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 1 

CHAPTER 1 

Abstract 

 

Floral transition is one of the most drastic changes occurring during Arabidopsis 

life cycle. Genetic analysis of flowering time mutants has led to a model describing 

four integrated flowering time pathways. Vernalization and photoperiod pathways 

mediate the response to environmental cues, while autonomous and gibberellin (GA) 

pathways mediate the internal signals. SHORT VEGETATIVE PHASE (SVP) is a 

MADS-box transcription factor acting as a floral repressor in flowering. In this study, 

we localized SVP in autonomous and GA pathways, and identified SOC1 and FT as its 

direct target genes in the control of flowering time. Notably, SVP protein associates 

with the promoter regions of SOC1 and FT where another potent repressor, 

FLOWERING LOCUS C (FLC), binds. We further show that the SVP protein 

consistently interacts with FLC in whole seedlings during vegetative growth, and their 

function in regulating flowering is mutually dependent. Our results demonstrate that 

SVP is a central flowering repressor, and that its interaction with FLC governs the 

expression of floral pathway integrators in response to developmental and 

environmental signals, thus determining the timing of floral transition. 
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CHAPTER 2 

Literature Review 

 

2.1 The genetic network controlling floral transition in Arabidopsis thaliana 

 

Flowering is one of the most important phase changes during the life cycle of 

higher plants. It is-the switch from vegetative to reproductive growth. Floral transition 

is the timing of this developmental process and it is particularly susceptible to various 

factors. Previous studies suggested an intricate network of pathways integrating 

endogenous and environmental inputs determined the timing of the switch from 

vegetative to reproductive development in Arabidopsis. This process is quantitatively 

controlled by the convergence of signals from individual pathways on the 

transcriptional regulation of several floral pathway integrators including 

FLOWERING LOCUS T (FT), LEAFY (LFY), and SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1) (Blazquez and Weigel, 2000, 

Kardailsky et al., 1999, Kobayashi et al., 1999, Lee et al., 2000 and Samach et al., 

2000). The genetic pathway underlying flowering time of Arabidopsis thaliana is 

further refined in recent years. Natural variation ecotypes of Arabidopsis showing 

various flowering time and genetically engineered early- or late-flowering mutants 

have been used to elucidate the genes involved in the control of flowering time and 

the interactions among them. It has been shown that these flowering time genes 

respond to both internal and environmental cues. Depending on the signals received 
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by the plant, the flowering genetic pathways can be divided into the vernalization 

pathway, autonomous pathway, photoperiod pathway and Gibberellin (GA) pathway 

(Levy and Dean, 1998; Boss et al., 2004; Buski and Frenkel, 2004; Jack, 2004; 

Putterill et al., 2004).  

 

2.1.1 Photoperiod pathway 

 

Arabidopsis flowers more rapidly under long days (LDs) condition than short 

days (SDs) condition. This phenomenon suggests that some genes in Arabidopsis are 

involved in recognizing the light signal. Photoreceptors in Arabidopsis comprise five 

phytochromes (PHYA to PHYE) and two cryptochromes
 
(CRY1 and CRY2) (Thomas 

and Vince-Prue, 1997). Studies suggested that the red and far-red light are perceived 

by PHYs (Briggs et al., 2001; Quail et al., 1994), while blue light and ultraviolet-A are 

perceived by CRY1 and CRY2 (Briggs et al., 2001; Ahmad et al., 1993; Lin et al., 

1998). The mechanism of ultraviolet-B perception is still unknown. The signal of the 

photoperiod pathway enters a circadian cycle only after initiation by PHYA, CRY1 and 

CRY2. Downstream genes will be activated if the length of the dark period decreases 

below a critical
 
level (Levy and Dean. 1998). Interestingly, light quality also affects 

flowering time, with far-red and blue light promoting flowering while red light 

inhibiting it (Martinez-Zapater
 
et al., 1994; Guo et al., 1998). 

Among the genes located downstream of photoreceptors, GIGANTEA (GI) and 

CONSTANS (CO) have been thoroughly investigated. Mutations of these two genes 



 4 

result in late flowering phenotype under LDs but have little effect under SDs. CO is 

probably the most important target of PHYs and CRYs. The CO gene has homology to 

the Zinc-finger domain transcription factor (Putterill et al., 1995). It is regulated by 

photoreceptors precisely through the light cycle. Previous studies showed that the 

circadian rhythm of CO mRNA was critical for control of flowering via the 

photoperiod pathway (Valverde et al., 2004), while flowering activation through CO is 

a dosage-dependent process (Putterill et al., 1995). On the other hand, GIGANTEA 

(GI) encodes a membrane located protein with six putative membrane-spanning 

domains, and its expression is also regulated by the circadian clock. It is shown that 

GI is essential for the maintenance of circadian rhythm. The expression of LHY and 

CCA1, which are two other circadian clock-associated genes, is low in the gi mutant 

(Fowler et al., 1999; Park et al., 1999).  

 

2.1.2 Autonomous pathway 

 

Plants require both external environmental factors and internal developmental 

factors to promote flowering. It is shown that the mutants of LUMINIDEPENDENS 

(LD), FVE, FY and FCA cause delay flowering under both LDs and SDs, hence they 

are placed in the autonomous pathway. The LD gene encodes a protein of 953 amino 

acids with two bipartite nuclear localization motifs. The LD protein contains a 

glutamine-rich domain, which is homologous to certain transcription factors in other 

species. Moreover, LD may involve in light quality perception, since ld mutant plants 
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are insensitive to light with a high red/far-red ratio (Lee et al., 1994). The FCA protein 

includes two RNA-recognizing motifs and a WW (two conserved tryptophan [W]) 

protein interaction domain. This structure strongly suggests that FCA may function in 

the posttranscriptional process (Macknight et al., 1997). The FCA self-regulates its 

expression through alternatively splicing, which will generate α, β, γ and δ variants. 

However, only γ mRNA encodes functional FCA protein. This is consistent with the 

fact that only the constitutive expression of γ mRNA causes early flowering in 

transgenic plants (Macknight et al., 2002). FVE is a putative 

retinoblastoma-associated protein. It has bee reported that FVE is part of a protein 

complex performing histone deacetylation function in order to repress FLOWERING 

LOCUS C (FLC), which is a key factor integrating autonomous and vernalization 

signals (Israel et al., 2004). Additionally, FPA and FY genes act redundantly to repress 

FLC, through which plants ensure the developmental switch-on of flowering 

(Yushibumi, 2004; Schomburg et al., 2001).  

 

2.1.3 Vernalization pathway 

 

Arabidopsis winter annual ecotypes flower earlier after extreme cold treatment 

(vernalization), which helps plants flower in time after prolonged cold in winter. This 

pathway performs redundantly with the autonomous pathway. Both of them activate 

flowering mainly through the repression of FLOWERING LOCUS C (FLC), a 

member of MADS-domain protein family. FLC is expressed predominantly in shoot 



 6 

and root apices but is also detectable in leaf tissues (He et al., 2003; Michaels and 

Amasino, 1999). An expression study of FLC with tissue-specific promoters 

demonstrated that FLC expression is required in both leaf and shoot apical meristem 

tissues for the full repression of flowering (Searle et al., 2006). The abundance of 

FLC mRNA is reduced by vernalization (Michaels et al., 1999), whereas FLC is not 

necessary for vernalization response since other FLC-independent vernalization 

pathways that may regulate AGL24 and AGL19 have been reported in recent years 

(Michaels et al., 2003; Schonrock et al., 2006). The FRIGIDA (FRI) gene is a 

powerful positive regulator of FLC. The coiled-coil domains of FRI protein may be 

the regulatory component. Allelic variation at the FRI locus confers the flowering 

differences among Arabidopsis ecotypes (Johanson et al., 2000). Moreover, mutation 

of FLC is epistatic to dominant alleles of FRI. Similarly, overexpression of FLC 

showed late flowering phenotype in the absence of an active FRI allele (Michaels et 

al., 1999).  

There are several genes which have been specially located in the vernalization 

pathway, namely VRN1, VRN2 and VRN3 (Chandler et al., 1996). VRN1 protein may 

bind DNA in a non–sequence-specific manner and functions in constant repression of 

FLC. Overexpression of VRN1 also reveals a vernalization-independent function for 

VRN1, mediated mainly through the floral pathway integrator FT (Levy et al., 2002). 

VRN2 encodes a nuclear-localized zinc finger protein with homology to Polycomb 

Group (PcG) proteins in Drosophila and maintains FLC repression after vernalization 

(Gendall et al., 2001). In addition, another PcG protein, VIP4 has been found to be an 
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activator of FLC (Zhang et al., 2002).  

The observation that FLC repression is maintained through mitotic cell divisions 

in plants experiencing the cold treatment suggests an epigenetic mechanism of 

vernalization. Many components in vernalization pathways have been found to cause 

remodeling of FLC chromatin structure and histone modifications related to 

heterochromatin formation. These regulators includes VRN2, LIKE HP1 (LHP1) and 

VERNALIZATION INDEPENDENTS3 (VIN3). LHP1 encodes a protein showing high 

homology to HETEROCHROMATIN PROTEIN1 (HP1) in animals, which is able to 

stabilize the histone repressive methylation and recruit other complexes for 

heterochromatin formation (Bannister et al., 2001; Mylne et al., 2006). VIN3 is a 

plant-specific DNA-binding protein involved in histone deacetylation at FLC. 

However, VIN3 itself is not sufficient to initiated the vernalization response since it is 

expressed only after an extended cold treatment (Sung and Amasino 2004). 

 

2.1.4 Gibberellin (GA) pathway 

 

Gibberellin (GA) is a major flowering promoter for Arabidopsis under SDs. 

Besides flowering, this class of plant hormones participates in
 
seed germination and 

cell elongation during plant development, including (Finkelstein and Zeevaart, 1994). 

The ga1-3 mutant, which is severely defective in gibberellin synthesis, never flowers 

under SDs, while it only slightly delays flowering under LDs (Wilson et al., 1992). 

GA promotes flowering partly through the activation of LFY because the constitutive 
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expression of LFY is able to restore flowering of ga1-3 mutants in SDs (Blazquez et 

al., 1998). Moreover, several negative regulators, such as RGA and GAI, are involved 

in the GA signal transduction. They are highly homologous and may function 

redundantly. The rga gai double mutant can completely rescue these defects in ga1-3, 

although the gai and rga single mutant have limited effect on suppressing the 

flowering defects in the GA-deficiency mutant ga1-3. This suggests that RGA and 

GAI are repressors of the GA pathway in the control of flowering time. These genes 

also participate in feedback-control of GA biosynthesis. SPY is another repressor of 

the GA pathway, which is acting upstream of RGA and GAI. SPY activates these two 

genes probably through the GlcNAc modification because SPY is predicted to encode 

an O-linked
 
N-acetylglucosamine (GlcNAc) transferase.  

Thus the photoperiod and vernalization pathways respond to environmental 

signals, such as the duration of light periods and low temperatures. The autonomous 

pathway mediates flowering by monitoring developmental stages of plants, while the 

gibberellin (GA) pathway accelerates flowering in short days (SDs). In addition, 

another genetic pathway has been suggested to monitor the environmental cues 

relevant to the change of light quality and ambient temperature (Blazquez et al., 2003, 

Cerdan and Chory, 2003, Halliday et al., 2003 and Simpson and Dean, 2002). 

 

2.2 Floral integrators 

 

Previous research work provides evidence that the above mentioned four genetic 
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pathways converge on some key genes in order to integrate inputs from the different 

flowering cascades, and they are called floral pathway integrators. LEAFY (LFY), 

FLOWERING LOCUS T (FT), FLOWER LOCUS C (FLC) and SOC1 have been 

identified as such integrators in Arabidopsis (Simpson and Dean, 2002).   

 

2.2.1 LEAFY (LFY) 

 

The LFY gene encodes a plant specific transcription factor, which is localized 

primarily in the nucleus. LFY has dual roles in flower development, as a flowering 

time promoter and a floral meristem identity gene (Parcy et al., 1998; Weigel et al., 

1992). The LFY protein can be transferred to different layers of floral meristem 

through plasmodesmata. The cell-cell movement provides a potential mechanism to 

ensure complete conversion of a meristem into a flower (Sessions et al., 2000). The 

confirmed functions of LFY protein are positive regulation of AGAMOUS (AG) and 

APETALA1 (AP1) through cis-elements binding (Busch et al., 1999; Lohmann et al., 

2001). Constitutive expression of LFY causes early flowering while lfy mutants shows 

slightly delay flowering and produce a flower-like shoot structure, which is related 

with the role of LFY on floral meristem specification (Weigel et al., 1992). The 

overexpression of LFY partially rescues the co mutant phenotype suggests that LFY 

might be the downstream target of CO-mediated photoperiod pathway. This has been 

further proven by the finding that the increase of CO (using inducible CO-GR 

transgenic plants) promotes LFY mRNA expression. Moreover, CO may not be a 
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direct activator of LFY because the LFY induction by CO takes more than 24 hours 

(Samach et al., 2000). As mentioned in part 2.1.4, LFY expression is dramatically 

reduced in ga1 mutant under SD condition. GA signals upregulate LFY possibly 

through a cis-element in the LFY promoter (Blazquez and Weigel 2002). It is 

noteworthy that this regulatory region does not affect LFY induction by the 

photoperiod pathway. Therefore, GA and photoperiod pathway signals integrate 

independently at LFY (Blazquez and Weigel 2002; Parcy 2005).  

 

2.2.2 FLOWERING LOCUS T (FT) 

 

The FT gene has been simultaneously isolated by activation-tagging and T-DNA 

insertion screening. FT transcripts are detectable in seedlings before floral transition, 

increasing gradually with vegetative growth. The mRNA expression patterns under 

LD and SD conditions are subtly different, though both reach a maximum around the 

period of floral transition. FT encodes a 20KDa protein with similarities to 

phosphatidylethanolamine binding protein (PEBP) and Raf kinase inhibitor protein 

(RKIP) in animals (Kardailsky et al.; 1999; Kobayashi et al., 1999). FT protein is not 

able to regulate transcription process unless assembled with FD, a bZIP transcription 

factor (Abe et al., 2005; Kardailsky et al., 1999). The FT::GUS reporter gene shows 

that FT is primarily expressed is the vasculature, while FD is found at the shoot apex, 

suggesting that FT mRNA or protein need move from leaf to shoot apical meristem, 

where it interacts with FD to activate AP1 (Abe et al., 2005; Baurle and Dean, 2006; 
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Takada and Goto, 2003). This assumption has been partly proven by a recent paper 

that FT fusion protein can move from phloem cells to the apex, acting as a florigen 

(Corbesier et al., 2007). 

FT constitutive expression causes extremely early flowering under both LD and 

SD conditions, while the ft mutant is late flowering under LDs and has slight effect 

under SDs, implying that FT is regulated by the photoperiod pathway. CO seems to 

directly upregulate FT expression (Samach et al., 2000). The early flowering of 

overexpression CO transgenic plants can be repressed by mutations in the FT gene. 

The interaction between CO and FT is also validated by expression of CO with 

different localized promoters. CO triggers early flowering in the leaf phloem but not 

in the shoot apex, indicating that the activation signals of CO in leaf need to be 

transmitted into the apex through a florigen factor, which is possibly FT (An et al., 

2004; Ayre and Trugeon, 2004). Another well-known regulator of FT is FLC, which is 

the convergence point of the autonomous and vernalization pathways. Elevated FT 

expression is found in flc mutant. FLC represses FT transcription mainly in the leaf 

phloem and delays FD upregulation in shoot apex. Chromatin immunoprecipitation 

demonstrates that FLC protein physically binds to the first intron of FT and to the 

promoter region of FD (Baurle and Dean, 2006; Searle et al., 2006). GA might also 

play a role in FT induction since the GA-dependent ebs mutant derepresses FT to 

promote early flowering phenotype (Gomez-Mena et al., 2001; Pineiro et al., 2003).  

 

2.2.3 FLOWER LOCUS C (FLC) 
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The signals from the vernalization and autonomous pathways converge on a 

potent repressor of flowering, FLOWERING LOCUS C (FLC) (Michaels and 

Amasino, 1999 and Sheldon et al., 1999). FLC encodes a MADS-box transcription 

factor and is widely expressed in the meristem and leaves (Noh and Amasino, 

2003and Sheldon et al., 2002). Regulation of FLC expression involves epigenetic 

control of the functional states of its chromatin by multiple factors (Amasino, 2004 

and Baurle and Dean, 2006). High expression of FLC antagonizes the meristem's 

competence to respond to promotive floral signals by repressing at least the two floral 

pathway integrators FT and SOC1, while the vernalization and autonomous pathways 

promote flowering by repressing FLC expression (Hepworth et al., 2002, Lee et al., 

2000, Michaels and Amasino, 1999, Michaels et al., 2005, Sheldon et al., 1999 and 

Sheldon et al., 2000). Spatial and temporal analysis of FLC regulation has revealed its 

dual roles in repressing flowering. FLC represses FT expression in the leaves and 

blocks the transport of the systemic flowering signals that contain FT protein from the 

leaves to the meristem, and FLC also impairs the meristem's response to the flowering 

signals by inhibiting the expression of SOC1 and the FT cofactor FD (Abe et al., 2005, 

Corbesier et al., 2007, Searle et al., 2006 and Wigge et al., 2005). 

 

2.2.4 SUPPRESSOR OF CO OVEREXPRESSION 1 (SOC1) 

 

SOC1, formerly named AGAMOUS-LIKE 20 (AGL20), consists of seven exons 
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and six introns. It encodes a typical MADS-domain transcription factor of 214 amino 

acids, showing 96% identity to a mustard ortholog MADSA, which responds to 

inductive long-day signals (Borner et al., 2000; Lee et al., 2000). Phylogenetic 

analysis indicates that the most homologous proteins of SOC1 in Arabidopsis are 

AGAMOUS-LIKE 14 (AGL14) and FLC (Lee et al., 2000). SOC1 was 

contemporaneously identified as a floral activator using activation tagging and cDNA 

screening for suppressors of CO overexpression (Lee H et al., 2000; Samach et al., 

2000). Expression studies showed that SOC1 transcripts are present in most tissues of 

Arabidopsis seedlings, including root, leaf, shoot apex, etc. The mRNA abundance is 

temporally upregulated after seed germination. During floral transition, there is a 

sharp increase of SOC1 mRNA and strong SOC1 expression could be found in the 

inflorescence meristem, after which it was absent from the stage 1 floral meristem, 

then reappeared in the center of older floral meristem, overlapping the spatial 

expression pattern of AG (Borner et al., 2000; Samach et al., 2000). However, floral 

organs of the soc1 mutant normally develop, suggesting that SOC1 might be a 

redundant co-factor in floral organogenesis (Borner et al., 2000).  

 

2.2.4.1 SOC1 is a flowering promoter in Arabidopsis 

 

It has been suggested that SOC1 is a major factor in determination of flowering 

time. Overexpression of SOC1 causes extremely early flowering under both LD and 

SD conditions. Similarly, constitutive expression of the orthologous gene MADSA in 
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the short-day tobacco (Nicotiana tabacum Maryland Mammoth) can overcome the 

photoperiodic barrier of floral induction (Borner et al., 2000). On the other hand, the 

soc1 mutant demonstrates significantly delayed flowering, especially under LDs. In 

the soc1 mutant without any detectable SOC1 transcripts, the leaf number is twice as 

that of wild-type. Whereas, the soc1 mutant is still responsive to the photoperiod 

pathway since the mutant flowers earlier under LDs than under SDs (Borner et al., 

2000; Lee et al., 2000).   

 

2.2.4.2 SOC1 integrates all the four flowering pathways in Arabidopsis thaliana 

 

Expression studies confirm that SOC1 mRNA level is promoted after a shift 

from SDs to LDs, mainly in the shoot apical meristem and leaf primordia (Borner et 

al., 2000; Samach et al., 2000). CO seems to play an essential role in the 

photoperiodic response of SOC1. SOC1 expression has been examined in a 

35S::CO:GR inducible system. SOC1 appears to be one of the immediate targets of 

CO. The translational inhibitor cycloheximide (CYC) was also applied to demonstrate 

that regulation from CO to SOC1 does not require any intermediate protein synthesis 

(Samach et al., 2000). This result is consistent with the study of the SOC1::GUS 

reporter gene, showing that a 351bp fragment in SOC1 promoter region is necessary 

for activation by CO. Although the CO protein might not directly bind to the SOC1 

promoter, CO could recruit other DNA binding co-factors to perform transcriptional 

regulation through its zinc fingers and CCT domain, which mediate protein-protein 
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interaction (Hepworth et al., 2002). Genetic data are helpful to further clarify the 

relation between CO and SOC1. The soc1 and ft mutants partially suppress the early 

flowering of overexpression of CO, while ft soc1 double mutations completely 

eliminate the phenotype, and cause ft soc1 35S::CO plants to flower as late as the co 

mutant. Therefore, SOC1 and FT are two major outputs of CO-mediated signals and 

partly independently perform their functions (Hepworth et al., 2002). However, some 

researchers proposed that SOC1 may be regulated by CO through FT since FT has a 

positive effect on SOC1 expression (Yoo et al., 2005). Additionally, a separate 

experiment indicates that FT is required in phloem for the early activation of SOC1 at 

meristem under LDs, possibly in a FD-dependent manner (Searle et al., 2006). This 

interesting idea still needs to be further validated.  

One expression study also suggested that SOC1 expression is more dependent 

on the autonomous pathway since the autonomous pathway mutants, fca-1, fve-1, and 

fpa-1, show more reduction of SOC1 transcripts compared with the photoperiod 

pathway mutants, co-2, gi-3, and ft-1 (Lee et al., 2000). Nevertheless, there is no 

evidence supporting the direct interaction among SOC1 and these autonomous 

pathway factors. As previously mentioned, FLC is a key gene which integrates 

vernalization and autonomous pathways in Arabidopsis. It seems that FLC acts as an 

intermediate factor involved in SOC1 regulation by these two pathways. The 

investigation of FLC and SOC1 mRNA levels in each other‟s loss-of-function mutants 

show that FLC is an upstream repressor of SOC1 (Lee et al., 2000). SOC1 is 

quantitatively induced by vernalization in a FLC-dependent manner (Sheldon et al., 
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2006). Independent ChIP analysis using different tagging systems indicate that in vivo 

binding of FLC protein to the SOC1 genomic sequence occurs through a CArG box 

motif, which is recognized specifically by MADS-domain transcription factors 

(Helliwell et al., 2006; Searle et al., 2006). This result is consistent with the 

SOC1::GUS study and in vitro assay (Hepworth et al., 2002). Moreover, it is believed 

that FLC participants in a protein complex to perform its function as more than one 

FLC polypeptide can be detected in the complex in vivo. In support of this finding, in 

vitro gel shift experiments indicate that FLC needs to form a homodimer to interact 

with the CArG box motif in the SOC1 promoter (Helliwell et al., 2006; Hepworth et 

al., 2002).  

GA treatment accelerates Arabidopsis flowering under SDs, and this process is 

correlated with the increase of SOC1 expression, implying that GA might be another 

upstream signal of SOC1 (Borner et al., 2000; Moon et al., 2003). This regulation is 

not mediated by FLC since GA treatment does not affect FLC expression under SDs. 

In the GA-biosynthetic defective mutant ga1-3, SOC1 expression is lower than in 

wild-type plants, and exogenous GA treatment promotes both SOC1 expression and 

flowering. On the contrary, although SOC1 expression is reduced in GA-insensitive 

mutant gai-1, exogenous GA treatment can recover neither SOC1 expression nor the 

normal flowering phenotype (Moon et al., 2003). In addition, overexpression of SOC1 

is able to bypass the block to flowering in ga1-3 mutant and the soc1 mutant is less 

sensitive to GA, suggesting that SOC1 integrates the GA pathway signals although 

other additional downstream factors may exist (Moon et al., 2003).  
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2.3 Interaction between floral integrators 

 

2.3.1 LFY and FT 

 

There is some evidence showing that LFY expression is regulated by FT, 

although this regulation might be indirect. LFY is ectopically expressed in the apical 

meristem of transgenic plants overexpressing FT, and its expression is reduced in ft 

mutant under LD and SD conditions (Schmid et al., 2003; Kardailsky et al., 1999). 

However, the LFY::GUS reporter gene is normally expressed in leaf primordia of the 

ft mutant (Nillson et al., 1998). The relation between FT and LFY therefore requires 

further investigation. In wild-type plants, LFY mRNA is not detectable in the shoot 

apical meristem due to repression by TERMINAL FLOWER1 (TFL1) (Ratcliffe et al., 

1998). TFL1 protein is highly homologous to FT, but performs the opposite function 

in flowering time control. These two proteins are functionally exchangeable with a 

single amino acid conversion (Hanzawa et al., 2005). 

 

2.3.2 LFY and SOC1 

 

The direct interaction between LFY and SOC1 has been proposed in recent years. 

It is believed that LFY may act at least partially downstream from SOC1. The 

constitutive expression of SOC1 activates LFY in the shoot meristem, producing 
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solitary flowers from axillary inflorescences (Lee et al., 2000; Mouradov et al., 2002; 

Parcy 2005). Nevertheless, LFY expression is not abolished in the soc1 mutant, 

indicating that there are other upstream factors activating LFY. Consistent with this 

hypothesis, overexpression of SOC1 and LFY have additive effects on flowering (Lee 

et al., 2000). Because AGL24 also affects LFY expression, it has been suggested that 

AGL24 is another upstream regulator of LFY (Yu et al., 2002). Since AGL24 and 

SOC1 mutually regulate each other‟s expression (Yu et al., 2002; Michaels et al., 

2003), they may function together to control LFY expression. 

 

2.3.3 FT and SOC1 

 

Currently it is widely accepted that FT and SOC1 acts on independent pathways. 

Although SOC1 upregulation after a shift from SD to LD conditions is decreased in 

the ft mutant, this difference could be a side effect of the whole flowering-regulatory 

network (Schmid et al., 2003). Nevertheless, a recently published paper mentioned 

that FT may recruit FD in order to promote SOC1 expression at the shoot apical 

meristem during floral transition (Searle et al., 2006). Moreover, some evidence also 

implies that FT may perform as an intermediate factor between SOC1 and CO (Yoo et 

al., 2005). 

 

2.4 Floral meristem identity (FMI) genes 
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Once floral integrators are activated, they regulate downstream floral meristem 

identity (FMI) genes, which determine the apical meristem fate to produce floral 

meristems that further develop into flowers with four whorls of floral organs. The 

appearance of floral meristem identity genes in floral primordia symbolizes the 

completion of floral transition. In Arabidopsis, APETALA1 (AP1), LFY and 

CAULIFLOWER (CAL) are well studied FMI genes. 

 

2.4.1 APETALA1 (AP1) 

 

Like LFY, AP1 has dual functions during floral development, namely the 

determinations of floral meristem identity and floral organ identity. AP1 encodes a 

MADS-domain transcription factor, which specifies the identity of floral meristem 

and determines sepal and petal development as a class A gene in Arabidopsis 

(Gustafson-Brown et al., 1994). The ap1 mutant shows the defects in the floral 

meristem specification, and constitutive expression of AP1 results in early flowering 

(Bowman et al., 1993). LFY has been confirmed to act as a direct transcriptional 

regulator of AP1 (Wagner et al., 1999). In situ data shows that AP1 is expressed in a 

sub-domain of the region expressing LFY (Mandel et al., 1992). Overexpression of 

LFY significantly promotes AP1 expression, and AP1 mRNA can be found in leaf 

primordia, which is the expression region of LFY in wild-type plants. Correspondingly, 

AP1 expression is delayed in the lfy mutant (Liljegren et al., 1999; Parcy et al., 1998; 

Ruiz-Garcia et al., 1997; Weigel and Meyerowitz, 1993). In addition, the LFY:GR 
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inducible system and chromatin immunoprecipitation (ChIP) have been applied to 

demonstrate that LFY activates AP1 through protein binding to the AP1 promoter 

region, and this regulation does not require any intermediate translational process 

(Wagner et al., 1999; William et al., 2004). However, LFY is not the only upstream 

regulator of AP1 as FT is also able to activate AP1 as mentioned in Section 2.2.2. The 

ft lfy double mutant abolishes AP1 expression as seen in the lfy mutant, suggesting 

that FT and LFY controls AP1 in parallel pathways (Ruiz-Garcia et al., 1997). 

 

2.4.2 CAULIFLOWER (CAL) 

 

CAL also encodes a putative MADS-domain transcription factor. Phylogenetic 

analysis indicates that CAL and AP1 are paralogous to each other (Purugganan and 

Suddith, 1998). The expression patterns of these two genes are quite similar. As 

expected, the activity of CAL appears to be redundant to that of AP1. The CAL 

promoter also contains a LFY protein binding site (William et al., 2004). However, the 

meristem identity functions of CAL and AP1 are not entirely equivalent, because ap1 

mutants show signficant flower meristem defects even in the presence of CAL while 

cal mutants have no obvious floral phenotypes (references?).. Some studies support 

that CAL and AP1 act redundantly to upregulate LFY to control inflorescence 

architecture, implying the reciprocal interactions among all the three FMI genes 

(Ferrandiz et al., 2000).  
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2.5 Overview of the clarified regulatory network controlling floral transition in 

Arabidopsis thaliana 

 

As mentioned above, four genetic pathways have been found in mediating floral 

transition in Arabidopsis. These flowering signals would converge to several floral 

integrators, which further activate floral meristem identity genes and finally determine 

flower formation in the shoot apex (Figure 1).  
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Figure 1. The schematic flowering pathways in Arabidopsis thaliana. Arrows and 

T-lines indicate positive and negative regulations, respectively. Dotted line is a 

possible interaction. 
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2.5 AGL24 and SVP – Emerging new floral integrators  

 

2.5.1 AGL24 

 

Like SOC1, AGL24 also encodes a putative MADS-domain transcription factor.  

AGL24 protein is translocated from the cytoplasm to the nucleus to perform its 

transcriptional function through phosphorylation by a meristematic receptor-like 

kinase (MRLK) (Fujita et al., 2003). In the past few years, studies on AGL24 have 

mainly focused on two stages of plant growth: flowering time control and flower 

development.  

 

2.5.1.1 AGL24 is an activator of flowering 

 

Constitutive expression of AGL24 causes early flowering while agl24 mutant 

and RNAi transgenic plants delay flowering. Further studies demonstrated that 

AGL24 is a dosage-dependent flowering promoter (Michaels et al., 2003; Yu et al., 

2002), and suggests that SOC1 is involved in the floral activation of AGL24. Both 

SOC1 and AGL24 transcripts are found in the shoot apical meristem an the vegetative 

growth phase and highly accumulated in the inflorescence during floral transition. 

When overexpressed, SOC1 and AGL24 significantly upregulate each other‟s 

expression especially in autonomous pathway mutant or FRI-dominant plants 

(Michaels et al., 2003). Furthermore, expression results showing that AGL24 is 
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downregulated in most late flowering mutants (except ft -1) can be explained by the 

hypothesis that AGL24 acts partially downstream of SOC1, which is a key floral 

signal integrator in Arabidopsis. This opinion is also supported by the genetic data. 

Overexpression of AGL24 is able to partially rescue the late flowering phenotype of 

the soc1 mutant and the mutation of AGL24 suppresses the early flowering of 

overexpression of SOC1, indicating that AGL24 is one of the downstream target genes 

of SOC1 (Yu et al., 2002). Nevertheless, SOC1 and AGL24 act differently in the 

vernalization pathway. Although both of them are activated through vernalization, 

AGL24 is regulated in a FLC-independent manner while SOC1 is predominantly 

affected by FLC (Michaels et al., 2003). 

 

2.5.1.2 AGL24 regulates floral meristem formation 

 

AGL24 overexpression plants also display some floral alterations, including the 

reversion of floral meristem to inflorescence meristem, which is similar to the ap1 

mutant. Besides, AGL24 is found to be repressed in both AP1 and LFY inducible 

systems, implying that AGL24 might determine the inflorescence identity and it is 

regulated by floral meristem identity genes, including AP1, LFY, etc. In accordance 

with that, in situ studies show that AGL24 is ectopically expressed in the whole zone 

of floral meristems in ap1-1 and lfy-6 mutants while in wild-type, AGL24 is expressed 

mainly in the inflorescence meristem and downregulated in young floral meristems. 

Moreover, the mutation of AGL24 is able to reduce the excess inflorescence apices of 
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ap1-1 and lfy-6 mutants (Yu et al., 2004). In conclusion, AGL24 maintains the 

inflorescence fate in Arabidopsis and repression of AGL24 is required for normal 

floral meristem development. 

 

2.5.2 SVP 

 

SHORT VEGETATIVE PHASE (SVP), which encodes a MADS-box transcription 

factor, is another negative regulator of flowering in Arabidopsis (Hartmann et al., 

2000). Like FLC, SVP also acts as a floral repressor and encodes a MADS domain
 

protein (Hartmann et al., 2000). SVP acts in a dose-dependent
 
manner to delay 

flowering and may work synergistic with FLOWER LOCUS M (FLM), which is 

another floral repressor and close homolog of FLC. svp mutations
 
overcome the 

late-flowering phenotype conferred by over-expression of FLM,
 
and svp flm double 

mutants behave like single mutants  (Scortecci et al., 2003).  

In accordance with its function in maintaining the duration of the vegetative 

phase, SVP is expressed in whole vegetative seedlings, but is barely detectable in the 

main inflorescence apical meristem (Hartmann et al., 2000 and Liu et al., 2007). It has 

been recently reported that SVP mediates ambient temperature signaling within the 

thermosensory pathway by regulating FT expression (Lee et al., 2007). However, 

since FT mRNA is mainly expressed in the leaf (, Takada and Goto, 2003 and Wigge 

et al., 2005), the biological significance of downregulation of SVP at the shoot apex 

during the floral transition remains unknown. 
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SVP was first identified from early flowering mutants with the En-1 transposon 

(Baumann et al., 1998). SVP encodes a typical MADS-box protein, which has high 

sequence homology to AGL24 except for the C-terminal region. However, it has an 

antagonistic effect on flowering compared with AGL24. The svp mutant plants 

accelerate flowering under both LDs and SDs and the plants are still 

photoperiod-sensitive. Obvious morphological alterations are not observed in the svp 

mutant, although the potential effect of SVP overexpression on floral organogenesis 

needs further investigation. In accordance with its physiological functions, SVP 

expression is repressed in the apical meristem during floral transition, while the 

expression is maintained in young floral meristems at stages 1 and 2. Additionally, 

SVP represses flowering in a dosage-dependent manner because of the different 

flowering time between homozygous and heterozygous svp mutants (Hartmann et al., 

2000). Another interesting finding is that the SVP genomic sequence produces several 

transcripts with different molecular size. It seems that the longer transcript is able to 

produce the entire protein while the function of the shorter ones remains to be 

clarified (Hartmann et al., 2000). It is possible that SVP is regulated via a 

post-transcriptional process, which is regulated by the function of FCA, another floral 

regulator in the autonomous pathway. 

In conclusion, the four distinct flowering time pathways converge through several 

integrators to control the flowering time in Arabidopsis. The function of SVP, a novel 

component of flowering pathways, remains to be characterized. Further investigations 
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are needed to elucidate the molecular mechanism of SVP and its position and role in 

the flowering network.  

 

2.6 The MADS protein family 

 

2.6.1 The domain structure and function of MIKC type MADS protein 

SVP belongs to a family of transcription factors that are found in species from all 

over the eukaryotic kingdoms and are mainly involved in developmental processes. 

They are collectively classified as MADS-box proteins because they share a highly 

conserved MADS domain, a DNA-binding domain that binds to a CC(A/T)6GG 

(CArG box) motif in the regulatory region of their target genes. The biological 

functions of MADS-box proteins and their discrete domains, the interactions between 

MADS-box proteins (or between MADS proteins and other cofactors), and the 

evolutionary significance of these proteins have been extensively reviewed 

(Riechmann and Meyerowitz, 1997; Messenguy and Dubois, 2003). It has been 

suggested that in general, the N-terminal of MADS protein is essential for DNA 

binding while the C-terminal is required for dimerization (Riechmann and 

Meyerowitz, 1997).  

MADS-box genes in Arabidopsis are necessary for floral transition, flower 

morphogenesis, fruit development, as well as vegetative development. According to 

phylogenetic studies of MADS domains, Arabidopsis MADS-box genes can be 
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divided into two lineages, one resembling human SERUM RESPONSE FACTOR (SRF) 

gene and the other resembling Drosophila MYOCYTE ENHANCE FACTOR (MEF) 

gene and they are designated Type I and Type II, respectively (Alvarez-Buylla et al., 

2000). Type II MADS-box genes have been extensively studied during the last decade 

and are best known for their role in flower development, while the type I subfamily 

has remained largely unexplored (De Bodt et al., 2003a). All characterized type II 

MADS-box genes, including SVP, encode proteins that share a typical MIKC 

structure (Figure 2). They have conserved MADS-box (M) and keratin-like box (K) 

domains, as well as the less conserved intervening region (I) and carboxyl terminal 

region (C) (Martinez-Castilla and Alvarez-Buylla, 2003). Interactions between MADS 

proteins or between MADS proteins and DNA-binding proteins to form 

homo/heterocomplexes appear to be a common theme in the MADS proteins family 

(Shore and Sharrocks, 1995) and these complexes are essential in the formation of 

specific transcriptional regulatory complexes.  

Structural studies of MADS proteins such as SRF and MEF2 revealed that they 

bind to DNA as dimers, forming a core that comprises of the 56 amino acids of a 
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Fig 2. The four domains of MIKC-type Arabidopsis MADS-box protein. The 

MADS-box domain consists of 56 amino acids and functions as a DNA binding 

domain. The K box is a region that shows some similarity to the coiled coil structure 

of keratin and thought to be involved in protein-protein interaction. MADS-box and K 

box are separated by an intervening (I) region. The C region may function as a 

transcriptional activation domain. 
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MADS domain and a carboxyl-terminal extension of different length (Riechmann and 

Meyerowitz, 1997; Messenguy and Dubois, 2003). Crystallographic studies showed 

that the amino terminal of the MADS domain bind DNA while the rest of the core is 

involved in dimerization (Santelli and Richmond, 2000). Although similar crystal 

structures have not been obtained from plants, studies on Arabidopsis homeotic 

proteins APETALA1 (AP1), APETALA3 (AP3), PISTILATA (PI) and AGAMOUS (AG) 

have revealed their DNA-binding specificity, affinity, and DNA-binding cores that 

include MADS domain and its extension into the I region or K-box (Riechmann et al., 

1996). Significant sequence similarity among the MADS domains of MADS proteins 

from different organisms suggests that they probably share a similar structure and 

function (Riechmann and Meyerowitz, 1997). Indeed, comparison of the crystal 

structures of genes mentioned above showed that the conformation of the binding of 

MADS-box domains with DNA was well conserved (Messenguy and Dubois, 2003). 

It is reasonable to predict that plant MADS proteins may share a similar functional 

mode. 

Formation of complexes between MADS proteins is another unique feature by 

which distinct and specific regulatory capabilities can arise (Shore and Sharrocks, 

1995; Riechmann and Meyerowitz, 1997). There are several lines of evidence suggest 

that different floral homeotic proteins achieve combinatorial control of floral organ 

development through formation of complexes (Messenguy and Dubois, 2003). For 

example, it has been demonstrated that protein complexes PI-AP3-AP1 and 

PI-AP3-SEPALLATA3 (SEP3) are necessary to activate the AP3 promoter. However, 
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the mechanism by which regulatory complexes determine functional specificity 

remains unclear. It is proposed that the components of the complexes may 

simultaneously recognize different sites that are caused by DNA bending on the same 

strand of DNA (Messenguy and Dubois, 2003). 

 

2.6. 2 The K box 

 

Although the crystal structure of MADS domain has been obtained, the structure 

and function of K domain are not clear. K-box is only unique in plant MADS-box 

proteins and had been postulated to form three amphipathic α-helices, namely K1, K2 

and K3 respectively, which is similar in structure to the intermediate filament protein 

keratin (Yang et al., 2003). This indicated that it may play a role in mediating the 

interaction between two proteins (Riechmann and Meyerowitz, 1997). Previous 

studies have given contradicting conclusions regarding the role of K-box as a 

mediator of protein-protein interaction. On one hand, K-box is dispensable for the 

formation of DNA-binding dimers (Riechmann and Meyerowitz, 1997, Yang et al., 

2003). K-box is able to mediate specific interactions among MADS domain fusion 

proteins in the yeast two-hybrid assays, even when the MADS domain and the I 

region are absent. Besides, Yang et al. (2003) have demonstrated that K1, K2, and the 

region between K1 and K2 are critical for the strength of AP3/PI dimerization. This is 

consistent with the finding that the regions that are required for AP3/PI complex to 

form a core include the MADS-box, I and K1 regions (Riechmann et al. 1996).  
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2.6. 3 The I region 

 

Riechmann et al. (1996) have demonstrated that the entire or part of the I region 

is included in the DNA-binding core of Arabidopsis homeotic proteins. In fact, the 

crystal structure of MEF2 showed that its MEF2 region, which is equivalent to the I 

region in plants is in the core for dimerization. It has been shown that the I region is 

located at the interaction interface between MADS proteins. This region could 

determine the dimerization specificity because it is more variable in length and 

sequence compared to the conserved MADS and K boxes. MADS proteins are 

possibly able to specifically dimerize with I regions of similar sequences, length or 

chemical properties (Riechmann and Meyerowitz, 1997). The I region is also 

important in determining the functional specificity for AP1, AP3, PI, and AG (Krizek 

and Meyerowitz, 1996), which supports the notion that dimerization specificity affects 

functional specificity. 

 

2.6. 4 The C region 

 

Unlike the MADS domain, I region and K box, the C region has never been found 

to be involved in protein interaction or DNA binding. However, its importance was 

demonstrated by a mutation in the C region, which results in functional defects 

(Riechmann and Meyerowitz, 1997). Domain swapping studies among AP1, AP3, PI 
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and AG found that C region is not important in determining their functional 

specificity (Krizek and Meyerowitz, 1996) and it was postulated that the C region is 

responsible for transcriptional activation. This was supported by the finding that the C 

region of AP1 and its homologues performs a transcriptional activation function (Cho 

et al., 1999). Further studies are required to confirm the function of the C region in a 

MADS-box protein. 

 

2.7 Chromatin immunoprecipitation 

 

Interactions between protein and DNA mediate transcription, DNA replication 

and DNA repair, which are all central to the biology of every organism. The method 

of chromatin immunoprecipitation (ChIP) appears to have significant advantage over 

other approaches, because it allows the analysis of the interaction of transcriptional 

factors with DNA in living cells, thereby providing an in vivo picture of the native 

chromatin structure and its bound factors in the cells at a specific development stage 

(Sandoval et al., 2004). In ChIP technique, biological materials are firstly fixed, 

where the targeted protein and DNA is crosslinked in a chromatin complex. The 

isolated chromatin is then sonicated to produce small fragments. Subsequently, the 

antibody that recognizes a protein of interest is used to purify the chromatin complex 

that contains the protein of interest. Finally, the crosslink between the protein and 

DNA is reversed, and the released DNA fragments are precipitated for further analysis 

(Figure 3). Although the ChIP procedure appears to be simple, a lot of parameters can  
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Figure 3. Flowchart of ChIP work. The plant samples were 

formaldehyde-crosslinked. Nuclear extracts prior to antibody incubation (input) and 

after ChIP (elute) were subject to PCR analysis using primers flanking putative SVP 

binding sites (CARG boxes). Western blot analysis was used to monitor the whole 

process. 
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be adjusted to achieve different levels of accuracy to determine the interaction of a 

protein with a specific DNA sequence. With appropriate controls, ChIP can serve as a 

valuable tool for studying nuclear events of protein and DNA interactions (Spencer et 

al., 2003). 

 

2.7.1 Fixation 

 

In order to avoid loss of protein-DNA interaction before obtaining co-precipitated 

DNA, the binding between a protein and its bound DNA must be strengthened by 

crosslink. Formaldehyde is good candidate to serve this purpose, because it is a tight 

(2 Å) crosslinking reagent that can easily enter the nucleus and efficiently produce 

protein-nucleic acid crosslink in vivo. During fixation, amino and imino groups of 

amino acids (lysines, arginines and histidines) and of DNA (primary adenines and 

cytocines) readily react with formaldehyde leading to the formation of a Schiff base. 

This intermediate can further react with a second amino group and condense to give 

the final DNA-protein complex (Orlando et al., 1997). In fact, the presence of 

formaldehyde can induce the formation of DNA-protein, protein-protein, and 

RNA-protein complexes. Therefore, it results within minutes in the formation of a 

wide crosslinked network of biopolymers, and preventing any large-scale 

redistribution of cellular components (Solomon and Varshavsky, 1985). In some cases, 

other crosslinking agent such as dimethyl adipimidate (DMA) has been used in 

combination with formaldehyde (Kurdistani and Grunstein, 2003). DMA is a 
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homobifunction imidoester with spacer arm length of 8.6 Å that possesses two 

identical groups that can react with primary amine group to form stable covalent 

bonds. Thus, large protein complex that are located relatively distant from DNA and 

that would not be efficiently crosslinked to chromatin by formaldehyde alone could be 

fixed by DMA. Also, cisplatin (Spencer et al., 2003) and UV irradiation methods have 

been successfully employed as alternative crosslinking techniques (O‟Neil and Turner, 

2003). However, formaldehyde remains the most commonly used fixative because of 

its advantages mentioned above. Moreover, crosslinking by formaldehyde is fully 

reversible under a mild condition, which can beachieved by incubating the crosslinked 

sample at 65C for at least 6 hours without any other chemicals. Besides doing 

fixation before chromatin extraction in the ChIP experiment (XChIP), there is another 

method designated as NChIP (native ChIP) that dose not include the fixation step. As 

epitope disruption and fixation of fortuitous protein-DNA could lower ChIP‟s 

efficiency during fixation process, NChIP is suitable for the investigation of those 

proteins that can bind DNA with high affinity, or histones and their modified isoforms 

(O‟Neil and Turner, 2003). 

An efficient fixation of a protein to chromatin in vivo is crucial for the XChIP 

technique. Therefore, the extent of crosslinking should be determined carefully. There 

are two major problems concerning the subsequent immunoprecipitation step that 

should be taken into account. Firstly, excessive crosslinking can result in reduced 

antigen availability. Secondly, an excess of crosslinking can result in the loss of 

material in chromatin (Orlando, 2000). The fixation time varies from 1 minute to 
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several hours according to different cell types. It has been found that prolonged 

exposure to formaldehyde leads to a loss of immunoprecipitation materials, although 

the underlying mechanisms are not fully understood (Orlando, 2000). There are 

several possible explanations (Orlando, 2000; Spencer et al., 2003). Firstly, it is 

possible that the epitopes could react with formaldehyde, or the 3 dimensional 

structure of the protein of interest might be altered as formaldehyde is a moderately 

denaturing agent. Thus, in the following immunoprecipitation step, the desired 

antibody-antigen binding will be affected. Secondly, over-fixed cells are refractory to 

chromatin fragmentation treatment, and thus the chromatin complex could not be 

recovered for immunoprecipitation process. Thirdly, during crosslinking, soluble 

cellular components become more insoluble as they are crosslinked with each other 

and/or to the insoluble cellular material. Therefore, extensively crosslinking a cell 

may decrease the solubility of any target DNA-protein complex as it may be trapped 

in the insoluble nuclear material. Therefore, a time-course experiment is still strongly 

recommended to find out the duration of fixation to achieve the most efficient 

crosslinking, though most proteins are readily crosslinked after fixation for 30 min to 

one hour (Orlando, 2000).  

 

2.7.2 Chromatin fragmentation 

 

Since fixed cells are found to be highly resistant to restriction enzyme digestion 

or DNase I treatment, the fragmentized chromatin can only be produced efficiently by 
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mechanical shearing (Orlando et al., 1997). It is noteworthy that materials that are 

over-cross-linked do not produce small chromatin fragments under the shearing force 

(Orlando et al., 1997). The extent to which one can fine-map the location of a specific 

protein along a genomic sequence depends on the extent of DNA fragmentation. For 

example, it has been suggested that if the average size of chromatin fragment is 

controlled at 600 bp, theoretically a 1,200-bp region where the binding site sits in the 

middle will be enriched (Kadosh and Struhl, 1998). Therefore, it is difficult to detect 

the exact location of a binding site if the sonicated chromatin is too large. On the 

other hand, chromatin fragments that are too small in size pose a difficulty in the 

enrichment of co-precipitated DNA. Normally, the chromatin fragment that obtained 

after sonication is engineered to below 1,000 bp in size.  

 

2.7.3 Purification of chromatin complex 

 

DNA fragments crosslinked to a protein of interest can be enriched by one of 

these three standard ways (Buck and Lieb, 2004): firstly, immunoprecipitation with a 

protein-specific antibody; secondly, immunoprecipitation of a tagged protein using an 

antibody specific to the tag, such as Myc, HA (Hemagglutinin), StrepII; thirdly, 

affinity purification using a tag that obviates the need for antibodies, such as the TAP 

(tandem affinity purification) tag. Comparatively, immunoprecipitation by 

protein-specific antibodies is more established than affinity purification. Since the 

fixative agents could potentially modify the epitope of a protein of interest during the 
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fixation step, polyclonal antibodies were preferred compared to monoclonal 

antibodies in order to avoid this epitope masking problem. However, it should be 

emphasized that the specificity of polyclonal antibodies should be confirmed before 

doing ChIP, because the antibodies may recognize other proteins that are homologous 

to the proteins of interest. Alternatively, the strategy of labelling proteins of interest 

with a tag could be adopted to solve this problem. Fusion proteins that carry 

Myc/HA/StrepII/TAP tag can be generated, and anti-Myc/HA/StrepII/TAP antibodies 

that are commercially available could be used in the subsequent purification step. A 

disadvantage of this strategy is that the fused tag may perturb the structure of the 

protein of interest, and hence the engineered protein has altered or no biological 

function. Therefore, a test must be conducted to make sure that these chimeric 

proteins still maintain their biological function. 

 

2.7.4 Analysis of co-precipitated DNA and identification of binding sites 

 

Depending on whether a target sequence is known or not, there are two potential 

ways in the analysis of immunoprecipitated DNA. If there is a known target sequence, 

the efficiency of ChIP can be tested by using quantitative PCR or slot blot experiment. 

For quantitative PCR, an optimized real-time PCR is the most reliable study as it 

could give direct information on the amount of target sequence that is present in the 

co-precipitated DNA compared to the one that is not targeted. For slot blot analysis, 

the immunoprecipitated DNA and mock DNA are immobilized on a nylon membrane 
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by slot blot. The relative enrichment for a target sequence can be determined by 

comparing the hybridization of a specific probe to immunoprecipitated DNA and 

mock DNA or genomic DNA (Orlando et al., 1997). 

It will be more difficult if the sequences of the downstream targets of the protein 

of interest are unknown, mostly because of the uncertainty regarding the overall ChIP 

efficiency, or even its feasibility. Three methods including southern analysis, 

microarray, and conventional sequencing are used to identify the first batch of target 

sequence (Buck and Lieb, 2004; Orlando et al., 1997).  

In southern blot analysis, co-precipitated DNA is used as a probe to scan genomic 

regions. Typically genomic DNAs are digested with restriction enzymes, blotted onto 

membrane, and hybridized with the immunoprecipitated DNA. Microarray method, 

also named as ChIP-chip, is a high-throughput scheme that utilizes the same principle 

as southern blot analysis. The genomic DNA that contains the binding template is 

printed on a chip. Co-precipitated DNA and mock DNA are labelled differently and 

hybridized with the prepared chip, enabling their signals to be compared and the 

highly enriched regions to be identified. In conventional sequencing method, DNA 

sequences purified from a ChIP experiment are cloned and sequenced, and the 

sequences that appear at a higher frequency are selected as candidates for further tests.  

Sometimes due to the small size, the co-precipitated DNA is below the detection 

level. To circumvent this problem, the immunopurified chromatin DNA is ligated to a 

synthetic linker and amplified by PCR before it is used for further analysis (Orlando, 

2000). One method is to digest the co-precipitated DNA with restriction enzymes and 
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amplify it by PCR after being ligated to a sticky-ended linker. The risk in this method 

is the irregular distribution of restriction enzyme sites within the genome region, 

which could lead to the loss of enriched fragments. In comparison, the introduction of 

unbiased ligation of a blunt-ended linkers to undigested co-precipitated DNA 

represent a significant improvement (Orlando, 2000), despite the fact that blunt end 

ligation has a lower efficiency.  

 



 42 

CHAPTER 3 

Materials and Methods 

3.1 Plants growth conditions 

 

Wild-type and transgenic Arabidopsis plants of the Columbia, Landsberg erecta 

(Ler), or C24 ecotype were grown on soil at 22
o
C under long days (16 h light/8 h dark) 

or short days (16 h dark/8 h light). Seeds were stratified on soil at 4
o
C for 4-5 days 

before being transferred to a growth room in order to ensure synchronized 

germination. Basta selection was conducted twice within 10-20 days after seed 

germination to screen transgenic plants. The mutants co-1, gi-1, ft-1 (Ler ft-1 

introgressed into Col), fve-3, soc1-2, svp-41, and agl24-1 are in the Col background, 

and co-2, ft-1, fve-1, fca-1, fpa-1, and ga1-3 are in the Ler background. 

For plant growth on Murashige and Skoog (MS) agar medium, sterilization of 

seeds was first performed: Seeds were initially incubated in sterile water for 20-30 

min until precipitation. Then they were washed with 70% ethanol and rinsed with 

sterile water three times. After incubation in 15% Clorox® for 20 min, seeds were 

rinsed with sterile water again and sequentially sowed in Petri dishes containing 

autoclaved MS agar medium, which was adjusted to pH 5.8. The plates were 

maintained in a tissue culture room under LDs (16 h light/ 8 h dark). In addition, the 

successful pER22-SVP transgenic plants in MS agar medium were obtained with 

hygromycin selection (15μg/ml).  
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3.2 GA treatment 

 

For GA treatment of plants grown in SDs, the treatment was started with 

seedlings grown in SDs at 1 week after germination, and weekly application of 100 

μM GA3 was performed. To break dormancy, ga1-3 seeds were imbibed in 100 μM 

GA at 4°C for 7 days, and then rinsed thoroughly with water before sowing. 

 

3.3 Vernalization treatment 

 

Seeds were first sown on MS agar plates and germinated in the tissue culture 

room. 2-3 day-old seedlings were then transferred to a 4
o
C cold room for 6-week 

vernalization treatment (without light), after which plants were transferred to soil 

growth conditions under a short-day photoperiod. 

 

3.4 β-Estradiol Induction of pER22-SVP 

 

To observe the phenotype of pER22-SVP and wild-type plants upon β-estradiol 

induction, the plants were grown on solid MS medium supplemented with 1% sucrose 

at 22°C in LDs before being applied with various treatments. For continuous 

treatment, 10 μM β-estradiol was applied and replaced every two days once treatment 

started. For testing induced SVP expression, 5-day-old pER22-SVP seedlings grown 
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on solid MS medium were transferred into MS liquid medium supplemented with 10 

μM β-estradiol. These seedlings incubated in the liquid medium were harvested at 

different time points until 48 hr. Mock treatment of transgenic plants was also 

performed for the above experiments, in which β-estradiol was replaced with an equal 

amount of dimethyl sulfoxide which was used to dissolve β-estradiol. 

 

3.5 Molecular cloning 

 

3.5.1 cDNA amplification 

cDNA for the SVP were previously generated by reverse-transcription polymerase 

chain reaction (RT-PCR) and cloned into a pGEM®-T Easy Vector (Promega) 

subsequently. cDNAs were amplified from the above mentioned template by 

polymerase chain reaction (PCR). To perform PCR, 200 ng of deoxyribonucleic acid 

(DNA) template was added to a reaction mix containing 1 X PCR buffer [10 mM 

Tris-hydrochloric acid (pH 8.8), 50 mM, potassium chloride (KCl), 1.5 mM 

magnesium sulphate (MgSO4), 1% Triton-X100 and 0.02 mM deoxyribonucleotide 

triphosphate (dNTP) mix], 10 pmol each of forward and reverse primers with 

restriction sites at the 5‟ ends and 1U Pfu Turbo® DNA polymerase (Stratagene). The 

procedure was performed in the Peltier thermo cycler-200 (MJ Research) as follows: 

denaturation at 94C for 5 min, followed by 40 cycles of denaturation at 94C for 30 

sec, primer annealing at 58C for 45 sec, extension at 68C for 1 min. At the end of 40 

cycles, a final extension of PCR products was carried out for 10 min at 72C. 
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3.5.2 Gel extraction 

The PCR products were separated on 1% Tris-Acetate-ethylenediaminetetraacetic 

acid (EDTA) (TAE) agarose gel. The expected DNA fragment was cut out from the 

agarose gel and purified using the QIAquick® Gel Extraction Kit (Qiagen, Hilden, 

Germany). An appropriate amount of Buffer QG (3 volumes of buffer to 1 volume of 

gel) was added to the excised gel in a microfuge tube and vortexed for 30 sec. The 

mixture was incubated at 50C for 10 min to help dissolve the agarose, after which 1 

gel volume of isopropanol was added. The sample was passed through the QIAquick 

column and washed twice with Buffer QG. The bound DNA was eluted with 30 l of 

H2O. 

 

3.5.3 Restriction digestion 

Purified DNA and plasmid were digested in double digestion mixtures with the 

appropriate enzymes at 37C. The 50 l digestion mixture consisted of 1 X buffer (1 

X BSA if necessary) 10 U of each restriction enzyme and approximately 1 g of DNA. 

Restriction enzymes were purchased from New England Biolabs. After digestion, 

plasmid reaction mixtures were dephosphorylated by Alkaline Phosphatase (CIP).  

 

3.5.4 Ligation 

After digestion, the purified PCR amplified DNA fragment was cloned into the 

digested plasmids. To do this, 20 ng DNA was mixed with 50 ng vector in the reaction 
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mix containing 1 X of T4 DNA ligase Buffer and 3 U of T4 DNA ligase. The ligation 

mixture was incubated overnight at 16C. The recombinant plasmid was subsequently 

transformed into competent E.coli DH5α cells as described below. 

 

3.5.5 Competent cell preparation 

Prior to cell transformation, competent DH5α cells were prepared. Bacterial 

culture that was grown overnight at 37C was transferred to 250 ml of SOB medium 

[2% (w/v) bacto tryptone, 0,5% (w/v) yeast extract, 10mM MgSO4, pH6.7] in a 2 L 

Erlenmeyer flask and grown with vigorous shaking at 18C until an OD600 reached 

0.6. The bacterial culture was kept on ice for 10 min and spun down by centrifugation 

at 4,500 rpm for 10 min at 4C. The bacterial pellet was resuspended in 80 ml ice-cold 

Tris-Borate (TB) buffer [10 mM pipes, 55 mM manganese chloride (MnCl2), 15 mM 

calcium chloride (CaCl2) and 250 mM KCl, pH 6.7], incubated on ice for 10 min, and 

spun down as previously described. Subsequently, the pellet was resuspended in 20 ml 

of ice-cold TB buffer, and dimethyl sulfoxide (DMSO) was added to a final 

concentration of 7%. After incubation on ice for 10 min, the cell suspension was 

stored in aliquots of 100 l in 1.8 ml Eppendorf tubes that were further snap-frozen in 

liquid nitrogen and stored at -80C until ready to use. 

                   

3.5.6 Transformation into E.coli competent cells  

Ligation mixture was added to 100 l of E.coli DH5α competent cells, incubated 

on ice for 30 min and subjected to heat shock at 42C for 90 sec. The mixture was 
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then incubated in 1 ml LB broth at 37C for 1 h. Subsequently, the bacteria cells were 

pelleted by centrifugation at 10,000 rpm for 4 min. The pellet was resuspended in 

approximately 100 l LB broth and spread onto an LB agar medium containing 100 

g/ml kanamycin. 

 

3.5.7 Screening for putative colonies 

Colonies which survived selection with kanamycin were dissolved in 5 l water 

and 1 l of the bacterial suspension was used as template for PCR. PCR was 

performed with DyNAzyme™ II DNA polymerase on the Peltier thermo cycler (MJ 

Research), using a forward primer located on the vector and a reverse gene-specific 

primer. The reaction profile was as follows: denaturation at 94C for 5 min, followed 

by 35 cycles of denaturation at 94C for 30 sec, primer annealing at 57C for 30 sec, 

extension at 72C for 1 min. At the end of 35 cycles, a final extension of PCR 

products was carried out for 10 min at 72C. The PCR products were separated by 

electrophoresis on a 1% agarose gel and colonies which gave the right size were 

cultured at 37C overnight in LB broth supplemented with 50 g/ml kanamycin.  

 

3.5.8 Plasmid DNA isolation 

Plasmid DNA was purified using Wizard
®

 Plus SV Minipreps DNA Purification 

System (Promega). The bacterial cells cultured for 12-16 h were first centrifuged for 5 

min at 14,000 rpm and the pellet was resuspended in Cell Resuspension solution. The 

Cell Lysis solution was then added to the culture, after which the solution was 
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neutralised by Neutralization Solution. The lysate was centrifuged to remove the cell 

debris and the clear lysate was then added to the spin column for the binding of 

plasmid DNA to the resin. After the lysate had passed through the column by 

centrifugation, the column was rinsed with Wash Buffer to clean the plasmid DNA. 

The Wash Buffer was thoroughly removed from the resin by a second brief 

centrifugation and the plasmid DNA was eluted with 50 l of sterile distilled water. 

 

3.5.9 DNA sequencing 

The nucleotide sequences were determined using the ABI PRISM
®
 Big Dye and 

dRhodamine Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, 

Applied Biosystems, California, USA). Prior to sequencing, the reaction was prepared 

by mixing 200 ng of double-stranded DNA with 1.6 pM of appropriate primers and 4 

l of Terminator Ready reaction mix, and the final volume was adjusted to 10 l with 

deionised water. Sequencing PCR was performed by denaturation at 96C for 10 sec, 

annealing at 52C for 5 sec, and extension at 60C for 4 min. The reaction was 

repeated for 25 cycles and held at 4C. Sequencing was performed using the ABI 

PRISM
® 

sequencer (Applied Biosystems). The identity of the DNA sequences was 

determined by BLAST nucleotide homology search on National Centre for 

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) website. 

 

http://www.ncbi.nlm.nih.gov/
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3.6 Plant transformation 

 

The recombinant DNA constructs were firstly introduced into Agrobacterium 

tumefaciens, which were used to transform Arabidopsis thaliana by floral dipping. 

 

3.6.1 Electroporation 

Electroporation-competent Agrobacteria tumefaciens GV3101 were 

electroporated with the plasmids constructs in 1 mm Gene Pulser


 cuvettes (Bio-Rad). 

The electroporated bacteria were cultured in 1 ml of LB broth for 3 h at 28 C, after 

which the cells were precipitated at 4,000 rpm for 3 min and plated on the LB agar 

medium supplemented with 25 g/ml gentamycin, 10 g/ml tetracycline and 50 

g/ml kanamycin. The plates were incubated overnight at 28 C. Successful 

transformants were screened via PCR. 

 

3.6.2 Floral dipping 

Transformed Agrobacteria carrying the desired recombinant DNA were cultured 

in LB broth containing 25 g/ml gentamycin, 10 g/ml tetracycline, and 50 g/ml 

kanamycin at 28 C until OD600nm of 0.8 was reached. Agrobacteria were then 

precipitated at 4,000 rpm for 15 min and resuspended thoroughly in a same volume of 

5% sucrose with 0.03% Silwet L-77. Flower buds of wild-type plants were dipped 

into the bacteria suspension for a few seconds. The inoculated plants were then 

covered in a black plastic bag overnight to improve transformation efficiency. The 
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treated plants were grown under normal growth conditions after removing the cover 

the next day. 

 

3.7 Plant screening 

 

In T1 generation, transgenic plants grown on soil were sprayed with 0.3% Basta 

at the 2-rosette-leaves stage and 5-10 lines that have shown late-flowering phenotypes 

were selected for further studies. In T2 generation, the genetic segregation for the 

seeds from a T1 line was observed. The lines that show the ratio of death to surviving 

with or more than 1:3 were the plant with single transgene insertion and they were 

selected for further study. In T3 generation, a T2 line has all of its T3 progenies 

resistant to antibiotics was the homozygous plant with single transgene insertion and 

they were used in our study. 

Seeds that were sown on plate were surface-sterilized by a sequential wash with 

70% ethanol (v/v) for 30-60 sec, 15% Clorox solution for 20 min, and a final rinse 

with sterile distilled water for 3 times. After surface sterilization, seeds were sown in 

Petri dishes (95x15mm) containing MS medium supplemented with 100 g/ml 

hygromycin. Culture dishes were sealed and maintained in a tissue culture room at 

22C under a 8 h light/16 h dark photoperiod. 
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3.8 Genomic DNA isolation and Genotyping 

 

Plant samples were ground in 500 l Extraction Buffer (0.2 M Tris-HCl, pH 9.0, 

0.4 M LiCl, 25 mM EDTA, and 1% SDS) using micropestles. The homogenized 

sample was centrifuged at 14,000 rpm for 5 min at 4C and 350 l. The supernatant 

was transferred into new eppendorf tubes and mixed, by inversion, with an equal 

volume of isopropanol. After spinning for 10 min at 14,000 rpm at 4C, the pellet was 

washed twice with 70% ethanol. The pellet was dried and dissolved in 100 l TE 

buffer (10 mM Tris, pH 8, 1 mM EDTA). 

For PCR genotyping, 2 l of the extracted genomic DNA was added into a 

buffered PCR reaction system containing 0.2 mM dNTP, 1 U of Dynazyme
® 

thermostable DNA polymerase, and 0.2 mM primers. PCR was performed by 

denaturation at 94C for 5 min, followed by 30 cycles of denaturation at 94C for 30 

sec, annealing at 58C for 30 sec, and extension at 72C for 1 min, and final extension 

at 72C for 7 min. About 5 l of the PCR products were separated on a 1% TAE 

agarose gel by electrophoresis. 

 

3.9 RNA isolation  

 

Total RNA was isolated using the RNeasy
®

 Mini Kit (Qiagen). Plant tissue was 

pulverized in liquid nitrogen with mortar and pestle, after which the appropriate 

amount of lysis buffer RLT (450 l/100 mg plant tissue) was added. The sample was 



 52 

shaken vigorously and the lysate was transferred to the QIA shredder spin column and 

centrifuge for 2 min at 14,000 rpm. The supernatant was transferred to a new tube, 

and the RNA in the aqueous solution was precipitated with 0.5 volume of 100% 

absolute ethanol. The mixed sample was transferred to an RNeasy mini column and 

centrifuged at 10,000 rpm for 15 sec. The final wash with 500 l of Buffer RPE was 

performed at 14,000 rpm for 2 min. The column was dried by centrifuging at 10,000 

rpm for 1 min, followed by elution of RNA for 1 min at 10,000 rpm with 30 l of 

RNase-free water. 

 

3.10 Reverse Transcription PCR (RT-PCR) 

 

Two-step RT-PCR was carried out using the Thermoscript
® 

RT-PCR System 

(Invitrogen Life Technologies). The DNase I (Ambion, Inc.) treated total RNA (1.5 g) 

was mixed with 1 l 50 M Oligo(dT)20 and 2 l of 10 mM dNTP mix, topped up to 

12 l with diethyl-pyrocarbonate (DEPC)-treated water, and incubated at 65C for 5 

min. The reaction mix comprising 4 l of 5 X cDNA Synthesis Buffer, 1 l each of 

0.1 M DTT, RNaseOUT
®
 (40 U/l), DEPC-treated water, and Thermoscript

®
 Reverse 

Transcriptase (15 U/l) was added to the RNA mixture. The total reaction mixture 

was incubated at 50C for 1 min for Oligo (dT)20 priming and terminated at 85C for 

5 min followed by incubation with 1 l of RNase H at 37C for 20 min. About 1 l of 

synthesized cDNA was added in the PCR reaction system followed by 28 cycles of 

PCR amplification with denaturation at 94C for 30 sec, annealing at 58C for 30 sec, 
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and extension at 72C for 1 min, and the final extension step at 72C for 10 min. 

About 5 l of the PCR products were separated on a 1% TAE agarose gel by 

electrophoresis. 

 

3.11 Real-time PCR 

 

Quantitative real-time PCR was performed in triplicates on 7900HT Fast 

Real-Time PCR system (Applied Biosystems) with SYBR Green PCR Master Mix 

(Applied Biosystems). Efficiency of each pair of primers was determined based on its 

standard curve obtained from a series of 10-fold diluted template DNAs. The 

difference between the cycle threshold (Ct) of target genes and the Ct of control 

primers (ΔCt = Cttarget gene − Ctcontrol) was used to obtain the normalized expression of 

target genes. Semiquantitative PCR was performed as previously described (). The 

relative fold change was eventually calculated based on both Ct value and primer 

efficiency according to a published protocol (Pfaffl, 2001). A constitutively expressed 

gene, β-TUBLIN was used as an internal control. Primer sequences used for gene 

expression analysis are listed in Table 1. Nonradioactive in situ hybridization and 

synthesis of RNA probes were carried out as previously published (Liu et al., 2007). 

GUS staining was performed as previously described (Jefferson et al., 1987). For 

analysis of GUS activity, T3 homozygous seedlings from independent lines were used 

for transformants with a single insertion of transgenes, while both T2 and T3 lines 

were analyzed for transformants with multiple insertions. 
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Table 1. Primer Pairs Used for Gene Expression Analysis 
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3.12 GUS histochemical assay and expression analysis 

 

Prior to staining, tissues were incubated in cold 90% acetone and washed thrice 

with rinse solution containing 50 mM NaPO4 pH 7.2, 0.5 mM K3Fe(CN)6, 0.5 mM 

K4Fe(CN)6 on ice. The samples were placed in the staining solution [50 mM NaPO4 

pH 7.2, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6 and 2 mM X-Gluc], and infiltrated 

under vacuum condition for 20 min and incubated for 24 h at 37ºC. The stained 

samples were subjected to a serial wash with 20% ethanol, 35% ethanol, FAA fixative 

(50% ethanol, 5% acetic acid, 3.7% formaldehyde), and 70% ethanol at room 

temperature for 30 min each. The samples were examined under a dissection 

microscope. 

For the examination of GUS transcription, RNA was extracted from transgenic 

plants harboring different reporter genes, reverse-transcribed into cDNA, and further 

detected for GUS gene expression with a specific primer pair (Table 2) by quantitative 

real-time PCR. 

 

3.13 Mutagenesis 

 

Mutagenesis of the third CArG box on SVP genomic sequence was done by using 

QuikChange
®
 II XL Site-Directed Mutagenesis Kit (Stratagene). 50 ng of P2::GUS 

plasmid was added to a reaction mixture containing 5 l of 10 X reaction buffer, 125 

ng of forward primer, 125 ng of reverse primer, 1 l of dNTP mix, 3 l of Table 2.  
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Primer name Sequence 

SOC1-P4-XmaI 5‟-AACCCGGGATCGTATTTACTAGTGGTATACG-3‟ 

SOC1-R1-XmaI 5‟-GTCCCGGGCTTTCTTGAAGAACAAGGTAA-3‟ 

SOC1-M1-F2 5‟-GGGATGGAAAGATATTATAAAAATTGATTAAAAGGA

ATATACCTGTATTACTCACAGGTAAG-3‟ 

SOC1-M1-R2 5‟-CTTACCTGTGAGTAATACAGGTATATTCCTTTTAATCA

ATTTTTATAATATCTTTCCATCCC-3‟ 

SOC1PM3-F 5‟-GTCCATATGTATCAAAATATGGGATTTTTCCTCTTTCT

TAAGGCTTTTTTCC-3‟ 

SOC1PM3-R 5‟-GGAAAAAAGCCTTAAGAAAGAGGAAAAATCCCATAT

TTTGATACATATGGAC-3‟ 

SOC1PM4-F 5‟-GGTCTTTCTTAAGGCTTTTTTGGAAAATACCTAAAGG

ATGAGGTTTCAGACGTCCATC-3‟ 

SOC1PM4-R 5‟-GATGGACGCTTGAAACCTCATCCTTTAGGTATTTTCC

AAAAAAGCCTTAAGAAAGACC-3‟ 

 

Table 2 Primers for GUS constructs 
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QuickSolution, and 2.5 U of PfuUltra HF DNA polymerase. The mixture was put 

through 18 cycles of PCR amplification with denaturation at 95C for 1 min, 

annealing at 60C for 45 sec, and extension at 68C for 10 min, and the final 

extension step at 68C for 10 min. Finally, after incubating with 1 l DpnI for 1 h at 

37C, DNA was transformed into the E.coli as described in 2.2.6. 

 

3.14 Plasmid construction and plant transformation 

 

The 35S:SVP-6HA constructs were constructed by co-workers in the lab (Li et al., 

unpublished data). Single insertion transgenic lines were used in our experiments. To 

construct pER22-SVP, the SVP cDNA was amplified and cloned into a derived pER22 

vector. The pER8 vector (Zuo et al., 2000) was cut with ApaI and SpeI, filled in the 

cohesive ends, and self-ligated to produce pER22. To construct 35S:SVP-6HA, the 

SVP fragment was cloned into the pGreen-35S-6HA vector to obtain an in-frame 

fusion of SVP-6HA under the control of 35S promoter. The pGreen-35S-6HA vector 

was generated by cloning six repetitive HA epitopes into the SpeI site of pGreen-35S 

(Yu et al., 2004). To construct SVP:SVP-6HA, the 5.1 kb SVP genomic fragment was 

amplified and cloned into the pGreen-6HA vector to obtain an in-frame fusion of 

SVP:SVP-6HA. The pGreen-6HA vector was generated by cloning six repetitive HA 

epitopes into the SpeI site of pHY105 (Liu et al., 2007). To construct SVP:GUS, the 

SVP genomic sequence of 3.6 kb in length was amplified and cloned into pHY107 

(Liu et al., 2007). 
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SOC1:GUS was constructed as previously reported (Liu et al., 2008). This 

construct was further mutagenized to produce the M1 and M2 mutations (Figure 4) 

using the QuikChange II XL-Site-Directed Mutagenesis Kit (Stratagene). For the 

complementation test, the SOC1 genomic fragment consisting of 1.97 kb of the 

promoter region and the full gene coding region plus introns was amplified and 

cloned as previously reported (Liu et al., 2008). The genomic constructs containing 

the M1 and M2 mutations were further generated using the QuikChange II 

XL-Site-Directed Mutagenesis Kit (Stratagene).  

For the construction of ProSOC1:GUS, the SOC1 genomic sequence of 4.4 kb 

was amplified with the primers SOC1-P4-XmaI and SOC1-R1-XmaI (Table 2). The 

amplified products were digested by XmaI and cloned into the corresponding site of 

pHY107. This construct was further mutagenized to produce the mutated AGL24 and 

SVP binding sites by using the QuikChange® II XL-Site-Directed Mutagenesis Kit 

(Stratagene). For generation of the mutated CArG box for AGL24 binding, the 

primers SOC1-M1-F2 and SOC1-M1-R2 (Table 2) were used. For generation of two 

mutated CArG boxes for SVP binding, two pairs of primers, SOC1PM3-F and 

SOC1PM3-R and SOC1PM4-F and SOC1PM4-R (Table 2), were used, respectively.  

A derivative pGreen-35S vector (Yu et al., 2004) was cut by KpnI and XhoI to 

remove the 35S promoter, filled in the ends by T4 DNA polymerase, and self-ligated 

to generate a promoterless pGreen vector pHY105. A GUS fragment was then 

amplified from pBI101 and cloned into the XbaI site of pHY105 to generate pHY107. 
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Figure 3. Schematic diagram of the SOC1:GUS construct. 2 kb SOC1 5′ 

upstream sequence was transcriptionally fused with the GUS gene. Two native CArG 

boxes within fragment 5 were mutated as indicated. 
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These constructs were introduced into wild-type Columbia plants using the 

Agrobacterium-mediated floral dip method (Clough and Bent, 1998). The T3 

homozygous lines with single insertion of transgenes were isolated for most studies, 

while both T2 and T3 plants were used for GUS expression analysis. 

  

3.7 Gel Shift Assay 

 

The full-length SVP cDNA was cloned into PQE-30 vector (QIAGEN), which 

was subsequently transformed into E. coli strain Rosetta (DE3) (Novagen). 

6×His-SVP was induced using sopropyl 1-thio-β-D-galactopyranoside (IPTG) and 

affinity-purified using Ni-NTA Agarose (QIAGEN) according to the manufacturer's 

protocol. DNA binding assays were performed using LightShift Chemiluminescent 

EMSA Kit (Pierce). 

 

3.8 In Vitro Pull-Down Assay 

 

The full-length SVP and FLC cDNA sequences were cloned into the pGEX-4T-1 

vector (Pharmacia). E. coli strain Rosetta (DE3) (Novagen) transformed with the 

plasmids was induced by IPTG. E. coli cells were then harvested and lysed. After 

centrifugation, the supernatant was used to incubate with Glutathione sepharose beads 

(Amersham Biosciences). The beads with the bound GST-SVP and GST-FLC proteins 

were subsequently washed and used in GST pull-down assays. 
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For synthesis of myc-tagged SVP and HA-tagged FLC proteins, the full-length SVP 

and FLC cDNA sequences were cloned into the pGBKT7 and pGADT7 vectors 

(Clontech), respectively. Following the manufacturer's instructions, the plasmid DNA 

templates were added to the TNT T7 Quick Coupled Transcription/Translation 

Systems (Promega) to synthesize proteins. GST-FLC or GST-SVP proteins prebound 

to Glutathione sepharose beads were mixed with the in vitro translated myc-tagged 

SVP or HA-tagged FLC proteins. The beads were washed, and the eluted proteins 

were separated by SDS-PAGE. Myc-tagged SVP and HA-tagged FLC proteins were 

detected using anti-Myc antibody (Sigma) and anti-HA antibody (Santa Cruz 

biotechnology). 
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3.9 Chromatin Immunoprecipitation (ChIP) Assay 

 

3.9.1 Nuclear fixation 

Seven-day-old 35S:SVP-6HA and svp-41 SVP:SVP-6HA seedlings were 

immediately soaked in MC buffer (10 mM potassium phosphate, pH 7.0, 50 mM 

NaCl, and 0.1 M sucrose) with 1% formaldehyde that was freshly added. The 

materials were then infiltrated under vacuum pressure for 45 min at 4ºC. When 

vacuum pressure was released, the formaldehyde was quenched by incubation in 0.15 

M glycine for 60 min at 4ºC. This was followed by washing the fixed tissues with 

fresh MC buffer three times at 4ºC for 20 min. After these treatments, the fixed 

materials were either stored at -80ºC for future use or applied immediately into the 

following procedures. 

 

3.9.2 Homogenization and sonication 

About 1.0 g of fixed materials were ground with mortar and pestle using liquid 

nitrogen, and mixed thoroughly with M1 buffer (10 mM potassium phosphate, pH 7.0, 

0.1 M NaCl, 10 mM β-mercaptoethanol, 1M 2-methyl 2, 4-pentanediol, and 1mM 

PMSF). The slurry was centrifuged at 14,000 rpm for 10 min at 4ºC. After discarding 

the supernatant, the pellet was resuspended in M2 buffer (10 mM potassium 

phosphate, pH 7.0, 0.1 M NaCl, 10 mM β-mercaptoethanol, 1 M 2-methyl 2, 

4-pentanediol, 10 mM MgCl2, and 0.5% Triton X-100), and subsequently centrifuged 
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at 14,000 rpm for 10 min at 4ºC. The above step was repreated thrice to ensure that 

the pellet was thoroughly washed. The resulting pellet was resuspended in M3 buffer 

(10 mM potassium phosphate, pH 7.0, 0.1M NaCl, and 10 mM β-mercaptoethanol), 

and centrifuged at 14,000 rpm for 10 min at 4 ºC. The supernatant was discarded and 

the pellet was subjected to the sonication step.  

For sonication, the crude nuclear extract was resuspended in 0.5 ml sonication 

buffer (10 mM potassium phosphate, pH 7.0, 0.1 mM NaCl, 0.5% sarkosyl, and 10 

mM EDTA). The nuclear extract was then sheared with a probe sonicator (Misonix, 

XL-2020 Sonicator


). The output power was controlled at about 65 W with each 

pulse lasting for 4 min and repeated 3 times. Between two continuous pulses, the 

chromatin solution was cooled on ice for 1 min. After sonication, the solution was 

centrifuged at 14,000 rpm for 5 min at 4ºC and the supernatant was transferred into a 

new microcentrifuge tube. About 1/10 of the sonicated sample was set aside as 

“input”, which was used for Western blot analysis and PCR enrichment test, while the 

remaining samples were subjected to immunoprecipitation. 

 

3.9.3 Immunoprecipitation (IP) 

Before incubating the sheared chromatin with the immunoprecipitation column, 

25 l of anti-HA antibody conjugated with agarose beads was washed three times 

with sonication buffer. After incubation with the antibody for 2 h at 4ºC on a shaker, 

the mixture was centrifuged at 3,000 rpm for 1 min. The supernatant was retained as 

the post-bind sample, while the remaining anti-HA beads were washed 4 times with IP 
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buffer (50 mM Tris, pH 8.0, 1% SDS, and 10 mM EDTA) lasting 5 min each. To elute, 

the anti-HA antibody beads were incubated with 400 l of elution buffer (50 mM Tris, 

pH 8.0, 1% SDS, and 10 mM EDTA) at 65 C for 30 min on a shaker. The beads were 

precipitated at 14,000 rpm at room temperature for 1 min and the supernatant was 

collected. An additional 100 l of elution buffer (50 mM Tris, pH 8.0, 1% SDS, and 

10 mM EDTA) was incubated with beads at 65C for 5 min. Of the total volume of 

500 l eluant, 20 l was retained for Western blot analysis, while the remaining was 

subjected to the DNA recovery step. 

 

3.9.4 Western blot 

For Western blot, 20 l of protein sample was mixed with 4.5 l of 6 X 

SDS-PAGE loading buffer (300 mM Tris-HCl, pH 6.8, 12% SDS, 0.6% bromophenol 

blue, and 60% glycerol) and 2.7 l of 1 M β-mercaptoethanol and denatured in 

boiling water for 5 min. The protein sample was then separated on denaturing 12.5% 

(w/v) polyacrylamide gels and blotted onto immun-Blot
TM

 PVDF membrane 

(Bio-Rad). The membrane was blocked with 5% non-fat dry milk (dissolved in PBS 

buffer) for 1 hour, and incubated with 1:10000 (v/v) anti-HA or anti-TAP alkaline 

phosphatase conjugate antibody (Sigma) (diluted with PBS buffer supplemented with 

0.05% Tween 20) at room temperature for 1 h. The membrane was subsequently 

washed three times with PBS buffer containing 0.05% Tween 20 for 15 min each. 

Finally, the membrane was treated with CDP-Star (Roche) and exposed to CL-X 

Posure X-ray film (Pierce). 
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3.9.5 DNA recovery 

The eluted chromatin complex and the input DNA were first incubated with 1 l 

of RNase A (1 mg/ml) at 37C for 30 min, and then treated overnight with 0.5 mg/ml 

Proteinase K at 37C. After a first round of incubation, a second aliquot of Proteinase 

K was added and the solution and incubated at 65C for 6 hours to reverse the 

formaldehyde crosslink. The released DNA was subsequently extracted by 

phenol:chloroform and precipitated with standard protocols. Briefly, an approximately 

equal volume of extraction solution A (50% v/v Tris saturated phenol, 48% v/v 

chloroform, and 2% v/v isoamyl alcohol) was added and mixed with the chromatin 

solution. After centrifugation, the aqueous layer was collected and mixed with an 

equal volume of extraction solution B (96% v/v chloroform and 4% v/v isoamyl 

alcohol). The solution was further centrifuged. The aqueous layer was transferred into 

a new microcentrifuge tube and precipitated overnight at -20C by adding 1 l 

glycogen (20 mg/ml), 1/10 volume of 3 M sodium acetate, and 2.5 volumes of 

absolute ethanol. DNA was eventually pelleted at 14,000 rpm at 4C for 20 min and 

washed twice with 70% ethanol. The DNA pellet was completely dried, and dissolved 

in 30 l water. The recovered DNA was analysed for the DNA enrichment via PCR by 

using different gene specific primers. All primer sequences used for ChIP enrichment 

tests are listed in Table 4. ChIP assays were performed for at least three independent 

rounds. For identification of the precise binding sites of SVP, DNA enrichment was 

evaluated by real-time quantitative PCR in triplicates. Relative enrichment of each 
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fragment was calculated first by normalizing the amount of a target DNA fragment 

against a genomic fragment of ACTIN as an internal control, and then by normalizing 

the value for transgenic plants against the value for wild-type as a negative control 

using the following equation 2
(Ct

SVP-6HA Input
−Ct

SVP-6HA ChIP
)
/2

(Ct
WT Input

−Ct
WT ChIP

)
. All 

primer sequences used for the ChIP enrichment test are listed in Table 4. 

 

3.9.6 CArG motif analysis 

For the analysis of CArG motif, genomic sequences that had been identified were 

sent to MatInspector at the web site: http://www.genomatix.de/index.html. The CArG 

box motif was set as CCWWWWWWGG with maximal one mismatching base pair. 

 

3.10 Coimmunoprecipitation Experiments 

 

Plant material grown in LDs was harvested at different developmental stages. 

After the frozen samples were ground with mortar and pestle in liquid nitrogen, 

proteins were extracted as previously published (Sawa et al., 2007). For 

immunoprecipitating HA-tagged SVP protein, anti-HA agarose (Sigma) was added 

into the protein extract before it was incubated at 4°C for 1 hr. For 

immunoprecipitating FLC protein, the protein extract was immunoprecipitated with 

affinity-purified anti-FLC antibody and Protein G PLUS-Agarose (Santa Cruz 

biotechnology). All coimmunoprecipitation experiments were performed in biological  

 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science?_ob=MathURL&_method=retrieve&_udi=B6WW3-4SXRJBT-G&_mathId=mml1&_user=111989&_cdi=7119&_rdoc=14&_acct=C000008700&_version=1&_userid=111989&md5=67cf3eaf5b839c97ee39ce4a1258e846
http://www.genomatix.de/index.html
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Table 4 Primer Pairs Used for ChIP Assays
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triplicate. The immunoprecipitated proteins and the protein extract as an input were 

resolved by SDS-PAGE. SVP-HA, FLC, or actin protein was detected by western blot 

using anti-HA (Santa Cruz Biotechnology), affinity-purified anti-FLC (Helliwell et al., 

2006), or anti-mouse actin antibody (Sigma), respectively. 
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 CHAPTER 4 

Results 
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4.1 Construction of gene tagged plasmids  

 

4.1.1 SVP tagging systems 

Although it has been reported that SVP functions in the control of flowering time 

(Hartmann et al., 2000), the concrete mechanism of SVP in this process is not clear. 

To facilitate the investigation of the role of SVP in the relevant regulatory network, 

we planned to use the ChIP method to isolate its direct downstream genes. Since SVP 

antibody was unavailable, the tagging polypeptides of 12HA, 6HA, GR 

(glucocorticoid receptor), TAP, StrepII, and 9Myc epitopes that had commercially 

available antibodies were fused with the C-terminal of SVP under the control of the 

cauliflower mosaic virus 35S promoter. 

The 35S::SVP-GR-12HA/35S::SVP-GR-TAP/35S::SVP-GR-9Myc constructs were 

produced as follows: The coding region of SVP was amplified from pGEM®-T Easy 

Vector that contained the SVP cDNA by using primers SVP-F2 and SVP-R3 (Table 1). 

The PCR fragment was cloned into the XhoI and ApaI sites of pGreen0244 (with 

hormone binding domain GR followed by different tags, such as 12HA, TAP and 

9Myc) (Figure 3). The 35S::SVP-12HA, 35S::SVP-TAP and 35S::SVP-9Myc 

constructs were further derived by excising the GR fragment with XmaI from 

35S::SVP-GR-12HA, 35S::SVP-GR-TAP and 35S::SVP-GR-9Myc respectively 

(Figure 3). 

The fusion of GR at the C or N terminal of SVP was produced by amplifying the 

SVP coding region with primers SVP-F1 and SVP-R2 (Table 5), and cloning into the 
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EcoRI and BamHI sites of HY209 that contains a 35S promoter with tandem 

enhancers and multiple cloning sites (MCS) followed GR or HY106 that contains a 

35S promoter with tandem enhancers and GR followed by MCS (Figure 3). 

The SVP fragment amplified by primers SVP-F1 and SVP-R1 (Table 1) was 

cloned into the EcoRI and BamHI sites of the vector LC101 (35S::StrepII) to form 

35S::SVP-StrepII. 35S::SVP-6HA was created by cloning the SVP fragments 

amplified by primers SVP-F1 and SVP-R5 (Table 1) into the EcoRI and SpeI sites of 

the vector OE6HA (35S::6HA) (Figure 4).  
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Table 5. Primers used in molecular cloning 

Primer name  Sequence 5‟-3‟ 

Restriction 

site 

SVP-F2 CCGCTCGAGCTAAGCTCTCTCTCTTGCTTCTAGG XhoI 

SVP-R3 ATGGGCCCACCACCATACGGTAAGCCGAGCCTA ApaI 

SVP-R5 GGACTAGTACCACCATACGGTAAGCCGAGCCTAA SpeI 

35S Pro GACCCTTCCTCTATATAAGGAAGTTC  

PG-P4  ATGGGCCCGAGACTGGTGATTTCAGCGAA ApaI 

GSVP-STRF1 GATCCTGGTCTCATCCTCAATTTGAAAAATAAG BamHI 

GSVP-STRR1 GATCCTTATTTTTCAAATTGAGGATGAGACCAG BamHI 

SVP-F1 CGGAATTCGTTGTGATGGCGAGAGAA EcoRI 

SVP-R1 CGGGATCCTTCCATCTCTAACCACCA BamHI 

SVP-F3 GGACTAGTATGGCGAGAGAAAGAGTT SpeI 

SVP-R2 GCTCTAGACTAACCACCATACGGTAA XbaI 
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Fig 4. Construction of SVP tagging vectors. The pGreen vector contains the 35S 

promoter, multiple cloning site (MCS), selectable marker kanamycin and Basta. 

Different SVP-tags fusion genes were cloned based on this pGreen vector. 

 

 

 

a. 
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4.1.2 XVE inducible expression system 

XVE system is an estrogen receptor-based chemical-inducible system in 

transgenic plants. This system is a reliable and efficient chemical-inducible system for 

regulating transgene expression in plants. The chimeric transcription activator, XVE, 

is assembled by the fusion of a DNA-binding domain of the bacterial repressor LexA 

(X), an acidic transactivating domain of VP16 (V) and a regulatory region of the 

human estrogen receptor (E) (Figure 4). The transactivating activity of the chimeric 

XVE factor is strictly regulated by estrogens. In this study, the SVP fragment was 

cloned after eight copies of the LexA operator downstream of the -46 35S minimal 

promoter. The estradial-activated XVE could induce SVP expression by VP16 when 

LexA was bound with its operator upstream of SVP. This system allowed the 

induction of SVP at a specific time point, hence facilitating the study of its immediate 

effect. For this reason, it can be used for microarray analysis. 

XVE::SVP-6HA and XVE:SVP-StrepII constructs (Figure 5) were produced by 

cloning the SVP-6HA and SVP-StrepII fragments, which were amplified by primers 

35S pro and PG-P4 (Table 1) from 35S::SVP-6HA and 35S::SVP-StrepII, into the 

XhoI and ApaI sites of pER8 vector (containing XVE promoter) 
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Fig 5. Construction of SVP inducible vectors. The XVE vector contains the 

DNA-binding domain of LexA, transcription activation domain of VP16, regulatory 

region of human estrogen receptor (hER) and eight copies of the LexA operator 

sequence (OLEXA). SVP-HA or SVP-StrepII fusion genes were cloned after OLEXA. 
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4.1.3 SVP native expression system 

Both 35S over-expression system and XVE inducible system has some potential 

side effects to disturb endogenous development context. For example, in 35S 

over-expression system, constitute over-expression of SVP driven by the 35S 

promoter would lead to an ectopic expression of SVP in certain tissues where it is not 

originally expressed. Hence, changes in the spatial and temporal pattern of expression 

of SVP could mask or interfere with downstream effects. To avoid this problem, the 

SVP native promoter system was created, in which we simulated the same SVP 

expression pattern as wild-type plant by using a SVP genomic fragment containing the 

SVP native promoter, introns, exons and followed by an affinity tag. This system 

could provide more accurate information about the direct targets or protein partners of 

SVP compared with the constitutive expression systems. 

To create the above constructs, the SVP genomic sequence was amplified from 

Arabidopsis genomic DNA using primers SVP-P1 and SVP-P5 (Table 7). The 

resulting fragment was then cloned into the PstI and XmaI sites of the vector HL101 

containing the 6HA tag to get the construct of SVPG-6HA (Figure 6). SVPG-StrepII 

was produced by replacing the 6HA fragment with StrepII fragment amplified by 

primers GSVP-STRF1 and GSVP-STRR1 directly (Table 6) into the BamHI site of 

SVPG-6HA plasmid.  

 

4.2 Selection of transformants with functional SVP tagging protein 
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Table 7.  Primers used in the SVP promoter studies 

 

Primer name Sequence 5‟-3‟ 

SVP-P1 (PstI) AACTGCAGGGGTGAGTGATACGAGCCACACTTATT 

SVP-P2 (PstI) AACTGCAGCAGCAAGTTATATGCCACATGATTGAC 

SVP-P3 (BamHI) CGGGATCCGCTGGAGCTACAGAACTCGAACAGTT 

SVP-P4 (BamHI) CGGGATCCTTCAAGGGCCTTCTCTAGCTGCTGAAG 

SVP-P5 (BamHI) CGGGATCCACCACCATACGGTAAGCTGCACAACAC 
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Fig 6. Construction of SVP native expression vectors. The pGreen vector without 

35S promoter was cloned with the native SVP genomic sequence tagged with HA or 

StrepII.  
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The above mentioned constructs were transformed into Arabidopsis (Columbia 

ecotype) plants via Agrobacterium-mediated transformation. Transformed lines at the 

T1 generation that survived Basta or hyromycin selection were screened for their 

phenotypes, and only those lines that showed late-flowering phenotype as 35S::SVP 

were selected. After genetic segregation at the T2 generation and T3 progenies‟ 

resistance to selection agents, we eventually identified the homozygous lines with 

single insertion of the transgene for further studies.  

Among the SVP tagging constructs created, 35S::SVP-6HA (T3 generation)  and 

SVP::SVP-6HA (T3 generation) showed obviously late-flowering phenotype (15-18 

rosette leaves) compared with wild-type plant (8-10 rosette leaves), although they still 

flowered earlier than strong 35S::SVP lines (35-40 rosette leaves) (Figure 6a). 

RT-PCR results further showed that the late-flowering phenotype corresponded to the 

over-expression of SVP (Figure 7b, 7c). These results indicated that SVP-12HA and 

SVP-TAP fusion proteins had the similar biological function as SVP protein as a 

repressor of flowering. Thus, corresponding transgenic lines could be used for ChIP 

experiments to detect the in vivo direct targets of SVP protein. 

The T2 seeds of XVE::SVP-6HA and XVE::SVP-StrepII have been harvested, and 

the transformed lines are being identified via hygromycin selection on MS media. 

The T1 seeds for SVPG-6HA and SVPG-StrepII have been collected, and the 

transformed lines are being identified via Basta selection on soil. 
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Fig 7. Functional 35S::SVP-6HA and SVP::SVP-6HA tagging lines were selected 

for further studies. (a) 35S::SVP-6HA and SVP::SVP-6HA transgenic plants show 

moderate late-flowering as compared with 35S::SVP and wild-type plants. (b) SVP 

expression in wild-type, 35S::SVP-6HA, SVP::SVP-6HA and 35S::SVP. TUB2 serves 

as an internal control. (c) Quantitative analysis of SVP expression in (b). 

a 

b c 
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4.3 The GA and Autonomous Pathways Regulate SVP Expression 

 

To understand the role of SVP in the control of flowering time, we examined the 

effect of various flowering genetic pathways on its expression in whole seedlings.   

 

4.3.1 Vernalization pathway 

Genes in the vernalization pathway mainly act to promote flowering by 

epigenetic down-regulation of the FLC expression. To determine whether SVP might 

act in the vernalization pathway, the effect of vernalization on SVP expression was 

determined in FRI-dominant seedlings (Figure 8). The plants harvested for RNA 

isolation were first cold treated at 4C for 40 days, and then grown for 2 weeks at 

normal growth temperatures (22C). Wild-type and FRI FLC seedlings that were 

subjected to cold treatment for only 4 days were used as controls. From the result, 

vernalization treatment of wild-type and FRI FLC plants (Michaels and Amasino, 

1999), which greatly affects the expression of FLC and SOC1, did not regulate SVP 

expression (Figure 8). 
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Fig 8. Effect of vernalization on SVP expression. For vernalization treatment, seeds 

were sown on Murashige and Skoog (MS) agar plates and incubated at 4°C under low 

light levels for 8 weeks. The expression of FLC, SOC1, and SVP in 9-day-old 

seedlings grown in LDs was compared. The maximum expression of each gene is set 

as 100%. 
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4.3.2 Autonomous pathway 

The autonomous pathway promotes flowering by suppressing FLC expression, 

and mutants in this pathway are late-flowering due to elevated levels of FLC. In order 

to study whether SVP plays a role in this pathway, the expression levels of SVP in 

autonomous pathway mutant (fve) were determined (Figure 9). The result showed that, 

in long days (LDs), SVP expression was consistently upregulated in loss-of-function 

mutants of fve-3 (Col) and fve-1 (Ler) in the autonomous pathway (Figure 9). In 

addition to its role in the autonomous pathway, FVE also mediates ambient 

temperature effects ([Blazquez et al., 2003] and [Koornneef et al., 1991]). Thus, SVP 

expression is affected by both the autonomous and thermosensory pathways (Lee et 

al., 2007). 

 

4.3.3 Photoperiod pathway 

A Previous study suggested that SVP might act downstream in the photoperiod 

pathway (Scortecci et al., 2003). To prove this hypothesis, the SVP expression was 

examined in some photoperiod pathway mutants (co-1, gi-1 and ft-1) (Figure 10a). The 

result suggested SVP expression remained almost unchanged in photoperiod 

loss-of-function mutants (Figure 10a and 10b). 
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Fig 9. Quantitative real-time PCR analysis of SVP expression in the mutants of 

the autonomous pathways. SVP expression in 9-day-old seedlings grown in LDs 

was compared. Results were normalized against the expression of TUB2. 
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Fig 10. Quantitative real-time PCR analysis of SVP expression in the mutants of 

the photoperiod pathways. (a). SVP expression in 9-day-old seedlings grown in LDs 

was compared. (b). Time-course study of SVP expression in co-1 from 3 to 15 days 

after germination. Results were normalized against the expression of TUB2.  
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4.3.4 GA pathway 

To determine whether SVP plays a role in the GA pathway, SVP expression in 

wild-type plants with or without GA treatment grown under short day (SD) condition 

were compared. GA treatment consistently reduced SVP expression in wild-type plants 

in SDs (Figure 11a). In the GA-deficient mutant ga1-3, which does not flower in SDs 

(Wilson et al., 1992), SVP expression was consistently higher than in wild-type plants 

(Figure 11b), implying that the GA effect on flowering is partly mediated through SVP. 

These results demonstrate that SVP responds to the flowering signals from the GA and 

autonomous pathways, in addition to the thermosensory pathway. 

In summary, both photoperiod and GA pathways are involved in inhibiting SVP 

expression and consequently promoting floral transition.  
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Fig 11. Effect of GA on SVP expression in SDs. (a) For GA treatment, exogenous 

GA (100 μM) was weekly applied onto wild-type Col plants grown in SDs. Seedlings 

from week 2 (w2) to week 5 (w5) were harvested for expression analysis. (b) 

Comparison of SVP expression in GA-deficient mutant ga1-3 (Ler) and wild-type Ler 

plants. Seedlings grown in SDs from week 2 (w2) to week 5 (w5) were harvested for 

expression analysis. 
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4.4 Identification of putative regulatory domain within the SVP promoter 

 

In order to localize the regulatory elements within the SVP genomic sequence, 

derivatives of a 5.4 kb fragment compassing the 5‟ upstream region, introns and exons, 

were generated and fused to the E.coli uidA gene encoding the beta-glucuronidase 

(GUS) enzyme (Figure 12). 

 

4.4.1 Generation of GUS reporter gene constructs 

The P2, P3, P4 and P5 fragments of SVP genomic sequences were amplified 

using the plant genomic DNA as a template by primer pairs SVP-P1/SVP-P4, 

SVP-P2/SVP-P3, SVP-P2/SVP-P5, SVP-P2/SVP-P4 (Table 8). They were 

directionally cloned into pGreen-GUS using the PstI and BamHI sites (Figure 12). 

These constructs were used to define the minimal region required for endogenous 

expression of SVP. They were introduced into the Arabidopsis genome and at least 

three independent stably transformed lines were analyzed for each construct. Plant 

tissues from each line (T3 generation) were stained for GUS enzyme activity and 

analyzed for GUS localization. The distribution of GUS enzymatic activity for each 

construct was usually consistent for the different lines tested. A time course study was 

carried out for each transgenic line from Day 6 to Day 41 to characterize GUS 

staining patterns before floral transition (Day 6 to Day 17). 
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Fig 12. SVP promoter study constructs. The 5.7 kb SVP promoter region is shown. 

Selected regions used in the GUS fusion constructs are depicted schematically. The 

black regions are denoted introns and the green regions are denoted exons.  
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Primer name Sequence 5‟-3‟ 

SVP-P1 (PstI) AACTGCAGGGGTGAGTGATACGAGCCACACTTATT 

SVP-P2 (PstI) AACTGCAGCAGCAAGTTATATGCCACATGATTGAC 

SVP-P3 (BamHI) CGGGATCCGCTGGAGCTACAGAACTCGAACAGTT 

SVP-P4 (BamHI) CGGGATCCTTCAAGGGCCTTCTCTAGCTGCTGAAG 

SVP-P5 (BamHI) CGGGATCCACCACCATACGGTAAGCTGCACAACAC 

 

Table 8.  Primers used in the SVP promoter studies 
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4.4.2 GUS staining results 

Plants harbouring the P2 construct containing the 3.6 kb SVP promoter displayed 

GUS expression in leaves and stems from Day 6 to Day 17 (Figure 13 A-D). The 

transformants containing the P5 construct also showed a similar expression pattern 

but with much lower enzymatic activity (Figure 13 M-P). Plants containing P3 

constructs displayed almost no GUS expression (Figure 13 E-H). The differences in 

staining seen among P2, P3 and P5 indicate that the regions from -1,800 bp to -1,200 

bp and +200 bp to +1,700 bp are important in driving normal SVP expression (Figure 

12).  

Interestingly, transformants containing the P4 construct, which is 1.4 kb longer 

than P5, showed little GUS activity from Day 6 to Day17 (Figure 13 I-L). This 

staining pattern may be caused by two possibilities: firstly, the lines selected did not 

reflect the expression pattern of P4 constructs due to possible transgene inactivation; 

secondly, the additional 1.4 kb sequence may contain important cis-regulatory 

elements that is involved in SVP down-regulation. The ChIP data suggest that the 

second possibility might be true (see below).  
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Fig 13. GUS staining pattern conferred by SVP promoter constructs. (A-D) 

GUS expression conferred by P2 construct from Day 6 to 17. (M-P) Lower GUS 

expression conferred by P5 from Day 3 to 17, compared with P2. (E-L) P3 and P4 

display little GUS activity from Day 6 to 17. 
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In addition, of the six putative CArG boxes that were found within SVP promoter 

region, AGL24 ChIP data suggested the CArG boxes 3 and 5 might be important in 

regulating SVP expression (unpublished data). Thus, mutagenesis was performed on 

these CArG boxes with primer pairs SVP-CARG3M1/SVP-CARG3M2 and 

SVP-CARG5M1/SVP-CARG5M2 (Table 9), respectively. This caused the change of 

CArG boxes 3 and 5 on P2 from CC(A/T)6GG into GG(A/T)6CC. The mutated 

constructs have been introduced into Arabidopsis plants, which are now being 

characterized.  

 

4.5 In vivo Identification of SVP direct target genes 

 

4.5.1 SVP potential targets 

Next we analyzed the genetic interaction between SVP and other flowering time 

genes that act downstream of multiple floral pathways. In both LDs and SDs, single or 

double mutants of floral pathway integrators SOC1 and FT suppressed the early 

flowering phenotype of svp-41 (Figure 14), indicating that the activity of SOC1 and FT 

may be partially responsible for early flowering of svp-41 plants.  
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Fig 14. Flowering time of transgenic and mutant plants in LDs and SDs. The 

asterisk indicates that flowering was not observed in soc1-2 agl24-1 under short days. 

Error bars indicate standard deviation. 
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Primer name Sequence 5‟-3‟ 

SVP-CARG5M1 CATTAATCATGAggATAAATccCATATATAAAGTG 

SVP-CARG5M2 CACTTTATATATGggATTTATccTCATGATTAATG 

SVP-CARG3M1 CACTCTCTCTCTCTTCTTAAAGTCTCggTTTTTAccAAAAATTCTCTCTCTCAC 

SVP-CARG3M2 GTGAGAGAGAATTTggTAAAAAccGAGACTTTAAAGAAGAGAGAGAGAGTG 

 

Table 9. Primers used in the Mutagenesis



 96 

To further explore the interaction between SVP and these genes, we examined 

temporal expression of these genes in developing svp-41 and 35S:SVP seedlings. 

SOC1 expression was much elevated in svp-41, but almost completely suppressed by 

35S:SVP at the vegetative phase and floral transition that occurred at 9 days after 

germination in wild-type plants (Figure 15). On the contrary, the expression of AGL24, 

another flowering promoter that acts downstream of several floral pathways (Michaels 

et al., 2003 and Yu et al., 2002), was not significantly affected by SVP (Figure 16). FT 

was slightly upregulated in svp-41 seedlings before the floral transition (9 days after 

germination) and demonstrated a comparable increased trend in expression levels in 

svp-41 and wild-type plants afterwards (Figure 17). FT expression in 35S:SVP was 

still upregulated during seedling development, although its expression was lower than 

that in wild-type plants at some time points (Figure 17). 
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Fig 15.. SOC1 Expression Is Closely Controlled by SVP. Temporal expression of 

SOC1 in developing seedlings with various genetic backgrounds in LDs. 
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Fig 16.. Temporal Expression of AGL24 in svp-41 and 35S:SVP Seedlings Grown 

in LDs. Transcript levels were determined by quantitative real-time PCR analyses of 

three independently collected samples. Results were normalized against the 

expression of TUB2. Error bars indicate SD. 
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Fig 17. FT Expression Is Closely Controlled by SVP. Temporal expression of SOC1 

in developing seedlings with various genetic backgrounds in LDs. 
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We dissected developing young (3- to 7-day-old) seedlings before the floral 

transition to separately detect SOC1 and FT expression in the leaves (cotyledon and 

rosette leaves) and the remaining aerial part without leaves, including the shoot apical 

meristem and young leaf primordia (Figure 18). Upregulation of SOC1 in the leaf was 

about 2- to 3-fold in svp-41 as compared to wild-type plants, while its expression in 

the aerial part without leaves was continuously upregulated by 4- to 6-fold in 

developing svp-41 seedlings. On the contrary, FT was only slightly upregulated by 

1.3-fold in svp-41 leaves and was barely detectable in the shoot apex of both 

wild-type and svp-41 plants (Figure 18). In situ hybridization further revealed higher 

SOC1 expression in the shoot apical meristem and emerging young leaves of svp-41 

mutants than in those of wild-type (Figure 19). On the contrary, overexpression of 

SVP suppressed SOC1 expression in the shoot apex. 
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Fig 18. Fold change of SOC1 and FT expression in the aerial part without leaves 

and leaves of svp-41 against that in wild-type seedlings. Asterisks indicate that in 

the aerial part without leaves of both svp-41 and wild-type plants, quantitative 

real-time PCR analysis of FT RNA obtained very high Ct values because of its barely 

detectable level. 
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Fig 19. In situ localization of SOC1 at the shot apex of 11-day-old wild-type, svp-41, and 

35S:SVP seedlings grown at 22°C under long days. For comparing signals, sections of these 

plants were placed on the same slides for hybridization and detection. Scale bars, 25 μm.
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4.5.2 SVP Represses SOC1 Expression 

Since SVP likely represses SOC1 expression, we further examined SOC1 

expression in response to SVP activity using a functional pER22-SVP transgenic line 

where SVP expression is controlled by an estradiol-induced XVE system (Zuo et al., 

2000). We applied continuous β-estradiol treatment to pER22-SVP seedlings at 

different developmental stages to test the biological effects of SVP induction 

(Figure 20). The pER22-SVP seedlings initially treated with β-estradiol at the 

vegetative stage (1 and 5 days after germination) showed significantly delayed 

flowering compared with the wild-type and mock-treated transgenic seedlings 

(Figure 20). However, pER22-SVP seedlings initially treated with β-estradiol at the 

floral transitional stage (13 and 17 days after germination) showed similar flowering 

time as other seedlings. Thus, high levels of SVP expression before the floral 

transition were responsible for repressing flowering. In 5-day-old pER22-SVP 

seedlings treated with estradiol, SVP expression was continuously induced (Figure 21), 

while SOC1 expression was immediately repressed at 2 hr of induction and 

continuously maintained at low levels afterwards (Figure 22). These results 

demonstrate that SOC1 expression is tightly controlled by SVP. 
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Fig 20. Generation of a functional estradiol-inducible SVP expression system (pER22-SVP). 

Induction of SVP expression in pER22-SVP seedlings causes late flowering as compared with 

mock-treated seedlings. β-estradiol treatment does not affect the flowering of wild-type plants, 

while its initial treatment of pER22-SVP before the floral transitional stage (1 and 5 days after 

germination) significantly delays flowering. 
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Fig 21. Time course expression of SVP in 5-day-old pER22-SVP seedlings. The 

plants were treated with 10 μM β-estradiol or mock-treated was compared. Error bars 

indicate standard deviation. 
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Fig 22. SOC1 expression is repressed by SVP. Time course expression of SOC1 in 

5-day-old pER22-SVP seedlings. The plants were treated with 10 μM β-estradiol or 

mock-treated was compared. Error bars indicate standard deviation. 
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In contrast to SVP, FT and AGL24 have been suggested as upstream promoters of 

SOC1 expression (Liu et al., 2008, Michaels et al., 2003, Searle et al., 2006 and Yoo 

et al., 2005). To clarify the combined effect of these genes on SOC1 expression, we 

analyzed SOC1 expression in 9-day-old seedlings with various genetic backgrounds 

(Figure 23). SOC1 expression was downregulated in ft-1 and agl24-1, but upregulated 

in svp-41. Loss of SVP function in ft-1 and agl24-1 significantly elevated SOC1 

expression to levels that were much higher than those in wild-type plants. These 

results demonstrate that loss of SVP function derepresses SOC1 expression largely 

independently of FT and AGL24, suggesting that SVP exerts a dominant effect on 

SOC1 expression. 
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Fig 23. Loss of SVP Function Derepresses SOC1 Expression Largely 

Independently of FT and AGL24. SOC1 expression in 9-day-old seedlings with 

various genetic backgrounds in LDs was measured by quantitative real-time PCR. 

TUB2 was used for normalization. Error bars indicate SD. 
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4.6 SVP Binds Directly to the SOC1 Promoter  

 

4.6.1 Identification of SVP direct targets by ChIP 

To test for in vivo binding of SVP to cis-regulatory regions, we performed ChIP 

assays using two functional transgenic lines. One line expressing an SVP-6HA fusion 

gene driven by the CaMV 35S promoter showed late flowering like 35S:SVP, and 

another transgenic line svp-41 SVP:SVP-6HA containing HA-tagged SVP regulated 

by its endogenous promoter showed comparable flowering time to wild-type plants 

(Figure 26). The SVP binding DNA sequences were isolated by ChIP. Homozygous 

35S::SVP-6HA or svp41 SVP::SVP-6HA plants with one transgene insertion were 

treated with formaldehyde in order to stabilize the in vivo complexes of SVP-tag and 

DNA. Solubilized chromatin fragments were obtained from the isolated nuclei. An 

aliquot of the solubilized chromatin was either retained as the input control or used for 

examining the size of fragmentation of DNA (Figure 24c). The rest of solubilized 

chromatin was used for immunoprecipitation with anti-HA beads. After the protein 

A-Sepharose beads were pelleted, the supernatant sample was analyzed by Western 

Blot as a „post-bind‟ fraction. SVP-tag fusion protein has been depleted from the 

post-bind fraction after immunoprecipitation by anti-HA beads (Figure 24a, 24b). The 

protein A-Sepharose beads were further washed and the immunoprecipitated protein 

and its associated co-purified DNAs were eluted. An aliquot of the eluted solution was 

analyzed by Western Blot with anti-HA antibody to confirm that SVP-6HA were 

specifically precipitated during the immunoprecipitation (Figure 24a, 24b). The 
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proteins associated DNAs were subsequently recovered from the eluted fraction and 

used for subsequent enrichment test.  

 

4.6.2 PCR enrichment test 

SVP is one of MADS-box proteins that have been known to bind the CArG 

motifs, which have a canonical sequence of CC(A/T)6GG. Based on predictions using 

MatInspector (http://www.genomatix.de), we scanned the putative CArG boxes with 

a maximum of one nucleotide mismatch located in the genomic regions of the 

potential target genes. Gene-specific primers that could amplify a 200- to 400-bp 

region including one to three relevant CArG boxes were designed and used to detect 

the enrichment of these DNA sequences associated with SVP protein (Figure 24) 

(Table 10). In this project, we designed the primers to test if SVP protein could bind 

to the regulatory regions of SOC1, SVP itself and other SVP potential targets (e.g. 

AGL24 and LFY) (Figure 25). 

Our results showed that SOC1 was preferentially bound by SVP in 35-day-old 

plant (Figure 27) and 13-day-old seedlings (Figure 28) for both 35S::SVP-6HA and 

svp41 SVP::SVP-6HA. In addition, ChIP analysis with 13-day-old seedlings suggested 

SVP-6HA fusion protein could bind to SVP genomic region (Figure 29). We 

concluded that SOC1 and SVP are direct targets of SVP protein. In contrast, AGL24 

and LFY did not show any enrichment in 35S::SVP-6HA transgenic line of 13-day-old, 

which suggesting that SVP may not affect flowering time through these two genes 

(Figure 30).  

http://www.genomatix.de/
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Fig 24.Western analysis of the specificity of anti-HA and anti-TAP beads in the 

ChIP procedure. (a) The SVP-6HA proteins is present in large amount in the 

35S::SVP-6HA transgenic plant and input mixture, but depleted from the „post-bind‟ 

fraction after Immunoprecipitation (IP) by anti-HA beads. After wash, SVP-6HA is 

only present in the eluted fraction (Elute), but not in Washing Buffer (Wash). (b) 

SVP-6HA was detected as in (a). (c) The chromatins of both 35S::SVP-6HA and 

svp41 SVP::SVP-6HA transgenic plants were sonicated to shear the genomic DNAs to 

an average size of 2,500 bp. 
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Fig 25. Primers of AGL24, SVP, SOC1 and LFY for enrichment test. Putative SVP 

binding sites (CArG boxes) are marked in yellow, and the regions amplified after 

ChIP are shown as red rectangles. The open reading frame (ORF) of each gene is 

shown as green rectangles.  
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Fig 26. Figure S5. Generation of Functional 35S:SVP-6HA and SVP:SVP-6HA 

Transgenic Lines. Flowering time of generated transgenic lines in LDs was 

compared by calculating the number of total leaves. Values representing the mean 

SD were scored from at least 20 plants of each genotype. 35S:SVP-6HA and 

35S:SVP plants show late flowering as compared with wild-type plants. svp-41 

mutants show early flowering, while svp-41 SVP:SVP-6HA plants exhibit comparable 

flowering time as wild-type plants, indicating that SVP-6HA protein retains the 

biological function as endogenous SVP. 
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Fig 27. SOC1 is the direct target gene of SVP after floral transition. (a) 

homozygote 35S::SVP-6HA plants after floral transition (35-day-old) were 

formaldehyde-crosslinked. Nuclear extracts prior to anti-HA antibody incubation 

(Input) and after ChIP (Elute) were subjected to PCR analysis using SOC1 primers 

described in Fig 13. (b) ChIP analysis of homozygote svp41 SVP::SVP-6HA plants 

after floral transition (35-day-old).  
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Fig 28. SOC1 is the direct target gene of SVP before floral transition. (a) 

Homozygote 35S::SVP-6HA plants before floral transition (13-day-old) were 

subjected to ChIP analysis and PCR enrichment test using SOC1 primers described in 

Fig 13. (b) ChIP analysis of homozygote svp41 SVP::SVP-6HA plants before floral 

transition (13-day-old).  



 116 

 

  

Fig 29. SVP itself is the direct target gene of SVP before floral transition. (a) 

Homozygote 35S::SVP-12HA plants before floral transition (13-day-old) were 

subjected to ChIP analysis and PCR enrichment test using SVP primers described in 

Fig 13. (b) ChIP analysis of homozygote 35S::SVP-TAP plants before floral transition 

(13-day-old).  
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Fig 30. LFY and AGL24 may not be the direct target genes of SVP before floral 

transition. Homozygote 35S::SVP-12HA plants before floral transition (13-day-old) 

were subjected to ChIP analysis and PCR enrichment test using LFY and AGL24 

primers described in Fig 25.  
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Primer name Sequence 5‟-3‟ 

CHIP_SVP-1F ATATGTTTGGTTCTGTTGTTGACG 

CHIP_SVP-1R AAGAAATAAGTTTGTGAGTTCGGC 

CHIP_SVP-2F AAAAGATTCAGATCAGGAAGATCG 

CHIP_SVP-2R CGGCTTAAACATATCATACCACAA 

CHIP_SVP-3F ATGTGTTTGCAGAGTGACAAGATT 

CHIP_SVP-3R GGATTAAATTTAGGGGTGTGTACG 

CHIP_AGL20-1F TGAAAAGTCTTGTACTTTTTCCCC 

CHIP_AGL20-1R AATAAAATGTGCTCTTTCGTAGCC 

CHIP_AGL20-2F GCTAAATAGTCAGTCATATGTGTCGC 

CHIP_AGL20-2R GGATTAATGGTCACTTAGGTAATGAGG 

CHIP_AGL24-1F AGTTCAATCCATCAAGATCCTCTC 

CHIP_AGL24-1R TTTCACGTGTAAGTTCGTCAAGTT 

CHIP_AGL24-2F ATCCCCAATCATACCAAGTGAC 

CHIP_AGL24-2R CGGCATAATTTGATGACCTAAA 

CHIP_AGL24-3F TGCTGTTCATCAGTTCATCTACC 

CHIP_AGL24-3R TTTACAAGATACTTGTCGGCCA 

CHIP_AGL24-4F ATCCCGAAAGTCTTCACTAACCTT 

CHIP_AGL24-4R GTTTGGTTAAGTCTACTGATCGCC 

CHIP_LFY-1F AGTTGAAGAAGATTCGTCTATGGC 

CHIP_LFY-1R AATATACCGGATAAACAAGACCGA 

CHIP_LFY-2F TTAAAGCAAAAGAACAACTTGTGG 

CHIP_LFY-2R GCAGAAGCCCGATAAGTTACTAAA 

 

Table10. Primers used in ChIP analysis 
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4.6.1 SVP binds to a region on SOC1 promoter that FLC binds to 

To identify the exact SVP binding site on SOC1 promoter region, we scanned 

SOC1 promoter region with eleven pairs of primers near the identified CArG boxes 

motifs for measurement of DNA enrichment (Figure 31). In ChIP assays of 7-day-old 

35S:SVP-6HA and svp-41 SVP:SVP-6HA seedlings, we consistently found the highest 

enrichment of the number 5 fragment associated with SVP-6HA by quantitative 

real-time PCR (Figure 32). This enriched genomic fragment was near two CArG 

motifs (SOC1-CArG1 and SOC1-CArG2), each with one nucleotide mismatch from 

the canonical CArG box (Figure 33). 

To confirm that SVP can directly bind to that site on the SOC1 promoter, gel shift 

assays were carried out using two fragments bearing SOC1-CArG1 and SOC1-CArG2 

as probes (Figure 34). The recombinant 6×His-SVP protein bound strongly with 

SOC1-CArG1, but only very weakly with SOC1-CArG2. Formation of the complex 

between 6×His-SVP and SOC1-CArG1 was also inhibited by a specific competitor, 

unlabeled SOC1-CArG1, thus demonstrating the specific interaction between 

6×His-SVP and SOC1-CArG1. 
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Fig 31. Schematic diagram of the SOC1 genomic region. Exons are represented by 

black boxes, while introns and upstream regions are represented by white boxes. 

The arrowheads indicate the sites containing either a single mismatch or a perfect 

match to the consensus binding sequence (CArG box) of MADS-domain proteins. 

Eleven DNA fragments flanking these sites were designed for ChIP analysis of the 

SVP binding site. 
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Fig 32. ChIP enrichment test showing the binding of SVP-6HA to the region near 

fragment 5. Seven-day-old seedlings of 35S:SVP-6HA and svp-41 SVP:SVP-6HA 

were harvested for ChIP analysis. Relative enrichment of each fragment was 

calculated first by normalizing the amount of a target DNA fragment against a 

genomic fragment of ACTIN, and then by normalizing the value for transgenic plants 

against the value for wild-type as a negative control. 
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Fig 33. Schematic diagram of the SOC1:GUS construct. 2 kb SOC1 5′ upstream 

sequence was transcriptionally fused with the GUS gene. Two native CArG boxes 

within fragment 5 were mutated as indicated. 
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Fig 34. Specific Binding of SVP Protein to the SOC1-CArG1 Sequence. (a) List of 

two probes containing putative MADS-box binding sites (CArG boxes) used for gel 

shift assays. (b) Preferential binding of 6His-SVP protein to a 30 bp fragment 

containing the SOC1-CArG1 sequence (arrows). 6His-SVP protein was incubated 

with either SOC1-CArG1 or SOC1-CArG2 probe as indicated below the panel. The 

presence of 6His-SVP protein and unlabelled competitor DNA is indicated above the 

panels. Lanes 1 and 3, no protein and no competitor DNA; lanes 2, 4 and 5, 6His-SVP 

protein and no competitor DNA; lanes 6, 7 and 8, SOC1-CArG1 fragment as  

competitor DNA; lanes 9, 10, and 11, SOC1-CArG2 fragment as competitor DNA. 

Non-labeled DNA in molar excess was used as competitor in lanes 6 and 9 (50-fold), 

lanes 7 and 10 (200-fold), and lanes 8 and 11 (800-fold).



 124 

4.7 SVP Binding Regulates SOC1 Function in Flowering 

 

To test in vivo whether these CArG motifs are responsible for the regulation of 

SOC1 by SVP, we applied an established SOC1:GUS construct, in which a 2 kb SOC1 

promoter upstream of the translational start site was fused with the GUS reporter gene 

(Figure 33; Liu et al., 2008). Based on this construct, we generated two reporter gene 

cassettes, M1 and M2, where the two CArG motifs near the number 5 genomic 

fragment were mutated, respectively (Figure 33). As previously reported (Liu et al., 

2008), among 24 independent lines of transformants harboring SOC1:GUS, 20 lines 

displayed strong GUS staining during floral transition (Figures 35a and 36). Among 

26 lines of transformants harboring the M1 mutated form, 21 lines displayed stronger 

GUS staining in both the shoot apex and leaf compared with SOC1:GUS (Figures 35a, 

37b, and 36). However, among 21 lines of transformants harboring the M2 mutated 

form, 15 lines displayed a similar GUS staining pattern to SOC1:GUS (Figures 35a, 

3c, and 36). A close examination of the spatial GUS staining pattern in SOC1:GUS 

and M1 revealed that M1 lines displayed notably increased GUS staining in the shoot 

apex (Figures 37a and 37b) and moderately increased staining in the cotyledon 

(Figure 38a) and rosette leaf (Figure 38b). These observations were consistent with 

the change of SOC1 expression levels in wild-type and svp-41 plants (Figures 18 and 

19), indicating that SVP mainly binds to the SOC1-CArG1 to repress SOC1 

expression in the shoot apex and leaf. To further confirm this result, we crossed 

SOC1:GUS and M1 with 35S:SVP and examined the change of GUS staining in 

response to the increased SVP activity. As expected, staining of SOC1:GUS in the  
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Fig 35. Representative GUS staining of 12-day-old transformants containing 

SOC1:GUS (a) and its mutated constructs M1 (b) and M2 (c).
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Fig 36. Distribution of relative GUS staining intensity in the transformants containing 

SOC1:GUS and its mutated forms M1 and M2. We analyzed 24 independent lines for 

SOC1:GUS (Liu et al., 2008), 26 independent lines for M1, and 21 lines for M2. The intensity of 

GUS staining exhibited by most SOC1:GUS lines was designated as “strong.” 
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Fig 37. GUS staining of the shoot apex of 12-day-old transformants containing 

SOC1:GUS (a) and M1 (b). 
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Fig 38. GUS staining of the cotyledons (a) and leaves (b) of the transformants 

containing SOC1:GUS and M1.
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shoot apex and leaf of 35S:SVP was reduced compared with that in wild-type 

background (Figures 35a and 3K), while staining of M1 plants remained almost 

unchanged (Figures 35b and 39b). Thus, mutation of the SOC1-CArG1 at M1 almost 

completely abolished repression of SOC1 expression by SVP, confirming that SVP 

binds to this site to repress SOC1 expression. 

To further verify that the identified SVP binding site is essential for SOC1 

function in the control of flowering, soc1-2 mutants were transformed with a genomic 

SOC1 construct (Liu et al., 2008) or with its derived constructs with the M1 or M2 

mutation. The average flowering time of T1 generation plants of soc1-2 mutants 

transformed with the SOC1 genomic construct was 15.4 total leaves (Figure 40; Liu 

et al., 2008). This was slightly later than the average flowering time of wild-type 

plants (13.2 leaves). Thus, the native SOC1 fragment could largely rescue the late 

flowering of soc1-2, which flowered with 28 leaves under the same conditions 

(Figure 14). The average flowering time of soc1-2 mutants transformed with the M2 

construct was 15.2 leaves, which was comparable with that shown in soc1-2 mutants 

transformed with the native SOC1 genomic fragment (Figure 40). However, the 

soc1-2 mutants transformed with the M1 construct exhibited earlier flowering (11.8 

leaves) than any other plants (Figure 40). These results demonstrate that mutation of 

the SOC1-CArG1 box at M1 accelerates flowering, and corroborate that SVP binding 

site at SOC1-CArG1 is responsible for repressing SOC1 during flowering. 
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Fig 39. GUS staining of 12-day-old SOC1:GUS (a) and M1 (b) in 35S:SVP 

background. 
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Fig 40. Distribution of flowering time in T1 transgenic plants carrying the 

wild-type SOC1 gene and its mutated forms (M1 and M2) in the soc1-2 mutant 

background. We analyzed 27 independent lines for gSOC1 () 38 independent lines 

for gSOC1(M1), and 21 lines for gSOC1(M2). Error bars indicate standard deviation. 
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4.8 SVP Interacts with FLC 

 

The SOC1-CArG1 box bound by SVP was 19 nt distant from the SOC1-CArG2 

box in the SOC1 promoter, which has previously been identified as a FLC binding site 

(Helliwell et al., 2006, Hepworth et al., 2002 and Searle et al., 2006). FLC is a potent 

floral repressor upon which multiple floral regulatory pathways converge. Since SVP 

and FLC negatively control SOC1 expression and they exhibit a similar expression 

pattern in the shoot apical meristem and leaves at the vegetative phase (Figures 41a 

and 41b; Hartmann et al., 2000, Noh and Amasino, 2003 and Sheldon et al., 2002), 

their proteins may interact to control SOC1 expression. To test this hypothesis, we 

performed in vitro glutathione S-transferase (GST) pull-down assays and found that 

GST-SVP or GST-FLC bound in vitro-translated full-length HA-FLC or Myc-SVP, 

respectively (Figure 42). This binding was specific because HA-FLC or Myc-SVP 

failed to bind to the control GST alone. 

To determine whether this direct physical interaction occurs in vivo, we 

performed a reciprocal coimmunoprecipitation analysis using transgenic svp41 

SVP:SVP-6HA plants in the ecotype C24, where FLC expression is high (Hartmann 

et al., 2000, Noh and Amasino, 2003 and Sheldon et al., 2002). Protein extracts from 

the svp41 SVP:SVP-6HA and C24 wild-type plants were immunoprecipitated with 

either anti-FLC conjugated to Protein G PLUS agarose or anti-HA agarose. The 

resulting immunoprecipitates were separated by SDS-PAGE. The precipitated proteins 

were analyzed by western blot using the anti-HA or anti-FLC antibody. A band with 
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the  
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Fig 41. (a) GUS staining of 5-day-old SVP:GUS Col seedling. Inset shows GUS 

staining of the shoot apex. (b) In situ localization of SVP at the shoot apex of 

5-day-old Col wild-type seedlings. Scale bars, 25 μm. 
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Fig 42. In vitro GST pull-down assay with SVP and FLC proteins. Precipitated 

GST, GST-SVP, and GST-FLC are shown by Coomassie blue staining. 
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expected mobility of SVP-6HA was repeatedly detected from the anti-FLC 

immunoprecipitates of the svp41 SVP:SVP-6HA plants (Figure 43). On the contrary, 

no band of the same mobility was detected from the immunoprecipitates of the C24 

wild-type plants. The in vivo interaction of FLC and SVP was also revealed in the 

anti-HA immunoprecipitates (Figure 43), where FLC was only observed in the 

immunoprecipitates of the svp41 SVP:SVP-6HA plants. 

Coimmunoprecipitation analysis was further carried out in developing svp-41 

SVP:SVP-6HA Col seedlings grown in LDs (Figure 44). As svp-41 SVP:SVP-6HA 

showed comparable flowering time with wild-type Col plants, this analysis aimed to 

examine temporal endogenous interaction of SVP and FLC. While FLC expression is 

generally low in Col, its expression was detectable in 3- and 5-day-old seedlings, and 

reduced afterwards (Figure 44). SVP expression was consistently high in developing 

seedlings, with its peak in 7-day-old seedlings. Protein extracts from these seedlings 

were immunoprecipitated with anti-HA agarose, and the precipitated proteins were 

analyzed by western blot using the anti-HA or affinity-purified FLC antibody 

(Hartmann et al., 2000, Noh and Amasino, 2003 and Sheldon et al., 2002). The 

interaction between SVP-6HA and FLC proteins was clearly observed in 3- to 

9-day-old seedlings, demonstrating that SVP-6HA and FLC proteins interact in vivo 

during vegetative growth. The weakened interaction between SVP and FLC in 11- and 

15-day-old seedlings is concomitant with the upregulation of SOC1 expression 

(Figure 15). To investigate the spatial interaction of SVP and FLC during seedling 

development, we examined their interaction in the aerial part of the seedlings (without  



 137 

 

 

 

 

 

Fig 43. Interaction of SVP and FLC in SVP:SVP-6HA C24 seedlings. Protein 

extracts were isolated from 5-day-old SVP:SVP-6HA (C24). 
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Fig 44. Interaction of SVP and FLC in developing svp-41 SVP:SVP-6HA (Col) 

seedlings grown in LDs. svp-41 SVP:SVP-6HA or wild-type seedlings from day 3 to 

day 15 were harvested for protein extraction. 
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Fig 45. Interaction of SVP and FLC in the aerial part without leaves, and leaves 

of developing svp-41 SVP:SVP-6HA seedlings grown in LDs. 
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leaves) and leaves of svp-41 SVP:SVP-6HA (Figure 45). FLC protein expression 

peaked in the aerial part without leaves in 3-day-old seedlings, and was slightly 

reduced afterwards, while its expression in the leaf was relatively low. SVP peaked in 

the leaves and the remaining aerial part in 7-day-old seedlings. The interaction 

between SVP and FLC occurred in the aerial part without leaves of all developing 

seedlings examined, with the peak in 3-day-old seedlings. On the contrary, their 

interaction was only weakly detected in the leaves of 3- and 7-day-old seedlings.  

 

4.9 FLC and SVP Functions Are Mutually Dependent 

 

Since our results showed in vitro and in vivo interaction of SVP and FLC proteins, 

we further tested the biological significance of this interaction by genetic analysis 

(Figure 46). Loss of SVP function significantly suppressed the severe late-flowering 

phenotype of FRI FLC, in which FLC was highly expressed (Michaels and Amasino, 

1999). On the contrary, loss of FLC function could moderately rescue the 

late-flowering of 35S:SVP. These results indicate that FLC and SVP functions are 

mutually dependent, and that the former is largely dependent on the latter. The 

interaction of SVP and FLC was further supported by the phenotype of the double 

mutant flc-3 svp-41 (Figure 46). In the Col background, flc-3 showed slightly early 

flowering, while svp-41 flowered much earlier. The double mutant flc-3 svp-41 

showed a stronger early flowering phenotype compared with either single mutant, but 

was much like the svp-41 mutant. 
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Fig 46. Flowering phenotypes of plants with different levels of FLC and SVP 

expression in LDs. 
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ChIP assays of 35S:FLC-HA have revealed the binding of FLC to the first intron of 

FT that contains a CArG consensus sequence, suggesting that FLC directly mediates 

repression of FT in the leaf (Searle et al., 2006). The same region, together with other 

upstream regions, of FT was found to be highly associated with SVP-HA by ChIP 

assays using Arabidopsis protoplasts (Lee et al., 2007). In ChIP assays of 

35S:SVP-6HA and svp-41 SVP:SVP-6HA lines, we consistently found that the number 

4 fragment that was close to the CArG box at the first intron of FT showed the highest 

enrichment associated with SVP-6HA by quantitative real-time PCR (Figure 47). 

These observations imply that FLC and SVP may bind to the same site of FT genomic 

sequence to regulate its expression, and that the interaction of FLC and SVP regulates 

both SOC1 and FT. It is noteworthy that FT was only slightly upregulated in the 

leaves of svp-41 in the Col background where FLC expression was low (Figure 18), 

indicating that the effect of SVP on FT expression in the leaves may largely rely on 

FLC. 
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Fig 47. SVP is Associated with the FT Genomic Region (a) Schematic diagram of 

the FT genomic region. Exons are represented by black boxes, while introns and 

upstream regions are represented by white boxes. Bent arrows denote translation start 

sites and stop codons. Filled arrowheads indicate the sites containing either single 

mismatch or perfect match with the consensus binding sequence (CArG box) of 

MADS-domain proteins, while open arrowheads indicate the CArG sites containing 

two mismatches. Five DNA fragments near the above CArG sites in the FT genomic 

region were examined by ChIP enrichment test as shown in (b). (b) ChIP enrichment 

test shows the binding of SVP-6HA to the region near the fragment 4. Seven-day-old 

seedlings of 35S:SVP-6HA and svp-41 SVP:SVP-6HA were harvested for ChIP 

analysis. Relative enrichment of each fragment was calculated first by normalizing the 

amount of a target DNA fragment against a genomic fragment of ACTIN, and then by 

normalizing the value for transgenic plants against the value for wild-type as a 

negative control. 
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4.10 SVP autoregulation  

 

To detect if SVP can be self-regulated, we designed different pairs of primers that 

can distinguish the SVP transgene from its endogenous copy. The designed SVP 

P1/P2 primers amplified the coding and 3‟ untranslated regions (3‟UTR) of SVP 

mRNA from 970 bp to 1,650 bp, while the primers SVP mRNA F/R only amplifies 

the region from 620 bp to 970 bp (Figure 11b) (Table 4). Since we only cloned the 

coding region (from 520 bp to 1,250 bp) into the SVP tagging and XVE inducible 

constructs, SVP P1/P2 could only amplify the expression of the endogenous SVP gene, 

while SVP mRNA F/R could reveal the expression of both the endogenous SVP and 

the SVP transgene. In 35S::SVP, RT-PCR using the primers SVP P1/P2 showed that 

the endogenous SVP expression was down-regulated on both Day 7 and Day 13, while 

the analysis using the primers SVP mRNA F/R suggested that the overall SVP level 

was indeed increased. Wild-type and svp41 plants were included as controls (Figure 

11c, 11d). These results indicate the existence of a negative feedback loop leading to 

the self-regulation of endogenous SVP expression. However, the autoregulation may 

be direct or indirect; hence ChIP was further used to test whether SVP could mediate 

its negative feedback loop in an in vivo context. 
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Fig 11. SVP over-expression leads to the down-regulation of SOC1 and itself.  (a) 

The SOC1 level is dramatically decreased in the 35S::SVP plants and significantly 

increased in the SVP loss-of-function plants. (b) SVP P1/P2 can only detect the 

endogenous SVP mRNA, but not the transcripts from 35::SVP, which are denoted by 

the green region, while SVP mRNA F/R can detect both of them. (c) SVP P1/P2 

detect endogenous SVP mRNA is decreased in 35S::SVP on Day 7 and 13, while SVP 

mRNA F/R suggest SVP expression level is indeed increased. TUB2 as internal 

control.  
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Table 4. Primers used for RT-PCR  

Primer name  Sequence 5‟-3‟ 

AGL20-P1 GAAGATAGTTTGAGGGGCAAAACTC 

AGL20-P2 GGGCTACTCTCTTCATCACCTCTTCC 

TUB2-P1 ATCCGTGAAGAGTACCCAGAT 

TUB2-P2 TCACCTTCTTCATCCGCAGTT 

SVP-P1 GTGACAAGATTATGAAGTGAGATCAG 

SVP-P2 GAATTCACTACTTAGACATTGTCTC 

SVP-mRNA-F AGTCCTAGAGAGGCATAACTTGCAG 

SVP-mRNA-R CTGATCTCACTCATAATCTTGTCAC 
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Chapter 5 

Discussion 

 

5.1 SVP and flowering time pathways 

 

A pervious study has shown that the MADS-domain gene SVP is a repressor of floral 

transition (Hartmann et al., 2000). However, this study did not address the concrete 

functional mode of SVP in flowering time in Arabidopsis. In this study, we aimed to 

investigate the mechanism of SVP repression of flowering. 

Both autonomous and vernalization pathways promote flowering by repressing the 

expression of FLC and the mutations of the genes in these pathways exhibit the 

late-flowering phenotype due to increased FLC expression. Dominant alleles of FRI 

also delay flowering by increasing FLC levels. The expression of SVP is affected in 

the fve mutant background, indicating that SVP is acting in the autonomous pathway. 

In addition, vernalization does not have any significant effect on SVP expression. By 

contrast, GA treatment causes reduced SVP expression, and co and ft mutants in 

photoperiod pathway do not show significant elevation of SVP expression, suggesting 

that GA pathways partially suppress SVP expression. To further validate the data, the 

studies on SVP expression in other autonomous pathway mutants (fpe, and fca) and 

GA pathway mutants (ga1-3, ga1-3 rga) are carrying out.  
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5.2 ChIP and SVP direct targets 

 

In this study, it has been shown that SVP-6HA fusion proteins were able to regulate 

flowering time in a manner mimicking the endogenous SVP. ChIP analysis was 

subsequently used to identify the direct downstream target genes of SVP. Western blot 

analysis and the results from PCR enrichment test, in which the co-precipitated DNA 

showed an altered composition compared with input DNAs and mock DNAs, suggest 

that the overall ChIP process was successful.  

The PCR enrichment test for SOC1, SVP, AGL24 and LFY demonstrate that 

SOC1 and endogenous SVP were bound in vivo by SVP in 35S::SVP-6HA and svp41 

SVP::SVP-6HA transgenic lines, and the amount of bound DNA correlated with the 

level of nuclear localized SVP-6HA protein. These results, together with RT-PCR 

results showing that both SOC1 and SVP are in response to SVP expression level, 

strongly suggest that SOC1 and SVP are the direct targets of SVP.  

SOC1 is a floral integrator because it is a convergent point for several promotion 

pathways. SOC1 is expressed mostly in leaves and in the shoot apex and its 

expression has a sharp increase occurring in the apex during floral transition (Borner 

et al., 2000, Samach et al., 2000). In situ hybridization has shown that during vegetative 

phase, SVP transcripts were detectable in young leaves and throughout the apical 

meristem. During early stages of bolting, SVP transcripts were absent from the main 

inflorescence apical meristem (Hartmann et al., 2000). Our ChIP data showed that 

SVP protein could directly repress the expression of SOC1 and SVP itself. To explain 
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this behaviour, it has been postulated that flowering represents a default 

developmental program that must be suppressed by one or more floral repressors, 

such as SVP, to allow a phase of vegetative growth. Moreover, the activity of these 

floral-repressing flowering time genes gradually declines during development. We 

have shown that SVP loss-of-function resulted in SOC1 over-expression similar to 

35S::SOC1 and a very early-flowering phenotype. Thus it is proposed that the 

repression of SOC1 by SVP is a default process which allows the plant to store energy 

during the vegetative phase. Meanwhile, the signals from photoperiod and GA 

pathways accumulate and act to repress SVP expression throughout the plant. In 

addition, there may be some region specific factors that directly repress SVP 

expression, leading to SVP down-regulation in the shoot apical meristem (SAM). 

Consequently, the SOC1 level is dramatically increased in this region, thus promoting 

flowering.  

From this point of view, SVP autoregulation seems to be another default program 

that prevents overwhelming SVP expression. It causes the limited production of the 

full-length active SVP mRNA, thus limiting SVP activity.  

It is noteworthy that although AGL24 and LFY did not show any enrichment, it 

cannot conclude that they are not direct targets of SVP. This is because either the 

primer pairs chosen or the plant stage selected could have affected the final results. To 

avoid these problems, a sequence library containing the genomic loci that can 

potentially bind to SVP protein will be generated from the eluted DNAs. They will be 

the ideal candidates for further enrichment test. Moreover, a time course ChIP study 
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with SVP native expression system needs to be carried out in order to investigate 

whether there are interactions between SVP and other genes in different 

developmental contexts.  

 

5.3 SVP associates with FLC to repress SOC1 expression  

 

Here we have shown that the flowering regulator SVP plays a key role in 

maintaining the duration of the vegetative phase by directly repressing SOC1 

transcription strongly in the shoot apex and moderately in the leaf. SOC1 expression 

in whole seedlings is tightly regulated by the levels of SVP expression. Mutating the 

SVP binding site in the SOC1 promoter in the wild-type Col background causes 

strong derepression of SOC1 in the shoot apex and leaf (Figure 35). On the contrary, 

mutating the binding site of another SOC1 repressor, FLC, in the SOC1 promoter does 

not result in apparent derepression of SOC1 in the wild-type Col background (Figures 

35; Hepworth et al., 2002). These observations suggest that in the plants with 

relatively low levels of FLC expression (e.g., wild-type Col), SVP plays a major role 

in regulating SOC1 expression. This is substantiated by the phenotypes of svp-41and 

flc-3, as the former exhibits much earlier flowering than the latter in the Col 

background. 

SVP protein associates with the promoter region of SOC1 where FLC binds. 

During vegetative growth, SVP interacts with FLC in the whole seedlings with a 

relatively strong affinity in the aerial part without leaf. This interaction is critical for 
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their function in determining flowering because loss of function of either gene 

compromises the ability of another gene in repressing flowering. Notably, in the 

plants with high levels of FLC expression (e.g., FRI FLC), the FLC repressive effect 

on flowering is significantly suppressed by svp-41 (Figure 46), demonstrating that 

FLC function is highly dependent on SVP. 

Interaction between FLC and SVP may also directly affect FT expression in the 

leaf, as both of them can bind to the same site of FT genomic sequence. It has been 

shown that FLC expression in the leaf represses flowering by mainly repressing FT 

expression (Searle et al., 2006). While SVP was suggested to negatively regulate FT 

expression in the leaf within the thermosensory pathway (Lee et al., 2007), we could 

only detect slightly upregulated expression of FT in the leaves of svp-41 by 

quantitative real-time PCR (Figure 18). As the protein interaction between FLC and 

SVP exists in the leaf, SVP's effect on FT expression may be mediated by FLC. This 

partly explains why alteration of FT expression is not so significant in svp-41 in the 

Col background, where FLC expression is relatively low. As svp-41 more or less 

accelerates flowering of single or double mutants of ft-1 and soc1-2 (Figure 14), it is 

possible that SVP partially acts through other unknown factors in addition to SOC1 

and FT. 

It has been suggested that FLC is a central regulator of the floral enabling 

pathways that antagonize the activation of the floral pathway integrators (Boss et al., 

2004 and Reeves and Coupland, 2001). Our results suggest that SVP is another central 

regulator that mainly responds to the endogenous flowering signals and interacts with 
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FLC in the aerial part of the seedlings. Hitherto, this relationship has not been 

revealed in previous studies on the protein interaction among Arabidopsis MADS-box 

genes. Their combined action confers a critical control of floral induction by directly 

repressing the early onset of expression of floral pathway integrators at the vegetative 

phase. This allows plants to accumulate sufficient energy for subsequent reproductive 

success. During the floral transition, the flowering signals from autonomous, 

vernalization, and GA pathways converge on the downregulation of SVP and FLC, 

thus derepressing the expression of floral pathway integrators. Therefore, it is likely 

that the effect of these flowering genetic pathways on the floral transition is mainly 

mediated through a derepression mechanism. In contrast, the photoperiod pathway, 

which does not affect the expression of either SVP or FLC, seems to be a major 

pathway that activates floral pathway integrators. 

Unlike another floral pathway integrator, FT, SOC1 is highly expressed in the 

shoot apex during floral transition and has been suggested to be associated with 

regional specificity for initiation of floral meristems (Borner et al., 2000, Lee et al., 

2000, Liu et al., 2008 and Samach et al., 2000). Complementation of SOC1 

expression in the shoot apical meristem of soc1 mutants results in much earlier 

flowering than that in the phloem (Searle et al., 2006), suggesting that regulation of 

SOC1 expression in the meristem has a more significant effect on the control of 

flowering. In addition to SVP and FLC, recent studies have revealed several other 

flowering regulators that are involved in the tight control of SOC1 transcription in the 

meristem. FT and its cofactor FD are required for activation of SOC1 expression in 
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the meristem (Abe et al., 2005, Corbesier et al., 2007, Searle et al., 2006 and Wigge 

et al., 2005), while AGL24 directly upregulates SOC1 transcription in the meristem 

during the floral transition (Liu et al., 2008). Intriguingly, even in the absence of FT 

and AGL24, loss of SVP function results in a higher SOC1 expression than in 

wild-type plants (Figure 23). This result suggests that SVP repression has a dominant 

effect on SOC1 expression, and that removal of SVP activity may activate SOC1 

expression independently of those known SOC1 activators. 

A further question that arises from this study is the relationship between SVP and 

AGL24. While they are the closest genes among all the 107 MADS-box transcription 

factors found in Arabidopsis (Parenicova et al., 2003 and Yu et al., 2002), they exhibit 

completely opposite functions in directly regulating SOC1 transcription in the 

meristem (Liu et al., 2008). It is possible that they regulate SOC1 in a temporal 

sequence as repression of SOC1 by SVP occurs at the vegetative phase and gets 

weaker during the floral transition, at which promotion of SOC1 by AGL24 mainly 

happens (Liu et al., 2008). The expression level of SVP and AGL24, which is affected 

by various flowering genetic pathways, should be one of the important factors that 

contribute to the predominance of SVP or AGL24 in the SOC1 transcription complex. 

It is noteworthy that SVP is genetically epistatic to AGL24, because the double 

mutants agl24-1 svp-41 show a similar flowering time to svp-41 (Figure 14). This 

suggests that AGL24 may act upstream of SVP. In wild-type plants AGL24 expression 

is upregulated at the shoot apex by SOC1 during the floral transition (Liu et al., 2008). 

It is, therefore, tempting to hypothesize that SOC1 may suppress SVP expression via 
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AGL24, thus activating its own expression in the meristem in a positive feedback 

loop. 

Phylogenetic analysis has shown that SVP belongs to the StMADS11-like clade of 

MADS-box proteins that comprises members from gymnosperms, monocots, and 

eudicots (Becker and Theissen, 2003). The majority of its members are specifically 

expressed in vegetative tissues, and several members that repress flowering in various 

species have been reported (Hartmann et al., 2000, Kane et al., 2005 and Masiero 

et al., 2004). Whether SVP function in Arabidopsis flowering represents a general 

mechanism for members of this clade of proteins needs to be further investigated. 

 

5.4 SVP and other MADS-box genes 

 

In plants, MADS-box genes comprise a large family of transcriptional regulators 

that have diverse roles in development. Six MADS-box genes have been previously 

reported to regulate flowering in Arabidopsis: FLC, FLM, and SVP act as repressors 

of flowering, whereas AGL24, FUL and SOC1 act as floral promoters. In this report, 

we present evidence that SVP represses flowering through direct down-regulation of 

SOC1. 

It is interesting to note that in Arabidopsis, SVP has the highest sequence 

similarity to AGL24, which promotes flowering. The discovery that two closely 

related genes have opposite effects on flowering time is not unprecedented, since the 

floral promoter FT and the repressor TFL1 are also highly similar genes with opposite 
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effects on flowering (Kardailsky et al., 1999; Kobayashi et al., 1999). A previous 

study has shown that changing a single amino acid in FT converts it from a flowering 

promoter to a repressor, with the same effect as TFL1 (Hanzawa et al., 2005). 

Whether the same scenario exists for SVP and AGL24 remains unknown. Currently, 

another parallel work in our lab suggests that AGL24 is also able to bind to SOC1 

directly (unpublished data). It will be interesting to investigate whether SVP and 

AGL24 share the same binding site on the SOC1 promoter. If this is true, it is possible 

that SVP and AGL24 compete for the same binding site in a dosage dependent manner. 

A temporal ChIP analysis will help to reveal if SVP and AGL24 show different 

binding capacity with SOC1 promoter during the course of floral transition.  

 

FLM is a MADS-domain gene, for which the mutant phenotype is similar to that 

of SVP. Although FLM and SVP are classified into different MADS domain groups on 

the basis of sequence similarity, they appear to act in the same flowering pathway. A 

previous study showed that the phenotype of svp flm double mutant was the same as 

either single mutant in LD and SD conditions (Scortecci et al., 2003). In the 

homozygous svp mutant background, the late-flowering effect of 35S::FLM was 

suppressed, while the flm mutation was also able to suppress late-flowering of 

35S::SVP (Scortecci et al., 2003). However, SVP mRNA levels were not affected by 

an flm lesion or by FLM over-expression. Our data also suggest that FLM expression 

is not affected by SVP over-expression or SVP loss-of-function (unpublished data). 

These results suggest that FLM and SVP may act in parallel with each other either as 
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partners or in different branches.  

In the flower development, distinct MADS domain proteins can associate and 

bind to DNA as heterodimers or higher-order multimers. Hence it raises the 

possibility that FLM and SVP are part of a multimeric MADS domain complex that 

regulates flowering time. In order to verify this model, mass spectrometry analysis 

will be performed on the transgenic lines of 35S::SVP-12HA to identify the  protein 

partners of SVP.   

 

5.5 Cis-regulatory elements in SVP promoter region  

 

Spatial and temporal gene expression is regulated by a complex interaction of 

cis-acting DNA elements and trans-acting regulatory proteins. These interactions may 

lead to the induction or repression of gene expression with a variety of signals „read‟ 

by the basal transcriptional machinery, either via direct interaction or through 

chromatin remodelling. To this end, deletion analysis is a valuable approach to 

identify the regulatory regions containing relevant cis-acting elements. 

GUS staining results indicate the presence of putative positive and negative 

cis-elements regulating the expression of SVP. The difference in enzymatic activity 

between P2 and P5 shows that, although deletion of the 5‟ region from -1,800 bp to 

-1,200 bp does not alter the pattern of expression, it reduces the GUS activity. This 

observation supports a role of this region in enhancing SVP expression. The difference 

of GUS activity between P2 and P3 shows that a deletion from +200 bp to +1,700 bp 



 157 

abolishes GUS activity, suggesting that this region is important in initiating the SVP 

expression.  

It is noteworthy that the P4 construct, which contains a 3‟ end region 1.4 kb 

longer than P5, fails to show any GUS activity. This leads to the hypothesis that this 

region contains critical cis-regulatory region that is involved in the down-regulation 

of SVP expression. Our ChIP results show that SVP could bind to a fragment within 

this region, implying that this region may serve as a SVP binding site that mediates 

self-autoregulation. To provide evidence for this possibility, future studies will be 

performed to further dissect the regulatory elements in this region. 

In addition, as there may be a cis-element in the region +1,700 bp to +3,100 bp 

that is involved in negative regulation SVP (Figure 13), the P2 construct may lack the 

essential elements required to drive endogenous spatial and temporal expression. Thus, 

the construct containing the SVP native promoter, introns and exons have to be 

created. In addition, to facilitate the SVP promoter study, more deletion constructs 

will be made to localize the regions respond to spatial and temporal signals. At this 

point, it can be concluded that the regions from -1,800 bp to -1,200 bp and +200 bp to 

+1,700 bp are significantly important for normal SVP expression: the region from 

-1,800 bp to -1,200 bp is required to enhance SVP expression; while deleting the 

region from +200 bp to +1,700 bp will result in complete loss of SVP promoter 

activity.  
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5.6 SVP autoregulation 

Previous study suggested that SVP encode two detectable transcripts of about 1.7 

kb and 1.3 kb long (Hartmann et al., 2000). The levels of both transcripts seemed to 

remain constant during vegetative growth regardless of photoperiodic conditions. The 

1.7 kb transcript was almost absent from inflorescences of plants grown in LD, while 

the 1.3 kb transcript was still expressed (Hartmann et al., 2000). It was suggested that 

the 1.7 kb transcript represented the functional transcript, while the other was the 

product of the premature cleavage.  

The alternative splicing of SVP is quite similar to that of FCA, which is another 

flowering time gene in the autonomous pathway. FCA pre-mRNA is alternatively 

processed, resulting in the formation of four different transcripts (Simpson et al., 2003). 

Previous study showed that this process involved a negative feedback regulation 

mediated by FCA itself (Simpson et al., 2003). The full length FCA protein forms a 

protein complex with another flowering time gene FY, which functions in pre-mRNA 

3‟ end formation and promotes premature cleavage and polyadenylation at a 

promoter-proximal site within intron 3 of its own pre-mRNA. This results in the 

production of a non-functional truncated transcript (Simpson et al., 2003). We have 

also found that SVP is directly mediating its down-regulation. Therefore, it is 

interesting to further study if SVP self-regulation is relevant with its alternative splicing 

through the use of different polyadenylation sites within the SVP pre-mRNA in a 

manner similar to that in FCA. Hence, a protein interaction between SVP and a RNA 3‟ 
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end-processing factor, such as FY, would be required for efficient selection of the 

promoter-proximal polyadenylation site. Mass spectrometry analysis will be useful to 

verify this model and to identify protein partners of SVP. 

 

5.7 ChIP improvement and related techniques 

 

In future ChIP studies, the fixation and immunoprecipitation conditions will be 

further optimized to remove contaminant molecules such as chloroplast DNA. Also, 

as non-specific PCR products were found during co-precipitated DNA amplification, 

an adjustment of PCR annealing temperature during enrichment test is necessary.  

In order to localize the SVP binding site within SOC1 and SVP genomic 

sequences, primer pairs would be further designed to bind regions encompassing only 

around 100 bp near the putative CArG boxes. Quantitative real-time PCR can be 

performed to detect the spatial enrichment of a specific binding site. The primer pair 

that shows the most significant enrichment will reveal the exact SVP binding site.  

Although ChIP is a powerful in vivo method to study protein-DNA interaction, it 

is sometimes difficult to locate where a protein exactly binds in vivo. During the 

fixation step, the precipitated DNA-protein complexes may contain both DNA-protein 

and protein-protein interactions. Thus, a protein may bind to a genomic sequence via 

other intermediate proteins. Therefore, further investigation is necessary to confirm 

the interaction. Kang et al. (2002) developed a technique that combines ChIP and in 

vivo footprinting to identify the exact binding region of a transcription factor. Besides, 
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a computational algorithm has been introduced by Liu et al. (2002) that help to 

pinpoint the interaction site from ChIP-chip data down to the base-pair level. To 

improve specific enrichment of target sequences among the immunoprecipitated DNA, 

Weinmann et al. (2001) introduced double ChIP method, by which two rounds of 

immunoprecipitation were performed before obtaining co-precipitated DNA. 

Furthermore, Barski and Frenkel (2004) developed a novel ChIP Display (CD) 

strategy, where the enriched sequences were picked up from background noise by 

simple polyacrylamide gel resolving, thus avoiding microarray and the labour 

intensive sequencing protocol.  
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CHAPTER 6 

Conclusion 

In this project, we characterized SVP, in an attempt to localize SVP in specific 

genetic pathways, and identified in vivo its direct target genes in the control of 

flowering time. Firstly, we found that the SVP expression can be regulated by the 

photoperiod and GA pathways, suggesting that SVP may act downstream of these two 

pathways to integrate flowering time signals. Secondly, preliminary results from SVP 

promoter study showed that genomic regions from -1,800 bp to -1,200 bp and +200 bp 

to +1,700 bp are important for the normal expression of SVP. Thirdly, RT-PCR results 

demonstrated SVP delayed flowering through down-regulation of SOC1 expression. 

Lastly, ChIP studies provided in vivo evidence showing the direct interaction between 

SVP and SOC1.  It is noteworthy that through the results of RT-PCR and ChIP 

analysis, it was found that SVP can mediate its negative autoregulation (Figure 18). 

In this study we show that by mainly responding to endogenous signals from 

autonomous and GA pathways, SVP plays a crucial role in directly controlling SOC1 

transcription strongly in the shoot apex and moderately in the leaf, while FT 

expression in the leaf is slightly modulated by SVP. Notably, the SVP protein 

consistently interacts with FLC in the seedlings during vegetative growth, and their 

function in regulating flowering is mutually dependent. Our findings uncover that 

SVP is another central flowering repressor and that its interaction with FLC 

determines the expression of the floral pathway integrators in response to various 

endogenous and environmental signals. 
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Figure 18. A current model of flowering time control. The four distinct flowering 

pathways in Arabidopsis interact through several key regulators. SVP, FT, FLC, 

SOC1, AGL24 and LFY serve as downstream integrators in the control of flowering 

time. Arrows indicate promotion while T bars represent repression. 
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CHAPTER 7 

Future Work 

 

A further question aroused from this study is the relationship between SVP and 

AGL24. While they are the closest genes among all the 107 MADS-box transcription 

factors found in Arabidopsis (Yu et al., 2002), they exhibit completely opposite 

function in directly regulating SOC1 transcription in the meristem (Liu et al., 2008). It 

is possible that they regulate SOC1 in a temporal sequence as repression of SOC1 by 

SVP occurs at the vegetative phase and gets weaker during floral transition, when 

promotion of SOC1 by AGL24 happens (Liu et al., 2008). The expression levels of 

SVP and AGL24, which are affected by various flowering genetic pathways, should be 

one of the essential factors that contribute to the predominance of SVP or AGL24 in 

the SOC1 transcription complex.  It is noteworthy that SVP is genetically epistatic to 

AGL24, because the double mutants agl24-1 svp-41 show similar flowering time to 

svp-41 (Figure 4). This suggests that AGL24 may act upstream of SVP. In wild-type 

plants AGL24 expression is upregulated at the shoot apex by SOC1 during the floral 

transition (Liu et al., 2008). It is, therefore, tempting to hypothesize that SOC1 may 

suppress SVP expression via AGL24, thus activating its own expression in the 

meristem in a positive feedback loop.  

Previous studies have suggested that FCA that belongs to autonomous pathway 

interact with the 3‟-end RNA-processing factor FY to autoregulate its own expression 

post-transcriptionally, thus affecting FLC expression (Quesada et al., 2003; Simpson 

et al., 2003). Interestingly, both FLC and SVP genomic regions also generate 

transcript variants (Hartmann et al., 2000; unpublished data). This raises the 
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possibility that post-transcriptional control may play an important role in the control 

of FLC and SVP expression and flowering time. We are now further investigating the 

biological function of various transcripts of SVP and its involved regulatory 

mechanism.  
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