
HBM: A HYBRID BUFFER MANAGEMENT
SCHEME FOR SOLID STATE DISKS

GONG BOZHAO

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

June 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48633712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

Fist of all, I want to thank my parents for their love and encouragement when I

felt depressed during this period.

I would like to express my deep-felt gratitude to my supervisor, Prof. Tay Yong

Chiang, for his guidance and patience. He always gave me valuable suggestions

when I did not know how I should do research. He also cared about my life and

offered his help for job opportunities. I also wish to thank Dr. Wei Qingsong for

his help on this thesis. It was his research work that inspired me. The comments

from Assoc. Prof. Weng Fai WONG and Assoc. Prof. Tulika Mitrafor my

Graduate Research Paper are greatly appreciated.

I like to thank a lot of my friends around me, Wang Tao, Suraj Pathak, Shen

Zhong, Sun Yang, Lin Yong, Wang Pidong, Lun Wei, Gao Yue, ChenChaohai,

Wang Guoping, Wang Zhengkui, Zhao Feng, Shi Lei, Lu Xuesong,Hu Junfeng,

Zhou Jingbo, Li Lu, Kang Wei, Zhang Xiaolong, Zheng Le, Lin Yuting, Zhang

Wei, Deng Fanbo, Ding Huping, Hao Jia, Chen Qi, Ma He, Zhang Meihui, Lu

Meiyu, Liu Linlin, Cui Xiang, Tan Rui, Chen Kejie, for sharing wonderful time

with me.

Special thanks to friends currently in China, Europe and US.They were never

ceasing in caring about me.

Gong Bozhao

i

Contents

Acknowledgement i

Summary v

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Organization . 4

2 Background and Related Work 5

2.1 Flash Memory Technology . 5

2.2 Solid State Drive . 7

2.3 Issues of Random Write for SSD 9

2.4 Buffer Management Algorithms for SSD 10

2.4.1 Flash Aware Buffer Policy 11

2.4.2 Block Padding Least Recently Used 12

ii

2.4.3 Large Block CLOCK 14

2.4.4 Block-Page Adaptive Cache 16

3 Hybrid Buffer Management 18

3.1 Hybrid Management . 19

3.2 A Buffer for Both Read and Write Operations 21

3.3 Locality-Aware Replacement Policy 22

3.4 Threshold-based Migration . 28

3.5 Implementation Details . 30

3.5.1 Using B+ Tree Data Structure 30

3.5.2 Implementation for Page Region and Block Region . . . 32

3.5.3 Space Overhead Analysis 34

3.6 Dynamic Threshold . 36

4 Experiment and Evaluation 40

4.1 Workload Traces . 40

4.2 Experiment Setup . 41

4.2.1 Trace-Driven Simulator 41

4.2.2 Environment . 42

4.2.3 Evaluation Metrics . 42

4.3 Analysis of Experiment Results 43

4.3.1 Analysis on Different Random Workloads 43

4.3.2 Effect of Workloads 50

4.3.3 Additional Overhead 51

4.3.4 Effect of Threshold . 54

iii

4.3.5 Energy Consumption of Flash Chips 56

5 Conclusion 59

iv

Summary

Random writes significantly limit the application of flash memory in enterprise

environment due to its poor latency and high garbage collection overhead. Sev-

eral buffer management schemes for flash memory have been proposed to over-

come this issue, which operate either at page or block granularity. Traditional

page-based buffer management schemes leverage temporal locality to pursue

buffer hit ratio improvement without considering sequentiality of flushed data.

Current block-based buffer management schemes exploit spatial locality to im-

prove sequentiality of write accesses passed to flash memoryat a cost of low

buffer utilization. None of them achieves both high buffer hit ratio and good

sequentiality at the same time, which are two critical factors determining the

efficiency of buffer management for flash memory. In this thesis, we propose

a novel hybrid buffer management scheme referred to as HBM, which divides

buffer space into page region and block region to make full use of both tem-

poral and spatial localities among accesses in hybrid form.HBM dynamically

balances our two objectives of high buffer hit ratio and goodsequentiality for

different workloads. HBM can make more sequential accessespassed to flash

memory and efficiently improve the performance.

We have extensively evaluated HBM under various enterpriseworkloads. Our

benchmark results conclusively demonstrate that HBM can achieve up to 84%

performance improvement and 85% garbage collection overhead reduction com-

pared to existing buffer management schemes. Meanwhile, the energy con-

sumption of flash chips for HBM is limited.

v

List of Tables

1.1 Comparison of page-level LRU, block-level LRU and hybrid LRU 3

3.1 The rules of setting the values ofα andβ 38

4.1 Specification of workloads . 40

4.2 Timing parameters for simulation 42

4.3 Synthetic workload specification in DisksimSynthgen 51

4.4 Energy consumption of operations inside SSD57

vi

List of Figures

2.1 Flash memory chip organization 6

2.2 The main data structure of FAB 11

2.3 Page padding technique in BPLRU algorithm 13

2.4 Working of the LB-CLOCK algorithm 15

3.1 Syntem overview . 19

3.2 Distribution of request sizes for ten traces from SNIA 20

3.3 Hybrid buffer management . 21

3.4 Working of LAR algorithm . 27

3.5 Threshold-based migration . 29

3.6 B+ tree to manage data for HBM 31

3.7 Data management in page region and block region32

4.1 Result of Financial Trace . 44

4.2 Result of MSNFS Trace . 46

4.3 Result of Exchange Trace . 47

4.4 Result of CAMWEBDEV Trace 48

4.5 Distribution of write length when buffer size is 16MB 50

4.6 Result of Synthetic Trace . 52

4.7 Total page reads under five traces 53

4.8 Effect of thresholds on HBM 55

4.9 Energy consumption of flash chips under five traces 58

vii

Chapter 1

Introduction

Flash memory has shown its obvious merits especially in the storage space com-

pared to the traditional hard disk drive (HDD), such as smallsize, quick access,

saving energy [14]. It is originally used as primary storagein the portable de-

vices, for example, MP3, digital camera. As its capacity is increasing and its

price is dropping, replacing HDD over the personal computerstorage and even

server storage with flash memory in the form of Solid State Drive (SSD) has

been paid more attention. Actually, Samsung1 and Toshiba2 have launched the

laptops with only SSDs. Google3 considers replacing parts of its storage with

Intel4 SSD storage in order to save energy [10], and MySpace5 has made use of

the Fusion-IO6 ioDrives Duo as its primary storage servers instead of hard disk

drives, and this switch brought it large energy consumption[29].

1www.samsung.com
2www.toshiba.com
3www.google.com
4www.intel.com
5www.myspace.com
6www.fusionio.com

1

1.1 Motivation

Although SSD shows its attractive worthiness especially onimproving the ran-

dom read performance due to no mechanical characteristic, however, it could

suffer from random write7 issue especially when it is applied in the enterprise

environment [33].

Just like HDD, SSD can make use of RAM inside as the buffer to improve

performance [22]. The buffer can delay the requests which directly operate on

flash memories, such that the response time of operations could be reduced.

Additionally, it also can reorder the write request stream to make the sequential

write flushed first when the synchronized write is necessary.Different from

HDD, buffer inside SSD can be managed not only at page granularity but also at

block granularity8. In other words, the basic unit in the buffer could be a logical

block equal to the physical block size in flash memories. Block is larger than

page in flash memory, which usually consists of 64 or 128 pages. The internal

structure of flash memory will be introduced in section 2.1. Existing buffer

management algorithms try to exploit the temporal localityor spatial locality in

the access patterns in order to get high buffer hit ratio or good sequentiality of

flushed data, which are two critical factors determining theefficiency of buffer

management inside SSD.

However, these two targets could not be achieved simultaneously under the ex-

isting buffer management algorithms. Therefore, we are motivated to design a

novel hybrid buffer management algorithm which manages data both at page

granularity and block granularity, in order to fully utilize both temporal and

sequential localities to achieve high buffer hit ratio and good sequentiality for

SSD.
7In this thesis, random request means small-to-moderate sized random request if not speci-

fied.
8Another expression of page granularity or block granularity is page-level or block-level,

page-based or block-based

2

To illustrate the limitation of current buffer management schemes and our mo-

tivation to design a hybrid buffer management, a reference pattern including

sequential and random accesses is shown in the Table 1.1.

Table 1.1: Comparison of page-level LRU, block-level LRU and hybrid LRU. Buffer size is
8 pages and an erase block contains 4 pages. Hybrid LRU maintains buffer at page and block
granularity, and only full blocks will be managed at block granularity and will be selected as
victim. In this example, we use [] to denote block boundary.

Access
Page-Level LRU Block-Level LRU Hybrid LRU

Buffer(8) Flush Hit? Buffer(8) Flush Hit? Buffer(8) Flush Hit?
0,1,2,3 3,2,1,0 Miss [0,1,2,3] Miss [0,1,2,3] Miss
5,9,11,14 14,11,9,5,3,2,1,0 Miss [14],[9,11],[5],[0,1,2,3] Miss 14,11,9,5,[0,1,2,3] Miss
7 7,14,11,9,5,3,2,1 0 Miss [5,7],[14],[9,11] [0,1,2,3] Miss 7,14,11,9,5 [0,1,2,3] Miss
3 3,7,14,11,9,5,2,1 Hit [3],[5,7],[14],[9,11] Miss 3,7,14,11,9,5 Miss
11 11,3,7,14,9,5,2,1 Hit [9,11],[3],[5,7],[14] Hit 11,3,7,14,9,5 Hit
2 2,11,3,7,14,9,5,1 Hit [2,3],[9,11],[5,7],[14] Miss 2,11,3,7,14,9,5 Miss
14 14,2,11,3,7,9,5,1 Hit [14],[2,3],[9,11],[5,7] Hit 14,2,11,3,7,9,5 Hit
1 1,14,2,11,3,7,9,5 Hit [1,2,3],[14],[9,11],[5,7] Miss 1,14,2,11,3,7,9,5 Miss
10 10,1,14,2,11,3,7,9 5 Miss [9,10,11],[1,2,3],[14] [5,7] Miss 10,1,14,2,11,3,7,9 5 Miss
7 7,10,1,14,2,11,3,9 Hit [7],[9,10,11],[1,2,3],[14] Miss 7,10,1,14,2,11,3,9 Hit

Sequential flush 0 1 1
Buffer hit 6 2 3

In this example, page-level LRU achieves 6 hits higher than block-level LRU,

and block-level LRU has 1 sequential flush better than page-level LRU. Hybrid

LRU achieves 3 buffer hits and 1 sequential flush, which combines the advan-

tages of both page-level LRU and block-level LRU.

1.2 Contribution

In order to research on the device-level buffer management9 for SSD using

FlashSim [25] SSD simulator designed by the Pennsylvania State University,

some implementation work has been done first. Firstly, we addBAST [24] FTL

scheme into FlashSim, because some existing buffer management algorithms

are based on this basic log-block FTL [24] scheme. Then we integrate a buffer

module above FTL level and implement four buffer managementalgorithms for

SSD, which are BPLRU [22], FAB [18], LB-CLOCK [12], and HBM.

We propose a hybrid buffer management scheme referred to as HBM, which

9It means the buffer is inside SSD.

3

gives consideration to buffer hit ratio and sequentiality by exploiting both tem-

poral and spatial localities among access patterns. Based on this hybrid scheme,

the whole buffer space is divided into two regions: page region and block re-

gion. These two regions are managed in different ways. Specifically, in the

page region, data is managed and adjusted in logical page granularity to im-

prove buffer space utilization, while logical block is the basic unit in the block

region. Page region prefers the random small sized access pages, while sequen-

tial access pages in the block region are replaced first when new incoming data

cannot be hold any more. Data can not only be moved inside pageregion or

block region, but also dynamically migrated from page region to block region

when the number of pages in the same logical block reaches a threshold that is

adaptive to different workloads. According to hybrid management and dynamic

migration, HBM improves the performance of SSD by significantly reducing the

internal fragmentation and garbage collection overhead associated with random

write, meanwhile, the energy consumption of flash chips for HBM is limited.

1.3 Organization

The remainder of this thesis is organized as follows: Chapter 2 gives an overview

of background knowledge of flash memory and SSD, and surveys some existing

well known buffer management algorithms inside SSD. Chapter 3 presents de-

tails of hybrid buffer management scheme. Evaluation and experiment results

are presented in Chapter 4. In Chapter 5, we conclude this thesis and possible

future work is summarized.

4

Chapter 2

Background and Related Work

In this chapter, basic background knowledge of flash memory and SSD is intro-

duced first. The issue of random writes for SSD is subsequently explained. Then

we mainly present three existing buffer management algorithms for SSD. After

each buffer management, the work will be summarized in brief. Specially, in the

end of this chapter, we introduce a similar research framework with ours: BPAC,

however, from which our research work have different internal techniques.

2.1 Flash Memory Technology

Two types of flash memories1, NOR and NAND [36], are existing. In this thesis,

flash memory refers to NAND specifically, which is much like block devices

accessed in units of sectors, because it is the common data storage material

regarding to flash memory based SSDs on the market.

Figure 2.1 shows the internal structure of a flash memory chip, which consists

dies sharing a serial I/O bus. Different operations can be executed in different

dies. Each die contains one or more planes, which contains blocks (typically

2048 blocks) and page-sized registers for buffering I/O. Each block includes

1We also use term ”flash chips” or ”flash memory chips” as alternative expression of flash
memory.

5

 !"#$%&$'(

)'*

+!",* +!",*

)'*

+!",* +!",*

+!",*

&"-$*%.*/'#0*1

+"/*%.*/'#0*1

+"/*

2!3-4

+"/*

55
5

+"/*

2!3-4

+"/*

55
5

55
5

Figure 2.1: Flash memory chip organization. Figure adapted from [35]

pages, which has data and mete data area. The typical size of data area is 2KB

or 4KB, and meta data area (typically 128 bytes) is used to store identification

or correction information and page state:valid, invalid or free. Initially, all the

pages are in free state. When a write operation happens on a page, the state of

this page is changed to valid. For updating this page, mark this page invalid first,

then write data into a new free page. This is calledout-of-place update [16]. In

order to change the invalid state of a page into free again, the whole block that

contains the page should be erased first.

Three operations are allowed for NAND:Read, Write andErase. As for reading

a page, the related page is transferred into the page register then I/O bus. The

cache register is especially useful for reading sequentialpages within a block,

specifically, pipelining the reading stream by page register and cache register

can improve the read performance. Read operation costs least in the flash mem-

ory. To write a page, the data is transferred from I/O bus intopage register first,

similar to the read operation, for sequentially writing, the cache register can be

used. A write operation can only change bit values from 1 to 0 in the flash chips.

Erasing is the only way to change bit values back to 1. Unlike read and write

both of which can be performed at the page level, the block accessed unit is for

erasing. After erasing a block, all bit values for all pages within a block are set

to 1. So erase operation cost most in the flash memory. In addition, for each

block, erase count that can be endured before it is worn out isfinite, typically

6

around 100000.

2.2 Solid State Drive

SSD is constructed from flash memories. It provides the same physical host

interface as HDD to allow operating systems to access SSD in the same way

as conventional HDD. In order to do that, an important firmware called Flash

Translation Layer (FTL) [4] is implemented in the SSD controller. Three im-

portant functions provided by FTL areaddress mapping, garbage collection and

wear leveling.

Address Mapping -FTL maintains the mapping information between logical

page and physical page [4]. When it processes the write operation, it writes

the new page to a suitable empty page if the requested place has already been

accessed before. Meanwhile, it marks the valid data in the requested place in-

valid. Depending on the granularity of address mapping, FTLcan be classi-

fied into three groups: page-level, block-level and hybrid-level FTL [9]. In the

page-level FTL, each logical page number (LPN) is mapped to each physical

page number (PPN) in flash memory. However this efficient FTL requires much

RAM inside SSD in order to store the mapping table. Block-level FTL asso-

ciates logical blocks with physical blocks, in which the mapping table is less.

However, the mechanism that requires the same page offsets between the log-

ical block and the corresponding physical block makes it notefficient because

updating one page could lead to update the whole block. Hybrid-level FTL 2

combines page mapping with block mapping. It reserves a small amount of

blocks called log blocks in which page-level mapping is usedto buffer the small

size write requests. Other than log blocks, the rest blocks called data blocks in

which block-level mapping is used to hold ordinary data. Thedata block holds

old data after write requests, the new data will be written inthe corresponding

2It is also called Log-scheme FTL

7

log block. Hybrid-level FTL shows less garbage collection overhead and the

required size of mapping table is less than page-level FTL. However, it incurs

expensive full merges for random write dominant workloads.

Garbage Collection -when free blocks are used up or a pre-defined threshold,

garbage collection module is triggered to produce more freeblocks by recycling

invalidated pages. Regarding page-level mapping, it should first copy the valid

pages out of the victim block and then write them into some newblock. For

block-level and hybrid-level mappings, it should merge thevalid pages together

with the updated pages whose logical page number is the same as them. During

merge operation, due to copying valid pages of the data blockand log block

(under hybrid-level mapping), extra read and write operations must be invoked

besides the necessary erase operations. Therefore, merge operations cost most

during garbage collection [21].

There are three kinds of merge operations:switch merge, partial merge andfull

merge [16]. Considering the hybrid-level mapping, switch merge usually hap-

pens when the page sequence of log block is the same as that of data block. Log

block will become the new data block because of all the new pages within it,

while data block which contains all the old pages will be justerased without ex-

tra read or write operations. So switch merge cost less amongmerge operations.

Partial merge happens when log blocks still can become new data block. In other

words, all the valid pages in the data block can be copied to the log block first,

then the data block is erased. Compared to partial merge, full merge happens in

the condition that some valid page in the data block can not becopied to the log

block and only a new allocated data block can hold it. During full merge, not

only valid pages in the data block should be copied to the new allocated data

block, but also the ones in the log block, after that, the old data block and log

block are erased. So full merge cost most among merge operations.

On the basis of the cost of merge operations, an efficient garbage collection

8

should make good use of switch merge operations and avoid full merge opera-

tions. Sequential writes which update sequentially can create opportunities of

switch merge operations, and small sized random writes often go with expensive

full merges. This is the reason why SSD suffers from random writes.

Wear leveling -some blocks are often written because of the locality in most

workloads. So there exists wear out problem for some blocks due to frequently

erasure compared to other blocks. FTL takes the responsibility for ensuring that

even use is made of all the blocks by some wear leveling algorithm [7].

There are many kinds of FTLs proposed in academia, such as BAST, FAST

[27], LAST [26], Superblock-based FTL [20], DFTL [16] and NFTL [28] and

so on. Of these schemes, BAST and FAST are two representativeones. The

biggest difference between BAST and FAST is that BAST has oneto one cor-

respondence between log block and data block, while FAST hasmany to many

correspondence. However, in this thesis, BAST is used as thedefault FTL be-

cause almost every existing buffer management algorithm inSSD is based on

BAST FTL [21].

2.3 Issues of Random Write for SSD

Firstly, according to out-of-place update for flash memory (see section 2.1),

internal fragmentation [8] could be seen sooner or later if small size and random

writes are distributed in much range of logical address space. It could result

in some invalid page existing in almost all physical blocks.In that case, the

prefetching mechanism inside SSD could not be effective because pages which

are logically contiguous are probably physically distributed. This causes the

bandwidth of sequential read to drop closely to the bandwidth of random read.

Secondly, the performance of sequential writes could be optimized over striping

or interleaving mechanism [5][31]inside SSD, which is not effective for ran-

9

dom writes. If a write is sequential, the data can be striped and written across

different parallel units. Moreover, multi-page read or write can be efficiently

interleaved over pipeline mechanism [13], while multiple single-page reads or

writes can not be conducted in this way.

Thirdly, more random writes can incur higher overhead of garbage collection,

which is usually triggered to produce more free blocks when the number of free

blocks gets lower than a pre-defined threshold. During garbage collection, se-

quential writes can incur lower-cost switch merge operations, and random writes

can incur much higher-cost full merge operations which are usually accompa-

nied by extra reads or writes. In addition, these internal operations running in

the background may compete for resources with incoming foreground requests

[8] and therefore increase latency.

Finally, increased erase operations due to random writes could incur more erase

operations and shorten the lifetime of the SSD. Experimentsin [23] show that

random write intensive workload could make flash memory wearout over hun-

dred times faster than sequential write intensive workload.

2.4 Buffer Management Algorithms for SSD

Many existing disk based buffer management algorithms are based on page

level, such as LRU, CLOCK [11], 2Q [19] and ARC [30]. These algorithms

try to increase buffer hit ratio as much as possible. Specifically, they only focus

on utilizing temporal locality to predict the next pages to be accessed and min-

imize page fault rate [17]. However, directly applying these algorithms is not

enough for SSD because spatial locality is not catered for, and the sequential

requests may be broken up into small segments so that the overhead of flash

memories may increase when replacement happens.

In order to exploit spatial locality and provide more sequential writes for flash

10

memories in SSD, buffer algorithms based on block level are proposed, such

as FAB, BPLRU and LB-CLOCK. According to these algorithms, accessing a

logical page results in adjusting all the pages in the same logical block based

on the assumption that all pages in this block have the same recency. In the

end of this section, a similar algorithm with our work calledBPAC [37] will

be introduced in brief. However, we have several different internal designs and

implementations. Because BPAC is introduced by a short research paper which

shows not much information about its details, moreover, BPAC and our work

has been done independently at the same time, so here we just briefly describe

some similarities and differences.

2.4.1 Flash Aware Buffer Policy

The flash aware buffer (FAB) [18] is a block-level buffer management algorithm

for flash storage. Similar to LRU, it also maintains a LRU listin its data struc-

ture. However, the node in the list is not a page unit, but a block unit, meaning

that pages belonging to the same logical block of flash memoryare in the same

node. When a page is accessed, the whole logical block which belongs to is

moved to the head of the list which is the most recent accessedend. If a new

page is added to the buffer, it is also inserted into the most recent used end of

the list. Moreover, due to block-level algorithm, FAB flushes the whole victim

block, not a single victim page. The logical view of FAB is shown in figure 2.2.

block number

page counter

page page

page page

page page

…... …...

block number

page counter

page page

page page

…... …...

block number

page counter

page page

page

…...

most recent used least recent used

…...

LRU List

Figure 2.2: The main data structure of FAB

11

In the block node, the page counter means the number of pages which belong

to the block. In FAB, a block whose has the largest page counter is always to

be selected to be flushed. If there is not only one candidate victim block, it will

choose the least recently used one.

In some cases, FAB decreases the number of extra operations in the flash mem-

ory, because it flushes valid pages in the buffer as often as possible, and it may

decrease copy valid page operations when erasing a block in the flash memory.

Especially, when the victim block is full, the switch merge can be executed.

Therefore, FAB shows better performance than LRU when most of I/O requests

are sequential due to the small latency of erase operation when it is triggered.

However, when the I/O requests are random, it may lower its performance. For

example, if the page counter of every block node is one and thebuffer is full.

FAB becomes the normal LRU in this extreme case. FAB has Another prob-

lem that the recently used pages will be evicted if they belong to the block that

has the largest page counter. This problem results from the fact that selecting a

victim page is mostly based on the value of page counter, not the page recency.

In addition, based on the rule of FAB, only dirty pages are actually written into

the flash memory, and all the clean pages are discarded. This policy may results

in internal fragmentation, which significantly impacts theefficiency of garbage

collection and performance.

2.4.2 Block Padding Least Recently Used

Similar to FAB, Block Padding Least Recently Used (BPLRU) [22] also a block-

level buffer algorithm, moreover, it manages the blocks by LRU. Besides block-

level LRU, BPLRU adopts a kind of Page Padding technique which improves

the performance of random writes. With this technique, whena block needs to

be evicted and it is not full, first reads those vacant pages not in the evicted block

now but in the flash memory, then writes all pages in victim block sequentially.

12

So this technique can bring BPLRU sequentiality of flushed block at the cost

of more extra read operations, because read operation is theleast costly in flash

memory. Figure 2.3 shows working of page padding.

Buffer managed by BPLRU

2

0

0

1

2

3

3

0

1

1

2

3

Read on the flyRead on the fly

Data block

Log block

Step 1: Read page 1 and

page 2 from data block

for page padding

Step 2: Invalidate page 1

and page 2 in data block,

sequentially write all four

pages into log block

Step 3: Swtich

merge when

garbage

collection is

triggered

F
lash C

hips
F

lash C
hips

Figure 2.3: Page padding technique in BPLRU algorithm

In this example, the current victim block has page 0 and page 3, and page 1 and

page 2 are in the data block of flash memory, so BPLRU first readspage 1 and

page 2 from the flash memory in order to make the victim block full, then writes

the full victim block into the log block sequentially, and only a switch merge

may happens.

In addition to page padding, BPLRU uses another simple technique called LRU

Compensation. It assumes that a block that is written sequentially shows the

least possibility that some page is written in this block again in the near future.

So if the most recently accessed block is written sequentially, it is moved to the

end of LRU list that is least recent used.

It is also worthy to note that BPLRU is just a writing buffer management algo-

rithm. For read operation, BPLRU first checks buffer, if buffer hit happens, it

will read data from buffer, but it does not re-arrange the LRUlist by read oper-

ations. If buffer miss happens, it will directly read data from the physical flash

13

memory storage, and does not allocate buffer space for read data. Normal buffer

including FAB allocates buffer for data which is read, but BPLRU does not.

On the one hand, although page padding may increase the read overhead, an

efficient switch merge operation is introduced as many as possible instead of

the expensive full merge operation, so BPLRU improves the performance of

random writes in flash memory. On the other hand, when most of blocks only

include few pages, the increased read overhead could be so large that it in turn

lowers the performance. In addition, if the vacant pages arenot in the flash

memory either, the efficiency of page padding could be impacted. Despite the

fact that BPLRU concerns the page recency by selecting the victim block in the

end of the LRU list, it just considers some page of high recency. In other words,

if one of pages in a block has a high recency, other not recently used pages

belonging to the same block also stay in the buffer. These pages will waste

the space of buffer and increase the buffer miss ratio. Additionally, when page

replacement has to happen, all the pages in the whole victim block are flushed

simultaneously, including the pages that may be accessed later. Therefore, while

spatial locality is aware in block-level scheme, temporal locality is ignored to

some extent. So it will result in low buffer space utilization or low buffer hit

ratio, and further decrease the performance of SSD. This is also the common

issue of block-level buffer management algorithm.

2.4.3 Large Block CLOCK

Large Block CLOCK (LB-CLOCK) [12] also manages buffer with logical blocks.

Other than the algorithms above, it is not designed based on LRU, but the

CLOCK [11]. A reference bit is tagged in every block in the buffer. When

any page of one block is accessed, the reference bit is set to 1. Logical blocks

in the buffer are managed in the form of a circular list, and a pointer traverses

clockwise. When it has to select a victim block, LB-CLOCK first finds the

14

Block number = 0

Page counter = 2

Recency bit = 1

P0 P1

Block number = 5

Page counter = 1

Recency bit = 0

P22

Block number = 7

Page counter = 2

Recency bit = 0

P28

P30

Block number = 9

Page counter = 3

Recency bit = 1

P36

P38 P39
C

lo
c

k
 p

o
in

te
r

(a) the state when buffer is full

Block number = 0

Page counter = 2

Recency bit = 0

P0 P1

Block number = 5

Page counter = 1

Recency bit = 0

P22

Clock pointer

Block number = 12

Page counter = 1

Recency bit = 1

P48

Block number = 9

Page counter = 3

Recency bit = 1

P36

P38 P39

(b) the state after page 48 is inserted

Figure 2.4: Working of the LB-CLOCK algorithm

block that the clock pointer is pointing to, then checks its reference bit. It sets

the reference bit to 0 if the value 1 is shown, and moves the clock pointer to the

next block. The clock pointer stops moving until the value 1 of reference bit is

encountered. Different from CLOCK algorithm, LB-CLOCK further chooses

the victim block from the candidate victim blocks set which includes the blocks

whose reference bits are 0 prior to current victim selectionuntil the block which

has the largest number of pages is selected. Figure 2.4 showsa running example

of LB-CLOCK.

In this example, suppose a block can include 4 pages at most, when page 48 is

going to be inserted, LB-CLOCK has to replace a victim block with new block

12 (48/4) due to full buffer now. Now the clock pointer is pointing to block 0

when starting to choose a victim block. Because the reference bit of block 0

is 1, the clock pointer moves next after the reference bit is set to 0. Now it is

pointing to block 5 whose reference bit is 0, so the victim selection process is

over. As shown in figure 2.4(a), the candidate victim blocks are block 5 and

block 7, because their reference bits are 0. Block 0 is not considered because

its reference bit is just changed into 0 in this current selection round. Finally,

15

block 7 has the highest number of pages and it is chosen as the final victim

block. After replacement, block 12 with page 48 is inserted into the position

which is just before block 0 as the clock pointer initially points to block 0, and

its reference bit is set to 1, as shown in figure 2.4(b).

In addition, LB-CLOCK makes use of the following heuristic:it assumes that

there is low probability that a block will be accessed again in the near future

if the last page (i.e. page which has the biggest page number)of the block is

written. So if the last page is written and the current block is full, this block is

one victim candidate. If the current block is not full after the last page written

but it has more pages than the previously evicted block, it isalso one victim

candidate. Besides, just like BPLRU, the block written sequentially shows low

possibility that it will be accessed later such that it can bea victim candidate

block.

Similar to BPLRU, LB-CLOCK is also a writing buffer management algorithm,

meaning that it will not allocate buffer space for read data.So it reduces the

opportunity that a full block is formed in the buffer. When a victim block has to

be chosen, LB-CLOCK is different from FAB which takes preference for block

space utilization (page counter described in section 2.2),and then recency. On

the contrary, it takes preference for recency and then blockspace utilization. Al-

though it tries to make a balance between the priority given to recency and block

space utilization, the assumptions in the heuristic are notstrongly supported.

2.4.4 Block-Page Adaptive Cache

Block-Page Adaptive Cache (BPAC) is a write buffer algorithm which aims to

fully make use of temporal locality and spatial locality to improve the perfor-

mance of flash memory. It is a similar research work with our HBM, but has

different strategies and details. Here we just briefly showssome similarities and

differences before our HBM is introduced.

16

Just like HBM, BPAC [37] has the framework in which page list and block list

are separately maintained to better explore temporal locality and spatial locality.

In addition, there exist dynamically page migrations between page list and block

list.

In the similar framework, BPAC and HBM has many obvious and significant

differences. BPAC is just a write buffer compared to HBM thatnot only focuses

on write operations but also read operations. In addition, BPAC makes use of

thresholds based on experiments to control page migrationsbetween page list

and block list. Not like BPAC, only dynamically page migration from page list

to block list is designed in HBM, because the migration from block list to page

list may result in a great number of page insert operations, especially when the

number of pages in a block get bigger as capacity of flash memory increases,

massively inserting pages into page list lowers the performance of algorithm.

Besides two differences above, a new algorithm called LAR isdesigned in HBM

to manage the block list. Moreover, a B+ tree is implemented in HBM to quickly

index the nodes. The details of HBM will be shown in the next section.

17

Chapter 3

Hybrid Buffer Management

We design HBM as a universal buffer scheme, meaning that it isnot only for

write operations but also read operations. We have assumed that the buffer mem-

ory is RAM. A RAM usually exists in current SSDs in order to store mapping

information of FTL [22]. When SSD is powered on, mapping information is

read from flash chips into RAM. Once SSD is powered off, mapping informa-

tion is written back to flash chips. We choose to use all of available RAM as

buffer for HBM.

Figure 3.1 shows the system overview considered in this thesis. Host system

may include a buffer where LRU could be applied. However in this thesis, we

do not assume any special buffer algorithm in host side. SSD includes RAM for

buffering read and write accesses, FTL and flash chips.

In this chapter, we will describe the design of HBM in detail.Hybrid manage-

ment and universal feature servicing both read and write accesses are proposed

first. Then a locality-aware replacement policy called LAR1 is designed to man-

age the block region of HBM. In order to implement page migration from page

region to block, we advance threshold-based migration method and meanwhile

adopt B+ tree to manage HBM efficiently. Space overhead due toB+ tree is

1We designed LAR in the paper ”FlashCoop: A Locality-Aware Cooperative Buffer Man-
agement for SSD-based Storage Cluster”, which is publishedin ICPP 2010.

18

Flash Chips Flash Chips

Flash Chips Flash Chips

Flash Translation Layer

RAM Buffer

(Universal Buffer Scheme, HBM)

writes reads

writes reads

Figure 3.1: System overview. The proposed buffer management algorithmHBM is applied to
RAM buffer inside SSD.

also analyzed in theory. How to dynamically adjust threshold will be discussed

in the final section of this chapter.

3.1 Hybrid Management

Some previous researches [34][15] claimed that the more popular the file is, the

smaller size it has, and large files are not accessed frequently. So file size and

its popularity have inverse relation. As [26] reports, 80% of file requests are to

files whose size is less than 10KB and the locality type of eachrequest is deeply

related to its size.

Figure 3.2 shows the distribution of request sizes over ten traces which we ran-

domly downloaded from Storage Network Information Association (SNIA) [2].

CDF curves are used to show percentage of requests whose sizes are less than a

certain value. As shown in figure 3.2, most of request sizes are between 4K and

64K, and few request sizes are bigger than 128K. Although only ten traces are

analyzed, we can see that small size request is much more popular than big size

request.

Random accesses are small and popular, which have high temporal locality. As

shown in Table 1.1, page-level buffer management exhibits better buffer space

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048

C
u
m

u
la

tiv
e
 P

ro
b
a
b
ili

ty

Request Size (KB)

Distribution of Request sizes for ten traces

"24.hour.BuildServer.11-28-2007.07-39-PM.trace"
"24Hour_RADIUS_SQL.08-28-2007.08-53-PM.trace"

"CFS.2008-03-10.01-16.trace"
"DevDivRelease.03-06-2008.10-22-AM.trace"

"DisplayAdsDataServer.2008-03-08.08-07.trace"
"DisplayAdsPayload.2008-03-08.08-12.trace"

"Exchange.12-13-2007.02-22-PM.trace"
"LiveMapsBE.02-21-2008.02-30-PM.trace"

"MSNFS.2008-03-10.06-35.trace"
"W2K8.TPCE.10-18-2007.06-53-PM.trace"

Figure 3.2: Distribution of request sizes for ten traces from SNIA [2]

utilization and it is good at exploiting temporal locality to achieve high buffer

hit ratio. Sequential accesses are large and unpopular, which have high spatial

locality. The block-level buffer management scheme can effectively make use

of spatial locality to form a logical erasable block in the buffer, and meanwhile

good block sequentiality can be maintained in this way.

Enterprise workloads are a mixture of random and sequentialaccesses. Only

page-level or only block-level buffer management is not enough to fully utilize

both temporal and spatial localities among enterprise workloads. So it is rea-

sonable for us to make use of hybrid management, which divides the buffer into

page region and block region, as shown in the figure 3.3. Thesetwo regions are

managed separately. Specifically, in the page region, buffer data is managed at

single page granularity to improve buffer space utilization. Block region oper-

ates at the logical block granularity that has the same size as the erasable block

size in the NAND flash memory. One unit in the block region usually includes

two pages at least. However, this minimum value can be adjusted statically or

dynamically, which will be explained in the section 3.6.

Page data is either in page region or in block region. Both regions serve in-

coming requests. It is worthy to note that many existing buffer management

algorithms can be used to manage pages in page region such as LRU, LFU.

LRU is the most common buffer management algorithm in operating systems.

20

Page Region

Block Region

LRU List

Block Popularity List

Figure 3.3: Hybrid Buffer Management. Buffer space is divided into two regions, page region
and block region. In the page region, buffer data is managed and sorted in page granularity,
while block region manages data in block granularity. Page can be placed in either of two
regions. Block in block region is selected as victim for replacement.

Due to its efficiency and simplicity, pages in page region areorganized as page-

level LRU list. When a page buffered in the page region is accessed (read or

write), only this page is placed at the most recent used end ofthe page LRU list.

As for block region, we design a specific buffer management algorithm called

LAR which will be described in the section 3.3.

Therefore, the temporal locality among the random accessesand spatial locality

among sequential accesses can be fully exploited by page-level buffer manage-

ment and block-level buffer management respectively.

3.2 A Buffer for Both Read and Write Operations

As for flash memory, the temporal locality and spatial locality can be understood

asblock-level temporal locality: the pages in the same logical block are likely to

be accessed (read/write) again in the near future. In the real application, read and

write accesses are mixed and exhibit the block-level temporal locality. In this

case, separately servicing the read and write accesses in different buffer space

may destroy the original locality present among access sequences. Some exist-

ing buffer managements for flash storage such as BPLRU and LB-CLOCK only

allocate memory for write requests. Although it creates more space for write

21

requests than the buffer which serves both read and write operations, however,

it may suffer from more extra overhead due to the read miss. As[12] claims,

servicing foreground read operations is helpful for the shared channel which

sometime has overload caused by both read and write operations. Moreover, the

saved channel’s bandwidth can be used to conduct backgroundgarbage collec-

tion task, which helps to reduce the influences of each other.In addition, read

operations are very common in some read intensive applications such as digital

picture reader, so it is reasonable for buffer to serve not only write requests but

also read operations.

Taking BPLRU as an example, as described in section 2.4.2, itis designed only

for writing buffer. In other words, BPLRU exploits the block-level temporal

locality only among write accesses, and especially full blocks are constructed

only through writes accesses. So in this case, there is not much possibility

for BPLRU to form full blocks when read misses happen. BPLRU uses page

padding technique to improve block sequentiality of flusheddata at a cost of

additional reads, which in turn impacts the overall performance. For random

dominant workload, BPLRU needs to read a large number of additional pages,

which can be seen in our experiment later. Unlike BPLRU, we leverage the

block-level temporal locality not only among write accesses but also read ac-

cesses to naturally form sequential block and avoid large numbers of extra read

operations. HBM treats read and write as a whole to make full use of locality

of accesses, meanwhile, HBM groups both dirty and clean pages belonging to

the same erasable block into a logical block in the block region. How to read or

write data will be presented in detail in section 3.3.

3.3 Locality-Aware Replacement Policy

This thesis views negative impacts of random writes on performance as penalty.

The cost of sequential write is much lower than that of randomwrite. Popular

22

data will be frequently updated. When replacement happens,unpopular data

should be replaced instead of popular data. Keeping populardata in buffer as

long as possible can minimize the penalty. For this purpose,we give prefer-

ence to random access pages for staying in the page region, while sequential

access pages in block region are replaced first. What’s more,the sequentiality

of flushed block is beneficial to garbage collection of flash memory.

Block popularity - small sized file is accessed frequently and big sized file is

not accessed frequently. In order to make good use of the access frequency in

block region, block popularity is introduced, which is defined as block access

frequency including reading and writing of any pages of the block. Specifically,

when a logical page of a block is accessed (including read miss), we increase

the block popularity by one. Sequentially accessing multiple pages of a block

is treated as one block access instead of multiple accesses.Thus, block with

sequential accesses will have low popularity value. One advantage of using

block popularity is that full blocks formed due to accessingbig size file usually

have low popularity. Full blocks will be probably flushed into flash memory

when replacement is necessary, which is beneficial to reducegarbage collection

overhead of flash memory.

A locality aware replacement policy called LAR is designed for block region.

The functions of LAR in form of pseudo code are shown in Algorithm 3.1, 3.2

and 3.3, which consider the case that the request size is onlyone page data. For

requests which include more than two pages, several small sized requests, each

of which only includes the pages belonging to a single block,will be processed

after breaking up the original big request. For one request,sequentially access-

ing multiple pages of a block is treated as one block access, thus, the block

popularity will be only increased by one.

How to read and write -when requested data is in the page region, re-arrange

the LRU list of page region. Because LAR is designed for blockregion, here all

23

the operations below happen in the block region.

Algorithm 3.1: Read Operation For LAR
Data: LBN(logical block number), LPN(logical page number)

1 if found then
2 Read page data in the buffer;
3 end
4 else
5 Read page data from flash memory;
6 if not enough free space then
7 Replace() ; /* refer to Algorithm 3.3 */
8 end
9 if LBN is not found then

10 Allocate a new block;
11 Write page data in the buffer;
12 Block popularity = 1;
13 Page state for LPN = clean;
14 Number of pages = 1;
15 end
16 if LBN is found but LPN is not found then
17 Write page data in the buffer;
18 Block popularity ++;
19 Page state for LPN = clean;
20 Number of pages ++;
21 end
22 Re-arrange the LAR list;
23 end

For read requests, if the read request is hit, read data directly (Alog 3.1, lines

1-3), and re-arrange the block region based on LAR (Alog 3.1,line 22). Here,

we simply suppose that block region is managed in LAR list, the specific data

structure managing block region will be presented in section 3.6. Otherwise,

HBM would then fetch data from flash memory and a copy of the data will be

placed in the buffer as reference for future requests (Alog 3.1, line 5). At this

time, if buffer is full, replacement operation is triggeredto produce more space

(Alog 3.1, lines 6-8). When there is enough space to hold new data, put it in the

buffer. Then two cases should be considered. If the logical block which new

page belongs to has been already in the buffer, we update the corresponding

information of this logical block (Alog 3.1, lines 16-21); otherwise, we should

24

allocate a new logical block first (Alog 3.1, lines 9-15). Finally, re-arrange the

LAR list (Alog 3.1, line 22).

Algorithm 3.2: Write Operation For LAR
Data: LBN(logical block number), LPN(logical page number), PageData

1 if found then
2 Update the corresponding page in the buffer;
3 Block popularity++;
4 Page state for LPN = dirty;
5 end
6 else
7 if not enough free space then
8 Replace() ; /* refer to Algorithm 3.3 */
9 end

10 if LBN is not found then
11 Allocate a new block;
12 Write page data in the buffer;
13 Block popularity = 1;
14 Page state for LPN = dirty;
15 Number of pages = 1;
16 end
17 if LBN is found but LPN is not found then
18 Write page data in the buffer;
19 Block popularity ++;
20 Page state for LPN = dirty;
21 Number of pages ++;
22 end
23 Re-arrange the LAR list;
24 end

For write requests, if the write request is hit, modify the old data, update the

corresponding information of the logical block which requested page belongs to

and re-arrange the LAR list; otherwise, the operations are similar to the ones for

read requests, except that page state should be set dirty (Alog 3.2, line 4, 14 and

20).

Victim block selection -every page in the buffer keeps a state value for itself:

clean anddirty. Modified page will be dirty, and page read from flash memory

due to read miss will be clean. When there is not enough space in the buffer, the

least popular block indicated by block popularity in the block region is selected

as victim (Alog 3.3, line 1). If more than one block has the same least popularity,

25

Algorithm 3.3: Replacement For LAR

1 Find the victim block which has the smallest block popularity;
2 if not only one victim block then
3 Block of them, which has the largest number of pages, will be chosen;
4 if Still not only one victim block then
5 randomly pick one from them;
6 end
7 end
8 if there are dirty pages in victim block then
9 Both dirty pages and clean pages in victim block are sequentially

flushed;
10 end
11 else
12 All the pages in victim block will be discarded;
13 end
14 Re-arrange the LAR list;

a block having the largest number of buffered pages is further selected as a

victim (Alog 3.3, line 3). After this selection, if there is still more than one

block, the final victim block will be further chosen randomlyfrom them (Alog

3.3, lines 4-6).

Selection compensation -only if block region is empty, we select the least re-

cently used page as victim from page region. The pages belonging to the same

block as this victim page will be also flushed sequentially. This policy tries to

avoid flushing single page, which has high negative impact ongarbage collec-

tion and internal fragmentation.

How to flush the victim block -once a block is selected as victim, there are two

cases to deal with: (1) If there are dirty pages in this block,both dirty pages

and clean pages of this block are sequentially flushed into flash memory (Alog

3.3, lines 8-10). This policy guarantees that logically continuous pages can be

physically placed onto continuous pages, so as to avoid internal fragmentation

and keep the sequentiality of flushed pages. By contrast, FABflushes only dirty

pages in the victim block and discards all the clean pages without considering

the sequentiality of flushed data. (2) If there are no dirty pages in the block, all

26

WR (0,1,2) RD (3) RD (8,9) WR (10) RD (19) WR (1,2) WR (16,17,18)

3 miss 8,9 miss 19 miss 1,2 hit

Block No: 0 Block No: 2 Block No: 4

Read Miss

Popularity: 3

Number of Pages: 4

Popularity: 3

Number of Pages: 3
Popularity: 2

Number of Pages: 4

Victim for

replacement

Sequential Flush

WR (11)

(a) The victim block which has the smallest
block popularity is sequentially flushed

WR (0,1,2) RD (3) RD (8,9) WR (10) RD (19) WR (1,2) RD (16,17,18)

3 miss 8,9 miss 19 miss 1,2 hit

Block No: 0 Block No: 2 Block No: 4

Read Miss

Popularity: 3

Number of Pages: 4

Popularity: 2

Number of Pages: 3
Popularity: 2

Number of Pages: 4

Victim for

replacement

D
is

c
a
rd

 th
is

 b
lo

c
k

16,17,18 miss

(b) The victim block is further chosen by
number of pages, and discarded due to no
dirty pages

Figure 3.4: Working of LAR algorithm

the clean pages of this block will be discarded (Alog 3.3, lines 11-13).

Figure 3.4 illustrates working of our LAR. In figure 3.4(a), upon write request

WR(0,1,2) is coming, because they belong to block 0 and block0 is not in the

buffer, a new block 0 should be allocated first, and pages of 0,1 and 2 are written

in the buffer. Therefore, the popularity of block 0 is 1 and number of pages is 3.

As read request RD(3) is coming, one missed page is read from flash chips and

stored in the block 0, whose popularity is then increased by 1and number of

pages is updated as 4. Similarly, pages of 8 and 9 form block 2 with popularity

1. As write request WR(10) is coming, both popularity and number of pages in

block 2 are increased by 1. Read request RD(19) initially forms block 4, whose

popularity is 1 and number of pages is 1.Write request WR(11)increases the

popularity and number of pages of block 2 by 1, respectively.Two page hits

happen when write request WR(1,2) is coming, which updates the popularity

of block 0 as 3. Finally, write request WR(16, 17, 18) updatesthe popularity

and number of pages of block 4 as 2 and 4, respectively. Of three blocks in the

buffer, block 4 is regarded as victim block due to its least popularity, and it will

be sequentially flushed into flash chips.

Due to the different request sequence from figure 3.4(a), thefinal state of buffer

in figure 3.4(b) is different. Specifically, the popularity,number of pages of

27

block and page states are different. When replacement happens, block 4 is still

victim block although its popularity is equal to the one of block 2, because its

number of pages is bigger than block 2. Then block 4 will be discarded since all

the pages in block 4 are clean.

After LAR is used, more sequential requests are passed to theflash chips, while

most random requests are filtered. Requests which show spatial stronger locality

can be processed efficiently.

3.4 Threshold-based Migration

A threshold which is the minimum number of pages included in each block in

block region can be set statically or dynamically. Whichever policy is applied,

buffer data in page region will be migrated to block region ifthe number of

pages in a block reaches the threshold, as shown in figure 3.5.How to determine

the threshold value will be discussed in section 3.6. For instance, in figure 3.5,

suppose that the threshold is 3, page 0, page 1 and page 2 whichbelong to block

0 are all in the page region at the same time. According to threshold-based

migration, these three pages should be constructed to block0 and migrated into

the block region. Block region is updated then.

The blocks in the block regions are formed in the two ways: onethe one hand,

when a large sized request involving many continuous pages is issued, the block

may be constructed directly. On the other hand, it could be constructed due to

many small sized requests involving pages belonging to the same block as block

0 in figure 3.5. Therefore, with filter effect of the threshold, random pages due

to small size requests will stay in the page region, while theselected blocks

as block 0 in figure 3.5 reside in the block region. Temporal locality among

random pages and spatial locality among sequential blocks can be fully utilized

in the hybrid buffer management.

28

Page LRU

List

Block Assembling

Page Region

Blk.0 Blk.2 Blk.1

Number of Pages >=

THRmigrate
Block Migration

Blk.5 Blk.7 Blk.0 Blk.9

Block Region

Victim Block

Block Popularity

List

Figure 3.5: Threshold-based Migration.THRmigration is a threshold which denotes the mini-
mum number of pages for a block in block region. Buffer data inpage region will be migrated to
block region only if the number of pages in a block reachesTHRmigration. Grey boxe (Blk.0)
denotes that a block is found and migrated to block region. Anerase block consists of 4 pages.

29

3.5 Implementation Details

Suppose page region and block region are managed by LRU and LAR list re-

spectively, finding an associated page in buffer is not efficient, and we must

traverse two lists every time searching pages are necessary. So CPU power

should be cared when we design HBM to search one particular page quickly.

In addition, how to implement threshold-based data migration should be also

efficiently designed. Meanwhile, limited memory space should be achieved due

to the precious memory size inside SSD.

3.5.1 Using B+ Tree Data Structure

B+ tree [1] is primarily used in data storage and it is used forquickly data

search requirement. For example, in file systems, some of which use B+ tree for

metadata indexing. Unlike binary search tree, a high fan outvalue helps B+ tree

to shorten the path length to search an element in the tree. Insome relational

database management systems such as IBM DB2 [1], B+ tree is supported for

table indices.

We adopt B+ tree indexing to manage data for two reasons: one is its efficient

retrieval for a particular page; the other is that the memorysize for B+ tree is

limited, which will be analyzed in section 3.5.3.

Figure 3.6 shows B+ tree indexing to manage data for HBM. Two basic data

structures should be present first:block node andpage node. Block node de-

scribes a block in terms of block popularity, number of pagesin the block in-

cluding clean and dirty pages, and pointer array which points to the page nodes;

Page node describes a page in terms of page number, two link pointers for LRU,

and physical address of page data. B+ tree index is built overthe block nodes. It

uses block number as key to assemble the pages that belong to the same block.

The leaf node of B+ tree has pointers to corresponding block nodes.

30

Number of Pages

Block Polularity

Pointer Array

Block Node

Physical Address of Page in Buffer

Link to the

next
Page Number

Link to the

previousPage Node

Root Node

Interior Node

Leaf Node

Key = Block Number

Page LRU List

Figure 3.6: B+ tree to manage data for HBM

31

3.5.2 Implementation for Page Region and Block Region

Figure 3.7 shows the implementation for page region and block region of HBM.

1 10 2 8 9 11 4 17 5 6 22 16

Number of Pages = 2

Block Popularity = 2

Pointer Array

Pointer Array

Block Popularity = 2

Number of Pages = 3

Pointer Array

Block Popularity = 1

Number of Pages = 4

Number of Pages = 2

Block Popularity = 3

Pointer Array

Number of Pages = 1

Block Popularity = 3

Pointer Array

X X X X X X X X X X

P
a
g

e
R

e
g

io
n

H
e
a

d
e
r

Page Region

Block Region

P
a
g

e
R

e
g

i o
n

T
a

il

B
lo

c
k

 R
e

g
io

n
 T

a
il

p
o

in
ts

 t
o

 v
ic

ti
m

 b
lo

c
k

If buffer is full and block region is empty, flush

this victim block belonging to page region.

Because Page Region tail is pointing to one of

pages in it.

BLK.0 BLK.4 BLK.5

BLK.2 BLK.1

Figure 3.7: Data management in page region and block region

Forming block region -initially, all the page nodes in the buffer are included in

page region, meaning that they are all linked by pointers forLRU. A page region

header indicates the most recent used end of LRU list, pointing to the first page

node in page region. Meanwhile, a page region tail indicatesthe least recent

used end of LRU list, pointing the last page node in page region. Upon arrival of

an access in the page region, we deal with it in following way.After dividing the

page number by the number of pages per block, we first get the block number.

32

Then we search the B+ tree using the block number to find the corresponding

block node. If the block node exists, we update the block nodeincluding block

popularity, number of pages and pointer (if page does not exist, add a new page

node into LRU list, and a pointer corresponding to new page node is added into

block node). If the block node does not exist, we add a new pagenode and a

corresponding block node, and then update the LRU list. If the number of pages

in the block is below the threshold, update the LRU list; otherwise, all the pages

in the block will be migrated to block region. Specifically, we extract these

pages from LRU list in the page region by modifying the related links for LRU

of page nodes, and then the two links for LRU of extracted pagenodes are set

NULL, for example, marker ”X” in figure denotes that there arenot any links

between two page nodes. In other words, how to determine whether a page node

belongs to page region or block region depends on the links for LRU of it. If the

link is NULL, the page node is in block region; otherwise, it is in page region.

The reason why we manage page region and block region in this way is that we

do not have to really manage a LAR list (the replacement policy in block region

is LAR) in block region. All we need is quickly finding the victim block when

replacement has to happen.

Selecting the victim block -the victim block should has the smallest block pop-

ularity, such as BLK.2 in figure 3.7. If there is more than one block like this,

the one that has the least number of pages will be chosen. So there is a pointer

called block region tail which points to the current victim block.

When one block node is just migrated into block region, we compare this block

node with the victim to see whether this block can replace thecurrent victim

block, and update the block region tail pointer if necessary. When the victim

block is updated, we need to traverse all the block nodes by leaf nodes of B+

tree to determine whether we need to change the victim block.Because updating

the victim block seldom happens, the cost of traversing all the block nodes is

limited.

33

What to do when block region is empty -that the pointer of block region tail

is NULL means that the block region is empty. In this condition, if we have to

replace pages from page region for free space, the page whichthe page region

tail points to will be chosen, and besides this page, other pages that belongs to

the same block as this page will also be chosen. In other words, we first find the

victim page by page region tail, then search the block node that belongs to, e.g.,

BLK.4 in figure 3.7, and sequentially flush all the current pages indicated in the

block node from low page number to high page number.

3.5.3 Space Overhead Analysis

By using B+ tree indexing, the pages belonging to the same block can be quickly

searched and located. Meanwhile, the space overhead of B+ tree and the block

node is limited. As shown in figure 3.6, B+ tree generally includes two parts:

leaf nodes and interior nodes (including root node). In order to analyze the space

overhead, we first make following assumptions:

1. Integer or pointer type consumes 4 bytes;

2. B+ tree uses a ”fill factor” to control the growth and shrinkage. A 50% fill

factor [32] would be the minimum for any B+ tree. In other words, at least

half of child pointers are valid. The typical fill factor is 67% in practice

[32], however we set it to be 50% for convenience of analysis.In addition,

as fill factor increases, the number of interior nodes will decrease. In order

to analyze the worse case, the minimum fill factor 50% should be set. In

this case, the leaf node will also remain at least half-full;

3. Suppose the ratio of number of interior nodes to number of leaf nodes is

r, 0<r<1. In practice, the number of interior nodes is much smaller than

leaf nodes. B+ tree is height balanced and the fan out of B+ tree is 133

on average [32]. In this condition, because the fill factor isat least 50%

34

according to assumption 2, r is usually much smaller than 1. Here, we set

r to be 0.5, meaning that the number of interior nodes is half of the number

of leaf nodes. Suppose that the size of one interior node is the same as one

leaf node (although interior node is strictly a little bigger than leaf node,

it will not impact on analysis here due to few interior nodes);

4. Every block node including block popularity integer value, number of

pages integer value and one pointer consumes 12 bytes. Here,we assume

that pointer array only includes one pointer. In this case, the number of

the block nodes is max for worse case. So the number of block node is

equal to the number of page node;

5. Every page node has 4*4=16 bytes, including page number, two link

pointers for LRU, and one pointer indicating physical address of page

data;

When the length of page list is L, the size of buffer pages is L*2*1024 bytes (one

page is 2KB) in sum. Accordingly, the number of block nodes isL (assumption

4), the total size of block nodes is L*12 bytes (assumption 4), the total size of

leaf nodes is L*2*8 bytes (assumption 2, one slot corresponding to one block

node in leaf node consumes 8 bytes, one integer for a key whichis block number,

one pointer for block node), the total size of interior nodesis (L*2*8)/2=L*8

bytes (assumption 3), and the total size of page nodes is L*16 bytes. Therefore,

the space overhead of B+ tree, block nodes and page nods in sumis L*12 +

L*2*8 + L*8 + L*16 = L*52, which is less than 3% of L*2*1024 buffer pages.

Although the above analysis of space is not strict and precise, it can generally

reflect the real space overhead. For example, leaf nodes of B+tree are linked

together to form a double linked list according to definitionof the original B+

tree. Because it is difficult for us to calculate the number ofleaf nodes and

furthermore get this additional space overhead due to double links, it is ignored.

However, in the worse case that the number of leaf nodes is equal to the number

35

of block nodes L (it is even impossible due to 50% fill factor),this additional

space overhead is only L*4*2 (two pointers, one is pointing to the previous leaf

node, one is pointing to the next leaf node). To sum up, the analysis basically

indicates that total space overhead of HBM is small and limited.

3.6 Dynamic Threshold

Our objective is to improve sequentiality of accesses passed to flash memory, at

the meantime maintain high buffer space utilization. The threshold is utilized

to balance the two objectives, whose value is critical to theefficiency of our

proposed HBM buffer management scheme.

In order to investigate the proper threshold value, we tested the effects of dif-

ferent threshold values through repetitive experiments over a set of workloads.

However, we found in our experiments that it is difficult to find an average well

performed value for all types of workloads. Different threshold values should

be set to achieve optimal results for different workloads. Even for the same

workload, varied threshold value during processing workloads can be better for

improving performance than the fixed threshold value. Therefore, statically set-

ting threshold value can not adapt to enterprise workloads with complex features

and interleaved I/O requests.

We realize that the value of threshold is highly dependent onworkload features.

For small sized random dominant workload, a small value is suitable because

it is difficult to form big sized sequential blocks, and few blocks exist in the

block region. Once we need to replace pages for free space, pages in page

region have to be flushed, which exhibits little sequentiality. For sequential

dominant workload, a large value is desirable because a lot of partially filled

blocks instead of full blocks will be migrated from page region to block region

if a small threshold is set, which lowers the space utilization and buffer hit ratio.

36

HBM uses the following heuristic to achieve the dynamic threshold-based mi-

gration: we useTHRmigrate to denote the threshold. Clearly, the value of

THRmigrate must be at least 1. As long as the number of pages in some block

is higher than or equal toTHRmigrate, it will be placed in the block region. So

whenTHRmigrate is 1, all the pages are in the block region, which is managed

by LAR algorithm; suppose a block can at most accommodate 64 pages, when

THRmigrate is larger than 64, all the pages are in the page region, which is man-

aged by LRU algorithm.Nblock represents the total size of block region in term

of number of pages.Ntotal represents the total size of buffer space in term of

number of pages. We useγ to denote the ratio betweenNblock andNtotal. The

value ofγ is under following simple constraint (3.1), which is used tocontrol

whether to enlarge or reduce the threshold during processing workloads.

α ≤ γ =
Nblock

Ntotal

≤ β (3.1)

Whereα, β are parameters which should be configured as the minimum and

maximum reasonable ratio betweenNblock andNtotal.

On the one hand, since the block region is used to store block candidates whose

pages are sequential enough for replacement, and the total size of these block

candidates should be much smaller than the total size of others, therefore, the

size of the block region should be much smaller than the size of page region.

In addition, once one block is migrated to block region, it will not be moved

back to page region again, because LRU list in page region cannot adjust to this

block, in other words, it is difficult to make sure where the pages in this block

should be inserted in the LRU list. Therefore, the buffer hitratio may decrease

as the size of page region shrinks. So we should keep the blockregion in small

size. For example, we set the value ofβ as 10% for small buffer size such as

4MB and 20% for large buffer size such as 64MB.

On the other hand, if block region is too small, it may be consumed quickly if

37

big sized requests come when buffer is full. In this case, we have to flush pages

in page region. Therefore, the value ofα is also related to distribution of request

sizes to some extent. As described in section 3.1, 80% of file accesses are to files

of less than 10KB and most of request sizes are between 4K and 64K as shown

in figure 3.2. Suppose that page size in flash memory is 2K, the size of block

region is at least 32 pages (64K/2K) for ten traces in section3.1. Because a full

block usually consists of 64 pages, it means that block region can be 64 pages

(one full block size). However, we can not know the distribution of request sizes

in advance, and the request size may be larger sometimes. So simply, we had

better set the smallest value ofα a little larger, such as the ratio of 128 pages (2

full blocks, 256K) to the total size of buffer.

It is worth noting that 2 full blocks can occupy large part of buffer size as for

small size buffer. For example, as for 1MB buffer, if we stillsetα as the ratio

of 128 pages to 512 pages (8 full blocks, 1MB), it means thatα is equal to 25%

(128/512) which is bigger than 10%, the assumed value ofβ. So it contradicts

the constraint (3.1) whereα is not larger thanβ. Therefore, for the small sized

buffer whereβ is smaller thanα based on general rules described above, we still

setα as the ratio of 128 pages to the total size of buffer, however,β will be set

as the ratio of 256 pages (4 full blocks) to the total size of buffer.

Table 3.1 shows the our proposed rule for setting the values of α andβ.

Table 3.1: The rules of setting the values ofα andβ

General rule: setα as the ratio of 128 pages to the total size of buffer;
setβ as 10% for small buffer size and 20% for large buffer size;
Exception: if the α is bigger thanβ after calculation based on the gen-
eral rule, then setα as the ratio of 128 pages to the total size of buffer;
setβ will be set as the ratio of 256 pages to the total size of buffer

The size of block region should be adjusted dynamically based on constraint 3.1

above. Algorithm 3.4 shows how we adjustTHRmigrate dynamically.

Initially, the value ofTHRmigrate is set to 1. The size of block region is moni-

tored every time its total size is changed. It is worth notingthat not every request

38

Algorithm 3.4: DynamicallyAdjust Threshold

1 if Nblock is changed
∧

old THRmigrate stays the same at least for 100
requests since the last time it was changed then

2 if γ > β
∧

THRmigrate ≤ 64 then
3 THRmigrate += 1;
4 end
5 if γ < α

∧
THRmigrate ≥ 2 then

6 THRmigrate -= 1;
7 end
8 end

can make the size of block region changed, such as requests which are hit in the

buffer. The maximumTHRmigrate is 65, which will occur whenγ is larger than

β and oldTHRmigrate is equal to 64. The minimumTHRmigrate is 1, which

will occur whenγ is smaller thanα and oldTHRmigrate is equal to 2. We do

not changeTHRmigrate for at least 100 requests since last change happened.

Because the value ofγ does not vary too much especially for big sized buffer, if

we changeTHRmigrate for every request whenNblock varies,THRmigrate will

quickly vary from 1 to 65 or from 65 to 1, and stay 65 or 1 for quite a long

time, other possibleTHRmigrate values between 1 and 65 will not be evaluated

enough in that case.

After satisfying the first condition (Algo 3.4, line 1), if the value ofγ becomes

larger thanβ , it indicates that the size of the block region breaks the above

constraint. To reduce the size of the block region, a large value ofTHRmigrate

is required to increase the difficulty of page migration fromthe page region to

the block region. Then, the value ofTHRmigrate will be increased by 1 untilγ

is less thanβ. On the other hand, the value ofTHRmigrate will be decreased by

1 if γ becomes smaller thanα.

39

Chapter 4

Experiment and Evaluation

In this chapter, we use simulation to evaluate HBM and compare it to three other

buffer management algorithms: BPLRU, FAB and LB-CLOCK. We first intro-

duce our workload traces and experiment environment. Then the experiment

results are analyzed based on performance and energy consumption.

4.1 Workload Traces

Both real and synthetic traces are used in our experiments tostudy the perfor-

mance of different buffer management algorithms. The features of our traces

are presented in Table 4.1.

Table 4.1: Specification of workloads

Workload Avg.Req.Size(KB) Write(%) Seq. (%) Avg.Req.Inter-
arrive Time(ms)

Financial 3.89 18 0.6 11080.98
MSNFS 9.81 33 6.1 586.79

Exchange 12.01 72 10.5 3780.67
CAMWEBDEV 8.14 99 0.2 707.10
Synthetic Trace 20.32 70 80 52.22

A read-dominant I/O trace is used which is based on an OLTP application run-

ning at a financial institution [3] made available by the Storage Performance

40

Council (SPC), henceforth referred to as Financial trace. We also employ a

write-dominant I/O trace called CAMWEBDEV, which was 1-week block I/O

trace of enterprise servers at Microsoft [2] made availableby the Storage Net-

work Information Association (SNIA) [2]. Besides read and write dominant

workloads, we want to assess the behavior of different buffer management schemes

under mixed workloads. For this purpose, we use MSNFS which was collected

for MSN Storage file server for duration of 6 hours and Exchange traces which

were production traces collected at Microsoft using event tracing for Windows.

All these two traces are also available by SNIA. Finally, we also use a synthetic

trace which is generated by DiskSim 4.0 [6] to study the behavior of differ-

ent buffer management schemes for a sequential dominant workload, which is

referred to as Synthetic trace. The five traces used in our experiment cover

workload characteristics from random to sequential and from read dominant to

write dominant.

Originally, the address space of these traces is different.Some traces are within

32 GB, others are out of 32GB. Because the size of SSD in our simulator is fixed

at 32GB, we extract the requests whose access address is within 32GB in order

to adapt to our simulator.

4.2 Experiment Setup

4.2.1 Trace-Driven Simulator

FlashSim [25] is an event-driven simulator for NAND flash memory based Solid

State Drive, designed by the Pennsylvania State University. It is developed

based on the well-regarded DiskSim simulator [6], and adds aSSD module.

Currently, FlashSim implemented three types of FTL, which are page level FTL,

DFTL [16] that is another kind of page level FTL, and FAST. It also can analyze

the energy consumption of these different FTL schemes.

41

In order to research on the device-level buffer management inside SSD using

FlashSim, we add BAST FTL scheme into FlashSim, because someexisting

buffer management algorithms are based on this basic log-block FTL scheme.

Then we add a buffer module and implement four buffer management algo-

rithms inside SSD, which are BPLRU, FAB, LB-CLOCK, and HBM.

4.2.2 Environment

For our simulation, we assume a 32GB SLC NAND flash memory based SSD

with 64 2KB pages in each block. The size of data register or cache register

is also 2KB. The maximum erase times of every block is 100000.BAST FTL

algorithm is configured to use 3% [24] of capability of SSD as log blocks. The

trivial cost of updating mapping information is ignored. Wesimulate various

evaluation metrics while varying the RAM buffer sizes from 1MB to 64MB.

Parameters in Table 4.2 for performance calculation is used. These values are

taken from [37]. The simulator is run on a Pentium dual-core 2.33GHz PC with

Ubuntu 8.04 and Linux kernel 2.6.24.

Table 4.2: Timing parameters for simulation

Operations Time(µs)
Page Read to Register 25
Page Program (Write) from Register 200
Block Erase 1500
Serial Access to Register (Data bus) 100

4.2.3 Evaluation Metrics

In this thesis, we utilize the following metrics:

• Response time, which is seen at the I/O driver (the sum of the device

service time and time spent waiting in the driver’s queue [16])

42

• Buffer hit ratio , which is calculated as the ratio between the number of

pages hit in the buffer and total number of requests pages

• Number of erases, which is the indicator of the garbage collection over-

head

• Distribution of write length, which indicates the sequentiality of write

accesses passed to flash memory, and it characterizes the behavior of dif-

ferent buffer management schemes

In addition, the total number of read operations including read miss and extra

reads is evaluated to analyze the additional overhead.

4.3 Analysis of Experiment Results

Figure 4.1, 4.2, 4.3, 4.4 and 4.6 show the average response time, buffer hit ratio,

number of erases and distribution of write length of BPLRU, FAB, LB-CLOCK

and HBM buffer management schemes under the five workloads when we vary

buffer size. To indicate the write length distribution, we use CDF curves to show

percentage (shown on Y-axis) of written pages whose sizes are less than a certain

value (shown on X-axis). We present CDF curves for 1MB bufferin figure 4.1

through figure 4.4 for random workloads and figure 4.6 for synthetic workload.

We also present CDF curves for 16MB buffer under different workloads in figure

4.5.

4.3.1 Analysis on Different Random Workloads

1) Financial trace

Figure 4.1 shows that HBM outperforms BPLRU, FAB and LB-CLOCK in

terms of average response time, buffer hit ratio, number of erases and number

of sequential writes under the completely read dominant trace.

43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(a) Response time varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

H
it

R
at

io
 (

%
)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(b) Buffer hit ratio varies with buffer size

 0

 5

 10

 15

 20

 25

 30

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 E

ra
se

s
x

10
00

0

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(c) Number of erases varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(d) Distribution of write length when buffer is
1MB

Figure 4.1: Result of Financial Trace

With the buffer size of 1MB, the average response time of HBM is 0.12 millisec-

onds (ms). By contrast, the average response time of BPLRU is0.75 ms (see

figure 4.1(a)). HBM makes 84% improvement in terms of averageresponse time

compared to BPLRU. Accordingly, there is a 185% hit ratio increase (see fig-

ure 4.1(b)) and an 85% erase reduction (see figure 4.1(c)) compared to BPLRU.

HBM also exhibits 76% faster, 146% more buffer hits and 82% lower erases

compared to FAB for a 1MB buffer. LB-CLOCK also exhibits better perfor-

mance than BPLRU and FAB. However, HBM still has 50% improvement in

term of average response time due to its higher buffer hit ratio and less number

of erases than LB-CLOCK.

Figure 4.1(d) shows that the percentage of 1-page write of BPLRU, FAB and

LB-CLOCK is 56%, 10% and 23% respectively. By contrast, HBM only has

5% small writes, better than BPLRU, FAB and LB-CLOCK. Furthermore, HBM

provides much more large writes than others. For example, almost 32% of the

writes are larger than 4 pages in size for HBM, while BPLRU, FAB and LB-

44

CLOCK only have 14%, 2% and 18% writes larger than 4 pages. So HBM is

very efficient in increasing sequentiality of write accesses.

In addition, as shown in figure 4.1(a), not only the average response time in

the case of only 1M buffer size is small, but also the performance of HBM is

more stable than other three algorithms as buffer size varies. Because RAM

inside SSD is an expensive part and consumes more energy if its size is large,

a small and efficient buffer is necessary. The stability of performance exhibited

by HBM just satisfies this requirement.

The results indicate that the performance gain of HBM comes from two aspects:

high buffer hit ratio and reduced garbage collection or lessnumber of erases.

This is because HBM exploits page and block to mange buffer space in a hybrid

way, taking both temporal and spatial localities into account. HBM makes its

contributions through improving buffer hit ratio and increasing the portion of

sequential writes.

2) MSNFS Trace

MSNFS trace is a random workload in which reads are about 34% more than

writes. This workload exhibits a very high degree of both spatial and temporal

locality.

Figure 4.2 shows that HBM exhibits up to 82% faster, 39% more buffer hits

and 78% lower erases compared to BPLRU the buffer size up to 32MB. HBM

also performs up to 63%, 63% and 308% better in terms of average response

time, buffer hit ratio and number of erases compared to FAB. When buffer size

is below 32MB, HBM has smaller average response time than LB-CLOCK.

Especially when buffer size is 1MB, HBM has a little advantage in average

response time due to its much higher buffer hit ratio than LB-CLOCK although

the number of erases of LB-CLOCK is a little less (1%) than HBM. Beyond

32MB, the advantage of HBM over BPLRU and FAB narrows down because

buffer is large enough to accommodate most accesses. It is thus obvious to see

45

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(a) Response time varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

H
it

R
at

io
 (

%
)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(b) Buffer hit ratio varies with buffer size

 0

 5

 10

 15

 20

 25

 30

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 E

ra
se

s
x

10
00

0

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(c) Number of erases varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(d) Distribution of write length when buffer is
1MB

Figure 4.2: Result of MSNFS Trace

that HBM is better than BPLRU and FAB for workloads of this nature. This

is because block-based BPLRU and FAB tradeoff spatial locality with temporal

locality, while HBM can efficiently leverage both temporal and spatial localities.

Thanks to the less number of erases of LB-CLOCK, its average response time

is almost the same as HBM when buffer size is beyond 32MB. However, the

buffer hit ratio of LB-CLOCK is lowest among four algorithms, which has a

negative effect on its performance. Small sized writes in HBM are less than

other algorithms. As shown in figure 4.2(d), 87% writes in HBMare smaller

than 8 pages, while more than 95% is the case for others.

3) Exchange Trace

Exchange trace is a random workload in which writes are about44% more than

reads. For a buffer size of 1MB, the average response time of HBM is 1.73ms.

By contrast, the average response time of BPLRU is 3.14ms (see figure 4.3(a)).

HBM makes 45% improvement in terms of average response time compared to

BPLRU. Accordingly, there is a 62% hit ratio increase (see figure 4.3(b)) and a

46

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(a) Response time varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

H
it

R
at

io
 (

%
)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(b) Buffer hit ratio varies with buffer size

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 E

ra
se

s
x

10
00

0

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(c) Number of erases varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(d) Distribution of write length when buffer is
1MB

Figure 4.3: Result of Exchange Trace

10% erase reduction (see figure 4.3(c)). HBM also exhibits 23% faster, 280%

more buffer hits and 5% lower erases than FAB for a 1 MB buffer.Compared to

LB-CLOCK, the performance of HBM is still better. The percentage of small

writes (less than 2 pages) of BPLRU, FAB and LB-CLOCK is 44%, 90% and

43%, respectively. By contrast, HBM has 24% small writes, better than BPLRU,

FAB and LB-CLOCK (see figure 4.3(d)). Furthermore, HBM provides much

more sequential writes than BPLRU and FAB. For example, almost 38% of the

writes are larger than 4 pages in size for HBM, while BPLRU, FAB and LB-

CLOCK only have 20%, 0.2% and 21% writes larger than 4 pages.

It is worth noting that the number of erases is the most important factor which

finally influences the average response time for write dominant workloads such

as Exchange trace. For example, as shown in figure 4.3(a)) and4.3(c), if there

is less number of erases for some algorithm, this algorithm shows faster average

response time. On the other hand, buffer hit ratio has less influence, especially

when its value is not high enough and large number of requestsaccess flash

47

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(a) Response time varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

H
it

R
at

io
 (

%
)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(b) Buffer hit ratio varies with buffer size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 E

ra
se

s
x

10
00

0

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(c) Number of erases varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(d) Distribution of write length when buffer is
1MB

Figure 4.4: Result of CAMWEBDEV Trace

memory directly. As shown in figure 4.3(b), in spite of a little higher buffer hit

ratio of BPLRU than FAB, the average response time of BPLRU islarger than

FAB because of its much larger number of erases so that it suffers heavy garbage

collection overload.

4) CAMWEBDEV Trace

CAMWEBDEV trace is a completely random write dominant workload. Figure

4.4 shows that HBM performs 72%, 40% and 61% faster than BPLRU, FAB and

LB-CLOCK for the buffer size of 1 MB. Accordingly, there is a 128%, 65% and

18% buffer hit ratio increase compared to BPLRU, FAB and BPLRU. There is

also a 48%, 21% and 39% reduction of erases.

We observe that HBM is also efficient in reducing the number ofsmall writes

and increasing the number of sequential writes for write intensive workload.

Figure 4.4(d)) shows that BPLRU, FAB and LB-CLOCK produce 82%, 98%

and 82% small writes (less than 4 pages). By contrast, HBM has74% small

48

write, which is better than others. HBM also provides 10% large writes, which

are larger than 8 pages in size. However, BPLRU, FAB and LB-CLOCK only

have 7%, 0.02% and 7% large writes.

Figure 4.5 also shows the distribution of write length for four algorithms with

buffer size of 16MB under four traces. Take figure 4.5(d) as anexample, with

buffer size of 16MB, BPLRU, FAB and LB-CLOCK produce 81%, 40%and 2%

small writes (less than 4 pages) under CAMWEBDEV trace. By contrast, HBM

has not such small writes. HBM provides 93% large writes, which is larger

than 32 pages in size. However, BPLRU, FAB have 8% and 5% largewrites,

which is larger than 8 pages in size. LB-CLOCK shows better performance in

large writes, and it has 82% more than 8 pages writes. Compared figure 4.5(d)

with figure 4.4(d), as buffer size increases from 1MB to 16MB,improvement

of HBM is much larger than others. This indicates that HBM algorithm is more

efficient than BPLRU, FAB and LB-CLOCK in increasing sequentiality of write

accesses across different buffer sizes.

The results further show that the distribution of write length is directly corre-

lated to the garbage collection overhead and performances.With buffer size of

1MB, HBM is able to produce 27% writes whose size are larger than 4 pages

compared to 18%, 2% and 19% for BPLRU, FAB and LB-CLOCK (see figure

4.4(d)). Accordingly, there is a 48%, 21% and 39% garbage collection over-

head reduction for HBM compared to BPLRU, FAB and LB-CLOCK (see figure

4.4(c)). Consequently, performance is improved by 72%, 40%and 59% com-

pared to BPLRU, FAB and LB-CLOCK (see figure 4.4(a)). For other traces,

we can also conclude this correlation by comparing other figures in figure 4.5

with the corresponding ones in figure 4.1, 4.2, and 4.3. The correlation clearly

indicates that write length is a critical factor affecting SSD performance and

garbage collection overhead.

49

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(a) Financial Trace

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(b) MSNFS Trace

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(c) Exchange Trace

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(d) CAMWEBDEV Trace

Figure 4.5: Distribution of write length of BPLRU, FAB, HBM and LB-CLOCKwhen buffer
size is 16MB

4.3.2 Effect of Workloads

We observe that efficiency of HBM is different under different workload traces.

With buffer size of 1MB, HBM achieves 84%, 82%, 45% and 72% performance

improvement over BPLRU for Financial, MSNFS, Exchange and CAMWEB-

DEV traces, respectively. There is a 76%, 63%, 22% and 40% performance im-

provement compared to FAB. Accordingly, HBM makes 50%, 10%,22%, 61%

performance improvement than LB-CLOCK. The results indicate that HBM

outperforms BPLRU, FAB and LB-CLOCK for different types of random work-

loads in an enterprise system.

For sequential write dominant trace, we generate a trace called synthetic trace

using the internal trace generator of DiskSim 4.0 [6]. Synthetic workload speci-

fication in DiskSim 4.0 is set as shown in Table 4.3, the corresponding interpre-

tations of parameters can be found in [6].

We show the results in the figure 4.6. We can see that HBM still perform bet-

50

Table 4.3: Synthetic workload specification in DisksimSynthgen

Storage capacity of device =32GB;

Number of I/O requests to generate = 5000000;

Block factor = 2KB;

Probability of sequential access = 0.8;

Probability of local access = 0.2;

Probability of read access = 0.3;

General inter-arrival times = [normal probability-distribution, 52, 52];

Local distances = [normal probability-distribution, -100000, 100000];

Sizes = [exponential probability-distribution, 0, 20];

ter than BPLRU, FAB and LB-CLOCK, but the advantage of HBM over others

especially BPLRU is not so significant because this workloadprovides more

spatial locality for them to exploit, compared to random workloads above. In

addition, all the four algorithms exhibit stable performance as buffer size varies

because most of write requests are sequential which are in favor with flash mem-

ory to reduce the garbage collection overhead. As shown in figure 4.6(a) and

4.6(c), the conclusion that number of erases are the important factor of perfor-

mance in write dominant traces is verified again. The trend ofnumber of erases

as buffer size varies is almost the same as the trend of average response time,

especially for LB-CLOCK. From figure 4.6(d), we can see that the write sizes

for all the four algorithms are larger compared to random workloads. All the

write sizes for HBM are nearly 64 pages or a full block.

4.3.3 Additional Overhead

To study the overhead of different buffer management schemes under different

workloads, we present total read pages during replaying traces in figure 4.7. We

can see from the results that BPLRU conducts a large number ofread operations

under different types of random workloads.

Let’s take figure 4.7(a) as an example. With the buffer size of1MB, BPLRU

51

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(a) Response time varies with buffer size

 0

 5

 10

 15

 20

 25

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

H
it

R
at

io
 (

%
)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(b) Buffer hit ratio varies with buffer size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 E

ra
se

s
x

10
00

0

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(c) Number of erases varies with buffer size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Write Length (Pages)

BPLRU
FAB
HBM

LB-CLOCK

(d) Distribution of write length when buffer is
1MB

Figure 4.6: Result of Synthetic Trace

results in 368%, 275% and 294% more page reads than HBM, FAB and LB-

CLOCK respectively. Accordingly, the average response time of BPLRU is

523%, 48% and 225% slower than HBM, FAB and LB-CLOCK (see figure

4.1(a)) respectively. This is because that BPLRU uses page padding to improve

the number of sequential writes. For completely random workload in enterprise

environment, BPLRU needs to read a large number of additional pages, which

impacts the overall performance. Additionally, BPLRU is just a writing buffer

algorithm, which does not consider read operations as HBM sothat page reads

increase due to read misses. As shown in figure 4.7(a), the total number of reads

for LB-CLOCK is also larger than FAB and HBM but smaller than BPLRU,

because LB-CLOCK does not apply the page padding technique,however, it

is also a writing buffer algorithm as BPLRU. Although the cost of read opera-

tion inside SSD is cheaper than write and erase operation, quite large number

of extra reads can obviously impact the overall performanceespecially for read

dominant workload such as Financial trace. For other three traces than Finan-

52

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 P

ag
e

R
ea

ds
 x

 1
00

00
00

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(a) Financial Trace

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
N

um
be

r
of

 P
ag

e
R

ea
ds

 x
 1

00
00

00

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(b) MSNFS Trace

 0

 2

 4

 6

 8

 10

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 P

ag
e

R
ea

ds
 x

 1
00

00
00

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(c) Exchange Trace

 0

 2

 4

 6

 8

 10

 12

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 P

ag
e

R
ea

ds
 x

 1
00

00
00

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(d) CAMWEBDEV Trace

 0

 1

 2

 3

 4

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
r

of
 P

ag
e

R
ea

ds
 x

 1
00

00
00

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(e) Synthetic Trace

Figure 4.7: Total page reads by BPLRU, FAB, HBM and LB-CLOCK under 5 traces

53

cial trace, the extra reads for LB-CLOCK are reduced as read requests in the

workload decreases, as shown in figure 4.7(b), 4.7(c) and 4.7(d).

By contrast, our proposed HBM achieves better performance without additional

reads. HBM treats read and write as a whole and leverages the block level

temporal locality among read and write accesses to naturally form sequential

block.

4.3.4 Effect of Threshold

To investigate how threshold value affects the efficiency ofproposed HBM, we

test HBM with static thresholds and dynamic threshold for different traces, as

shown in figure 4.8. For dynamic threshold, we set the value ofα andβ in con-

straint 3.1 based on the rules in section 3.6 as 10% for small buffer size such as

1MB, 2MB, 4MB and 8MB and 20% for large buffer size such as 16MB, 32MB,

48MB and 64MB. Let’s take figure 4.8(c) as an example. With thebuffer size of

16MB, the average response time of HBM is 1.79ms, 1.65ms and 1.73ms when

threshold value is 2, 4 and 8 respectively. By contrast, the average response

time of HBM is 1.55ms for dynamic threshold, which is much better than that

of static thresholds. As shown in figure 4.8(e), when the workload is sequential,

HBM for dynamic threshold also shows better performance than static thresh-

olds under various buffer sizes, because the dynamic schemecan make the best

use of page region in order to increase the buffer hit ratio.

We further observe that the same threshold is also unable to achieve optimal

performance for different workloads. Figure 4.8(a) shows that with buffer size

of 16MB, HBM performs better when threshold is set as 64 for Financial trace,

compared to other static thresholds. However, with buffer size of 16MB and

threshold of 64, the average response time of HBM is 0.67ms for CAMWEB-

DEV trace, which is worse compared to threshold of 2, 4, and 8 respectively (see

figure 4.8(d)). By contrast, the results in figure 4.8 show that dynamic threshold

54

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

THR=2
THR=4
THR=8

THR=16
THR=32
THR=64

Dynamic THR

(a) Financial Trace

 0

 0.2

 0.4

 0.6

 0.8

 1 2 4 8 16 32 64
A

ve
ra

ge
 R

ep
so

ns
e

T
im

e
(m

se
c)

Buffer Size(MB)

THR=2
THR=4
THR=8

THR=16
THR=32
THR=64

Dynamic THR

(b) MSNFS Trace

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 4 8 16 32 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

THR=2
THR=4
THR=8

THR=16
THR=32
THR=64

Dynamic THR

(c) Exchange Trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

THR=2
THR=4
THR=8

THR=16
THR=32
THR=64

Dynamic THR

(d) CAMWEBDEV Trace

 0.405

 0.41

 0.415

 0.42

 1 2 4 8 16 32 64

A
ve

ra
ge

 R
ep

so
ns

e
T

im
e

(m
se

c)

Buffer Size(MB)

THR=2
THR=4
THR=8

THR=16
THR=32
THR=64

Dynamic THR

(e) Synthetic Trace

Figure 4.8: Effect of thresholds on HBM

55

achieves best performance for Financial, MSNFS, Exchange,CAMWEBDEV

and Synthetic traces respectively.

The variation in performance curves shown in the figure 4.8 clearly indicates

that threshold value has significant impact on efficiency of our proposed HBM.

Statically setting threshold is unable to achieve optimal performance. Dynam-

ically adjusting the threshold for enterprise workloads makes proposed HBM

workload adaptive.

4.3.5 Energy Consumption of Flash Chips

Although flash chips consume less energy than hard disks due to electronic char-

acteristic, the energy could not be ignored when they are applied in enterprise

datacenter where extensive write or read accesses happen. Especially, garbage

collection inside SSD which takes more time also consumes more energy than

normal read or write operations as shown in Table 4.4 that indicates energy con-

sumption of operations inside SSD. In addition, more garbage collection over-

head could result in longer total runtime of finishing a workload, in that case,

buffer could experience longer idle time which is another part energy consump-

tion, and in the paper [16], it is pointed out that the processor consumption can

be highly correlated with garbage collection. In this thesis, we mostly focus on

the performance improvement issue of SSD. As for energy saving issue, we only

discuss energy consumption of flash chips, and analysis on energy consumption

of other parts will be done in future work.

Read, write and erase operations contribute most energy consumption of flash

chips. Reads and writes here also include the extra read/writes during garbage

collection.

SupposeNflashread, Nflashwrite, Nflasherase are the number of corresponding

operations needed for some workload, which can be measured in the simulator,

so the total energy consumption of flash chips for processingthis workload is

56

Table 4.4: Energy consumption of operations inside SSD. (The parameters are obtained from
[38])

Type of Operation Energy (mJ) Description
Energyflashread 0.0020625 Energy consumption for reading one

page of flash chips
Energyflashwrite 0.0165 Energy consumption for writing one

page of flash chips
Energyflasherase 0.12375 Energy consumption for erasing one

block of flash chips

generally calculated based on the equation 4.1 below:

Energytotal = Nflashread ∗ Energyflashread +Nflashwrite ∗ Energyflashwrite

+Nflasherase ∗ Energyflasherase (4.1)

According to equation 4.1, figure 4.9 shows the energy consumption of flash

chips under BPLRU, FAB, HBM, and LB-CLOCK during processingfive traces.

We can see that HBM consumes less energy than other four algorithms under all

the five traces. Taking the corresponding number of erases offour algorithms

(see figure 4.1(c), 4.2(c), 4.3(c), 4.4(c) and 4.6(c)) for reference, we are sure

that the number of erases could be also an indicator of energyconsumption of

flash chips, because it consumes the most energy of three operations as shown

in Table 4.4. HBM suffers from less overhead of garbage collection or num-

ber of erases under these traces thanks to its hybrid management which reduces

the number of writes by increasing buffer hit ratio in page region, meanwhile,

increases the sequentiality of data passed to flash memory inblock region.

It is worth noting that BPLRU is not an energy saving approachshown in figure

4.9(a), 4.9(b), 4.9(c) and 4.9(d), because these four traces include a large number

small sized requests, which incur so many extra reads duringpage padding of

BPLRU. In spite of a little energy cost of reading flash chips (see table 4.4, only

0.0020625mJ), they contribute a lot when the number of readsis much more

than other operations as shown in figure 4.7 in section 4.3.3.On the contrary,

sequential requests are dominant in Synthetic trace, so extra reads are reduced

57

 0

 5

 10

 15

 20

 25

 30

 35

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
ne

rg
y

C
on

su
m

pt
io

n
x

10
00

0(
J)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(a) Financial Trace

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
ne

rg
y

C
on

su
m

pt
io

n
x

10
00

0(
J)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(b) MSNFS Trace

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
ne

rg
y

C
on

su
m

pt
io

n
x

10
00

0(
J)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(c) Exchange Trace

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
ne

rg
y

C
on

su
m

pt
io

n
x

10
00

0(
J)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(d) CAMWEBDEV Trace

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
ne

rg
y

C
on

su
m

pt
io

n
x

10
00

0(
J)

Buffer Size(MB)

BPLRU
FAB
HBM

LB-CLOCK

(e) Synthetic Trace

Figure 4.9: Energy consumption of BPLRU, FAB, HBM and LB-CLOCK under fivetraces

during page padding, the number of erases take the leading role in consuming

energy (see figure 4.6(c), 4.7(e) and 4.9(e)).

58

Chapter 5

Conclusion

In this thesis, we propose a hybrid buffer management schemecalled HBM,

which divides the buffer space into page region and block region to make full use

of both temporal and spatial localities among accesses. HBMadopts buffer hit

ratio and sequentiality of writes as design objectives. To achieve both objectives,

Random access pages are staying in the page region in priority, while sequential

access pages in the block region are replaced first. Leveraging hybrid manage-

ment and dynamic migration, HBM can efficiently adjust the size of page region

and block region based on different workloads. Our experiments conclusively

demonstrate that HBM improves the performance of SSD, by significantly re-

ducing the internal fragmentation and garbage collection overhead associated

with random write, meanwhile, the energy consumption of flash chips for HBM

is limited.

In our immediate future work, we want to investigate how to model the dynamic

migration and calculate the value of threshold based on the model in future. The

model is also expected to dynamically allocate more reasonable buffer size to

block region based on workload characteristic. In addition, we currently design

HBM as buffer for both read and write accesses and assume thatvolatile RAM

based buffer is used. Therefore, we will have to address other issues of RAM,

such as data loss when power is switched off abnormally. Then, we will imple-

59

ment and evaluate our proposed HBM on a real prototype based on some flash

memory attached electronic board. All the research work that has been done by

us targets at the buffer inside SSD, and we also want to implement our proposed

HBM in Linux kernel to enable system investigation. In otherwords, we will

do some research about applying HBM in the buffer of host system to study the

performance of HBM at system level.

60

Bibliography

[1] B+ Tree.http://en.wikipedia.org/wiki/B_tree.

[2] Block traces from SNIA.http://iotta.snia.org/traces.

[3] OLTP Trace from UMass Trace Repository.
http://traces.cs.umass.edu/index.php/Storage/Storage.

[4] Understanding the flash translation layer (ftl) specification. Intel Corpora-
tion, 1998.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse, and
R. Panigrahy. Design tradeoffs for SSD performance. InUSENIX Annual
Technical Conference, pages 57–70, 2008.

[6] J.S. Bucy, J. Schindler, S.W. Schlosser, and G.R. Ganger. The DiskSim
simulation environment version 4.0 reference manual. Technical report,
Technical Report CMU-PDL-08-101, Carnegie Mellon University, 2008.

[7] Li-Pin Chang. On efficient wear leveling for large-scaleflash-memory
storage systems. InSAC ’07: Proceedings of the 2007 ACM Symposium
on Applied Computing, pages 1126–1130, New York, NY, USA, 2007.
ACM.

[8] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding in-
trinsic characteristics and system implications of flash memory based solid
state drives. InSIGMETRICS ’09: Proceedings of the Eleventh Interna-
tional Joint Conference on Measurement and Modeling of Computer Sys-
tems, pages 181–192, New York, NY, USA, 2009. ACM.

[9] T.S. Chung, D.J. Park, S. Park, D.H. Lee, S.W. Lee, and H.J. Song. System
software for flash memory: a survey.Embedded and Ubiquitous Comput-
ing, pages 394–404.

[10] Thomas Claburn. Google Plans To Use Intel SSD Storage InServers.
http://www.informationweek.com/news/storage/systems, 2008.

[11] F.J. Corbato. A paging experiment with the Multics system, 1968.

[12] Biplob Debnath, David Du, and David Lilja. Large Block CLOCK (LB-
CLOCK): A write caching algorithm for solid state disks. InProceed-
ings of the 17th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS
2009). ACM, 2009.

61

http://en.wikipedia.org/wiki/B_tree
http://iotta.snia.org/traces
http://traces.cs.umass.edu/index.php/Storage/Storage
http://www.informationweek.com/news/storage/systems

[13] C. Dirik and B. Jacob. The performance of PC solid-statedisks (SSDs)
as a function of bandwidth, concurrency, device architecture, and system
organization. InProceedings of the 36th annual International Symposium
on Computer Architecture, pages 279–289. ACM, 2009.

[14] F. Douglis, R. Caceres, M. Kaashoek, P. Krishnan, K. Li,B. Marsh, and
J. Tauber. Storage alternatives for mobile computers.Mobile Computing,
pages 473–505, 1996.

[15] G.R. Ganger and M.F. Kaashoek. Embedded inodes and explicit grouping:
Exploiting disk bandwidth for small files. InProceedings of the 1997
USENIX Technical Conference, pages 1–18, 1997.

[16] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation layer em-
ploying demand-based selective caching of page-level address mappings.
In Proceeding of the 14th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 229–240.
ACM, 2009.

[17] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO: an effective
buffer cache management scheme to exploit both temporal andspatial lo-
cality. In Proceedings of the 4th conference on USENIX Conference on
File and Storage Technologies, pages 8–8, 2005.

[18] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee. FAB: flash-aware buffer man-
agement policy for portable media players.IEEE Transactions on Con-
sumer Electronics, 52(2):485–493, 2006.

[19] T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Buffer
Management Replacement Algorithm. InProceedings of the 20th Interna-
tional Conference on Very Large Data Bases, pages 439–450, 1994.

[20] J.U. Kang, H. Jo, J.S. Kim, and J. Lee. A superblock-based flash trans-
lation layer for NAND flash memory. InProceedings of the 6th ACM &
IEEE International Conference on Embedded Software, page 170. ACM,
2006.

[21] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha. Performance trade-offs in
using NVRAM write buffer for flash memory-based storage devices.IEEE
Transactions on Computers, 58(6):744–758, 2009.

[22] H. Kim and S. Ahn. BPLRU: a buffer management scheme for improv-
ing random writes in flash storage. InProceedings of the 6th USENIX
Conference on File and Storage Technologies, pages 1–14, 2008.

[23] Hyojun Kim and Umakishore Ramachandran. FlashLite: A User-Level
Library to Enhance Durability of SSD for P2P File Sharing. InICDCS
’09: Proceedings of the 2009 29th IEEE International Conference on Dis-
tributed Computing Systems, pages 534–541, 2009.

[24] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho. A space-efficient
flash translation layer for compactflash systems.IEEE Transactions on
Consumer Electronics, 48(2):366–375, 2002.

62

[25] Youngjae Kim, Brendan Tauras, Aayush Gupta, and BhuvanUrgaonkar.
FlashSim: A Simulator for NAND Flash-Based Solid-State Drives. In
SIMUL ’09: Proceedings of the 2009 First International Conference on
Advances in System Simulation, 2009.

[26] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. LAST:
locality-aware sector translation for NAND flash memory-based storage
systems.SIGOPS, 2008.

[27] S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S. Park, and H.J. Song. A
log buffer-based flash translation layer using fully-associative sector trans-
lation. ACM Transactions on Embedded Computing Systems (TECS),
6(3):18, 2007.

[28] Zhanzhan Liu, Lihua Yue, Peng Wei, Peiquan Jin, and Xiaoyan Xiang.
An adaptive block-set based management for large-scale flash memory. In
SAC ’09: Proceedings of the 2009 ACM symposium on Applied Comput-
ing, pages 1621–1625, New York, NY, USA, 2009. ACM.

[29] Lucas Mearian. MySpace replaces all server hard disks with flash drives.
http://www.computerworld.com/s/article/9139280, 2009.

[30] N. Megiddo and D.S. Modha. ARC: A self-tuning, low overhead replace-
ment cache. InProceedings of the 2nd USENIX Conference on File and
Storage Technologies, pages 115–130, 2003.

[31] A. Rajimwale, V. Prabhakaran, and J.D. Davis. Block Management in
Solid-State Devices.Proceedings of the USENIX Annual Technical Con-
ference (USENIX’09), 2009.

[32] R. Ramakrishnan and J. Gehrke.Database management systems.
McGraw-Hill, Inc. New York, NY, USA, 1999.

[33] D. Reinsel and J. Janukowicz. White Paper: Datacenter SSDs: Solid Foot-
ing for Growth.http://www.samsung.com/global, 2008.

[34] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A comparison of
file system workloads. InATEC ’00: Proceedings of the annual conference
on USENIX Annual Technical Conference, pages 4–4, Berkeley, CA, USA,
2000. USENIX Association.

[35] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai, Se-
ungryoul Maeng, and Feng-Hsiung Hsu. Ftl design exploration in recon-
figurable high-performance ssd for server applications. InICS ’09: Pro-
ceedings of the 23rd International Conference on Supercomputing, pages
338–349, New York, NY, USA, 2009. ACM.

[36] A. Tal. Two technologies compared: NOR vs. NAND White Paper. M-
Systems Inc, 2003.

63

http://www.computerworld.com/s/article/9139280
http://www.samsung.com/global

[37] G. Wu, B. Eckart, and X. He. BPAC: An adaptive write buffer management
scheme for flash-based Solid State Drives. InMass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–6. IEEE,
2010.

[38] D. Feng L. Tian S. Zhang J. Liu W. Tong. Y. Hu, H. Jiang. Achieving
Page-Mapping FTL Performance at Block-Mapping FTL Cost by Hiding
Address Translation. In26th IEEE (MSST 2010) Symposium on Massive
Storage Systems and Technologies, 2010.

64

	Acknowledgement
	Summary
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contribution
	Organization

	Background and Related Work
	Flash Memory Technology
	Solid State Drive
	Issues of Random Write for SSD
	Buffer Management Algorithms for SSD
	Flash Aware Buffer Policy
	Block Padding Least Recently Used
	Large Block CLOCK
	Block-Page Adaptive Cache

	Hybrid Buffer Management
	Hybrid Management
	A Buffer for Both Read and Write Operations
	Locality-Aware Replacement Policy
	Threshold-based Migration
	Implementation Details
	Using B+ Tree Data Structure
	Implementation for Page Region and Block Region
	Space Overhead Analysis

	Dynamic Threshold

	Experiment and Evaluation
	Workload Traces
	Experiment Setup
	Trace-Driven Simulator
	Environment
	Evaluation Metrics

	Analysis of Experiment Results
	Analysis on Different Random Workloads
	Effect of Workloads
	Additional Overhead
	Effect of Threshold
	Energy Consumption of Flash Chips

	Conclusion

