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Summary

Pattern classification encompasses a wide range of information processing prob-

lems that are of great practical significance, from the classification of handwritten

characters, to fault detection in machinery and medical diagnosis. Fuzzy logic sys-

tem was initially introduced to solve a pattern classification problem because the

system has similar reasoning style to human being. One of the main advantages of

fuzzy logic is that it enables qualitative domain knowledge about a classification

task to be deployed in the algorithmic structure. Despite the popularity of fuzzy

logic system in pattern classification, a conventional singleton type-1 fuzzy logic

system does not capture uncertainty in all of its manifestations, particularly when

it arises from the noisy input and the vagueness in the shape of the membership

function. The aim of this study is to seek a better understanding of the prop-

erties of extensional fuzzy rule-based classifiers (FRBCs), namely non-singleton

FRBC and interval type-2 FRBC. Besides, this research aimed at systemising the

learning procedure for fuzzy rule-based classifier.

Non-singleton FRBC was found to have noise suppression capability. There-

fore, it can better cope with input that is corrupted with noise. In addition,
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the analysis demonstrated that non-singleton FRBC is capable of producing vari-

able boundary which may be useful to resolve the overlapping boundary between

classes. The significance is that non-singleton FRBC may reduce the complex-

ity of feature extraction by extending the possibility to use the features that are

easier to extract but contain more uncertainties. As an extension to type-1 fuzzy

classifier, type-2 classifier appears to have better performance and robustness due

to its richness of footprint of uncertainty (FOU) in membership function. The

proposed FOU design methodology can be useful when one is uncertain about

the descriptions for the features (i.e., the membership function). The robustness

study and extensive experimental results suggest that the performance of type-2

FRBC is at least comparable, if not better than type-1 counterpart.

Designing and optimising FRBCs are just as important as understanding the

properties of different types of fuzzy classifiers. In view of this, an efficient learning

algorithm based on support vector machine and fuzzy c-means algorithm was

proposed. Not only that the resulting fuzzy classifier has a compact rule base,

but it also has good generalisation capability. Besides, the curse of dimensionality

which is often faced by FRBCs can be avoided. In the later part of this thesis,

it was also shown that the proposed fuzzy rule-based initialisation procedure can

enhance the performance of conventional crisp and fuzzy K-Nearest Neighbor (K-

NN) when the training data is limited. Moreover, the successful implementation

of the FRBC to classify faults in induction motor has provided clear evidence of

its practical applicability.

In conclusion, it is foreseeable that FRBCs will continue to play an impor-

tant role in pattern classification. With the advances in extensional FRBCs, the
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uncertainties which the conventional classifiers failed to address for, can now be

handled more effectively.



x

List of Figures

1.1 (a) The components of a typical classifier and (b) the classifier de-

sign flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Type-1 fuzzy logic system (FLS). . . . . . . . . . . . . . . . . . . . 6

1.3 Example of a type-2 membership function. Jx, the primary mem-

bership of x, is the domain of secondary membership function. . . . 8

1.4 FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS
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singleton input xk produces firing strengths [f ,f̄ ]. . . . . . . . . . . 61



xii

3.3 The operations between interval type-2 antecedent with different

types of inputs using minimum t-norm. (a) Singleton input; (b)

Non-singleton type-1 input; and (c) Non-singleton interval type-2

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 The design strategy of Type-2 FRBCs. . . . . . . . . . . . . . . . . 67

3.5 Interval type-2 Gaussian membership functions with: (a) uncertain

standard deviations, (b) uncertain means, (c) uncertain standard

deviations and means. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Type-2 fuzzy rule-based classifier chromosome structure. UMF:

upper membership function, LMF: lower membership function. . . . 73

3.7 Boxplot for case study 1 with 10-CV and ten iterations (a) training

accuracy, (b) testing accuracy. . . . . . . . . . . . . . . . . . . . . . 75

3.8 Boxplot for case study 2 with 10-CV and ten iterations (a) training

accuracy, (b) testing accuracy. . . . . . . . . . . . . . . . . . . . . . 76

3.9 Boxplot for case study 3 with 10-CV and ten iterations (a) training

accuracy, (b) testing accuracy. . . . . . . . . . . . . . . . . . . . . . 76

3.10 Boxplot for case study 4 with 10-CV and ten iterations (a) training

accuracy, (b) testing accuracy. . . . . . . . . . . . . . . . . . . . . . 77

3.11 Boxplot for case study 5 with 10-CV and ten iterations (a) training

accuracy, (b) testing accuracy. . . . . . . . . . . . . . . . . . . . . . 77

4.1 Synthetic train data set: (a) Gaussian, (b) Clown. Each set has

1000 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xiii

4.2 Synthetic Gaussian test data set with different noise levels: (a)

Level-0 (σG = 0.25), (b) Level-1 (σG = 0.5), (c) Level-2 (σG = 0.7),

(d) Level-3 (σG = 0.9). Each set has 500 samples. . . . . . . . . . . 89

4.3 Synthetic Clown test data set with different noise levels: (a) Level-

0 (σC = 0.25), (b) Level-1 (σC = 0.5), (c) Level-2 (σC = 0.7), (d)

Level-3 (σC = 0.9). Each set has 500 samples. . . . . . . . . . . . . 90

4.4 Improvement of testing accuracy of type-2 FRBCs over type-1 FR-

BCs for data set: (a) Gaussian, (b) Clown. . . . . . . . . . . . . . . 90

4.5 (a) The vibration signals from two cases, there is no clear feature

that distinguishes between both signals by visual inspection. (b)

The average periodogram of the training samples, the more dis-

criminative features are concentrated at the lower frequencies. . . . 92

4.6 2-D scatter plots of PCA projected (a) train data, (b) test data.

Test data has higher degree of overlapping between both classes

due to the noises inherent in the raw data. . . . . . . . . . . . . . . 94

4.7 2-D scatter plots of LDA projected (a) train data, (b) test data. . . 95

4.8 Difference in standard deviations (σT1−σT2) for (a) synthetic data

sets and (b) Ford data set (with PCA method). Positive value

denotes type-2 FRBC is more consistent than type-1 FRBC while

negative value denotes type-2 FRBC is less consistent than type-1

FRBC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



xiv

4.9 Total computation time required for 1000 training samples based

on fuzzy system with four rules. Due to different computation time

required for KM type-reduction in type-2 FRBC, the values are

shown as the average of 20 generations. . . . . . . . . . . . . . . . . 100

5.1 Architecture of EFSVM-FCM. . . . . . . . . . . . . . . . . . . . . . 106

5.2 Data distribution for training and testing phases. . . . . . . . . . . 108

5.3 The learning of antecedent part with Genetic Algorithm (GA) and

Fuzzy C-Means (FCM) algorithm, and consequent part with Sup-

port Vector Machine (SVM). . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Boxplot for testing accuracies of four classification tasks with 10

iterations for each task. Two-fold cross validation method is used. . 117

6.1 Interval type-1 fuzzy set. . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Decision area computed with different classifiers (a) K = 1, (b) –

(d) K = 3 for crisp K-NN, fuzzy K-NN, and fuzzy rule-based K-

NN respectively. To illustrate the effectiveness of fuzzy rule-based

initialisation procedure only, weighted Euclidean distance measure-

ment is not used. It is clear that the decision area produced by

fuzzy rule-based K-NN resembles the one with K = 1 with minimal

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 When the Euclidean distance measure is unweighted, the query

point is assigned to the same class as data 2 as both of them are

closer to each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



xv

6.4 The structure of the chromosome. First part encodes the param-

eters for the antecedent sets while the middle part encodes the

consequent parameters which describe a set of interval type-1 fuzzy

sets. The last part contains the feature weights used in weighted

Euclidean distance measure. . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Comparison of average testing accuracies with different K-NN al-

gorithms for dataset (a) Bupa liver, (b) Glass, (c) Pima Indians

diabetes, (d) Wisconsin breast cancer and (e) Ford automotive. In

overall, fuzzy rule-based K-NN outperforms other NN variants. . . . 139

6.6 Performance distribution for each algorithm is computed by aver-

aging the robustness ratio over the 5 datasets. The box represents

the lower and upper quartiles of the distribution separated by the

median while the outer vertical lines show the entire range of the

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1 Overview of the proposed hybrid time-frequency domain analysis

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Scatter plot of the extracted 2-D features for fixed supply-fed motor

(50Hz) using Independent Component Analysis (ICA) method. . . . 152

7.3 Current spectrum of an induction motor with broken rotor bars. . . 154

7.4 Uncertain bearing frequencies components between (a) healthy mo-

tor (b) motor with inner race bearing fault. Due to the noise, the

amplitude difference between two classes are less obvious. . . . . . . 156



xvi

7.5 50Hz Stator current signal from the (a) fixed supply-fed induction

motor (b) inverter-fed induction motor. . . . . . . . . . . . . . . . . 159

7.6 Scatter plot of the extracted 2-D features for inverter-fed motor

(50Hz) using Independent Component Analysis (ICA) method. . . . 160

7.7 Ensemble and individual noise reduction procedures. . . . . . . . . 160

7.8 Scatter plot of the ICA extracted 2-D features for inverter-fed motor

(50Hz) after applying Emsemble and Individual Noise Reduction

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.9 Details of the proposed hybrid time-frequency domain analysis al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.10 Healthy and faulty clusters (bearing and broken rotor bar) for vari-

able inverter frequencies during training stage except the left top

one for fixed supply frequency. Each cluster contains 30 training

data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.11 Fuzzy membership functions for four inputs: (a) distance, d (b) am-

plitude of the left sideband, Aside, (c) amplitude difference of the

fundamental component and left sideband, Adiff (d) amplitude of

the bearing fault component, Abrg. Note that the distance member-

ship function is adaptive with respect to the operating speed, (a)

only shows one of the instances. . . . . . . . . . . . . . . . . . . . . 167

7.12 Experiment setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.13 Two holes are drilled on the rotor bar to simulate broken rotor bar. 168



xvii

7.14 The effect of Euclidean distance threshold, τ towards the classi-

fication accuracies for (a) hybrid time-frequency domain analysis

algorithm, (b) independent time domain analysis algorithm. . . . . 172



xviii

List of Tables

2.1 Firing Strengths of The Example in Section 2.1 . . . . . . . . . . . 39

2.2 Upper and lower limits of the parameters . . . . . . . . . . . . . . . 50

2.3 Notation Used In Sensitivity And Specificity Equations . . . . . . . 53

2.4 Classification Results With Different Configurations . . . . . . . . . 55

2.5 Comparative Results of Different Arrhythmia Classification Methods 57

3.1 Comparisons of Type-1 and Type-2 Singleton and Non-Singleton

FLSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Average Training Accuracies of FRBCs (in %) . . . . . . . . . . . . 75

3.3 Average Testing Accuracies of FRBCs (in %) . . . . . . . . . . . . . 75

4.1 Classification Results for Gaussian Data. The Classifiers are Trained

With Noiseless Data and Tested With Data Under Different Noise

Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Classification Results for Clown Data. The Classifiers are Trained

With Noiseless Data and Tested With Data Under Different Noise

Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Confusion Matrix for a Binary Classifier . . . . . . . . . . . . . . . 94



xix

4.4 Average and Standard Deviation of Classification Accuracy and

False Positive Rate Across 10 Iterations with PCA Based Feature

Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Average and Standard Deviation of Classification Accuracy and

False Positive Rate Across 10 Iterations with LDA Based Feature

Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Testing Accuracies and False Positive Rates Comparisons Between

The Proposed FRBC and Lv Jun’s Classifier . . . . . . . . . . . . . 97

5.1 Summary of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 EFSVM-FCM Parameters Used for Classification Tasks . . . . . . . 116

5.3 Classification Results of Iris Data with Various Methods . . . . . . 118

5.4 Classification Results of Wine Data with Various Methods . . . . . 118

5.5 Classification Results of Liver Data with Various Methods . . . . . 118

5.6 Classification Results of Glass Data with Various Methods . . . . . 119

6.1 Summary of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 The Classification Accuracy Improvement of Fuzzy K-NN with Weighted

Euclidean Distance (Fuzzy KNN*) and Fuzzy Rule-Based K-NN

(FRB-KNN) Compared to Conventional Fuzzy K-NN on four UCI

Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Average Testing Accuracies (in %) on Different Datasets with Six

Competing Classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Robustness Index for Six Different Classifiers. . . . . . . . . . . . . 143

7.1 Rated Parameters of the Induction Motor Under Study . . . . . . . 168



xx

7.2 Measured Rotor Speeds and Computed Broken Rotor Bar Frequencies169

7.3 Measured Rotor Speeds and Computed Inner Race Bearing Fault

Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.4 Bearing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5 Proposed Hybrid Algorithm Performance . . . . . . . . . . . . . . . 172



1

Chapter 1

Introduction

Pattern classification problems emerge constantly in everyday life: reading texts,

identifying people, retrieving objects, or finding the way in a city. In order to

perceive and react to different situations, individuals must process the sensory

information received by the eyes, ears, skin etc. This information contains the fea-

tures or attributes of the objects. Humans recognise two objects as being similar

because they have similarly valued common attributes. Often these are problems

which many humans solve in a seemingly effortless fashion. In contrast, their so-

lution using computers has, in many cases, proved to be immensely difficult. In

order to have effective solutions, it is important to adopt a principled approach

based on sound theoretical concepts. Advances in pattern classification is impor-

tant for building intelligent machines that emulate humans. Fuzzy logic system is

one of the popular machine learning techniques that has been successfully applied

to pattern classification.

It is well known that the concept of fuzzy set first originated from the study

of problems related to pattern classification [1]. This is not surprising because
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the process of recognising a pattern, which is an important aspect of human per-

ception, is a fuzzy process in nature. The fuzziness can include the changes in

object orientation and size, degree of incompleteness and distortion, amount of

background noise, vague descriptions, imprecise measurements, conflicting or am-

biguous information, random occurrences and etc. A large amount of literature

has been published dealing with fuzzy pattern classification, the search results re-

trieved from the search engine upon the keyword “fuzzy classifiers” is astonishing.

Google search engine returned this statistic at 10 p.m. on August 22, 2009:

“Results 1 - 10 of about 524,000 for fuzzy classifiers. (0.37 seconds).”

It seems that applications of fuzzy pattern classification are far ahead of the theory

on the matter. Majority of the works only involved conventional type-1 fuzzy

logic systems or used simple notion of fuzzy sets. The advantages and properties

of extensional fuzzy logic systems (FLSs) such as non-singleton FLSs and type-2

FLSs are far from being explored. The chapter will provide a brief introduction

to pattern classification and fuzzy sets and more attention will be given to the

overview of fuzzy pattern classification.

1.1 Fundamental Concepts of Pattern Classifica-

tion

Classification can be divided into supervised and unsupervised classification. In

supervised classification, also termed discrimination, a set of data samples consist-

ing of a set of variables is available. All the samples in the data set are labelled;

they are thus all assigned to a specific class. With unsupervised classification,
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sometimes termed clustering, the samples in the data set are not labelled.

Class is a core notion in pattern classification. Let Ω be a set of class labels

Ω = {ω1, ω2, . . . , ωc} where ωi is the class label. The term class symbolises a group

of objects with a common characteristic or common meaning. Features (variables)

are used to describe the objects numerically. The feature values for a given object

are arranged as an n-dimensional vector x = [x1, x2, . . . , xn]T ∈ <n. The real

space <n is called feature space, each axis corresponding to a physical feature. A

classifier is any function:

D : <n → Ω (1.1)

The decision functions partition the feature space <n into c (not necessarily com-

pact) decision regions or classification regions denoted by R1, R2, . . . , Rc

Ri =

{
x|x ∈ <n, gi(x) = max

k=1,...,c
gk(x)

}
, i = 1, . . . , c (1.2)

where G = {g1(x), g2(x), . . . , gc(x)} is a set of decision functions in the canonical

model of a classifier. The boundaries of the decision regions are called classification

boundaries. A point on the boundary can be assigned to any of the bordering

classes. If the classes in data set, Z can be separated completely from each other

by a hyperplane (a point in <, a line in <2, a plane in <3), they are called linearly

separable [2].

There are two methods to develop classifiers. The first one is parametric

method, in which a priori knowledge of data distributions is assumed. A clas-

sical example of classifier that uses this approach is Bayes classifier. The second

one is nonparametric method, in which no a priori knowledge is assumed. Neural
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Networks [3], fuzzy systems [4], and Support Vector Machines (SVM) [5] are typi-

cal nonparametric classifiers. The classifier acquires its decision function through

the training using input-output pairs.

The typical components of a classifier and the design flow of a classifier are

shown in Fig. 1.1. The feature extraction step transforms raw data (observation

space) into feature vectors (feature space). The resulting feature space is of a much

lower dimension than the observation space. The next step is a transformation of

the feature space into a decision space, which is defined by a (finite) set of classes.

A classifier, which is an algorithm, generates a partitioning of the feature space

into a number of decision regions. After the classifier is designed and a desired

level of performance is achieved, it can be used to classify new objects. This means

that the classifier assigns every feature vector in the feature space to a class in the

decision space.

1.2 Fundamental Concepts of Fuzzy Logic Sys-

tem

Fuzzy set theory is not a theory that permits vagueness in our computations, but it

is rather a methodology to show how to tackle uncertainty, and to handle imprecise

information in a complex situation. Fuzzy sets are the core element in Fuzzy Logic.

They are characterised by membership functions which are associated with terms

or words used in the antecedent and consequents of rules, and with input and

output to the fuzzy logic system.
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(a) (b)

Figure 1.1: (a) The components of a typical classifier and (b) the classifier design
flow.

A crisp set A in a universe of discourse X can be defined as

A ⇒ µA(x) =





1 if x ∈ A

0 if x /∈ A

(1.3)

A fuzzy set A is a generalization of a crisp set. It is defined on a universe of

discourse X and is characterised by a membership function µA(x) that takes on

values in the interval [0,1]. A membership function provides a measure of the

degree of similarity of an element in X to the fuzzy set.

A = {(x, µA(x)) |x ∈ X} (1.4)
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Figure 1.2: Type-1 fuzzy logic system (FLS).

1.2.1 Type-1 Fuzzy Logic System

A type-1 fuzzy set, A, for a single variable, x ∈ X has already been defined in

(1.4). Type-1 membership function, µA(x) is constrained to be between 0 and 1

for all x ∈ X , and is a two-dimensional function.

A fuzzy logic system (FLS) that is described completely in terms of type-1

fuzzy sets is called a type-1 FLS. Fig. 1.2 shows a fuzzy logic system. The system

contains four components – fuzzifier, rules, inference engine, and defuzzifier. The

fuzzifier maps a crisp point x = (x1, . . . , xp)
T ∈ X1 × X2 × . . . × Xp ≡ X into

a fuzzy set Ax in X. The most widely used fuzzifier is the singleton fuzzifier

which is nothing more than a fuzzy singleton, i.e., Ax is a fuzzy singleton with

support x′ if µAx(x) = 1 for x = x′ and µAx(x) = 0 for all other x ∈ X with

x 6= x′. Nonsingleton fuzzifier, however, maps xi = x′i into a fuzzy number where a

membership function is associated with it. In particular, µXi
(x′i) = 1 (i = 1, . . . , p)

and µXi
(x′i) decreases from unity as xi moves away from x′i. Rules are the heart

of a FLS and they can be expressed as a collection of IF-THEN statements. The

IF-part of a rule is its antecedent, and the THEN-part of a rule is its consequent.

The terms that appear in the antecedents or consequents of rules are associated

with type-1 fuzzy sets. Next, the inference engine maps fuzzy input sets to fuzzy
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output sets. It handles the way in which rules are activated and combined. Finally,

the defuzzifier transforms the output fuzzy sets into crisp outputs.

1.2.2 Type-2 Fuzzy Logic System

Type-1 fuzzy sets are not able to convey the uncertainties about the member-

ship functions. Some typical sources of uncertainties are: (i) the meaning of the

words that are used in the antecedents and consequents can be uncertain (words

mean different things to different people), (ii) knowledge extracted from a group

of experts do not all agree thus the consequents may have a histogram of val-

ues associated with them, (iii) inputs or measurements may be noisy [6]. Unlike

type-1 membership functions which are two-dimensional, type-2 fuzzy member-

ship functions are three-dimensional. The additional degree of freedom offered by

the new third dimension enables type-2 fuzzy sets to model the aforementioned

uncertainties. Type-2 fuzzy set is formally denoted as Ã and is characterised by a

type-2 membership function µÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u)) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1.5)

in which 0 ≤ µÃ(x, u) ≤ 1. The domain of a secondary membership function is

called the primary membership of x which is Jx (see Fig. 1.3). Ã can also be

expressed as

Ã =

∫

x∈X

∫

u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1] (1.6)

where
∫∫

denotes union over all admissible x and µ.

An interval type-2 (IT2) fuzzy set, Ã is characterised as:
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Figure 1.3: Example of a type-2 membership function. Jx, the primary member-
ship of x, is the domain of secondary membership function.

Ã =

∫

x∈X

∫

u∈Jx

1/(x, u) Jx ⊆ [0, 1] (1.7)

where x, the primary variable, has domain X; u ∈ U , the secondary variable,

has domain Jx at each x ∈ X. Uncertainty about the shape and position of

Ã is conveyed by the union of all the primary memberships, which is called the

footprint of uncertainty (FOU) of Ã (see Fig. 1.4), i.e.

FOU(Ã) =
⋃

∀x∈X

Jx = {(x, u) : u ∈ Jx ⊆ [0, 1]} (1.8)

Figure 1.4: FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS

(wavy line) for IT2 FS Ã.

The upper membership function (UMF) and lower membership function (LMF)
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of Ã are two type-1 MFs that bound the FOU (Fig. 1.4). The UMF is associated

with the upper bound of FOU and is denoted µ̄Ã, ∀x ∈ X, and the LMF is

associated with the lower bound of FOU and is denoted µ
Ã
, ∀x ∈ X, i.e.

µ̄Ã(x) ≡ FOU(Ã) ∀x ∈ X (1.9)

µ
Ã
(x) ≡ FOU(Ã) ∀x ∈ X (1.10)

Jx = {(x, u) : u ∈ [µ
Ã
(x), µ̄Ã(x)]} (1.11)

so that FOU(Ã) in (1.8) can also be expressed as

FOU(Ã) =
⋃

∀x∈X

[µ
Ã
(x), µ̄Ã(x)]. (1.12)

For interval type-2 fuzzy set, Jx, the primary membership of x is reduced to

an interval set which is defined in (1.11); and, the secondary grades of Ã all equal

1. Note that (1.7) means: Ã : X → {[a, b] : 0 ≤ a ≤ b ≤ 1}.

Figure 1.5: Type-2 fuzzy logic system (FLS).

A FLS that is described using at least one type-2 fuzzy set is called a type-2

FLS. A type-2 FLS is depicted in Fig. 1.5. The first observation is that a type-2
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0

1µ

x

(a)

0

1µ

x

(b)

0

1µ

x

(c)

Figure 1.6: (a) Type-1 membership function, (b) type-2 membership function (the
bounded area is not shaded uniformly to reflect that the secondary membership
grades are in [0,1]), and (c) interval type-2 membership function (the bounded
area is shaded uniformly to indicate that all the secondary grades are unity).

FLS is very similar to a type-1 FLS. The major structural difference is that there

exists a type-reducer block before the defuzzifier block. As the name suggests,

type-reducer maps a type-2 set into a type-1 set before the defuzzifier performs

defuzzification on the later set. Typical type-reduction methods are: centroid,

center-of-sums, height, modified height, and center-of sets.
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1.3 Overview of Fuzzy Pattern Classification

Statistical and Neural Networks based approaches are among the most popular

pattern classification methods. However, most of these methods produce so-called

“crisp” classifiers, those generate decisions without any accompanying confidence

measure. The main feature of crisp classification is that each pattern only be-

longs to a single class, in spite of weak correlation between pattern properties

with thematic class attributes. On the other hand, fuzzy classification provides a

measure of support for the decision (and also alternative decisions) that provides

the analyst with greater insight. In other words, each pattern may belong at the

same time to each of the existing classes with various grades of membership.

Usually fuzzy pattern classification is associated with fuzzy clustering or with

fuzzy rule-based classifiers. In a broader view, fuzzy pattern classification can

be any pattern classification paradigm that involves fuzzy sets. While only using

simple notion of fuzzy sets, fuzzy clustering appears to be the most successful

branch of fuzzy pattern classification so far. The fuzzy c-means algorithm de-

vised by Bezdek [7] has admirable popularity in a great number of fields, both

engineering and non-engineering. On the other hand, fuzzy rule-based classifier

provides a systematic way to incorporate experts’ knowledge. It has the advan-

tage of interpretability over other non-linear systems such as Neural Networks and

Support Vector Machines. Fuzzy rule-based system are easily understood through

linguistic interpretation of each fuzzy rule which mimics human reasoning.
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1.3.1 Why should we use fuzzy classifier?

In many applications such as medical or fault diagnoses, the users need not only

the class label of an object but also some additional information (e.g. how typical

the object is, how severe the disease is). Fuzzy classifier is able to provide extra

information on the certainty of the decision. Quite often classification is performed

with some degree of uncertainty. Either the classification result itself may be in

doubt, or the classified pattern may belong to some degree in more than one class.

If the certainty grades of the available decisions are close, then the expert is able

to verify the classification results by examining the immediate feasible decision

next to the decision with highest certainty grade.

In some problems, there is insufficient information to properly implement clas-

sical (e.g., statistical) pattern classification methods. Such are the problems where

we have difficulty in obtaining training or design sets with sufficient data and which

are representative of the classes to be distinguished. For example, in the appli-

cation of machine fault detection the faulty signal is not accessible during the

classifier training stage. It would be expensive and not feasible to damage the

machine purposely to collect the faulty data. Therefore, the experts’ knowledge

can be utilised when designing the fuzzy classifier.

Fuzzy classifiers based on if-then rules might be “transparent” or “interpretable”,

i.e., the end user (expert) is able to verify the classification paradigm. This notion

of interpretability is crucial in most critical applications where the expert needs

to verify the reasoning steps, the plausibility, consistency or completeness of the

fuzzy rule-base used in producing an automatic classification task. Nevertheless,
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this verification is more suitable for small-scale systems, i.e., systems which do not

use a large number of input features and big rule bases.

1.3.2 Types of fuzzy classifiers

For classification problems, many approaches based on fuzzy set theory can be

found in the literature. The existing fuzzy classification methods may be grouped

into the following four categories [8]

1. Methods based on fuzzy relations

2. Methods based on fuzzy pattern matching

3. Methods based on fuzzy clustering

4. Other methods which are more or less generalization of classical approaches.

Pedrycz [9] commented that fuzzy relation methods do not take any information

concerning the importance of the features and, in its essence, has an implicit

character. The fuzzy relation of the classifier contains all the information conveyed

by the training set of the patterns. He suggested that the approximate solution of

the fuzzy relational equation can be a problem from a computational point of view.

On the other hand, fuzzy pattern matching method is explicit in its character, an

additional information dealt with the importance of a feature is required to make

the classifier performs effectively.

A more popular way to categorise fuzzy classifier is to identify the existence of

fuzzy rule base. Thus, fuzzy classifiers can be divided into two major groups:

1. Fuzzy if-then classifiers
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2. Non fuzzy if-then classifiers.

The following sections explain these two groups explicitly.

1.3.2.1 Fuzzy rule-based classifier

The general structure of a fuzzy rule-based classifier is shown in Fig. 1.7. As with

any other classification system, a preprocessing unit filters the data, if necessary,

and transforms the high dimensional inputs into a subset of desired features in

feature space. Next, the fuzzifier transforms the crisp input values into a fuzzy

set. The inference engine then combines the fuzzified input with “IF-THEN” rules

using fuzzy t-norm to derive the firing strength for each rule. The IF-part of a

rule is its antecedent, and the THEN-part of a rule is its consequent. Finally,

the decision making unit will select the fuzzy rule with maximum degree of truth

(i.e., highest firing strength) and assigns the data to the class associated to the

rule. Fuzzy sets are associated with terms that appear in the antecedents or

consequents of rules, and possibly with the inputs and outputs. One advantage of

fuzzy classifiers based on “IF-THEN” rules is “transparency” or “interpretability”,

i.e., the end user (expert) is able to verify the classification paradigm by judging the

plausibility, consistency or completeness of the rule-base in fuzzy if-then classifiers.

There are a variety of different models of classifiers like Mamdani-Assilian

(MA) model that uses fuzzy sets in the consequent part of the rules. MA model
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Figure 1.7: The structure of a fuzzy rule-based classifier.

has the following type of rules

Rk : IF x1 is A1,i(1,k) AND x2 is A2,i(2,k) AND . . . AND xn is An,i(n,k)

THEN y1 is Bo(1,k) AND . . . AND yc is Bo(c,k) for k = 1, . . . , M

On the other hand, Takagi-Sugeno-Kang (TSK) model allows a (linear) function

of the inputs in the consequent part of the rule. Rule in TSK model has the

following form

Rk : IF x1 is A1,i(1,k) AND x2 is A2,i(2,k) AND . . . AND xn is An,i(n,k)

THEN y = fk(x) for k = 1, . . . , M

where f : <n → <c is a vector function of input x with c components. In fuzzy con-

trol, usually the output variables are independent, and a Multiple-Input-Multiple-

Output (MIMO) model can be decomposed as a collection of Multiple-Input-

Single-Output (MISO) models, which are significantly easier to handle. In pat-

tern classification, the classes (corresponding to the outputs) are not independent-

conversely, they are dependent, usually mutually exclusive.

Consider a general fuzzy if-then classifier model:

Rk : IF x1 is A1,i(1,k) AND x2 is A2,i(2,k) AND . . . AND xn is An,i(n,k)

THEN gk,1 = zk,1 AND . . . AND gk,c = zk,c for k = 1, . . . , M
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The values zk,j ∈ < are interpreted as “support” for class wj given by rule Rk

if the premise part is completely satisfied. There are four types of fuzzy classi-

fication systems depending on the consequent as suggested by Cordón [10] and

Kuncheva [2]

1. Fuzzy rules with a class consequent, e.g.,

Rk : . . . THEN class is ωo(k)

where o(k) is the output indicator function giving the index of the class asso-

ciated with rule Rk. For example, this could be translated to a c-dimensional

binary output vector with 1 at o(k) and 0, elsewhere.

2. Fuzzy rules with a class and a certainty degree in the consequent, e.g.,

Rk : . . . THEN class is ωo(k) with zk,o(k)

This corresponds to gk,1 = 0 AND . . . AND gk,o(k) = zk,o(k), . . . , AND gk,c =

0. In fuzzy terminology, the output is a possibly subnormal singleton over

Ω.

3. Fuzzy rules with certainty degrees for all classes in the consequent, i.e., the

general model, where zk,i are certainty degrees, typically in the interval [0,1].

4. Fuzzy rules with linguistic labels for the c outputs

Rk : . . . THEN gk,1 is Bo(1,k) AND . . . AND gk,c is Bo(c,k)

where Bo(i,k) are linguistic labels defined over a set of certainty values, e.g.,

the interval [0,1].

The first three groups belong to TSK system model whereas the fourth one belongs

to MA system model. More specifically, TSK classifier has been divided into 5
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types depending on the types of conjunction (AND connective), At , and the

calculation of outputs. The firing strength of the rule Rk is as

τk(x) = At

{
µ1,i(1,k)(x1), . . . , µn,i(n,k)(xn)

}
. (1.13)

1. The TSK 1 classifier is derived from the generic TSK model by specifying

– zk,i ∈ {0, 1} , k = 1, . . .M, i = 1, . . . , c,
∑c

i=1 zk,i = 1; (crisp labels)

– At is minimum

– The ith output is

gTSK1
i (x) =

M
max
k=1

{zk,i.τk(x)} =
M

max
k=1

{
zk,i.

n

min
j=1

{
µj,i(j,k)(xj)

}}
(1.14)

2. The TSK 2 classifier is derived from the generic TSK model by specifying

– zk,i ∈ <, k = 1, . . . M, i = 1, . . . , c

– At is product

– The ith output is

gTSK2
i (x) =

∑M
k=1 zk,i.τk(x)∑M

k=1 τk(x)
=

∑M
k=1 zk,i.

n∏
j=1

µj,i(j,k)(xj)

∑M
k=1

n∏
j=1

µj,i(j,k)(xj)
(1.15)

3. The TSK 3 classifier is derived from the generic TSK model by specifying

– zk,i ∈ {0, 1} , k = 1, . . .M, i = 1, . . . , c,
∑c

i=1 zk,i = 1; (crisp labels)

– At is product

– The ith output is

gTSK3
i (x) =

M
max
k=1

{zk,i.τk(x)} =
M

max
k=1

{
zk,i.

n∏
j=1

{
µj,i(j,k)(xj)

}
}

(1.16)
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4. The TSK 4 classifier is derived from the generic TSK model by specifying

– zk,i ∈ {0, 1} , k = 1, . . .M, i = 1, . . . , c,
∑c

i=1 zk,i = 1; (crisp labels)

– At is product

– The ith output is

gTSK4
i (x) =

∑M
k=1 zk,i.τk(x)∑M

k=1 τk(x)
=

∑
k,zk,i=1

n∏
j=1

µj,i(j,k)(xj)

∑M
k=1

n∏
j=1

µj,i(j,k)(xj)
(1.17)

5. The TSK 5 classifier is derived from the generic TSK model by specifying

– zk,i ∈ [0, 1] , k = 1, . . . M, i = 1, . . . , c, (soft labels)

– At is product

– The ith output is

gTSK5
i (x) =

M
max
k=1

{zk,i.τk(x)} =
M

max
k=1

{
zk,i.

n∏
j=1

{
µj,i(j,k)(xj)

}
}

. (1.18)

1.3.2.2 Non fuzzy rule-based classifier

Fuzzy rule-based and non fuzzy rule-based classifiers complement each other to

form the whole framework of fuzzy pattern classification. Since there are numerous

types of non fuzzy rule-based classifiers, thus only a few important literature

reviews are presented.

Watada et al. [11] suggested a general fuzzy discriminant analysis. The input

x̃ of the classifier is not a point in <n but a set of n fuzzy numbers x̃1, . . . , x̃n, one

for each feature. Each element of the data set is also a set of n fuzzy numbers

on the feature axes. The discrimination functions are implemented via fuzzy

arithmetic. The fundamental idea of this method is that given the input x̃, each
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discrimination function gi(x̃) is a fuzzy set defined on the interval [0,1], expressing

how confident the decision is for the respective class. Each classifier could be

defuzzified and the crisp values are compared. Other methods that compare fuzzy

sets can also be adopted. While using fuzzy numbers to model the features seems a

reasonable choice, the difficulty in computing the fuzzy arithmetic has limited the

application of this discriminant model to practical problems. Keller and Hunt [12]

introduced the concept of fuzzy perceptron which employs a linear discrimination

function g : <n −→ < ≡ wTxa to distinguish between two classes ω1 and ω2 where

w ∈ <n+1 is a real-valued vector and xa is the augmented vector [xT , 1] ∈ <n∪{1}.

The training procedure starts with a random weight and updates it iteratively

when there is an error in classifying data zj via:

w ←− w + |l1(zj)− l2(zj)|mηzj (1.19)

where li(zj) is the soft label of zj in the class ωi, i = 1, 2, η is a constant and

m is a parameter, usually m > 1. It has been shown that this algorithm can

converge for linearly separable classes. The applicability of this model to the case

of linearly nonseparable classes is questionable. These branches of fuzzy classifier

have not attracted much attention from the researchers probably because fuzzy

linear classifiers do not offer a significant benefit over nonfuzzy classifiers and they

are not as flexible as fuzzy if-then classifiers.

Fuzzy relational classifier is another type of non if-then classifier which is based

on fuzzy relations. This model is useful when the features take a small number of

discrete values. As a result, instead of <n, a finite feature subspace ς is considered.
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More specifically, the fuzzy relation is defined as:

R : ς × Ω −→ [0, 1] (1.20)

where Ω is class label. In the simplest case, R is a look-up table. To calculate the

output of the relational classifier, the input x ∈ <n is transformed into a input

fuzzy set fς over ς. The degree of membership participating in fς(ς) is calculated

by taking the minimum between the n-degrees of membership participating in ς.

fς can be regarded as a fuzzy relation γ on a universal set with 1 × |ς| elements

fς(ς). Then the soft class label of x is obtained by composition:

µ(x) = γ ◦R (1.21)

where ◦ is usually a max-min composition. Using the maximum membership rules,

x will be assigned a class label ωi.

Nearest neighbour classification techniques classify an unknown sample by

comparing it to its nearest neighbours among a set of known samples. The dis-

tance metric used is irrelevant, as long as it applies consistently to all samples in

the set. In fuzzy K-nearest neighbours (k-nn) algorithm, an unknown sample’s

membership in each class is assigned as its K-nearest known neighbours’ member-

ships in those classes, divided by a function of the neighbours’ distances from the

unknown sample. In essence, x’s membership in class i is given as:

µi(x) =

K∑
j=1

µij

(
‖x− xj‖

2
m−1

)−1

K∑
j=1

(
‖x− xj‖

2
m−1

)−1
(1.22)

Although this algorithm produce more accurate results than crisp k-nn algorithm,

it suffers from the drawback where the value of m, used to scale the effect of the

distance between x and its j-th neighbour, xj , is entirely arbitrary.
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The ever popular Fuzzy C-means clustering algorithm [7] also falls into non

fuzzy rule-based classifier category. The algorithm is based on minimisation of the

following objective function:

J =
C∑

i=1

N∑
j=1

um
ij d

2
ij (1.23)

where m > 1 is called the fuzzifier or weighting exponent, uij is the degree of

membership of xj in the cluster i, ci is the ith cluster center. Fuzzy partitioning

is carried out through an iterative optimisation of the objective function shown in

Equation (1.23), with the update of membership uij and the cluster centers ci by:

uij =
1

C∑
l=1

(
d2

ij

d2
lj

) 1
m−1

(1.24)

ci =

N∑
j=1

um
ijxj

N∑
j=1

um
ij

(1.25)

Other variants of fuzzy clustering algorithms can be found in [13].

1.4 Literature Review on Fuzzy Pattern Classi-

fication

This section presents a survey of literature pertinent to the application of fuzzy

logic to pattern classification. Since the conventional singleton type-1 fuzzy classi-

fier has been well studied, the review presented here will be focus on the extensional

fuzzy classifiers which are still not extensively researched. Specifically, research on

non-singleton fuzzy classifiers and type-2 fuzzy classifiers will be reviewed. In ad-

dition, the review of the fuzzy classifier learning methods such as rules generation
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and tuning of rule base parameters are presented. The potential limitations of the

existing work are discussed to highlight the rationale for further analysis. Since

this thesis consists of multiple topics, a more detailed literature review associated

with each topic will be presented in the subsequent chapters.

1.4.1 Non-singleton fuzzy classifiers

A non-singleton fuzzy logic system (NSFLS) is a fuzzy logic system whose in-

puts are modeled as fuzzy sets, be it type-1 or type-2 fuzzy sets. Mouzouris and

Mendel [14] suggested that singleton fuzzy logic system may not adequate to han-

dle uncertainty in the inputs. In the literature, studies on using non-singleton

inputs in fuzzy pattern classification are still limited. Hayashi et al. used a vector

of type-1 fuzzy sets to train a fuzzy neural network and as inputs during pro-

cessing [15]. However, the generalization of this method is questionable as it is

largely based on heuristic. There is no closed-form expressions for the fuzzy logic

systems [14]. Wei and Mendel [16] proposed a non-singleton fuzzy classifier for

signal modulation classification by using an addictive fuzzy logic system as a core

building block. Each complex data is modeled as a two-dimensional member-

ship function which is characterised by exponential kernel and Hamming distance

metric. The simulations show that when ideal conditions hold, the Maximum-

Likelihood and fuzzy logic classifiers perform equally but when impulsive noise is

present the fuzzy logic classifier performs consistently better. Nevertheless, the

authors pointed out that the drawback of their non-singleton fuzzy classifier is

that there is no performance analysis for it. Besides, the author also admitted

that non-singleton fuzzy classifier reduces to singleton classifier when both the in-
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put and antecedent use Gaussian membership function. Wu and Mendel [17] used

interval type-2 fuzzy sets to model the uncertain acoustic inputs in ground vehicles

classification problem. However, they did not benchmark the performance of non-

singleton fuzzy classifier against singleton counterpart. Therefore, the advantage

of non-singleton fuzzy classifier over singleton fuzzy classifier is still unclear. In

view of the limited previous studies on non-singleton fuzzy classifier, it is highly

imperative to find out how a non-singleton fuzzy classifier can handle the noise in

inputs more efficiently. In particular, it is important to understand the underlying

characteristics of non-singleton fuzzy classifier.

1.4.2 Type-2 fuzzy classifiers

Although type-2 fuzzy sets were originally introduced by Zadeh in 1975, they did

not receive much attention from researchers until the field is popularised by Mendel

et al. in 1999 through a series of publications. Since type-1 fuzzy logic is most

successful in control, to many researchers, it is a natural progress to extend type-1

fuzzy control to type-2 fuzzy control due to the capability of type-2 fuzzy logic

system to handle uncertainties. Subsequently, type-2 fuzzy control becomes the

most successful application of type-2 fuzzy logic system. On the contrary, type-2

fuzzy pattern classification has not been given adequate attention. The research

in this area is still very limited. John et al. [18] represented consultant’s inter-

pretation of the radiographic tibia images by type-2 fuzzy sets and classified the

images using neuro-fuzzy clustering technique. Liang and Mendel [19] combined

type-2 fuzzy sets with type-1 fuzzy logic system to classify video traffic using com-

pressed data. Mitchell [20] investigated the similarity measure for measuring the



24

Figure 1.8: Footprint of uncertainty (shaded area) of an interval type-2 fuzzy set
FCM.

similarity, or compatibility between two type-2 fuzzy sets. The similarity measure

can be used to formulate the classification problems in pattern recognition. Zeng

and Liu incorporated type-2 fuzzy sets with Hidden Markov Model and Markov

random fields for speech and handwritten Chinese character recognition [21, 22].

Similarly, Zeng et al. extended Gaussian mixtures models by using type-2 fuzzy

sets [23]. One major drawback of Zeng et al. methods is that fuzzy set theory

is not exploited whereby type-1 membership functions are simply replaced with

type-2 membership functions. As a result, the capability of type-2 fuzzy logic

system to handle the uncertainties may not be fully utilised. Next, Hwang and

Rhee [24] focused on the uncertainty associated with the fuzzifier parameter m

that controls the amount of fuzziness of the final partition in the fuzzy C-means

(FCM) algorithm. Interval type-2 fuzzy set is used to form two fuzzifiers m1 and

m2 which creates a footprint of uncertainty (FOU) for the classifier m. This is

illustrated in Fig. 1.8. Center-updating and hard partition was modified in the

FCM by incorporating interval type-2 fuzzy sets and the results show the effective-

ness of this method. Wu and Mendel designed type-2 fuzzy rule-based classifiers

for classification of battlefield ground vehicles [17]. Besides the antecedents, the
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uncertain acoustic features were also modelled as interval type-2 fuzzy sets. Nev-

ertheless, the results show that there is no substantial improvement of type-2 fuzzy

classifiers over type-1 counterparts. In particular, it is unclear in what ways (er-

ror rate, generalizability, robustness) type-2 fuzzy classifiers can perform better.

Besides, it is generally accepted that type-2 fuzzy classifier is much more compu-

tationally demanding than type-1 fuzzy classifier. Thus, it is highly commendable

to find out if it is worth making use of type-2 fuzzy classifier instead of type-1

fuzzy classifier at the cost of increased computational requirement.

1.4.3 Learning of fuzzy classifiers

Earlier research on fuzzy pattern classification have been focused on the genera-

tion of fuzzy if-then rules from numerical data. In general, this problem consists of

two phases: (a) fuzzy partitioning of a feature space into fuzzy subspaces and (b)

determination of fuzzy if-then rules corresponding to the fuzzy subspaces. For in-

stance, Ishibuchi et al. [25] generated fuzzy if-then rules from the training samples

by employing a fuzzy partitioning approach with fuzzy grids. One shortcoming of

such an approach is that the number of fuzzy subspaces increases exponentially

as the number of features is increased. With the aim of tackling this shortcoming,

they proposed another approach subsequently which is based on sequential subdi-

vision of the fuzzy subspaces (of different sizes) [26]. Nevertheless, the dimension

of the feature spaces is still very high. Other works in this direction includes

references [27],[28], where Mandal et al. decomposes the feature space into some

overlapping subspaces using geometric structure of the pattern classes found from

the training samples. Pal and Mandal [29] described an approach where a feature
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space is decomposed into a few (3N for N features) overlapping regions by con-

sidering three primary linguistic properties (small, medium and high) along each

of the feature axes. Next, Abe and Lan [30] proposed a method which extracts

fuzzy rules with variable fuzzy regions by recursively resolving overlap between

two classes. Similar to [25], the number of regions generated becomes very high if

the number of features is large. This leads to difficulty in implementing the algo-

rithm. Subsequently, Ishibuchi et al. [31] demonstrated a fuzzy classifier system

where the antecedent fuzzy sets of each fuzzy if-then rule are prespecified linguistic

values with fixed membership functions and the consequent class and the grade of

uncertainty are determined by a simple heuristic procedure. The authors claimed

that their fuzzy classifier which is based on simple fuzzy grids is able to work well

for problems with more than ten continuous attributes. Although the classifier has

high comprehensibility, the number of fuzzy if-then rules is not minimised. Apart

from that, Nauck and Kruse [32] showed that the use of rule weights (i.e., cer-

tainty grades) can be viewed as the modification of membership function in fuzzy

reasoning. Following that, Ishibuchi and Nakashima [33] examined the effect of

rule weights in fuzzy rule-based classification systems. The effect of rule weights is

illustrated by showing the classification boundary with/without certainty grades.

Fig. 1.9 shows the decision area of each fuzzy if-then rule with various combina-

tions of certainty grades. It is shown that the certainty grades play an important

role when a fuzzy rule-based classification system is a mixture of general rules and

specific rules. Computer simulations showed that high classification performance

can be achieved without modifying the membership functions when fuzzy if-then

rules with certainty grades are used. The certainty grades have been interpreted
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Figure 1.9: Classification area of each fuzzy if-then rule with a different certainty
grade (weight).

as the rule strength because they affect the size of the decision area. Although

the literature on fuzzy partitioning of feature space has shed some light on how to

generate fuzzy rules from the given data, all the aforementioned fuzzy partition-

ing methodologies are highly heuristic in nature. The rules generated may not be

compact enough (redundancy exists) and the parameters of the fuzzy membership

functions are not optimum. This leads to the research on fuzzy classifier design.

Many approaches have been adopted to design a fuzzy classifier which can be

categorised into three general groups. The first group tunes only the consequents

part. In this case, the rule base is fixed and the membership functions of the

antecedents are determined a prior. Two popular methods to tune the consequent

parts are least-squares [34, 35, 36] and backpropagation algorithms [37]. A serious

drawback of least-squares method is that there is no clear procedure on how to

choose the parameters of the fuzzy membership functions and the number of rules.

Likewise, backpropagation method is sensitive to parameters initialisation and

how to choose the number of rules is left as an open issue. Next, rules pruning
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falls under the second group of design methods. The antecedent membership

functions and consequents are fixed and optimisation algorithm such as GA is

used to select the best subset of rules and discharges the rests [2]. The last group

is a combination of the first and second methodology. The system is built and

tuned by simultaneous adaptation of the rule-base and the antecedent membership

functions. Again, Genetic Algorithm (GA) has been successfully applied to learn

both the antecedent and consequent part with both fixed and varying number of

rules [2, 38, 31]. The popularity of GA is attributed to its two great advantages

over back-propagation approach. Firstly, the functions that can be used in GAs

can be much more general in nature and knowledge of the gradient of the functions

is not required. Secondly, GAs are less likely to be trapped in local minima because

they explore the solution spaces in multi directions at the same time. While GA

is suitable for many optimisation problems, the algorithm is based on empirical

risk minimisation, which is to minimise the training error. This could limit the

generalisation capability of a classifier when over-fitting issue occurs. Therefore, it

would be advantageous to design a hybrid learning algorithm which is also based

on structural risk minimisation and inherits the advantage of GA.

1.5 Aims and Scope of the Work

The literature review shows that conventional singleton type-1 fuzzy logic systems

were mostly applied to solve pattern classification problems due to their simplicity.

However, research has shown that type-1 fuzzy classifier is not sufficient to handle

uncertainties. In particular, singleton input is unable to reflect the uncertainty in
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the data while type-1 fuzzy membership function fails to model the uncertainty

in the membership function itself. Based on the literature review, some research

gaps in the field of fuzzy logic pattern classification are summarised below:

• There are few studies on non-singleton fuzzy classifiers. Current implementa-

tion of the non-singleton fuzzy classifier is reduced to singleton fuzzy classifier

when both the input and antecedent use Gaussian membership function. In

addition, the advantage of non-singleton fuzzy classifier over singleton fuzzy

classifier is still unclear.

• Although type-2 fuzzy logic system has shown promising results in control

applications, the amount of research in type-2 fuzzy classifier is very limited.

Research has shown that the performance of type-2 fuzzy classifier may not

be better than type-1 counterpart although type-2 fuzzy classifier is more

computationally demanding.

• The majority of learning methods for fuzzy rule-based classifier are based

on heuristics. In particular, how to optimise a fuzzy logic system is still

an open question. Choosing rules, membership functions, and operators are

in general still done by trial and error. Even with automated learning al-

gorithms such as genetic algorithm and back-propogration, the learning of

membership function parameters is still relied on empirical risk minimisa-

tion, which is to reduce the training error. The disadvantages are that the

generalisation of the classifier is not guaranteed and the algorithm such as

back-propagation may get trapped at local minima.
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The main aim of this research is to seek a better understanding of the properties

of extensional fuzzy rule-based classifiers (FRBCs). These include non-singleton

FRBC, interval type-2 FRBC, and fuzzy hybrid classifiers. Moreover, this research

aimed at systematising the learning procedure for fuzzy rule-based classifier. The

specific objectives were:

1. To investigate if non-singleton type-1 FRBC can better handle the input

uncertainties compared to singleton counterpart.

2. To examine the efficacy of interval type-2 FRBC and to study its robustness

in three aspects:

• robustness towards noisy unseen samples;

• robustness against selected input features; and

• robustness to randomness in classifier designs.

3. To develop an efficient learning algorithm based on support vector machines

and fuzzy C-means algorithms for fuzzy rule-based classifiers.

4. To improve the performance of conventional k-nearest neighbors classifier

when the training data is insufficient by introducing a fuzzy rule base to

initiate prototypes’ membership values.

5. To verify the applicability of fuzzy rule-based classifier in solving practical

classification problem such as induction motor fault diagnosis.

The results of this present study may shed light on how to manage the input un-

certainties using non-singleton fuzzy rule-based classifier in which the conventional
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statistical classifiers still fall short in this aspect. Moreover, the comparative anal-

ysis between type-1 and type-2 FRBCs may contribute to a better insight of the

underlying characteristics and advantages of type-2 FRBCs. More importantly,

the findings may help in deciding the choices of classifiers through the understand-

ing of the tradeoffs between the computational speed and classification accuracy,

depending on the types of applications. Furthermore, the proposed hybrid learn-

ing algorithm could be a valuable tool to design and optimise the fuzzy rule-based

system when the conventional methods fail. Finally, the incorporation of fuzzy

rule-based initialisation procedure into fuzzy k-nn algorithm should open up new

ideas to enhance other existing classification algorithms that lack capability to

handle the uncertainties.

The thesis focuses more on the experimental study of fuzzy rule-based classifier

to solve practical real-world problems. Theoretical study is not central to this the-

sis because up to now there is no closed-form mathematical equation to model the

ad-hoc architecture of fuzzy rule-based classifiers. In addition, it should be noted

that the type-2 FRBC implemented throughout the study belongs to the interval

type-2 FRBC. General type-2 FRBC is not considered in this study because it is

computationally intensive due to the complexity of type reduction.

1.6 Organisation of the Thesis

The thesis is organised as followed. Chapter 2 aims at analysing a non-singleton

fuzzy rule-based classifier (NSFLC) and assessing its ability to cope with uncer-

tainties in pattern classification problems. The analysis demonstrate that the
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NSFLC has fuzzy classification boundary and noise suppression capability. These

characteristics means that the NSFLC is particulary suitable for problems where

the boundaries between classes is non-distinct. To further demonstrate the bene-

fits offered by a NSFLC, a non-singleton fuzzy logic classifier evolved using genetic

algorithm (GA) was assessed using a benchmark cardiac arrhythmias classifica-

tion problem. Chapter 3 introduces an interval type-2 fuzzy rule-based classifier.

Three strategies for designing the footprint-of-uncertainty (FOU) were proposed

to generate membership functions (MFs) that reflect the underlying data. Simi-

lar to Chapter 2, interval type-2 fuzzy classifier was applied to the classification

of cardiac arrhythmias. However, different sources of noises have been included

to model the uncertainties associated with the vagueness in MFs and the unpre-

dictability of the data. A comparative robustness analysis of type-1 and type-2

fuzzy rule-based classifiers is given in Chapter 4. The experiment were carried out

on both the synthetic data set and real data set. In Chapter 5, a hybrid fuzzy rule-

based classifier is proposed. Fuzzy c-means clustering and genetic algorithm were

used to optimise the number of rules and antecedent parameters. By using the

relationship between a support vector machine (SVM) and a Takagi-Sugeno-Kang

(TSK) fuzzy logic system, an efficient method for learning the consequent parts of

the TSK fuzzy system is introduced. Chapter 6 presents an improved version of

fuzzy k-nn classifier with fuzzy rule-based initialisation procedure to address the

generalisation problem when there is lack of complete training data set. Practical

application of fuzzy rule-based classifier for inverter-fed induction motor fault de-

tection is presented in Chapter 7. Finally, Chapter 8 gives the conclusion remarks

of the thesis and suggestions for further work.
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Chapter 2

Non-Singleton Fuzzy Rule-Based

Classifier: Handling the Input

Uncertainty

The choice of feature vector is perhaps the most difficult task in pattern classifica-

tion. A good feature subset selected from a vast number of possibilities will lead to

more accurate classifications, as well as better understanding and interpretation

of the data [39]. Inclusion of irrelevant and redundant features generally adversely

affect the performance of almost all common machine learning or pattern classifi-

cation algorithms. Besides classification accuracy, the relative ease with which the

features may be extracted is another important factor to consider. Computation

costs may be lowered by performing pattern classification using features that are

easier to extract. However, these features are likely to contain more uncertainties

which could lead to misclassifications. Furthermore, it is common to encounter

noise corrupted signals that are caused by electrical interferences within the fea-
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ture extraction devices or the mishandling of the equipment. Medical diagnosis

is an example of a pattern recognition problem where feature selection is a very

delicate process since a human life is often at stake. A framework, such as fuzzy

logic theory, that systematically represents the uncertainties present in the in-

put signals may reduce the dependence of classification accuracy on the choice of

feature vector.

The objective of this chapter is to investigate if a non-singleton fuzzy rule-

based classifier (NSFRBC) can better cope with the uncertainties or fuzziness

present in the extracted features. This work is motivated by the observation that

there is often a trade-off between classification accuracy and the complexity of

the algorithm for extracting features. A NSFRBC, designed to capture the un-

certainties in the extracted feature, will be especially useful when the fuzziness

of the input data is inevitable. The rest of this chapter is organised as follows.

In Section 2.1 and 2.2, the non-singleton fuzzy classifier is defined and analysed.

Section 2.3 presents the results of applying NSFLC to the practical problem of

cardiac arrhythmias classification. This section includes the background informa-

tion on arrhythmias, feature extraction, fuzzy logic implementation, GA evolution

of the fuzzy classifier, experimental results and discussion. Section 2.4 concludes

this chapter.
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2.1 Non-Singleton Fuzzy Rule-Based Classifier

(NSFRBC)

The structure of a fuzzy rule-based classifier is shown in Fig. 1.7. The role of

the fuzzifier in a fuzzy system is to map an element, x′i, in the input vector

x′ = (x′1, . . . , x
′
m)T ∈ X1×X2× · · · ×Xm ≡ X into the fuzzy set X̃ ′

i. This process

provides a natural framework for handling uncertain input information. There is

a variety of methods for performing fuzzification. The most common approach

is singleton fuzzification (Fig. 2.1a), which maps a crisp input into the following

membership function :

µX̃′
i
(xi) =





1 xi = x′i

0 xi 6= x′i ∀xi ∈ X

By mapping the crisp signal into a fuzzy set that has only a single point in its

support, the singleton fuzzifier does not model any vagueness in the input. As

singleton fuzzification is employed in most existing fuzzy classification schemes,

they do not make full use of the modeling capability of the fuzzifier. To bet-

ter cope with noisy, imprecise or inaccurate input signals [35, 40], the classifier

proposed in this chapter comprises a non-singleton fuzzifier. By definition, a non-

singleton fuzzifier maps a measurement x′i into a fuzzy number with an associated

membership function such as the Gaussian function:

µX̃′
i
(xi) = exp

[
−1

2

(
xi − x′i

σX̃′
i

)2]

where the variance σX̃′
i

2 defines the width (spread) of the Gaussian input fuzzy

set, X̃ ′
i. As µX̃′

i
(x′i) = 1 and µX̃′

i
(xi) decreases from unity as xi moves away from
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(a) (b)

Figure 2.1: Input and antecedent operation for different types of inputs. (a)
Singleton and (b) Non-singleton.

x′i [41], the non-singleton fuzzifier implies that the given input value x′i is the most

likely value to be correct one from all the values in its immediate neighbourhood

[14]. When signals are corrupted by noise, adjacent points may also be correct

values, but to a lesser degree. A larger spread indicates that more uncertainties are

inherent within the data. Fig. 2.1(b) shows how the output of the non-singleton

fuzzifier is combined with the antecedent set, F̃i, using sup-star composition. The

result of the fuzzy inference process is:

µg(x̄i) = sup{µX̃′
i
(xi) ? µF̃i

(xi)} (2.1)

where ‘?’ denotes t-norm operators such as minimum or product and x̄i denotes

the value of xi at which the supremum of (2.1) occurs. µg can be interpreted as

the degree of consistency of the input fuzzy set, X̃ ′
i with the antecedent fuzzy set,

F̃i. If the fuzzified input set is defined as in (2.1) and the antecedent set is defined

as:

µF̃i
(xi) = exp


−1

2

(
xi −mF̃i

σF̃i

)2
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where the variance mF̃i
and σF̃i

2 defines the mean and width of the Gaussian

antecedent fuzzy set, F̃i. With minimum t-norm, x̄i is given as:

x̄i =
σX̃′

i
mF̃i

+ σF̃i
x′i

σX̃′
i
+ σF̃i

(2.2)

Under product inference, the value of xi at which the supremum of (2.1) occurs

is:

x̄i =
σ2

X̃′
i

mF̃i
+ σ2

F̃i
x′i

σ2
X̃′

i

+ σ2
F̃i

The ‘pre-filtering’ effect of NSFRBC is the key to handle input measurement

uncertainty [37]. This effect is the result of the sup-star composition within the

NSFRBC framework. The noise suppression capability may be demonstrated in

the following example. Assume that x′i is an input corrupted by noise, that is,

x′i = x0
′
i + ni (2.3)

where x0
′
i is the useful signal and ni is the noise. Substituting x′i in (2.2) with

(2.3) yields

x̄i =
σX̃′

i
mF̃i

+ σF̃i
x0
′
i

σX̃′
i
+ σF̃i

+
σF̃i

ni

σX̃′
i
+ σF̃i

(2.4)

(2.4) shows that the noise is suppressed by the factor σF̃i
/(σX̃′

i
+σF̃i

). Similarly, it

can be proved that the triangular membership function also has this kind of noise

suppressing capability.
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2.2 Characteristics of Non-Singleton Fuzzy Rule-

Based Classifier

Consider a NSFRBC that has R rules of the following structure:

IF x1 is F̃ r
1,j1

and . . . and xm is F̃ r
m,jm

, THEN yr = Classr

where r = 1, . . . , R, i = 1, . . . , m, and ji = {1, . . . , pi}. pi is the number of fuzzy

partitions in Xi. The firing strength of the rth rule is:

fr = Tm
i=1µgr(x̄i)

where ‘T ’ is the conjunction type aggregation operator or t-norm operator. The

minimum and product are the two most widely used operations. Adopting the

winner-takes-all approach, the overall decision is

Class Label = Classw; w = arg max
r

(fr)

The ability of the non-singleton fuzzifier in the NSFRBC to handle vague input

signals will be illustrated using a two-feature problem. The antecedent sets of the

NSFLC is shown in Fig. 2.2 and the fuzzy rule base is as follows :

IF x1 is small and x2 is small, THEN C1

IF x1 is small and x2 is large, THEN C2

IF x1 is large and x2 is small, THEN C3

IF x1 is large and x2 is large, THEN C4

where Ci represents the class i. Suppose two input feature vectors with the same

crisp values (x1, x2) have differing level of uncertainties. In particular, vector 1 is
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Table 2.1: Firing Strengths of The Example in Section 2.1

fR1 fR2 fR3 fR4
Class

Pair 1 0.7408 0.5626 0.6952 0.5280 1

Pair 2 0.4876 0.3699 0.5837 0.4428 3

more uncertain than vector 2. Subsequently, the two inputs are fuzzified into the

following Gaussian fuzzy membership functions that have the same mean values

but different standard deviations :

Vector 1: Vector 2:

mx1 = 0.40, σx1 = 0.52 mx1 = 0.40, σx1 = 0.19

mx2 = 0.31, σx2 = 0.31 mx2 = 0.31, σx2 = 0.28

Table 2.1 tabulates the firing strengths and classification results for two cases.

Regardless of whether fuzzy inference is implemented using the product t-norm

or the minimum t-norm, input vector 1 is assigned to C1 while input vector 2 is

assigned to C3. The result demonstrates that the additional information about the

variations in the input signal enables the NSFRBC to distinguish between data

that have the same crisp input vector. The implication is that NSFRBC is able to

produce “fuzzy” boundary, as illustrated by the decision space plot in Fig. 2.2(a).

In contrast, a singleton fuzzy rule-based classifier (SFRBC) is only able to produce

crisp boundary as shown in Fig. 2.2(b). The fuzzy boundary characteristic of a

NSFRBC would be very useful for problems where the various classes do not have

clear boundaries.
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(a)

(b)

Figure 2.2: Comparison of the classification boundaries produced by (a) non-
singleton fuzzy rule-based classifier (NSFRBC) and (b) singleton fuzzy logic classi-
fier (SFRBC). NSFRBC produces fuzzy decision boundary while SFRBC produces
crisp decision boundary.
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2.3 Application to ECG Arrhythmias Classifica-

tion

2.3.1 Background Information

An electrocardiogram (ECG) is the representation of the electrical activity of the

heart (cardiac) muscle as it is recorded from the body surface. Fig. 2.3 shows the

various components of a typical ECG signal. The P wave represents depolarisation

of the upper part of the heart, the atria whereas the QRS complex represents

ventricular depolarization and T wave represents ventricular repolarisation.

Figure 2.3: ECG components: P wave, QRS complex, and T wave.

Ventricular fibrillation (VF) and ventricular tachycardia (VT) are both life-

threatening cardiac arrhythmias. In particular, VF requires immediate defibrilla-

tion whereas VT must be distinguished from Normal Sinus Rhythm (NSR) and VF

to receive cardioversion, by delivering a shock of somewhat lower energy in syn-

chronization with the heart beat. Critical cardiac incidents occur most often out

of hospitals, therefore automatic external defibrillators (AED) were introduced for

increasing the survival rate [42]. Since the successful termination of VF and VT re-

quires fast response and application of high-energy shocks in the heart region, the

accuracy of the built-in algorithm for VF detection is of paramount importance.
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Therefore, the automated diagnosis must match the accuracy of specialists.

In the past, many algorithms based on time or frequency domain, or a combina-

tion of time and frequency techniques have been proposed for classifying cardiac

arrhythmias. In general, time domain approaches have the advantage over fre-

quency domain approaches because of their computational simplicity while the

latter has the advantage of being more reliable in classifying VF and VT. The

time domain features are usually known as the “qualitative” features. From the

perspective of a medical practitioner, the “qualitative” features such as R-R in-

terval (period) and amplitude of the QRS pulse are generally easier to understand

rather than the frequency domain features. Unfortunately, the dynamics of the

ECG signal is inherently noisy and therefore the extracted time domain features

are uncertain. This is because the recorded ECG signal (especially surface ECG) is

very sensitive to cable movement and muscle activity. In addition, the interference

from electrical network can further degrade the recording process. Although these

artifacts can be reduced by filtering techniques, eliminating them is impossible.

Compounding the problem, the feature extraction algorithm may be unreliable or

imperfect. In the context of ECG QRS detection, the false detection of a peak is

common when the noise amplitude approaches the R wave amplitude. Likewise,

the chances that a peak is not detected is high when the peak level is relatively

lower than the others. Both problems are common for VF and polymorphic VT

signals. Due to the noisy ECG signals and the difficulties in extracting features,

the problem of classifying NSR, VF and VT waveforms using time-domain features

is suitable for assessing the ability of the NSFLC for handling uncertainties.
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2.3.2 Feature Extraction

The ECG data used in this study was obtained from MIT-BIH Malignant Ven-

tricular Arrhythmia Database (VFDB) [43]. All signals were first preprocessed

by a 0.05-40Hz bandpass filter and a 60Hz notch filter in order to suppress DC

components, baseline drifts and possible electrical interference. The filtered ECG

signal were transformed into the binary strings. The transformation algorithm

used in this study was an enhanced version of that in the paper [44]. Unlike

Zhang’s one-pass conversion, a two-pass conversion method was employed. The

ECG signal will be transformed into a partial binary string first instead of full

binary string directly. This can reduce the false positive peak detection greatly by

eliminating low amplitude signal. This step was closely followed by a full binary

string conversion for determining a threshold that can maximise the differences

between NSR class and VF/VT classes. The feature extraction steps are listed as

follows:

1. Select a finite length (i.e., 4s) of ECG. Since the VFDB signals were digitised

at 250Hz, then there will be 1000 data points {xi|i = 1, 2, . . . , n; n = 1000}

within 4s window length.

2. Mean-center ECG data where the mean data, xm is subtracted from every

data point, i.e., {xi − xm}.

3. Find out the negative peak, Vn and positive peak Vp.

4. Form a partial binary string: if the signal level falls in between the range of

(0 < xi < 0.2 Vp) or (0.2 Vn < xi < 0), then it is assigned “0”.
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5. Calculate the parameters Np and Nn. Np denotes the number of data (xi >

0) while Nn = n−Np.

6. Determine a proper threshold, Tr to convert the partial binary string into

a complete binary string: if Np < 0.15 n, then threshold is assigned as

Tr = 0.7 Vp, otherwise Tr = 0. This step is crucial to separate NSR signals

from VF and VT signals.

7. Compare xi to Tr to turn the partial binary string into a complete binary

string, that is if xi ≤ Tr, then xi is assigned as “0” or otherwise “1”.

The graphs in Fig. 2.4 show the examples of three different types of ECG signals

with their corresponding binary sequences. Three features commonly used for

ECG classification were extracted from the binary sequences: pulse width, pulse

period and peak amplitude. All parameters were averaged within the 4s window

and their standard deviations were calculated accordingly.

The scatter plots of the extracted features are shown in Fig. 2.5. Analysis of the

data shows that amplitude feature has less ambiguity, and therefore it is a better

input candidate than the period feature. While amplitude information may result

a clearer boundary (Fig. 2.5(b)), it is harder to extract as it is sensitive to baseline

wanders. On the other hand, period information is easier to be extracted but the

classification problem is more challenging because there are overlaps between the

VF and VT classes as shown in Fig. 2.5(a). To investigate the ability of the

NSFRBC to provide good classification performance using ambiguous data that is

easier to extract, a comparative study using the four fuzzy classifiers is performed :

1. SFRBC with pulse width and period as input features.
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Figure 2.4: ECG signals (excerpts from VFDB) and corresponding binary se-
quences: (a) NSR, record 421 (50-54s), (b) VF, record 424 (1260-1264s), (c) VF,
record 611(1197-1201s).
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(a)

(b)

Figure 2.5: The scatter plots for inputs. (a) Pulse period vs. width, (b) Pulse
amplitude vs. width.
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2. SFRBC with pulse width and amplitude as input features.

3. NSFRBC with pulse width and period as input features.

4. NSFRBC with pulse width and amplitude as input features.

2.3.3 Structure of the Fuzzy Classifiers

The fuzzifier transforms the inputs into the fuzzy sets: ‘small’, ‘medium’, and

‘large’. Each antecedent fuzzy set is characterised by a Gaussian membership func-

tion. Gaussian membership function rather than triangular membership function

were selected for two reasons. Firstly, the number of parameters to be evolved

is smaller since a Gaussian membership function can be represented by two pa-

rameters (i.e., mean, mi and standard deviation, σi) only whereas a triangular

membership function needs three parameters (i.e., left point, li, center point, mi,

and right point, ri). As a result, the computation time can be reduced. Secondly,

Gaussian membership function ensures the fuzzifier is always injective while the

injectivity of triangular function fuzzifier is only assured when the sets intersect

above a threshold. Injectivity is defined as the discrimination of different values

of the input variable, allowing an effective fuzzy processing [45]. In the experi-

ments, the Gaussian membership function used for the non-singleton fuzzifier was

symmetrical based on the assumption that the effect of noise is most likely to be

equivalent on all points. The universe discourses of inputs were not normalised,

but they were set to appropriate ranges according to the input values. Inferring

from the data in Fig. 2.5, the pulse period range was set to [100, 1000] ms whereas

the peak amplitude range was set to [0, 1.8] mV.
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The Takagi-Sugeno-Kang (TSK) [46] classifier was utilised. This was also the

structure being adopted by Li et al. [47]. A set of nine fuzzy if-then rules were

constructed of the form:

IF x1 is F̃ r
1,j1

and x2 is F̃ r
2,j2

, THEN Classr

where j1 = j2 = {1, 2, 3} (small, medium, large), r = 1, . . . , 9, and Classr =

{1, 2, 3, 4} (CT, NSR, VF, VT). The label CT implies that no decision can be

reached for the interval and the patient should be referred for further testing.

Since there were nine outputs, the logical products for each rule must be combined

or inferred. The “Max-Min” inference engine which takes the firing strengths of

each rule and select the highest one was used as explained in Section 2.1.

2.3.4 Classifier Training

This section discusses how the proposed fuzzy based classifier was formulated by

using the Genetic Algorithm (GA) approach. The Gaussian membership functions

and rule base were initially randomised, and then being tuned simultaneously by

GA. Shi et al. [48] suggested that membership functions and rule base should

be designed and evolved at the same time since both parameters are said to be

co-dependent.

A GA starts off with a population of randomly generated chromosomes, and

advances toward better chromosomes by applying genetic operators. The pop-

ulation undergoes evolution in a form of natural selection. During successive

iterations, called generations, chromosomes in the population are rated for their

adaptation as solutions, and on the basis of these evaluations, a new population of
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chromosomes is formed using a selection mechanism and specific genetic operators

(mutation and crossover). A fitness function is used to return a single numerical

fitness of the individual in the population, which is supposed to be proportional

to the utility or adaptation of the solution represented by that chromosome.

When designing a fuzzy system using a GA, the first important considera-

tion is the representation strategy, that is how to encode the fuzzy system into

the chromosome. In our design, there were two inputs and each of the input

fuzzy variables (x1 and x2) was partitioned into three membership functions,

thus there were 12 parameters. Assume that the mean and standard deviation

of the membership function were denoted by mj
xi

and σj
xi

, where i = 1, 2 and

j = 1, 2, 3. In addition, there were 9 rules (3 × 3) in the rule-base, which result-

ing extra 9 parameters, rn where n = 1, 2, . . . , 9. Hence, a total of 21 parameters

(3 membership functions×2 parameters×2 input variables+9 rules) were needed to be tuned

by GA. Each of the membership function parameters was encoded (genotype rep-

resentation) into a 8-bit binary string whereas each of the rule parameters was

encoded into a 2-bit binary string. As a result, the total length of the binary

string was 114 bits. The corresponding illustration of the chromosome structure

is shown in Fig. 2.6. Subsequently, all parameters must be decoded (phenotype

representation) during fitness evaluation. The rule parameters were decoded into

integers range from 0 to 4. Likewise, the membership function parameters were

decoded into real numbers using linear mapping equation as shown below:

gp = Gmin
q + (Gmax

q −Gmin
q )× Aq

2N − 1
(2.5)

where gp denotes the actual value of the qth parameter, Aq denotes the integer
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Table 2.2: Upper and lower limits of the parameters

Parameters Gmin Gmax

Width mean 0 250
Width standard deviation 10 30
Period mean 100 1000
Period standard deviation 30 100
Amplitude mean 0 1.8
Amplitude standard deviation 0.01 1

represented by a N-bit string gene, Gmax
q and Gmin

q denote the user defined upper

and lower limits of the gene respectively (see Table 2.2).

Figure 2.6: Chromosome structure.

The next important consideration following the representation is the choice of

fitness function. A good fitness function can reflect the objective of the system.

Unlike traditional gradient-based methods, GA’s can be used to evolve systems

with any kind of fitness measurement functions including those that are nondif-

ferentiable, discontinuous, etc. How to define the fitness evaluation function is

totally problem dependent. Unlike for prediction and estimation problems which

normally use mean-square error or absolute difference error related function, the

number of correctly classified classes or misclassified classes was used for classifi-

cation problems. The fitness function is as follows:

fit =
ACNSR + ACV F + ACV T

3
(2.6)

where AC denotes the percentage of correctly classified class.

After each of the chromosomes was evaluated and associated with a fitness,

the current population undergoes the reproduction process to create the next gen-

eration of population. The “tournament with replacement” selection scheme was
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used to determine the members of the new generation population. The purpose

of the selection mechanism was to focus the search process on the most promising

regions of the search space. Variation operators (crossover and mutation) play

important roles in GA. They facilitate an efficient search and guide the search

into new regions. Crossover facilitates exploration, while mutation facilitates ex-

ploitation of the search space. The improvement in performance takes place over

iterations in accord with some prescribed stopping criteria.

2.3.5 Results and Discussion

The performance of the genetically evolved NSFLC was tested on VFDB database.

The database consists of 22 half-hour surface ECG recordings of subjects who

experienced episodes of sustained ventricular tachycardia, ventricular flutter, and

ventricular fibrillation. The algorithm applied a signal window of 4 seconds. 60

records of NSR, 60 records of VF and 60 records of VT were extracted as train

data. Similarly, the same number of ECG data was extracted as test data. All

data was extracted randomly according to the annotation of the database and

they covered across multiple individuals.

In the experiment, single point crossover and bit-wise flipping mutation were

adopted. For simplicity, the probabilities of crossover and mutation were held

constant for the entire run of the GA (200 iterations), which were 0.8 and 0.03

respectively. Since GA is a stochastic search algorithm, the results reported is

based on the average of 10 runs. An example of GA convergence trace is shown in

Fig. 2.7 when optimising NSFRBC using pulse width and amplitude as inputs.

Three performance measurements (accuracy, sensitivity, and specificity) were
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Figure 2.7: GA convergence trace.

used to benchmark the classification systems. Sensitivity is the probability that

a test is positive, given that the person has the disease, whereas specificity is the

probability that a test is negative, given that the person does not have the disease.

The parameters are defined as follows:

Sensitivity, SE =
TP

TP + FN
(2.7)

Specificity, SP =
TN

TN + FP
(2.8)

where TP , TN , FP and FN are defined in Table 2.3.

The results of the test are shown in Table 2.4. Comparing the results for Con-

figurations 1 and 2, it may be concluded that using the amplitude as an input

feature produced better accuracy than using the pulse period as a feature. By

changing the input signal from period to amplitude, the singleton fuzzy classi-

fier boosts the overall classification results (accuracy +6.66%, sensitivity +6.57%,

and specificity +3.31%). Thus, the first hypothesis is proven to be true, that is,
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Table 2.3: Notation Used In Sensitivity And Specificity Equa-
tions

Predicted/Real Rhythm A Rhythm B

Rhythm A True Positive (TP) False Negative (FN)

Rhythm B False Positive (FP) True Negative (TN)

configuration 2 will outperform configuration 1. Clearly, amplitude is a better

alternative to pulse period as the classifier input. In fact, medical practitioners

always observe the amplitude information rather than period information when

they want to determine the types of ventricular arrhythmias. Period information

could be unreliable because shorter pulse period could be resulted from exercise

activity or patient’s emotion. The structure of Configuration 2 would be easier

for medical practitioners to understand as it is more similar to the method they

employ. Next, the results from configuration 3 show the superiority of using NS-

FRBC. Both configurations 1 and 3 adopted pulse period as one of the inputs.

Although the results for singleton input case shows that pulse period is inferior

to amplitude as the input, NSFRBC manages to handle most of the uncertainties

and thus providing improvement over its singleton counterpart. This may suggest

that the advantage of using NSFRBC is even more apparent than using a more

suitable sets of features. On top of that, NSFRBC still manages to enhance the

classification capability when a better input is used (see config. 4 vs. config. 2).

Hence, the second hypothesis was also proven to be true. The results imply that

singleton classifier has less degrees of freedom or flexibility in classifying a more
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non-linearly separable set of data. On the other hand, the findings show that

a NSFRBC provides more advantages when features with more uncertainties are

used as the input signal. Small improvement may still achievable when the input

features have less uncertainties. In short, NSFRBC is proven to be a very use-

ful tool in handling the uncertainties exist in pattern classification. The boxplot

(Fig. 6.6) shows the classification accuracies of using four different configurations

for 10 runs. The boxplot reveals that Configuration 1 yields the most inconsistent

results throughout the iterations while others have comparable ranges of variances.

In addition, the non-singleton structure also helps GA to converge to global max-

ima more frequent with the harder-to-classify feature in mind (Configuration 1

versus Configuration 3).

1 2 3 4

90

91

92

93

94

95

96

97

98

99

100

A
cc

ur
ac

y 
(%

)

Configuration

Figure 2.8: The boxplot for each configuration over 10 runs.

Since other algorithms have been proposed for ventricular arrhythmia classi-

fication, it would be insightful to compare the obtained results to some existing

algorithms. Table 2.5 shows that the proposed classification system is on a par

with the existing algorithms. It should be noted that some of the algorithms used
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Table 2.4: Classification Results With Dif-
ferent Configurations

Config. Rhythm AC (%) SE(%) SP (%)

1 a NSR 100.00 100.00 100.00

VF 83.33 90.91 92.00

VT 91.67 84.62 95.65

Average 91.67 91.84 95.88

2 b NSR 100.00 100.00 100.00

VF 95.00 100.00 97.56

VT 100.00 95.24 100.00

Average 98.33 98.41 99.19

3 c NSR 100.00 98.36 100.00

VF 98.33 100.00 99.17

VT 100.00 100.00 100.00

Average 99.44 99.45 99.72

4 d NSR 100.00 100.00 100.00

VF 100.00 100.00 100.00

VT 100.00 100.00 100.00

Average 100.00 100.00 100.00

a SFRBC with pulse width and period as input
features.

b SFRBC with pulse width and amplitude as
input features.

c NSFRBC with pulse width and period as
input features.

d NSFRBC with pulse width and amplitude as
input features.
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own recorded ECG database instead of public accessible ECG database. Even

though Zhang [44] and Thakor [49] claimed that they achieved very promising re-

sults with Complexity Measure and Sequential Hypothesis algorithms respectively,

some researchers like Ayesta [50] and Chen [51] obtained much poorer results when

they applied the aforementioned algorithms on the general ECG database. Chen

claims that a database derived from defibrillator implantation studies is usually

much more stable and rhythm specific in comparison to a general ECG database.

Furthermore, MIT-BIH database includes broader range of VT which includes

both monomorphic and polymorphic types. Therefore, the classification result is

very dependent on database selection. Among all tests using the MIT-BIH (except

for Hurst Index algorithm with the same results), the proposed method achieved

highest classification rates. Next, the proposed algorithm uses the shortest win-

dow length (4.0s) for feature extraction as compared to other algorithms as far

as the performance is concerned. Algorithms in [44, 49, 50, 51, 52, 53, 54] have

window lengths of 7.0s, 8.0s, 8.0s, 20.0s, 4.0s, 4.8s, and 5.5s respectively to achieve

their best results as shown in Table 2.5. Although the fuzzy rule-based classifier

introduced by Chowdhury and Ludeman [52] has the same window length with

the proposed method, the proposed method’s results are far superior. A shorter

window length will allow for a shorter detection time, given that the computation

time of the classifiers are equivalent. The proposed NSFRBC only spends less than

0.05ms to classify an input, hence the computation time taken by the classifier is

negligible compared to the time required for feature extraction.
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Table 2.5: Comparative Results of Different Arrhythmia Classification Methods

NSR VF VT
Algorithm AC SE SP AC SE SP AC SE SP Data

% % % % % % % % %

Complexity Mea-
sure [44],[50]

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 ORD e

NA 23.80 NA NA 94.60 NA NA 81.90 NA VFDB c,
NSRDB d

Sequential Hy-
pothesis Testing
[49],[44],[51]

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 ORD

NA NA NA 90.00 NA NA 81.00 NA NA VFDB

Rate and Irreg-
ularity Analysis
[44]

100.00 100.00 100.00 87.75 85.88 89.08 87.75 84.71 89.92 VFDB

VF-Filter Leak-
age [44]

97.55 94.12 98.24 89.22 89.41 89.08 89.71 84.71 93.28 VFDB

Hurst Index [54] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 MITDB a

Cross Correlation
[53]

NA NA NA NA 90.20 NA NA 96.75 NA MITDB,
AHADB b,
ORD

Fuzzy Rule-
Based [52]

94.30 NA NA 78.00 NA NA 82.00 NA NA VFDB

Sample Percent-
age in the Dy-
namic Range [50]

NA 100.00 NA NA 94.60 NA NA 81.90 NA VFDB,
NSRDB

Sequential Proba-
bility Ratio Test
[51]

NA NA NA 93.00 NA NA 96.00 NA NA VFDB

Proposed
Method

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 VFDB

a MITDB- MIT-BIH Arrhythmia Database
b AHADB- American Heart Association Database
c VFDB- MIT-BIH Malignant Ventricular Arrhythmia Database
d NSRDB- MIT-BIH Normal Sinus Rhythm Database
e ORD- Own Recorded Database
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2.4 Conclusion

This chapter presents non-singleton fuzzy rule-based classifier (NSFRBC) for han-

dling the uncertainties in pattern classification problem. The analysis demonstrate

that the NSFRBC has fuzzy classification boundary and noise suppression capa-

bility. These characteristics means that the NSFRBC is particulary suitable for

problems where the boundaries between classes is non-distinct. To further demon-

strate the benefits offered by the non-singleton framework, a NSFRBC evolved

using genetic algorithm (GA) is assessed using a benchmark cardiac arrhythmias

classification problem. Results indicate that a NSFRBC achieved good classifica-

tion accuracy using features that are easier to extract, but contain more uncer-

tainties.
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Chapter 3

Type-2 Fuzzy Rule-Based

Classifiers

It has been demonstrated in Chapter 2 that non-singleton type-1 fuzzy rule-based

classifier is capable of handling input uncertainties more efficiently. However, non-

singleton type-1 fuzzy classifier does not adequately account for the uncertainties

associated with antecedent and consequent fuzzy sets as illustrated in Table 3.1.

Specifically, the uncertainty about the ambiguities in the meaning of the fuzzy set

labels are not considered.

As membership functions (MFs) of type-2 fuzzy sets are fuzzy and contain a

footprint of uncertainty (FOU), they can model and handle both linguistic and

numerical uncertainties associated with the inputs and outputs of the fuzzy logic

system. It has been shown in [55] that the extra degrees of freedom provided by

the footprint of uncertainty enables type-2 fuzzy logic system to produce richer

outputs that cannot be achieved by type-1 fuzzy logic system with the same num-

ber of membership functions. Besides, type-2 fuzzy logic systems have more de-
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sign parameters, which equips them with the potential to outperform their type-1

counterparts. In reality, problems that contain crisp and precise data do not exist.

In Mendel’s opinion, any problem that has previously lent itself to type-1 fuzzy

sets, in which membership functions are uncertain, is an excellent candidate for

re-examination using type-2 fuzzy sets [56]. Therefore, it would be interesting to

find out how the FOUs can improve the fuzzy classifier performance.

It should be noted that type-2 FLSs presented throughout this thesis are re-

stricted to interval type-2 FLSs rather than general type-2 FLSs. This is because

it is computationally prohibitive to calculate the meet operations for each fired

rules and to perform type reduction when general type-2 fuzzy sets are used [37].

The following section introduces interval type-2 fuzzy rule-based classifier. This

is followed by the description of the procedures to design the classifier. The pro-

posed Type-2 fuzzy classifiers have been applied to ECG arrhythmic classification

problem which has been described in Section 2.3 of Chapter 2. The average period

and pulse width of ECG data are extracted as the inputs to the classifier. Dif-

ferent sources of noises have been included to model the uncertainties associated

with the vagueness in MFs and the unpredictability of the data. The results show

that the proposed strategies to design the FOU are essential to achieve a high

performance fuzzy rule-based classifier in face of the uncertainties.

3.1 Interval Type-2 Fuzzy Rule-Based Classifier

This section introduces the interval type-2 FRBC. Fig. 3.1 shows the general

structure of the proposed type-2 fuzzy rule-based classifier. There are six com-
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Table 3.1: Comparisons of Type-1 and Type-2 Singleton and Non-Singleton FLSs.

Type-1 FLS Type-2 FLS

- No uncertainties about antecedents or
consequents

- Uncertainties about antecedents or
consequents are accounted for (the
FOU)

Singleton
fuzzifica-
tion

- No uncertainties on measurements that
activate the FLS

-No uncertainties on measurements that
activate the FLS

- Only a point output is obtained - Both a type-reduced set and a point
output are obtained

- No uncertainties about antecedents or
consequents

- Uncertainties about antecedents or
consequents are accounted for (the
FOU)

Non-
singleton
fuzzifica-
tion

- There are uncertainties on measure-
ments that activate the FLS; they are
modeled as type-1 fuzzy numbers

- There are uncertainties on measure-
ments that activate the FLS; they are
modeled by treating the measurements
as type-1 or type-2 fuzzy numbers

- Only a point output is obtained - Both a type-reduced set and a point
output are obtained

Figure 3.1: Structure of type-2 fuzzy rule-based classifier.
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ponents in the architecture: rule base, fuzzifier, infererence engine, type-reducer,

defuzzifier and decision maker. Once the rules have been established, a fuzzy rule-

based classifier can be viewed as a mapping from inputs to outputs. Rules are

the heart of a fuzzy logic system. They may be provided by experts or extracted

from numerical data. The rule-base consists of M rules where each rule relates

the domain X1 × · · · ×Xp ⊆ Rp to the range Y ∈ R and can be expressed as the

following intuitive IF-THEN statement:

Rj: IF x1 is Ãj
1 and · · · xp is Ãj

p, THEN y is Cj

where Rj denotes the jth rule, Ãj
k is an interval type-2 antecedent set associated

with the kth input variable xk (k = 1, . . . , p), and Cj represents the consequent set

associated with the output variable y. The role of the fuzzifier in a fuzzy system

is to map each of the element, x′k, in the input vector x′ = (x′1, . . . , x
′
p)

T into the

fuzzy set X̃ ′
k. This process provides a natural framework for handling uncertain

input information. There is a variety of methods for performing fuzzification. The

most common approach is singleton fuzzification, which maps a crisp input into

the following MF:

µX̃′(x) =





1 x = x′

0 x 6= x′

for ∀x ∈ X. Next, the inference engine component computes the firing strengths

for each rule which expresses how well the fuzzified input X̃ ′ match the antecedents

Ã′. For type-2 FRBC, the inference engine produces two firing strengths for each

rule (refer to Fig. 3.2), the lower and upper firing strengths of the jth rule, f j(x′)
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and f̄ j(x′), are computed as:

f j(x′) =
∏p

k=1
sup
xk

[µX̃′
k
(xk), µÃj

k

(xk)] (3.1)

f̄ j(x′) =
∏p

k=1
sup
xk

[µX̃′
k
(xk), µ̄Ãj

k
(xk)] (3.2)

where sup[.] denotes supremum operation [37]. Assume that the input is an

interval type-2 Gaussian primary membership function with uncertain standard

deviations:

µX̃k
(xk) = exp

[
−1

2

(
xk −mX̃k

σX̃k

)2
]

with σX̃k
∈ [σX̃k1

, σX̃k2
] (3.3)

and the antecedents are interval type-2 Gaussian primary membership functions

with uncertain means:

µF̃k
(xk) = exp

[
−1

2

(
xk −mF̃k

σF̃k

)2
]

with mF̃k
∈ [mF̃k1

,mF̃k2
] (3.4)

To obtain the value of xk at which the supremum in (3.2) occurs under minimum

t-norm:

x̄k,max =





σX̃k2
mF̃

k1
+σF̃

k
mX̃k

σX̃k2
+σF̃k

, for mX̃k
≤ mF̃k1

mX̃k
, for mX̃k

∈ [mF̃k1
,mF̃k2

]

σX̃k2
mF̃

k2
+σF̃

k
mX̃k

σX̃k2
+σF̃

k

, for mX̃k
≥ mF̃k2

(3.5)

Likewise, to obtain the value of xk at which the supremum in (3.2) occurs under

minimum t-norm:

xk,max =





σX̃k1
mF̃k2

+σF̃k
mX̃k

σX̃k1
+σF̃k

, for mX̃k
<

[
mF̃k1

+mF̃k2

2
− σX̃k1

(
mF̃k2

−mF̃k1

)

2σF̃k

]

mF̃k1
+mF̃k2

2
, for mX̃k

∈
[

mF̃k1
+mF̃k2

2
−

σX̃k1

(
mF̃

k2
−mF̃k1

)

2σF̃k

,
mF̃k1

+mF̃k2

2
+

σX̃k1

(
mF̃

k2
−mF̃k1

)

2σF̃k

]

σX̃k1
mF̃k1

+σF̃k
mX̃k

σX̃k1
+σF̃k

, for mX̃k
>

mF̃k1
+mF̃k2

2
− σX̃k1

(
mF̃k2

−mF̃k1

)

2σF̃k

(3.6)
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If the input is a type-1 Gaussian membership function, then the equations (3.5)

and (3.6) still apply. Next, if the input is singleton, then x̄k,max = xk,max = xk.

Fig. 3.3 gives the pictorial description of the input and antecedent operations (3.2)

and (3.2) when minimum t-norm is used.

Before the final crisp output can be obtained, the output of the inference

engine and the consequent must be processed. In a more general case where the

consequent fuzzy sets C̃j are interval type-2 sets, the center-of-set (COS) type-

reduced set Ycos can be computed with center-of-sets type reduction:

Ycos = [yl, yr] =

∫

y1∈[y1
l ,y1

r ]

· · ·
∫

yM∈[yM
l ,yM

r ]

∫

f1∈[f1,f̄1]

· · ·
∫

fM∈[fM ,f̄M ]

1

/∑M
j=1 f jyj

∑M
j=1 f j

(3.7)

where [yj
l , y

j
r ] denotes to the centroid of the set C̃j, which can be obtained from

various methods defined in [37]. However, the consequent fuzzy sets in our classifi-

cation problem correspond to the class labels and are represented by crisp number

(singleton), the center-of-sets type-reduction above is simplified to height type-

reduction by simply setting yj
l = yj

r . The type-reduced set which is an interval

output, [yl(x
′), yr(x

′)] can be obtained via Karnik-Mendel iterative algorithm [57].

To compute yl, the steps are:

1. Without loss of generality, assume that pre-computed yj
r are arranged in

ascending order; i.e., y1
r ≤ y2

r ≤ · · · ≤ yT
r ;

2. Compute yr as yr =
∑T

j=1 f j
r yj

r/
∑T

j=1 f j
r by initially setting f j

r = (f j + f̄ j)/2

for j = 1, . . . , T and let y′r ≡ yr;

3. Find R (1 ≤ R ≤ T − 1) such that yR
r ≤ y′r ≤ yR+1

r ;
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(a)

(b)

(c)

Figure 3.3: The operations between interval type-2 antecedent with different types
of inputs using minimum t-norm. (a) Singleton input; (b) Non-singleton type-1
input; and (c) Non-singleton interval type-2 input.
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4. Compute yr as yr =
∑T

j=1 f j
r yj

r/
∑T

j=1 f j
r with f j

r = f j for i ≤ R and f j
r = f̄ j

for i > R and let y′′r ≡ yr;

5. If y′′r 6= y′r, then go to Step 6. If y′′r = y′r, then stop and set y′′r ≡ yr;

6. Set y′r equal to y′′r , and return to Step 3.

The procedure for computing yl is very similar to the one for yr. Just replace yj
r by

yj
l , and, in Step 3 find L(1 ≤ L ≤ T−1) such that yL

l ≤ y′l ≤ yL+1
l . Additionally, in

Step 2 compute yl as yl =
∑T

j=1 f j
l yj

l /
∑T

j=1 f j
l by initially setting f j

l = (f j + f̄ j)/2

for j = 1, . . . , T and, in Step 4 compute yl as yl =
∑T

j=1 f j
l yj

l /
∑T

j=1 f j
l with

f j
l = f̄ j for i ≤ L and f j

l = f j for i > L.

The type-reduced set is then defuzzified to the crisp output, y by simply taking

the average of yl and yr, i.e.:

y(x′) =
yl(x

′) + yr(x
′)

2
(3.8)

Finally, the decision maker will determine the class label:

Class(x′) = arg min
j

(y(x′)− C̄j) (3.9)

where C̄j denotes the singleton at the point having maximum membership in the

jth consequent set. For Gaussian MF, this point is equal to the mean of the

function.

Since in this chapter type-2 FRBC will be compared against type-1 FRBC,

it is appropriate to briefly highlight the differences between both classifiers. The

structure of a type-1 FRBC is similar to a type-2 FRBC except for a few aspects.

Firstly, the inference engine will produce a firing strength, f j for jth rule rather

than an interval value. Secondly, the type-reducer does not exist since no type-2
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Figure 3.4: The design strategy of Type-2 FRBCs.

number is involved. In other words, the output processing of a type-1 FRBC only

consists of defuzzification. For height defuzzification, the crisp output, y can be

computed as:

y(x′) =

∑T
j=1 yjf j

∑T
j=1 f j

. (3.10)

3.2 Type-2 Fuzzy Rule-Based Classifier Design

Methods

In this section, the design strategy of the type-2 classifiers will be explained. A

useful trait of the design methodology is most of the antecedent MF parameters

can be conveniently derived from data itself. The design strategy, which comprises

four steps, is summarised in Fig. 3.4. The first step is to determine the structure

of the classifier. This can be achieved by establishing one fuzzy rule for each

naturally distinguishable class. Since there are three classes, it would be intuitive

to form only three rules (i.e., T = 3) in this problem. In addition, the number

of antecedents for each rule is determined by the number of features which is

two in our case. The next step is to determine the parameters of the MFs. To

ensure the designed MF parameters are relevant to the data and to achieve good
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interpretability and transparency of the rule-base, our second strategy is to design

the prototype type-1 MF where the mean M j
k and standard deviation σj

k of the

Gaussian MF parameter are computed according to the distribution of the data.

For ∀x ∈ Classj:

M j
k =

1

Nj

Nj∑
i=1

xi,k (3.11)

σj
k =

√√√√
Nj∑
i=1

1

Nj

(xi,k −M j
k)2 (3.12)

where Nj denote the total number of samples from class j. Alternatively, the mean

of type-1 MF can be computed with other more advanced clustering algorithms

like Fuzzy C-Means (FCM), Self-Organizing Map (SOM) etc. We define these

prototype MFs as base-line type-1 (BS-T1) MFs.

Based on the BL-T1 MFs, we design three types of FOUs with the aim to

account for different sources of uncertainties such as randomness of the data and

the ambiguity in determining the exact membership functions. The first type-

2 MF is shown in Fig. 3.5(a) where the upper membership function (UMF) is

characterised by BL-T1 MF. The lower membership function (LMF) has the same

mean as the UMF but with two different standard deviations, (σj
L,k, σj

R,k). The

idea to incorporate two different standard deviations is motivated by the fact

that most classification problems have uneven data distribution with respect to

the mean. For example, the ECG data distributions in Fig. 2.5 have different

densities. The initial values of both parameters are then computed as:
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σj
L,k =

√ ∑

x∈Classj

1

N ′
j

(xi,k −M j
k)2 for ∀xi,k ≤ M j

k (3.13)

σj
R,k =

√ ∑

x∈Classj

1

N ′′
j

(xi,k −M j
k)2 for ∀xi,k > M j

k (3.14)

where N ′
j and N ′′

j represent the total number of samples from class j which satisfy

the condition parts of (3.13) and (3.14) respectively. Since the asymmetrical FOUs

are created by varying the standard deviations, this classifier is named as the type-

2 uncertain standard deviations (T2-US) classifier.

The second one is known as type-2 uncertain means (T2-UM) classifier. As the

name suggests, the UMF has two mean values, [M̄ j
L,k, M̄ j

R,k]. For ∀x ∈ Classj:

M̄ j
L,k =

1

N ′
j

N ′
j∑

i=1

xi,k for ∀xi,k ≤ M j
k (3.15)

M̄ j
R,k =

1

N ′′
j

N ′′
j∑

i=1

xi,k for ∀xi,k > M j
k . (3.16)

This strategy is motivated by the limitations of clustering algorithms to locate

the true mean of the MF. For example, the FCM algorithm is known to work well

with evenly distributed data that are spherical in shape [58] but may not work

well in the case of elliptical distribution such as the ECG classification problem in

previous chapter where Fig. 2.5 clearly shows that NSR data comprise of two sub-

clusters with high densities compared to VF and VT classes with sparse densities.

Furthermore, all three classes have elliptical data distribution. The BL-T1 MF is

used as the LMF for T2-UM classifier (see Fig. 3.5(b)).

Finally, the third classifier- type-2 uncertain standard deviations and means

(T2-USUM), is the combination of T2-US and T2-UM classifiers. We see that

BL-T1 MF automatically served as the principal MF, as shown in Fig. 3.5(c). For
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all three types of type-2 classifiers, the steps above intend to capture as much

uncertainty as possible from the data through the FOUs. The initial parameters

such as LMF of T2-US classifier, UMF of T2-UM classifier and both LMF and

UMF of T2-USUM classifier served as the good initial search points in the later

stage of optimisation by Genetic Algorithm (GA).

3.3 Experimental Results

In this section, we will carry out five case studies to examine the performances

of different types of T2 FRBCs. They are benchmarked on the ECG arrhyth-

mias classification problem. In addition, T2 FRBCs are compared against BL-T1

FRBC. The structure of a BL-T1 FRBC is similar to a T2 FRBC (refer to Sec-

tion 3.1) except for a few aspects. Firstly, the inference engine will produce a firing

strength, f j for jth rule rather than an interval value. Secondly, the type-reducer

does not exist since no type-2 number is involved. For height defuzzification, the

crisp output, y can be computed as:

y(x′) =

∑T
j=1 yjf j

∑T
j=1 f j

(3.17)

If all FOUs of a type-2 FRBC disappear, then type-2 FRBC is immediately reduced

to type-1 FRBC and there is no difference between the final outputs from both

classifiers.

The first case study seeks to examine the importance of the evolved FOUs

in T2 FRBCs compared to the BL-T1 FRBC when the means of the MFs are

obtained via (3.11). The second case study focuses on whether the more advanced

clustering algorithm can further improve the performance of T2 FRBCs. This is
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(a)

(b)

(c)

Figure 3.5: Interval type-2 Gaussian membership functions with: (a) uncertain
standard deviations, (b) uncertain means, (c) uncertain standard deviations and
means.
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achieved by computing the means through the FCM algorithm. Subsequently, the

third and fourth case studies examine the performances of T2-FRBCs when the

evolved antecedent membership functions in case study 1 are later perturbed with

noises. In the third case study, only the means of the MFs (as computed in first

case study) are corrupted with noises while the fourth case study is configured

in such a way that only the standard deviations of the MFs are perturbed with

noises. In practice, the uncertainties could be due to different experts’ opinions

which are used to construct the rule-base. As suggested by Mendel [37], words can

mean different things to different people. Therefore, there exists vagueness in the

linguistic labels. Moreover, the random disturbances could be due to the noisy

training data. The dynamics of the ECG signal is inherently noisy because it is

very sensitive to cable movement and muscle activity. In addition, the interference

from electrical network can degrade the recording process especially for surface

ECG recording. As the T2 FRBCs attempt to the encapsulate the aforementioned

uncertainties in the FOUs of the antecedent sets, it may be able to outperform its

T1 counterpart. The last case study aims to study if T2 FRBCs can handle the

uncertainty associated with unpredictability [59, 60] better. Roughly speaking,

this is one of the most important issues in ECG classification or any pattern

classification problems. It reflects the situation where the applied testing samples

deviate from the training samples to some extent. When referring to automated

external defibrillator (AED), this occurs when the ECG signals produced by the

patient deviate from the training samples during the algorithm development stage.

Hopefully, T2 FRBCs can improve the tolerance towards the unpredictability.

This case study is modeled by noise corrupted test data while the training data
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Figure 3.6: Type-2 fuzzy rule-based classifier chromosome structure. UMF: upper
membership function, LMF: lower membership function.

are unperturbed.

In case studies 3, 4 and 5, the noise source is modeled as a Gaussian function

with zero mean and variance of 0.001:

P ′ = P +
√

0.001× uniform() (3.18)

where P represents either Gaussian MF mean or standard deviation parameter in

case 3 and 4 or the input value in case 5 while P ′ represents the noise corrupted

parameter. uniform() denotes a function that generates a scalar value from a

normal distribution with mean 0 and standard deviation 1.

To test the performance of each classifier, we carried out a 10-fold cross-

validation (10-CV) procedure. For GA optimisation, all membership function

parameters and consequent values are encoded into a binary string. The chromo-

some structure is given in Fig. 3.6. Each value is represented as a 8-bit binary

string. To decode the binary string, (2.5) can be used. The training accuracy is

used as the fitness function. Adaptive parameters were not used in order to keep

the algorithm as simple as possible. The mutation rate was initially set to 0.1,

0.05, 0.03 and 0.01 respectively. It was noticed that mutation rates of 0.01 can lead

to premature convergence occasionally. On the other hand, the convergence speed

of the solution can be very slow when the mutation rate was set to 0.1 or 0.05.

It worked out that mutation rate of 0.03 gave the best compromise between the

convergence speed and classifier’s accuracy. Likewise, the crossover rates (0.5, 0.7,
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0.8 and 0.9) and 0.8 were compared consistently gave the best GA performance.

The population size was 30 and the maximum number of generations was fixed

at 100. The optimisation process stops if there is no improvement in the fitness

functions of the past 30 generations. In this particular application, the solutions

usually converged between 70 and 90 generations. The results of the 10-CV exper-

iments are summarised in Tables 3.2 and 3.3 where each result is obtained from

the average of ten iterations for each classifier. Data for the first 4 case studies

indicate that all FRBCs have good generalisation capabilities since the training

and testing accuracies are very close. In the last case study, the perturbation of

the test data set has inevitably decreased the testing accuracy. Comparing the

first and the second case studies, the performance differences between the mean

calculation method of simple averaging and FCM are minimal. This shows the

FCM does not bring any improvement over the simple averaging method. In all

cases, T2 FRBCs consistently outperform BL-T1 FRBC, this shows that the FOU

is essential for a better FRBC. In particular, the third and the fourth case studies

show that T2 classifiers are more robust against the perturbations in the MFs,

hence less sensitive to design errors. BL-T1 classifier has significant testing per-

formance drop (≈ 5%) when the test data are corrupted by noises as shown in

last case study while all T2 FRBCs remain relatively robust with only 1−2% per-

formance drop. This implies that the issue of unpredictability can be minimised

through the proposed type-2 framework. The boxplots are shown in Fig. 3.7-3.11.

It is clear that under any types of the perturbations mentioned above, T2 FRBCs

remain robust and consistent compared to T1 FRBC.
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Table 3.2: Average Training Accuracies of FRBCs (in %)

BL-T1 T2-US T2-UM T2-USUM

Case 1 88.5926 90.2407 90.7407 90.2161
Case 2 88.4259 90.1914 89.9444 90.0432
Case 3 86.1729 88.4444 88.4259 88.3210
Case 4 87.0062 89.5309 89.4568 89.3148
Case 5 88.6914 90.1729 89.9876 89.8272

Table 3.3: Average Testing Accuracies of FRBCs (in %)

BL-T1 T2-US T2-UM T2-USUM

Case 1 88.1111 89.3333 89.9444 89.3333
Case 2 88.0000 90.1111 89.8765 89.4444
Case 3 85.8334 88.1667 88.4444 88.0555
Case 4 87.1667 89.1667 89.0555 89.4444
Case 5 83.6667 88.6111 87.4444 87.5000
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Figure 3.7: Boxplot for case study 1 with 10-CV and ten iterations (a) training
accuracy, (b) testing accuracy.
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Figure 3.8: Boxplot for case study 2 with 10-CV and ten iterations (a) training
accuracy, (b) testing accuracy.
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Figure 3.9: Boxplot for case study 3 with 10-CV and ten iterations (a) training
accuracy, (b) testing accuracy.
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Figure 3.10: Boxplot for case study 4 with 10-CV and ten iterations (a) training
accuracy, (b) testing accuracy.
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Figure 3.11: Boxplot for case study 5 with 10-CV and ten iterations (a) training
accuracy, (b) testing accuracy.
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3.4 Conclusion

This chapter presents some simple yet intuitive approaches to design a type-2 fuzzy

rule-based classifier. It becomes clear that the uncertainties associated with the

membership functions can be encapsulated by the footprint of uncertainty (FOU)

and they are totally characterised by the upper membership functions (UMFs) and

lower membership functions (LMFs). To enable the designed membership func-

tions (MFs) to reflect the uncertainties in the data, the structure of the FRBC and

the initial parameters are computed directly from the data set. When dealing with

biological signals such as ECG, various uncertainties can arise and this will lead

to the usability limitation of the algorithm in real-world applications. Through

the extensive experimental results, it has been shown that T2 FRBCs has much

better and stable performances in face of different sources of uncertainties. The

optimisation of the FOUs by using GA is proven to be effective and model-free.

While there is no preference for T2-US, T2-UM or T2-USUM FRBCs in this ap-

plication, there is always a possibility that either one of them will outperform the

rests in other applications. Finally, it is believed that the FRBC design strategy

described in this chapter provide the general methodology that can be also be

applied to other classification tasks.



79

Chapter 4

Robustness Analysis of Type-1

and Type-2 Fuzzy Rule-Based

Classifiers

In recent years, there has been significant growth in interest in type-2 fuzzy logic

system due to its ability to handle the uncertainties through the concept of foot-

print of uncertainty (FOU). While type-2 fuzzy logic has shown promising results

in control applications, research showed that classification accuracy of type-2 fuzzy

systems may not be better. This is due to the different nature of the control and

classification problems. Type-2 fuzzy controller is capable of producing smoother

continuous control surface but this advantage may not cogent in classification

problem because the classifier output is a discrete class label. Another advantage

of type-2 fuzzy controllers is robustness against uncertainties in the form of noise.

This chapter seeks to study whether the robustness characteristics of type-2 fuzzy

logic controller extends to classification problems.
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4.1 Introduction

Uncertainties are unavoidable in real world applications. Hence, any methodology

that successfully makes the transition from theory to practice should be equipped

with a certain degree of robustness against imprecise data. In the field of clas-

sification, an outstanding algorithm needs to provide classification accuracy and

be robust against uncertainties that exist during the design and implementation

phases. A classifier may be deemed to be robust if it is less sensitive to data varia-

tions, and is able to handle insufficient training data scenario [61]. Likewise, in [62]

the robustness of the classifier is associated with immunity against missing values

in training data and test data. Nanopoulos et al. [63] considered a classifier to be

robust if it is able to handle noise which can disrupt the learning process. In other

words, a classifier is said to be robust if it is capable of coping well with uncertain-

ties (arising from deficiencies in the available information caused by incomplete,

imprecise, ill-defined, not fully reliable, vague, and contradictory information) in

various stages of classifier design.

The popularity of fuzzy pattern classification stems from the fact that a FRBC

provides a framework to incorporate both subjective (i.e., expert opinion) and

objective (i.e., design samples where the knowledge can be extracted) information,

hence it may be able to outperform other classifiers [17]. It is possible to integrate

this valuable knowledge into the fuzzy logic system due to the system’s similar

reasoning style to the human being. However, an ordinary (type-1) fuzzy set

does not capture uncertainty in all of its manifestations, particularly when it

arises from vagueness in the shape of the membership function. Type-2 fuzzy
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sets have been introduced to capture the uncertainties. The uncertainties of the

membership functions (MFs) could arise from differing expert opinions which are

used to formulate the fuzzy rules or due to the noisy inputs when they are used

to train the FRBC.

In recent years, there are two major categories of type-2 fuzzy application in

pattern classification. The first category refers to the methods that incorporate

type-2 fuzzy sets to the conventional classifiers. Most techniques in this category

either fuzzify the conventional classifier’s component or treat type-2 fuzzy logic

system (FLS) as the input/output processor. Choi and Rhee [58] used IT2FLS

as a pre-processor to generate fuzzy membership based on the distance between

the pattern and the centroid of the class. The fuzzy membership values are then

used as inputs to back-propagation neural networks. It has been shown that

Type-2 fuzzy pre-processing resulted in about 0.92% to 2.16% improvement for

Pima Indian Diabetes data set compared to type-1 counterpart. Chen et al. [64]

used a type-2 fusion model to combine multiple support vector machines (SVMs)

classifiers. By utilising the distance of the data to SVMs hyperplanes and the

accuracy information of the individual SVMs, their experiment results show that

the fusion model outperform individual SVMs in most cases. In [18, 65], John

et al. pre-processed the expertise of clinicians using type-2 fuzzy sets for use with

neuro-fuzzy clustering for classification of sports injuries in the lower leg. They

concluded that type-2 representation can improve the classification results. Zeng

et al. [23] hybridised type-2 fuzzy sets with Gaussian mixture models (GMMs),

known as T2 FGMMs whereby the conventional multivariate Gaussian parameters

are represented as type-2 membership functions with uncertain mean or uncertain
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variance. They observed that T2 FGMMs performs as good as or better than

GMMs in classification rates under the condition of insufficient training data. In

addition, they extended Hidden Markov Models (HMMs) to type-2 fuzzy HMMs

(T2 FHMMs). Based on the results in phoneme classification, they concluded

that T2 FHMMs outperform classical HMMs in terms of classification rate and

robustness against babble noise. Since the works in this category are extensions

of the conventional classifiers, the main idea is to improve the existing classifier

performance by incorporating type-2 framework. Unfortunately, this is not always

the case as there is no guarantee the FOU have good coverage on the system’s

uncertainty [66]. While not as well studied as in the previous category, the second

category refers to the methods based on native type-2 fuzzy rule-based classifier

which is still remain a niche field. In [17], type-2 FLCs with non-hierarchical

and hierarchical architecture was applied to the classification of battlefield ground

vehicles. The input to the system is a set of acoustic features. The input is in-

herently noisy due to the variation of the vehicle traveling speed, along with the

environmental variations (e.g., wind and terrain). To further model the input

uncertainties, the input is modeled as an interval type-2 fuzzy set whose mem-

bership function (MF) is a Gaussian function that is centered at the measured

value but with an uncertain standard deviation. Given the noisy acoustic inputs,

it was observed that interval type-2 fuzzy rule-based classifier (FRBC) only gives

marginally improvements over type-1 FRBC. The authors have raised a few im-

portant questions with regards of fuzzy pattern classification. These include in

what way are type-2 FRBCs considered outperform type-1 counterpart (e.g., in

terms of the classification error rate, or generalisability or robustness), and how
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much uncertainty must be present in a problem so that it is worthy of trading the

complexity of type-2 FRBC for better performance.

This chapter aims at advancing the understanding of IT2 fuzzy classifiers by

addressing some of the above mentioned issues. As was pointed out [67], it is a

challenging task to analyse behavior of type-2 FRBC mathematically because there

is no closed-form mathematical equation for Karnik-Mendel type-reduction [37].

For this reason, experimental studies using synthetic data sets and a real-world

classification problem were carried out. The main interest was to find out if the

footprint of uncertainty (FOU) may provide extra degrees of freedoms to improve

the robustness and performance of type-2 FRBC. In the following sections, the

robustness of type-2 fuzzy rule-based classifier (FRBC) is studied in three aspects.

In sub-section 4.2.1, the effectiveness of type-2 fuzzy classifier to handle different

levels of noises in unseen data is investigated, given that the classifier itself is only

trained with noiseless data. In sub-section 4.2.2, the advantage of type-2 classifier

in handling the imprecise boundary associated with improper feature extraction

is demonstrated via a real-world problem in the automotive industry. In sub-

section 4.2.3, the robustness of type-2 framework against randomness in classifier

designs is examined. The results and discussions are presented in each sub-section.

Finally, conclusion is drawn in section 4.3.

4.2 Robustness of Type-2 Fuzzy Classifier

Rule base is a key part of a fuzzy classifier. The common method to determine the

number of rules is to adopt full rule base where the rule base comprises all possible
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combinations of the input fuzzy sets. However full rule base may be unnecessarily

large, especially if the number of inputs is big. Consequently, another design

method is to prune the unnecessary rules using an optimisation algorithm. In this

study, four fuzzy rule-based classifiers are proposed to examine if type-2 classifier

can outperform type-1 counterpart. They are type-1 FRBCs with full and pruned

rule base (T1-FRBC(F), T1-FRBC(P)) and type-2 FRBCs with full and pruned

rule base (T2-FRBC(F), T2-FRBC(P)) also. All of them shares the same general

IF-THEN rule structure as in Section 3.1 of Chapter 3. For example, a full rule

base for a 2× 2 fuzzy partition consists of four rules:

R1 : IF x1 is small AND x2 is small, THEN y is ClassR1

R2 : IF x1 is small AND x2 is large, THEN y is ClassR2

R3 : IF x1 is large AND x2 is small, THEN y is ClassR3

R4 : IF x1 is large AND x2 is large, THEN y is ClassR4.

The classification decision is determined using winner-takes-all approach. The

four fuzzy rule-based classifiers are designed using Genetic Algorithm (GA). For

the full rule base, GA is used to optimise the membership functions. In the case

of pruned rule base, additional bits are added to the chromosome. These bits

serves as flags, where a value of ‘0’ signify that the rule should be omitted and ‘1’

means that the rule should be included. Type-1 Gaussian and Type-2 Gaussian

(uncertain standard deviations and means) membership function parameters and

rule selection flags are encoded into binary chromosome. The chromosome for

type-1 fuzzy classifier is same as that given in Fig. 2.6 with additional rule selection

bits. Likewise, the chromosome for type-2 fuzzy classifier is similar to that shown
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in Fig. 3.6 with additional rule selection bits. The classification accuracy of the

classifier is used as the fitness function. The crossover rate and mutation rate are

fixed at 0.8 and 0.03 respectively.

4.2.1 Robustness Towards Noisy Unseen Samples

Different types of fuzzy systems may cater for different sources of uncertainties.

Mendel [37] suggests that a non-singleton type-1 fuzzy logic system can be used to

handle uncertainties caused by noisy measurements. The inputs are modeled as

type-1 fuzzy numbers. A mathematical analysis [68] shows that the non-singleton

fuzzifier manages to minimise the effect of noise. Wu et al. [17] take further efforts

to model the noisy input that contain simultaneous variations in mean and stan-

dard deviations as interval type-2 fuzzy set. While one can perform such input

analysis when the noisy data is accessible, most real-world problems may not have

access to noisy data. For instance, in fault diagnosis a malfunctioning machine is

unable to produce signal measurement. If the symptom is known beforehand, then

one can simulate the required measurement to train the classifier. However, it is

very common that these simulated measurements often deviate from true data due

to the discrepancy between the mathematical model and the system/plant. Like-

wise, the true data is most likely to be corrupted by environmental disturbances

which again deviates from the optimistic simulated training data. In many cases,

it may be almost impossible to obtain exact information from a given training

data set. The imprecise data representation can leave an adverse effect for later

classification. The deviation resembles a form of noise contamination. Thus, a

robust classifier must be able to minimise the noise effect. This section aims to
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study the capability of type-2 FRBC to address this issue.

Two sets of two-dimensional synthetic data– Gaussian and Clown data sets

(see Fig. 4.1) are used during the experiment. The Matlab codes that are used

to generate these data are given in the Appendix. θG and θC ∈ [0, 1] are the pa-

rameters that control the amount of perturbation added to the data. The amount

of perturbation is proportional to the value of θG or θC . For both data sets, the

training data consist of 2 classes with 500 points in each class. As illustrated, the

training data have minimal overlap thus the decision boundary is distinct. The

testing sets for Gaussian and Clown data containing 500 points each are drawn

from the same distributions. Noise level-0 testing data have minimal perturbation

added ( σG and σC are set to 0.25) as shown in Fig. 4.2(a) and 4.3(a). Thus

the boundary between two classes is distinct. Perturbations are then added to

the testing data gradually (by varying σG, σC to 0.5 (noise level-1), 0.7 (noise

level-2), 0.9 (noise level-3)) to increase the deviations from the training data (see

Fig. 4.2(b)–(d) and Fig. 4.3(b)–(d)). Genetic algorithm is used to optimise fuzzy

rule-based classifiers. To obtain unbiased results, GA is run for 20 times with each

run consists of 100 generations. Therefore, there are 20 different designs (due to

different membership function parameters or number of rules) for each type of

classifier. The classifiers are strictly trained with noiseless data only and then

tested using both noiseless and noisy data. Unless otherwise stated, the experi-

mental outcomes in this sub-section are based on the average of 20 classification

accuracies for each type of classifier.

For Gaussian data set, two fuzzy partitions (i.e., ‘small’, and ‘large’) are created

in each feature space so the full rule base has 4 rules as aforementioned. The
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classification results for Gaussian data set are shown in Table 4.1. The results

show that there is no difference in training accuracies between type-1 and type-2

fuzzy classifiers. This observation also applies to testing accuracies (noise level-0).

Hence, it is noticed that type-1 and type-2 FRBCs are equally capable of classifying

the noiseless data very well. However, type-2 classifiers starts to outperform type-

1 counterparts when dealing with noisy testing data (i.e., noise level-1 onwards).

Fig. 4.4(a) summarises the testing accuracy improvement of type-2 FRBCs over

type-1 FRBCs. From noise level-0 to level-2, the improvement is on the rise. At

noise level-3, the improvement starts to saturate for full rule base system but not

for pruned rule base system. The graph also shows that more improvement can be

achieved when full rule base is used. For Gaussian data set, type-2 FRBCs with

pruned rule base outperform the rests as far as noise handling is concerned.

For Clown data set, three fuzzy partitions (i.e., ‘small’, ‘medium’, and ‘large’)

are used in each feature space. Thus a full rule base has 9 rules which encom-

pass all possible combinations of the cartesian product. Table 4.2 presents the

classification results for Clown data set. As in Gaussian data set, there is no dis-

tinguishable performance difference between type-2 and type-1 FRBCs when the

data is not corrupted with noise. The advantages of type-2 FRBC become appar-

ent when various levels of noises (level-1 to 3) are added in. Fig. 4.4(b) depicts

the testing accuracy improvement that is obtained by using type-2 FRBCs instead

of type-1 counterparts. While the improvement starts to decline at noise level-3,

there is a constant boost in improvement when noise progresses from level-0 to

level-2. As opposed to Gaussian data set, fuzzy classifiers with pruned rule bases

resulted a more rewarding advancement performance compared to those with full
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Figure 4.1: Synthetic train data set: (a) Gaussian, (b) Clown. Each set has 1000
samples.

Table 4.1: Classification Results for Gaussian Data. The Classifiers are Trained
With Noiseless Data and Tested With Data Under Different Noise Levels.

Training Testing Accuracy (%)
Classifier Accuracy (%) Noise Lvl-0 Noise Lvl-1 Noise Lvl-2 Noise Lvl-3

Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv
T1-FRBC(F) 98.74 0.29 98.00 0.34 83.15 1.51 76.23 1.37 70.46 1.65
T2-FRBC(F) 98.88 0.10 98.08 0.20 83.81 0.88 77.36 1.20 71.59 0.90
T1-FRBC(P) 98.99 0.14 98.07 0.21 84.15 0.84 78.16 1.37 71.94 0.98
T2-FRBC(P) 98.96 0.13 98.14 0.19 84.40 0.73 78.55 0.94 72.96 0.58

rule base. In Clown data set experiment, type-2 FRBCs with pruned rule base

again tends to give best results with all noise levels in testing samples.

This section elucidates the importance of type-2 framework to handle uncer-

tainty in the test data set. Although the improvement is on the small scale, type-2

FRBCs allow us to approach pattern classification problem more confidently.

4.2.2 Robustness Against Selected Features

The performance of a classifier is heavily dependent on choices that the designer of

the classifier makes based on his/her insights into that problem [17]. One of them
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Figure 4.2: Synthetic Gaussian test data set with different noise levels: (a) Level-0
(σG = 0.25), (b) Level-1 (σG = 0.5), (c) Level-2 (σG = 0.7), (d) Level-3 (σG = 0.9).
Each set has 500 samples.

Table 4.2: Classification Results for Clown Data. The Classifiers are Trained With
Noiseless Data and Tested With Data Under Different Noise Levels.

Training Testing Accuracy (%)
Classifier Accuracy (%) Noise Lvl-0 Noise Lvl-1 Noise Lvl-2 Noise Lvl-3

Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv
T1-FRBC(F) 99.53 0.12 99.48 0.15 84.92 0.82 75.74 1.60 62.42 1.94
T2-FRBC(F) 99.45 0.16 99.47 0.16 85.43 1.01 76.60 1.51 63.15 1.61
T1-FRBC(P) 99.42 0.20 99.26 0.34 85.34 1.61 76.32 1.60 62.95 2.08
T2-FRBC(P) 99.43 0.14 99.35 0.23 86.08 1.60 77.46 1.29 63.81 1.72
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Figure 4.3: Synthetic Clown test data set with different noise levels: (a) Level-0
(σC = 0.25), (b) Level-1 (σC = 0.5), (c) Level-2 (σC = 0.7), (d) Level-3 (σC = 0.9).
Each set has 500 samples.
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Figure 4.4: Improvement of testing accuracy of type-2 FRBCs over type-1 FRBCs
for data set: (a) Gaussian, (b) Clown.
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is the selection of the input feature set. An effective set of features can ease the

design of classifier tremendously, especially for fuzzy classifier whereby the number

of rules will increase exponentially with the increase of feature dimensions [69]. In

contrast, if the feature selection is not optimum then the classification performance

will be degraded. Unfortunately, it is difficult, and generally an open problem,

to select an optimum set of features for different applications. Designer with

experience may incorporate his/her knowledge about the classification problem.

For example, by utilising expert knowledge that the ECG amplitude is a better

feature to differentiate between ventricular tachycardia and ventricular fibrillation

the designer can use this feature to improve the classifier performance [68]. On

the other hand, designer with statistical background may try to use statistical tool

such as Principal Component Analysis (PCA) or Linear Discriminant Analysis

(LDA) to select a compact set of projected features. Therefore, one source of

uncertainty in pattern classification is the ambiguity in feature selection.

The fuzzy rule-based classifiers used in this study have been applied to Ford

automotive data set [70]. In this real-world application, the classifier needs to

detect the presence of a human in a vehicle. One possible scenario would be that

when a driver returns to his or her vehicle at night, particularly in a deserted

location, the knowledge that no one is hiding inside the vehicle can provide peace

of mind.

Raw analog signals were collected from a vibration sensor which is located

at the vehicle’s suspension system. The signals are then filtered by a low pass

filter (LPF) and converted into digital signals [71]. Each diagnostic session has

500 sample points. The length of the sequences reflects the time available for
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Figure 4.5: (a) The vibration signals from two cases, there is no clear feature
that distinguishes between both signals by visual inspection. (b) The average
periodogram of the training samples, the more discriminative features are concen-
trated at the lower frequencies.

making the classification decision. Presumably, the task would be easier if the

sequence length were increased, but this would violate the requirements of the

application. The beginning of the sampling process is not aligned with any external

circumstance or any aspect of the observed pattern. The training data (3306

samples) were collected under typical operating condition with minimum noise

but the testing data (810 samples) were collected under noisy conditions such as

wind disturbances.

The problem does not appear to have a simple solution that emerges from

visual inspection of these data sequences as shown in Fig. 4.5(a). Periodogram,

a graphical data analysis technique for examining frequency-domain models of an

equi-spaced time series, may be useful to reveal any interesting features. In this

application, the periodogram are computed with 512-point FFT and triangle win-

dow. Thus, the periodogram is a coefficient vectors with length of 257 [72]. The

average periodograms of the training samples are shown in Fig. 4.5(b). The fig-
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ures show that the discriminative features are mostly located at the low frequency

regions. If each of the periodogram coefficient is regarded as an input dimension,

then the total number of feature dimensions is 257 which is impractical for most

classifiers. Therefore, it is necessary to reduce the feature dimensions to lower

dimensions. PCA is one of the most popular feature dimensionality reduction

techniques. This technique searches for directions in the data that have largest

variance and subsequently project the data onto it. However, it is completely

unsupervised, knows only about variance, and nothing about different classes of

data. In light of this, LDA may reveal class structure better. This technique

maximises the ratio of between-class variance to the within-class variance in any

particular data set thereby guaranteeing maximal separability. Fig. 4.6 and 4.7

show the two-dimensional scatter plots where the features are extracted with PCA

and LDA respectively. It is clear that the variance within classes is smaller and

the variance between classes is bigger in LDA projection. The feature space pro-

duced by LDA is more linearly separable while PCA gives less optimal separation

between two classes especially on the noisy test data. As a result, the data pro-

duced by PCA require a more sophisticated classifier in order to handle the blurred

decision boundary. In contrast, LDA projected data impose a less stringent re-

quirement on the classifier. This analysis shows that feature extraction affects

the performance of classifiers. In practice, it may not be feasible to test different

input feature sets. Analysis with a large number of variables repeatedly gener-

ally requires a large amount of memory and computation power. Although best

results can be achieved when an expert constructs a set of application-dependent

features, in many applications there is a lack of expert knowledge. Thus, it would
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Figure 4.6: 2-D scatter plots of PCA projected (a) train data, (b) test data.
Test data has higher degree of overlapping between both classes due to the noises
inherent in the raw data.

Table 4.3: Confusion Matrix for a Binary Classifier

Predicted Negative Predicted Positive

Negative Examples a b

Positive Examples c d

be interesting to investigate if type-2 FRBC can reduce the reliance on good choice

on input feature compared to type-1 FRBC.

Similar to sub-section 4.2.1, the robustness performances of four types of FR-

BCs are compared. Each kind of classifier consists of 10 different designs which

are evolved with GAs separately. The performance metrics for this application are

the accuracy of the classifier and the false positive rate (FPR) (4.1) respectively.

False positive rate =
b

(a + b)
(4.1)

The confusion matrix is given in Table 4.3. False positive occurs when the classifier
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Figure 4.7: 2-D scatter plots of LDA projected (a) train data, (b) test data.

reports that the vehicle is occupied when no one is actually in it. In particular,

the systems can be sensitive to false positives in windy conditions.

As shown in Fig. 4.6 and Fig. 4.7, the features extracted with PCA has higher

degree of overlapping compared to those extracted with LDA. Therefore, features

extracted with PCA are harder to be classified. Table 4.4 shows the classification

results on PCA extracted features. It is noticed that regardless of which types of

design method (pruned or full rule base), type-2 FRBCs generally perform better

than its type-1 counterparts. The results appear to confirm that type-2 FRBCs has

the capability to resolve imprecise decision boundary better than type-1 FRBCs.

On the other hand, type-1 and type-2 FRBCs have comparable performances for

the set of features extracted using LDA which is shown in Table 4.5. This is due

to the fact that LDA extracted features lead to more distinct decision boundary.

Based on the experimental results, it may be argued that type-2 fuzzy classifier

has not yet provided groundbreaking solution to feature extraction. Nevertheless,

type-2 fuzzy classifier is superior as the dependency of classifier performance on

the selection of the input feature can now be reduced to some extent.
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Table 4.4: Average and Standard Deviation of Classification Accuracy and False
Positive Rate Across 10 Iterations with PCA Based Feature Extraction.

Classifier Data Set
Average ACC (%) Average FPR (%)

Mean Stdv Mean Stdv

T1-FRBC(F)
Train 90.90 1.83 6.87 2.94
Test 72.27 3.06 25.02 5.10

T2-FRBC(F)
Train 92.08 0.64 5.44 1.09
Test 74.19 1.16 22.75 1.69

T1-FRBC(P)
Train 92.63 0.70 4.85 1.23
Test 73.99 1.43 23.66 2.47

T2-FRBC(P)
Train 92.96 0.47 4.97 1.22
Test 74.14 1.28 23.98 2.68

Table 4.5: Average and Standard Deviation of Classification Accuracy and False
Positive Rate Across 10 Iterations with LDA Based Feature Extraction.

Classifier Data Set
Average ACC (%) Average FPR (%)

Mean Stdv Mean Stdv

T1-FRBC(F)
Train 95.49 0.00 3.10 0.00
Test 81.04 0.06 7.14 0.17

T2-FRBC(F)
Train 95.50 0.02 3.09 0.02
Test 81.01 0.05 7.21 0.13

T1-FRBC(P)
Train 95.47 0.05 3.27 0.41
Test 81.05 0.47 7.56 0.88

T2-FRBC(P)
Train 95.48 0.04 3.35 0.57
Test 81.25 0.49 7.50 0.85
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Table 4.6: Testing Accuracies and False Positive Rates Comparisons Between The
Proposed FRBC and Lv Jun’s Classifier

Method
# of

Features

Testing
Accuracy

(%)

False Positive
Rate (%)

Proposed FRBC 2 82.2 6.9

Lv Jun’s Classifer 100 83.2 27.4

As a benchmark, the performance of the proposed FRBC is compared against

the best overall statistical classifier proposed by Lv Jun as reported in Ford Clas-

sification Challenge [70]. The comparison is tabulated in Table 4.6. The results

show that the merit of fuzzy rule-based classifier in this application is that it only

requires very low feature dimensions to achieve reasonably good performance. For

example, the proposed FRBC has very close testing accuracy (only 1% difference)

and it achieved remarkable improvement on the false positive rate (20.5% lower)

than the reported results.

4.2.3 Robustness To Randomness in Design Methods

A classifier reflects the functional relationship between the input patterns and

output classes. Before the final decision function is determined, a set of candidate

functions known as hypotheses should be evaluated. These hypotheses include

different possible parameters. In the case of a fuzzy classifier, hypotheses are es-

sentially the fuzzy rules. Genetic algorithms (GAs), a global stochastic search

heuristic to find exact or approximate solutions to optimisation problems often

give a pool of candidate solutions. The goal of the learning process is to de-
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termine the correct decision function in terms of suitable parameters. Due to the

heuristic nature of GAs, each evolution run will produce its own set of parameters.

Thus, various classifier designs are obtained after several GA optimisations. The

ambiguity in classifier’s parameters therefore becomes an entity of uncertainty.

A consistent performance of the different designs in both training and testing

stages is favorable. This is because it enables us to obtain more satisfactory re-

sults in fewer GA evolutions. In this sub-section, the performance consistency

of GA evolved classifier designs in sub-sections 4.2.1 and 4.2.2 is investigated.

Fig. 4.8(a) summarises the difference in classifier performance standard deviation

between type-1 and type-2 FRBCs, that is (σT1 − σT2). Positive value indicates

that type-2 classifier is more consistent than type-1 while negative value indicates

that type-2 classifier is less consistent. It becomes clear that for Gaussian data

set, type-2 classifiers are always more consistent (indicated as all positive values).

The consistency trend for Clown data set still shows that type-2 classifier has the

edge although in a few cases type-1 classifier can be slightly more consistent. Like-

wise, the tendency for type-2 FRBCs with full rule base to deliver more robust

performance is high for Ford data set when PCA method is used. Nevertheless,

on Ford data (extracted with LDA method) the advantage of type-2 classifier is

negligible. This is because the decision boundary is less ambiguous. For both syn-

thetic and real problems, type-2 framework inarguably more consistent throughout

the designs evolved by GAs. This is attributed to its FOU which decreases the

incongruity between different classifier designs.

As far as the computational speed is concerned, type-1 and type-2 FRBCs with

four rules each are tested on 1000 data. The average computation time measured
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Figure 4.8: Difference in standard deviations (σT1 − σT2) for (a) synthetic data
sets and (b) Ford data set (with PCA method). Positive value denotes type-2
FRBC is more consistent than type-1 FRBC while negative value denotes type-2
FRBC is less consistent than type-1 FRBC.

for type-1 and type-2 FRBCs are 0.14s and 0.54s respectively (see Fig. 4.9). The

results are based on the average on 20 independent runs of fuzzy classifiers due to

the variable time required to compute Karnik-Mendel type reduction for type-2

FRBCs. Therefore, unless the application require very short computation time,

type-2 classifier still offer a more robust performance.

4.3 Conclusion

Rhee [73] suggested that ‘if the employment of type-2 fuzzy sets can provide signif-

icant improvement on performance, then the increase of computational complexity

due to type-2 fuzzy sets may be a small price to pay.’ Indeed, this has been vali-

dated in this work. Although the improvement is not up to “significant” levels but

type-2 framework certainly shows its quality advantage over its type-1 counter-

part. From the experiment that was carried out, type-2 fuzzy classifier shows its

robustness in various aspects. This includes the ability to achieve better results on
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Figure 4.9: Total computation time required for 1000 training samples based on
fuzzy system with four rules. Due to different computation time required for
KM type-reduction in type-2 FRBC, the values are shown as the average of 20
generations.

unseen noise corrupted data. The significance of this finding is that it enables the

use simulated data as an alternative to train the classifier when the real data is not

readily available or the cost to collect it is expensive. Although the experiment is

performed on synthetic data sets, the results can be further extended to real data.

The other advantage offers by type-2 FRBC is that it can resolve the imprecise

decision boundary better than type-1 FRBC as demonstrated in Ford automotive

problem. This can reduce the impact caused by improper feature extraction. Fi-

nally, type-2 FRBC is more tolerate towards the randomness in different classifier

designs evolved with GAs. A more consistent design not only reduce the classifier

training time but also improve the reliability of the designed classifier. Hopefully,

this can balance the tradeoff between the computation load and the reliability

of the classifier well. In a nutshell, there is a strong reason to use type-2 fuzzy

classifier as the performance of type-2 FRBC is at least comparable, if not better

than type-1 FRBC. As a rule of thumb, for applications where the computation
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speed is not a major consideration, type-2 classifier should be adopted.
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Chapter 5

Towards An Efficient Fuzzy

Rule-Based Classifier Learning

Algorithm with Support Vector

Machine

5.1 Introduction

In recent years, fuzzy classifier design has been an active research topic. Many

approaches have been adopted to design fuzzy classifiers which can be categorised

into three general groups. The first group tunes only the consequent part. In this

case, the rule base is fixed and the membership functions of the antecedent part

are determined a prior. Two popular methods to tune the consequent part are

least-squares and back-propagation algorithms. Next, rules pruning falls under the

second group. The antecedent membership functions and consequents are fixed
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and optimisation algorithm such as GA is used to select the best subset of rules

and discharges the rest [74]. The last group is a combination of the first and second

methods. The system is built and tuned by simultaneous adaptation of rule-bases

and antecedent membership functions. Again, GA has been successfully applied

to learn both antecedent and consequent parts with fixed or varying number of

rules [31], [38]. The popularity of GA is attributed to its two great advantages

over back-propagation approach. Firstly, the functions that can be used in GA

can be much more general in nature and knowledge of the gradient of the functions

is not required. Secondly, GA is less likely to be trapped in local minima because

they explore the solution spaces in multi directions at the same time. While GA

is suitable for many optimisation problems, the algorithm is based on empirical

risk minimisation, which is to minimise the training error. This could limit the

generalisation capability of a classifier when over-fitting issue occurs. Therefore,

it would be advantageous to combine GA with a learning method that minimises

structural risk. In view of this, support vector machine (SVM) which is based on

statistical learning theory is a very promising tool for structural risk minimisation.

For classification problem, several studies based on Fuzzy Logic System with SVM

can be found in the literature. In [75], fuzzy logic is used as a tool to transform

grouped features so as to use the newly generated features to improve SVMs’ per-

formance with the aid of genetic optimisation. However, the grouping of features

restricts the usability of this algorithm since the authors mentioned that there

is no guide on the feature group selection. Other works in this direction include

[76], [77], and [78] where fuzzy rule learning based on SVM are introduced. In [76]

and [77], SVM is used to automatically generate fuzzy rules with fuzzy singletons



104

in the consequent. The number of fuzzy rules is equal to the number of support

vectors, which is usually very large. In [78], Takagi-Sugeno (TS) type kernel is

adopted. Rule reduction is based on fuzzy clustering of the input data. How-

ever, their proposed method has several drawbacks. Firstly, prior investigation

has shown that the classifier performance is sensitive to the initialisation of the

first incoming data even though the authors claimed that the one-pass method is

robust against the initialisation. According to [79], the one-pass clustering method

requires further tuning of parameters. Next, there is a possibility that the firing

strengths of some rules are zeros if the input space is not wholly covered by fuzzy

rule “patches”. This usually happens when the standard deviation of the Gaus-

sian membership function is small and it can reduce the discriminant capability

of the classifier. Thirdly, the algorithm has tendency to use overly large rule base.

This is because each rule corresponds to a particular data, hence the performance

is generally better if more training data is used to form the rule base. This is

shown in the vehicle classification example in their paper where 76 percents of the

training data were used to form the rule base.

The objective of this chapter is to design an efficient learning algorithm for

TSK type fuzzy rule-based classifiers. The motivation of this work is based on

the observations that a conventional fuzzy rule-based classifier is unable to handle

high dimensional classification tasks and the existing learning techniques are either

based on empirical risk minimisation or structural risk minimisation. Therefore, a

new technique which makes use of the combination of GA, Fuzzy C-Means (FCM),

FLS and SVM is proposed. Both empirical and structural risks can be minimised

via GA and SVM simultaneously. Furthermore, while conventional SVM requires
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the kernel function to be symmetric and positive semidefinite (Mercer conditions),

the new fuzzy framework can overcome this problem. In addition, FCM ensures

the generated rules are compact enough while maintaining good generalisation.

Hopefully, the hybrid techniques inherit all the advantages of each individual al-

gorithm.

This chapter is organised as follows. The architecture of the proposed algo-

rithm is explained in Section 5.2. Next, Section 5.3 delineates the training proce-

dures which is the backbone of the proposed method. This part shows how various

building blocks can be hybridised to form an efficient learning process. Simulation

results are presented in Section 5.4. Finally, Section 5.5 gives the conclusion.

5.2 Architecture of EFSVM-FCM

There are many forms of TSK type fuzzy logic systems depending on the types of

conjunction operators (t-norms) and consequents being used. In [2], five popular

TSK type classifiers are explained. In this chapter, the rth rule, Rr, in the rule

base of the TSK system has the form of:

IF x1 is Ar
1 and . . . and xm is Ar

m, THEN y′ r = wr (5.1)

where Ar
n(r = 1, . . . , K, n = 1, 2, . . . , m) are Gaussian antecedent fuzzy sets

and wr is a fuzzy singleton. The rule base can be illustrated as in Fig. 5.1.

The proposed Evolutionary Fuzzy Rule-Based Support Vector Machines classifier

with FCM clustering (EFSVM-FCM) architecture for a multi-input single-output

(MISO) system is a four-layer fuzzy network. A detailed description of the func-

tionality of each layer is given as:
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Figure 5.1: Architecture of EFSVM-FCM.
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1) Input Layer : Neurons in the input layer transmit the input ~x directly to

the antecedent layer. The number of nodes in this layer is equal to the number of

input vector length, m.

2) Fuzzification Layer : Each neuron in this layer is a Gaussian membership

function with mean, mr
n and standard deviation, σr, with this the fuzzified input

is given as:

µr
n(xn) = exp

[
−

(
xn −mr

n

σr

)2]
(5.2)

Hereby, the fuzzifier is the singleton fuzzifier. The number of nodes in this layer

is equal to K ×m. Please note that all Gaussian membership functions in a rule

share the same standard deviation.

3) Rule Layer : Each neuron in this layer corresponds to a fuzzy rule which

computes the firing strength or degree of match of the input to the antecedent sets

defined for this rule; that is the layer only handles the antecedent part (if-part, or

premise). To calculate the firing strength f r of rule r, product t-norm operator is

chosen:

f r(~x) =
m∏

n=1

µr
n(xn)

=exp

[
−

m∑
n=1

(
xn −mr

n

σr

)2]

=exp

[
−

(‖ ~x− ~mr ‖
σr

)2]
(5.3)

Note that all Gaussian membership functions in a single rule have a common

standard deviation. The number of nodes is equal to the number of rules, K.

4) Output Layer : This layer consists of single node which sums up the prod-
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Figure 5.2: Data distribution for training and testing phases.

uct of firing strengths and weights with a bias term. The output takes the form:

O =
K∑

r=1

wr.f r + b

=~w T . ~f + b. (5.4)

For binary-class problem, given the data pair (~xi, yi) where the labels, yi =

{−1, +1}, the decision function is:

g(~x) = sign(O) (5.5)

The binary-class classifier above can be extended to multi-class case by using one-

against-all scheme. The class labels are now considered as yi = {1, . . . , C}. In this

scheme, C classifiers will be constructed, one for each class. The cth classifier will

be trained to classify the training data of class c against all other training data.

The output for each classifier will be combined to give the final decision function:

g(~x) = arg max
c

(Oc) (5.6)

5.3 Training of EFSVM-FCM

As shown in Fig. 5.2, the whole set of data is divided into two groups: training

stage samples and testing stage samples using two-fold cross selection. As the
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Figure 5.3: The learning of antecedent part with Genetic Algorithm (GA) and
Fuzzy C-Means (FCM) algorithm, and consequent part with Support Vector Ma-
chine (SVM).

names suggest, the training stage samples are used during the classifier training

stage while the testing stage samples are used during the testing stage. The train-

ing stage samples are further divided into the training samples and the beta testing

samples using two-fold selection scheme. The training samples are employed dur-

ing the training processes with FCM and SVM. On the other hand, the beta

testing samples are employed during the training process with GA. The reason

why GA employs the beta testing samples instead of the training samples is that

SVM result will affect the fitness evaluation of GA which will lead to premature

convergence.

Fig. 5.3 shows the learning of the fuzzy rule-based classifier. The training

process is divided into two parts. The first part involves antecedent learning of the

fuzzy rule. Genetic algorithm and Fuzzy C-Means clustering are used to generate

the Gaussian membership function parameters and to determine the number of

fuzzy rules. The second part involves consequent part learning by linear kernel

based support vector machine. The learning details are delineated in Sections 5.3.1

and 5.3.2.
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5.3.1 Antecedent Part Learning

One of the main challenges during the design of any fuzzy rule-based system is to

determine the number of rules and to decide the specification of fuzzy membership

functions. In the proposed framework, the number of rules, K is determined by

heuristic while GA and FCM are used to generate the antecedent part Gaussian

parameters (mean and standard deviation as given in (5.2)). Based on the classifier

architecture shown in Fig. 5.1, there are K ×m Gaussian mean parameters and

K Gaussian standard deviation parameters need to be trained.

Initially, each class is divided into nc (c = 1, . . . , C) clusters where C is the

number of classes. Note that nc are user defined parameters. Each class can have

different number of clusters depending on the complexity of the data. For dense

data, a small number of clusters is required. Conversely for sparse data, a larger

number of clusters is required. The total number of rules, K is given by
∑C

c=1 nc

which is normally much smaller than the support vectors in conventional SVMs or

the number of rules generated using the input partition method reported in [78].

As a rule of thumb, nc would be high for more challenging classification task and

vice-versa.

Once the means of membership functions are found via FCM, GA is adopted

to find the appropriate standard deviations. At the same time, the consequent

weights are determined by SVM. This will be explained in Section 5.3.2. Sub-

sequently, the fuzzy classifier is ready to be evaluated once on the beta testing

samples to obtain the beta testing accuracy (fitness value). After each of the

chromosomes is evaluated and associated with the respective fitness value, the
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current population undergoes the reproduction process to create the next genera-

tion of population. The “tournament with replacement” selection scheme is used

to determine the members of the new generation population. When the evolution

ends (meet stopping criteria or reach maximum number of generations), the best

solution is selected.

5.3.2 Consequent Part Learning

This section starts with the basics of SVM and provides the connection between

SVM with TSK FLS for a binary-class problem. The hybrid algorithm is then

extended to multi-class problem using one-against-all scheme.

For a binary classification problem, let S = {(~x1, y1), (~x2, y2), . . . , (~xN , yN)}

represents a training data set, where ~xi, i = 1, . . . , N are vectors and yi ∈ {−1, +1}

are the class labels. SVM tries to find an optimal hyperplane

〈~w, ~xi〉+ b = 0 (5.7)

where ~w ∈ <n and b ∈ <. For the linearly separable case, the optimal hyperplane

is found by solving the following constrained optimisation problem:

Minw
1

2
‖ ~w ‖2

Subject to yi(〈~w, ~xi〉+ b) ≥ 1 (5.8)

For the linearly non-separable case, the constrained optimisation is rewritten as

Minw
1

2
‖ ~w ‖2 +C0

∑
i

ξi

Subject to yi(〈~w, ~xi〉+ b) ≥ 1− ξi (5.9)
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where C0 is a user defined cost parameters to control trade-off between the training

error and the margin while ξi ≥ 0 is a slack variable. According to Kuhn-Tucker

theorem, the problem above can be rearranged as:

Min
∑

i

αi − 1

2

∑
i

∑
j

αiαjyiyj〈~xi, ~xj〉

Subject to
∑

i

αiyi = 0 (5.10)

where 0 ≤ αi ≤ C0, i, j = 1, . . . , N , and those with αi 6= 0 are called support

vectors. The decision function of a binary-class problem is finally:

g(~x) =sign(〈~w, ~x〉+ b)

=sign

(∑
i

αiyi〈~x, ~xi〉+ b

)
(5.11)

After the firing strength, ~f for each rule is obtained from the antecedent parts,

linear kernel SVM is ready for the learning of weights, ~w and bias, b in the output

layer of EFSVM-FCM. The firing strengths and class labels form the new training

sets given by:

Z =
{

(~f(~x1), y1), (~f(~x2), y2), . . . , (~f(~xN), yN)
}

(5.12)

From (5.11), the decision function can be reformulated:

g(~x) = sign

(∑
i

yiαi〈~f(~x), ~f(~xi)〉+ b

)
. (5.13)

The lagrange multipliers αi are solved via (5.10). With this, (5.13) can be simpli-
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fied to associate with (5.4):

g(~x) =sign

(∑
i

yiαi

∑
r

f r(~x)f r(~xi) + b

)

=sign

(∑
r

(∑
i

yiαif
r(~xi)

)
f r(~x) + b

)

=sign

(∑
r

wrf r(~x) + b

)

=sign(~w T . ~f + b)

=sign(O) (5.14)

where

wr =
∑
i∈SV

yiαif
r(~xi). (5.15)

As explained in Section 5.2, the binary-class classifier above can be extended to the

multi-class case by using one-against-all scheme. Hence, the multi-class classifier

decision function is given by:

g(~x) = arg max
c

(∑
i

yiα
c
i

∑
r

f r(~x)f r(~xi) + bc

)

= arg max
c

(∑
r

(∑
i

yiα
c
if

r(~xi)

)
f r(~x) + bc

)

= arg max
c

(∑
r

wr,cf r(~x) + bc

)

= arg max
c

(
~wc T . ~f + bc

)

= arg max
c

(Oc) (5.16)

where

wr,c =
∑
i∈SV

yiα
c
if

r(~xi) (5.17)

The equation above shows that all C classifiers share a set of common antecedent

parts, this is denoted by a single firing strength vector, ~f . This reduces the number
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of parameters being stored. On the other hand, each classifier will have its own

output weight vector, ~wc and bias, bc. Hence, for the binary-class problem, there

is a need to store K weights and one bias. The total number of parameters that

includes antecedent Gaussian parameters is therefore K(2 + m) + 1. Likewise, for

the multi-class problem, K × C weights and C biases are stored. Therefore, the

total number of parameters for both antecedent and consequent parts increases to

K(m + 1) + C(K + 1).

5.4 Performance Evaluation

The effectiveness of the proposed EFSVM-FCM classifier was tested with four clas-

sification tasks. From UCI ML Repository [80]: Iris plant database, Wine recog-

nition database, Bupa liver disorders database, and Glass identification database.

Of the four databases, only the liver database is a binary class problem; the

other databases belong to multi-class classification problems. A summary of the

datasets is shown in Table 5.1. The iris plant dataset is a common benchmark in

pattern classification studies. The database contains 50 measurements of four fea-

tures from each of the three iris species: Setosa, Versicolor, Virginica. One class

is linearly separable while two other classes are not linearly separable from each

other. Next, the wine dataset contains chemical analysis performed on three types

of wine produced in Italy from grapevines cultivated by different owners in one

specific region. This is a well-posed classification problem. For the liver dataset,

it is known to be highly nonlinear and hard to classify. Therefore the crossover

rate, mutation rate and FCM parameter nc are set to higher values. Glass data is
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another popular benchmark database. It consists of 163 window-glass data and 51

non-window glass data. The six-class problem has 9 continuous valued attributes.

For convenience sake, all attribute values in this chapter were normalised into

real number between unit interval [0, 1] as:

xpn :=
xpn −min{xn|∀p}

max{xn|∀p} −min{xn|∀p} (5.18)

where p = 1, . . . , N, n = 1, . . . , m. Therefore, the C-class classification problem is

defined in the m-dimensional unit cube [0, 1]m. Two-fold cross validation (2CV)

and one-against-all classification approach are implemented. Since the testing ac-

curacy in 2CV relies on the initial division of the data, the testing is performed

in ten iterations. The cost parameter, C0 in both EFSVM-FCM and conventional

SVM were set to 4096 during training stage. GA was allowed to run for 30 gener-

ations and the population size was set to 50. Binary coded GA was implemented

in the current framework. Each of the standard deviations was encoded in a 8-bit

string. Hence, each chromosome has a total of 8 × K × m bits. A simple re-

pair function can be carried out to ensure proper overlapping between the evolved

membership functions as to avoid the case where the input space is not wholly

spanned by fuzzy rule “patches”. During the fitness evaluation, the parameters

were decoded into real numbers using linear mapping equation as shown below:

gp = Gmin
q + (Gmax

q −Gmin
q )× Aq

2N − 1
(5.19)

where gp denotes the actual value of the qth parameter, Aq denotes the integer

represented by a N-bit string gene, Gmax
q and Gmin

q denote the user defined upper

and lower limits of the gene respectively. As for the genetic operators, bitwise

flipping mutation with the mutation rate, MR and single-point crossover with the
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crossover rate, CR were implemented. Fuzzifier parameter, m in FCM was fixed

at 2. For the rest of the parameters, they are listed in Table 5.2.

Testing results are shown in Tables 5.3-5.6. Comparisons with the results from

the conventional SVM classifier (with Radial Basis Function kernel) and some

other popular algorithms such as Fuzzy Rule-Based Classifier, Positive Definite

Fuzzy Classifier (PDFC), Self-Organizing TS-Type Fuzzy Network with Support

Vector Learning (SOTFN-SV), Inverted Hierarchical Neuro-Fuzzy BSP (HNFB−1),

Genetic Fuzzy and Neural Networks (NN) are also provided in the tables.

Table 5.1: Summary of Datasets

Dataset No. of samples No. of classes No. of attributes

Iris 150 3 4
Wine 178 3 13
Liver 345 2 6
Glass 214 6 9

Table 5.2: EFSVM-FCM Parameters Used for Classification Tasks

Parameter
Dataset

Iris Wine Liver Glass

CR 0.8 0.8 0.9 0.8
MR 0.03 0.03 0.1 0.03
nc 2 2 10 2
K 6 6 20 12

As seen from the results in Tables 5.3-5.6, the proposed classifier not only

capture the essence of SVM – good generalisation, it also manages to outperform

conventional RBF kernel based SVM. While comparing with other fuzzy rule-based

classifier in the literature (refer to Table 5.2), the number of rules, K generated in
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Figure 5.4: Boxplot for testing accuracies of four classification tasks with 10 iter-
ations for each task. Two-fold cross validation method is used.

current framework is relatively small. Furthermore, the number of parameters is

less than those obtained with the conventional SVM. As a result, EFSVM-SVM

is a fast and memory efficient algorithm. As mentioned, the number of clusters

for each class can be different to achieve better result. However, in all presented

classification problems, each class is partitioned into same number of clusters (i.e.,

n1 = n2 = · · · = nC) for simplicity. So far, the results are positive with this

scheme.

Fig. 6.6 shows the boxplot for each classification problem. The testing accura-

cies are quite consistent except for Bupa liver dataset due to its highly non-linear

characteristic.

5.5 Conclusion

EFSVM-FCM is the realisation of the functionalities of four popular soft comput-

ing techniques, namely GA, FCM, FLS and SVM. It was successfully applied to
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Table 5.3: Classification Results of Iris Data with Various Methods

Methods No. of Rules Accuracy (%)

EFSVM-FCMa 6 98.47
SVM (RBF Kernel)a NA 96.11

Fuzzy Rule (Ishibuchi’s Method)a,b 47.1 95.47

Fuzzy Rule (Mansoori’s Method)a,b 47.1 95.47
PDFCa [76] 35.46 96.38
SOTFN-SVa [78] 14 98.40

a
Results of two-fold cross validation

b
Results reported in [81]

Table 5.4: Classification Results of Wine Data with Various Methods

Methods No. of Rules Accuracy (%)

EFSVM-FCMa 6 98.93
SVM (RBF Kernel)a NA 97.60

Fuzzy Rule (Ishibuchi’s Method)a,b 137 95.45

Fuzzy Rule (Mansoori’s Method)a,b 137 95.56
HNFB−1 a,c [82] 27 94.44

a
Results of two-fold cross validation

b
Results reported in [81]

c
Results reported in [82]

Table 5.5: Classification Results of Liver Data with Various Methods

Methods No. of Rules Accuracy (%)

EFSVM-FCMa 20 72.38
SVM (RBF Kernel)a NA 58.84
Genetic Fuzzy SVMa [75] NA 70.80
HNFB−1 a,b [82] 142 73.33
NNa,b NA 60.50

a
Results of two-fold cross validation

b
Results reported in [82]
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Table 5.6: Classification Results of Glass Data with Various Methods

Methods No. of Rules Accuracy (%)

EFSVM-FCMa 12 89.51
SVM (RBF Kernel)a NA 87.52
Genetic Fuzzy [31] NA 64.40

Fuzzy Rule (Ishibuchi’s Method)a,b 42.3 60.93

Fuzzy Rule (Mansoori’s Method)a,b 42.3 61.22

a
Results of two-fold cross validation

b
Results reported in [81]

four benchmark classification problems. Based on the qualitative results, the algo-

rithm outperforms most popular algorithms. The main advantage of the proposed

classifier is the capability to achieve good generalisation inherited from SVM with

a compact rule base. As a result, the memory requirement to store the trained

parameters is reduced tremendously. This chapter also shows that combination of

empirical and structural risks minimisation can deliver a high performance hybrid

classifier. While the proposed algorithm seems promising, some limitations exist.

The first weakness is the slow training process of GA, an unavoidable tradeoff when

GA is adopted. Secondly, the fuzzy rule-base might not be easily interpretable

because local fuzzy rules (rule-specific membership functions) are adopted [83]

to achieve more design flexibilities. Since the results are promising, future work

includes performance enhancement by fine tuning the cost parameter of SVM in

the consequent training stage and also to vary the number of sub-clusters for each

class in the antecedent training stage.
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Chapter 6

On Improving K-Nearest

Neighbor Classifier with Fuzzy

Rule-Based Initialisation

One of the greatest challenges that hinder the adoption of automated pattern clas-

sification systems is the lack of complete training dataset. When “holes” exist in

the training data, the decision area formed is unlikely to actually represent the un-

derlying data distribution, thereby affecting the classification accuracy. Research

has shown that the performances of conventional crisp and fuzzy K-Nearest Neigh-

bor (K-NN) algorithms trained using finite samples tends to be poor [84], [85]. To

address the need to extract more useful information from the limited training sam-

ples, a fuzzy rule-based K-NN algorithm was introduced in this chapter. The main

feature differentiating our proposed algorithm from the conventional fuzzy K-NN

algorithm is a fuzzy rule-based initialisation procedure that allows imprecise in-

puts (neighborhood density and distance) to be handled through the framework of
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fuzzy logic system. Furthermore, the membership functions of the fuzzy rule-based

K-NN can be tuned to produce a highly versatile decision boundary. This com-

parative advantage over fuzzy K-NN is demonstrated using a synthetic dataset in

two-dimensional space. Another issue that was investigated is the use of weighted

Euclidean distance measurement, together with fuzzy rule-based K-NN algorithm,

to overcome the curse of dimensionality [86], [87]. The Euclidean distance weights

and the parameters of the fuzzy rule-based system were optimised with Genetic

Algorithm (GA) simultaneously. The practical applicability of the proposed al-

gorithm was verified using four UCI datasets (Bupa liver disorders, Glass, Pima

Indians diabetes and Wisconsin breast cancer) that have very limited training

data. Next, the algorithm was applied to Ford automotive dataset whereby noise

corruption caused discrepancies to exist between the training and testing data.

The efficacy of the proposed method was also compared against Support Vector

Machine (SVM) and Bayesian classifiers.

6.1 Introduction

K-nearest neighbor (K-NN) algorithm is a simple non-parametric classifier that

assigns class labels to the input patterns based on the class labels of the K-nearest

neighbors. For a 1-NN classifier trained using infinite samples, the error rate is

bounded above by twice of optimal Bayes error rate [88], [89]. This asymptotic

behavior together with its simplicity in implementation is behind its popularity

among various classifiers. In addition, it does not need any a priori knowledge

about the structure of the training set. Nevertheless, the K-NN algorithm has a
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major drawback: each prototype is considered equally important in the assignment

of input patterns. Keller et al. [90] extended the K-NN algorithm by incorporating

fuzzy concepts. The algorithm, fuzzy K-NN, assigns a class membership [0,1] to

an input pattern rather than a crisp class label as in K-NN. Similar to K-NN,

fuzzy K-NN also searches the labeled prototypes for the K-nearest neighbors.

However, in fuzzy K-NN the labeled prototypes need to be preprocessed whereby

an initial membership grade will be assigned to each training data point. This

procedure ensures the prototypes are more informative. The more accurate the

initial membership grade is, the more accurate the classification result will be. As

far as the performance is concerned, Kuncheva [2], with her extensive comparative

experimental results, suggests that fuzzy K-NN does not necessarily perform better

than K-NN but the results are problem-dependent. Despite claiming as to be a

fuzzy variant of K-NN, the algorithm does not actually exploit fuzzy set theory

other than the simple notion of a fuzzy set. Therefore, the classifier may be unable

to handle uncertainties present in the problem. Such uncertainties could be due to

overlapping classes, uneven class distribution [91] or imprecision in training data.

In both K-NN and fuzzy K-NN algorithms, the choice of parameter K im-

plicitly defines the size of the neighborhood that is used to predict the class of

a test pattern. The classifier performance depends on the selection of K [92].

Sometimes, a small K (with respect to the number of samples) is desirable so

that the training data used to determine the class label of a test point are close

enough to provide an accurate prediction. However, classifiers based on small K

are susceptible to noise in the training data. While a large K reduces sensitivity

to noise, the information becomes too global. There is a higher likelihood that
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the neighborhood (especially in the region where two classes overlap) consists of

patterns from more than one class, thereby increasing the difficulty in assigning

a class label to the test pattern. Most of the existing K-NN classifiers assume

precise data in the sense that exact measurement is achievable. However, in most

real-world scenarios, this assumption is not valid so there is always going to be a

degree of uncertainty. Motivated by the capability of fuzzy rule-based system to

handle the uncertainty and the ambiguity inherent in many problems, we propose

to incorporate fuzzy rules into the K-NN algorithm. The use of linguistic variables

and fuzzy IF-THEN rules exploits the tolerance for imprecision and uncertainty.

A fuzzy rule-based initialisation step, which relies on the imprecise neighborhood

distance and density information of the training prototypes to assign membership

grades, is introduced. The imprecision in the distance and density information is

captured by the fuzzy set. Moreover, the fuzzy rule-based initialisation provides

the potential to create a flexible decision area which is not achievable with ei-

ther crisp or fuzzy K-NN. Besides that, we also use weighted Euclidean distance

to cope with heterogeneous input space [93] which is considered as one of the

limitations of K-NN algorithm. This improves the classifier’s performance by en-

suring the distance computation varies with same proportion in every direction in

the feature space. A high performance and interpretable fuzzy rule-based K-NN

(FRB-KNN) classifier can be fine tuned with evolutionary optimisation algorithm

such as Genetic Algorithm (GA).

The remainder of this chapter is structured as follows. Section 6.2 provides

background information on the crisp and fuzzy K-NN algorithms. In Section 6.3,

the proposed fuzzy rule-based K-NN algorithm and the rationale for using weighted
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Euclidean measure are presented. Section 6.4 shows how the proposed algorithm is

tuned with GA. Section 6.5 provides the experimental backdrop to the performance

assessment of our proposed fuzzy rule-based K-NN algorithm and presents the

results. Finally, Section 6.6 concludes this chapter.

6.2 The Crisp and Fuzzy K-NN Algorithms

The crisp and fuzzy K-NN algorithms are reviewed briefly in order to set the

context for introducing the proposed fuzzy rule-based variant in the next section.

The basis of K-NN algorithm is to classify an unknown pattern to the class most

represented by its K nearest neighbors. Conventional crisp K-NN algorithm re-

quires no preprocessing of the labeled prototypes prior to their use whereas fuzzy

K-NN algorithm pre-assigns a membership grade to each labeled prototype dur-

ing initialisation process. In practice, K is usually chosen to be odd for two-class

problems, so as to avoid ties. When there are more than two classes, a tie can be

handled as follows: the input data is assigned to the class, of those classes that

tied, for which the sum of distances from the input data to each neighbor in the

class is minimum. If the tie remains unsolved, the input data is assigned to the

class of last minimum distance found.

6.2.1 The Conventional Crisp K-NN Algorithm

Let S = {x1, x2, · · · , xn} be a set of n labeled samples. The conventional crisp

K-NN algorithm is as follows:
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BEGIN

Input y, of unknown classification.

Set K, 1 ≤ K ≤ n.

Set i = 1.

DO UNTIL (K-nearest neighbors found)

Compute distance from y to xi.

IF (i ≤ K) THEN

Include xi in the set of K-nearest neighbors

ELSE IF (xi is closer to y than any previous nearest neighbor) THEN

Delete farthest in the set of K-nearest neighbors

Include xi in the set of K-nearest neighbors

END IF

Increment i.

END DO UNTIL

Determine the majority class represented in the set of K-nearest neighbors.

IF (a tie exists) THEN

Compute sum of distances of neighbors in each class which tied.

IF (no tie occurs) THEN

Classify y in the class of minimum sum

ELSE

Classify y in the class of last minimum found.

END IF

ELSE

Classify y in the majority class.
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END IF

END

6.2.2 Fuzzy K-NN Algorithm

Unlike crisp K-NN, fuzzy K-NN algorithm assigns class membership grade to an

input data rather than class label. The membership assignment is based on the

distance between the input data and its K-nearest neighbors and those neighbors’

memberships (pre-computed during initialisation process) in the possible classes.

Let S = {x1, x2, · · · , xn} be a set of n labeled samples. Also, let µi(x) be the

membership assigned to the input data x, and µij(x) be the membership in the

ith class of the jth labeled prototype. The algorithm is as follows:

BEGIN

Input x, of unknown classification.

Set K, 1 ≤ K ≤ n.

Prototype Membership Initialisation

Set i = 1.

DO UNTIL (K-nearest neighbors to x found)

Compute distance from x to xi. IF (i ≤ K) THEN

Include xi in the set of K-nearest neighbors

ELSE IF (xi closer to x than any previous nearest neighbor) THEN

Delete the farthest of the K-nearest neighbors

Include xi in the set of K-nearest neighbors.

END IF
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END DO UNTIL

Set i = 1.

DO UNTIL (x assigned membership in all classes)

Compute µi(x) using (6.1).

Increment i.

END DO UNTIL

END

where

µi(x) =

∑K
j=1 µij

(
1/ ‖ x− xj ‖2/(m−1)

)

∑K
j=1

(
1/ ‖ x− xj ‖2/(m−1)

) (6.1)

The prototype membership initialisation step is defined as:

µj(x) =





0.51 + (nj/K) ∗ 0.49 if j = i

(nj/K) ∗ 0.49 if j 6= i

(6.2)

where nj is the number of the neighbors which belong to the jth class.

6.3 Fuzzy Rule-Based K-NN

As pointed out in [84], [85], the performance of K-NN classifier based on a fi-

nite number of training samples is not guaranteed. The situation is even worse

when there are insufficient training data to represent the underlying data distri-

bution. This always happens when the cost to collect training data is expensive.

In addition, the existence of noise in either training or testing data can further

degrade the classifier performance. The initialisation step of conventional fuzzy

K-NN suffers from these drawbacks. The algorithm assumes there are sufficient
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training data to provide meaningful information for further classification, which

is not the case in most real-world problems. With respect to this problem, the

approach we propose here is discriminative in that it assumes all the training data

are uncertain. By introducing fuzzy rule-based initialisation step, we can exploit

the fuzzy inferencing mechanism to manage the imprecise inputs derived from the

data (i.e., the distance and density information of the neighborhood). The pro-

posed initialisation algorithm is as follows:

BEGIN

FOR each training prototype, xi

FOR each class, Classj

- Compute the class density, vij = nj/K, where nj denotes the number of

neighbors which belong to jth class.

- Compute the average distance of the neighbors

dij =





∑nj
r=1‖xi−xr‖2

nj
for nj 6= 0

1 for nj = 0

(6.3)

- Perform fuzzification (singleton/nonsingleton) for inputs v and d.

- Compute membership grade, µi,j from the fuzzy rules

If v is ÃV t and d is ÃDt, then z is Cm

µi,j =

∑M
m=1 fmzm

∑M
m=1 fm

, z = [z, z̄] (6.4)

where

z =





z̄ if Classj = desired class

z otherwise

(6.5)
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Figure 6.1: Interval type-1 fuzzy set.

z denotes the lower bound of the interval type-1 consequent set while

z̄ is the upper bound (see Fig. 6.1).

t is the fuzzy partition index, M is the total number of rules and fm

is mth rule’s antecedent part firing strength

f = sup(µṼ , µÃV
). sup(µD̃, µÃD

) (6.6)

where sup[.] denotes supremum operation [37].

END FOR LOOP

END FOR LOOP

END

Consider an initialisation procedure where the universe of discourse for the data

density has two fuzzy partitions (i.e., ÃV ∈ {HIGH, LOW}), the distance domain

has also two fuzzy partitions (i.e., ÃV ∈ {FAR, CLOSE}) and consequent has

four fuzzy partitions (interval type-1) (i.e., C ∈ {HIGH, MODERATE HIGH,

MODERATE LOW, LOW}), then a four rules rule-base can be formed as follows:

If v is HIGH and d is CLOSE, then z is HIGH

If v is HIGH and d is FAR, then z is MODERATE HIGH

If v is LOW and d is CLOSE, then z is MODERATE LOW
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If v is LOW and d is FAR, then z is LOW.

The reason for employing interval type-1 fuzzy set as the consequent set is to

ensure higher weight is assigned to the training data in its own class while lower

weight is assigned to other classes. When compared to fuzzy K-NN, one important

difference is that the summation of memberships in all classes is not equal to one.

This is common to most fuzzy rule-based system as the tweaked membership

functions of differing classes are not complementary to each other. Nevertheless,

it should be the least concern as winner-takes-all approach is used for classification

whereby we only care about the relative difference in membership grades.

Our proposed method revises and enhances the fuzzy K-NN algorithm by tun-

ing the fuzzy antecedent and consequent sets in the rule based used to initialise

the membership grades of the data points in the training set. The rest of the

algorithm is similar to fuzzy K-NN as described in Section 6.2.2. The inclusion

of fuzzy rule-based system in the initialisation can ensure richer context informa-

tion is captured and hence achieve a more suitable decision area. In conventional

fuzzy K-NN or crisp K-NN, the decision area is fixed once the parameter K has

been determined. These algorithms rely on the assumption that class conditional

probabilities are locally constant. On the other hand, the highly versatile and

ad-hoc framework of fuzzy rule-based system enable us to have a flexible decision

area. The flexibility comes from the ability to modify the membership functions;

which in turn change the interpretation of the input variables such as density and

neighborhood distance. The potential advantage of the proposed fuzzy rule-base

K-NN classifier was demonstrated using a problem with limited training samples.

Fig. 6.2 shows the two-dimensional decision area of a two-class classification prob-
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lem with ten data points. Recall that in K-NN algorithm, the choice of parameter

K is critical to ensure good classification. When K = 1, there will be no ambiguity

as shown by the decision area produced by either crisp K-NN or fuzzy K-NN in

Fig. 6.2(a). All data points are correctly classified and the decision area is contin-

uous. However, there is uncertainty in assigning class labels to the samples when

K is increased to 3. The points in the area around (0.65, 0.35) are closer to the

opposing class (Class ‘*’). Hence, this point may be regarded as an outlier; but on

the other hand, it seems more intuitive to classify this uncertain area to Class ‘¤’.

Crisp K-NN (Fig. 6.2(b)) produces erroneous decision boundary as three of the

data points from Class ‘¤’ are misclassified. While both fuzzy K-NN (Fig. 6.2(c))

and fuzzy-rule based K-NN (Fig. 6.2(d)) manage to classify all data points cor-

rectly, fuzzy rule-based K-NN seems to produce a more desirable decision area.

Fuzzy K-NN produces a disjoint decision area around point (0.65, 0.35) because

most of the data points in this area receive more influences from the three nearest

neighbors which belong to another class. However, with proper tuning of member-

ship functions a continuous (in fact smoother) decision area can be formed which

resembles the case where K = 1. As far as the flexibility is concerned, the pro-

posed fuzzy rule-based K-NN is also able to reproduce the same decision area as

in the conventional fuzzy K-NN case while offering an alternative to fine tune the

decision boundary further. This simple example elucidates our proposed method

has the potential to better handle the uncertainty in classification problems.
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Figure 6.2: Decision area computed with different classifiers (a) K = 1, (b) –
(d) K = 3 for crisp K-NN, fuzzy K-NN, and fuzzy rule-based K-NN respectively.
To illustrate the effectiveness of fuzzy rule-based initialisation procedure only,
weighted Euclidean distance measurement is not used. It is clear that the decision
area produced by fuzzy rule-based K-NN resembles the one with K = 1 with
minimal uncertainty.
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6.3.1 Weighted Euclidean Distance Measure

Classification algorithms based on simple Euclidean distance measure, such as K-

NN and fuzzy K-NN, assume that the input space is isotropic or homogeneous.

However, in most real classification problems, the input patterns tend to be het-

erogeneous [86]. Variations in the structure of the input space can lead to severe

bias, especially when the feature dimension is high. One method to minimise the

impact of non-homogeneous input patterns is to manipulate the original input

space by modifying the importance of each attribute to reflect its relevance for

classification. In particular, the neighborhoods are elongated along less relevant

attribute dimensions (with small weight) and constricted along most relevant one

(with large weight) [87]. This work employed the weighted Euclidean distance

measure, defined below, to control the effect of each individual feature

D(x,y) =

√√√√
q∑

i=1

wi(xi − yi)2 (6.7)

where q is the number of features and wi is the weight for ith feature. Consider the

example in Fig. 6.3. Based on the principle of nearest-neighbor, the query point

x0 will be assigned to the same class as x2 because D1 > D2. Suppose the desired

decision is to assign x0 to the label of x1, then the underlying distance relationship

between the prototypes x1 and x2 should be adjusted such that D1 < D2. It can

be verified that this is achievable as long as the condition in (6.8) is satisfied where

δ1i = (x1i − x0i), δ2i = (x2i − x0i) for ∀i. By solving (6.9) for w1

w2
subject to (6.8),

x0 will be assigned to the class represented by x1 when w1

w2
> 1.477. For example,

if w1 = 0.8 and w2 = 0.5, then D1
2 = 0.0089 and D2

2 = 0.0093.

min
∀i
|δ1i|
|δ2i| < 1 (6.8)
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Figure 6.3: When the Euclidean distance measure is unweighted, the query point
is assigned to the same class as data 2 as both of them are closer to each other.

q∑
i=1

wiδ1i
2 <

q∑
i=1

wiδ2i
2 (6.9)

While the numerical example demonstrates that the feature space can be adjusted,

the task of solving (6.9) is very tedious when the feature dimension is higher than

two. In order to alleviate this difficulty, the genetic algorithm described in the

next subsection is used to evolve the feature weights and the parameters of the

fuzzy rule-base simultaneously. As a result, an optimal set of feature weights can

be obtained even when the data from different classes are overlapped.

6.4 Genetic Learning of Fuzzy Rule-Based K-

NN

A fuzzy rule-based system has no self-learning capability. This does not hinder

the usefulness of fuzzy system as advances in machine learning techniques have

opened up a wide range of learning algorithm choices. Tuning methods such as

Least-Square, Back-Propagation, Singular-Value-QR Decompositions etc. can be
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found in the literature [37]. To obtain a set of optimal parameters (membership

functions, weights), a genetic algorithm based method was employed.

Binary coded GA was adopted in the current framework. Each of the pa-

rameter was encoded in a 8-bit string. The pre-evaluation training accuracy (see

Section 6.5) was chosen as the fitness function. The chromosome structure is

shown in Fig. 6.4. The chromosome contains the parameters that need to be op-

timised. Based on the four fuzzy rules structure defined in Section 6.3, there are

four antecedent sets and four consequent sets. Each of the antecedent set is a

sigmoidal membership function and is characterised by two parameters a and c

as shown in (7.10). The interval type-1 consequent set is characterised by two

parameters: lower bound C and upper bound, C̄. In (6.4), the bounds for interval

type-1 consequent sets are represented by the parameter z. The number of feature

weights is equal to the dimension of the feature vector, q. Thus, there will be a

total of (16 + q) parameters need to be tuned.

fsig(x) =
1

1 + e−a(x−c)
(6.10)

During the fitness evaluation, the parameters were decoded into real numbers

using linear mapping equation as shown below:

gp = Gmin
q + (Gmax

q −Gmin
q )× Aq

2N − 1
(6.11)

where gp denotes the actual value of the qth parameter, Aq denotes the integer rep-

resented by a N -bit string gene, Gmax
q and Gmin

q denote the user defined upper and

lower limits of the gene respectively. The selection method is tournament size of

two with elitism. As for the genetic operators, bitwise flipping mutation (mutation

rate = 0.03) and single-point crossover (crossover rate = 0.8) are implemented.
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Figure 6.4: The structure of the chromosome. First part encodes the parameters
for the antecedent sets while the middle part encodes the consequent parameters
which describe a set of interval type-1 fuzzy sets. The last part contains the feature
weights used in weighted Euclidean distance measure.

6.5 Computational Experiments

In our experiments, we used five different real-world datasets. Four datasets: Bupa

liver, Glass, Pima Indians diabetes and Wisconsin breast cancer, were taken from

the UCI Machine Learning Repository [94]. The last dataset – Ford automotive,

was obtained from [70]. The characteristics of the five datasets are summarised

in Table 6.1. All datasets were randomly divided into training sets (200 for Bupa

liver, 120 for Glass, 400 for Pima Indians diabetes, 250 for Wisconsin breast can-

cer and 3306 for Ford) and test sets consisting of the remaining data points, as

shown in Table 6.1. 50% hold-out cross-validation was performed during the clas-

sifier training stage. This means that only half of the training data will be used

to train the classifier, while the other half will be used to pre-evaluate the clas-

sifier performance. Hold-out cross-validation was employed because the training

accuracy tends to be 100% if the initialisation step is performed on the training

prototypes and this leads to premature convergence during evolution. Since GA

is a heuristic search based algorithm, for each hold-out dataset, the optimisa-

tion was performed ten times and the individual testing accuracy was averaged.

The hold-out process was then repeated four times independently and the average

cross-validation classification rate was reported. The experiment setup described

above was designed to evaluate the performance of fuzzy rule-based K-NN clas-
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Table 6.1: Summary of Datasets

Dataset Features Classes
Total Training Testing

Samples Samples Samples
Bupa Liver 6 2 345 200 145
Glass 9 7 214 120 94
Pima Indians Diabetes 8 2 768 400 368
Wisconsin Breast Cancer 30 2 569 250 319
Ford 2 2 4116 3306 810

sifier in two ways. Firstly, the UCI dataset poses a problem where the training

data is insufficient. Secondly, the Ford dataset poses another problem whereby

the testing data is atypical to the training data due to some disturbances. In the

following, four competing K-NN variants are compared: crisp K-NN, fuzzy K-NN,

fuzzy K-NN with weighted Euclidean distance measure (denoted as fuzzy K-NN*

with an asterisk sign hereafter) and the proposed fuzzy rule-based K-NN. In all

experiments, all data were first normalised into the range [0,1].

6.5.1 Minimising the Effect of Insufficient Training Data

An insufficiency of training data often results in a poorly learned classifier. The

experiments were carried out to investigate if the proposed fuzzy rule-based ini-

tialisation procedure can mitigate the adverse effect of incomplete training data

on the classification accuracy. Four UCI datasets were used in the study and the

data was split in such a way that the number of training data is much smaller than

the number of testing data. The ratios of training data to testing data for each

training stage varied from approximately 40% to 70% (Bupa Liver 68.97%, Glass

63.83%, Pima Indians diabetes 54.35%, and Wisconsin breast cancer 39.19%).

Fig. 6.5 shows the average classification accuracies for different K sizes, ranging
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from 1 to 11. In general, all NN based classifiers perform better when K is in-

creased except for the Glass dataset due to the uneven class distribution as the

data ratio of Class 1 to Class 6 is 76 : 9. Furthermore, the dataset is dominated

by Class 1 and Class 6 which contribute 68.22% of the total number of samples.

Due to the nature of this dataset, there is a drastic performance drop (K is in-

creased) when using crisp K-NN followed by fuzzy K-NN. Even so, the proposed

fuzzy rule-based K-NN is least affected by the uneven class distribution. Another

observation is that the performance of the fuzzy K-NN algorithm is not necessarily

better than the crisp K-NN algorithm throughout all experiments. For Liver and

Glass datasets, the fuzzy K-NN may have the edge but not for the rests. This

finding is consistent with the works by Kuncheva [2]. Table 6.2 presents the im-

provement of the fuzzy K-NN* and FRB-KNN classifiers over the conventional

fuzzy K-NN on UCI dataset. The results reveal that the evolutionary optimised

Euclidean distance weights can greatly improve the overall performance. This is

due to the fact that not all features share the same class-discriminating power.

By enhancing the more important feature and lowering the impact of irrelevant

feature, the classification task can be easier. In addition, it is observed that the

fuzzy rule-based initialisation procedure enhances the overall performance further

(Bupa Liver +0.45%, Glass +2.00%, Pima Indians diabetes +0.66%, and Wiscon-

sin breast cancer +0.16%). This elucidates the efficacy of fuzzy rule-based system

to tweak the decision area in contrast to the fixed decision area produced by other

competitors when the parameter K is predetermined.
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Figure 6.5: Comparison of average testing accuracies with different K-NN algo-
rithms for dataset (a) Bupa liver, (b) Glass, (c) Pima Indians diabetes, (d) Wis-
consin breast cancer and (e) Ford automotive. In overall, fuzzy rule-based K-NN
outperforms other NN variants.
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Table 6.2: The Classification Accuracy Improvement of Fuzzy K-NN with
Weighted Euclidean Distance (Fuzzy KNN*) and Fuzzy Rule-Based K-NN (FRB-
KNN) Compared to Conventional Fuzzy K-NN on four UCI Datasets.

Dataset
Improvement (in %)

Fuzzy KNN* FRB-KNN

Bupa Liver 4.68 5.13
Glass 6.85 8.85
Pima Indians Diabetes 1.39 2.05
Wisconsin Breast Cancer 0.53 0.69

6.5.2 Handling the Issue of Noise Uncertainty

The Ford dataset (as seen in Chapter 4) poses another interesting problem whereby

the testing data and training data have dissimilar characteristics because of the

presence of noises and disturbances in the test stage. By applying Principal Com-

ponent Analysis (PCA) on the periodogram signal, the two most dominant prin-

cipal components are extracted. Fig. 4.6 shows the scatter plots of the first and

second principal components of PCA projected training data. Both the training

and testing data have no clear decision boundary, but the testing data are more

overlapped in comparison. This poses a real challenge to the classifiers to resolve

“fuzzy” decision boundary. Fig. 6.5(e) reveals that the advantage of weighted

Euclidean distance is virtually non-existing on Ford automotive dataset probably

because the original data have undergone PCA projection. PCA has a similar

effect of distorting the original feature spaces. The original data are weighted us-

ing eigenvectors (directions in which the variances of the projection is maximised).

Since the effect of GA evolved feature weight is negligible,it is deduced that all the

improvement is solely contributed by the fuzzy rule-based initialisation procedure.

Based on the experimental results on five datasets, the ranking of the classifier
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performance in descending order is given as follows: FRB-KNN, fuzzy K-NN*,

fuzzy K-NN, and crisp K-NN. The findings indicate that the proposed system is

superior to other K-NN classifiers not only for its ability to alleviate the adverse

effect of insufficiency of training data, but also for its noise handling capability.

To further evaluate the proposed fuzzy rule-based K-NN classifier, its perfor-

mance is compared against support vector machine (SVM) with Gaussian kernel

(with default width, σ = 0.5) and Bayesian classifier. The Bayesian classifier con-

sists of several conditional probability models which are approximated by Gaussian

probability density function

p(x|Classj) ∼ N(x;mj, Σj) (6.12)

where mj and Σj denote the mean vector and covariance matrix of the multivariate

Gaussian distribution associated with Classj. Given an unlabeled input x′, its

label is associated with the class with maximum log-likelihood [17]

Class(x′) = arg max
j

log p(x′|Classj)

= arg max
j

−log |Σj| − (x′ −mj)
tΣ−1

j (x′ −mj). (6.13)

Based on Table 6.3, FRB-KNN outperforms SVM when tested on four datasets

(Bupa Liver +3.96%, Pima Indians diabetes +9.89%, Wisconsin breast cancer

+1.00% and Ford automotive +8.43%) and it is only inferior to SVM when eval-

uated on Glass dataset (-18.22%). This probably indicates that FRB-KNN is less

capable to handle uneven class problem. Nevertheless, the results still indicate

that fuzzy rule-based K-NN is superior compared to other K-NN classifiers in face

of uneven class issue. When compared to Bayesian classifier, the proposed method

has the absolute advantage (Bupa Liver +9.56%, Glass +16.51%, Pima Indians
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Table 6.3: Average Testing Accuracies (in %) on Different Datasets with Six
Competing Classifiers.

Method \ Dataset Liver Glass Diabetes Breast Ford

Crisp KNN 60.13 56.67 74.17 95.38 75.03
Fuzzy KNN 60.73 60.79 74.24 95.37 74.72
Fuzzy KNN* 65.42 67.64 75.63 95.90 74.72
FRB-KNN 65.86 69.17 76.29 96.06 75.11
Bayesian 56.29 52.66 74.22 89.66 73.94
SVM 61.90 87.39 66.41 95.06 66.68

‘*’ denotes fuzzy K-NN with weighted Euclidean distance measure

diabetes +2.07%, Wisconsin breast cancer +6.41% and Ford automotive +1.17%).

This shows that the performance of Bayesian classifier is unreliable when the data

is very limited or corrupted with noise.

It would be interesting to measure how well a method performs with respect to

the best available method. [95] defines the robustness of a method as the ratio of

the error rate to the smallest error rate over all other methods. To be consistent

with the presented results, for mth algorithm, the classification accuracy, instead

of error rate, is used to compute the robustness, Rm

Rm =
ηm

max1≤i≤6 ηi

where 0 ≤ Rm ≤ 1. (6.14)

The most robust algorithm m∗ for a particular problem has Rm∗ = 1 while all

other inferior algorithms m 6= m∗ have Rm < 1. The average of Rm across all

problems provides a measure that corresponds to the robustness index. Table 6.4

shows the robustness index computed with (6.14) while Fig. 6.6 demonstrates the

boxplot of the distribution of robustness ratio for each algorithm over the five

datasets. It becomes clear that FRB-KNN is the most robust algorithm across

all datasets. In 4 out of 5 problems, its accuracy is the highest with an average
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Table 6.4: Robustness Index for Six Different Classifiers.

Method \ Dataset Liver Glass Diabetes Breast Ford

Crisp K-NN 0.9130 0.6485 0.9721 0.9929 0.9989
Fuzzy K-NN 0.9222 0.6957 0.9731 0.9928 0.9948
Fuzzy K-NN* 0.9933 0.7740 0.9913 0.9984 0.9949
FRB-KNN 1.0000 0.7915 1.0000 1.0000 1.0000
Bayesian 0.8548 0.6025 0.9728 0.9333 0.9844
SVM 0.9399 1.0000 0.8704 0.9896 0.8878
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Figure 6.6: Performance distribution for each algorithm is computed by averaging
the robustness ratio over the 5 datasets. The box represents the lower and upper
quartiles of the distribution separated by the median while the outer vertical lines
show the entire range of the distribution.

robustness ratio, R̄ = 0.9583. This is followed by Fuzzy K-NN*, SVM, Fuzzy

K-NN, Crisp K-NN and Bayesian with R̄ = 0.9504, 0.9375, 0.9157, 0.9051, 0.8696

respectively.
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6.6 Conclusion

In this chapter, a fuzzy rule-based K-NN algorithm that is an extension of fuzzy K-

NN algorithm is presented. Unlike the conventional fuzzy K-NN which only uses

simple notion of fuzzy membership value, the proposed algorithm incorporates

a fuzzy rule-based initialisation procedure. The fuzzy sets and inference engine

reinforce the management of uncertainties propagate throughout the system. To

increase the quantitative properties of the fuzzy rule-base, a binary-coded GA that

simultaneously optimises the parameters of the antecedent membership functions,

rule consequents and the feature weights, is used. As a result, the decision bound-

ary produced by fuzzy rule-based K-NN is very flexible and thus it can handle

situation where the training data is insufficient or corrupted by noise. In contrast,

crisp K-NN and fuzzy K-NN may not be able to overcome the situation as there is

no way to change the decision boundary once the parameter K has been fixed. In

case where transparency issue is of concern, the proposed fuzzy rule-base during

initialisation is interpretable as only simple if-then rules are involved as shown in

Section 6.3. The proposed algorithm was successfully applied to five real-world

problems: Bupa liver disorders, Glass, Pima Indians diabetes, Wisconsin breast

cancer, and Ford automotive. From the experimental results, fuzzy rule-based

K-NN shows promising improvement over the competing crisp and fuzzy K-NN

algorithms. The proposed method is also compared to SVM and Bayesian clas-

sifiers under the same experiment setup. The proposed fuzzy rule-based K-NN

delivers better and more consistent results.

The proposed algorithm is able to overcome the shortcoming of the conven-
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tional crisp KNN and fuzzy K-NN when the training data is insufficient. Therefore

it is suitable for problems where the data collection process is expensive. One lim-

itation of the method is the slow computational speed which is also faced by the

K-NN and fuzzy K-NN algorithms. However, this can be solved by incorporating

indexing step to speed-up the searching process.
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Chapter 7

Practical Application of Fuzzy

Rule-Based Classifier for

Inverter-Fed Induction Motor

Fault Diagnosis

7.1 Introduction

Induction motor is the most common electric motors in the world. They are found

in washing machines, refrigerators and fans, as well as conveyors, pumps, winders,

wind tunnels and other industrial equipment. The relatively low manufacturing

cost and rugged construction together with its simplicity in implementation has

gained the induction motor popularity among the various types of motor. The

reason that induction motor has these characteristics is because the rotor is a

self-contained unit, with no external connections.
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Due to thermal, electrical and mechanical stresses, failures on induction mo-

tors are unavoidable. These failures can result in a total loss of the machine,

in addition to a costly downtime of the whole plant [96]. Thus, early detec-

tion of incipient motor faults is of paramount importance. Bearing and rotor

related faults account for 40% and 10% of total induction motor failures respec-

tively [97]. In particular, the main factors behind bearing faults are corrosion and

dust [98]. There is a significant amount of research effort on the preventive main-

tenance of motors. This includes the conventional vibration [99, 100, 101, 102]

and thermal analysis [103] and the state of the art motor current signature anal-

ysis (MCSA) [96, 104, 105, 106, 107]. MCSA has advantages such as ease of

data collection because the current sensor is simple and can be installed nonin-

trusively. It has been suggested that stator current monitoring can detect the

same fault indication as vibration monitoring without requiring access to the mo-

tor [105]. MCSA techniques can be divided into nonparametric, parametric, and

high-resolution spectrum analysis methods. Nonparametric-based approaches rely

on Fourier transform and periodicity detection in the frequency domain. These

approaches include fast Fourier transform (FFT), power spectral density (PSD)

and periodogram. In addition, Önel and Benbouzid [98] used Park and Concordia

transform to detect bearing faults. The faults are indicated as the deformation

of the ellipse trajectory plot for Park transform and the deformation of the circle

trajectory plot for Concordia transform. In parametric-based approaches, autore-

gressive (AR) models are fitted to the time series of signal. Yule AR method has

been proven to provide a stable model and its autocorrelation matrix is guaranteed

to be nonsingular. The model parameters are then used to compute the frequency
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spectrum [96]. On the other hand, high-resolution spectrum methods refer to

eigenvalue analysis of the autocorrelation matrix of the current signal. Two well-

known eigenanalysis-based frequency estimators are multiple signal classification

(MUSIC) and ROOT-MUSIC[108]. Both methods were proposed to solve reso-

lution problem. In many cases, intelligent techniques are incorporated into the

analysis to automate the process of diagnosis. Two popular techniques are neural

network [109, 110, 111] and fuzzy logic system [112, 113]. Neural Network has the

ability to implicitly detect complex nonlinear relationships from the data without

formal statistical training. On the other hand, fuzzy logic system is more tolerant

of imprecise input measurement.

Although MCSA has been successfully applied in practice, it is comparatively

more computationally intensive and requires longer data train than time domain

fault detection and diagnosis techniques. A classical time domain analysis focuses

principally on the statistical characteristics of the signal such as peak level, stan-

dard deviation, skewness, kurtosis and crest factor. Zeraoulia et al. [114] proposed

a fuzzy logic approach to diagnose stator related faults such as voltage unbalance

and open phase by detecting the abnormalities in the current amplitude. Unlike

stator condition monitoring where the current amplitude is useful to detect the

abnormalities of the stator winding [115], there is very limited research on ro-

tor/bearing related fault detection using time domain analysis. This is because

current waveforms from motors with broken rotor bar or defective bearing can

be very similar to the one from healthy motors. However, with proper feature

selection and noise filtering techniques, time domain analysis is potentially valu-

able in providing extra information to confirm the presence of abnormalities. As
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the success of time domain analysis depends heavily on the availability of dis-

tinguishing features, fault diagnosis algorithms based on inputs obtained from

transformation algorithms such as Principal Component Analysis (PCA), Linear

Discriminant Analysis (LDA), and Independent Component Analysis (ICA) have

been developed. Park et al. [116] used PCA and LDA to perform fault diagnosis

for induction motor. A preliminary study using fixed supply-fed induction mo-

tor fault detection shows that time domain approach could be promising [117].

In particular, time-domain stator current signals projected onto two dimensional

(2-D) feature space using ICA can yield distinctively separated clusters for three

classes: healthy, bearing, and broken rotor bar, as shown in Fig. 7.2.

Thus far, research has focused on induction motors running at fixed speed.

Normally, inverter-fed induction motors used in industries will operate at sev-

eral predetermined speeds. For example, milling machines usually have speed

settings at low, medium, high. In adjustable speed applications, AC induction

motors are powered by inverters. The inverter converts DC power to AC power

at the required amplitude and frequency. Unlike a fixed supply-fed motor line

current, the inverter-fed motor line current includes electromagnetic interference

(EMI) noise that adversely affects the fault diagnosis algorithm. The inherent

floor noise reduces the possibility of detecting the true fault pattern. Moreover,

the current signal is always corrupted by noise originated from the high frequency

switching components inside the inverter. Although MCSA is one of the most

powerful methods for diagnosing motor faults, it is reported that the noise can

causes uncertainty when separating the healthy bearing pattern from the faulty

pattern [118]. Jung et al. [107] notice that the abnormal harmonics of bearing
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faults are in the higher frequency bands than those of rotor faults. These bearing

frequency bands may be close to or coincide with noise bands. When the noise

amplitude is comparable with the bearing fault signature amplitude, it is then

very difficult to detect incipient bearing defects. Therefore, there is a need to

have another measure to assist or confirm the existence of bearing fault when car-

rying out frequency domain analysis. In addition, time domain analysis using ICA

projection [117] reveals that the cluster locations are not invariant to the motor

operating frequencies as illustrated in Fig. 7.10. As a result, it is almost impos-

sible to define a fixed decision boundary for all operating frequencies. Thus, the

challenge of extending existing time and frequency domain methods to variable

speed drives remains unsolved.

To address the need for robust monitoring of induction motors in variable speed

applications, this chapter introduces a novel hybrid time-frequency domain analy-

sis method for detecting broken rotor bar and bearing faults in inverter-fed motors.

The architecture of the proposed fault diagnosis system in Fig. 7.1 shows that mo-

tor condition monitoring is achieved by using a fuzzy logic system to fuse time

and frequency domain features of the motor stator current. The main advantage

of using fuzzy rule-based systems compared to other machine learning methods

such as Neural Network is that fuzzy rules are interpretable; therefore the expert

can verify the rules. The algorithm works as follows: first, ICA is used to project

time domain current signals into 2-D feature space in order to extract the input

distance information from the healthy cluster. Next, frequency domain analysis is

performed by computing FFT spectrum and extracting the abnormal harmonics

amplitudes. By using fuzzy logic system to combine the results from time-domain
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Figure 7.1: Overview of the proposed hybrid time-frequency domain analysis al-
gorithm.

analysis and MCSA, robust fault diagnosis can be achieved. In addition, the

computationally efficient time domain analysis can be used as an early warning

system to detect the presence of faults. Lastly, the problem of stator current noise

caused by high frequency switches in the inverter is handled by introducing a new

noise reduction technique known as “Ensemble and Individual Noise Reduction

(EINR)”. This technique was initially proposed in our recent work [119] and was

proven to be able to reduce noises in current signals effectively.

In the following section, MCSA technique which uses FFT spectrum analysis to

detect broken rotor bar and bearing related faults will be introduced. Section 7.3

gives a brief introduction to Independent Component Analysis and explains how

this analysis can be used to extract features from time domain signals. Due to

the random stator current noise from the inverter-fed motor, a noise reduction

algorithm known as Ensemble and Individual Noise Reduction (EINR) is employed

in Section 7.4. The proposed hybrid algorithm is introduced in Section 7.5 while

the experimental results in Section 7.6 elucidate the effectiveness of the algorithm.

Finally, conclusions are drawn in Section 7.7.
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Figure 7.2: Scatter plot of the extracted 2-D features for fixed supply-fed motor
(50Hz) using Independent Component Analysis (ICA) method.

7.2 Motor Current Spectral Analysis

Among all the techniques in Motor Current Signature Analysis (MCSA), the most

classical and widely used technique is Fast Fourier Transform (FFT). FFT is an

algorithm to compute Discrete Fourier Transform (DFT) in a more efficient way.

FFT decomposes a sequence of values into components of different frequencies.

Motor current acts as an excellent transducer for detecting faults in motors.

A noiseless healthy motor current signal is a perfect sinusoidal wave. As there is

no harmonics, we can only see one peak in the frequency spectrum. During actual

operation, many harmonics will present in the motor signal. Certain harmonics

come from the supply and they are of little consequence. Thus, FFT spectrum will

show many peaks including line frequency and its harmonics. This is known as the

motor’s current signature. Harmonics also generated from various electrical and

mechanical faults. MCSA operates on the principle that faults causing a change

in the internal flux distribution, thus generating the harmonics.
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7.2.1 Broken Rotor Bar Fault

In the current signature, the motor pole passing frequency will show up as a side-

band to the line frequency. Broken rotor bar can cause anomaly in the magnetic

field[105]. As the rotor bars start degrading (i.e., high resistance joints are present

or a crack starts developing), the rotor impedance rises. Due to this, the current

drawn at the following sideband frequency rises

fbrb = fs(1± 2s) (7.1)

where

fs : supply frequency;

s : per-unit slip;

A typical current spectrum of an induction motor with broken rotor bars is given

in Fig. 7.3. The presence of broken rotor bars is indicated by the difference in

amplitude between the fundamental and the left sideband. The amplitude of

the left sideband frequency component is proportional to the amount of broken

rotor bars. As a general guide, it has been reported that a difference less than

50dB is a sign of broken rotor bar faults[105, 108, 120, 121]. (7.1) shows that the

rotor bar frequencies are a function of the machine slip. As the load is reduced,

the separation between the fundamental and sideband will become smaller and

detection becomes difficult because the left sideband frequency component will be

masked by the fundamental frequency component. Therefore, this method will

work well only if the motor is loaded.
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Figure 7.3: Current spectrum of an induction motor with broken rotor bars.

7.2.2 Bearing Fault

Bearing faults can be divided into inner race, outer race, ball defect, or cage

defect, which are the main sources of machine vibration. Inner or outer race

are the two more common bearing faults. The mechanical vibrations in the air-

gap can be considered as slight rotor radial displacements which result in air-gap

eccentricity[118]. The relationship of bearing vibration to stator current spectrum

results from the fact that any air-gap eccentricity produces anomalies in the air gap

flux density[104]. The bearing related faults can be detected by determining the

stator current spectral frequencies induced by characteristic vibration frequencies

fv. The induced current frequencies for bearing fault, fbng given by

fbng = |fs ± kfv| (7.2)

where k = 1, 2, 3, . . . are the harmonic indexes and fv can be either inner race

defect frequency, fi or outer race defect frequency,fo

fi,o =
n

2
fr

[
1± bd

pd
cos φ

]
(7.3)

where



155

n : number of bearing balls;

fr : mechanical rotor speed in Hz;

bd : ball diameter;

pd : bearing pitch diameter;

φ : contact angle of the balls on the races.

Fig. 7.4 compares the bearing frequency components for healthy motor and motor

with inner race bearing fault. It is noticed that the amplitudes information can be

uncertain due to the noise level or baseline drifting as mentioned in Section 7.1.

Unlike broken rotor bar fault whereby only left sideband needs to be monitored,

notice that (7.2) have unspecified bearing fault harmonic numbers (k=1,2,3,. . . ).

Dominant harmonic (specific k) must be identified in order to detect the faults.

Jung et al. [107] proposed a frequency auto search algorithm to search for the

most dominant harmonic. The algorithm first creates an N -dimensional candidate

searching index vector which stores different harmonic frequencies. N denotes

the number of unspecified harmonic numbers. Next, the algorithm normalizes

the magnitude of the incoming FFT signal to the healthy signal according to

the frequency index. The most dominant harmonic is the one with the highest

ratio. Due to the noise issue, the bearing fault component may spread over a

wider frequency band compared to the broken rotor bar component (see Fig. 7.4).

Therefore, the amplitude of the bearing fault component is averaged across the

frequency band of range ±0.5Hz.
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Figure 7.4: Uncertain bearing frequencies components between (a) healthy motor
(b) motor with inner race bearing fault. Due to the noise, the amplitude difference
between two classes are less obvious.

7.3 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical technique for decomposing

a complex dataset into independent sub-parts. In other words, ICA is a technique

that represents a multidimensional random vector as a linear combination of non-

gaussian random variables (‘independent components’) that are as independent as

possible. ICA is a nongaussian version of factor analysis, and is somewhat similar

to principal component analysis. ICA has many applications in data analysis,

source separation, and feature extraction[122].

ICA problem can be formulated as

x = A • s (7.4)

where x = (x1, x2, . . . , xm)T is an observed m-dimensional random vector , s =

(s1, s2, . . . , sn)T is an n-dimensional (latent) random vector whose components

are assumed mutually independent, and A is an unknown m × n mixing matrix

to be estimated. The basic assumptions of this algorithm are that the compo-
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nents are statistically independent and the independent components must have a

non-gaussian distributions. As a matter of fact, ICA is an extension to Principal

Component Analysis (PCA). The key difference between ICA and PCA is that

PCA obtains principal components which are uncorrelated whereas ICA obtains

components that are statistically independent. Independence is a stronger condi-

tion than uncorrelatedness. In (7.4), the (pseudo)inverse of the mixing matrix A is

known as transformation matrix W. The most widely used algorithm for estimat-

ing W is FastICA algorithm[123]. FastICA learning rule finds a transformation

matrix W that minimises the mutual information of the transformed component,

s. This is roughly equivalent to finding directions in which the independency is

maximised. Denote W = [w1w2 . . .wm]T , one-unit fastICA algorithm has the

following form

w(k) = E{xg(w(k − 1)Tx)} − E{g′(w(k − 1)Tx)}w(k − 1) (7.5)

where k is the iteration index, the weight vector w is also normalized to unit norm

after every iteration, and the function g is the derivative of the function G (any

quadratic function) used in the general objective function. One-unit fastICA is

then extended to multiple-unit to estimate the full W[123]. By rearranging (7.4),

the transformed variables s are given as

s = W • x. (7.6)

In pattern classification problem, the transformation can be considered as feature

extraction whereby si is the coefficient of the ith feature in the observed data

vector x. To overcome the curse-of-dimensionality, it is always feasible to have low-

dimensional data (i.e., i ≤ 3). For example, if two-dimensional input s = (s1, s2)
T
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is needed, then transformation matrix W dimension is chosen to be 2×m.

7.4 Ensemble and Individual Noise Reduction

The preliminary work on using Independent Component Analysis (ICA) to extract

time domain features is very successful on fixed supply-fed induction motor as

mentioned in Section 7.1. Therefore, there is a strong interest to extend this

technique to inverter-fed induction motor. The experimental data in Fig. 7.5

shows that the stator current from inverter-fed motor has relatively higher noise.

As a result, the clusters corresponding to different motor conditions overlap with

each other in the ICA feature space as shown in Fig. 7.6. In particular, the healthy

cluster and bearing cluster have high degree of overlap. In view of this, a noise

reduction method known as Ensemble and Individual Noise Reduction (EINR)

is employed to overcome the noise problem in inverter-fed motor stator current.

Fig. 7.7 shows the procedures involved in EINR. Since noise is a random event, it

is possible to reduce the noise by averaging a predetermined number of corrupted

signals. Denote (x(t), x(t + T ), . . . , x(t + (N − 1)T )) as a set of aligned periodic

noisy base signals from the same source where N is the number of signals and T is

the length of the signal, the first step is to compute the profile signal, P (t) which

is the summation of all the noisy base signals

P (t) =
N−1∑

k=0

x(t + kT ). (7.7)

It is clear from Fig. 7.7 that most of the noises have been eliminated in the profile

signal. In the next step, for every incoming noisy signal y(t), the denoised signal
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Figure 7.5: 50Hz Stator current signal from the (a) fixed supply-fed induction
motor (b) inverter-fed induction motor.

ŷ(t) can be computed with the following equation

ŷ(t) =
P (t) + y(t)

(N + 1)
. (7.8)

In this way, the denoised signal shares the common profile yet retains its own

information. The merit of this unique noise reduction method is that it can min-

imise the intra-class variation. In other words, as long as there are differences in

the “profiles” from different classes, then the data will form well separated clus-

ters in the feature space. EINR can be easily extended to any signal that has

specific waveform (in this study, the stator current has sinusoidal waveform) yet

corrupted by noise, prior to the feature extraction step such as PCA, LDA or ICA.

Fig. 7.8 depicts the effect of applying EINR technique with parameters N = 15

and T = 25000. The overlapping problem has been solved. Interestingly, the

clusters are now even more compact than those from fixed supply-fed motor (refer

to Fig. 7.2).
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Figure 7.6: Scatter plot of the extracted 2-D features for inverter-fed motor (50Hz)
using Independent Component Analysis (ICA) method.

Figure 7.7: Ensemble and individual noise reduction procedures.
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Figure 7.8: Scatter plot of the ICA extracted 2-D features for inverter-fed motor
(50Hz) after applying Emsemble and Individual Noise Reduction technique.

7.5 Proposed Algorithm

The literature survey in Section 7.1 indicates that the MCSA approach to detect

bearing related faults can be difficult when the noise amplitude is comparable to

the bearing fault frequency component. On the other hand, the time domain pro-

jection using ICA algorithm has been shown to give promising results by produc-

ing distinctly separated clusters in 2-D feature space for fixed supply-fed induction

motor. However, as shown in Fig. 7.10, the clusters are not invariant to speed in

inverter-driven motors (i.e., the locations of the clusters vary with respect to dif-

ferent operating frequencies). Therefore, the decision boundaries are not fixed for

all speeds. For these reasons, a hybrid time-frequency domain analysis that aims

at increasing the robustness of the frequency domain analysis by utilizing the clus-

ter information obtained from time-domain feature projection is proposed. This

hybrid approach enables the advantages of time and frequency domain analysis to

complement each other for the needs of different application. Since time domain

analysis requires much shorter segment of data and is computationally simpler
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than FFT, it provides the possibility of detecting the presence of a fault quickly

and efficiently. This property is vital in applications where power is limited. An

example being induction motors that are installed in a remote area and the com-

munication link is provided by solar powered transmitters. Power can be saved

by first transmitting a short data train to enable ICA projection to be performed.

Any abnormal condition will be presented as an outlier to the healthy cluster in the

feature space. When an abnormality is suspected, a further command can be sent

to the transmitter to request for a longer signal for more detailed diagnosis.Thus,

time domain analysis serves as the first cut fault detector. When both time and

frequency domain data are fused together by the fuzzy rule-based classifier, a ro-

bust diagnosis result can be obtained irregardless of the motor operating speed.

Details of the hybrid algorithm are further depicted in Fig. 7.9. The following

subsections will discuss each block in greater detail.

7.5.1 Data Requirement and Processing

Before the raw stator current signal can be used, the signal must be preprocessed

to remove the unwanted noise using the EINR approach described in Section 7.4.

In order to compute FFT analysis, the length of the signal must be long enough

(typically > 20s depending on the sampling rate) to provide sufficient resolution to

detect frequency components corresponding to the various fault conditions. While

the lengthy signal is required for FFT analysis, the number of data points is

enormous for ICA feature extraction in time domain. Therefore, for time domain

analysis only one cycle of the signal will be used. This can reduce the computation

time tremendously so as to provide faster response.
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Figure 7.9: Details of the proposed hybrid time-frequency domain analysis algo-
rithm.

7.5.2 Commissioning Phase

The commissioning phase involves both time and frequency domain analysis as

well as finding the parameters for the fuzzy rule-based classifier.

7.5.2.1 Time Domain

For time domain analysis, a single cycle of current signal (one cycle signal in

Fig. 7.9) is discretised into the predetermined number of data points, T . For

unbiased training, equal number of data sets are collected from healthy and faulty

motor. From ICA analysis, the two most dominant independent components w1

and w2 will be recorded. The resultant transformation matrix W is a 2×m matrix,

W = [w1w2]
T , where m is the length of the signal. The features extracted from

current signals using (7.6) is shown in Fig. 7.2. ICA only needs to be computed

once as the ICs stored in W can be used repeatedly to extract other signals with

different frequencies. Fig. 7.10 shows that the healthy clusters are very compact,
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Figure 7.10: Healthy and faulty clusters (bearing and broken rotor bar) for variable
inverter frequencies during training stage except the left top one for fixed supply
frequency. Each cluster contains 30 training data points.

hence by measuring the distance of the incoming data from the healthy cluster

during the testing phase, one can decide if the signal is faulty or not. In particular,

a faulty signal will be clearly shown as an outlier. Thus in time domain analysis,

the Euclidean distance information (d) extracted using the following equation is

used as one of the inputs to the fuzzy rule-based classifier to provide quick diagnosis

d =
√

(s1 − s̄1)2 + (s2 − s̄2)2 (7.9)

where (s̄1, s̄2) is the centroid of the healthy cluster.

7.5.2.2 Frequency Domain

The frequency domain features are extracted from the FFT spectrum generated

from the raw signal (long signal in Fig. 7.9). The components at the broken

rotor bar frequency, fbrb and the bearing fault frequency, fbrg will be examined.

There are three features to be extracted. The first feature is the amplitude of

the left sideband, Aside while the second feature is the amplitude difference of
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the fundamental component and left sideband, Adiff . Both features are used to

detect the existence of broken rotor bar. The third feature is the amplitude of

the bearing fault component, Abrg. Since the signatures of the various types of

bearing faults occur at different frequencies, Abrg is selected as the most dominant

frequency component as extracted by the frequency auto search algorithm [107].

7.5.2.3 Fuzzy Rule Base

A fuzzy rule-based system allows experts’ knowledge to be incorporated through

intuitive if-then rules. The numerical data are represented as linguistic information

which are in fact a set of fuzzy membership functions. The following rules are used

to classify healthy motor and motor with bearing fault or broken rotor bar fault

R1: If Aside is small and Adiff is large and Abrg is small and d is near, then

STATUS is Healthy

R2: If Aside is small and Adiff is large and Abrg is large and d is far, then STATUS

is Bearing Fault

R3: If Aside is large and Adiff is small and Abrg is small and d is far, then STATUS

is Broken Rotor Bar.

Product t-norm and Max t-conorm are used to perform the fuzzy inferencing in

this study. The diagnosis result is determined by the rule with the highest firing

level, based on winner-takes-all strategy. Each of the antecedent set is a sigmoidal

membership function and is characterised by two parameters a and c as shown

in (7.10). Each universe of discourse has two fuzzy partitions.

fsig(x) =
1

1 + e−a(x−c)
. (7.10)
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For distance membership function, the parameter c in (7.10) is made adaptive

with respect to the motor speed and is determined by

c = τ × dH̄−F̄ (7.11)

where H̄ is the centroid of the healthy cluster, F̄ is the centroid of the nearest

faulty cluster and 0 < τ < 1 is a threshold that controls the radius of the healthy

cluster boundary. If τ ≈ 0, the incoming data must be very close to the healthy

cluster centroid to be considered as a healthy signal. In contrast, for τ ≈ 1 the

incoming data is still considered as a healthy data even its distance is nearer to

faulty cluster than the healthy cluster. In other words, the parameter τ determines

the separation needed for a data point to be considered as an outlier (i.e., faulty

data). In a more critical application, τ can be set to a smaller value (τ ≤ 0.5)

to avoid the false classification of a faulty motor as a healthy motor. The rest of

the fuzzy membership function parameters are determined manually based on the

observations during feature extraction steps (see Fig. 7.11(b)-(d)).

7.5.3 On-line Monitoring Phase

During the on-line monitoring phase, pre-processing of the motot stator current

into both time and frequency domain data are conducted in a manner similar to the

commissioning phase. The single cycle (“short”) test stator current input vector

is projected onto the 2-D feature space using the pre-trained ICA transformation

matrix W. As mentioned earlier, the distance of projected test input from the

healthy cluster provides a measure of how similar the signal is to the healthy

signal. If the distance is small, then the signal likely belongs to the healthy class.
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Figure 7.11: Fuzzy membership functions for four inputs: (a) distance, d (b)
amplitude of the left sideband, Aside, (c) amplitude difference of the fundamental
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operating speed, (a) only shows one of the instances.

Otherwise, it probably belongs to the faulty class. For frequency domain analysis,

three amplitude features are extracted from the FFT spectrum of each incoming

“long” test data sequence. The extracted distance and amplitude information

are then fuzzified as fuzzy singletons and fed into the fuzzy rule-based classifier

with the membership functions designed during the commissioning phase. Finally,

the fuzzy inference engine gives the diagnosis result based on winner-takes-all

principle.

7.6 Experimental Results and Discussion

The experimental setup in the laboratory used to assess the hybrid time-frequency

domain method for monitoring the condition of inverter-fed induction motor is
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Figure 7.12: Experiment setup.

Figure 7.13: Two holes are drilled on the rotor bar to simulate broken rotor bar.

illustrated Fig. 7.12. The proposed algorithm is tested on three identical motors.

The technical specifications of the motor and its bearings are given in Tables 7.1

and Table 7.4 respectively. Two motors are artificially modified in which one

of them has dent on the inner race while the other has two holes drilled on the

rotor bar as shown in Fig. 7.13. All induction motors are driven by a voltage-fed

pulse-width modulated inverter at variable frequencies. Segments of raw stator

current is collected using a digital oscilloscope at the sampling rate of 20 kHz

for 50 seconds. A stroboscope is used to measure the mechanical rotor speed so

as to compute the slip. The motor is loaded by a DC generator with variable

resistances.

Since the motor is connected to an inverter, its speed is variable. In this study,

Table 7.1: Rated Parameters of the Induction Motor Under Study
Power 1.1kW
Voltage (4/Y) 230/400V
Current (4/Y) 4.5/2.6A
Frequency 50Hz
Speed 1410rpm
Pole pairs 2
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Table 7.2: Measured Rotor Speeds and Computed Broken Rotor Bar Frequencies

Inverter Frequency (Hz) Rotor Speed (rpm) Per-unit slip fbrb (Hz)

20.0 582 0.0300 18.80
25.0 729 0.0280 23.60
31.5 920 0.0265 29.83
37.5 1094 0.0276 35.43
43.5 1271 0.0261 41.23
50.0 1461 0.0260 47.40
55.0 1600 0.0303 51.67

the inverter is set to seven speeds: 20Hz, 25Hz, 31.5Hz, 37.5Hz, 43.5Hz, 50Hz and

55Hz. At each inverter frequency setting, 30 signal segments are collected for each

class and used for training phase. On the other hand, the classification accuracy

of the proposed algorithm is tested by 150 samples (50 segments of stator current

data for each class). The one-cycle stator current signal which is processed by

ICA projection has 360 data points. A “long” signal segment, containing 1× 106

data points, is used to generate the FFT spectrum in order to provide sufficient

resolution to detect abnormal current signature. From the FFT spectrum, the

frequency domain parameters (Aside, Adiff and Abrg) can be extracted. Firstly,

the inverter frequencies, the measured motor speed, (7.1) and (7.2) are used to

calculate the broken rotor bar frequencies and bearing fault frequencies. Table 7.2

shows the estimated broken rotor bar frequencies. The bearing fault frequencies

are difficult to obtain as there are unspecified harmonic number in (7.2). By

applying the frequency auto search algorithm [107], the most dominant harmonic

frequency is found at k = 2 and fv = fi. The estimated bearing fault frequencies

for the motors used in this study are tabulated in Table 7.3. The amplitude of

the frequency components (Aside, Adiff , Abrg) are therefore extracted at these

estimated frequencies.
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Table 7.3: Measured Rotor Speeds and Computed Inner Race Bearing Fault Fre-
quencies

Inverter Frequency (Hz) Rotor Speed (rpm) fbrg (Hz)

20.0 584 331.507
25.0 731 414.916
31.5 922 523.284
37.5 1098 623.170
43.5 1274 723.097
50.0 1464 830.890
55.0 1603 910.025

Table 7.4: Bearing Parameters
Ball diameter, bd 8.89mm
Bearing pitch diameter pd 38.5mm
Number of bearing balls, n 13
Contact angle, φ 0◦

Table 7.5 shows the classification results of the proposed hybrid algorithm ob-

tained by using 0.5 as the Euclidean distance threshold, τ in (7.11) that controls

the radius of the healthy cluster boundary. All 150 test samples are classified

correctly. The results demonstrate that the combination of time and frequency

domain analysis can give excellent classification results. Since τ is a design pa-

rameter that determines the sensitivity of the proposed algorithm to the presence

of faults, its effect on the performance of the hybrid algorithm is investigated. As

illustrated by Fig. 7.14(a), the number of healthy motor samples that are mis-

classified as faulty increase as τ is reduced. The dependence of the classification

accuracy of healthy motor on τ is apparent only when it is close to zero or one

because the cluster corresponding to a healthy motor is very compact. While the

use of a more stringent condition (small τ) to confirm a healthy signal increase

the false negative rate (healthy signal being classified as faulty), it reduces false

positive rate (faulty signal being classified as healthy) at the same time. Con-
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versely, using a large τ to define the boundary of the healthy cluster increases the

likelihood that motors with bearing fault are misclassified as healthy. The bearing

fault data cluster is nearest to the one corresponding to a healthy motor (See

Figure 7.10), so a large τ increases the probability that a bearing fault sample

is not treated as an outlier. Coupled with the uncertainty in the amplitude data

obtained from frequency domain analysis shown in Fig. 7.4, the misclassification

rate increases. The results of the study also show that the classification accuracy

of broken rotor bar fault is least sensitive to the selection of τ as its cluster is fur-

ther away from the healthy cluster across different motor speeds. Even when the

broken rotor bar fault signal falls within the healthy cluster radius, the fuzzy infer-

ence engine manages to utilize the distinct sideband information from frequency

domain analysis to arrive at a correct classification. Thus, the proposed hybrid

system allows the results from time and frequency domain analysis complement

each other.

A feature of the proposed hybrid approach is that the data length (360 data

points per signal) and computational requirement for ICA projection is less de-

manding than the long signal used for FFT analysis (1 × 106 data points per

signal). Consequently, in applications where motor condition monitoring need to

be performed using less sophisticated hardware, the Euclidean distance data from

ICA projection of the time domain data can be used to provide a quick, but rough,

determination of the motor condition. Fig. 7.14(b) shows the classification results

with respect to the changes of the threshold, τ when the diagnosis is solely based

on time-domain ICA feature. The classification accuracy trend is very similar to

the one obtained from the hybrid system except that some broken rotor bar sig-
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Figure 7.14: The effect of Euclidean distance threshold, τ towards the classifi-
cation accuracies for (a) hybrid time-frequency domain analysis algorithm, (b)
independent time domain analysis algorithm.

Table 7.5: Proposed Hybrid Algorithm Performance

Class Diagnosis Accuracy (%)

Healthy 100
Bearing 100
Broken Rotor Bar 100

nals are misclassified when τ ≈ 1. Without the additional information from the

frequency domain analysis, the classifier performance is slightly more sensitive to

the changes of distance threshold when τ approaches zero or one.

7.7 Conclusion

This chapter presents a methodology for the diagnosis of broken rotor bar and

bearing faults for inverter-fed induction motor by making use of features extracted

from time and frequency domain analysis. The method is suitable for both offline
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and online applications. One advantage of the proposed hybrid algorithm over

the conventional motor current signature analysis approach is that the classifica-

tion accuracy is more robust against the uncertainties in the extracted features.

Moreover, the algorithm can be made modular whereby the cluster information

obtained from the time domain ICA analysis of the motor stator current carried

out as a quick initial test to identify abnormal signal as an outlier before proceed-

ing with the more computationally complex frequency domain analysis to identify

the types of faults.

One limitation of the method is that frequency domain analysis requires the

knowledge of motor parameters such as number of pole pairs, bearing diameter

etc. To overcome this, it would be useful to apply ICA on the FFT spectral in

future work.

Although results presented here are tested on motors with broken rotor bar

and bearing related faults, the proposed hybrid method is extendable to more

fault classes.



174

Chapter 8

Conclusion

Although the word “fuzzy” carries the connotation of uncertainty, research has

shown that there may be limitations in the ability of conventional type-1 single-

ton fuzzy classifier to model and minimise the effect of uncertainties. There are

two major restrictions. Firstly, the input is modeled as singleton regardless of the

level of uncertainties that the input carries. Secondly, the membership function

of a type-1 fuzzy set has no uncertainty associated with it. Once the type-1 mem-

bership function has been chosen, all the uncertainty disappears because type-1

membership function is totally precise [37]. In view of these limitations, this thesis

has delved at length into various aspects of extensional fuzzy rule-based classifiers:

classifier characteristics, assessment of performances, and classifier design method-

ologies. The results presented in this thesis may enrich the entire wealth of fuzzy

logic system for pattern classification.

In Chapter 2, non-singleton type-1 fuzzy rule-based classifier (NSFRBC) was

investigated. The analysis suggested that NSFRBC is capable of producing vari-

able boundary which may be useful to overcome the fuzzy boundary between
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classes. In order to show the advantage of NSFRBC, a non-singleton fuzzy logic

classifier evolved using genetic algorithm was assessed using a benchmark cardiac

arrhythmias classification problem. It was found that fuzzy classifier consistently

outperformed its singleton counterpart regardless of the types of input features

used. The results has provided clear evidence that NSFRBC can better cope

with input uncertainties. Moreover, the results revealed that NSFRBC has noise

suppression capability. This is because NSFRBC can achieve good classification

performance even when a shorter window length was used for feature extraction.

A shorter window length implies that there is less averaging effect, thus the data is

susceptible to noise. This finding is in agreement with the mathematical analysis

shown in Section 2.1. An important contribution of this study is that NSFRBC

may extend the possibility to use the features that are easier to extract but contain

more uncertainties; thus it can reduce the cost or complexity in feature extraction.

As far as the uncertainty is concerned, non-singleton fuzzy rule-based classi-

fier is only capable to handle uncertain inputs. The uncertainties associated with

linguistic (antecedent and consequent) are not adequately accounted for. There-

fore, there is a need for a more sophisticated fuzzy classifier. Chapter 3 aims to

seek a better understanding of how the extra degrees of freedom provided by foot-

print of uncertainty (FOU) in type-2 fuzzy membership function can be utilised to

capture these uncertainties. A four-step design strategy for interval type-2 fuzzy

rule-based classifier was proposed. This method is intuitive in such a way that

the FOUs can be conveniently generated from the data itself. By using the same

ECG arrhythmias classification problem as in previous chapter, five case studies

were carried out to study the performance of type-2 FRBCs compared against
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type-1 FRBC in face of different sources of uncertainties. Different sources of

noises have been included to model the uncertainties associated with the vague-

ness in membership functions and the unpredictability of the data. The results

showed that the proposed strategies to design the FOUs are essential to achieve

a high performance type-2 fuzzy rule-based classifier when dealing with the un-

certainties. The significance of this study is that it provides a feasible solution

to design the interval type-2 fuzzy membership functions when one is uncertain

about the descriptions for the features. It becomes clear that the uncertainties

associated with the membership functions can be encapsulated by the footprint of

uncertainty (FOU).

In Chapter 4, the robustness of interval type-2 fuzzy rule-based classifier was

studied in three aspects. Firstly, the effectiveness of type-2 fuzzy classifier to

handle different levels of noises in unseen data was investigated, given that the

classifier itself was only trained with noiseless data. Based on the experimental

results on two synthetic data sets, it was shown that the performance of type-2

fuzzy classifier is at least comparable with competing type-1 fuzzy classifier when

the test data is not contaminated with noise. When the noise level is raised,

type-2 classifier consistently outperforms type-1 counterpart. The significance of

this finding is that it enables the use of simulated data as an alternative to train

the classifier when the real data is not readily available or the cost to collect it is

expensive. Secondly, the advantage of type-2 classifier in handling the imprecise

boundary associated with improper feature extraction was demonstrated through

the classification of real-world automotive problem. The classification results re-

vealed that type-2 classifier has the edge over type-1 classifier when the decision
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boundary is imprecise. Thirdly, since all fuzzy classifiers were optimised by ge-

netic algorithm (GA), the robustness of type-2 framework against randomness in

classifier designs was examined. The lower standard deviations in training and

testing accuracies suggested that different type-2 classifiers optimised by GA can

deliver more consistent performances. A more consistent design not only reduce

the classifier training time but also improve the reliability of the designed classi-

fier. Hopefully, this can balance the tradeoff between the computation load and

the reliability of the classifier well. The experiment elucidated the robustness of

type-2 fuzzy classifier not limited to the simulation problems, but also applies to

the real world classification problems where the uncertainty is usually difficult to

be estimated. As such, there is a strong reason to use type-2 fuzzy classifier as

the performance of type-2 FRBC is at least comparable, if not better than type-1

FRBC. As a rule of thumb, for applications where the computation speed is not

a major consideration, type-2 classifier should be adopted.

A hybrid learning algorithm for fuzzy rule-based classifier was presented in

Chapter 5. The study was motivated by the facts that conventional fuzzy rule-

based classifier is unable to handle high dimensional classification task and the

existing learning techniques are either based on empirical or structural risk min-

imisation. Fuzzy c-means clustering and genetic algorithm were used to optimise

the number of rules and antecedent parameters. Since the Takagi-Sugeno-Kang

(TSK) fuzzy logic system bears a resemblance to a support vector machine (SVM),

it was then possible to use SVM to learn the consequent parts of the TSK fuzzy

classifier. The performance of the proposed hybrid fuzzy classifier was verified

through extensive tests and comparison with other popular methods. The re-
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sulting hybrid fuzzy classifier has a compact rule base and good generalisation

capabilities compared to existing algorithms in the literature. One key contribu-

tion of this study is that the curse of dimensionality which is often associated with

fuzzy rule-based classifier can be avoided.

Chapter 6 proposed a fuzzy rule-based initialisation procedure for fuzzy K-

nearest neighbor (fuzzy K-NN) classifier. The aims were to alleviate the impact

of insufficient training data as well as to to handle the input noise. These prob-

lems have always been the bottleneck of conventional crisp K-NN and fuzzy K-NN

classifiers. The performance of the proposed algorithm was evaluated on four UCI

data sets and Ford automotive data set. The results and analysis showed that the

decision boundaries produced by fuzzy rule-based K-NN classifier is very flexible.

Therefore, it can resolve the situation where the training data is insufficient or

corrupted with noise. In contrast, crisp K-NN and fuzzy K-NN may not be able

to overcome the same situations as there is no way to change the decision bound-

ary once the parameter K has been fixed. Based on the promising experimental

results obtained, it appears that fuzzy rule-based K-NN has strong potential to

outperform crisp and fuzzy K-NN when it comes to practical problems where

uncertainty is hard to estimate.

In Chapter 7, the practical applicability of fuzzy rule-based classifiers for

inverter-fed induction motor fault detection is investigated. It is worthwhile to

mention that only type-1 singleton FRBC is used instead of the extensional FR-

BCs. This is because type-1 FRBC is sufficient to deliver perfect classification

accuracy for the given problem. Therefore, the extra degrees-of-freedom of type-2

FRBC is not required. This is consistent with the general guideline mentioned
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in [124] that type-2 fuzzy logic systems should be tried only if type-1 fuzzy logic

systems have failed.

It should be noted that genetic algorithms have been applied to learn both the

antecedent and consequent part of fuzzy rules in this thesis. The transparency

of the resulting rule base is not considered to be of importance as compared

to the classification accuracy. In such cases, the fuzzy rule-based classifier may

become a black box and one can question the rationale for applying fuzzy classifier

instead of other classifiers like, e.g., neural networks. Apparently, this is greatly

depending on the choice of the classifier designer to decide the relative importance

of the interpretability of the rule and classification accuracy. It is always possible

to design a fuzzy rule which is easy to understand by limiting the number of

antecedents and employing rules selection procedure [125, 126]. As such, the

flexibility in deciding the trade-off between these two design considerations should

be regarded as an asset but not as a liability. Recently evolutionary multiobjective

optimization (EMO) algorithms were used to search for singleton type-1 fuzzy rule-

based systems with different accuracy-complexity tradeoffs [127, 128]. Therefore,

for future work it is worthwhile to investigate the use of EMO on the extensional

fuzzy logic systems (non-singleton and type-2 FRBs).

Non-singleton input in this thesis is modeled as type-1 fuzzy set. It has been

argued that when the input is time-varying, type-2 fuzzy sets may be able to cap-

ture the input uncertainties more effectively [37]. Thus, it would be interesting

to investigate the effect of using type-2 fuzzy sets as the non-singleton input in

future work. It is also worth noting that the hybrid learning algorithm presented

in Chapter 5 is not limited to type-1 fuzzy rule-based classifier. The design pro-
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cedures may lay the foundation for designing a type-2 fuzzy classifier as well. It

should be evident that design methodologies for a type-2 fuzzy system are very

natural extensions of those for a type-1 fuzzy system.
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Appendix

Matlab Codes to Generate Gaussian Data:

% n = number of data; theta_G = noise level (0 to 1); x = Gaussian data

theta_G = theta_G/1.5;

x1 = theta_G*randn(1,n)+0.3; x2=theta_G*randn(1,n)-0.3;

y1 = theta_G*randn(1,n)+0.3; y2=theta_G*randn(1,n)-0.3;

x = [x1 x2; y1 y2]’;

xlabel = [ones(1,n) -ones(1,n)]’; %labels

Matlab Codes to Generate Clown Data:

% n = number of data; theta_C = noise level (0 to 1); x = Clown data

n = round(n/2); theta_C = theta_C*2;

x1 = (6*rand(n,1)-3);

x2 = x1.^2 + randn(n,1);

x0 = theta_C*randn(n,2)+(ones(n,1)*[0 6]);

x = [x0;[x1 x2]];

x = (x-ones(2*n,1)*mean(x))*diag(1./std(x)); %normalisation

xlabel = [ones(n,1); -ones(n,1)]; %labels


