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Abstract

Generating a set of custom instructions for an application is crucial to the efficiency

of instruction-set extensible processor. Over the past decade, most research works focused

on automated generation of custom instructions. The state-of-the-art techniques are fairly

effective at generating a set of custom instructions with high performance potential for an

application. However, while multi-tasking applications have become popular in embed-

ded systems, instruction-set customization for multi-tasking embedded systems has largely

remained unexplored.

Envisioning the crucial need of design methodologies for instruction-set customization

for multi-tasking embedded systems, we first explore custom instructions generation in

the context of multiple real-time tasks executing under a real-time scheduling policy. As

custom instructions may reduce the processor utilization for a task set through performance

speedup of the individual tasks, customization may enable a previously unschedulable task

set to satisfy all the timing requirements.

We extend our study in instruction-set customization for real-time embedded systems

to consider the conflicting tradeoffs among multiple objectives (e.g., performance versus

area). As we expose multiple solutions with different tradeoffs, designers have more flex-

ibility to select an appropriate implementation for the system requirements. In particular,

we propose an efficient polynomial time algorithm to compute an approximate Pareto front

in the design space.

Our design flow so far takes a bottom-up approach where a large amount of time is

spent in identifying all possible custom instructions for all constituent tasks while only a

small subset of these custom instructions are finally selected. Based on this observation,

we investigate an iterative custom instruction generation scheme that takes a top-down

approach and directly zooms into the task creating the performance bottleneck. This way,

x



we avoid the expensive custom instruction generation process for all the tasks.

The second part of the thesis focuses on further improving the application speedup of

customization through runtime reconfiguration. The total area available for the implemen-

tation of the custom instructions in an embedded processor is limited. Therefore, we may

not be able to exploit the full potential of all the custom instructions in an application. In

this context, runtime reconfiguration of custom instructions appears quite promising. To

support designers in instruction-set customization with runtime reconfiguration capability,

we first develop an efficient framework that starts with a sequential application specified in

ANSI-C and can automatically select appropriate custom instructions as well as club them

into one or more configurations.

Finally, we extend runtime reconfiguration of custom instructions to multi-tasking ap-

plications with real-time constraints. We propose a pseudo-polynomial time algorithm that

performs near-optimal spatial and temporal partitioning of custom instructions to minimize

processor utilization while satisfying all the real-time constraints.
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Chapter 1

Introduction

Over the past decade, electronic products (such as consumer electronics, multimedia and

communication devices) have dramatically increased in terms of both quantity and qual-

ity. Each such product is typically powered by a computer system that is constrained by

small size, high performance with low power consumption or low temperature. This kind

of computer system is called an embedded system because it is typically embedded inside

the electronic device. As silicon density doubles every 18 months according to Gordon E.

Moore’s observation, the more functionalities can be integrated into an electronic product

which leads to more complexity of the corresponding embedded system. Moreover, em-

bedded systems design is also constrained by short time-to-market window due to the short

life cycle of electronic products as well as the competitive market. Therefore, there is a

necessity of an efficient design methodology for current generation embedded systems.

The traditional solution of increasing the clock frequency of the processor core to im-

prove the performance is not feasible because the corresponding power dissipation will

outweigh the performance benefits. In fact, power dissipation is roughly proportional to

the square of the operating voltage and the maximum operating frequency is roughly linear

in the operating voltage [73]. Moreover, the increase in power dissipation results in an

1



increase heat dissipation, which requires cooling system for embedded System-On-Chip

(SoC) devices. Moreover, hot chips increase the size of the required power supplies, in-

creases noise and decreases system reliability. Consequently, clock rates for typical embed-

ded processor cores have increased slowly over the past two decades to only few hundred

MHz.

In order to maximize the performance as well as minimize power consumption and

area overhead, designing ”hand-crafted” Application Specific Integrated Circuit (ASIC)

for embedded system appears quite promising. However, ASIC has a long time-to-market

from specification to final product that requires (at least): Register Transfer Level (RTL)

code development, functional verification, logic synthesis, timing verification, place and

route, prototype build and test, and system integration with software test. For any small

changes to system specification or errors in the design, most of ASIC development stages

must be redone. Moreover, software development has access to ASIC devices only at the

system integration stage. Therefore, ASIC is inflexible in the changes (i.e, functionality)

of current generation embedded systems. In addition, due to the increasing complexity of

hardware designs, implementing the whole application onto ASIC may be infeasible and

too expensive.

In contrast to ASIC, a general-purpose processor is completely flexible to accommodate

a wide range of applications with arbitrary complexity because of its generic Instruction Set

Architecture (ISA). The functionalities of general purpose processor are determined by the

programs running on it. These programs are composed of sequences of instructions in

the processor’s ISA. In order to change the functionality of general purpose processor, we

simply change the corresponding program (also called software) and we do not modify

anything in hardware. However, due to the generic nature of the ISA and the sequential

execution, a simple computation in hardware is decomposed into multiple instructions that

2



results in large code size and high number of instructions fetching and decode. Therefore,

execution time as well as power consumption of the same simple computation on general-

purpose processor are very high.

Combining the efficiency of ASIC and the flexibility of general purpose processor, re-

configurable hardware, such as Field Programmable Gate Array (FPGA), was expected to

be a promising solution for embedded software design. With the ability of runtime recon-

figuration, different computations can be reconfigured onto FPGA at runtime. However,

runtime reconfiguration comes at a price of reconfiguration delay. Typically, FPGAs not

only achieve high performance through parallel computation and hardware virtualization

but also offer the flexibility of easily changing the functionalities of the application or de-

sign after devices deployment. However, FPGAs are not as performance efficient as ASIC

and the unit cost is very high. Moreover, FPGAs consume more power than ASIC because

programmability requires more transistors than a customized circuit. Finally, compared to

general purpose procesor, parallel programming in hardware description language requires

much more effort than code development for general purpose procesor.

Recently, there is a trend to customize an existing processor core to target a specific

application [48]. Instead of building a brand new processor from scratch by going through

long hardware/software co-design flow (from specification to system integration and test),

an existing processor core is typically customized by removing functional units that are un-

used for a specific application to reduce die size, power consumption and cost. Moreover,

processor customization can be done through changing the micro-architectural parameters

such as the cache sizes, memory or register files sizes, etc. More importantly, a customiz-

able processor may support application-specific extensions of the core instruction set. This

kind of customizable processor is also called instruction-set extensible processor.

3
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Figure 1.1: Instruction-Set Extensible Processor

1.1 Instruction-Set Extensible Processor

Custom instructions encapsulate the frequently occurring computation patterns in an appli-

cation. They are implemented as custom functional units (CFU) in the datapath of the exist-

ing processor core (Figure 1.1). Because CFU is closely coupled with the existing proces-

sor core, instruction-set extensible processors overcome the limited bandwidth of off-chip

bus interface in the typical coupling between processor core and FPGA or co-processor.

Instruction-set extensible processor achieves performance speedup through chaining and

parallelization of a sequence of primitive instructions, which are sequentially executed in

general purpose processor. Moreover, packing multiple primitive instructions into a single

custom instruction results in smaller number of instructions in the executable file, which

leads to smaller numbers of instruction fetching, decoding as well as temporary registers.

As a result, instruction-set extensible processor (extensible processor for short) not only

achieves high performance but also low power consumption.

Tailoring an instruction-set extensible processor to a specific application demands a

considerable amount of manual effort. Therefore, it is necessary to automate the process

to create an extensible processor from high-level description of an application. This au-

tomated process can generate both hardware implementation of extensible processor core

and relevant software tools such as instruction set simulator, compiler, debugger, assem-

bler and related tools to create applications for extensible processors. Generating custom
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Figure 1.2: Instruction-Set Extensible Processor Design Flow

instruction specifications is crucial to the efficiency of extensible processor. To generate

the best custom instructions for an application, designers need to be expert in hardware

design as well as understand the nature of the application clearly. Consequently, custom

instructions generation for a complicated application may require substantial effort for the

designers. Therefore, recent research has focused on automated generation of custom in-

structions [8, 81, 22, 15, 21, 103, 9, 5, 17, 23, 24, 90, 7, 95].

Typically, automated custom instructions generation for an application consists of two

basic steps: custom instructions identification and custom instructions selection. Custom

instructions identification enumerates a large set of valid custom instruction candidates

from the application’s dataflow graph and their frequency via profiling (Figure 1.2). A valid

custom instruction must satisfy micro-architecture constraints such as maximum number

of input/output and convexity constraints. Input/output constraint specifies the maximum

number of input and output operands allowed for a custom instruction, respectively. This

constraint arises due to the limited number of register file read/write ports available on a

processor. Moreover, under convexity constraint a non-convex custom instruction which

has inter-dependency with operations outside the custom instruction is infeasible because

the custom instruction cannot be executed atomically. Given this library of custom instruc-

tion candidates, the second step selects a subset of custom instructions to maximize the
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performance under different design constraints such as hardware area. The state-of-the-art

techniques are fairly effective at identifying a set of custom instructions with high perfor-

mance potential for a single task application.

1.2 Instruction-Set Customization for Multi-tasking

Embedded Systems

In multi-tasking embedded systems, multiple tasks share the embedded processor at run-

time. Most of these tasks are compute-intensive kernels. Moreover, timing constraints

(deadlines) are often imposed on multi-tasking applications such as flight control systems.

If a multi-tasking system fails to meet its deadline, the computation of each individual

task should be speeded-up so that the deadlines can be satisfied. Extensible processor cores

appear to be quite helpful in this scenario. Because custom instructions may reduce the pro-

cessor utilization for a task set through performance speedup of the individual tasks. This

improvement may enable an unschedulable task set to satisfy all the timing requirements.

In addition, lower processor utilization due to customization opens up the possibility to ex-

ecute non-real-time tasks alongside real-time tasks. Finally, a lower utilization can exploit

voltage scaling to lower the operating frequency/voltage of the processor which helps to

reduce energy consumption.

Given a multi-tasking real-time embedded system, instruction-set customization for in-

dividual tasks may lead to local optima. We have to take into account the complex interplay

among the tasks enabled by the real-time scheduling policy and the traditional design flow

is changed as Figure 1.3. First, custom instructions are identified for each individual task

(from T1 to TN). Then, custom instructions are selected among constituent tasks under area

constraint as well as real-time constraint through design space exploration. The objective
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of the selection is to maximize performance, minimize processor utilization or minimize

energy consumption. Selected custom instructions will be synthesized and included in the

customized processor. Finally, code generation is performed to use the newly defined cus-

tom instructions.
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.CT1 Synthesis
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Figure 1.3: Design flow of instruction-set customization for multi-tasking systems

In order to tackle the complex design space exploration of instruction-set customization

for multi-tasking real-time embedded systems, we propose efficient algorithms to mini-

mize the processor utilization through the optimal custom instructions selection among

constituent tasks while satisfying the task deadlines under an area constraint. We extend

our study to consider the conflicting tradeoffs among multiple objectives (e.g., performance

versus area). As we expose multiple solutions with different tradeoffs, designers have more

flexibility to select an appropriate implementation for the system requirements. In particu-

lar, we propose an efficient polynomial time algorithm to compute an approximate Pareto

front in the design space.

One drawback of the design flow in Figure 1.3 is that it is a bottom-up approach. That

is a large amount of time is invested to identify all the custom instructions for all the con-

stituent tasks while only a small subset of custom instructions are finally selected. Based

7



on this observation, we investigate an iterative custom instruction generation scheme that

is highly efficient for customization of multi-tasking systems. In our iterative scheme, we

focus on custom instructions generation of the critical tasks and the critical paths within

such tasks. As a result, our iterative approach can quickly return a first-cut solution for the

critical region in the critical paths. If the first-cut solution satisfies the design requirements,

the customization process can be stopped and a large amount of redundant design space

exploration is avoided. On the other hand, if the design requirements are not satisfied, the

iterative process continues to select the next critical region to generate custom instructions.

Instruction-set customization significantly improves the performance for embedded sys-

tems. However, the total area available for the implementation of the CFUs in a processor

is limited. In multi-tasking embedded system, each task typically requires unique custom

instructions. Therefore, we may not be able to exploit the full potential of all the custom

instructions in these high-performance embedded systems. Furthermore, it may not be pos-

sible to increase the area allocated to the CFUs due to the linear increase in the cost of the

associated system. Fortunately, instruction-set extensible processors can support runtime

reconfiguration of custom instructions. Basically, custom instructions can share the CFUs

in time-multiplexed fashion at runtime. For multi-tasking systems, runtime reconfiguration

is especially attractive, as the fabric can be tailored to implement only the custom instruc-

tions required by the active task(s) at any point of time. Of course, this virtualization of

the CFU fabric comes at the cost of reconfiguration delay. Therefore, we propose efficient

methodologies to strike the right balance between the number of configurations and the

reconfiguration cost so that performance is maximized.

Figure 1.4 illustrates a scenario where runtime reconfiguration of custom instructions

may improve the performance of the application. Set A represents a set of custom instruc-

tions that are selected from a particular application. Set B and set C are disjoint subsets
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Figure 1.4: Motivating example for dynamic reconfiguration of CFU ( AU: arithmetic/logic

unit, MU: multiplier unit).

of set A. The available resources in the CFU are insufficient to implement all the custom

instructions in Set A. If run-time reconfiguration is not supported, the designer is forced

to implement some subset of A into the CFU; thus limiting the potential performance en-

hancement. On the other hand, both set B and set C are small enough to fit into the CFU.

With runtime reconfiguration ability we can exploit all the custom instructions in set A by

loading set B or set C into the CFU at different phases of execution of the application.

Therefore, the performance benefit of all the custom instructions in set A can be obtained

after subtracting reconfiguration cost, even though the available hardware is insufficient to

support set A in one configuration.

1.3 Contributions of The Thesis

Envisioning the crucial need of design methodologies for instruction-set customization for

multi-tasking embedded systems, this thesis explores customization in the context of multi-

tasking real-time systems. The later part of the thesis exploits runtime reconfiguration of

custom instructions to further improve the performance speedup of the application.
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1. Customization for multi-tasking real-time embedded systems: Custom instruc-

tions can help to reduce the processor utilization for a task set through performance

speedup of the individual tasks. This improvement may enable a task set that was

originally unschedulable to satisfy all the timing requirements. Therefore, we pro-

pose optimal algorithms to select the optimal set of custom instructions for a task set

to minimize the processor utilization while all the timing requirements are satisfied.

Moreover, our study also shows that energy consumption can be reduced with the

enhancement of custom instructions.

2. Evaluating design trade-offs for custom instructions: Our first solution to proces-

sor customization for multi-tasking embedded system optimizes for a single objective

such as optimizing performance under pre-defined hardware area constraint. We ex-

tend our solution to consider multiple objectives, e.g. performance versus area and

processor utilization versus area. In particular, we develop a polynomial-time ap-

proximation algorithm to systematically evaluate the design tradeoffs in instruction-

set customization.

3. Iterative custom instruction generation: We investigate an iterative custom in-

struction generation scheme that is highly efficient for customization of multi-tasking

systems. We adopt a top-down approach where the system level performance re-

quirements guide the customization process to zoom into the critical tasks and the

critical paths within such tasks. Moreover, an efficient custom instruction generation

algorithm is proposed to enhance our iterative approach.

4. Runtime reconfiguration of custom instructions: The efficiency of runtime recon-

figuration of custom instructions depends on the right number of configurations and

partitioning custom instructions into each configuration. We develop a framework
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that starts with a sequential application specified in ANSI-C and can automatically

select appropriate custom instructions as well as club them into one or more config-

urations so that the performance is maximized.

5. Runtime reconfiguration of custom instructions for multi-tasking embedded

systems: We extend our study of runtime reconfiguration of custom instructions to

multi-tasking applications with real-time constraints. We propose a pseudo-polynomial

time algorithm that performs near-optimal spatial and temporal partitioning of cus-

tom instructions to minimize processor utilization while satisfying all the real-time

constraints

6. A case study of processor customization: To demonstrate the efficiency of instruc-

tion set customization, wearable bio-monitoring applications are selected as a case

study for processor customization.

1.4 Organization of The Thesis

The roadmap of the thesis is shown in Figure 1.5. We discuss background and related work

to our study in Chapter 2. Custom instructions for real-time embedded systems is studied

in Chapter 3. In Chapter 4, we develop a polynomial-time approximation algorithm to

systematically evaluate the design tradeoffs of custom instructions. We present an iterative

custom instruction generation scheme in Chapter 5. In Chapter 6, we present runtime

reconfiguration of custom instructions for a sequential application. We consider runtime

reconfiguration of custom instructions for multi-tasking applications in Chapter 7. Chapter

8 presents a case study of processor customization. Finally, Chapter 9 concludes this thesis

and enumerates the directions to extend our study.
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Chapter 2

Background and Related Works

We start this chapter with the key architectural features of an instruction-set extensible

processor. Next, we describe the compiler design flow to support instruction-set exten-

sible processors. This is followed by different automated custom instructions generation

methods. In the next section, we present the study in the customization for Multi-Processor

System on Chip (MPSoC). Finally, we summarize related works in the reconfigurable com-

puting community.

2.1 Architecture of Instruction-Set Extensible Processor

Instruction-set extensible processor (extensible processor for short) significantly reduces

the design and verification effort by using software programmable Custom Functional Units

(CFUs) instead of hardwired control logic. Most of the control flow is managed by software

running on the processor core and instruction decoder generates the appropriate control

signals for the execution of CFU. This software based approach makes the design more

resilient against any later changes in system specification.

As mentioned earlier, a CFU is integrated into the datapath of the existing proces-
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Figure 2.1: Instruction-Set Extensible Processor

sor core. CFU shares register file ports, operand buses, forwarding and interlock logic

with traditional functional units. CFU can access memory system through load/store units

(LD/ST). However, integration of CFU into the datapath has certain constraints. First, the

silicon area of the CFU is limited and custom instructions must fit into the available area.

Second, the available register file ports and dedicated data transfer channels constrain the

data bandwidth between CFU and the existing datapath. Finally, a fixed length instruction

word can encode a limited number of input and output operands of a custom instruction.

With the typical architecture of the instruction-set extensible processor in Figure 2.1, af-

ter selected custom instructions are synthesized as CFUs and fabricated, we can not change

the custom instructions anymore (Figure 2.2.a). Therefore, this type of architecture is called

static configuration. Xtensa [37], ARC 700 family [4], MIPS32 74K [1] are some examples

of well-known commercial static extensible processors. Therefore, we need to design and

fabricate different customized processors for different application domains. A processor

customized for one application domain may fail to provide any tangible performance bene-

fit for a different domain. Soft core processor with extensibility features that are synthesize

in FPGAs (e.g., Altera Nios [3], Xilinx MicroBlaze [98]) may resolve this problem as the

customization can be performed post-fabrication. However, customizable soft cores suffer

from lower frequency and higher energy consumption issues because the entire processor

is implemented in FPGAs (and not just the CFUs). Besides cross-domain performance
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problems, extensible processors are also limited by the amount of silicon available for im-

plementation of the CFUs. As embedded systems progress towards highly complex and

dynamic applications (e.g., MPEG-4 video encoder/decoder, software-defined radio), the

silicon area constraint becomes a primary concern. Moreover, for highly dynamic ap-

plications that can switch between different modes (e.g., runtime selection of encryption

standard) with unique custom instructions requirements, a customized processor catering to

all the scenarios will clearly be a sub-optimal design. In this context, extensible processor

with the ability of runtime reconfiguration offers a potential solution to all these problems.

Static 
Configuration

Temporal
Reconfiguration

Temporal & Spatial 
Reconfiguration

Partial 
Reconfiguration

Time

Empty 
CFU fabric

Empty 
CFU fabric

Empty 
CFU fabric

Empty 
CFU fabric
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Figure 2.2: Four types of instruction-set extensible processors.

Runtime reconfigurable extensible processors can be configured at runtime to change

its custom instructions and the corresponding CFUs. Clearly, to achieve runtime recon-

figuration, the CFUs have to be implemented in some form of reconfigurable logic. But

the processor core is implemented in ASIC to provide high clock frequency and better

energy efficiency. As CFUs are implemented in reconfigurable logic, these extensible pro-
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cessors offer full flexibility to adapt (post-fabricate) the custom instructions according to

the requirement of the application running on the system and even midway through the

execution of an application. Runtime reconfiguration consists of temporal reconfiguration,

temporal and spatial reconfiguration and partial reconfiguration.

Temporal reconfiguration: This architecture allows only one custom instruction to ex-

ist at any point of time. Some examples of temporal reconfigurable processors are Pro-

grammable Instruction Computer [84] and OneChip [49]. That is, there is no spatial sharing

of the reconfigurable logic among custom instructions (Figure 2.2.b). Moreover, temporal

reconfiguration can result in high reconfiguration cost specially if two custom instructions

in the same code segment are executed frequently, for example, inside a loop body.

Temporal and spatial reconfiguration: This architecture enables spatial reconfigura-

tion, that is, the reconfigurable hardware can be shared among multiple custom instructions.

Some examples of temporal and spatial reconfigurable processors are Chimaera [100] and

Stretch [38]. The combination of spatial and temporal reconfiguration is a powerful feature

that partitions custom instructions into multiple configurations, each of which contains one

or more custom instructions (Figure 2.2.c). This clustering of multiple custom instructions

into a single configuration can significantly reduce the reconfiguration overhead.

Partial reconfiguration: This architecture provides the ability to reconfigure only part

of the reconfigurable fabric. Some examples of partial reconfigurable processors are Dy-

namic Instruction Set Computer [96], XiRisc [71] and Rotating Instruction Set Processing

Platform [11]. With partial reconfiguration, idle custom instructions can be removed to

make space for the new instructions. Moreover, as only a part of the fabric is reconfigured,

it further saves reconfiguration cost (Figure 2.2.d).
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2.2 Instruction-Set Customization Compilation Flow

Automated custom instructions generation for a given application to meet the design goals

is the main challenge of customizing processors. Automated custom instructions generation

is performed by augmenting the conventional compilation flow with a few steps supporting

custom instructions generation.

Given the application code , conventional compiler front-end performs lexical, syntax

and semantic analysis to transform high-level language statements into machine-independent

Intermediate Representation (IR). Then, IR optimizer performs constant propagation, dead

code elimination, common subexpression elimination, etc. Next, back-end of the compiler

generates binary executable codes for the target processor from the optimized IR. During

back-end phase, instruction binding allocates IR objects to actual architectural resources as

well as operations to instructions. Register allocation binds operands to registers or mem-

ory locations. Instruction scheduling takes cares of concurrencies and dependencies among

instructions by allocating them to different time slots. Moreover, the back-end phases also

perform machine dependent optimizations.

For custom instructions generation, the IR is formed into Control Flow Graph (CFG).

The nodes of CFG are the basic blocks of the application. A basic block has only one

entry statement and only one exit statement. An edge between two basic blocks in CFG

represents the control flow between them (if-else, loops or function calls).

Control dependencies do no exist in a basic block but data dependencies do. Each basic

block is represented in the form of Data Flow Graph (DFG). For each basic block, DFG

has operations as nodes and edges between nodes show data dependencies. Each node of

DFG is typically bound to one machine instruction through instruction binding. A cluster

of operations inside DFG can form a custom instruction, which is represented as a subgraph

17



of DFG.

Custom instructions generation starts with compiling the application written in high-

level language such as C/C++. Then, the application is profiled by executing with standard

input data sets on the base processor. Typically, hot basic blocks take up a significant

portion of the application’s total execution time. Therefore, hot basic blocks should be

considered for custom instructions identification, which results in a set of high potential

custom instruction candidates for hardware implementation. If these custom instructions

are implemented in hardware, execution time of the application, originally in pure software,

can be significantly reduced. Custom instruction candidates must first satisfy architectural

constraints such as input, output and convexity constraints. After the custom instructions

identification, a subset of custom instruction candidates are selected to maximize the per-

formance of the application under different design constraints such as hardware area con-

straint. Finally, subgraphs corresponding to selected custom instructions are identified in

the DFG of each basic block and replaced by custom instructions. Custom instructions

generation is performed after IR optimizer and before register allocation.

2.3 Custom Instructions Generation for an Application

Custom instructions are typically generated for an application through two phases: custom

instructions identification and custom instructions selection. First, frequently occurring

computation patterns are extracted from the DFG of the program. Then, a subset of the

extracted patterns are selected to maximize a design criteria (e.g., performance gain) under

some design constraints (e.g., hardware area).

18



2.3.1 Custom Instructions Identification

Custom instructions are identified in the scope of a basic block. For crossing basic blocks

code motion [34], predicated execution [42] and control localization [67] techniques are ap-

plied before identifying custom instructions. A custom instruction candidate is an induced

subgraph of the DFG. Therefore, custom instructions identification problem is to identify

subgraph candidates for custom instructions in a DFG. The number of custom instruction

candidates of a DFG is exponential in terms of the number of nodes of the DFG. However,

number of feasible subgraphs is limited by architectural constraints such as convexity and

input/output constraints.

A greedy algorithm [82] is developed to identify the maximal Multiple Inputs Single

Output (MISO) patterns. The algorithm starts from the sink node of the data flow graph

(DFG) and tries to add its parents as long as the number of inputs is not greater than the

maximum allowed inputs and there is only one output. Therefore, the complexity of the

algorithm is linear in the number of nodes in the DFG. On the other hand, identifying

Multiple Inputs Multiple Outputs (MIMO) patterns is difficult as there can potentially be

exponential number of them in terms of the number of nodes in the DFG. [8, 81, 22,

15, 21, 103] enumerate all possible custom instruction candidates. Atasu et al. [8] use

Integer Linear Programming solution while Pozzi et al. [81] and Cheung et al. [22] use

exhaustive search with pruning heuristics. Bonzini et al. [15] prove the number of valid

convex custom instructions is O(nNin+Nout ) for a DFG which has n nodes and Nin,Nout are

input/output constraints. However, the complexity grows dramatically when input/output

constraints are relaxed and the size of DFG is quite large. Yu et al. [103] propose a scalable

three phases algorithm, which cuts down a large amount of computation to enumerate all

custom instructions. Later, Chen et al. [21] propose another algorithm having similar

runtime to Yu’s algorithm.
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The worst case complexity for enumerating all possible custom instructions is exponen-

tial. Therefore, heuristic algorithms are proposed to improve the analysis time. Different

clustering techniques are used in [9, 5, 17, 23, 24, 90] for fast enumeration of good custom

instruction candidates. Arnold et al. [5] use an iterative technique that replaces the occur-

rences of previously identified smaller patterns with single nodes to avoid the exponential

blow-up. Baleani et al. [9] add nodes to the current pattern in topological order till input

or output constraint is violated. The algorithm then starts a new pattern only with the node

that caused the violation. Sun et al. [90] prune less potential custom instructions through

guide functions while Clark et al. [24] expand the custom instruction from a seed node

only in the directions that can possibly lead to good pattern. Choi et al. put constraint on

the number of operations which can be included in a subgraph. Brisk et al. [17] use All-

Pairs Common Slack Graph to evaluate the feasibility that two operations may be paired

(grouped) together. The top ranked pairs are merged as single nodes and can be used in

the later steps. Recently, [7, 95] relax the constraints on the number of input and output

operands to generate custom instructions.

In order to increase the potential of instruction parallelism to provide better perfor-

mance if the base architecture does not support instruction-level parallelism, a subgraph

candidate may contain one or more disconnected subgraphs. [81, 23, 36] consider discon-

nected subgraph as well as connected subgraph with a custom instruction candidate.

2.3.2 Custom Instructions Selection

The benefit of a custom instruction candidate is computed as the product of its speedup

(if implemented in CFU compared to software) and its execution frequency via profiling.

Each custom instruction also comes with a cost value in terms of silicon area. Given the

library of custom instruction candidates, custom instructions selection step selects a subset
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of custom instructions to maximize the performance under different design constraints such

as silicon area. The first reason for this objective function is that the silicon area is lim-

ited for CFUs. Selecting many custom instructions for the application not only costs more

silicon area, but also makes the circuit design more complicated such as decoding and/or

bypass network. Therefore, only the most efficient custom instructions will be selected.

Second, only a subset of custom instructions will cover the application code during code

generation. Typically, a base operation is covered by at most one custom instruction. Oth-

erwise, the same computations are unnecessarily duplicated for these custom instructions

and unschedulable code may be generated.

Arnold et al. [5] propose a dynamic programming solution to select optimal subset

of custom instructions. However, dynamic programming solution does not take into con-

sideration subgraph isomorphism and therefore does not minimize the number of custom

instructions. Sun et al. [89] develop a branch and bound algorithm for custom instructions

selection. Cong et al. [25] formulate custom instructions selection as an 0-1 Knapsack

problem while Lee et al. [66] formulate custom instruction selection as an Integer Linear

Programming problem. Recently, Wolinski et al. [97] consider the integration of cus-

tom instruction selection, binding and scheduling using constraint programming. Greedy

heuristics are also proposed based on different priority functions for custom instruction can-

didates [24, 22, 64]. To overcome local optima, genetic algorithm (GA) is employed in [86]

based on the idea of chromosome evolution. In [80], GA is also used to optimize perfor-

mance using runtime reconfigurable functional units. Simulated annealing (SA) is applied

in [43] to overcome the local optima. These heuristics trade-off the optimal results with

the analysis time complexities. Typically, they return pretty good results compared to the

optimal results with much faster analysis times (in term of seconds). Most studies consider

single objective, e.g performance gain, hardware area, etc. Some other methods consider
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the multi-objective solutions such as performance gain and area. A Multi-objective GA

based method is described in [18] to discover the Pareto front with performance and area

as multiple objectives.

2.3.3 Integrated Custom Instructions Generation

There are few works [6, 68, 81, 13] that combine the two steps (custom instructions identi-

fication and selection) and generate custom instructions in an integrated task. Two methods

in [6, 68] use Integer Linear Programming (ILP) solutions to generate a single best cus-

tom instruction for each iteration. In each iteration, ILP solver evaluates and returns the

best custom instruction. Similarly, both Iterative selection algorithm [81] and ISEGEN

algorithm [13] generate the best custom instruction for each iteration. The only differ-

ence is that Iterative algorithm applies the optimal single-cut (single custom instruction)

identification algorithm [81] to generate a quality custom instruction while ISEGEN al-

gorithm [13] uses the basic principles of Kernighan-Lin min-cut heuristic [59]. Once the

best custom instruction is generated, its constituent nodes are removed from consideration

in following iterations. Thus, the current custom instruction may affect the quality of its

neighborhood custom instructions in the following iterations and the process is likely to

reach local minima.

2.4 Customization for MPSoC

The state-of-the-art techniques are fairly effective at identifying a set of custom instructions

with high performance potential for an application. However all of these techniques focus

on sequential application. Instruction-set customization for multi-tasking applications has

largely remained unexplored except for [91]. Fei et al. [91] study custom instructions gen-
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eration for a task graph of an application for a MPSoC platform. Constituent tasks of a task

graph have dependencies. The objective of their study is to minimize the execution time

of the task graph after it is mapped into multiple processors. Recently, Javaid et al. [53]

present a design flow to customize streaming application on heterogeneous pipelined mul-

tiprocessor systems. However, they do not really consider custom instructions generation

for multi-tasking applications under timing constraints. Our study will focus on custom

instructions generation for multi-tasking applications under real-time scheduling policy.

2.5 Reconfigurable Computing

Our works on runtime reconfiguration focus on temporal and spatial reconfiguration of ex-

tensible processors. We first investigate the efficiency of runtime reconfiguration of custom

instructions for a sequential application. Then, we extend runtime reconfiguration of cus-

tom instructions to multi-tasking applications with real-time constraints. The major part of

the research on runtime reconfiguration comes from the reconfigurable computing commu-

nity.

Usually, the temporal and spatial partitioning are done at coarse-grained level (such

as task graph representation of an application) [10, 20, 58, 92], though there exist some

exceptions. Li et al. [69] partition at the loop level while Purna and Bhatia [83] perform

partitions on the data flow graph. With a task graph as input, computing reconfiguration

costs becomes simple because the underlying directed acyclic graph representation ensures

at most one reconfiguration between any two nodes. It should be noted that while Purna and

Bhatias work [83] partitions at the finer granularity of functions and operators, their work

uses directed acyclic data flow graph as input as well. However, for fine-grained (loop level)

customization, reconfiguration cost model is complex as the number of reconfigurations for
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one loop depends on temporal partitioning of all the other loops. Li’s work [69] does not

consider reconfiguration cost during partitioning process but it deducts reconfiguration cost

when computing performance gain.

In a different direction, Bondalapati and Prasanna [14] focus on mapping the state-

ments within a loop into configurations to obtain a configuration sequence that gives the

least execution time. While dynamic reconfiguration is used as well, their work focuses on

intra-loop selection of configurations, i.e., their work operates on one loop only. Hardnett

et al. [40] form a framework in which the dynamically reconfigurable architectural design

space may be explored for specific applications. However, custom instructions do not share

the same functional unit, i.e., no spatial partitioning is required. Secondly, the problem of

reconfiguration cost is not addressed directly. Rather, custom instructions are de-selected

to relieve resource pressure rather than optimizing overall performance. In general, tem-

poral and spatial partitioning at loop level while considering reconfiguration cost is still a

challenge for our study.

Related works to instruction-set customization for multi-tasking systems with runtime

reconfiguration support also mainly come from reconfigurable computing. Co-synthesis

of multiple periodic task graphs with real-time constraint onto heterogeneous distributed

embedded systems is addressed in [26, 62]. [41] partitions a task graph with timing con-

straints into a set of hardware units. Enforcing schedulability of real-time tasks with hard-

ware implementation appears in [85]. None of these techniques takes into account the

reconfiguration overhead or possibility of both spatial and temporal partitioning. [30, 72]

co-synthesize real-time task graphs onto distributed systems containing dynamically re-

configurable FPGAs. These works assume a single hardware implementation of a task in

FPGA and do not explore the hardware design space to evaluate tradeoffs between different

implementations of the same task. Moreover, they do not consider any hardware area con-
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straint, an important constraint of instruction-set customization. Therefore, we investigate

an efficient algorithm which takes into account most of the key design issues of instruction-

set customization such as hardware area constraints, multiple implementations of the same

task, temporal and spatial partitioning and real-time constraints.
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Chapter 3

Customization for multi-tasking

real-time embedded systems

One of the major challenges in the effective deployment of customizable processors is the

development of the design-automation tool chain. In particular, a major research focus in

the recent past has been automated generation of suitable instruction-set extensions for an

application [48]. Given a single sequential application, the goal here is to select a set of

custom instructions that optimizes certain design criteria (such as power or performance)

under pre-defined design constraints (such as silicon area).

Multi-tasking real-time embedded systems add substantial complexity to this design

space exploration process. The optimization problem in this context is to minimize the

processor utilization (through custom instructions) while satisfying the task deadlines under

an area constraint. Clearly, a naı̈ve approach of optimizing the execution time of each task

in isolation will miss certain opportunities. We have to take into account the complex

interplay among the tasks enabled by the real-time scheduling policy.

In this chapter, we explore customization in the context of multi-tasking real-time em-

bedded systems. We propose efficient algorithms to select the optimal set of custom in-
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structions for a multi-tasking real-time workload in Section 3.1. We consider two popular

real-time scheduling policies: a static priority based Rate-Monotonic Scheduler (RMS) and

a dynamic priority based Earliest Deadline First (EDF) scheduler. For EDF scheduling pol-

icy, we employ a dynamic programming solution whereas for RMS scheduling, we resort

to an efficient branch-and-bound based search algorithm. In Section 3.2, our experimental

evaluation with a large number of workloads confirms the benefit of processor customiza-

tion in real-time systems.

3.1 Customization for Real-Time Systems

3.1.1 Problem Formulation

In the classic model of a real-time system, a set of tasks are executed periodically. Each

task Ti is associated with a period Pi and a worst-case execution time Ci. An instance

of the task Ti is released periodically once every Pi time units. The task instance should

complete execution by its deadline, which is typically defined as the end of the period. The

goal of real-time scheduling is to meet the deadline of every task. Schedulability analysis

determines whether a specific set of tasks can be successfully scheduled using a specific

scheduler. Given a set of N independent, preemptable, and periodic tasks on a uniprocessor,

let U be the total utilization of this task set. U quantifies the fraction of processor cycles

used by a task set. Therefore, a necessary condition for feasible scheduling of a task set

[70] is

U =
N

∑
i=1

Ui =
N

∑
i=1

Ci

Pi
≤ 1 (3.1)

We would like to explore the opportunities opened up by instruction-set customization

in this context. Each task Ti has a set of custom instructions enhanced configurations with

different performance/silicon area tradeoff. The higher is the area cost of a custom instruc-
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Figure 3.1: Application performance versus hardware area for different processor configu-

rations corresponding to g721 decoding task.

tion configuration, the better is its performance. Let con f igi, j (for j = 1 . . .ni) be the jth

configuration corresponding to task Ti and ni is the number of configurations for task Ti. In

addition, let cyclei, j and areai, j denote the application performance in processor cycles and

gate count of con f igi, j. We assume that con f igi,1 corresponds to the configuration without

any custom instruction, i.e., areai,1 = 0 and cyclei,1 =Ci (the task performance without any

enhancement). For example, Figure 3.1 shows the set of configurations corresponding to

g721 decoding task.

Given (1) a set of independent, preemptable, and periodic tasks, (2) a specific schedul-

ing policy (RMS or EDF), and (3) a total area budget AREA for the custom instructions,

our goal is to select an appropriate configuration for each task such that the task set is

schedulable and the total utilization U is minimized.
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Task 
(Ti)

Deadline
(Period)

Execution 
Time

configi,1
(areai,1 ,cyclei,1)

configi,2
(areai,2 ,cyclei,2)

Number of 
Instances

T1 6 2 0,2 7,1 4
T2 8 3 0,3 6,2 3
T3 12 6 0,6 4,5 2
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Figure 3.2: Shortcomings of Customization for Individual Tasks Using Heuristics: a) Equal

Hardware Area Division among Tasks. b) Smallest Deadline First. c) Highest Utilization

Reduction First. d) Highest Ratio of Reduction of Utilization to Hardware Area. e) Optimal

Solution

3.1.2 Motivating Example

Figure 3.2 shows an example of a system consisting of three periodic tasks. Each task is

specified by its deadline which is equal to its period and the worst-case execution time. Let

us assume EDF scheduling policy is considered. Obviously, the task set in Figure 3.2 is

not schedulable because the total utilization U greater than 1. Therefore we need to select

appropriate custom instructions for the task set to make the task set schedulable. We further

assume that the available hardware area is equal to 10.

The easiest solution is that we divide the available hardware resource equally among

the three tasks and select custom instructions separately under the individual hardware area

constraint for each task to b10
3 c= 3. In this case, we can not select any custom instruction

because available hardware area is less than the required hardware area for any custom
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instruction and processor utilization is still greater than 1 (Figure 3.2.a). The next solution

is that we prioritize the tasks and select the highest priority task to consider customization

first and so on. Priorities can be computed based on:

• Task priorities in EDF policy that the ask with smaller deadline has higher priority.

• With the enhancement of custom instructions, the task with higher reduction of pro-

cessor utilization has higher priority.

• With the enhancement of custom instructions, the task with higher ratio of reduction

of processor utilization to consumed hardware area has higher priority.

All three solutions, in which T1 is the only task using custom instructions, can not re-

duce total processor utilization to less than or equal to 1 (Figures 3.2.b, 3.2.c, 3.2.d respec-

tively). Therefore, it is non-trivial to apply instruction set customization for a single task to

multi-tasking embedded system with real-time constraints. We need efficient instruction-

set customization methodologies to come up with a feasible solution in which T2 and T3

are implemented with their corresponding custom instructions while T1 is implemented in

software (Figure 3.2.e).

3.1.3 Customization for EDF Scheduling

Earliest Deadline First (EDF) is an optimal dynamic priority scheduling policy. It executes

at any instant, the ready task with the closest deadline. If more than one ready tasks have

the same deadline, EDF randomly selects one for execution. A task set is schedulable under

EDF policy if the total utilization (U) is less than or equal to 1 [70] (Equation 3.1).

We develop an algorithm to select the appropriate configuration for each task such that

the total utilization of the task set is minimized. As the value of total utilization determines
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the feasibility of an EDF schedule, the algorithm, by definition, works towards meeting

task deadlines. If the minimum utilization returned by the algorithm is greater than 1, then

the task set cannot be scheduled even with custom instruction enhancements.

We propose a pseudo-polynomial time dynamic programming algorithm that returns

the optimal solution. Let Ui(A) be the minimum total utilization of tasks T1 . . .Ti under an

area budget A. Then Ui(A) can be defined recursively.

Ui(A) = min
j=1...ni

areai, j≤A

(
cyclei, j

Pi
+Ui−1(A−areai, j)

)
(3.2)

That is, given an area A, we explore all possible configurations for Ti and choose the one

that results in minimum utilization for tasks T1 . . .Ti. The base case for task T1 is

U1(A) = min
j=1...n1

area1, j≤A

(
cycle1, j

P1

)
(3.3)

The minimum utilization for tasks T1 . . .TN under area budget AREA then corresponds to

UN(AREA).

Algorithm 1: Custom Instructions selection under EDF
Input: Task Set T1, . . . ,TN with configurations; Area constraint: AREA

Result: Minimum utilization

for A = 0 to AREA in steps of ∆ do

U1(A)←min j=1...n1
area1,j≤A

(
cycle1,j

P1

)
end

for A = 0 to AREA in steps of ∆ do
for i=2 to N do

Ui(A)←min j=1...ni
areai,j≤A

(
cyclei,j

Pi
+Ui−1(b

A−areai,j
∆
c×∆)

)
end

return UN(AREA);

Algorithm 1 encodes this recursion as a bottom-up dynamical programming algorithm.
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The step value ∆ determines the granularity of area. ∆ is the greatest common divisor of

all configurations’ area of all tasks and AREA. The time complexity of this algorithm is

O(N× Area
∆
× x) where x = maxi=1...N(ni).

3.1.4 Customization for RMS

Rate Monotonic Scheduler (RMS) is an optimal static-(fixed-) priority scheduling policy

using the task’s period as the task’s priority. RMS executes at any instant the ready task

with the shortest period, i.e., the task with the shortest period has the highest priority. If

more than one ready tasks have the same period, RMS randomly selects one for execution.

Unlike EDF, however, there exist task sets with U ≤ 1 that are not schedulable under RMS.

There are no known polynomial time exact schedulability tests for RMS. Therefore, we use

a recently proposed exact schedulability test [12] that is more efficient than the previously

proposed tests.

Theorem 1 Given a periodic task set T1, . . . ,TN in increasing order of periods

1. Ti can be scheduled using RMS if and only if:

Li = min
t∈Si−1(Pi)

∑
i
j=1

⌈
t

Pj

⌉
C j

t
≤ 1

where Si(t) is defined by the following recurrent expression:
S0(t) = {t}

Si(t) = Si−1

(⌊
t
Pi

⌋
Pi

)
∪Si−1(t)

2. The entire task set is schedulable using RMS if and only if:

max
i=1...N

Li ≤ 1
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Li is the utilization of T1 . . .Ti in the time interval [0,t]. Due to the double recurrence form

of the definition, the worst-case cardinality of a generic Si(t) set is 2i. In case two sets,

Si−1

(⌊
t
Pi

⌋
Pi

)
and Si−1(t), overlap, the cardinality reduces.

The complexity of the schedulability test renders the design space exploration under the

RMS policy more difficult compared to the EDF policy. Given a task set scheduled with

RMS, it is possible to have two customized configurations p and p′ such that U(p) <U(p′)

but p′ meets all the task deadlines whereas p does not. That is, we can no longer minimize

only the total utilization without checking the feasibility of the schedule.

We propose a Branch and Bound search algorithm to select appropriate configuration

for each task such that the entire task set is schedulable under Theorem 1 and the total uti-

lization of the task set is minimized. Branch-and-bound deals with optimization problems

over a search space that can be presented as the leaves of a search tree. The search is guar-

anteed to find the optimal solution, but its complexity in the worst case is as high as that of

exhaustive search. The pseudo code is given as Algorithm 2.

Each level i in the branch-and-bound search tree corresponds to the choice of configu-

ration for the task Ti. Thus, each node at level i corresponds to a partial solution with the

configurations about the tasks T1 up to Ti. Whenever we reach a leaf node of the search

tree, we have a complete solution. The power of branch-and-bound algorithm comes from

the effective pruning of the design space. We prune the design space under the following

conditions.

First, during the traversal of the search tree, the minimum utilization achieved so far

at any leaf node is kept as a bound MinU . At any non-leaf node m in the search tree, we

compute a lower bound, bound(m), on the minimum possible utilization at any leaf node

in the subtree rooted at m. The lower bound is computed by summing up the utilization of

the tasks that have been enhanced with custom instructions and the minimum utilization of
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Algorithm 2: Custom Instructions selection under RMS
Input: Task Set T1 to TN with configurations; Area constraint: AREA

Output: Minimum utilization

begin
U← 0; optimalSoln← /0; A← AREA; MinU← ∑

N
i=1

Ci
Pi

;

/* T1 is highest priority task */;

search (T1, U, A, /0);

return MinU;

end

Function search (Ti, U, A, Soln)

for con f igi, j ( j ∈ 1 to ni) in increasing order of execution time do

if (areai, j ≤ A) and Ti is schedulable with cyclei, j then

partialSoln← Soln∪ configi,j ; A← A− areai,j; U← U+ cyclei,j
Pi

;

if Ti = TN then

if U < MinU then
MinU← U; optimalSoln← partialSoln;

end

return;

end

if bound(partialSoln) < MinU then
search (Ti+1, U, A, partialSoln);

end

end

end
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the remaining tasks (which is the utilization when enhanced with the best possible custom

instruction configuration). If bound(m) ≥ MinU , then the search space corresponding to

the subtree rooted at m can be pruned. Moreover, at any level, the configuration with the

minimum execution time is considered first. This ensures greater possibility of obtaining

a low utilization value MinU quickly and thereby achieve effective pruning during the

subsequent traversal.

Second, we select the appropriate configuration for each task in the order of decreasing

priority, i.e., the highest priority task is considered first. Recall that RMS is a static priority

preemptive schedule. A higher priority task can preempt a lower priority task but not the

other way round. Suppose we have a partial solution where the configurations correspond-

ing to the first i− 1 high priority tasks (T1 to Ti−1) have been chosen. Suppose further

that the tasks T1 to Ti−1 all meet their respective deadlines with the chosen configurations.

Any lower priority task, such as Ti, cannot preempt the higher priority tasks and hence

the higher priority tasks will not miss their deadlines due to the introduction of Ti. Thus,

the task traversal order ensures that at level i of the search tree we only need to check the

schedulability of task Ti (i.e., whether Li ≤ 1 in Theorem 1). Moreover, if Ti fails to meet

its deadline, we can prune the subtree rooted at the corresponding node.

Finally, if the area constraint is violated at any node, then the subtree rooted at the

corresponding node is pruned.

3.2 Experimental Evaluation

We use 8 benchmarks from MiBench and one benchmark from Mediabench (g721 encoder)

for our experiments. We create six task sets using these benchmarks; each task set consists

of four benchmarks as shown in Table 3.1.
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Task set Benchmarks

1 crc32, sha, jpeg decoder, blowfish

2 blowfish, adpcm decoder, crc32, jpeg encoder

3 adpcm encoder, blowfish, jpeg decoder, crc32

4 sha, susan, crc32, g721 encoder

5 adpcm decoder, jpeg decoder, crc32, blowfish

6 crc32, sha, blowfish, susan

Table 3.1: Composition of Task sets

We choose the Xtensa [37] processor platform from Tensilica for our experiments.

Xtensa is a configurable processor core allowing application-specific instruction-set exten-

sions. We use the XPRES compiler provided by Tensilica to generate the custom instruc-

tions from the C code corresponding to a task. Multiple custom instruction configurations

are generated for each task based on the trade off between area and performance (see Fig-

ure 3.1). The maximum performance gain for the individual tasks vary from 3.5% to 27%

with area budget ranging from 1K to 23K logic gates.

To set the periods for the tasks, we choose a total utilization for the task set (without any

custom instructions) and then select the periods to achieve the corresponding utilization.

Let Ci be the execution time of task Ti without using custom instructions. Then we set the

period Pi for each task Ti as Pi = αi×Ci such that ∑
N
i=1

Ci
Pi

= U . We choose five different

utilization factors U = 0.80, 1.00, 1.05, 1.08 and 1.10. A task set is EDF-schedulable if

U = 0.8 or 1.0; but may or may not be RMS-schedulable. In this case, we are interested

in finding out how much we can reduce the utilization by using custom instructions. For

U > 1.0, a task set is not schedulable originally. It may become schedulable by using

custom instructions. The greater the original utilization factor, the more difficult it is to

36



schedule the tasks using custom instructions.

For each task set, we vary the hardware area constraint from 0 to Max Area at an

interval of 0.01×Max Area. The Max Area for each task set is simply the summation of

the maximum area requirements of the constituent tasks. A task set enhanced with custom

instructions at Max Area explores the limit of speedup achievable. The stricter the area

constraint, the more difficult it is to schedule a task set and/or achieve lower utilization.

3.2.1 Performance

Figure 3.3 shows the utilization versus hardware area trade-off for the different task sets.

For each task set and an original utilization factor, we apply both RMS and EDF scheduling

policies. Our algorithms take less than 0.1 sec to return the solution for any task set and

scheduling policy. The Y-axis shows the reduced utilizations. The utilization of a task

set decreases with increasing hardware area because we can accommodate more custom

instructions. Overall, we get up to 19% reduction in utilization. On an average, we get

about 14% (13%) reduction in utilization at roughly 75% (50%) of Max Area .

The reduced utilization values for a given area constraint are mostly identical for RMS

and EDF. At original utilization U = 0.8, all our task sets are RMS-schedulable (they are,

by definition, EDF schedulable). As adding custom instructions strictly improves the exe-

cution time of each task, the task sets remain scheduable for all possible configurations. We

choose configurations for each task such that the total utilization is minimized and the task

set is schedulable. Therefore, RMS and EDF scheduling policies select identical custom

instruction configurations at a given area.

However, at original utilization U = 1.0, a task set without custom instructions en-

hancements may not be RMS-schedulable. Indeed, all our task sets are not schedulable

under RMS policy at U = 1.0. Therefore, given a strict area budget, we fail to schedule the
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Figure 3.3: Utilization versus Area for different task sets under EDF and RMS scheduling

policies.
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Figure 3.4: Area versus Energy for Task Set 3 under EDF and RMS scheduling policies.

task sets under RMS policy even using custom instructions. As the area budget increases,

a task set becomes RMS-schedulable and produces identical reduced utilization for both

policies. In general, at any original utilization value greater than 1.0, a task set under the

EDF policy becomes schedulable earlier compared to the RMS policy. The highlighted

portions in the figure shows the design points where a task set is schedulable under both

EDF and RMS policy; but produces different reduced utilization values.

3.2.2 Energy

A lower processor utilization opens up the opportunity to lower the operating frequency/voltage

of the processor through voltage scaling technology. This may result in substantial energy

savings. We employ the static voltage scaling algorithms for read-time systems proposed

in [79]. Given a scheduling policy (RMS or EDF), the voltage scaling algorithm chooses

the lowest operating voltage, frequency pair such that the task set still remains schedulable.

We first select the optimal customization for the task set under an area constraint. We

apply static voltage scaling to obtain the lowest operating voltage/frequency corresponding

to the original (no custom instructions) and the optimal configuration. We compare the
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energy consumptions corresponding to these two configurations over the hyper-period (the

least common multiple of the task periods) of the task set. At some original utilizations, the

task set is not schedulable without customization. In these cases, we perform the compari-

son w.r.t the first schedulable solution. As Xtensa does not support voltage scaling, we use

Transmeta TM5400 [94] processor to explore the savings in energy due to the reduction in

processor utilization. We scale the frequency values from 300MHz (1.2 Volt) to 633MHz

(1.6 Volt).

Figure 3.4 shows the relation between the hardware area and energy consumption under

RMS and EDF scheduling policies. We can obtain up to 30% energy reduction. On an

average, the energy reduction is 10% for RMS and 14% for EDF at 75% of Max Area.

Better energy savings for EDF is an artifact of the voltage scaling algorithm [79]. It can

use aggressive voltage scaling for EDF policy due to its simpler schedulability test (U ≤

1.0). But for RMS, it uses a conservative schedulability condition that is sufficient but

not necessary. In other words, it misses out certain opportunities and may select a higher

operating frequency.

3.3 Summary

We explore instruction-set customization for multi-tasking real-time embedded systems.

We propose algorithms to select inter-task optimal customizations under EDF and RMS

scheduling policies. We achieve significant reduction in processor utilization and overall

energy consumption through custom instructions.
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Chapter 4

Evaluating design trade-offs for custom

instructions

The past decade has seen a flurry of research activity on automated identification and se-

lection of custom instructions for an application or an application domain. However, most

of these design efforts have focused on single-objective optimization, for example, choos-

ing an optimal set of custom instructions either in terms of performance or energy (such

as our work in Chapter 3). As the performance/energy improvement offered by custom

instructions come at the cost of silicon area, this optimization is typically constrained by

a pre-defined silicon area. The designer, on other other hand, can benefit significantly if

the automation tools expose all the conflicting trade-offs (e.g., performance versus area)

instead of offering a point solution. It is then up to the designer to choose an appropriate

trade-off point. More formally, we are interested in generating the Pareto-optimal curve

in a multi-objective design space (e.g., performance and area) where (a) no point is better

than any other point on the curve with respect to both objectives and (b) no improvement

can be made in any objective without trading-off or worsening the other.

Unfortunately, it turns out that computing the Pareto-optimal curve for our design prob-
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lem is computationally intractable. Therefore, state-of-the-art customization tool-chains

(such as Tensilica’s XPRES compiler [93]) adopt ad-hoc methods that simply compute the

best performing design choices at arbitrary silicon area constraints. In this chapter, we

propose a systematic methodology to explore the performance-area trade-offs in design-

ing customizable processors. We present a polynomial-time approximation algorithm to

compute this trade-off. Moreover, as the Pareto curve may potentially contain exponential

number of design points, it is impossible to compute this entire set in polynomial time.

Hence, our polynomial-time approximation algorithm, by default, has to approximate the

(potentially exponential size) set of points on the Pareto curve with only a polynomial

number of points. In a typical design cycle of customizable processors, the system de-

signer inspects all the points in the Pareto curve and then selects one, or at most a few

implementations. Hence, from a practical perspective, we feel it is more meaningful if the

designer is presented with a reasonably few well-distinguishable trade-offs rather than an

exponentially large number of solutions, many of which are very similar to each other. Our

approximation algorithm is therefore not only attractive in terms of time-complexity, but

also returns more meaningful solutions, in terms of the size of the solution set (including

the spread/distribution of solutions in this set).

We explore this approximation solution to Pareto curve generation in the context of

multi-tasking real-time embedded applications running on customizable processors as pre-

sented in Chapter 3. Typically, given a multi-tasking application to be implemented on a

customizable processor, there are a large number of implementation possibilities with dif-

ferent subsets of custom instructions leading to different processor utilization versus area

trade-offs. We would like to identify all schedulable implementations that expose the dif-

ferent possible performance trade-offs.
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Formally, for any schedulable implementation, let (U,A) denote the corresponding uti-

lization of the base processor and the hardware cost arising from the use of custom instruc-

tions. We are then interested in identifying all possible Pareto-optimal solutions {(U1,A1),

. . . , (Un,An)} that capture the different performance trade-offs [28]. Each (Ui,Ai) in this

set has the property that there does not exist any schedulable implementation with a per-

formance vector (U,A) such that U ≤Ui and A ≤ Ai, with at least one of the inequalities

being strict. Further, let S be the set of performance vectors (i.e., (utilization, area) tuples)

corresponding to all schedulable implementations. Let P be the set of performance vec-

tors (U1,A1), . . . ,(Un,An) corresponding to all the Pareto-optimal solutions. Then for any

(U,A) ∈ S−P there exists a (Ui,Ai) ∈ P such that Ui ≤U and Ai ≤ A, with at least one

of these inequalities being strict (i.e., the set P contains all performance trade-offs). The

vectors (U,A) ∈ S−P are referred to as dominated solutions, since they are dominated by

one or more Pareto-optimal solutions.

We present a polynomial-time approximation scheme for computing the utilization-

area Pareto curve. Our proposed solution for computing this Pareto curve involves two

distinct stages. First, in the intra-task stage, each individual task is analyzed. Given the

library of possible custom instructions for the task, all possible custom instruction config-

urations are generated exposing the workload-area Pareto curve. In the inter-task stage,

we consider all the tasks in the task-set and their workload-area configurations, to generate

the processor utilization-area Pareto curve P for the overall task set. Our framework for

approximately computing the trade-offs extends to both of the above stages.

The algorithmic techniques presented in this chapter have been motivated by [75]. The

result that for any Pareto curve and any ε, there exists a polynomial-size ε-approximate

Pareto curve is shown in [75]. However, for many problems, efficiently (i.e., in polynomial

time) computing such approximate Pareto curves might not be possible. Our main technical
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contribution is to show that such ε-approximate Pareto curves can be efficiently computed

in the domain of custom instruction selection. An important consequence of this result is

a formal basis for custom instruction selection. It shows that in the quest for efficiency,

there is no need to resort to ad-hoc techniques – as currently adopted in state-of-the-art

customization tool chains – for identifying best-performing custom instruction choices.

Here, it should be noted that in this chapter we have taken a classical approximation

algorithms standpoint, where the goal is to provide formal guarantees on the quality of the

results obtained. Our work differs from the existing large body of work on multiobjec-

tive optimization [28] that relies on heuristics and randomized search techniques such as

evolutionary algorithms.

The organization of this chapter is as follows. We formally define approximation

scheme in Section 4.1 with detailed algorithms in Section 4.2. Our framework is evalu-

ated in Section 4.3.

4.1 Problem Statement

4.1.1 Task Model

In this chapter, we use a periodic, preemptive and independent task model (as in Chap-

ter 3). Similarly, we are interested in the custom instruction selection for a task set τ =

{T1,T2, . . . ,Tm} consisting of m hard real-time tasks, with the constraint that the task set is

schedulable. Any task Ti can get triggered independently of other tasks in τ. Each task Ti

generates a sequence of jobs; each job is characterized by the three parameters – the period

(Pi) which is the time interval that must elapse before the successive job of the task Ti is

triggered, the deadline (Di) by which each job generated by Ti must complete since its re-

lease time, and workload (Ei) or the worst case execution requirement of any job generated
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Figure 4.1: Motivating Example.

by Ti.

Throughout this chapter, we assume the underlying scheduling policy to be the earliest

deadline first (EDF). Assuming that for all tasks Ti, Di ≥ Pi, the schedulability of the task

set τ can be given by the following condition.

Theorem 1 A set of periodic tasks τ is schedulable under EDF if and only if (U = ∑
m
i=1

Ei
Pi

)≤

1 where U is the processor utilization due to τ [70].

4.1.2 Intra-Task Custom Instructions Selection

We now state the intra-task custom instruction selection problem for a task Ti. For the task

Ti, let there be ni custom instruction candidates. Each of these ni custom instruction is

associated with a certain hardware area. Choosing the the jth custom instruction will lower

the workload of the task Ti by δi, j. Equivalently, the new workload will be Ei−δi, j. Hence,
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for each task Ti we have a set of choices Si = {(δi,1,ai,1), . . . ,(δi,ni,ai,ni)}, where ai, j is the

hardware cost associated with the jth custom instruction. Our objective is to select a set of

custom instructions that would minimize the workload on the base processor, as well as use

the minimum amount of hardware area for custom instructions. In other words, our goal

is to compute all workload-area trade-offs in the form of a Pareto curve {(wi,1,ci,1), . . . ,

(wi,Ni,ci,Ni)}, where wi, j is the workload of task Ti accelerated with a particular set of

custom instructions and ci, j is the corresponding cost in terms of silicon area.

In Figure 4.1, we illustrate this problem for two different tasks T1 and T2. The task

characteristics for T1 are {E1 = 10,P1 = 20}. Note that the task T1 has two entries in

its library of custom instructions, and thus, n1 = 2. Following our notation, δ1,1 = 2 and

δ1,2 = 3, and the corresponding hardware areas are a1,1 = 30 and a1,2 = 60. The goal is

to identify the workload-area Pareto curve for the task T1. For example, in this case the

Pareto curve consists of four solutions {(10,0),(8,30),(7,60),(5,90)}. Note that solution

which has area equal to 0 does not use any custom instruction. Therefore, the application

workload is not reduced and is the highest amongst all the solutions. On the other hand, the

solution (5,90) contains both the custom instructions and has the smallest workload with

the largest area. The task characteristics for T2 and the custom instruction candidates may

be read in the same way as described above for T1.

4.1.3 Inter-Task Custom Instructions Selection

Above, we discussed the intra-task custom instruction selection problem. For each task

Ti, let there be Ni hardware implementation choices in the workload-area Pareto curve

{(wi,1,ci,1), . . . ,(wi,Ni,ci,Ni)}, that is computed by the intra-task custom instruction selec-

tion phase. Each of these Ni choices represent a custom instruction configuration for the

task. A task may be chosen to run in one these configurations where it will incur certain a
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hardware cost ci, j and would lower the execution time of the task on the processor from Ei

to wi, j.

However, in a typical real-time embedded system there is not one task but a set of tasks

running on a processor clocked with a certain frequency. Thus, a designer is interested not

in the performance or workload of a single task, but rater the utilization of the processor

by the entire task-set. The goal in the inter-task custom instruction selection phase is to

identify one custom instruction configuration for each task, which would minimize the

overall base processor utilization and minimize the total hardware cost. Therefore, similar

to intra-task customization, we generate a Pareto curve containing the Pareto-optimal set

of utilization-area vectors {(U1,A1), . . . ,(Un,An)} with the trade-off between processor

utilization U and hardware area A.

In Figure 4.1, we showed the intra-task custom instruction selection for two different

tasks. For T1 and T2 we have 4 and 6 elements in the custom instruction configurations

respectively. For example, for the task T1, we have {(w1,1 = 10,c1,1 = 0),(w1,2 = 8,c1,2 =

30),(w1,3 = 7,c1,3 = 60),(w1,4 = 5,c1,4 = 90)}. The goal is to identify the utilization-

area Pareto curve for the task set {T1,T2}. As shown in Figure 4.1, in this case the Pareto

curve consists of six solutions {(1,80),(19
20 ,90), . . . ,(3

5 ,170)}. Thus, without using any

custom instructions the task set {T1,T2} is not schedulable, with U = 5
4 > 1. But the use

of custom instructions speed up task executions, thereby lowering the load/utilization on

the base processor. This yields six schedulable solutions with conflicting utilization-area

trade-offs.
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4.2 Evaluating Design Trade-offs

We shall now present our algorithms for efficiently computing the Pareto curves in the

intra-task and the inter-task custom instruction selection phases that we described above.

It may be noted that computing the exact Pareto curves in both these cases is computation-

ally intractable. First, such Pareto curves would typically contain an exponential number

of trade-off points (which obviously cannot be computed in polynomial time). Second, it

may be shown using a reduction from the classical Knapsack problem, that the problem of

computing even one point on the Pareto curve is NP-hard. Hence, our algorithms approxi-

mate both – the number of points on the Pareto curve, as well as the “coordinates” of these

points on the curve.

4.2.1 Intra-Task Trade-offs

In what follows, we first present a pseudo-polynomial time dynamic programming algo-

rithm (called DP) to compute the exact Pareto curve, which is then used to devise an ap-

proximation scheme. Below, we introduce the necessary notations and then present the

DP recursion. Let the maximum cost associated with any custom instruction be C, i.e.,

C = max( j=1,2,...,ni)ai, j, where ni is the number of custom instruction candidates for the

task Ti and ai, j is the hardware cost associated with the jth custom instruction. Let ωk, j

be the minimum workload that might be achieved by considering only a subset of custom

instructions of task Ti from {1,2, . . . ,k} when the cost is exactly j. The algorithm DP first

initializes the values for k = 0 as ω0,0 = Ei, and ω0, j = 0 for j = {1, . . . ,niC}. Note that niC

is an upper bound on the total hardware cost that might be incurred. After initialization, the

DP computes the values of ωk, j (for k = 1 to k = ni) by the recursion defined below:

ωk, j←min{ωk−1, j,ωk−1, j−ai,k−δi,k} (4.1)
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That is, given an area j, we explore all possible configurations for Ti and choose the one

that results in minimum workload for custom instructions 1, . . . ,k.

After running DP to completion, we retain the undominated solutions from amongst

the solutions in the final iteration (k = ni) to obtain the exact workload-area Pareto curve,

{(wi,1,ci,1), . . . ,(wi,Ni,ci,Ni)}, where Ni is the size of the Pareto curve. This algorithm runs

in pseudo-polynomial time O(n2
i C), and will suffer from long running times. Hence, our

goal is to approximately compute this curve in polynomial time.

Our approximation scheme takes an error parameter ε as input and returns an ε-approximate

Pareto curve that we denote as ε-Pareto curve (or Pε). Given a Pareto curve P = {(x1,y1), . . . ,

(xp,yp)}, an ε-approximate Pareto curve Pε is defined as any set Pε = {(x′1,y′1), . . . ,(x′q,y′q)}

such that for any (xi,yi) ∈ P , there exists a (x′j,y
′
j) ∈ Pε for which x′j ≤ (1 + ε)xi and

y′j ≤ (1 + ε)yi. In other words, corresponding to any point on the Pareto curve P , there

exists a point on Pε, each of whose coordinates are at most ε distance away from the corre-

sponding coordinates of the point on P .

Papadimitriou and Yannakakis [75] has shown that for any multi-objective optimization

problem and any ε, there exists a polynomial-sized ε-approximate Pareto curve Pε. Further,

[75] showed that a necessary and sufficient condition for computing such a Pε in polyno-

mial time is the existence of a polynomial-time algorithm for solving, what was referred to

as the GAP problem. In what follows, we state the version of the GAP problem that arises

in our setting and show that it can be solved in polynomial time. Finally, we outline our

scheme to compute the approximate Pareto curves using the polynomial time GAP subrou-

tine.
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solution or declare that there is no solution in the shaded area.

4.2.1.1 The GAP Problem

For a two-dimensional multiobjective optimization problem, the GAP problem can be

stated as follows: Given a vector b = (b1,b2), either return a solution vector which dom-

inates b, or report that there is no solution better than b by at least a factor of 1 + ε in

both dimensions. In our setting, the objective is to minimize the workload of a task Ti,

W (S) = Ei−∑
ni
j=1 xi, jδi, j and the cost C(S) = ∑

ni
j=1 xi, jai, j, where xi, j is a boolean variable

which is true if the jth custom instruction is chosen for the solution S. Hence, the corre-

sponding GAP problem can be stated as follows.

Problem Statement: Given a cost a, workload w and an ε ≥ 0, either return a solution

S such that C(S) ≤ c and W (S) ≤ w, or else declare that there is no solution S such that

C(S)≤ a
1+ε

and W (S)≤ w
1+ε

.

Solving the GAP Problem: We now present a polynomial-time algorithm to solve this
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GAP problem. It involves the following two steps:

Step 1: Transforming Costs

Let r =
⌈ni

ε

⌉
. Modify each cost ai, j of task Ti to a′i, j such that a′i, j =

⌈ai, jr
a

⌉
. Now, consider

the problem of determining whether there exists a solution with the modified costs such that

A′(S)≤ r. Let us call this problem GAP′. We shall show that solving GAP is equivalent to

solving GAP′. Towards this, we enumerate two properties below.

(a) If a solution with the transformed costs satisfies A′(S)≤ r, then A(S)≤ a.

Proof of property (a):

∑a′i, jxi, j = ∑

⌈ai, jxi, jr
a

⌉
≥ r

a ∑ai, jxi, j

Hence,

A′(S)≤ r⇒ r
a ∑ai, jxi, j ≤ r⇒ A(S)≤ a

(b) If a solution satisfies A(S)≤ a
1+ε

, then A′(S)≤ r.

Proof of property (b):

A(S)≤ a
1+ ε

⇒∑ai, jxi, j ≤
a

1+ ε
⇒∑

ai, jxi, j

a
ni

ε
≤ ni

ε(1+ ε)

⇒∑

⌈ai, jxi, jr
a

⌉
≤
⌈

ni

ε(1+ ε)

⌉
⇒ A′(S)≤

⌈ni

ε

⌉
= r⇒ A′(S)≤ r

From property (a), we know that if this problem returns an affirmative answer then the

GAP problem would also return a dominating solution. On the other hand, if GAP′ re-

turns a negative answer then property (b) leads to the conclusion that there is no solution

with cost ≤ a/(1+ ε). Hence, from the above properties we can infer that solving GAP′ is

equivalent to solving the original GAP problem.
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Step 2: Solving GAP′

We present a dynamic programming algorithm to solve the GAP′ problem. This algorithm

can be constructed with the following adjustments to Algorithm DP.

1. Run Algorithm DP with the modified costs a′i, j.

2. Instead of iterating over all the cost values up to niC, iterate only up to a cost value

of r, where r =
⌈ni

ε

⌉
.

3. Finally, if the minimum value in the final array computed by Algorithm DP is such

that it is ≤ w, then return the solution otherwise declare that there is no solution.

Computing each row of the table built by this dynamic programming algorithm requires

O(r) running time. Hence, this algorithm runs in time O(n2
i /ε).

The above polynomial time subroutine for solving the GAP problem proves the exis-

tence of an fully polynomial-time approximation scheme (FPTAS) for computing the ap-

proximate workload-area Pareto curve Pε which is polynomial in the input size and in 1/ε.

This is because the following FPTAS can be devised using the algorithm for solving GAP.

First, geometrically partition the objective space along all dimensions with a ratio 1 + ε′,

where ε′ = (1+ ε)1/2−1. For each corner point of this grid, call the GAP routine (i.e. the

algorithm for solving GAP) with the parameter ε′, and keep all the undominated solutions

(see Figure 4.2 for an illustration of this procedure). This implies that for each rectangle

which contains a solution in the exact Pareto curve, there will also be a solution within

the same rectangle which belongs to Pε. The distance between these two solutions can be

bounded using the dimensions of the rectangle. Hence, for every solution s in the Pareto

curve, there exists a solution q in Pε such that q
(1+ε) ≤ s. Moreover, because the number of

rectangles is polynomially bounded, it follows that the number of points in Pε will also be

a polynomial.
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Algorithm 3: Approximating the Pareto curve
1. Partition the range of costs from 1 to niC geometrically with a ratio 1+ ε′ = (1+ ε)1/2,

thus dividing the cost space into O(log1+εniC) coordinates.

2. For each coordinate b, call Algorithm DP with transformed costs a′i, j =
⌈ai, jr

b

⌉
, where

r =
⌈ni

ε′

⌉
.

3. For each run of Step 2, find the solution with the minimum utilization.

4. Retain all the undominated solutions from the solutions found in Step 3. This will

represent a ε-Pareto curve.

Algorithm 3 summarizes the above steps to compute the ε-approximate workload-area

Pareto curve in some more detail. Note, that in step 1 of Algorithm 3 we partition only

the area space (and not both workload and area space). This is because if a point (w,c)

dominates the corner (w1,c1) and w1 < w2, then (w,c) definitely dominates (w2,c2) . In

steps 2 and 3, we scale the costs, run Algorithm DP for every co-ordinate in the partitioned

cost space and retain the minimum workload at each co-ordinate. The runtime complexity

of this algorithm is O(n2
i
ε

log1+εniC).

4.2.2 Inter-Task Trade-offs

The existence of an inter-task approximation scheme to compute the utilization-area Pareto

curve may be argued in the same fashion as for the intra-task approximation scheme de-

scribed above. This scheme takes the set of pareto-optimal solutions Pi for each task Ti as

input (as shown in the previous section), and generates the set of global design trade-offs

P̄ for the entire task set. Each global design configuration S ∈ P̄ contains contains exactly

one solution from each Pi (for each task Ti). If a brute-force approach is used to examine

all possible global design configurations, then |P1| × . . .× |Pm| solutions will have to be
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examined, where |Pi| denotes the number of solutions in the set Pi. Hence, the number

of solutions grow exponentially with the number of tasks m in the task set, and moreover,

not all of these solutions would be optimal (i.e., they would be dominated by some Pareto-

optimal solution). Our goal is to instead efficiently (but approximately) compute just the

Pareto-optimal global design configurations.

Broadly, the procedure follows the same steps as described in Algorithm 3. However,

note that the main difference is the core dynamic programming recursion that is invoked

in Step 2 (Algorithm 3), which we present below. Let Ui, j be the minimum utilization that

might be achieved by considering only a subset of tasks from {1,2, . . . , i} when the cost is

exactly j. Then, Ui, j is defined recursively as below, where {wi,k,ci,k} ∈ Pi, (workload-area

Pareto curve), and Ei and Pi denote the execution time and the minimum separation of the

task Ti.

Ui, j←min


Ui−1, j,Ui−1, j−ci,1− (Ei−wi,1)/Pi

...

Ui−1, j,Ui−1, j−ci,Ni
− (Ei−wi,Ni)/Pi


(4.2)

We summarize the overall two-stage approximation scheme in Figure 4.3. There are

two distinct stages: (i) the intra-task stage to compute the workload-area Pareto curve for

each task, and (ii) the inter-task stage which generates the utilization-area Pareto curve for

the entire task set. The scheme for approximating the Pareto curve follows the three main

steps shown on the right hand of Figure 4.3. Note that at each stage, the approximation

scheme takes as an input an error parameter ε (chosen by the designer) and returns an

ε-approximate Pareto curve. These parameters might be different for the two stages.
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Figure 4.3: The overall two-stage approximation scheme.

4.3 Experimental Evaluation

In this section we report some of the experimental results obtained by running our approx-

imation algorithm on a set of well-known benchmarks. We compare the running times of

the optimal algorithm against our approximation scheme, and also illustrate the difference

in the sizes of Pε (the approximate Pareto curves) and the exact Pareto curve.

Experimental setup: We used five WCET benchmarks [87] (compress, jfdctint, ndes, edn,

adpcm), two benchmarks (aes, sha) from MiBench [39], three benchmarks (g721 encoder,

djpeg, cjpeg) from MediaBench [65] and one (ispell) Trimaran benchmark [19] for our

experiments.

Given the C code of an application, we used the Trimaran compilation framework to

generate optimized intermediate code, as well as profiling information such as instruction

execution frequencies. We then constructed the data flow graph for each basic block and

enumerated all possible custom instructions using well-known algorithms from the litera-

ture (e.g., those proposed in [81, 101]). The workload was measured in terms of Multiply-

Accumulate (MAC) operation cycles and hardware area in terms of the number of adders.
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Task Set Benchmarks

1 cjpeg, adpcm, aes, compress, rijndael ispell

2 djpeg, g721decode, cjpeg, ispell, adpcm

jfdctint, aes

3 cjpeg, ispell, edn, sha, g721decode, djpeg

compress, ndes

4 adpcm, rijndael, cjpeg, ispell, sha

ndes, djpeg, compress, edn

5 aes, djpeg, g721decode, rijndael, jfdctint

cjpeg, edn, ispell, sha, ndes

Table 4.1: Composition of the task sets.

Further, we assumed a single-issue in-order base processor core with a perfect cache.

We created five task sets (see Table 4.1) with the number of tasks in each set varying

from 6 - 10, using the benchmarks described above. To set the minimum inter-triggering

period Pi for the tasks, we chose a total utilization for the task set (without any custom in-

structions) and then selected Pi to achieve the corresponding utilization. We also chose five

different utilization factors U = 0.80, 1.00, 1.05, 1.08 and 1.10. When U = 0.8 or 1.0, a task

set is schedulable without using any custom instructions. In these cases, we were interested

in finding out by how much can we reduce the utilization through custom instructions, and

what are the hardware trade-offs. For U > 1.0, a task set is not schedulable on its own.

Here, the goal was to find schedulable solutions by using custom instructions, as well as

expose the performance trade-offs (i.e., the corresponding silicon area required). All CPU

times reported below were measured on a machine with Windows XP, running on a 3.0

GHz Pentium 4 CPU with 1 GB RAM. All the implementations were done in C++.
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Task Sets: 1 2 3 4 5

ε = 0.21 643 1075 1037 990 729

ε = 0.44 3248 5918 5712 5457 3933

ε = 0.69 7106 14587 14389 13922 10208

ε = 3.0 29615 72525 89285 69054 77508

Table 4.2: Speedup obtained from our approximation scheme for the task sets 1 – 5.

Running times: Table 4.2 shows the running time speedups resulting from our approxi-

mation scheme, compared to computing the exact Pareto curve for three different values

of ε, for each of the five task sets. Computing the exact Pareto curve for task sets 1 − 5,

required 139.78 sec, 514.20 sec, 622.32 sec, 747.17 sec, and 711.52 sec respectively. It

may be noted that even for small values of ε (e.g., ε = 0.44) our approximation algorithm

runs about three orders of magnitude faster than the exact algorithm. For larger values of

ε (e.g., ε = 3), the speedups are even more significant (note that ε need not be ≤ 1). The

reason behind choosing the values 0.21, 0.44, and 0.69 for ε is as follows. Our approxima-

tion algorithm involves the computation of (1 + ε)1/2. This value might turn out to be an

irrational number if ε is not carefully chosen. Hence, to avoid any possible rounding-off

errors in our implementation, the above values were chosen for ε.

Pareto curve size:

The workload-area Pareto curve (the output of intra-task stage) and the utilization-

area Pareto curve (the output of intra-task stage) typically contain an exponential number

of points. The approximation algorithm generates a polynomial-sized approximate Pareto

curve Pε. We now compare the sizes of the exact Pareto curve and Pε.

For the intra-task results, Figure 4.4(a) shows the exact Pareto curve and the Pε gen-
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Figure 4.4: The exact and approximate Pareto curves for ε = 0.69, 3. (a) workload-area

Pareto curve for g721decode. (b) utilization-area Pareto curve for task set 1

erated by our algorithm for the g721decode benchmark. For the inter-task case, we show

the results for task set 1 in Figure 4.4(b). For clarity, we have only plotted Pε for ε = 0.69

and 3. Note that (i) the number of points in Pε decrease as ε increases, and (ii) the gap

between the exact and approximate curves widen with larger values of ε, implying that the

relative error indeed increases. We would like to report that even for small values of ε

(e.g., ε = 0.21), Pε contains almost 97% fewer points compared to the exact Pareto curve.

Similar trends were seen for all the other benchmarks and task sets.

Benefits of approximation: Although the running times associated with constructing the

exact Pareto curve might seem to be small (i.e., 10-12 mins), in an interactive design pro-

cess where the designer repeatedly makes design changes and generates new Pareto curves,

this might hamper designer productivity. A tool which generates these curves faster (e.g.,

using our proposed approximation algorithms) would be more usable. Secondly, exact

Pareto curves return too many (similar) design trade-offs, all of which might not be usable.

Approximate Pareto curves return less, well spread out trade-offs, which might be more

58



manageable for the designer.

4.4 Summary

In this chapter, we proposed a framework for evaluating trade-offs in custom instruction

selection for instruction set customizable processors. This framework consists of two stages

– in the first custom instruction configurations representing different trade-offs are chosen

for each task, and in the second, different configurations from each task are chosen to derive

system-level trade-offs.
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Chapter 5

Iterative custom instruction generation

The customization process so far has largely remained decoupled from the system-level

design flow (such as our work in Chapter 3 and 4). Let us consider a canonical embedded

application consisting of a set of tasks mapped to a single customizable processor. A typical

design flow to accelerate this application with customization takes a bottom-up approach.

The designer first generates a set of custom instructions for each individual task with the

help of automated tool chains. This is followed by a design space exploration to select a

subset of custom instructions for each task such that the overall performance and/or energy

objectives of the system are satisfied [91, 44]. Given the complexity of custom instruction

generation process, it is obvious that this bottom-up approach cannot scale beyond a small

number of tasks in the system.

In this chapter, we introduce iterative custom instruction generation scheme that pro-

vides a close coupling between the customization process and the system-level design flow

to get around the scalability problem. Our method is based on the observation that the

bottom-up approach spends enormous effort in generating custom instructions for all the

tasks. However, many of these tasks do not contribute to the system performance bottle-

neck and indeed the custom instructions generated for such tasks are effectively ignored in
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the global selection phase. Instead, we advocate a top-down approach where the system

level performance requirements guide the customization process to zoom into the critical

tasks and the critical paths within such tasks. Our approach is iterative in the sense that

we generate custom instructions in an on-demand basis. In other words, the iterative ap-

proach can quickly come up with a first-cut solution that can be iteratively refined (through

inclusion of additional custom instructions) at the request of the designer.

It is relatively easy to identify critical tasks and the critical paths within such tasks in

an embedded system. The main challenge for our iterative approach is quick generation

of a set of quality custom instructions for the critical region. As customization process

has traditionally been used in an off-line fashion, most techniques available in the litera-

ture are not suitable for our purpose. Custom instruction generation algorithms typically

expose computational patterns at all possible granularity levels. In particular, these algo-

rithms are computationally expensive as they generate many small patterns (consisting of

few native operations) with the hope that such patterns will recur multiple times within the

scope of the application. Instead, our goal is to quickly identify large patterns that can give

us the required performance boost. Therefore, we design an algorithm that can efficiently

partition the dataflow graph corresponding to the critical region into few large custom in-

structions. Our algorithm is named MLGP as it is inspired by multilevel graph partitioning

algorithms [56] and satisfies the constraint of generating high-quality custom instructions

with minimal effort.

Iterative custom instruction generation is quite a general concept and can be employed

in different system-level design problems. In this study, we have selected customization

for multi-tasking embedded systems with real-time constraints as a concrete problem to

illustrate our approach. This is the same set up as in Chapter 3 and 4. Given a set of

independent, preemptive, and periodic tasks, the goal is to come up with a set of custom
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instructions such that all the tasks in the system can meet their deadlines. Experimental

evaluation with realistic benchmarks show that our iterative scheme can meet this goal (if

feasible) within few seconds.

Interestingly, it turns out that the MLGP algorithm, in isolation, is also quite com-

petitive compared to perviously proposed custom instruction generation approaches. As

mentioned earlier, most previous techniques are computationally expensive as they iden-

tify an optimal set of custom instructions for the entire application in one go. We compare

our algorithm against state-of-the-art heuristic proposed in the literature for faster custom

instruction generation, called Iterative Selection (IS) algorithm [81]. IS algorithm iden-

tifies one coarse-grained custom instruction per iteration and progressively improves the

solution by adding more custom instructions. A comparison with IS for individual tasks

reveals that (a) MLGP, in general, produces superior quality solutions much faster, and (b)

MLGP exposes a wider range of design tradeoff in terms of hardware area and application

speedup.

Our Contributions In summary, this work advances the state-of-the art in automated

processor customization with the following concrete contributions.

• We design a fast and efficient custom instruction generation algorithm inspired by

multi-level graph partitioning (MLGP) algorithm. Our algorithm is capable of gen-

erating high-quality custom instructions with substantially reduced analysis time.

• We develop an iterative customization framework that exploits the MLGP algorithm

and creates an end-to-end solution that closely couples custom instruction generation

with system-level design process. In other words, our framework has a global view

of the system-level performance bottlenecks and hence can zoom into the critical

regions to quickly alleviate the performance problem with processor customization.
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We present our iterative custom instruction generation approach with a concrete design

problem in Section 5.1. Detailed custom instruction generation algorithm is described in

Section 5.2. In Section 5.3, experimental results are shown.

5.1 Iterative Approach

We illustrate the iterative custom instruction generation approach with the following con-

crete design problem: Implementation of a multi-tasking embedded application with real-

time constraints on a customizable processor. In particular, we consider system consisting

of a set of N independent, periodic and preemptive tasks. This task model is similar to

the ones in Chapter 3 and 4. Recall that each task Ti has a period Pi and a worst case

execution time (also called workload) Ci. Each task instance will be released periodically

at the beginning of every Pi time units and must complete its execution by the end of the

period. Therefore, the deadline of task Ti is equal to Pi. In this work, we choose earliest

deadline first (EDF) as our scheduling policy; but our methodology is equally applicable to

other scheduling policies. A task set is schedulable under EDF policy if the total processor

utilization (U) is less than or equal to 1. That is, U = ∑
N
i=1Ui = ∑

N
i=1

Ci
Pi
≤ 1

Without loss of generality, let us assume that the task set is not schedulable, i.e., U > 1.

Under this scenario, processor customization can provide the requisite performance boost

to help the tasks meet their deadlines. The objective of our iterative approach in this con-

text is to quickly come up with a set of custom instructions CI so as to lower the processor

utilization below 1. The set CI is returned to the designer as the first working solution. If

the designer so desires, our scheme will successively introduce additional custom instruc-

tions to CI so as to further lower the utilization. In case it is infeasible to reduce utilization

below 1, the iterative approach brings down the utilization as much as possible.
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Algorithm 4: Iterative Approach
Input: Task set T with N periodic Tasks

Result: Set of custom instructions CI and utilization U

1 compute WCET Ci for each task Ti in the task set T ;

2 U = ∑
N
i=1

Ci
Pi

; Utarget = 1;

3 while true do
4 if U ≤Utarget then designer inputs new Utarget or return {CI ,U} ;

5 select the task Ti in T with the maximum utilization;

6 ∆ = (U−Utarget)×Pi;

7 select a subsequence of basic blocks S on the critical (WCET) path of Ti;

8 gain = custom instruction generation(S,∆,CI );

9 if gain > 0 then
10 compute new WCET C′i for Task Ti;

11 U = U− Ci−C′i
Pi

;

else
12 T = T −{Ti};

13 if |T |= 0 then return {CI ,U};

Algorithm 4 shows our iterative scheme applied for improving the schedulability of

a set of real-time tasks with custom instructions. If the current utilization U has already

satisfied the target utilization Utarget (i.e., U ≤Utarget), then the designer is given the option

of either suggesting a new target utilization or accept the current set of custom instructions

CI (line 4). The default target utilization is 1 (line 2), which is required to schedule the

task set under EDF policy. We now select the task Ti with maximum utilization to enhance

it with custom instructions (line 5). Ti has the maximum potential to reduce U through

customization. The WCET of Ti has to be reduced at least by ∆ = (U−Utarget)×Pi to meet

the utilization target.
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For the selected task, we first identify the WCET path through its program code by

employing Timing Schema approach [76]. We sort the basic blocks along the WCET path

in the descending order based on their weight (the execution time of a basic block over the

program WCET). Then, we only select a subsequence of basic blocks S with high weight

for custom instruction generation (line 7). Typically, S has a total weight that execeeds

90% of the program WCET. With S, we invoke custom instruction generation to enhance

the current task (line 8). The goal of the custom instruction generation routine is to reduce

the execution time of the basic blocks sequence S by amount ∆. If we could achieve speed

up by customization for task Ti, its WCET and the system utilization are updated (lines

10-11).

If further performance gain is not achievable from the current task Ti, it is excluded

from the task set. If we fail to meet the utilization target even after exploring all the tasks,

then we simply return the set of custom instructions selected so far.

5.2 Custom Instruction Generation

Let us now proceed to describe our custom instruction generation algorithm — the key

component of our overall iterative scheme. The input to this algorithm are: (i) a subse-

quence of basic blocks S along the critical (WCET) path of the program corresponding to

the critical task Ti as described in Algorithm 4 (line 8), (ii) the amount ∆ by which we

need to reduce the execution time of S through customization, and (iii) the set the custom

instructions already created CI . The last input is required to identify isomorphic custom

instructions generated during different iterations and take advantage of hardware area shar-

ing.
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Figure 5.1: Regions and Custom Instructions.

5.2.1 Definitions

A Data Flow Graph (DFG) G(V,E) represents the computation flow of data within a basic

block. The nodes V represent the operations and the edges E represent the dependencies

among the operations. G(V,E) is always a directed acyclic graph (DAG). The architec-

tural constraints may not allow some types of operations (e.g., memory access and control

transfer operations) to be included as part of a custom instruction. These operations are

considered as invalid nodes and the rest of operations are valid ones.

We let the invalid nodes partition the DFG into multiple regions. Given a DFG G(V,E),

we define a region R(V ′,E ′) as a maximal subgraph of G such that (1) V ′ contains only

valid nodes, (2) there exists an undirected path between any pair of nodes in V ′, and (3)

there does not exist any edge between a node in V ′ and a valid node in (V −V ′). Invalid

nodes do not belong to any region. Figure 5.1(a) shows a DFG divided into two regions by

a memory load operation (assuming memory load is an invalid operation).

A custom instruction CI is a subgraph that belongs to a region within a DFG. Let

IN(CI) and OUT (CI) be the number of input and output operands of CI, respectively.

Also, for any custom instruction, let Nin and Nout be the maximum number of input and
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output operands allowed, respectively. This constraint arises due to the limited number of

register file ports available on a processor. Any legal custom instruction CI must satisfy the

constraints IN(CI)≤ Nin and OUT (CI)≤ Nout . Moreover, a custom instruction must be a

convex subgraph as non-convex subgraphs cannot be executed atomically. CI is convex if

there exists no path in the DFG from a node m ∈CI to another node n ∈CI, which contains

a node p /∈CI. For example, {5,7,8,10} is a convex subgraph but {5,7,10} is a non-convex

subgraph in Figure 5.1(a).

5.2.2 Region Selection

Given a subsequence of basic blocks S along the critical path of a task, we explore the basic

blocks in S in descending order of weight. That is, the basic block with the highest weight

is selected for custom instruction generation first. Recall that the weight of a basic block

is defined by its contribution (in terms of execution time) to the critical path. We partition

the selected basic block into multiple regions. These regions are again sorted in descending

order based on their weights. The weight of a region is defined by the number of operations

contained within that region. Then, we select the region with highest weight for generating

custom instructions. Intuitively, we are selecting the region that has the maximum potential

to reduce the WCET by ∆ amount. Our problem now boils down to generating a set of

custom instructions from the selected region so as to reduce the execution time as much as

possible. We describe a solution to this problem in the next subsection.

If the custom instructions generated for the selected region can reduce the execution

time by at least ∆, then we can simply return those custom instructions along with the

gain to the higher-level routine (line 8 in Algorithm 4). Otherwise, we continue custom

instruction generation for the next highest weight region of the current basic block or the

next highest weight basic block if current basic block has been fully explored.
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5.2.3 MLGP Algorithm
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Figure 5.2: Illustration of Multi-Level Graph Partitioning. The dashed lines show the pro-

jection of a vertex from a coarser graph to a finer graph.

Overview Given a critical region, the goal of our custom instruction generation algorithm

is to quickly reduce the execution time of the region as much as possible. As analysis time

is a major concern for our iterative scheme, we cannot spend substantial effort required in

exploring all possible custom instructions corresponding to the region and then selecting

the optimal ones. Thus, our objective is to generate a set of coarse-grained but legal custom

instructions from the region. We observe that our goal can be achieved by partitioning

the data flow graph (DFG) corresponding to the region into one or more partitions. Each

partition should satisfy the number of input and output operands constraints as well as

the convexity constraint. That is, each partition can be treated as a custom instruction.

68



Figure 5.1(b) shows an example where a region has been partitioned into two legal custom

instructions.

Graph partitioning is a well studied problem in the algorithm research community. In

particular, the closest problem to ours is the k-way graph partitioning problem where the

vertices of a graph are partitioned into k roughly equal partitions such that the number of

edges connecting vertices in different partitions is minimized. However, our problem dif-

fers from k-way graph partitioning problem in several important aspects. First of all, we do

not have any basis to choose a particular value of k — any value of k is fine with us as long

the corresponding partition maximizes the performance gain. Second, the partitions in k-

way graph partitioning problem are not constrained by input, output, convexity constraints.

Third, instead of generating equal-sized partitions and minimizing edge-cut, our objective

is to maximize the performance speedup. Finally, we are dealing with a directed graph and

not an undirected graph as expected by k-way partitioning problem.

Nevertheless, it turns out that the basic structure used by multilevel recursive bisection

algorithms employed to solve k-way graph partitioning problem can be quite effective in

our context. Specifically, our custom instruction generation algorithm is inspired by a re-

cently proposed multi-level algorithm due to Karypis and Kumar [56]. The basic structure

of the algorithm is as follows. The graph G is first coarsened down to a small number

of vertices (coarsening phase), the coarsest graph is partitioned into k parts (partitioning

phase), and then this partitioning is projected back towards the original graph by periodi-

cally refining the k-partitioning (un-coarsening phase). The k-partitioning is refined on finer

graphs as finer graphs have more degrees of freedom and hence provide more opportunity

to improve the partitioning.

We adapt this multi-level paradigm to partition a directed graph into a small number

of legal partitions so as to maximize the performance gain. We call our algorithm Multi-
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Level Graph Partitioning (MLGP). To avoid artificially binding k to a particular value, we

eliminate the k-partitioning phase from the MLGP algorithm. Instead, we simply set the

number of partitions as the number of vertices in the coarsest graph. Figure 5.2 shows an

illustration of the MLGP algorithm applied on the DFG of a region. The original graph

has 11 vertices, which are coarsened into 2 vertices or 2 partitions. These partitions are

successively refined in the uncoarsening phase to generate the final custom instructions.

Coarsening phase During the coarsening phase, a sequence of smaller graphs Gi =

(Vi,Ei) are constructed from the original directed graph G0 = G = (V,E) such that |Vi+1|<

|Vi|. A vertex v′ ∈Vi+1 in a coarse graph Gi+1 is formed by either combining two vertices

v,u ∈ Vi of finer graph Gi or by simply setting it to vertex v ∈ Vi of Gi. In addition, a di-

rected edge is built between two coarse vertices v and u in coarse graph Gi+1 if there exists

directed edge(s) between their constituent vertices in graph Gi.

Each vertex v′ in a coarse graph is a subgraph of G0 when projected from the constituent

vertices of v′ in the finer graph. A coarse vertex can potentially become a candidate for

custom instruction. Therefore, when combining two vertices v and u to form v′, we have to

ensure that the subgraph corresponding to v′ projected into the original graph G0 satisfies

input, output, and convexity constraints. Let IN(v′) and OUT (v′) be the number of input

and output edges, respectively of the projected subgraph of v′ in G0. Note that IN(v′) and

OUT (v′) are not the sum of input and output edges of coarse vertices v and u.

Our matching heuristic visits the vertices of Gi in random order. If a vertex u ∈ Vi has

not been matched yet, then we select it for matching to form a vertex v′ in the coarser

graph Gi+1. First, we identify the adjacent unmatched vertices of u that when combined

with u will satisfy all the three constraints. Then we match u with the adjacent vertex v

such that the ratio of performance gain to hardware area (gain-area ratio in short) of v′ is
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maximum. We define performance gain: gain = sw ltc(v′)− hw ltc(v′), where sw lts(v′)

is the software latency of v′ by summing up the software latency of all the vertices in the

subgraph of v′; hw ltc(v′) is the hardware latency of v′ estimated from the critical path of

the subgraph of v′. Hardware area is the sum of hardware area of all vertices in the subgraph

of v′. On the other hand, if u cannot find a feasible matching, v′ = u. In Figure 5.2, vertices

0 and 2 of G1 are matched to form vertex 0 of G2.

The coarsening phase ends when Gi+1 = Gi. Let Gm = (Vm,Em) be the coarsest graph.

Initial partitioning simply selects each vertex v ∈Vm as a custom instruction. These initial

custom instructions will be refined as we go through un-coarsening phase to project back to

G0. In Figure 5.2, coarsening phase creates a sequence of coarse graphs {G0,G1,G2,G3}

and the initial partitioning partitions G3 into two custom instructions CI0 and CI1.

Uncoarsening Phase During the uncoarsening phase, the partitioning of the coarsest

graph Gm is projected back to the original graph by going through a sequence of finer

graphs Gm−1, . . . ,G0. In Figure 5.2, we label the graph during uncoarsening phase with G′m

for easy explanation. But in reality, G′m = Gm. Consider a graph Gi = (Vi,Ei). Its parti-

tioning is represented by a partitioning vector Pi of length |Vi| where for each vertex v ∈Vi,

Pi[v] is an integer between 1 and |Vm| (the number of partitions defined by the number of

vertices in the coarsest graph). Pi[v] indicates the partition to which vertex v belongs in

graph Gi. In the coarsest graph Gm, each vertex belongs to its own partition.

Let V v
i be the set of vertices of Gi (in our case one or two vertices) that have been

combined to form a single vertex v in the next level coarser graph Gi+1. Then during un-

coarsening, Pi is initially obtained from Pi+1 by simply assigning the partitioning of v in the

coarser graph (Pi+1[v]) to the partitioning of each vertex in V v
i . That is, Pi[u] = Pi+1[v],∀u∈

V v
i .
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However, at every level of un-coarsening, we have the option of improving the projected

partitioning Pi by moving some vertices from one partition to another. It is possible to im-

prove the partitioning Pi compared to Pi+1. This is because, Gi is a finer graph and it allows

more degrees of freedom to move the vertices. Local refinement based on Kernighan-Lin

(KL) [59] or Fiduccia-Mattheyses (FM) [33] partitioning algorithms tend to produce good

results for bi-partition. However, using KL or FM for refining multiple partitions is sig-

nificantly more complicated because vertices can move from a partition to many others.

Therefore, we propose a simple and efficient refinement algorithm (similar in spirit to the

greedy refinement proposed in [56]) to target the objective and constraints of our problem.

Given Gi = (Vi,Ei) with partitioning solution Pi, a vertex v ∈Vi is a boundary vertex of

partition Pi[v] if it has at least one adjacent vertex u∈Vi such that v and u belong to different

partitions, i.e., Pi[v] 6= Pi[u]. Otherwise, v is an internal vertex. For G′1 in Figure 5.2, vertices

{2,4} are the boundary vertices of partition CI0 while {0,1} are the internal ones. Note that

G′1 is at the same coarse level of G1. Our refinement algorithm visits boundary vertices in

random order. If v is selected, let pv is the subgraph of Gi w.r.t. current partition containing

v and NP[v] be the set of subgraphs of Gi w.r.t. neighborhood partitions to which vertices

adjacent to v belong. Algorithm 5 tries to move v to neighborhood partitions if it is possible.

Let p′ be the resulting partition after moving v to a neighborhood partition p. p′ may

violate constraints. If input constraint is violated by adding v (line 6), we try to reduce the

number of inputs (line 7) by continuously adding vertices (in breadth first traversal order)

of the backward subgraph rooted at v to p′. At each level (in breadth first traversal), the

vertices are ordered w.r.t. the number of edges connecting the vertex to the partition p′.

If a vertex is connected with p′ via multiple edges, it has highest potential to reduce the

number of inputs of p′. We define permanent inputs as the inputs of the original graph

G0. We stop adding vertices to p′ if either (1) input constraint is surely violated because
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Algorithm 5: Moving vertex v
Input: Gi = (Vi,Ei), Pi and NP[v]

Result: Update Pi

1 best ratio improv = 0;

2 p′v← pv \{v};

3 if p′v satifies all constraints then

4 for p ∈ NP[v] do
5 p′← p∪{v};

6 if IN(p′) > Nin then
7 Reduce number inputs(p′);

8 if OUT(p′) > Nout then
9 Reduce number outputs(p′);

10 if p′ satisfies all constraints then

11 ratio improv← gain(p′)
area(p′) −

gain(p)
area(p) + gain(p′v)

area(p′v)
− gain(pv)

area(pv)
;

12 if ratio improv > best ratio improv then
13 best ratio improv← ratio improv;

14 Update best solution;

15 if best ratio improv then
16 Update Pi;

number of permanent inputs of p′ is more than Nin, or (2) input constraint is satisfied, or (3)

either convexity or output constraint is violated. In G′1 of Figure 5.2, if we move vertex 2

to CI1, input constraint is violated (i.e., IN(CI1) is 5 ¿ 4). Then, we continue adding vertex

0 and number of permanent inputs is greater than 4, we stop adding vertices. G′0 is the finer

graph which is projected from G′1. In G′0, after moving vertex 9 to CI1, we continue adding

vertices 6,7 which results in valid subgraph CI1 in G′′0 . Because G′′0 has higher gain-area

ratio improvement than G′0, G′′0 is the result of multi-level partitioning instead of G′0.

Similarly, if output constraint is violated by adding v (line 8), we try to reduce the num-
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ber of outputs (line 9) by continuously adding vertices of the forward subgraph rooted at

v in order of breadth first traversal. Then, if p′ is a valid subgraph, we compute its ratio

improvement, ratio improv (lines 10-11). Note that performance gain of p′v is equal to 0

if p′v is invalid custom instruction. If ratio improvement is better than best ratio improve-

ment (best ratio improv) so far, we update best ratio improvement and the corresponding

solution (lines 12-14). If there exists best ratio improvement, we update Pi (lines 15-16).

Intuitively, we move vertex v to the neighborhood partition which has the best ratio im-

provement.

5.3 Experimental Evaluation

The evaluation of our approach consists of two separate set of experiments. First, we estab-

lish how our iterative approach can substantially expedite the system-level design process.

The second set of experiments show that the custom instructions generated by MLGP algo-

rithm are as good quality as the ones generated by the current state-of-the-art algorithms.

We compare MLGP with Iterative Selection (IS) algorithm [81] which is one of the state-

of-the-art algorithms generating good quality custom instructions.

5.3.1 Experimental Setup

For our experiments, we use Trimaran 4.0 [19] as front-end and in the back-end we assume

a single-issue in-order processor core with perfect cache and branch prediction. Given an

application, we first invoke Trimaran 4.0 [19] to compile the application and generate the

intermediate machine code. Then, we build the program control flow graph and corre-

sponding syntax free from the intermediate machine code. Subsequently, both the WCET

computation and custom instruction generation are done based on the application’s control
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flow graph and syntax tree. We perform all the experiments on a 3GHz Pentium 4 CPU

with 2GB memory.

We use Synopsys design tools with 0.18 micron CMOS cell libraries to synthesize

primitive operations, e.g. addition, multiply, etc to get hardware area as well as execution

time in hardware of each primitive operation. Based on these values of each operation,

we can estimate latency and area of custom instructions through hw ltc() function and

sum of hardware area of all vertices in custom instructions respectively. Each custom

instruction can have at most 4 input operands and 2 output operands. Execution cycles of

a custom instruction is its latency normalized against a MAC, which has 1 cycle latency in

the processor running at 120MHz.

5.3.2 System-Level Design

We evaluate our work using various benchmark programs which are shown in Table 5.1.

Five task sets are created by random composing a subset of these benchmarks as shown

in Table 5.2. For each task set, we choose a total utilization for the task set (without

any custom instructions) and then select the periods of the constituent tasks to achieve the

corresponding utilization. Recall that Ci be the WCET of task Ti without customization.

Then we set the period Pi for each task Ti as Pi = αi×Ci such that ∑
N
i=1

Ci
Pi

= U . We

would like to exploit customization to make an unschedulable task set become schedulable.

Therefore, we vary total utilization factor U for a task set from 1.1 to 1.5 with interval of

0.1. The greater the original utilization factor, the more difficult it is to schedule the tasks

using custom instructions.

Figure 5.3 plots the reduction in utilization through each iteration of Algorithm 4 for

5 task sets with different input utilization factors. The X axis and Y axis show number of

iterations and the utilization factor for the whole task set. The utilization drops dramatically
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Benchmark Source WCET cycles Max Average

BB size BB size

adpcm WCET Benchmarks 127,407 331 15

sha Mibench 9,163,779 487 38

jfdctint WCET Benchmarks 2,217 107 19

g721decode Mediabench 113,295,478 80 9

lms WCET Benchmarks 65,051 29 8

ndes WCET Benchmarks 21,232 56 9

rijndael Mibench 13,878,360 239 24

3des Trimaran 106,062,791 2745 59

aes Trimaran 30,638 227 16

blowfish Mibench 435,418,994 457 22

Table 5.1: Benchmark Characteristics. The maximum and average size of basic block (BB)

are given in term of primitive instructions.

after the first iteration and gradually reduces in the following iterations. It takes 4 or 5

iterations on average to bring the processor utilization below 1.0 (i.e., the task set becomes

schedulable). The smaller the input utilization, the smaller is the number of iterations.

This result shows that our iterative scheme efficiently achieves the necessary reduction of

utilization (or execution time in general).

Figure 5.4(a) shows the analysis time (in seconds) of our methodology for different task

sets with different input utilization factors. The X axis and Y axis show the input utilization

and the analysis time of our methodology. For the task sets we experimented with, we

can generate custom instructions to make an unschedulable task set become schedulable

within 10 to 65 seconds. However, with higher input utilization, it may not be possible to
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Task set Benchmarks

1 3des, rijndael, sha, g721decode

2 sha, jfdctint, rijndael, ndes

3 ndes, g721decode, rijndael, sha

4 aes, 3des, adpcm, jfdctint

5 adpcm, jfdctint, rijndael, sha

Table 5.2: Task Sets.

obtain a feasible solution. For example, for task set 3 with input U = 1.4,1.5, processor

customization fails to bring the processor utilization below 1.0. Therefore, we only show

partial results in these cases (see the red highlighted circle).

The faster analysis time of our approach confirms that the iterative methodology is very

efficient for system-level design space exploration. If there is either feasible or infeasible

solution, our approach returns results in seconds. As mentioned earlier, without the itera-

tive approach, the designer has to first generate a set of custom instructions with varying

tradeoffs (in area versus performance) for each task in the task set. Subsequently, he/she

will select appropriate custom instructions from each task set so as to meet the system per-

formance demand. However, it turns out that generating all possible custom instructions

for four tasks in task set 1 using the state-of-the-art algorithm [81] takes more than half a

day and even then the process does not terminate. This means that complete design space

exploration using custom instructions for task set 1 may take at least half a day to finish

or may even be infeasible. In constrast, our iterative approach returns the first-cut solution

within 3 seconds to make task set 1 schedulable even when the input processor utilization

is equal to 1.5.

Figure 5.4(b) shows the correlation between hardware area and input utilization U . The
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Figure 5.3: Reduction in processor utilization with increasing number of iterations

Y axis shows the hardware area in term of adders (hardware unit used by conventional cus-

tom instruction generation techniques) required by our solution and X axis again shows in-

put utilization factor. As the input utilization increases, the hardware area correspondingly

increases because more custom instructions are required to make the task set schedulable.

5.3.3 Efficiency of MLGP Algorithm

The heart of our system-level processor customization approach is the multi-level graph

partitioning (MLGP) algorithm that on-the-fly generates high-quality custom instructions.

In this section, we show that MLGP can generate high quality custom instructions which
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Figure 5.4: (a) Analysis time of our approach with varying input utilization for all 5 task

sets; and (b) Hardware area required by custom instructions with varying input utilization

for all 5 task sets

achieve high execution time reduction under a hardware area budget. To substantiate this

claim, we compare MLGP with a state-of-the-art custom instruction generation algorithms,

IS algorithm [81], with the objective of generating high quality custom instructions. It has

been shown [81] that IS generates almost the optimal set of high quality custom instructions

in practice without paying for the exponential computational complexity of the optimal

algorithm.

We have implemented both the algorithms (MLGP, IS) in the Trimaran infrastructure

as discussed in Section 5.3.1. The same synthesis tool and cell libraries have been used

for all the algorithms. Moreover, all the algorithms have been restricted to generate cus-

tom instructions with at most 4 input register ports and 2 output register ports. Custom

instructions do not include memory references or conditional branches. In this compari-

son, we implement the connected version of IS to generate connected custom instructions.

Note that connected custom instructions generated from IS are almost the optimal set of

connected custom instructions by simply not considering disjoint components in the core

of IS.

Note that in these set of experiments we are concerned with average-case performance
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improvement for each individual benchmark for the purpose of a clear comparison rather

than WCET reduction in system-level design context. Therefore, we profile each bench-

mark separately with representative inputs within Trimaran infrastructure and annotate each

basic block with its execution frequency. MLGP is suitability modified to work on the hot

basic blocks in terms of execution frequency rather than the worst-case path. The critical

basic blocks are sorted in decreasing order of their execution time before IS is executed.

This setting helps IS to return better quality custom instructions early on.

Let B be the set of basic block in an application and let xi and si be the execution fre-

quency and software execution time of the basic block Bi, respectively. Then the software

execution time of the application is given by SW = ∑B xi×si. Let hi be the execution of the

basic block Bi after applying processor customization. Then the reduced execution time

of the application is HW = ∑B xi× hi. The speedup of the complete application due to

processor customization is then speedup = SW
HW .

We run the two algorithms on a variety of benchmarks. Some of the benchmarks con-

tain only small basic blocks (e.g., jfdctint, g721decode) while others contain very

large basic blocks (e.g., 3des, and unrolled sha). The benchmark 3des, for example,

has 2745 nodes in the largest basic block.

Figure 5.5 plots the progress of MLGP and IS as they attempt to generate quality custom

instructions for the entire benchmark. X-axes show the analysis time of the algorithms each

time they generate new custom instructions. For IS, a custom instruction is generated after

each iteration, while MLGP generates a set of custom instructions after processing a region

in the basic block. This partially explains the faster analysis time of MLGP compared to

IS. The Y-axes show the speedup for each benchmark.

The first observation from Figure 5.5 is that MLGP returns a set of quality custom in-

structions within one second and more custom instructions are quickly added as analysis
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time progresses. For most benchmarks, MLGP returns the complete set of custom instruc-

tions within 10 seconds of analysis time. On the other hand, IS takes much longer analysis

time to return the first custom instruction for complex benchmarks (in the order of 1,000

seconds). Subsequent custom instructions are generated slowly. The second observation is

that MLGP even performs better then IS for several benchmarks, e.g., sha, blowfish,

jfdctint.

It should be noted though that IS, in general, can return high-quality custom instruc-

tions very quickly for small benchmarks (in the order of few seconds). However, it takes

thousands of seconds for IS to return solution when the benchmark contains large basic

blocks. Indeed, for 3des with 2,745 instructions in a basic block, IS fails to generate the

full set of custom instructions even after running for half a day. Therefore, we show only

partial results (see the red highlighted rectangles).

Figure 5.6 shows the design tradeoffs (hardware area versus speedup) exposed by the

two algorithms for processor customization. X and Y axes represent hardware area and

speedup, respectively for each generated solution. The results suggest that MLGP solutions

have, in general, better speedup under the same hardware area constraint compared to IS.

This is because IS generates only one custom instructions per iteration and the nodes of

this custom instructions are eliminated from further consideration. This strategy has the

risk of getting stuck in a local optima as the generated custom instruction (though optimal

at this point) can disable many choices in the future. In contrast, MLGP returns a set of

custom instructions per iteration leading to better design space exploration. For 3des, we

only show partial results for IS (also see the red highlighted rectangle) as it fails to return

complete set of custom instructions even after running for half a day.

82



1 18

1.21 g721decodeMLGP
IS

1.15

1.18

p

IS

1 09

1.12

ee
du

p

1.06

1.09

Sp
e

1.03

1

1 101 201
Hardware Area (Number of Adders)

2 2

2.4
jfdctintMLGP

IS
2

2.2

p

IS

1.8

ee
du

p

1.4

1.6

Sp
e

1.2

1.4

1
1 201 401 6011 201 401 601
Hardware Area (Number of Adders)

1 6

1.7 blowfishMLGP

1.5

1.6 IS

1 3

1.4

up

1.2

1.3

pe
ed

u

1.1

Sp

1
1 10 100 1000

Hardware Area (Number of Adders)

1.9
2 md5MLGP

IS

1.7
1.8

p
IS

1.5
1.6

ee
du

p

1.3
1.4Sp

e

1 1
1.2
1.3

1
1.1

1 10 100 10001 10 100 1000
Hardware Area (Number of Adders)

1 9
2 ShaMLGP

1 8
1.9 MLGP

IS

1.7
1.8

1.6

du
p

1 4
1.5

pe
ed

1.3
1.4Sp

1.2

1
1.1
1
1 10 100 10001 10 100 1000
Hardware Area (Number of Adders)( )

2 2

2.4
3desMLGP

2

2.2

p

IS

1.8

ee
du

p

1 4

1.6Sp
e

1.2

1.4

1

1.2

1 10 100 1000
Hardware Area (Number of Adders)( )

Figure 5.6: Design tradeoffs in processor customization.
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5.4 Summary

We propose an iterative scheme to generate custom instructions in an on-demand basis

guided by the system-level performance requirements. Our approach zooms into the criti-

cal region that is causing the performance bottleneck and starts the customization process

from that region. We provide a close coupling between the system-level design and the cus-

tomization algorithm. The critical component of our framework is an efficient algorithm

based on multi-level graph partitioning that generates the custom instructions on-the-fly.

Experimental results validate that our iterative scheme is quite effective in quickly produc-

ing good quality solutions.
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Chapter 6

Runtime reconfiguration of custom

instructions

Instruction-set customization can help to improve significant performance for embedded

systems (such as our work in Chapter 3, 4 and 5). However, the total area available for

the implementation of the CFUs in a processor is limited. Therefore, we may not be able

to exploit the full potential of all the custom instructions in an application. This under-

utilization is particularly true if the application consists of a large number of kernels and

each kernel requires unique custom instructions — a scenario that is quite common in high-

performance embedded systems. Furthermore, it may not be possible to increase the area

allocated to the CFUs due to the linear increase in the cost of the associated system. In this

context, runtime reconfiguration of the CFU fabric appears quite promising. Here the set

of custom instructions implemented in the fabric can change over the lifetime of the ap-

plication. For multi-kernel applications, runtime reconfiguration is especially attractive, as

the fabric can be tailored to implement only the custom instructions required by the active

kernel(s) at any point of time. Of course, this virtualization of the CFU fabric comes at

the cost of reconfiguration delay. The designer has to strike the right balance between the
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number of configurations and the reconfiguration cost.

Local Memory System

32KB 
I‐Cache

32KB 
D‐Cache

64KB 
Dual port RAM

Execution Unit

32‐bit Register 32‐bit Register 128‐bit Wide Register

FPU ALU

ISEF
IRAM

Xtensa LX Dual‐Issue VLIW

Figure 6.1: Stretch S6000 datapath [38].

To exploit this performance potential, commercial customizable processors supporting

dynamic reconfiguration have been proposed. For example, Figure 6.1 shows the Stretch

S6000 engine that incorporates Tensilica Xtensa LX dual-issue VLIW processor [37] and

the Stretch Instruction Set Extension Fabric (ISEF). The ISEF is software-configurable dat-

apath based on programmable logic. It consists of a plane of arithmetic/logic elements (AU)

and a plane of multiplier elements (MU) embedded and interlinked in a programmable, hi-

erarchical routing fabric. This configurable fabric acts as a custom functional unit to the

processor. It is built into the processor’s datapath, and resides alongside other traditional

functional units such as the ALU and the floating point unit. The programmer defined

application specific instructions (Extension Instructions) are implemented in this fabric.

When a custom instruction is issued, the processor checks to make sure the corresponding

configuration (containing the extension instruction) is loaded into the ISEF. If the required

configuration is not present in the ISEF, it is automatically loaded prior to the execution
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of the user-defined instruction. ISEF provides high data bandwidth to the core proces-

sor through 128-bit wide registers. In addition, 64KB embedded RAM is included inside

ISEF to store temporary results of computation. With all these features, a single custom

instruction can potentially implement a complete inner loop of the application. The Stretch

compiler fully unrolls any loop with constant iteration counts.

The distinguishing aspect of ISEF is that it is run-time configurable and reloadable.

If the computation resource requirement of the custom instructions exceeds the capacity

of ISEF, the instructions can be partitioned into different configurations. When a user-

defined instruction is issued, the S5 hardware checks to make sure that the corresponding

configuration is loaded into the ISEF. If the required configuration is not present in the

ISEF, it is automatically loaded prior to the execution of the user-defined instruction. In

summary, the ISEF allows the system designers to define new instructions at runtime and

thus extend the processor’s instruction set.

Currently, it is the programmer’s responsibility to manually choose and define the cus-

tom instructions and the configurations for architectures such as Stretch. Choosing an

appropriate set of custom instructions for an application itself is a difficult problem. Sig-

nificant research effort has been invested in developing automated selection techniques for

custom instructions [5, 81, 24, 25, 57, 22, 66, 101, 102, 103]. Runtime reconfiguration has

the additional complication of both temporal and spatial partitioning of the set of custom

instructions in the reconfigurable fabric. Figure 6.2 shows how a C code accelerated with

different Custom Instruction Sets (CIS) configures the CFU fabric during run-time. A CIS

is a set of custom instructions corresponding to a program fragment. When the CFU fabric

can accommodate more than one CIS, it is spatially partitioned among them. In Figure 6.2,

configuring the CFU fabric with both CIS-1 and CIS-2 at the same time constitutes an

example of spatial partitioning. The CFU fabric is temporally partitioned when it is loaded
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with different configurations during run-time. In our example, the CFU fabric is config-

ured with CIS-3 after exiting the for loop. Therefore, the custom instructions of the

entire application are partitioned into two temporal configurations: {CIS-1, CIS-2}

and {CIS-3}.

int main()

{

…

for(…)
{

…

…

}

…

}

CIS-1

CIS-2

Empty 
CFU fabric

CIS-3

time

Figure 6.2: Spatial and temporal partitioning of the custom instructions of an application

and the state of the CFU fabric during execution.

In this chapter, we develop a framework that starts with an application specified in

ANSI-C and automatically selects appropriate custom instructions as well as clubs them

into one or more configurations. We first extract a set of compute-intensive candidate loop

kernels from the application through profiling. For each candidate loop, we generate one

or more custom instruction-set versions differing in performance gain and area tradeoffs in
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addition to the purely software version. The key component of our framework is an iterative

partitioning algorithm. The partitioning algorithm selects appropriate custom instruction-

set versions for the loops implemented in fabric and clubs them into suitable configurations

to achieve the highest performance gain. We model the temporal partitioning of the cus-

tom instructions into different configurations as a k-way graph partitioning problem. We

develop a dynamic programming based pseudo-polynomial time algorithm for the spatial

partitioning of the custom instructions within a configuration. To the best of our knowl-

edge, this is the first work that attempts automated custom instructions selection in the

context of instruction-set extensible processor platforms with dynamic reconfiguration.

Most hardware-software partitioning solutions for FPGAs work at a coarse-grained

level (such as task level). However, as we would like to accelerate complete applications

specified in high-level programming languages such as ANSI-C, we focus on hot loop ker-

nels instead. Note that the reconfiguration cost model at task level [20, 58] and data flow

graph level [83] are simple because the underlying directed acyclic graph representation

ensures at most one reconfiguration between any two nodes. In contrast, our dynamic

reconfiguration cost model is complex as the number of reconfigurations for one loop de-

pends on temporal partitioning of all the other loops. Furthermore, our methodology allows

custom instruction sets corresponding to more than one loop to be placed within a single

configuration. Thus spatial partitioning also plays a role in determining the performance

gain of the application. The only other loop-level temporal partitioning work that we are

aware of [69] considers only one loop per configuration.

The remainder of this chapter is structured as follows. Section 6.1 describes the system

design flow. In Section 6.2, we present the problem formulation and a motivating exam-

ple. Section 6.3 details our partitioning algorithm. Experimental setup and evaluation are

described in Section 6.4.
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6.1 System Design Flow

Hot Loops 
Detection

CIS versions 
Generation

Hot Loop Trace 
Generation

Datapath SynthesisSoftware Loops

Partitioning

Bit Stream
for Each Config

Application in C

Figure 6.3: System design flow

Figure 6.3 shows the system design flow. The input to the design flow is the C source

code of the application we want to accelerate. The output is the application accelerated with

custom instructions and the synthesized datapath for each configuration. In the following,

we describe each component of this design flow.

Hot loops detection Taking our cue from Amdahl’s law, we focus on the loops that take

up a significant portion of the application’s total execution time. In particular, we define a

loop with execution time greater than a certain percentage (typically ≥ 1%) of the applica-

tion’s overall execution time to be a hot loop. The hot loop detector identifies such loops

through profiling. Although the total number of loops in an application may be large, we

consider only the hot loops to reduce the computation cost of the partitioning algorithm

significantly. At the same time, the performance gain we obtain is still comparable to the

case where all the loops of the application are considered. This result is because the min-
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imal performance gain of the cold loops are more than offset by the high reconfiguration

overhead.

Custom instruction-set versions generation We generate multiple custom instruction-

set (CIS) versions for each hot loop with a trade-off between hardware area and perfor-

mance gain. A CIS version consists of a set of custom instructions extracted from the cor-

responding loop under an area constraint. Each CIS version is characterized by its area and

performance gain. In general, the performance gain of a CIS version increases with larger

area. To generate the CIS versions for a loop, we first identify [5, 81, 24, 25, 57, 102, 103]

a large set of candidate patterns from the loop. Given this library of patterns, in the

second step, we select a subset to maximize performance gain under hardware area con-

straint [5, 22, 24, 25, 66, 101]. As the area increases, a CIS version with higher performance

gain will be generated by selecting a larger subset. Moreover, different CIS versions can be

generated by loop transformations such as loop unrolling, software pipelining, loop fusion,

and others.

Loop Trace The control flow among the hot loops is captured in the form of a loop trace

(execution sequence of the loops) obtained through profiling. For typical embedded appli-

cations we have profiled, the number of hot loops and the loop trace size are quite small.

For longer loop trace, we can use lossless compression techniques (such as SEQUITUR

algorithm [74]) to compactly maintain the loop trace.

The hot loops with CIS versions and the loop trace are fed to the partitioning algorithm

that decides the appropriate CIS version and configuration for each loop. The selected

CIS versions to be implemented in hardware are then input into the datapath synthesis

tool. It generates the bit stream corresponding to each configuration (based on the result of

temporal partitioning). These bitstreams are used to configure the fabric at runtime. The

91



remaining loops are implemented in software on the core processor. Finally, the source

code is modified to exploit the new custom instructions.

6.2 Partitioning Problem

We now formally define the partitioning problem for dynamic reconfiguration of custom

instructions, which is the focus of this chapter.

The input to the partitioning step is the set of hot loops L = {li|i = 1...N}. Each loop

is associated with multiple custom instruction-set (CIS) versions with a trade-off between

hardware area and performance gain. Let li, j (for j = 1 . . .ni) be the jth CIS version cor-

responding to loop li where ni is the number of CIS versions of loop li. In addition, let

gaini, j and areai, j denote the performance gain and area requirement of li, j. We assume

that li,1 corresponds to the software loop without any custom instructions, i.e., areai,1 = 0

and gaini,1 = 0. For each loop li, only one of its CIS versions will be selected for imple-

mentation. For example, if li,1 is selected, loop li will be implemented in software without

any custom instruction enhancements.

The control flow among the loop kernels is input in the form of a loop trace. Finally,

MaxA represents the hardware area available for each configuration and ρ represents the

time required for a single reconfiguration. In this chapter, we do not consider partial re-

configuration, i.e., a configuration is completely replaced by another configuration in the

fabric. Hence both MaxA and ρ are constants. Intra-loop reconfiguration incurs high re-

configuration cost. Thus we do not allow custom instructions corresponding to a loop to

straddle across configuration boundaries. In other words, the selected CIS version of a loop

is completely accommodated within a configuration, i.e., areai, j ≤ MaxA (for i = 1 . . .N,

j = 1 . . .ni). Each configuration, however, consists of CIS versions corresponding to one or
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more loops. Thus the problem boils down to

1. Temporal partitioning of the loops selected for hardware acceleration with CIS into

one or more configurations, and

2. Spatial partitioning of the loops within a configuration by selecting appropriate CIS

version for each loop.

The performance gain of the application is then defined as

Per f ormance gain =

(
N

∑
i=1

ni

∑
j=1

si, j×gaini, j

)
− r ∗ρ (6.1)

ni

∑
j=1

si, j ≤ 1 (6.2)

where r is the number of reconfigurations given the partitioning and si, j is a binary variable

equal to 1 if CIS version li, j is selected and 0 otherwise.

Dynamic reconfiguration through temporal partitioning enlarges the available area for

the design by increasing the number of configurations. Therefore, each loop can select

better CIS version to be implemented in hardware and better performance gain will be

achieved. However, this increase in number of configurations may not result in better

overall performance due to the reconfiguration cost. On the other hand, if we minimize the

number of configurations, the available area is quite restricted. Consequently, each loop

will select its CIS version with smaller area and the performance gain of the application

is much smaller, especially when the reconfiguration cost is smaller. Our objective is to

maximize the performance gain by selecting an appropriate CIS version for each loop and

mapping it into an appropriate configuration.
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Figure 6.4: Motivating Example.

Motivating Example

Let us consider an application with three hot loops: loop1, loop2 and loop3. Fig-

ure 6.4 (a) shows the performance/silicon area tradeoff of different custom instruction-set

versions for each loop. In particular, the table shows the hardware requirement in terms

of arithmetic units (AU) and corresponding performance gain in terms of K cycles. For

example, loop3 has three CIS versions. Version 1 of each loop is the software version

(without any custom instructions enhancements) with zero area and performance gain. We

need to select appropriate CIS versions for the three loops and club them into one or more

configurations. Let the hardware area constraint for a single configuration be 2048 AUs.

The cost for a single reconfiguration is 15K cycles. The graph on the left-hand side of Fig-

ure 6.4 (b) shows control flow information among the loops for this example. The actual

input to our algorithm is the loop trace. We use the graph here (derived from the loop trace)
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for illustration purposes. We will, however, use a similar graph (called reconfiguration cost

graph) later in our temporal partitioning algorithm.

If the system does not support dynamic reconfiguration, the best partitioning solution

(solution (A) in Figure 6.4 (b)) under the hardware area constraint is the selection of version

3 of loop1, version 2 of loop2, and version 2 of loop3. Total performance gain is

160+230+493 = 883K cycles and there is no reconfiguration cost.

However, in the presence of dynamic reconfiguration, we can improve the solution. A

trivial solution is to put each loop into one configuration (solution (B) in Figure 6.4 (b)). We

can then select the CIS version of a loop with the largest area less than or equal to the area

of a configuration: version 4 for loop1, version 5 for loop2 and version 3 for loop3.

Total performance gain is 563 + 556 + 549 = 1668K cycles and the total reconfiguration

cost is (20 + 11 + 9 + 9)× 15 = 735K cycles. Therefore the resulting net performance

gain after subtracting the reconfiguration cost is 1668−735 = 933K cycles. While the net

performance gain is better than the case when dynamic configuration is not supported, it is

not the optimal solution.

The optimal solution is to put loop2 and loop3 into one configuration and loop1

into a different configuration (solution (C) in Figure 6.4 (b)). CIS versions 4, 3, and 2

will be selected for loop1, loop2, and loop3, respectively. The performance gain is

1443K cycles, while reconfiguration cost is (9 + 9)× 15 = 270K cycles. Hence, the net

performance gain is 1443−270 = 1173K cycles.

6.3 Partitioning Algorithm

Finding the optimal combination of temporal and spatial partition is a difficult problem.

Given N loops, the number of possible configurations is 2N . However, the number of ways
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to partition N loops into mutually-exclusive configurations corresponds to the N +1th Bell

number. According to de Brujin [27], asymptotic limits of Bell numbers is O(eN ln(N)).

Our partitioning algorithm needs to makes three choices: (1) optimal number of con-

figurations k, (2) temporal partitioning of the loop kernels into k configurations, and (3)

spatial partitioning of the loop kernels in each configuration, i.e., choosing the appropriate

custom-instruction set (CIS) version for each loop kernel. Clearly, these choices are inter-

dependent. The selection of CIS versions for the loops determines the partitioning solution

and vice versa.

Algorithm 6: Iterative Partitioning Algorithm

Input: Set of hot loops with custom instruction-set versions: L

Loop Trace: T

Maximum Area of a configuration: MaxA

Reconfiguration Cost: ρ

Result: Partition with the best net performance gain

for k = 1 to |L| in steps of 1 do
C := global spatial partition(L,k×MaxA);

P := temporal partition with CIS(C,T,k);

P′ := temporal partition wo CIS(L,T,k);

soln := local spatial partition(L,P,MaxA);

soln′ := local spatial partition(L,P′,MaxA);

if net gain(soln′) > net gain(soln) then soln := soln′;

if net gain(soln) > net gain(bestSoln) then bestSoln := soln;
return bestSoln;
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6.3.1 Overview

We propose an iterative algorithm (Algorithm 6) for joint temporal and spatial partitioning

of the custom instruction-sets corresponding to the hot loop kernels. The algorithm iterates

from a constraint of having exactly 1 configuration (i.e., no reconfiguration) to the upper

bound of having |L| configurations where L is the set of hot loops. The solutions (A) and (B)

in our motivating example (see Figure 6.4) represent the two extremes (k = 1 and k = |L|),

while the remaining iterations explore the rest of the design space.

For the iteration with k configurations, we would like to identify the k-way partitioning

solution with the optimal net performance gain. Unfortunately, temporal and spatial par-

titioning are again dependent on each other due to the reconfiguration cost. To break this

cycle, we apply a heuristic technique. The heuristic first assumes that we have a continu-

ous area of k×MaxA available to us where MaxA is the maximum area for a configuration.

The assumption of continuous area allows us to tentatively select optimal CIS versions for

the loops in an ideal (but un-realizable) situation where reconfiguration cost is zero. This

assumption provides an upper bound on the performance achievable with k configurations.

In reality, however, we have k distinct configurations with MaxA area each. So we partition

the loop kernels with selected CIS versions into k configurations such that each configura-

tion has roughly MaxA area and the reconfiguration cost is minimized. As we break up the

continuous area into k distinct areas, some configurations end up being bigger than MaxA,

while some other configurations are smaller than MaxA. To fix this problem, we have a final

patch-up stage that performs spatial partitioning within each configuration to re-distribute

MaxA space among the constituent loop kernels. Figure 6.5 illustrates the three phases

of the iterative partitioning algorithm corresponding to the iteration with 2 configurations.

The input is the three loops in the motivating example and their CIS versions.

The first phase, global spatial partition, partitions the area k×MaxA (where k is the
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Figure 6.5: Three phases of iterative partitioning algorithm for number of configurations =

2

number of configurations for that iteration) among the loops by selecting the CIS versions

such that the performance gain is optimal. This phase disregards the reconfiguration cost. It

also assumes that a continuous area of size k×MaxA is available for hardware acceleration

of all the loops. We have developed a dynamic programming algorithm for this phase. This

phase may choose to select the software version for some loops. For our running example,

the first phase in Figure 6.5 chooses CIS versions l1,4, l2,3, l3,3.

After the first phase, we have the set of selected CIS versions C for the hot loops.

However, we cannot implement this solution as (1) the reconfiguration cost has not been

considered, and (2) the loops still need to be partitioned into different configurations. In

the second phase temporal partition with CIS, we perform temporal partitioning of the

selected loops into k configurations such that the reconfiguration cost is minimized and the

partitions are roughly equal in size. This phase returns the partitioning solution P for the

set of loops selected for custom instructions enhancements from the first phase.

In the second phase, we also find an alternative partitioning solution P′ for the original

set of hot loops, i.e., it disregards the results of the first phase. This partitioning, tempo-

ral partition wo CIS, only considers the reconfiguration cost and ignores the CIS versions.
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Partition P is a better choice when performance gain of the CIS versions is high relative to

the reconfiguration cost. On the other hand, partition P′ is a better choice when the recon-

figuration cost is high relative to the performance gain. P and P′ complement each other in

the search for the best partitioning solution. We model the temporal partitioning as a k-way

weighted graph partitioning problem, which is well studied [55, 56].

In Figure 6.5, the left hand side shows the partition P and the right hand side shows the

partition P′. For P, the second phase partitions the three loops with selected CIS versions

into two configurations: l1,4 in the first configuration and l2,3, l3,3 in the second configura-

tion. On the other hand, P′ simply partitions the three loops based on reconfiguration cost

into two configurations. In this example, P and P′ return the same temporal partitioning.

However, due to the reconfiguration cost, P and P′ may be different.

We now have k configurations for each partitioning solution P and P′. The k-way

weighted graph partitioning produces partitions with roughly equal size. Therefore for

partition P, the area requirement of some of the configurations may exceed the maximum

area MaxA. Partitioning solution P′, on the other hand, does not select any CIS version

a-priori. Thus, for each configuration in P and P′, the third phase, local spatial partition,

locally selects the CIS versions for the loops in that configuration to maximize performance

gain under area constraint MaxA. We again use dynamic programming to perform optimal

spatial partitioning for each configuration.

In Figure 6.5, for partition P, the area requirement of the second configuration exceeds

the maximum area budget. Hence phase 3 for this partition replaces CIS version l3,3 with

l3,2. Phase 3 keeps the CIS version for loop l1 unchanged even though there is additional

area available (the green part) as l1,4 is the best version for l1. However, in general, the

additional area can lead to the selection of better versions for some loops. The third phase of

P′ simply selects CIS versions of the loops in each configuration for the first time. Finally,
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the net performance gains of P and P′ are compared to select the best partitioning solution

for k configurations.

If the net performance gain of the current solution (with k configurations) is better

than the best solution obtained so far (with less than k configurations), we update the best

solution. Then we start a new iteration with k = k + 1. The algorithm terminates when in

the current solution, each loop has been assigned its CIS version with the best performance

gain. In the worst case, the algorithm runs for |L| iterations. With the motivating example,

our algorithm returns the optimal solution, which has two configurations (see Figure 6.5)

and the performance gain is 1173K cycles.

Let us now proceed to describe the spatial and temporal partitioning algorithms.

6.3.2 Spatial Partitioning

We propose a pseudo-polynomial time dynamic programming algorithm to select the ap-

propriate CIS versions for the loops such that the performance gain is optimal under a

hardware area budget. This algorithm is employed in the first phase and the third phase of

our iterative solution with different parameters.

Let Gi(A) be the maximum performance gain of loops l1 . . . li under an area budget A.

Then Gi(A) can be defined recursively.

Gi(A) = max
j=1...ni

areai, j≤A

(
gaini, j +Gi−1(A−areai, j)

)
(6.3)

In Equation 6.3, given an area A, we explore all possible CIS versions for li and choose the

one that results in maximum performance gain for loops l1 . . . li. The base case for loop l1

is

G1(A) = max
j=1...n1

area1, j≤A

(gain1, j) (6.4)
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The maximum performance gain for loops l1 . . . lN under area budget AREA then corre-

sponds to GN(AREA).

Algorithm 7: Spatial Partitioning

Input: Set of loops l1, l1, . . . , lN with CIS versions;

Area constraint: AREA

Result: Maximum performance gain

for A = 0 to AREA in steps of ∆ do
G1(A)←max j=1...n1

area1,j≤A
(gain1,j)

end

for A = 0 to AREA in steps of ∆ do
for i=2 to N do

Gi(A)←max j=1...ni
areai,j≤A

(
gaini,j +Gi−1(A− areai,j)

)
end

return GN(AREA);

Algorithm 7 encodes this recursion as a bottom-up dynamical programming algorithm.

The step value ∆ determines the granularity of area. It is chosen as the greatest common

divisor of the area requirements of all CIS versions and AREA. The time complexity of

this algorithm is O(N× Area
∆
× x) where x = maxi=1...N(ni).

6.3.3 Temporal Partitioning

We map our temporal partitioning problem to k-way weighted graph partitioning problem.

The k-way weighted graph partitioning problem is defined as follows. Given an undirected

graph G = (V,E) with weights both on the vertices and the edges, partition V into k subsets

V1,V2, . . .Vk such that Vi
⋂

Vj = /0 for i 6= j,
⋃

iVi = V , the sum of the vertex-weights in each

101



subset is roughly equal, and the sum of the edge-weights whose incident vertices belong to

different subsets (edge-cut weights) is minimized.

ABCBCBA

All loops
in HW

Only 
loops A,C
in HW

2

A

C

A

B
C4

2

Figure 6.6: Reconfiguration cost graph from loop trace

We generate a Reconfiguration Cost Graph (RCG) from the loop trace to model our

temporal partitioning problem as a k-way weighted graph partitioning problem. After the

first phase, we have tentatively selected CIS versions for the loops. Each vertex in the

RCG represents a hot loop selected for hardware acceleration in the first phase. In other

words, we do not consider the loops for which the first phase selects software-only version.

Given a vertex v associated with loop l, we assign the area of the CIS version selected for

l as the weight of the vertex v. When CIS versions from the first phase are ignored (in

temporal partition wo CIS), the RCG includes all the loops and we assume unit hardware

cost for each vertex.

The edge weight between vertex v (corresponding to loop l) and v′ (corresponding to

loop l′) is defined as the reconfiguration cost between loop l and loop l′ if they are mapped

to two different configurations. The edge between v and v′ exists if and only if control can

flow from loop l to l′ or l′ to l without passing through any other hot loops. The weight

on the edge between v and v′ represents the number of times control flows from loop l to
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l′ and l′ to l (without passing through any other selected loop). This weight can be derived

from the loop trace as follows. If we eliminate the software-only loops from the loop trace,

then the weight is the the number of times the string ll′ and l′l appear in the loop trace. The

time complexity of creating RCG is linear in the size of the hot loop trace.

Figure 6.6 shows an example of RCG generation from the loop trace. It shows a loop

trace ABCBCBA of three hot loops A, B, C. If all the loops are selected to be placed in hard-

ware, then there are 2 reconfiguration points between loops A and B if they are partitioned

into different configurations. Similarly, there are 4 reconfiguration points between loops B

and C if they are partitioned into different configurations. However, there are no reconfigu-

ration points between loops A and C directly as the control transfers between them always

pass through B. However, if we choose to implement B in software in the first phase, then B

is eliminated from the RCG. In this case, there are 2 reconfiguration points between loops

A and C if they are partitioned into different configurations.

The objective now is to partition the RCG into k configurations such that the configu-

rations have roughly equal area (or the configurations have roughly equal number of loops

when area is ignored) and the reconfiguration cost (edge-cut weights) is minimized. If the

configurations have roughly equal area, then the loops have higher probability of retain-

ing the optimal CIS versions selected in the first phase regardless of the third phase. As

a result, total performance gain (excluding reconfiguration cost) after the third phase is

expected to be near the optimal performance gain in the first phase. The rationale behind

having roughly equal number of loops in each configuration when CIS versions are ignored

(by assigning unit cost to each vertex in the RCG), is to create a balanced temporal par-

tition. It ensures that equal number of loops compete for each configuration space during

subsequent spatial partitioning.

We use multilevel k-way partitioning scheme by Karypis and Kumar [56]. The multi-
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level partitioning scheme consists of three phases: coarsening phase, partitioning phase and

uncoarsening phase. During coarsening phase, a sequence of smaller graphs Gi = (Vi,Ei),

each with fewer vertices, is constructed from the original graph G0 = (V0,E0) such that

|Vi|< |Vi−1|. The coarsening phase ends when the coarsest graph Gm has a small number of

vertices or the reduction in the size of successively coarser graph becomes too small. Then,

the partitioning phase computes a k-way partitioning Pm of the coarse graph Gm = (Vm,Em)

such that each partition contains roughly |V0|/k vertex weight of the original graph. The

k-way partitioning of Gm is computed using multilevel bisection algorithm [55]. During

the uncoarsening phase, the partitioning Pm of the coarser graph Gm is projected back to

the original graph by going through the graphs G(m−1),G(m−2), ...,G1. At each interme-

diate level, the partitioning is refined based on Kernighan-Lin [59] partitioning algorithm

and their variants. Figure 6.7 shows how the temporal partitioning problem is solved by
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Figure 6.7: Modeling the temporal partitioning problem as k-way graph partitioning prob-

lem.

modeling it as a k-way weighted graph partitioning problem for our running example. The

edge weights of the RCG are generated from the loop trace. The area of the CIS version

selected for each loop in the global partitioning phase is assigned as the weight of the corre-

sponding vertex. Now we perform 2-way partitioning of this graph with minimum edge-cut

weights and roughly equal vertex weights in each partition. This partitioning gives us the

configurations with roughly equal area while minimizing reconfiguration cost.
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6.4 Experimental Evaluation

To compare the accuracy and scalability of our iterative partitioning algorithm, we have

developed two other algorithms — exhaustive search and greedy search. The results of the

two algorithms are compared with our proposed algorithm in two different sets of experi-

ments. In the first set of experiments, we run the three algorithms using synthetic input to

evaluate the scalability and efficiency of the algorithms. We generate input data with 5 to

100 hot loops for this set of experiments. In the second set of experiments, we conduct a

case study of the JPEG application with custom instructions implemented on a commercial

platform Stretch [38] that supports runtime reconfiguration.

Exhaustive Search The exhaustive search algorithm computes the optimal results by

evaluating all possible temporal and spatial partitioning. We use the algorithm described

in Kreher and Stinson [63] to enumerate all possible partitioning solutions. We then find

the optimal implementation of each configuration in each partitioning solution by choosing

CIS versions of the constituent loops through our spatial partitioning algorithm. The net

gain of each enumerated partition is then estimated through a brute force computation of

the reconfiguration cost by traversing the loop trace. The partition with the maximum net

performance gain is then the optimal solution. Our experiments show that the exhaustive

search algorithm cannot scale with increasing number of hot loops.

Greedy Search The greedy search algorithm (see Algorithm 8) constructs a solution by

building one configuration at a time until no more CIS version can be added without causing

a degradation in performance. The input is the set of hot loops with custom instruction-set

versions L, loop trace T , area constraint MaxA, and single reconfiguration cost ρ. A solu-

tion consists of one or more configurations. The algorithm begins with an empty solution
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Algorithm 8: Greedy Search Algorithm

Input: Set of hot loops with custom instructions: L

Loop Trace: T

Maximum Area of a configuration: MaxA

Reconfiguration Cost: ρ

Result: Partitioning solution

current := new configuration();

continue := true;

while continue = true do
C := compute reconfig cost for unselected loops(L,T,solution,current);

li, j := select most profitable feasible CIS(C,L,MaxA,current);

if li, j is not found then

if current is not empty then
update solution by adding current;

current := new configuration();

else
continue := f alse;

end

else
update current with li, j;

remove from L all CIS versions of loop li;

end

end

return solution
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and an empty current configuration.

In each iteration, we pre-compute a reconfiguration cost array C. For any unselected

loop li, the array C gives the expected additional reconfiguration cost if li is added to the

current configuration. Given C, the current solution and the current configuration, we can

now compute the expected performance gain of each CIS version if we add it to the current

configuration. For CIS version li, j, this expected performance gain is estimated by sub-

tracting from gaini, j, the additional reconfiguration cost for loop li (available from array

C). We now select the CIS version with the maximum expected positive performance gain

that can be added to the current configuration without violating the area constraint. The

selected CIS version is then added to the current configuration. All the other CIS versions

of the same loop are subsequently removed from the set L.

In the event that no CIS version can be selected, there are two possibilities. The first

possibility is that no more loops can be added to the current configuration without violat-

ing the area constraint (current configuration is not empty in Algorithm 8). In this case,

we update the solution with the current configuration and re-start the process of selecting

CIS versions with an empty configuration. The second possibility is that no more loops

can be added to the current solution without decreasing its net performance gain (current

configuration is empty, i.e., we are trying to select the CIS version under maximum area

constraint). In this case, the algorithm stops and returns the solution built so far.

6.4.1 Efficiency and Scalability of Algorithms

For this set of experiments, we generate synthetic inputs with number of hot loops ranging

from 5 to 100. The number of CIS versions for each loop is generated randomly and ranges

between 1 to 10. The performance gain of each CIS version ranges between 1,000 to

10,000 time units. The hardware area is between 1 to 100 units. The performance gain
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increases with hardware area for each loop.

Running time (sec)

Number of Exhaustive Greedy Iterative

Hot Loops search search partitioning

5 0.26 0.01 0.07

6 1.34 0.02 0.07

7 7.84 0.01 0.07

8 43.91 0.01 0.09

9 283.22 0.04 0.07

10 1788.20 0.01 0.11

11 12604.33 0.01 0.13

12 86338.37 0.01 0.15

20 N.A. 0.02 0.48

40 N.A. 0.04 4.30

60 N.A. 0.07 18.25

80 N.A. 0.11 55.61

100 N.A. 0.16 118.76

Table 6.1: Running time of the algorithms for synthetic input.

The reconfiguration costs between two loops, if they are assigned to different config-

urations, are generated randomly. They are in the range 0 to maxCost where maxCost is

approximately 40-50% of the average performance gain of all the CIS versions of all the

loops
∑

N
i=1 ∑

ni
j=1 gaini, j

∑
N
i=1 ni

. The value of maxCost ensures that the reconfiguration cost is neither

too high nor too low. Both the extremes reduce the search space considerably. If the re-

configuration cost is too high, we should only consider partitions with a small number of
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configurations. If the reconfiguration cost is too low, then the solution is to simply select

the CIS version with the highest speedup for each loop and construct as many configura-

tions as required. The hardware area constraint MaxA is approximately 20-30% of the sum

of the average area requirements of the CIS versions of all the loops ∑
N
i=1

∑
ni
j=1 areai, j

ni
. This

set-up ensures that all the loops with their CIS versions cannot fit under the area constraint.

Table 6.1 shows the running times of the three algorithms for synthetic input with dif-

ferent number of hot loops. The running time of the exhaustive search algorithm, while

relatively small with smaller number of loops, increases by almost an order of magnitude

each time one more loop is considered. The results of exhaustive search for more than 12

loops cannot be obtained even after waiting for a day. On the other hand, although itera-

tive partitioning algorithm is slower than greedy search in general, its running time is quite

acceptable (less than 2 minutes). This result demonstrates the scalability of our approach.

Moreover, iterative partitioning generates much better quality solutions compared to greedy

search as presented in the following.
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Figure 6.8: Comparison of the quality of the solutions returned by the algorithms for syn-

thetic input. Exhaustive search fails to return any solution with more than 12 hot loops.
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Figure 6.8(a) compares the quality of the solutions returned by the three different algo-

rithms with number of hot loops varying from 5 to 12. The performance gain obtained us-

ing our approach is close to the optimal gain obtained with exhaustive search while greedy

search falls far behind. Figure 6.8(b) presents the comparison between the performance

gain of iterative partitioning and greedy search for input with more than 12 hot loops. We

cannot report the results for exhaustive search algorithm here as exhaustive search fails to

return any solution for more than 12 loops (even after running for more than a day). The

iterative algorithm consistently outperforms greedy search in terms of performance gain by

a factor of 1.26 to 2.09.

6.4.2 Case Study of JPEG Application

We present a case study of the JPEG image compression algorithm. In this study, we envi-

sion a scenario in which an image is encoded and then decoded subsequently. The hot loops

are profiled and the loop trace is generated using an in-house tool based on OpenImpact [2],

an open source compiler. The profiling works in two phases. The timing information of

each loop is collected by inserting appropriate time stamps at the entry and exit points of

the loops. After the first pass, loops which take up more than 1% of the computation time

can be detected. During the second pass, the compiler inserts appropriate code to capture

the entry point of the hot loops. The resulting application, when executed, generates a trace

of the hot loops.

Our loop profiler identifies more than 15 hot loops for the JPEG application. For our

experimental purposes, we select the top 10 loops and manually generate custom instruction

set versions for each loop on the Stretch S5 platform [88]. Figure 6.9 shows an example

of exploiting custom instructions on Stretch processor for performance enhancement of an

application. The original loop is shown on the left of the figure. It performs conversion
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SE_FUNC void rgb2ycc(WRA &A, WRB &B)
{

for (i = 0; i < num_cols; i++)
{ {

se_uint<8> r[10],g[10],b[10];
se_uint<8> y[10],cb[10],cr[10];
int i,j;
/* Unpack A, B to RGB data */
for (i = 0; i < 5; i++) {

{
r = GETJSAMPLE( in[RGB_RED] );
g = GETJSAMPLE( in[RGB_GREEN] );
b = GETJSAMPLE( in [RGB_BLUE] );
in += RGB_PIXELSIZE;
y[i]=(JSAMPLE)((ctab[r + R Y] + tab[g + G Y] for (i  0; i  5; i ) {

j = i * 3 * 8;
r[i] = A(j+7,j);
r[5+i] = B(j+7,j);
g[i] = A(j+15,j+8);
g[5+i] = B(j+15,j+8);

y[i] (JSAMPLE)((ctab[r  R_Y]  tab[g  G_Y]
+ ctab[b + B_Y]) >> SCALEBITS);

cb[i]=(JSAMPLE)((ctab[r + R_CB] + ctab[g + G_CB]
+ ctab[b + B_CB]) >> SCALEBITS);

cr[i]=(JSAMPLE)((ctab[r + R_CR] + ctab[g + G_CR]
+ ctab[b + B CR]) >> SCALEBITS); g[ ] (j ,j )

b[i] = A(j+23,j+16);
b[5+i] = B(j+23,j+16);  

}
/* Converting 10 pixels */
for (i = 0; i < 10; i++) {

[ _ ]) )
} (a) Original Loop

WRGET0INIT(0,in); /* GET stream from in */
WRGET0INIT1();

//loop body: r[i],g[i],b[i] instead        
of r,g,b

}
/* Pack y, cb, cr to A, B */
A = (cr[4],cb[4],y[4],cr[3],cb[3],

for(i =0; i < num_cols/10; i++)
{
char out[30];
WRAGET0I(&A,15); /* A, B GET 10 pixels */
WRBGET0I(&B,15);

y[3],cr[2],cb[2],y[2],cr[1],
cb[1],y[1],cr[0],cb[0],y[0]);

B = (cr[9],cb[9],y[9],cr[8],cb[8],
y[8],cr[7],cb[7],y[7],cr[6],
cb[6],y[6],cr[5],cb[5],y[5]);

rgb2ycc(&A, &B); /* Call rgb2ycc instruction */
WRPUTINIT(0, out); /* PUT stream to out */ 
WRPUTI(A,15); /* Put result from A and B */
WRPUTI(B, 15);
WRPUTFLUSH(); 

/ / }

(b) rgb2ycc Custom Instruction

.../* Put out to y,cr,cb */
}

(c) Loop using Custom Instructions

Figure 6.9: An example of custom instruction for Stretch processor.

from RGB color space to YCbCr color space. The original loop converts one pixel at a

time. However, the main benefit of custom instructions in Stretch comes from exploiting

instruction-level parallelism. Therefore the original loop is unrolled X times (X = 10 in our

example) to expose more instruction-level parallelism. We can achieve different custom

instruction versions (or CIS versions) by changing the unroll factor. The higher unroll

factor results in larger hardware area requirement and better performance gain.

Figure 6.9(b) shows an example of using Stretch C language to define a custom in-

struction corresponding to the loop body (unrolled 10 times). Stretch C is a variant of C

language that allows the designer to define custom instructions. The Stretch C compiler can

automatically synthesize the custom instructions into the fabric. The custom instruction,

called rgb2ycc, has two 128-bit wide registers, A and B, as in-out arguments. A and B

contain 10 RGB pixels that will be converted to YCC pixels. First, input data in A and B are
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unpacked to the local RGB pixel variables. Then RGB pixels are converted to YCC pixels

through a for loop. The Stretch C compiler, while synthesizing the custom instruction

into hardware, will unroll this for loop within the custom instruction. As a result , the 10

pixels will be converted in parallel in hardware. Finally, YCC pixels are packed into A and

B registers as the output. After the new custom instruction is defined, we have to change

the source code of the original loop to use the newly defined custom instruction (see Figure

6.9(c)). The wide register arguments of rgb2ycc, A and B, get 10 RGB pixels at a time

from stream in. However, constant tables (such as ctab) used in rgb2ycc can be hard

code into the fabric. Finally, we execute rgb2ycc and extract the output from A and B.

For number of RGB pixels less than 10, we perform normal computation without custom

instruction.

Loop ID (#AUs, #MUs, Gain (K cycles))

0 (2249, 4096, 32)

1 (1612, 2880, 563) (257, 704, 111) (389, 2176, 254)

2 (2004, 6272, 556) (1041, 2048, 387) (1321, 2592, 426)

(761, 1504, 230)

3 (207, 0, 493) (424, 2, 549)

4 (2515, 1536, 1094)

5 (1530, 3584, 1669) (1300, 3584, 1643)

6 (981, 4480, 1095) (491, 2240, 739) (393, 1792, 590)

7 (1059, 2880, 511)

8 (1089, 2880, 910)

9 (1764, 1280, 194) (1114, 768, 188)

Table 6.2: CIS versions for JPEG application.
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The profiler in Stretch IDE can now provide us the performance gain and hardware area

of the CIS versions of each loop. Table 6.2 shows the various CIS versions for each loop

and their respective area requirements and performance gain. It is worth noting that the

performance gain of the CIS versions do not commensurate with area increase in general.

For example, loop 0 takes up 2249 arithmetic units and 4096 multiplier units but only gives

32K cycles of performance gain. In contrast, the CIS versions of loop 3 use far less area but

give much better performance. This result is because the parallelism that can be exploited

varies from one loop to another.

The configuration time of the whole fabric of Stretch development board, which in-

cludes 4096 4-bit arithmetic units (AUs) and 8192 4-bit × 8-bit multiplier units (MUs) is

approximately 100µs. Given that the CPU runs at 300MHz, the configuration time trans-

lates to roughly 30K CPU cycles. We define one hardware area unit to be a tuple of 400

AUs and 800 MUs. Since the configuration time is proportional to the size of the fabric,

configuration time of one hardware area unit is approximately 3K CPU cycles. By scaling

the configuration time according to the fabric size, we can easily compute the configuration

time for any fabric size.

It is possible to fit CIS versions of all the hot loops from our JPEG application in a

suitably-sized fabric. For our experimental purposes, we assume that the hardware area

constraint varies from one hardware area unit to 20-30% of the sum of maximum hardware

area for all the loops (5− 15 hardware units for JPEG application). This set-up will lead

to the necessity of dynamic reconfiguration. We run all the three algorithms (exhaustive

search, greedy search and iterative partitioning) under these different area constraints. Our

profiling data indicates that the application takes around 20 million cycles on Stretch CPU

without custom instructions enhancements. It should be noted, however, that the speedup

we obtain for a particular application depends on the quality of the custom instructions
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generated in the first place. Our focus in this experiment is to evaluate our proposed al-

gorithm in comparison with greedy search and exhaustive search. The purpose is, we are

only concerned about comparing the performance gain obtained using the different algo-

rithms starting with the same set of CIS versions. Our results show that the our proposed

algorithm is always optimal or near-optimal and produces much better results than greedy

search most of the time.
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(a) Comparison of iterative partitioning, greedy search, (b) Comparison of exhaustive search and iterative partitioning.

and static configuration (1 configuration).

Figure 6.10: Comparison of the quality of solutions for the case study of JPEG application.

In Figure 6.10(a), we evaluate the performance gain possible if dynamic reconfigura-

tion is exploited. We compare the performance gain obtained using iterative partitioning

and greedy search with the case when no reconfiguration is allowed. Clearly, iterative par-

titioning and greedy search can choose to use more than one configuration. However, the

algorithm for static configuration only performs spatial partitioning. If we compare the re-

sults of our algorithm with that of static configuration, the advantage of exploiting dynamic

reconfiguration decreases as the hardware area increases. This result is to be expected, as

more custom instructions can fit into the larger area to gain suitable speedup, thus reducing

the need to virtualize hardware through run-time reconfiguration. The graph demonstrates
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that our algorithm increases the performance gain over and above static configuration by at

least 34% and as much as 78%.

On the other hand, the simple heuristic of the greedy search algorithm fails to achieve

substantial performance gain over static configuration. Often, the greedy search performs

as good as the static configuration, and in some cases, even worse. Our proposed iterative

partitioning algorithm always performs better than the greedy search, being at least 14%

and as much as 91% better than greedy search.

Figure 6.10(b) measures how closely our proposed algorithm approximates the optimal

results obtained through exhaustive search. The graph shows that our algorithm returns

solution that coincides with the optimal solution most of the cases, and falls short of the

optimal by at most 1% in the remaining cases.

6.5 Summary

We have presented an algorithm to exploit dynamically configurable custom functional

units for optimal performance gain. Given an input application, the algorithm selects and

partitions the custom instructions corresponding to the loop kernels into different configu-

rations that are reconfigured at run-time. The experimental results show that our algorithm

is highly scalable while producing optimal or near-optimal performance gain.
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Chapter 7

Runtime reconfiguration of custom

instructions for multi-tasking embedded

systems

In Chapter 6, we presented a framework for runtime reconfiguration of custom instructions

in the context of sequential application. In this chapter, we return to customization for

multi-tasking embedded applications and explore runtime reconfiguration in this context.

We assume that the application is specified as a set of task graphs (consisting of a number

of tasks with dependencies among them), each associated with a period and a deadline. We

only consider static non-preemptive schedules. Our objective is to minimize the proces-

sor utilization through appropriate selection of custom instructions for each task and the

reconfiguration points while ensuring that all the timing constraints are satisfied.

Our problem formulation corresponds to choosing a design point from a large design

space due to (a) the choice of multiple custom instruction candidates per task from which

only a subset is selected, and (b) dynamic reconfiguration opportunity that leads to both
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spatial and temporal partitioning of the selected set of custom instructions. More impor-

tantly, the selected design points should respect real-time constraints. Previous works in

processor customization as well as coarse-grained hardware acceleration with reconfig-

urable logic consider only some restricted versions of our problem. Therefore, the design

space exploration approaches proposed in the literature are not directly applicable in our

context.

We decide to decouple the task scheduling problem from custom instructions selection.

We first employ standard techniques to come up with a task schedule without considering

optimizations through custom instructions. Given this task schedule as input, we propose

a pseudo-polynomial time algorithm to select custom instructions for each task and the

reconfiguration points with the objective of minimizing processor utilization, while meeting

the deadline constraints. Our algorithm returns the optimal feasible solution (if one exists)

corresponding to the input task schedule.

The highlights of our solution can be summarized as follows.

• Given a fixed task schedule, our pseudo-polynomial time algorithm returns the op-

timal selection of custom instructions that is feasible (satisfies real-time constraints)

and minimizes the processor utilization.

• We exploit both spatial partitioning (allocation of custom instructions to the tasks

within a configuration) and temporal partitioning of the tasks (partitioning of the

tasks into multiple configurations).

• We account for the reconfiguration cost.

• Our decoupled task scheduling and custom instructions selection approach is scalable

and still returns close to the optimal solution.
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The remainder of this chapter is structured as follows. In Section 7.1, we present the

problem formulation. Section 7.2 details our partitioning algorithm. Experimental setup

and evaluation are described in Section 7.3.

7.1 Problem Formulation

T0

T3

T2T1

T6

T5

T4

D6

D4

D3

D0

C0 C1 C2

T0
[0] T1

[0] T2
[0] T4

[0] T3
[0] T5

[0] T6
[0] T0

[1] …

D1 D2 D5
…

Schedule of Task Instances

Temporal Configurations

Figure 7.1: A set of periodic task graphs and its schedule

We model the application as a set of periodic task graphs (refer Figure 7.1), which

has been widely used in previous works [26, 30, 62, 72]. Each task graph is a directed

acyclic graph consisting of a number of tasks. Let {T0, . . . ,TN−1} be the set of N tasks

corresponding to all the task graphs. A directed edge between two tasks Ti→ Tj in a task

graph denotes that task Tj can start execution only after task Ti completes execution. Let ei

denote the execution time of Ti in software, i.e., without any optimization through custom

instructions. Each task graph has a deadline less than or equal to its period. The deadline

Di of Ti is the latest finish time of Ti derived from a backward topological search of the

corresponding task graph starting with the sink node (whose deadline coincides with the

task graph deadline).

The underlying processor platform allows optimized implementation of the tasks by ex-

ploiting custom instructions. Multiple custom instruction-set (CIS) versions are generated
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for each task with a trade-off between hardware area and performance gain. A CIS version

consists of a set of custom instructions extracted from the corresponding task under an area

constraint. In general, the performance gain of a CIS version increases with larger area. Let

{v0
i , . . . ,v

Mi
i } denote the possible CIS versions of task Ti. In addition, let gk

i and ak
i denote

the performance gain and area requirement of the version vk
i . We assume v0

i corresponds

to the software implementation, i.e., g0
i = 0 and a0

i = 0. In other words, for each task Ti,

we have a choice of one software implementation and Mi implementations accelerated with

custom instructions. The area A available for implementation of the CFUs can be reconfig-

ured at runtime to support a different set of custom instructions. In this chapter, we focus

on inter-task reconfiguration and do not consider intra-task reconfiguration. So the CIS

version of a task must fit into the available area without reconfiguration, i.e., ak
i ≤ A.

Our objective is to come up with a static non-preemptive schedule of the task set that

minimizes processor utilization by exploiting (a) processor customization and (b) runtime

reconfiguration of the custom instructions, while satisfying deadline constraints. We need

to construct our static schedule for the hyper-period (HP), which is the least common mul-

tiple of the task graph periods. All the tasks in a task graph have the same period. Let Pi

denote the period of task Ti. Clearly, a task Ti has HP
Pi

instances within the hyper-period.

The sth instance of Ti, denoted as T [s]
i , has the deadline

deadline(T [s]
i ) = Di + s×Pi (7.1)

In a feasible schedule, all the task instances meet their deadlines.

To minimize processor utilization, we need to assign appropriate CIS version to each

task instance in the schedule. However, as we can exploit runtime reconfiguration of the

custom instructions, we need not restrict ourselves to the area constraint A. Instead, we can

perform temporal partitioning of the schedule into C configurations, where area constraint

A is imposed on each configuration. For example, Figure 7.1 illustrates an initial portion
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of the schedule and its partitioning into three configurations. Note that each configuration

contains a disjoint subsequence of task instances from the original schedule. Temporal

partitioning allows us to work with a larger virtual area at the cost of a delay ρ per re-

configuration. The area A within a configuration is spatially partitioned among the task

instances assigned to it by choosing appropriate CIS version for each task instance.

A feasible solution to this problem is a static, non-preemptive schedule of the task in-

stances over the hyper-period where (a) the schedule is partitioned into C configurations,

(b) each task instance is assigned to an appropriate CIS version, (c) the total area require-

ment of the chosen CIS versions within a configuration satisfies area constraint A, (d) each

task instance satisfies its deadline constraint given by Equation 7.1, and (e) task depen-

dence constraints are satisfied. The processor utilization U over the hyper-period HP for

this solution can be expressed as

U =

(
N−1

∑
i=0

HP
Pi
× ei

)
−

N−1

∑
i=0

HP
Pi
−1

∑
s=0

gain(T [s]
i )

−ρ∗ (C−1)


HP

(7.2)

where gain(T [s]
i ) is the performance gain of the sth instance of task Ti based on its

assigned CIS version. As stated before, our objective is to construct the solution that mini-

mizes U . In other words, we try to maximize the performance gain minus the reconfigura-

tion cost

maximize

N−1

∑
i=0

HP
Pi
−1

∑
s=0

gain(T [s]
i )

−ρ∗ (C−1) (7.3)
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7.2 Algorithm

The problem defined in Section 7.1 consists of two sub-problems, namely, task scheduling

and CIS version assignment. Design of optimal task scheduling algorithm is not the focus

of this chapter. Instead, we employ list scheduling and use deadlines of task instances as

the scheduling priority, i.e., a task instance with earlier deadline has higher priority. Still

temporal partitioning of the resulting schedule into multiple configurations and assigning

appropriate CIS versions to the task instances within each configuration with the objective

of minimizing processor utilization (Equation 7.2), while satisfying all deadline constraints

(Equation 7.1) is a non-trivial problem. In this section, we present an elegant solution based

on dynamic programming.

List scheduling employed on the task graphs (as shown in Figure 7.1) over the hyper-

period constructs a linear schedule of the task instances with possible idle periods in be-

tween. Let 〈T0,T1, . . . ,TX〉 be the resulting schedule of task instance where X = ∑
N−1
i=0

HP
Pi

.

For simplicity of exposition, we ignore the superscripts for task instances in the rest of the

chapter. If all the task instances can meet their deadlines in this schedule without any hard-

ware acceleration, then we can guarantee that reduction in execution time of a task with

custom instructions will still maintain schedulability. The problem gets a little simplified

in this case. But if some of the task instances fail to meet deadlines, then our first priority

is to ensure schedulability through hardware acceleration.

Running Example Throughout this section, we use a simple example to illustrate our

algorithm and convey the intuition behind it. Let us assume a schedule consisting of three

task instances 〈T0,T1,T2〉. The deadlines Di and execution times ei of the software imple-

mentation of the tasks appear in the table in Figure 7.2. Clearly, all the tasks will miss their

deadlines with the software implementations as shown in Figure 7.2 (a.1). Therefore, we
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would like to explore processor customization so as to reduce execution times of the tasks

and meet the deadlines. The table in Figure 7.2 also shows that each task Ti has three CIS

versions v0
i ,v

1
i ,v

2
i with varying area and performance gain (e.g., 3,2 for v2

0 denotes 3 units

of area and 2 units of performance gain). The version v0
i is the software implementation

(zero hardware area and zero performance gain).

7.2.1 A Simple Solution

Let us for the moment ignore reconfiguration cost, configuration boundaries, and deadline

constraints. Our objective is to find an assignment of CIS versions to the tasks to achieve

maximum performance gain (given by Equation 7.3) under a virtual area constraint. Given

a virtual area area, let us define the maximum performance gain of the sequence 〈T0, . . . ,Ti〉

as Gi(area). If we ignore reconfiguration cost and configuration boundaries, we can com-

pute Gi(area) for different values of area through dynamic programming. Gi(area) can be

defined recursively as

Gi(area) = max
k=0,...,Mi
ak

i≤area

(
gk

i +Gi−1(area−ak
i )
)

(7.4)

That is, given a virtual area area, we explore all possible CIS versions of Ti and choose the

one that results in maximum performance gain for 〈T0, . . . ,Ti〉. The base case for task T0

G0(area) = max
k=0,...,M0
ak

0≤area

gk
0 (7.5)

Example Figure 7.2 (a.2) shows the performance gains for the tasks under area con-

straints 0 to 8 where 8 is the area required to implement the best CIS versions of all the

tasks. Total execution time of T0,T1,T2 in software is 12 time units whereas the entire se-

quence should complete execution within 6 time units. The solution table indicates that we
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Figure 7.2: Running Example

123



can obtain a performance gain of 6 time units for the task sequence with 5 units of area.

The solution cells corresponding to this performance gain are shaded in Figure 7.2 (a.2);

the CIS versions chosen are v0
0, v2

1, and v2
2. Unfortunately, the first task T0 fails to meet its

deadline because it is implemented purely in software as shown in Figure 7.2 (a.3) (execu-

tion time = 3 while deadline = 1). This example clearly shows that we cannot ignore the

deadline constraints of the individual tasks (T0 and T1) while constructing the solution to

maximize performance gain.

7.2.2 Deadline Constraints

The recurrence defined by Equation 7.4 does not take into account the deadline constraints.

Let us now proceed to modify this equation so as to maximize performance gain while

satisfying deadline constraints. We will continue to ignore reconfiguration at this point.

Given a virtual area constraint area, we find the solution with the maximum perfor-

mance gain Gi(area) and each task T0, . . . ,Ti is assigned one of its CIS versions. The

solution is feasible if all the tasks T0, . . . ,Ti can meet their deadlines with the CIS version

assignments in the solution. To satisfy the deadline constraints, we modify the construction

of dynamic programming solution table with the following consideration. While explor-

ing CIS versions of task Ti, we need to choose the solution that returns best Gi(area) and

T0, . . . ,Ti meet their deadlines. So how do we impose this constraint? Equation 7.4 is now

modified as

Gi(area) = max
k=0,...,Mi
ak
i ≤area

is schedulable(Ti)

(
gk

i +Gi−1(area−ak
i )
)

(7.6)

Here, is schedulable(Ti) simply checks the deadline constraints for T0, . . . ,Ti. In fact,

as we ensure the sequence 〈T0, . . . ,Ti−1〉 is already schedulable, we only need to check that
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Ti meets its deadline. If we cannot find any CIS version assignment for Ti to make the

sequence 〈T0, . . . ,Ti〉 schedulable, we set Gi(area) =−∞.

Example In our example, the feasible schedule is shown in Figure 7.2 (b.1) and the so-

lution table is shown in Figure 7.2 (b.2). When area < 3, G0(area) = −∞ which shows

T0 misses its deadline. Clearly, G1(area), G2(area) are also equal to −∞ when area < 3.

The difference between Equation 7.4 and Equation 7.6 becomes clear by looking at the last

row in Figure 7.2 (b.2). For example, when area = 5, we cannot find any CIS version for

T2 to make it schedulable and G2(5) = −∞ instead of G2(5) = 6 in Figure 7.2 (a.2). The

shaded cells in Figure 7.2 (b.2) provide the optimal solution that satisfies all the deadline

constraints. Here T0 selects v2
0, T1 selects v0

1 (implemented in software) and T2 selects v2
2.

7.2.3 Runtime Reconfiguration

So far we assume that the entire virtual area is available as a single continuous configu-

ration. However, in reality, the virtual area is divided into a number of configurations and

reconfiguration cost is incurred while switching from one configuration to another. Suppose

the area constraint for a single configuration A = 4 in our example. Let us now investigate

the optimal solution returned in the previous subsection where T0 selects v2
0 (3 unit area),

T1 selects v0
1 (implemented in software) and T2 selects v2

2 (3 unit area) in Figure 7.2 (b.2).

This solution is no longer feasible for the following reasons

• A task instance should be mapped to only one configuration; it cannot straddle across

configuration boundaries. In our example, task T2 occupies 1 unit of area in the first

configuration and 2 units of area in the second configuration.

• The reconfiguration cost should be taken into account while computing performance

gain.
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Restricting a task instance to one configuration How do we handle the constraint that a

task cannot straddle across configuration boundaries? Given a virtual area area, the number

of configurations is C = darea
A e and the area available in the last configuration physical area

is

physical area =

 A if area mod A = 0

area mod A otherwise
(7.7)

When exploring the CIS versions of task Ti under area constraint area, we should now

impose the constraint that the available area is less than the physical area, i.e., the area of

the current configuration. We modify Equation 7.6 to reflect this.

Gi(area) = max
k=0,...,Mi

ak
i ≤physical area

is schedulable(Ti)

(
gk

i +Gi−1(area−ak
i )
)

(7.8)

Reconfiguration cost We now need to subtract the reconfiguration cost from the total

performance gain under the following conditions.

1) If the area requirement of a CIS version is equal to the area of the current configura-

tion, i.e., ak
i = physical area and C > 1, then Ti is the first task in the current configuration.

We should subtract the reconfiguration cost from the gain.

2) The reconfiguration cost offsets the performance gain of the CIS version chosen for

task Ti. Hence, T0, . . . ,Ti may have obtained greater performance gain when reconfiguration

was not involved. That is, it is possible to have Gi(area) ≤ Gi(area− physical area). In

this case, it does not make sense to perform reconfiguration before task Ti and we should

instead select the solution with gain Gi(area− physical area). Even if Gi(area) is equal

to Gi(area− physical area), we still prefer the solution Gi(area− physical area) as it is

better not to use the current configuration, if possible. The fact that a solution does not use

the current configuration is represented visually with a ‘*’ in Figure 7.2 and maintained
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as a binary variable recon f igi(area). If the solution for tasks T0, . . . ,Ti under area has not

used any portion of the current configuration, then recon f igi(area) = f alse; otherwise we

set recon f igi(area) = true.

3) Suppose in Equation 7.8, we use the partial solution Gi−1(area) where recon f igi−1(area)=

f alse (marked with a *), i.e., the solution did not use the current configuration. If we com-

bine this solution with a CIS version of Ti, the implication is that Ti is the first task to use

the current configuration. Therefore, reconfiguration cost should be subtracted from the

total performance gain.

Algorithm 9: Compute Gi(area)
1 C← d area

A e;

2 physical area←


A if area mod A = 0

area mod A otherwise

3 Gi(area)←−∞; reconfigi(area)← false;

4 for k = 0 to Mi do

5 if ak
i ≤ physical area then

6 gain← gk
i +Gi−1(area− ak

i );

7 reconfiguration← false;

8 if C > 1 AND
(
ak

i = physical area OR !reconfigi−1(area− ak
i )
)

then
9 gain← gain−ρ; reconfiguration← true;

10 if is schedulable(Ti) AND gain > Gi(area) then
11 Gi(area)← gain; reconfigi(area)← reconfiguration;

12 if C > 1 AND Gi(area)≤ Gi(area−physical area) then
13 Gi(area)← Gi(area−physical area); reconfigi(area)← false;

The modification of Equation 7.8 to take reconfiguration cost into account is easier to

present in an algorithmic form as shown in Algorithm 9.
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Example Now let us get back to our running example. Tasks T0,T1,T2 cannot have a

feasible solution when we restrict ourselves to one configuration (4 units of area) and take

schedulability constraints into account (Figure 7.2 (c.1)). Let us now look at performance

gain with 5 units of area in Figure 7.2 (c.2). Task T0 cannot obtain any further performance

gain. Therefore, its solutions is marked with ‘*’ in the second configuration indicating that

T0 belongs to the previous configuration.

The situation gets interesting with T1. If T1 is implemented in the second configuration,

it can get a maximum gain of 2 time units. However, we need to subtract reconfiguration

cost of 1 time unit. As T0 has a gain of 2 time units, the total performance gain for T0,T1

with two configurations is only 2 + 2− 1 = 3. On the other hand, we can easily get a

gain of 3 units by implementing both T0 and T1 in the first configuration as shown by the

shaded cells in Figure 7.2 (c.3). Therefore, it does not make sense to put T1 into the second

configuration and its cell is marked with ‘*’.

Finally, T2 fails to meet its deadline in the beginning by using the second configuration

as reconfiguration cost overshadows the performance gain. However, when area = 7, T2

can implement its best CIS version in the second configuration with 4 units of performance

gain (Figure 7.2 (c.3)). T0,T1 gets 3 units of gain from the first configuration. Therefore,

total performance gain is 3 + 4− 1 = 6. At this point, we have been able to construct a

solution that satisfies all the timing constraints as shown in Figure 7.2 (c.4).

7.2.4 Putting It All Together

We can now present our complete dynamic programming (called DP) algorithm (Algorithm

10) that satisfies deadline constraints as well as takes into account runtime reconfiguration.

Let X = ∑
N−1
i=0

HP
Pi

be total number of task instances over the hyper-period. We vary

area in steps of ∆ to the area required to implement the best CIS versions of all task
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Algorithm 10: Maximize Performance Gain

1 for area = ∆ to Max A in steps of ∆ do

2 for i=0 to X−1 do

3 if ∀ j ≤ i !reconfigj
(
b area

A c×A
)

then
4 Gi(area) = Gi

(
b area

A c×A
)

;

5 else
6 compute Gi(area);

7 if area mod A = 0 AND ∀ i !reconfigi(area) then
8 break;

9 return GX−1(area);

instances Max A. For each area, we do not compute Gi(area) if performance gains of

〈T0, . . . ,Ti〉 have no improvement compared to the preceding configuration
(
barea

A c×A
)

(line 3). Therefore, Gi(area) should be filled up with the solution from the preceding con-

figuration (line 4) as performance gain is guaranteed to have no improvement in the current

configuration either. In Figure 7.2 (c.3), performance gains of 〈T0,T1〉 have no improvement

in configuration C1. Therefore, the performance gain of 〈T0,T1〉 will remain unchanged in

all the future configurations. We compute Gi(area) through Algorithm 9 (line 6). Finally, if

performance gains of 〈T0, . . . ,TX−1〉 have no improvement at the end of the current config-

uration, we will stop the algorithm (lines 7-8). This is because we cannot get any additional

performance gain by exploring further configurations.

Algorithm Complexity For each task instance, we compute Gi(area) (Algorithm 9) with

area = 0 . . .Max A in steps of ∆. Moreover, for each Gi(area) we have (Mi +1) choices of

CIS version. Let Mmax = maxi=0...N−1 (Mi +1). Therefore, the worst case complexity of

our algorithm is O(X× Max A
∆
×Mmax).
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7.3 Experimental Evaluation

To evaluate the accuracy and scalability of our dynamic programming algorithm, we also

develop an Integer Linear Programming (ILP) solution for our problem. We note that the

optimal ILP formulation is non-trivial as it includes task scheduling, CIS version assign-

ment, and runtime reconfiguration. However, the ILP solution is not scalable as will be

evident in the experimental evaluation.

7.3.1 ILP Formulation

We define the ILP formulation to find the optimal solution under the maximum number

of configurations NC. sts
i and ets

i are integer variables denoting the start and end time

of task instance T s
i . Let ek

i be the execution time of the kth CIS version of task Ti and

let optimal nc be optimal number of configuration returned by ILP solution. In addition,

yi,s,k,c and b(i,s),(i′,s′) are binary decision variables defined as follows.

+ yi,s,k,c: is equal to 1 if task instance T s
i selects its kth CIS version, which is partitioned

into configuration c. Otherwise, 0.

+ b(i,s),(i′,s′): is 0 if T s
i finishes before T s′

i′ . Otherwise 1.

We impose the following constraints.

7.3.1.1 Uniqueness Constraint

Each task instance must select at most one CIS version (including software version):

∀i,s
NC−1

∑
c=0

Mi

∑
k=0

yi,s,k,c = 1 (7.9)
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7.3.1.2 Resource Constraint

Total area used for CIS versions of a configuration must be less than or equal to maximum

hardware area A of a configuration:

For each c :
N−1

∑
i=0

(
HP
Pi
−1
)

∑
s=0

Mi

∑
k=0

yi,s,k,c ∗ak
i ≤ A (7.10)

7.3.1.3 Scheduling Constraint

A task instance must be scheduled after its release:

∀i,s : sts
i ≥ s×Pi +1 (7.11)

Start time of a task instance partitioned into configuration (c > 0) must be greater than the

end time of the configuration (c− 1) plus the reconfiguration cost ρ. The end time of the

configuration c, etcc, is equal to the maximum end time of task instances partitioned into

configuration c:

∀i,s : i f
Mi

∑
k=0

yi,s,k,c = 1 then etcc ≥
Mi

∑
k=0

yi,s,k,c ∗ ek
i + sts

i (7.12)

∀i,s ∀c ∈ [1..NC−1] :

i f
Mi

∑
k=0

yi,s,k,c = 1 then sts
i ≥ etcc−1 +ρ (7.13)

Start time of task Ti′ is greater than the end time of task Ti if there is an edge (dependency)

between Ti and Ti′ in the same period, Ti→ T ′i , and task Ti, Ti′ are partitioned into the same

temporal configuration:

∀i,k, ∀(Ti→ T ′i ), ∀c ∈ [0 . . .NC−1] : ets
i +1≤ sts

i′ (7.14)

Equation 7.15 computes end time of execution of a task instance in configuration c:

∀i,s : ets
i = sts

i +
NC−1

∑
c=0

Mi

∑
k=0

yi,s,k,c ∗ ek
i (7.15)
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Every task instance must finish before its deadline:

∀i,s : ets
i ≤ s∗Pi +Di (7.16)

We have to serialize two independent tasks that can be executed in parallel in the same

configuration: ∀c ∈ [0 . . .NC−1], ∀i,s, i′,s′ :

i f
Mi

∑
k=0

yi,s,k,c = 1 and
Mi′

∑
k′=0

yi′,s′,k′,c = 1 then

b(i,s),(i′,s′) +b(i′,s′),(i,s) = 1 (7.17)

sts
i ≥ ets′

i′ −∞∗b(i,s),(i′,s′) +1 (7.18)

sts′
i′ ≥ ets

i −∞∗b(i′,s′),(i,s) +1 (7.19)

The optimal number of configurations is the number of configurations that returns the opti-

mal result. It is the maximum of the configurations containing the last instances of the sink

tasks of each task graph. Let Tjsink be the sink task of jth task graph. Therefore, the last

instance of Tjsink is in
(

HP
Pjsink
−1
)th

release.

∀ j :
NC−1

∑
c=0

M jsink

∑
k=0

y jsink, HP
Pjsink

−1,k,c ∗ (c+1)≤ optimal nc (7.20)

7.3.1.4 Objective Function

Our objective is to minimize utilization:

∑
N−1
i=0 ∑

(
HP
Pi
−1
)

s=0 ∑
NC−1
c=0 ∑

Mi
k=0 yi,s,k,c ∗ ek

i +(optimal nc−1)∗ρ

HP
(7.21)

ILOG Concert Technology can help to linearize the non-linear constraints in the formula-

tion such as i f statements. Therefore, we do not discuss the details of linearization here.
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Figure 7.3: Task Graphs

7.3.2 Experimental Setup

Each task graph (see Figure 7.3) used in our experiment combines real kernels from the

same application domain to form meaningful benchmarks, such as JPEG decoder (TG1)

and encoder (TG4), automotive application (TG3), and consumer electronic applications

(TG0, TG2, TG5).

Given each task, custom instruction versions are manually generated for the Stretch S5

platform [88] by using Stetch C language. We can achieve different custom instruction

versions (or CIS versions) by changing the unroll factor of the compute-intensive loops

within the task or the number of custom instructions (Table 7.1). The higher unroll factor

results in larger hardware area requirement and better performance gain. The profiler in

Stretch can provide us the performance gain and hardware area of the CIS versions of each

task.

We create four combination of task graphs, A0, A1, A2, A3, each consisting of two

to four task graphs from Figure 7.3 to represent different applications. A0, A1, A2, A3

consist of {TG1,TG4,TG5}, {TG1,TG3}, {TG0,TG2,TG4,TG5}, and {TG2,TG4,TG5}

respectively. To set the periods for the task graphs, we choose a total processor utilization

U for the entire system (without any custom instructions) and then select the periods for
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CIS versions

Task (#AUs, #MUs, Execution Time K cycles)

rgb2ycc (r2y) (0, 0, 1476) (393, 1792, 886)

(491, 2240, 737) (981, 4480, 381)

huff en (0, 0, 6683) (2515, 1536, 5589)

(1300, 3584, 5040) (3815, 5120, 3946)

dequant (0, 0, 900) (257, 704, 789)

(389, 2176, 646) (1612, 2880, 337)

crc (0, 0, 4462) (101, 0, 730)

adpcmde (0, 0, 1338) (1128, 256, 1107)

djpeg (0, 0, 2496) (1430, 4224, 1823)

( 1710, 4768, 1816) (2933, 5472, 1507)

idct (0, 0, 473) (2294, 4096, 441)

adpcmen (0, 0 , 1882) (1790, 256, 1328)

rgb2cmyk (r2c) (0, 0, 2956) (243, 0, 1320)

(848, 0, 1312)

fir (0, 0, 1369) (263, 2048, 138)

(487, 4096, 57) (1127, 8192, 38)

des (0, 0, 732) (1892, 256, 49)

fft (0, 0, 1285) (898, 2048, 20)

ifft (0, 0, 1281) (898, 2048, 21)

laplacian (0, 0, 761) (3122, 1024, 19)

Table 7.1: CIS Versions of the tasks.
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each constituent task graph to achieve the corresponding utilization. We vary U between

0.9− 1.4 for each scenario. U > 1 implies that the application scenario is definitely not

schedulable without custom instructions, whereas it may or may not be schedulable with

U ≤ 1.

The configuration time of the whole CFU fabric of Stretch, which includes 4096 4-bit

AUs and 8192 4-bit × 8-bit MUs, is approximately 100µs or roughly 30K CPU cycles at

300MHz core. We define one hardware area unit to be a tuple of 400 AUs and 800 MUs.

As configuration time is proportional to fabric size, configuration time of one hardware

area unit is approximately 3K CPU cycles. For each application, we vary the CFU fabric

size between 10-100% (in steps of 10%) of the maximum area required to implement the

best CIS versions of the constituent kernels, Max A. When maximum area is available,

an application explores the limit of speedup achievable though custom instructions without

reconfigurations.

Given an application scenario, area constraint and processor utilization, we apply three

different techniques to generate a feasible schedule and CIS assignments with minimum

processor utilization: (1) our DP algorithm proposed in Section 7.2. (2) Optimal: an Inte-

ger Linear Programming (ILP) formulation that can return the optimal solution. (3) Static:

this solution restricts itself to a static configuration, i.e., it does not consider dynamic re-

configuration. This is a simplified version of the ILP formulation for Optimal that excludes

dynamic reconfiguration.

7.3.3 Experimental Results

Figure 7.4 shows the accuracy of our algorithm DP compared to Optimal. This figure also

shows the advantage of runtime reconfiguration (Optimal and DP) over static configuration

(Static). DP achieves up to 37% better processor utilization compared to Static when area
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Figure 7.4: Comparison of DP, Optimal, and Static

constraint decreases. This is expected as runtime reconfiguration can fit more custom in-

structions into the fabric through temporal sharing. Note that for the application A3, when

the area constraint is really tight, i.e. 0.1∗Max A, there does not exist any feasible solution

with static configuration Static. But feasible solutions can be obtained with runtime recon-

figuration. More importantly, the solution returned by DP often coincides with the optimal

solution. In fact it is mostly within 3% of the optimal processor utilization. Moreover,

for the application A2, when area constraint is small, we do not get Optimal result as ILP

solver fails to return any solution.

Running times of both Optimal and DP depend on the number of task instances in the

schedule, schedule length. {A0,A1,A3} have schedule lengths 11 or 12 while A2 has sched-

ule length 16. To show the effect of schedule length on running time of both algorithms,

we create more task graph sets with schedule lengths varying from 11 to 18. Table 7.2

shows running times of Optimal and DP on different schedule lengths when input proces-

sor utilization is U = 1 and area constraint is 0.3 ∗Max A for different task graphs. The

running time of Optimal, while relatively small with schedule lengths of {11,12}, shoots

up quickly at schedule length 16. The solution for Optimal cannot be obtained even after

waiting for two days when schedule lengths are greater than 16. Clearly, DP is significantly

136



Schedule Length Task Graph Sets Optimal DP

11 A3 19.525920 0.179993

12 A0 94.245572 0.246194

13 {TG0,TG2,TG5} 168.509196 0.492661

14 {TG2,TG5} 193.335448 1.182449

15 {TG0,TG1,TG4,TG5} 1273.653911 0.795110

16 A2 N/A 0.350204

17 {TG0,TG5} N/A 0.903613

18 {TG0,TG1,TG2,TG4,TG5} N/A 1.513959

Table 7.2: Running Time of Optimal and DP in seconds.

more scalable compared to Optimal.

7.4 Summary

We propose a pseudo-polynomial time algorithm to efficiently solve the problem of run-

time reconfiguration of custom instructions for real-time embedded systems. Minimized

processor utilization is achieved through appropriate custom instructions selection as well

as temporal partitioning with consideration of reconfiguration cost. Our experiments using

real embedded benchmarks on Stretch customizable processor show scalability and accu-

racy of our algorithm compared to integer linear programming based optimal solutions.
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Chapter 8

A case study of processor customization

In the previous chapters, we have concerned ourselves with design methodologies for pro-

cessor customization. We have evaluated our techniques with benchmark application. We

conclude this thesis with a real world case study that exploits processor customization for

bio-monitoring application. The increasingly ageing population is posing a major chal-

lenge to the overall health-care systems worldwide. Remote and non-obtrusive continuous

bio-monitoring of a non-critical patient at home is a viable alternative that can reduce con-

siderable burden on the hospital resources. Wireless body-area sensor networks (or BANs)

and related wearable computing technologies promises a convenient platform for such bio-

monitoring applications. The recent technological advancements in embedded processors,

availability of ultra low-power and lightweight sensor nodes and advances in wireless net-

working have all paved the ways for wireless BAN platforms. Some of the well-known

projects and prototype architectures in this area are the MIThril [29], CustoMed [51],

Wearable e-Textiles [31], Wearable Motherboard [77], e-Textile [54], and RFab-Vest [50].

However, continuous monitoring of the vital signs of a patient requires processing a large

volume of data streams arriving through multiple sensors. The resource constrained nature

of wireless BAN platforms raises significant concerns about meeting both the computation
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Figure 8.1: Wearable bio-monitoring.

bandwidth and power consumption requirement of high-end bio-monitoring applications.

This has fueled lot of interests in designing architectures and software specifically targeted

towards wireless BANs in general and wearable bio-monitoring solutions, in particular

[32, 51, 52, 60, 61].

Figure 8.1 illustrates the typical architecture of a wearable bio-monitoring platform.

Multiple tiny sensor nodes are attached to the different parts of the patient’s body. These

sensor nodes continuously sample various vital signs, such as ECG (Electrocardiograph),

SpO2 (Saturation of Arterial Oxygen) etc., at regular intervals and transmit the collected

samples to a gateway device (typically mobile phone or personal digital assistant (PDA))

through wireless medium. The gateway device is also located in the vicinity of the person

being monitored such as on his/her body. The sensor nodes communicate with the gateway

device through wireless communication protocol such as ZigBee (802.15.4) or Bluetooth

(802.15.1). The gateway device is responsible for processing the sampled data streams and

detecting emergency conditions (such as a fall) or anomaly in the vital signs. It can employ

139



mobile telephone networks (GPRS, 3G, etc.) or wireless LAN to reach an Internet access

point and thereby trigger an alarm to the care-giver in case of an emergency or anomaly. It

also periodically reports the status of the patient to the medical servers.

Clearly, the high-end bio-monitoring applications demand significant computation band-

width from the gateway device, typically a PDA or smart phone. This is in addition to the

computation bandwidth required for running regular applications on the device, such as

phone calls or music players. On the other hand, given the small form factor and bat-

tery life restrictions, the PDAs include very lightweight processors running at 100-300

MHz. Thus, there is an increasing trend towards building customized gateway devices

specifically tailored towards wearable bio-monitoring platforms. As an example, recently

an application-specific multiprocessor system-on-chip (MPSoC) design has been proposed

for real-time analysis of a 12-lead ECG [60], which requires processing of twelve different

signals from the patient’s body.

Following this line of development, we focus on processor customization [48] to sup-

port the computation demand placed on the gateway device by high-end bio-monitoring

applications. In this chapter, we choose Stretch customizable processor [38] as the hard-

ware platform. The major obstacle to customization of bio-monitoring applications is

that Stretch extensible processor (like many other extensible processors) does not support

floating point operations within extension instructions. Unfortunately, profiling of bio-

monitoring applications indicate that all the compute-intensive kernels contain significant

amount of floating point arithmetic operations. Therefore, we first transform the applica-

tions to use fixed point arithmetic instead of floating point. This transformation enables

better exploitation of instruction-set customization. We then generate multiple customiza-

tion options for each compute-intensive kernel with varying area and performance gain. It

is obvious that a customization option with larger area will typically provide better perfor-
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mance gain.

The remainder of this chapter is structured as follows. Section 8.1 describes bio-

monitoring application from the geriatric care domain. In Section 8.2, we present pro-

cessor customization for bio-monitoring application. Section 8.3 shows the results of our

experiments.

8.1 Wearable Bio-monitoring Applications

In this chapter, we choose a concrete bio-monitoring application from the geriatric care

domain as a case study. The application consists of two related subsystems: (1) continuous

monitoring of vital signs and (2) fall detection.

8.1.1 Continuous Monitoring of Vital Signs

Q

R

S
Q

R

S

Figure 8.2: Pulse Transmit Time [35].
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The subsystem for monitoring vital signs is capable of continuously measuring ECG,

SpO2, systolic blood pressure, and heart beat rate. ECG electrodes are attached on the

chest to measure the cardiac activities. SpO2 probe irradiates red and infrared light onto

earlobe and then records the continuous changes of transmitted intensities, which is called

PPG (Photo Plethysmogram). In each cardiac cycle, the ECG R peak indicates the starting

of cardiac contraction, and the corresponding maximum inclination in the PPG indicates

the arrival of blood at earlobe. The interval between the two kinds of peaks is defined as

pulse transit time (PTT) [35] as illustrated in Figure 8.2. That is, PTT is the time it takes

for the blood flow to reach from the heart to the earlobe. These vital signs are continuously

monitored and transmitted to the gateway device.

filter filter
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PPG Peak
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Heart beat rate
estimation

PTT estimation
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ECG SpO2 
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detection

filter filter filter

3D 2D 3D 2D
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(a) Blood pressure estimation. (b) Fall detection algorithm.

Figure 8.3: Bio-monitoring Applications.

The continuous measurement of vital signs requires a real-time systolic blood pressure

estimation algorithm as shown in Figure 8.3(a). The detection of pulse transit time (PTT)

[35], which is the time it takes for the blood flow to reach from the heart to the earlobe,
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involves peak detection in both ECG and differentiated PPG. An Analog to Digital con-

verter samples the ECG signal. The sampled ECG waveform contains some amount of

superimposed line-frequency content. This line-frequency noise is removed by digitally

filtering the samples through a low-pass FIR filter. This is followed by detection of all the

QRS complex in the ECG waveform. The ECG R peaks can be easily derived from the

QRS complex. The QRS complex also serves as a definite indicator for every heart beat,

hence, it can be used to calculate the heartbeat rate. The PPG signal similarly goes through

a FIR filter to remove the noise followed by detection of all the maximum slopes of the

PPG. After R peaks of ECG and maximum slopes of PPG are detected, the corresponding

pairs are mapped together to compute PTT. Finally, several PTT readings in a time interval

are combined together into one blood pressure index.

8.1.2 Fall Detection

Any wearable fall detection system typically employs physical motion sensors such as tri-

axial accelerometers and gyroscopes. The fall detection system we examine for case study

consists of one tri-axial (3D) MEMS (Micro Electro Mechanical Systems) accelerometer

plus one gyroscope on the thigh position and another accelerometer on the waist position.

The sensitivity axes of each accelerometer is arranged in lateral, vertical, and antero poste-

rior directions. The gyroscope provides 2D angular (lateral and sagittal) motion informa-

tion. Overall we have eight streams of sensor signals coming in from the physical motion

sensors (lateral, vertical, antero-posterior for each accelerometer and lateral, sagittal for

gyroscope) to the gateway device through ZigBee (802.15.4) wireless communication pro-

tocol. The fall detection algorithm runs on the gateway device.

The central hypothesis of elderly fall detection approach is that the thigh motion does

not go beyond certain threshold angle to forward (lateral) and sideways (sagittal) directions
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in normal activities; the abnormal behavior occurs in the onset of falls among the elderly.

Moreover, there is a high correlation between thigh and waist angle during fall, but low

correlation during normal activities. Thus the algorithm first needs to transform the 3D

accelerometer data to 2D angular data (lateral and sagittal). Next, it marks an angular

motion of the thigh beyond a threshold as a “possible” onset of fall. For each such possible

onset of fall, the correlation between thigh and waist angles as well as pattern matching

of gyroscope angle (against reference values obtained from a number of actual falls) are

used to eliminate false positives. A high-level overview of the functionalities of the fall

detection application appears in Figure 8.3(b).

8.2 Processor Customization

A quick profiling of the fall detection application revealed the floating point arithmetic op-

erations as the main performance bottleneck. Most of the functions are implementations of

floating-point arithmetic operations. In fact, more than 80% of the execution time of the ap-

plication is spent in floating point arithmetic operations. More importantly, the instruction-

set extensible processor that we are targeting (i.e., Stretch) does not support floating point

arithmetic operations within custom instructions. Indeed, most customizable processors

do not support floating-point operations inside custom instructions. Consequently, we get

at most 1.04x speedup after we generate Stretch custom instructions for fall detection ap-

plication. Therefore, we first transform the fall detection application code to use fixed

point arithmetic instead of floating point enabling better exploitation of instruction-set cus-

tomization. On the other hand, blood pressure estimation application mostly uses integer

arithmetic. So, we do not need to implement fixed point arithmetic version for the blood

pressure estimation algorithm.
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8.2.1 Conversion to Fixed Point Arithmetic

We use N-bit binary number x = xN−1xN−2 . . .x1x0 to present a fixed-point number in the

form U(a,b) [99].

x =
1
2b

N−1

∑
n=0

2nxn and a = N−b

In this representation, a bits on the left correspond to the integer part while b bits on the

right correspond to the fractional part. The implied binary point exists between the bth bit

xb and the bit to its right xb−1. The accuracy of the fixed point representation and the results

of the corresponding arithmetic operations (compared to the floating point implementation)

crucially depend on the appropriate choice of values for a and b. Therefore, we select

different values of a and b for different functions depending on the accuracy requirements

in our fixed point implementation of the applications. Moreover, we choose N = 32 for

most of functions and N = 64 for certain functions. For our application, N = 64 is large

enough to maintain the accuracy of floating-point operations when we convert them to

fixed-point representation.

We convert each rational number or integer number to fixed-point representation by

multiplying it with 2b, where the value of b is chosen to maintain the appropriate accuracy.

A fixed-point representation can be treated as an integer number except that it has the

implied binary point separating integer and fractional parts. Therefore, if we ensure that

two fixed point operands of an operation (such as addition or division) have the same values

for a and b, we can use the normal integer arithmetic operations for fixed-point numbers.

Stretch extension instruction can support integer multiplication, subtraction and addition

operation but does not support integer division and modulus operations. Therefore, we have

to implement integer and fixed-point division operation using basic arithmetic operations

(such as shift, or, etc.) [78].

A single custom instruction in Stretch can specify a complete inner loop in the applica-
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tion. The developer needs to capture the inner loops as extension instructions in Stretch C,

which is a variant of standard ANSI-C language. The Stretch C compiler then fully unrolls

any loop with constant iteration counts. There are three main sources of performance gain

from the custom instructions in Stretch: (1) Each custom instruction can read up to three

128-bit operands and produce up to two 128-bit operands. This allows a custom instruction

to exploit significant data parallelism as multiple data values can be packed together in a

single 128-bit operand. (2) A custom instruction can exploit temporal parallelism through

a deeply pipelined implementation of up to 27 processor clock cycles. (3) Each custom

instruction can be specialized through bit width optimization, constant folding, partial eval-

uation, and resource sharing. After custom instructions are defined in Stretch, we have to

change the source code of the original loop to use the newly defined custom instructions.

8.3 Experimental Results

We write Stretch C instructions for each hot function to explore speed up of bio-monitoring

application. Then we used Stretch profiler to get cycle count of each function in the bio-

monitoring application. Moreover, after generating bit stream configuration of custom in-

structions, we get the hardware area (in terms of number of arithmetic/logic units (AU) and

multiplier units (MU)) of each custom instruction for each hot function. Different combi-

nations of custom instructions create different custom instruction-set versions for each hot

functions.

From custom instruction-set versions generated for hot functions, we choose appro-

priate custom instruction-set version for each hot function of the bio-monitoring applica-

tions. We vary the hardware area constraint from 0 to Max Area at a hardware unit of 0.1

x Max Area. The Max Area is simply the summation of the maximum hardware area re-
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quirements of the constituent bio-monitoring kernels. Bio-monitoring application enhanced

with custom instructions at Max Area explores the limit of speedup achievable. In Figure
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Figure 8.4: Performance Speedup with Customization.

8.4, the X-axis and Y-axis represent area constraints and speedup of the application respec-

tively. Recall that blood pressure estimation application mostly uses integer arithmetic.

Therefore, we only enhance blood pressure estimation application with custom instruc-

tions and we can get up to 1.5x speedup shown in green bar in Figure 8.4, bp sw custom.

Here, the speedup is the ratio of blood pressure application execution time in software to

the execution time (in cycles) of the application enhanced with custom instructions.

On the other hand, we have three implementations for fall detection application: (1)

software-fixed-point implements fixed point arithmetic in software. (2) software-floating-

point implements floating point arithmetic in software. (3) custom-fixed-point implements

fixed point arithmetic with custom instructions. The custom-fixed-point implementation

gets up to 1.97x speedup (blue bar in Figure 8.4) compared to the software-fixed-point

implementation, fd sw fixed custom fixed. Performance speedup also comes from the fixed

point arithmetic implementation instead of the floating point implementation. Red bar
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in Figure 8.4 shows final speedup of custom-fixed-point implementation over software-

floating-point one, fd sw float custom fixed. We can get nearly 5.2x performance speedup

compared to the original floating-point implementation of fall detection application while

the accuracy of arithmetic operations is still maintained.

8.4 Summary

In this chapter, we present our work on processor customization for bio-monitoring appli-

cations. Our customization is based on fixed point implementation and custom instruction

selection. Through customization, we can get high performance gain (5.2x). The result of

this work confirms the efficiency of processor customization for compute-intensive appli-

cation domains such as bio-monitoring applications.
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Chapter 9

Conclusions and Future Work

In this thesis, we have presented efficient design methodologies for instruction-set cus-

tomization in the context of multi-tasking embedded systems. First, we studied instruction-

set customization for multi-tasking embedded system with realtime constraint [44]. The

results clearly show that enhancing multiple tasks with custom instructions can help these

tasks meet their deadline constraints. Second, we successfully extended our work [44]

to consider the conflicting tradeoffs among multiple objectives [16]. Our multi-objective

framework returns an approximate Pareto curve of different tradeoffs between hardware

area and performance. The approximate Pareto curve is very close to the exact Pareto

curve while the running time of our algorithm is four magnitudes faster than the exact al-

gorithm. Third, we investigated an efficient iterative custom instructions generation scheme

for instruction-set customization for multi-tasking applications. Fourth, we have proposed

an efficient framework for runtime reconfiguration of custom instructions for a sequential

application [47]. This framework can automatically generate custom instructions for a se-

quential application code and pack them into different configurations which are used for

runtime reconfiguration. The partitioning component which is the key component of our

framework returns optimal or near optimal (99%) results with many orders of magnitudes
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faster than the optimal solution. Fifth, we extended runtime reconfiguration of custom in-

structions [47] to multi-tasking applications with real-time constraints [46]. The proposed

algorithm mostly returns results within 3% different with the optimal results. Finally, we

performed a real world case study that exploits processor customization for bio-monitoring

application [45]. The results show that processor customization can return a performance

gain of up to 5.2X.

We can extend our study in instruction-set customization for multi-tasking embedded

systems in a couple of directions. First, we should take into account the custom instructions

sharing among tasks. Second, runtime reconfiguration of custom instructions should be

extended to consider partial reconfiguration with pre-fetch capability. Finally, our work

can be extended to study instruction-set customization in the context of multi-processor

system on chip instead of the single processor context in this thesis.
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