
EFFICIENTLY INDEXING SPARSE WIDE

TABLES IN COMMUNITY SYSTEMS

HUI MEI

( B.Eng ), XJTU, China

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48633669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii

Acknowledgement

I would like to express my gratitude to all who have made it possible for me to

complete this thesis. The supervisor of this work is Professor Ooi Beng Chin; I am

grateful for his invaluable support. I would also like to thank Associate Professor

Anthony K. H. TUNG, Associate Professor Chan Chee Yong and Dr Panagiotis

Karras for their advice.

I wish to thank my co-workers in the Database Lab who deserve my warmest

thanks for our many discussions and their friendship. They are Chen Yueguo, Jiang

Dawei, Zhang Zhenjie, Yang Xiaoyan, Chen Su, Wu Sai, Tam Vohoang, Zhou Yuan,

Wu Ji, Wang Nan, Dai Bintian, Zhang Dongxiang, Cao Yu and Wang Tao.

I am very grateful for the love and support of my parents and my parents-in-law.

I would like to give my special thanks to my husband Guo Chen, whose patient

love has enabled me to complete this work.



CONTENTS

Acknowledgement ii

Summary viii

1 Introduction 1

1.1 Data in CWMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Queries in CWMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9

2.1 Storage Format on Sparse Wide Tables . . . . . . . . . . . . . . . . 9

2.1.1 Binary Vertical Representation . . . . . . . . . . . . . . . . 10

2.1.2 Ternary Vertical Representation . . . . . . . . . . . . . . . . 11

2.1.3 Interpreted Storage Format . . . . . . . . . . . . . . . . . . 12

2.2 Indexing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



iv

2.2.1 Traditional Multi-dimensional Indices . . . . . . . . . . . . . 15

2.2.2 Text Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 String Similarity Matching . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Approximate String Metrics . . . . . . . . . . . . . . . . . . 17

2.3.2 n-Gram Based Indices and Algorithms . . . . . . . . . . . . 18

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Community Data Indexing for Structured Similarity Query 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Encoding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Encoding of Strings . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Encoding of Numerical Values . . . . . . . . . . . . . . . . . 32

3.4 iVA-File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.2 Query Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7.3 Update Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Community Data Indexing for Complex Queries 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 CW2I: Two-Way Indexing of Community Web Data . . . . . . . . . 53

4.2.1 The Unified Inverted Index . . . . . . . . . . . . . . . . . . . 54

4.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



v

4.2.3 Argumentation . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Query Typology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Description of Data . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Description of Queries . . . . . . . . . . . . . . . . . . . . . 66

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Conclusion 76

5.1 Summary of Main Findings . . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Structured Similarity Query Processing . . . . . . . . . . . . 77

5.1.2 Complex Query Processing . . . . . . . . . . . . . . . . . . . 77

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



LIST OF FIGURES

1.1 Data Items in eBay . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Users submit freely defined meta data to the sparse wide table. . . . 4

1.3 A structured similarity query in CWMSs. . . . . . . . . . . . . . . . 5

2.1 A sparse dataset in horizontal schema. . . . . . . . . . . . . . . . . 10

2.2 A sparse dataset in decomposed storage format. . . . . . . . . . . . 11

2.3 A sparse dataset represented in the vertical schema. . . . . . . . . . 14

2.4 Interpreted attribute storage format. . . . . . . . . . . . . . . . . . 14

3.1 An example of generating a string’s nG-signature . . . . . . . . . . 25

3.2 An example of estimating edit distance with nG-signature . . . . . 28

3.3 Structure of the iVA-file . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 An example of vector lists . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 The Query Processing Algorithm Flow Chart . . . . . . . . . . . . . 37

3.6 An example of processing a query . . . . . . . . . . . . . . . . . . . 42

3.7 Effect of the number of defined values per query on the data file

access times per query. . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



vii

3.8 Effect of the number of defined values per query on filtering and

refining time per query. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Effect of the number of defined values per query on the overall query

time per query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Effect of the number of defined values per query on filtering and

refining time per query. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 Effect of k of the top-k query on the query time. . . . . . . . . . . . 46

3.12 Effect of different settings of distance metrics and attribute weights. 47

3.13 Effect of the relative vector length α on the iVA-file query time. . . 47

3.14 Effect of the relative vector length α on iVA-file filtering and refining

time per query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.15 Effect of the length of n-grams n on iVA-file query time. . . . . . . 50

3.16 Comparison of iVA, SII and DST’s average update time under dif-

ferent cleaning trigger threshold β. . . . . . . . . . . . . . . . . . . 50

4.1 Example Query: First Step . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Example Query: Second Step . . . . . . . . . . . . . . . . . . . . . 58

4.3 Example Query: Third Step . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Example Query: Fourth Step . . . . . . . . . . . . . . . . . . . . . 59

4.5 Disk Space Cost of the Three Methods. . . . . . . . . . . . . . . . . 66

4.6 I/O Cost, Type-1 Query 1 . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 I/O Cost, Type-1 Query 2 . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 I/O Cost, Type-1 Query 3 . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Execution time, Type-2. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Execution time, Type-3. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Execution time, Type-4. . . . . . . . . . . . . . . . . . . . . . . . . 75



viii

Summary

The increasing popularity of Community Web Management Systems(CWMSs) calls

for tailor-made data management approaches for them. In CWMSs, storage struc-

tures inspired by universal tables are being used increasingly to manage sparse

datasets. Such a sparse wide table (SWT) typically embodies thousands of at-

tributes, with many of them not well defined in each tuple. Low-dimensional struc-

tured similarity search and general complex query on a combination of numerical

and text attributes is common operations. However, many properties of wide ta-

bles and their associated Web 2.0 services render most multi-dimensional indexing

structures ineffective. Recent studies in this area have mainly focused on improving

the efficiency of storage management and the deployment of inverted indices; so far

no new data structure has been proposed for indexing SWTs. The inverted index

is fast for scanning but not efficient in reducing random accesses to the data file

as it captures little information about the attribute information and the content of

attribute values. Furthermore, it is not sufficient for complex queries. In this the-

sis, we examine this problem and propose iVA-file indexing structure for structured

similarity query and CW2I indexing scheme for complex query respectively.
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The iVA-file works on the basis of approximate contents and guarantees scan-

ning efficiency within a bounded range. We introduce the nG-signature to ap-

proximately represent data strings and improve the existing approximate vectors

for numerical values. We also present an efficient query processing strategy for

the iVA-file, which is different from strategies used for existing scan-based indices.

To enable the usage of different metrics of distance between a query and a tu-

ple varying from application to application, the iVA-file has been designed to be

metric-oblivious and to provide efficient filter-and-refine search based on any ra-

tional metric. Extensive experiments on real datasets show that the iVA-file out-

performs existing proposals in query efficiency significantly, while at the same time

keeps a good update speed.

CW2I combines two effective indexing methods: inverted index and direct index

for each attribute. Inverted index gathers a list of tuples which are sorted by tuple

ID for each attribute value; the inverted index is sorted by value itself. Separate

direct index for each attribute provides fast access to those tuples for which the

given attribute is defined. The direct index is sorted by tuple ID following a column-

oriented architecture. Comparative experiments demonstrate that our proposed

scheme outperforms other approaches for answering complex queries on community

web data.

In summary, this thesis proposes indexing techniques for efficient structured

similarity query and complex query over sparse wide table in community systems.

Extensive performance studies show that these proposed indices significantly im-

prove the query performance.
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CHAPTER 1

Introduction

We have witnessed the increasing popularity of Web 2.0 systems such as blogs

[6], Wikipedia [5], Facebook [2] and Flickr [3], where users contribute content and

value-add to the system. These systems are popular as they allow users to display

their creativity and knowledge, take ownership of the content, and obtain shared

information from the community. A Web 2.0 system serves as a platform for users

of a community to interact and collaborate with each other. Such community

web management systems (CWMSs) have been successfully applied in an extensive

range of communities because of their effectiveness in collecting the information

and organizing the wisdom of crowds. The increasing popularity of CWMSs calls

for tailor-made data management approaches for them. It drives the design of new

storage platforms that impose requirements unlike those of conventional database

systems and it needs effective and efficient query schemes. Due to it, humongous

volume of data has also led to the proposal of new cluster based systems for large

data analysis such as Map Reduce and Hadoop.
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Metal Purity:  14k

Style:                     Cocktail

Metal:                     White Gold

Main Stone Color:  Blue

Main Stone:  Chalcedony

Stones:                     Chalcedony Blue Sapphires

Main Stone Treatment:   Routinely Enhanced

Ring Size:                      6.75

Carat Total Weight:  10.01

Total Weight:  18.00

Condition:                      Used

Type:                       Necklace

Length (cm):                     20

Sub-Type:                         Necklace

Metal:                        gold tone metal

Main Gemstone:     real coral

Gemstone Shape/ Cut:     round

Gemstone Carat Weight:   6.01 - 8.00

Condition:                        Used

Figure 1.1: Data Items in eBay

1.1 Data in CWMS

Community Web Management Systems (CWMSs) provide a platform in which

users of a community can interact and collaborate. Users can contribute to, and

take ownership of, the content and display their collective knowledge. In general,

a CWMS database stores information on a wide-ranging set of entities, such as

products, commercial offers, or persons. Due to diverse product specifications, user

expectations, or personal interests, the data set, when rendered as a table, can be

very sparse and comprises a good mix of alphanumeric and string-based attributes.

For example, there are millions of collectibles, decor, appliance, computers, cars,

equipment, furnishings and other miscellaneous items are listed, bought or sold

on e-commerce system eBay [1] every day. Each item is described by a set of

attributes specified as shown in Figure 1.1. The first item is a ring, and it is

described by eleven attributes such as metal purity, style and ring size etc. The

second item is a necklace, and it has five different attributes. Both the ring and

the necklace fall into category jewelry. As the items are being submitted into the

system, the new attributes are added to the current categories and new categories

are added to the catalog. As a result, there will be thousands attributes in the

system. However, each item is described by a small subset of the attributes only.

For another example, the dataset of the CNET e-commerce system examined by

Chu et al. [26] comprises a total of 2, 984 attributes and 233, 304 products; still, on

average a product is described by only ten attributes. Likewise, most community-
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based data publishing systems, such as Google Base [4], allow users to define their

own meta data and store as much information as they wish, as shown in Figure 1.2.

Users may submit different types of items as shown in Figure 1.2, such as digital

camera, job position and music album, and describe these data items using different

attributes. As a result, the dataset is described with a very large and diverse set

of attributes. We downloaded a subset of the Google Base data [4], where 779, 019

items define 1, 147 attributes and the average number of attributes defined in each

item is 16. The characteristics of the dataset in CWMSs are summarized as follows:

• The dataset consist of a large number of attributes, due to the diverse product

specifications.

• The dataset is very sparse. The dataset when rendered as a horizontal table

will have thousands of columns, but each data item is described by only ten

or so attributes. Each data item has NULL values for most of the attributes.

As a result, the dataset is very sparse.

• The schema is evolving as new data items are added, the new attributes are

also introcuced. Therefore, the schema of the dataset is not fixed, but it is

evolving all the time.

To facilitate fast and easy storage and efficient retrieval, the wide table storage

structure has been proposed in [17, 26, 51, 25]. The wide table can be physically

implemented as vertical tables and file-based storage [26, 51]. In this thesis, the

dataset in CWMSs is referred as sparse wide table(SWT).
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Digital Camera 

Company: “Canon” 

Pixel:  10,000,000 

Price:  230 USD 

tid Type Industry Year Price Company Salary Pixel Artist 

1 “Job Position” “Computer” 

“Software” 

  “Google” 1,000   

2 “Digital Camera”   230 “Canon”  10,000,000  

3 “Music Album”  1996 20    “Michael Jackson” 

A sparse wide table 

Job Position 

Industry:  “Computer” 

   “Software” 

Company:  “Google” 

Salary:  1,000 USD 

Music Album 

Artist: “Michael Jackson” 

Year: 1996 

Price: 20 USD 

Figure 1.2: Users submit freely defined meta data to the sparse wide table.

1.2 Queries in CWMS

The fast development and popularity of CWMSs calls for flexible and efficient

way to search the data items and information shared in CWMSs. Recent research

[44] on relevance-based ranking in text-rich relational databases argues that un-

structured queries, the popular querying mode in IR engines, are preferred for the

reason that structured queries require users to have knowledge of the underlying

database schema and complex query interface. But structured queries are popular

in CWMSs, such as Google Base, for three reasons. First, unlike typical relational

multi-table datasets [28], the SWT, which is the only table maintained for each

application does not impose strict relational constraint on the schema.

Second, many easy-to-use APIs are provided by CWMSs for semi-professionals

to construct an intermediate level between users and the CWMS. So the query

interface is usually transparent to users, who can submit queries through special-

ized web pages that transform users’ original queries into structured ones. Third,

the datasets in CWMS contain both numerical and text values, which introduce

problems to text-centric IR-based query processing.

In this thesis, we investigate and propose efficient query processing techniques

for two types of queries as follows:

1. Structured Similarity Query
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tid Type Year Price Company Salary 

… 

3 “Digital Camera”  240 “Sony”  

… 

8 “Digital Camera”  230 “Cannon”  

… 

A sparse wide table 

Type:  “Digital Camera” 

Company: “Canon” 

Price: 200 USD 

A higher ranked answer 

A lower ranked answer 

A query 
Typo 

Figure 1.3: A structured similarity query in CWMSs.

Users describe their searching intention in CWMS by providing the most ex-

pected values on some attributes. One example of such structured queries is shown

in Figure 1.3. CWMS ranks the tuples in SWT based on their relevance to the

query, and usually the top-k tuples are returned to users. In CWMSs, strings are

typically short, and typos are very common because of the participation of large

groups of people. For instance, “Cannon” in tuple 8 on attribute Company in Fig-

ure 1.3 should be “Canon”. To facilitate the ranking, edit distance [30, 40, 41], a

widely used typo-tolerant metric, is adopted to evaluate the similarity between two

strings.

2. General Complex Query

To our knowledge, there is no existing CWMS provides SQL equivalent selection

queries such as “retrieve a set of objects that have the same value for a given single

attribute”, or “find all products sold in Jakarta”. However such a way of querying

CWMSs data is not only relevant to the data at hand, but also attainable. Thus,

it is essential to identify a reasonable indexing scheme for efficiently and scalably

processing complex and general queries.

1.3 Motivation

Recent studies on SWTs, such as the interpreted schema [17, 26, 51], mainly focus

on optimizing the storage scheme of datasets. To the best of our knowledge, no

new indexing techniques have been proposed, and so far only the inverted index
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has been evaluated for SWTs in [51]. For each attribute, a list of identifiers of

the tuples that are well defined on this attribute is maintained, and only several

related lists are scanned for a query in order to filter tuples that are impossible to

be a result. Such partial scan results in dramatically low I/O cost of accessing the

index. However, this technique captures no information with regard to the values

and may therefore be inefficient in terms of filtering.

In addition, the existing multi-dimensional indices that have been designed

for multi-dimensional and spatial databases are not supposed to be suitable and

efficient for SWTs, due to differences between CWMS and traditional applications:

1) The scale of the SWT is much larger, and the dataset is much sparser. 2) The

datasets of traditional applications are static for scientific statistics. In contrast,

CWMSs have been designed to provide free-and-easy data publishing and sharing

to facilitate the collaboration between users. The datasets are more dynamic as the

number of users is very large and they submit and modify the information in an

ad hoc manner. 3) In traditional environments, dimensionality is fixed and a query

embodies a constraint on every attribute. On the contrary, dynamic datasets result

in a fluctuating number of attributes, and the SWT is high-dimensional while the

query in CWMSs is low-dimensional since each tuple is described by only a few

attributes.

To the best of our knowledge, none of the existing approaches for Commu-

nity Web Data Management provides a satisfactory solution for neither structured

similarity query processing nor complex query processing. Indeed, existing SWT

management schemes are not designed with such queries in mind. Instead, they

aim at providing easy access to attribute-value pairs, to the set of values defined

for a given object, or to a range of objects.

In this thesis, we propose an indexing structure that stores approximation vec-
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tors as the approximate representation of data values, and supports efficient partial

scan and similarity search. In addition, we espouse an architecture that puts binary

vertical representation and inverted index together and allows them to interact with

each other to support efficient complex query processing.

1.4 Contribution

The main contribution of this thesis are summarized as follows:

• We conduct an in-depth investigation on storing and indexing wide sparse

tables.

• We propose iVA-file as an indexing structure that stores approximation vec-

tors as the rough representation of data values, and supports efficient partial

scan and similarity search. It is the first content-conscious indexing mecha-

nism designed to support structured similarity queries over SWTs prevalent

in Web 2.0 applications. We have conducted extensive experiments using real

CWMS datasets and the results show that the iVA-file is much more efficient

than the existing approaches.

• We combine inverted index and direct index for each attribute to improve

the performance of complex query processing. The inverted index for each

attribute gathers a list of tuples which are sorted by tuple ID; the inverted

index is sorted by the attribute value itself. The separate direct index for each

attribute provides fast access to those tuples for which the given attribute is

defined. The separate direct index is sorted by tuple ID, following a column-

oriented architecture inspired by [20, 21, 56]. We conduct a performance

evaluation using the GoogleBase dataset and compare our proposed method
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to existing ones. The results confirm that the proposed indexing scheme

we propose outperforms the systems based on a monolithic vertical-oriented

or horizontal-oriented representation. Our proposed scheme can efficiently

handle complex queries over community data.

1.5 Organization of Thesis

The rest of the thesis is organized as follows:

• Chapter 2 introduces related work about SWTs storage and indexing struc-

ture.

• In Chapter 3, the iVA-file structure is introduced. We describe the encoding

scheme of both strings and numerical values. In order to reduce cost of

scanning the index file we propose four types of iVA-file structures suitable

for different conditions. Based on the iVA-file structure we discuss its query

processing and update. We describe the experimental study conducted on

the iVA-File, inverted index and directly scanning of the table file scheme.

• In Chapter 4, we propose the CW2I index structure for complex query in

CWMSs. We describe the index structure and the experimental study CW2I,

horizontal storage scheme, vertical storage scheme and iVA-file scheme.

• Chapter 5 concludes the work in this thesis with a summary of our main

findings. We also discuss some limitations and indicate directions for future

work.
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CHAPTER 2

Related Work

It has been long observed that the relational database representations are not

suited for emerging applications with sparsely populated and rapidly evolving data

schemas. In this chapter we present an overview of existing approaches for both

storage and index of sparse wide tables.

2.1 Storage Format on Sparse Wide Tables

The conventional storage of relational tables is based on the horizontal storage

scheme, in which the position of each value can be obtained through the calculation

based on the schema of the relational table. However, for sparse wide tables (SWT),

a horizontal storage scheme is not efficient due to the large amount of undefined

values (ndf ). A cursory study of the storage problem of the sparse table may suggest

the following approaches such as binary vertical representation [29], ternary vertical

representation [11], and interpreted storage format [17]. These approaches have the
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Oid Attr1 Attr2 Attr3 Attr4

1 a1 a2 a3 --

2 b1 -- -- b4

3 -- c2 c3 c4

4 d1 -- -- --

5 e1 e2 -- --

Figure 2.1: A sparse dataset in horizontal schema.

possibility to alleviate the problem of ndf s and the number of attributes.

2.1.1 Binary Vertical Representation

A natural approach to handling sparse relational data is to split a sparse horizontal

table into as many binary (2-ary) tables as the number of attributes (columns) in the

sparse table. This idea was first suggested in the context of database machines [47]

and was brought up again with the decomposition storage model [29]. In DSM[29],

the authors proposed to fully decompose the table into multiple binary tables,

the values of different attributes are stored in different tables. Figure 2.1 shows

a sparse table stored in horizontal storage schema, In Figure 2.2 the horizontal

table is decomposed into 4 tables one for each column in the horizontal table.

In decomposed storage schema, each table has two columns; one is Oid which ties

different fields of the horizontal table across these binary tables. The second column

stores the value of the corresponding attribute. Using DSM only non-null values are

stored, but any operation requesting multiple attributes requires the reconstruction

of the tuple of the original horizontal table. This type of column-store model

has been followed by MonetDB, along with an algebra to hide the decomposition

[20, 21], as well as C-Store [56], gaining the benefits of compressibility [8] and

performance [10]. Furthermore, in [7], Abadi suggested that, apart from data

warehouses and OLAP workloads, column-stores may also be well suited for storing

extremely sparse and wide tables.
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Oid Val

1 a1

2 b1

4 d1

5 e1

Attr1

Oid Val

1 a2

3 c2

5 52

Attr2

Oid Val

1 a3

3 c3

Attr3

Oid Val

2 b4

3 c4

Attr4

Figure 2.2: A sparse dataset in decomposed storage format.

2.1.2 Ternary Vertical Representation

Agrawal et al. [11] discerned that a ternary (3-ary) vertical representation offers

a hybrid design point between the n-ary horizontal representation of conventional

RDBMSs for non-sparse data and the binary vertical representation outlined above.

They found that this vertical representation does uniformly outperform the hori-

zontal representation for sparse data, yet the binary representation performs better.

This approach has been employed by many commercial software systems for stor-

ing objects in a sparse table, hence [11] investigated how to best support it, by

creating a logical horizontal view of the vertical representation and transforming

queries on this view to the ternary vertical table. Like the conventional horizontal

representation, the ternary vertical representation requires only one giant table to

store all the data; it does not split the table into as many tables as the number

of attributes. Figure 2.3 shows the same sparse table stored in vertical schema. A

tuple in horizontal schema is decomposed into several tuples in vertical schema. A

ternary vertical table contains entries of the scheme <Oid (object identifier), Aid

(attribute identifier), Val (attribute value)>. Thus, it contains tuples for only those

attributes that are present for an object. Different attributes of an object are

linked together using the same Oid. Thus, the arguments in favor of the ternary

vertical representation focuses around its flexibility in supporting schema evolution

and manageability, as it maintains a single table instead of as many tables as the
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number of attributes in the binary scheme. In response, [11] suggested the use of

multiple, partial indexes, i.e., one index on each of the three columns of the ternary

vertical table, along the line of [55]. A premonition of a multiple-indexing approach

is also contained in this suggestion.

Still, a similar approach to non-relational data representation has been followed

in the context of RDF data storage for Semantic Web applications. In this context,

RDF triples of the schema <Sid (subject identifier), Pid (property identifier), Oid

(object identifier)> have been stored in a giant triples table, analogous to the ternary

storage system for sparse tables [13, 14, 16, 22, 31, 32, 52, 61, 45]. Indeed, [11]

also suggested that, among others, a potential application of the work it reported

includes stores for RDF.

Hence, the limitations faced by the ternary architecture for sparse data are

analogous to those faced by triples stores for RDF data. Indeed, simple similarity,

lookup, or statement-based queries can be efficiently answered by such systems.

However, such queries do not constitute the most challenging way of querying

sparse data. More complex queries, involving multiple steps like unions and joins,

call for a more sophisticated approach.

2.1.3 Interpreted Storage Format

Beckmann et al. [17] argued that, in order to efficiently scale to applications that

require hundreds or even thousands of sparse attributes, RDBMSs should provide

an alternative storage format that would be independent of the schema width.

The suggestion for such a format introduced in [17] is the interpreted storage for-

mat. Figure 2.4 shows the first tuple in horizontal table in Figure 2.1 stored in

interpreted attribute storage format, the first three fields constitute the header,

the following fields are the attribute-value pairs. In this format, only the non-null
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values are stored and the fields of a single tuple are stored together unlike the ver-

tical schema or DSM the value of the single tuple are stored independent of each

other. In particular, it stores a list of attribute-value pairs for each tuple. In other

words, the interpreted storage format gathers together the attribute-identifier and

attribute-value entries of a single object-identifier that would appear separately in

ternary vertical representation, and creates a single tuple for them, without explic-

itly storing null values for the undefined attributes. Unfortunately, as observed in

[17], the interpreted format renders the retrieval of values from attributes in tuples

significantly more complex. As the name of this format suggests, the system must

discover the attributes and values of a tuple at tuple-access time, rather than using

pre-compiled position information from the catalog. To ameliorate this problem,

[17] suggested an extract operator that returns the offsets to the referenced inter-

preted attribute values. Still, as also noted in [7, 9, 64], handling sparse tables by

this format incurs a significant performance overhead.

Chu et al. [26] argued that the option of collecting the sparse data set into

a very wide, very sparse table, could actually be an attractive alternative. They

did observe the lack of indexability as one of the major reasons why this approach

would appear as unappealing, and suggested building and maintaining a sparse B-

tree index over each attribute, as well as materialized views over an automatically

discovered hidden schema, to ameliorate this problem. Thus, following the idea of

using one partial index over each of the three columns of the ternary vertical table

as in [11], [26] suggested the use of many sparse indexes, which are a special case

of partial indexes [55]. Such indexes are effective for avoiding whole-table scans

when answering range and aggregate queries. However, it is of little help for more

complex queries involving unions and joins. Besides, the usage of a sparse index

over each attribute imposes additional storage requirements, while, as noted in [49],
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Oid Key Val

1 Attr1 a1

1 Attr2 a2

1 Attr3 a3

2 Attr1 b1

2 Attr4 b4

3 Attr2 c2

3 Attr3 c3

3 Attr4 c4

4 Attr1 d1

5 Attr1 e1

5 Attr2 e2

Figure 2.3: A sparse dataset represented in the vertical schema.
Header

tuple-
id

tuple-
length

r3 1 18 Attr1 a1 Attr2 a2 Attr3 10 a3

relation-
id

Figure 2.4: Interpreted attribute storage format.

it does not effectively address the resulting issues of efficient query optimization

and processing.

These studies merely focus on enhancing the query efficiency through diverse

organization of data storage. [26] proposes a clustering method to find the hidden

schema in the wide sparse table, which not only promotes the efficiency of query

processing but also assists users in choosing appropriate attributes when building

structured queries over thousands of attributes. Building a sparse B-tree index on

all attributes is recommended in [26], too. But it is difficult to apply to multi-

dimensional similarity queries. As of today, the only index that has been evaluated

for indexing SWTs is a straightforward application of inverted indices over the

attributes [51]. The indices are able to speed up the selection of tuples with given

attributes. They however only distinguish ndf and non-ndf values, but do not

take the contents of the attributes into consideration. It is possible to bin and

map attribute values into a smaller set of ranges and use a bitmap index [24] to

index the dataset. However, the transformation may cause loss of information and
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similarity search on the index has not shown to be efficient.

The SWT in our context is different from the Universal Relation [46], which has

also been discussed in [26, 51]. Succinctly, the Universal Relation is a wide virtual

schema that covers all physical tables whereas the SWT is a physically stored table

that contains a large number of attributes. The main challenge of the Universal

Relation is how to translate and run queries based on a virtual schema, whereas

our challenge here is how to efficiently store data and execute search operations.

2.2 Indexing Schemes

2.2.1 Traditional Multi-dimensional Indices

A cursory examination of the problem may suggest that multi- and high-dimensional

indexing could resolve the indexing problem of SWTs. However, due to the presence

of a proportionally large number of undefined attributes in each tuple, hierarchical

indexing structures that have been designed for full-dimensional indexing or that

are based on metric space such as the iDistance [68] are not suitable. Further,

most high-dimensional indices that are based on data and space partitioning are

not efficient when the number of dimensions is very high [19, 54] due to the curse

of dimensionality. Weber et al. [63] provided a detailed analysis and showed that

as the number of dimensions becomes too large, a simple sequential scan of the

data file would outperform the existing approaches. Consequently, they proposed

the VA-file, which is a smaller approximation file to the data file. The vector ap-

proximation file (VA-file) divides the data space into 2b rectangular cells and each

cell is represented by a bit string of length b. The Data which falls into the cell

is approximated by the bit string of the cell. The VA-file is much smaller than

the original file and it supports fast sequential scan to quickly filter out as many
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negatives as possible. Subsequently, the data file is accessed to check for the re-

maining tuples. The VA-file encoding method was later extended to handle ndf s

in [23]. For the fact that the distance between data points are indistinguishable in

high-dimensional spaces, the VA-file is likely to suffer the same scalability problem

as other indices [54]. These indices have been proposed for the data that assume

full-dimensional of the dataset even when the ndf values are present, and with nu-

merical values as domain. The CWMS characteristics invalidate any design based

on such assumptions. Further, the VA-file is not efficient for the SWT as the data

file that is often in some compact form [17, 26, 51] could be even smaller than the

VA-file. In addition, it remains unknown how an unlimited-length string could be

mapped to a meaningful vector for the VA-file.

Another multi-dimensional index based on sequential scan is the bitmap index

[65, 66, 15]. As a bit-wise index approach, the bitmap index is efficiently supported

by hardware at the cost of inefficient update performance. Compression techniques

[66, 15] have been proposed to manage the size of the index. The bitmap index is

an efficient way to process complex multidimensional select queries for read-mostly

or append-only data, and is not known to be able to support similarity queries

efficiently. It does not support text data although many encoding schemes have

been proposed [65, 24].

2.2.2 Text Indices

The inverted index and the signature file [36, 69] are two text indices that are

well studied and widely used in large text databases and information retrieval for

keyword-based search. Both of the two indices are used for a single text attribute

where the text records are long documents. Other works on keyword search in rela-

tional databases [33, 43] treat a record as a text document ignoring the attributes.
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Many non-keyword similarity measures of strings have been proposed [39],

among which edit distance could be most widely adopted [60, 30, 40, 41]. One

method to estimate the edit distance is to use n-grams. Gravano et al. put forward

the edit distance estimation based on n-gram set to filter tuples and prevent false

negatives at the same time [30]. The inverted index on n-grams [41] is designed

for searching strings on a single attribute that is within an edit distance threshold

to a query string. This method is also extended to variable-length-grams [67]. A

multi-dimensional index for unlimited-length strings was proposed in [35] which

adopts a tree-like structure and maps a string to a decimal number. However, the

index focuses on exact or prefix string match within a low-dimensional space.

2.3 String Similarity Matching

In CWMSs, most of the attributes are short string values, and typos are very

common because of the participation of large groups of people. In this section, we

introduce the background and the related work of string similarity matching.

2.3.1 Approximate String Metrics

There are a variety of approximate string metrics, including edit distance, cosine

similarity and Jaccard similarity. Edit distance is a widely used typo-tolerant

metric to evaluate the similarity between tow strings, due to its applicability in

many scenarios. Edit distance is the minimum number of edit operations(i.e.,

insertions, deletions, and substitutions) of single characters needed to transform

the first string into the second [30]. For example, the edit distance between hello

and hallo is 1. Particularly, we can transform the first string to the second string

by substituting the second character of the first string with character ‘a’. Many
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recent works [59, 57, 30, 42] on string similarity matching adopt edit distance as

the approximate string metric.

2.3.2 n-Gram Based Indices and Algorithms

n-gram1 is widely used for estimating the edit distance between two strings [59,

57, 30, 40, 42]. Suppose ‘#’ and ‘$’ are two symbols out of the text alphabet. To

obtain the n-grams of a string s, we first extend s to s′ by adding n − 1 ‘#’ as

a prefix and n − 1 ‘$’ as a suffix to s. Any sequence of n consecutive characters

in s′ is an n-gram of s [40]. For example, to obtain all the 3-grams of “yes”, we

first extend it to “##yes$$”. So “##y”, “#ye”, “yes”, “es$” and “s$$” are the

3-grams of “yes”.

[59, 57, 30, 40, 38, 42, 18] proposed algorithms based on n-grams of strings to

answer string similarity queries. These algorithms rely on the following observa-

tion: if the edit distance between strings are within a threshold theta, then they

should share a certain number of common grams, and this lower bound is related

to the gram-length n and the threshold theta. In [59], the authors argued that

the edit distance leads to dynamic programming that is often relatively slow. The

approximate string-matching problem could be solved faster for n-gram distance

than for edit distance. A linear algorithm is proposed to evaluate the n-gram dis-

tance between two strings. However, the relationship between n-gram distance and

edit distance is not examined and no index structured is designed. Therefore this

algorithm won’t scale well when the string dataset is very large. [57] introduced

an algorithm based on sampling which utilize the fact that the preserved q-grams

have to be approximately at the same location both in the pattern and in its ap-

proximate match. But location information of the n-gram will introduce additional

1Also called non-positional n-gram in some literatures.
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space cost and sampling creates false negatives. In [30], a technique for building

approximate string join capabilities on top of commercial databases by exploiting

facilities already available in them. The properties of n-gram are adopted to filter

the results. In particular the filters are count filter, position filter and length filter

which can be implemented easily using SQL expressions. [40] proposed framework

based on extending n-gram with wildcards to estimate selectivity of string matching

with low edit distance. It is based on string hierarchy and combinatorial analysis

but not applicable for string similarity query processing. [42, 18, 38] proposed the

adoption of inverted-list index structure of the grams in strings to support approx-

imate string queries. [42] improves the approximate string query performance and

reduces the index size by proposing variable-length grams, but it can only sup-

port edit distance. [38] proposed the two level n-gram inverted index to reduce

the size of the index and improve the query performance while preserving the ad-

vantages of the n-gram inverted index. [18] improved the performance of [42] by

introducing cost-based quantitative approach to deciding good grams for approx-

imate string queries. Compared to these studies, our work focuses on structural

similarity queries, which contain information about the different attributes.

2.4 Summary

In this chapter, we have reviewed the current work on storage format and indexing

schemes on wide sparse table. We also have discussed the approximate string

metrics, n-gram based indices and algorithms.
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CHAPTER 3

Community Data Indexing for Structured
Similarity Query

3.1 Introduction

Structured similarity query is an easy-to-use way for users to express demand of

data. In this chapter, we design the iVA-file, an indexing structure works on the ba-

sis of approximate contents and keeps scanning efficiency within a bounded range1.

We introduce the nG-signature to encode both of the numerical values and strings

which guarantees no false negative. We also propose an efficient query processing

strategy for the iVA-file, which is different from strategies used for existing scan-

based indices. To enable the use of different rational metrics of distance between

a query and a tuple that may vary from application to application, the iVA-file

has been designed to be metric-oblivious and to provide efficient filter-and-refine

search.

The rest of this chapter is organized as follows. Section 3.2 introduces the formal

definition of the problem. In Section 3.3, we describe the encoding schemes for both

1iVA-File: Efficiently Indexing Sparse Wide Tables in Community Systems



21

string values and numerical values. Section 3.4 introduces the index structure–iVA-

file structure. Query processing algorithm and update strategy are introduced in

Section 3.5 and Section 3.6 respectively. Experimental study is explained in Section

3.7. We conclude in Section 3.8.

3.2 Problem Description

The wide table does not conform to the relational data model, and it aims to

provide fast insertion of tuples with a subset of attributes defined out of a much

bigger set of diverse attributes and fast retrieval that does not involve expensive

join operations. Suppose that A is the set of all attributes of such a large table.

There are two types of attributes: text attributes and numerical attributes. Let T
denote the set of all tuples in the table, and |T | denote the number of the tuples.

Logically, each cell in the table determined by a tuple T and an attribute A has a

value, denoted by v(T, A), where T ∈ T and A ∈ A. If A is not defined in T , we

say that v(T, A) has a special value ndf . Otherwise, if A is a numerical attribute,

v(T, A) is a numerical number, and if A is a text attribute, v(T, A) is a non-empty

set of finite-length strings. A real example of a text value with multiple strings is

the value of tuple 1 on attribute Industry in the table shown in Figure 1.2.

In this chapter, we consider the top-k structured similarity query. A query is

defined with values on a subset of the attributes in the table. If Q is a query,

v(Q,A) represents the value in Q on attribute A. If A is not defined in Q, v(Q,A)

is ndf . Otherwise, if A is a numerical attribute, v(Q,A) is a numerical number, and

if A is a text value, v(Q,A) is a string. Suppose D(T, Q), about which we will give

a detailed introduction later, is a distance function that measures the similarity

between tuple T and query Q. Assume that all tuples T0, T1, · · · , T|T |−1 in T are
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sorted by D(Ti, Q) in increasing order. Note that all tuples with the same distance

are in random order. The result of the query Q is:

{T0, T1, · · · , TK−1}

where K = min{k, |T |}.
Let ed(s1, s2) denote the edit distance between two strings s1 and s2. The

difference between a query string in query Q on a text attribute A (v(Q,A) 6= ndf)

and the text value in tuple T on A is denoted by d[A](T, Q). If v(T, A) = ndf ,

d[A](T, Q) is a predefined constant. Otherwise, d[A](T, Q) is the smallest edit

distance between the query string and the data strings in v(T, A). That is

d[A](T, Q) = min{ed(s, v(Q,A)) : s ∈ v(T, A)}.

The difference between a query value in query Q on a numerical attribute A

(v(Q,A) 6= ndf) and the value in tuple T on A is also denoted by d[A](T, Q),

where d[A](T, Q) is a predefined constant if v(T, A) = ndf , or |v(Q,A) − v(T, A)|
if v(T, A) 6= ndf .

The similarity distance D(T, Q) is a function of all λi·d[Ai](T, Q) where v(Q,Ai) 6=
ndf . λi (λi > 0) is the importance weight of Ai. Let A1, A2, ..., Aq denote all de-

fined attributes in Q. If we use di instead of d[Ai](T, Q) for short, D(T, Q) can be

written as

D(T, Q) = f(λ1 · d1, λ2 · d2, ..., λq · dq).

Function f determines the similarity metric. In this chapter, we assume that f

complies with the monotonous property described as the following property.

Property 3.1: [Monotonous] If two tuples T1 and T2 satisfy that for each at-
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Table 3.1: Table of notations
Notation Explaination

A set of all attributes in the large table
A an attribute
T set of all tuples in the table
|T | the number of the tuples
Q a query

v(T, A) the value in tuple T on attribute A
D(T, Q) similarity distance between query Q and tuple T
ed(s1, s2) edit distance between s1 and s2

est(s1, s2) estimated edit distance between s1 and s2

d[A](T, Q)
c(s) nG-signature of String s
g(s) n-gram set of string s

cg(s1, s2) common n-gram set of two strings s1 and s2

|cg(s1, s2)| size of common n-gram set of s1 and s2

hg(sq, c(sd)) n-gram set of sq which is a hit on the nG-signature of sd

tribute Ai that is defined in a query Q, d[Ai](T1, Q) ≥ d[Ai](T2, Q), then D(T1, Q) ≥
D(T2, Q).

The monotonous property, intuitively, states that if T1 is no closer to Q than T2

is on all attributes that users care, T1 is no closer to Q than T2 is for the similarity

distance. This is a natural property for any rational similarity metric f . The

index proposed in this thesis guarantees accurate answers for any similarity metric

that obeys the monotonous property. We test the efficiency of our index approach

for some commonly used similarity metrics and attribute weight settings through

experiments over real datasets. Table 3.1 summarize the notation used in this

chapter.

We design a new index method named the inverted vector approximation file

(iVA-file). The iVA-file holds vectors that approximately represent numerical values

or strings and organizes these vectors to support efficient access and filter-and-

refine process. So the first sub-problem is the encoding scheme to map a string

(Section. 3.3.1) or a numerical value (Section. 3.3.2) to an approximation vector
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and support filtering with no false negatives. The second sub-problem is to organize

the vectors in an efficient structure to: (a) allow partial scan, (b) minimize the size

of the index, and (c) ensure correct mapping between a vector and a value in the

table (Section. 3.4).

3.3 Encoding Schemes

We propose encoding schemes to encode the string values and numerical values in

the table to improve the efficiency of measuring similarity between two values.

3.3.1 Encoding of Strings

We propose the n-gram signature (nG-signature) to encode any single string. Given

a query string sq and the nG-signature c(sd) of a data string sd, we should estimate

the edit distance between sq and sd. Let est(sq, c(sd)) denote the estimated edit

distance. To avoid false negatives caused by the filtering process, it is clear that

est(sq, c(sd)) is required to satisfy est(sq, c(sd)) ≤ ed(sq, sd), according to the defi-

nition of d[A](T, Q) on text attributes and the monotonous property of f . We will

show how to filter tuples with this estimated distance in Section. 3.5. We confine

ourselves to introducing the encoding scheme and the calculation of est(sq, c(sd))

here.

A. nG-Signature

The nG-signature c(s) of a string s is a bit vector that consists of two parts.

The higher bits denoted by cH[l, t](s) (0 < t < l) and the lower bits denoted by

cL(s). The lower bits record the length of s. The higher bits are generated in the

following steps as shown in Figure 3.1, first, we generate all the n-grams of the
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Input String
Hash 
Value

n-Grams
High Bits of 
Signature

nG-Siganature

“new”

11000000

“w$”

“ew”

“ne”

“#n”

OR

Low Bits of 
Signature

Length of 
String

01000100

01010000

00011000

11011100

0011

110111000011

Figure 3.1: An example of generating a string’s nG-signature

string; second, we use a has function h[l, t](ω) to hash an n-gram ω to an l-bit

vector, which always contains t bits of 1 and l − t bits of 0. Third, we execute log

OR of all h[l, t](ωi), where ωi is an n-gram of s. In the last step we append the

lower bits to the higher bits to generate the nG-signature of string s.

Example 3.1: [nG-Signature] Suppose a string is “new”. The 2-grams are “#n”,

“ne”, “ew” and “w$”. l = 8, t = 2 and use 4 bits to record the string length. The

process of encoding the c(“new”) is shown in Figure 3.1. 2

B. Edit Distance Estimation with nG-Signature

We calculate est(sq, c(sd)) based on the method proposed in [30]. Let g(s)

denote the n-gram set of string s. For the purpose of estimating edit distance,

the same n-grams starting at different positions in s should not be merged in the

n-gram set [30]. So we define g(s) as a set of pairs in the form of (a, ω), where ω is

an n-gram of s and a counts the appearance of ω in s. The size of a set Ω of such

pairs is defined as:

|Ω| =
∑

(ai,ωi)∈Ω

ai
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Example 3.2: [n-Gram Set] The 2-gram set of string “aaaa” is {(1,“#a”),

(3,“aa”), (1,“a$”)}. It has the size of 5. 2

The common n-gram set of two strings s1 and s2, denoted by cg(s1, s2), is

{(a, ω) : ∃(a1, ω) ∈ g(s1), (a2, ω) ∈ g(s2), a = min{a1, a2}}.

Intuitively, cg(s1, s2) is the intersection of g(s1) and g(s2). The notation such as |s|
represents the length of string s measured by the number of characters. Given a

query string sq and a data string sd, let |cg(sq, sd)| denote the size of their common

n-gram set. Define the symbol est′(sq, sd) as:

est′(sq, sd) =
max{|sq|, |sd|} − |cg(sq, sd)| − 1

n
+ 1 (3.1)

According to [30]:

est′(sq, sd) ≤ ed(sq, sd) (3.2)

[30] uses est′(sq, sd) to estimate edit distance and shows that it is efficient in filtering

tuples. Moreover, the filtering causes no false negatives as the estimation is never

larger than the actual edit distance.

Within the context of filtering a tuple with a query string sq and the nG-

Signature c(sd) of a data string sd, we can easily obtain max{|sq|, |sd|} by the lower

bits cL(sd), but we have no way of calculating |cg(sq, sd)| accurately. Therefore, we

propose the concept of hit gram set to estimate |cg(sq, sd)| based on the higher bits

cH[l, t](sd) in the signature.

Definition 3.1 (Hit) If ω is an n-gram of query string sq, ω is a hit in the nG-
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signature of data string sd if and only if:

h[l, t](ω)× cH[l, t](sd) = h[l, t](ω)

where × denotes the operator of logical AND that joins two bit-strings.

Consequently, we have the following property:

Property 3.2: [Self Hit] If ω is an n-gram of a data string sd, ω is a hit in the

nG-signature of sd.

The self hit property says that any n-gram in the common n-gram set of sd

and sq must be a hit in the nG-signature of sd. But an n-gram of sq which is not

an n-gram of sd may also be a hit in the nG-signature of sd. So, we provide the

following definition.

Definition 3.2 (False Hit) We call ω a false hit, if and only if, ω is a hit in the

nG-signature of sd but ω is not an n-gram of sd.

An example of False Hit is shown in Figure 3.2, “ow” is a hit in the nG-signature

of “new”, but “ow” is not a n-gram of “new”.

We define the hit gram set hg(sq, c(sd)) as follows:

Definition 3.3 (Hit Gram Set) hg(sq, c(sd)) is:

{(a, ω) : (a, ω) ∈ g(sq) and ω is a hit in c(sd)}

where c(sd) is the nG-signature of sd.

We propose to estimate |cg(sq, sd)| in Equation 3.1 with |hg(sq, c(sd))|. There-
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AND cH[8,2](“new”) = 11011100

11000000h[8,2](“#n”) = 11000000

|hg(“now”, c(“new”))|

h[8,2](“w$”) = 00011000

h[8,2](“ow”) = 01010000

h[8,2](“no”) = 01000010

Hit

00011000

01010000

01000000

False Hit

Hit

3

Not Hit

Figure 3.2: An example of estimating edit distance with nG-signature

fore the edit distance estimation function for the iVA-file is:

est(sq, c(sd)) =
max{|sq|, |sd|} − |hg(sq, c(sd))| − 1

n
+ 1 (3.3)

Example 3.3: [Edit Distance Estimation]Suppose that the data string is “new”

and the query string is “now”. As in Example 3.1, l = 8, s = 2, and we adopt the

same hash function. So the higher bits of the nG-signature of “new” is 11010101.

The 2-grams of “now” are “#n”, “no”, “ow” and “w$”. The process of calculating

|hg(sq, c(sd))| is shown in Figure 3.2. According to Equation 3.3, the edit distance

is estimated as 0.5. We can safely loosen it to 1. 2

We prove that the lower-bounding estimation causes no false negatives by the

following proposition.

Propositon 3.1 Given a query string sq and a data string sd,

est(sq, c(sd)) ≤ ed(sq, sd)

which guarantees no false negatives.

According to the definition of cg(sq, sd), ∀(ai, ωi) ∈ cg(sq, sd), ∃(a′i, ωi) ∈ g(sq)

such that ai ≤ a′i, and ∃(a′′i , ωi) ∈ g(sd). Since ωi is an n-gram of sd, according to
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Property 3.2, ωi is a hit in c(sd). In agreement with the definition of hg(sq, c(sd)),

(a′i, ωi) ∈ hg(sq, c(sd)). Thus:

∑

(ai,ωi)∈cg(sq ,sd)

ai ≤
∑

(ai,ωi)∈cg(sq ,sd)

a′i ≤
∑

(aj ,ωj)∈hg(sq ,c(sd))

aj

That is:

|cg(sq, sd)| ≤ |hg(sq, c(sd))|

By Equation 3.1 and 3.3, we have:

est(sq, c(sd) ≤ est′(sq, sd)

According to Equation 3.2, we obtain:

est(sq, c(sd)) ≤ ed(sq, sd)

C. nG-Signature Parameters

Proposition 3.1 guarantees that no false negatives occur while filtering with

nG-signatures. But we expect est(sq, c(sd) to be as close as possible to est′(sq, sd),

which reflects the accuracy of the nG-signature. The length of the signature higher

bits l and the number of 1 bits of the hash function t both influence the accuracy.

Let e denote the relative error of est′(sq, sd). That is:

e =
est′(sq, sd)− est(sq, c(sd))

est′(sq, sd)
(3.4)

Let e denote the expectation of e.
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The possibility for a bit in h[l, t](ω) to be 0 is:

1− t

l

Since the size of the n-gram set of sd is |sd| + n − 1, the possibility of a bit in

cH[l, t](sd) to be 1 is:

1−
(

1− t

l

)|sd|+n−1

If ω is not an n-gram of sd, the possibility that ω is a false hit is:

p =

(
1−

(
1− t

l

)|sd|+n−1
)t

(3.5)

Let M denote the difference between the size of g(sq) and cg(sq, sd). Then

M = |sq|+ n− 1− |cg(sq, sd)|. According to Equation 3.1, we have:

est′(sq, sd) ≈ M

n
(3.6)

|hg(sq, c(sd))| − |cg(sq, sd)| = i (i = 0, 1, · · · ,M) implies that there are i false

hits. So, the possibility of |hg(sq, c(sd))| − |cg(sq, sd)| = i is:

(
M

i

)
· pi · (1− p)M−i

Thus, the average |hg(sq, c(sd))| − |cg(sq, sd)| is:

|hg(sq, c(sd))| − |cg(sq, sd)|

=
M∑
i=0

i ·
(

M

i

)
· pi · (1− p)M−i =

M∑
i=1

i ·
(

M

i

)
· pi · (1− p)M−i

=pM
M−1∑
i−1=0

(
M − 1

i− 1

)
· pi−1 · (1− p)(M−1)−(i−1)

(3.7)



31

Substitute N for M − 1, and substitute j for i− 1.

|hg(sq, c(sd))| − |cg(sq, sd)| = pM

N∑
j=0

(
N

j

)
· pj · (1− p)N−j

=pM (p + (1− p))N = pM

(3.8)

According to Equation 3.4, 3.3 and 3.1, the estimation of e is:

e =
|hg(sq, c(sd))| − |cg(sq, sd)|

n · est′(sq, sd)
=

pM

n · est′(sq, sd)

According to Equation 3.6, we have:

e ≈ p

e ≈
(

1−
(

1− t

l

)|sd|+n−1
)t

(3.9)

We can see that it is easy to determine t. When l is set, we can just choose a

value t̂ from all integers from 1 to l − 1 that makes e the smallest, as we always

want e to be as low as possible. The proper t for different |sd|+ n− 1 and l can be

pre-calculated and stored in an in-memory table to save the run-time cpu burden.

Larger l will necessarily result in lower e according to Equation 3.9, and thus

increase the efficiency of filtering, but on the other hand lower down the efficiency

of scanning the index, as the space taken by nG-signatures is larger. So l controls

the I/O trade-off between the filtering step and the refining step. Our experiments

in later chapter verify this point.
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3.3.2 Encoding of Numerical Values

Quantization was proposed in the VA-file [63, 54] to encode a numerical alue, where

the approximation code is generated by truncating some lower bits of the value.

Intuitively, the domain (absolute domain) of the value are partitioned into slices

of equal size. An approximation code indicates which slice the corresponding data

value falls in, and through which, the minimum possible distance between the data

value and a query value can be determined easily and false negatives prevented.

However, this method is too simple to fulfill the filtering task in actual applications.

Although users often define large domain attributes, such as 32-bit integer, the

actual values on such an attribute are usually within a much smaller range and fall

in very few slices, which lowers the filtering efficiency.

We propose encoding numerical values by using relative domain instead, which

is the range between the minimum value and the maximum value on an attribute.

In this way, shorter codes can reach the same precision as the encoding scheme using

the absolute domain. If a value out of the existing relative domain is inserted, just

encode it with the id of the nearest slice, which will not result in any false negative.

Periodically renewing all approximation codes of an attribute with the new relative

domain will ensure filtering efficiency.

3.4 iVA-File Structure

After having introduced the our encoding scheme where we use nG-signature as

the approximate vector for string values and the code on relative domain as the

approximate vector for numerical values. We will introduce the iVA-File to orga-

nize these vectors. The iVA-File is very compatible and supports correct mapping

between a vector and the value it represents in the table. The encoding vector lists
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Vector List of an Attribute 1

Attribute CatalogAttribute Catalog

Vector List of an Attribute 3

Vector List of an Attribute 2

ptr1  strdfptr2

Figure 3.3: Structure of the iVA-file

of all the attributes and the attribute catalog are maintained in iVA-File as how in

Figure 3.3. The list is organized as a sequence of list elements.

We store the data items in a vector list, referred to as tuple list. The tuple

list holds elements corresponding to each tuple in the table. An element is a pair

in the form of < tid, ptr >. tid is the identifier of the corresponding tuple. We

assume the table file adopts the row-wise storage structure, such as the interpreted

schema [17]. ptr records the starting address of the corresponding tuple in the table

file. All elements are sorted in increasing order of tid. Note that the tids of two

adjacent elements are not necessarily consecutive, as tuples are deleted or updated

from time to time.

In the iVA-file, we have an attribute catalog, which holds elements correspond-

ing to each attribute Ai in the table. An entry in the attribute catalog is in the

form of < ptr1, ptr2, df, str, α >. ptr1 and ptr2 are the starting and tail addresses of

Ai’s vector list in the iVA-file. df records the number of tuples that have definition

on Ai, and str is total number of all strings on Ai in the table (0 if Ai is a numerical

attribute). α is a number ranging between 0 and 1, named relative vector length,

that determines the length of approximation vectors on Ai. If Ai is a numerical

attribute, the length of an approximation vector is dα · re where r is the length

of a numerical value measured by bytes. If Ai is text attribute, the length of the
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nG-signature higher bits is dα ·(|sd|+n−1)e where |sd| is the length of the encoded

data string measured by bytes. Since attributes are rarely deleted, we eliminate

the attribute id in the element, and adopt the positional way to map any attribute

to the corresponding element in the attribute catalog.

Each attribute has a corresponding vector list where approximation vectors are

organized in increasing order of tuple ids. Partial scan is possible as any vector

list can be scanned separately. The organization of approximation vectors inside a

vector list should support correct location and identification of any vector in the

list during the sequential scan of the list. On the other hand, the organization

should keep the size of the list as small as possible to reduce the cost of scanning.

We propose four vector list organization structures suitable for different conditions,

and the choice will be determined by the size.

Type I This structure is suitable for either a text attribute or a numerical one.

The element in the vector list is the pair of a tuple id and the vector of the tuple on

this attribute: < tid, vector >. The list does not hold vectors of ndfs. All elements

are sorted in increasing order of tuple ids. A number of consecutive elements may

have the same tid if the corresponding text value has multiple strings.

Type II This structure is only suitable for a text attribute. An element in the

vector list is a tuple id, followed by the number of strings in the text value of

this tuple on the corresponding attribute, and then all vectors for those strings:

< tid, num, vector1, vector2, ... >. The list does not hold elements of ndf values.

All elements are sorted in increasing order of tuple ids.

Type III This structure is only suitable for a text attribute. A list element is the

number of strings in the text value of the corresponding tuple on this attribute,

followed by all vectors for those strings: < num, vector1, vector2, ... >. The vector

list holds elements for all tuples in the table, sorted by the corresponding tuple id
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tid Color Lens Brand Num 

0  “Wide-angle” “Sony”  

1 “White”   “Apple”  

3 “Red”   5 

5  
“Telephoto” 

“Wide-angle” 
“Cannon”  

6 
“Brown” 

“Black”  
 “Benz” 2 

A sparse wide table 

tid Color Lens Brand Num 

000  000111 010001  

001 110001  110000  

011 101001   1110 

101  
101010 

000111 
000101  

110 
111000 

010010 
 110100 0000 

The approximation vectors 

Tuple List:   000 ptr  001 ptr  011 ptr  101 ptr  110 ptr 

Type I for “Color”:  001 110001  011 101001  110 111000  110 010010 

Type II for “Lens”:  000 01 000111  101 10 101010 000111 

Type III for “Brand”:  01 010001  01 110000  00  01 000101  01 110100 

Type IV for “Num”:  1111  1111  1110  1111  0000 

Figure 3.4: An example of vector lists

in increasing order. The tuple corresponding to each element can be identified by

counting the elements before it during the scanning of the list. Note that, in the

element of a ndf value, num is 0, and no vector follows it.

Type IV This structure is only suitable for a numerical attribute. An element is

< vector >. The vector list holds elements for all tuples, including those have ndf

values on this tuple. A special vector code should be reserved to denote ndf . The

elements are sorted by the corresponding tuple id in increasing order. The tuple of

an element can be identified by the element position of the vector in the list.

Example 3.4: [Vector Lists] As shown in Figure 3.4, we have a table and assume

that we have already encoded the approximation vectors for all values in the table.

If we use 3 bits to record a tuple id and 2 bits to record the number of strings of a

text value, example vector lists of four types on four attributes are listed in Figure

3.4, where 1111 is reserved as the approximation vector for ndf numerical value,

and an underlined consecutive part is a list element. 2

A text attribute can be indexed in one of the three formats, Type I, II and

III. Let ltid denote the space taken by a tuple id, and lnum denote the space taken

by the value that records the number of strings in a text value. If all the vectors
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on the text attribute take a total space of L, the size of three list types can be

pre-compared by the following equations without actually knowing the value of L

where df and str can be found in the corresponding element in the attribute list:

LI = ltid · str + L

LII = (ltid + lnum) · df + L

LIII = lnum · |T |+ L

A numerical attribute should adopt either Type I or IV. By calculating LI and

LIV, the type with the smallest size should be adopted.

LI = (ltid + dα · re) · df
LIV = dα · re · |T |

3.5 Query Processing

As in most Filter-and-refine processing strategies, query processing based on the

iVA-File consists of two steps: filtering by scanning the index and refining through

random accesses to the data file. The existing process proposed in the VA-file [63]

is to scan the whole VA-file to get a set of candidate tuples, and check them all

in the data file afterwards (sequential plan). This plan requires the approximation

vector to be able to provide not only a lower bound of the difference to the query

value but also a meaningful upper bound. Otherwise, the filtering step fails as all

tuples are in the candidate set. However, a limited length vector cannot indicate

any upper bound for unlimited-and-variable length strings as there has to be an

infinite number of strings to share the same approximation vector. Consequently,

we propose the parallel plan, where refining happens from time to time during the

filtering process.

The algorithm flow is shown in Figure 3.5. When processing a query with the
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Read Approximate Vectors

Of the current tuple

Evaluate the edit distance ed

If eed<pool.MaxDist()

If sizeof(results)<k

Evaluate the estimated edit 

distance eed

Insert current tuple into result 

pool

Move to Next Tuple

Discard Current Tuple

Move to Next

No

Yes

No

Yes

Figure 3.5: The Query Processing Algorithm Flow Chart

iVA-File, the tuple list and all vector lists related with the defined attributes in the

query are scanned in a synchronized manner. We set a scanning pointer for each

list, and initialize them with the start addresses of the lists. The scanning pointer

of the tuple list moves forward one element at a time, which determines the current

tuple being filtered (currentTuple) and guarantees that all tuples in the table will

be filtered. The scanning pointer of a related vector list should move forward to

point to the element of currentTuple. As a special case, in a vector list of Type I

or II, there may be no element for currentTuple due to the ndf value. In this case,

the scanning pointer will point to an element with tid larger than currentTuple

or the tail address of the vector list. Then, this scanning pointer freezes until
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currentTuple grows to the pointed tid. Assume that the member function of a

scanning pointer MoveTo(currentTuple) can achieve the above synchronization on

a vector list.

With the help of scanning pointers, for each defined attribute in a query, we

can either load the approximation vector(s) of currentTuple in the corresponding

vector list or directly determine that the value of currentTuple on this attribute

is ndf . Then, we can calculate the lower-bound of the difference between the data

value and the query value on each defined attribute in the query. Using these lower-

bounds, we can calculate an estimated similarity distance between currentTuple

and the query by the metric function f . According to the monotonous property of

f , this distance is a lower bound of the actual distance.

For a query, we set a temporal result set, initialized to be empty. currentTuple

is a result candidate if and only if, the tuples in the temporal result set is less

than k , or the maximum actual distance of the tuples in the temporal result set

is larger than the estimated distance of currentTuple. If currentTuple is a result

candidate, read ptr of currentTuple in the tuple list, and then load currentTuple

from the table file and calculate the actual distance. If the temporal result set has

tuples less than k, just put currentTuple in the set and record its actual distance.

Otherwise, if the actual distance is smaller than the largest distance of tuples in

the set, replace the tuple of the largest distance with currentTuple.

For the convenience of describing the algorithm of processing a query with the

iVA-file, we assume that we have a temporal result pool maintained in the main

memory called pool. pool holds at most k pairs such as < tid, dist > as we only

need the top-k tuples. tid is a tuple id and dist is tuple tid’s actual distance to the

query. pool.Size() gives the number of pairs stored in pool. pool.MaxDist() returns

the largest dist in pool. pool.Insert(tid, dist) inserts the pair < tid, dist > into
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Algorithm 1 Query Processing with iVA-file

Require: query Q, attribute list aList[], tuple list tList[]
Ensure: temporal result pool pool
1: pool ← an empty pool
2: for all A where v(Q,A) 6= ndf do
3: scanPtr[A] ← aList[A].ptr1

4: end for
5: for i = 0 to |T |-1 do
6: currentTuple ← tList[i].tid
7: for all A where v(Q,A) 6= ndf do
8: scanPtr[A].MoveTo(currentTuple)
9: diff [A] ← estimate difference on A

10: end for
11: dist ← calculate estimated distance from diff []
12: if pool.Size()< k or dist < pool.MaxDist() then
13: read currentTuple from table file
14: dist ← calculate actual distance
15: if dist < pool.MaxDist() then
16: pool.Insert(currentTuple, dist)
17: end if
18: end if
19: end for
20: return pool

pool: if pool is not full, directly insert; otherwise we insert the new pair first, and

then remove the pair with the largest dist. We present the query processing with

the iVA-file in Algorithm 1.

In the algorithm of query processing with the iVA-file, the result pool is ini-

tialized in line 1. In line 2-4, the scanning pointers are set to the start addresses

of the corresponding vector lists by reading ptr1 of the attribute list elements of

related attributes in the query. The algorithm filters all the tuples in the table

in line 5-19. Line 6 gets the tuple id of the ith filtered tuple from the tuple list.

For the ith tuple, the difference between the query value and the data value on all

attributes related with the query are estimated in line 7-10. In line 11, we estimate

the distance between the query and the ith filtered tuple. Line 12 judges whether
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the ith filtered tuple is a possible result and, if it is, the tuple is fetched from the

table for checking in line 13-17.

Example 3.5: [Query Processing] Suppose we have a query defined on two at-

tributes over the table and index in Figure 3.4, say (Lens:“Wide-angle”, Brand:“Canon”),

and we want the top-2 tuples. The tuple list and the vector lists for attribute Lens

and Brand are scanned to process the query. Since the table contains five tuples,

the processing takes five steps, and the positions of the scanning pointers on each

related list in each step are depicted in Figure 3.6. Assume the distance function

f is dLens + dBrand, and the difference between a query string and ndf is constant

20. We now explain what happens in each step.

Step 1: All scanning pointers are set to the beginning of the lists. The current

pointed element (CPE) of the tuple list shows that currentTuple is 0. Since the

tid of the CPE of Lens is also 0, the pointer will not freeze. Since the result pool

has no tuples, just load tuple 0 from the table file and calculate the actual distance

between tuple 0 and the query which is 4. Insert the < tid, dist > pair < 0, 4 > to

the result pool.

Step 2: The pointer of the tuple list moves one element forward, and we get

currentTuple = 1. The pointer of Lens moves forward and finds the tid of CPE is

5, larger than 1. So the pointer of Lens freezes so that it will not move in the next

step. The pointer of Brand only need to move one element forward, as it adopts

Type III vector list – a counting-way list. Since the result pool has less than 2

tuples, just load tuple 1 from the table file and calculate the actual distance which

is 25. Insert < 1, 25 > to the result pool.

Step 3: The pointer of the tuple list moves one element forward, and we get

currentTuple = 3. The pointer of Lens still freezes as tid of CPE is 5, larger than

3, and we get ndf of tuple 3 on Lens, the difference of which to “Wide-angle” is
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20. The pointer of Brand still moves one element forward, and we get the number

of strings is 0, which indicates that it is ndf of tuple 3 on Brand, and the difference

should be 20. Then the estimated distance between the query and tuple 3 is 40.

Since the result pool is full and 40 is larger than any distance in the pool, tuple 3

is impossible to be result.

Step 4: The pointer of the tuple list moves one element forward to get currentTuple =

5. The pointer of Lens is unfreezed as tid of CPE is 5, and we get two vectors

101010 and 000111. Assume that est(“Wide-angle”,101010) = 5, and est(“Wide-

angle”,000111) = 0. So the estimated difference on Lens is 0. The pointer of Brand

just moves one element forward, and we get the only vector 000101. The estimated

difference on Brand is est(“Canon”,000101), say 0. Then the estimated distance

between the query and tuple 5 is 0. Since there exist distances in the result pool

larger than 0, tuple 5 might be a result. So, load tuple 5 from the table file and

calculate the actual distance which is 1. Substitute < 1, 25 > with < 5, 1 > in the

result pool.

Step 5: The pointer of the tuple list moves one element forward to get currentTuple =

6. The pointer of Lens moves forward and finds it is at the tail of the vector list.

So, it freezes and we get it is ndf of tuple 6 on Lens. The estimated difference on

Lens is 20. The pointer of Brand moves one element forward, and we get the vector

110100. Suppose est(“Canon”,110100) = 3. Tuple 6 is impossible to be result as

the estimated distance is 23, larger than any distance in the result pool.

So we access the table file three times in steps 1, 2 and 4, and get the final

result: tuple 0 with distance 4 and tuple 5 with distance 1. 2
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Query –  Lens: “Wide-angle”, Brand: “Canon” 

Tuple List:   000 ptr  001 ptr  011 ptr  101 ptr  110 ptr 

                    ��    ��    ��    ��    �� 

Type II for “Lens”:  000 01 000111  101 10 101010 000111 

                    ��          ����            �� 

Type III for “Brand”:  01 010001  01 110000  00  01 000101  01 110100 

                    ��      ��      �� ��      �� 

 

Temp Result Pool: <0,4> <0,4> 

<1,25> 

<0,4> 

<1,25> 

<0,4> 

<5,1> 

<0,4> 

<5,1> � � � � � 

Figure 3.6: An example of processing a query

3.6 Update

Insertion is straightforward. We simply append the new elements to the end of the

tuple list and corresponding vector lists. The tail of vector lists can be directly

located by the ptr2s in the attribute list. Since we assume that the table file adopts

the row-wise storage structure, the new tuple is appended to the end of the table

file for an insertion. For a deletion, we just scan the tuple list to find the element

of the deleted tuple and rewrite the ptr in the element with a special value to mark

the deletion of this tuple, and we do not modify the vector lists and the table file.

When querying, just skip the filtering of the deleted tuples. We should periodically

clean deleted tuples in the table file and all related elements in the tuple list and

vector lists by rebuilding the table file and the iVA-file. For an update, we break it

up into a deletion and an insertion, and we assign a new id to the updated tuple.

Since insertions, deletions and updates are not as frequent as queries, periodically

cleaning the deleted information will limit the size of the iVA-file and keep the

scanning efficient.

3.7 Experimental Study

In this section, we conduct experimental studies on the efficiency of the iVA-file

(iVA), and compare its performance with the inverted index (SII) implementation
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proposed in [51]. We also recorded the performance of directly scanning of the

table file (DST). The query processing time of the methods and the effects of

various parameters on the efficiency of the iVA-file were studied. The VA-file is

excluded from our evaluations as its size far exceeds that of the table file.

3.7.1 Experiment Setup

We set up our experimental evaluation over a subset of Google Base dataset [4] in

which 779, 019 tuples define 1, 147 attributes, where 1, 081 are text attributes and

the others are numerical attributes. According to our statistics, 16.3 attributes

are defined in each tuple on average and the average string length is 16.8 bytes.

We adopt the interpreted schema [17] to store the sparse table, and the table file

is 355.7 MB. The size of the SII is 101.5 MB and the sizes of the iVA-files with

different parameters range from 82.7 MB to 116.7 MB. We set a 10 MB file cache

in memory for the index and the table file operations. The cache is warmed before

each experiment. To simulate the actual workload in real applications, we generate

several sets of queries by randomly selecting values in the dataset so that the

distribution of queries follow the data distribution of the dataset. Each selected

value and its attribute id form one value in a structured query. Each query set has

50 queries with the first 10 queries used for warming the file cache and the other

40 for experiment evaluation. The number of defined values per query is fixed in

one query set, and the query sets are preloaded into main memory to eliminate

unwanted distractions to the results. Our experimental environment is a personal

computer with Intel Core2 Duo 1.8GHz CPU, 2GB memory, 160GB hard disk, and

Window XP Professional with SP2.



44

Table 3.2: Default settings of experiment parameters
Parameter Default Setting

Defined values per query 3
k 10

Distance metric Euclidean
Attribute weight Equal

α 20%
n 2
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Figure 3.7: Effect of the number of defined values per query on the data file access
times per query.

3.7.2 Query Efficiency

We first study the effects of the following parameters on the iVA-file, SII and DST

to compare them: the number of defined values per query, the value of k for a

top-k query, the metric of distance f between a query and a tuple, the setting

of the importance weights of attributes. We also tune the relative vector length

α and the gram length n to see their impacts on the iVA-file. The type of each

vector list is automatically chosen as explained in Sec. 3.4. The iVA-files under

some settings are even smaller than the SII file, which reflects that the intellectual

selection between multi-type vector lists contributes well to lower the index size.

The default values of the parameters are listed in Table 3.2 and in each experiment

we examine only one or two parameters in order to study their effects. The query

processing time of DST is very stable under different parameter settings, always
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Figure 3.8: Effect of the number of defined values per query on filtering and refining
time per query.
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 Figure 3.9: Effect of the number of defined values per query on the overall query
time per query.

around 30 seconds per query. The results of the DST query efficiency were very

poor and we left them out from comparisons in all figures.

A. Effects of Defined Values per Query

In this experiment, we compare the iVA-file and SII by incrementally changing

the number of values per query from 1 to 9 in steps of 2 to see their filtering efficiency

and query processing time. Figure 3.7 exhibits the average times of accessing the
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Figure 3.10: Effect of the number of defined values per query on filtering and
refining time per query.
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 Figure 3.11: Effect of k of the top-k query on the query time.

table file per query under different number of query values. The iVA-file accesses

the table file only about 1.5% ∼ 22% of SII, which means that the approximation

vectors in the iVA-file performs very well in the filtering step. Another important

fact is that the iVA-file table accesses do not steadily grow with the number of

defined values per query. We divide the processing time of one query into two

parts: filtering time and refining time, both of which include the corresponding

CPU and I/O consumption. Figure 3.8 compares the filtering and refining time

per query of the iVA-file and SII. We can see that the iVA-file sacrifices on the

filtering time while gains lower refining time. Figure 3.9 gives the average query
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Figure 3.12: Effect of different settings of distance metrics and attribute weights.
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 Figure 3.13: Effect of the relative vector length α on the iVA-file query time.

time and shows that the iVA-file is usually twice faster than SII. Moreover, the

iVA-file also significantly improves the stability of single-query time as shown in

Figure 3.10, where we depict the standard deviation of query time with different

number of values in each query.

B. Effects of k

Under the scenario of the top-k query, k affects the efficiency of scan-based

indices by influencing the rate of accessing the table file. In this experiment, we

incrementally vary the value of k from 5 to 25 in steps of 5 to examine the scalability
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of the iVA-file and SII. The result is shown in Figure 3.11. Thanks to the tight

lower bound of iVA-file querying processing scheme, the iVA-file surpasses the SII

in query efficiency for all k. And the slope of the iVA-file line is smaller, which

indicates that although the processing time per query inevitably increases as the

value of k does, the iVA-file is still acceptable when k is big.

C. Effects of Distance Metrics and Attribute Weights

The efficiency of the iVA-file with respect to different distance metrics and

attribute weights is compared with SII. We evaluate the average query processing

time per query on three distance metric functions: L1-metric, L2-metric and L∞-

metric. We also test it on two settings of the attribute weights: all weights are

equal (EQU for short), and inverse tuple frequency (ITF). The ITF weight of an

attribute A is

ln
1 + |T |
1 + |T |A

where |T | is the total number of tuples and |T |A denotes the number of tuples that

define A. We set six scenarios of combinations of distance metrics and attribute
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weights S1∼S6, which are EQU+L1, EQU+L2, EQU+L∞, ITF+L1, ITF+L2 and

ITF+L∞ respectively. The iVA-file outperforms SII significantly for all these set-

tings. The results are shown in Figure 3.12.

D. Effects of nG-signature Parameters

The key point of the iVA-file is the filter efficiency which depends on the gran-

ularity of approximation vectors and influences the rate of random accesses on the

table file. Consequently, the settings of the nG-signature affect the query pro-

cessing efficiency. We first examine the influence of the length of nG-signatures.

Longer signatures provide higher precision at the cost of larger vector lists. So the

length of nG-signatures influences the trade-off between the I/O of scanning the

index and the I/O of random access on the table file. We test the average query

processing time by incrementally changing the relative vector length α from 10% to

30% in steps of 5%. The query efficiency reaches the best when α = 20% as shown

in Figure 3.13 as our expectation of the effects of the length of nG-signatures. We

also test the average filtering and refining time per query with different α. Figure

3.14 further verifies our point as the filtering time keeps growing with longer vec-

tors, while the refining time drops steadily. We also evaluate the effects of n – the

length of n-grams. We test the average query processing time for n equal to 2, 3,

4 and 5. As shown in Figure 3.15, the average time of processing one query keeps

growing as n grows. So n = 2 is a good choice for short text.

3.7.3 Update Efficiency

We compare the update efficiency of iVA, SII and DST. We run 10,000 deletions

of random tuples, and get the average time per deletion denoted by td is 3.89ms,
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Figure 3.15: Effect of the length of n-grams n on iVA-file query time.
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 Figure 3.16: Comparison of iVA, SII and DST’s average update time under different
cleaning trigger threshold β.

the same for iVA, SII and DST. We run insertions of all 779,019 tuples in the

dataset, setting α = 20%: the total time denoted by tr is the time of rebuilding

the table file and the index file, and the average time of one insertion denoted by

ti is tr/|T | where |T | is the total number of tuples in the table. As we mentioned

in Sec. 3.6, the table file and the index file should be periodically rebuilt to clean

up the deleted data. If we perform the cleaning every time when the amount of

deleted tuples reaches a percentage β (cleaning trigger threshold) of all tuples in

the table, the actual average time cost by one deletion, insertion and update are



51

respectively:

td +
tr

β · |T | , ti +
tr

β · |T | , td + ti +
tr

β · |T |

We compared the average insertion, deletion and update time of iVA, SII and DST

for different rebuilding frequency. We only show the average time of an update

operation for different β with α = 20% in Figure 3.16 changing β from 1% to 5%

in steps of 1%, as the deletion and insertion have the similar property. Compared

with the query time, update is around 102 faster. The iVA-file’s average update

time is very close to that of SII and DST. So we can conclude that the iVA-file

outperforms SII and DST significantly in query efficiency but sacrifices little in

update speed.

3.8 Summary

In this chapter, we have presented a new approach to answer structured similarity

query over SWTs in CWMSs. The proposed solution includes a content-conscious

and scan-efficient index structure and a novel query processing algorithm which

is suitable for any rational similarity metrics and guarantee no false negatives.

Experimental results clearly show that iVA-file outperforms the existing proposals

in query efficiency significantly and scales well with respect to data and query sizes.

At the same time, it maintains a good update speed.
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CHAPTER 4

Community Data Indexing for Complex
Queries

4.1 Introduction

Most existing CWMSs either are disadvantaged by a lack of scalability to large data

sets, or offer good performance only for specialized kinds of queries. None of the

solutions has provided to date a scheme that can handle ever-increasing amounts

of data as well as allow efficient processing of general-purpose complex queries. In

this chapter, we propose a two-way indexing scheme that facilitates efficient and

scalable retrieval and complex query processing with community data.The unique

features and contributions of the proposed approach are:

• We combine two effective indexing methods: First, an inverted index for

each attribute gathers a list of tuples, sorted by tuple ID, for each attribute

value; the inverted index is sorted by value itself. Second, a separate direct

index for each attribute provides fast access to those tuples for which the

given attribute is defined, sorted by tuple ID, following a column-oriented

architecture.



53

• We propose that, for the sake of both storage efficiency and functionality, less

frequent queried attributes should receive a tailor-made treatment.

• We identify four different kinds of complex queries and extend CW2I scheme

to handle these queries.

The reminder of this chapter is structured as follows. In Section 4.2 we introduce

two-way indexing solution for SWT data management. The indexing construction

and query processing steps are explained with examples. In Section 4.3, we intro-

duce four types of complex query and extend CW2I to handle all of them. Section

4.4 presents our experimental results using real world data sets. In Section 4.5 we

provide the summary of this chapter.

4.2 CW2I: Two-Way Indexing of Community Web

Data

We propose the combination of two design approaches for complex query processing

on SWTs. First, we espouse a binary vertical representation for each attribute Aid

defined in the data at hand, which collects a sorted vector of Tid (tuple identifier)

entries. Each of these entries is appended with an associated sorted list of attribute

values Val. We call this binary representation direct index. The binary vertical

representation of [29, 37, 20, 7] can be seen as a manifestation of our direct index.

Second, we argue for an inverted index built over each frequent queried attribute.

An attribute identifier Aid is linked to an inverted index, consisting of a sorted vector

of Val (attribute value) entries, appended with their associated sorted lists of Tids

<Tid1, Tid2, . . ., Tidn > that match the given value for the Aid attribute. In case

an attribute value consists of several short strings, these are independently indexed
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by our inverted index. String separators prevalent during data entry are used for

this purpose. This design amounts to double indexing scheme for Community Web

data, which we call CW2I. It is capable to address both lookup and aggregation

queries, as well as more complex queries involving several join operations. In effect,

it robustly handles all ways of querying the data.

4.2.1 The Unified Inverted Index

The main problem arising out of queried attribute skewness is that, if we are

supposed to build both a direct and an inverted index for each attribute, then we

raise unreasonable storage requirements and most of attributes are never required

in the queries. After all, if an attribute is defined for only a few tuples by just a

few users or in the worst case by just only one user, then not much stands to be

gained by indexing the few values it assumes over the whole data set in both a

direct and an inverted manner, because few users or no user is expected to express

queries using the names of such attributes. By analyzing the query log, we pick

the attributes which have 0.9 possibility to appear in a query as frequent queried

attributes. Therefore, we suggest that less frequent queried attributes may best

be seen as repositories of unstructured information about tuples. As far as text

attributes are concerned, this information can be appropriately considered as a

collection of keywords related to the tuples in question. Thus, we propose to handle

lesser queried text attributes in a unified manner, gathering all of them together

in a unified inverted index. This index provides a powerful keyword-search-like

functionality over these attributes, while it increases both the storage-efficiency

and the user-friendliness of the system. In particular, the unified inverted index

gathers a sorted vector of attribute value entries, regardless of the attribute they

correspond to; each entry is associated to a list <Tid (tuple identifier), Aid (attribute
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identifier)> pairs.

Numerical attributes are excluded from the unified inverted index; this discus-

sion pertains to text attributes only. However, numerical attributes that fall below

the frequency threshold to receive their own inverted index, are not indexed in this

manner at all. Given the sparsity of such attributes, an inverted index is redun-

dant for them. A lookup to their direct index is sufficient to detect any tuples that

match a given value-based predicate. Besides, such numerical values do not offer

anything in terms of keyword-search. Users are expected to refer to such attributes

by name. The same reasoning applies to the case when a user needs to refer to a

specific lesser-used text attribute by name; again, the low density of the attribute

itself renders a lookup for values matches in the direct index practicable enough.

The usage of this unified inverted index addresses a problem that is particular to

the community web data we examine. Moreover, it confers the following advantages

to our CW2I indexing scheme:

• Storage efficiency, as it is not efficient from a storage point of view to have a

separate inverted index on each of the myriads of less-frequent attributes.

• Facilitation of keyword-search queries, in which a given string is to be found

in any less frequent attribute. Resorting to a unified index of all less-frequent

attributes for keyword-search is more efficient than checking many small in-

dexes. Besides, lesser-used text attributes can be validly seen as collecting

keywords related to the specific domain where an entry belongs.

• User-friendliness, users are not expected, or required, to know obscure at-

tribute by name. Users are mostly familiar with the names of the most

commonly-used attributes, but, naturally, they cannot easily figure out by

what name the others are entered. These lesser-used attributes are usu-
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ally domain-specific and their appearance depends on the values of other

attributes.

• Functionality and practical sense: for rarely used attributes, the direct index

is already good enough for a lookup, hence the inverted index can be spared.

Thus, while the said benefits are gained by unifying of what could be several

smaller indexes, not much is significantly lost.

• Safeguard against user inconsistency. Different users are likely to define the

same lesser-used concept with differently-named attributes. Thus, it makes

sense to collect the values they provide under one unified index. A keyword

search on the values of such attributes is guaranteed to return the tuples

related to them (i.e., there are no false negatives).

4.2.2 Examples

We proceed to illustrate the CW2I system with examples of indexing and query

processing.

A. Indexing

We offer an example that illustrates the CW2I indexing mechanism in relation to

the sample data in Figure 1.2. The direct index for the Price attribute should

contain the <Tid, Val> pairs < 2, 230 > and < 3, 20 >. Likewise, the inverted

index for the same attribute should contain an entry for Val 20, appended with a

list of matching tuples, containing, in this case, the tuple {3}, as well as another

entry for Val 230, appended with a tuple list containing the tuple {2}. The same

pattern is replicated for all tuples and attributes in the table.

Furthermore, if we assume that Industry and Artist are less frequent attributes
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than the top quartile of attributes in terms of frequency, then the unified inverted

index should contain entries for Computer, Software, and Michael Jackson. Both

of the Computer and Software entries are to be amended with a list containing the

<Tid, Aid> pair < 1, 2 >, while the lists amended to the Michael Jackson entry

should contain the <Tid, Aid> pair < 3, 8 >. The same pattern is repeated for all

other less frequent attributes in the table.

 Product Name

camera

DVD

computer

car

TV

laptop

psp

tupleID List

Figure 4.1: Example Query: First Step

B. Query Processing

As an example of query processing using a CW2I system, assume that, in an e-

commerce system like googlebase [4], we wish to find all the products provided

by companies that also provide laptops. Processing of this query starts out by

accessing the inverted index of the Product attribute, to retrieve the (sorted) list A

of all Tids for which product is Laptop (see Figure 4.1).

In the next step, the retrieved Tid-list A is merge-joined with the direct index

of the Company attribute, to derive the list B of Company Names that offer laptops

(see Figure 4.2).

Having derived list B, we can now resort to the inverted index of the Company

attribute, to collect a Tid list Li for each Company Name value vi in B, and
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    Tuple ID

1

7

6

5

4

3

2

        Values

John’s home

Microsoft

IBM

Amazon

TaoBao

pp.com

ABC.ltd

Attribute: Company Name

Figure 4.2: Example Query: Second Step

construct the union of all Li lists to get the list C of all Tids associated with

Companies that have laptops on offer (see Figure 4.3).

Company Names

John’s home

Microsoft

IBM

Amazon

TaoBao

pp.com

ABC.ltd

tupleID List

Figure 4.3: Example Query: Third Step

Lastly, we extract all products on offer by companies that also have laptops on

offer by merge-joining the direct index of the Product attribute with list C (see

Figure 4.4).

4.2.3 Argumentation

The main advantages of our two-way indexing scheme in relation to earlier CWMSs

are be outlined as follows:
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    Tuple ID

1

7

6

5

4

3

2

          Values

PSP

car

laptop

computer

DVD

TV

camera

Attribute: Product Name

Figure 4.4: Example Query: Fourth Step

• Devoted Attention to Text Attributes. Community web data contain

myriads of text attributes, which cannot be efficiently handled by existing

systems. CW2I separates text attribute values to the words they are com-

posed from and indexes each word separately, either in the inverted index for

that attribute per se, or in the unified inverted index. Moreover, CW2I de-

fines a fuzzy join operator over the indexed short strings. Thus, it facilitates

complex query processing and keyword-search operations over these values.

• Concise and efficient handling of multi-valued attributes. An at-

tribute that gathers more than one value is naturally accommodated in CW2I,

indexed in both a direct and inverted manner. The direct index gathers all

attribute values in a list. Likewise, the inverted index collects all tuple IDs

that share the same value (or short-string element).

• Avoidance of NULLs. Only those attributes that are relevant to a par-

ticular tuple need to be stored in a particular index. Thus, storage space is

saved. Other systems, such as [11, 17] have tried to tackle the nullity problem

in multifarious ways, but were always entangled within a sparse-table repre-

sentation, hence some storage space was always devoted for them, either for
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representing them per se, or, as in [17], for specifying the attribute names of

non-null attributes. By eschewing this representation, we provide an efficient

handling of sparsity.

• Prevalence of merge-joins. Due to the indexing of attribute in both a

direct and an inverted manner, sorted lists of tuple IDs both of those tuples

defined for a given (more frequent) attribute, as well as of those tuples that

a share a particular value for a given attribute, are readily available. Thus,

most equi-join operations are bound to be fast merge-joins of such lists. By

contrast, other sparse-and-wide data management system would need to per-

form multiple whole-table scans in order to execute complex join operations,

seriously undermining their performance.

• I/O efficiency. CW2I minimizes the information that needs to be accessed

for query processing, while avoiding the proliferation of whole-table scans that

other Community Web data management systems suffer from. Depending on

attribute value by which a query is bound, CW2I retrieves a list of tuples

related to that value via an inverted index, without redundant accesses. Thus,

CW2I eliminates redundant data accesses thanks to its two-way indexing

architecture.

4.3 Query Typology

Although CW2I is designed to answer complex query based on exact matching

efficiently, it can be easily extended to fuzzy matching. As we have discussed,

several attribute values in Community Web systems usually appear as collections

of short strings. Such strings are usually distinguished by separators. Each user

may employ diverse separators (such as ‘>’, ‘/’, ‘:’, ‘;’, ) to delimit short strings.
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Our inverted index distinguishes these short strings and creates a separate entry

for each of them. A string match during query processing can be satisfied either in

an exact or a fuzzy manner. Exact string matching is straightforward. For the case

of fuzzy matching, we still wish to take advantage of lexicographic order for fast

query processing. Thus, we say that a query string sq of length L and an indexed

string si satisfy a fuzzy string match when there is an exact match of the first half

of the query string and a similarity between their other parts. Thus, if prefix(K, s)

is the length-K prefix of string s, we define a fuzzy mach as:

prefix

(⌈
L

2

⌉
, sq

)
= prefix

(⌈
L

2

⌉
, si

)
∧ suffix

(⌊
L

2

⌋
, sq

)
≈ suffix

(⌊
L

2

⌋
, si

)

Where ≈ denotes an approximate string similarity measure. According to this kind

of fuzzy matching, short strings like ‘accessories’ would match with ‘accessorize’ and

‘accessory’, but not with ‘access, windows version’. In the case of text match, we

define the fuzzy match score between two text values si and sj as:

Score(si, sj) = N/min(len(si), len(sj))

where N is the number of matched words in si and sj, len(si) is the number of

words in text value si and len(sj) is the number of words in text value sj. We

set a threshold τ , when Score(si, sj) ≥ τ , we say si matches sj. This rule of

thumb operates well in practice, allowing for the identification of related strings

with tolerance to orthographic and terminological variations.

We distinguish four different types of queries that CW2I can process, based

on their exploitation of inverted indexes, unified inverted index, and fuzzy string

matching, as follows. A general complex query, covering all four types, is defined



62

as follows.

Q{p1(G1), p2(G2), . . . , pn(Gn), r1(Gr1 , G
′
r1

), r2(Gr2 , G
′
r2

), . . . , rm(Grm , G′
rm

)}

where pi(Gi) is set of (select) predicates that define a group of tuples Gi and

ri(Gri
, G′

ri
) is a (join) relation among the tuples in groups Gri

, G′
ri

which satisfy

their respective predicates. For instance, consider the query “find the black-color

jewelery and purple-color jewelery such that their price difference is less than 10$”.

Then G1 is ‘black color jewelery’, hence the predicate that defines this group is

Product = jewelery ∧ Color = black

Likewise, G2 is ‘purple color jewelry’, hence the predicate that defines it is

Product = jewelery ∧ Color = purple

The relation that should be satisfied among any item t1 ∈ G1 and any item t2 ∈ G2

is

|t1.price− t2.price| ≤ 10$

We can then classify the basic join queries that satisfy this general-purpose

definition in to four distinct classes as follows.

1. Exact join query without keyword. In such a query, the select pred-

icates are all on most-frequent, indexed (i.e., having their own inverted in-

dex) attributes. The join relation operates on a simple (i.e., numerical or

single-string) attributes (e.g., price, name, but not multiple-short-string or

text attributes, on which no exact match can be done).
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2. Exact join query with keyword. In this type of query, the select predicates

may be defined on published attributes or may be just keyword-specified,

referring to less-frequent attributes, lacking their own inverted index. The

join relation is defined on a simple attributes, as in Type 1.

3. Fuzzy join query without keyword. In this case, the select predicates

are on indexed attributes. However, the join operation is a fuzzy join on text

or multiple-short-string attributes. For example, consider the query “Find a

cellphone and a laptop of the same brand.”. Then G1 is “cellphone”, G2 is

“laptop”, the predicate defines G1 is:

Product = cellphone

Similarly the predicate defines G2 is:

Product = laptop

The join operation on G1 and G2 is:

t1 .brand = t2 .brand

Given that brand is a text attribute, the value of brand consists of several

short strings. Thus the join operation on this attribute should not be done

with exact match. We call this type of query fuzzy join query.

4. Fuzzy join query with keyword. A query of this type may have both a

select predicate defined by a non-indexed attribute, as well as a fuzzy join

operation on a text attribute.
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A Type-1 query can be handled by our scheme as well as by other architectures

suggested in previous research (e.g., [11, 26]). However, the last three types are

not straightforwardly handled by other architectures, but can be managed by our

CW2I system.

Due to the fact that CW2I separates text attributes into single words, and

indexes these words, it can perform (fuzzy) select and join operation defined by

predicates over such attributes. Thus, for example, a select operation may require

that the word ‘shirt’ appears in the Product attribute value, or that the word

‘linen’ appears in a less-frequent attribute value. The set of tuples satisfying such a

predicate can be determined using an appropriate inverted index of an appropriate

attribute, or the unified inverted index.

Likewise, a fuzzy join condition may be defined as a fuzzy string match between

the attribute values of two tuples. This can be processed by extracting all words in

the text value of one tuple and performing, for each of these words, a fuzzy lookup

on the inverted index of a specified attribute, if there be such, or, otherwise, on the

unified inverted index.

4.4 Experimental Study

In this section we discuss experimental studies of the scalability and performance of

CW2I scheme. We compare the I/O cost of CW2I in answering Type-1 queries with

the straightforward horizontal storage scheme (HORIZ), vertical storage scheme

(VERTI) and iVA-file Scheme(iVA). iVA-file scheme is designed to handle struc-

tured similarity query, here we set the threshold of estimated edit distance to 0 to

answer exact matching query. The query processing time is recorded for Type-2,

Type-3 and Type-4 queries which are not evaluated in existing systems. We study
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the performance and the scalability of CW2I on them.

4.4.1 Experiment Setup

In VERTI, we store each attribute as a separate table and build index on the

tuple id column. This is same as the direct index in CW2I. The difference of

implementation between CW2I and VERTI is that we create one inverted index for

each of the indexed attributes and a unified index for each of the other attributes.

We build a B+ tree index on the keyword column of the inverted index and the

unified index. In HORIZ, we store the indexed attributes in one relational table

and the other un-indexed attributes in the vertical storage format. We build a B+

tree index on TID (tuple id) column. We set a 4 KB file page in memory for the

index and the table file operations. Our experimental environment is a Intel Core2

Duo 1.8GHz machine with 2GB memory, 160GB hard disk, running Windows XP

Professional with SP2.

4.4.2 Description of Data

We downloaded published data items from GoogleBase, and set up our experimental

evaluation on this dataset. It consists of 30 thousands tuples which are described

by 1319 attributes out of which 1217 are text attributes and others are numerical

attributes. According to our statistics, the average number of attributes per tuple

is 16. To test the storage cost of the four methods, we initially insert 10k tuples. We

measure the additional disk space cost by incrementally inserting 5K tuples each

time, as shown in Figure 4.5. We observe that the storage space linearly increases

with the number of tuples inserted. CW2I consumes about 25% more disk space

than VERTI and HORIZ. Since iVA has encoding vector list for each attribute and

a full data table using interpreted storage schema, it introduces much more disk



66

 0

 5

 10

 15

 20

 25

 30

 35

10 15 25 30

St
or

ag
e 

Sp
ac

e(
M

B
)

Number of Tuples (Thousands)

CW2I

HORIZ

VERTI

iVA

Figure 4.5: Disk Space Cost of the Three Methods.

space cost.

4.4.3 Description of Queries

We have discussed the four types of queries in Section 4.3. In our experiment we

generate several queries for each query type. For Type-1 queries, i.e. exact join

query without keyword, we compare the I/O cost of CW2I to VERTI , HORIZ and

iVA. We describe the queries and the implementation details below.

Type-1 Queries

We first outline the Type-1 queries we have included in our experimental study.

• Query 1. Find the number of products that belong to the mp3 type. To

process this query, CW2I system retrieves the result straightforwardly from

product type inverted index. In contrast, both of the horizontal and verti-

cal storage scheme have to make a full table scan, either of a the complete

horizontal table or of the table of product type, and count the number of

the qualifying tuples thereby. The iVA-file scheme need to scan the encoding

vector list of product type and the whole data table to answer this query.
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• Query 2. Find the stores which sale both mp3 and computer products.

Thus, this query defines two groups of items, group A being the group of

tuples pertaining to mp3 products and group B being the group of tuples

having to do with a computer product. The required join relation between

these two groups is that the store id of a tuple in A has to be the same as the

store id of a tuple in B.

In the horizontal storage scheme, this query requires a self-join operation on

attribute store id. In the vertical storage scheme, we need to first retrieve

the tuple id of each mp3 product to create group A, as well as the tuple id of

every computer product to create group B, by accessing the in vertical table

of the product type attribute. Then we have to retrieve the corresponding

store id for each tupe id in group A and B, using the vertical table of the

store id attribute. In the last step, we merge the two store id lists to get the

final results. In iVA-file Scheme, the encoding list of attribute product type

and the table are scanned to create group A and group B. Then a self join

on attribute store id is required to fetch the results. In contrast, in the CW2I

scheme, we directly retrieve the two tuple id lists A and B in the first step

due to the availability of the inverted index of product type attribute. Then

we proceed as for the vertical storage scheme.

• Query 3. Find a black jewelry item and a purple jewelry item such that the

difference of their price is less than 20$. Again, this query is similar to Query

2. However, now the selection predicates are on two attributes, namely on

product type, as well as on color. Through these two predicates, two groups

of tuples are defined.

CW2I derives these two groups via a fast merge-join of the respective tuple id

lists for product type = jewelry and color = black or color = purple, re-
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spectively. The derivation of these groups is a more costly affair for HORIZ,

VERTI and iVA. For the HORIZ scheme, it involves a full table scan whereby

tuples that qualify on both attributes are identified. For the VERTI scheme,

it requires the separate derivation of two tuple id lists via full scan of the table

for the product type and color attributes. For the iVA scheme, it requires full

scan of the encoding vector list for the product type and color attributes and

a full table scan to do the filtering step. Then the selection of price values and

the join operation over them proceeds as it does for Query-2, with the differ-

ence that the join condition is now the inequality |t1.price− t2.price| < 20$.

Type-2 Queries

We now define the Type-2 queries we have used for our experimental evaluation.

• Query 1. Find the stores which sell both an mp3 and a computer with 250GB

disk. It defines a group A of mp3 items and a group of B computer items

having the requested property. Again, it uses predicates on the product type

attribute, which are processed using the inverted index of that attribute.

However, now the second group is also defined by the keyword-predicate speci-

fied by keyword ‘250GB’. The tuples satisfying this predicate are extracted by

CW2I using the unified inverted index; the derived tuple id list is then merge-

joined with the tuple id list of tuples satisfying the predicate product type =

computer to derive group B. These two groups of items are then joined on

store id, so that the stores selling both kinds of products are derived, in the

same fashion as when processing a Type-1 query. The processing of this query

is supported by our CW2I scheme, but not by other schemes for Community

Web data management.

• Query 2. Find pairs of two ‘ipods’, such that one’s price is less than 200$,
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the other’s price is more than 200$, and the difference of their prices is less

than 100$. Each of the two groups this query operates on are defined by

a predicate on the price attribute as well as a keyword predicate, using the

keyword ‘ipod’ on the unified inverted index. The join condition is on the

price attribute as well. The processing steps of this query are the same as

Type-1.

• Query 3. Find the stores that sale both Mahal’s CD and Dorina’s CD. It

defines two groups and both of the two groups have selecting predicate on

attribute product type. Each of them has a keyword predicate and they are

joined on attribute store id.

• Query 4. Find thinkpad T41s and thinkpad T20s that the difference of their

prices is less than 100$. This query has two keyword predicates (T41 and

T20) which define two groups of items and a keyword predicate (Thinkpad)

on both of the two groups. The items are joined on attribute price. The

processing steps of this query are the same as Type-1 queries.

Type-3 Queries

We have also defined two Type-3 queries, as follows.

• Query 1. Find brands that make both cellphones and laptops. The select

predicates are on the product type attribute, which has its own inverted index,

hence they are processed straightforwardly. However, the join operation is

defined on attribute brand. The values of this attribute are short strings, so

we have to conduct the matching based on string similarity. We retrieve the

tuple id lists of cellphone and laptop using the inverted index on product type

and obtain two item id lists, A and B, of the two groups.
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We measure the number of keywords defined for all items in each group.

The items in the cellphone group (A) turn out to collectively contain less

keywords. Thus, we first retrieve the string value of brand for each item id αi

in group A. We extract all keywords in such a string value and obtain the

item id list for each of these keywords using the inverted index on brand; we

merge-join these lists to get list Li. Finally, we merge-join the item id list Li

so obtained (i.e., the list of all items whose brands match with the cellphone

brand of αi) with the item id list of the ‘laptop’ group B, and desired results

are so obtained.

• Query 2. Find types of products such that there exists both at least one

red item and at least one blue item of that product type. Thus, this query

is defined by two select predicates on attribute color and a join operation

is on the attribute product type. Given that each value of the product type

attribute contains several short strings, the equi-join match between different

values of this attribute is based on their similarity; therefore this is also a

Type-3 Query. The processing proceeds as in the preceding discussion for

Query 1.

Type-4 Queries

Lastly, we have also included two queries of the most complex type in our typology,

Type-4, in our study, which are outlined below.

• Query1. Find hardcover books and Mahal’s CDs with the same allowed

form of payment. Thus, the two groups it joins are defined by two select

predicates on the product type attribute, as well as two keyword predicates,

with keyword ‘hardcover’ and ‘Mahal’ respectively. The join operation is on
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the attribute payment, and also has to be processed in a keyword-oriented

fashion, as for Type-3 queries discussed above.

• Query2. Find products of material ‘stone’ and products of material ‘silver’,

having the same product type. Thus, it has to define two groups of items

using keyword-only predicates on keywords ‘stone’ and ‘silver’ respectively.

Then, these two groups have to joined on the product type attribute, in a

keyword-oriented fashion again.

4.4.4 Results

In this section we report the results of our experimental study with the queries

described in Section 4.4.3. We use progressively larger prefixes of the experimental

data set while measuring the number of I/Os of each Type-1 query and recording

the execution time for each Type-2, Type-3 and Type-4 query. We use logarithmic

y-axes for the execution time in each case. Typically, the performance of our CW2I

scheme is 10 or more times better than HORIZ and VERTI and is 1000 more times

better than iVA scheme in terms of I/Os.
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Figure 4.6: I/O Cost, Type-1 Query 1

Figure 4.6 shows the I/O cost for Type-1 Query 1. In this case, CW2I largely
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outperforms the prototype implementation of HORIZ, VERTI and iVA. Thanks to

the availability of an inverted index in CW2I, only one B+-tree search is required

in order to find the number of qualifying items. In contrast, a whole table scan

is necessitated by both HORIZ and VERTI, while an encoding vector list scan

together with a table scan are required by iVA.

Given that the size of the vertical table is smaller than that of the horizontal

table, the number of I/Os of VERTI is noticeably smaller than that of HORIZ

especially when the number of tuples become larger. The number of I/Os of iVA is

significantly larger than that of the other three, since besides the scan of encoding

vector list a full table scan is needed to filter the false positive results. Besides, the

growth of I/Os with the size of the data set is perceptible for both HORIZ ,VERTI

and iVA; on the other hand, the I/Os remains relatively stable for CW2I, as new

relevant items are inserted in the idlist of the inverted index and can still be easily

retrieved without substantial overhead.
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Figure 4.7: I/O Cost, Type-1 Query 2

Our results for Query 2 of Type-1 is shown in Figure 4.7. We observe that

CW2I outperform HORIZ, VERTI and iVA, while VERTI is slightly better than

HORIZ and iVA is much worse than VERTI and HORIZ. Thanks to the inverted

index built on attribute product type, CW2I gets the tuple ids of mp3 and computer
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with just serval I/O. On the other hand, VERTI has to scan the vertical table of

attribute product type and random I/Os are required for fetching store id in the

vertical table of attribute store id. As far as HORIZ is concerned, a whole table

scan is needed to do the selection and a self join on attribute store id is conducted

on the intermediate results in this case. In terms of iVA, an encoding vector list

scan and a whole table scan is required for the selection and a self join on attribute

store id is execute on the selection results.
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Figure 4.8: I/O Cost, Type-1 Query 3

Figure 4.8 depicts our results on Type-1 Query3. Observably, CW2I gains a

significant advantage over both HORIZ, VERTI and iVA. The underlying cause

of this efficiency advantage is the same as in our preceding analysis for Query 2.

However, now this advantage is more perceptible within the examined data set

sizes.

Figure 4.9 illustrates the results of the Type-2 queries. It is indicated that

CW2I scales well for the queries of Type-2 with the increase of the dataset size. Q1

and Q3 are almost identical and they both join on attribute store id, while Q2 and

Q4 join on attribute price. The efficiency gap is due to the fact that the cardinality

of attribute price is smaller than attribute store id, so the second group gets better

scalability. Moreover, the difference between the results of Q2 and Q4 is due to the
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difference of the sizes of the intermediate results.

Figure 4.10 and Figure 4.11 shows our results for queries of Type-3 and Type-4

respectively. CW2I scales well for the queries of these two types. Still, compared

to Type-2 queries (Figure 4.9), those of Type-3 and Type-4 are less scalable. This

difference is due to the fact that the join operations of Type-3 and Type-4 are

fuzzy joins, which cost more than the exact join operations of Type-2. Besides, we

observe differences among the queries of Type-3 and Type-4 themselves, which are

due to variations in result set sizes.
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4.5 Summary

In this chapter we have proposed an architecture for the management of sparse and

wide data in Community Web systems that can efficiently handle complex queries.

Our approach combines the benefits of an inverted indexing scheme with those of

the direct-access feasibility provided by SWTs. A thorough experimental compari-

son, based on real-word data and practical queries, illustrates the advantages of our

scheme compared to other approaches for community web data management, while

our CW2I indexing scheme provides an attractive solution to the storage problem

as well.
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CHAPTER 5

Conclusion

The growing popularity of Web 2.0 and community based applications poses the

problem of managing the sparse wide tables (SWT). Existing studies in this area

mainly focus on the efficient storage of the sparse table, and so far only one index

method, namely the inverted index, has been evaluated for enhancing the neither

structured similarity query nor complex query efficiency.

In CWMSs, past research has proposed SWT as a platform for storage of com-

munity data. Yet, such tables fail to provide an efficient storage architecture, as

they typically include thousands of attributes, with most of them being undefined

for each tuple. To enhance the query interfaces in such CWMSs, structured simi-

larity query processing and complex query processing call for well designed index

structures.

5.1 Summary of Main Findings

This section summarizes the main findings of the thesis. We discuss the contribu-

tions to structured similarity queries and complex queries in CWMSs.
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5.1.1 Structured Similarity Query Processing

Existing studies on community based applications mainly focus on the efficient

storage of the sparse table which is used as the basic structure to capture di-

verse datasets entered by users, and so far only one index method, namely the

inverted index, has been evaluated for enhancing the query efficiency. In this the-

sis, we have proposed the inverted vector approximation file (iVA-file) as the first

content-conscious index designed for similarity search on SWTs, which organizes

approximation vectors of values in an efficient manner to support efficient partial

scan required for answering top-k similarity queries. To deal with the large amount

of short text values in SWTs, we have also proposed a new approximation vector

encoding scheme nG-signature efficient in filtering tuples and preventing false neg-

atives at the same time. Extensive evaluation using a large real dataset, comparing

the performance of iVA-file and other implementations confirms that the iVA-file is

an efficient indexing structure to support sparse datasets prevalent in Web 2.0 and

community web management systems. On one hand, the index outperforms the

existing methods significantly and scales well with respect to data and query sizes

in query efficiency. On the other hand, the iVA-file sacrifices little in update effi-

ciency. Further, being a non-hierarchical index, the iVA-file is suitable for indexing

horizontally or vertically partitioned datasets in a distributed and parallel system

architecture which is widely adopted for implementing the community systems.

5.1.2 Complex Query Processing

While there has been long stream of research on keyword based retrieval, little at-

tention has been paid to complex query processing. In this thesis, we have proposed

an architecture for the management of sparse and wide data in Community Web

systems that can efficiently handle complex queries. Our proposal combines two
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hitherto distinct approaches. On the one hand, we employ a vertical representation

scheme, whereby each attribute, no matter how frequently defined, obtains its own

column-oriented direct index. On the other hand, we utilize an inverted indexing

scheme, whereby the tuples that define a more frequent attributes are indexed by

value. Furthermore, we propose a unified inverted indexing scheme that gathers

together all less frequent in a single keyword-oriented index. This additional index

facilitates schema-agnostic keyword search that fits the nature of such less frequent

attributes. We have defined four distinct types of join queries that our CW2I sys-

tem can naturally process. Our experimental study using real dataset, comparing

the performance of iVA-file and other implementations confirms that CW2I enables

fast and scalable processing of complex queries over Community Data more effi-

ciently than systems based on a monolithic vertical-oriented or horizontal-oriented

representation, and gains an advantage of several orders of magnitude over them

in our prototype implementation.

5.2 Future Work

While this thesis has presented efficient approaches to structured similarity query

processing and complex query processing, a number of issues need to be further

investigated:

• First, iVA-file proposed to indexing community data for structured similarity

query processing provides an approximation of the data file and it has to be

scanned during query processing. It is plausible to structure iVA-File as a

tree structure to avoid full scanning. Further, optimization algorithms could

be designed for more efficient pruning based on some constraints.

• Second, we need to clearly define conditions on when to apply inverted in-
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dexing for a certain attribute in CW2I. This decision can be made based on

both the frequency of the said attribute as well as the query workload. The

system can fine tune and decide on the indexing based on available statistics

and trend.

• Third, the iVA-file index structure and CW2I index structure are isolated.

iVA-file index and query processing algorithms are invoked for structured

similarity query while CW2I is for complex query. The issue of query opti-

mization should be examined to take full advantages of both index structures

to maximize the benefits. Further, it would be good to design an index that

serves both purposes.
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