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Abstract

In recent years, social network services have become ever more popular and even begin

to affect people’s life. A lot of social network sites have attracted tens of millions of

users, where people contribute content, share information and activities with each other.

Social network services are so popular as they allow users to display their creativity and

knowledge, take ownership of the content, and obtain shared information from the com-

munity. A social network site serves as a platform for users of a community to interact

and collaborate with each other. In social networks, users are connected through various

social relationships like friendship, professional, academic and etc., while a huge amount

of objects such as blogs, photos and videos are connected to the users through ownership,

comment-relationship, tagging-relationship and so on. Obviously, a social network con-

tains extremely complicated relationships. This brings many challenges for querying and

analyzing social network data.

The popularity of social network services and the challenges for querying and analyzing

social network data have driven to develop a new type of systems to support social network

services. In this thesis, we focus on investigating a new data storage and indexes for a new

graph database which is designed to manage nonblob data for social network services. We

introduce two approaches, the Ordering method and the Minimum Spanning Tree(MST)

method, to partition a huge social network graph into several small parts and distribute

them over a cluster of servers. Two types of indexes, content index and node index, are

investigated to improve the performance. We also design an object store system, called

HadoopObS, to store blob data for social network services. Several experiments on crawled

Flickr data are conducted to evaluate our storage and index design.
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Chapter 1

Introduction

In recent years, social network services have become ever more popular and even begin to

affect people’s life. A lot of social network sites(SNSs) such as Fackbook1, Flickr2, De-

licious3 and MySpace4 have attracted tens of millions of users, where people contribute

content, share information and activities with each other. Social network services are so

popular as they allow users to display their creativity and knowledge, take ownership of

the content, and obtain shared information from the community. A social network site

serves as a platform for users of a community to interact and collaborate with each other.

In social networks, users are connected through various social relationships like friendship,

professional, academic and so forth, while a hug amount of objects such as blogs, photos

and videos are connected to the users through ownership, comment-relationship, tagging-

relationship and so on. Obviously, a social network contains extremely complicated rela-

1http://www.facebook.com
2http://www.flcikr.com
3http://delicious.com/
4http://www.myspace.com/
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tionships and this brings many challenges for querying and analyzing social network data.

1.1 Motivation

Data of social network services have several differences with conventional data which are

usually stored as tables in relational databases. As we mentioned, social network data

contain extremely complicated relationships, but traditional databases have troubles in rep-

resenting complex relationships as they use the simple table structures to store data. How-

ever, in relational model, relationships are based on set theory and must be recovered by

executing join operations on the database due to lacking explicit representation, while join

operations are expensive. In 1977 Leinhardt first introduced the idea of using a directed

graph to represent a social community[35]. A directed graph is a pair G = (V, E) where

V is a set of vertices or nodes while E is a set of ordered pairs of vertices called directed

edges or simply edges. Figure 1.1 is a sample of an acyclic directed graph which repre-

sents a small social graph of Flickr[2]. A graph representing a social network has some

basic structural properties and these properties are very useful for analyzing and querying

a social network. Every day terabytes data are uploaded to Facebook and more than 25

terabytes of data are managed by Facebook. Traditional databases are designed for efficient

transaction processing such as updating, inserting and retrieving small number of informa-

tion in a large database, however, they will suffer serious problems when trying to retrieve

or analyze a large amount of information[26].

Consequently, traditional databases incur troubles in managing and querying the data of

social network services and these have generated challenges to the research community

2
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Figure 1.1: A Sample Acyclic Digraph. The nodes labeled by Ui(i = 1, 2, 3) denote users,

while the nodes labeled by Pi(i = 1, 2, ...) or Ti(i = 1, 2, ...) are photos or tags respec-

tively. A directed edge (Ui, Pi) means user Ui uploaded photo Pi, (Ui,Ti) denotes user Ui

published tag Ti and (Pi,Ti) denotes photo Pi is tagged by tag Ti .
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how to manage data in such scale. Besides, the number of users on SNSs is increasing

rapidly and Figure 1.2 shows the growth of active users on Facebook is quite fast. Facebook

has surpassed Google to be the most popular site in terms of total worldwide visitors to their

Web sites as shown in Table 1.1 and there are three sites that are social network sites in the

Rank Domain Visits Unique Visitors Page Views

1 facebook.com 2,712 132 140,607

2 google.com 2,686 146 37,458

3 yahoo.com 2,556 133 56,590

4 live.com 1,253 76 16,626

5 msn.com 1,083 85 8,614

6 aol.com 698 56 17,025

7 ebay.com 657 88 13,989

8 youtube.com 559 91 8,265

9 myspace.com 554 49 43,162

10 amazon.com 418 85 7,135

Table 1.1: Top 10 Web Sites According to Compete[1](Millions)

top 10 sites. There are more than 2,712 million of visitors on Facebook every month and

these visitors submit millions of queries every hour. This has brought large opportunities as

well as challenges for research in social network services and driven the design of new data

models and storage platforms which impose the requirements of social network services.

In addition, a major characteristic of social network services is folksonomy, which is also

4



known as collaborative tagging. Tag-based applications in social network services are be-

coming popular, and millions of users are using billions of tags to label public resources.

Most queries currently supported by these applications are keyword-based, and the results

returned by the system may not be precise and meaningful. In consequence, the new sys-

tems should provide more precise and meaningful results in an efficient way.

1.2 Objective

The popularity of social network services and the limitations of existing systems to sup-

port such services have driven to develop a new type of systems to support social network

services. This leaves open the following research topics:

1. Data Model

Investigate a new data model and corresponding operations for the data prevalent in

social network services. The new data model should represent the new features of

such data and support them better.

2. Storage Design

Evaluate existing storage structures and design a new storage structure to support the

new data model for social network services. Build a distributed data storage system

with high availability and scalability based on the new storage structure. This stor-

age system should implement efficient data manipulation, meta-data management,

replication and failure recovery.

3. Indexing

5



Indexing is the most important and fastest approach which reduces high I/O cost

effectively and greatly improves the speed of data retrieval operations. Therefore, it

is important to design indexing mechanisms for the new storage structure.

4. Query Processing

Social network services typically support millions of users, such as Facebook has

more than 350 million active users, and these users may submit millions of queries

per hour. To handle workload of this scale, an efficient query processor should be

developed.

In these four topics, we focus on the storage design and indexing. In this thesis, the data

storage problem is divided into two subproblems, nonblob data storage problem and blob

data storage problem.

1.3 Contribution

This thesis makes the following contributions:

1. Data Model and Storage

Investigate a novel graph data model and storage for nonblob data in social network

services.

2. Data Partition

Social network graphs are extremely large, therefore, it is important to partition them

into small pieces and we will propose two partition methods, the Ordering partition

method and the MST partition method.

6



3. Indexes

Indexing is the most important and fastest approach which reduces high I/O cost

effectively and greatly improves the speed of data retrieval. We introduce two types

of indexes: content index and node index.

4. Blob Data Storage

Beside the nonblob data storage problem, the blob data storage problem is also im-

portant for social network services. For instance, Facebook has more 80 billion image

files which are hundreds of petabytes in total.

1.4 Organization

The rest of this thesis is organized as follows. We survey some current storage structures of

existing database systems, such as relational databases, Bigtable, PNUTS, semi-structured

model and so forth, and analyze the advantages and disadvantages for each storage structure

and limitations in supporting social network services in Chapter 2. Chapter 3 introduces the

architecture of our system which consists of a graph database system and an object store

system. We propose the graph data model, data storage and indexes of our graph database

system in Chapter 4, while the object store system which is designed to sore blob data is

described in Chapter 5. In Chapter 6, we conduct some experiments to evaluate our storage

and index design for both nonblob data and blob data. Finally, we makes a conclusion and

a sketch of future work in Chapter 7.

7



Chapter 2

Related Work

2.1 Relational Database

Relational data model is the most popular data model and can be supported by serval types

of storage systems, such as: Row Store, Column Store and so on. Relational databases

have been the predominant database systems since the 1980s and achieved a great success.

Unfortunately, this conventional relational model still has some limitations and these limi-

tations can be divided into three categories:

1. Fundamental Limitations

The conventional relational model has several limitations which are the fundamental

shortcomings of the relation model.

(a) Lack of Object Identity

In the relational databases, there is no independent identification of existence

8



for entities. The database systems identify and access objects indirectly via the

identification of the attributes which characterize them. In practice, relational

systems strive for supporting permanent and inspectable object identification

techniques.

(b) Lack of Explicit Relationship

In the entity-relationship model, explicit entities and relationships are specified.

However, in the relational model, relationships are based on set theory and must

be recovered by executing relation operations on the database due to lacking

explicit representation. As shown in Figure 2.1, a relationship(Comment) con-

nects two entities(User and Photo) together, but in the relational model, there

are only three tables and no explicit representation of this relationship.

Figure 2.1: A Small E-R Diagram

2. Limitations in Special Forms of Data

Besides the fundamental limitations, there are many special forms of data which re-

quire special types of representation, such as temporal data, spatial data, unstructured

data and so on.

3. Limited operations

9



Relational model has a fixed set of SQL operations, and this causes some computa-

tional problems, such as recursive queries are extremely difficult to be specified and

implemented in relational databases.

Figure 2.2: A Small Sample Table

2.1.1 Row Store

Most major relational DBMSs are implemented on record-oriented storage system. Each

record consists several attributes and these attributes are stored continuously on disk as

Figure 2.3 shows. Obviously, high performance writes are achieved and DBMSs with row

store architecture are called write-optimized system [41].

However, the row-store systems suffer problems in managing sparse tables which has been

investigated a lot by research community in [12, 36, 31, 6]. This type of data is very popular

in community system. For instance, Google Base has more than 400 million tuples which

are defined by more than 3000 attributes while only less than 20 attribute are defined for

each tuple. The massive presence of NULLs incurs massive redundant storage and causes

performance problems in row store systems. Therefore, row-oriented relation databases

incur serious troubles in managing this type of data due to the presence of a massive number

10



Figure 2.3: The Standard Page Format for Row-Store

of NULLs.

2.1.2 Column Store

Recently, several column-oriented database systems are implemented, including MonetDB[9]

and C-Store[41]. Column-store systems store each column of a relation separately on disk,

as shown in Figure 2.4 and use join indexes to reconstruct the original table. In C-Store,

each relation is divided into several C-Store projections and each projection contains one

or more attributes of the original table. C-Store also introduces some techniques to reduce

disk storage cost and I/O cost, including sorting and compression. The major differences

between row-store and column-store systems are typically concerned with the efficiency

of hard-disk access for a given workload. Column-store systems are more efficient when

operations are only on small number of attributes but a large number of rows.

11



Figure 2.4: A Page Format for Column-Store. The responding table is shown in Figure 2.2.

Figure 2.5: A Join Index Sample
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However, column-store systems still have some limitations. In [24], some experiments are

conducted and the results show that when the number of rows is held constant and the num-

ber of columns increases by a factor of eight, the scan time has not even doubled in standard

row store but has increased by a factor of ten in column store. This is due to column-store

systems have to reconstruct each rows when scan a table and this costs significantly even

using join indexes. Besides these, column-store systems are still relational systems, hence,

they still induce the limitations that relational model has.

2.2 Bigtable

Bigtable is a distributed storage system for managing structured data and was proposed in

[12]. It is developed since 2004 and is now used by a number of Google projects, such

as Google Maps1, Google Book Search2, Google Earth3, Google Base4 and YouTube5. A

Bigtable is a sparse, distributed, persistent multi-dimensional sorted map[12]. Each table

consists of rows and columns, and each cell has a timestamp. Bigtable is designed to

scale a very large size of data, and in order to manage huge tables, tables are horizontally

partitioned into row ranges and each row range is called a tablet, which is the unit of

distribution and load balancing. Bigtable is built on Google File System(GFS)[20], which

is used to store data files. GFS is a distributed file system which has high performance,

scalability, reliability, and availability.

1http://maps.google.com/
2http://books.google.com/
3http://earth.google.com/
4http://base.google.com/base/

5http://www.youtube.com/
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Both the row store and column store which we have discussed are designed for low to

medium dimensional dense datasets and have trouble managing high-dimensional data,

while Bigtable handle this type of data well. For example, Google Base has more than

400 million tuples which are defined by more than 3000 attributes while only less than

20 attribute are defined for each tuple. The massive presence of NULLs incurs redundant

storage and introduces another dimension of optimization. HBase [5] is an open-source,

distributed, column-oriented store modeled after Google’ Bigtable by Chang et. al. in [12].

However, Bigtable does not meet the normal requirements of an ACID [23] database for

transaction processing with its limited atomicity, application-dependent consistency, uncer-

tain isolation and excellent durability. Besides these, Bigtable is based on relational model,

therefore, it still has some limitations that traditional relational model incurs, such as lack

of object identity and explicit relationship. Consequently, Bigtable is also not suitable for

managing data of social network services which contain a large number of objects and

complicated relationships.

2.3 PNUTS

PNUTS is a massive-scale, hosted database system which aims to support Yahoo!’s web

applications[17]. In PNUTS, data is organized into tables of records with attributes and

presented to users as in relational databases. These data tables are horizontally partitioned

into groups of records called tablets which is similar to Bigtable[12]. PNUTS stores tablets

as storage units and storage units respond to a simple API of get, set and scan requests.

Each storage unit manages a tablet that contains an interval either of the ordered table

14



key space or the hash table value space. The mapping from intervals to storage units is

held permanently by the tablet controller which acts as a master for a PNUTS instance.

These tablets are distributed across many nodes and each tablet contains thousands or tens

of thousands of records. Each record has a primary key and an assigned owner, used to

deliver PNUTSs consistency guarantees. A table’s primary keys may be ordered or hashed,

with ordering more naturally supporting range queries and hashing lending itself to load

balancing. However, PNUTS is designed for online serving workloads in which most of

the queries read and write single records or a small number of records.

The similarities and differences between PNUTS and Bigtable are as following:

• Similarities:

1. Both PNUTS and Bigtable are based on relational tables with flexible schema.

2. Some concepts in them are similar, such as record, tablet.

3. Bigtable maintains data in lexicographic order by row key and records in PNUTS

are ordered or hashed.

4. Both PNUTS and Bigtable horizontally partition tables into tablets.

• Differences:

1. Bigtable stores multiple versions of data using timestamps, while PNUTS does

not.

2. PNUTS supports indexes, such as hash index, but Bigtable has no indexes.

Obviously, PNUTS and Bigtable are very similar, although some differences exist. Both

PNUTS and Bigtable are based on relational tables with flexible schema, hence, PNUTS
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also has some limitations of traditional relational model and induces trouble in managing

data of social network services as Bigtable. In addition, PNUTS and Bigtable induce trou-

bles in managing data with complex relationships due to lacking explicit representation of

relationships.

2.4 Semistructured Data Model and Storage

In semistructured model, there is no separation between the data and the schema. Semistruc-

tured model can well model the data sources which cannot be constrained by a schema such

as Web and is extremely flexible for data exchange between disparate databases. Semistruc-

tured data is naturally modeled as graphs with labels which give semantics to its underlying

structure.

Definition 2.4.1 An edge labeled directed graph is a triple G = (V, E, `) where V is a set

of vertices, E ⊆ V × V is set of edges and ` : E → L is a mapping from edges to a set of

strings ` called labels.

Object Exchange Model(OEM) and Extensible Markup Language(XML) are usually con-

sidered as standards of data representation and exchange on the World-Wide Web[22].

2.4.1 Object Exchange Model

Object Exchange Model(OEM) is first proposed in [37] and a basic data model which

is used in several projects of the Stanford university Group, including Lore and C3[21].

It is a model for exchanging semi-structured data between object-oriented databases and
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designed for three goals: Information exchange, Information discovery and browsing, and

Mediators[21].

2.4.2 Extensible Markup Language

Extensible Markup Language(XML) is a textual language which was developed for data

representation and exchange on the Web[10]. Several approaches are investigated to query

XML data such as XQuery[11], XPath[16] and etc. However, it is more challenging than

storing XML data in relational databases. Because there are some fundamental mismatches

between the XML structured data and the relational data model which major commercial

RDBMS products support. A lot of work has been done by research community on storing

XML data and these methods are usually divided into three categories:

1. Storing in Relational Databases

Relational databases are the prevailing database system in commercial database mar-

ket. It is very necessary and important to investigate storing XML data in relational

databases. In relational databases, XML documents are parsed into tables or just

stored as Binary Large Objects(BLOB). That is, there are two methods to store XML

documents in relational databases.

(a) Converting XML documents into tables

XML documents are parsed and mapped into relational tables and XML queries

are translated to SQL queries over these tables [19, 7, 40, 39, 42]. Each XML

document can be represented as a labeled directed graph and each element in

this XML document is a node. Subsequently, nodes and edges are converted
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into tables. The major advantage of this method is that it is not required to

modify existing database engines too much.

(b) Storing XML documents as BLOB

In this method, XML documents are stored as Binary Large Objects(BLOB) in

columns of relational tables. This method is very simple and most commercial

databases support it, such as Microsoft SQL Server, Oracle 10 and etc.. How-

ever, the major problem is that it is impossible to query the details of XML

documents and any operation on these XML documents has to load the entire

XML document to main memory first.

2. Storing in Native XML Data Management Systems

In native XML data management systems, XML documents are stored according to

XML data model in a tree structure and only XQuery is supported.

3. Storing in XML-Relational systems

This is a hybrid method. XML documents are stored on logical pages in tree struc-

tures matching the XML data model[25, 8]. It does not need to map XML documents

into relational tables but encode XML documents into relational tables.

In native XML data management systems, many XML index algorithms are proposed and

can be classified into four categories: node indexes [13], content indexes[32], path indexes

[18, 15] and hybrid indexes [44, 28]. Node indexes are used to efficiently support Structural

Join (SJ) and Holistic Twig Join (HTJ). Path indexes use structural summaries to provide

efficient accesses to nodes which satisfy certain structural relationships like parent/child.

In contrast, content indexes provide efficient accesses to the text or the attribute values of
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nodes and these content indexes can be implemented using B-trees or inverted lists. Hybrid

indexes are a hybrid approach for indexing both structure and content at a time and also

called content-and-structure (CAS) indexes.

However, semistructured model is designed for data exchanging between disparate databases

and on the World-Wide Web. Therefore, it has some limitations in storing and querying so-

cial network data. The hierarchical structure is suitable for most documents but not suitable

to represent non-hierarchical relationships, such as many-to-many relationships. In conse-

quence, it is a limited representation of relationships. In addition, XML does not support

explicit representation of intrinsic data types such as integer, string, boolean and so on. It is

more difficult to query information in semistructured model due to XML documents need

to be parsed first.

2.5 Object-Oriented Database

Object-oriented concept was first introduced in programming languages. The discovery of

the limitations of the relational databases and the need of managing a large number of ob-

jects in object-oriented programming languages led to introduce object-oriented concept to

database systems, that is, object-oriented database systems[29]. Therefore, object-oriented

databases(OODB) add database functionality to object programming languages. OODBs

extend the semantics of the C++, Smalltalk and Java object-oriented programming lan-

guages to provide full-featured database programming capability, while retaining native

language compatibility. In OODBs, a database is considered as a collection of objects

whose behavior, state, and relationships are stored as a physical entity[45]. Compared with
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RDBs, OODBs have several advantages:

1. OODBs are more realistic and powerful, especially in handling complex objects.

Entities in real world are more naturally modeled as objects than tables. OODBs can

handle a large collection of complex data due to user can define and add new data

types based on the predefined data types.

2. In OODBs, relationships can be inherited among sets of entities.

3. OODBs are fast in querying complex data structures and use expressive queries for

accessing data.

4. OODBs have more powerful data operations. OODBs are computationally complete

by binding to existing object-oriented programming languages and these data opera-

tions are not limited several SQL operations[33].

OODBs can be divided into two categories: stand-alone OODB, and OODB with existing

Data Sources according to different application environment. A stand-alone OODB system

is a system where OODB model is used in both the database and the application therefore,

no data mapping is needed between the database and the applications. However, in a OODB

system with existing data sources, data mapping is needed. The non-object data is mapped

into object models and stored in the OODB.

The correspondence of the basic terms in relational and object-oriented databases is shown

in Table 2.1. The first three terms are similar between relational and object-oriented databases

although there are still some differences between them. However, a method is very dif-

ferent with a stored procedure for the fourth term of two types of databases. Methods are
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Object-oriented Database Relational Database

Collection Class Relation

Object Tuple

Attribute Column

Method Procedure

Table 2.1: Object-oriented Database and Relational Database

database-independent since they can be written in the same objected-oriented programming

language, while stored procedures are not database-independent due to different database

vendors have different stored procedure languages.

However, OODBs rarely perform well in dealing with queries which require significant use

of traditional data. Traditional data, such as integer, char, string and boolean, are very sim-

ple and object-oriented model is designed to support complex data structures. Therefore,

if lots of traditional data are stored as objects in OODBs, a lot of additional information

has to be stored as well and this causes performance problems compared with relational

databases. Another disadvantage of OODBs is that it lacks a common data model and

standards.

2.6 Blob Data Storage

Generally, there are two approaches to store large objects(BLOBs): storing in a file system

and storing in a database. The decision is based on the size of blobs, the file system, the

21



workload etc. Some studies show that SQL Sever is more efficient when the blobs are

smaller than 256KB, while blobs larger than 1MB are more efficient managed by NTFS

[38]. However, both of these two approaches have problems managing a massive number

of photos. Facebook has more than 20 billion photographs on their website. Facebook

generates and stores four images of different sizes for each uploaded photograph. If each

image is stored as a file, there are 80 billion files and more than 20 TB of metadata which

is created by the file system. These massive amount of metadata have far exceeded the

caching abilities of a system and this causes additional I/O operations on these metadata

when reading and writing photographs.

In order to overcome this problem, Facebook develop a new photo storage system, called

Haystack [4], to store more than 20 billion photographs on their website. Haystack stores

a lot of photos together as a large log structured (append only) object (usually 10GB) and

uses the offset of each photo to retrieve the photo in the corresponding object. There are

only 6 million objects in the file system. In this way, Haystack greatly reduces the amount

of metadata and provides high disk read throughput. However, Haystack still has some

limitations:

1. Lack of Fault Tolerance: Haystack uses RAID-6 to provide high read performance

and fault tolerance for disk failure. However, in case that the sever crashes, Haystack

cannot respond to the requests for the data on the crashed sever.

2. Slow Index File Recovery: If the sever crashes, the index file in Haystack has to be

rebuilt from the haystack file and this is extremely expensive.

3. Compaction Operation: The compaction operation is used to reclaim the space by
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the deleted photos by copying the haystack while skipping the deleted photos. How-

ever, it is very expensive because it has to create a new copy of haystack. It causes

problems if requests come at the same time.

4. No Capacity Balancing: The volume id is hardcoded in the photo and this leads a

problem when the haystacks need to be moved for capacity balancing.

We will build a new object store system on Hadoop, called HadoopObS, which will over-

come these limitations in Chapter 5.
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Chapter 3

System Architecture

In social networks, a large amount of multimedia data such as photo, audio, and video are

published and shared by users. These data are so different with nonblob data which are

numerals, strings, boolean that we cannot manage it as nonblob data. Typically, blob data

HTTP

User Interface

Graph Database

System
HadoopObS

Users

Figure 3.1: System Architecture.
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are large objects, such as an image is about 3 MB while a video is even much larger and up

to hundreds of MB. Usually, most operations performed on blob data are read operations.

Consequently, it is very important to provide a high read speed. As a result, we store blob

data apart from nonblob data in an object store system which can provide a high access

speed. That is, we divide the data storage problem into two subproblems: nonblob data

storage and blob data storage. Nonblob data is stored in a graph database system which will

be introduced in Section 3.1, while blob data is stored in an object store system introduced

in Section 3.2. The architecture of our system is shown in Figure 3.1.

3.1 Graph Database System

We design a graph database system to manage nonblob data for social network services.

In 1977 Leinhardt first introduced the idea of using a directed graph to represent a social

community[35]. In Chapter 4, we propose a graph data model, data storage and indexes for

the graph database which we design to support social network services.

3.2 Hadoop Object Store

We combine the object store technique and Hadoop Distributed File System (HDFS) to

build an object store system on HDFS [3], called Hadoop Object Store(HadoopObS), to

store photos for our system and the architecture of HadoopObS is shown in Figure 3.2.

HDFS is designed to reliably store very large files across machines in a large cluster. We

utilize the features of HDFS, such as replication and cluster rebalancing, to solve the limita-
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Figure 3.2: The Architecture of HadoopObS.

tions that Haystack suffers. HadoopObS is designed to manage blob data for social network

services. We will introduce HadoopObS in Chapter 5.
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Chapter 4

Graph Database System

In this chapter, we focus on the nonblob data storage problem. We propose a graph data

model which is directed graphs, data storage and indexes for the nonblob data of social

network services. Typically, social network graphs are extremely large. Consequently,

we also introduce two data partition methods, the Ordering partition method and the MST

partition method, to partition the large graphs.

4.1 Graph Model

In this section, we will describe our graph model briefly before we introduce our storage

design. Graph models are more natural in representing world facts and beside the data

information, structural information is aslo well represented in graph models. Data objects

and relationships are typically considered as at the same level in graph models where data

objects are nodes and relationships are edges. Therefore, we introduce our graph model in
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two aspects: nodes and edges.

In our graph model, there are two types of the nodes, user nodes and object nodes which

are published by users and can be photos, blogs, videos and so forth. In social networks,

users are always the most important entities and play significantly different roles from other

entities. As a result, we classify the nodes of the graph model into two categories and the

definitions of them are as following:

Definition 4.1.1 A user node U is a virtual person in the social network who enjoys their

rights and performs their obligations.

Definition 4.1.2 A object node O is a form of information or content which is published or

shared among users and owned by the user who published it.

The relationships in social network are extremely complicated and these relationships can

be classified into three categories: user-user relationships which connect two users, user-

object relationships which connect a user and an object, and object-object relationships

which connect two objects. These relationships are represented by labeled edges which

specify the attributes of each relationship. For instance, a tagging relationship is one of

user-object relationships which can be defined as following:

Definition 4.1.3 A tagging relationship U
T−→ O represents a user behavior that a user

U tags an object O using a tag T = {c, t, ...}, where c is the content of the tag T , t is a

timestamp and T may also contain other related information. The corresponding graph

model is shown in Figure 4.1.
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Figure 4.1: The Tagging Relationship in the Graph Model.

Figure 4.2: Another kind of representation for tagging relationship in the graph model. The

three types of lines indicate three different types of relationships and the labels (l1, l2, l3)

define the type for each edge respectively.

On the other hand, we can model a tag as a node instead of modeling it as an edge. If a

tag is modeled as an node, we have three edges to represent the relationships among these

three nodes: a user node, an object node and a tag node as shown in Figure 4.2. Each edge

is labeled using a symbol which specifies the type of the edge. The first type of models is

suitable for modeling relationships which are simple data structures, for instance, a tag is

usually a word or several words. On the other hand, the second type of models is appropri-

ate for modeling relationships which are complex data structures, such as a comment can

contain hundreds of words and even some images. This is also the reason we introduce two

types of models both supported in the graph database.
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4.2 Data Storage

A graph consists two types of elements: nodes and edges, therefore, the problem of data

storage for the graph model is divided into two subproblems: node storage and edge stor-

age. In Sec. 4.1, we describe two types of models for the tagging relationship in our graph

model. Correspondingly, we introduce two types of storage formats in our storage system.

In the first model, we model tags as edges. In our graph model, nodes are used to model the

entities in social network services which can be quite complex, as a result, we store them

as objects which can provide more complex data structures than tables. In addition, enti-

ties can have independent identification and existence by modeling and storing as objects.

Compared with nodes, edges are usually much more simple and storing edges as tables can

improve the access speed. We store each type of nodes as a collection of object instances

and each type of edges as a table in which each tuple is an edge of the graph as Figure 4.3

shows.

U1

U2

U3

P1

P2

P3

P4

User Tag Photo

T1

T2

T3

T4

T5

T6

Figure 4.3: Storage Format for the Graph Model Described in Figure 4.1.
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User Photo Tag

U1 P1

U3

U2

P2

P3

P4

T1

T6

T5

T4

T3

T2

Figure 4.4: Another Storage Format for the Graph Model Described in Figure 4.2. Only

one of the edges between users and tags is given to illustrate the relationship between users

and tags while other edges are ignored.

In the other model, we model tags as nodes instead of edges and the corresponding storage

format is indicated in Figure 4.4. Due to tags are modeled as nodes, tags can support

complex data structures or special functions such as users define their own attributes of

their tags. The labeled edges between User node, Photo node and Tag node contain no

information and just link the nodes together. Therefore, we store them as inverted lists as

U2 T3 T4 T5

U3 T6

U1 T1 T2

Figure 4.5: A Sample of Inverted List.
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Figure 4.5 shows. These inverted lists are used to link the nodes in the graph, while a join

index is a binary relation[43]. A join index makes the two joined tables smaller to speed

up the join operation. These inverted lists in our graph model are different with the join

indexes.

The graph database system has both of the two types of models which make users flexible to

model a relationship as an edge or a node. For instance, the relationships have complex data

structures, such as the comment relationship, are modeled as nodes, while the relationships

without complex data structures, such as the tagging relationship, are modeled as edges.

4.3 Data Partition

Graph models are flexible in modeling complex data models and representing structural

information of complex data models. In social networks, structural information is really

important and used to detect communities, process queries and etc. In addition, social net-

works are huge graphs, for example, there are millions of users and billions of photographs

on Flickr. It is obvious that one machine has problems in handling these huge graphs.

We have to partition them into many small graphs and distribute these small graphs over a

cluster of servers.

One of the major properties of graph models is that graph models represent structural in-

formation well. Typically, a digraph G(V, E) consists the following structural components:

1. Isolated Node

An isolated node v of graph G(V, E) is a simple node such that both the in-degree and

out-degree of v are 0 where v ∈ V .
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2. Isolated Subgraph

An isolated subgraph G
′
(V

′
, E

′
) of graph G(V, E) is a simple subgraph such that no

interior node of G
′

is connected to any interior node of G
′′
(V

′′
, E

′′
), where G

′′
is

complement of G
′

over G.

We utilize the structural information to partition social network graphs into small graphs

and distribute them over a cluster of servers. A social network graph is a huge graph and

contains several types of nodes. Different types of nodes contain different content and

perform different roles in social networks.

Therefore, both nodes and edges in our graph model are firstly divided into collections

according to the types. Then each collection of nodes is divided into small collections

called families by clustering or ordering, while each collection of edges is horizontally

partitioned into groups of records called tablets. Finally, the objects are stored according

to the families while the tuples are stored according to the tablets.

4.3.1 Ordering Partition

Ordering partition is a popular partition method and used in many systems, such as Bigtable

and PNUTS. Typically, ordering partition divides data items according to the lexicographic

order of key values. However, the relationships in social networks are extremely compli-

cated as a result there are a large number of edges which form a complex graph structures.

In order to efficiently manage these edges, we define one type of these edges as a primary

type of edges for each type of nodes, called primary relationship. The primary relationship

is one type of the most important relationships for the nodes and, as Figure 4.6 shows, an
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edge between Ui and P j indicates a user Ui uploaded a photo P j and this is the primary

relationship of Photo nodes. We order the objects according to the primary relationship

and this makes the edges of this relationship clustered as shown in Figure 4.6, while if we

order the objects according to the lexicographic order of the key value, the edges will not

be clustered as Figure 4.7.

Clustered edge partition can greatly improve the performance of queries. For example,

when retrieving a photo’s all tags, all tags of a photo is continuously stored because the

relationships between photographs and tags are primary relationships. This method greatly

reduces the random I/O cost and then improves the performance.

U0

P0 P4

T15 T5 T9 T11 T13 T4 T0

U1

P2 P1 P3

T8 T6 T2 T19 T17 T3 T12 T7 T1

U2

P5

T10 T18 T14 T16

Figure 4.6: Ordering According to the Primary Relationship. The edges between Ui and P j

denote Ui uploaded P j and the edges between Pi and T j indicate Pi is tagged by T j.

U0 U1

P0 P4

U2

P1 P2 P3 P5

T5 T9 T11 T15T12T2 T3 T6 T8 T17 T19T1 T7T0 T4 T13T10 T14 T16 T18

Figure 4.7: Ordering According to the Lexicographic Order On the Key Value.
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4.3.2 Minimum Spanning Tree Partition

In social networks, one of fundamental problems is the discovery of clusters or communi-

ties. Typically social network data consists lots of interaction information among the users.

We calculate the distances of users based on these interaction information. Suppose all

applications in a social network are divided into m categories, such as blog, album, game

and so on. Correspondingly, all interactions are divided into m categories I1, ..., Im and Ni

is the number of Ii interactions. The weight of Ii interactions is

Wi =
Ni∑m

j=1 N j
(4.1)

Then we can calculate the length of the edge between two users, and the length of the edge

between ui and u j is

L(ui, u j) =
1∑m

k=1 Wknk
(4.2)

where ni is the number of Ii interactions between ui and u j. Therefore, we obtain a weighted

graph in this social network, in which each node is a user and each weighted edge is the

distance between two connected users. Usually, clustering algorithms, such as K-Means

clustering [34] and Spectral clustering [27], can be used to partition this kind of weighted

graphs. Unfortunately, the time complexity needed to achieve this is extraordinarily high.

For instance, if we define the distance for a pair of users in the graph,

D(ui, u j) = S hortestPath(ui, u j) (4.3)

then we define a distance matrix M ∈ <n×n where n is the number of users and mi j = m ji =

M[i][ j] = D(ui, u j). In order to obtain the distance matrix M, we have to calculate the

shortest paths for all pairs in the graph. This is an all-pair shortest-paths problem, and the
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time complexity needed to solve this problem is Θ(V3 lg V). For a graph with billions of

vertexes, it is impossible to be handled over this time complexity.

Consequently, instead of clustering vertexes, we construct minimum spanning trees on the

graphs. The minimum spanning tree problem can be easily solved in time O(E lg V), such

as Kruskal’s algorithm. If using a highly parallelized manner with a linear number of pro-

cessors, this problem can be solved in time O(lg V)[14]. Consequently, instead of clustering

the nodes, we construct minimum spanning trees on the graphs and then partition the nodes.

Algorithm 1: WGraph(U, I)

Input: U = {u1, u2, ....} (U is a set of users)

I = {I1, I2, ....} (I is a set of all interactions among the users and Ii ∈ I is a

category of interactions )

Output: G(V, E,W) (G is a social network graph)

1 V = U;

2 foreach I(vi, v j) ∈ I do

3 if i < j then

4 e = (vi, v j);

5 w = 1∑m
k=1 Wknk

;

6 Add e to E;

7 Add (e,w) to W;

8 return G(V, E,W);

We use Algorithm 1 to construct the weighted social network graph. Then we use Kruskal’s

algorithm [30] to build the minimum spanning tree on this graph. In Algorithm 1, wk in
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w = 1∑m
k=1 Wknk

is calculated using Equation 4.1.

Algorithm 2: MSTPartition(G(V, E,W), n)

Input: G(V, E,W) (G is a social network graph)

n (n is the number of partitions)

Output: P = {P1, P2, ..., Pn} (P is the set of partitions and each Pi is a partition)

1 T = KruskalMS T (G, E,W);

2 Q = BFS (T );

3 i = 1;

4 P = {P1, P2, ..., Pn};

5 foreach Pi ∈ P do

6 Pi = ∅;

7 foreach v ∈ Q do

8 Add v to Pi;

9 if |Pi| > d|V |/ne then

10 i = i + 1;

11 return P;

In Algorithm 2, we use Kruskal’s algorithm to construct a minimum spanning tree. Then,

the breadth first search(BFS) algorithm is used to search the minimum spanning tree which

we have constructed. After this, we obtain a queue of the nodes according to the order of

the nodes searched in the BFS algorithm. Finally, we partition the nodes in the queue into

n groups.
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4.4 Indexes

Indexing is the most important and fastest approach which reduces high I/O cost effectively

and greatly improves the speed of data retrieval. Furthermore, social network sites have a

massive amount of data. Consequently, the responsibilities and roles of indexes in data

retrieval for social network services are significant. In this section, we introduce two types

of indexes: content index and node index.

4.4.1 Content Index

Content indexes are build on the attributes of nodes and edges to support keyword search.

It is implemented as B+-tree index is used to support keyword search as shown in Figure

4.8. If the keyword search is KS = {w1,w2, ...} where each wi is a word, we use the content

Keyword

B+-tree

Node ID List

Figure 4.8: Content Index.

index to obtain a Node ID List for each word wi ∈ KS . Then a merge join is performed on
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all of the lists and the final result is gained. On the other hand, if given a keyword search

KS = {w1 or w2 or ...}, we use the content index to gain a Node ID List for each wi ∈ KS

and then merge all the lists.

4.4.2 Node Index

Our node index is similar with content index but build on node identities. Recall that in our

graph, we divide nodes into two categories: User nodes and Object nodes, therefore, there

two types of node indexes build on these two categories of nodes are different as shown

in Figure 4.9 and 4.10. For a given User ID, the Ob ject ID Lists are all objects which

User ID

B+-tree

Object ID Lists

U

C

...

T

Figure 4.9: User Node Index.

are uploaded, commented or tagged by the users. These objects are classified into different

categories according to the types of the user-object relationships, such as uploading, com-

menting and tagging and each list is labeled to specify the type of the list. However, for a
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Object ID

B+-tree

User ID Lists

C

T

...

Figure 4.10: Object Node Index.

given Ob ject ID, the User ID Lists are all users who have relationships with this object

and these users are classified into different categories according to the relationships with

this object. Each list is labeled to specify the type of the relationships as shown in Figure

4.10.

4.5 Simulation

In this thesis, we have not implemented the graph database which is designed to serve social

network services. Therefore, in order to evaluate our storage and index design, we simulate

our graph database on the relational database system shown in Figure 4.11. Nodes, edges

and indexes are converted to tables stored in relational databases. In relational databases, a

foreign key is a referential action which defines a relationship between two tables. This is

an indirect connection and if we want to connect two tables, we have to do a join operation
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on the two tables. Unfortunately, a join operation is very costly. We use links instead of

foreign keys to represent the relationship between two tables and that is, a whole database

is a graph. A relationship in the graph model is converted to tables. We take the tagging

relationship as an example to explain how this conversion is processed. For a given tagging

relationship U
T−→ O or U −→ T −→ O, the users U are converted to a table User with

primary key Uid and the objects O are converted to a table Ob ject with primary key Oid.

Then the tags T are converted to a table Tag with primary key Tid, and two foreign keys

TUid and TOid which reference from User and Ob ject respectively. A query is divided

into several subqueries and passes them to the relational database. After the processor

obtains the results from the relational database, it process and merges the results to gain the

final result.

Nodes Edges Indexes

Relational Database

Processor

Query

Subqueries Results

Final Result

Figure 4.11: Simulation on Relational Database
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Chapter 5

HadoopObS

We solve the blob data storage problem in this chapter. In social network services, there are

a massive amount of blob data and a wide variety of applications which make frequent file

reads on these blob data. Due to most of the operations are read operations, it is the most

important thing to improve the performance of read operations. Consequently, we propose

our HadoopObS system which is read-optimized system to support these read-intensive

applications.

5.1 Metadata and Index

HadoopObS stores a large number of photos together as a large object instead of storing

each photo in its own file. Each object is a append-only file and photos are stored in an

object until the size of this object reaches the maximum size. An object whose size reaches

the maximum size is called a ”full” object. This greatly reduces the number of files in
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HadoopObS and makes the size of total metadata much smaller. This makes it is possible

to cache all the metadata of the objects. For example, Facebook has 80 billion image files

and more than 20 TB of metadata which is created by the file system. If the photos are

stored together as large objects and each object is 10 GB, there are only 6 million objects

and 2 GB of metadata in the file system.

On the other hand, HadoopObS also has to maintain metadata of each photo in order to

make these photos retrievable. However, traditional file systems are governed by the POSIX

standard, and manage metadata and access methods for each file. The metadata in tradi-

tional file systems contains lots of information as Figure 5.1 shows, however, only the top

three information, file length, device id and storage block pointers, is cared by HadoopObS.

More information in metadata makes the metadata too large to be cached and leads to addi-

File length

Device ID

Storage block pointers

File owner

Group owner

Access rights on each assignment: read, write and

execute

Time of the last change

Time of the last access

Reference counts

Time of the last modification

Figure 5.1: Metadata in Traditional POSIX File Systems.

tional I/O operations. Consequently, HadoopObS maintains simpler metadata which only
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contains the object identifier where the photo is stored, the size, the offset and the flag for

each photo and these metadata is stored both in memory and the database system.

Photo ID

Hash Index

Object Key

Offset

Size

Flag

Inode

Data

Offset

Object

Photo ID

Size

Flag

Header

Figure 5.2: Hash Index and Object in HadoopObS.

In memory, the metadata is maintained in a hash index as shown in Figure 5.2. HadoopObS

can quickly locate a photo by the given photo id and does not need additional I/O opera-

tions. However, memory is not a permanent storage device and all information will be lost

if the system crashes. Consequently, in order to provide the reliability for the meatdata

storage, HadoopObS also uses the database system to store the metadata. In case the sys-

tem crashes, the metadata stored in the database system is used to rebuild the in-memory

hash index when the system recoveries.

5.2 Operations

In HadoopObS, five operations are defined: read, write, delete, modify and compact op-

eration. The compact operation is a system operation which will be issued by the system
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itself or the administrator of the system, while other operations are user operations. Each

operation is processed as following in the system.

Read Operation

When a user tries to retrieve a photo, the request is forwarded to the graph database system.

The database system finds the information of this photo, including the owner, comments

and tags, then passes the photo id to HadoopObS. After HadoopObS receives the photo id,

it locates the photo using the in-memory hash index, read the photo data and returns the

photo. The process steps of a read operation are shown in Figure 5.3.

User Interface

Database

System
HadoopObS

Photo ID

Read Request

Query Photo1

2

33 Information

Figure 5.3: The Processing of Read Operation.

Write Operation

When a photo is uploaded, the graph database system inserts the photo’s information into

the database and passed the photo id to HadoopObS. HadoopObS stores the photo, and

updates the in-memory hash index. After finishing these, it passes the metadata (including

the photo id, the size, the object id, the offset and etc) to the graph database system. Finally,

the graph database system inserts this metadata into the database as shown in Figure 5.4.
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User Interface

Database

System
HadoopObS2

Photo ID

Write Request

Query Photo

3
Metadata

1 1

Figure 5.4: The Processing of Write Operation.

Delete Operation

Actually, HadoopObS does not delete the photo. Instead, it updates the in-memory hash

index and sets the photo flag to zero to signifying the particular photo has been deleted,

while the graph database system updates the metadata of this photo and sets the flag of this

photo to be zero.

Modify Operation

HadoopObS supports the modify operation by dividing this operation into one delete op-

eration and one write operation. This operation is necessary because there are some appli-

cations which allow users to edit photos, such as color balancing, cropping, and red-eye

correction.

Compact Operation

When a photo is deleted, HadoopObS still stores this photo on the disk. If there are many

deleted photos, this will waste a lot of disk space and cause the system to be inefficient.

Therefore, HadoopObS supports the compact operation to delete these photos from the disk
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by copying the object to another object. If a photo flag is zero, it is not be copied to the new

object. When this is finished, the system deletes the file of the original object from HDFS.

This is an operation which will be issued by the administrator of the system or the system

itself.

5.3 NameNode, DataNode and QueryNode

In HadoopObS, there are three types of nodes: NameNode, DataNode and QueryNode as

Figure 5.5 shows. The HDFS has one NameNode which manages the file system and a

.
.
.

NameNode

DataNodes

QueryNode

Figure 5.5: The Architecture of the System with One QueryNode.

number of DataNodes. In HadoopObS, we define another type of nodes which are used to

process and respond the requests, called QueryNodes. Both the NameNode and DataNodes

can act as QueryNodes. For instance, in Figure 5.5, the NameNode acts as a QueryNode.
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Consequently, there is at least one QueryNode in a cluster and the number of QueryNodes

is flexible.

5.4 Replication and Fault Tolerance

5.4.1 Replication

HadoopObS replicates its files in HDFS on multiple nodes in a cluster to achieve high

availability and durability. This replication which is built on top of HDFS replication not

only improves availability, but also improves the performance of the system. When a read

request comes, the system chooses the replica which is closest to the reader to respond the

request.

Besides, if there is no replication, it has a problem when a request is coming while the

object is compacted. This problem can be solved by replicating the data. The compact

operation is only conducted on full objects and the system only locks one replica when the

object is compacted. Therefore, the coming request cannot be a write request or a compact

request. That is, the request may be one of the three types of requests which are read

requests, delete requests and modify requests. If it is a read request, other replicas which

are not locked can respond the read request. Recall that the system does not delete the

photo and it sets the photo flag to zero to signifying the particular photo has been deleted.

Consequently, if the request is a delete request or modify request, the system does not need

to performance any operation on the compacting object. After finishing compacting the

object, the system releases the lock and deletes the original object.
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5.4.2 Failure Detection and Recovery

In HDFS, each DataNode periodically sends a message to the NameNode. The NameNode

detects the failure which may cause by a DataNode failure or a network partition by the

absence of messages. When a failed DataNode recoveries, it reads the metadata from the

database system instead of scanning all the objects on the node. It is a more efficient way

to rebuild in-memory hash indexes.
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Chapter 6

Experiment and Evaluation

In this chapter, we conducts a series of experiments to evaluate the performance of the

graph database which manages nonblob data and HadoopObS which stores blob data. In

Section 6.1, several experiments are conducted to evaluate our storage and index design for

the graph database, while we evaluate our HadoopObS in Section 6.2 which contains both

single-query experiments and multi-query experiments. Finally, we conduct experiments

to evaluate the scalability of the entire system which contains both nonblob data and blob

data.

6.1 Nonblob Data Evaluation

6.1.1 Experiment Setup

We conduct our experiments on a computer with an Intel(R) Core(TM) 3.0GHz CPU, 4GB

RAM and a 250GB SATA Harddisk running 32-bit Ubuntu Desktop 9.04. In our exper-
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# tuples User Photo Comment Tag

F1 73250 141160 576174 907550

F2 145903 308259 1160181 2009748

F4 292275 838185 2665445 5353712

F6 426114 1321674 4096295 8227169

Table 6.1: The datasets downloaded from Flickr

iments, the dataset was downloaded form Flickr[2] and stored in four tables as shown in

Table 6.1. We use F1 as a baseline dataset while F2, F4 and F6 are about 2, 4 and 6

times of F1 respectively. We use five queries to evaluate the conventional method and our

graph method with different partition methods, ordering partition method and MST parti-

tion method. In the conventional method, we don’t utilize the inverted lists and the indexes

which we design for our graph database to process queries and all of the five queries have

join operations. For example, Q1 is written as

Select Pid From User, Photo Where Uid = PUid and Uname = ”Tom”

in SQL in the conventional method and submitted to the database system.

Q1: Given a user name, retrieve all photos of his /hers.

Q2: Given a list of users’ names, retrieve all photos of theirs.

Q3: Given a photo id, retrieve all photos of its owner’s.

Q4: Given a list of photo ids, retrieve all photos of their owners’.

Q5: Retrieve all users who have uploaded photos but have not published any comments.
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We build our content index and node index on the datasets and these indexes cost additional

disk space. In Figure 6.1, we compare the dataset sizes with indexes and without indexes.

It shows that our index only costs a little more storage space but it can greatly improve the

performance for processing some queries.
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Figure 6.1: Storage Space for Indexes.

6.1.2 Result

We use Q1 and Q2 to evaluate the joins from the referenced table to the referencing ta-

ble. The results show that both the MST method and the Ordering method outperform the

conventional method in both performance and scalability in Q1 and Q2 as shown in Figure

6.2 and Figure 6.3. The query processing time of Q2 in the MST method and Ordering

method slightly increases but it largely increases in the Conventional method. In addition,
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Figure 6.2: Query Processing Time of Q1 (Given a user name, retrieve all photos of his

/hers).
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Figure 6.3: Query Processing Time of Q2 (Given a list of users’ names, retrieve all photos

of theirs).
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the Ordering method also outperforms the MST method and this performance improvement

is contributed by the clustered edge partition.
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Figure 6.4: Query Processing Time of Q3 (Given a photo id, retrieve all photos of its

owner’s).

We use Q3 and Q4 to evaluate the joins from the referencing table to the referenced table.

Obviously, both the MST method and the Ordering method outperform the conventional

method in both performance and scalability, while the Ordering method slightly outperform

the MST method as Figure 6.4 and 6.5 show.

Q5 is used to evaluate the performance of processing a query which has two join operations

and Figure 6.6 shows that both the Ordering method and MST method outperform the

conventional method as well.

We compare the performance of the ordering partition method and the MST partition

method by measuring the average time of retrieving all photos of a user and the aver-

age time of retrieving all comments and tags of a photo. We randomly choose 1,000 users
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Figure 6.5: Query Processing Time of Q4 (Given a list of photo ids, retrieve all photos of

their owners’).
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Figure 6.6: Query Processing Time of Q5 (Retrieve all users who have uploaded photos

but have not published any comments).
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Figure 6.7: Average Time of Retrieving a User’s Photo.
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Figure 6.8: Average Time of Retrieving a Photo’s Comments and Tags.
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to retrieve their photos and calculate the average retrieval time. Figure 6.7 shows that the

Ordering method is much faster than the MST method. This is due to in the Ordering

method, we define the primary relationships, and partition the nodes according to these

relationships. This makes the edges clustered and reduces random I/Os.

Then we randomly choose 10,000 photos to retrieve all comments and tags on them, and

calculate the average retrieval time. The result shows that the average time in two methods

is almost the same as Figure 6.8 shows.
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Figure 6.9: Query Processing Time of Retrieving the Latest Comment of Each Photo.

We also run some queries to evaluate these two methods. First, we run a query which aims

to retrieve the latest comment of each photo and the result is shown in Figure 6.9. The

performance of the two methods is almost the same. Then, a query which aims to retrieve

the latest photo of each user is run and the result shows the Ordering method slightly

outperforms the MST method shown in Figure 6.10.

These results show that the MST method does not perform as well as the Ordering method.
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Figure 6.10: Query Processing Time of Retrieving the Latest Photos of Each User.

This is because the operations in relational databases are based on the set theory, while the

operations in graph databases should be based on the graph theory. As a result, the Ordering

partition method performs better than the MST method in our simulation on relational

databases. However, we think the MST method should perform better than the Odering

method in graph databases instead of simulation on relation databases.

6.2 Blob Data Evaluation

6.2.1 Experiment Setup

Our experiments are conducted on 14 nodes of our Awan cluster where one node is used as

the NameNode and other nodes are used as DataNodes. Each node has an Intel(R) Xeon(R)

X3430 Quad Core CPU, 2 × 4GB memory and 2 × 500GB SATA II Hardisk, and runs 64-

bit platform Linux CentOS. For our experiments, we use Hadoop version 0.19.2 running
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on Java 1.6.0. We deployed the system with several changes to the default configuration

settings. Data in HDFS is stored using 512MB data blocks instead of the default 64MB.

6.2.2 Single-Query Experiments

We randomly read 50,000 photos and calculate the average time of reading a photo. In

HadoopObS, each object is 5GB containing thousands of photos, while in the Smallfile

method, we store each photo in its own files in a hierarchical structure. The result shows

that HadoopObS outperforms Smallfile more than two times shown in Figure 6.11. When
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Figure 6.11: Average Time of Reading a Photo.

the number of photos increases, the average time slightly increases in HadoopObS. How-

ever, it is obvious that the the average time increases faster in Smallfile than in Bigfile.

Therefore, HadoopObS scales better than Smallfile method. This is due to, in Smallfile, the

number of files increases faster than HadoopObS and this costs more disks space to store

the metadata of the files and more time to locate the target photo. However, HadoopObS
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can rapidly find the target photo through the in-memory hash index and does not cause

additional I/O operations.

In order to evaluate the write operation in HadoopObS, we write 10,000 photos and calcu-

late the average time of writing a photo compared with the Smallfile method. Figure 6.12

shows that the Smallfile method only slightly outperforms HadoopObS.
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Figure 6.12: Average Time of Writing a Photo.

The compact operation is the most costly operation in HadoopObS. However, the result

shows that the average time of compacting an object has a weak linearly increasing when

the number of total photos increases linearly shown in Figure 6.13.

We also measure the throughput of reading and writing in HadoopObS and the Smallfile

method. Figure 6.14 shows that the read throughput of HadoopObs is about two times of

the Smallfile’s and this is consistent with the results shown in Figure 6.11. Besides, the read

throughput of the Smallfile also decreases faster than HadoopObS’s. It is shown that the

write throughput of HadoopObs is a little smaller than the Smallfile’s in Figure 6.15. This
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Figure 6.13: Average Time of Compacting an Object.
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Figure 6.14: The Throughput of Reading.
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Figure 6.15: The Throughput of Writing.

is because HadoopObS needs to update the hash index and stores the metadata of the new

photo. However, the two lines in Figure 6.15 get closer when the total data size increases

due to when the number of photos increases, it needs more time to check if the file which

will be created has existed in the Smallfile method.

6.2.3 Multi-Query Experiments

Social network services aim to support a massive number of users and have to process a

lot of requests submitted by these users every second. Therefore, in this section, we con-

duct some experiments to evaluate the scalability of HadoopObS when the concurrency

increases. We randomly generate a photo id for each request and retrieve the photo accord-

ing to the given photo id. The maximum transmission rate of the links between the switch
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and the nodes are 1 Gbps. The average size of the photos is 2.5 MB and the total number

of photos is 280,000.

.
.
.

QueryNode

DataNode

Switch

NameNode

Figure 6.16: The Architecture of the System with One QueryNode.

First, we choose one of the 14 nodes as the QueryNode shown in Figure 6.16. The through-

put of the system is measured and the result is shown in Figure 6.17. The maximum

throughput T is 40.75 photos/second.

Then, we increase the number of QueryNodes and measure the throughput of the system.

Figure 6.18 shows that when the number of QueryNodes increases, the maximum through-

put of the system increases sublinearly.

We analyze the maximum throughput of the system when the number of QueryNodes in-

creases. We assume that the bottleneck of the system is the links between the switch and
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Figure 6.17: The Throughput of the System with One QueryNode.
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Up Link

Down Link

DataNode

QueryNode

Figure 6.19: The DataNode which acts as a QueryNode.

Symbol Definition

T The Max Throughput (photos/second)

Q The Number of QueryNodes

N The Number of DataNodes

R The Maximum Transmission Rate (photos/second) of the Links

Ru The Maximum Transmission Rate (photos/second) of the Up-Links

Rd The Maximum Transmission Rate (photos/second) of the Down-Links

Table 6.2: The Definitions of the Symbols
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the QueryNodes which also act as DataNodes as shown in Figure 6.19 and define the some

symbols in Table 6.2. The throughput and transmission rates in these experiments are mea-

sured by photos/second.

The maximum transmission rate of the up-link between the switch and a QueryNode is

Ru =
T
N
− T

QN
, (6.1)

while the maximum transmission rate of the down-link is

Rd =
T
Q
− T

QN
. (6.2)

Therefore, we have

R = Ru + Rd =
T
N
− T

QN
+

T
Q
− T

QN
. (6.3)

Finally, the maximum throughput of the system is

T =
RNQ

Q + N − 2
. (6.4)

According to result of the experiment shown in Figure 6.17, R is about 40.75, while N = 13.

Consequently, the maximum throughput of the system is

T ≈ 529.75Q
Q + 11

. (6.5)

Then, we conduct experiments to verify this model and the result is shown in Figure 6.20.

Figure 6.20 shows that when Q (the number of QueryNodes) ≤ 8, the two lines match each

other well. That is, when Q ≤ 8, the bottle neck of the system is the links between the

switch and the DataNodes.

Finally, we measure the throughput of system with all 14 nodes as QueryNodes. The maxi-

mum throughput is about 265 when the concurrency is 26. The results of these experiments

show that our HadoopObS perform very well on Awan.
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Figure 6.20: The Maximum Throughput with the Number of QueryNodes Increases.
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Figure 6.21: The Throughput of the System with all 14 Node as QueryNodes.
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6.3 Scalability

In this section, we run multi-query experiments to evaluate the scalability of the system

which contain both blob data and nonblob. In these experiments, the nonblob data are

Flickr datasets, F1 and F2, which are described in Table 6.1 and the number of Querynodes

is set to 4. The following three queries are run:

1: Given a user name, retrieve all photos of his /hers.

2: Retrieve 20 photo which are tagged with ”sea”.

3: Given a photo id, retrieve the photo.
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Figure 6.22: The Throughput on F1.
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We run our concurrency experiments on F1 and F2 to compare the Bigfile method with the

Smallfile method. The results indicate that the Bigfile method outperforms the Smallfile

method as shown in Figure 6.22 and Figure 6.23.
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Figure 6.23: The Throughput on F2.
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Chapter 7

Conclusions

The popularity of social network services and the limitations of existing systems to sup-

port such services have driven to develop a new type of systems to support social network

services. In this thesis, we introduce a new data storage to store both nonblob data and

blob data for social network services. We store nonblob data in our graph storage system.

In the graph database system, we store each node as an object and each edge as a tuple in

a table. Typically, social network services serve a large number of users and one server

cannot handle all of request form them. Therefore, we also provide to two approaches, the

Ordering partition method and the MST partition method, to partition a huge social net-

work graph into several small parts. Indexing is the most important and fastest approach

which reduces high I/O cost effectively and greatly improves the speed of data retrieval. We

investigate two types of indexes: content index and node index. For blob data storage, we

investigated an object store, HadoopObS, to manage blob data for social network services.

HadoopObS is an object store which is designed to manage a massive number of photos

for read-intensive applications in social network services.
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Finally, we conduct some experiments to evaluate our data storage. For nonblob data, we

conduct experiments based on two types of partition method, the Ordering method and the

MST method. The results show that our methods outperform the conventional method on

both performance and scalability. We also measure the read and write performance of our

HadoopObS compared with the traditional file system to evaluate our blob data storage

design. The read throughput of HadoopObS is three times of the read throughput of the

traditional file system.

7.1 Future Work

In this thesis, we propose a data storage design and two partition methods for our graph

database to manage nonblob data for social network services. We also introduce two types

of indexes, content index and node index, to improve the query performance. We simulate

our graph database on a relational database to do evaluation. For blob data storage, we

design an object store on Hadoop Distributed File System, called HadoopObS, to store

blob data. HadoopObS overcomes some limitations of existing systems. In the future,

our graph model and storage system should be implemented in a graph database system

which is designed to support social network services. Other components of this graph

database system also should be investigated and implemented, such as query language,

query optimizer, query processor and etc. Finally, the graph database should be combined

with HadoopObS to provide data storage for both blob and nonblob data of social network

services.
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