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Summary

The mass adoption of GPS on vehicles and mobile devices has made it very easy

to collect location data. Many challenges arise in the management of location data,

in particular when it involves the dynamic locations of moving objects. The effi-

cient processing of location-based queries is one of the challenges that are important

for system performance and the provision of location-based services. One particu-

lar challenge in managing location data is the efficient processing of location-based

queries. Besides the classical snapshot range query and k nearest neighbors (kNN)

query, continuous versions of these queries, i.e. continuous range query and contin-

uous kNN query, are also useful in the moving objects databases. In this thesis, we

focus on the problem of finding optimal regions.

The optimal location problem [15] aims to find a location q in S that maximizes

the number of objects in BRNN(q, O, P∪{q} ). The MaxBRNN problem [10, 11, 55],

which is also called the optimal region problem, is to find the region Q in S where

any location in Q is an optimal location. The region obtained by MaxBRNN is

called the optimal region. It is clear that solving the MaxBRNN problem also solves

4



SUMMARY 5

the optimal location problem.

The MaxBRNN problem has many interesting applications. For example, if

O is a set of customers and P is a set of convenient stores, then the result of the

MaxBRNN problem is the region where setting up a new convenient store can attract

the maximal number of customers by proximity.

In this thesis we propose an efficient algorithm called MaxFirst for solving the

MaxBRNN problem, and we also discuss the problem of generalizing the MaxBRNN

problem to a MaxBRkNN problem. Although [55] has provided a variant of MaxBRNN

based on the BRkNN queries, we provide a more practical and general definition

of the MaxBRkNN problem and show that our MaxFirst algorithm can be used

immediately to solve the MaxBRkNN problem.
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Chapter 1

Introduction

Spatial database and its applications in Geographic Information Systems (GIS) [39]

have been a topic of research for many years. The primary focus of conventional

spatial database research was on the storage and retrieval of static spatial data that

are updated infrequently. Recently, advances in wireless communication, mobile

devices, and location systems have enabled us to trace the location of moving objects

such as vehicles, people, and animals. This means that spatial databases need to

capture the location of moving objects,then we can provide Location-Based Services

(LBS) [43] for mobile users.

One particular challenge in managing location data is the efficient processing

of location-based queries. Besides the classical snapshot range query and k nearest

neighbors (kNN) query, continuous versions of these queries, i.e. continuous range

query and continuous kNN query, are also useful in the moving objects databases.

In addition, new kinds of location based queries, such as reverse kNN (RkNN) query

[30], optimal-location query [15] and optimal-region query [56], also have interesting
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INTRODUCTION 13

applications.

1.1 Motivation: Management of Location Data

In the last decade we have witnessed the increasing popularity of mobile devices

and location systems. The combination of them enables new location-aware envi-

ronments where all objects of interest can determine their locations. Both companies

and individuals can benefit from having relevant location data. However, managing

the location data is challenging because in many applications the objects of interest

are moving and their locations change frequently.

1.2 Moving Objects and Location Data

In the database research literature, the term ”moving objects” refers to objects that

move. A car with a GPS receiver and a person with a GPS-enabled cellphone are

examples of moving objects. Moving objects refer to a broader range of objects than

those with GPS receivers. Other examples of moving object include RADAR [6],

Cricket [37], and Active Bats [2]. In addition, many objects in computer games can

also be seen as moving objects because they move in the game scenario and their

locations are known (at least to the game engine). Nowadays, GPS receivers are

not only installed on vehicles, they are equipped on many mobile devices such as

cellphones and PDAs. Scientists have put location sensors on wild animals. The

vehicles, mobile devices, and sensors are all source of dynamic location data.
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1.3 Applications of Moving Objects Location Data

Applications may use moving objects location data. They can be divided into two

groups: monitoring of moving objects for various reasons (such as safety or pro-

ductivity), and providing services for the mobile users based on their locations.

Applications that benefit from the monitoring of moving objects’ locations include

traffic control, resource allocation, research of wild life, and a lot more. Locations of

moving objects provide information not only on the objects themselves but also on

the environments around them. For example, monitoring the locations of vehicles

not only lets us query the positions of the vehicles but also enables us to analyze the

traffic condition during various time periods in different areas. It is reported in the

CarTel project [26] that the location data of a set of vehicles helps the users to find

the less congested routes and also facilitate the discovery of potholes on the roads.

Location-Based Service (LBS) [38, 43] is believed to be one of the killer applications

for mobile computing and wireless data services. Often, mobile users want to find

out what services are available around their current locations. For example, a driver

may want to know where is the nearest gas station; a soldier in a battlefield may want

to know what are within 100 meters from him; a person sitting in a coffee shop may

want to know whether any of his/her friends happens to be close to the coffee shop

so that he/she can meet the friend and hang out together. Knowing the locations of

customers is also very important in mobile-commerce (mobile-commerce is visioned

to be the ”next big thing”). Mobile customers could find the recommendations (and

even advertisements) based on their locations more relevant.
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1.4 Challenges in the Management of Location

Data

Managing the location data of moving objects turns out to be a difficult problem

due to the dynamic nature of the moving objects. Existing database technologies

are invented for data that change infrequently and their performance deteriorates

when applying on moving objects. For example, the R-tree [20] is an index structure

widely used in databases systems. However, the R-tree is designed to index data

with fixed bounding rectangles that are rarely updated. The update operation in

R-tree is expensive, so the R-tree does not perform well when used to index moving

objects whose location change constantly with time. A few challenges have been

identified for the efficient management of moving object data. They include the

modeling and storage of moving objects [4, 17, 18, 24, 45], tracking of moving objects

[14, 27, 51, 53], indexing of moving objects [3, 12, 41, 46, 50], processing of location-

based queries [7, 16, 19, 25, 28, 36, 59], reducing the communication cost [25, 32, 59]

in tracking and query processing, managing uncertainty of location data [13, 35, 52],

and protecting the location privacy [9, 33] of mobile users. Researchers have used

the term Moving Objects Databases (MOD) [17, 54] to refer to the database systems

specially designed for the management of moving objects.
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1.5 Objectives and Contributions

In this thesis, we focus on Finding Optimal Regions. Given a set of objects O and

a set of objects P in space S, a Bichromatic Reverse Nearest Neighbor query [31]

issued by object p ∈ P finds the set of objects in O for which p is their nearest

neighbor in P. Formally, BRNN(p, O, P) = {o ∈ O : p ∈ NN(o,P)} where

NN(o,P) means the object in P that is the nearest to o.

The optimal location problem [15] aims to find a location q in S that maximizes

the number of objects in BRNN(q, O, P∪{q} ). The MaxBRNN problem [10, 11, 55],

which is also called the optimal region problem, is to find the region Q in S where

any location in Q is an optimal location. The region obtained by MaxBRNN is

called the optimal region. It is clear that solving the MaxBRNN problem also solves

the optimal location problem.

The MaxBRNN problem has many interesting applications. For example, if

O is a set of customers and P is a set of convenient stores, then the result of the

MaxBRNN problem is the region where setting up a new convenient store can attract

the maximal number of customers by proximity.

In this thesis, we propose an efficient algorithm called MaxFirst for solving the

MaxBRNN problem. Algorithm MaxFirst first finds a part of the optimal region

and then finds the whole optimal region using the information accumulated during

the course of finding a part of the optimal region.

MaxFirst is based on the fact that the optimal region is covered by a set of
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nearest location circles [10, 11, 55]. A nearest location circle (NLC) of an object

o ∈ O is the circle centered at o with the distance from o to its nearest neighbor in

P as radius. The optimal region is the region covered by the maximal number of

NLCs. If the objects in O have weights, the NLCs also have weights. In this case,

the optimal region is the region that maximizes the sum of the weights of the NLCs

that cover the region.

One key insight is that partitioning the space into small sub-region will always

result in a sub-region that is a part of the optimal region as long as the sub-region

are small enough. A sub-region is small enough when it is covered by all the NLCs

that intersect it.

In order to find a region that is a part of the optimal region while avoiding

partitioning the space into too many small sub-regions, MaxFirst recursively par-

titions the space into quadrants and finds the NLCs that intersect each quadrant.

We use these NLCs to estimate the lower bound and upper bound of the size (or

total weight) of a quadrant’s BRNN. The estimated lower bounds and upper bounds

let us concentrate on the quadrants that potentially contain a part of the optimal

region. MaxFirst always partitions the quadrant with the maximal upper bound,

until it find a quadrant that is a part of the optimal region.

Once a part of an optimal region has been found, we have found the set of NLCs

that contain it. The whole optimal region is simply the overlap of these NLCs. We

find the whole optimal region by computing the overlap of these NLCs.

Compared to existing solutions [10, 11, 55], MaxFirst has the following ad-
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vantages. First, MaxFirst does not make any assumption on the distribution of the

NLCs. The state-of-the-art algorithm, MaxOverlap [55], assumes that every NLC in-

tersects with at least one of the other NLCs, and it may return incorrect result when

this assumption does not hold. Second, MaxFirst can be several hundred (sometimes

even several thousand) times faster than the existing algorithms [10, 11, 55]. While

it takes existing algorithms hours (or even days) to solve the MaxBRNN problem

when the data size is big, MaxFirst always solves the MaxBRNN problem at the

scale of seconds. Third, MaxFirst is very easy to understand. MaxFirst partitions

the space into small quadrants (like in the Quadtree indexing structure [42]) and

concentrates on the quadrants that may contain a part of the optimal region.

Besides proposing an efficient solution for the MaxBRNN problem, we also dis-

cuss the problem of generalizing the MaxBRNN problem to a MaxBRkNN problem.

Although [55] has provided a variant of MaxBRNN based on the BRkNN queries,

we provide a more practical and general definition of the MaxBRkNN problem and

show that our MaxFirst algorithm can be used immediately to solve the MaxBRkNN

problem.

Our major contributions can be summarized as follows:

• We propose an efficient algorithm called MaxFirst for the MaxBRNN problem

based on space partitioning.

• We show how to estimate the lower bound and upper bound of the size of a

region’s BRNN, and how to use the bounds to direct the partitioning of space

and do pruning.
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• We show how to partition a region effectively to handle the problems that

certain intersections of NLCs may cause.

• We generalize the MaxBRNN problem to the MaxBRkNN problem, and show

how to use MaxFirst to solve it.

• We evaluate the performance of the MaxFirst algorithm with extensive exper-

iments.

1.6 Problem Definition

The MaxBRNN problem [55] (called the MAXCOV problem in [10]) and the optimal-

location problem [15] are defined using the BRNN queries [31].

Let O be a set of weighted (consumer) objects and P be a set of (service site)

objects. A Bichromatic Reverse Nearest Neighbor (BRNN) query at point p ∈ P

finds the objects in O that take p as their nearest neighbor in P. Formally, let

NN(o,P) be the set of objects in P that are the nearest to the object o ∈ O, the

result set of a BRNN query at p ∈ P is:

BRNN(p,O,P) = {o ∈ O : p ∈ NN(o,P)} (1.1)

Note thatNN(o,P) is a set of objects since it is possible to have multiple objects

in P that have the same shortest distance to o.
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Let w(o) represent the weight of an object o ∈ O, the size of p’s BRNN, or the

influence of p, is defined as the sum of the weights of the objects in BRNN(p,O,P).

Formally, the influence of an object p ∈ P is:

∑

o∈BRNN(p,O,P)

w(o) (1.2)

For a location q /∈ P, its influence is defined as the influence of q after adding it

into set P. The following expression formally defines the influence of q.

∑

o∈BRNN(q,O,P∪{q})

w(o) (1.3)

The optimal location problem is to find a location q /∈ P with the maximum

influence.

Two concepts called consistent region and maximal consistent region are defined

in [55] to facilitate the definition of the MaxBRNN problem. A region Q is a

consistent region if it satisfies the following condition: for any two locations q1 and

q2 in Q, BRNN(p1, O, P ∪{q1})= BRNN(p2, O, P ∪{q2}). A consistent region Q is

said to be a maximal consistent region if there does not exist a region R such that

R covers Q and R is a consistent region.

The MaxBRNN problem [55] (called the MAXCOV problem in [10]) is to find a

maximal consistent region that contains the optimal locations. The resultant region
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is called the optimal region.

1.7 Organization

The thesis is organized as follows. Chapter 2 surveys the related work. Chapter

3 presents our MaxFirst algorithm. Chapter 4 extends the MaxBRNN problem to

a MaxBRkNN problem. Experimental results are shown in Chapter 5. Finally, we

conclude this paper in Chapter 6.



Chapter 2

Related Work

In this chapter we review the existing works that are related to this thesis. We

first introduce the indexing structures R-tree for location data in Chapter 2.1 and

describe fundamental KNN algorithms in Chapter 2.2. Then we survey the existing

algorithms for finding the optimal regions in Chapter 2.3.

2.1 R-tree

R-tree is a kind of tree data structure that is used for spatial access methods, i.e.,

for indexing multi-dimensional information; for example, the (X, Y) coordinates of

geographical data.

The data structure splits space with hierarchically nested, and possibly overlap-

ping, minimum bounding rectangles (MBRs, otherwise known as bounding boxes,

i.e. ”rectangle”, what the ”R” in R-tree stands for).

22
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Each node of an R-tree has a variable number of entries (up to some pre-defined

maximum). Each entry within a non-leaf node stores two pieces of data: a way

of identifying a child node, and the bounding box of all entries within this child

node.The insertion and deletion algorithms use the bounding boxes from the nodes

to ensure that ”nearby” elements are placed in the same leaf node (in particular,

a new element will go into the leaf node that requires the least enlargement in its

bounding box). Each entry within a leaf node stores two pieces of information; a way

of identifying the actual data element (which, alternatively, may be placed directly

in the node), and the bounding box of the data element.

Similarly, the searching algorithms (e.g., intersection, containment, nearest) use

the bounding boxes to decide whether or not to search inside a child node. In

this way, most of the nodes in the tree are never ”touched” during a search. Like

B-trees, this makes R-trees suitable for databases, where nodes can be paged to

memory when needed.

Different algorithms can be used to split nodes when they become too full,

resulting in the quadratic and linear R-tree sub-types.R-trees do not historically

guarantee good worst-case performance, but generally perform well with real-world

data. However, a new algorithm was published in 2004 that defines the Priority

R-Tree, which claims to be as efficient as the currently most efficient methods and

is at the same time worst-case optimal.
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2.2 Snapshot k Nearest Neighbor Queries

Here we survey the algorithms for processing a snapshot kNN query.

The algorithms proposed for R-trees [40, 44, 22] are more fundamental because

many of the later works are based on these algorithms. They are also more rele-

vant to this thesis because they were designed mainly for geometry data and the

techniques provided in them are also applied in our works.

The branch-and-bound algorithm developed by Roussopoulos et al. in [40] for

R-tree probably is the most influential work on kNN query processing. The au-

thors use two metrics, namely mindist and minmaxdist, to prune subtrees when

traversing a R-tree in a depth-first manner. The mindist(q;N) is the minimum

distance from kNN query point q to node N. The minmaxdist(q;N) is the mini-

mum of the maximum possible distances from q to each face of the MBR of the

node N. One property of the R-tree is that there is at least one data point on

each face of a node’s MBR (simply because the MBR is the minimum bound-

ing rectangle). Because of this property, in each node N there must exist a data

point p such that mindist(q;N) ≤ dist(q; p) ≤ minmaxdist(q;N) where dist(q; p)

means the distance between q and p. The following three heuristics are used

when searching for the NN (i.e. k = 1) of q. First, a node NA can be dis-

carded if mindist(q;NA) > minmaxdist(q;NB). Second, an object p can be dis-

carded if dist(q; p) > minmaxdist(q;NB). Third, a node NA can be discarded

if mindist(q;NA) > NNdist where NNdist is the distance from q to the nearest

neighbor found so far.
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Cheung and Fu proved in [44] that the third heuristic suffices to find the NN of

the query point while achieving the same pruning power as the original algorithm

in [40]. In later kNN algorithms the minmaxdist metric is not used anymore and

only mindist is used to prune sub-spaces.

In [22], Hjaltason and Samet propose another branch-and-bound kNN algorithm

in the context of solving the distance browsing (retrieve data objects in the order

of increasing distance to a query point) problem. Their kNN algorithm also uses

mindist metric to prune nodes but employs a best-first traversal on the R-tree. A

priority queue is used to order the R-tree nodes (based on the mindist metric) that

are not pruned or explored. The advantage of using the best-first traversal instead

of the depth-first traversal is that the algorithm makes global decisions on which

node to explore.

2.3 MaxBRNN

Reverse Nearest Neighbor (RNN) and Bichromatic RNN (BRNN) queries (and their

variants RkNN and BRkNN) have attracted much research attention recently [47,

48, 49, 1, 8, 58, 29, 57]. [31] [48] [57] propose algorithms for processing a BRNN

query. These algorithms can find the BRNN objects of a query point efficiently but

cannot be used to solve the optimal location and MaxBRNN problem directly. This

is because the number of points in the search space is infinite. It is infeasible to

retrieve the BRNN for every point and then find the one with the maximum size.
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In [10], this problem is shown to be 3SUM-hard where it is proved that solving a

3SUM problem over dataset of size N requires O(N2) time. That is, it is impossible

that we can solve problem MaxBRNN with a subquadratic algorithm. [10] proposes a

method based on the arrangement of NLCs of the client points. This method involves

three major steps. The first step is to construct a set of NLCs for client points.

Similar to our method, this step can be done in O(|O|log|P|) time. The second

step is to find an arrangement according to a set of NLCs. The best-known efficient

method to find an arrangement [34] has the running time of O(N2) time where N is

the number of points in the dataset. In our case, since each point corresponds to an

NLC, N is equal to |O|. The third step is to find the best region by traversing from

a Voronoi cell to another cell by the face between these two cells iteratively. Since

the algorithm heavily relies on the total number of possible faces between adjacent

Voronoi cells used in the arrangement and the total number of possible faces is

O(2γ(|O|)) where (γ|O|) is a function on |O| and is Ω(O), the method is exponential

in terms of |O|. Specifically, the complexity is O(|O|log|P|+|O|2+2γ(|O|)). This

method is not scalable with respect to dataset size.

Cabello et al [10, 11] defined the MaxBRNN problem (they called it the MAX-

COV problem) and presented a solution for Euclidean space. Their solution first

computes the NLCs for all the objects in O, and then computes the arrangement

of the NLCs [5]. Finally, for each cell in the arrangement, the number of NLCs

that cover the cell is counted and associated with the cell. The cell with the largest

number is the optimal region. The limitation of this approach is that computing

the arrangement of a large number of NLCs can be very expensive. This makes the
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algorithm not scalable with the dataset size.

Wong et al. [55] proposed an algorithm to the MaxBRNN problem in Euclidean

space. The algorithm is called MaxOverlap. It solves the MaxBRNN problem

using a technique called region-to-point transformation. The basic idea is to find

an intersection point of the NLCs that has the maximal influence. MaxOverlap

works with the following steps:1) use a R-tree Ro to index the consumer objects O

and another R-tree Rp to index the service site objects P; 2)performing a nearest

neighbor query to find the nearest p in P for each object o in O to computes the

NLCs; 3)use a R-tree RNLCs to index all the NLCs; 4)compute the intersection

points of all the NLCs; 5) for each intersection point, use RNLCs find the NLCs that

cover it; 6) among the sets of NLCs, find the set whose total weight is the largest;

7) compute the overlap of the set of NLCs found in the previous step. The time

complexity is O(|O|log|P|+ k2|O|+ k|O|log|O|), k is the greatest number of NLCs

overlapping with a NLC. It is shown in [55] that MaxOverlap is much more efficient

than those presented in [10, 11] and [15].

MaxOverlap is an interesting algorithm, but it has a limitation. It implicitly

assumes that every NLC will overlap with at least one of the other NLCs, since

MaxOverlap searches for an optimal location in the set of intersection points of the

NLCs. However, it is possible (although the probability is low) that a NLC does

not intersect with any other NLC at all and the NLC contains optimal locations.

Under such circumstances MaxOverlap may return the wrong answer. In addition

MaxOverlap does not scale well with the number of objects in O.
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In this thesis, we propose a solution to the MaxBRNN problem in Euclidean

space. Our algorithm, MaxFirst, also uses the NLCs to find the answer to the

MaxBRNN problem. However, instead of computing the complex arrangement of

the NLCs or all the intersection points of the NLCs, we use a space partitioning

method to find the optimal regions. Furthermore, our algorithm does not make any

assumption of the data distribution. MaxFirst also efficient and scalable. Exper-

imental study shows that MaxFirst is much faster than the state-of-the-art Max-

Overlap algorithm, and scales well with data size.



Chapter 3

MaxFirst

In this chapter we present our solution to the MaxBRNN problem. Our algorithm,

called MaxFirst, solves the problem in two phases. It first finds a region that is a part

of the optimal region by partitioning the space selectively and recursively into small

regions and estimating the lower bound and upper bound of each region’s BRNN.

It then computes the complete optimal region using the information accumulated in

the first phase.

We first introduce the definitions that we will use in the description of the algo-

rithms in Chapter 3.1, then describe the two phases of our algorithm in Chapters 3.2

and 3.3.

3.1 Notation and Definitions

Besides the notation and terms that we introduced in Chapter 1.6, we define addi-

tional terms to facilitate the discussion of our algorithms. In particular, we define

29
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Figure 3.1: An example of NLCs.

the nearest location circle (NLC), a point’s score, and a region’s score with respect

to a set of NLCs.

Definition Given an object o ∈ O, its nearest location circle (NLC) c, is the

circle centered at the location of o with dist(o,NN(o,P)) as the radius where

dist(o,NN(o,P)) is the distance from o to its nearest neighbor in P. The score of

c, denoted by score(c), is the weight of o.

Figure 3.1 shows a simple example whereO = {o1, o2, o3} and P = {p1, p2, p3, p4}.

o1’s nearest neighbor in P is p2, so its NLC is the circle centered at o1 with d(o1, p2)

as the radius. It is possible that several objects in P have the same shortest distance

to an object in O. For example, o3’s nearest neighbor in P is p3 and p4. They have

the same shortest distance to o3.

Definition Let c be the NLC of an object o. Given a location q, q’s score with
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o1
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Figure 3.2: An example to compute a location’s score w.r.t. a NLC.

respect to c is defined as follows:

score(q, c) =





score(c) if q is inside c

1
|NN(o,P)|+1

if q is on the perimeter of c

0 if q is outside c

where |NN(o,P)| is the number of objects in P that are the nearest to o.

Consider Figure 3.2. Let c be the NLC of object o1. The score of q1 w.r.t. c is

score(c) because it is inside the NLC. The score of q2 w.r.t. c is 1
1+1

, because q2 is

on the perimeter of c and |NN(o1,P)| = 1. q3 is outside c, hence its score w.r.t. c

is 0.

Definition Given a set of NLCs C and a location q, q’s score with respect to

C is:

Score(q, C) =
∑

c∈C

score(q, c)

Definition Given a region Q and a set of NLCs C, the region’s MaxScore and
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Figure 3.3: An example of a region’s min-score and max-score.

MinScore are defined as:

MaxScore(Q) = maxq∈Q Score(q, C)

MinScore(Q) = minq∈Q Score(q, C)

Figure 3.3 shows an example. If the weights of o1, o2 and o3 are all 1, the max-

score of region Q (the rectangle in the figure) will be 3, and its min-score will be 2.

q2 is one of the points in Q that has the maximal score, and q1 is one of the points

in Q that has the minimal score.

If a region’s min-score is equal to its max-score, then all the points in the region

have the same score, and the region is a consistent region (see Chapter 1.6 for the

definition of consistent region).

Note that there are an infinite number of points in a region, therefore it is

infeasible to compute a region’s max-score and min-score based on the definition.

We will show in Chapter 3.2 how to compute a lower bound of a region’s min-score



MAXFIRST 33

and an upper bound of a region’s max-score when given a set of NLCs.

With the above definitions, a point’s score is the size of its BRNN, and a region’s

score is the size of the region’s BRNN. We next show how we estimate the scores

and use the scores to find a part of an optimal region.

3.2 Find Optimal Sub-Regions

Our main idea is to utilize space partitioning iteratively to find optimal sub-regions

and use these sub-regions to re-construct the entire optimal region. We use space

partitioning to find a part of an optimal region. By partitioning the space into sub-

regions that are small enough, one of the sub-regions Q must be a part of an optimal

region. Then use Q to perform a region query on the R-tree over all the NLCs to get

a set of NLCs that create the optimal region. The challenge is to determine whether

a sub-region is optimal. Another challenge is to identify the regions that potentially

contain an optimal sub-region. Only such regions need to be further partitioned.

Each region has two scores: MaxScore and MinScore. In each iteration, our

algorithm MaxFirst estimates the lower and upper bound of these scores, denoted

as m̂ax and m̂in respectively, and partitions only the regions with the maximum

m̂ax. It uses m̂ax and m̂in to prune regions that cannot contain an optimal sub-

region. When a region’s m̂ax is equal to its m̂in, and the score is the maximum in

the whole data space, then the region is an optimal sub-region.
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The NLCs of the objects in O are used to compute the regions’ MaxScore and

MinScore. The algorithm starts by computing all the NLCs as follows. We use a

R-tree to index the objects in P [21]. For each object o in O, we retrieve its nearest

neighbor in P using the R-tree with the best-first branch-and-bound NN algorithm

[23] and compute o’s NLC.

After obtaining all the NLCs, we index them using a R-tree RNLCs and start the

score estimation and space partitioning process. This is necessary because we need

to quickly determine the m̂ax and m̂in of every region. A region under considera-

tion is partitioned into four equal-size sub-regions similar to the Quadtree indexing

structure [42]. For certain special regions, we use a different partition method that

splits such a region at a specific point into four sub-regions. We will discuss this

further in Chapter 3.2.2.

Initially, we partition the whole data space into four quadrants. Given a quad-

rant Q, we estimate its min-score and maxscore as follows. Perform a region query

for Q on RNLCs to get the NLCs that contain Q or intersect Q.Let Q.C be the set

of NLCs that contain Q and Q.I be the set of NLCs that intersect Q. Since a NLC

that contains Q must intersect Q, we have Q.C ⊆ Q.I. We use the sum of the scores

of NLCs in Q.C as the lower bound of Q’s MinScore, and the sum of the scores of

NLCs in Q.I as the upper bound of Q’s MaxScore. We establish the correctness of

these bounds with Theorem 3.2.1.

Theorem 3.2.1. Given a region Q and a set of NLCs N , let Q.C be the set of NLCs

in N that contain Q and Q.I be the set of NLCs in N that intersect Q. Let Q.min
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and Q.max denote Q’s MinScore and MaxScore. Then the lower bound Q.m̂in and

upper bound Q.m̂ax are given by

Q.m̂in =
∑

c∈Q.C

score(c) ≤ Q.min

and

Q.m̂ax =
∑

c∈Q.I

score(c) ≥ Q.max

where score(c) is the score of a NLC c.

Proof. Let q1 be a location in Q with the minimal score among all the locations in

Q. Since the NLCs in Q.C contain Q, they all contain q1, so the score of q1 is at

least
∑

c∈Q.C score(c). This proves
∑

c∈Q.C score(c) ≤ Q.min.

Let q2 be a location in Q with the maximal score among all the locations in

Q. The score of q2 is the sum of the scores it gets from the following two sets of

NLCs: the NLCs that contains q2 and the NLCs where q2 is on their perimeters.

All the NLCs in these two sets intersect q2 and therefore intersect Q. Hence Q.I is

a superset of the set of NLCs where q2 gets score. This means the score of q2 is at

most
∑

c∈Q.I score(c). This proves Q.max ≤
∑

c∈Q.I score(c).

To estimate the lower bound of a regions MinScore and the upper bound of the

regions MaxScore, we need to find the set of NLCs C that cover the region and the

set of NLCs I that intersect the region. We index the NLCs (in fact their minimum

bounding boxes) with an R-tree. The set of NLCs that intersect with a region can

be retrieved using the R-tree with an region query. Since the R-tree only indexes
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rectangles, we refine the query result set (which is a set of identifiers of NLCs) by

checking whether the corresponding NLCs really intersect the region. Since C is a

subset of I, we find C by checking the NLCs in I whether they cover the region.Our

algorithm uses the bounds Q.m̂in and Q.m̂ax to prune regions that cannot contain

an optimal location.

We have two pruning criteria. The first criterion is provided in Theorem 3.2.2.

This is the main pruning method in our algorithm.

Theorem 3.2.2. Given two regions Q1 and Q2, if Q1.m̂in > Q2.m̂ax, then Q2 does

not contain an optimal sub-region.

Proof. We prove Theorem 3.2.2 by showing that Q2 does not contain an optimal

location. Let p be a point in Q1, we have score(p) ≥ Q1.m̂in. Since Q1.m̂in >

Q2.m̂ax, all the points in Q2 have a score that is smaller than the score of p, hence

Q2 does not contain a point whose score is the maximal in the whole data space.

The second pruning criterion uses the set of NLCs that cover a region and the

set of NLCs that intersect a region to do pruning. It is formalized in Theorem 3.2.3.

Theorem 3.2.3. Given two regions Q1 and Q2, if Q2.I ⊆ Q1.C, then Q2 cannot

contain an optimal sub-region such that Q1 does not intersect the corresponding

complete optimal region.

Proof. If Q2 contains an optimal sub-region, then the complete optimal region must

be within the overlap of the NLCs in Q2.I. Since Q1 is contained by all the NLCs



MAXFIRST 37

q2

q4 MaxMin: 0

q3

q4 q5

q3 q2 q5

4

2
3

1 6

5

2
3

(a)

q2

q4 MaxMin: 0

q3

q6 q5

q3 q2 q5

q7

q8 q9

q9 q6 q7 q8

4

2
3

1 6

5

2
3

(b)

q2

q4 MaxMin: 3

q3

q6 q5

q3 q2 q5

q7

q8 q13

q9 q6 q7 q8

q10 q11

q12

q10 q11 q12

4

2
3

1 6

5

q10
2

3

(c)

Figure 3.4: An example of using MaxFirst to find an optimal sub-region.

in Q1.C, and Q2.I ⊆ Q1.C, Q1 is contained by all the NLCs in Q2.I. This means

that Q1 is also an optimal sub-region.

3.2.1 Algorithm

Algorithm MaxFirst always partitions the quadrant with the maximal score, hence

the name MaxFirst. Figure 3.4 shows how MaxFirst partitions the region re-

cursively to find sub-regions of Q. We use a priority queue to order the quad-

rants that need to be examined. Each quadrant is described using a triplet <

quadrant id, m̂ax, m̂in >.

Figure 3.4(a) depicts six NLCs and an optimal region Q (shaded area). We

start by partitioning the space into four quadrants. For every quadrant we use it to

issue a region query on RNLCs to get a set of NLCs that contain this quadrant and

another set of NLCs that intersect with this quadrant, then estimate MaxScore and

MinScore of every quadrant: < q2, 2, 0 >, < q3, 2, 0 >, < q4, 3, 0 >, < q5, 2, 0 >. A

variable calledMaxMin is used to keep track of the maximum m̂ax value seen so far.

Initially, MaxMin is set to 0. Since q4 has the maximum m̂ax value, it is selected



MAXFIRST 38

for partitioning next (see Figure 3.4(b)). q4 is split into four smaller quadrants q6,

q7, q8, and q9. These quadrants have the same m̂ax and m̂in as q4, so they all have

the same maximum m̂ax, and MaxMin does not change. Suppose we choose q9 to

be further partitioned. Figure 3.4(b) shows the resulting quadrants < q10, 3, 3 >,

< q11, 3, 0 >, < q12, 3, 0 >, < q13, 3, 0 >. After this partitioning, MaxMin becomes

3. When q10 is examined, both its m̂ax and m̂in are equal to MaxMin, hence it is

an optimal sub-region, and is put into the result set. After this, all other quadrants

can be pruned. q2, q3 and q5 are pruned because their respective m̂ax is smaller

than MaxMin. Other quadrants are pruned because the set of NLCs that intersect

them is the same as the set of NLCs that intersects (in fact cover) q10.

The above example illustrates that MaxFirst concentrates on the quadrant that

has the maximal m̂ax value. This allows us to concentrate on the regions that

possibly contain an optimal sub-region.

Two criteria are used to prune the quadrants. The first criterion (Theorem 3.2.2)

uses MaxMin and m̂ax to avoid examining the quadrants that do not contain an

optimal location, e.g., q2, q3 and q5 in Figure 3.4. The second pruning criterion

(Theorem 3.2.3 ) uses Q.I and Q′.C to identify the quadrants that may contain an

optimal sub-region, where part of the optimal region has already been found. For

instance, q6, q7, q8, q11, q12 and q13 in Figure 3.4 belong to this category. They all

contain an optimal sub-region, but the complete optimal region is the same as the

one that contains q10 which we have already discovered.
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Figure 3.5: Example to illustrate the intersection point problem.

3.2.2 Partitioning of a Quadrant

An important detail in Phase 1 of MaxFirst is the partitioning of a quadrant. A

region under examination is typically partitioned into four equal-size quadrants at

its center. However, sometimes we have to split a quadrant at a specific point. This

occurs when we need to partition a quadrant Q, and all the NLCs in Q.I − Q.C

intersect at a point p inside Q (with no overlap area). In this case, we have to split

Q at p, otherwise we will get a quadrant Qp (after splitting Q) that contains the

point p, and Qp will have the same m̂ax value as Q.m̂ax. Further, since the NLCs

in Q.I − Q.C have no overlap area, we will never get a region that is covered by

all these NLCs. This means that the maximum m̂ax value will always be larger

than the maximum m̂in value, and the partitioning will not terminate. We call such

problem the intersection point problem.

Figure 3.5(a) shows an example where three NLCs intersect at p and they have

no overlap area. If we always partition a quadrant at its center point, we may always

get a quadrant that contains p and we will always partition that quadrant.

We tackle the intersection point problem by splitting Q at the p. In MaxFirst,
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a quadrant does not include its perimeter. Note that excluding the perimeter of

quadrants does not affect the correctness of MaxFirst, because it must be a region

that gets the maximal score. After partitioning Q at p, no quadrant will contain p,

and the m̂ax value of the sub-regions will be smaller than Q.m̂ax.

We observe that the intersection point problem occurs when a region is con-

tinuously partitioned. This happens under two conditions: (1) The partitioned

quadrants intersect the same set of NLCs. (2) The quadrants have the same m̂in

value. The first condition implies that the quadrants have the same m̂ax value,

and the probability that we are recursively splitting the same region is high. The

second condition implies that the NLCs intersecting the quadrants probably have

no common overlap area.

When the above two conditions are satisfied, we perform a check to determine if

the NLCs intersect at a point. If so, we split the quadrant at that point. Otherwise,

we continue splitting the quadrant at its center. Figure 3.5(b) shows how we split a

quadrant at the intersection point p.

In Algorithm 1 , we use a threshold m to control the number of times a quadrant

is allowed to be partitioned with the same m̂in value and the same set of intersecting

NLCs. When the threshold is exceeded, the algorithm will check whether the NLCs

intersect at a point. If so, we split the quadrant at that point. The value of m does

not affect the correctness of our algorithm, but determines how often the algorithm

checks for the intersection point problem. In Chapter 5, we include an experiment

to study the effect of m on the performance of MaxFirst.
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Algorithm 1 shows the details of MaxFirst’s Phase 1. It takes a set of NLCs

as input and returns a set of regions each of which is an optimal sub-region. A

heap ordered by m̂ax is used to prioritize the quadrants. A flag split is used to

indicate whether the current quadrant should be partitioned. If a quadrant is not

partitioned, it is either pruned or put into the result set R.

3.2.3 Proof of Correctness

In order to prove the correctness of Algorithm 1, we prove that the algorithm will

terminate and return a quadrant that is an optimal sub-region. This requires us to

show that after a finite number of splits of the quadrant with the maximum m̂ax,

we will get a quadrant Q such that Q.m̂ax=Q.m̂in and Q.m̂ax is the maximum

m̂ax among all the quadrants. When Q.m̂ax=Q.m̂in, we have Q.m̂ax = Q.max =

Q.min = Q.m̂in, so Q is a consistent region and its score is Q.m̂ax. Since Q.m̂ax

is the maximum, Q is a region whose score is the maximum, so it is an optimal

sub-region. Now let us prove that we will get such a Q.

Let Qs be the quadrant whose m̂ax is the maximum. If Qs.m̂ax = Qs.m̂in, we

are done. If Qs.m̂ax > Qs.m̂in (note that Qs.m̂ax cannot be smaller than Qs.m̂in),

then we have Qs.I ⊃ Qs.C. If the NLCs in Qs.I−Qs.C intersect at several points in

Qs, a limited number of splits of Qs will eventually put the intersection points into

sub-regions, so we will get quadrants that contain either one or zero intersection

point. If Qs contains only one intersection point of the NLCs in Qs.I − Qs.C,

MaxFirst will partition Qs at that intersection point, so we will finally get quadrants
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Algorithm 1: MaxFirst - Phase 1

input : Set of NLCs of all objects in O
output: Set of optimal sub-regions

H := ∅ /* a heap containing quadrants using m̂ax as key */1

MaxMin := 02

R := an empty set of quadrants /* result set */3

Q := the whole data space4

Q.m̂in := 0; Q.m̂ax := infinite5

count :=0 /* the number of continuous split */6

Qsplit = Q /* the previous split region */7

build an R-tree RNLCs over all the NLCs.8

use Qsplit to issue a region query on RNLCs to estimate Qsplit.m̂in and9

Qsplit.m̂ax
insert Q into H10

while H is not empty do11

Q := remove top entry from H12

split := false /* flag of split or not */13

if Q.m̂ax > MaxMin then14

split := true15

else if Q.m̂ax = MaxMin then16

if Q.m̂in = Q.m̂ax then17

add Q to R /* Q is a result */18

else19

if ∄ Q′ ∈ R such that Q′.C=Q.I then20

split := true21

if split then22

if Q.I=Qsplit.I AND Q.m̂in=Qsplit.m̂in then23

count := count +124

else25

count := 026

if count < m then27

Qs: = partition Q at its center28

else29

if all NLCs in Q.I −Q.C intersect at a point p in Q then30

Qs: = partition Q at p31

else32

Qs: = partition Q at its center33

count := 034

Qsplit := Q35

foreach quadrant qd in Qs do36

use qd to issue a region query on RNLCs to get qd.C and qd.I37

estimate qd.m̂in and qd.m̂ax38

if qd.m̂in > MaxMin then39

MaxMin := qd.m̂in40

insert qd into H41

return R42
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that contain no intersection point.

Now let us consider a Qs such that the NLCs in Qs.I −Qs.C do not intersect in

Qs. Since the NLCs in Qs.I −Qs.C do not intersect in Qs, after a limited number

of splits of Qs, we will get a Qs whose Qs.I−Qs.C contains only one NLC. Let c be

the NLC in Qs.I −Qs.C. Since c must cover a part of Qs, after a limited number of

splits of Qs, we will get a Qs that is contained by c. Now Qs.I −Qs.C is empty and

Qs.I = Qs.C, we have Qs.m̂ax = Qs.m̂in. This proves that we will get a quadrant

Q such that Q.m̂ax = Q.m̂in and Q.m̂ax is the maximum m̂ax.

Intuitively, the correctness of MaxFirst is guaranteed by the following properties

of m̂in and m̂ax during the splits of the quadrants:

1. maximum m̂ax decreases.

2. maximum m̂in increases.

3. maximum m̂ax and m̂in converge to a same value.

3.3 Find the Whole Optimal Region

The first phase of MaxFirst returns a set of quadrants each of which is an optimal

sub-region. The second phase of MaxFirst re-constructs the entire optimal regions

using these quadrants.

Given a region Q that is an optimal sub-region, the entire optimal region is

simply the intersection of the NLCs that cover Q. We can use Q to issue a region
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Figure 3.6: Example to compute the complete optimal region from an optimal sub-
region.

query on the R-tree of all the NLCs to get these NLCs that cover Q. Since the set

of NLCs that cover Q is Q.C, what we need to do is only to compute the overlap

of the NLCs in Q.C. We propose an algorithm that uses a subset of the NLCs to

compute the complete optimal region.

We observe that the perimeters of many NLCs do not intersect the perimeter

of the complete optimal region. Since they do not contribute an edge (in the form

of an arc) to the complete overlap region, we do not even need to use them in the

computation of the overlap area. Based on this observation, our idea is to compute

the overlap of the NLCs that are near to Q and ignore the NLCs whose shortest

distances from their perimeters to a point r in Q are larger than the maximum

distance from r to the perimeter of the current overlap region.

Figure 3.6 shows how MaxFirst computes the complete optimal region given a

quadrant Q. The four circles in the figure are the NLCs that cover Q. Figure 3.6(a)

shows the shortest distances from the center point r of Q to the NLCs’ perimeters.

The ordering of the NLCs by these distances is: NLC4, NLC1, NLC2, and NLC3.

Our algorithm first computes the overlap of NLC4 and NLC1 and the maximum
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distance from r to the perimeter of the overlap region. They are shown in Fig-

ure 3.6(b). Next, NLC2 is used to clip the overlap region, as shown in Figure 3.6(c).

After this, the maximal distance from r to the perimeter of the overlap region is

shorter than the shortest distance from r to NLC3’s perimeter. We know that the

current overlap region is the final overlap region.

Algorithm 2: MaxFirst - Phase 2

input : An optimal sub-region
output: The complete optimal region

r := the center of Q1

H := ∅ /* a heap containing NLCs using distance as key */2

use Q to issue a region query on the R-tree of all the NLCs to find the NLCs3

that cover Q
foreach NLC c in Q.C do4

d := shortest distance from r to the perimeter of c5

insert entry (c, d) to H6

remove entry (c1, d1) from H7

remove entry (c2, d2) from H8

R := overlap of c1 and c29

dmax := the maximal distance from r to the perimeter of R10

while H is not empty do11

remove entry (c, d) from H12

if d < dmax then13

R := overlap of R and c14

dmax := the maximum distance from r to the perimeter of R15

else16

return R17

return R18

Algorithm 2 shows the details of MaxFirst’s second phase. Lines 1-5 set r to

the center of Q, and use a heap to order the NLCs based on the shortest distances

from their perimeters to r. Lines 6-8 compute an overlap region R using the first

two NLCs taken from the heap. Line 9 determines the largest distance from r to the

perimeter of R, denoted by dmax. We use the NLCs one by one to clip the overlap

region R and at the same time update dmax, until the shortest distance from r to a
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NLC is larger than dmax. The perimeter of the remaining NLCs will not intersect

R, so R is the final overlap region.

Note the shortest distance from a NLC’s perimeter to a point r inside the NLC

can be computed in constant time. dmax, the maximum distance from r to the

perimeter of the overlap region R, can also be computed efficiently. Also note that

the choice of r does not affect the correctness of the algorithm as long as r is a point

inside Q which is known to be a part of the complete overlap region.

3.4 Complexity Analysis

Algorithm MaxFirst has a pre-processing step to construct NLCs by performing

a nearest neighbor query to find the nearest p in P for each object o in O.This

step requires O(|O|log|P|) assuming the nearest neighbor query can be solved in

O(log|P|) using an index.

In MaxFirst’s Phase 1 (Algorithm 1), we recursively partition the space to find

the set of optimal sub-regions.Let the minimum area of the partitioned region is A.

Then the maximum number of quadrants that can be formed for a data space of

area S is a constant n = S/A. For each quadrant, we perform a range query tofind

all the NLCs that overlap with it. In the literature, the range query can be executed

in O(k + log|O|) time where k is the greatest result size of a range query. In other

words, Phase 1 requires O(nk+nlog|O|) time. Since n is a constant, the complexity

of Phase 1 is O(k + log|O|)
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Having found the set of optimal sub-regions, Phase 2 (Algorithm 2) re-constructs

the complete optimal regions.This involves finding theintersection of the NLCs that

cover the optimal sub-regions found in Phase 1.Since k is the greatest result size of

the range query, in other words, k is the maximum number of NLCs that cover the

optimal sub-region. Hence this step requires O(k).Hence, the overall running time

of algorithm MaxFirst is O(|O|log|P|+ log|O|+ k).



Chapter 4

Generalization to MaxBRkNN

We generalize the MaxBRNN problem to the MaxBRkNN problem and show that

our MaxFirst algorithm can also be used to solve the MaxBRkNN problem. The

basic assumption in the MaxBRNN problem is that each customer only goes to

his/her nearest service site. Wong et al. [55] generalize this to the MaxBRNN

problem where each customer is equally likely to go to his/her k nearest service

sites.

However, in reality, a customer tends to have different preferences for different

service sites. We define an interest model to captures the probability of customer o

going to o’s ith (1 ≤ i ≤ k) nearest neighbor in P, denoted as pri,
∑

i pri = 1. For

example, if O is a set of residents and P is a set of convenient stores, we may have

an interest model where k = 3 and pr1 = 0.6, pr2 = 0.3, pr3 = 0.1.

Based on the interest model, we define the MaxBRkNN problem as follows.

Given a set O of customer objects, a set P of service sites, and an interest model
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M , the MaxBRkNN problem is to find the optimal regions such that setting up

a new service site q in an optimal region q will attract the maximum number of

customers. Note that MaxBRNN is a special case of MaxBRkNN where k = 1.

Recall that the NLC of an object o ∈ O is the circle where o is the center and

the distance from o to its nearest neighbor in P is the radius. When k = 1, the NLC

is the region where o will be interested if a new service site is set up there. When

k > 1, the region is the circle where o is the center and the distance from o to its

kth nearest neighbor in P is the radius. However when k > 1, the location of the

new service site in the circle determines how frequent (i.e. the probability) o will go

to the service site.

Let us define the ith NLC of an object o ∈ O, denoted as ci, as a circle whose

center is o and radius is the distance from o to its ith nearest neighbor in P. If a

new service site is set up in c1, the probability that o goes to it is pr1, and if the

new service site is set up in the annulus formed by ci−1 and ci, the probability that

o goes to it is pri.

Figure 4.1 shows an example where k = 3. The different shades indicate the

different probabilities that o goes to a new service site in it.

Recall that our MaxFirst algorithm works with NLCs and a point (or region)

gets the scores from the NLCs that cover it. To make MaxFirst applicable to the

MaxBRkNN problem, we only need to assign the proper scores to the cis (i ≤ k) so

that a point in an annulus gets the right score from the NLCs that cover it.
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o

Figure 4.1: An object has k NLCs in MaxBRkNN.

Since ci+1, ci+2, ..., ck all cover ci, a point in the annulus formed by ci−1 and ci

gets scores from ci, ci+1, ..., ck. A proper score assignment to NLCs of o, therefore,

must satisfy the condition:
∑

i≤j≤k score(cj) = pri ∗ w(o) where w(o) is the weight

of o and score(cj) is the score of cj .

We assign (pri−pri+1)∗w(o) as the score of ci. We can verify that
∑

i≤j≤k score(cj) =

pri ∗ w(o). For example, if k = 3, and pr1 = 0.6, pr2 = 0.3, pr3 = 0.1, the score of

c1, c2, and c3 will be 0.3 ∗ w(o), 0.2 ∗ w(o), and 0.1 ∗ w(o), respectively.

With this score assignment method, the MaxBRkNN problem can be solved

using the MaxFirst algorithm. For each object o in O, we compute its NLCs c1, c2,

..., and ck, and assign the proper scores to them. Then we can run the MaxFirst

algorithm to get the optimal regions.

Note that the MaxOverlap algorithm in [55] has an implicit assumption that each

NLC must intersect one of the other NLCs. Due to this assumption, the MaxOver-

lap algorithm cannot be used immediately to solve the more general MaxBRkNN

problem that we defined, because the k NLCs of an object are homocentric and they

do not intersect.



Chapter 5

Performance Study

We conducted extensive experiments to study the performance of our algorithm

MaxFirst. Since MaxOverlap is the state-of-the-art algorithm for the MaxBRNN

problem and [55] has shown that it outperforms other existing algorithms [10, 15],

we compare MaxFirst with it. We implemented MaxFirst in C++, and used the

original C++ implementation of MaxOverlap that we get from the authors of [55].

All experiments are done on a Linux machine with an Intel(R) Core2 Duo 2.33 GHz

CPU and 3.2GB memory.

The aim of the experiments is to study the time needed by the algorithms to solve

the MaxBRNN problem (and MaxBRkNN problem) under various settings. Since

both MaxOverlap and MaxFirst need to compute the NLCs for all the consumer

objects, we exclude the time spent on computing NLCs from their running times.

Note that it only takes about one minute to compute and index the NLCs, this

cost does not affect the relative performances of the algorithms. We investigate the

scalability of the algorithms with respect to the number of objects in the consumer
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Table 5.1: Parameter settings
Parameter Default Range

k 1 1-4
Number of consumer objects, |O| 50K 10-100K

Number of service sites, |P| 500 100-1K

Table 5.2: Summary of real datasets
Dataset Cardinality
UX 19499
NE 123,593

dataset, the number of objects in the service sites dataset, and the value of k (for

MaxBRkNN problem). Table 5.1 lists the parameters and their values.

Both real world data and synthetic data are used in the experiments. Table 5.2

lists the details of the real world datasets (downloaded from http://www.rtreeportal.org/spatial.h

UX contains points of populated places and cultural landmarks in US and Mexico;

NE contains points representing the geographical locations in North East America.

We generated synthetic data in uniform distribution and normal distribution. In

each set of experiments, the customer dataset and the service site dataset have the

same distribution. See Table 5.1 for the sizes of the synthetic datasets. In the ex-

periments we make the size of P smaller than the size of O, because in reality the

number of service sites (e.g., gas stations) is always much smaller than the number

of consumer objects (e.g., vehicles). We find that the weights of the consumer ob-

jects do not affect the relative performance of the algorithms, so we only show the

experiments where the weight of the consumer objects is set to 1.
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Figure 5.1: Effect of m, normal distribution.

5.1 Effect of m on MaxFirst

We first carry out experiments to study the effect of parameter m on MaxFirst’s

performance. Figure 5.1 shows the result on the default synthetic datasets with

uniform distribution. The results we obtain for other datasets are similar.

We observe thatm has little effect on the performance of MaxFirst. The runtime

of MaxFirst first decreases and then increases as the value of m increases, but the

change is small. When m is small (e.g., 2), we have the overhead of frequently

checking whether the NLCs intersect at a point, and when m is large (e.g., 7), we

will split a region continuously resulting in many sub-regions. The nice thing is that

the effect of m is small and it is safe to assign any small value to it. This is expected

because the probability that many NLCs intersect at an intersection point is low.

For the rest of the experiments, we set m to 4.
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Figure 5.2: Effect of |O|, uni-
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Figure 5.3: Effect of |O|, normal
distribution.

5.2 Effect of the Number of Consumer Objects

Next, we study the effect of O on the performance of the algorithms. We fix the

number of service sites P at 500, and vary the number of customer objects |O| from

10K to 100K. Figures 5.2 and 5.3 show the algorithms’ performance on datasets for

uniform and normal distributions respectively. Note that the figures are plotted in

log-scale.

Clearly, MaxFirst outperforms MaxOverlap, and the performance difference be-

tween them is huge (up to several orders of magnitude) when the number of consumer

objects is large. As the number of consumer objects increases, the running times of

both the algorithms increase, but the running time of MaxFirst increases very slowly

while the running time of MaxOverlap increases rapidly. MaxFirst is much more

scalable with the number of consumer objects because MaxFirst only partitions the

regions that potentially contains a part of an optimal region. Intuitively, MaxFirst

only partitions the region where the density of NLCs is the highest. Although the

number of NLCs increases with the number of consumer objects, the number of
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Figure 5.4: Effect of |P|, uni-
form distribution.
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Figure 5.5: Effect of |P|, normal
distribution.

regions where the density of NLC is the highest will not increase, and the size of

such regions will not increases. MaxOverlap does not scale well with the number of

consumer objects because it needs to compute all the intersection oints of every pair

of NLCs. As the number of NLCs increases, there will be a lot more intersection

points.

Comparing Figures 5.2 and 5.3, we observe that data distribution affects the al-

gorithms’ performances. Both algorithms spend more time on datasets with normal

distribution. For MaxFirst, a normal distribution means that there will be more

NLCs in the region with the highest density of NLCs. For MaxOverlap, a normal

distribution means that there will be more intersections points in the dense area.

5.3 Effect of the Number of Service Sites

To study the effect of the number of service sites P on the the performance of Max-

First and MaxOverlap, we fix the number of customer objects at 50K, and vary the

number of service sites from 100 to 1000. Figures 5.4 and 5.5 show the algorithms’
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Figure 5.6: Effect of |P|/|O|,
UX dataset.
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Figure 5.7: Effect of |P|/|O|,
NE dataset.

performance on datasets with uniform and normal distributions respectively.

We observe that the processing times of both MaxFirst and MaxOverlap de-

crease as the number of service sites (|P|) increases. When there are more services

sites, the NLCs become smaller. This means that the density of NLCs at the region

with the highest density will be lower. This is why the processing time of MaxFirst

decreases as |P| increases. Smaller NLCs also mean that the NLCs will have smaller

number of intersection points, and this is the reason the processing of MaxOverlap

decreases as |P| increases.

5.4 Results on Real World Datasets

We have seen that both the number of service sites and the number of consumer

objects affect the time needed by the algorithms to solve the MaxBRNN problem.

Here we use real world datasets to investigate the effect of the ratio |P|/|O| on the

algorithms’ performances. For each real world dataset, we divide the objects into

two parts based on a certain ratio, and take one part as the P set and the other



PERFORMANCE STUDY 57

part as the O set, then run the algorithms on them.

Figures 5.6 and 5.7 show the runtimes of the algorithms on the UX and NE

datasets when the ratio varies from 1/50 to 1/500. We observe that the processing

times of both algorithms increase as the ratio decreases. The ratio has a significant

effect on the performance of MaxOverlap while it has limited effect on MaxFirst. As

the ratio decreases 10 times from 1/50 to 1/500, the running time of MaxOverlap

increases about 100 times, while the running time of MaxFirst increases only about

3 times. This shows that MaxFirst performs consistently well under various settings.

Finally, we study the effect of k on the algorithms’ performances in solving the

general MaxBRkNN problems. Figure 5.8 shows the results on the MaxBRkNN

problem where the probabilities in the interest model are the same. The default

synthetic datasets with uniform distribution are used. We see that the processing

times of both MaxFirst and MaxOverlap increase with k, and the processing time

of MaxOverlap increases much faster than MaxFirst does. As the value of k in-

creases, the sizes of the NLCs become larger. As a result, the NLCs will have more

intersection points, so the performance of MaxOverlap deteriorates.

5.4.1 Results on MaxBRkNN Problem

Figure 5.9 shows the performance of MaxFirst on the more general MaxBRkNN

problem where the probabilities in the interest model are not same. Note that this

figure is not plotted in log-scale. There is only one line in the graph as MaxOverlap
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cannot be applied to such MaxBRkNN problems. As k increases, there are more

NLCs, and the density at the densest region will also be higher, hence it takes

MaxFirst more time to find the optimal regions.



Chapter 6

Conclusion

In this thesis, we have presented an efficient solution for the MaxBRNN problem

to find an optimal region where adding a new service site can attract the maximal

number of customers. Our algorithm, MaxFirst, solves a MaxBRNN (and a more

general MaxBRkNN) problem in two steps. In the first step, MaxFirst finds a small

region that is a part of the optimal region by partitioning the space into sub-regions

and searches only in promising sub-regions. In the second step, MaxFirst computes

the whole optimal region using the information gathered in the first step. Experi-

mental results show that MaxFirst is much more efficient than existing algorithms.

Furthermore, MaxFirst scales very well with data sizes, and performs consistently

well under various settings.
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