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Summary 

 

Protein structures are an important source of information for understanding 

biological function at the molecular level and provide the basis for many studies 

in research areas such as structure-based drug design and homology modelling. 

Currently the two main techniques for determining the three-dimensional 

structures of biological macromolecules are X-ray diffraction and NMR 

spectroscopy. In cases where proteins cannot be crystallized, NMR is the best, 

perhaps the only, method available to characterize the structures. 

At present, ~15% of protein structures deposited in the protein data bank is 

determined by NMR, but only ~1% of the NMR structures are for proteins larger 

than 25 kDa. Additionally, most of the large proteins only have crude global 

folds based on backbone assignments and a few side chain assignments which 

are obtained using deuterated samples. Unfortuantely, the preparation of 

deuterated or/and specific isotopic labelled protein samples is often challenging 

and places a bottleneck on the NMR study of large proteins. 

In this thesis, I proposed several new NMR techniques and computational 

methods to obtain partial or complete sequence specific assignments and to 

further determine high-resolution structures of lager proteins, using both the 

simple and cheap non-deuterated protein samples. 

 Firstly, a new 3D multiple-quantum MQ-(H)CCmHm-TOCSY 

experiment is presented in chapter 2 to assign methyl resonances in high-

molecular weight proteins, on the basis of spectral patterns and prior backbone 

assignments. The favorable relaxation properties of the multiple-quantum 
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coherences and the slow decays of in-phase methyl 13C magnetizations optimize 

performance of the proposed experiment for application to large proteins.  In 

combination with the H(C)CmHm-TOCSY experiment, a strategy is presented in 

chapter 3 for assigning protons of methyl-containing residues of uniformly 13C-

labeled large proteins.  

Secondary, I present a novel strategy in chapter 4 to assign backbone and 

side chain resonances of large proteins without deuteration, with which one can 

obtain high resolution structures from 1H-1H distance restraints.  The strategy 

uses information from through-bond correlation experiments to filter intra-

residue and sequential correlations from through-space correlation experiments, 

and then matches the filtered correlations to obtain sequential assignment. The 

strategy extends the size limit for structure determination by NMR to 42 kDa for 

monomeric proteins and to 65 kDa for differentially labeled multimeric proteins 

without deuteration or selective labeling.  

To assist the development of the new strategy mentioned above, a graphics 

package STARS was developed for performing statistics on interatomic distances 

and torsion angles in protein secondary structures from a protein crystal structure 

database. This graphics package shown in chapter 5 is also capable of facilitating 

assignment of ambiguous NOESY peaks, NMR structure determination, structure 

validation and comparison of protein folds. 

In order to comply with the requirements of our new experiments and 

strategies, I present a new software package NMRspy in chapter 6 which can be 

used for NMR spectroscopy visualization, analysis and management. It provides 

a variety of function and analysis routines that facilitate the analysis of complex, 
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crowded and folded high-dimensional spectra. On the basis of this software 

platform, in chapter 7 I present a software extension XYZ4D for semi-automatic 

and automatic analysis of NMR data using the novel strategy shown in chapter 4. 

This software extension corresponds to the manual assignment steps of the new 

strategy but release users from tedious and time-consuming routines. 
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Chapter 1: 

Related background and previous work 

1.1 Protein NMR in structural biology 

The dream of having genomes completely sequenced is now a reality. 

However, an even greater challenge, proteomics – the study of all the proteins 

coded by the genes under different conditions, awaits biologists to further 

unravel biological processes.  

As one of the main categories in proteomics, structural proteomics, the 

determination and prediction of atomic resolution three-dimensional (3D) 

structures of proteins on a genome-wide scale for better understanding their 

structure-function relationships, has now provided a new rationale for structural 

biology and has become a major initiative in biotechnology. (Liu and Hsu 2005) 

In the field of protein structure determination, two instrumental methods have 

played dominant roles: X-ray crystallography and Nuclear Magnetic Resonance 

(NMR) Spectroscopy. These two main techniques can be used to determine the 

structures of macromolecules at atomic resolution. 

Although X-ray crystallography is still the most powerful technique for 

structure determination, the throughput of structure determination using it 

remains unclear. It requires protein crystallization which is usually regarded as a 

slow, resource-intensive step with low success rates. In contrast, NMR 

spectroscopy does not require protein crystals, the experiments can be carried out 

in aqueous solution similar to the physiological conditions in which the protein 

normally functions. As NMR spectroscopy is an inherently insensitive technique, 
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NMR samples need not be as stringently pure as samples for crystallography, and 

it is relatively easy to explore a range of solution conditions (pH, temperature, 

salts) to find an optimum condition for data collection. The vast majority (~75%) 

of the NMR structures of proteins in the Protein Data Bank (PDB) (Berman, 

Westbrook et al. 2000) do not have the corresponding crystal structures, in large 

part because the proteins could not be crystallized. Another advantage of this 

crystal-free technique is that it avoids the crystallization process which may 

select a certain subset of conformers present under particular conditions. With 

the development of new techniques such as "In-cell NMR spectroscopy", it's now 

even possible to directly observe and analyze the conformational and functional 

properties of proteins inside living cells at atomic resolution. (Selenko and 

Wagner 2007) 

Moreover, NMR spectroscopy has extended our ability to characterize 

protein dynamics and is a promising tool to study mechanisms by which these 

molecules might function. (Mittermaier and Kay 2006) Unlike the beautiful and 

static pictures of structures emerged from X-ray, proteins are in fact dynamic 

over a spectrum of time scales and we now know that there is an intimate relation 

between dynamics and molecular function. For example, protein dynamics 

contribute to the thermodynamic stability of functional states and play an 

important role in catalysis, where conformational rearrangements can juxtapose 

key catalytic residues; in ligand binding, which often involves the entry of 

molecules into areas that would normally be occluded; in molecular recognition 

processes, which are often fine-tuned by disorder-to-order transitions; and in 

allostery, where coupled structural fluctuations can transmit information between 
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distant sites in a protein. NMR spectroscopy is uniquely suited to study many of 

these dynamic processes. It has been developed to provide site-specific 

information about protein motions that cover various time scales, from rapid 

bond librations (picoseconds) to events that take seconds (Kay, Torchia et al. 

1989; Palmer, Kroenke et al. 2001). 

In addition, NMR spectroscopy is particularly valuable tool in investigation 

of protein interactions with other macromolecules or small molecules (Takeuchi 

and Wagner 2006). Such interactions play important roles in biological processes 

but often are weak and transient. The complexes of these interactions cannot be 

easily crystallized. The NMR’s ability to characterize protein complexes under 

physiological conditions, even if the interactions are weak and transient, making 

it a good tool to understand the nature of these interactions. Thus, the 

development of new exchange-based NMR methods might provide an 

opportunity for studying large and more complex systems. (Post 2003) 

 
NMR spectroscopy is also a prime tool for studying the structures and 

interactions of partially or fully unfolded proteins. It is predicted that 7-33% of 

bacterial proteins and 36-63% of eukaryotic proteins are intrinsically unfolded 

(Dunker and Obradovic 2001). Many proteins, such as those involved in gene 

expression, are natively unstructured and only structured upon forming specific 

complexes with other polypeptides or even small-molecule cofactors. Significant 

fractions of proteins may thus be partially or fully unfolded. Thus it is difficult to 

crystallize those proteins. NMR spectroscopy can determine if a protein contains 

extensive regions that are unfolded. More sophisticated analysis can be carried 

out using relaxation and heteronuclear NOE measurements to detect flexible 
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regions and obtain structural information. Therefore, NMR spectroscopy is also 

the preferred technique for the study of protein folding. 

With these particular features, NMR not only provides structural and 

biophysical information that is complementary to X-ray crystallography, but also 

provides insights into structure–function relationships for a large number of 

proteins. The important role that NMR plays in structural biology is illustrated by 

far more than 6000 NMR protein solution structures deposited in the PDB. 

NMR does not directly create an image of a protein. Rather, it is able to 

yield a wealth of indirect structural information from which the 3D structure can 

only be revealed by extensive data analysis and computer calculation. The typical 

strategy of a NMR structure determination follows a suite of steps, as described 

below. 

1.2 Protein structure determination by NMR 

spectroscopy 

Figure 1.1 depicts the basic steps toward determining solution structures 

from NMR data set. 
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Figure 1.1 The flowchart of protein structure determination by NMR. 

The sequence-specific resonance assignment that is emphasized by bold plays a 
key role in protein structure determination. Several strategies and software 
packages proposed in this thesis facilitate sequence-specific resonance 
assignment procedures on large proteins, as described in chapters 2, 3, 4, 6 and 7. 
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1.2.1 Protein sample preparation 

Protein production using Escherichia coli-cell based expression systems 

has an established record of being the most successful approach to generate 

protein samples for structure study. It provides a cost-effective, flexible, reliable, 

and scalable way of sample preparation. In the case where the protein is not 

expressed well in E.coli or requires posttranslational modification (glycosylation, 

phosphorylation, etc.) , several eukaryotic options such as yeast, insect, and 

mammalian expression systems, or cell-free in vitro translation methods are 

available. Metabolic labelling of biomolecules with stable isotopes (15N, 13C 

and/or 2H) for NMR spectroscopy was pioneered with E.coli expression systems 

and has been extended successfully to a few other systems (Kainosho 1997).  

The higher the protein concentration, the faster the NMR data can be 

collected, provided that the protein does not aggregate. Practically, the sample 

concentration limits are about 200 μM with ordinary probes and about 60 μM 

with cryogenic probes. Depending on the length of the detection coil in the probe, 

a sample volume of 300 to 500 μL is usually required. Some samples may be not 

stable over data collection period. Cryogenic probes together with higher 

magnetic field can shorten the time of each experiment, which makes it possible 

to investigate proteins that are less stable over time. 

1.2.2 NMR data Processing  

Normally NMR spectrometers produce resonance signals in 1D, 2D, 3D, 

and 4D spaces, which could reflect both the signature information of amino acid 

type and the adjacency information between amino acids. The general approach 
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in a biomolecular NMR study is to first convert time-domain data to frequency-

domain spectra by Fourier transform. Then peaks are picked out from each 

spectrum. This identifies real resonance peaks that are generated from protein 

residues rather than noises.  

Current protocols for processing NMR data set and peak picking use the 

programs NMRPipe (Fourier transformation) (Delaglio, Grzesiek et al. 1995), 

XEASY (peak picking and semi-automated assignment) (Bartels, Xia et al. 1995), 

NMRView (peak picking and spectrum data analysis as well as semi-automated 

assignment) (Johnson and Blevins 1994) and Sparky (peak picking and spectrum 

data analysis as well as semi-automated assignment) (T. D. Goddard and D. G. 

Kneller, SPARKY 3, University of California, San Francisco). 

1.2.3 Sequence-specific NMR resonance assignment 

Once NMR spectra are acquired, individual cross peaks in the experiments 

have to be assigned to sequence- specific positions in the primary sequence of 

protein before other structural restraints (e.g., the distance information between 

residues in the NOESY spectrum) can be fully interpreted. Sequence-specific 

NMR resonance assignment plays a key role in the whole process of structure 

determination.  

As a major objective of my study is to improve and automate the resonance 

assignment procedures on large proteins, the detailed approach that is currently 

most widely used assignment procedure is depicted in latter sections of this 

chapter.    
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1.2.4 Structural restraint extraction 

Structural restraints are obtained from the interpretation of data from one or 

more different classes of NMR experiments. Once all 1H, 15N, and 13C 

resonances have been assigned, full analysis of one or more NOESY spectra, 

‘NOE assignment’, provides the most important restraint, 1H-1H distance 

constraints (<5Ǻ). Three-bond spin-spin coupling experiments provide torsion 

angle constraints, two dihedral angles associated with each peptide bond: angle Φ, 

is the torsion angle between bond 15N-1HN and Cα-Hα while angle Ψ is another 

torsion angle between bond Cα-Hα and C-O. Besides, these torsion angles can 

also be predicted from the assigned chemical shifts of 15N, Cα, CO, and Cβ, as 

described in program TALOS (Cornilescu, Delaglio et al. 1999). Additional 

hydrogen bond constraints are determined from hydrogen exchange experiments, 

chemical shifts, and/or trans-hydrogen-bond couplings (Cordier, Rogowski et al. 

1999). 

1.2.5 Structure calculation and refinement 

NMR structures are obtained from constrained molecular dynamics 

simulations and energy minimization calculations, with the NOE-derived inter-

proton distances being the primary experimental constraints as well as other 

available constraints. As a consequence of chemical shift degeneracy, many NOE 

cross peaks may have multiple assignment possibilities, and the results of 

preliminary structure calculations are used to eliminate unlikely candidates on 

the basis of inter-proton distances. Refinement continues in an iterative manner 

until a self-consistent set of experimental constraints produces an ensemble of 
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structures that also satisfies standard covalent geometry and steric overlap 

considerations. 

Several structure calculation tools are available, such as CNS (Brunger, 

Adams et al. 1998), CYANA (Guntert 2004) and Autostructure (Zheng, Huang et 

al. 2003). A variety of computational approaches have been introduced either to 

support the interactive analysis of structure constrains by visualization and book-

keeping or to provide automation for specific parts of an NMR structure 

determination, such as iterative NOE assignment tools ARIA (Linge, 

O'Donoghue et al. 2001; Habeck, Rieping et al. 2004) and CANDID (Herrmann, 

Guntert et al. 2002), automate NOE peak-picking tool ATNOS (Herrmann, 

Guntert et al. 2002). 

1.3 Introduction to sequence-specific NMR resonance 

assignment 

Sequence-specific assignment has been an important role for protein 

structural analysis by NMR. A major objective of my study is to improve and 

automate the sequence-specific assignment procedures on large proteins. Before 

discussing the progress and challenges on this particular task when dealing with 

large proteins, I will describe the traditional assignment strategy for small and 

medium-sized proteins and their limitations. 

1.3.1 Important role of sequence-specific resonance assignment 

As mentioned above, NMR spectra contain information about the structure 

of a molecule through the chemical shift which is sensitive to local 
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physicochemical environment, through spin-spin coupling constraints which is 

sensitive to dihedral angles, and through relaxation (NOE) which is sensitive to 

the positions of nearby spins. However, before any of this information can be put 

to use in determining the structure of a molecule, it must first be determined 

which resonances come from which spins. The process of associating specific 

spins in the molecule with specific resonances is called sequence-specific 

assignment of resonances, on which this thesis will mainly focus. 

Sequence-specific resonance assignment is essential in: (1) the structure 

determination of proteins, (2) intermolecular interactions, and (3) protein 

dynamics. 

Firstly, consider the determination of protein structure from NMR data. 

Protein chemical shifts may be used in at least four different ways in structural 

analysis including: (i) secondary structure mapping, (ii) generating structural 

constraints, (iii) three-dimensional structure generation, and (iv) three-

dimensional structure refinement. Perhaps the most well-known application of 

chemical shift in biomolecular NMR is in the area of secondary structure 

identification and quantification (Szilagyi and Jardetzky 1989; Pastore and 

Saudek 1990; Spera and Bax 1991; Wishart, Sykes et al. 1992; Le and Oldfield 

1994; Luginbuhl, Szyperski et al. 1995; Wishart and Nip 1998; Iwadate, Asakura 

et al. 1999; Hung and Samudrala 2003; Eghbalnia, Wang et al. 2005; Wang, 

Chen et al. 2007). It has been confirmed that 1Hα, 13Cα, 13Cβ, and 13CO NMR 

chemical shifts for all 20 amino acids are sensitive to their secondary structure. 

The assigned chemical shifts provide more reliable information about the 

secondary structure of the protein than any other computational prediction 
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methods based on sequence similarity. Chemical shifts can also play a useful role 

in delineating three-dimensional structure of proteins. The structural information 

mainly derives from NOE cross peaks. A NOE peak correlating two hydrogen 

atoms is observed if these hydrogens are located at a distance shorter than 5Ǻ 

from each other. Combined with resonance assignment these distance constraints 

can be attributed to specific sites along the protein chain and therefore the three 

dimensional structure can be initialized. In addition, using other constraints 

derived from chemical shift assignment (e.g., dihedral angles) along with the 

constraints from NOE correlations, the protein tertiary structure can be formed 

and further refined. 

The second application of sequence-specific resonance assignment is to 

study protein-protein interactions. Analysis of intermolecular interactions by 

solving the structures of protein-protein complexes using conventional NMR 

methodology presents a considerable technical challenge and is highly time-

consuming. If the structures of the free proteins are already known at high 

resolution, and conformational changes upon forming complexes are either 

minimal or localized, it is possible to use conjoined rigid body/torsion angle 

dynamics (Clore and Bewley 2002) to solve the structure of the complex based 

solely on intermolecular inter-proton distance restraints, derived from isotope-

edited NOE measurements. Nevertheless, unambiguous assignment of 

intermolecular NOEs is still difficult and time-consuming, particularly for large 

complexes. In contrast, the mapping of interaction surfaces by 1HN/15N chemical 

shift perturbation (Zuiderweg 2002) is a simple, rapid and most widely used 

NMR method to study protein interactions. In a nutshell, the 15N-1H or/and 13C-
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1H HSQC spectrum of one protein is monitored when an unlabeled interaction 

partner is titrated in, and the perturbations of chemical shifts are recorded. The 

interaction causes environmental changes on the protein interfaces and, hence, 

affects the chemical shifts of the nuclei in this area. It is easy and straightforward 

to correlate these value-changed chemical shifts with specific residues according 

to sequence-specific resonance assignment and therefore, the interaction regions 

derived from the perturbation of chemical shifts can be identified.  

NMR spectroscopy can also be used to monitor the dynamic behaviour of a 

protein at a multitude of specific sites, which is associated with the specific 

functions of the protein. Once again, resonance assignment is a prerequisite to 

determine the residues implicated in the analysis of structural dynamic from 

nuclear spin relaxation. 

1.3.2 General strategy for sequence-specific resonance 

assignment 

The first structures of biological macromolecules determined by NMR 

spectroscopy were solely based on [1H,1H]-proton correlation experiments 

(Williamson, Havel et al. 1985), from which protein structures up to a size of 10 

kDa can be obtained without any isotopic enrichment using 1H homonuclear 

assignment strategy. However, for larger proteins the increased spectral overlap 

and linewidths make structure determination increasingly difficult. The 

introduction of isotopic labelling and triple-resonance experiments have extended 

the molecular weight range to approximately 20 kDa by reducing resonance 

overlap through separation of the peaks along one or more heteronuclear 
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frequency dimensions. Since then, even for proteins smaller than 10 kDa the 

isotopic labelling and heteronuclear assignment strategy are applied to accelerate 

the structure determination process. Nearly all NMR structure determinations of 

proteins recombinantly expressed are nowadays carried out with isotopic 

labelling and heteronuclear assignment strategy. The only exceptions are proteins 

that are isolated from natural sources (snake and scorpion toxins, pheromones 

etc.).  Although the 1H homonuclear assignment strategy is insufficient in 

modern protein structure elucidation, it gave us an idea on developing new 

strategy for sequence-specific resonance assignment of large proteins (Chapter 4). 

In the following sections, a brief introduction of 1H homonuclear 

assignment strategy and a detailed depiction of the currently most widely used 

heteronuclear sequence-specific resonance assignment strategy will be given.  

1.3.2.1 1H homonuclear assignment strategy 

The principal process of determining 1H resonance assignments is 

developed by Wüthrich and co-workers (Wüthrich 1986). This strategy is based 

upon the following critical observation: with few exceptions, correlations 

resulting from 1H-1H scalar couplings normally are only observed between 1H 

nuclei separated by two or three bonds in proteins. Cross-peaks in 1H 

homonuclear correlation NMR spectra occur between 1H spins within the same 

amino acid residue or spin system. 2D experiments, such as COSY, MQF-COSY, 

MQ spectroscopy, and TOCSY are used to identify resonance positions within 

each amino acid spin system, and the NOESY experiment is used to sequentially 

connect the amino acid spin systems.  
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Initially, 1H resonances are categorized into backbone amide 1HN, aromatic 

1H, backbone 1Hα, aliphatic side chain methine and methylene 1H, and methyl 1H, 

on the basis of their chemical shifts. The first stage of analysis makes use of 

scalar couplings to establish sets of 1HN, 1Hα, and aliphatic side-chain resonances 

that belong to the same amino acid residue spin system. A protein of N residues 

has N distinct backbone-based spin systems. Each spin system is assigned to an 

amino acid type (or one of several possible types) based on the coupling 

topology and resonance chemical shifts. 

In the second stage of the assignment process, spin systems are connected 

using through-space dipolar coupling (NOE) interactions to generated dipeptide 

segment. Statistical analysis of the proton positions inferred from X-ray-crystal 

structures of proteins has shown that the majority of short interproton distances 

between 1HN, 1Hα, and 1Hβ are between residues adjacent in the primary sequence 

(Billeter, Braun et al. 1982). Thus, identification of intense NOEs from 1HN, 1Hα, 

and/or 1Hβ
 of one spin system to 1HN of a second spin system suggests that the 

two spin systems are adjacent in the primary sequence with the first spin system 

nearer to the N-terminus of the protein. As more dipeptide segments are 

generated, one or more fragments will eventually be established and uniquely 

mapped to protein sequence.  

If the spin system types are well characterized (i.e. the majority of side-

chain resonance positions have been identified), then fragment consisting of four 

or five spin systems usually can be placed on the protein sequence and to achieve 

sequence-specific assignment. The ambiguity in the assignment process can be 

reduced by the identification of other sequential NOEs and the match of 
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sequential ordering between fragments and protein sequence. The assignments 

encompass all spin systems, and self-consistency is the best measure of the 

validity of the results. 

1.3.2.2 Triple-resonance assignment strategy 

Thanks to the introduction of protein isotopic labelling, sets of nuclei other 

than 1H that can be detected by NMR are available, heteronuclear NMR 

experiments become the dominating method in protein NMR. Since the late 

1980s, a large number of 3D or 4D triple resonance NMR experiments have been 

developed and used for protein sequence-specific resonance assignment. Other 

than extract the inter-residue correlations from NOE-base experiments where 

through-space dipolar couplings contribute to the observed cross-peaks, the 

triple-resonance experiments offer an alternative strategy which establish the 

inter-residue correlations via the relatively uniform and well-resolved 

heteronuclear one-bond and two-bond couplings, without any prior knowledge of 

spin system types. By properly combining several triple resonance NMR 

experiments, it is possible to establish a sequential walk from one residue to the 

next. Potential errors that arise from misassignment of sequential and long-range 

connectivities in the NOE-based procedures are avoided because assignments are 

based solely on predictable through-bond scalar correlations. 

The strategy that currently most widely used for obtaining complete and 

unambiguous sequence-specific assignment obtains backbone assignments from 

a pair of triple-resonance experiments CBCANH and CBCA(CO)NH, and 

obtains side-chain assignments from a set of TOCSY-based experiments, 
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including a pair of triple-resonance experiments H(CC-CO)NH-TOCSY, 

(H)C(C-CO)NH-TOCSY and a double-resonance experiment HCCH-TOCSY.  

 

Table 1.1 Heteronuclear Experiments Used for protein sequence-specific 

resonance assignment 
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Figure 1.2 Schematic depiction of backbone assignment using the CBCANH 
and CBCA(CO)NH spectra.  

Each 1HN-15N pair is correlated with the 13Cα / 13Cβ of the previous residue using 
the CBCA(CO)NH and the 13Cα / 13Cβ of its own residue using the CBCANH. To 
trace along the backbone, one searches for pairs of amides in which the 13Cα / 
13Cβ chemical shifts of one in the CBCANH are identical to the 13Cα / 13Cβ 
chemical shifts observed from the second in the CBCA(CO)NH. Two such 
amides belong to adjacent residues in the protein. Because of the requirement for 
amide protons, the correlations are interrupted at proline residues. 
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Backbone Assignment 

A pair of CBCANH and CBCA(CO)NH (Table 1.1) data sets give 

information about intra-residue correlations and the corresponding inter-residue 

correlations in the form of a three-dimensional spectrum with the amide proton 

(1HN) chemical shift on one axis, the amide nitrogen (15N) on another, and the 

carbon chemical shift (13Cα,13Cβ) on the third axis. By analyzing the data sets 

together, the 1HN, 15N, 13Cα and 13Cβ spins along the entire backbone (except for 

the prolines) can be correlated: the CBCANH correlates each 1HN and 15N with 

the intra-residue 13Cα and 13Cβ, while the CBCA(CO)NH correlates each 1HN and 

15N with the 13Cα and 13Cβ of the pervious residue (Figure 1.2). The 13Cα and 13Cβ 

chemical shifts can be used to identify amino acid types and thus to map 

segments of connected spin systems onto the sequence of the protein.  

Side-Chain Assignment 

Determination of 13Cα and 13Cβ chemical shifts during backbone 

assignment provides a good starting point for side-chain assignment. The H(CC-

CO)NH-TOCSY and (H)C(C-CO)NH-TOCSY experiments (Table 1.1) correlate 

proton or carbon resonances within a side chain to one another and to the amide 

resonances in the backbone. They are three-dimensional experiments in which 

the axes are the chemical shifts of 1HN, 15N, and side-chain protons or carbon 

spins. The amide correlations in these experiments make the spectra easy to 

interpret, since they contain much less ambiguity than an HCCH-TOCSY 

spectrum (Table 1.1), for example. Ambiguities may remain as to which proton 

is attached to which carbon, these can usually be resolved by the HCCH-TOCSY 

spectrum, since it correlates 1H resonances with their attached 13C resonances 
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using the well-resolved and strong one-bond 1H-13C and 13C-13C coupling to 

transfer magnetization along the side-chain. 

1.3.3 Limitations of the conventional strategies 

The conventional sequence-specific resonance assignment strategy can be 

applied to proteins with molecular weight up to ~ 25 kDa, but for proteins larger 

than 30 kDa, the set of experiments used in the conventional strategy may not 

work because of several problems. 

The first problem is spectral crowding. For larger proteins, some spectra 

(e.g. HCCH-TOCSY) could be severely overlapped due to the overwhelming 

number of resonances. In overlapped spectra, many of the resonances cannot be 

assigned unambiguously to individual nuclei. Indeed, even if a full sequential 

assignment is made, the identification of the interresidue NOEs usually proves 

too ambiguous to provide a sufficient number of restraints for a high resolution 

structure calculation. 

The second problem is that large proteins tumble slower in solution, 

resulting in rapid transverse relaxation. During magnetization transfer periods in 

an NMR experiment, the signal decay away rapidly owing to the relaxation of the 

magnetization. Transverse relaxation is the main source for this signal loss. For 

large proteins the signal decays much faster, which causes poor sensitivity and 

line broadening of the spectrum (Figure 1.3 a vs. b). Especially for COSY and 

TOCYS experiments, the inefficiency of magnetization transfer from one spin to 

another spin caused greatly decreased sensitivity. Significant signal loss occurs 

during the relatively long mixing times required for magnetization transfer, as a 
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result of the reduced characteristic relaxation time when the correlation time 

increases. 

The third problem is degeneracy in chemical shift. Using heteronuclear 

backbone assignment as a example, in which the CBCA(CO)NH experiment 

correlates the 1HN-15N pair of residue i with 13Cα / 13Cβ shift of residue i-1. Thus, 

if all the 13Cα / 13Cβ shifts are unique, the residues of the whole protein can be 

linked in a sequential order. If, however, there are degenerate 13Cα / 13Cβ shifts, 

e.g. two residues have similar 13Cα / 13Cβ shifts, the backbone assignment will fail 

at that point. As protein size increase (larger residue number) and spectrum 

resolution decrease, degeneracy like this becomes more and more common. 

The desire to overcome these limitations for sequence-specific resonance 

assignment of large protein is the driving force behind the development of new 

NMR methodology, in sample preparation techniques and assignment strategies, 

which will be reviewed in the following section. 

1.4 Previous works on large proteins 

Significant advances in NMR technology over the past two decades have 

made it well suited for detailed analyses of macromolecular structure, dynamics 

and interactions of smaller proteins.(Foster, McElroy et al. 2007) With the 

availability of uniform 13C,15N-labeling and triple resonance experiments, it is 

almost a routine task to assign backbone and side-chain resonances for proteins 

with molecular weight below 25 kDa. Work on these proteins has been very 

fruitful and allowed us to learn much about structure-function relationships. This 

assignment strategy, however, is inherently limited, as majority of the 
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macromolecular complexes of biochemical interest are significantly larger than 

25 kDa. 

 

Figure 1.3 Effects of protein size on NMR signals.  

(a) The NMR signal from small proteins has long transverse relaxation time (T2). 
This translates into narrow linewidth (Δν) on the spectrum after Fourier 
transformation (FT). (b) By contrast, the signal from large proteins relaxes faster 
(shorter T2), resulting in weak signal detected after the pulse sequence and broad 
lines on the spectrum. (c) TROSY substantially reduces the effective relaxation 
of the detected signal, leading to improved spectral resolution and sensitivity for 
large proteins. 

Adopted from Ref (Fernandez and Wider 2003) 
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NMR studies of large proteins are complicated by the increased spectral 

crowding, transverse relaxation rate and chemical shift degeneration. Several 

methodological advances have been developed to overcome these problems. 

1.4.1 Reducing protein transverse relaxation rate 

It had long been realized that substituting protons for deuterons would 

reduce the relaxation rates of the attached nuclei, leading to increased spectral 

resolution and significant gain in sensitivity.(Gardner and Kay 1998) Deuterated 

proteins can be produced in cultures with deuterated media (typically, 2H2O and 

2H-glucose provide the hydrogen and carbon atoms, and 15N-ammonium serves 

as the nitrogen source). Then, upon transfer of the protein into protonated 

solvents (i.e., 1H2O), the exchangeable protons on the amides will be observed in 

a 1H-15N heteronuclear correlation spectrum, without being broadened by spin-

spin interactions with carbon-bound protons.  

Nevertheless, deuteration alone does not allow the application of protein 

NMR beyond 50 kDa. The major breakthrough in extending the size limit comes 

with the introduction of TROSY (transverse relaxation-optimized spectroscopy). 

(Pervushin, Riek et al. 1997) TROSY exploits the interference of two different 

relaxation mechanisms that affect the linewidths of certain NMR signals with 

opposite sign. In the optimal case, the two relaxation mechanisms cancel each 

other out and a very narrow line is observed in the NMR spectrum (Figure 1.3 c). 

For large proteins, TROSY works especially best at high field strength (700 to 

900 MHz) with deuterated samples (Fernandez and Wider 2003). TROSY 

modules have been implemented in many of the triple resonance experiments, 

which allow the assignment of backbone and Cβ resonances for proteins up to 
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100 kDa. (Pervushin, Riek et al. 1997; Yang and Kay 1999; Tugarinov, 

Muhandiram et al. 2002)  

Unfortunately, the increase in size limit does come at a cost. The removal 

of aliphatic and aromatic protons by deuteration considerably reduces the number 

of NOEs which would otherwise provide valuable distance constraints for 

structure calculation. Although the global folds of a protein can be determined 

using only backbone NOEs and residual dipolar couplings in partially ordered 

medium (Giesen, Homans et al. 2003), such structural models always suffer from 

low resolution and the arrangements of many side chains cannot be defined 

precisely. Moreover, the preparation of such deuterated samples is always costly 

and time-consuming. Additionally, some proteins need to be unfolded in order to 

accelerate the exchange of amide 2H to 1H, and then subsequently  refolded. This 

unfolding-refolding process is not trivial for most proteins.  

Other approaches may also reduce the transverse relaxation rates of large 

proteins. One simple, albeit limited, solution is to increase the overall molecular 

tumbling rate by recording NMR spectra at elevated temperatures, which is only 

applicable for thermostable proteins (Hua, Dementieva et al. 2001; McElroy, 

Manfredo et al. 2002; Boomershine, McElroy et al. 2003). Another ingenious 

approach involves encapsulating hydrated proteins in low-viscosity solvents 

(Wand, Ehrhardt et al. 1998); while promising, this approach is not widely used, 

as the encapsulation process is technically challenging and system dependent. 
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1.4.2 Reducing protein spectral crowding and chemical shift 

degeneration 

An emerging approach to alleviate the problems of spectral crowding and 

chemical shift degeneration is to make use of protein splicing methods that allow 

for “segmental labelling” of specific regions of a protein with NMR active 

isotopes (Cowburn, Shekhtman et al. 2004). Because signals are not observed 

from the unlabeled segments of the molecules, this approach simplifies the NMR 

spectra without the loss of context that comes from study of an isolated domain. 

By labelling a different segment each time in a series of experiments, the 

structure of the entire protein can be studied.  

In the case of multimeric protein complexes, spectral overlap can also be 

reduced by the use of subunit-selective isotope labelling. If a multimeric protein 

complex can be reconstituted from isotope-labelled and unlabelled binding 

partners, only the labelled protein is observed in the NMR spectrum, thus 

reducing the signal overlap. 

For perdeuterated proteins, alternative labelling protocols involve the use 

of metabolic precursors allow for selective protonation and monitoring of 

specific groups (e.g., methyls) in concert with the backbone amides. The 

protonated methyl groups can be assigned with TOCSY-based experiments or the 

TROSY versions of these experiments, to provide many long range distance 

constraints as methyl groups are usually localized in the hydrophobic cores of 

proteins connecting secondary structural elements.  
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However, all specific isotopic labelling techniques are very costly and 

time-consuming, and may not be suitable for every protein. Despite several 

successful applications of these labelling strategy to large proteins (Tugarinov, 

Choy et al. 2005; Kainosho, Torizawa et al. 2006), the extremely high cost of the 

samples impedes the application of these techniques. 

1.5 Research objectives  

At present, ~15% of protein structures deposited in the protein data bank is 

determined by NMR, but only ~1% of the NMR structures are for proteins larger 

than 25 kDa (Kainosho, Torizawa et al. 2006). Additionally, most of the large 

proteins only have crude global folds based on backbone assignments and a few 

side chain assignments. The preparation of deuterated or/and specific isotopic 

labelled protein samples is often challenging and places a bottleneck on the NMR 

study of large proteins. 

Because only 1H spins produce distance restraints that determine the 

quality of solution structures, the simplest and cheapest samples for obtaining 

high resolution structures are non-deuterated proteins. Unfortunately, most triple-

resonance experiments for establishing resonance assignments do not work for 

uniformly 13C,15N-labeled large proteins without deuteration, except for NOESY 

and multiple-quantum 13C total correlation spectroscopy (MQ-CCH-TOCSY) 

experiments (Chapter 2, 3 and 4).  

Therefore, the objective of this thesis is to focus on developing new NMR 

techniques and computational means which can be used to obtain partial or 
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complete sequence specific assignments, or even high-resolution structures, of 

lager proteins, with: 

1) uniformly 13C, 15N-labeled samples without the use of deuteration and  

2) protein-size-insensitive NMR spectra (e.g. NOESY and MQ-CCH-

TOCSY). 
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Chapter 2: 

Sequence-specific assignments of methyl groups in 
large proteins 

2.1 Introduction 

Methyl groups are of particular interest in NMR studies of proteins since 

they occur frequently in the hydrophobic cores of these molecules (Janin, Miller 

et al. 1988) and thus are often sensitive reporters of structure and dynamics.  

Thus, sequence-specific assignments of methyl resonances are important in 

applications that involve large proteins because of their favorable properties that 

facilitate the recording of NMR spectra with high sensitivity and resolution. First, 

the threefold degeneracy of methyl protons in 13CH3 isotopomers effectively 

increases the concentration of each group significantly beyond that for, say, 

backbone amides. Second, because methyl groups are localized at the peripheries 

of side chains, many tend to be dynamic (Nicholson, Kay et al. 1992);  this leads 

to slower relaxation that can be exploited in studies of large systems. Third, 

distances between proximal methyl groups, established on the basis of NOEs, 

often connect regions of the molecule that are far removed in primary structure 

(Metzler, Leiting et al. 1996; Rosen, Gardner et al. 1996; Smith, Ito et al. 1996; 

Mueller, Choy et al. 2000). In addition, these moieties serve as probes in 

investigations of protein–ligand interactions (Hajduk, Augeri et al. 2000; Gross, 

Gelev et al. 2003), fast and slow timescale side-chain dynamics (Henry, Weiner 

et al. 1986; Muhandiram, Yamazaki et al. 1995; Ishima, Louis et al. 1999; Lee 

and Wand 2001; Mulder, Mittermaier et al. 2001; Skrynnikov, Mulder et al. 
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2001), dynamics of protein folding (Henry, Weiner et al. 1986; Muhandiram, 

Yamazaki et al. 1995; Ishima, Louis et al. 1999; Skrynnikov, Mulder et al. 2001; 

Choy, Shortle et al. 2003), and in the detection of proteins and complexes in in-

cell NMR experiments (Serber, Straub et al. 2004). 

I propose here a novel 3D multiple-quantum (MQ) (H)CCmHm- TOCSY 

experiment for assignments of 1H and 13C resonances of methyl groups using 

uniformly 13C-labeled samples. The new 3D MQ-(H)CCmHm-TOCSY 

experiment correlates chemical shifts of aliphatic carbon nuclei of amino acid 

side chains with those of the methyl 13Cm and 1Hm nuclei in the same residue in 

the protein sequence. On the basis of prior assignments of 13Cα and 13Cβ, 

sequence-specific assignment of methyl resonances can be obtained. 

2.2 General strategy for sequence-specific assignments of 

methyl groups 

Figure 2.1 shows the pulse sequence of the 3D MQ-(H)CCmHm-TOCSY 

experiment. The magnetization transfer is shown schematically as follows: 

 

The decay rates of the MQ coherences (HxCy) are normally significantly smaller 

than those of the single-quantum (SQ) coherences (Grzesiek, Kuboniwa et al. 

1995; Shang, Swapna et al. 1997; Gschwind, Gemmecker et al. 1998). Thus, this 

experiment is more sensitive than its SQ version.  
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Figure 2.1 Pulse sequence for the MQ-(H)CCmHm-TOCSY experiment.  

All narrow (wide) rectangular pulses have flip angles of 90o (180o). The 1H 
carrier is set at 4.7 ppm while the 13C carrier is centered at 41 ppm, until 
immediately prior to the 13C pulse of phase Φ4 at which time the carrier is 
jumped to 17 ppm. All 1H pulses are applied with a 23 kHz field; 1H DIPSI2- 
decoupling elements make use of a 6.25 kHz field. All 13C rectangular pulses 
employ a 16.8 kHz field, and the 13C shaped pulses have REBURP profiles. The 
first 180o shaped (filled) 13C pulse has a duration of 400 μs and is phase 
modulated by 24 ppm, while the second one (empty) has a duration of 1.5 ms. 
The 13C spin-lock field strength for FLOPSY is 7 kHz. A decoupling power of 
1.25 kHz is used during acquisition. The 180o pulse on C’ has a SEDUCE profile 
with a duration of 250 μs (center of excitation 176 ppm). The delays used are: τa 
= 1.4 ms, τb = 1.1 ms, τc = 1.5 ms, τd = 1.6 ms, τm = 17 ms, which is suitable for 
proteins with overall correlation times ranging from 20 to 30 ns as shown by 
numerical simulations; T = 14 ms. The phase cycling employed is: Φ1 = 4(x), 4(-
x); Φ2 = x, y, -x, -y; Φ3 = 2(x), 2(-x); Φ4 = y; Φ5 = 2(x), 2(y), 2(-x), 2(-y); Φ6 = 
4(x), 4(-x); rec = x, -x, -x, x, -x, x, x, -x. The duration and strengths of the sine-
shaped gradients are: g1 = (0.5 ms, 20 G/cm); g2 = (0.3 ms, 25 G/cm); g3 = (1 
ms, 25 G/cm); g4 = (1 ms, 20 G/cm); g5 = (0.5 ms, 20 G/cm). Quadrature 
detection in F1 and F2 are achieved by States-TPPI of Φ1 and Φ4, respectively. 

 

During the first part of the constant-time period (point b to point c), proton 

decoupling is applied to maintain the slow decays of the transverse 13Cm 

magnetizations, enhancing experimental sensitivity. In the absence of proton 

decoupling, proton spin flip-flop rates dominate decays of the two inner 
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components of 13Cm quartets for fully protonated proteins and significantly 

elevate the apparent 13Cm decays. (Liu, Zheng et al. 2003) 

We have applied the 3D MQ-(H)CCmHm-TOCSY experiment to a 13C,15N-

labeled sample of acyl carrier protein synthase (AcpS) which consists of three 

subunits with a total molecular weight of 42 kDa.(Liu, Black et al. 2002)  

As established from 15N relaxation data, AcpS has an overall rotational 

time of 26 ns at 25 oC (equivalent to a protein on the order of 60 kDa at 37 oC). 

Despite its large overall correlation time, all of the aliphatic 13C resonances were 

observed for most residues having methyl groups in the MQ-(H)CCmHm-TOCSY 

experiment.  

Figure 2.2 shows a number of F1-F3 slices taken from a 3D MQ-

(H)CCmHm-TOCSY spectrum. If the (13Cα, 13Cβ) chemical shifts of residues 

containing methyl groups are not degenerate with each other in a given protein, 

sequence-specific assignment of methyl resonances can be obtained from the 

MQ-(H)CCmHm-TOCSY spectrum on the basis of the assignment of (13Cα, 13Cβ). 

For example, according to the (13Cα, 13Cβ) chemical shifts and spectral 

pattern shown in slice e and the prior sequential assignment that was obtained 

using a uniformly 2H,13C,15N-labeled protein (Liu, Black et al. 2002), signals in 

this slice were assigned to attribute to I96γ2. 13Cγ1 and 13Cδ1 from the same slice 

can then be assigned. The assignment of 13Cδ1 can be further confirmed from the 

slice taken at F2 frequency of 13Cδ1 (slice f). Sometimes, 13Cα or 13Cβ resonances 

are not observable in the slice taken from 13Cδ1 of Ile, but observable in the slice 

of 13Cγ2. In this case, assignment of 13Cδ1 and 1Hδ1 can be done on the basis of the 
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assignment of 13Cγ2 and the matches of 13Cγ1, 13Cδ1 and 13Cγ2 resonances between 

the two slices as shown in slices g and h. Similarly, the spectral information of 

two 13Cδ in Leu or two 13Cγ in Val residues can be complementary to each other.  

 

Figure 2.2 Representative slices from the MQ-(H)CCmHm-TOCSY spectrum 
used for methyl assignments.  

Each F1(13C)-F3(1Hm) slice is labeled with the identity of the methyl-containing 
residue, and the F2(13Cm) frequency in ppm is indicated at the top of each slice. 
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Using the strategy described above, we obtained sequence-specific 

assignments for 63 out of 67 methyl groups in AcpS (Figure 2.3). The (13Cα, 13Cβ) 

chemical shifts of I10 and I29 are identical and thus cannot be assigned uniquely.  

 

 

 

 

 

 

 

 

 

 

2. 

 

Figure 2.3 CT 13C-1H HSQC of the 13C,15N-labeled AcpS. Cross-peaks are 
labeled with their assignments. 
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2.3 Discussion 

For large monomeric proteins, one would expect that degeneracy in (13Cα, 

13Cβ) chemical shifts may hinder the application of the method proposed here. In 

practice, the relatively good dispersion of (13Cα, 13Cβ) chemical shifts among the 

same types of residue allows one to assign most of the methyl resonances, 

according to our survey as shown in Table 2.1. Although the (13Cα, 13Cβ) 

chemical shifts of L18 and L25 are degenerate within a threshold of 0.3 ppm, 

L18 and L25 can be distinguished from each other from the differences of their 

(13Cα, 13Cβ) chemical shifts (0.15 ppm). Obviously, a larger number of methyl 

groups can be assigned with increasing spectral resolution in the F1 dimension. It 

is interesting to note that each type of amino acid displays a specific spectral 

pattern, and thus, (13Cα, 13Cβ) chemical shift degeneracy among different types of 

amino acids is not an issue for methyl assignments.  

 

Table 2.1 The relatively good dispersion of (13Cα, 13Cβ) chemical shifts in 
large monomeric proteins. 

Protein / Residue 
number ALA ILE LEU THR VAL 

ACPS / 119 8 / 8* 9 / 11 6 / 9 5 / 5 7 / 7 
CBM28 / 204 16 / 20 8 / 8 12 / 14 7 / 12 12 / 12 
DFPase / 316 19 / 19 21 / 21 11 / 14 15 / 18 20 /20 
MBP / 370  21 / 43 17 / 21 24 / 30 16 / 20 14 / 19 
MSG / 731 28 / 71 37 / 42 36 / 68 22 / 29 30 / 46 

*The ratio shows the number of specific types of methyl-containing residues (the difference is 
equal or larger than 0.3 ppm between two 13Cα or 13Cβ spins in the residues), to the total number 
of the same types of residue (with available (13Cα, 13Cβ) chemical shifts from the BMRB 
database). 
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L9 and L51 displayed very weak 13Cα and  13Cβ resonances in the MQ-

(H)CCmHm-TOCSY experiment. This is attributed to the strong scalar coupling 

interaction between 13Cδ and  13Cγ spins in Leu residues. To achieve a high 

resolution in the F2 dimension, a constant-time acquisition mode was used to 

remove 13C-13C scalar coupling effects. For Leu, however, the strong scalar 

coupling interaction can be destructive to the refocus of 13Cδ magnetization 

during the constant-time period which leads to a significant loss of sensitivity. 

Although a nonconstant-time version of the experiment that is similar to the 

HCCH-TOCSY should give better sensitivity, the resolution may not be 

sufficient to uniquely assign methyl resonances in the case where 13C-1H HSQC 

cross-peaks are not unique within a grid of 0.3 ppm (13C) × 0.02 ppm (1H). 

Resolution in the F2 dimension is critical for methyl assignments of large and 

medium-sized proteins; e.g., only 62% of methyl groups in MBP are not 

degenerate within the 0.3 ppm × 0.02 ppm grid. 

A comparison of the MQ-(H)CCmHm-TOCSY experiment with the HCCH-

TOCSY experiment (Figure 2.4) shows that the MQ-(H)CCmHm-TOCSY is more 

sensitive for most cross-peaks due to the gains from MQ line narrowing in the F1 

dimension and from the slow decay of in-phase methyl 13C magnetizations 

during the constant-time t2 period. Most importantly, however, most methyl 

resonances cannot be assigned using the HCCH-TOCSY spectrum due to poor 

resolution in both the F1 and F2 dimensions and poor dispersion of (1Hα, 13Cα) 

and (1Hβ, 13Cβ) chemical shifts. Compared to the C(CO)NH-TOCSY experiments, 

the experiment proposed here is much more sensitive (~7 times for 13C-labeled 

AcpS). The 4D HCCH-NOESY experiment (Fischer, Zeng et al. 1996) is also  
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Figure 2.4 Histograms of signal-to-noise ratios of correlations from MQ-
(H)CCmHm-TOCSY and HCCH-TOCSY spectra acquired at 25 ºC.  

(a). Peak intensity ratios (IMQ-(H)CCmHm/IHCCH) of (13Cα, 13Cm, 1Hm) correlations 
from the MQ-(H)CCmHm-TOCSY spectrum to (1Hα, 13Cα, 1Hm) correlations from 
the HCCH-TOCSY spectrum; (b) peak intensity ratios of (13Cβ, 13Cm, 1Hm) 
correlations from the MQ-(H)CCmHm-TOCSY spectrum to (1Hβ, 13Cβ, 1Hm) 
correlations from the HCCH-TOCSY spectrum. Only 34 (13Cα, 13Cm, 1Hm) and 28 
(13Cβ, 13Cm, 1Hm) cross-peaks were unambiguously identified in the HCCH-
TOCSY data set according to the assignments of 13Cα, 13Cβ, 13Cm and 1Hm, which 
were obtained from the MQ-(H)CCmHm-TOCSY data set. On average, the 
relative sensitivity gains in (13Cα, 13Cm, 1Hm) versus (1Hα, 13Cα, 1Hm) and (13Cβ, 
13Cm, 1Hm) versus (1Hβ, 13Cβ, 1Hm) correlations are 1.28 ± 0.37 and 1.06 ± 0.31, 
respectively. Although about 50% of (1Hα, 13Cα, 1Hm) and (1Hα, 13Cα, 1Hm) 
correlations can be identified, most methyl resonances cannot be assigned using 
the HCCH-TOCSY spectrum on the basis of prior assignments of 13Cα and 13Cβ  
spins as a result of poor resolution in both the F1 and F2 dimensions and poor 
dispersion of (1Hα, 13Cα) and (1Hβ, 13Cβ) chemical shifts. Identical delays and the 
same FLOPSY-8 mixing scheme (mixing time of 17 ms and spin-lock field 
strength of 7 kHz) were used for the HCCH-TOCSY and the MQ-(H)CCmHm-
TOCSY experiments. 
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less sensitive than the MQ-(H)CCmHm-TOCSY experiment due to the inherently 

long NOE mixing time and the additional dimension involved. Similar to the 

HCCH-TOCSY spectrum, most methyl groups may not be assignable because of 

the low spectral resolution in the 4D and the poorly dispersed chemical shifts of 

(1H, 13C) spin pairs in large proteins. Compared to TOCSY-based methods 

established previously (Gardner, Zhang et al. 1998; Hilty, Fernández et al. 2002), 

the method proposed here is more sensitive and efficient since methyl 

assignments require only a single experiment rather than two or three 3D 

experiments.  

2.4 Conclusion 

The experiment proposed here aims for only 13C-labeled proteins that can 

be produced more easily than 2H,13C,1Hm-labeled proteins. If a 2H,13C,1Hm-

labeled protein sample is available, one may use an alternative scheme (CCmHm-

TOCSY) as shown in Figure 2.5. This experiment can be more sensitive than the 

MQ-(H)CCmHm-TOCSY experiment when 13CD T1 can be effectively reduced by 

paramagnetic relaxation agents, especially for very large proteins (>50 kDa). 

2.5 Materials and methods 

We performed the experiment on the 42 kDa uniformly 13C,15N-labeled 

AcpS homotrimer in 1H2O:2H2O (95:5) solution (protein concentration 0.4 mM 

in the trimer, pH 7.5, 25 °C) on a Bruker Avance 500 MHz spectrometer 

equipped with a CryoProbe. 64(t1) × 70(t2) × 512(t3) complex points were 

collected, giving t1max = 7.9 ms, t2max = 27.4 ms and t3max = 64 ms. An interscan 

delay of 1s with 8 scans per increment was used, resulting in a total experimental 



Sequence-specific assignments of methyl groups in large proteins  Chapter 2 

 

39 
 

time of 47 h. The 13C and 13Cm time domains were doubled by forward-backward 

and mirror-image linear prediction respectively, prior to the application of 

cosine-squared window functions. 

 

 

Figure 2.5 Pulse scheme for the CCmHm-TOCSY experiment applied to 2H, 
13C, 1Hm-labeled protein samples. 

This pulse scheme provides the same correlations as the MQ-(H)CCmHm-TOCSY 
experiment. It is used to replace all pulses and gradients just prior to gradient 
pulse g3 (point a) in the pulse sequence for the MQ-(H)CCmHm-TOCSY 
experiment (Figure 2.1). Phase cycle used is: Φ1 = 4(x), 4(-x); Φ2 = x, -x, Φ3 = 
2(x), 2(-x). 
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Chapter 3: 

Side-chain assignments of methyl-containing 
residues in large proteins 

3.1 Introduction 

Hemoglobin (Hb) is the iron-containing oxygen-transport metalloprotein 

inside the red cells of mammals and other animals (Dickerson and Geis 1983; 

Barrick, Lukin et al. 2004; Lukin and Ho 2004). Human normal adult 

hemoglobin (Hb A) is a tetramer with a molecular weight of about 65 kDa, 

consisting of two α-chains and two β-chains. Each α-chain contains 141 amino 

acids that coil into seven α-helical regions and each β-chain contains 146 amino 

acids that form eight α-helical regions.  

The physiological function of Hb is to transport oxygen from the lungs to 

the tissues. Hb binds O2, CO, and NO reversibly and cooperatively, i.e., the 

binding of the first ligand enhances the binding of subsequent ligands. The 

ligand-binding affinity of Hb A is regulated by pH (the Bohr effect) and 

allosteric effectors, such as 2,3-bisphosphoglycerate (2,3-BPG).  

The four subunits pack together through hydrophobic and hydrogen-bond 

interactions to form a quaternary structure. The arrangement of the subunits of 

Hb depends on the ligation state of the protein, and is related to the physiological 

function of Hb. X-ray crystallographic studies of deoxy- and liganded Hb A have 

found that there are at least three different quaternary structural forms (T, R, and 
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R2), in which the structures of each subunit are very similar; however, there are 

differences in the arrangement between α1β1 and α1β2 subunit interfaces (Silva, 

Rogers et al. 1992; Mueser, Rogers et al. 2000). T symbolizes the deoxy 

quaternary structure of crystalline deoxy-Hb A, and R and R2 represent the 

quaternary structures of crystalline liganded carbonmonoxy-Hb A (HbCO A) in 

high salt and low salt conditions, respectively.  

More recently, by using NMR residual dipolar measurements on 15N-

labeled recombinant HbCO A (rHbCO A), we have found that the solution 

structure of HbCO A is distinctly different from the previously determined R and 

R2 crystal structures and that the solution structure of HbCO A is a dynamic 

intermediate between R and R2 structures (Lukin, Kontaxis et al. 2003).  

In spite of extensive studies on the Hb molecule, the detailed structure-

function relationship in Hb is not fully understood and many aspects remain 

controversial. This may arise from a lack of information on the structure and 

dynamics of Hb under physiological conditions.  

As a first step toward a detailed investigation of the structure and dynamics 

of Hb A in solution, side-chain resonances need to be assigned. We have 

developed an MQ-(H)CCmHm-TOCSY experiment for the assignment of methyl 

groups in uniformly 13C-labeled proteins (Chapter 2). In this study, we propose a 

strategy to assign side-chain 1H resonances of methyl-containing residues which 

applied the MQ-(H)CCmHm-TOCSY experiment on the α- and β-chains of 

rHbCO A, using only uniformly 13C-labeled protein. A non-constant-time MQ-
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(H)CCH-TOCSY experiment is proposed to assign some Leu methyl groups that 

display very weak signals in the MQ-(H)CCmHm-TOCSY experiment due to the 

strong coupling effect.  

 

 

Figure 3.1 Representative F1–F3 slices from the MQ-(H)CCmHm-TOCSY (A) 
and MQ-(H)CCH-TOCSY (B) spectra of 13C-labeled α-chain of rHbCO A.  

Each slice is labeled with the identity of the methyl-containing residue, and the 
F2 (13C) frequency in ppm is indicated at the top of each slice. 
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3.2 General strategy for side-chain assignments of 

methyl-containing residues 

We assigned methyl resonances using the MQ-(H)CCmHm-TOCSY 

experiments as described previously (Chapter 2). Several Leu methyl groups 

were assigned with 3D MQ-(H)CCH-TOCSY. We obtained the assignments of 

protons at methylene and methane positions in methyl-containing residues with 

3D H(C)CmHm-TOCSY experiments, and used MQ-(H)CCH-TOCSY 

experiment to confirm these assignments. 

3.2.1 Methyl assignments 

Figure 3.1A shows representative F1–F3 slices from the MQ-(H)CCmHm-

TOCSY spectrum of 13C-labeled α-chain of rHbCO A. Note that there is no Ile in 

HbCO A (Dickerson and Geis 1983).  

For a given set of signals on one slice, firstly, the amino acid type of the 

residue contributing to these signals was determined from the spectral pattern, 

since each type of amino acid displays a characteristic pattern, as shown in 

Figure 3.1A. Secondly, the chemical shifts of (13Cα, 13Cβ) were measured from 

the same slice and compared with the corrected (13Cα, 13Cβ) shifts from prior 

sequential assignments. Lastly, if the (13Cα, 13Cβ) shifts uniquely matched the 

shifts of residue N, the set of signals was assigned to residue N. For example, 

slice b with 5 peaks at positions (13Ci, 13Cm, 1Hm) in Figure 3.1A, where i = α, β, 

γ, δ1 and δ2, corresponds obviously to a Leu. The (13Cα, 13Cβ) shifts uniquely 

match the shifts of Leu29, within a threshold of 0.3 ppm. All aliphatic carbons of 
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Leu29 were subsequently obtained from this slice and the chemical shift of 1Hδ1 

for Leu29 is also measured from the F3 dimension.  

With this procedure, we assigned 72 out of 92 methyl groups (excluding 

Met) for the α-chain and 76 out of 94 for the β-chain. Due to the degeneracy of 

(13Cα, 13Cβ) shifts within a threshold of 0.15 ppm, 14 and 16 methyl groups in the 

α-chain and β-chain, respectively, could not be uniquely assigned. Respectively, 

6 and 2 Leu methyls in the α-chain and β-chain could not be assigned because of 

the absence of 13Cα and 13Cβ peaks in the MQ- (H)CCmHm-TOCSY spectra. Slice 

a in Figure 3.1B showed one such example. It was observed when the chemical 

shift difference between 13C δ1/13C δ2 and 13Cγ was smaller than or close to the 

1JCC value due to the strong coupling effect. To assign these methyl groups, a 

non-constant-time MQ-(H)CCH-TOCSY experiment was used.  

Slice b in Figure 3.1B, which was taken from the non-CT MQ-(H)CCH-

TOCSY spectrum, showed the correlations between 13C δ and all aliphatic 

carbons in the same Leu residue as shown in slice a. Using the (13Cα, 13Cβ)  

chemical shifts obtained from this slice, the signals were assigned to Leu48δ2. 

The 6 and 2 Leu methyl groups in the α- and β-chains, respectively, which 

showed very weak signals in the MQ-(H)CCmHm-TOCSY experiment, were 

assigned with the MQ-(H)CCH experiments. Figure 3.2 shows the 1H-13C HSQC 

spectra of α- and β-chains with assignments. 
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Figure 3.2 CT 13C-1H HSQC of the 13C-labeled α-chain and β-chain of 
rHbCO A.  

Cross-peaks are labeled with their assignments. Ambiguous assignments are 
indicated with asterisks (*). 
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3.2.2 Assignment of side-chain protons in methyl-containing 

residues 

In principle, one can assign the resonances of most side-chain 1H and 13C 

spins using the 3D HCCH-TOCSY or MQ-(H)CCH-TOCSY experiments. In 

practice, it is very difficult to do so because of poor resolutions in both indirect 

dimensions and poor dispersion of most 1H-13C correlations for large proteins. To 

assign side-chain protons in methyl-containing residues, an H(C)CmHm-TOCSY 

experiment is proposed, which is similar to the HCCH-TOCSY experiment (Bax, 

Clore et al. 1990; Uhrin, Uhrinova et al. 2000). This procedure correlates methyl 

1H with all aliphatic 1H spins in the same residue through a 13C TOCSY mixing 

scheme. The relatively good dispersion of methyl 1H-13C correlations and the 

slow decay of the methyl spins in uniformly 13C-labeled protein make 1H 

assignment possible (Liu, Zheng et al. 2003). 

Figure 3.3 shows a number of slices taken from the H(C)CmHm-TOCSY 

experiment. Each methyl 1H correlates with all aliphatic protons in the same 

residue. However, this experiment does not provide direct 1H-13C correlations of 

pairs of covalently bonded atoms. Assignment of 1H chemical shifts is based on 

empirical 1H chemical shift ranges of different protons and the assignment of 

methyl groups. In many cases, the assignment is straightforward. However, 

discrimination of 1Hα and 1Hβ spins for Thr and 1Hβ and 1Hγ spins for Leu also 

needs spectral information from the MQ-(H)CCH-TOCSY experiment which 

provides direct 1H-13C correlations of pairs of covalently bonded atoms.  
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Figure 3.3 Representative F1–F3 slices from the H(C)CmHm-TOCSY 
spectrum of 13C-labeled β-chain of rHbCOA. 

Each F1(1H)–F3(1Hm) slice is labeled with the identity of the methyl-containing 
residue, and the F2 (13Cm) frequency in ppm is indicated at the top of each slice. 
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For example, the assignment of T134Hα of the α-chain can be confirmed 

from the correlations [13Ci, 13Cα, 1Hα], where i = α, β, and γ, positioned at T134Cα 

in the MQ-(H)CCH-TOCSY spectrum (slice c, Figure 3.4). On the basis of slices 

b and c in Figure 3.4, one can also assign T134Hα and it seems that the 

H(C)CmHm-TOCSY experiment is not necessary in this particular case. 

According to slices e and f in Figure 3.4, however, one cannot determine the 

chemical shift of V10Hβ because two or more protons in the range of 1.85–2.1 

ppm correlate with sets of 13C resonances with very similar chemical shifts to 

(13Cα, 13Cβ, 13Cγ) of V10 as shown on slice f. On the other hand, V10Hβ can be 

easily assigned from slice d. 

Actually, most 1H resonances cannot be assigned without H(C)CmHm-

TOCSY data because the MQ-(H)CCH-TOCSY spectrum had poor resolutions 

in both indirect dimensions and poor dispersion of most 1H-13C correlations. We 

have unambiguously assigned 90 out of 137 non-methyl protons in methyl-

containing residues of the α-chain and 89 out of 137 non-methyl protons of the β-

chain. Nearly all unassigned protons were 1Hβ in Leu residues because the 

experimental sensitivity for CH2 groups in which the two protons are 

magnetically different and two sets of correlations exist is lower than that for CH 

and CH3 groups. The results are summarized in Table 3.1. 

Table 3.1 Summary of assignment of non-methyl protons in methyl-
containing residues of both α- and β-chains of rHbCOA 

 rHbCOA α-chain *  rHbCOA β-chain* 

Ala Hα 13/21    Hα 14/15   
Thr Hα 9/9 Hβ 9/9   Hα 6/7 Hβ 6/7  
Val Hα 10/13 Hβ 10/13   Hα 15/18 Hβ 15/18  
Leu Hα 15/18 Hβ 8/36 Hγ 16/18  Hα 13/18 Hβ 8/36 Hγ 12/18 
* Number of assigned/total protons 
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Figure 3.4 F1-F3 slices taken from the spectra of H(C)CmHm-TOCSY, MQ-
(H)CCmHm-TOCSY and MQ-(H)CCH-TOCSY experiments.  

The orresponding experiment for each slice is labeled beside the slice. The 
chemical shift of the F2 dimension is labeled on the top of each slice. 
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3.3 Conclusion 

In summary, methyl resonances of large proteins, e.g., rHbCO A, can be 

assigned using uniformly 13C-labeled proteins with the MQ-(H)CCmHm-TOCSY 

experiment. In addition, most side-chain 1H and 13C resonances of methyl-

containing residues can be assigned with the H(C)CmHm-TOCSY and MQ-

(H)CCH-TOCSY experiments. The non-CT MQ-(H)CCH-TOCSY experiment is 

also complementary to the MQ-(H)CCmHm-TOCSY experiment for the 

assignment of methyl groups in Leu residues. The strategy proposed here 

facilitates the study by NMR of structure, dynamics and structure-activity-

relationship of large proteins, especially multimeric proteins, without specific 

isotope labeling. 

3.4 Materials and methods 

3.4.1 MQ-(H)CCH-TOCSY experiment 

Figure 3.5A shows the pulse sequence for establishing (13C, 13C, 1H) 

correlations through a TOCSY scheme, which is similar to the original HCCH-

TOCSY (Bax, Clore et al. 1990; Fesik, Eaton et al. 1990) and MQ-(H)CCmHm-

TOCSY (Chapter 2) experiments. A non-constant-time acquisition mode in the t2 

period is used to replace the constant-time (CT) t2 period in the MQ-(H)CCmHm-

TOCSY experiment. In addition, a non-selective 13C 180o pulse is used in the last 

INEPT period to allow the detection of all aliphatic 1H spins.  
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Figure 3.5 Pulse sequences for the MQ-(H)CCH-TOCSY (A) and 
H(C)CmHm-TOCSY (B) experiments.  

All narrow (wide) rectangular pulses have flip angles of 90o (180o). The 1H 
carrier is at 4.7 ppm while the 13C carrier is centered at 41 ppm. For scheme B, 
the 13C carrier is jumped to 17 ppm immediately prior to the g4 gradient pulse. 
All 1H pulses are applied with a 23 kHz field; 1H DIPSI2-decoupling elements 
make use of a 6.25 kHz field. All 13C rectangular pulses employ a 16.8 kHz field 
and the 13C shaped pulses have REBURP profiles. The 180o shaped 13C pulse 
(filled) has a duration of 400 μs and is phase-modulated by 24 ppm while the 
second one (empty) has a duration of 1.5 ms. The 13C spin-lock field strength for 
FLOPSY is 7 kHz. A decoupling power of 1.25 kHz is used during acquisition. 
The 180o pulse on C’ has a SEDUCE profile with a duration of 250 μs (center of 
excitation 176 ppm). The pulse on 15N is omitted for 13C-labeled samples. The 
delays used are: τa = 1.4 ms; τb = 1.1 ms; τc = 1 ms for scheme A and 0.75 ms for 
scheme B; τd = 1.6 ms; τm = 17 ms; T = 14 ms; t1a = 1.4 ms + t1; t1b = t1–t1’; t1c = 
1.4 ms – t1’; t1’ = 1.4 ms/(ni-1) where ni is the total complex points in the t1 
dimension. The phase cyclings employed are: Φ1 = 4(x), 4(-x); Φ 2 = x, y, -x, -y; 
Φ3 = 2(x), 2(-x); Φ 4 = y; Φ 5 = 2(x), 2(y), 2(-x), 2(-y); Φ 6 = 4(x), 4(-x); rec = x, -
x, -x, x, -x, x, x, -x. The duration and strengths of the sine-shaped gradients are: 
g1 = (0.5 ms, 20 G/cm); g2 = (0.3 ms, 25 G/cm); g3 = (1 ms, 25 G/cm); g4 = (1 
ms, 20 G/cm); g5 = (0.5 ms, 20 G/cm); g6 = (1 ms, 10 G/cm). Quadrature 
detection in F1 and F2 is achieved by State-TPPI of Φ 1 and Φ 4, respectively. 
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The non-CT MQ-(H)CCH-TOCSY experiment proposed here has lower 

resolution in the F2 dimension than the CT MQ-(H)CCmHm-TOCSY experiment 

due to JCC couplings and a short acquisition time in this dimension. However, the 

former is significantly more sensitive, especially for Leu residues with strong 

scalar coupling interactions, because 13C magnetization cannot be refocused 

completely for strongly coupled spin systems during the CT period. 

3.4.2 H(C)CmHm-TOCSY experiment 

Figure 3.5B shows the pulse scheme of 3D H(C)CmHm-TOCSY experiment, 

which is similar to that of the MQ-(H)CmHm-TOCSY experiment. In this pulse 

sequence, 1H chemical shifts instead of 13C shifts were recorded in the t1 period 

in a single-quantum (SQ) mode. Although multiple-quantum (MQ) coherences 

(HxCy) have longer relaxation times than SQ coherences (Hx), the MQ mode 

involves additional signal loss from 13C-13C couplings in the t1 period. The SQ 

mode was more sensitive than the MQ mode without selective 13C decoupling in 

the t1 period and was thus used in this experiment. 

3.4.3 Protein Samples and NMR Spectroscopy 

Chain-specific 13C-labeled rHbCO A samples were prepared as described 

previously (Simplaceanu, Lukin et al. 2000). NMR experiments were performed 

on samples of ~1.0 mM protein (in the tetramer), 20 mM sodium phosphate, pH 

7.0, and 100% D2O at 34 oC. All spectra were recorded on a Bruker Avance 500 

MHz NMR spectrometer equipped with pulse gradient units and an actively 

shielded cryoprobe.  
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The 3D MQ-(H)CCmHm-TOCSY data comprising 64 × 70 × 512 complex 

points with spectral widths of 8000, 2516, and 8000 Hz in F1, F2, and F3 

dimensions (corresponding to acquisition times of 7.7, 27.4, and 64 ms, 

respectively) were collected with 4 scans and an inter-scan delay of 0.95 s for 

each FID, giving rise to a net experimental time of 24.5 h.  

The 3D H(C)CmHm-TOCSY data set consisting of 32 × 70 × 512 complex 

points with spectral widths of 3500, 2516, and 8000 Hz in F1, F2, and F3 

dimensions was acquired using 8 scans and a relaxation delay of 0.95 s for each 

increment, resulting in a total experimental time of 24.5 h.  

The MQ-(H)CCH-TOCSY data comprising 64 × 30 ×512 complex points 

with spectral widths of 8000, 3774, and 8000 Hz in F1, F2, and F3 dimensions 

were collected with an inter-scan delay of 0.95 s and 8 scans per increment, 

resulting in a total experimental time of 20.5 h.  

All data sets were apodized with a sine weighting function shifted by 72o in 

the direct proton dimension. The t1 and t2 domains were doubled by linear 

prediction prior to the application of a cosine-squared window function. After 

zero filling and Fourier transformation, all the final data sets comprised 256 × 

256 × 1024 points along the F1, F2, and F3 dimensions, respectively. Processing 

of the spectra was carried out using NMRPipe and analyzed with NMRView. 

3.4.4 Correction of 13C chemical shifts 

Assignment of CH3 groups relies on prior assignments of 13Cα and 13Cβ 

chemical shifts. For rHbCO A, sequential assignments were obtained from 

perdeuterated samples (Lukin, Kontaxis et al. 2004). Due to 2H isotope effects, 
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13C chemical shifts observed in a perdeuterated sample are smaller than those 

observed in a protonated sample. To make 13C chemical shifts consistent for both 

samples, 2H isotope effects are corrected according to the following equation 

(Venters, Farmer et al. 1996): 

δC(H) = δC(D) – (1ΔC(D)*d1b + 2ΔC(D)*d2b + 3ΔC(D)*d3b),   (1) 

where δC(H) and δC(D) are the chemical shifts of a 13C spin in protonated 

and perdeuterated samples, respectively; nΔC(D) represents the n-bond isotope 

effect per deuteron; and dnb is the number of deuterons n bonds removed from the 

13C nucleus. Due to the negligible magnitude of 4ΔC(D) in saturated alkanes, 

Equation 1 has been restricted to isotope shifts over three bonds or fewer. The 

three nΔC(D) constants used are: 1ΔC(D) = -0.29; 2ΔC(D) = -0.13; 3ΔC(D)  = -

0.07 (Venters, Farmer et al. 1996). 
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Chapter 4: 

A new strategy for structure determination of 
large proteins in solution without deuteration 

4.1 Introduction 

So far high-resolution structure determination by NMR spectroscopy with 

uniformly 13C, 15N-labeled non-deuterated samples has been limited to proteins 

<25 kDa (Chapter 1). For proteins larger than 30 kDa, predeuterated or/and 

specific isotopic labelled samples are required to achieve sequential assignment 

or global fold determination. Although uniformly 13C, 15N-labeled non-

deuterated samples can be used to obtain assignments of methyl groups (Chapter 

2) and side-chain assignments of methyl-containing residues (Chapter 3) in large 

proteins, prior assignments of 13Cα and 13Cβ, which can be obtained from TROSY 

experiments with predeuterated samples are needes. Furthermore, high-resolution 

structure can only be achieved by constraining side chains of all or most residues 

using NOEs among side-chain protons. This requires not only the assignments of 

methyl groups or side-chain assignments of methyl-containing residues, but also 

a nearly completed sequential-specific resonance assignment of the whole 

protein. 

In this chapter, we present a novel strategy to assign backbone and side 

chain resonances of large proteins without the use of deuterium and specific 

labeling. On the basis of the assignments, we determined high resolution 

structures from distance restraints derived from NOEs and dihedral restraints 

derived from chemical shifts. We demonstrated the strategy on three samples: 
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Ca2+-dependent cell adhesion protein (DdCAD-1, 214 residue, ~24 kDa, 3% α-

helices, 46% β-strands), maltose binding protein (MBP, 370 residues, ~42 kDa, 

42% α-helices, 16% β-strands), and human normal adult hemoglobin in the 

carbonmonoxy form (HbCO A, chain-specifically 13C,15N-labeled, 141 residues 

for α-chain, 146 residues for β-chain, ~65 kDa for tetramer, 77% α-helices). 

4.2  General strategy for sequence-specific assignments  

4.2.1 General strategy for sequential assignment 

 The strategy consists of five steps. First, clusters are formed by grouping 

HC-NH NOE and Cα-NH (HNCA) correlations that have identical NH chemical 

shifts. Second, spin-systems are identified by separating out intra-residue and 

sequential HC-NH NOE correlations from other inter-residue NOEs observed in 

a four-dimensional 4D 13C,15N-edited NOESY spectrum with the use of 3D 

TROSY-HNCA and MQ-CCH-TOCSY spectra. Third, spin-systems are 

classified by residue type based on 1H and 13C chemical shifts. Fourth, fragments 

are established from clusters by matching the intra-residue spin-system of one 

cluster with the sequential spin-system of another cluster.  Fifth, fragments are 

mapped onto the protein sequence in a manner similar to the traditional triple-

resonance approach(Ikura, Kay et al. 1990). 
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Figure 4.1 Pulse sequence for recording 4D 13C,15N-edited NOESY.  

All narrow (wide) bars represent 90° (180°) rectangular pulses. The carriers are 

centered at 4.7, 65 and 119 ppm for 1H,13C and 15N respectively. Rectangular 1H, 
13C and 15N pulses are applied with field strengths of 25, 25 and 7.1 kHz, 

respectively. The 1H shaped 90° pulses have a sinc profile (1.4 ms, water-

selective). The 13C shaped 180° pulses are ca-WURSTs (300*800/y μs, for 

experiments recorded at y MHz). 15N-decoupling is achieved with use of a 1.25 

kHz WALTZ16 field. The delays used are: T = 1.5 ms and τa = 2.25 ms. The 

durations and strengths of gradients are: g1 = (1ms, 15G/cm, sine-shaped), g2 = 

(0.2ms, 10G/cm, rectangle-shaped), g3 = (0.2ms, 30G/cm, rectangle-shaped), g4 

= (2ms, 22.5G/cm, sine-shaped), g5 = (2ms, 25G/cm, sine-shaped), g6 = (0.5ms, -

25G/cm, sine-shaped), g7 = (0.5ms, 40G/cm, sine-shaped). The phase cycling 

employed is: φ1 = x; φ2 = x, -x; φ3 = 45°; φ4 = x, x, -x, -x; φref = x, -x, -x, x. 

Quadrature detections in F1, F2 and F3 are achieved by States-TPPI of φ1, φ2 and 

φ4. 
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4.2.1.1 Peak clusters 

We grouped peaks in 3D TROSY-HNCA and 4D 13C,15N-edited NOESY 

spectra (Figure 4.1) to form clusters according to their common NH chemical 

shifts, where NH denotes amide spins 15N and 1H. Some clusters may comprise 

peaks from two or more amides which have degenerate NH chemical shifts. We 

could easily identify the number of amides involved in each cluster with 

TROSY-HNCO and HNCA spectra based on the fact that one amide gives rise to 

only one HNCO peak and no more than two HNCA peaks. When a NOE peak 

could be grouped into more than one cluster, we did not group it into any cluster 

in this step. 

Most amide groups could be unambiguously distinguished in the two 

spectra for each sample, although the TROSY heteronuclear single-quantum 

correlation (HSQC) spectra were crowded in some regions (Figure 4.2). For the 

three proteins studied here, only a few clusters contained cross-peaks from more 

than one but less than four residues (Table 1). DdCAD-1 and MBP had 2 and 9 

such clusters, respectively, and each HbCO A chain had 3 such clusters. Most 

clusters contained both intra-residue and sequential HNCA correlations (Figure 

4.3), while ~10 - 15% clusters contained only one HNCA correlation. 
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Figure 4.2 The middle region of a 2D TROSY-HSQC of fully protonated 

MBP recorded on an 800 MHz NMR at 30 ºC. 
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Figure 4.3 Distributions of peak signal-to-noise (S/N) ratio for the 3D 
TROSY-HNCA experiments.  

(a-b) are the data from MBP. (c-d) are the data from HbCO A. For MBP, we 
observed 338 out of 348 expected intra-residue correlations (Cαi-NiHi), while 
identified 305 sequential correlations (Cα

i-1-NiHi); eight non-proline residues did 
not display N-H HSQC peaks. For the α chain of HbCO A, we observed 118 out 
of 133 expected intra-residue correlations and identified 110 sequential 
correlations; twelve nonproline residues underwent significant conformational 
exchange and gave rise to no N-H HSQC peaks. For the β chain of HbCO A, we 
observed 135 out of 138 expected intraresidue correlations, while detected 119 
sequential correlations; two non-proline residues showed no N-H HSQC peaks. 
When an intra-residue HNCA peak was overlapped with a sequential HNCA 
peak, we considered the sequential peak as unidentified. Most unidentified 
sequential peaks resulted from signal overlap.  

 

  



A new strategy for structure determination of large proteins in solution without deuteration Chapter 4 

 

63 
 

Table 4.1 Summary of clusters, spin-systems, dipeptide segments and 
assignments 

 DdCAD-1 
214/202/200a 

MBP 
370/348/329a 

HbA α-chain 
141/134/122a 

HbA β-chain 
146/139/138a 

Clusters 197+2(2)b 332+8(2)+1(3)b 118+3(2) b 131+2(2)+1(3)b 
Clusters lacking one 
HNCA peak 

19 50 16 15 

Clusters lacking one 
spin-system 

3 26 13 12 

Spin-systems identified 399 676 231 258 
Spin-systems without 
NOEs 

4 51 10 24 

Spin-systems with only 
one HαCα spin-pair 

30 126 79 66 

Spin-
systems 
typed asc 

Gly 26/0/28 55/0/56 13/0/14 24/0/26 
Ala 11/0/12 83/1/88 34/0/42 29/0/30 
Thr 31/0/35 37/0/41 15/0/17 6/0/11 
Val 42/2/42 40/1/40 21/1/26 26/3/36 
Ile 17/0/17 34/0/42 0/0/0 0/0/0 
Leu 16/1/16 47/0/58 13/0/35 13/0/36 
others 214/3/245 161/0/352 45/4/126 57/7/132 

Dipeptide segments 164 217,  (2)d 70 71 

Residues assigned from 
fragments unique in 
connectivity & mapping 

174 176,  (1)e 89 81 

Residues assigned based 
on uniquely mapped 
fragments 

26 163,  (1)f 28 54 

Uniquely assigned 
residues 

200 339 117 135 

Ambiguously assigned 
residues 

0 0 5 0 

Unassigned residues 2 9 12 4 
 

a. total residue number/expected amide correlations/amides assigned with triple-
resonance approach 

b. the second (third) term: number of the clusters containing information from two 
(three) amides or residues 

c. numbers of spin-systems correctly typed/wrongly typed/expected 
d. number of dipeptide segments formed by non-adjacent residues 
e. number of residues wrongly assigned in the first stage. The correctness of the 

assignments was assessed based on published results obtained with the triple-
resonance approach. 

f. number of the wrong assignments in the first stage corrected in the second 
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4.2.1.2 Spin-system identification and amino acid type determination 

With the use of HNCA and MQ-CCH-TOCSY spectra, intra-residue and 

sequential HC-NH NOE correlations of each cluster can be separated out from 

other inter-residue HC-NH NOE correlations observed in the 4D 13C,15N-edited 

NOESY spectrum. Meanwhile, by grouping the intra-residue and sequential HC-

NH NOE correlations into separate spin-system, an intra-residue spin-system and 

a sequential spin-system can be identified for each cluster (Figure 4.4 a).  

The amino acid type of both spin-systems can subsequently be indentified 

based on the dispersion of the 1H and 13C chemical shifts (Chapter 7). We could 

easily and unambiguously recognize most Glycine and methyl-containing 

residues since they contain characteristic spin-pairs. When Arginine, Lysine, 

Proline and Serine yielded nearly complete spin-systems, we could also identify 

them unequivocally. We classified the remaining amino acid residues into three 

groups: 1. Aspartate, Asparagine, Phenylalaline and Tyrosine (DNFY), 2. 

Glutamate, Glutamine and Methionine (EQM), and 3. Cysteine, Tryptophan and 

Histidine (CWH). If the characteristic information in a spin-system is not enough 

for determining the type of a residue, it will remain unclassified. 

An example of identifying spin-systems from a given cluster is described 

below. First, we extracted the intra-residue and sequential Cα-NH peaks to build 

two initial spin-systems from the HNCA slice defined by an amide in a cluster 

(Figure 4.4 b). Second, we found that two HαCα-NH NOE peaks from the 

NOESY slice located at the amide matched the two Cα-NH peaks in Cα chemical 

shifts (Figure 4.4 c). Third, we listed the TOCSY slices defined by the CH spin-

pairs of individual HC-NH NOEs in Figure 4.4 c (Figure 4.4 d). According to  
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TOCSY correlations of Cα-CkHk or Ck-CαHα, where superscript k denotes the kth 

side chain atom, we assigned three and five NOE peaks into the two spin-systems, 

respectively. The I348Cγ11Hγ12 slice displayed a lot of noise as a result of the 

overlap of intense signals from lysine CδHδs. Nevertheless, its correlations with 

Cγ2 and Cδ1 were strong and easily recognized. We determined the two spin-

systems as valine and isoleucine, respectively, according to the chemical shifts of 

spins allocated to the spin-systems (Chapter 7). Following this procedure, we 

constructed many spin-systems (Table 4.1). 

For DdCAD-1 (tumbling time 12.5 ns at 30 °C), almost all spin-systems 

contained one or more CH spin-pairs. For larger proteins such as MBP (~20 ns) 

and HbCO A (~30 ns), however, ~10% spin-systems contained no NOE 

correlations, and ~20% of spin-systems had no side-chain NOE correlations 

(Table 4.1). This resulted from poorer sensitivities of the 4D NOESY and 3D 

MQ-CCH-TOCSY toward larger proteins. Additionally, the MQ-CCH-TOCSY 

for MBP was very crowded in some regions, such as those corresponding to 

lysine residues, and we identified only <55% of the expected TOCSY 

correlations. Nevertheless, many spin-systems had enough characteristic 

chemical shift information, which allowed us to determine of amino acid types. 

For MBP and HbCO A, we typed ~60-70% of the spin-systems (Table 4.1 and 

Figure 4.9).  

As the result of resonance degeneracy, this procedure led to a few medium- 

and long-range HC-NH NOEs being included erroneously as spin-system 

members; this happened in eight of the initial MBP spin-systems. Additionally, 

we initially assigned several spin-systems to wrong types because of missing 

characteristic peaks or inclusion of incorrect peaks (Table 4.1). As demonstrated 

below, these errors did not affect the correctness of the final assignments. 
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4.2.1.3 Assembly and mapping of connectivity fragments   

When two spin-systems best matched each other in HC chemical shifts, we 

generated one dipeptide segment from them. In most cases, such a segment 

corresponded to one dipeptide fragment in the protein sequence. However, very 

few such segments might result from the connection of non-adjacent residues, as 

found in the study of MBP. Using all dipeptide segments, we have established 

several fragments (covering >48% of the residues) and uniquely mapped many of 

them to protein sequences (Table 4.1 and Figure 4.9). Owing to the presence of 

two wrong dipeptide segments for MBP, one mapped fragment initially 

contained one incorrect assignment at the C terminus of the fragment.  

Here we describe the cause, identification and correction of the initial 

wrong assignment. The amide of Asp58 (cluster X209) displayed two long-range 

NOEs from its interactions with V8Hγ1 and V8Hβ (Figure 4.5 a). We initially 

identified these as sequential NOEs and incorrectly assigned them as the 

sequential spin-system members of Asp58, because coincidently, Val8 and Pro57 

have identical Cα chemical shifts (Figure 4.5 a, b). Subsequently we incorrectly 

typed the spin-system as valine. The intra-residue spin-system of Val8 matched 

the spin-system of Asp58 better than that of Ile9 (Figure 4.5 a-c). Additionally, 

cluster X209 was initially assigned as Ile9 (note that Lys6-Leu7-Val8 was an 

assigned fragment). We did not detect the error immediately because X209 

lacked intra-residue NOEs and was located at the fragment terminus. By 

checking the cluster of Ile9 (X11), we found that X11 contained two spin-

systems definitely corresponding to valine and isoleucine. In the protein 

sequence, there are only two Val-Ile or Ile-Val segments: Val8-Ile9 and Val347-
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Ile348. Because we had already assigned Val347 and Ile348, the previous 

assignment for cluster X209 was very likely incorrect. Moreover, the cluster of 

Ile9 could be connected with Trp10 and then extended to Asn12. Thus, the 

correct assignment for Ile9 was determined to be cluster X11. This example 

confirmed that errors made in the initial stage can be detected and corrected in 

the later stage of the sequential assignment. 

4.2.1.4 Resolution of ambiguity in connectivity  

Owing to the presence of incomplete spin-systems, ambiguity on 

connectivity always exists (Figure 4.5 d-f).  Fortunately, we can use the NOE 

peaks that cannot be identified as spin-system members to resolve this ambiguity, 

as shown below. Any two amides may simultaneously correlate with a set of CH, 

CH2 and CH3 groups via NOE interactions, that is, they may share a set of 

common NOEs. Inter-proton distances statistics done by our software (Chapter 5) 

indicated that amides i and j are more likely to have a sequential relationship 

when amide i shares a larger number of common NOEs with amide j than with 

other amides. The probability that two non-adjacent amides share the largest 

number of common NOEs and have matched Cα chemical shifts in their HNCA 

correlations as well, is very low (<7%, Figure 4.6). Therefore, two clusters are 

most likely to have a sequential relationship when they share the largest number 

of common NOEs and also have matched Cα shifts. 

Using common NOEs, we resolved many ambiguities in connectivity, 

especially for the spin-systems containing only CαHα or no CH spin-pair (Figure 

4.9). For instance, the intra-residue spin-system of Met55 of the β-chain of  
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Figure 4.6 Distribution of δ-NOE that reflects the difference in the number 
of common NOEs shared by two adjacent amide protons and those by two 
non-adjacent amides.  

Two δ-NOEs are defined for each amide: δi,i-1 = Ci,i-1-Ci,k
max and δi,i+1 = Ci,i+1-

Ci,k
max, where Ci,j (j = i-1, i+1, k ≠ i ± 1) is the number of CH spin-pairs that 

simultaneously correlate with amides i and j via NOE interactions, i.e., both the 
distances between CH and NiHi protons and between CH and NjHj protons are 
<4.5 Å. We also denote Ci,j as the number of common NOEs shared by amides i 
and j. Ci,k

max is the number of common NOEs shared by amides i and k, which is 
larger than those shared by amide i and all other non-adjacent amides. At the 
same time, residues i and k meet conditions: |Cα

i – Cα
k-1| < 0.5 ppm for δi,i+1 and 

|Cα
i-1 – Cα

k| < 0.5 ppm for δi,i-1, implying that amide i and amide k have matched 
Cα chemical shifts in their HNCA correlations (Cα

i–NiHi and Cα
k-1–NkHk 

correlations for δi,i+1; Cα
i-1–NiHi and Cα

k–NkHk correlations for δi,i-1). If an amide 
is located in a terminus or adjacent to a proline, one δ-NOE is calculated. ~93% 
residues have a δ−ΝΟΕ value larger than zero. We derived the result from 3100 
residues in 15 proteins whose x-ray or NMR structures and NMR resonance 
assignments are available. 
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HbCO A contained only one CαHα spin-pair as a result of no Cα-HεCε or Cα-

HβCβ TOCSY correlation. On the basis of Cα and CαHα chemical shifts, the spin-

system matched two clusters (X6 and X92) equally well (Figure 4.5 d-f). When 

considering all NOEs in the clusters, the correct path to X6 (Gly56) had six 

matched NOEs, whereas the incorrect one had only one.  

On the basis of the mapped fragments, we assigned nearly all of the 

unmapped fragments and clusters with ambiguous connectivities in an iterative 

manner using sequence information and common NOEs (Table 4.1). In the end, 

the completeness of the backbone assignment was the same as that obtained with 

the conventional approach for DdCAD-1(Lin, Huang et al. 2004). Only a few 

clusters for MBP remained unassigned because of very weak or no sequential 

HNCA correlations and missing HC-NH NOEs. Nevertheless, we assigned ten 

more residues for MBP than was previously done with triple-resonance 

experiments recorded on a 2H,13C,15N-labeled sample at 37°C (Gardner, Zhang et 

al. 1998). The backbone assignments for the α and β chains of HbCO A obtained 

here were slightly less complete than those obtained using the conventional 

approach with a perdeuterated sample (Lukin, Kontaxis et al. 2004). Twelve and 

two residues displayed no N-H HSQC correlations for the α and β chains of 

HbCO A, respectively, and thus could not be assigned here.  

The intensity ratio of the sequential to intra-residue HNCA prek is 

normally <1. As found in the proteins examined here, ~1.5% residues (Figure 4.9) 

showed intensity ratios >1, but no two adjacent residues simultaneously 

displayed such abnormal ratios. Thus, this can be used as a rule to assess the 

correctness of backbone assignments. If the amino-acid types determined from 
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the side-chain resonances of the residues are consistent with the actual residue 

types in the protein sequences, the assignments are further confirmed. This can 

be done during the process of side chain assignment. 

4.2.2 Side-chain assignment 

After obtaining backbone assignments, we assigned ~96%, ~91% and ~80% 

of aliphatic side chain resonances from the 4D 13C,15N-edited NOESY and 3D 

MQ-CCH-TOCSY spectra for DdCAD-1, MBP and HbCO A, respectively, using 

our previously established strategy (Lin, Xu et al. 2006). We obtained more 

assignments from 13C,13C-edited NOESY spectra based on initial NMR 

structures. We assigned many aromatic spins for MBP and HbCO A from the 4D 

13C,15N-edited and 13C,13C-edited NOESY spectra. We also assigned some 

aromatic spins yielding weak or overlapped resonances in the 4D spectra with a 

more sensitive 3D 13C- or 15N-edited NOESY experiment (Lin, Xu et al. 2006).  

4.3 NOE assignment and structure determination 

We unambiguously assigned 164 NiHi-CjHj, 171 CiHi-CjHj and 15 NHi-NHj 

long-range NOEs (|i-j| ≥ 5) from the 4D 13C,15N-edited and 13C,13C-edited 

NOESY and 3D 13C- or 15N-edited NOESY spectra of MBP based on the 

assignments of backbone, aliphatic side chain and tryptophan Hε1/Hδ1 spins. The 

first-round structures determined from these NOEs (Table 4.2) had a pair-wise 

root-mean-square deviation (RMSD) of ~5.2 Å. We used the derived structure 

for the assignment of additional NOE peaks in an iterative process. In the end, 

we assigned 841 and 1561 medium- and long-range NOE distance restraints from 
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the NOESY spectra, and used them for the final structure calculation. The 

average RMSDs of the 10 structures to the mean structure were 1.52, 1.22, and 

1.34 Å for all heavy atoms of the entire molecule, amino-terminal domain and 

carboxy-terminal domain, respectively (Figure 4.7 a). The RMSD for all heavy 

atoms between the mean structure and the X-ray structure was 1.95 Å (Table 4.2), 

indicating that the relative orientation of the two domains of MBP is slightly 

different in solution and crystal states (Skrynnikov, Goto et al. 2000). The quality 

of the MBP structures obtained here is comparable to the one very recently 

determined using an extremely expensive sample prepared with the stereo-array 

isotope labelling (SAIL) technique (Kainosho, Torizawa et al. 2006).  

We also determined the structures of the α chain, β chain and tetramer of 

HbCO A from intra- and intermolecular NOEs that were assigned in an iterative 

procedure as described above.  The average RMSDs of the 10 lowest-energy 

structures to the mean structure were 1.84, 1.83 and 2.20 Å for all heavy atoms 

of the α chain, β chain and tetramer, respectively (Figure 4.7 b and Table 4.3). 

The NMR structures of each chain and α−β dimer agreed very well with the x-

ray R2 structure (Figure 4.7 c,d). Our tetramer structure differed notably from the 

x-ray structure notably (RMSD, 4.0 Å), but it was closer to the solution 

quaternary structure determined from X-ray tertiary structures and RDCs(Lukin, 

Kontaxis et al. 2003) (RMSD, 3.4 Å). To reveal the structural difference in 

solution and crystal states, further structure refinement with RDCs will be 

necessary.  
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Figure 4.7 Comparison of structures determined by NMR and x-ray 

methods.  

The ten lowest-energy NMR structures of MBP (a) and the tetramer (b), α-chain 

(c) and β-chain (d) of HbCO A, calculated on the basis of distance restraints and 

backbone torsion angle restraints, superimposed with x-ray structures. For MBP, 

bonds of the N-terminal domain (residues 1-109 and 264-309) are shown in red, 

C-terminal domain (residues 114-258 and 316-370) in blue and linkers (residues 

110-113, 259-263 and 310-315) in green. For HbCO A tetramer, α1, β1, α2 and 

β2 chains are indicated in green, magenta, blue and red, respectively. The 

backbones of the x-ray structures (PDB codes, 1DMB for MBP and 1BBB for 

HbCO A) are shown as thick black lines. 
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Table 4.2 Structural statistics for the final 10 conformers of MBPa  

 

Distance restraints 
    Intraresidue (i-j = 0) 395 (119)b 
    Sequential (|i-j| = 1) 929 (610) 
    Medium range (2 ≤ |i-j| ≤ 4) 841 (196) 
    Long range (|i-j| ≥ 5) 1561 (350) 
    Total 3726 (1275) 
Dihedral angle restraints 
    φ 235 (179) 
    ψ 235 (179) 
Average rmsd to the mean structure (Å)c 
    Global 1.15 ± 0.18 (1.52 ± 0.14) d 
    N domain 0.78 ± 0.07 (1.22 ± 0.07) 
    C domain 0.87 ± 0.12 (1.34 ± 0.09) 
rmsd of the mean structure to 1DMBe 
    Global 1.41 (1.95) 
    N domain 1.10 (1.80) 
    C domain 1.12 (1.74) 
φ/ψ spacef 
    Most favored region (%) 81.2 ± 1.7 
    Additionally allowed region (%) 17.5 ± 1.6 
    Generously allowed region (%)  1.2 ± 0.4 
    Disallowed region (%)  0.1 ± 0.1 
rmsd from covalent geometry 
    Bonds (Å)g 0.0009 ± 0.0001 
    Angles (deg.) 0.2629 ± 0.0083 
    Impropers (deg.) 0.1063 ± 0.0164 
rmsd from experimental restraints 
    NOEs (Å) 0.0062 ± 0.0014 
    Dihedral angles (deg.) 0.0833 ± 0.0374 

a Selected from 40 calculated conformers according to overall energy. The 
structures have been deposited in PDB (code: 2H25). 

b Number in parentheses refer to restraints used to calculate the initial 
structures, which were used to assign more NOE peaks and to decide whether 
the TALOS predictions could be used. 

c Calculated with MOLMOL(Koradi, Billeter et al. 1996). The following 
residues were used in the rmsd calculation: Global: 6-235, 241-370; N 
domain: 6-109, 264-309; C-domain: 114-235, 241-258, 316-370. 

d Averages are over heavy backbone atoms (all heavy atoms). 
e ref  (Sharff, Rodseth et al. 1993). 
f Calculated with PROCHECK-NMR(Laskowski, Rullmannn et al. 1996). 
g Evaluated by CNS. 
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Table 4.3 Structural statistics for the final 10 conformers of HbCO Aa 

 

Distance restraints 
    subunit α-chain β-chain 
    Intra-residue (i-j = 0) 501 650 
    Sequential (|i-j| = 1) 361 458 
    Medium range (2 ≤ |i-j| ≤ 4) 246 358 
    Long range (|i-j| ≥ 5) 153 251 
    Heme-subunit 55 50 
    Total 1316 1767 
    Inter-subunit 87 
Dihedral angle restraints 
    φ 87 89 
    ψ 87 89 
Average rmsd to the mean structure (Å)b 
    Global 1.58 ± 0.27 (2.20 ± 0.24) c 
    α-chain 1.12 ± 0.16 (1.84 ± 0.16) 
    β-chain 1.00 ± 0.19 (1.83 ± 0.19) 
rmsd of the mean structure to 1BBB 
    Global 4.02 (4.30) 
    α-chain 1.59 (2.30) 
    β-chain 1.17 (1.78) 
    α1β1 two chains 1.65 (2.22) 
φ/ψ spaced 
    Most favored region (%) 75.7 
    Additionally allowed region (%) 20.1 
    Generously allowed region (%) 3.5 
    Disallowed region (%) 0.7 
rmsd from covalent geometry 
    Bonds (Å) 0.0017 ± 0.0000 
    Angles (deg.) 0.2976 ± 0.0069 
    Impropers (deg.) 0.2528 ± 0.0007 
rmsd from experimental restraints 
    NOEs (Å) 0.0143 ± 0.0004 
    Dihedral angles (deg.) 0.2602 ± 0.0297 

a Selected from 100 calculated conformers according to overall energy. The 
structures have been deposited in PDB (code: 2H35). 

b Calculated with MOLMOL(Koradi, Billeter et al. 1996). The following 
residues were used in the RMSD calculation: 4-138 for each α-chain and 4-
141 for each β-chain. 

c Averages are over heavy backbone atoms (all heavy atoms). 
d Calculated with PROCHECK-NMR(Laskowski, Rullmannn et al. 1996). 
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Table 4.4 Experimental parameters 

TROSY-HNCA(Yang and Kay 1999) 
sample field F1

13C 
ni, sw, at 

F2
15N 

ni, sw, at 
F3

1H 
ni, sw, at 

scans/d1 
total time 

DdCAD-1 800 
MHz 

27, 
3923.5 Hz, 
6.6 ms 

65, 
2594.9 Hz, 
24.7 ms 

640, 
11160.7 Hz, 
57.3 ms 

8/1.1 s 
19 hr 

MBP 800 
MHz 

24, 
3923.5 Hz, 
5.9 ms 

65, 
2594.9 Hz, 
24.7 ms 

640, 
11160.7 Hz, 
57.3 ms 

16/1.1 s 
33 hr 

HbCO A 
α-chain 

800 
MHz 

25, 
3923.5 Hz, 
6.1 ms 

53, 
2108.3 Hz, 
24.7 ms 

640, 
12820.5 Hz, 
50.0 ms 

24/1.0 s 
39 hr 

HbCO A 
β-chain 

800 
MHz 

25, 
3923.5 Hz, 
6.1 ms 

53, 
2108.3 Hz, 
24.71 ms 

640, 
12820.5 Hz, 
50.0 ms 

24/1.0 s 
39 hr 

TROSY-HNCO(Yang and Kay 1999) 
sample field F1

13C 
ni, sw, at 

F2
15N 

ni, sw, at 
F3

1H 
ni, sw, at 

scans/d1 
total time 

MBP 800 
MHz 

23, 
2414.9 Hz, 
9.1 ms 

65, 
2594.7 Hz, 
24.7 ms 

640, 
12820.5 Hz, 
50.0 ms 

8/1.0 s 
13 hr 

HbCO A 
α-chain 

800 
MHz 

23, 
2414.9 Hz, 
9.1 ms 

53, 
2108.3 Hz, 
24.7 ms 

640, 
12820.5 Hz, 
50.0 ms 

8/1.0 s 
12 hr 

HbCO A 
β-chain 

800 
MHz 

23, 
2414.9 Hz, 
9.1 ms 

53, 
2108.3 Hz, 
24.7 ms 

640, 
12820.5 Hz, 
50.0 ms 

8/1.0 s 
12 hr 

4D 13C, 15N-edited NOESY (Figure 4.1) 
Sample 
mixing 
time 

field F1
1H 

ni, sw, at 
F2

13C 
ni, sw, at 

F3
15N 

ni, sw, at 
F4

1H 
ni, sw, at 

scans/d1 
total 
time 

DdCAD-1 
75 ms 

500 
MHz 

39, 
3300.0 Hz, 
11.5 ms

24, 
4000.0 Hz, 
5.8 ms 

20, 
1444.8 Hz, 
13.1 ms 

512, 
8012.8 Hz, 
63.8 ms 

2/1.0 s 
92 hr 

MBP 
60 ms 

800 
MHz 

30, 
6053.3 Hz, 
4.8 ms 

24, 
4426.7 Hz, 
5.2 ms 

24, 
1601.5 Hz, 
14.4 ms 

640, 
11160.7 
Hz, 57.3 
ms 

4/0.9 s 
160 hr 

HbCO A 
α-chain 
50 ms 

500 
MHz 

18, 
3541.1 Hz, 
4.8 ms 

17, 
2515.7 Hz, 
6.4 ms 

18, 
1216.7 Hz, 
14.0 ms 

512, 
8012.8 Hz, 
63.8 ms 

8/1.0 s 
110 hr 

HbCO A 
β-chain 
50 ms 

500 
MHz 

18, 
3541.1 Hz, 
4.8 ms 

17, 
2515.7 Hz, 
6.4 ms 

18, 
1216.7 Hz, 
14.0 ms 

512, 
8012.8 Hz, 
63.8 ms 

8/1.0 s 
110 hr 

3D MQ-CCH-TOCSY(Zheng, Giovannelli et al. 2004) 
sample field F1

13C 
ni, sw, at 

F2
13C 

ni, sw, at 
F3

1H 
ni, sw, at 

scans/d1 
total time 

DdCAD-1 800 
MHz 

75, 
12878.3 
Hz, 5.7 ms 

34, 
5030.2 Hz, 
6.6 ms 

640, 
11160.7 Hz, 
57.3 ms 

8/0.9 s 
23 hr 

MBP 800 
MHz 

95, 
13297.9 

38, 
5231.5 Hz, 

640, 
11160.7 Hz, 

8/1.0 s 
36 hr 
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Hz, 7.1 ms 7.1 ms 57.3 ms 
HbCO A 
α-chain 

800 
MHz 

105, 
12073.6 
Hz, 8.6 ms 

35, 
4024.1 Hz, 
8.4 ms 

640, 
11160.7 Hz, 
57.3 ms 

8/1.2 s 
42 hr 

HbCO A 
β-chain 

800 
MHz 

105, 
12073.6 
Hz, 8.6 ms 

35, 
4024.1 Hz, 
8.4 ms 

640, 
11160.7 Hz, 
57.3 ms 

8/1.2 s 
42 hr 

4D 13C, 13C-edited NOESY(Clore, Kay et al. 1991) 
Sample 
mixing 
time 

Field F1
1H 

ni, sw, at 
F2

13C 
ni, sw, at 

F3
13C 

ni, sw, at 
F4

1H 
ni, sw, at 

scans/d1 
total time 

MBP 
50 ms 

800 
MHz 

30, 
6053.3 Hz, 
4.8 ms

24, 
4426.7 Hz, 
5.2 ms 

23, 
4426.7 Hz, 
5.0 ms 

512, 
9615.4 Hz, 
53.2 ms 

4/1.0 s 
162 hr 

HbCO A 
α-chain 
40 ms 

800 
MHz 

30, 
6053.3 Hz, 
4.8 ms 

24, 
4426.7 Hz, 
5.2 ms 

23, 
4426.7 Hz, 
5.0 ms 

512, 
9615.4 Hz, 
53.2 ms 

4/1.0 s 
162 hr 

HbCO A 
β-chain 
40 ms 

800 
MHz 

30, 
6053.3 Hz, 
4.8 ms 

24, 
4426.7 Hz, 
5.2 ms 

23, 
4426.7 Hz, 
5.0 ms 

512, 
9615.4 Hz, 
53.2 ms 

4/1.0 s 
162 hr 

3D 13C/15N-edited NOESY(Lin, Xu et al. 2006) 
Sample 
mixing 
time 

Field F1
1H 

ni, sw, at 
F2

13C 
ni, sw, at 

F2
15N 

ni, sw, at 
F3

1H 
ni, sw, at 

scans/d1 
total time 

MBP 
50 ms 

800 
MHz 

80,  
9601.5 Hz, 
8.2 ms 

30, 
5634.6 Hz, 
5.1 ms 

30, 
1601.5 Hz 
18.1 ms 

640, 
11160.7Hz 
57.3 ms 

8/1.3 s 
60 hr 

HbCO A 
α-chain 
40 ms 

800 
MHz 

106, 
9601.5 Hz, 
10.9 ms 

38, 
5231.5 Hz, 
7.1 ms 

38, 
2107.9 Hz, 
17.6 ms 

640, 
13550.1Hz, 
47.1 ms 

4/1.2 s 
43 hr 

HbCO A 
β-chain 
40 ms 

800 
MHz 

106, 
9601.5 Hz, 
10.9 ms 

38, 
5231.5 Hz, 
7.1 ms 

38, 
2107.9 Hz, 
17.6 ms 

640, 
13550.1Hz, 
47.1 ms 

4/1.2 s 
43 hr 

3D 13C/15N F1 filtered, F2-edited NOESY(Zwahlen, Legault et al. 1997) 
Sample 
mixing 
time 

Field F1
1H 

ni, sw, at 
F2

13C 
ni, sw, at 

F2
15N 

ni, sw, at 
F3

1H 
ni, sw, at 

scans/d1 
total time 

HbCO A 
α-chain 
50 ms 

800 
MHz 

55 
9596.9 Hz, 
5.6 ms 

38, 
5230.1 Hz, 
7.1 ms 

38,  
2107.9 Hz, 
17.6 ms 

512, 
12820.5Hz, 
39.9 ms 

16/1.0 s 
82 hr 

HbCO A 
β-chain 
50 ms 

800 
MHz 

55 
9596.9 Hz, 
5.6 ms 

38, 
5230.1 Hz, 
7.1 ms 

38, 
2107.9 Hz, 
17.6 ms 

512, 
12820.5Hz, 
39.9 ms 

16/1.0 s 
82 hr 

ni: complex points; sw: spectral width; at: maximum acquisition time; d1: interscan 
delay  

For DdCAD-1, the 13C,15N-edited NOESY was recorded in a non-constant-time 
mode. 
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4.4 Discussion and conclusion 

The assignment strategy described here used information from through-

bond correlation experiments to filter intra-residue and sequential correlations 

obtained from through-space correlation experiments, and then used these 

filtered correlations to identify adjacent spin-systems in clusters and to classify 

them by residue type. The classical approach (Wagner and Wuthrich 1982) also 

uses a NOESY- and TOCSY-based strategy, but it does not separate sequential 

NOEs from other inter-residue NOEs. Also, the classical 1H-1H TOCSY 

experiment is insensitive for proteins larger than 10 kDa. The experiments used 

here for backbone assignment are quite sensitive for nondeuterated proteins with 

correlation times less than 30 ns as illustrated by numerical simulations (Figure 

4.8) and our experimental results (Figure 4.3). Using these experimental strategy, 

one can identify most spin-systems and classify them by residue type, as most 

residues give rise to one or more TOCSY correlations for the proteins studied 

here.  

In the application of this strategy to monomeric proteins larger than MBP, 

there may be more spin-systems lacking intra-residue or sequential correlations, 

mainly because of TOCSY signal overlap. When these spin-systems distribute 

randomly over the sequence, it is still possible to construct fragments from 

clusters based on sequential connectivities and common NOEs shared by two 

amides. Although some fragments contain less than four spin-systems, one can 

map such short fragments onto the protein sequence because the residue types of 

many spin-systems can be classified, as demonstrated on the proteins studied 

here. Additionally, one can use 3D TROSY-HN(CO)CA(Yang and Kay 1999), 
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as demonstrated in Chapter 7, to identify more sequential correlations and thus to 

improve assignments of monomeric proteins with greater than 400 residues. 

Our approach may take longer time than the conventional approach for 

backbone assignment because the identification of spin-systems and 

assembly/mapping of clusters are time-consuming. One can overcome this 

drawback by using our automatic/semi-automatic software XYZ4D (Chapter 7). 

Compared with the conventional approach (Salzmann, Pervushin et al. 2000; 

Tugarinov, Choy et al. 2005), the time for data collection with our strategy can 

be substantially reduced as fewer experiments are required. The two 4D NOESY 

experiments are very time-consuming (each ~7 days), but in principle one can 

record the experiments simultaneously with a total experimental time less than 8 

days using a time-sharing scheme (Lin, Xu et al. 2006) and a multiway 

decomposition method (Tugarinov, Kay et al. 2005).  One can also apply our 

approach to smaller proteins by shortening experimental time by using fast 

multidimensional NMR spectroscopy techniques (Coggins, Venters et al. 2005; 

Tugarinov, Kay et al. 2005). 

In summary, we have shown that backbone and side-chain assignments and 

structure determination of proteins as large as HbCO A and MBP can be 

achieved with uniformly 13C,15N-labeled samples without the use of deuteration. 

Our strategy uses four indispensable experiments (4D 13C,15N-edited NOESY, 

4D 13C,13C-edited NOESY, 3D TROSY-HNCA and 3D MQ-CCH-TOCSY) and 

two supplementary experiments (3D TROSY-HNCO and 13C/15N-edited 

NOESY). Recording intermolecular NOEs is necessary for solving structures of 

protein-protein complexes. As these experiments are still sensitive enough to 
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obtain a structure for the tetrameric complex of HbCO A, it is expected that the 

approach demonstrated here can be applied to proteins or protein complexes 

smaller than 65 kDa. With the available assignments, one can measure RDCs 

from nondeuterated samples and then refine the structures derived from NOEs 

against RDCs. Because sample preparation is much less demanding, our 

approach will enhance the application of NMR spectroscopy to larger proteins. 

4.5 Materials and methods 

4.5.1 Protein samples and NMR spectroscopy  

We performed experiments on uniformly 13C,15N-labeled DdCAD-1 (~0.8 

mM, 5% D2O, pH 6.5), MBP (~1.2 mM, 10% D2O, pH 7) and HbCO A (labeled 

β chain and unlabeled α chain, ~2 × 0.6 mM β-chain; unlabeled β chain and 

labeled α chain,  ~2 × 0.5 mM α chain, 5% D2O; pH 7) at 30 °C on a Bruker 500 

MHz spectrometer equipped with a cryoprobe and a Bruker 800 MHz 

spectrometer equipped with a normal triple-resonance probe. We collected 

TROSY-HNCA, MQ-CCH-TOCSY, 13C,15N-edited NOESY (Figure 4.1), 

13C,13C-edited NOESY and time-sharing 13C- or 15N-edited NOESY for each 

sample (experimental parameters are given in Table 4.4). We acquired 13C/15N 

F1-filtered and F2-edited NOESY for obtaining intermolecular NOE restraints for 

HbCO A. We processed NMR spectra with NMRPipe (Delaglio, Grzesiek et al. 

1995) and analyzed with Sparky (Goddard, T.D. & Kneller, D.G. SPARKY 3, 

University of California, San Francisco) and NMRspy (Chapter 6). We used 

some in-house-written extensions in Sparky and XYZ4D (Chapter 8) to facilitate 

the assignment. 
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4.5.2 Identifying spin-systems  

All the peaks, correlations or spins mentioned in this section are within the 

same cluster unless otherwise indicated. The aliphatic spins within the same 

residue form a spin-system (Figure 4.4 a). We used each HNCA correlation to 

construct one initial spin-system. When only one HNCA cross peak existed in 

one cluster because of overlap of intra-residue and sequential peaks, or because 

of a lack of the sequential peak, we built one spin-system in this step. We 

obtained other spin-system members for each spin-system from HC-NH NOE 

peaks based on the fact that all of the spins in the same spin-system correlate 

with each other via MQ-CCH-TOCSY. Using 13C,15N-edited NOESY, TROSY-

HNCA and MQ-CCH-TOCSY experiments, we identified many intra-residue 

and sequential NOEs to form spin-systems in the following steps.  

First, when only one of the NOE peaks matched one of the HNCA 

correlations in Cα chemical shift, we considered this NOE peak as either an intra-

residue or sequential HαCα-HN correlation(Xu, Lin et al. 2005). We placed the 

matched NOE and HNCA correlations in the same spin-system. In the case 

which only one HNCA peak existed in a given cluster, we designated one of the 

two matched NOEs to the initial spin-system in the cluster if the Cα chemical 

shift of the HNCA peak matched the 13C shifts of only two NOE peaks, and we 

used the other matched NOE and the existing HNCA peak to create another spin-

system for the cluster.  

Second, if the side-chain CkHk spin-pair of a HkCk-NH NOE correlation 

and a Cα spin in a given cluster belong to the same spin-system, CkHk should 
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yield a correlation with this Cα spin in the MQ-CCH-TOCSY spectrum. The 

CαHα spin-pair should also correlate with spin Ck. When we observed Cα-CkHk 

or Ck-CαHα TOCSY correlations, we considered that the CkHk and Cα spins 

belonged to the same spin-system. Note that some Ck-CαHα correlations may not 

be observable because of the faster decay of Cα/Hα magnetization or the overlap 

of Hα with intense H2O resonances.  

Third, when we could not assign a HnCn-NH NOE peak to a spin-system 

because of missing Cn-CαHα or Cα-CnHn correlations, we examined the TOCSY 

correlations between the CnHn spin-pair with the CkHk spin pairs that were 

already assigned to a spin-system in the second step. If one or more Ck-CnHn 

correlations existed, we considered that the CnHn and CkHk spin-pairs were in the 

same spin-system. After these three steps, we could also assign an ungrouped 

HC-NH NOE peak to a spin-system by examining all possibilities.   

Finally, all of the CH spin pairs within the same spin-system must display 

consistent C-CH TOCSY correlations. We removed inconsistent spin pairs from 

spin-systems. Because some intra-residue and sequential HC-NH NOEs were not 

observable in the 4D NOESY and some C-CH resonances were overlapped or 

were undetectable in the 3D TOCSY, many spin-systems contained fewer spins 

than expected, that is, they were incomplete.  

4.5.3 Structure calculation 

We performed structure calculations for MBP with CNS (Brunger, Adams 

et al. 1998) using distance and dihedral restraints, which started from 40 

extended conformers. We calculated structures of the α chain, β chain and 
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tetramer of HbCO A with National Institute of Health X-PLOR software 

(Schwieters, Kuszewski et al. 2003) using distance and dihedral restraints and a 

combination of torsion-angle and Cartesian dynamics. We employed a 

calculation protocol similar to that described previously (Tugarinov, Choy et al. 

2005). In the calculation of HbCO A tetramer, we used a special NCS 

(noncrystallographic symmetry) restraint to increase the rate of convergence. We 

predicted dihedral angles of backbone φ and ψ using chemical shifts of Cα, Cβ, 

Hα, CO, and N of MBP and HbCO A with TALOS (Cornilescu, Delaglio et al. 

1999). In the case of MBP, we removed the chemical shifts of MBP from the 

database. Only those angles for the residues in regions of secondary structures as 

predicted by chemical shift index (CSI) were used as restraints for initial 

structure calculations. Other predicted angles were also included for the final 

structure calculations, provided that they were consistent with the initial 

structures. 

4.5.4 Data deposition 

We deposited the NMR spectroscopy assignments and coordinates of MBP 

and HbCO A in Biological Magnetic Resonance Bank (BMRB-7114 and BMRB-

7125, respectively) and Protein Data Bank (2H25 and 2H35, respectively). 
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Figure 4.8 Relative peak intensity (I(j,k)/Iref), as a function of overall 

correlation time (τm), calculated for different types of correlations in a 

number of 3D and 4D spectra.  

Iref denotes the intensity of Leu Cδ
i-1-NiHi correlation calculated for a 3D 

(H)CC(CO)NH-TOCSY experiment (Montelione, Lyons et al. 1992) recorded on 

a protein with a correlation time of 15 ns. I(j,k) represents the intensity of 

correlation j in experiment k. (a). Relative intensities for intraresidue (+) and 

sequential (o) HNCA correlations, HN(CO)CA correlation (*) and Leu Cδ
i-1-NiHi 

correlation (-). (b). Relative intensities for Cβ(CH)-CmHm (○), Cβ(CH2)-CmHm 

(□) , Cα-CmHm (*), Cβ(CH)-CαHα (◊), Cβ(CH2)-CαHα (-) and Cm-CαHα (+) 

TOCSY correlations in a 3D MQ-CCH-TOCSY (Zheng, Giovannelli et al. 2004) 

spectrum, where superscript m denotes the methyl position. (c). Relative 

intensities for HmCm-NH (+), HβCβ(CH2)-NH (-), HβCβ(CH)-NH (o), and HαCα-

NH (*) NOE correlations in a 4D 13C,15N-edited NOESY spectrum. The proton 

distance between CH/CH2/CH3 and NH groups were set to 3.0 Å. The two 
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protons in CβH2
β groups were assumed to have the identical chemical shift. The 

relaxation rates of NH and CαHα protons are 5%-10% larger for the residues in 

β-sheets than those in α-helices of a fully protonated protein, implying that the 

experiments involving NH or CαHα spins are slightly more sensitive for α-helical 

proteins. Therefore, only the results for residues in β-sheets are shown here. The 

fact that a 3D experiment is √2 time more sensitive than a 4D experiment 

recorded with the same pulse sequence and experimental time was taken into 

consideration in the simulations.   

I(j,k) and Iref were calculated by taking into account both J coupling and 

relaxation effects during each delay and each acquisition period of a pulse 

sequence. The J coupling constants used in the simulations were: 1JNH = 92 Hz; 
1JNCα = 11 Hz; 2JNCα = 6 Hz; 1JNCΟ = 15 Hz; 1JCαΗα = 145 Hz; 1JCmHm = 125 Hz 

(m denotes the methyl position); 1JCΗ = 135 Hz (for other CH/CH2 groups);  
1JCαCO = 55 Hz; and 1JCαCβ = 35 Hz. The relaxation rates (including transverse 

relaxation rates, cross relaxation rate, and spin flip rates of amide protons) were 

computed using the well-known formulas in which the spectral density function 

has the model-free form. The order parameters (S2) of the backbone and side-

chains were set as 0.86 and 0.4, respectively. The internal correlation time was 

set to 50 ps. The bond lengths for N-H and C-H were set to 1.02 and 1.09 Å, 

respectively. The distance between two atoms separated by two or more bonds in 

a protein was calculated from the high resolution x-ray structure. Parameters for 

chemical shift anisotropy (CSA) used were: ΔσN = -170 ppm; φN = 18º (φ is the 

angle between the principal axis of the axially symmetric CSA tensor and the 

chemical bond N-H);  ΔσH = 13 ppm; φH = 15º; ΔσC = 25 ppm; σCOx = 244 ppm; 

σCOx = 178 ppm; σCOz = 90 ppm (σCOz, σCOz and σCOz are the principal 

components of the CO CSA tensor) (Teng, Iqbal et al. 1992). The relaxation rate 

of a given spin used in the peak intensity calculations was the average of the 

relaxation rates of this spin derived from 10 high resolution protein structures 

(PDB codes: 1IUAA, 1N55A, 1NWZA, 1PJXA, 1PQ7A, 1X8QA, 1W0NA, 

1US0A, 1UCSA and 1R6JA). The TOCSY transfer efficiency was simulated 

using a FLOPSY8 mixing scheme with a spin-lock field strength of 8.3 kHz. In 

this simulation, 13C chemical shifts were the average values listed in the BMRB 
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database. In the absence of relaxation, the TOCSY transfer efficiency between Cβ 

and Cα was found to be ≥0.15 for all amino acids, and thus it was set as 0.15. The 

TOCSY transfer efficiency between other 13C spins in all amino acids was found 

to be  ≥0.08 and thus it was set to 0.08. The relaxation effect during the TOCSY 

mixing period was approximated as exp(-R2av*Tmix/2)*exp(-R1av*Tmix/2), where 

R2av and R1av are the average spin-spin and spin-lattice relaxation rates of the 13C 

spins involved in the TOCSY transfer spin-system; and Tmix is the mixing time 

(~15 ms). Note that the magnetization toggles between Cz and Cy during the 

TOCSY mixing period. The NOE transfer efficiency was calculated from the 

initial rate approximation, i.e., Iab/Iaa =  Rc(ab)*Tnoemix, where Iab and Iaa are the 

intensities of the NOESY cross-peak and diagonal peak, respectively; Rc(ab) is 

the cross-relaxation rate between protons a and b which are separated by 3.0 Å; 

and Tnoemix is the NOE mixing time, and was set as 40*30/τm ms, where τm is 

expressed in nanosecond. The acquisition time in the direct observation 

dimension was set to 57 ms for all experiments. The acquisition times were 6.1 

ms and 25 ms for the respective 13C and 15N dimensions in the TROSY-HNCA. 

The acquisition times in both indirect 13C dimensions were 7.3 ms in the 3D MQ-

CCH-TOCSY experiment.  The acquisition times were 5.9 ms and 14 ms for the 

respective 13C and 15N dimensions in the 4D 13C,15N-edited NOESY 

(supplementary Fig. S8). All simulations were performed under a proton 

frequency of 800 MHz and perfect pulses. 

3D (H)CC(CO)NH-TOCSY is an insensitive experiment for relatively large 

proteins. Nevertheless, it was still sensitive enough to yield most correlations 

(including Cδ methyls in Ile and Leu which have very low TOCSY transfer 

efficiency to Cα) for DdCAD-1 in the presence and absence of Ca2+ (protein 

concentration ~0.8 mM, experimental time 60 hrs at a 800 MHz spectrometer 

with a normal probe). The apparent correlation times  were ~12.5 and ~15 ns for 

the Ca2+-free and Ca2+-bound forms at 30 ºC, respectively (Dynamic 

dimerization in the presence of Ca2+ resulted in the correlation time difference of 

the two forms). Therefore, we used the intensity of the correlation Leu Cδ
i-1-NiHi 

in the 3D (H)CC(CO)NH-TOCSY recorded on a 15 ns tumbling protein as a 

reference for different kinds of correlations obtained at various correlation times. 
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The 3D MQ-CCH-TOCSY experiment used here did not employ gradient 

selection to enhance sensitivity. Very recently, it has been shown that the 

sensitivity of this experiment can be enhanced by a factor of two with gradient 

selection in both indirect dimensions (Permi, Tossavainen et al. 2004). 

Our simulations show that 50% partial deuteration reduces the intensities of 

NOEs between CH and NH groups for proteins with a correlation time <35 ns, 

because the reduction of proton concentration (density) cannot be compensated 

for by the more favorable relaxation of the remaining protons (Nietlispach, 

Clowes et al. 1996). On the other hand, it can enhance the peak intensities of 

NOESY and TOCSY correlations involved in CH2 and CH3 groups for a protein 

with a correlation time >20 ns. However, the enhancement may be canceled out 

by chemical shift heterogeneity due to the presence of numerous isotopomers 

(e.g., the 13C chemical shift difference between CHD2 and CH2D is ~0.3 ppm 

while the difference between CHD2 and CH3 is ~0.6 ppm). Because partial 

deuteration reduces spin diffusion, longer NOE mixing time can be used, 

implying that the NOESY experiment may benefit from partial deuteration for 

proteins >20 ns.  
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Chapter 5: 

STARS: software for statistics on inter-atomic 
distances and torsion angles in protein secondary 

structures 

 

5.1 Introduction 

5.2 Overview of STARS 

5.3 Results and discussion 
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Chapter 5: 

STARS: software for statistics on inter-atomic 
distances and torsion angles in protein secondary 
structures 

5.1 Introduction 

Structure determination by nuclear magnetic resonance (NMR) and 

structure validation involve estimation of interatomic distances and dihedral 

angles. The atom–atom distances are often derived from nuclear Overhauser 

effects (NOEs), whereas dihedral angles are derived from J-coupling constants 

and chemical shifts. Assigning each NOE peak in NOE spectroscopy (NOESY) 

to a specific pair of atoms is a challenging task even for a small protein because 

of the chemical shift degeneracy of different protons. Knowledge of interatomic 

distances for atoms located in each type of secondary structure facilitates the 

assignment of ambiguous NOEs resulting from chemical shift degeneracy on the 

basis of secondary structures that can be predicted with fair accuracy from 

chemical shifts or from amino acid sequence with computational techniques 

alone. However, if some of the NOE assignments are available (e.g. sequential 

NOEs), the distance knowledge helps in the determination of protein secondary 

structures too. Similarly, knowledge of dihedral angles for different types of 

secondary structures is very useful for deriving structural constraints from J-

coupling constants. It can also be used to build internal motional models based 

on experimental J-coupling data.  

Sometimes, information about interatomic distance and torsion angle could 

be very valuable for NMR assignment evaluation (Chapter 4). And besides 
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applications to NMR, this information may also be used to validate protein 

structures and compare protein folds. By summarizing different features of some 

special structure regions within a protein family or between different protein 

families, one may even analyze or explain some functional differences between 

several proteins. 

Statistics on the distance and dihedral angle are often derived from many 

known protein structures. It is tedious to obtain the information from a large 

number of proteins. To the best of our knowledge, there is no tool available for 

computing the statistics though many tools can calculate distances and dihedral 

angles for only one given protein structure at one time. In this chapter, we 

present a software tool for statistics on interatomic distances and dihedral angles 

in protein secondary structures (STARS). STARS provides highly interactive 

visualization of statistical results. Its friendly window-based interface makes it 

extremely easy to use. 

5.2 Overview of STARS 

5.2.1 Composition of database 

With the aid of CullPDB (Hobohm, Scharf et al. 1992), a non-redundant 

database of protein crystal structures was generated by extracting structural data 

from Protein Data Bank (Berman, Westbrook et al. 2000). Hydrogen atoms were 

added using MOLMOL (Koradi, Billeter et al. 1996). Proteins selected for our 

database meet the following criteria: 

(1) sequence identity <20%, 
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(2) resolution ≤1.6Å and R-factor ≤0.25 and 

(3) residue number > 50 and without non-standard amino acid and chain 

break. 

The resulting database consisted of 576 protein chains, containing 124037 

amino acid residues. Additional structures can be added to the database by users 

for their own interests.  

5.2.2 Definition 

The definitions and identifiers of amino acids, atoms and torsion angles 

used in STARS comply with the IUPAC recommendations in 1998 (Markley, 

Bax et al. 1998).  

Secondary structure and chirality were assigned automatically for all 

proteins in the database using the DSSP method (Wolfgang Kabsch 1983). On 

the basis of biologist’s preference, however, β-sheets were subdivided into three 

types. Totally, 10 types of secondary structures were defined (Table 5.1), 

including α-helix, 310-helix, π-helix, antiparallel-β-sheets, parallel-β-sheets and 

the combination of these two sheets, turn, bend, β-bridge and random coil.  

To obtain statistics on atom–atom distances and torsion angles, only relative 

positions among atoms in a protein chain are required. When the first and second 

atoms are located at residues i and i+n, respectively (where i is a positive integer 

while n is an integer), the relative position of the second atom with respect to the 

first one is denoted as n. The definition of residues i, J , K, j and k in a β-sheet is 

shown in Figure 5.1, the relative positions of the second atoms in residues J +n, 



STARS software for statistics on inter-atomic distances and torsion angles in protein secondary structures  Chapter 5 

 

106 
 

K +n, j +n and k +n with respect to the first atom in residue i are referred to as J 

+ n, K + n, j + n and k + n.  

Table 5.1 Ten types of secondary structures defined in STARTS and their 
one-letter symbols. 

Symbol Secondary Structure 

A all types of secondary structure 

H α-helix (4-helix) 

G 310-helix (3-helix) 

I π-helix (5-helix) 

T H-bonded turn (3-turn, 4-turn, 5-turn) 

E β-strand in antiparallel β-sheet 

P β-strand in parallel β-sheet 

W β-strand between antiparallel and parallel β-sheet  

C random coil 

S bend 

B isolated β-bridge 
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Figure 5.1 Definition of residues i, J , j ,K, k in antiparallel (a), parallel (b) 
and mixed parallel and antiparallel (c and d) β-sheets.  

i is the residue under investigation, at which the first atom is located as shown in 
the main window (Figure 5.2); J is the β-bridge partner of residue i in an 
antiparallel ladder, with H-bond (i, J), where i and J are the hydrogen donor and 
acceptor residues respectively, and H-bond (J , i); j is the β-bridge partner of 
residue i in a parallel ladder, with H-bond (i, j −1) and H-bond (j +1, i); K is the 
β-bridge partner of residue i in an antiparallel ladder, with H-bond (i + 1,K − 1) 
and H-bond (K + 1, i − 1); k is the β-bridge partner of residue i in a parallel 
ladder, with H-bond (i + 1, k) and Hbond (k, i − 1). 
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Figure 5.2 STARS user interface - Main window with the page for 
interatomic distance statistics in a single mode. 
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(a) 
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Figure 5.3 STARS user interface – (a) Window for selection of protein 
structures. (b) Page for torsion angle statistics in a single mode. 
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Figure 5.4 STARS user interface – (a) Page for interatomic distance 
statistics in a batch mode. (b) Page for torsion angle statistics in a batch 
mode. 
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Figure 5.5 STARS user interface – Windows for result display and analysis. 

 

5.2.3 User interface 

The STARS interface is intentionally uncluttered (Figure 5.2 - 5.5). The 

main window is shown in Figure 5.2. The users can define the number of 

proteins used in the statistics and let the program select proteins randomly. 

Alternatively, the structures can be selected manually from a selection window 

(Figure 5.3a) in which proteins can be sorted by name, resolution, chain length or 

R-value.  
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The statistics can be done over all residues, or the residues in one or more 

specific secondary structures selected by users (Figure 5.2). The relative 

position(s) of the second atom(s) with respect to the first atom can be specified 

by a single expression (e.g. 2 or J −1), a series of expressions (e.g. −2, 0, 1, J −

1,K +1), a range of numbers (e.g. −2 2 or j − 2 j + 2), or a combination of 

different expressions (e.g. −3, −1 − 1, k − 2 k + 1). If some of the specified 

atoms are not located in the selected secondary structure(s), the output will not 

contain distances or angles involved in these atoms.  

The statistics can be obtained in a single (Figure 5.2 and 5.3b) or batch 

mode (Figure 5.4). Since the batch mode uses a parallel process algorithm, it is 

10 times faster than the single mode for obtaining the same amount of 

information. With a job editor, jobs can be created, saved, loaded, edited, sorted, 

deleted or moved easily in the job list, and submitted at the user’s convenience.  

The statistic results are displayed in a 3D color-bar-style chart in the result 

analysis window (Figure 5.5). Almost all features of the chart can be reset by 

users in terms of color, zoom, mark, label, rotation, range, grid, etc. The software 

allows the users to view, compare, select, sort, save or load statistics through a 

result display window. All data files are saved as a common ASCII format which 

can be read by a normal text editor.  

A detailed manual is accessible by clicking the help button in the main 

window or pressing the F1 key. 

 



STARS software for statistics on inter-atomic distances and torsion angles in protein secondary structures  Chapter 5 

 

113 
 

5.3 Results and discussion 

In summary, STARS is a well designed graphics package for performing 

statistics on interatomic distances and torsion angles in protein secondary 

structures from a protein crystal structure database. It allows users to obtain both 

the graphical view and the text format of distributions of the distances and angles 

for atoms located in 10 types of protein secondary structures. We believe that it 

will facilitate assignment of ambiguous NOESY peaks, structure determination 

by nuclear magnetic resonance, structure validation and comparison of protein 

folds. 

All data, documents and execute files are freely downloadable at 

http://yangdw.science.nus.edu.sg. The software works appropriately on Windows 

system, without any compilation or installation. 
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Chapter 6: 

NMRspy: software package for NMR spectroscopy 
visualization, analysis and management 

6.1 Introduction 

One can use a series of NMR experiments to determine the structure and 

dynamics of a molecule or protein. The experiments on a reasonably complicated 

molecule like a protein can generate literally gigabytes of data. Furthermore, to 

interpret these data requires correlating the information from different 

experiments. One of the greatest challenges to a modern NMR spectroscopist is 

to visualize, analyze and manage the great variety of information that is 

obtainable through NMR techniques. 

NMRView (Johnson and Blevins 1994), Sparky (T. D. Goddard and D. G. 

Kneller, SPARKY 3, University of California, San Francisco), ANSIG (Kraulis, 

Domaille et al. 1994), and Xeasy (Bartels, Xia et al. 1995) are most widely used 

software packages for management and analysis of protein NMR datasets.  They 

are capable of working with 2D, 3D and 4D NMR data sets, displaying multiple 

flexible views on one or more NMR spectra, picking, assigning and integrating 

peaks in different spectra, and maintaining a flexible database. They also provide 

a variety of facilities to support the analysis of spectra, such as automatic peak 

picking, corresponding cursors in different windows tracking each other 

automatically, and facilitated peak analysis and interactive peak editing. Some 

even offer sets of flexible commands, data structures and display routines. 
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With the increase in protein size, 3D, 4D or even higher dimension NMR 

spectra are often used. With the limitation of sweep width, however, the peaks on 

these spectra could be folded several times. A lot of troubles and inconveniences 

appear when one analyzes these folded-spectra. The existing NMR spectroscopy 

visualization and analysis programs mentioned above lack the strategy to deal 

with this problem. Although some of them provide facilities to revise the folded 

peaks into their correct frequency, none of them is capable of visualizing the 

correlations between folded and unfolded spectra, still less synchronizing them. 

There is a great demand of a program that can deal with the folded spectra so that 

users can visually analyze them the same way as they do unfolded spectra.  

Inaccurate peak-picking of the 4D spectrum is another major drawback of 

those existing programs. All existing programs were designed for 2D spectrum 

initially, whose peak-picking algorithms have been proved to be inaccurate when 

applying to a complex 4D spectrum, and whose interactive peak-picking 

facilities are so inconvenient that few would correct the frequencies of a 4D peak. 

It will be a great relief if a new program can be developed to provide some 

accurate peak-picking algorithms and convenient interactive peak-picking 

facilities for high-dimensional NMR spectra. 

Here I present a new software package, NMRspy (NMR spectral pinpoint 

analysis system), for the visualization, analysis and management of NMR spectra. 

It has been designed to meet all those demands mentioned above and to create a 

platform which minimizes the number of limits on the user, yet emphasizes on 

easy-to-use. To facilitate the analysis of complex, crowded and folded high-

dimensional spectra, our software package contains a variety of function and 
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analysis routines that are integrated with the spectral display features. Moreover, 

the program has intrinsic project management capabilities so that the 

organization and maintenance of vast quantity of information can be a simple and 

convenient task. 

6.2  Feature and advantages of NMRspy 

6.2.1 Intrinsic capabilities 

NMRspy was written in the Java programming language. Java aids one in 

developing more understandable and reusable code. It puts a lot of emphasis on 

early checking for possible problems, later dynamic (runtime) checking, and 

eliminating situations that are error prone. It also has a dynamic automatic-

memory-manager that eliminates the possibility of overwriting memory and 

corrupting data which could happen in C or C++. Benefited from these intrinsic 

superiority, NMRspy should be more robust (less likely to crash) and users need 

not worry too much about the computer memory size.  

Thanks for the Java’s intrinsic support for threading, it becomes possible 

for NMRspy to perform certain operations in a separate thread of execution, 

essentially allowing “multitasking” within a single application. On 

multiprocessor computers each thread can operate on a separate processor and 

speed up the operation several times. Also thanks for the object oriented nature 

of Java, the existing NMRspy modules or new modules can simply "plug and 

play" with the whole package. 
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The same Java code will run on a variety of systems with a variety of CPU 

and operating system architectures. With the Java virtual machine installed, 

which can be freely downloaded from www.java.com, all users can use the same 

NMRspy distribution without any compilation or installation, even if one is on 

Windows, another on Macintosh, and still another on Unix. And the design of 

NMRspy makes it very easy to incorporate Java libraries. This will allow the 

addition of many new features to NMRspy. 

6.2.2 Capability of analyzing folded-spectrum  

Some spectra, especially 3D and 4D spectra, may be collected with a 

sweep width narrower than the frequency range of the spectral peaks (for 

example, Bax et al., 1990, 1991). In these spectra, peaks are folded to a position 

that differs from their true position by an integer multiple of the sweep width.  

6.2.2.1 Proper frequency display of aliased peaks  

One can differentiate folded and unfolded peaks according to their features 

(e.g. peak intensity and position) or experimental methods (e.g. comparing 

correlated spectra).  

During the process of  analyzing a folded spectrum or determining  a 

folded peak, generally, one would want to know the  possible true chemical shifts 

(or pre-folded chemical shift) of a peak when one or several sweep widths are 

added to or subtracted from its original chemical shift. And after the folded peaks 

are determined, one always hopes that these peaks could have their pre-and post-

folding chemical shifts recorded so as to find their chemical shift easily in further 

NOE assignments. 
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Without software supporting, one usually has to put a lot of effort in 

tedious jobs such as calculating the possible chemical shifts that may correspond 

to a particular position or the true position of a folded peak. The manual 

conversion of folded position into unfolded one seems unremarkable, but in a 

real process of spectral analysis, facing hundreds of thousands of folded peaks, 

manual calculation will not only greatly slow down the progress of the analysis, 

but also tend to be error-prone. When performing the manual chemical shift 

conversion, one usually takes a rough value with one or none decimal place, this  

may cause significant risk in chemical shift analysis and peak matching, which 

will consequently lead to a lot of mistakes that should be avoided. 

NMRspy provides a real-time chemical shifts conversion function in the 

spectral view status bar (Section 6.3.2.3). On the basis of user’s preference, when 

the cursor moves to a certain position on a spectral view, the status bar not only 

shows the original chemical shifts of that position, but also reveals its possible 

true chemical shifts. The program could automatically calculate the “true 

chemical shifts” by adding or subtracting up to 5 integer multiple of the sweep 

widths from the original chemical shifts, and display them alongside with the 

original chemical shifts and other information in the status bar. Users could 

simply move the mouse and read all the accurate chemical shifts they want to 

know from the status bar after customizing it for their convenience.  

Each peak displayed by NMRspy has a set of pre- and post-folding 

chemical shifts. One or more sweep widths could be easily added to or subtracted 

from a peak’s original position using the Peak Editor dialog (Section 6.3.4.1). 

With both original and corrected chemical shift sets readily accessible, users 
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would never need to manually calculate any rough value. As a matter of fact, 

users don’t even need to know the values of the sweep widths at all if they can 

properly combine and apply the facilities provided by NMRspy. 

6.2.2.2 Spectra synchronization & cursor correlation 

Conventionally, when analyzing a group of correlated spectra, 

spectroscopists often use a function called “Spectra Synchronization” which 

synchronizes the axes of 2 or more spectral views. In a group of synchronized 

views, the positions of the crosshairs in each window are correlated with the 

positions in every other window in an automatic and intuitive way. The crosshair 

in different windows automatically tracks each other in an appropriate manner, 

so that spectroscopists can quickly determine whether two peaks in different 

spectra match each other in chemical shifts.  

However, with the increased size of protein under NMR study and the 

limitation of sweep width, spectroscopists often need to correlate and analyze a 

series of folded multidimensional spectra that have different sweep widths and 

folding rates. In this case, peaks that should have the same chemical shift may be 

located differently in different spectra after folding, invalidating the "Spectra 

Synchronization" function.  

NMRspy offers a much more powerful "Spectra Synchronization" function. 

In addition to synchronizing the unfolded area, it can automatically delineate the 

possible post-folded location in corresponding spectrum (Figure 6.1). In 

NMRspy, if the user synchronizes a spectral view A with B, when the cursor 
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moves to location x in view A, the program will automatically mark three kinds 

of corresponding locations in view B:  

1) If x falls in the sweep width of spectrum B, the direct 

corresponding locations in the unfolded area of view B will be 

marked. (Figure 6.1 a) 

2) When x falls out of the sweep width of spectrum B, possible post-

folded corresponding locations in view B will be marked. (Figure 

6.1 b, c) 

3) Assume that location x is already folded, all the possible 

corresponding locations of x will be marked in view B. (Figure 

6.1 b, c)    
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6.2.3 Multi-dimension-peakpicking capability 

Most of the useful information present in NMR spectra can be extracted in 

the form of peaks containing information about its positions and intensities. 

Accordingly, NMRspy provides capabilities for the extraction and analysis of 

peak data. The first tool required is a peak picker. NMRspy incorporates a simple 

but fairly robust peak picker similar to that used in many other NMR programs 

(for example, Kleywegt et al., 1990). Peaks are identified as local maxima in the 

spectrum. The actual peak position is determined by interpolating to the 

maximum of a polynomial fit to the five data points nearest to the maximum. The 

determination of position is repeated along all dimensions of the data set.  

However, NMR spectrum peakpicking has never been an easy task for the 

computer or spectroscopist. Artificial noise, overlapped signal and anomalous 

peak-shapes present in different dimensions make it a huge challenge to pick 

peaks in a multidimensional spectrum, especially for those high-dimension low-

resolution NMR spectra. Although great efforts have been devoted into 

developing automatic peakpicking algorithms and programs, none of them can 

match the accuracy of interactive-peakpicking by a sophisticated spectroscopist. 

It’s not surprising that for most spectroscopists, interactive-peakpicking is still an 

essential step or at least a necessary reinforcement for the automatic procedure 

throughout their work.  

NMRspy not only allows users to manually add, delete or move peaks in 

two-dimension plane, as what other programs can do, but also provides a peak 

Resonance & DataHeight Adjustor (Figure 6.2), which allows users to pinpoint 

the resonance and intensity of a peak in multi-dimension spectrum. For a 
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particular peak, the Resonance & DataHeight Adjustor can display the data 

points and fitting curves around it from all dimensions. Users will find it very 

convenient to manipulate the interface: display as many data points as they want; 

enlarge, reduce or move the curves form different dimensions respectively; drag 

the peak centre along the fitting curves freely with the data height automatically 

detected. If the peak centre in one dimension has been changed, a flip on the 

“Refresh” button could quickly synchronize the other displays. 

 

Figure 6.2 Peak Resonance & DataHeight Adjustor. 

With the aid of this facility, NMRspy users could investigate a peak in 

great detail and distinguish a lot more peaks that have been overlapped by others.  
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Moreover, actually looking at the curves shape and distribution of peaks can be 

very important for discovering artifacts in spectra, which may lead to 

identification of extra peaks or missing peaks that result from conformational 

dynamics, multiple species in solution, or ligand binding effects. 

6.2.4 Project management capability 

A spectroscopist may spend considerable time creating and configuring a 

group of display windows, importing protein sequence or generating chemical 

shift lists. To avoid having to re-create the displays, re-import the data or re-

generate the lists in the case of a computer malfunction or when starting up a 

new session of work, it is very useful to save the current state of the window 

parameters and database. 

In order to meet this demand, NMRspy introduced the concept of project 

management. Users can enclose unlimited amount of spectral view and dataset 

into a project. A set of protein sequence, atom list and assignment list could also 

be enclosed into it.  

A project contains almost all the parameters describing the NMRspy 

display environment, including window names, sizes, locations and display 

attributes, as well as datasets opened in the session. When restarting, NMRspy 

simply opens the project file and the previous database will be loaded and the 

display environment will be recreated.  

NMRspy features an auto-save function that saves an opened project 

automatically, helping to reduce the risk or impact of data loss in case of a 

system crash or freeze. Auto-saving is done in predetermined intervals which 
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could be customized by users. It is quite a good alternative for users who don’t 

have the good habit of saving files regularly. 

With project management, NMRspy users can easily switch between 

different projects, or continue the unfinished work any time. Those extension 

program developers can also extend the project manager's functions to save more 

useful data, making it easier to organize the involved data and interfaces of a 

complex analysis procedure.  (see Chapter 7).  

6.2.5 Spectral view simplification capability 

Many NMR spectral analysis strategies, especially those for large protein 

study, require proper combination of information retrieved from several 

experiments. This means several NMR spectra may need to be displayed at the 

same time with dozens of spectral view windows showing different regions of 

them to facilitate a complex analysis.  

With no arbitrary limits on the number of spectral views that can be opened, 

a major bottleneck of most widely-used NMR spectral visualization software is 

the space limitation of computer screen. In a traditional (or standard) spectral 

view window, control and status widgets (e.g. spectrum control bar, chemical 

shift scales, scroll bar, status bar) usually take up a lot of display space. These 

“barren” widgets may waste more than 50% of the valuable screen space when 

numerous spectral view windows are opened, making the information-rich 

contour plots “compressed” in some small and separate areas (Figure 6.3 a). It is 

not uncommon that a spectroscopist places several screens side by side to enlarge 

the visualized spectral area. 
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NMRspy provides a novel feature -- “Simple Layout” for spectral view 

window to alleviate the lack of screen space problem. When users press Esc, all 

“barren” widgets in a spectral view window will be hidden away, with only the 

contour plot and window’s titles left.  Most of the hidden widgets’ functions are 

replaced by other means, for example, the commands carried by spectrum control 

bar could be accessed through right-click popup menu or keyboard shortcut, the 

chemical shift scales replaced by chemical shift labeled crosshairs, and the 

operations usually by scroll bars performed by the mouse wheel and Cursor Keys 

instead. The Simple Layout hardly causes any inconvenience to users, and in 

case a widget is needed (e.g. Status Bar), users could drag it out of the spectral 

view window before applying the Simple Layout so that it will remain visible 

and function normally.  

Simple Layout raises the utilization of screen space to almost 100% (Figure 

6.3 b). It allows for the creation of very complex arrangements of spectra view to 

further facilitate a complex analysis. The analysis with multiple spectral slices 

(or spectra) has also been made more intuitive and easier with the gap-free 

arrangements. 
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a 

 

b 

 

Figure 6.3 Multiple spectral views with standard layout (a) and simple 
layout (b). 
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6.3 User’s interface 

NMRspy uses separate windows to perform different functions: overall 

control, spectrum visualization, attribute configuration, and other operations. 

(Figure 6.4) These windows are depicted in the following sections of this chapter. 

 

Figure 6.4 Overall Diagram of interfaces in NMRspy 
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6.3.1 Control panel 

The Control Panel is the first window to be displayed when NMRspy starts 

up, and consists of a menu bar, a log-display pane and some log-configuration 

buttons (Figure 6.5). 

Logs record the user's important operations. There are two display modes 

that can be used. Under “Normal” mode, only a summary of operations will be 

displayed. Under “Detail” mode, the IDs of those objects involved in the 

operation will also be displayed. With them, NMRspy users can easily examine 

their operation history and correct the mistake if there is any. For example, if a 

peak has been mistakenly deleted, the user can track the peak ID by examining 

the detail-logs and record it with Peak Editor (Section 6.3.4.1) or Peak Table 

(Section 6.3.4.2). Users can customize the amount of logs that are maintained by 

NMRspy with Project Manager (Figure 6.6) or save the logs into a text file by 

using the button located at the down-right corner of the control panel.  

The menus available through the menu bar may be used to bring up various 

other NMRspy windows. The options available through each menu item are 

summarized as below. 
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Figure 6.5 NMRspy Control Panel and its menus. 

 

Figure 6.6 Project Manager Window. 
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6.3.1.1 Spectrum menu 

• Data format Conversion 

With the format conversion dialog (Figure 6.7), the user can convert a 

spectral file in NMRpipe format to the NMR format, change its orientation or 

provide its title, user and comments at the user’s convenience. 

Files containing NMR data are commonly found in two different formats: 

serial format and sub-matrix format. In the serial format (e.g. NMRpipe format), 

the experimental progression of data points (a complete set of points in one row, 

followed by another set of points in the next row) corresponds exactly to the 

order of data points in the actual data file. In the sub-matrix format (e.g. 

SPARKY, NMRView format) a portion (the block size) of a row is followed by 

further portions of subsequent rows before the remaining data points of the row 

are found. Of the two, the sub-matrix format provides a layout of data on the disk 

that is much more efficient for NMRspy to access. This is particularly true if the 

data are to be displayed in different orientations or if multiple datasets are to be 

analyzed simultaneously. Instead of accessing files with a serial format directly, 

it is generally better to convert them to the more efficient sub-matrix format. 

NMR format, a new sub-matrix format defined by us, has been specially 

optimized for NMRspy. Although NMRspy is capable of reading and displaying 

other spectral data formats (e.g. NMRpipe, SPARKY) and exerting all 

NMRspy’s powers, users are recommended to convert data files in other formats 

to the NMR format before using them.  
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Figure 6.7 Format Conversion Dialog 

• Open Spectrum 

It brings up a file selection panel for reading a spectral data file. NMRspy 

currently supports three spectral data format: NMR format, NMRpipe format and 

SPARKY format. The spectrum will be appended to the current project and 

display in a “Spectral view” window.  

• Open View / Save View / Save View As 

Save the current “Spectral view” window to a “.VIW” file, or load such a 

window from a “.VIW” file previously saved.  

• Copy View 

Duplicate the current “Spectral view” window. 
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6.3.1.2 DataSet menu 

Save the current dataset to a “.DST” file, or load a dataset from a “.DST” 

file previously saved into the current project.  

6.3.1.3 Project menu 

• Open / Save / Save As 

Save the currently opened project and its data (e.g. spectral view, dataset, 

sequence…) to a “.PRO” file and a folder with the same name in the same 

directory, or close the currently opened project and load a previously saved 

project. 

• Manage 

Select this to open a Project Manage Panel (Figure 6.6) that can be used to 

refer to or close spectral views and datasets, set up the log and auto-save 

parameters. 

• Synchronize Views 

Select this to bring up a “Synchronize Views” panel (Figure 6.8), which 

could be used to synchronize axes of two or more spectral views so that scrolling 

one view causes others to scroll. 

The Synchronize Views Panel lists the axes for every view in the project. 

Users may select two or more axes to synchronize and press the synchronize 

button. Synchronized axes have the number 0, 1, 2, 3, ... displayed next to them, 

and axes labeled with the same numbers are synchronized. To remove 



NMRspy: software package for NMR spectroscopy visualization, analysis and management  Chapter 6 

 

135 
 

synchronizations, select one or more axes you no longer want to synchronize and 

then press the unsynchronize button.  

• Close 

Select this to close currently opened project without saving and open a new 

one. 

 

Figure 6.8 Synchronize Views Panel 

6.3.1.4 Analysis menu 

• Sequence 

Select this to bring up a display panel to display, load or save the of amino 

acid sequence of a protein.  

• Atoms 

Select this to bring up the Atom List Panel (Figure 6.9) that is used to keep 

track of chemical shift assignments. The panel allows users to export or import 
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the atom list, extract chemical shifts from datasets, display the atom list in 

different patterns or search for a given string in different data fields. 

 

Figure 6.9 Atom List Panel. 

• Peaks 

Select this to bring up a Peak Editor Panel which could be used to navigate 

through peak list and examine or modify the peaks. Find more details in section 

6.3.4.1. 

• Assignments 

Select this to display a table of chemical shifts (Figure 6.10). The chemical 

shift for a given an atom shown in the table is the average obtained from all 

peaks in all spectra having the same molecule and atom names. To see the 
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number of assignments contributing to each average chemical shift, click “Show” 

- “Assignment Counts” switch. You can also have the table entries to include the 

standard deviation of the peak positions contributing to each chemical shift by 

clicking on the “Show” - “Standard Deviation” switch. The chemical shifts can 

also be exported to the atom list if the group labels match with the protein amino 

acid sequence. 

 

Figure 6.10 Assignment Summarized Table. 

The table summarizes the chemical shifts (p.p.m), assignment counts 
(in parentheses) and the standard deviations (in square brackets) of 
each assigned atoms (columns) in different residues (rows). 
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Figure 6.11 NOE Calibration Panel. 

• NOEs 

Select this to bring up a panel (Figure 6.11) for creating and editing NOE 

restraint lists. 

6.3.1.5 Extensions menu 

NMRspy currently has only one extension: “XYZ4D” (Chapter 7) for 

automatic/semi-automatic backbone assignment using the new strategy 

developed by our lab (Chapter 4). 
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Figure 6.12 Spectral View (Spectral Display Window) 

 

6.3.2 Spectral display windows 

Spectral display windows, also called spectral views (Figure 6.12), are the 

windows in which contour plots of planes of spectra can be displayed.  

NMRspy has few limits on the user's ability to visualize NMR spectra. As 

with the number of datasets that can be opened, there are no limits to the number 

of spectral views that can be opened at the same time. Likewise, they can be 

displayed with arbitrary locations and sizes on the desktop.  
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The spectral view is highly flexible and plastic, almost all colors used in 

drawing the spectrum (contours, labels, crosshairs, background etc.) can be 

customized by users. The size and height/width ratio of the spectrum can also be 

adjusted. Users could even drag a widget out of the spectral view window by 

pressing and holding the left mouse button with the pointer at the left or top 

margin of the widget, then keeping the button down and dragging the widget to 

any arbitrary location. 

More spectral views can be displayed in “Simple Layout” as mentioned in 

Section 6.2.5. While only two-dimensional displays of spectra are possible, the 

choice of dataset dimensions corresponding to displaying axes is up to the user. 

Different views, including variations on parameters such as dataset dimensions, 

plot regions, and contour levels of the same spectrum, can be displayed 

simultaneously in different spectral views.  

6.3.2.1 Spectrum control bar 

A Control Bar is present across the top of the standard spectral view 

(Figure 6.12). The icons provide easy access to commands to adjust the spectral 

view and levels, as well as to print spectra and stop contour drawing that is in 

progress in a given window. 

 

Table 6.1 Icons in control bar  

 
Draw Draw the spectrum using all currently selected 

parameters. Use this to refresh the spectrum after 
changing a parameter which does not result in automatic 
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redrawing of the spectrum. Keyboard Shortcut: “ D ” 

 

 
Full Set the display region of the spectrum to their full extents 

and draw the spectrum. For 3D and higher dimensional 
spectra only the dimensions on the x and y axes of the 
display are set to the full values. Keyboard Shortcut: “ F ” 

 

 
Previous 
View 

Set the display region to the region displayed before the 
last spectrum control command issued. Keyboard 
Shortcut: “ PgUp ” 

 

 
Next View Set the display region to the region displayed before the 

Previous command issued. Keyboard Shortcut: “ PgDn ” 

 

 
Zoom In Zoom the display into a region around the center of the 

currently displayed region. A smaller portion of the 
spectrum will be displayed, and the displayed peaks will 
look larger. Keyboard Shortcut: “ + ” 

 

 
Zoom Out Zoom the display out from the center of the currently 

displayed region. A larger portion of the spectrum will be 
displayed, and the displayed peaks will look smaller. 
Keyboard Shortcut: “ - ” 

 

 
Auto Level Automatically calculate and set the display level to a 

"reasonable" value. Keyboard Shortcut: “ ? ” 

 

 Level Up Raise the contour threshold of spectrum. Generally, fewer 
peaks will be displayed, and their displayed footprint will 
be smaller. Keyboard Shortcut: “ < ” 

 

 Level Down Lower the contour threshold of spectrum. Generally, 
more peaks will be displayed, and their displayed 
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footprint will be larger. Keyboard Shortcut: “ > ” 

 

 Broaden Broaden the display from the center of the currently 
displayed region. The display region will cover less 
chemical shift range of the X dimension. Keyboard 
Shortcut: “ [ ” 

 

 
Narrow Narrow the display from the center of the currently 

displayed region. The display region will cover more 
chemical shift range of the X dimension. Keyboard 
Shortcut: “ ] ” 

 

 
Heighten Enlarge the display from the center of the currently 

displayed region along the Y-axis. The display region 
will cover less chemical shift range of the Y dimension. 
Keyboard Shortcut: “ ; ” 

 

 
Lower Lower the display from the center of the currently 

displayed region. The display region will cover more 
chemical shift range of the Y dimension. Keyboard 
Shortcut: “ ‘” 

 

 
Expand In 
Proportion 

Expand the spectrum in proportion to the resolution of x 
and y axes. The height / width ratio of the spectrum will 
be set as the data point ratio of x and y axes, the longer 
axes will be set to its full extent in the window. This 
command affects only the dimensions displayed on the x 
and y axes of the plot. Keyboard Shortcut: “ \ ” 

 

 
Duplicate Duplicate the spectral view. Create another spectral view 

using exactly the same parameters with a different title. 
The new spectral will be displayed at the right side of the 
original one. Keyboard Shortcut: “ Ins. ” 
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 Stop Stop drawing the current spectrum. As each spectrum is 
drawing itself it periodically checks for a "stop" flag. 
Clicking this button sets the "stop" flag. There may be a 
short delay between clicking the button and the time at 
which the spectrum display stops. Keyboard Shortcut: 
“ Break ” 

 

 
Information Display some tips and hints for controlling or 

customizing the spectral view. 

 

 Print Open a dialog for printing the spectrum (Figure 6.13). 
Use this dialog to set such things as the spectrum title, 
resolution, labels, grids, tick marks, page size & 
orientation, output device (including whether to send the 
output to a file rather than a printer) and previewing of 
the printing result. 

 

Figure 6.13 Spectrum Printing Dialog. 
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6.3.2.2 Mouse and keypad navigation 

You can quickly navigate around a spectrum using buttons or the wheel on 

the mouse or keys on the auxiliary keypads of the keyboard. To use this feature 

the active window must have the "focus", that is, it must be the last window that 

you have clicked. 

• Mouse  

Left click 
 

Select or deselect displayed objects (peaks, labels, 

grids etc.). Click the left mouse button on an object will 

select it and deselect other objects. Click the left mouse 

button on an empty location will deselect any selected 

object. 

 

Ctrl + Left click 
 

Multiple select/deselect object. Hold the Ctrl key and 

click the left mouse button on an un-selected object will 

append it into the current selected objects list. Click on a 

selected object will remove it from the list. 

 

Right click 
 

Bring up a popup-menu which could be used to 

add/edit/delete displayed object(s), control display region, 

and open various tables and so on. 

 

Left drag 
 

Select multiple objects in a displayed region. Press and 

hold the left mouse button with the pointer at the up-left 

corner of the region. Keep the button down as you drag the 
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cursor to the down-right corner of the region. A box will 

appear and follow the cursor. All objects enclosed in the box 

will be selected after the left mouse button being released. 

Move selected object(s). Press and hold the left mouse 

button with the pointer on a selected object. Keep the button 

down as you drag the cursor to a new position. The selected 

object(s) will be moved to the new position. 

 

Middle drag 
 

Expand the display region.  Press and hold the middle 

mouse button (or wheel) as you drag the cursor to draw a 

box. The display region corresponds to the area currently 

enclosed in the box will be expand after the middle button 

being released.  

 

Wheel up/down 
 

Scroll up/down the spectrum. 

 

Shift + Wheel 
up/down 
 

Scroll left/right the spectrum. 

 

• Numeric Keypad 
 

1 Pan down and to the left. 

2 Pan down. 

3 Pan down and to the right. 

4 Pan left. 

6 Pan right. 
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7 Pan up and to the left. 

8 Pan up. 

9 Pan up and to the right. 

 
• Cursor Keys 

 
Down Arrow 3D, 4D Spectrum: Move Down a Z plane. 

Up Arrow 3D, 4D Spectrum: Move Up a Z plane. 

Left Arrow 4D Spectrum: Move Down a A plane. 

Right Arrow 4D Spectrum: Move Up a A plane. 

 
 

• Other Keys 
 

Space Open “Spectral Attribute Window”. (Section 6.3.3) 

A Open “Peak Identification Dialog”. (Section 6.3.5.4) 

Enter Edit the currently selected object(s). 

Del Delete the currently selected object(s). 

Esc Switch between “Standard Layout” and “Simple 

Layout” (see Section  6.2.5). 

 

6.3.2.3 Status bar 

NMRspy provides a very useful status bar (Figure 6.14a). An option dialog 

(Figure 6.14b) could be brought up by clicking the blue gear icon shown in Fig. 

6.13a. It allows users to customize the status bar so that it can display useful 

information at their convenience.  

When the cursor moves into a spectrum, the current position of the 

crosshair and its folded position(s) (add or subtract up to 5 integer multiple of the 
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sweep widths) could be displayed in ppm in status bar with its data height. The 

crosshair position could also be displayed in the unit of pix or/and data point. 

When the cursor moves out of a spectrum, spectral information like 

dimension labels, sweep width, resolutions, data point counts, file name and data 

set title could be displayed in status bar. 

 

Figure 6.14 Status Bar Setting Dialog. 

6.3.3 Spectral attribute windows 

This window collects a wide variety of controls for interacting with 

spectral view. Only one view is controlled at a time through this window. The 

title bar of the window will indicate the name of the view whose attributes are 

being set. This window is selected when clicking the “Attribute Button” at the 
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down-right corner of a spectral view, or pressing space key when a spectral view 

is active. 

The Attribute Window is composed of a tabbed panel which forms the 

majority of the window and four buttons across the bottom. The tabbed panel 

allows the user to select from a series of panel controlling different aspects of the 

spectral view. 

The various tapped panels that comprise the Attribute Window are 

described in the following sections. 

6.3.3.1 File panel 

The File Panel (Figure 6.15) is used to assign individual spectrum to a 

spectral view, and display/control its references.  

NMRspy uses a conservative approach in changing the reference 

information of a data file. Users could never modify the reference of a non-

NMR-format data file. When a NMR-format data file is created (Section 6.3.1.1), 

an original reference and a copy of it are generated. The original reference is 

used as a backup and will never be modified; instead, changes to the reference 

are made persistent by modifying the copy or the so-called active one. A dialog 

panel (Figure 6.16) is used for adjusting all the reference information and then 

for modifying the active reference. Both references are saved in the spectral data 

file.  
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Figure 6.15 Spectrum File Setting Panel. 

 

Figure 6.16 Spectrum Reference Editor. 
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6.3.3.2 View panel 

The amount of information in an NMR spectrum is generally so great that 

it is often only informative to look at a portion of the spectrum at one time. In 

NMRspy, sub-regions may be selected by limiting the region on the x or y axis of 

the display, and/or choosing a sub-selection of planes in a spectrum with three or 

more dimensions. 

The View Panel (Figure 6.17) provides controls to interactively select the 

display regions. Press the Left Mouse button over the axis mark (X, Y, Z and A) 

to pop-up a menu of predefined plot limits, or enter values in the next two text 

fields to set the plot limits (in ppm). For 3D and 4D spectra, if a range of values 

for Z and/or A are specified, all planes between the two specified values 

(inclusive) are drawn with one plane overlaid with another. The file dimensions 

and the display dimensions can be chosen in any desired manner. The pull down 

choice box in the third field is used to specify which dataset dimension is 

specified on the particular axis.  

The View Panel also provides controls to overlay spectra. User can overlay 

the contours of one spectrum on another after opening them in different spectral 

views. By repeating this process they can overlay as many spectra as they want 

on one view and control the contour levels, colors and order of each overlaid 

view separately. The contour levels of all the overlaid spectra could also be 

changed together. Overlaying spectra is very useful in comparing peaks of 

spectra collected under different conditions, such as comparing spectra of 

proteins collected in the presence of different ligands or comparing wild type and 

mutant forms of a protein. 
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Figure 6.17 Spectral View Setting Panel. 

 

Figure 6.18 Spectral Level Setting Panel. 
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6.3.3.3 Level panel 

An NMR spectrum may have a tremendous dynamic range, with some 

peaks that are orders of magnitude more intense than others. Despite the presence 

of peaks with great intensity, some of the most important peaks in the spectrum 

may have intensities only slightly higher than that of the noise. While the 

NMRspy Auto-Level tool in the Spectral Control Bar can automatically set a 

level that gives an aesthetically pleasing plot, manual selection of the intensity 

scale is often required to visually perceive all the information in the spectrum. 

The Levels Panel (Figure 6.18) has controls for adjusting the scaling of the 

NMR spectrum intensity, the levels used for calculating contours, and colors of 

drawn contours. It is divided into two sub-regions, one for the positive contours 

and the other for the negative contours of spectrum.  

The check-buttons control whether or not the contours will be displayed 

and synchronized. Select the positive check-button, and deselect the negative 

check-button to see only positive contours. Select both check-buttons to see both. 

Select the synchronization check-button to synchronize the level and scaling 

properties of positive and negative contours.  

The color buttons control the color of a drawn spectrum. Clicking the 

buttons will bring up a Color Selection Dialog. Some of the color choices such as 

red-blue, red-yellow and green-blue color the contour lines in a range of colors 

according to their height. In the green -blue scheme the lowest contour level is 

green and the highest level is blue with intermediate levels having intermediate 

colors. This can help users see peaks when looking at highly overlapped regions 
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that are a mass of contours, or when they wish to have low contour levels that 

show a lot of noise. 

The next region of the panel provides three sliders and text boxes to specify 

the contour level, the ratio between subsequent contours, and the number of 

contour levels to draw. 

Level Specify the level at which contours are to be drawn. The slider 

provides a convenient means to increment or decrement the contour 

level.  

 

NLvls Specify the maximum number of contours to be drawn. 

 

CLM Specify the ratio between subsequent contour levels. For example, 

a value of 1.5 means that each contour will be 1.5 times as high as the 

previous one. 

6.3.3.4 Peak & label panel 

While it is possible to analyze NMR data by directly decomposing the raw 

data into lists of parameters such as frequencies and linewidths, most users still 

rely on Fourier Transformation of the FID and then identifying peak positions in 

the transformed data. Accordingly, NMRspy provides many tools for locating 

and analyzing these spectral peaks. The Peak & Label Panel (Figure 6.19) has 

controls for generating and displaying peaks in a spectrum. 

Peak, label and grid are the only visible objects that could be drawn on the 

contours of a spectrum. All of them are stored in a dataset. Creating or selecting 

a dataset of a spectrum is the standard starting point for analyzing it. 
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To pick peaks in a particular region of a spectrum which is chosen in the 

spectral view, select the “Current Window” attribute in the region combo box. To 

pick peaks in the entire spectrum, select the “Whole Spectrum” attribute instead. 

The peaks that are picked may be appended to the peak list in the dataset, or 

replace the existing peak list. Click on the Pick button to start the automatic 

peakpicking or click on the Clear button to clear peaks in the specified region. 

Peaks are displayed on the contour plot as small crosses with or without a 

string labels. The size, color, type and font of the label could be specified by 

users. With 3D and 4D spectra, only peaks whose Z and/or A dimensions are 

within a specified number of planes from the currently displayed plane will 

appear. The range within which planes are displayed is specified with the 

"Visible Depth" parameter. Peaks whose Z and/or A dimensions are closest to the 

displayed plane are displayed with the “On Color”. Those peaks that are off the 

displayed plane but within the specified range appear with the “Off Color”. 

The Peak & Label Panel also contains buttons that can access “Peak Auto-

assign Dialog” (Section 6.3.4.3) and “Peak (label, grid) Table” (Section 6.3.4.2). 



NMRspy: software package for NMR spectroscopy visualization, analysis and management  Chapter 6 

 

155 
 

 

Figure 6.19 Peak & Label Setting Panel. 

 

Figure 6.20 Peak Editor Dialog. 
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Figure 6.21 Peak Assignment Dialog. 

6.3.4 Other dialogs & windows 

Besides the major display and configuration windows mentioned above, 

users may discover many other useful interfaces in NMRspy. We’ll brief some 

important ones. 

6.3.4.1 Peak (label, grid) editor 

NMRspy provides a very powerful and relatively rapid method for 

interactively examining peaks. The Peak Editor (Figure 6.20) allows users to 

rapidly navigate through peak lists, examine, modify or assign peaks with well 

designed interface.  

The Peak Editor is able to sort the whole peak list by various orders (e.g. 

peak ID, assignment, label, intensity, chemical shift) and navigate through these 

peaks one by one. It can also search a certain peak that has specified properties 

(first fully-assigned, next unlock, first deleted etc.). With Peak Editor, Users can 

send peaks to recycle bin, lock its attributes to avoid farther modification, alias 
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its chemical shift to the “true position”, adjust its resonance and data-height or 

customize its display label. 

If a spectral view has been selected in the combo box, when clicking the 

“Locate & Display” button, the display will center on the peak position. If an 

atom list has been fully or partially assigned, when clicking the “Assign” button 

at the right side of every dimension’s properties, a peak assignment dialog 

(Figure 6.21) will pop up and assist users in peak assignment task. 

Farther more, the Resonance & DataHeight Adjustor (Figure 6.2) provided 

by NMRspy allows users to pinpoint the resonance and intensity of a peak in a 

multi-dimensional spectrum. (Section 6.2.3) Drag the vertical central line (blue 

line) in every dimension, and the parallel intensity line will move along the 

fitting curve and extract the accurate data height.  

NMRspy also provides Label Editor and Grid Editor. They are similar to 

Peak Editor but much simpler.  

 
6.3.4.2 Peak (label, grid) table 

A peak Table (Figure 6.22) could be accessed from the Peak & Label Panel 

(Section 6.3.3.4) or from the right click menu (Section 6.3.2.2). It displays a table 

of peaks for a specified dataset. Each line could show the properties of a peak 

(e.g. peak ID, assignment, custom label, data height, chemical shifts, status), and 

the columns can be displayed or hidden by users.  

The peak list can be sorted by every property, and can be saved to a text 

file. Users can edit or delete an individual peak as well as compress (permanently 

remove all the peaks that have been sent to recycle bin. Peak State = -1) and/or 

degap (remove all the gaps in the peak ID numbers) the whole list. 
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Figure 6.22 Peak Table. 

 

Figure 6.23 Peak Auto-assign Dialog. 

6.3.4.3 Peak auto-assign dialog 

Analysis of the peaks in NMR spectra is obviously much more useful if 

one has the assignment - which atoms in a molecule (or molecules) gives rise to 

which peaks in the spectrum. Peak Auto-assign Dialog (Figure 6.23) assists users 

to assign peaks automatically. The peak-list’s pattern and tolerance parameters 

are used when a search is done to find atoms whose assigned chemical shifts are 



NMRspy: software package for NMR spectroscopy visualization, analysis and management  Chapter 6 

 

159 
 

consistent with those of a given peak. The atom’s type, residue ID and amino 

acid type could be specified by users. If two dimensions are in different groups, 

their group assignment should not be the same.  

6.3.4.4 Peak identification dialog 

The Peak Identification Dialog (Figure 6.24) can be brought up from the 

right click menu or keyboard shortcut “A”. It can be used to interactively assign 

atom identifiers to individual peaks for a molecule with chemical shift 

assignments. The atoms listed in this dialog are those atoms whose chemical 

shifts are within the peak-list’s tolerance of chemical shift values.  

NMRspy users should themselves synthesize the information from the 

chemical shift deviations, hydrogen pair distances, and spectral display to reach a 

conclusion about which, if any, of the atom entries are the correct assignment for 

the peak. Selecting the entry and then clicking the “OK” button will update the 

assignment labels for the current peak with the names of the atoms in that entry. 

 

Figure 6.24 Peak Identification Dialog. 
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6.4 Results and discussion 

After testing by dozens of users and constantly updating by the developer, 

NMRspy has become a fairly stable and useful platform for NMR spectral 

visualization, analysis and management. The features that are specially designed 

for multi-dimensional spectra, folded peaks and complex tasks have been given 

remarkable credits by users. 

NMRspy tries to provide users with more interactive and self-explanatory 

user interfaces. The user interfaces are depicted in a way that resembles the 

general operation system. There is no need to remember any command, because 

all functions and operations could be accessed by graphic interfaces and most 

command have more than one access methods (button, menu, shortcut etc.). 

Users familiar with other spectral visualization software packages can start with 

NMRspy immediately. Users with basic computer skills but no experience in 

NMR spectral analysis can handle NMRspy in a short period of time. Once 

getting familiar with the operation of NMRspy (especially the keyboard 

shortcuts), a user may work 50% to 200% faster than with other softwares.  

With the numerous novel features and functions, NMRspy can perform 

many operations that are extremely difficult for other software packages. Some 

operations that may require users to prepare their own script in some well-used 

software packages can be easily achieved by NMRspy using graphical interface. 

While some senior spectroscopists may prefer their own script, for most users, 

especially those who are not familiar with the computer programming, 

NMRspy’s graphical interface could bring them a great release. 
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However, given the time and practical limitations, NMRspy is far from 

perfect or complete. Its development and update have never been ceased. At the 

same time, development of its extensions is still under progress. We have already 

developed a very useful extension package (Chapter 7). 
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Chapter 7: 

XYZ4D: software plug-in for backbone 
assignment using the new strategy  

 

7.1  Introduction 

7.2  Interface and algorithms 

 

7.3  Results and discussion 
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Chapter 7: 

XYZ4D: software plug-in for backbone 
assignment using the new NOESY-based strategy  

7.1 Introduction 

The new strategy introduced in chapter 4 has proven to be an effective and 

reliable method for backbone assignments of large proteins without the use of 

deuterium and specific labeling. The manual process, however, is tedious and 

time-consuming and may require weeks or even months of dedicated work. To 

overcome the limitation, a software tool has been developed as an NMRspy 

(Chapter 6) plug-in to facilitate the backbone assignment using this strategy. This 

chapter elaborates on the implementation of the plug-in, XYZ4D (Xu Yingqi, 

Yang Daiwen & Zheng Yu’s novel strategy for solution structure determination 

of large proteins without deuteration using 4D NOESY and other 3D NMR 

spectra.). 

Our initial plan was to develop a program that would be capable of 

managing a set of spectra (2D-TROSY-HSQC, 3D-TROSY-HNCA, 3D-

TROSY-HN(CO)CA, 3D-MQ-CCH-TOCSY and 4D-13C,15N-edited NOESY) 

used in the strategy, performing calibration and peak picking in them, grouping 

HC-NH NOE and Cα-NH (HNCA,HN(CO)CA) correlations that have identical 

NH chemical shifts into a cluster, identifying spin-systems by separating out 

intra-residue and sequential HC-NH NOE correlations from other inter-residue 

NOEs observed in the 4D-NOESY spectrum with the use of HNCA and CCH-

TOCSY spectra,  then establishing fragments from clusters by matching the 
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intra-residue spin-system of one cluster with the sequential spin-system of 

another cluster, and finally mapping the fragments onto the protein sequence. It’s 

expected that the backbone assignments could be obtained with minimal human 

intervention and a score would be computed for each cluster mapping as an 

indication of its reliability. The program would also provide graphical interfaces 

for users to manually check through all the tasks and make corrections should 

any error occur. 

Although a fully automated program with such functionality may appear as 

a tempting solution to the large protein backbone assignment problem, further 

analysis has raised the following concerns. 

• When searching for NOE peaks in the construction of clusters, the 

program needs a robust method to filter out the background noise. Since 

many NOEs, especially those inter-residue NOEs between amide protons 

and aliphatic protons at the distal end of side-chains, may be weak due to 

the usually longer distances, it will be hard to find a perfect balance. 

• Unlike 3D HNCA, the MQ-CCH-TOCSY spectrum in general contains a 

lot more noises and the peak pattern is less distinct. As a result, 

comparison of strip plots cannot be simply based upon the matches of 

peak positions. Even with a sophisticated algorithm for pattern 

recognition, the automated spin-system identification result can still be 

quite futile. 

• The scoring scheme for assessing the un-reliability cluster mapping 

should be sensitive enough to pick up those that can potentially go wrong, 
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but not so sensitive as to include many correct mappings. Otherwise time 

saved by automation would be wasted in manual checking. This is again 

the problem of finding a perfect balance. 

• To ensure the efficiency and reliability of a fully automated backbone 

assignment program, it has to be tested under all conditions with as many 

data sets and protein samples as possible. This means that many suitable 

protein samples are required and many 2D, 3D and 4D NMR experiments 

need to be carried out to generate the test data. 

Given the time and practical limitations, the abovementioned concerns 

have led to the conception of a semi-automated approach with a fully automated 

option. In such way, users could easily be involved in examining the peaks and 

resolving the ambiguous assignments or alternatively leave the program to do the 

whole job. As is well known, a little human intervention to an automatic program 

could usually lead to a far more satisfactory result, and users who favor the semi-

automated approach would soon be aware of the well worthiness of their effort, 

as differentiation of real peaks from noises and comparing spectral pattern are 

much easier jobs for human than for computer. In addition, the efficiency and 

reliability of this program can be readily assessed with just a few NMR data sets. 

XZY4D was written in the JAVA programming language as an extension 

(plug-in) of NMRspy. This not only ensures its maximal compatibility and 

acceptance with the platform software, but also allows us to tap on many useful 

functions provided by NMRspy. The whole program was divided into seven 

modules (Project Preparation, Spectra Calibration, Cluster Identification, CCH & 

4DNOE Inspection, Spin-system Identification, Cluster Mapping, Backbone 
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Assignment), which correspond to the manual assignment steps of the new 

strategy. 

7.2  Interface and algorithms 

XYZ4D’s user interface consists of eight major components and more than 

40 graphic interfaces (Figure 7.1). The following sections present detailed 

implementation of each of these components. 

7.2.1 The main application window 

The main application window of XYZ4D is shown in Figure 7.2. 

At the left side of the main window lies 7 buttons that can be used to access 

the 7 modules of XYZ4D. The right side of the main window is a note board 

which displays a short description of the corresponding module when the cursor 

moves on to a button. The buttons are arranged from top to bottom in accordance 

with the routine tasks of the novel backbone assignment strategy, and when 

clicked, the corresponding module will be activated. To achieve backbone 

assignment, the 7 modules need to be executed one by one in an appropriate 

order.  
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Figure 7.1 Overall Diagram of interfaces in XYZ4D. 
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On the top of the main window there are two pull-down menus (Figure 7.2 

b). The "XYZ4D Project" menu could be used to open or save XYZ4D Project, 

which is an extension of NMRspy Project. The XYZ4D Project not only has all 

the features of an NMRspy Project, but also records the parameters, data and 

results generated by the XYZ4D program. The "Open Spectrum" menu is very 

useful for quick opening of one of the five spectra (HSQC, HNCA, HN(CO)CA, 

CCH-TOCSY, 4D-NOESY). With this feature, users could close those 

temporarily unused spectra to gain a clearer screen and more memory, and 

quickly reopen them when they are needed. 

7.2.2 Project preparation module 

Project Preparation Module is the first module. It allows XYZ4D to import 

protein primary sequence, understand the spectra used in the strategy and prepare 

the spectra for subsequence procedure.  

Figure 7.2 Main application window of XYZ4D (a) and its pull-down menus 
(b). 
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The 5 spectra (2D-TROSY-HSQC, 3D-TROSY-HNCA, 3D-TROSY-

HN(CO)CA, 3D-MQ-CCH-TOCSY and 4D-13C,15N-edited NOESY) should be 

manually opened in NMRspy before users use the pull down menus on the main 

panel of Project Preparation Module (Figure 7.3 a) to specify the spectral name, 

dimension labels and the sign of non-alias signals for each spectrum. 

 

 
Figure 7.3 Graphic Interfaces of Project Preparation Module. 

(a) The main panel. (b) Peak-picking dialog. (c) Protein sequence control panel. 
(d) Spectral resolution setting panel. 
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After careful adjustment of the level for each spectrum, users may click 

"Peak-Picking" button to bring up a dialog (Figure 7.3 b) that can be used to 

automatically peak-pick the 5 spectra and correct the over-edge and folded peaks 

in HNCA and HN(CO)CA spectra. These tasks, especially 4DNOE peak-picking, 

may take a very long time. Users may execute them separately at their 

convenience. They can also redo certain tasks at any time when it’s needed. 

 

 

The “Over-edge peak elimination” will automatically detect those peaks 

that locate within 5 points from the up/low edge of the HNCA or HN(CO)CA 

spectra. If two peaks have common 1HN, 15N chemical shifts and are located at 

Figure 7.4 Over-edge peak. 

A peak locates at the upper edge of 13C dimension on HNCA spectrum. Its 
upper half folds to the lower edge of the spectrum and appears as a negative 
peak. 
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the upper and lower edges of the spectrum respectively, XYZ4D will eliminate 

the weaker one. (Figure 7.4) The "Alias-Correction" will automatically detect 

those folded peaks in HNCA and HN(CO)CA spectra, and will try to fold them 

into the normal Cα chemical shift region, i.e. 40-70ppm.  

If users skip or forget one of the peakpicking, over-edge peak elimination 

or Alias-Correction operation, it will be carried out automatically by XYZ4D 

when its result is required by the subsequence step, in order to avoid any 

unexpected error caused by human mistakes. 

Users need to manually import the protein primary sequence (Figure 7.3 c) 

and define the resolutions of every dimension for each spectrum (Figure 7.3 d). 

The spectral resolution values will be used to match peaks and calculate scores in 

the later steps. They are essential for achieving proper results in the following 

steps. 

After users pressing “OK”, XYZ4D will save all the parameters, peak lists 

and protein sequence as a XYZ4D Project. Unless specifically stated otherwise, 

all the files generated during the subsequence procedure will be saved in a sub-

folder which has the same name as the project and under the same directory. 

Therefore, when necessary, users could easily find the relevant files. 

 

7.2.3 Spectral calibration module 

Although spectral calibration is not a mandatory step, it is strongly 

recommended to do so for any spectrum that is used in the backbone assignment 
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approach. Our extension tool will much more likely produce satisfactory results 

if the calibration could be as accurate as possible. 

The Spectral Calibration Module uses 1HN and 15N chemical shifts of 

isolated HSQC peaks as references to calibrate the 1HN and 15N dimensions of 

HNCA，HN(CO)CA and 4D 13C,15N-edited NOESY spectra. It also uses 13C 

chemical shifts of strong 4D-NOESY peaks as references to calibrate the 13C 

dimensions of HNCA, HN(CO)CA and CCH-TOCSY spectra. The 1H dimesion 

of CCH-TOCSY is calibrated from 1HC chemical shifts of strong 4D-NOESY 

peaks.  This module consists of 10 graphic interfaces. 

7.2.3.1 Main panel 

The main panel of the Spectral Calibration Module is shown in Figure 7.5 a. 

  

Figure 7.5 Main panel (a) and result summary panel (b) of the Spectral 
Calibration Module. 
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Like all the subsequent modules, Spectral Calibration Module provides 

both semi-automatic and fully automatic options. 

If users choose the semi-automatic mode, the module will guide them 

through the calibration process step by step using the interface described in 

section 7.2.3.2-7.2.3.9; if users choose fully automatic mode, the module will 

directly jump to the summary interface described in section 7.2.3.10, which 

shows only the final results (Figure 7.5 b). No matter which mode is selected, the 

calibration results will not be applied to any spectrum or peak list without the 

user’s consent. 

In the main panel, below either the "fully automatic" or "semi-automatic" 

button, a brief guide and some tips are provided to users for a better 

understanding of the operation and quick assistant. 

During the Spectral Calibration procedure, users can save their task into a 

text file, or import a previously saved task. This text file can be opened or 

modified by any text editor, allows users to quickly check the relevant data, and 

prevents any data loss in case of a computer crash or freeze. Note that an 

unfinished task is not a part of the XYZ4D project, and saving a XYZ4D project 

will not save the currently working task. 

7.2.3.2 Selection of isolated HSQC peaks 

Similar to manual calibration, the program attempts to choose isolated, 

strong HSQC peaks as reference peaks. In practice, 20 most isolated peaks which 

have the longest distances from other peaks will be picked out from HSQC 

spectrum (peaks in the side-chain region, i.e. 15N= 106.5~119.2 ppm, 
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1HN=5.77~8.64 ppm, will be ignored), and the 15 strongest peaks among them 

will be selected as the “referential HSQC peak” and highlighted in HSQC 

spectrum. (Figure 7.6 b) 

If users are unsatisfied with the automatically generated result, they can 

manually un-select or re-select peaks in the HSQC spectrum by holding Ctrl and 

left clicking them, and then press the "Use selected HSQC peaks" button 

provided by the interface (Figure 7.6 a) to select them as referential HSQC peaks. 

7.2.3.3 HNCA calibration (H, N) 

For each referential HSQC peak, the program will automatically detect a 

strongest correlated peak in HNCA spectrum based on their common 1HN and 

15N chemical shift values. Ten pairs of the peaks (each pair consists of one 

HSQC and HNCA peak) that have the most similar 1HN and 15N systematic errors 

will be selected and displayed on the “HNCA Calibration (H, N) Panel”.(Figure 

7.7 a) 

The peak IDs and systematic errors of each peak-pair are clearly visible on 

the interface. A "Display" button could be used to display and highlight the 

corresponding HSQC peak, HNCA strip plot, and HN(CO)CA strip plot (Figure 

7.7 b - d). The "Change" button at the right top corner (Figure 7.7 a) could be 

used to replace the HSQC and/or HNCA peak(s) in the peak-pair. Un-tick the 

check-box in front of a peak-pair, and then the pair of peaks will be ignored 

when calculating the average systematic error.  
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Figure 7.6 Isolated HSQC peak selection panel (a) and its correlated HSHC 
spectrum (b). 

In HSQC spectrum, the 15 referential HSQC peaks are automatically selected 
and highlighted by large labels. 

Figure 7.7 Graphic interfaces for HNCA Calibration (H, N). 

(a) Main panel, (b) HSQC spectrum, (c) HNCA spectrum and (d) HN(CO)CA 
spectrum. Spectra (b-d) are centre on 1H =9.260 ppm and 15N=124.812 ppm. 
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If there is any artificial or overlapped peak among the referential HSQC 

peaks, in this step, such a peak can be easily identified using the HN(CO)CA 

spectrum, as a single HSQC peak (corresponding to one residue) should be 

correlated with only one HN(CO)CA peaks (Figure 7.7 d). Users may go back to 

the last step and re-select the isolated HSQC peak.  

7.2.3.4 HN(CO)CA calibration (H, N) 

This step is very similar to the previous step.  

7.2.3.5 HN(CO)CA calibration (C) 

For each HNCA peak that has been confirmed in HNCA calibration (H,N) 

(7.2.3.3), the program will automatically detect its correlated peak from 

HN(CO)CA spectrum based on its common 1HN, 15N and 13C chemical shifts. All 

the peak pairs will be displayed on the “HN(CO)CA Calibration (C) Panel” 

(Figure 7.8 a), but only five pairs that have the most similar 13C systematic errors 

will be selected.  

The rest of this step is similar to the previous steps. 
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7.2.3.6 4DNOE calibration (H, N) 

For each referential HSQC peak (there should be 15), a strongest correlated 

peak from 4D-NOESY spectrum will be automatically detected by the program 

based on its common 1HN and 15N chemical shifts. Since the resolution of 4D-

NOESY spectrum is normally not very high and the systematic error between the 

Figure 7.8 Graphic interfaces for HN(CO)CA Calibration (C). 

(a) Main panel, (b) HSQC spectrum, (c) HNCA spectrum and (d) HN(CO)CA 
spectrum. Spectra (b-d) are centre on 1H =7.799 ppm and 15N=125.801 ppm. 
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NOESY and HSQC spectra could be quite large, all the NOE peaks within a 

region of the referential HSQC peak (which is defined as a circle with the center 

at the position defined by the HSQC and with a radius equal to half of the 

distance between the HSQC peak and its nearest peak) will be considered when 

attempting to find the strongest one. Ten pairs of peaks that have the most similar 

1HN and 15N systematic errors will be selected and displayed on the “4DNOE 

Calibration (H, N) Panel”.(Figure 7.9 a) 

Similar to previous steps, the HSQC peak and 4DNOE slice of each peak-

pair could be easily displayed with the chosen peaks highlighted by an extreme 

large label. Any peak or peak-pair could be manually modified or ignored. 

7.2.3.7 4DNOE calibration (C) 

The idea of this step is to calibrate the 13C systematic error between HNCA 

and HN-CHα NOE peaks. The program uses the confirmed HNCA peaks as 

reference to search for the HN-CHα NOE peaks. The searching is limited within 

the Hα region with a 1HC chemical shift range from 3.0 to 6.0 ppm. All the 

resulted peak-pairs will be displayed on the “4DNOE Calibration (C) Panel” 

(Figure 7.10 a), but only the best five of them will be selected. 



XYZ4D: software plug-in for backbone assignment using the new strategy  Chapter 7 

 

179 
 

 

 

Figure 7.9 Graphic interfaces for 4DNOE Calibration (H,N). 

(a) Main panel, (b) 4D-NOESY spectrum, (c) HSQC spectrum, (d) HNCA 
spectrum and (e) HN(CO)CA spectrum. Spectra (b-e) are centre on 1H =8.198 
ppm and 15N=129.434 ppm. 
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7.2.3.8 CCH diagonal calibration (C, CH) 

Theoretically, the diagonal peaks in MQ-CCH-TOCSY spectrum should 

have the same chemical shift values in the two 13C dimensions. The systematic 

error is always the main cause for inconsistency. To calibrate the MQ-CCH-

TOCSY spectrum, users should, first of all, pick out the diagonal peaks and make 

13C shifts of each peak in the two dimensions consistent. 

Figure 7.10 Graphic interfaces for 4DNOE Calibration (C). 

(a) Main panel, (b) 4D-NOESY spectrum and (c) HNCA spectrum. Spectra (b, 
c) are centre on 1H =8.763 ppm and 15N=114.928 ppm. 
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Normally, the diagonal peaks are also the strongest peaks in CCH-TOCSY 

spectrum. The program will pick out 30 strongest peaks within the diagonal 

regions (±3ppm in 13C dimension), and then choose 10 peaks that have similar 

systematic errors or differences between the two 13C dimensions and show them 

in the “CCH Diagonal Calibration (C, CH) Panel”. (Figure 7.11 a) 

The selected peaks are not necessarily unfolded peaks. The program will 

automatically test the possible alias of a given peak in one 13C dimension while 

searching for the diagonal peaks.  

 

 

7.2.3.9 CCH calibration (H,C) 

XYZ4D will select 30 strongest and most isolated CCH diagonal peaks. 

For each of them, the program will search through the entire 4D-NOESY 

spectrum for the strongest NOE peak that may be correlated to them. Ten 

Figure 7.11 Graphic interfaces for CCH Diagonal Calibration (C, CH). 

(a) Main panel, and (b) CCH-TOCSY spectrum. Chemical shifts of peak 1967: 
1H =3.896 ppm , 13CH=42.848 ppm, 13CH=42.806 ppm.  
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4DNOE-CCH correlated peak-pairs that have similar systematic errors will be 

subsequently used as references and displayed on the “CCH Calibration (H,C) 

Panel”. (Figure 7.12 a) 

 

 

The systematic errors or differences showed in Figure 7.12a are between 

the 13C dimension of the TOCSY which has the larger sweep width and the 13C 

dimension of the 4D NOESY. After users correct this dimension, the program 

will automatically correct the other 13C dimension of the TOCSY spectrum 

Figure 7.12 Graphic interfaces for CCH Calibration (H, C). 

(a) Main panel, (b) 4D-NOESY spectrum, and (c) CCH-TOCSY spectrum.  
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according to the calibration result for the two 13C dimensions of the TOCSY 

spectrum obtained from the last step (Section 7.2.3.8). 

The theory behind the automatic detecting process is that strong peaks in 

CCH-TOCSY and 4D 13C,15N-edited NOESY spectra mainly involve methyl 

groups since the number of protons of a CH3 group is three times as large as that 

of a CH group and the proton and 13C spins of the CH3 group have longer 

relaxation times than CH and CH2 groups due to the free rotation along the C3 

axis (Figure 7.12 b). Moreover, since the methyl protons always have the lowest 

1H and 13C chemical shift values, it’s most unlikely their NOE peaks will mess 

up with other peaks, which will make the automatic detecting process and 

manual inspection easier and more reliable. Otherwise, it will be very difficult to 

tell the relationship between NOE peaks and CCH peaks. Users may also 

consider using some idiosyncratic protons (which have extreme high or low or 

strange 1H/13C chemical shift values) or those protons from CH2 groups (which 

may appear by pairs on the 4D NOESY spectrum and have identical peak 

patterns in the CCH-TOCSY spectrum) to identify reliable 4DNOE-CCH peak-

pairs.  

7.2.3.10 Results panel 

The “Spectral Calibration Results Panel” (Figure 7.5 b) summarizes all the 

systematic errors between the five essential spectra using the results of the 7 

steps (7.2.3.3 – 7.2.3.9) described above. Users could modify the systematic error 

values by double-clicking them or going backwards to any of the previous steps, 

reprocess it or examine the results without affecting other steps.  



XYZ4D: software plug-in for backbone assignment using the new strategy  Chapter 7 

 

184 
 

Before the “Finish” button being clicked, all the calibration process will 

“remain only on paper”, with no actual operation carried out on any spectrum. 

Users can play around with the interfaces and files without affecting any 

spectrum or peak. But when “Finish” button is pressed, the program will apply 

systematic error corrections on all the spectra and their dataset, which means the 

center of each dimension for each spectrum will be changed according to the 

calibration results and each peak’s position will also been synchronized with its 

spectrum. This is a critical step because if there is any analysis job to be done on 

the spectrum or dataset before this systematic error correction, its result may be 

inaccurate. This step is irreversible, and although users can manually modify the 

dimension center back to its original value (see Section 6.3.3.1, Chapter 6), the 

shifted peaks will remain in the post-correction-positions.  

7.2.4 Cluster identification module 

Clusters are formed by grouping HSQC, HNCA, HN(CO)CA and 4D-

NOESY   correlated peaks according to their common NH chemical shifts, where 

NH denotes amide spins 15N and 1H.  Each non-overlapped cluster contains all 

the signals collected from a single amide proton and can be considered as a 

representation of a residue in our backbone assignment approach. Building 

clusters is one of the most essential steps for achieving good backbone 

assignment with our strategy. The Cluster Identification Module is designed to 

help users quickly and precisely create clusters. 
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7.2.4.1 Method 

The Cluster Identification Module creates clusters by dividing HNCA 

peaks into different groups according to their common 1HN and 15N chemical 

shifts, and then searching through HSQC and HN(CO)CA spectra for their 

associated peaks. 

According to the following conditions, the program classifies all the newly-

created clusters into 5 categories: corrupted, normal, overlapped, suspected, and 

side-chain. 

1. If a cluster has two HNCA peaks and one HN(CO)CA peak，it will 

be classified as “normal” (Figure 7.13 a). Meanwhile, based on the 

chemical shift of the correlated HN(CO)CA peak, the program will 

automatically identify the sequential HNCA peak that comes from 

the preceding residue (i-1). 

2. If a cluster has only one HNCA peak,  

a. its 15N and 1HN chemical shifts are located within the side-

chain region （ 15N= 106.5~119.2 ppm, 1HN =5.77~8.64 

ppm）, 

b. its 13C chemical shift value is less than 50ppm, and 

c. there is another peak that has the same 15N and 13C chemical 

shifts in the HNCA spectrum, 

this cluster will be classified as a side-chain cluster (Figure 7.13 b). 
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3. If a cluster has more than two strong HNCA peaks or more than one 

possible HN(CO)CA peak, it will be defined as “overlapped” 

(Figure 7.13 c), which means it comprises signals from two or more 

amides that have degenerated NH chemical shifts. Based on the fact 

that one amide gives rise to only one HN(CO)CA peak and no more 

than two HNCA peaks, the program will automatically determine 

the  “number of amides” of a cluster according to the number of its 

peaks. A “strong HNCA peak” should be 30% larger in intensity 

than the possible HNCA peaks. The “possible HNCA peaks” are 

the first n strongest peaks in a HNCA spectrum, where n= (total 

residue number in the protein - proline residue number)*2 – 2. The 

“possible HN(CO)CA peaks” are the first m strongest peaks in a 

HN(CO)CA spectrum, where m=n/2. 

4. If a cluster has only weak HNCA peaks that do not match  any 

HN(CO)CA peak in (H, N C) shifts and HSQC peak in (H, N) shifts, 

it will be classified as “corrupted” (Figure 7.13 d). 

5. The rest clusters, such as those that have only one HNCA peak or 

those that do not match any HSQC or HN(CO)CA peak, will be 

defined as suspected clusters (Figure 7.13 e).  

  



XYZ4D: software plug-in for backbone assignment using the new strategy  Chapter 7 

 

187 
 

  

Fi
gu

re
 7

.1
3 

E
xa

m
pl

es
 o

f c
lu

st
er

 c
la

ss
ifi

ca
tio

n.
 

Ex
am

pl
es

 o
f (

a)
 N

or
m

al
 c

lu
st

er
, (

b)
 si

de
-c

ha
in

 c
lu

st
er

, (
c)

 o
ve

rla
pp

ed
 c

lu
st

er
, (

d)
 c

or
ru

pt
ed

 c
lu

st
er

, a
nd

 (e
) s

us
pe

ct
ed

 c
lu

st
er

. 



XYZ4D: software plug-in for backbone assignment using the new strategy  Chapter 7 

 

188 
 

The result of this automatic classification procedure is normally quite 

reliable. From our experience, more than 99% of the “corrupted”, “normal” and 

“side-chain” clusters will be correctly classified. Those “overlapped” clusters 

may need some manual inspection, for experienced spectroscopists may be able 

to spot some overlapped HNCA peaks or divide an overlapped cluster into 

several single clusters.  

In a fully automatic mode, the program will score the suspected clusters 

based on the perfectibility and intensity of their peaks, and then re-classify them 

as “corrupted” or “normal”. In semi-automatic mode, users could carefully 

inspect the suspected clusters one by one with the interface provided by the 

Cluster Identification Module, and manually re-classify them as “corrupted” or 

“normal”. 

At the end of the cluster identification process, corrupted and side-chain 

clusters will be eliminated and all the remained clusters will be reorganised and 

given identity numbers. The results will be saved in the file: ClusterList.txt . 

7.2.4.2 Main panel 

Figure 7.14a shows the main panel of the Cluster Identification Module.   
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As mentioned above, if users choose fully automatic mode, the program 

will automatically create clusters and classify them into “corrupted”, “normal” 

and “overlapped” categories. After that, the program will directly jump to 

“Cluster Identification Results Panel” (Figure 7.14 b). If users choose semi-

automatic mode, the clusters will be classified into 5 categories, and a “Cluster 

Inspection Panel”will be active (Figure 7.15 a). Users may notice that there is a 

disabled “Cluster Inspection” button located in the bottom of the main panel. 

This button will be enabled after users finish the whole cluster identification 

procedure. It can be used to modify the cluster identification results later on in 

the case of any improper-identification discovered during the subsequent study. 

7.2.4.3 Cluster inspection panel 

The“Cluster Inspection Panel” (Figure 7.15 a) allows users to examine 

the created and classified clusters one by one. A temporary ID number has been 

Figure 7.14 Main window (a) and result summary window (b) of Cluster 
Identification Module. 
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given to each of this clusters which can be used to navigate through them 

smoothly.   

When switched to a particular cluster, the HSQC spectrum window will 

immediately centre on its correlated HSQC peak, with the pinpoint position of 

the cluster marked out and the average chemical shift values labelled on both 

dimensions (Figure 7.15 b). The HNCA and HN(CO)CA strip plots of the cluster 

will be painted in their window and a vertical grid with the cluster’s ID labelled 

on its top will denote the centre of the cluster in the 1H dimension and its status 

(Figure 7.15 c, d). For a “normal” cluster the grid and label will be in white 

colour, while for a “corrupted” or “side-chain” cluster they will be in dark grey. 

An “overlapped” cluster will be labelled with a bright yellow grid and a 

“suspected” one with a red grid (Figure 7.13). In the 4D-NOESY spectrum, the 

corresponding NOE slice will also been displayed (Figure 7.15 e), and with all 

the spectra synchronized, when users move the cursor into one spectrum, the 

correlated crosshairs will appear in other spectra so that user could easily 

compare the centre of several peaks in different spectra at the same time. 

 The cluster’s status, number of amides (if available), average 1HN and 15N 

chemical shift values and the HNCA peak(s) contained in the cluster will be 

displayed on the control panel (Figure 7.15 a).  The status and number of amides 

(if available) could be changed using the pull down menus. The average 1HN and 

15N chemical shift values will be generated automatically by the the program, 

while users may need to update them after adding or removing peak(s) from the 

cluster.  
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The “HNCA Peak List” panel shows all the HNCA peak(s) composed of 

the cluster with their ID (a “*” will appear on the right side if the peak comes 

from the previous residue, i.e. “i-1” residue), chemical shifts and Intensity. Users 

may add or remove peak(s) form it, define an “i-1” HNCA peak or separate one 

or more peaks into a new cluster. Peak(s) selected in the HNCA peak list will be 

highlighted by an extreme large label in the HNCA strip plot. 

The small button located at the right side of the “Update” button with a 

“pencil-drawing-a-line” icon could be used to change the display mode of the 

grids that mark out the clusters in HNCA and HN(CO)CA spectra. There are 

three modes of showing those grids: no grid, only the grid for currently focused 

cluster and all grids. By keep pressing the button, the display mode could be 

changed within a blink. 

The red “Save” button at the bottom of the panel could be used to save the 

cluster list at anytime if anything about the cluster has been changed. It’s 

recommended that users should press it once it pops up in order to reduce the risk 

of data loss in case of a computer crash or freeze. The operation of saving 

clusters is totally separated from the project saving procedure, and although the 

files are saved in the same directory, users should not expect that by saving the 

project, the cluster list and current operation state will be restored next time when 

they open the software. 

7.2.4.4 Results panel 

 After “overlapped” and “suspected” clusters been closely inspected (all the 

“suspected” should be altered to other status, otherwise a warning message will 
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pop out), users may proceed to the “Cluster Identification Results Panel”

( Figure 7.14 b). 

By clicking the “Finish” button, those remained “suspected” clusters will 

be automatically changed to “corrupted” or “normal” according to their scores. 

Then, those “corrupted” and “side-chain” clusters will be eliminated, leaving the 

rest “normal” and “overlapped” clusters for reorganization. 

7.2.5 CCH & 4DNOE inspection module 

The quality of MQ-CCH-TOCSY and 4D-13C,15N-edited NOESY spectra 

is usually quite bad compared to the 3D HNCA and HN(CO)CA spectra. The 

CCH-TOCSY spectrum is always severely overlapped due to the overwhelming 

number of resonances (Figure 7.17 a). With the intervention of artificial signals 

and intense H2O resonances (at ~4.7ppm), it’s extreme difficult for computer to 

recognize any peak patterns in the CCH-TCSY. Yet at the 4D-NOESY spectrum, 

the low signal-noise ratio combined with the low spectrum resolution brings a lot 

of inconvenience in distinguishing the NOE signals and matching their peak 

positions.  

In order to minimize the difficulty of following steps and increase the 

accuracy of spin-system identification, it’s necessary to spend some time on 

inspecting the two spectra and eliminating those useless or artificial peaks before 

the 4D-NOESY peaks could be assigned to clusters and further divided into spin-

systems with the HNCA and CCH-TOCSY spectra. This is the reason behind the 

development of CCH & 4DNOE Inspection Module. 
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7.2.5.1 Interface 

The interface of CCH & 4DNOE Inspection Module is relatively simple 

compared to other modules. Buttons that access to 5 relatively independent tasks 

are placed in two separate panels. One panel is specifically for CCH-TOCSY 

spectrum containing 2 buttons: "Eliminate Water-peaks" and "Eliminate 

Artificial-peaks" (Figure 7.16 a). The other one is only for the 4D-NOESY 

spectrum containing 3 buttons: "Collect NOE-peaks for Clusters", "Eliminate 

Over-edge NOE Peaks" and "Correct Alias of NOE-peaks" (Figure 7.16 b). 

Meanwhile, the module offers two navigators: "CCH Peak Navigator" (Figure 

7.17 a) and "Cluster Navigator" (Figure 7.17 b), allowing users to quickly locate 

a CCH peak or cluster in the spectra. These interactive navigators could be very 

valuable since actually observing the shape and distribution of peaks can be very 

important for discovering artefacts in spectra.  

The working principle of "Eliminate Over-edge NOE Peaks" is very similar 

to the one described in the previous section (Section 7.2.2). The principle of the 

other four tasks will be elaborated in the following sections.  
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Figure 7.17 Interfaces of (a) CCH Peak Navigator and (b) Cluster 
Navigator. 

Figure 7.16 Control panels of (a) CCH-TOCSY and (b) 4D-NOESY 
Inspection. 
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7.2.5.2 CCH water-peak elimination 

There are a huge number of peaks between 4.5 ~ 5.0 ppm in 1H dimension, 

which result from the strong water signal. These peaks, whether positive or 

negative, are much stronger than normal noise. They hide a majority of weak Hα 

signal and interfere with the others, making it extreme difficult to recognize any 

useful peaks around this region. 

In order to eliminate these water-peaks, the program will carefully examine 

each CCH slice and scans the 1H dimension from left to right at a scale of 0.01 

ppm. If there are more than 10 peaks crowded in a small column (width = two 

times of the spectral resolution) around a certain 1H chemical shift value and the 

ratio between positive and negative peaks are about the same (40% ~ 60%), this 

1H chemical shift will be defined as the start / end line of the water-peak-region 

in this particular slice, and the strongest peak on this line will be defined as a 

“referential water-peak”. When a water-peak-region has been detected in more 

than 70% of the slices with very similar start/end lines (difference < 0.2ppm), the 

average of 30% of most similar start/end lines will be used to define the water-

peak-region for the whole spectrum. In this region, if a peak is weaker than 50% 

of referential water-peaks, it will be eliminated. 

Using such an approach, more than 80% of the water peak can be 

successfully removed; while those real Hα signals will not be affected even they 

are only slightly stronger than the water peaks. Certainly, most of the weak Hα 

signals may be mistakenly deleted, but even the most experienced 

spectroscopists is unable to distinguish them from the water peak, let alone a 

computer. 
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7.2.5.3 CCH artificial -peak elimination 

In CCH-TOCSY spectrum, one may find wiggling artificial-peaks (Figure 

7.18) surrounding a very strong peak. These artificial-peaks are quite common 

when linear prediction is applied to process the raw data. In this case, positive 

and negative peaks appear in a stagger form, with a constant distance between 

peaks, and the peak intensity decreases with the increasing distance from the 

strong peak. 

 

 

The program will scan the surrounding area of strong peaks (the intensity is 

10 times larger than the weakest peak) in the CCH-TOCSY spectrum, and if 

there are more than 5 peaks appearing in an artificial-peak-pattern, they will be 

automatically deleted. 

Figure 7.18 An example of artificial-peaks that surround strong peaks 
along the Y-axis in CCH-TOCSY spectrum. 

A strong peak is denoted by crosshair. The wiggling artificial-peaks above and 
below it in the 13C dimension are clearly visible. 
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As the artificial-peaks are often interfered by real peaks or other noise, the 

program can only identify about 50% of them. It's recommended that users 

perform a slice-by-slice inspection, and manually delete those obvious artificial 

peaks.  

7.2.5.4 NOE-peak collection 

A pair of unique tolerance (threshold) values, one for 1HN and another for 

15N are assigned to every cluster when the cluster is generated by the Cluster 

Identification Module (Section 7.2.4). The tolerance value of a given cluster for 

1HN (15N) is equal to half of the distance between the 1HN (15N) of this cluster and 

that of the nearest cluster, but not smaller than the spectral resolution of the 4D -

NOESY spectrum in the 1HN (15N) dimension. The program will automatically 

assign a NOE peak to a cluster if the peak is located within the tolerance range of 

that cluster. A NOE peak could be assigned to more than one cluster. Those that 

could not be assigned will be permanently removed to save computer memory 

and waiting time for reading/writing peak list.  

7.2.5.5 NOE-peak alias correction 

With “Selected Chemical Shift Statistics” provided by Biological Magnetic 

Resonance Data Bank (Ulrich, Akutsu et al. 2008), we studied the chemical shift 

distribution of C-H groups of proteins and calculated the 13C-1H correlation 

regions (Table 7.1) in which the (C, H) chemical shift of >99% HC-NH NOE 

peaks should be located .  
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Table 7.1 Statistic 13C-1H chemical shift region. 

1H  region 
(ppm) 

Min. 13C 
(ppm) 

Max. 13C 
(ppm) 

1H  region 
(ppm) 

Min. 13C 
(ppm) 

Max. 13C 
(ppm) 

0.12 ~ 0.18 10.16 16.78 0.18 ~ 0.22 10.16 27.41 
0.22 ~ 0.41 10.16 27.86 0.41 ~ 0.84 10.16 31.17 
0.84 ~ 1.25 10.16 45.96 1.25 ~ 2.29 13.35 45.96 
2.29 ~ 2.83 13.35 45.12 2.83 ~ 2.88 20.54 45.12 
2.88 ~ 3.05 20.54 52.28 3.05 ~ 3.53 20.54 68.13 
3.53 ~ 3.84 20.54 73.01 3.84 ~ 3.88 26.04 73.01 
3.88 ~ 4.72 42.85 73.01 4.72 ~ 4.82 49.29 73.01 
4.82 ~ 5.13 49.29 68.13 5.13 ~ 5.32 49.84 68.13 
5.32 ~ 5.40 49.84 67.37 5.40 ~ 5.41 51.56 67.37 
5.41 ~ 5.78 51.56 64.78 6.09 ~ 6.15 118.34 124.46 
6.15 ~ 6.18 113.71 127.19 6.18 ~ 6.36 113.71 132.25 
6.36 ~ 6.67 113.71 135.60 6.67 ~ 6.99 111.27 135.60 
6.99 ~ 7.92 111.27 142.28 7.92 ~ 8.12 117.16 142.28 
8.12 ~ 8.98 132.80 142.28    

      

In 4D-NOESY spectrum, if a HC-NH NOE peak does not fall in this region, 

it’s most likely that this peak is folded in 13C dimension. The program will try to 

“unfold” it into the statistic region, which means one or more sweep-width(s) 

may be automatically added to or subtracted from its 13C chemical shift. 

The program is unable to correct those peaks folded in 1HC dimension. 

Fortunately, this kind of peak is extremely rare. 

In the step of inspecting CCH-TOCSY and 4D NOESY, the Z axis of the 

CCH-TOCSY should be set as the 13C dimension with a smaller sweep width, 

while the Z axis and A axis of the 4D 13C,15N-edited NOESY spectrum (or sub-

spectrum) should be set as the 15N and direct 1H dimensions, respectively. This 

setting should be kept the same in the following steps. 

7.2.6 Spin-system identification module 

With the use of HNCA and MQ-CCH-TOCSY spectra, intra-residue and 

sequential HC-NH NOE peaks of each cluster can be separated out from other 
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inter-residue HC-NH NOE peaks observed in the 4D 13C,15N-edited NOESY 

spectrum or sub-spectrum. Meanwhile, by grouping the intra-residue and 

sequential HC-NH NOE peaks into two separate spin-systems, an intra-residue 

spin-system and a sequential spin-system can be established for each cluster. The 

amino acid type of both spin-systems can subsequently be determined based on 

the 1H and 13C chemical shifts.  

The “Spin-system Identification Module” is designed for these tough jobs. 

7.2.6.1 Methods 

Even the most experienced spectroscopists may be unable to 

unambiguously identify two spin-systems for every cluster or classify them into 

intra-residue or sequential spin-system straightforward. For many clusters which 

simply don’t have enough NOEs or have some disturbing inter-residue NOEs, 

spectroscopists need to combine all the information retrieved from subsequent 

studies to unravel which peak actually belongs to which spin-system. That’s why 

the Spin-system Identification Module tries to create as many spin-systems as 

possible and collect as much information as it can for each cluster. 

For each cluster generated from the cluster identification procedure 

(chapter 7.2.4), the program will first extract all the possible HαCα-NH NOEs 

from its NOE peak list by matching every NOE peak with its HNCA peaks with 

a tolerance equal to the spectral resolution. A spin-system will be created for 

each of the possible HαCα-NH NOEs which contains information about both 

HNCA peak and possible HαCα-NH NOE peak. If possible HαCα-NH NOE peak 
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could not be detected for a HNCA peak, an empty spin-system that only contains 

information about the HNCA peak will be created. 

From CCH-TOCSY slices defined by the CH spin-pairs of individual HC-

NH NOEs, the CCH peak pattern of each NOE peak could be extracted. By 

comparing them, those NOE peaks that give rise to similar CCH peak patterns in 

which one of the 13C match the Cα of identified HαCα-NH NOE or HNCA peak 

(mentioned above for a given cluster) will be grouped into the spin-system 

defined by the HNCA peak. A confident level (form 0 to 10) will be given to 

each of these NOE peaks based on how well their CCH peak pattern matches that 

of the possible HαCα-NH NOE peak. Other than that, the confident level of a 

NOE peak may also be affected by its fellow-peaks in the same spin-system, and 

if several peaks have very similar CCH peak patterns, they will enhance each 

other’s confident level, and the better their peak patterns match with each other, 

the more their confident level will increase.  

The program could easily and unambiguously recognize most Glycine 

spin-systems.  For other spin-systems, instead of typing them as a single or a 

group of amino acids, a score will be given for each possible amino acid, which 

means there are twenty scores for each spin-system delineating its possibility of  

being one of the twenty types. The scores are calculated mainly based on the 1H 

and 13C chemical shifts of the identified spin-system members (or NOEs), but the 

amount, intensity and pattern of its NOE peaks are also considered. For example, 

an Alanine spin-system should only have two peaks located around H:4.26ppm, 

C:53.17ppm (HαCα) and H:1.36ppm, C:18.94ppm (HβCβ), and if a spin-system 
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has three NOE peaks or has a strong peak at an odd position of  1H= 3.12, 

13C=43.14, its score for being an Alanine spin-system will be very low. 

In the end, all the information of the candidate-spin-systems will be 

recorded in the file: SpinSystemList.txt. The cluster list file (ClusterList.txt) will 

also been updated. 

7.2.6.2 Interface 

The main panel and the results panel of the Spin-system Identification 

Module are very similar to those of Cluster Identification Module (Chapter 7.2.4). 

The “Spin-Systems Inspection Panel” (Figure 7.19) allows users to 

examine the newly created spin-systems one by one. The HSQC, HNCA, 

HN(CO)CA and 4D-NOESY spectra will be automatically synchronized and 

highlighted when users switch from one spin-system to another. Users may need 

to compare the CCH pattern of every NOE peak in a cluster. However, due to the 

limited size of the computer screen, it’s unfeasible to display all the CCH slices. 

XYZ4D displays up to eight CCH windows, and every window is associated 

with a keyboard shortcut: one of the 1-8 number-keys. If users want to check the 

CCH pattern of a NOE peak, they could simply select the NOE peak and press 

one number-key, the associated window will immediately display the CCH slice 

of the selected peak and mark out the slice centre using a unique colour. 

Furthermore, users could show the CCH slice of a certain position in the NOESY 

spectrum by moving the crosshair to the position and pressing a shortcut without 

selecting any NOE peak. This feature could be very handy when some NOE 

peaks are overlapped or too weak to be picked. If users want to check a folded 
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position, holding Ctrl or Alt key when pressing the shortcut will display the CCH 

slice that is associated with the given position with one sweep-width in the 13C 

dimension added or subtracted. 

At the beginning, all of the newly-created spin-systems are defined as 

“Suspected”, in order to encourage users to examine the spin-system one by one, 

and manually change their status to either “Confirmed” or “Corrupted”. Upon 

completion of this module, all corrupted spin-system will be removed, while 

suspected spin-systems are treated the same way as confirmed ones. Thus, unless 

there is a reminder that there are suspected spin-systems left, unconfirmed spin-

system will not affect future work. 
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7.2.7 Cluster mapping module 

With fairly complete clusters and spin-system information, it’s time to 

assemble them into fragments and map the fragments onto protein sequence. The 

most intuitive approach is to compare every 2 clusters, generate dipeptide 

segment if they are consecutive, assemble the dipeptides into fragments and then 

uniquely map them to protein primary sequence. 

Two consecutive clusters, A and B, should fulfill the following conditions: 

1. The HNCA peak (i) of A and the HNCA peak (i-1) of B should 

have common 13C chemical shift. 

2. The CαHα-NOE (i) of A and the CαHα-NOE (i-1) of B should have 

common 13C and 1HC chemical shift. 

3. The intra-residue spin-system of A and the sequential spin-system 

of B should match each other. 

4. A and B probably have some common inter-residue NOEs.  

If they are supposed to be mapped onto a and b position of the protein 

sequence, they need to fulfill the following conditions: 

1. For cluster A, the amino acid type of its intra-residue spin-system 

should be consistent with position a. 
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2. For cluster B, the amino acid type of its sequential spin-system 

should be consistent with position a, and the amino acid type of its 

intra-residue spin-system should be consistent with position b. 

3. The order of A and B should be consistent with the predicted order 

established based on HN(CO)CA spectrum. 

XYZ4D calculates 7 scores (Sc1, Sc2, Sc3, Sc4, Sm1, Sm2 and So) for each 

mapped cluster based on the above mentioned 7 conditions. An overall energy (E) 

of the cluster will subsequently be generated based on the scores. These scores 

and energy reflect both the signature information of cluster mapping and the 

adjacency information between clusters. 

Under the semiautomatic mode, these scores and energy will appear as 

rainbow stripes making it visible to check which fragment are badly assembled 

or wrongly mapped onto the sequence. Under fully-automatic mode, energy will 

be used by a simulated annealing-Monte Carlo approach to achieve the best 

mapping result. 

7.2.7.1 Methods 

If cluster A and B are consecutive and they have been mapped to positions 

a and b on the protein sequence, the scores and energy of cluster B are calculated 

as follows: 

Sc1 (Connecting Score No.1 / HNCA matching score) indicates how well 

the HNCA peaks of cluster B and cluster A agree with each other. It’s calculated 

by the following equation (7.2.7.1.1): 
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S B 100 B exp
ω CA ω B

2 Δ
     7.2.7.1.1  

where Bc1 is a user-defined constant to differentiate “confirmed no-match” and 

“potential-match”, ωA
C is the 13C chemical shift value of HNCA peak of cluster 

A in an intra-residue spin-system, ωB
C is the 13C chemical shift value of a HNCA 

peak of cluster B in a sequential spin-system, Δ13C is the tolerance that equal to 

3* resolution of the HNCA spectrum on the 13C dimension. 

Sc1 = 0 if their HNCA peaks do not match. Sc1=Bc1 if one or both HNCA 

peaks are missing. Sc1 has the value 100 for a perfect match (ωA= ωB). 

Sc2 (Connecting Score No.2 / CαHα-NOE matching score) indicates how 

well the CαHα-NOE peaks of cluster B and cluster A agree with each other. It’s 

calculated by equation 7.2.7.1.2: 

S B 100 B exp
 ωA ω B  ωA  ωB

2 Δ Δ
     7.2.7.1.2  

where Bc2 is a user-defined constant, ωA
C and ωA

H are the 13C and 1HC chemical 

shift values of a CαHα-NOE peak of cluster A in the intra-residue spin-system, 

ωB
C and ωB

H are the 13C and 1HC chemical shift values of a CαHα-NOE peak of 

cluster B in the sequential spin-system, Δ13C and Δ1HC are tolerance values, 

which were set to the spectral resolutions of the 4D-NOESY spectrum in the 13C 

and indirect 1H dimensions, respectively. 
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Sc2 = 0 if their CαHα-NOE peaks do not match. Sc2=Bc2 if one or both 

CαHα-NOE peaks are missing. Sc2 has the value 100 for a perfect match 

(ωB
C=ωA

C, ωB
H=ωA

H). 

Sc3 (Connecting Score No.3 / spin-system matching score) indicates how 

well the sequential spin-system of cluster B matches the intra-residue spin-

system of cluster A.  

For each matched NOE peak-pair P, a contribution Vp
 (0~1) will be defined 

similarly to the fore-mentioned step and differentiated by considering the 

confidential level L of both peaks. Assume that there are n matched peak-pairs 

among the two spin-systems, the sum of their contributions divided by 

anticipated matched-peak-number N will be used to calculate the score Sc3. 

Anticipated matched-peak-number varies with different amino acid types, and a 

pair of Ala spin-systems should have at most two matched peak-pairs while a 

pair of Lys spin-systems could have nine. A user-defined constant Bc3 will be 

given to Sc3 if one or both spin-systems are “Empty Spin-system” caused by 

missed or overlapped CαHα-NOE peak. 

 

V exp
 ωA ω B  ωA  ωB

2   
LA LB

2 10      7.2.7.1.3  

S B 100 B
∑ V

N      7.2.7.1.4  

 



XYZ4D: software plug-in for backbone assignment using the new strategy  Chapter 7 

 

209 
 

Sc4 (Connecting Score No.4 / cluster matching score) is complementary to 

Sc3. Besides those sequential and intra-residue NOEs that have been taken into 

account in Sc3, the matching peak-pairs of cluster A and B may come from their 

common inter-residue NOEs, which would contribute to Sc4. Sc4 is positively 

related to the amount of matched peak-pairs between two clusters, until reaching 

the maximum value of 100. 

S 20 exp
 ωA  ωB  ωA  ωB

2        7.2.7.1.5  

Sm1 (Mapping Score No. 1 / sequential spin-system amino acid typing score) 

is calculated mainly based on how well the 1H and 13C chemical shifts of spin-

system match the amino acid type of residue a. The method has been briefed in 

section 7.2.6.1. A user-defined constant Bm will be given to Sm1 if the spin-

system is a “Empty Spin-system”. 

Sm2 (Mapping Score No. 1 / intra-residue spin-system amino acid typing 

score) is similar to Sm1, but it indicates how well the intra-residue spin-system 

matches the amino acid type of residue b. 

So (Ordering Score) indicates whether the mapping is consistent with the 

predicted order. A perfect cluster should have two HNCA peaks: HNCA peak (i) 

from current residue and HNCA peak (i-1) from the preceding residue. Using 

HN(CO)CA spectrum (Section 7.2.4) one can identify the sequential HNCA peak 

(i-1). After mapping a cluster onto the sequence, its HNCA peak (i-1) should be 

correlated with the sequential spin-system and should have a common 13C 

chemical shift with the HNCA peak (i) of the preceding cluster. In this case, So 
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will be set to 100. A user-defined constant Bo will be given to So if the cluster 

only has one HNCA peak (cause by lacking or overlapping peaks). If the cluster 

has more than one HNCA peak and HNCA peak (i-1) hasn’t been identified 

(missing HN(CO)CA peak), So will be calculated by the following equation: 

 

SO

0 0 |I |
|I | 0.5

BO
|I |

|I | 0.5 2 0.5 |I |
|I | 1

BO 100 BO
|I |

|I | 1

100

1 |I |
|I | 2

|I |
|I | 2

 7.2.7.1.6  

where Ii and Ii-1 are the intensities of HNCA peak (i) and HNCA peak (i-1) 

respectively. 

E is the overall energy of a cluster. It is negatively related to the 7 scores 

mentioned above and ranges from 0 to 10000. The user-defined constants e.g. 

Gc1, Gm1, GO… are weight factors that control the contribution of each score to 

the cluster energy. After mapping as many clusters as possible onto the protein 

sequence, the total energy of the mapping scheme is the sum of energies of  

individual residues, while an empty residue that hasn’t been assigned to any 

cluster has the maxim energy value of 10000. 

 

E 100
∑ G 100 S

∑ G  G G , G , G , G , G , G , GO
S S ,  S ,  S ,  S ,  S , S ,  SO

   7.2.7.1.7  
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An automated simulated annealing-Monte Carlo approach tailored for 

obtaining the best mapping scheme with the above energy equation will be 

carried out if users choose fully-automatic mode for cluster mapping. Monte 

Carlo methods are particularly powerful in this particular application because 

they explore the landscape of possible solutions during the mapping process. 

Consequently, they are able to report both the most favorable set of mapping as 

well as an ensemble of mapping schemes that are closely related to the best one. 

This ensemble of mapping schemes can be inspected to detect possible errors in 

the previous steps or to identify weak links or wrong assignments.  

However, a limitation of the simulated annealing-Monte Carlo approach is 

the slow convergence of the algorithm. In larger proteins, the solution space 

grows rapidly with the number of residues and cannot be searched extensively in 

practical time scales, unless additional constraints are used to reduce the search 

space. 

XYZ4D provides users with an option to perform a “Best-first approach” 

before the simulated annealing-Monte Carlo approach. It will search the best 

matched clusters from cluster pool and generate dipeptide segments from them. 

As more dipeptide segments are generated, one or more reliable fragments will 

eventually be established and uniquely mapped to protein sequence. Fix these 

assignments before the simulated annealing-Monte Carlo approach could 

significantly speed up the procedure and provide better solutions. 
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Figure 7.20 Ten simulated annealing cooling schedules provide by XYZ4D. 

Ti is the temperature for step i, where i increases from 0 to N. T0 is the initial 
temperature and TN is the final temperature.  
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With or without the Best-first approach, the un-assigned clusters will be 

assigned randomly to the protein sequence. After calculating the energy of the 

initial random assignments, a cooling schedule (Figure 7.20) will be used to 

perform the simulated annealing-Monte Carlo approach.  Each cooling schedule 

consists of a beginning temperature, a final temperature and a number of cooling 

steps. 

The program optimizes the assignment by exchanging, or swapping, one or 

more consecutive clusters from within the primary sequence with an identically 

sized collection of clusters from either the primary sequence or from the cache. 

This operation is called “perturbation”, and the segments are selected randomly 

from within the primary sequence and are of random length, with the maximum 

size of 5. The energy of this new mapping result is then calculated. If the energy 

is lowered, then the new mapping is retained. If the score rose, then a decision is 

made to either keep or discard the new mapping. This decision is based on the 

ratio of the increase in energy to the current temperature of the system. If the 

increase in the energy is equal to the current temperature then, on average, 1/e (e 

is Euler–Mascheroni constant) of the solutions are retained. If the increase in 

energy is smaller than the current temperature then the probability of retaining 

the new mappings is larger than 1/e. An increase in the energy that exceeds the 

current temperature causes the probability to be less than 1/e. The larger the 

increase the lower the probability.  

The temperature is initially set sufficiently high that most proposed 

perturbations are accepted. The temperature is gradually lowered during the run; 

consequently it becomes increasingly less likely to accept swaps that increase the 
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overall energy. To insure that the system remains in equilibrium during the 

annealing process it is necessary to use a large number of perturbations at each 

cooling step. In practice, the number of perturbations within each cooling step is 

defined by the user or equal to the square of the “empty residue” number, which 

is bigger.  

7.2.7.2 Interface 

The main panel of the Cluster Mapping Module is slightly different from 

other modules’ with an additional “Parameters Setting” button which allows 

users to define the 6 baselines (Bc1, Bc2, Bc3, Bc4, Bm, Bo,) and 7 weighting factors 

(G , G , G , G , G , G , GO) of the scores. (Figure 7.21) 

 

 

Figure 7.21 Setting Panels of Energy Calculation Parameters. 

(a) Baselines setting panel. (b) Weighting factors setting panel. 
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If the fully-automatic mode is chosen, the program will ask the user to 

define the cooling schedule, cooling steps, number of perturbations within each 

cooling step and how many mapping schemes that would be generated (Figure 

7.22). The annealing process will run concurrently on multiprocessor computer. 

The results and a statistics-analysis report will be saved as a text file in a user 

defined folder. The final mapping schemes could be exported into the semi-

automatic interface for manual analysis. 

 

 

In the semi-automatic mode, XYZ4D provides an efficient and flexible 

interface to help users quickly and intuitively assemble the cluster (Figure 7.23). 

Starting from any cluster, users can search its following or preceding cluster, and 

XYZ4D lists all the candidate-clusters and their corresponding spin-systems 

ordered by how well they match with the given one, using yellow colour to 

Figure 7.22 Control panel of Simulated Annealing-Monte Carlo approach. 
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indicate a cluster that has been connected to other clusters or red colour to 

indicate a connected and locked cluster.   

Choosing a candidate-cluster, the program will display HSQC peaks, 

HNCA strips, HN(CO)CA strips and 4DNOE slices of the two clusters side by 

side with an additional double-layer NOE slice shows the contour plot of NOE 

signals from both clusters in different colours and allows users to inspect the 

matching of spin-system intuitively. By moving the crosshair in the spectra with 

the mouse, users could easily check the matching of peaks. By selecting a peak 

ID in any of the panels, the peak will immediately be highlighted in the 

corresponding spectrum. 

Double-clicking the candidate-cluster will connect it to the current one; 

users could then use the “Lock” button to lock this connection so that no other 

cluster could be connected to it until the connection is unlocked manually. Using 

the “Jump” button located beside the “Lock” and “Search” button, the interface 

will jump to the following or preceding cluster, allowing users to repeat the 

above routine until the fragment cannot be extended any longer. Then, users can 

apply the routine on another cluster forward or backward to assemble another 

fragment. 

The fragments are delineated vividly as a bunch of “Cluster Cards” on the 

“Protein Sequence Map” (Figure 7.24). A normal cluster is correlated with a 

single cluster card while an overlapped cluster is correlated several. The card 

labelled with the ID of the cluster and its sequential spin-system (low left) and 

intra-residue spin-system (low right). If the amino acid type of a spin-system is 

characterized, it will appear right below the spin-system’s ID. Middle click a 
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cluster card can display the cluster in the main panel (Figure 7.23), while middle 

click a spin-system will pop up a table shows its 20 amino acid typing score. 

Cluster cards and fragments could be dragged to anywhere within the map, or 

placed into sequence. By placing two cards or fragments side by side, a 

connection will be generated automatically and indicated by a yellow light at the 

edge of the cards. Middle clicking the yellow light can break the connection, but 

if the light turns into red which means the connection is locked, it will not be 

broken by middle clicking. 

If the spin system types are well characterized, then a fragment of four or 

five clusters usually is sufficient to achieve sequence-specific assignment. The 

ambiguity in the assignment process can be reduced by weak connections 

between fragments and the identification of other medium-range NOEs. The 

assignments encompass all spin-systems and clusters, and self-consistency is the 

best measure of the validity of the results.  

After connecting clusters together or placing them into the sequence map, 

scores and a mapping energy that are described in section 7.2.7.1 will be 

calculated immediately and displayed as rainbow stripe above and below the 

cluster card, respectively. A high score means the connection or mapping is good, 

and the vertical rainbow stripes above the cluster card are shorter. A better 

mapping gives rise to lower energy, with the horizontal rainbow stripe below the 

sequence slot shows less red colour. The accurate score and energy value could 

be easily accessed by right click menu. Users can use the rainbow stripes to tell 

which fragment is badly assembled or wrongly mapped onto the sequence.  
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The “Protein Sequence Map” can be saved as image or text file using right 

click menu at any time. The final mapping scheme could be used to assign the 

HSQC, HNCA and 4DNOE spectra. (Figure 7.25) 

 

 

7.2.8 Backbone assignment module 

After achieving a well optimized mapping scheme, the chemical shift 

values of most backbone atoms (HN, N, Cα, Hα) could be easily established and 

filled into the atom list provided by NMRspy. Only based on this atom list, users 

could continue working on side chain assignment, NOE assignment and structure 

calculation.  

XYZ4D establishes the 1HN, 15N chemical shifts of a residue by averaging 

the corresponding chemical shift values of the HSQC, HNCA and NOE peaks in 

the assigned cluster. The Cα chemical shift of a residue is established using the 

HNCA peak (i) as reference, and Hα chemical shift using the CαHα ΝΟE peak 

within the intra-residue spin-system as reference.  

Figure 7.25 The panel of cluster mapping module. 
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A graphic interface (Figure 7.26) allows users to display the related 

spectrum region and highlight a peak (by selecting a cluster or peak in the panel) 

or change the chemical shift reference (by double clicking a cluster or peak in the 

panel). The references of different atoms are highlighted with yellow colour.  

 

 

7.3  Results and discussion 

In this study, we have developed an NMRspy extension, XYZ4D, to 

facilitate the backbone assignment of large proteins without deuterium and 

specific labeling proteins by adopting a robust assignment strategy which makes 

Figure 7.26 Graphic interface of Backbone Assignment Module. 
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use of 2D-TROSY-HSQC, 3D-TROSY-HNCA, 3D-TROSY-HN(CO)CA, 3D-

MQ-CCH-TOCSY and 4D-13C, and 15N-edited NOESY spectra. 

The benefits of using XYZ4D are twofold. Firstly, the whole assignment 

process is greatly accelerated and alleviated due to computer automation. 

Secondly, the user is freed from the tedious routine calculation and spectra 

handling, and will focus only on resolving errors and ambiguities. This, coupled 

with the handy features of multiple spectrum view, uncluttered but powerful 

control panels and effective sequence mapping, will improve the accuracy of the 

assignments.  
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