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Summary 

In this work, an assembly workstation system for automatically fabricating 

customized tissue engineering (TE) scaffold was developed. This included the 

design and fabrication of microparts and a novel microgripper with integrated force 

sensor, building a desktop workstation, implementation of closed-loop force 

control and visual servoing, and the development and implementation of an 

intelligent control strategy. 

The microparts (of dimension 0.5×0.5×0.2mm and 60μm wall thickness) were 

fabricated by using photolithography techniques. The mating dimensions of the 

microparts were carefully controlled to achieve desired friction between 

microgripper and microparts and between microparts. Factors that affect the 

qualities of the microparts were also investigated. 

A microgripper was specially designed and fabricated to interface with the 

microparts. The main body of the microgripper was a tungsten rod of 200μm in 

diameter. At one end of the tungsten rod, a cylinder tip with a diameter of 100μm 

was fabricated by electrolyte etching. The accuracy of the diameter was less than 

3μm thanks to the specially designed circuits for controlling the etching charges. 

The tip was mounted with a girdle to provide pushing force during picking up and 

assembly processes. 
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The integrated force sensor was designed, fabricated and calibrated to measure the 

force involved in the assembly. Its main body was an elastic element that will 

deform under load. Semiconductor strain gauges were glued to the top and bottom 

surface of the elastic element. The full range of the force sensor was about 500mN 

with a resolution of 3mN. 

Closed-loop force control was implemented in the pick-up and assembly process. 

An admittance control scheme and an intelligent strategy enabled smooth insertion 

and prevented the micropart from damages. The control strategy combined position 

and force information to infer the status of the insertion process and re-aligned if 

necessary. Visual servoing was used in a look-and-move fashion. A modified 

Hough transform was used as the basis in the image processing algorithms.  

The automatic assembly workstation composed of four translation precision stages 

was built for the assembly task. Three sets of microscopes with CCD cameras were 

used to provide front, side and top views of the working area. 

A visual C++ program coordinated all the hardware and provided a friendly GUI 

for the operator to perform the calibration process easily. After calibration, 

automatic assembly can be started by activating the “Auto Assembly” button on 

the GUI. The automated assembly task was conducted under the control of the 

supervisory unit of the software.  

The system has successfully demonstrated fully automated construction of a tissue 

engineering scaffold composing of 50 microparts whose dimensional error can be 

as large as 9%. 
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Chapter 1 

1  

Introduction 

1.1 Background 

Tissue engineering (TE), as stated by Langer and Vacanti, is "an interdisciplinary 

field that applies the principles of engineering and life sciences toward the 

development of biological substitutes that restore, maintain, or improve tissue 

function or a whole organ" [1]. This new field has drawn a lot of attentions since 

its advent in the 1980s. 

Most tissue engineering strategies for creating functional replacement tissues of 

organs rely on the application of an engineered extracellular matrix or scaffold, to 

guide the proliferation and spread of the seeded cells. A TE scaffold usually should 

serve the following purposes: 1. Allow cell attachment and migration; 2. Deliver 

and retain cells and biochemical factors; 3. Enable diffusion of vital cell nutrients 

and expressed products; 4. Exert certain mechanical and biological influences to 

modify the behavior of the cell phase [2]. 

To achieve the goal of tissue reconstruction, scaffolds must meet some specific 

requirements: (1) a high porosity and pore interconnectivity are necessary to 
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facilitate cell seeding and diffusion throughout the whole structure of both cells 

and nutrients [3, 4]. Also the pore size must be specifically designed for the certain 

purpose and the size usually varies from ten to hundred of microns [5-7]. (2) The 

material used for TE scaffold has to be biodegradable since the scaffold should be 

absorbed by the surrounding tissues i.e. should not require surgical removal after 

neotissues formed [8]. (3) The scaffold should have some desired mechanical 

properties, for example, it should be strong enough to support the cells, and guide 

the tissue regeneration, especially during the degrading period of the scaffold [4].  

Methods for the fabrication of tissue engineering scaffolds include nanofiber self-

assembly, textile technologies, solvent casting and particulate leaching (SCPL), 

gas foaming, emulsification (also may referred to as freeze-drying), thermally 

induced phase separation (TIPS) etc. Each of these techniques has its own 

advantages, but none fulfills all the above requirements [2].  

In her Ph.D thesis, Zhang [133] developed a system for fabrication of TE scaffold 

by robotic assembly of microscopic parts. A salient feature of this fabrication 

method is that it enabled the spatial control of the cell, agents and pore size, etc 

which was highly desirable to cater for different structures and patients. She 

demonstrated manual assembly of such a scaffold by using a master-slave robotic 

system [9], but the long serial fabrication time required meant that automating the 

assembly process is necessary in order to narrow the gap between laboratory 

experiments and clinical applications. 
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1.2 Problem Definition 

In the manual assembly process, the operator manipulated a robotic workstation in 

a tele-operation fashion. The assembly process was observed through two 

microscopes. To assemble each micropart onto the scaffold, the operator needed to 

first move the gripper to the part, picked up the part, moved the gripper to the 

assembly area, find the position to put the part and then assembled it. The two 

major disadvantages of this method are: 

1. Operator dependant. A skillful operator was needed to operate the system. The 

micropart, made of polymer with the dimension of hundreds of microns, was 

very fragile and this will induce stress and fatigue to the operator.  

2. Low throughput. Assembling a micropart took about 1 minute. Normally a 

small piece of scaffold consisting of tens of microparts will take a day or more. 

For clinical applications, a scaffold may need hundreds or thousands of parts. 

1.3 Objectives  

The whole assembly process needs to be automated in order to increase the 

assembly speed and reduce the necessity of human intervention. A literature 

review on microassembly shows that there are two major difficulties in 

microassembly tasks: the high positional accuracy needed and the lack of force 

control. To circumvent these difficulties, I propose an automated microassembly 

system using both closed-loop position control and closed-loop force control. The 

objectives of this thesis are: 
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1. To systematically review and analyze the existing techniques in 

micromanipulation and microassembly tasks. 

2. To design a microgripper for handling microparts. 

3. To investigate the force sensing methods and control issues in microassembly 

and to develop a suitable force sensor and force control strategy.  

4. To implement closed-loop position control based on visual information. 

5. To design and develop a workstation to realize the automated assembly process. 

6. To implement and evaluate the performance of the automatic microassembly 

system. 

1.4 Scope 

TE scaffold assembled by microscopic building blocks is highly desirable for 

tissue regeneration because it could produce various structures, control the 

nutrients inside the scaffold exactly as required to optimize regeneration, and cater 

to different patients with different designs of the scaffold. Each micro building 

block can be coated and processed to have specific morphology and chemical 

properties, and then assembled to the required place in the scaffold in a 

biocompatible environment. The whole process does not involve any chemical, 

electrical or thermal reaction. While the feasibility of such TE scaffolds has been 

demonstrated through manual assembly, the whole process is extremely time-

consuming and tedious, which hindered clinical applications. Automating the 

assembly is the best way to solve this problem. This thesis presents an automatic 
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microassembly system dedicated to fabrication of customized TE scaffolds. 

Among the work that has been accomplished are the following: 

1. A literature review was first carried out to study the state-of-the-art 

techniques in microassembly, which indicated that vision and force 

feedback are the most effective ways to realize automatic assembly in the 

micro domain. The configuration of the whole automated microassembly 

system was developed which includes both closed-loop position control 

based on vision feedback and closed-loop force control (Figure 1.1). 

Y
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Figure 1.1: Schematic of automated microassembly system with visual servoing 

and force control loops. 

2. A microgripper dedicated to handling microparts was designed and 

fabricated. To enable the use of the top-view microscope for closed-loop 

position control, the gripper must have a very compact size so as to not 

occlude the microscope top-view. In order to implement closed-loop force 
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control during insertion, the gripper should also integrate a suitable force 

sensor and distribute the force evenly on the micropart (Figure 1.2). 

 

Figure 1.2: Micro gripper compared with a human hair. 

3. A force sensor was designed, fabricated and calibrated. The measuring 

range of the force sensor is 0-500mN with a resolution of 3mN, which is 

suitable for the targeted microassembly (Figure 1.3).  

 

Figure 1.3: Force sensor with gripper. 

4. Admittance force control law was implemented to control the pick-up and 

assembly of the microparts. The working principle of the force control 

system is illustrated in Figure 1.1. A gripper fixed on the arm was carried 

by the Z stage to move up and down to realize insertion and retraction. 

Based on the force reading from the strain gauges, position and velocity 
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commands are sent to the Z stage. It is through adjusting the motion of the 

Z stage that force control is realized.  

5. Vision-based position control was implemented. Different image 

processing algorithms were studied, and selected algorithms were used in 

the control loops. In the visual servoing loop, only the top-view microscope 

was used. Error was computed from image processing and then corrected 

through proportional control using the XY stage. 

6. A workstation consisting of four precision stages and three microscope 

systems was built and implemented (Figure 1.4). A friendly graphic user 

interface was also developed for the operator to help him to calibrate the 

system. 

 

Figure 1.4: Precision workstation. 
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7. An automated assembled process was carried out to evaluate the 

performance of the system. Small scaffolds with 50 microparts and seven 

layers (Figure 1.5) were successfully fabricated. 

  

 A                                          B 

Figure 1.5: (A) a small piece of automatically assembled scaffold with the gripper 

above compared with a regular needle. (B) top view of the scaffold 

1.5 Thesis Organization  

This thesis is organized as follows. Chapter 2 provides a literature review of 

current microassembly systems. The fabrication of microscopic building blocks 

used in the assembly process is described in Chapter 3. Chapter 4 investigates the 

design and fabrication of the microgripper. Chapter 5 describes the design and 

fabrication of the force sensor and its calibration. In this chapter, the admittance 

force control law and the implementation of closed-loop force control in the pick-

up and assembly process are also presented. Chapter 6 describes the visual 

servoing for closed-loop position control, including the control strategies, control 

law, hardware and the image processing algorithms used. Chapter 7 focuses on the 

design, calibration and control of the specially designed workstation and the 

program used to coordinate all the hardware components. The results of the 
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microassembly experiments are also presented in this chapter. Finally, Chapter 8 

proposes research directions to further develop the technique developed in this 

thesis. 
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Chapter 2 

2  

Literature Review on Microassembly 

2.1 Introduction  

Although my project concerns the life sciences, the essential techniques involved 

are similar to those used in micro electro mechanical systems (MEMS) in terms of 

feature dimension, accuracy, scaling effects etc., and the results of this thesis can 

be applied to general microassembly in fields including MEMSs. 

Microassembly, the assembly of objects with microscale and/or mesoscale features 

under microscale tolerances, has been widely and extensively studied in the last 

two decades, due in particular to the increasing demand for more complex MEMSs. 

While considerable advances have been made in the fabrication of microparts, the 

assembly and packaging of heterogeneous microsystems still accounts for a very 

substantial fraction of the cost of commercial products: about 60% to 90% of 

manufacturing costs [10].  

Microassembly tasks can be classified into two major groups: parallel 

microassembly and serial microassembly [11]. 
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In parallel microassembly, multiple parts are assembled simultaneously to reduce 

the assembling time and the cost of the final product. Parallel microassembly tasks 

can be further divided into deterministic parallel assembly and stochastic parallel 

assembly.  

 Deterministic parallel assembly normally requires complex grasping, 

conveying, aligning and assembly strategy. For instance, [12] proposes 

using a microgripper array to pick up and assemble an array of microparts 

simultaneously. Similarly, [13] develops a technique that deposits many Si 

chips in size of hundred microns on an organic substrate at the same time to 

produce large liquid crystal display. To avoid using complex grasping 

mechanics, [14] manufactures micro gear system in a large bath by ejecting 

the micro gears from the magazine onto the defined mounting position of 

the micro devices directly after precise alignment. The capacity of this 

method has been demonstrated experimentally.  

 In stochastic parallel assembly, structures are aggregated through fluidic 

agitation, vibration, electrostatic force field or part shape mating [15]. For 

instance, [16] uses shape mating to produce photonic crystals assembled by 

silica micro-spheres on a large scale. 

Although parallel assembly techniques can deal with a large number of microparts 

and efficiently form larger structures, it cannot be used to fabricate complex 

structures such as the TE scaffold proposed in this project. In contrast, serial 

assembly is more capable in producing complex micro 3D structures. 
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In serial microassembly, parts are put together one-by-one according to a 

traditional pick-and-place paradigm. Not long ago, almost all the serial micro-

assembly tasks were conducted in a tele-operation fashion: an operator controls a 

precision workstation or a microrobot through a machine-human interface or 

joystick and images of the working process were provided to the operator by 

microscopes. Recently, automatic or semi-automatic microassembly experiments 

have been developed by several research groups [23, 87, 102-110, 159]. We will 

focus on serial microassembly and related issues in the following paragraphs. 

Besides these two mainstream microassembly technique discussed above, there are 

some other microassembly techniques used for particular applications. Simple 

planar structures were assembled by manipulating stress-engineered MEMS 

microdots [17]. The size of the robots is in the range of hundreds of microns, 

which is unique in the MEMS Industry. Out-of-plane microstructures can be 

fabricated by deformation of the micro component itself which is referred to as 

self-assembly. [18] proposes a simple self-assembly strategy to fabricate three-

dimensional micro structures involving the thermal shrinkage of polyimide; [19] 

develops a self-assembly method by using magnetic forces. In [19] certain part of 

the microstructure deposited with magnetic material will be plastically deformed 

by the magnetic force exerted by an external magnetic field. 

2.2 Differences between Micro and Macro 

Assembly 

A major difference between assembly in the micro- and macro domains is the 

interaction forces involved. In the macroworld, the mechanics of manipulation are 
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predictable, e.g. when a gripper opens, gravity causes the part to drop. In the 

microworld, forces other than gravity dominate due to scaling effects. Surface-

related forces, such as electrostatic, van der Waals and surface tension forces 

become dominant over gravitational forces. Mass decreases with 3L  while stiffness 

for bending and tensile strength are proportional to L  and 2L , respectively. Due to 

this uneven scaling behavior, manipulation in the microworld is completely 

different from manipulation in the macro world [20, 21] . 

Another major difference between macro- and micro-assembly is the required 

positional accuracy. In the macro domain, accuracy in the range of a few hundred 

microns can be achieved using sensorless manipulators. In the micro domain, 

submicron precision is often required [22]. Also precision of micro assembly 

systems is often deteriorated by many factors, such as tolerance stack up due to 

thermal effects, errors and approximations in the modeling of sensors and 

manipulators, internal and external vibrations, and parts machining errors [23]. 

Conventional open-loop precision assembly devices used in industry can not 

achieve this degree of precision and microassembly must rely on vision 

information to implement high-precision motion control. 

2.3 Design of Microassembly Systems 

Due to all the above factors, complex microstructures cannot be assembled in the 

traditional way. The major design factors involved in building a microassembly 

system include the following aspects: 

1. Design of microgripper 
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2. Design of precision positioning unit 

3. Implementation of vision system  

Beside these aspects, closed-loop position control or force control may also be 

necessary for automated microassembly system. To implement closed-loop 

position control, the system design may include image processing algorithms, 

controller design and the use of closed-loop force control, the design or selection 

of an appropriate force sensor, the development of the control loop and appropriate 

control law. 

2.3.1 Design of Microgripper 

The role of a microgripper is to provide enough constraints to the micro component 

being assembled. Because of the micro-level forces involved and the small size of 

the components, the design and fabrication of microgripper is always a challenge. 

Reliability and efficiency of the microgripper is critical to the performance of the 

entire assembly system. Because the objects being manipulated are very small, the 

microgripper normally has to have a very compact dimension or at least small 

handling tips. The small size of the gripper is also desirable for the implementation 

within the crowded setup with microscopes etc. In design of a microgripper, the 

releasing strategies are as important as the picking up strategies as the release of 

the parts is often problematic due to the presence of adhesion forces [24]. 

Many microgrippers based on different working principles have been developed 

for a variety of microassembly tasks. [25] proposes a classification scheme for 

quantified analysis of a list of gripping principles. This scheme also defines criteria 
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that are essential in the evaluation and selection of gripping principles for grasping 

a given micro object. 

Lead zirconate titanate (PZT) ceramics is one of the most commonly used 

materials for actuating microgrippers due to its superior piezoelectric properties 

[26-31]. A salient feature of piezoelectric actuators is that they allow precise 

control of the motion of the gripper fingers. Because of this, closed-loop control of 

grasping force can be easily realized on PZT actuated grippers by the integration of 

micro force sensors [32-36]. 

Electrostatic comb-drive actuators have a more compact size and shorter response 

time than piezoelectric actuators, and have been widely used in MEMSs [37, 38]. 

Microgrippers actuated by electrostatic comb were fabricated for handling small 

objects such as single cell living creatures [39, 40]. 

Another commonly used actuating technique in the use of shape memory alloy 

(SMA) [41-45]. SMA has a work output per volume larger than that of electrostatic 

and piezoelectric actuators and its cycling frequencies can achieve the order of 

100Hz [46]. 

The operating of thermal bimorphs is based on differential thermal expansion 

induced by Joule heating [47], which is capable of producing large motion by 

thermal expansion [48]. Thermally driven microgrippers can operate in the 

atmosphere, vacuum or dust environments [49]. 

Design and fabrication of vacuum grippers is much simpler compared with other 

microgrippers. The main body of a vacuum gripper is just a pipette connected to a 
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vacuum supply [50-53]. This kind of gripper is more likely to be used for 

micromanipulation than microassembly due to the limited constraints provided by 

the gripper. 

Passive structure compliance of a microgripper is important for protection of 

fragile components and accommodation of alignment errors [54]. A generalized 

methodology for designing compliant micro mechanisms was given by [55]. [56] 

and [57] present a compliant gripper actuated by thermal bimorph actuator and 

piezoelectric ceramic stacks respectively. A complaint passive gripper was 

developed by [58]. Passive grippers employ no actuator and the microparts are 

picked up by friction or compliance of the gripper tips. In this case, the microparts 

being handled were also specially designed to interface with the gripper. 

Besides all the techniques discussed above, there are some other actuating 

techniques used in micro gripper design, such as pneumatically-actuated 

microgripper [59], voice coil motor actuated gripper [60], magnetic actuated 

gripper [61], orthotweezers power by servo motor [62], ice gripper [63] etc.  

2.3.2 Precision Positioning Unit 

In serial microassembly tasks, micro components need to be picked up, conveyed 

to the assembly area, aligned and then assembled. The conveying and alignment 

were accomplished through a precision position unit. Normally a microassembly 

task demands a positioning unit with 4 to 6 degrees of freedom. Translation 

precision stages actuated by DC motors normally have submicron resolution, 

which is sufficient for most microassembly tasks. Piezoelectrically actuated 
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precision stages can provide a motion resolution in range of nanometer, but the 

travel range is comparatively small [24]. In the past, most of the precision 

workstations were built based on off-the shelf precision stages [64-68, 106]. One 

example of them is [106] which presents a 6-DoF workstation to assemble out-of-

plane micro-structures and permits assembly of microparts on the surface of the 

MEMS chip at an arbitrary spatial angle. 

For master-slave systems, another factor that influences the positioning accuracy is 

the master system. Addressing this issue, [69] and [70] investigate the joystick 

sensitivity and time delay issue involved in tele-operated microassembly tasks. 

Besides these precision stages-based microassembly systems, micro robots can 

also be used to perform complex microassembly tasks. [71] develops a novel 3-

DoF parallel robot for microassembly whose accuracy is about 1μm and workspace 

volume is a cube of 30mm side. MINIMAN® is a series of microrobots which have 

at least 5 DoF and dimension of some cm
3
. MINIMAN® are piezoelectrically 

actuated to achieve a resolution in the range of nanometers and also capable of 

traveling a relatively long distance. Many microassembly workstations have been 

built based on MINIMAN® families, such as [72-77]. 

2.3.3 Vision System  

Visual feedback is crucial for microassembly process, as it can provide a 

noncontact sensing modality for fine alignment, observation and task planning. 

However, the inclusion of microscopes in microassembly systems also faces many 

challenges, which we will examine now. 
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The first challenge is the very limited depth of field of microscopes. The need for 

high resolution demands the use of high numerical aperture lens systems, which 

consequently have a very small depth of field, typically ranging from 120 m  to 

0.2 m . As a result depth perception is quite difficult. 3D microassembly may 

require two or more microscopes in a stereo configuration, but due to the limited 

workspace, addition of more microscopes is often problematic. To address this 

issue, [78] increases the depth of field of the microscope over 60 times by the use 

of a volume rendering technique which greatly assists the operator in 

microassembly process; [79] replaced the lateral view microscope with a virtual 

one that is synthesized from two top-view microscopes.   

A second challenge is the very small field of view also caused by the use of high 

magnification microscopes. Although the parts being assembled are small, they 

generally need to be transported relatively large distances prior to assembly. To 

help the operator see the gross spatial relations, a global view can be used to 

monitor the status of the entire assembly scene [87]. For multi-view systems [68, 

80], due to the large different magnifications of different cameras, illumination 

must be controlled separately; the limited working distance of the microscope may 

cause a limited working space and thus occlusions to the global view. Hence, the 

design of the visual system must be coupled with the design of precision unit and 

microgripper. [81] systematically analyzes the implementation of microscopes 

optics in microassembly system and also gives a general architecture of 

microassembly systems. 
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2.4 Microassembly Systems 

In this section, a review of the development of microassembly systems is presented. 

In the earlier days, most of the microassembly tasks were performed manually in a 

tele-operated fashion through master-slave systems. Manual microassembly needs 

a human operator to perform all the actions and the whole process is tedious, 

stressful and time-consuming. To reduce the intervention of humans in the 

assembly loop and increase the throughput, efforts have increasingly been made 

towards automated microassembly in recent years. These efforts involve the use of 

virtual reality (VR) to facilitate the assembly process, and/or the use of vision and 

force feedback to automatically perform part of the assembly steps, etc. 

2.4.1 Manual Microassembly 

In manual microassembly, a highly skilled operator is needed to pick and place 

microparts by using a master-slave system. The master-slave system makes the 

target‟s scale to be similar to our scale virtually, and the human operator 

manipulates the slave systems through the master manipulators [82]. The slave 

system which interfaces with the micro component, can be a desktop workstation 

composed of precision stages [58, 53, 87, 83, 84], or a micro robot with micro 

handling tools [73, 85, 86, 50]. Because of the superior flexibility and 

discrimination capability of humans, this kind of master-slave technique is widely 

used in the biomedical field, prototype fabrication or small batch microdevices 

production. 
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Examples of manually microassembly are as follows: [53] and [87] present a 

supervisory microassembly work cell developed for assembling micro machined 

metal parts into etched holes on silicon wafers. In these papers, the major 

components of the microassembly system (the micromanipulator, the illumination 

devices, and the gripper) were presented. Later, visual servoing was also 

implemented in this system [88]. [89] developed a 5 degree-of-freedom 

workstation for assembly of biomedical devices which can also be modified and 

applied to assembly photonics, miniature wireless system, micro actuators, etc. 

In the systems mentioned above, the only sensory modules the operator can depend 

on are microscopes. The operator needs to look at the microscope screens all the 

time in order to determine contact, collision or other events. To handle micro 

objects under such conditions continuously will introduce stress and fatigue, 

especially when the object is fragile such as living cells or photonics. To further 

improve the performance of the microassembly system, haptic devices were 

employed in master-slave microassembly systems. In these cases, a force sensor 

was mounted on the gripper or the manipulator, force signals were transferred to 

the haptic devices to provide the operator with extra information about contact or 

collisions [90-92]. This technique is also helpful for protecting the micro 

component from damages with improperly applied forces. 

2.4.2 Virtual Reality Aided Microassembly 

In a tele-operated microassembly process, the user interface should provide 

sufficient information of the working area for the operator to perform the assembly 

task. However, hiding or abstracting unnecessary information could facilitate the 



Chapter 2: Literature Review on Microassembly                                              21  

 

assembly process. This additional layer of abstraction between the operator and the 

real work area was realized through virtual reality (VR) approaches [93]. VR 

technique had been explored at varying levels of applications by many research 

groups to facilitate microassembly [94]. In these applications, machine vision was 

used for identification of the objects in a scene and VR based frameworks enabled 

the user to propose and visualize assembly solution prior to physical assembly. 

[95, 96] presented a workstation that used both visual servoing and virtual reality 

techniques. Visual servoing was applied for efficient and reliable position and 

force feedback and the virtual microworld, reconstructed from the CAD-CAM 

database of the real environment, provided the operator a friendly manipulating 

system. In a similar way, [97-99] developed a workstation interface with a virtual 

environment to support assembly of micron-size components; a genetic algorithm-

based assembly sequence generator that coordinated with a 3D path planning 

approach was also discussed. 

2.4.3 Visual Servoing Aided Microassembly 

VR techniques provided the operator with more desirable information, but the 

manipulation still had to be performed by the operator. To further reduce the 

human intervention in the assembly process, visual servoing and force control were 

used to automate part of the assembly steps. Visual servoing would normally be 

used for closed-loop position control. By visual servoing, automated alignment 

was realized. And closed-loop force control was often added for automated 

grasping [100] or insertion [101] steps. 
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[102-110] presented an automated microassembly workstation employing visual 

servoing in alignment steps of picking up and assembling a micropart (20μm wide 

and 2μm thick) into the slot on the substrate. In this project, vision information was 

also used to measure the grasping force by measuring the deformation of the 

passive gripper fingers. A fuzzy logic controller was developed to fuse the force 

and position information to achieve successful automated grasping and insertion. 

The depth-from-focus technique used for position estimation along the optical axis 

of the microscope was similar to that used in [23]. 

Automated alignment through visual servoing was also widely used in photonics 

assembly. [111] developed a closed-loop scheme for aligning the optical fiber with 

the V-groove chip. The scheme used a look-and-move mode and each fiber was 

able to be aligned within 1 minute. In [112], the alignment of the optical fiber with 

the ferrules was accomplished by visual servoing of two orthogonally placed 

microscopes (providing top and side views); the insertions were performed 

manually by the help of force feedback. In a similar way, [52] also used visual 

servoing for fine alignment and force control for handling micro component in 

microassembly process. 

[87] built a flexible 4D workstation for assembly of metal microparts with a size of 

half a millimeter. To automate the alignment process, a CAD model-based visual 

tracking system was developed [113, 88]. The visual system involved two 

microscopes and was capable of 6-DoF tracking MEMS component in real-time 

(30Hz). For the same application, [114] developed another workcell, which utilized 

a transparent electrostatic gripper for handling metal parts. Computer vision was 
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used for aligning the gripper with the part, and a fiber-couple laser and position 

detector were used for aligning the part with the slot on the wafer before assembly, 

while the insertion step was still performed manually. 

More recently, various visual serving methods were developed and applied in 

microassembly tasks. [115] describes both 2D and 3D image processing methods 

for application in micro production environments. In this article, 2D image 

processing was used for controlling of assembly micro mixer and 3D data were 

acquired by the combination of fringe projection methods with fiber-optic device, 

which produced a highly flexible system for automated assembly of hybrid micro 

devices. 

Neural networks were applied in a peg-into-hole microassembly task [116, 117]. In 

these articles, 3D position of an object was obtained by using only one camera. 

Position was estimated by images of the single camera under different light sources 

(four light sources from four directions). In another peg-into-hole application, a 

Kalman filtering-based algorithm was developed and used in the visual servoing 

loop to estimate the composite image Jacobian on-line so as to reduce the influence 

of noise and to avoid calibration work [118]. 

2.4.4 Closed-loop Force Control Aided Microassembly 

The first issue involved in implementation of closed-loop force control in 

microassembly is the fabrication or selection of a force sensor with proper 

measuring range and resolution. In [119], a survey on force sensing techniques in 

micromanipulation categorized force sensors into four groups based on their 
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working principles: strain gauge, piezoelectric force sensor, capacitive force sensor, 

optical sensor. Other related issues, such as force sensor calibration and force 

controller design were also covered in the article. 

In microassembly processes, closed-loop force control was normally used for 

reliably grasping a component. In these cases, the force sensors were mounted onto 

the gripper fingers and the contact force control was normally achieved by 

controlling the motion of the gripper fingers [28, 36, 34]. [121] developed a micro 

force sensor with a resolution of 0.5nN. The sensors were mounted onto a two-

finger micro gripper and automatic micro manipulation experiment was carried out 

successfully. [120, 34] presented a PZT actuated gripper fabricated by LIGA 

technique and instrumented with semiconductor strain gauge force sensors for 

assembling biomedical microdevices. The grasping forces were controlled by a 

proportional integral (PI) controller. In a similar way, [36] developed a multi-

degree-of-freedom microgripper mounted with strain gauge force sensors for 

handling photonics devices. 

Besides grasping force control, micro force sensing and control techniques had 

also been applied in many other aspects of microassembly processes. [122] 

developed an “ortho-tweezers” for automated pick-and-place process. The “Ortho-

tweezers” was a microgripper composing of two fingers orthogonally placed. 

Strain gauges were used in the force sensing module to achieve more accurate, 

faster motion. In [123], micro particles (the diameter of the particle is below 10μm) 

were assembled semi-automatically into a desired pattern on the glass substrate by 

using an atomic force microscope (AFM) nanoprobe. [124] presented a closed-loop 
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optimal control enabled by force sensing technology, which was ready to be used 

in micromanipulation and microassembly tasks. This force sensor body was 

covered with polyvinylide fluoride (PVDF), and was able to apply a desired force 

on the object without compromising motion accuracy. [125] developed a micro 

force sensor that is suitable for high acceleration and high velocity conditions, and 

applied in wire bonding. The resolution of the force sensor was 1mN. A salient 

feature of this force sensor was that it helped to solve the problem of the 

contradiction of high sensitivity and high position accuracy, by using a double-

beam cantilever to replace the single-beam one. [126, 127] both applied force 

sensing methods in injection of bio-objects.  [126] investigated the force behavior 

of living drosophila embryos by using a 2D PVDF-based micro-force sensor whose 

resolution was in the range of sub-μN. This experiment was a critical and major 

step towards automated bio-manipulation for batch injection of living embryos in 

genetics. [127] reported a micromanipulation system used for automatic batch 

microinjection of zebrafish embryos. The system employs both vision feedback for 

locating the object and force feedback for the injection process. 

2.5 Conclusion 

This chapter provided a review on researches in the emerging areas of 

microassembly. Microassembly tasks were categorized into parallel and serial 

microassembly. Although parallel assembly techniques can assemble mass micro 

components efficiently, it is unable to produce complex 3D micro structures 

composed of heterogeneous parts. In contrast, serial microassembly taking the 



Chapter 2: Literature Review on Microassembly                                              26  

 

traditional way of assembling parts one by one, is more capable of producing 

complex micro devices. 

Compared to the macroworld assembly tasks, microassembly differs greatly in two 

aspects: (1) Gravity gives way to adhesive forces to be the dominant force in 

microworld; these micro level forces include van der Waals, surface tension and 

electrostatic forces. (2) The high positional accuracy demanded in microassembly 

cannot be achieved by the traditional open-loop robots. 

These differences require a fundamentally new approach to address each step of 

microassembly sequence: picking up, conveying, alignment, assembling and 

releasing. Consequently, a completely different assembly system technology is 

needed. A microassembly system consists of at least three functional units: the 

microgripper, the precision positioning units and the microscope system, which 

were discussed respectively. 

As manual assembly of micro-sized parts is difficult and time consuming, there is a 

need to automate the assembly process. To this end, many techniques were 

developed and experimentally tested to facilitate the manually assembly or realize 

automated or semi-automated microassembly process. These techniques include 

the use of virtual reality (VR), visual servoing, closed-loop force control or 

combinations of them. VR based frameworks enable the operator to propose and 

visualize the assembly solution prior to physical assembly and provide the operator 

with more concise and clear information of the working area. Visual servoing was 

widely used for automating the alignment in microassembly processes and closed-

loop force control for safely and reliably handling micro components. 
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Chapter 3 

3  

Micropart Design and Fabrication 

3.1 Micropart and Scaffold Design 

Many factors have to be considered in designing the shape of the microparts and 

the architecture of the tissue engineering (TE) scaffold [9]. As mentioned in 

Section 1.1, the desired scaffold architecture design should have the flexibility to 

enable changes in material, pore shapes, dimensions and interconnections. Because 

the microparts will be coated will cells and biological agents prior to the assembly 

process, it is preferable that in the whole assembly process, there are no thermal, 

electrical or chemical reactions involved. 

In this project we chose a cross shape for the microparts for the following reasons. 

First, such a micropart can stand by itself, which makes it easy to pick up without 

adjusting the spatial orientation. Second, the microparts can also be so assembled 

by insertion from above. A 3DoF (X-Y-Z) robotic mechanism is capable of 

accomplishing such an assembly process. 

The microparts will be hold together after assembly by friction and other adhesion 

forces. Both the picking up and assembly processes are more like a peg-into-hole 
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problem than just picking and placing in terms of the force applied. The pushing 

force both in the picking up action and assembly action will be controlled so as not 

to damage the micropart while providing sufficient force to accomplish the tasks. 

The CAD drawing of the micropart can be seen in Figure 3.1. A hole is placed at 

the centre of the micropart to interface with the microgripper. The microgripper 

has a needle-like tip to be inserted into this hole on the micropart so as to pick it up. 

The picking up process is also a kind of peg-into-hole problem. 

 

Figure 3.1: Micropart CAD drawing 

There are two schemes to assemble the microparts together to form a scaffold. The 

first one can be used to assemble a pyramid as illustrated in Figure 3.2. The first 

layer connects points into lines. And the second layer connects lines into area. 

After the second layer, all microparts are connected together. This process 
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continues until there is only one micropart for the current layer; that is the last 

layer also the top layer.  

   
 The zero layer                               The first layer 

       
 The second layer                                     The third layer 

Figure 3.2: Pyramid scaffold architecture design (the grey microparts are the 

indicated layers). 

The second scheme is for assembling a rectangular structure as illustrated in Figure 

3.3. The first layer connects point into lines. And the second layer will repeat the 

array of the zero layer. The third layer makes connections between lines to form an 

area. After this layer, all microparts are connected. And then the fourth layer will 

repeat the shape of the zero layer again, which is the beginning of a new cycle. 

This process can be repeated as many times as wished. In fact, the base layer can 

be any shape other than a rectangle, and the second design can be combined with 

the first one to produce scaffolds of arbitrary shapes. 
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 The zero layer               The first layer 

    
 The second layer            The third layer 

Figure 3.3: Cubic scaffold architecture design (the grey microparts are the 

indicated layers) 

3.2 Microparts Fabrication Process 

Many techniques used in MEMS industry may be used to fabricate microparts for 

this project, including optical lithography or stereolithography for photo-sensitive 

materials, and micromolding for none-photosensitive materials. Among them, 

photolithography can be used to produce a large number of microparts in one batch. 

And the microparts will be regularly placed on the wafer. These properties are 

critical for the automated microassembly task. A technique that involved both 

photolithography and plasma etching was developed to fabricate microparts [128]. 
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From a pure mechanical point of view, the microparts should be compliant enough 

to accept the required deformation in the assembly process. Although the ultimate 

material will be both bioabsorbable and biodegradable (PCL [129]), at this stage of 

the experiment we used the biocompatible SU8 (commonly used photoresist in the 

field MEMS) for fabrication of microparts. The modulus of elasticity of SU8 is 

4GPa, friction coefficient 0.19 and bond strength (pull test) about 20MPa, i.e. 

close to the mechanical properties of bones. 

The fabrication process, which has been described in detail in [128], can be divided 

into two main steps. The first step is to create plateaus on the silicon wafer, which 

are used to form the notches of the microparts in a subsequent step. The second 

step is to fabricate cross-shape SU8 microparts. The patterned wafer will be 

covered with a 0.2mm thick layer of SU-8 100 and photo-patterned to create the 

“cross” shapes. A brief outline of the steps is described in the following paragraphs. 

 

Figure 3.4: CAD drawing of mask used for creating plateaus (the number indicated 

of the diameter of the holes) the pink area will be covered with black emulsion on 

the printed transparency, and black area will be clear on the transparency.   
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Figure 3.5: Process to create plateaus on a silicon wafer [128]. (A) Exposure and 

development to create plateau pattern with positive photoresist. (B) Silicon wafer 

covered with transparency mask (top view). (C) DRIE on the wafer to form 

100μm-high plateau. (D) Remove photoresist and thermally oxidize the wafer to 

form a SiO2 layer.   

Figure 3.5 illustrates the process to create plateaus on the silicon wafer. First, the 

wafer is coated with a 10μm thick layer of positive photoresist, AZ 9260, followed 

by UV exposure and development. For the positive photoresist, the area that was 

covered by the black mask will remain on the wafer, while areas that were exposed 

under UV will be washed away by the developer. Second, the wafer is placed in a 

DRIE (deep reactive ion etching) etcher to create 110μm high plateaus. The areas 

that are covered with AZ 9260 will not be etched. Excluding the AZ 9260 layer, 

100μm high plateaus are fabricated, which are used to form the notches on the parts. 

Third, the AZ 9260 layer is removed by acetone and a thermal oxide layer about 

2μm in thickness is grown. This layer of silicon oxide is a sacrificial layer that will 

be used to detach the microparts from the wafer in the later process.  
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Figure 3.6: CAD drawing of mask used for fabricating cross shape SU8 with a 

through hole at the center; the diameter of the hole ranges from 90μm to 101μm. 
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Figure 3.7: Creating microparts that can be easily separated from the wafer [128]. 

(A) Lithography with negative photoresist (SU8). (B) Patterned silicon wafer 

covered with transparency mask (top view). (C) Developing wafer arrayed with 

cross-shape SU8. (D) Putting the wafer into HF to remove most of the SiO2.   



Chapter 3: Micropart Design and Fabrication                                                         34 

 

Figure 3.7 shows the fabrication of the microparts. First a 200μm thick layer of 

SU8 (negative photoresist) is coated on the patterned wafer. Soft-baking is then 

carried out on a hot plate. The levelness of the hot plate is crucial to the final 

quality of the microparts. An unleveled hot plate will result in the reflow of SU8 

and will cause varying heights of microparts or under prebaked SU8. The level of 

the hot plate should be adjusted with level gauges before baking. Second, the wafer 

is put onto a maskaligner for UV exposure and then developed. After developing, 

the polymer microparts are formed on the wafer. Third, the wafer will be put into 

HF (Hydrofluoric Acid) to dissolve the sacrificial oxide layer. The dissolution time 

can be controlled by observing the color changes of the wafer. The change of color 

is caused by the optical interference effect. The color will change from purple to 

white and back to purple again. After this is repeated four times, it means that the 

SiO2 layer has been removed. Based on experiment, the dissolution time is about 

90 seconds. 

The base layer of the scaffold is also fabricated by the photolithographic technique. 

The CAD drawing of the mask for fabricating scaffold base is shown in Figure 3.8. 

 

Figure 3.8: CAD drawing of the base layer mask (The number indicate the nominal 

wall thickness of the micropart on the base layer). 
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3.3 Factors that Influence the Quality of 

Microparts 

3.3.1 Cross Section Shape of Plateaus 

The shape of the cross section of the plateau will finally decide the shape of the 

notches of the microparts. Different etching plasma recipes and etching speed will 

result in different cross section shapes of the plateau. Figure 3.9 illustrates three 

typical shapes of the cross section of the plateaus. 

A B C

 

Figure 3.9: Three typical shapes of the cross section of silicon plateaus. A: The 

tope is larger than the bottom; B: The tope is equal to the bottom; C: The tope is 

smaller the bottom.  

Type A: If the silicon wafer is etched under a high-speed recipe, the cross section 

of the plateau will normally take the shape of a trapezoid and the top is wider than 

the base. The advantage of this kind of plateau is that it lowers the criteria of the 

HF etching time after the SU8 has been fabricated. The HF etching time can be 

longer and even after all the SO2 has been removed, the microparts will still be 

attached to the wafer because the plateaus will “hold” them. In contrast for the 

cases B and C, the HF etching time should be precisely controlled. A shorter 

etching time will make the microparts difficult to be picked up and a longer time 

will cause most of the microparts to fall off the wafer. In our project most of the 

microparts fabricated were of type A. The notch of a micropart is shown in Figure 

3.10 (left): it takes a shape of a trapezoid. 
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Figure 3.10: A trapezoid-shape notch seen from the bottom of the micropart (left) 

and a micropart with T-toping problem (right). 

 

Figure 3.11: Cross section of a silicon plateau after two times of oxidization and 

HF erosion. 

Type C is desirable in the assembly process because such kind of plateaus will 

produce a slope on the notches that will guide the notches to insert into the walls 

and reduce the alignment accuracy criteria. It is possible to produce such plateaus 

by decreasing DRIE etching speed, but this is difficult to realize experimentally.  

Type B is a tradeoff between fabrication difficulty and quality of the final product. 

To facilitate the assembly process, fillets can be created at the feet of the 

microparts to guide the inserting action. To create fillets, the wafer will be put into 

HF after fabrication of the plateaus and oxidization in order to remove all the 
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silicon dioxide, and then the oxidization is repeated. By doing so, there will be a 

curve at the feet of the plateau which will create a fillet at the feet of the micropart. 

This oxidization and HF etching can be repeated many times to increase the size of 

fillet. Figure 3.11 is a SEM picture of a plateau after oxidization and HF erosion 

twice. 

3.3.2 Dimensions of the Plateaus  

The height and width of the plateau will finally decide the height and width of the 

notches of the micropart. In the design of Figure 3.3, a micropart at the edges may 

have only two notches to insert into the walls (such as the second layer). To keep it 

stable, its bottom has to be in contact with the second layer below it, so that in this 

case, the height of the notch should be larger than half the height of the micropart. 

In the experiment, it is difficult to precisely control the DRIE etching depth 

because the etching process is influenced both by the plasma recipes and the 

etching areas. The accuracy of the etching depth is about 5μm. 

During the DRIE etching, the covered area will not be totally free from the etching 

plasma. The width of the plateau will decrease as etching goes on. The width of the 

plateaus may also be influenced by other factors. To investigate the fabrication 

accuracy of the width of plateau, dozens of plateaus have been measured under 

high magnification optical microscope with the help of precise positioning 

workstation. Part of the data on the width of the plateaus is shown in Table 3.1. 
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Table 3.1: Width of plateaus whose design width are all 60μm. 

Wafer Width of plateaus measured Mean 

No. 1 55.6 54.8 54.9 55.4 55.8 54.6 55.2±0.2 

No. 2 53.7 54.0 56.8 55.9 54.7 54.0 54.9±1.5 

No. 3 54.0 56.9 55.8 53.6 53.0 56.8… 54.3±1.1 

 

 

 

Figure 3.12: Transmission rate of Hoya UV-34 [132]. 

3.3.3 T-toping Problem of SU8 Cross 

The photolithography process of fabricating SU8 cross is also affected by many 

factors. One of the most common quality problems with the SU8 cross is the T-

toping problem: the top surface of the microparts is a little bit larger than the 

thickness of the walls (see Figure 3.10 right). In this project, the T-toping 

microparts would cause a total failure of the assembly process. The T-toping 

problem may be caused by a poorly controlled baking temperature, unqualified UV 

light, a gap between mask and wafer, intense heating on the surface layer of SU8 

due to large exposure dosage at one time, etc. 

The unqualified UV light 

SU8 is sensitive in the near-UV region whose wavelength is about 365nm. The 

absorption spectrum of the photoinitiator for different concentrations can be found 

in [130]. The high absorption of the SU8 at wavelengths shorter than about 350nm 
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will overexpose the top layer of the SU8, causing a larger top. A solution to the 

problem consists of using a filter to cut down the wavelength to below 350nm 

[131]. In this project, we use a Hoya UV-34 UV long-pass filter. The transmission 

rate of the filter with respect to the wavelength is shown in Figure 3.12. Further 

technical specifications can be found in [132].  

Figures 3.13 and 3.14 show two microparts fabricated on the same wafer. The two 

microparts went through exactly the same fabrication process except for the UV 

exposure steps: The first part was exposed to filtered and the other one to 

unfiltered UV light. It can be clearly seen that the second micropart has the T-

toping problem.  

 

Figure 3.13: Micropart fabricated by filtered UV-light on blank wafer (no T-toping) 

(A) Micropart front view; (B) Micropart top view; (C) Part of micropart under high 

magnification optical microscope. 
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Figure 3.14: Micropart fabricated without filter on blank wafer (T-toping is 

observed) (A) Micropart front view; (B) Micropart top view; (C) Part of micropart 

under high magnification optical microscope. 

 

Figure 3.15: The influence of gap on the quality of the micropart (the left shows 

only one branch of the micropart, front view and top view). The larger the gap, the 

worse the quality will be. 
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Gap between the mask and the wafer 

The gap between the mask and the wafer during the UV exposure step is also 

crucial. To investigate the influence of the gap on the quality of the micropart, we 

put a piece of paper between the wafer and the mask to form a V-shape gap when 

exposed. The experiment results are shown in Figure 3.15.   

During microparts fabrication, unexpected gaps are often caused by the bubbles 

inside the SU8, which can be commonly seen after the spin coating process. For 

patterned wafer, it is almost unavoidable to have bubbles after SU8 coating. Large 

bubbles should be removed before pre-baking by sucking them out with syringes 

while small bubbles may be removed by longer pre-baking time. 

Besides these two factors that will cause T-toping problems, the baking time and 

temperature, the exposure dosage also has influence on the quality of microparts. 

The UV exposure dosage for 200μm thick SU8 is about 400mJ. Such a large 

dosage at one time will cause overheating of the surface layer of the SU8. This will 

cause the final product to have a “hard skin”, i.e. a phenomenon similar to T-toping. 

Multi-exposure will help to avoid the “hard skin” problem. This consists of 

exposing the wafer with many small dosages and waiting 60 seconds between 

exposures to allow the wafer to cool down. 

3.3.4 Dimensional Accuracy of SU8 Cross 

To investigate the accuracy of the thickness of the walls, microparts with different 

nominal wall thickness and diameter of the hole were fabricated on a single wafer. 
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The actual thickness of the walls was measured under a high magnification 

microscope. 

The measurement process goes as follows: Before measurement, the micropart 

wafer will be fixed on the precise positioning stages under top-view microscope. 

First a red horizontal line is drawn in the center of the microscope image (Figure 

3.16). Second, the micropart is moved and the encoder is reset to zero when one 

edge of the wall get tangent to the red line. Third, the micropart is moved until the 

other edge is tangent to the red line. The encoder reading will give the thickness of 

the wall. 

 

Figure 3.16: Measurement of the thickness of walls of micropart under high 

magnification optical microscope. (the red line is stationary, motion of micropart 

was accomplished by precision positioning stage and the encoder will give the 

thickness value.) 

Table 3.2: Wall thickness of wall of microparts (sample wafer A): nominal value 

and actual value measured (The nominal value is the design dimension on the CAD 

drawing). 

Nominal 

thickness 
Mean Thickness of wall of microparts 

55 60.0±0.4 59.0 60.7 60.0 60.4 60.0  

57 61.8±4.7 64.1 63.6 63.6 60.0 59.5 60.0 

59 63.7±2.1 64.0 64.7 64.1 65.5 61.8 62.1 
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Table 3.3: Wall thickness wall of microparts (sample wafer B): nominal value and 

actual value measured (The nominal value is the design dimension on the CAD 

drawing) 

Nominal 

thickness 
Mean Thickness of wall microparts 

55 66.8±0.2 67.0 67.2 66.8 66.1 67.0  

57 72.9±0.8 71.2 72.5 73.6 73.1 73.2 73.6 

From Tables 3.2 and 3.3 we can see that the thickness error can be larger than 5μm, 

which is relatively large compared to the average dimension of 60μm. And for 

different batches of microparts, the errors will be even larger. This poses a great 

challenge for mass fabrication of the microparts. 

3.4 Friction between the Microgripper and Part, 

and between Parts 

Among the dimensions of the micropart, three are mating dimensions and thus are 

crucial for the assembly process: the diameter of the hole which mates with the 

diameter of the microgripper tip, the width of the notch and the thickness of the 

wall which mates with each other. 

During the assembly process, the micropart will first be picked up and conveyed to 

the scaffold to get aligned with the other two microparts: the receptor. The 

micropart will then be pushed downward until the four walls of the receptor are 

seated into the notches of the micropart. Withdrawing the microgripper, friction 

between the micropart and the receptor will hold the micropart. In order to ensure 

that the microparts will cleave together with the receptor rather than attached to the 

microgripper after retracting, the diameter of the hole and the thickness of the 
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walls were specifically selected to make the friction between the microgripper and 

the micropart smaller than the friction between notches and walls. 

A batch of testing microparts with hole diameter from 90μm to 101μm was used to 

measure the frictions between microparts and the microgripper and so investigate 

the relationship between friction and the mating dimensions. And for measuring 

the friction between notches and walls, a base wafer with wall thickness from 

50μm to 60μm was designed and fabricated. 

Friction between the microgripper and microparts  

For a given microgripper, 80 microparts were used to measure frictions between 

the microgripper and microparts. The nominal diameter of the hole of the 

microparts ranged from 93μm to 100μm in steps of 1μm, and 10 microparts were 

tested for each size. 

The measuring process goes as follows. First the microgripper is aligned with a 

micropart manually and then picked up automatically (the automatic picking up 

process will be described in Chapter 5). Second, the micropart is conveyed to the 

releasing structure and the top of the micropart is then pushed against the releasing 

structure and the gripper is withdrawn slowly. The force acting on the top of the 

part begins to increase and when it reaches a certain level, the micropart is 

removed off the gripper. Figure 3.17 shows a typical force profile while removing 

a micropart from the gripper. The minimum value of the force sensor reading gives 

the static friction between the micropart and the gripper.  
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Figure 3.17: Force profile of releasing a micropart against the releasing structure. 

The minimum value gives the friction between the microgripper and the micropart 

Because the releasing structure cannot apply an evenly distributed force on the top 

of the micropart, the micropart will tilt a little bit when pushed against the 

releasing structure, which makes friction measured this way a little bit larger than 

the gripper-micropart friction in assembly. 

The friction values are shown in Figure 3.19, which also shows the successful 

picking up rate. Unsuccessful pick-ups results from two causes: For microparts 

whose nominal hole diameter is smaller than 94μm, unsuccessful pick-up happend 

when the hole is too small for the microgripper tip to be inserted under an 

automatic picking strategy. For the microparts with nominal hole diameter larger 

than 95μm, the gripper tip can always be inserted into the hole, but sometimes the 

friction is not large enough to lift it up.  

Friction between notches and walls  

During the assembly process, the four walls of the other two microparts (the 

receptor) will be inserted into the four notches of a part (Figure 3.12). To measure 
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frictions between notches and walls, about 50 receptors were tested. For each 

receptor, the friction was measured only once. The thickness of the wall of the 

receptor varies from 49μm to 54μm in steps of 1μm. For each size, about 10 

receptors were measured. 

To measure friction between notches and walls, a micropart needs to be fixed on 

the microgripper. The micropart fixed on the microgripper has a 92μm diameter 

hole to guarantee a firm connection between the microgripper and the micropart. 

The micropart with such a small hole cannot be picked up automatically: they are 

picked up by applying a much large inserting force manually. After pick up, the 

micropart is conveyed to the base wafer and aligned with a receptor. The automatic 

assembly action is then executed (the automatic assembly action will be described 

in Chapter 5). When withdrawing the microgripper slowly, the force value drops. 

The minimum value is the friction between notches and walls. A typical force 

profile during assembly process is shown on Figure 3.18. 

For each micropart used for this end, the assembly trials begin with 49μm wall 

thickness and ended with 54μm wall thickness. And if the micropart does not fell 

off the microgripper through out the whole process, it will be tried from 49μm wall 

thickness again. After 15 trials, i.e., 3 rounds of trials from 49μm wall thickness to 

54μm wall thickness, the part is abandoned on the releasing structure and another 

micropart is used. Totally 6 microparts were used in this measurement: 4 of them 

were assembled on the base wafer and 2 abandoned. 
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Figure 3.18: Force trajectory of assembling a micropart. The minimum value gives 

the friction between notches and walls. 

For mass fabrication of microparts, the nominal diameter of the hole of the part is 

set to 98μm where the successful picking up rate is relatively high (about 70%) and 

friction between microparts and gripper is small, 8.3mN on average, (Figure 3.19). 

In the automated microassembly experiment, this friction will be further adjusted 

by modifying the diameter of the gripper tip (see Section 3.2.4). The change in the 

diameter of the microgripper tip is of the sub-micron level. The thickness of the 

wall in mass fabrication ranges from 40μm to 60μm to cover all possible plateau 

widths. Only the microparts with proper wall thickness were used in the assembly 

experiment.  

The force between micropart and wafer during the picking up process is not 

measured because no obvious force was observed. A typical pick-up force 

trajectory is shown in Figure 3.20. We see that the force between part and wafer is 

negligible. 
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Figure 3.19: (A) Friction between a microgripper and a micropart; (B) Friction 

between notches and wall of different thickness. 

 

Figure 3.20: Force trajectory of picking up a micropart. 

Weight of the micropart is given by 

 -3 -41.2 (1.0 0.06 0.2 10 ) 9.8 1.411 10G Vg mN         .          (3.1) 

The weight of the micropart is orders of magnitude smaller than friction and so in 

the assembly process the gravity of the micropart and all other inertia forces are 

neglected. 
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3.5 Properties of Fabricated Microparts 

The fabricated micropart is shown in Figure 3.21. To test the feasibility of the 

whole assembly idea, a small cubic scaffold was assembled with the cross-shape 

microparts handled by the microgripper. Figure 3.22 shows the rectangular 

scaffold that was successfully assembled.  

 

Figure 3.21: Microparts cleave together by friction between them, as is 

demonstrated by lifting the assembly using the microgripper inserted into the hole 

of the top micropart. 

 

Figure 3.22: A 9-layer rectangular scaffold of a 3×3 base (front and top views). 
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3.6 Summary and Discussion 

In this chapter, I presented the design of the 3D microscopic parts and the 

architecture of the tissue engineering scaffold assembled with this kind of parts. 

The fabrication process and many key factors that influence the quality of the 

microparts were also discussed. 

There are two main steps in the fabrication process: the creation of plateaus on the 

silicon wafer, and the fabrication of cross-shape SU8 parts. After fabrication, the 

microparts will be regularly arranged as an array on the silicon wafer, which makes 

it easy to locate the parts in the automated assembly process. After assembly, the 

microparts cleaved together by friction, and after a certain number of layers all the 

microparts interlocked together to form an integrated scaffold. No heat, pressure or 

chemical was involved in the whole process. 

Factors that influence the shape and dimension qualities of the plateau and SU8 

polymer cross were discussed. These factors include the DRIE etching recipes and 

speed, the quality of UV light, baking time and temperatures, and the gap between 

wafer and masks. Suggestions to control these factors were also given. 

Friction between microgripper and microparts and friction between microparts are 

crucial for the assembly process. For each successfully assembled micropart, the 

friction between the part and gripper must be smaller than the friction between the 

part and the two parts under it. To investigate the relationship between friction and 

mating dimensions, friction at different mating dimensions were measured. 
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A major drawback of the fabrication technique is the low relative accuracy in the 

microparts dimensions, which is one of the toughest obstacles on the way towards 

automated microassembly. In the macro domain, for example, it is easy to reach an 

accuracy of 0.1mm on a part whose dimension is 500mm by means of milling or 

turning techniques. The relative error in this case is 0.02%. However, in the 

microscopic domain, for instance in this project where we used photolithography 

technique to fabricate microparts, the thickness of the wall was 60μm and the error 

about 5μm meant a relative error of about 8.8%. To address this problem, during 

the assembly process, each micropart has to be tested, and the unqualified 

micropart will be abandoned on-line. 

 

Figure 3.23: CAD drawing of the symmetric design of the micropart for micro-

molding. 
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The material used here is SU8, which is photosensitive but not bioresorbable. In 

future, poly (ε-caprolactone) (PCL) will be used for fabrication of the microparts. 

PCL is both biocompatible and biodegradable and it has similar mechanical 

properties with SU8. Details on materials selection can be found in [133]. A 

possible way of fabricating such microparts is by using of micro-molding 

technique. A symmetric design of the micropart is proposed for micro-molding in 

Figure 3.23. This design would facilitate both the micromolding and the assembly 

processes. 
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Chapter 4 

4  

Design and Fabrication of Microgripper 

4.1 Design of Microgripper 

A two-finger microgripper made of shape memory alloy (SMA) was developed in 

[43] to build tissue engineering scaffold by micro-assembly of building blocks. 

However there were two major limitations with this gripper that hindered its use in 

the automated microassembly task. The first was that the gripper is bulky. The 

SMA gripper was about 2mm×5mm viewed from top. This relatively large size 

occluded the part to be picked up when viewed by the top-view microscope, which 

was essential for automated alignment in my selected scheme. The second 

limitation was the unpredictable relative position between the gripper and the 

micropart it holds. As reported in [133], when the micropart made contact with the 

scaffold, it would slide against the gripper. If the impact force is too large, the 

micropart may break away suddenly. These limitations posed great challenges to 

automating the assembly process.  

The inspiration of a new microgripper design came from peg insertion. We 

envisioned that by inserting a peg into a hole fabricated on the micropart, this 
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micropart will be stably “grasped” by the peg, and it will thus become possible to 

control its position and orientation. In order to leave the space over the micropart 

free when viewed from the top, an L-shape microgripper was designed, as shown 

in Figure 4.1. The arm which held the gripper was a cantilever beam structure and 

it also functioned as a mechanical amplifier to produce a larger torque at the fixed 

end where a force sensor was mounted. 

The gripper probe had a metal tip and a pushing shoulder. The tip was less than 

100μm in diameter, so as to interface with a through hole on the micropart. The tip 

was designed to be 180μm in length, which was shorter than the height of the 

micropart by 20μm. This will guarantee full contact of the part with the pushing 

shoulder after insertion. 

The pushing shoulder, made of SU8, was fabricated by using photolithography. 

The outer diameter of the pushing shoulder was about 200μm, which was small 

enough so as not to occlude the parts in the top-view, while at the same time large 

enough to apply a pushing force on the top surface of the micropart during 

assembly. The height of the pushing shoulder was selected as 150μm, a tradeoff 

between the strength of the component and fabrication difficulties.  The strength 

will be increased with a longer height, but that will make the fabrication process 

more difficult as a thicker layer of SU8 coating will be required, thereby needing a 

larger exposure dosage causing more control problems. 

The L-shape microgripper had the following advantages over the two-finger SMA 

microgripper: 
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1. Low cost. Compared with the old design, this microgripper was much 

simpler and hence cheaper. During the automated microassembly 

experiment, the microgripper was one of the most fragile elements, and so 

low cost and easy exchange were highly desirable. 

2. Fixed relative position between the microgripper and the micropart being 

handled. For the two finger microgripper, the contact point on the 

micropart could be any parallel surfaces on the micropart, but for the L-

shape microgripper, the contact point must be the hole and the top surface 

of the micropart which made the relative position between microgripper 

and micropart the same for all the microparts grasped. This fixed relative 

position also meant that the relative position between the precise 

positioning stage and the micropart was known, which simplified the 

closed-loop position control based on vision feedback. 

3. Evenly applied force on the top surface of the micropart. The evenly 

applied force provided by the pushing shoulder prevented tilting and 

sliding of the micropart when coming in contact with the scaffold, which 

makes automated inserting action feasible. 

 

Figure 4.1: Design of L-shape microgripper. 



Chapter 4: Design and Fabrication of Microgripper                                               56 

 

4. Ease to integrate force sensing in the arm. With this L-shape microgripper, 

it was easy to incorporate a force sensor as shown in Figure 5.4. 

4.2 Fabrication of Microgripper 

Tungsten was chosen to fabricate the main body of the gripper for its excellent 

mechanical properties (hardness 14GPa and Young‟s modulus 380GPa [134]). 

Since the invention of STM in the 1980s, tungsten was widely used for fabricating 

tiny sharp tips. Possible fabrication methods with tungsten include electrolyte or 

electrochemical etching, chemical polishing/etching, ion milling, cathode 

sputtering, etc. [135]. Electrolyte etching was adopted here for its low cost, 

simplicity and ease of observation. 

4.2.1 Total Charge and Tungsten Tip Diameter Relationship 

The electrochemical reaction of dissolution of tungsten in an alkaline solution is 

given by [136] 

 eOHWO OH W - 648 2

2

4  

.               (4.1)                           

When a voltage is applied to the tungsten rod (anode), the etching process will take 

place at the air/electrolyte interface. In the electrochemical reaction, the tungsten 

rod will be oxidized and the resultant tungstate anion ( 2

4WO ) is soluble in water. 

According to Faraday‟s Law of electrolysis, the mass of the substance altered at an 

electrode 
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where, Q the total electric charge passed through the substance, F the Faraday 

constant, M the molar mass of the substance, and z the valence number of ions of 

the substance (electrons transferred per ion). 

D = 0.2mm

d

L
 =

 0
.9

m
m

 

Figure 4.2: Calculation of the weight etched off if we assume that the tungsten tip 

remains a cylinder shape all the time. The length immersed into electrolyte is 

0.9mm. 

The total charge Q is the electric current  I   integrated over time τ 

                                       
0

t

Q I d   ,
              (4.3)         

is obtained by a specially designed circuit and a computer, as will be explained in 

Section 4.2.3. 

If we assume that during the etching process the tungsten tip remains at a cylinder 

shape (Figure 4.2), the mass of tungsten etched off the tip is then given by:  

  

2 2

( - )
4 4

D L d L
m

 
 

.
                                     (4.4) 

In the experiment, the original diameter of the tungsten rod was 0.2mm and the 

length immersed into KOH solution 0.9mm. From Equations (4.2) and (4.4) we get 

the following relationship between the diameter d and the total charge Q, 

                                  
2 4

-
MQ

d D
L zF 

 .                            (4.5) 
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In our case, the values of all parameters are listed in Table 4.1. From Equation 4.5 

we can see that the diameter of the tungsten tip can be controlled by controlling the 

total charge Q.  

Table 4.1: All parameters for calculation of the etched diameter. 

Faraday constant (F) 96485.3383 C mol  

Density of Tungsten    

Atomic weight  M  

Valence number  z  

19.25 3g cm  

183.84 1g mol  

6 

Original diameter  D  

Length  L  

0.2 mm  

0.9 mm  

 

To precisely control the etching charge during the tungsten tip etching process, a 

circuit was designed and implemented (Figure 4.3). The resistance of the power 

resistor is a constant value. By reading the potential of the power resistor, the 

current going through the electrochemical circuit is known in real-time. The 

sampling rate of the ServoToGo card for reading potentials from the power resistor 

is 100Hz. Total charge can then be obtained by integrating with time by the 

computer. 

DC

Relay

Power resistor

KOH solution

ServoToGo 

Card

Computer

 

Figure 4.3: Etching charges control circuit 

4.2.2 Current-Voltage Relationship 

To find the proper voltage used for electrochemical etching process for a given 

tungsten tip, the current values under deferent voltages is recorded (Figure 4.4).  
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Figure 4.4: Typical current-voltage relationship obtained during electrolyte etching 

of the tungsten tip. 

Similar I-V curves were also reported by [137, 138]. We see in Figure 4.4 that 

when the voltage increases from zero to a certain value, the current will increase 

dramatically, and then enter into a plateau, that is, although voltage keeps 

increasing, the current remains relatively stable. As reported by [137], an applied 

voltage larger than the plateau phase will result in violent electrochemical reactions 

and hence produce cavities, holes and poor quality of the surface on the tungsten 

part. So in our experiment, for coarse etching, the DC power is set to be about 5V 

and for final fine etching the voltage is reduced to about 1V.  

4.2.3 Experiment Setup 

The experimental setup for fabrication of the microgripper included a set of 

precision positioning stages (PI M-511 series), three sets of optical microscopes, a 

plastic container, a DC power supplier, a data acquisition card (ServoToGo card) 

and a PC. The precise position stages were used to manipulate the tungsten tip and 

the fabrication process observed under the microscopes. Electro-chemical etching 
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Figure 4.5: Microgripper fabrication setup. 

charge control was accomplished by a circuit and the computer. The whole setup 

was placed on an anti-vibration table in order to avoid perturbations. 

A closed-up view of the experiment setup is shown in Figure 4.5. The tungsten rod 

was clamped by a clamper mounted on the Z stage, and the whole etching process 

was monitored using two microscopes. The length immersed into the KOH 

solution was controlled by both the Z and V stages. The electrolyte used was 2mol 

KOH solution.  

Microgripper fabrication software 

The software used for fabricating microgripper provided a friendly interface for the 

user to manipulate the precision workstation and observe the etching process 

through the optical microscopes. The software was also used to monitor the current, 

voltage, etching time, and shut off the power supply of the etching circuit 

automatically, so as to control the diameter of the tungsten tip during the etching 

process. Automated grinding process was also controlled by this software. 
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Figure 4.6: Graphical user interface of microgripper fabrication software. 

This software also allowed the user to set the desired diameter before etching, and 

the DC power supply will be cut off when the diameter reached this value. The 

diameter accuracy that can be achieved in this way was about 10 microns. The low 

accuracy was due to the irregular shape of the ends of the etching part of the 

tungsten rod and the inaccuracy of the length immersed into the KOH solution. 

After coarse etching, the diameter of the tungsten rod can be estimated from the 

number of pixels of the tungsten tip on the screen, or for higher precision using the 

sizer. After measurement, the diameter of and etching length of the tip should be 

updated on the GUI and etched again. The detailed fabrication process is described 

now. 
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4.2.4 Fabrication Steps 

1. Bend the tungsten rod manually with a modified tweezers after cleaning 

with acetone. The angle of the bent tungsten rod is larger than 
o90  to 

leave some space for the clamper. After bending, the tungsten rod is 

mounted on the Z stage through a clamper. The angle of the clamper is 

adjusted so that the tungsten tip is perpendicular to water level contours 

(Figure 4.8 A).  

2. Immerse the end of the tungsten rod into the KOH solution by operating 

the Z stage manually. Leave the 0.9mm tungsten rod above the surface of 

the solution, and etch off all the longer part. 

3. Move the 0.9mm long tungsten rod into the electrolyte and set the desired 

diameter to 110m and start etching (Figure 4.8 B). The reason for 

etching such a long tip is to avoid tapered cylinder shape at the end. After 

the DC power is disconnected automatically, draw back the tungsten tip 

and clean the tip carefully with dust free papers immediately. Long 

exposure of the etched tungsten in the air will cause the surface to coat 

with probably 3WO  [138], which is hard to remove (Figure 4.8 C).  

4. Estimate the diameter of the tungsten tip by measuring the pixel distance 

of the tungsten tip on the microscope images. Update the diameter value 

on the control software GUI, and set desired diameter to 100μm, and start 

etching again. 

5. Draw up the tungsten tip by 380μm, and then etch off the longer part 

(Figures. 4.10 D, E). 
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Figure 4.7: Relative motion of the tungsten tip against sandpaper in grinding 

process. 

6. Move the tungsten tip to the sandpaper, push it against the sandpaper and 

then click auto-grind button to start grinding process. Grinding is used to 

remove the sharp end of the tip (Figure 4.8 F).  

7. In each cycle only one stroke is used for grinding, that is the stroke whose 

relative moving direction is opposite to the bend direction of the tungsten 

tip so as to avoid breaking of the bending point. After each cycle, the 

sandpaper will move to one side by 100μm in order to avoid over-wearing 

a particular track on the sandpaper (Figure 4.7).  

8. Measure the diameter of the tungsten tip with the sizer (Figure 4.8 G) 

(sizer is a set of microparts fabricated on a silicon wafer with the size of 

the holes of the microparts range from 95μm to 105μm in steps of 1μm) 

and then update the etching length and diameter on the GUI to prepare for 

the final fine etching. By repeating the measuring, updating, and etching 

steps, the tungsten tip diameter accuracy can become smaller than 1μm. 

9. After the tungsten rod is ready, move it to the pushing shoulder wafer. 

Pushing shoulder made of SU8 is fabricated by using photolithography 

technique, i.e. as for microparts. The inter diameter of the pushing 
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shoulders ranges from 70μm to 100μm. Select a proper pushing shoulder 

and insert the tungsten tip into the hole. The connection between the 

pushing shoulder and the wafer will be broken by the insertion (Figure 4.8 

H). 

10. Withdraw the tungsten rod; the pushing shoulder will come up with the 

tungsten tip. Then insert the tip into a larger hole, move downward the 

tungsten tip to push the pushing shoulder to the upper end of the tungsten 

tip (Figure 4.8 I).  Because the diameter of the upper end will be larger 

than the lower end, the pushing shoulder will be fixed there. Figure 4.8 J 

shows the finished microgripper compared with a human hair. The 

performance of the gripper will be discussed in the following section.  

    
 A) Tungsten rod bent for electrolyte        B) Etch tungsten rod to a certain       

      etching.                                                            diameter. 

     
 C) Etched tungsten tip covered with  D) Etch off the extra length. 

         3WO  probably [138]. 
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 E) Tungsten tip after electrolyte etching.            F) Grind against sandpaper. 

   
 G) Measure the diameter of the gripper        H) Put on pushing shoulder  

       with sizer.                                                          (top view). 

   
  I) Fix the pushing shoulder on tungsten            J) Finished microgripper compared     

      tip by pushing against a larger girdle.            with a human hair. 

Figure 4.8: Microgripper fabrication steps. 

4.3 Design and Fabrication of Releasing Structure 

As discussed in the above, a major advantage of the L-shape passive microgripper 

is the simple structure and the relatively low cost. But on the other hand, because 

there is no actuator with this gripper, it can not release a micropart actively. For 
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unqualified micropart, for instance, a micropart misses one branch due to the bulbs 

during the spin coating process; there must be an active releasing strategy to 

remove it from the gripper. 

To release the unqualified micropart actively, a releasing structure was designed 

and fabricated. The releasing structure was a half-circle-shape notch machined on a 

small metal plate. The dimension of the notch must be big enough for the micro-

gripper tip with pushing shoulder to go through, while small enough to block the 

microparts. The diameter of the half circle was designed to be 300μm. The height 

of the releasing structure should be of the same order as the scaffold to prevent 

collision during the assembly process. 

The notch was machined by electrical discharge machining (EDM) technique. The 

main body of the releasing structure was also made of tungsten. A tungsten rod, 

1.2mm in diameter, was grinded on both sides to form a thin plate at one end. EDM 

was then used to cut a straight line at the end and cut in to form a half-circle-shape 

notch. After fixing the tungsten rod to a square magnetic plate, the releasing 

structure was completed.  

The releasing process was shown in Figure 4.9. The micropart adhered to the 

releasing structure after drawing up the microgripper due to the static electricity 

produced. During the automated assembly process, after releasing a micropart, the 

microgripper was programmed to go down again to remove the micropart from the 

releasing structure. Although a micropart stuck to the releasing structure will not 

disturb the next releasing action, it will influence the alignment of the releasing 

structure through machine vision. 
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Figure 4.9: Process of releasing a micropart. (A) Top-view of the releasing 

structure. (B) Align the gripper with the releasing structure. (C) Move the half-

circle notch above the micropart. (D) Retract gripper to remove the micropart. 

4.4 Discussion 

This chapter presented a novel microgripper designed for handling the microparts 

which will be used to build tissue engineering scaffolds. The L-shape microgripper 

had a more compact size compared with the two-finger shape-memory-alloy 

gripper previously used and it will not occlude the microscopic building blocks 

from top view. The simple structure of this microgripper made it low cost and easy 

to exchange. With a pushing shoulder mounted on a tungsten tip, the microgripper 

can apply an evenly distributed force on the top surface of the micropart so as to 

facilitate the automated inserting process. The “grasping” action was achieved by 

inserting the tungsten tip into the hole of the micropart so that the relative position 

A B 

C D 
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between the microparts and the manipulator is fixed which makes the automated 

alignment based on visual information simple. 

As no actuator is involved with this gripper, successful grasping and releasing 

depend on friction. And because the friction involved in the microassembly 

process is hard to control, the pick-up and release success rates are relatively low, 

and for unsuccessful assembly, the unqualified micropart must be disposed off, 

which can be automated, but slows the process. Another limitation is the accuracy 

of the diameter of the tungsten tip. Lack of proper measurement prevented sub-

micron accuracy with is highly desired for friction control. 
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Chapter 5  

5  

Closed-loop Force Control 

5.1 Introduction 

Force control has been used in mainly three applications in the micro world: to 

control grasp, impact or in assembly or insertion control. To date, most of the 

research on force control in the microworld has been performed for grasping [11, 

36, 123, 139, 140], which is crucial for micro-manipulation but not necessary in 

microassembly. To grasp bio objects or optical fibers, a force sensor mounted on 

the gripper fingers prevents damage and enables reliable picking up. 

Impact force control is essentially done via approaching velocity control. Impact 

force is almost solely determined by the mass of the collision objects and the 

relative velocity, because other factors such as stiffness, elasticity and viscosity of 

the part are invariant for a certain task. Yang and Nelson successfully controlled 

the impact force by reducing approaching velocity using a proximity sensor [15] 

that is able to estimate position where the optical microscope may not be able to 

because of the limited depth-of-view. 
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Insertion force control is necessary to successfully accomplish a peg-into-hole task 

without damaging the microparts. One difficulty for insertion control is the 

embedding of force sensors between the arm and the gripper. Micro assembly 

intrinsically demands a high positioning accuracy, which requires precise stages 

and high stiffness of the connections, i.e. adapters, arms and joints. While high 

resolution force sensors normally have a delicate and fragile elastic element, 

embedding such an element into the gripper will largely reduce the system 

positioning accuracy and robustness. Designing a force sensor with both high 

stiffness and high resolution is still a challenge and thus most of insertion tasks 

were done in a tele-operated fashion based on visual feedback [9, 12, 87, 58]. 

We have previously developed insertion force control by using a flexure stage 

[141]. Because the flexure stage was friction free in its moving direction, it was 

ideal for explicit force control. However the flexure stage had an intrinsic problem. 

To make it frictionless, the motion part of the stage was supported by 4 spring 

structures, which made the natural frequency of the stage very low and caused 

large variations during conveying and insertion. Therefore the whole system could 

only work at very low speed and in turn resulted in low efficiency. 

To increase the assembly throughput, a new force sensor and admittance control 

laws were implemented in this project. These were used on off-the-shelf 

commercial stages. The new design also enabled the system to analyze the 

insertion status based on both position and force information, thus enabling 

realignment based on force feedback when visually controlled alignment failed. 

The force sensor was designed to have a cantilever beam structure with the gripper 
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fixed at the free end and an elaborately designed elastic element at the supporting 

end. The cantilever beam worked as a mechanical amplifier to produce a relatively 

large moment at the supporting end when a force was loaded at the free end. 

Deformation of the elastic element was measured by a strain gauge glued to the 

surface of the elastic element. The measurement range of the force sensor was 

about 500mN, with a resolution of 3mN, which was just suitable for the application 

in this project. 

Admittance control was implemented in this project [142]. The idea of admittance 

control is that when the manipulator gets in contact with the environment, the force 

sensor will report the force value to the controller, and based on this force value 

new position, velocity or maybe acceleration command will be sent to the actuator. 

The manipulator is given a behavior of desired admittance by modifying position 

commands based on force feedback. Since there is no need to model the 

environment, which is difficult to carry out in most cases, implementation of 

admittance control becomes very simple. 

 

Figure 5.1: Implementation of admittance force control with our setup. 
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The working principle of the force control system is illustrated in Figure 5.1. A 

gripper fixed on the arm was carried by the Z stage to move up and down to realize 

insertion and retraction. The arm was a cantilever beam, which will sustain the 

force when the free end of the cantilever made contact with the environment. 

Contact force control was accomplished by adjusting the Z stage position based on 

the strainmeter reading. 

The value of the gripper arm stiffness K was crucial for the performance of the 

admittance control system. If K was too large, i.e. the arm was very rigid, the force 

will be sustained by the deformation of the micropart, and if the micropart was 

brittle, the contact force will increase dramatically after contact, which may 

damage the micropart or the gripper. On the other hand, if K was too small, i.e. the 

arm was very flexible, the position information will be less reliable for perceiving 

inserting status and may even cause vibration. The stiffness of the arm was 

computed from the working distance and the resolution of the position encoder of 

the Z stage. The design of force sensor was coupled with the design of K, as will be 

further discussed in the following sections. 

Both picking up and assembling of a micropart can be interpreted as a peg-into-

hole problem. The combination of the position and force information will tell 

whether the peg has been inserted into the hole properly so as to realize “blind” 

realignment, i.e. based on force information solely. Two strategies can be taken to 

combine the two kinds of information: 

   1. Pushing down by a certain distance and checking out the force; 

   2. Applying a certain force and checking out the position. 
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In this project, the latter one was adopted because it will also help in protecting the 

part from damage by large contact forces. The details will be further discussed.  

5.2 Force Sensor Design 

The forces in microassembly are in the range of hundreds of mN, which demand a 

very flexible elastic element. However large flexibility would deteriorate the 

positional precision, which is crucial in microassembly. The design of the force 

sensor for microassembly is thus a tradeoff between sensitivity and rigidity. 

In this project, we used an elastic element that will deflect under load with two 

semiconductor strain gauges attached to the surface. One end of the elastic element 

will be fixed onto the Z stage (the vertical stage) and a gripper clamper will be 

fixed to the other end to form a cantilever beam structure. The main body of the 

sensor is shown in Figure 5.2. Force was loaded on the free end of the cantilever 

and strain gauges will be glued to the support end where the strain is maximal. 

To simplify the problem, in the following analysis, the microgripper with its 

clamper was simplified as a rigid cantilever beam with a concentrated force loaded 

at the free end of the beam. The elastic element has a rectangular cross section. 

 

Figure 5.2: Force sensor body designed 
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Figure 5.3: Cantilever deformation. 

The two most important values to consider are: the strain measured by strain 

gauges, which represents the sensitivity of the force sensor, and the deflection of 

the free end under load, which represents its stiffness. The design criterion is that 

the strain should be large enough,  30 , to guarantee an acceptable resolution, 

and the deflection should be sufficiently small, μm010 , to assure stiffness. 

Figure 5.3 shows a cantilever beam under load. The maximum bending moment, at 

the support end of the cantilever, is given by 

                                                          FLM  ,                            (5.1) 

where F is the loading force from the microgripper and L  the length of the 

cantilever. According to theories of mechanics of materials, the strain is given by 

               
bEh

FL
2

6
                                            (5.2) 

where E , the elastic modulus, indicates the stiffness of material within the elastic 

range. And the deflection of the free end is given by                                        

                                    
3

12

Ebh

FlL
 .                                         (5.3) 
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Comparing Equations (5.2) and (5.3), l affects stiffness only. We first set l = 3mm, 

considering the length of the strain gauge and fabrication process. F should be less 

than 1N based on experiment. L should be larger than 70mm to enable us to use a 

microscope placed above the working platform for control. For aluminum, E = 

73.1GPa. A relatively larger h and smaller b will increase the stiffness without 

compromising the sensitivity. The value of b should be selected as small as 

possible. While considering the strength and area for gluing strain gauges, it was 

set that b = 3mm and then h was determined from the above equations as h = 6mm. 

Two bar-shape semiconductor strain gauges (Model SS-027-013-500P, Micron 

Instruments, USA - overall length: 6:858mm, width: 0:2286mm, gauge factor: 

155±10, operating strain: ±2000μ) were attached to the top and bottom surfaces of 

the elastic element. Signal processing was accomplished by a TML‟s one-channel 

dynamic strainmeter: DC-92D, which provided the functions of forming a half 

Wheatstone bridge, auto-balancing, signal filter and signal amplifier. The finished 

sensing module is shown in Figure 5.4. 

 

Figure 5.4: Close-up view of the force sensor, gripper and its clamper. 
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5.3 Force Sensor Calibration 

Calibration of a force sensor usually consists of establishing the relationship 

between the output signal and the loading force. For this project, two more 

relationships will also be used: the relationship between force load and deflection 

of the end tip will be used to examine the status of inserting process based on 

position encoder reading and force sensor reading, and the relationship between 

force load and lateral slide of the end tip helps compensates for alignment error in 

the Y direction during insertion.  

a. Output signal and force load relationship 

Calibration was performed as follows: First the force sensor, clamper and gripper 

are mounted on the Z stage. A digital balance with total measurement range of 

200g and accuracy of 0.01g was mounted on the V stage under the gripper tip. The 

stage is moved down in 5-micron steps and the gripper will push against the digital 

balance. The digital balance gave the value of force load, and for each step the 

output of the strainmeter is plotted against the force load. After the force reaching 

about 500mN, the Z stage moves backward with the same step size, and the data is 

also recorded. 

Through a least-square fit with a straight line, the sensitivity of the force sensor 

was estimated to be 15.8mV / mN. Figure 5.5 showed the good linearity of the 

force sensor. 
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Figure 5.5: Calibration result: force load and output voltage relationship. 
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Figure 5.6: Sensor noise in idle state. 

Since the output of the sensor is analog, its resolution strongly depends on the 

noise level of the strainmeter and the data acquisition card (DAQ). The output of 

the strainmeter in the idle state of the force sensor is shown in Figure 5.6 .The 
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maximum deviation of the output voltage from the sensor is about 0.05V , which 

accounts for a force sensor resolution of around 3mN. 

b. End tip deflection and force load relationship 

As discussed above, the position information and the force information will be 

combined to infer how the insertion is progressing. The encoder of the Z stage can 

give the position of the supporting end of the arm, and when the deflection of the 

gripper tip is known, the exact position of the gripper tip will be determined, from 

which we will then know whether the part has been inserted or not.  

The calibration process is similar to the above process; however this time the 

digital balance is replaced by a piece of iron. Because the surface of the iron is so 

hard that no deformation is observed under microscope when pushed against by 

gripper tip, the encoder reading of the Z stage is the deflection of the end when 

loaded. For each motion step of the Z stage, the encoder reading and the output 

voltage of the strainmeter are recorded. The whole calibration process was 

programmed with visual C++ and performed automatically. Using the force-output 

relationship established before, the deflection and force relationship was obtained 

(Figure 5.7), and this deflection is consistent with the design.  

c. Lateral sliding and force load relationship 

When a force was applied to the gripper tip, the gripper tip will move a little bit 

along the Y direction (Figure 5.8). This motion is caused by the deformation of the 

fixtures. Although the motion distance is of the order of microns, it will negatively 

affect the insertion. To compensate for this lateral sliding, the applied force and 

sliding distance relationship should be established first. 
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Figure 5.7: Calibration result: relationship between deflection and force loaded at 

the gripper tip. 
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Figure 5.8: Gripper tip slide along Y direction as pushing force increased. (A) 

before the gripper tip was making contact with the wafer; (B) after the gripper 

pushing against the wafer. 
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Figure 5.9: (A) Template of the gripper tip; (B) Template of a mark. 

The sliding distance of the gripper tip will be measured by image processing, in 

particularly by pattern matching. Before the calibration, the relationship between 

the pixel distance (the distance in the image) and the real world distance should be 

obtained.  This is also accomplished using pattern matching. 

Figure 5.9 B shows the template of a SU8 mark fabricated on the wafer, which was 

then fixed on the Y stage. The position encoder of Y stage was first set to zero and 

the mark‟s position in the image was determined through pattern matching. Then 

the Y stage was commanded to move a certain distance and a new image was taken, 

the mark‟s position was estimated and recorded again. This was repeated two more 

times, and the resulting data is shown in Figure 5.10. The relationship between the 

pixel distance and the real world distance is then obtained, which is that each pixel 

represents 1.6μm in the real world.  

The pattern matching algorithm used in the above process is the same as the one 

used to determine the gripper tip position. Because the template image is a sub-

image of the source image, the estimated position can be very accurate (sub-pixel 

accuracy). The details of pattern matching will be presented in Chapter 6. The 

template of gripper tip is shown in Figure 5.9 A.  

B A 
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Figure 5.10: The relationship of the real world position given by encoder and pixel 

position in the image of a SU8 mark. 
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Figure 5.11: Calibration result: relationship between forces applied at the gripper 

tip and the lateral sliding distance of the gripper tip. 
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To measure the sliding distance, the loading force was also performed by moving 

the Z stage in steps as described in the calibration process above. After each step, 

both the pixel position of the gripper tip and output voltage of strainmeter were 

recorded. All the motion, image processing and recording processes were 

programmed and accomplished automatically. The real sliding distance was then 

calculated using pixel-real world distance relationship and the sliding distance was 

plot against force applied at the gripper tip (see Figure 5.11). Despite the hysteresis, 

the estimated sliding distance can achieve an accuracy of less than 5μm. In the 

experiment, Figure 5.11 was used to reduce the alignment error. 

d. Natural frequency of the force sensor and clamper 

With a cantilever beam structure mounted on the Z stage is moving up and down, 

one of the most important issues is the vibration in the Z direction. If the natural 

frequency of arm is similar to the working frequency, it will affect the control 

tremendously. 

The natural frequency was measured by attaching a human hair to the free end of 

the cantilever, and dragging the hair upwards until it broke. Then the arm will 

vibrate freely and the output voltage of the force sensor was recorded with an 

oscilloscope (see Figure 5.12). From the figure, we can see that from 0.05 to 0.1 

seconds, there are totally 9 waves, so the first order natural frequency of the 

cantilever is about 

 9 0.05 180nF Hz 
.
                                   (5.7)  
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The frequency of the motion command sent from host PC to stage controller is 

66.67Hz, which is 3 times smaller than the natural frequency of the force sensor 

and the clamper. Actually, no resonance was observed in the experiment.  
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Figure 5.12: Strainmeter output of free vibrating arm. 

5.4 Force Control Strategy 

In this project, the actuator used for admittance force control is a precision stage. 

The maximum force output of the stage is about 80N, which is much larger than 

the environment force (in the range of hundreds of mN). Therefore, as seen from 

the environment, the actuator is very stiff, which enables good admittance control 

because the position of the actuator can be precisely controlled even with the 

presence of environment forces.  
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5.4.1 Assembly of a Micropart Process 
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Figure 5.13: Flow chart of assembly a micropart onto the scaffold. 
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Figure 5.14: Illustration of assembly of a micropart. 

Let us first describe the assembly process. Figure 5.13 shows the flow chart for the 

assembly of a micropart onto the scaffold and Figure 5.14 illustrates the assembly 

process. 

The original position of the gripper was set to about 450μm above the top of the 

scaffold. After visually alignment, the gripper with the micropart will move down 

400μm at the maximum velocity of 50mm/s. Then velocity was reduced to 200μm/s 
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and the host PC started reading the force values from the force sensor. When a 

strainmeter output larger than 0.1V (according to Figure 5.6, the noise is within 

0.05V) was observed, it is deemed that the micropart has made contact with the 

receptor. 

After contact, the position of the Z stage, P1, will be recorded for further usage and 

the mechanism will load a certain force, FT1 (the value of FT1 is carefully selected, 

see the following paragraph), on the micropart to try to assemble it. The moving 

down velocity of the stage will be reduced to 

  
votagesafe FkVV 11

,
                                   (5.4) 

where Fvoltage is the strainmeter reading (the relationship between actual force and 

strainmeter reading is shown in Figure 5.5) and Vsafe is maximum safe velocity 

during assembly which will be discussed in Appendix A. The value 1 was added to 

prevent a sudden change of velocity and k1 was set to 1 in the experiment.  

Figure 5.15 shows a typical force profile recorded when a part was pushed down at 

constant velocity after alignment. And Figure 5.16 illustrates the assembly process. 

When the Z stage moved about 450μm, the bottom of the micropart just touched 

the top surface of a receptor (Figure 5.16 A). As the Z stage continued to move 

down, the force will increase at a rate similar to the case of pushing against a hard 

surface as shown in Figure 5.5. During this period from P1 to P2, (Figure 5.15) 

although the Z stage kept moving down, the part was stopped by receptor, because 

the width of the notch of the part is smaller than the thickness of the wall. Force 

increment was sustained by the bending of the cantilever structure: the elastic 
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element and the clamper (Figure 5.16 B). When the force reached a certain level, 

the part will be pushed down onto the receptor abruptly, and this was the 

penetration point, point B. The pushing force at this point was about 150mN. So, 

the value of FT1 was set to be 180mN. After that the force value will increase again 

as part is pushed down continuously.  

Assembled? 

To decide whether the micropart has been properly assembled, a position threshold, 

PT, was selected based on Figure 5.15. If the Z stage passed PT, it was deemed that 

the micropart had penetrated and will be pushed further. If not, the micropart will 

be realigned and the assembly tried again. 
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Figure 5.15: Typical force profile of insertion of a micropart into the scaffold at 

constant velocity. P1: micropart making contact with scaffold, P2: micropart 

penetrated into scaffold, P3: where the Z stage will be when force reaching without 

penetration, PT: position threshold (if the Z stage passed this point when force 

reaches FT1, it means that the micropart has penetrated into the scaffold) P4: actual 

position of the Z stage in case of penetration, E: fully inserted. 
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PT was decided as follows. If there was no penetration, i.e. the part was not 

assembled properly, the encoder reading of the Z stage will be around P3 (Figures 

5.16 C and 5.15) when the force reached FT1. If the part was properly assembled, 

the position of the Z stage will be around P4 (Figures 5.16 D and 5.15). A position 

threshold PT was selected between P3 and P4. If the position of the Z stage passed 

PT when the force value reached FT1, it was deemed that the part had penetrated  

P1

x

P1

x

P2

Z stage

P1

x

Gripper arm

P1

x

P3

P4

Strain gauges

A B

C D

S
u

st
ai

n
 ~

1
5
0
m

N

S
u

st
ai

n
 ~

1
8
0
m

N

S
u

st
ai

n
 ~

1
8
0
m

N

P2

P3

P2

 

Figure 5.16: Illustration of insertion process. (A) The bottom of the micropart 

contacts the top surface of the receptor; (B) Just before penetration. Deflection 

caused by the increasing force is sustained by the deformation of the gripper arm; 

(C) The stage exerts FT1 on the micropart, if it does not penetrate into scaffold, the 

position of the Z stage will be around P3; (D) If the micropart penetrate into 

scaffold under FT1, the position of the Z stage will be around P4. 
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into the scaffold. If not, the part was not inserted into the scaffold at all and was 

stopped at the surface, either because of misalignment or defection of the part. 

The determination of PT was crucial to the inserting process. If PT was too close to 

P4, there will be a larger possibility that a properly assembled part was assumed 

otherwise. If PT was too close to P3, non-assembled part may be assumed to be 

assembled properly. 

In the automatic assembly process the penetration position threshold PT was set as: 

 
1 70TP P m 

,
                                            (5.5) 

where P1 was the position of the Z stage when the part made contact with the 

scaffold. For different trials, P1 may be a little bit different. Setting PT in this way 

rather than using a certain value eliminated the negative influence of the uneven 

surface of the scaffold. The height of the top surface of the micropart will become 

less predicable as more layers are built on the scaffold. 

It is worth mentioning that in Figure 5.15 point E was the fully assembled point. 

The slope AB was similar to slope EF and they were all similar to the slope of 

pushing against a hard surface (Figure 5.5). Point E indicated the full insertion 

point, i.e. part will not be able to move down further after this point. The pushing 

force for full insertion was about 350mN. 

For some micropart assembly process, the sudden force drop point B may be not as 

evident as shown in Figure 5.15, and in some cases there may be no peak at all. 

However this will not affect the performance of the assembly strategy: as long as  
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Figure 5.17: Blind realignment route. 

the friction between the part and receptor was larger than the touching threshold, 

the assembly strategy will work. 

Blind fine realignment 

If the insertion was deemed as failed, the Z stage will withdraw 100μm and the part 

realigned. Realignment was not based on vision information, but by touching. The 

XY stage will move along the predetermined route (see Figure 5.17) and after each 

motion step, the part will be tried again for assembly.  Because the alignment 

tolerance was about 5μm based on manual assembly experiment, the step size of 

the XY stage was set to 5μm. 

Exert FT2 and adjust Y 

If the insertion was deemed to have succeeded, the Z stage will move further down 

to exert an even larger force FT2 on the micropart to secure the micropart. FT2 was 
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the final force exerted on the part. As discussed before, when the force exerted on 

the tip of the gripper increases, the gripper will slide against the wafer (Figure 5.4). 

This also happens when the insertion force increases. Experiments show that when 

the slide is larger than 10 microns, it will cause the part to tilt. 

Upon successful insertion, the position of the Y stage, PY0, will be recorded. And as 

the pushing force increased, the position of the base of the receptor will be adjusted 

by motion of Y stage according to the pushing force. And the target position of Y 

stage is  

                                     voltageYY F.PP 8720 
,
                                        (5.6) 

where Fvoltage is the reading of the strainmeter. The coefficient of Fvoltage was 

obtained from Figure 5.5.  Both velocity and acceleration limits of Y stage were set 

to the maximum values in order to reduce time delay. 

The Z stage will keep moving down at the velocity described by Equation 5.4 until 

the force reached FT2 to guarantee the part has been fully assembled. FT2 was set to 

be 450mN. As shown in Figure 5.15 for full assembly, the force was around 

350mN, and so 450mN was enough for enforcing the proper assembly of the 

microparts.  

Withdraw gripper and adjust Y 

As the gripper was withdrawn, the force will drop and the gripper will slide in the 

reverse direction. During this period, adjusting of Y stage was still needed. The 

target position was also obtained from Equation 5.6.  
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Figure 5.18: Illustration of picking up a micropart process. 

A sudden force drop will cause a large and sudden sliding step. Although the 

maximum velocity of Y stage was up to 50mm/s, for a motion in the range of 10 

microns, the velocity was quite low because it was controlled by a PID controller. 

To avoid the Y stage from failing to compensate for the sliding, the withdrawing 

velocity of the Z stage was set to 50micron/s, which was comparatively small.  

After the gripper was retracted for 200μm, i.e. the tip of the gripper was clear of the 

part, the host PC will stop reading from the strainmeter and the Z stage will be set 

to its maximum velocity and go back to the original position.  

5.4.2 Picking Up a Micropart Process 

The pick-up process used a similar but simpler strategy (Figure 5.18). The major 

difference between assembly and pick-up processes was the way to determine 

contact position. In the pick-up process, if well aligned, there will be no obvious 

force increase even after the gripper tip has inserted into the hole of the micropart. 
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To detect the top surface position of the micropart, the gripper will be offset from 

the center of the hole by 100μm. And then the gripper will move down until it 

touched the micropart. At the same time the position of the Z stage will be 

recorded as PZ0. These are phases 1 and 2, which are essentially the same as the 

respective phases in the assembly process. Then the gripper will be withdrawn 

60μm and move to the center of the micropart. Phase 3 was essentially the exerting 

of FT1 and penetration decided as described in the assembly process, except that 

the pushing force was reduced to 90mN to prevent breaking the brim of the hole. In 

similar way the position threshold is  

                          
0 70threshold ZP P m 

.
                         (5.7) 

The realignment strategy was the same as in the assembly process. In phase 4, the 

Z stage will keep moving down until the force reached 320mN. This time, no 

adjusting of the Y stage was needed, because the lateral slide of the gripper will 

helped separate the micropart from the wafer. In phase 5, the Z stage will move 

back at its maximum velocity. 

5.5 Experiment and Results 

Experiment was carried out to test the effectiveness and efficiency of the picking 

up and assembly strategies. The first part of the experiment consisted of picking up 

a micropart automatically. The micropart was aligned automatically by visual 

servoing (details on visual servoing will be discussed in Chapter 6) and the 

automated picking up process begins. All the actions was programmed beforehand 

and executed under the control of a computer.  
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The image of picking up a micropart process is shown in Figure 5.19 and the force 

profile and motion of the Z stage are shown in Figure 5.20 and Figure 5.21, 

respectively. From these two figures we can see that this micropart was picked up 

after 5 trials and the total time used was about 15 seconds.  

 

Figure 5.19: Image of automated process of picking up a micropart: 1. Gripper 

offsets 100μm; 2. Move down 400μm at max speed; 3. Touch the top surface of the 

micropart; 4. Go back 100μm to get aligned; 5. Exert force 320mN; 6. Move up as 

max speed and pick up the micropart. 

 

Figure 5.20: Force profile of an automated picking up process (this micropart was 

picked up after 5 trials). 
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Figure 5.21: Motion of the Z stage during an automated picking up process. 

 

Figure 5.22: Image of automated assembly process: 1. Get aligned with the 

receptor; 2. Move down 400μm at max speed; 3. Exert force on the micropart; 4. 

Gripper move up, finished. 

After picking up, the micropart was conveyed to the scaffold area and aligned with 

a receptor, also by visual servoing. And then, the automated assembly process was 

executed also under the command from the computer. The microscope image of 

the assembly process is shown in Figure 5.22 and the force profile and motion of 
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the Z stage are shown in Figure 5.23 and Figure 5.24 respectively. The whole 

process took about 15 seconds.  

 

 

Figure 5.23: Force profile of an automated assembly process. 

 

Figure 5.24: Motion of the Z stage during an automated assembly process. 

Comparing with the flexure stage used previously [119], both the picking up and 

assembly time were largely reduced, and the system worked more stably and was 

safer for the micro components. 
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After assembly of dozens of microparts, it was observed that realignment occurred 

more frequently in the picking up process than in the assembly process. This may 

be caused by the following:  

1. The image processing algorithm used in visual servoing is different for 

the two cases: pattern matching for alignment with a single micropart and 

Hough transform for alignment with receptor. Pattern matching is fast and 

simple for application but it is more sensitive to defects of the micropart, 

which may cause low positioning accuracy.  

2. The picking up process is more sensitive to the alignment error than the 

assembly process.  This is due to the smaller threshold force, FT1, and the 

fact that the parts wafer is stiffer than the scaffold. 

5.6 Conclusion 

In this chapter, we presented the closed-loop force control in the picking up and 

assembly processes. 

Because no off-the-shelf force sensor was found with specifications suitable for 

this project (they are either too delicate [157] or have a too long response time [158] 

to be implemented in this project), we designed and fabricate a force sensor 

dedicated for this assembly task. The main component of the force sensor was an 

elaborately designed elastic element that deformed under force load. The force 

value was obtained by measuring the deformation through two semiconductor stain 

gauges via a Wheatstone bridge circuit. The completed force sensor had a range of 

about 500mN and a resolution of 3mN.  
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The calibration of the force sensor was carried out after it was embedded into the 

gripper arm. Calibration not only established the relationship between the output 

signal and the loading force, but also established the relationship between the force 

load and the deflection of the end tip, and the relationship between the force load 

and the lateral slide of the end tip. The latter two relationships were used to 

facilitate the automated picking up and assembly processes. 

Admittance control was employed for controlling the forces in both picking up and 

assembly. In all the processes, intelligent strategies were developed to prevent 

damages to the micropart, compensate misalignment and guarantee firm assembly. 

A salient feature of the processes was the use of a combination of position and 

force information to infer the status of the insertion process. For improperly 

inserted situation, realignment will be carried out. Realignment was accomplished 

by a predefined process. 

The effectiveness and efficiency of the force control system was demonstrated 

experimentally. Microparts can be picked up and assembled automatically even in 

the presence of misalignment. No micropart or scaffold damages were observed by 

using these pick-up and assembly strategies.  
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Chapter 6     

6  

Visual Servoing 

6.1 Introduction 

This chapter presents algorithms for aligning the gripper with a part and for 

aligning a part with a receptor before insertion. Because the alignment accuracy of 

5m demanded by the task is too small to be achieved by open loop control, vision 

information was introduced for closed-loop position control. 

The use of artificial vision in closed-loop pose or position control is called visual 

servoing [143]. It has been extensively studied since the early 1980's due to its 

very large potential in improving flexibility and robustness for industrial robotic 

systems [144]. A taxonomy of visual servoing architectures has been proposed by 

Sanderson and Weiss [145] and Hutchinson [146]. The traditional visual servoing 

tasks were classified into two categories: image-based visual servoing (IBVS), and 

position-based visual servoing (PBVS). In IBVS, features are extracted directly 

from the image, and compared with a target image setpoint, thus generating an 

error signal. The error signal is used as input to the control law, which then drives 

the robot. In contrast, in PBVS, the actuators have an independent encoder-based 
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position control loop. Features extracted from the image are used to estimate 

position or orientation, which is then compared to a target Cartesian setpoint for 

generation of the error signal [147]. In this project, the PBVS was adopted and the 

system worked in a look-and-move fashion to circumvent high computation, 

system instability and a complex control. 

Ideally, the techniques of visual servoing developed in the macro domain could be 

leveraged toward automation of microassembly tasks. However, there are 

significant differences in implementing vision feedback in the macro and micro 

domains. In the micro world, the need for high resolution demands the use of high 

numerical aperture lens systems, which results in a very small depth of field and a 

limited field of view. The depth of field of the optics normally used in micro 

assembly tasks today ranges from 0.2μm to 120μm. The defocused object is quite 

blurred or sometimes even invisible. 

In the macro world, 2D images can be used to reconstruct 3D configuration of the 

real object, while this is extremely difficult in the micro domain. Passive autofocus 

was developed [148], where the focal plane was determined by means of image 

power measure and coarse/fine turning, and no external means for measuring 

distance such as lasers or ultrasound was used. [23] utilized a proximity sensor to 

determine the position of the probe along optical axis and hence realized visual 

servo in the direction perpendicular to the image plane. In this project, the focusing 

problem was solved by mounting a V stage on the XY stage to keep the object of 

interest in the focal plane. The motion of the Z stage carrier is parallel to the optical 

axis of the microscope used in the visual servoing loop. 
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Another difficulty in using vision in micro assembly is the limited field of view 

which is also caused by the high magnification of the microscope system. Though 

microparts used in the microassembly task are very small, they will normally be 

conveyed over a long distance. [23] and [147] solve this problem by employing 

several cameras: one zoom-out camera provides image of the whole working 

platform to facilitate coarse alignment or during the conveying phase and a high 

magnification microscope is used for final fine alignment. In this project, the long 

conveying distances depended on the encoder of the precision positioning stage 

only. The parts were regularly arrayed on the wafer with accuracy of the order of 

tens of microns, and the accuracy of the stage was 0.1m/50mm which was 

accurate enough to move the object into the field of view of the microscope. The 

supervisory unit had to calculate the position of the part and the assembly location. 

The field of view of the microscope was about 1.0×0.7mm and after the objects 

were brought into the view, automated alignment will be carried out. 

The rest of this chapter is structured as follows: Section 2 describes the whole 

control loop, while Section 3 presents the alignment strategy and the control law. 

The image processing will be discussed in Section 4.  
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6.2 Visual Servoing Control Loop Configuration 

 

Figure 6.1: Vision control loop schematic. 

Figure 6.1 shows the equipment for visual servoing: The top view was provided by 

a microscope (Model SEC-zoom4, ZEISS) with 8× magnification and a 1/3-inch 

CCD camera (Model SSC-DC10, Sony) mounted on it. This camera was connected 

to the Matrox Meteor II graphic board plugged in a Pentium III 400-MHz 512-MB 

RAM computer using Windows NT; two high-resolution translation stages (Model 

M-511.DD, Physik Instrumente (PI)) and a vertical micropositioning stage (Model 

M-501.1PD, PI) are controlled by the 32-bit digital controller (Model C-842, PI); 

the control software is coded in visual C++ for speed and portability. A user 

friendly graphical user interface (GUI) was realized. 

The part wafer and the scaffold wafer were mounted on different platforms: the 

parts wafer was put on a height fixed platform and the scaffold wafer on a vertical 

stage, the V stage. Both platforms were mounted on the XY stages through an 

adaptor. When a layer of parts was completed on the scaffold, the V stage moved 
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down to keep the top layer in the focal plane. The optical axis of the microscope 

was adjusted to be perpendicular to the XY plane formed by the XY stages, and both 

the motion direction of the gripper and the V stage were parallel to the microscope. 

This configuration reduced a 3D assembly task to a 2D alignment job. The motion 

of the gripper was realized by closed-loop force control using another translation 

stage, and the visual servo was only used to align the XY plane and so kept it in 

focus. 

The key feature of this configuration was the use of the single top-view microscope 

for the alignment in both X and Y directions. Because the image plane was parallel 

to the assembly platform, i.e. to the XY plane, no complex Jacobian was needed to 

transform data from camera to world coordinates, which also simplified the control. 

Although another two microscopes, e.g. one from the front and one from the side, 

are in principle necessary to identify the geometric configuration in the 3D space, 

in our case it would pose a great challenge to use the side view, both for image 

process algorithm and control law.  

This is illustrated in Figure 6.2, which compared a side-view image and a top-view 

image with the same magnification and illumination conditions. The material used 

for fabrication part, SU8, was almost transparent which caused a lot of diffusions 

and reflection and hence deteriorated the image. The limited depth of field blurred 

the defocused feature shown in Figure 6.2 A. All these factors made it difficult to 

reconstruct the edge, corner or vertex or to determine the pose or position of the 

object. In contrast, Figure 6.2 B needed only a simple 2D analysis as the features 

were much easier to locate.  
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 A                                   B 

Figure 6.2: Comparison of a side-view image (A) with a top view image (B) taken 

in the same magnification and illumination conditions. 

6.3 Alignment Strategy  

 

Figure 6.3: A typical top-view image for part alignment (before alignment). 
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Figure 6.4: A typical top-view image for part alignment, after alignment. 

In this project, fine alignment had to be performed in three operations: to match the 

gripper position with a part before picking it up; to align a part held by the gripper 

with the receptors at the scaffold area before assembling this part on them; and to 

align the gripper with the releasing structured before disposing of a defective part. 

The same alignment strategy was applied in these three cases, and so we detailed 

now the alignment process for the first case only. 

Figure 6.3 shows a typical top-view image when aligning the gripper with a single 

part. Since the motion of the gripper was parallel to the optical axis of the micro-

scope, the distance between the projection of the gripper and the center of lenses of 

the microscope on XY plane did not vary i.e. 

 R =constant.                                                (6.1)  
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The exact value of R can be obtained through the calibration process. If we place 

the part precisely at the center of the image, shown in Figure 6.4, the gripper can 

be aligned with the part just by sending a command to the XY stage to move a 

distance of R. The immediate objective of closed-loop position control is thus to 

move the part to the center of the image. 

In the calibration process, first a home position was defined and the encoders of the 

X and Y stages were set to zero. The first part on the part wafer was then moved 

into the field of view of the top-view microscope manually. Then the „defined first 

part‟ button was activated on the GUI, and the part was placed precisely at the 

center of the image automatically using the same control law as aligning a part. 

The readings of the encoders of X, Y stages were then recorded. This part was then 

aligned with the gripper manually using the front- and side-views. By activating 

the „confirm‟ button, the encoder reading was again recorded. R was then obtained 

from the control system by subtraction of these too readings. The details of the 

calibration system and calibration process will be discussed in Chapter 7. 

6.4 Control Law 

 

Figure 6.5: Time sequence of the alignment process. 
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To avoid instability, the alignment process worked in a look-and-move fashion. 

The time sequence of the alignment process was shown in Figure 6.5. First an 

image was grabbed and then image processing gave the position of the feature in 

the image. Real position error was then obtained and sent to the control law, which 

computed a position command to the PID controller, thus moving the XY stage. 

After the motion was completed, the PID controller will inform the computer and a 

new image was grabbed for processing. If the position error was still larger than 

the acceptable level, the above steps were repeated until the error became smaller 

than the threshold, which was set to 1 pixel in the experiment. 

As discussed before, since the image plane was parallel to the working-platform, 

no Jacobian matrix was needed to translate coordinates from image frame to real 

world frame, and there was no need to match an image to the real world. The 

coordinates of a feature in the real world frame was no needed, only the position 

error was needed. Since the magnification of the microscope was fixed, the real 

position error can be obtained from 

                                    1real imager K r  
,
                                             (6.2) 

where 
realr  was the real position error, imager  the pixel position error in the image, 

and K1 can be obtained by measuring the real world size of the field of view. The 

field of view was measured by using a silicon micro ruler. By seeing the ruler 

though the microscope we could measure the field of view as 1mm in length. As 

the size of the image was 640×320 pixel, so
1 1000 / 640 15.6 /K m pixel  . 

The proportional control law was the same for both X and Y axes and described by 
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realU k r  .        (6.3)     

where U is the distance command sent to PID controller and k a proportional 

coefficient. The influence of k on the performance of the controller was shown in 

Figure6.6. For k = 0.3, it will take about 9 cycles to converge, and if k = 1.0, there 

will be instability in the system, the object will vibrate around the target position.  

In the automated assembly experiment we set k = 0.5. 

 

 

Figure 6.6: Influence of k on convergence. 
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6.5 Image Processing Algorithm 

Different image processing algorithms had to be used for locating features in 

different cases: pattern matching was used for locating a single part or releasing 

structure, while Hough transform (HT) was implemented for locating a receptor. 

Pattern matching was simple, fast and easy to implement, but it was sensitive to 

variations in the background. In the former case, the background did not change, 

and so pattern matching was reliable. However, for determining the position of the 

receptor as layers of parts was assembled, the background kept changing, and an 

algorithm based on HT had to be implemented. The details of both algorithms are 

presented below.  

6.5.1 Pattern Matching Technique for Locating a Part  

The image processing algorithm used for locating a part on the part wafer used 

pattern matching. The pattern matching technique consisted of searching a 

predefined template (a typical target image) in the whole source image (images 

grabbed in process) by using normalized grayscale correlation.  

Figure 6.7 shows the part template, which was a typical image of a part with the 

wafer as background. The reference position of the template was set at the center 

of the template, so that the searching result gave the center position of the part on 

the source image. In fact, the reference point could be any point of the template. 

The normalized correlation of the template with a sub-image of the same 

dimension from the original image was computed, and the maximum correlation 

coefficient  
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Figure 6.7: Micropart template, a typical micropart image on the wafer. 

was interpreted as a match. The correlation coefficient is computed as 
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,                   (6.4) 

where N indicates the number of pixels in the model, 
iM , 

iI  denote the pixel value 

in the model and in the sub-image respectively and r is the normalized correlation 

coefficient [133]. The final score was computed as 

 2max( ) 100%Score r  .                                       (6.5) 

If Score is larger than acceptance level, the corresponding sub-image is determined 

to be a match. In this project, the acceptance level and certainty level were set to be 

60%. Upon successful matching, the position of the part was obtained and the pixel 

position error was then computed as 
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  

   ,

       (6.6)  

Reference point 



Chapter 6: Visual Servoing                                                                                    112 

 

where ( , )x y is the coordinate of the template in the source image and (320, 240) is 

the centre of the image. 

If the target pattern was not found after searching the whole image, a „NULL‟ 

result will be sent to the supervisory system. A failed search was often caused by 

defects in the part or the absence of the part. 

The same technique was used in locating the releasing structure. The height of the 

disposal structure was designed so that it will also be in the focal plane during the 

calibration stage. But, because the disposal structure was fixed on the V stage, it 

will move downwards as layers of parts were assembled, which will cause it to be 

defocused. To circumvent this problem, each time before searching for the 

releasing structure, the V stage will be move back to its original position to make 

sure that the releasing structure was in focal plane.  The template and the source 

image of the disposal structure are shown in Figure 6.8. 

6.5.2    Modified Hough Transform for Locating a Receptor 

The exact position of the receptor was determined by locating the hole of the part, 

which appeared as a circle in the image, as shown in Figure 6.9. Hough Transform 

(HT) technique is a straightforward and robust way to detect circles. The main 

advantage of Hough transform technique is that it is relatively unaffected by image 

noise. The use of the HT to detect circles is outlined by Duda and Hart in [149]. 

Yue compared variety of circle detection methods based on HT in terms of 

computational efficiency, storage, accuracy and reliability in [150].  
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Figure 6.8: A typical top-view image of the releasing structure and releasing 

structure template. 

As described in [150]，  HT computation goes as follows. First a constraint 

equation was constructed to describe the searched shape. For each feature point, 

votes were accumulated for all parameter combinations which satisfied the 

constraint. The votes were collected in an array of counters which was called the 

Reference point 
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accumulator array. The accumulator array was a discrete representation of the 

continuous multidimensional space which spanned all feasible parameter values.   

 

Figure 6.9: A typical top-view image for aligning a receptor, before alignment. 

Edge points from a single instance of a shape vote coherently into the accumulator 

counter which is closest to the parameters of the shape. At the end of the voting or 

accumulation process, those array elements containing large numbers of votes 

indicated strong evidence for the presence of the shape with corresponding 

parameters. Shapes were detected by identifying peaks in the accumulator array. 

The constraint equation for describing a circle is 

                          
2 2 2( - ) ( - )x a y b r  ,                                (6.7) 

where (a, b) are the coordinates of the center and r is the radius. (x, y) is a point 

coordinate on the edge of the circle. And, if r is fixed, for any edge point (x, y) 

could be a point on any circle whose center is r distance away from this point on 
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the a-b frame. If for all the candidate edge points, a circle of r in radius is drawn in 

the a-b frame, the more the circles intersected at a particular point, the larger the 

 

Figure 6.10: Image of receptor after thresholding (threshold is 170). 

possibility that the coordinate of this point is the center of a circle in the image.  

In our case, radius r was not a fixed value, but confined to a certain range, from 28 

pixels to 32 pixels, based on experiment, and the line width of the circle ranged 

from 2 to 5 pixels. Since only the center position of the circle was needed, the 3D 

parameter space was reduced to a 2D space. A 2D accumulator array was 

employed and the array had the same dimension of the original image.  

The candidate edge point was obtained by thresholding the original image. 

Thresholding was typically used to get a binary image out of a grayscale image. In 

this project, the thresholding was to set the pixels whose values were smaller than a 

threshold value to zero and those with values larger than the threshold were 
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unchanged. The original image was single-channel grayscale image with a depth of 

8 bits, which meant that the maximum value of the brightness is 255. The threshold 

was set to be 170, and the image after thresholding was shown in Figure 6.10. 

Further, brightness of the pixels was also considered to achieve a better accuracy. 

For each non-zero point, votes were given to all its parameter cells in 2D space and 

all possible radius values: 28, 29, 30, 31 and 32. If an accumulator was voted by a 

point, the intensity value of the point will be added to this accumulator so that 

weight was given to each point according to its brightness.  

In order to reduce computation, only part of the image was considered as shown in 

Figure 6.10. In this case, because the receptors are located at the top-left and 

bottom-right of the image, only areas 1 and 4 were transformed, while in the case 

when receptors are located at the top-right and bottom-left of the image, only areas 

2 and 3 will be transformed. Based on the design of the scaffold and the assembly 

sequence, the decision of which areas will be transformed was made before HT 

was performed. The peak points were identified by thresholding and local 

maximum detection. If more than one peak point was identified in a single square 

area, the maximum of these peaks will be considered as the center of a circle. 

After the centers of the two circles were located, the center position of the receptor 

was obtained from 
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where  1 1,c cx y  and  2 2,c cx y  are the pixel coordinates of the centers of the two 

circles. 

There are two salient features about this HT algorithm. First, instead of adding 1 

for each pixel votes to the accumulator, the intensity of the pixel was added to the 

accumulator, so the brighter the point, the more weight will be given. Second, for 

each pixel the radius value covered all possible radii. This way the computation 

and storage are reduced, but the exact radius cannot be obtained through HT. This 

was not important here since only the center position of the circle was needed. 

6.6 Conclusion 

This chapter presented the fine alignment strategy and control law in all possible 

situations. Basically, the control strategy was simple position-based visual servoing. 

For alignment with a single micropart and the releasing structure, pattern matching 

was used to estimate the position of the features, while an algorithm based on the 

Hough transform had to be developed for locating the circles corresponding to the 

microparts center. Experiments tested the feasibility and efficiency of these 

algorithms. 

The alignment accuracy was not analyzed theoretically, because for the real image, 

it was hard to tell where the true center was. [150] used synthetic images for 

measuring errors of different HT algorithms. For a synthetic image, the exact 

position of a feature was known, and error was obtained by comparing with the 

estimated position. But for the HT used in this project, the image processing 
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always gave the exact value of the parameters in the synthetic image. Gradient 

information was not used in the HT, as it was too sensitive to noise, and will cause 

instability in the system, as was actually experienced initially. Other methods for 

locating the circles were tested such as fast Hough transform (FHT) and ellipse 

fitting; however none of them worked well and they were found to be unstable. 

The experiments showed that the accuracy was acceptable for this microassembly 

task. For picking up and assembly alignment, misalignment occurred about once in 

5 trials, due to defects in the micropart and the noise caused by motion of the 

stages. 
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Chapter 7 

7  

Dedicated Workstation for Automatic 

Assembly 

In this project, microscopic building blocks (of size 0.5×0.5×0.2mm with 0.06mm 

wall thickness) will be assembled automatically to fabricate tissue engineering 

scaffolds. Different from robotic tasks in the macroworld, microassembly poses 

new challenges and problems in the fabrication of microscopic components, 

handling tools, the design of the conveying and alignment mechanisms, control 

strategies, etc. The difficulties for positioning control and force control have been 

discussed in Chapters 5 and 6, respectively. This chapter will present the whole 

automated microassembly system, i.e. its hardware and software. The calibration 

and the automated assembly processes will also be presented in this chapter. 

7.1 Experiment Hardware 

Hardware of the automatic microassembly system consisted of mainly four 

modules: the visual module, the motion module, the force sensing module, and the 

microgripper. The force sensor and microgripper had been discussed in Chapters 5 

and 4. The following paragraphs will present the motion and visual modules. 
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7.1.1 Motion System 

All the necessary motions including conveying, alignment, insertion and 

abandonment were accomplished by four precision stages (see Figure 7.1). All the 

precision stages are from Physik Instrumente (PI).  

Two precision translation stages (X and Y stages) were fixed together to serve both 

as a conveyer for long distance conveying and the vision-based positioning control 

loop for alignment. The working platform (a vertical stage, an adjustable plate and 

an adaptor) was fixed on the XY stage. During the assembly process, the position of 

the gripper remained constant in the x-y direction; it was through the motion of the 

whole platform that microparts were conveyed and assembled. Both the X and Y 

stages (PI, M-511.DD) have an optical linear encoder mounted close to the ball-

screw, providing a resolution of 0.1μm. The maximal velocity is 50mm/sec and 

travel range is 102mm. The accuracy per 50mm is 0.2μm. 

 

Figure 7.1: The precision desktop workstation. 
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The Z stage (PI, M-511.DDB) carried a clamper with the microgripper to move up 

and down and accomplished picking up and assembly actions. The Z stage shared 

the same parameters with the X and Y stages in terms of travel range, velocity, 

resolution and accuracy. What was special about it was that it had a brake 

integrated to lock the stage when powered off, so that it will not slide down due to 

gravity. 

A vertical micropositioning stage (PI, M-501.1PD), V stage, was used to keep the 

object of interest in the focal plane of the top-view microscope. After each layer of 

parts was assembled onto the scaffold, the V stage will move down a certain 

distance so that the top layer of the scaffold will always be in the focal plane. The 

motion distance may be different for different scaffold architecture design; 

normally it is in the range from 100μm to 120μm. The designed resolution of V 

stage is 0.008μm, travel range 12.5mm and maximal velocity 15mm/sec. 

All the four stages were controlled by a multi-channel controller (PI, C-842). The 

control card was based on a multi-processor architecture. It included a fast DSP 

motion-control chip set (providing trajectory generation and closed-loop digital 

servo control based on position information from the encoders) and a host 

processor for communication and command handling. It had an S-curve profile 

generation which enabled smooth velocity changes and a 32-bit PID servo-control. 

A rotation stage (PI, M-037DG) was used to provide rotation during the calibration 

of the gripper‟s orientation and then will remain idle during the assembly process. 

It was driven by a 3 Watt DC motor with 29.6:1 back-lash free gear head and a 

2000-count encoder mounted on the motor shaft. It was equipped with precise 
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worm gear drive allowing unlimited rotation in either direction, with 

0.1graduation. 

7.1.2 Visual System 

Three microscopes with CCD camera were used to provide front, side and top 

views of the working area. The top-view microscope (Zeiss, 8× SEC-zoom4) with 

a 1/3-inch CCD camera (Sony, SSC-DC10) was used for closed-loop position 

control. The side-view microscope (Navitar, 12× 1-50504) with camera (JVC, TK-

C1481BEG) was used both for calibration and monitoring assembly process. The 

front-view microscope (Zeiss, 8× SEC-zoom4) with camera (Sony SSC-DC10) 

was used in the calibration process. Signals from the microscopes were transmitted 

to a Matrox Meteor II graphics board, and then to the computer for further 

processing. The graphic board was programmed using the Matrox Imaging Library 

(MIL). The host PC was a Pentium III 400-MHz 512-MB RAM computer using 

Windows NT. All the hardware was placed on an anti-vibration experimental 

bench in a clean room environment. 

7.2 Hardware Calibration 

Hardware calibration included the following factors: relative position and direction 

of the translation stages, position and direction of the microscopes, direction of the 

wafers, height and levelness of the working platform, and spatial orientation of the 

gripper tip. 
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7.2.1 Perpendicularity between Stages and Microscopes 

The purpose of calibrating the translation stages was to ensure that the X stage was 

perpendicular to the Y stage and that the motion direction of both Z and V stage 

were perpendicular to the plane defined by the X and Y axis. The calibration work 

was done by using a dial gauge. Details are described in [133]. The shaft of the 

rotation stage and the optical axis of the top-view microscope also needed to be 

perpendicular to the X-Y plane which was also achieved by using similar method 

described in [133]. 

7.2.2 Calibration of Working Platform and Wafers 

The design of the working platform is shown in Figure 7.2. The scaffold wafer was 

mounted on top of the V stage so that after each layer of microparts was assembled, 

the V stage will move down a certain distance to keep the top layer in the focal 

plane of the top-view microscope. Part wafers were fixed just beside the scaffold 

wafer to reduce the conveying distance. The base of the part wafer will be kept at 

the same height during assembly process, but its height was adjustable through the 

four supporting screws. The four screws were also used to adjust the level of the 

parts wafer to make it parallel to the X-Y plane.  

The direction of both the part wafer and the scaffold base wafer must be consistent 

with the X and Y stages for two reasons. First, no re-orientation was carried out 

after a part was picked up, and so the part had to be aligned in the same direction 

with the parts on the scaffold base before assembly process. Second, before vision- 
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Figure 7.2: Front view of the working platform. 

based alignment, locating a micropart or a receptor was done in an open-loop way: 

the position coordinates was calculated and a command was then sent to the XY 

stage to bring the object into the field of view of the top-view microscope. If the 

direction of the part array or the scaffold base was not consistent with the motion 

direction of the stages, a small angle error may cause a large position error for the 

object far from origin, which may cause the top-view microscope to miss the 

object. 

To facilitate the adjustment of the wafer direction, the wafers are fixed on the base 

by a layer of magnet (of about 1mm in thickness) (Figure 7.2). Commonly, wafers 

were held by the use of vacuum, such as in spin coater, UV exposure machine, etc. 

Vacuum produced a large pressure difference on the top and bottom surface of the 

wafer so that the wafer was “pushed” against its substrate firmly. In our case, we 

do not need such a large force. A piece of iron with flat surface on both sides was 

first fixed on top of the working platform; magnets were glued to the wafer by 

double-sided glue. Using magnet as a fixation method made exchanging of wafers 
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and adjustment easy. The releasing structure was also fixed the same way on the V 

stage. 

Calibration of the wafer direction goes as follows. First a cross was drawn at the 

center of the top-view microscope image. The cross functioned as a stationary 

reference point through the calibration process. Next the X and Y stages were 

moved to place one micropart at the center of the image (see Figure 7.3). Then the 

X or Y stages were moved 3.4mm (distance of 10 microparts). If all the centers of 

the microparts in the same row passed through the reference point, it meant that the 

direction of the wafer was consistent with the X-Y stage. If not, the top-view image 

will show the error. The wafer was adjusted to reduce the error. The adjustment 

process was repeated until minimum error was achieved. A wrong way of adjusting 

the wafer direction was to make the part parallel to the image. In fact, the image 

direction defined by the CCD camera direction was by no means a reliable one. 

The direction of the CCD camera should be calibrated according to the calibrated 

scaffold wafer. The calibration of part wafer was performed in the same way.  

 

Figure 7.3: Calibration of the wafer direction. 
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7.2.3 Adjusting Spatial Orientation of Gripper Tip 

Spatial orientation of the gripper clamper was adjustable in all three rotation axes, 

which meant that the gripper can present an arbitrary attitude. Here, we borrowed 

the terms used in aerospace engineering to define the orientation of the gripper 

clamper. The attitude of a rigid body can be determined by three angles: yaw (ψ), 

pitch (θ) and roll (φ) (see Figure 7.4).  

In the calibration process, the first angle to be adjusted was the yaw angle (ψ). The 

rotation stage was adjusted until the tip of the microgripper was in the field of view 

of the top-view microscope. As the adjustment of φ and θ were coupled, the pitch 

angle θ was first adjusted until the gripper tip was normal to the wafer surface as 

seen through the side-view microscope. Then the roll angle φ was adjusted until 

the gripper tip was normal to the wafer surface as seen through the front-view 

microscope. As the pitch angle may be affected by the roll angle, the pitch angle 

was adjusted again. The process was repeated until the gripper tip was normal to 

the surface of wafer through both the side- and front-view microscopes. 

 

Figure 7.4: Closed-up view of the working space and the gripper fixtures. 
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Figure 7.5: Adjusting spatial orientation of microgripper tip. (A) Gripper tip is not 

normal to the wafer surface. (B) Gripper tip is normal to the wafer surface. 

There was a simple way to decide whether the tip was normal to the surface 

accomplished by checking the image reflected by the silicon wafer. If the image of 

the gripper tip was in line with the gripper tip, it meant that the gripper tip was 

normal to the surface of the wafer (see Figure 7.5). Again, the direction of the 

image can not be the reference for adjusting the direction of gripper tip.  

7.3 Experiment Software 

A program in visual C++ was developed to control and coordinate all the hardware 

and also provide a user-friendly graphic user interface (GUI) for easily calibration, 

manipulation and observation of the automated assembly process.  

Figure 7.6 shows the GUI of the control program. The controls on the right side of 

the GUI are divided into four groups: (1) Vision controls used for switching image 

from different microscopes during calibration process, saving pictures and testing 

image process codes, etc. (2) Manual operation controls used for the four stages in 

A B 
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Figure 7.6: Graphic user interface of the proposed software. 

tele-operation fashion, which will also be used in the calibration process. (3) 

Calibration controls are seven ordered controls. During the semi-automated 

calibration (details will be discussed in Section 7.4) process, all the seven buttons 

will be clicked so that the program will be loaded with the designated positions. 

The size of the perspective scaffold, the type and size of the parts array, etc will 

also be loaded prior to the assembly process. (4) Automation controls have five 

buttons; they are used for automatic picking up, autoassembly, and begin, pause, 

stop or resume an automated process. On the left side of the GUI, are the real-time 

force profile display, image properties, notice board, position of all stages, and 

real-time image from microscopes. The notice board will present the instructions 
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for the operator during the calibration process, and if the system stops, the fault 

type will also be presented on the notice board. 

The program also helps in preventing damages to the microgripper from 

misoperations. Two types of misoperations may damage the microgripper: moving 

down the gripper by a too large step that causes it to collide with the base; turning 

on the power of the stages before initializing the control card which may cause the 

Z stage to drop down. To prevent the damage from the first misoperation, force 

value will be read every time a move-down Z stage button is activated. Once the 

force value is larger than a certain threshold, the Z stage will be stopped 

automatically.  To prevent the second kind of damage, a relay is used to allow the 

program to control the power supply of the stages. Stages will turn on 

automatically after the initialization process.  

7.4 Software Initialization  

Prior to the automated assembly process, the program must be loaded with the 

position of the first receptor (0, 0),  position of the first micropart on the parts array 

(xp0, ypo) and position of the releasing structure (xr, yr). As shown in Figure 7.7, the 

coordinate frame x-o-y was fixed on the platform with its origin coinciding with 

the center of the first receptor and the x, y directions consistent with the XY stages, 

respectively. The accurate relative position R (refer to Chapter 6) should also be 

loaded into the program. R may differ slightly in the three situations for which 

closed-loop position control was needed: alignment with a single part, alignment 
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Figure 7.7: Top-view of working platform. 

with a receptor and alignment with the releasing structure, which we denote by R1, 

R2 and R3 respectively. 

The program initialization process began by activating the “start calibration” 

button on the GUI. The steps are: 

1. Manually move the X-Y stage to bring the first receptor into the field of 

view of the top view microscope. Clicked on the „define origin‟ button. 

The program will begin the closed-loop position control process which is 

the same as described in Chapter 6. After the center of the receptor 

coincides with the center of the image, the program will set the XY stage 

position encoder to zero. 

2. Move the XY stage to bring the first part into the field of view of the top-

view microscope. Click „define first part‟ button and the program will 

begin closed-loop position control again to place the part in the center of 
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the image and then the program will record the encoder reading of the XY 

stage. This will form the coordinates of the center of the first part in the 

working platform frame (xp0, yp0). The accuracy of the encoder is 

0.1μm/50mm, which is sufficiently accurate for the calibration process. 

3. Move the XY stage manually to place the first part under the gripper. Then 

adjust the XY stage using the side- and front-view microscopes to align 

the gripper tip with the hole of the part. Click „define gripper to part‟ 

button. The encoder reading will be recorded as (xp1, yp1). The relative 

position R1 is given by 

                         R1 = (xp0 - xp1, yp0 - yp1).                                            (7.1) 

4. Pick up the part and click on „go home‟ to move the first receptor under 

the microscope and then align the part with the receptor through the side- 

and front-view microscope. Click the „define gripper to scaffold‟ button. 

The position of the XY stage (x01, y01) will be recorded. R2 is then given by 

 R2 = (- x01, - y01).                                                  (7.2) 

5. Bring the releasing structure into the field of view to load the program 

with (xr, yr) as in previous two situations. 

6. Align the notch of the releasing structure with gripper tip. This time, 

different from the above process, not only the position of the XY stage but 

also the position of the Z stage will be recorded, because the releasing 

process is an open-loop action in the Z direction. The pushing shoulder 

should be lower than the top surface of the releasing structure. 
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7.5 Automated Microassembly Process  

After calibration and initialization of the program, by activating the „auto-

assembly‟ button on the GUI, the automated assembly process will be conducted 

under the control of the supervisory unit. The whole system was hierarchically 

organized: the high-level supervisory unit planned movement tasks, made 

decisions and presented a set of commands to the lower-level controllers; while 

lower-level systems worked in a closed-loop fashion. Vision information was used 

for closed-loop positioning control to achieve positional accuracy less than 10μm. 

With the assistance of closed-loop force control, insertion action was accomplished 

without the risk of damaging the microparts.  

Figure 7.8 shows the flow chart of the whole automated assembly process. The 

assembly of each micropart consists of the following steps: 

1. The gripper moves above a micropart and then aligns with it using vision 

feedback. If the micropart has already fallen of the wafer or if the 

micropart has some major defects, the top-view vision will fail to locate 

the micropart and supervisor unit will command to move the gripper to 

the next micropart. 

2. The micropart was automatically picked up from the wafer by closed-loop 

force control as discussed in Chapter 5. The supervisory unit then 

switches to the side-view image to infer whether the micropart was picked 

up or not. Details about side-view image processing will be discussed in 

Section 7.6. If not, the gripper will move to the next micropart. 
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3. The micropart is conveyed to the scaffold and aligned with the receptor, 

based on vision feedback. 

4. The micropart is assembled onto the scaffold, and then a side-view image 

will be taken again to infer whether the micropart was assembled 

successfully or not. If failed, the micropart is disposed with the releasing 

structure and another part will be picked up to be assembly to the same 

receptor again. 

If an action fails three times in a row, it is deemed that a fault situation occurred 

and the whole system will be stopped to prevent damages. The fault type will be 

shown on the notice board. 
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Figure 7.8: Flow chart of the whole automated microassembly process. 
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7.6 Image Processing for Inferring the Assembly 

Status 

After the pick-up and assembly actions, the supervisory unit will switch its image 

source from the top-view microscope to side-view or front-view microscope, and 

then take a picture for processing to determine whether a part had been picked up 

or assembled successfully, based on which further decisions will be made. The 

result of this process determined whether a gripper with a part or a naked gripper 

was in the image. If a naked gripper was detected after assembly action, it meant 

that the assembly was successful: the part remained on the scaffold. If a gripper 

with part was detected after the pick-up action, this meant that a part has been 

picked up successfully. 

To detect whether an object of interest is in the image is a problem of automatic 

target/object recognition (ATR) which has been studied extensively [151, 152]. 

There are lots of issues in the area of ATR [153], while only the related aspects 

will be discussed here. The ATR algorithms used can be model-based techniques, 

statistics-based techniques, Hough transform, Morphological techniques etc. There 

four terms are typically used in ATR algorithms: 

True Positive: The object is in the image and the processing gives positive results. 

True Negative: The object is not in the image and the processing gives negative. 

False Positive: The object is absent from the image but the processing gives 

positive. 

False Negative: The object is in the image and the processing gives a negative 

result.  
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In this project two methods were tested: template matching and calculating of 

image sharpness.  

7.6.1 Template Matching Method 

Template matching is the simplest and most often applied method in the ATR 

application domain. First a typical image of the naked gripper and gripper with a 

part were taken as shown in Figure 7.9. Then the template image was searched in 

the whole source image. The searching algorithm is the same as described in 

Chapter 6. The acceptance level of template matching is set to 55%. If the template 

is found in the source image, a positive result will be given, and if not, a negative 

one. 

     
A                              B                             C 

Figure 7.9: Templates for automatic target recognition: (A) a naked gripper; (B) a 

gripper with part (front view); (C) a gripper with part (side view) 

The logic of the supervisor system is as follows: 

Case 1: The search for naked gripper was negative and gripper with part 

positive. This means that a part was picked up successfully and the 

part is in good condition. Then the supervisor will sent command to 

assemble this part. 



Chapter 7: Dedicated Workstation for Automatic Assembly                                137 

 

Case 2: The search for naked gripper was positive and gripper with part 

negative: This means that the part was not picked up at all, and a 

command was sent to pick up the next part. 

Case 3: The search for naked gripper was negative and gripper with part also 

negative: This means that a defected part was grasped, and then the 

supervisor will command to execute abandon-part action. 

Case 4: The search for naked gripper was positive and gripper with part also 

positive: this situation should not happen, but if it did, the whole 

system will be stopped and “FAULT” displayed on the notice board.  

The advantage of this method is that it is simple and straightforward, and 

contributes to determine whether the part has quality problems. The disadvantage 

is that it is sensitive to many factors: the illumination condition, the magnification 

of the microscope, the intensity of the background. Before assembly, all these 

factors should be adjusted to the condition when the template was made. And even 

though all the above conditions are the same, the template matching method is still 

negatively affected by the fact that different parts have different textures which 

may cause false negative results when searching for gripper with part. And hence 

qualified part may also be rejected. 
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7.6.2 Image Sharpness Method 

 
A                                                           B 

 
C                                                         D 

Figure 7.10: (A) A typical image of the gripper with part and with scaffold as 

background; (B) image of a naked gripper with scaffold as background; (C) image 

of gripper with part and part wafer as background; (D) image of naked gripper with 

part wafer as background. (The area inside the red rectangle is computed.) 

The second method for determining whether an object is present in an image took 

advantage of the fact that an object appears sharp when it is in the focal plane. As 

we discussed before, the depth of field of the optics use in micromanipulation was 

in the range of tens of microns. From Figure 7.10 we can see that only the in-focus 

objects look clear and those that are out of focus appear quite blurred and an in-

focus part take larger area than an in-focus naked gripper. And the value of 
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sharpness might indicate the area of an in focus object accounts for the whole 

image and hence let us know whether it is a gripper with part or a naked gripper. 

The sharpness function can be implemented by a variety of measures such as 

frequency domain functions, image power measures, gray level variance measures, 

gradient function, information content functions etc. [154, 155]. The sharpness 

function used in this project is introduced by Brenner [156]. This function 

measured the difference between a pixel and its neighbors two pixel away and 

summed it over the entire image. To reduce the computation and to make it more 

robust, in this project only half of the image was calculated: the half inside the 

rectangle (Figure 7.10). The Brenner focus function fs is given by 

                
2

2

2 
x y/

s x,yI,y)I(xf ,                              (7.3) 

where I (x, y)  represents the gray level of a pixel at coordinates x and y.  

The sharpness function was computed over 40 sample images: 10 images were of 

the gripper with part and background was part wafer; 10 images were of the naked 

gripper and background was part wafer; 10 images were of the gripper with part 

and with the scaffold base as the background; 10 images were of the naked gripper 

with the scaffold base as the background. The images were taken with slight 

changes of illumination, magnification and position above the wafers, while 

keeping the gripper or the gripper with part in focus. The values of sharpness 

function are shown in Figures 7.11 and 7.12. There is an evident difference 

between images of gripper with a part and naked gripper. 
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Figure 7.11: Sharpness of 20 images (backgrounds are part wafer): image of 

gripper with part (circle); image of naked gripper (cross) 

 

Figure 7.12: Sharpness of 20 images (backgrounds are part wafer): image of 

gripper with part (circle); image of naked gripper (cross) 
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In the experiment, the threshold was set to 1.3 ×10
7
. Those images whose 

sharpness functions were smaller than the threshold were deemed to be the naked 

gripper. Otherwise, they were taken to be that of the gripper with a part.  

In the experiment, to determine whether a part was picked up or assembled this 

way reduced a lot of preparation time, and the false negative rate was also reduced. 

The shortcoming of this method was that it cannot detect a defective part since a 

defect does not make much difference on the sharpness function. In the automated 

assembly experiment discussed later, the image-sharpness-calculation method was 

used.  

7.7 Experiment Results  

Automated microassembly of pyramid scaffold was carried out. Figure 7.13 shows 

such a scaffold composed of 50 microparts. If there was no multiple trials during 

inserting action, both the picking up and assembly a micropart took about 10 

seconds and conveying and alignment of a part also took around 10 seconds. The 

assembly of each micropart took about 30 seconds. On the other hand, if the visual 

alignment error is larger than 5μm, trials and errors of insertion will increase the 

pick-up and assembly to about 15 seconds so that it will take more than 40 seconds 

for a part to be assembled. The successful picking up rate was consistent with 

previous experiment, as discussed in Section 3.4. Only two parts failed to be 

released after assembly action, which corresponding to a successful assembling 

rate of 96%. 
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Figure 7.13: A small piece of automated assembly scaffold. 

Fault situation occurred three times during this automated assembly process which 

has to be solved manually by an operator. All faults were induced by the defects of 

micropart which the image process algorithm failed to recognize. The first fault 

occurred when finding a single part by template matching from the top-view 

images. One part had fallen off the wafer, but because it left an imprint on the 

wafer, the image processing algorithm gave a false positive signal and the system 

began the picking up action on the vacant area. The acceptance level of the 

template match process was then increased to 70%. No more such phenomenon 

was observed. The other two faults occurred when using the side-view image to 

infer assembly status. In these two cases, the assembly action was actually a failed 

one: the part was still with the gripper after assembly. The image process gave 

false positive signal, and the system began to pick up the next part instead of 

abandoning the part. 
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7.8 Conclusion 

This chapter presented the design, calibration and control software of a dedicated 

automated microassembly system. Automatic microassembly of TE scaffold has 

been carried out successfully. 

The robotic workstation has four precision stages and three microscopes, which 

have been carefully calibrated to obtain a good relative directionality between them. 

The height and levelness of the working platform and the direction of the wafers 

have also been calibrated before assembly process. The microgripper fixed on a 

clamper was mounted on the Z stage to accomplish picking up and assembly action. 

The fixation mechanism has three rotation degrees of freedom that allows 

adjustment of spatial orientation of the microgripper. The control software 

coordinating all the hardware has a friendly GUI to make the initialization process 

easier. The automated assembly tasks were conducted under the control the 

supervisory unit of the software. To infer the status of the assembly process, two 

kinds of image processing algorithms are used to process side-view and front-view 

images.  

The automated microassembly experiment was carried out and a piece of scaffold 

with 50 microparts was fabricated which proved the feasibility of realizing 

automated microassembly task by using both visual servoing and closed-loop force 

control. 
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Chapter 8 

8  

Conclusions and Recommendations for 

Future Work 

This thesis presented an automatic microassembly system for fabrication of tissue 

engineering (TE) scaffolds. Customized TE scaffolds are fabricated by assembling 

Lego®-like micro building blocks together to form a 3D porous structure. An 

advantage of this scaffold fabrication technique is that seeding and culturing of 

cells and biological agents can be done prior to scaffold fabrication. Each 

micropart can first be coated with desired cells and growth factors (proteins, 

peptides, etc.) and then assembled on the scaffold. Through this process, the 

distribution of the cells and agents can be controlled in 3D so as to form different 

structures and cater to different patients. No thermal, electrical effect, pressure or 

toxic chemical reaction was involved during the whole assembly process. 

While the feasibility of this TE scaffold fabrication process had been shown by 

using tele-operated assembly [9], the whole process was extremely tedious and 

time consuming. This thesis developed automated 3D assembly of these TE 

scaffolds. 
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A desktop workstation was first built. The working station has four degree of 

freedom and each axis has sub-micron positioning resolution. Three sets of 

microscope systems were used to provide top-, side- and front-view of the working 

space. A passive microgripper was designed and fabricated to handle the micro-

parts. The design of the micropart was also modified to interface with the 

microgripper. The support of the microgripper was embedded with a dedicated 

micro force sensor measuring the interacting forces between the gripper and 

micropart or between microparts. High positioning accuracy was achieved by using 

visual servoing for which a modified Hough transform image processing algorithm 

was developed. 

To safely and efficiently handle the micropart, closed-loop force control was 

implemented in the picking up and assembly actions. A program with friendly GUI 

was developed to coordinate all hardware as well as to supervise the whole 

automated assembly process. A calibration scheme was developed and automated 

assembly experiment was carried out. The 50-micropart scaffold assembled 

automatically demonstrated the effectiveness of the whole system. 

With this system, the human operator is needed only during the calibration and 

fault situation. Compared with manually assembly process, the assembly speed 

was improved dramatically. The automation of the whole assembly process makes 

a big step towards the application of this kind of customized TE scaffolds. Some of 

the techniques developed in this project can also be applied to other microassembly 

tasks. 
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Although automated assembly of the customized TE scaffold has been achieved, 

several segments may be improved in further work. First, the successful rate of 

picking up and assembly, about 70% and 90% respectively, needs to be improved. 

Unsuccessful assembly will take some extra time as the micropart that has already 

been picked up has to be abandoned. To make the picking up and assembly more 

reliable, an actuator may be implemented on the microgripper to help release a 

micropart. This will enable using larger friction to hold a part so that not only the 

assembly but also the pick up will be improved. An idea consists of pushing the 

micropart out by using a tungsten sharp tip. The tungsten tip can be fabricated 

using the electrolyte etching technique and a piezoelectric actuator may be used. 

Second, the efficiency still needs to be improved. So far, the maximum assembly 

speed is about 1/30Hz or 30 seconds to assemble one micropart. At this speed, to 

fabricated a 1mm cubic scaffold will take about 12 hours. This speed is not 

satisfactory for mass production. Using a parallel microgripper may enable the 

pick up and assembly of multiple microparts simultaneously. However the 

alignment may then be difficult. Alternatively, for uniformed parts of the scaffold, 

a larger piece may be used corresponding to several microparts. This will reduce 

the assembly time significantly. 

Third, the dimensional accuracy of the micropart also needs to be improved. The 

relative dimension error of microparts used in this project is larger than 5%. 

Dimension errors accounts for almost all the faults that occurred during automatic 

assembly. Fabrication of large TE scaffolds also depends on the qualities of 
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microparts. So micropart fabrication technique is the key factor for the mass 

production of the customized TE scaffold.  

Finally, the micropart used in this thesis is made of SU8 which is not 

biodegradable. To fabricate micropart with PCL (a kind of biodegradable material 

with similar mechanical properties), other micro machining methods can be used. 

Micro-molding is the most promising method. The challenge with micro molding 

may lies in the injection process and demolding. Injection may be difficult due to 

the high viscosity of PCL and demolding may cause damage to the thin legs of the 

microparts. Also, the parts will be needed to be correctly oriented before insertion. 

This can be done actively, by using a manipulator, or passively, by using a 3D 

structure with guiding notches and pushing the part against the guiding notches. 

To circumvent all the rotation problems discussed above, an alternative way is to 

fabricate arrays of micropart; microparts are placed regularly by constraints of 

tethers. In the micro molding process, tethers can be designed which also formed 

the same way as the microparts and be of the same material. The tethers will break 

easily when picking up a single micropart. The CAD drawing of a symmetrical 

design of the micropart used for micro molding has been given at the end of 

Chapter 3. 
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Appendix A 

Acceleration and Velocity Limits 

A.1 Acceleration Limit 

The acceleration limit of the Z stage has to be set to avoid part falling off the 

gripper by inertia forces when gripper begin to moving up or stop to moving down. 

When withdrawing the gripper at an acceleration of a (Figure A.1), the force 

between the gripper and parts is  

 gamF  ,                                               (A.1)  

where m is the mass of the part, which can be estimated as 

31018 106120010200500500 mVρm -  .               (A.2) 

The maximum acceleration of the stage is 2s/ts3750000con , which is equal 

to
2s/0.375m , so the force between the gripper and micropart when withdraw 

gripper at the maximum acceleration is  

  mN.N...F -- 6910 101056101056893750106   .           (A.3) 
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a

g
 

Figure A.1: Force analysis when gripper moving up with an accelerated velocity. 

 

This value is orders of magnitude smaller than the friction (in the range of a few 

mNs to tens of mNs), so in the assembly process the mass of the part and inertia 

force it caused can be ignored totally.  

A.2 Velocity Limit 

During the picking up and assembly process, the host PC will read data from the 

force sensor via a ServoToGo card and based on the force information, command 

will be sent to the Z stages to realize admittance force control.  

The maximum speed for the host PC to handle the information is 66.67Hz. That is 

0.015 second for each command being calculated and sent out. If the velocity of 

the stage is too large, the stage will move a large distance before a new command 

coming. And the large distance may cause a large force overshot. To prevent 

damaging caused by the force overshot, the velocity has to be confined to a certain 

range.  
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Based on the experiment and experience, a force overshot of 50mN is acceptable, 

which corresponds to a deflection about 8μm at the tip end. So the maximum safe 

velocity of the stages when assemble or picking up part has to satisfy 

μm .Vsafe 80150  .                                         (A.4) 

So we have 

μm/s ../Vsafe 3653301508  .                                 (A.5) 

In the experiment, the velocity limit of the Z stage was set to 200μm/s. 


