru content in Ru-carbon catalysts can back calculated from 

residual weight (RuO2) above 700 oC as following:  

                         (3.4) 

where: 

WRuO2 is residue weight of the sample above 700 oC 

MWRu=101, is molecular weight of Ru 

MWO=16, is molecular weight of oxygen.  

 

3.3.4 Inductive-coupled plasma atomic mass spectrometer (ICP-MS) 

ICP-MS is a type of mass spectrometry that is highly sensitive and capable of the 

determination of a range of metals and several non-metals at concentrations below one 

part in 1012. It is based on coupling together inductively coupled plasma as a method of 

producing ions (ionization) with a mass spectrometer as a method of separating and 

detecting the ions.   

An inductive-coupled plasma atomic mass spectrometer (ICP-MS) (Agilent 7500 

ICP-MS) was used to quantify the composition of bimetallic catalysts in this project. 

Before the analysis the solid catalysts were converted into liquids via acid digestion. 

The concentrations of Ru and Cu were quantitatively determined based on the standard 

calibration curve obtained prior to every analysis. The wavelengths used for Ru and Cu 

measurements were 100.9 nm and 324.7 nm, respectively.  

 

3.3.5 X-ray diffraction (XRD) 

X-ray diffraction techniques are based on the elastic scattering of X-rays from 

structures that have long order. The diffraction pattern generated is used to study 

surface-supported nanoparticles, affording information on the crystal phase, lattice 
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constant, and average particle size of nanoparticles. In the case of bimetallic 

nanoparticles, XRD is important to confirm whether the bimetallic nanoparticles adopt 

alloy structure or not. Generally, an alloy consisting of two kinds of metals shows the 

diffraction peaks between those of two pure metals.  

In this project, the structure of the Ru based catalysts were characterized by using X-

ray diffraction technique (XRD-6000, Shimadzu, Japan) with Cu Kα radiation 

(λ=0.15418 nm). Measurement condition: voltage 40.0 kV, current 30.0 mA, 

divergence slit 1.00 (deg), scatter slit 1.00 (deg), receiving slit 0.30 (mm), scan range 

20.0-80.0, scan speed 4.00 (deg/min), sampling pitch 0.02 (deg).  

 

3.3.6 X-ray photoelectron spectroscopy (XPS)  

XPS is based on the photoelectric effect, whereby absorption of light by an atom 

results in the ejection of electrons, provided that the photon energy is sufficient to 

overcome the binding energy of the electron. The core electron binding energies are 

characteristic of each element, and the peak areas can be used to determine the 

composition. As the peak shape and binding energy are sensitive to the oxidation and 

chemical state of the emitting atom, XPS can also provide chemical bonding 

information. Generally XPS technique provides a compositional estimate of only the 

outermost layers, with a penetration depth of ca. 5-15 nm.   

In this project, the surface chemical compositions of the samples were determined 

using XPS (Kratos Analytical Ltd., U.K., AXIS HIS 165 spectrometer) with an Al Kα 

X-ray source (1486.71 eV protons), operated at 15 kV and 10 mA. The pressure in the 

analysis chamber was maintained below 10-8 torr during each measurement. The 

spectral regions of the Ru3p, O1s, C1s, Cu2p, N1s peaks were acquired. All spectra 

were fitted by a software package XPSpeak 4.1 with the subtraction of Shirley (for 
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transition metals) or linear background (for other elements) and a ratio of 20% 

Lorentzian-Gaussian. In charge-up correction, the calibration of binding energy (BE) 

of the spectra was referenced to the C1s electron bond energy corresponding to 

graphitic carbon at 284.5 eV. 

 

3.3.7 X-ray absorption Spectroscopy (XAS) 

XAS is essentially a form of electron spectroscopy. X-rays absorbed by matter 

(metals and non-metallic solids, liquids or gases) excite and promote an absorbing 

atom’s core electron to higher unoccupied states or into a free unbound state (the 

continuum). The X-ray absorption spectrum of an element contains absorption edges 

corresponding to the excitation of electrons from various electronic states at energies 

characteristic of that element, i.e., K edges arise from the excitation of electrons from 

1s states, and LI, II, III edges from excitations from 2s, 2p 1/2, and 2P 3/2 states. When 

the X-ray energy is increased above an edge, oscillations (fine structure) are observed 

in the absorption coefficient over an energy range of several hundred to over a 1000 

eV above the edge. Since these oscillations arise from the interference between waves 

associated with the emitted photoelectrons and photoelectrons backscattered from 

neighboring atoms, they contain useful information on the environment of the 

absorbing atom. Each element’s X-ray absorption spectrum is unique and provides 

information about the elements present in the nanoparticles, the local atomic 

environment, oxidation state, coordination number, and interatomic distances 

(Ferrando et al., 2008). The XAS spectrum can be approximately divided into three 

regions (Figure 3.3): X-ray Absorption Near Edge Structure (XANES), Near Edge X-

ray Absorption Fine Structure (NEXAFS), and Extended X-ray Absorption Fine 
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Structure (EXAFS). In practice there is not an obvious division of these regions and 

the XANES and NEXAFS regions are often modeled together.  

 

Figure 3.3 The three regions of the XAS spectrum 
( http://www.chemphys.lu.se/research/techniques/xrayxas/). 

 
 

XANES: The energy of incoming X-rays is sufficient to transfer core electrons to 

higher unoccupied valence states. Analysis of this part of the spectrum (around the 

edge) provides information concerning the oxidation state of the absorbing atom and 

its site symmetry.  

NEXAFS: The core electron is excited into the continuum, but the photoelectron has 

low kinetic energy and is strongly backscattered by all of the neighboring atoms. This 

part of the spectrum is sensitive to the number, kind and symmetry of atoms adjacent 

to the absorber atom.  
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    EXAFS: The energy of the photoelectron is high enough that its de Broglie 

wavelength becomes comparable to the distance to neighboring atoms. The 

photoelectron wave is weakly backscattered by and among the neighboring atoms (as 

shown in Figure 3.4). The analysis of this part of the absorption spectrum gives 

information regarding the number, kind and distance of neighboring atoms from each 

other and the absorber.  

 

Figure 3.4 Schematic diagram of the photoelectron wave leaving atom A is 
backscattering by the neighbor atom B. An EXAFS oscillation originates from the 

interference between the outgoing and the incoming waves (Lynch, 2003).  
 

 

The XAS measurments at the Cu K-edge (8.979 keV) and Ru L3-edge (2.838 keV) 

were performed at room temperature at the XDD (X-ray Development and Demontrate) 

beamline available in the Singapore Synchrotron Light Source (SSLS) center where a 

pair of channel-cut Si (111) crystals was used in the monochromator. All spectra were 

collected in the fluorescence mode using a Lytle-type detector. Standard spectra for Cu 

foil, powdered Cu2O, CuO, Ru metal and RuO2 were used to assess bulk oxidation 

states.  
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3.3.8 Scanning electron microscopy (SEM), Energy-Disperse X-ray microanalysis 

(EDX) and Field-emission scanning electron microscopy (FESEM) 

Scanning electron microscopy is a local chemical and textural characterization 

technique for solid materials which is based on the interaction of these materials with a 

focused electron beam with energies of between 0.5 and 35 kV. The various radiations 

emitted under the impact of the electron beam (secondary electrons, scattered electrons 

and X-rays) are used to form images showing the various properties of the material 

(topography, heterogeneities of composition and local elemental composition, 

respectively). Depending on the signal used, the information extracted reveals the 

following properties of the material: 

• Its morphology and texture are described by the secondary electron images. 

• The distribution of phases in the material is described by backscattered electron 

images (atomic number contrast). 

• The composition of the phases is deduced from the analysis of characteristic X-

rays emitted by the sample (local elemental analysis). 

In this thesis work, SEM images were measured on a JEOL-6700F scanning electron 

microscope, which was operated at an acceleration voltage of 10kV and filament 

current of 60 mA. Before measurement, the samples were stuck onto a double-face 

conducted tape mounted on a metal stud. The non-conductive samples were coated 

with platinum using a sputter coater (JEOL JFC-1300 Auto fine coater) before the test. 

The energy dispersion X-ray spectroscopy (EDX) was obtained at 15.0 kV in the SEM 

measurements. The morphologies of the samples were also imaged by using a field 

emission scanning electron microscope (FESEM) (JSM-6700F, JEOL Japan INC) with 

an accelerating voltage 10.0 kV. The elemental distribution maps of Ru-Cu bimetallic 
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catalysts were obtained using a scanning electron microscope (JEOL 6701F, JEOL, 

Japan) operated at 15kV kV equipped with an energy-dispersive spectrometer.  

 

3.3.9 Transmission electron microscopy (TEM) and high resolution transmission 

electron microscopy (HRTEM) 

When crossing a sample, an electron beam may be partially adsorbed and partially 

deflected. Via the use of electromagnetic lenses, a certain fraction of these electrons, 

and of those that have not been deflected, can be recombined to form an image. The 

use of transition electron microscopy is based on controlling the electrons involve in 

image formation. The transmission electron microscope thus offers an image of the 

sample that depends on the electron-matter interaction. One of the major uses of TEM 

in the area of catalysts is the measurement of particle size distributions for supported 

metals. In TEM, the electrons pass through the sample, generally requires the samples 

to be dispersed onto an electron-transparent substrate, such as a thin copper-coated 

microgrid. HRTEM offers resolution down to the Ångstrom level and enables 

information to be obtained on the structure (atomic packing) rather than just the 

morphology of the nanoparticles.  

In this thesis work, the microscopic features of the samples were observed with 

TEM (JEM 2010, JEOL, Japan) operated at 200 kV, and HRTEM (JEM-2100F, JEOL, 

Japan) operated at 200 kV.  

 

3.3.10 Fourier transform infrared (FTIR) spectroscopy 

FTIR spectroscopy was used to determine functional groups on carbon structures. 

FTIR spectroscopy records the interaction of infrared radiation with sample measuring 

the frequencies at which the sample absorbs the radiation and the intensities of the 
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absorptions. Chemical functional groups are known to absorb light at specific 

frequencies. Thus the chemical structure can be determined from the frequencies 

records.  

In this these work, FTIR spectra were collected on an IR Prestige-21 (Shimadze, 

Japan) with a resolution of 4cm-1 in the wavelength range of 400-4000cm-1. A powder 

sample was mixed with potassium bromide, KBr in a weight of 1:99, and then pellets 

were formed using a Pike Specac. 

 

3.4 Evaluation of catalytic properties 

        The evaluation of the catalytic properties of the catalysts for hydrogenation of D-

glucose was performed in a Parr batch reactor (Parr 4560) (Figure 3.5). About 0.05 g 

of a solid catalyst and 30 mL of 40 wt% D-glucose solution in water were placed in the 

reactor. Subsequently, the reactor was purged with highly pure H2 (>99.9995%, 

Singapore Oxygen Air Liquide Pte. Ltd.) three times. The reaction was conducted at 

100 oC with a total H2 pressure of 8 MPa.  The stirring rate was 1000 rpm, which had 

been confirmed to be sufficient to eliminate the effect of mass transfer resistance 

across liquid-solid film on the overall reaction rate. After 3 h, the reactor was cooled to 

room temperature in an ice-water bath and the pressure in the reactor was released. The 

reactant and product were analyzed using an isocratic high-performance liquid 

chromatograph (Agilent 1100 series HPLC) system with an Agilent 1100 quaternary 

pump, Agilent 1100 refractive index detector, and Aminex HPX-87H column (300 mm 

× 7.8 mm). The concentration of D-glucose was quantitatively determined based on the 

standard calibration curve obtained prior to every analysis using an eluent of 5 mM 

H2SO4 at a flow rate of 0.05 mL/min under isobaric conditions. The catalytic data 

showed that D-sorbitol was the only product in the presence of the Ru-C catalysts used 
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in this project. Therefore, the catalytic activity was calculated on the basis of the mole 

of D-sorbitol produced per mole of Ru per second after 3 h of reaction.  

 

Figure 3.5 Photo of Par batch reactor (Parr4560).  

    The Ru leaching of the catalysts experiment was carried out as follows: around 

0.05g of catalyst placed in 30 mL of water was ultrasonication for 2 h, and after 

filtration of the suspension solution, the Ru concentration was determined using an 

ICP-MS. 
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CHAPTER 4  

Ru nanoparticles embedded in templated porous carbon and 

there catalytic performance in D-glucose hydrogenation 

 

4.1 Introduction  

As mentioned before Ru supported catalysts suffer from rapid deactivation, partially 

due to sintering and migration of the Ru nanoparticles. The supports were also 

responsible for the deactivation. For example, Arena (1992) found that the increased 

levels of alumina crystallinity contributed to catalyst deactivation. Maris et al. (2006) 

found that the mechanism of particle growth involves migration of Ru species during 

the hydrolysis of the silica surface. Thus, the choice of catalyst support and the 

preparation method are crucial in the hydrogenation of D-glucose. Because of the inert 

nature of carbon, Ru catalysts supported on carbon appear to be promising catalyst for 

D-glucose hydrogenation. In this study, we examined the catalytic properties of the Ru 

nanoparticles embedded in templated porous carbon in D-glucose hydrogenation and 

compared the catalytic activity with that of Ru catalysts supported on carbon, silica, 

and aluminosilicates prepared using conventional method, and the commercial Ni and 

Ru catalysts. In addition, the effect of the particle size and pore structure on the 

glucose hydrogenation were investigated. The synthesis process can be found in 

section 3.2.1.  

 

4.2 Characterization of Ru nanoparticles catalysts  

    FESEM Observation. The morphologies and microstructures of the catalysts 

were studied by means of the field-emission electron microscope (FESEM) and 
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transmission electron microscopy (TEM). The FESEM image of RuC(HY) (Figure 

4.1b) showed rhombic, cubic, hexagonal and triangle crystal morphologies, similar to 

that of its parent template zeolite HY (Figure 4.1a), suggesting a faithful morphology 

replication. Compared with that of the parent template, the particle size (< 1μm) of the 

obtained RuC(HY) samples were slightly smaller. Both the template silica SBA-15 

(Figure 4.1c) and the catalyst Ru6C3 (Figure 4.1d) consisted of well-ordered 

hexagonally arrayed bundles length up to dozens of micrometers.  

 

 
  Figure 4.1 FESEM images of (a) hard templates zeolite HY, (b) catalysts RuC(HY), 

(c) SBA-15, (d) Ru6C3. 
 

    TEM Observation. Figure 4.2 showed TEM images of RuC(HY), Ru6C3, Ru/C-

HY-H, and Ru/C-SBA15-H. The dark dots on the grey carbon background were due to 

the Ru nanoparticles. 
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Figure 4.2 TEM images of catalysts (a, b) RuC(HY), (c,d) Ru6C3, (e) Ru/C-HY-H, (f) 
Ru/C-SBA15-H. 

 
    TEM images of RuC(HY) (Figure 4.2a) and Ru6C3 (Figure 4.2c) showed that 

uniform Ru nanoparticles highly dispersed in the carbon matrix. It can be seen from 

the high-magnification TEM image of RuC(HY) (Figure 4.2b) that using zeolite HY as 
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template, Ru particles were around 1-2 nm which was comparable to that of pore 

channel or cage of HY (1-2 nm). While using SBA-15 as template, Ru nanoparticles in 

Ru6C3 were around 7-8 nm, corresponding to the pore channel size of SBA-15 (7-8 

nm). TEM image of Ru6C3 (Figure 4.2d) revealed that most of the Ru particles were 

studded inside the composite nanorods and did not block the openings of the 

mesopores. Thus, Ru particle size could be controlled by the template pores. The 

formation of several big Ru particles on RuC(HY) (Figure 4.2b, highlight by arrow) 

could be ascribed to the fact that they were not subjected to the restriction of template 

pore channels before CVD process. For comparison, TEM images of Ru/C-HY-H, 

Ru/C-SBA15-H (Figure 4.2e, 4.2f) showed randomly dispersed irregular Ru cluster, 

and most Ru nanoparticles were supported on the exterior surface of carbon rather than 

on the walls of the pores.  

    XRD Analysis. The structures of catalysts were further characterized by XRD, and 

the recorded XRD patterns were shown in Figure 4.3. The peaks at 38.3, 42.2, 44.0, 

58.3, 69.5, and 78.4 degree two theta observed on catalysts RuC(HY) and Ru6C3 can 

be assigned to (100), (002), (101), (102), (110), and (103) diffraction planes of bulk 

hexagonal Ru metal. No diffraction peaks due to ruthenium oxides can be seen on the 

two samples, suggesting a complete reduction of ruthenium oxide species to Ru by 

carbon species and/or hydrogen gas released from benzene dehydrogenation during the 

CVD process (Sun et al., 2005; Villani et al., 2006). The relatively sharp peaks in XRD 

patterns could be ascribed to the few large Ru particles formed n the external surface 

of the template. In contrast, no peaks associated with Ru metal are seen in the XRD 

patterns of Ru/C-HY-H and Ru/C-SBA15-H, probably due to the small Ru particle size 

(see Figure 4.3c and d). These two catalysts were prepared using the conventional 

impregnation method followed by hydrogen reduction with template microporous 
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carbon C(HY) and template mesoporous carbon C(SBA-15) as the supports. It should 

be noted that the hydrogen reduction for these two catalysts can not carried out at 900 

oC due to the methanation or gasification of carbon at high temperatures catalyzed by 

Ru (Koopman et al., 1979).  
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Figure 4.3 XRD patterns of (a) RuC(HY), (b) Ru6C3, (c) Ru/C-HY-H, (d) Ru/C-
SBA15-H, and (e) 5RuC. 

 

Nitrogen Adsorption. The pore structure of the catalyst plays an important role in 

the transport of the reactant and product. The N2 adsorption-desorption isotherms of all 

the samples were shown in Figure 4.4, and the pore structure parameters of all samples 

were summarized in Table 4.1. The nitrogen sorption isotherms of RuC(HY), Ru/C-

HY-H, Ru/HY-H, and 5RuC (see Figure 4.4a, c, e, g) exhibited very high adsorption 
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below P/P0=0.1, which was ascribed to micropore filling. This suggests that a large 

proportion of the pore channels in the catalysts are micropores. The isotherms of 

RuC(HY), Ru/C-HY-H (see Figure 4.4a and c) also exhibited some nitrogen uptake at 

P/P0>0.1, which may be attributed to adsorption into larger pores arising from the 

shrinkage of carbon during carbonization and/or incomplete filling the voids of the 

zeolite pores. Ru6C3, Ru/C-SBA15-H, and Ru/SBA15-H (Figure 4.4b, d, f) showed a 

type IV isotherm, indicating they are mesoporous materials. The catalyst Ru/SBA15-H 

displayed an H1 hysteresis loop, indicating cylindrical pore geometry with the average 

pore size around 7.2 nm. The isotherms of both Ru6C3 and Ru/C-SBA15-H exhibited 

an H2 hysteresis loop, indicating an ink-bottle-like pore structure with the average pore 

size of about 3.2 nm. The isotherm of Ni65 (Figure 4.4h) also exhibited hysteresis loop 

in mesopore range, indicating mesoporous material with the average pore size about 

4.7 nm.  

Table 4.1. Physicochemical properties of Ru catalysts. 
 

Sample Metal content 
(wt %) 

Surface area 
(m2/g) 

Pore volume 
(cm3/g) 

Average pore 
diameter (nm) 

RuC(HY) 6.1 951 1.14 1.9, 3.7 

Ru6C3 6.3 834 1.10 3.1 

Ru/C-HY-H 6.1 1234 1.41 1.9 

Ru/C-SBA15-H 5.9 389 0.56 3.2 

Ru/HY-H 5.4 626 0.46 1.1 

Ru/SBA15-H 5.7 616 0.90 2.1, 7.2 

Ru/C 5 690 0.48 1.4 

Ni65 65 129 0.30 4.7 
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Figure 4.4 N2 adsorption-desorption isotherms and pore size distribution curves (inset) of catalysts (a) RuC(HY), (b) Ru6C3, (c) Ru/C-HY-H, (d) 
Ru/C-SBA15-H, (e) Ru/HY-H, (f) Ru/SBA15-H, (g)Ru/C, (h) Ni65. 



                 Chapter 4. Ru nanoparticles embedded in templated porous carbon  

                                                                                                                                       84 

    TGA Analysis. The thermogravimetric behaviors of catalysts RuC(HY) and 

Ru6C3 in air were shown in Figure 4.5. The TGA curves showed that the carbons were 

completely burnt off in air when temperature was raised to about 700 oC. The 

unchanged residual mass can be considered to be the mass of RuO2. Since the 

templates (HY and SBA-15) can be completely removed by the aqueous HF solution 

(20%), the Ru content in RuC(HY) and Ru6C3 can be back calculated from residue 

weight (RuO2) above 700 oC as Eq. (3.1). An analysis of EDX spectra showed that the 

Ru contents were about 6wt% in RuC(HY), 6wt% in Ru6C3, consistent with that of 

TGA data that the Ru contents in catalysts RuC(HY) and Ru6C3 were estimated to be 

about 6.1wt% and 6.3wt%, respectively. 

 

Figure 4.5 Weight loss curve of catalysts (a) RuC(HY) and (b) Ru6C3. 
 

4.3 Catalytic properties 

 
4.3.1 The catalytic activity of the catalysts 

The catalytic properties of the catalysts prepared in this work and the two 

commercial catalysts in liquid-phase D-glucose hydrogenation were showed in Figure 

4.6. All Ru catalysts exhibited a catalytic activity at lease 20 times higher than that of 

the commercial Ni catalyst, showing that metallic Ru is catalytically more active than 
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Ni in liquid-phase D-glucose hydrogenation (Hoffer et al., 2003).  Among the Ru 

catalysts, the most effective in terms of activity were the sandwiched Ru-C catalyst 

and the commercial catalyst. In addition, HPLC analysis data showed that D-sorbitol 

was the only product obtained when Ru6C3 and RuC(HY) were used as the catalysts, 

demonstrating 100% selectivity to D-sorbitol.  
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Figure 4.6 Catalytic activities of the catalysts. 
 

    Several factors could account for the observed high catalytic activity and selectivity 

for the Ru6C3 catalyst prepared using the thermal reduction method, such as the 

unblocked pores of the catalyst, the graphitic nature of the carbon, and the unique 

contact between the Ru nanoparticles and carbon support.      

First, the thermal reduction method plays a critical role in enhancing the catalytic 

activity. During the CVD process, Ru particles were embedded in graphitic carbon 

matrix, enhancing the Ru-C contact. This contact may stimulate the hybridization of 

the pz orbital of graphene (π-bonded states) and the d orbital of Ru, resulting in 
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electron transfer from Ru to the graphene of the carbon substrate. As a result, the Ru 

metal particles were less easily oxidized by oxygen than the nanoparticles lying on a 

planar surface (Pan et al., 2007).  Such a unique contact between Ru nanoparticles and 

carbon support may also favor hydrogen spillover (Wang and Yang, 2008).  It is well 

known that hydrogen spillover exerts a great influence on the catalytic activity of many 

heterogeneous catalysts in hydrogenation reactions (Conner and Falconer, 1995). In 

the present case, hydrogen can adsorb dissociatively on the exposed Ru surface to form 

atomic H species, followed by spillover throughout the carbon support. The spillover 

hydrogen from Ru can make carbon active for hydrogenation of D-glucose, resulting in 

the observed high catalytic activity. The lower catalytic activity of Ru/C-HY-H, Ru/C-

SBA15-H, Ru/HY-H, and Ru/SBA15-H may also be due to the presence of residual 

chlorine species. EDX analysis of the four samples proved the existence of the chlorine 

species. When using a Ru chlorine salt as a catalyst precursor, the residual chlorine 

species could block and/or poison the active Ru surface to some degree. Removal of 

such species during low temperature hydrogen reduction seems difficult (Wu et al., 

1992). In contrast, the thermal reduction method has no temperature limitation, which 

can remove the chlorine species at all. 

In addition, the pore structures of catalyst in the transport of the reactant and product 

play an important role. The lower catalytic activity of Ru nanoparticles supported on 

the microporous carbon (catalyst RuC(HY)) than that of Ru nanoparticles supported on 

the mesoporous materials (catalyst Ru6C3) may be due to the effects of steric 

hindrance imposed by the molecular sizes of the reactants relative to the pore sizes of 

thermal-reduced Ru catalysts on the diffusion and accessibility of the reactants to the 

Ru domains confined inside the pores (Kusserow et al., 2003).  
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4.3.2 Effect of metal loading and CVD time on catalytic activity 

To maximize of the catalytic activity of the Ru catalysts, the effect of metal loading 

and CVD time were investigated. It can be observed from Figure 4.7 that the mean 

catalytic activity increases with the increment of Ru loading up to 8wt%, and then 

slightly decreased with further addition of Ru. Prolong the CVD process the catalytic 

activity decreased, two hours is the best time.  

 
Figure 4.7 Catalytic activities of RuC catalysts prepared under different experimental 

conditions: (a) different metal loading, (b) different CVD time. 
 

XRD patterns in Figure 4.8 showed that with the increasing of Ru loading, the peaks 

at 38.3, 42.2, 44.0, 58.3, 69.5, and 78.4 degree two theta became narrower, these peaks 

assigned to the (100), (002), (101), (102), (110), and (103) diffraction planes of bulk 

hexagonal Ru metal. The narrower peak means the larger the crystallite size of Ru, 

therefore increasing the Ru loading resulted in increments of Ru particle size. This can 

be further confirmed by the TEM image depicted in Figure 4.9. Big particles with sizes 

of over 10 nm were also seen on catalyst Ru12C3. Since the SBA-15 silica template 

limits the particle size in the range of 7-8 nm, it is possible that more big nanoparticles 

clusters formed on the external surface of the carbon when the Ru loading increased up 

to 12wt%. This may be decreasing the Ru surface interaction with the support and 
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decreasing the catalytic activity. Therefore the good dispersion of the Ru nanoparticles 

was obtained and was maintained up to 8 wt%.   
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Figure 4.8 XRD patterns of (a) Ru12C3, (b) Ru8C3, and (c) Ru6C3. 

 

 

Figure 4.9 TEM image of Ru12C3. 
All the RuC composites which were templated from silica SBA-15 displayed similar 

nitrogen isotherms and pore size distribution, indicating that incorporation Ru 

nanoparticles inside the carbon matrix did not destruct the structure of the carbon 
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support. Table 4.2 summarized the pore parameter of these samples. The BET surface 

area and pore volume increased with increasing Ru content, implied that Ru could 

facilitate the carbon deposition. While the BET surface area and pore volume 

decreased with increasing the CVD time, which could be attributed to the mass 

increase in carbon deposited with increasing the CVD time. The deposition of 

pyrolytic carbon took place primarily in the mesopores of the SBA-15 rather than on 

the external surface. The carbon deposition in the pores ceased when the pore size 

became smaller than the kinetic size of benzene (0.36 nm). With prolonged CVD 

times, carbon deposition occurred on the external surface of the template forming a 

layer of dense carbon, decreased the catalytic activity. Thus precise control over CVD 

time is important in this work.  

 

Table 4.2. Physicochemical properties of Ru catalysts prepared under different 
experimental conditions. 

 
Sample Metal content 

(wt %) 
Surface area 

(m2/g) 
Pore volume 

(cm3/g) 
Average pore 
diameter (nm) 

Ru6C3 6.3 834 1.10 3.1 

Ru8C3 8.3 1004 1.15 3.1 

Ru12C3 12.3 1077 1.18 3.1 

Ru8C2 8.5 1116 1.26 3.1 

Ru8C4 4.3 404 0.56 3.1 

 

 

 

4.3.3 Stability of catalyst Ru8C2  

The stability of catalyst performance is of extreme importance in industrial 

hydrogenations. An industrial catalyst must be stable against sintering and poisoning. 
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After the first reaction run, catalyst Ru8C2 was washed with deionized water, dried at 

120 oC in air, and reused without further treatment. As can be seen in Figure 4.7, little 

loss in catalytic activity occurred in the fifth run. In addition, long-term storage (1 year) 

under ambient conditions did not lead to obvious deterioration in catalytic performance. 

Neither aggregation of Ru nanoparticles nor loss in Ru content after five runs was 

observed. The TEM images of Ru8C2 before and after five runs were shown in Figure 

4.10. It can be seen that most of the Ru nanoparticles are still present in the form of 

crystallites with diameters less than 8 nm. EDX analysis confirmed that the Ru content 

of Ru8C2 did not change after five runs, indicating negligible leaching of Ru.  

 
Figure 4.10 TEM images of (a) fresh Ru8C2 and (b) after five-reaction runs. 

4.4 Summary 

This study reports that Ru nanoparticles sandwiched in the pore walls of templated 

carbons exhibit high catalytic activity and stability in the hydrogenation of D-glucose. 

The following points are highlighted: 
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1. Comparison with the Ni-based catalyst shows that the mean activity of Ru-C 

nanostructured catalysts (Ru6C(HY)3, Ru6C3) were approximately 20 times 

higher than those of Ni catalysts. In addition to their higher activity, the Ru-C 

nanostructured catalysts (Ru6C(HY)3, Ru6C3) had the crucial advantage that 

they are stable against leaching and poisoning.  

2. Compared with other Ru-C catalysts, Ru-C nanostructured catalysts exhibit 

higher catalytic activity because of the enhanced contact between the Ru 

nanoparticles and the carbon matrix, together with the unblocked pores of the 

catalysts. The Ru-C nanostructured catalysts created a highly intimate contact 

between the Ru nanoparticles and the carbon support because of the carbon 

deposition on the Ru surface via CVD. Such intimate contact may favor the 

hydrogen spillover, which greatly enhanced the transfer rate of H species. 

Therefore, more hydrogen could be adsorbed on the Ru-C nanostructured 

catalysts, which in turn enhanced its hydrogenation activity.  

3. The pore structure of the Ru-C nanostructured catalysts had a significant 

influence on the catalytic results. In Ru-C nanostructured catalysts with zeolite 

HY as template, the transport of D-glucose was significantly hindered.  
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CHAPTER 5 

Bimetallic Ru-Cu nanoparticles sandwiched in porous 

carbon 

 
5.1 Introduction 

Bimetallic catalysts have been shown to exhibit improved catalytic properties for 

many chemical reactions than a single-metal one (Guczi, 2005). The improvement is 

considered to be primarily due to changes in their geometric and electronic structures 

introduced by the second element, which can exist as an adatom (Santori et al., 2002), 

in an alloy state (Liberkov and Touroude, 2002), in an ionic state (Marchi et al., 2003), 

and as partially oxidized form (Reyes et al., 2002). Among all bimetallic catalysts 

reported so far, Ru-Cu catalysts supported on high-surface-area supports, including 

silica (Rouco et al., 1983; Smale and King, 1989; Smale and King, 1990), zeolite 

(Alvarez-Rodriguez et al., 2006; Alvarez-Rodriguez et al., 2008) , and carbon 

(Asedegbega-Nieto et al., 2006; Asedegbega-Nieto et al., 2006) , have received the 

great interest, in spite of the fact that these two metals do not form a solid solution in 

bulk. Study (Sinfelt, 1973) showed that there are strong interactions at the interface of 

Ru and Cu particles, the Cu atoms form an adsorbed layer on the Ru kernel. A 

structural model for describing the bimetallic catalyst was subsequently proposed 

(Sinfelt et al., 1980; Smale and King, 1990; Chen and Goodwin, 1996). According to 

the model (Figure 5.1), in a bimetallic Ru-Cu catalyst, Cu preferentially populates the 

edge and corner sites of Ru crystallites. When these sites were completely filled with 

Cu, low index planes of Ru start to be covered with Cu. In addition to the geometric 

(or ensemble) effect, the electronic (or ligand) effect is believed to be another 

important factor determining the catalytic behaviors of the supported bimetallic Ru-Cu 
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catalysts (Rouco et al., 1983; Bond and Yide, 1984; Shastri et al., 1986; 

Schoenmakerstolk et al., 1987). For hydrogenation reactions, another important effect 

that should be considered is the hydrogen spillover from Ru to Cu (King et al., 1986). 

The interactions between the two metals and how the interactions determine the 

physicochemical and catalytic properties of the bimetallic catalyst are influenced by 

the metal-support interactions (Guczi, 2005). 

 

Figure 5.1 Monte Carlo simulation results for Ru-Cu/SiO2 catalysts with a total metal 
dispersion of 30%; (a) 2% Cu, (b) 5% Cu, (c) 10% Cu, (d) 15% Cu, (e) 20% Cu, (f) 

30% Cu (Smale. et al., 1989) 



                    Chapter 5. Bimetallic Ru-Cu nanoparticles sandwiched in porous carbon   

                                                                                                                                     94 

    With the consideration of the bimetallic effects and the advantage of lowering the 

cost of catalyst by partially replacing Ru with Cu, the bimetallic Ru-Cu catalysts were 

prepared by using the template preparation method. The catalytic properties of the 

bimetallic catalysts were evaluated using the reaction of D-glucose hydrogenation. The 

experimental results demonstrated that the bimetallic displayed a significantly 

improved performance than both single-metal catalysts. A number of characterization 

techniques were employed to characterize the catalysts for elucidating the 

experimentally observed catalytic properties. The synthesis process can be found in 

section 3.2.2. 

 

5.2 Characterization of bimetallic Ru-Cu catalysts 

Nitrogen Adsorption.  Figure 5.2 showed the isotherms of the RuC, RuCuC and 

CuC. The pore parameters of the samples were compiled in Table 5.1. It can be seen 

that all samples showed a type IV isotherms, but with different pore geometries. RuC 

and all the bimetallic RuCuC catalysts exhibited a H2 hysteresis loop, indicating an 

ink-bottle-like pore structure. The average pore sizes of all the samples were estimated 

to be about 3.3 nm. Sample CuC, however, displayed an H3 hysteresis loop, indicating 

a slitlike pore structure. The average pore size was about 3.6 nm (see Figure 5.2f). The 

lower surface area and pore volume of sample CuC suggests that the Cu may have 

largely hindered the deposition of pyrolytic carbon during the CVD process, leading to 

the formation of a poor porous structure. For all bimetallic catalysts and catalyst RuC, 

their surface areas, pore volumes, and pore sizes are comparable. 
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Figure 5.2 N2 adsorption-desorption isotherms and PSD (the inset) of catalysts: (a) 
RuC, (b) RuCu0.3C, (c)RuCu0.5C, (d) RuCu1.0C, (e) RuCu1.5C, and (f) CuC. 
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Table 5.1 Physicochemical properties of the Ru-Cu catalysts. 
 

Catalyst Ru 

content 

(wt%) 

Cu 

content 

(wt%) 

Cu/Ru 

(atom/atom)

A (m2/g) V (cm3/g) d (nm) 

RuC 7.3 0 0 834 0.78 3.3 

RuCu0.3C 5.6 1.1 0.3 712 0.83 3.3 

RuCu0.5C 5.6 1.8 0.5 897 0.88 3.3 

RuCu1.0C 5.4 3.4 1.0 864 0.88 3.3 

RuCu1.5C 5.9 5.6 1.5 682 0.76 3.3 

CuC 0 7.2 - 246 0.40 3.6 

5RuC 5 - - 690 0.48 3.7 

Ni65 65a - - 129 0.30 4.7 

a Ni content is 65wt%.  

XRD Analysis. Figure 5.3 compared the XRD patterns of the bimetallic catalysts 

with that of single-metal catalysts RuC and CuC. The broad peak centered at 25 degree 

two theta corresponded to the interlayer distance of 0.36 nm, which may be indexed to 

the (002) diffraction of the graphite structure (Kim et al., 2003; Xia and Mokaya, 

2004). These catalysts contained stacked grapheme sheets as the result of CVD 

treatment at 900 oC. For sample RuC, the peaks at 38.3, 42.2, 44.0, 58.3, 69.4, and 78.4 

degree two theta were respectively due to the diffractions of the (100), (002), (101), 

(102), (110), and (103) planes of hexagonal close-packed (hcp) Ru metal (ICDD-

JCPDS card No. 06-0663). For sample CuC, the peak at 43.3 degree two theta can be 

assigned to the reflection of (111) plane of metallic Cu (ICDD-JCPDS card No. 04-

0836). The broad reflection peak implied small size of Cu particles. Compared with the 

XRD pattern of RuC catalysts, the peaks number and the location of the RuCuC 
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catalysts were not changed. XRD analysis provided clear evidence that the 

incorporation of Cu does not alter RuC structure. Previous study on silica supported 

Ru-Cu bimetallic catalysts has shown that the Cu atoms tend to cover the surface of Ru 

particles (Strohl and King, 1989; Smale and King, 1990; Sprock et al., 1992; Lenarda 

et al., 1996). On the basis of this description we envisage that the RuCuC catalysts 

were made up of a hcp core of Ru covered by Cu atoms, retaining a coherent hcp 

structure.    
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Figure 5.3 XRD patterns of (a) RuC, (b) RuCu0.3C, (c) RuCu0.5C, (d) RuCu1.0C, (e) 
RuCu1.5C, (f) CuC. 
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    TEM Observation. Figure 5.4 shows the TEM images of samples RuC, CuC, and 

RuCu0.5C. The dark dots seen on the grey carbon background were due to the metal 

nanoparticles.  

 
 

Figure 5.4 TEM images of catalysts (a) RuC, (b) CuC, (c) RuCu0.5C, and (d) HRTEM 
image of RuCu0.5C showing the stacking of graphite sheets [d(002)=0.36 nm].   

 

    It can be seen from Figures 5.4a and 4c that both Ru and RuCu nanoparticles were 

uniformly dispersed within the carbon framework, and most of Ru and RuCu 

nanoparticles were sandwiched in the carbon nanorods. The carbon nanorods were 

derived from the pore channels of SBA-15 template (Jun et al., 2000). The diameters 

of these carbon nanorods were in the range of 5-7 nm, consistent with the pore 

diameter of the template. It can be seen from Figure 5.4c that the some channels in 

CuC sample collapsed, further demonstrated that Cu may have largely hindered the 

(a) 

(c) 
(d) 

(b) 
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carbon deposition during the CVD process. Figure 5.4d showed a spherical RuCu 

nanoparticle with a diameter of about 5 nm embedded in the carbon substrate. The 

lattice spacing in the RuCu particle was 0.21 nm corresponding to the Ru (101) planes 

(Hansen et al., 2001). This image also indicated a stacking of the discoid graphene 

sheets with a spacing of about 0.36 nm around the RuCu nanoparticles, which was in 

accordance to the XRD results. The chemical composition of the RuCu0.5C was 

examined by EDX and elemental mapping analysis (Figure 5.5). The EDX spectrum 

testified the existing of the Ru and Cu element. The corresponding elemental maps 

revealed that the Ru element is relatively uniform distributed in carbon framework. 

 
 

Figure 5.5 (a) the SEM image of the RuCu0.5C sample, and elemental mapping of C 
(b), Ru (c) and Cu (d), respectively, correspond to (a). 
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XAS Analysis. Figures 5.6a and 5.6b showed the Ru LIII-edge and Cu K-edge 

XANES spectra of the bimetallic catalysts together with reference samples. It can be 

seen that the spectra of catalyst RuC and RuCu0.5C were similar (Figure 5.6a), 

suggesting a similar coordination of Ru in both catalysts. The Cu K-edge spectra of 

RuCuC catalysts (Figure 5.6b) resembled that of CuO, suggesting that most of the Cu 

was present in an average oxidation state close to Cu (II).  

The EXAFS data of Cu K-edge of RuCuC catalysts at room temperature and the 

associated Fourier transforms, which were taken over the range of wave vectors 

2.2≤K≤11.2 Å-1, were shown in Figures 5.7a and 5.7b. The interatomic distances 

measured for Cu-O and Cu-Cu in reference samples were highlighted by line A and B, 

which had a phase shift of about 0.4 Å (RuCu-O=1.87 Å, RCu-Cu=2.55 Å). The Fourier 

transforms of RuCuC catalysts displayed a broad shoulder in the range of 2-2.8 Å 

(after phase correction), which implied multiple interatomic absorber-scatterer 

interactions besides Cu-O. This is likely to be caused by the presence of the neighbors, 

which are Cu and Ru atoms around the Cu atom (Sinfelt et al., 1980; Shephard et al., 

1998; Bromley et al., 2001; Highfield et al., 2009). Based on the above discussions, 

there are bimetallic entities in the RuCuC catalysts. In addition, the multiple 

interatomic interactions between Cu with neighboring elements (O, Cu and Ru) imply 

that the Cu presented as a layer on the surface of Ru. The outerlayers of the Cu clusters 

were oxidized, leaving the interior Cu atoms coordinated to Ru as well as Cu atoms. 

Furthermore, the incorporation of Cu did not change the Ru crystal structure, which is 

in accordance with the XRD results.    
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Figure 5.6 (a) Ru LIII-edge XANES spectra of RuC and RuCu0.5C catalysts, (b) Cu K-

edge XANES spectra of RuCuC catalysts, 
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Figure 5.7 (a) Cu K-edge EXAFS data, (b) k2-Weighted Fourier-transform (not phase-
corrected) for RuCuC catalysts at the Cu K-edge (A: Cu-O, B: Cu-Cu from Cu metal). 
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H2 and CO chemisorption. Figure 5.8 and 5.9 showed the H2 and CO pulse 

titration peaks of the samples, respectively. The chemisorption results were 

summarized in Table 5.2.  

 
Figure 5.8 H2 pulse titration peaks of (a) RuC, (b) RuCu0.3C, (c) RuCu0.5C, (d) 

RuCu1.0C, (e) RuCu1.5C, (f) CuC. 
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Figure 5.9 CO pulse titration peaks of (a) RuC, (b) RuCu0.3C, (c) RuCu0.5C, (d) 
RuCu1.0C, (e) RuCu1.5C, (f) CuC. 
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Table 5.2 The chemisorption results of the catalysts. 

 
Catalysts H2/Ru (μmole/g) CO/Ru (μmole/g) H/CO 

RuC 12.73 29.07 0.88 

RuCu0.3C 14.77 25.75 1.15 

RuCu0.5C 18.62 20.18 1.85 

RuCu1.0C 19.11 18.66 2.04 

RuCu1.5C 6.55 17.90 0.37 

CuC 0.82 0.18 - 

 
The H2 and CO chemisorption results, expressed as H2/Ru and CO/Ru, means the 

total mole adsorbed H2/CO per gram Ru. H2/Ru is hydrogen monolayer uptake volume 
per gram of ruthenium, STP; CO/Ru is carbon monoxide monolayer uptake volume per 
gram of ruthenium, STP. * the total mole adsorbed per gram Cu.  

As can be seen, the CuC sample adsorbed neither H2 nor CO. Hence, it can be 

assumed that under the experimental conditions the chemisorption of H2 and CO for 

the bimetallic samples may be totally attributed to Ru or bimetallic Ru-Cu. The CO 

chemisorption data showed that the CO/Ru ratio falls from 29.07 to 17.90 as the Cu/Ru 

atom ratio increased from 0 to 1.5, indicating that a decrease of the exposed Ru surface. 

One possible reason is the growth of the Ru particles. However, the sizes of the metal 

nanoparticles in all the samples were nearly the same. Thus, the effect of growth of Ru 

particles can be excluded. Alternatively, the surface of Ru particles may be partially 

covered by Cu species as it was previously observed (Bond and Yide, 1984; Liu et al., 

1991; Alvarez-Rodriguez et al., 2006). This confirmed the assumption that the RuCuC 

samples consists a Ru core covered by Cu atoms.  

Opposite trends were observed for the H2 chemisorption except for catalyst 

RuCu1.5C. This observation is agreed with hydrogen spillover from Ru to Cu for Ru-

Cu supported catalysts (Lai and Vickerman, 1984; Goodman and Peden, 1985; King et 
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al., 1986; Hong et al., 1987; Hong et al., 1987; Wu et al., 1990; Narayan and King, 

1998). For the close contact of Ru and Cu, hydrogen disssociatively adsorbed on Ru 

surface and then migrated to the Cu surface. For the RuCu1.5C sample with higher Cu 

loadings, the addition of Cu blocked the most Ru defect-like sites reducing the amount 

of the weakly bound hydrogen and subsequent transfer (Bhatia et al., 1992). 

 
5.3 Catalytic properties 

The catalytic activities of the catalysts in the hydrogenation of D-glucose were 

evaluated in the liquid phase at 100 oC and hydrogen pressure 8MPa. The catalytic 

activities of the catalysts together with two commercial catalysts were summarized in 

Figure 5.10. The single-metal Ru catalyst prepared in this work using the template 

method displayed a much higher catalytic activity than the commercial catalysts while 

the single-metal Cu catalyst showed a negligible catalytic activity. However, most 

bimetallic catalysts showed higher catalytic activities than the single-metal catalyst 

RuC and the commercial catalysts. When the molar ratio of Cu/Ru was 0.5, RuCu0.5C 

exhibited the best catalytic performance with a catalytic activity of about 0.25 

mol/mol·s. These catalytic results indicate that the bimetallic Ru-Cu catalysts indeed 

catalytically performed better than the single-metal catalysts and the commercial 

catalysts.   

Since the particle size and the pore structure of the single-metal Ru catalysts and the 

bimetallic RuCuC catalysts were similar due to the template method. The much higher 

activity of bimetallic RuCuC catalysts compared to the single-metal Ru catalyst may 

be attributed entirely to the presence of Cu. The Cu single sites must be in close 

contact with the Ru particles to exert a beneficial effect on the hydrogenation activity 

since no activity improved is observed for the mixture of RuC and CuC catalysts. The 

results may be considered as another evidence for the formation of Ru-Cu bimetallic 
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nanoparticles. At lower Cu/Ru ratio (<1.0), the catalytic activity improved with the 

increase of Cu/Ru ratio. Additional activity sites for glucose hydrogenation may have 

been created by Cu addition due to the spillover of H from Ru to Cu, permitting 

reaction on the Cu. At higher Cu/Ru ratio (>1.0), the complete preferential population 

of defect-like edge and corner of Ru sites by Cu would subsequently limit the 

dissociation of hydrogen on the metal surface (King et al., 1986; Narayan et al., 1998; 

Asedegbega-Nieto et al., 2006; He et al., 2007), which is necessary for glucose 

hydrogenation. 
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Figure 5.10 Catalytic activities of the catalysts. 
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5.4 Summary 

    In Summary, a novel nanostructured bimetallic catalyst with Ru-Cu nanoparticles 

sandwiched in the pore walls of mesoporous carbon were synthesized via a template 

route. For the unique property of template method, the addition of Cu did no affect the 

particle size or the dispersion of Ru. Based on the XRD, H2 and CO chemisorptions, 

and X-ray absorption results, we hypothesize that the RuCuC samples have an hcp Ru 

core, covered by Cu atoms. Overall the bimetallic catalyst showed a higher catalytic 

activity than single-metal catalysts (RuC and CuC) in hydrogenation of D-glucose. At 

low Cu/Ru ratios (<1.0), additional activity sites for D-glucose hydrogenation may 

have been created by Cu addition. Cu could adsorbed the ionized glucose species by 

coordination of O-1, O-5, and O-6, which was then polarized, and thus more easily 

attacked by the spillover hydrogen atom from Ru to Cu. At high Cu/Ru ratios (>1.0), 

the presence of Cu decreased the catalytic activity. This effect may be due to the 

complete preferential population of defect-like edge and corner of Ru sites by Cu, 

subsequently limiting the dissociation of hydrogen on the metal surface, which is 

necessary for D-glucose hydrogenation.  
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CHAPTER 6 

Ruthenium nanoparticles embedded in mesoporous carbon 

fibers 

 
6.1 Introduction 

Mesoporous carbon materials have attracted consideration attention because of their 

ordered pore structure, high surface areas, large pore volumes, and chemical inertness. 

One-dimensional (1-D) nanostructures such as carbon nanotubes (CNTs) and 

nanofibers (CNFs) have been used as attractive catalyst supports, especially for fluid 

phase reactions (Serp et al., 2003; Lu et al., 2009), for such 1-D morphology facilitates 

the diffusion of the reactants and products. However, these CNTs and CNFs have a 

low porosity, random pore structure and small surface area, strictly limiting their 

application in catalysis. To combine the advantage of these two types of materials 

together, the preparation of 1-D mesoporous carbon materials is a good alternative. 

Recently, a number of research groups have reported the synthesis of the porous 

carbon nanofibers by using porous silica or organic surfactant filled inside channels of 

porous anodic alumina membrane as a dual template (Chae et al., 2006; Cott et al., 

2006; Rodriguez et al., 2006; Steinhart et al., 2007; Zheng et al., 2007; Liang et al., 

2009). Figure 6.1 schematically illustrates the synthesis procedure. Disordered 

powders of amorphous mesoporous carbon nanorods were obtained as replicas of 

solution-grown mesoporous silica nanorods serving as sacrificial templates (Yu et al., 

2002). However, these researchers focused on the synthesis and characterization of 

these 1-D porous carbon materials, the application of these materials are rarely 

reported (Cui et al., 2007).  
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Figure 6.1 Schematic illustration of the synthesis of nanoporous carbon nanotubes by 
using organic surfactant filled inside channels of porous anodic alumina membrane 

(AAO) as a dual template (Rodriguez et al., 2006): (1) infiltration of the polymer and 
carbohydrate DMF solution into the AAO templates; (2) carbonization in argon; (3) 

removal of AAO templates and formation of individual nanoporous carbon nanotubes.  
 

Recently, doping of heteroatoms into carbon materials has offered new opportunities 

for tailoring their chemical/physical properties and in turn, their catalytic performance. 

Nitrogen inclusion in different carbon structures has been reported to improve the 

catalytic performance in the liquid phase hydrogenation of cinnamaldehyde (Amadou 

et al., 2008), the gas phase hydrogenation of butyronitrile (Nieto-Márquez et al., 2010), 

the catalytic oxidation of SO2 (Raymundo-Piñero et al., 2003), the ammonia 

decomposition (Garcia-Garcia et al., 2010) and oxygen reduction and methanol 

oxidation in fuel cells (Choi et al., 2007; Kim et al., 2007; Chetty et al., 2009; Lyth et 

al., 2009; Kim et al., 2010). The improvement of the catalytic activity is usually 

ascribed to either electronic or morphological modifications of the active metal phase 

or the creation of new surface active sites.  

    In this work, mesoporous carbon microfibers and nitrogen-doped carbon microfiber 

supported Ru catalysts were prepared by using alumina microfibers as the templates 
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via chemical vapor deposition method. The catalytic properties of the catalysts were 

evaluated in the hydrogenation of D-glucose, and compared with that of Ru catalysts 

supported on carbon nanotubes, carbon fibers, alumina microfibers and activated 

charcoals. Moreover, the effect of doped nitrogen atoms on catalytic performance was 

investigated. The synthesis process can be found in section 3.2.3. 

 

6.2 Characterization of Ru nanoparticles catalysts 

Nitrogen Adsorption. Figure 6.2 showed the nitrogen isotherms of Ru/AF-H, 

RuCMF, RuCMFN, Ru/CNT-H, Ru/CF-H, and 5RuC. It can be seen that Ru/AF-H 

revealed a type-IV isotherm with an H2 hysteresis loop, indicating mesoporous 

materials with an average pore size of around 3.5 nm. The nitrogen isotherms of 

RuCMF and RuCMFN were of type IV and exhibited hysteresis loops in the mesopore 

range. The pore size distribution of RuCMF was a slightly broader than that of 

RuCMFN. The larger pores of RuCMF may arise from incomplete filling of benzene 

into the alumina template during the CVD process or merging of smaller pores into 

large ones during the alumina template etching step. The pore parameters of the 

samples were summarized in Table 6.1. The RuCMF possesses the average pore size 

of 3.7 nm, the surface area of 760 m2/g and the specific pore volume of 1.10 cm3/g, 

while the average pore size, surface area and the pore volume of RuCMFN were 3.7 

nm, 790 m2/g and 0.71 cm3/g, respectively. The surface area and pore size of RuCMF 

and RuCMFN are comparable, while the pore volume of RuCMF is higher than that of 

RuCMFN due to the existence of larger pores. The nitrogen sorption isotherms of 

Ru/CNT-H exhibited very high adsorption above P/P0=0.8, which was ascribed to 

outer surface adsorption. The inner diameter of the Ru/CNT-H was about 2~4 nm, as 

shown in the inset of Figure 6.2d. The nitrogen sorption isotherms of Ru/CF-H and 
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5RuC exhibited very high adsorption below P/P0=0.1, suggesting that a large 

proportion of the pore channels in the carbon fibers and 5RuC are micropores. 

 

Figure 6.2 N2 adsorption-desorption isotherms and PSD (the inset) of catalysts: (a) 
Ru/AF-H, (b) RuCMF, (c) RuCMFN, (d) Ru/CNT-H, (e) Ru/CF-H, (f) 5RuC. 
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Table 6.1 Physicochemical properties of the catalysts. 
 

 

XRD Analysis. Figure 6.3 compares the XRD patterns of the catalysts. For sample 

RuCMF and RuCMFN, the peaks at 38.3, 42.2, 44.0, 58.3, 69.4, and 78.4 degree two 

theta are respectively due to the diffractions of the (100), (002), (101), (102), (110), 

and (103) planes of hexagonal close-packed (hcp) Ru metal (ICDD-JCPDS card No. 

06-0663). The peak centered at 25 degree two theta corresponds to the (002) 

diffraction of the graphite structure (Kim et al., 2003). The XRD patterns recorded for 

RuCMFN do not differ significantly from those of RuCMF, except for a slightly 

broadening of the C (002) peak and a decrease in the intensity. The low intensity of the 

C (002) peak suggests a general lack of graphitic ordering in carbon framework of 

sample RuCMFN by introducing C-N bonding, which shorter than C-C bonding (Xia 

and Mokaya, 2005; Lim et al., 2009; White et al., 2009). In contrast, no similar peaks 

were observed on Ru/AF-H, probably due to the small Ru particle size or amorphous 

phase, which is further confirmed by TEM images shown in Figure 6.5e. The XRD 

patterns of Ru/CF-H and Ru/CNT-H showed a broad peak located at 44 degree two 

theta, which overlaps with C (101) and Ru (101) diffractions, indicating the presence 

of relatively large Ru nanoparticles on Ru/CF-H and Ru/CNT-H, in good agreement 

with TEM observation (Figure 6.5).  

 

Catalysts Ru content (wt%) A (m2/g) V (cm3/g) d (nm) 

RuCMF 6.4 760 1.10 3.7 

RuCMFN 6.3 790 0.71 3.7 

Ru/AF-H 5.2 354 0.29 3.5 

Ru/CNT-H 3.2 336 1.46 2.9 

Ru/CF-H 4.3 960 0.46 1.1 

5RuC 5.0 690 0.48 1.4 
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Figure 6.3 XRD patterns of (a) RuCMF, (b) RuCMFN, (c) Ru/AF-H, (d) Ru/CNT-H, 

and (e) Ru/CF-H. 
 
 

FESEM Observation. Figure 6.4 showed FESEM images of Ru/AF-H, RuCMF, 

RuCMFN, Ru/CNT-H, Ru/CF-H, and 5RuC. The template alumina fiber (AF) in 

Figure 6.4a were made of uniformly sized microfibers with the width of less than 0.5 

μm and length of about 5-10 μm. Samples RuCMF and RuCMFN templated from AF 

(Figure 6.4b, c) preserved morphology similar to that of AF, indicating they were 

replicated from the hard templates. The multi-walled carbon nanotubes were 

homogeneous with diameter about 20 nm and length up to several micrometers (Figure 

6.4d). The surface roughness was due to the platinum coating not Ru nanoparticles. 

The carbon microfiber consisted of bundles of fibers with width about 10 μm and 
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length of about dozens micrometers (Figure 6.4e). The commercial catalyst 5RuC was 

made of random sized sheets (Figure 6.4f).  

 

 
Figure 6.4 FESEM images of catalysts: (a) Ru/AF-H, (b) RuCMF, (c) RuCMFN, (d) 

Ru/CNT-H, (e) Ru/CF-H, and (f) 5RuC. 
 

 

(d) 

(f) 

(b) (a) 

(c) 

(e) 
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TEM Observation. The metallic dispersions and the average metal particle sizes of 

the Ru catalysts were determined from CO chemisorption and TEM images. The TEM 

images of RuCMF, RuCMFN, Ru/AF-H, Ru/CF-H, and Ru/CNT-H, were depicted in 

Figure 6.5. The dark dots seen on the grey carbon background were due to the Ru 

metal nanoparticles. As shown in Figure 6.5a and 6.5c, the Ru nanoparticles were 

uniformly dispersed within the carbon framework of catalysts RuCMF and RuCMFN. 

The Ru nanoparticles had a narrow size distribution that ranges from 3 to 5 nm, 

comparable to that of the pore size of porous AF. The presence of few large Ru 

particles was due to the formation of Ru particles on the external surface of the porous 

hard templates during the impregnation step, which were subsequently buried by the 

deposition carbon layers on the external surface of the hard template. The introduction 

of nitrogen into the carbon structure seemed to have almost no influence on the Ru 

phase dispersion and particle size. Figure 6.5b and 6.5d showed the TEM images of a 

single Ru nanocrystal with a diameter of around 5 nm taken from catalyst RuCMF and 

RuCMFN. Aligned crystal lattices with an average spacing of about 0.21 nm were 

corresponding to the (101) plane of Ru (Hansen et al., 2001). The TEM image of 

Ru/AF-H (Figure 6.5e) displayed the disordered wormlike mesopore structure of AF. 

However, no Ru particles could be seen on Ru/AF-H, which is in accordance to the 

XRD results. Ru nanoparticles were dispersed on the external surface of CF and CNT 

(highlighted with arrows) in Figure 6.5f and 6.5h. Moderate aggregation of Ru 

nanoparticles was also observed for Ru/CNF-H catalyst.  
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Figure 6.5 TEM images of catalysts: (a, b) RuCMF, (c, d) RuCMFN, (e) Ru/AF-H, 
(f) Ru/CF-H, (g, h) Ru/CNT-H. 
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CO Chemisorption. CO uptake was determined by titration method and dispersion 

values obtained using a stoichiometric ration Ru:CO of 1:1. CO pulse titration peaks of 

samples were shown in Figure 6.6, and the results obtained were summarized in Table 

6.2.  

 
Figure 6.6 CO pulse titration peaks of (a) RuCMF, (b) RuCMFN, (c) Ru/AF-H, (d) 

Ru/CNT-H, (e) Ru/CF-H, (f) 5RuC. 
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According to CO chemisorption uptake, the average metallic particle size of 

RuCMF and RuCMFN were around 3.5 nm, consistent with the TEM observations. 

Ru/AF-H presented the highest Ru dispersion among the catalysts. This good 

dispersion could be attributed to the presence of internal abundant pores and the 

terminal functional group of AF, which facilitated the contact between the  RuCl3 

precursor solution and the support surface resulting high Ru dispersion and loading. 

While, as-produced CNT and CF does not possess an high amount of functional groups 

on their surface and mainly surface defects can be considered as anchoring sites for 

metals. Therefore, the Ru dispersion and loading were low for these two samples.   

Table 6.2 Metallic dispersions and average particle sizes of Ru catalysts calculated 
from CO chemisorption.  

 
Catalyst RuCMF RuCMFN Ru/AF-H Ru/CNT-H Ru/CF-H 5RuC 

wt% Ru 6.4 6.3 5.2 3.2 4.3 5 

D (%) 12.9 12.8 47 11 12 18.1 

d (nm) 3.5 3.5 0.9 4.1 3.7 2.5 

 

XPS Analysis. Figure 6.7a and b showed survey scan XPS spectrum of RuCMF and 

RuCMFN. No peaks from Ru 3p were observed, implying no Ru nanoparticles on the 

external surface of catalysts. As expected, sample RuCMF obtained from benzene 

precursor did not produce any measurable nitrogen-associated signal. The surface of 

catalyst RuCMF contained carbon and small amount of oxygen. The existence of 

oxygen may arise from the replication process which involves contact with various 

oxygen containing reagents (alumina template and aqueous acid). The surface of the 

catalyst RuCMFN contained carbon, nitrogen and small amount oxygen. The nitrogen 

content determined from XPS analysis was about 7.5wt%, while the bulk nitrogen 

content (determined by EDX analysis) was around 7.0wt%.  The slightly lower value 
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of the bulk nitrogen content was due to the inclusion of Ru mass. Therefore, the N was 

almost uniformly distributed throughout the sample RuCMFN in both the external 

surface and within the bulk. Figure 6.7c and d showed the XPS spectra of sample 

RuCMF and RuCMFN for C 1s electronic state. The C 1s spectrum of RuCMF 

consisted of three components labeled C1 (284.5eV, 82.8% area), C2 (285.9eV, 11.3% 

area), and C3 (290eV, 5.9% area). Strong C1 peak indicates that carbon is mostly in the 

form of graphite (Shalagina et al., 2007). Furthermore, a small broad band C3 is 

assigned to the “shake-up” π-π* satellite, which is common feature in XPS spectra of 

graphitic carbon (Barr and Yin, 1992). The C2 peak corresponds to the amorphous 

carbon (Li et al., 2006). The C1, C2, and C3 peaks were also observed in the C 1s 

spectrum of RuCMFN. In addition, a new C* peak appeared at 287.5 eV. This peak 

corresponds to sp2 carbon atoms bonded to nitrogen atoms (Ghosh et al., 2010). After 

deconvolution of the N 1s peak of RuCMFN (Figure 6.7e), the peak could be assigned 

to the pyridinic nitrogen (398eV, 12.8% area), to quaternary nitrogen (400.6eV, 69.7% 

area), and to the adsorbed nitrogen, nitrogen oxides or to a π- π* shake-up satellite 

peak (402.5 eV, 17.5% area) (Amadou et al., 2008; Nieto-Márquez et al., 2010). Peak 

of quaternary nitrogen showed the highest proportion among the deconvoluted peaks.  
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Figure 6.7 The XPS survey spectrum of (a) RuCMF, (b) RuCMFN, the C 1s XPS 
spectrum of (c) RuCMF, (d) RuCMFN, (e) N 1s XPS spectrum of RuCMFN, and (f) 

types of nitrogen functionalities.  
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    FTIR Analysis. The surface chemical-bonding state of samples RuCMF and 

RuCMFN were also characterized by FTIR spectroscopy (Figure 6.8). Catalyst 

RuCMFN showed three major broad bands centered around 1235, 1587, and 3420 cm-1. 

The bands at 1235 cm-1 and 1587 cm-1 are assigned to aromatic C-N stretching bonds 

and aromatic ring modes, respectively, while the low intensity peaks between 3500 and 

3000 cm-1 are assigned to N-H stretches (Vinu et al., 2005; Vinu, 2008). All the results 

from our XPS and FT-IR suggest that the nitrogen was doped in the catalyst RuCMFN. 
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Figure 6.8 FTIR spectra of the RuCMF and RuCMFN. 

 

6.3 Catalytic properties 

The catalytic activities of the catalysts together with the commercial catalyst were 

summarized in Figure 6.9.  The activity of these catalysts decreased in the order 

RuCMFN>RuCMF>5RuC>Ru/AF-H>Ru/CNT-H>Ru/CF-H. Both RuCMFN and 

RuCMF catalysts showed a remarkably higher catalytic activity than the Ru catalysts 

prepared using the hydrogen reduction method and commercial catalyst. After the first 
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reaction run, catalysts RuCMF and RuCMFN were washed with deionized water, dried 

at 120 oC in air, and reused without further treatment. No lost in catalytic activity was 

observed. In addition, long-term storage (1 year) under ambient conditions did not lead 

to obvious deterioration in catalytic performance. Furthermore, the much lower Ru 

concentration of RuCMF and RuCMFN in water after 2 h ultrasonication demonstrated 

their negligible leaching compared with other Ru catalysts. Therefore, the Ru catalysts 

prepared in this work are highly stable and reusable.  

Several factors could account for the observed high catalytic activity and stability 

for the RuCMF and RuCMFN catalysts, such as 1-D morphology, the unblocked 

mesopores of the catalysts, and the unique contact between the Ru nanoparticles and 

carbon support. First, the 1-D morphology and interconnected mesoporous 

ruthenium/carbon system of RuCMF and RuCMFN allow the easy diffusion of both 

the reactants and products and highly dispersed Ru nanoparticles offer more 

catalytically active sites for the reactants. The lower catalytic activity of the 

commercial catalyst 5RuC comes from the presence of microporosity in the activated 

carbon, which may cause diffusion limitations (Kusserow et al., 2003). Secondly, 

template method created a highly intimate contact between the Ru nanoparticles and 

the carbon support because of the carbon deposition on the Ru surface via CVD. Such 

intimate contact may also favour hydrogen spillover (Wang and Yang, 2008). 

Hydrogen can adsorb disssociatively on the exposed Ru surface to form atomic H 

species, followed by spillover throughout the carbon support. The spillover hydrogen 

from Ru can make carbon active for hydrogenation of D-glucose, resulting in the 

observed high catalytic activity. The lower catalytic activities of Ru/AF-H and 

Ru/CNT-H than that of the commercial one could be attributed to the low specific 

surface area of the supports and the presence of residual chloride species. The EDX 
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analysis results confirmed the residence of chloride, and it seems difficult to remove 

the residual chloride species during low temperature hydrogen reduction (Wu et al., 

1992). The small pore size of Ru/CF-H could restrict the diffusion of reactants, 

resulting lowest catalytic activity among the catalysts.    
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Figure 6.9 Catalytic activities of the catalysts. 
 
 

Since the Ru nanoparticles size, distribution and the pore structure of the RuCMF 

and RuCMFN were comparable, the higher catalytic activity for the RuCMFN than 

that of RuCMF could attribute to the presence of nitrogen (preferentially in the 

quaternary form). The incorporation of nitrogen could enhance hydrogen adsorption, 

improve the wettability of carbon supports, and modify electronic properties of Ru. 

First, H2 chemisorption results showed that the H2 monolayer uptake volume of 

RuCMFN (80.76 μmole/gRu) was almost twice as that of RuCMF (44.93 μmole/gRu) 

(shown in Figure 6.10). Since the effect of any variations in the Ru active site and the 
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pore structure of carbon supports can be ruled out, the higher hydrogen uptake of 

RuCMFN could be attributed to the nitrogen incorporation. It was reported that N 

doping is more favourable for hydrogen adsorption via spillover than that on pure 

carbons (Wang et al., 2009; Wang and Yang, 2009; Xia et al., 2009; Sadek et al., 2010).  
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Figure 6.10 H2 pulse titration peaks for (a) RuCMF and (b) RuCMFN.  
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Moreover, the presence of N atoms substituted on the carbon surface, especially 

quaternary nitrogen, improved the carbon wettability (Matsuoka et al., 2004; Hou et al., 

2005). This could facilitate the transfer of D-glucose; hence improved the catalytic 

activity. Therefore, the doped nitrogen atoms could act as a promoter of Ru 

nanoparticles increasing their activities in the D-glucose hydrogenation.  

 

6.4 Summary 

    In summary, 1-D mesoporous carbon microfiber supported Ru catalysts were 

prepared by using alumina microfibers as the templates via CVD method. The obtained 

catalysts possessed a mesoporous structure with a surface area above 650 m2/g, 

average pore size of 3.7 nm, length of 5-10 μm, and width of about 0.5 μm. Small Ru 

nanoparticles with a narrow size distribution (3-5 nm) were homogeneously dispersed 

in the interconnected mesoporous carbon matrix. Compared with Ru deposited on 

multi-walled carbon nanotubes, carbon fibers, alumina microfibers, and the activated 

charcoals, the mesoporous carbon microfiber supported Ru catalysts displayed 

remarkably higher catalytic activity and better stability in the hydrogenation of D-

glucose. The excellent catalytic performances of the catalysts are attributed to their 

unique 1-D morphology, the unblocked mesoporous structure, and the hydrogen 

spillover effect enhanced by the unique surface contact between the Ru nanoparticles 

and the carbon supports. In addition, the incorporation of nitrogen significantly 

improved the catalytic performance due to the enhanced hydrogen adsorption and 

better wettability. 

Table 6.3 the main characteristic of RuCMF and RuCMFN. 
Catalysts wt% Ru A (m2/g) V (cm3/g) d (nm) D (%) d (Ru, nm) 
RuCMF 6.4 760 1.10 3.7 12.9 3.5 

RuCMFN 6.3 790 0.71 3.7 12.8 3.5 
 



                                 Chapter 7. Kinetics of the catalytic hydrogenation of D-glucose 

                                                                                                                                     127 

CHAPTER 7 

Kinetics of the catalytic hydrogenation of D-glucose over 

bimetallic Ru-Cu carbon catalyst 

7.1 Introduction  

A common method to obtain the information about reaction mechanism is to study 

the kinetics of the reaction. Hydrogenation kinetics of D-glucose has been studied over 

Ru/C (Crezee et al., 2003), Ru/Al2O3 (Bizhanov and Drozdova, 1982), silica-alumina 

supported Ni catalysts (Dechamp et al., 1995) and Raney Ni catalyst (Brahme and 

Doraiswamy, 1976). Usually a Langmuir-Hinshelwood mechanism is a good 

approximation for the kinetics. In aqueous solution D-glucose cyclize to produce six-

membered rings (pyranoses), which are much more stable than their open chain 

counterparts. Depending on the position of the OH group at the C1 atom, there are two 

stereochemical species (anomers) for a pyranose. The anomers are termed α- and β-

pyranose when the OH group at C1 is below or above the ring plane of the Haworth 

formula, respectively (Ma et al., 1998) (Figure 7.1). These forms will have different 

adsorption constants and their own characteristic rates of hydrogenation. These factors 

will determine which form is preferentially adsorbed and hydrogenated. Molecular 

models indicate that the adsorption of the β-pyranose form will more favorable through 

the coordination of O-1, O-5, and O-6 (Makkee et al., 1985). By adsorption the 

anomeric carbon becomes more susceptible to attack by hydrides (Castoldi et al., 

2007).  

Here we present experimental D-glucose hydrogenation over RuCu0.5C catalyst in a 

batch three-phase reactor and kinetic modeling based on Langmuir-Hinshelwood-

Hougen-Watson (LHHW) type kinetics.   
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Figure 7.1 (a) the Fischer projection of the chain form of D-glucose, (b) α-D-

glucopyranose, and (c) β-D-glucopyranose. (From 
http://en.wikipedia.org/wiki/Glucose).  

 
7.2 Kinetics of the hydrogenation of D-glucose 

The D-glucose hydrogenation experiments were carried out batchwise in a Parr 

Reactor (Parr 4560) operating at 4-10 MPa and between 90 and 120 oC. The effect of 

stirring rate was studied in the beginning of the work, in order to eliminate the mass 

transfer limitation. The affection on initial reaction rate by changing the stirrer speed 

from 300 rpm to 1500 rpm was shown in Figure 7.2a. The stirring speed was fixed at 

1000 rpm for the experiments to ensure that the gas-liquid mass transfer does not affect 

the reaction rate. Aqueous solutions contained about 20-50 wt% glucose initially. The 

liquid volume was 30 ml and the amount of catalyst RuCu0.5C was 0.05 g. The 

average catalyst particle length is 15μm. The initial rate r0 was obtained by recording 

the drop of H2 pressure with time, which was then transferred into the hydrogen uptake 

rate per square meter of Ru (mol·min-1·m-2) according to the ideal gas equation and the 

active surface area (calculated by H2 chemisorption). The influence of the catalyst 

loading was evaluated by varying the catalyst-to-glucose ratio in D-glucose 

hydrogenation experiments at 100 oC and 8MPa. The initial reaction rate showed a 
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linear dependency on the catalyst load between 0.03 and 0.1 g, i.e. the normalized 

activity was independent of the catalyst loading, indicating that in the range of 

operating variables the systems is not controlled by gas-liqiuid mass transport (Figure 

7.2b). Nevertheless, a further increase of the catalyst loading did not give a full benefit.  
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Figure 7.2 (a) Effect of the stirring speed on the initial reaction rate at 100 oC and 

8MPa, (b) The influence of catalyst loading on the initial reaction rate at 100 oC and 
8MPa. 

 
From the experiments carried out at the temperature range at 90-120 oC and at 

pressure 4-10 MPa, it was found that the apparent activation energy for D-glucose 
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hydrogenation over RuCu0.5C was 49.7-66.4 kJ/mol (Figure 7.3). The estimated 

activation energies were much larger than the activation energy of diffusion in liquids 

(12-21 kJ/mol) (Dechamp et al., 1995), thus indicating that the experiments were 

performed under kinetics control.  
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Figure 7.3 Arrhenius plots of the initial glucose (40wt% in water) hydrogenation rates 

carried out at 4 MPa (Ea=66.4 kJ/mol) and 10 MPa (Ea=49.7 kJ/mol) and at the 
temperature range 90-120 oC. 

 

The dependency of initial reaction rate on initial D-glucose concentration at 100 oC 

was plotted in Figure 7.4a. This figure would well agree with a classical Langmuir-

Hinshelwood model, in which the products and the solvent are not involved in the rate 

expression: 

0

0
0 1 GG

GG

CK
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r
+

=                                                                                                      (7.1) 
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  At low D-glucose concentration (< 40 wt%), apparent first order kinetics was 

observed. At high D-glucose concentration (≥ 40 wt%), saturation of the catalyst 

surface occurred and zero order was observed.  
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Figure 7.4 (a) D-glucose concentration dependency of the initial hydrogenation rate at 
100 oC, 0.05g catalyst, 8 MPa; (b) initial D-glucose hydrogenation rate as a function of 

hydrogen pressure at 100 oC, CG0=40wt%, 0.05 g catalyst. 
 

An increased hydrogen pressure had a positive effect on the initial reaction rate, 

showing first order behavior at 100 oC (Figure 7.4b). The kinetic behavior in Figure 

7.4b could be understood by considering the difference in the adsorption strength 

between D-glucose and hydrogen on RuCu0.5C catalysts. As the D-glucose molecule 

was strongly adsorbed, it reached to saturated adsorption rapidly. Thus, the change in 

the D-glucose concentration in the liquid phase did not change its adsorption amount 

on the catalyst and thus, did not affect the rate of the surface hydrogenation. The 

adsorption of hydrogen on RuCu0.5C was relatively weak and could not reach 
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saturated adsorption under the present reaction conditions. Therefore, the initial rate 

exhibited first-order with respect to hydrogen pressure.  

 

7.3 Modeling results of kinetics and mechanism  

Based on preliminary kinetics analysis, some simplifications can be made: i) during 

reaction no catalyst deactivation occurred; ii) the reaction is 100% selective to D-

sorbitol; iii) there is negligible adsorption of solvent and D-sorbitol; iv) the adsorption 

and desorption steps are assumed to be rapid, whereas the hydrogenation steps on the 

surface are presumed to be rate controlling; v) the hydrogenation steps are regarded as 

irreversible; vi) hydrogen adsorption was assumed to be dissociative, but hydrogen 

atoms were supposed to be added pairwise to the organic species.  

As a summary, the complete set of plausible surface steps is presented below:   

H2 + 2* ↔ 2 (H*) 

G + * ↔ G* 

G* + 2 (H*) → S +3*  

    It has previously been proposed that sugar hydrogenation follow a competitive 

adsorption model, where adsorbed atomic hydrogen is added pairwise to adsorbed 

organics. However, because of the larger size of difference between sugar molecules 

and hydrogen, another non-competitive adsorption model was assumed, where 

hydrogen and D-glucose adsorbed at different sites (Mikkola et al., 1999; Crezee et al., 

2003; Kuusisto et al., 2008). As a result, two models based on Langmuir-

Hinshelwood-Hougen-Watson (LHHW) were used. Model 1: non-competitive 

adsorption of dissociatively chemisorbed hydrogen and D-glucose at different sites, see 

Eq. (7.2); Model 2: competitive adsorption of dissociatively chemisorbed hydrogen 

and D-glucose, see Eq. (7.3).  
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The temperature dependencies of kr, KG and KH are: 
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Since kr and KH only appear as a product in the rate expressions, it was expressed as 

krKH.  
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The experiments performed at 100 oC were used to obtain the parameters krKH and 

KG at this temperature. The fit of the experimental data to the kinetic model was 

carried out by Matlab software by fminsearch method (generally referred to as 

unconstrained nonlinear optimization). The results of parameter estimation are 

summarized in Table 7.1. Figure 7.5 illustrates that the Model 2 nicely described the 

behavior of the system.  

Table 7.1 Comparison of the fitted parameters for D-glucose hydrogenation over 
RuCu0.5C catalyst. 

 
 Model 1 Model 2 

krKH (mol/(min·m2
Ru·MPa)) 0.0137 0.0722 

KG (l/mol) 1.1398 0.1427 

Sum of squares of residuals (SSR) 5.7665×10-4 4.8929×10-4 
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Figure 7.5 Fit of kinetic model 2 to experimental data for hydrogenation of D-glucose 
over RuCu0.5C.    
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Therefore, based on the literature review (Crezee et al., 2003) and the kinetic data, 

we proposed that the hydrogenation of D-glucose over RuCuC involves the formation 

of an ionized glucose species adsorbed on the Ru or Cu surface by coordination of O-1, 

O-2, and O-5, which was then polarized, and attacked by a hydride-like species from 

the Ru surface or the spillover hydrogen atom from Ru to Cu (see Figure 7.6). The 

adsorptions of dissociatively chemisorbed hydrogen and D-glucose are competitive.  
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Figure 7.6 Schematic representation of the reaction mechanism between adsorbed β-

D-glucopyranose and hydrogen. 

 

7.4 Summary 

The kinetics of D-glucose hydrogenation to D-sorbitol over RuCuC catalyst in 

aqueous solutions was studied in batch-wise Parr reactor operating at 90-120 oC and 

4.0-10.0 MPa hydrogen pressure. The D-glucose concentration was varied between 20 

and 50wt%. The kinetics experiments were carried out in the absence of mass transport 

limitations. In the operating regime the reaction rate showed a first order dependency 

with respect to hydrogen, and a shift in the order of D-glucose. At low D-glucose 

concentrations (up to 40wt%) the reaction showed a first order dependency, while at 

higher concentrations this changed to zero order behavior. The kinetic data were 

modeled using two rate models based on LHHW kinetic assuming that the surface 
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reaction is rate-determining. Model 1 involves non-competitive adsorption of hydrogen 

and D-glucose; Model 2 is based on competitive adsorption dissociatively chemisorbed 

hydrogen and D-glucose. The parameter estimation was performed for 100 oC, and the 

results indicated that the Model 2 fits the experimental data better. It is proposed that 

the hydrogenation of D-glucose involves the formation of an ionized β-pyranose 

species adsorbed on the Ru or Cu surface by coordination of O-1, O-5, and O-6, which 

is susceptible to attack by hydrogen at the anomeric carbon.  
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 
8.1 Conclusions 

    Ruthenium nanoparticles embedded in the pore walls of template carbon (RuC) were 

prepared by using H-form zeolite Y and mesoporous silica SBA-15 as template. 

Compared with other catalysts, the RuC catalyst displayed a higher catalytic activity 

and stability in hydrogenation of D-glucose because of the enhanced contact between 

the Ru nanoparticles and carbon matrix. Such a unique contact between Ru 

nanoparticles and carbon support may stimulate the hybridization of pz orbital of 

graphene (π-bonded states) and the d orbital of Ru, resulting in less oxidation of Ru 

metal particles and hydrogen spillover. Also it was found that the mesoporous pore 

structure was better than the microporous pore structure. This may account for the 

small pore size inhibit the mass transfer of the reactant and the product. This synthesis 

provides a feasible solution to prevent the metal particles leaching, and to control the 

particle sizes.  

Bimetallic Ru-Cu nanoparticles embedded in the pore walls of mesoporous carbon 

were prepared. The presence of bimetallic entities was supported by the 

characterization data of both Ru LIII edge and Cu K-edge X-ray absorption. For the 

unique property of template method, the addition of Cu did no affect the particle size 

or the dispersion of Ru. Overall the bimetallic catalyst showed a higher catalytic 

activity than single-metal catalysts (RuC and CuC) in hydrogenation of D-glucose. At 

low Cu/Ru ratios (<1.0), additional activity sites for D-glucose hydrogenation may 

have been created by Cu addition. At high Cu/Ru ratios (>1.0), the presence of Cu 

decreased the catalytic activity. This effect may be due to the complete preferential 
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population of defect-like edge and corner of Ru sites by Cu, subsequently limiting the 

dissociation of hydrogen on the metal surface, which is necessary for D-glucose 

hydrogenation.  

Alumina microfibers were used as templates to prepare Ru nanoparticles embedded 

in mesoporous carbon fibers. Small Ru nanoparticles with a narrow size distribution 

(3-5nm) were homogeneously dispersed in the interconnected mesoporous carbon 

matrix. Compared with other Ru nanoparticles supported on other carbon materials 

(e.g., multi-walled carbon nanotubes, carbon fibers, alumina microfibers, and the 

activated charcoals), the Ru catalysts prepared using the template method displayed 

higher catalytic activity and a better stability, again attributed to the features of 

unblocked mesopores, hydrogen spillover, and unique surface contact between the Ru 

nanoparticles and the carbon supports catalysts. In addition, the incorporation of 

nitrogen played a beneficial role in catalytic activity. This improvement was attributed 

to the enhanced hydrogen adsorption of catalyst, improved carbon wettability, and 

promoter effect of nitrogen.   

The kinetics of D-glucose hydrogenation to D-sorbitol over RuCuC catalyst in 

aqueous solutions was studied in batch-wise Parr reactor operating at 90-120 oC and 

4.0-10.0 MPa hydrogen pressure. The kinetics experiments were carried out in the 

absence of mass transport limitations. In the operating regime the reaction rate showed 

a first order dependency with respect to hydrogen, and a shift in the order of D-glucose. 

At low D-glucose concentrations (up to 40wt%) the reaction showed a first order 

dependency, while at higher concentrations this changed to zero order behavior. The 

kinetic data were modeled using two rate models based on LHHW kinetic assuming 

that the surface reaction is rate-determining. Model 1 involves non-competitive 

adsorption of hydrogen and D-glucose; Model 2 is based on competitive adsorption of 
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dissociatively chemisorbed hydrogen and D-glucose. The parameter estimation was 

performed for 100 oC, and the results indicated that the Model 2 fits the experimental 

data better. It is proposed that the hydrogenation of D-glucose involves the formation 

of an ionized β-pyranose species adsorbed on the Ru or Cu surface by coordination of 

O-1, O-5, and O-6, which is susceptible to attack by hydrogen at the anomeric carbon. 

The adsorption of D-glucose and dissociative hydrogen is competitive.  

 
8.2 Recommendations 

    It appears that the template synthesis method can improve the control of the metal 

particle size and composition. This control is effective in studying the effect of the 

particle size and the pore structure on the catalytic activity. Although the template 

method is a time-consuming and high-cost procedure, this method has provided a 

better basic understanding of the carbon support material.  

    There are several interesting directions for future work in the areas of research 

described in this thesis. One possible avenue of future work is the extension of the 

Ru/C catalyst system to the partial hydrogenation of entities, such as aliphatic nitro 

groups, nitriles, carbonxylic acids and easters, because heterogeneous catalyzed 

selective hydrogenations are effective reactions for the preparation of a number of 

synthetically useful compounds.   

    Another direction of the extension of this work is the use of organic compounds as 

templates in contrast to the hard templates since the removal using toxic HF solution 

could be saved. Two groups (Gao et al., 2008; Wan et al., 2009) have demonstrated the 

possibility of this concept, but detailed study still will be needed. This simple and 

effective approach may promote the applications in many fields.  
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