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Summary

In this thesis, we study the construction of stationary and nonstationary tight

wavelet frame packets and the characterization of Sobolev spaces by them. We

also extend our study to the construction of their 2−J -shift invariant counterparts

and using them to characterize Sobolev spaces.

After a brief introduction, we provide in Chapter 2 some preliminaries related

to the development of this thesis. In Chapter 3, we introduce the construction of

stationary tight wavelet frame packet and its characterization of Sobolev spaces.

In Chapter 4, we introduce the construction of nonstationary tight wavelet frame

packet and its characterization of Sobolev spaces. At last, in Chapter 5, we in-

troduce the construction of 2−J -shift invariant nonstationary tight wavelet frame

packet and its characterization of Sobolev spaces.
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Basic Notations

• ℓp(Z)(1 ≤ p ≤ ∞) spaces. ℓp(Z) consists of complex-valued sequences on Z

satisfying

‖c‖ℓp(Z) :=





(∑

k∈Z

|c(k)|p
) 1

p

<∞, 1 ≤ p <∞;

sup
k∈Z

|c(k)| <∞, p = ∞.

• Lp(R)(1 ≤ p ≤ ∞) spaces. Lp(R) consists of Lebesgue measurable functions

satisfying

‖f‖Lp(R) :=





(∫

R

|f(x)|pdt
) 1

p

<∞, 1 ≤ p <∞;

ess sup
{
f(x) : x ∈ R

}
<∞, p = ∞.

• S ′, the class of tempered distributions which is the dual space of the

Schwartz space S, where

S :=

{
f ∈ C∞(R) : sup

n≤N
sup
x∈R

(1 + |x|2)N |f (n)(x)| <∞, for all n,N ∈ N

}
.
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Summary 2

• The inner product 〈·, ·〉 of the Hilbert space L2(R) is given by

〈f, g〉 =

∫

R

f(t)g(t)dt,

which also induced the norm ‖ · ‖L2(R) of L2(R) by ‖f‖L2(R) = |〈f, f〉|1/2.

• For f, g ∈ L1(R), the convolution of f and g is defined by

(f ∗ g)(x) :=

∫

R

f(t)g(x− t)dt.

For a, b ∈ ℓ1(Z), the convolution of a and b is defined by

(a ∗ b)(n) :=
∑

m∈Z

a(m)b(n−m).

• The Fourier transform of a function f ∈ L1(R) is defined by

(Ff)(ω) = f̂(ω) :=

∫

R

f(t)e−itωdt. (0.1)

F maps the Schwartz space S onto itself, and extends to all tempered distri-

butions S ′ by duality.

• The Fourier series of a sequence c ∈ ℓ2(Z) will be denoted by ĉ and is

defined by

ĉ(ω) :=
∑

n∈Z

c(n)e−inω. (0.2)

Note that ĉ(ω) is a complex-valued 2π-periodic continuous function on R and

thus is defined on the torus T.

• For a real number s, we denote by H
s(R) the Sobolev space consisting of all

tempered distributions f such that

‖f‖2
Hs(R) :=

1

2π

∫

R

|f̂(ω)|2(1 + |ω|2)s dω <∞.

Note that H
0(R) = L2(R) and ‖ · ‖H0(R) = ‖ · ‖L2(R) by the Plancherel’s

theorem.



Summary 3

• For f, g ∈ L2(R), we define the bracket product function [·, ·] as

[f, g] =
∑

k∈Z

f(· + 2πk)g(· + 2πk). (0.3)

And [f, g] ∈ L1(T) whenever f, g ∈ L2(R).

• For f, g ∈ L2(R), [·, ·]s is defined as

[f, g]s =
∑

k∈Z

f(· + 2πk)g(· + 2πk)(1 + | · +2πk|2)s. (0.4)

Note that [f, g]0 = [f, g].

• E is the translation operator, i.e., for any t ∈ R,

Etf := f(· − t), (0.5)

and D is the dyadic dilation operator, i.e., for any j ∈ Z,

Djf := 2j/2f(2j·). (0.6)



Chapter 1
Introduction

Since the formulation of Multiresolution Analysis (MRA) by Mallat and Meyer

[60, 59, 61] and the construction of Daubechies’ celebrated compactly supported

wavelets [21, 22], wavelets theory and its applications have gained enormous popu-

larity in both theory and applications. The success of wavelets leads to the discov-

ery of tight wavelet frames (or tight affine frames) [65, 67, 66, 69, 68, 39, 24, 12, 11]

which are more flexible and much easier to construct than wavelets.

Historically, frames were introduced by Duffin and Schaeffer in 1952 to study

nonharmonic Fourier series [36]. Univariate wavelet frames (or affine frames) were

studied by Daubechies, Grossmann and Meyer in [23] in 1986. A breakthrough on

the understanding and systematic construction of orthonormal wavelet frames (or

orthonormal wavelet bases) was achieved after the formulation of multiresolution

analysis (MRA) formulated in the fall of 1986 by Mallat and Meyer [60, 59, 61]

which culminated in the construction of the celebrated Daubechies’ compactly sup-

ported orthonormal wavelet frames [21, 22] in 1988. However, MRA does not sug-

gest the characterization of orthonormal wavelet frames. Univariate tight wavelet

frame characterization implicitly appeared in [48, 37] in the work of Weiss et al in

1996. An explicit multivariate tight wavelet frame characterization was obtained
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by Han in [39] in 1997. Independently, a general characterization of wavelet frames

was obtained by Ron and Shen in [66] in 1997, and by specializing their general

theory the characterization of tight wavelet frames was obtained. Furthermore, a

characterization of all tight wavelet frames that can be constructed in an MRA

was also obtained in [66] (Note that one of its basic theorems [66, Theorem 5.5]

was proved under a mild decay condition which was subsequently removed by Chui

et al [13]). And MRA-based tight wavelet frames could be constructed via unitary

extension principles (UEP) or oblique extension principles (OEP) which makes the

construction of tight wavelet frames painless [66, 68, 24].

Compared with the construction of wavelets, which requires a refinable function

with orthonormal shifts, tight wavelet frames can be derived from a much larger

class of refinable functions which will be detailed in Chapter 2. We do not even

need to assume that the shifts of the refinable function form a Riesz basis, or a

frame. This flexibility allows us to construct tight wavelet frame that adapts to

practical problems. It also gives a wide choice of tight wavelet frames that provide

better approximation for a given underlying function.

To further extend the flexibility of tight wavelet frames, we build up the the-

ory and construction of stationary and nonstationary tight wavelet frame packets.

Given a tight wavelet frame, associated with it we can either construct a station-

ary tight wavelet frame packet or construct a nonstationary tight wavelet frame

packet, depending on whether we want to change the underlying MRA or not.

Compared with other constructions ([58, 8]), our constructions are based on the

unitary extension principle (UEP) ([66, 24]). These constructions give rise to a

library of tight wavelet frames. Then, by using tight wavelet fame packets we can

do the “ best basis selection ” for a practical problem. And this is appealing for

applications. Therefore, tight wavelet frame packets further extend the flexibility

of tight wavelet frames.
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In frequency domain, tight wavelet frame packets provides more flexibility of

partitioning the frequency axis which is desirable in applications, since usually in

practice the class of signals to be considered has certain frequency pattern. By

using tight wavelet frame packets, we can build a wavelet system that is adapted

to the intrinsic frequency pattern of the class of signals to be considered. In this

way, we can manage to obtain a sparse representation of the class of signals in time

domain.

In fact, stationary or nonstationary tight wavelet frame packets have been ap-

plied in the application of high-resolution image reconstruction [6, 7] and in the

restoration of chopped and nodded images [3] in the denoising procedure to improve

the performance.

In Chapter 2, we will give some preliminaries of tight wavelet frames (or tight

affine frames). In Chapter 3, we introduce the construction of stationary tight

wavelet frame packet and its characterization of Sobolev spaces. In Chapter 4,

we introduce the construction of nonstationary tight wavelet frame packet and

its characterization of Sobolev spaces. At last, in Chapter 5, we introduce the

construction of 2−J-shift invariant nonstationary tight wavelet frame packet and

its characterization of Sobolev spaces.



Chapter 2
Preliminary

In this chapter, we introduce some preliminaries closely related to our study. In

section 1, we introduce the principal shift invariant (PSI) spaces which serve as

the building blocks for the study of wavelet systems (or affine systems). In section

2, we introduce the framework of multiresolution analysis (MRA) which is

crucial for the understanding and construction of tight wavelet frames (TWF).

In section 3, we introduce the theory of wavelet frames (or affine frames) and the

construction of TWF via the unitary extension principal (UEP) which makes

the construction of such systems painless. And also, the class of pseudo splines,

which is a larger set of refinable functions taking B-splines as its special subset,

are introduced for the construction of TWF with any prescribed approximation

order. In section 4, we introduce the nonstationary tight wavelet frames

(NTWF) and the construction of NTWF that can achieve spectral approximation

order. Finally, in section 5, we introduce the characterization of Sobolev spaces

H
s(R) by NTWF.

7



2.1 Principal Shift Invariant (PSI) Spaces 8

2.1 Principal Shift Invariant (PSI) Spaces

In this section, we introduce the principal shift invariant (PSI) spaces. Each

PSI space is a closed subspace of L2(R) that can be easily constructed with a

single function φ ∈ L2(R). PSI spaces serve as the building blocks for the study of

wavelet systems (or affine systems) to be introduced in section 3.

Definition 2.1. We say that a space S of complex-valued functions on R is shift

invariant if, for each f ∈ S, S also contains its shifts Ekf = f(· − k), k ∈ Z,

where E is the translation operator as defined in (0.5).

Given φ ∈ L2(R), the set of all shifts of φ is denoted by

E(φ) := {Ekφ : k ∈ Z}. (2.1)

The shift invariant space generated by φ, denoted by S(φ), is the smallest closed

linear subspace in L2(R) containing E(φ), i.e.,

S(φ) := span
{
Ekφ : k ∈ Z

}
. (2.2)

And S(φ) is called the principal shift invariant (PSI) space generated by φ.

The characterization of S(φ) was obtained by de Boor, Devore and Ron in the

Fourier domain.

Theorem 2.1. ([27]) Let φ ∈ L2(R), then the PSI space S(φ) as defined in (2.2)

is characterized by

Ŝ(φ) =
{
τφ̂ ∈ L2(R) : τ is 2π periodic

}
. (2.3)

Define Sj(φ) := DjS(φ), j ∈ Z, where D is the dilation operator as defined in

(0.6), then Sj(φ) is characterized by

Ŝj(φ) =
{(
τφ̂
)( ·

2j
)
∈ L2(R) : τ is 2π periodic

}
. (2.4)
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Definition 2.2. Given a PSI space S(φ), define the synthesis operator

TE(φ) : ℓ2(Z) → S(φ) : c 7→
∑

k∈Z

c(k)Ekφ,

and the analysis operator

T∗
E(φ) : S(φ) → ℓ2(Z) : f 7→

(
〈f,Ekφ〉

)
k∈Z

,

which is the adjoint of the synthesis operator TE(φ).

• If TE(φ) (or T∗
E(φ)) is bounded, then E(φ) is called a Bessel set of S(φ);

• If TE(φ) is bounded and bounded below, i.e., there exist two positive constants

C1, C2 such that the inequalities

C1‖c‖2
ℓ2(Z) ≤

∥∥∥∥
∑

k∈Z

c(k)Ekφ

∥∥∥∥
2

L2(R)

≤ C2‖c‖2
ℓ2(Z), (2.5)

hold for all c ∈ ℓ2(Z), then E(φ) is called a Riesz basis of S(φ), where

C1 and C2 are called the lower Riesz bound and upper Riesz bound,

respectively.

In particular, if C1 = C2 = 1, then E(φ) is an orthonormal basis of S(φ);

• If T∗
E(φ) is bounded and bounded below, i.e., there exist two positive constants

C1, C2 such that the inequalities

C1‖f‖2
L2(R) ≤

∑

k∈Z

|〈f,Ekφ〉|2 ≤ C2‖f‖2
L2(R), (2.6)

hold for all f ∈ S(φ), then E(φ) is called a frame of S(φ), where C1 and C2

are called the lower frame bound and upper frame bound, respectively.

In particular, if C1 = C2, then E(φ) is called a tight frame of S(φ).

Note that when E(φ) is a Riesz basis of S(φ), the 2π-periodic function τ in

(2.3) is in L2(T).
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Definition 2.3. Let φ ∈ L2(R). The set

σ(S(φ)) :=
{
ω ∈ [−π, π] : [φ̂, φ̂](ω) 6= 0

}
(2.7)

is called the spectrum of the shift-invariant space S(φ).

The following bracket product function

[φ̂, φ̂] =
∑

k∈Z

|φ̂(· + 2πk)|2,

is also called symbol of φ, which plays important roles in the study of PSI spaces.

Theorem 2.2. Let φ ∈ L2(R), then

• E(φ) is a Bessel set of S(φ) if and only if there exists some positive constant

C such that

[φ̂, φ̂](ω) ≤ C, a.e. ω ∈ R;

• E(φ) is a Riesz basis of S(φ) if there exist two positive constants C1, C2 such

that

C1 ≤ [φ̂, φ̂](ω) ≤ C2, a.e. ω ∈ R;

In particular, E(φ) is an orthonormal basis of S(φ) if and only if

[φ̂, φ̂] = 1, a.e. ω ∈ R;

• E(φ) is a frame of S(φ) if there exist two positive constants C1, C2 such that

C1 ≤ [φ̂, φ̂](ω) ≤ C2, a.e. ω ∈ σ(S(φ)).

In particular, E(φ) is a tight frame of S(φ) if and only if

[φ̂, φ̂](ω) = C, a.e. ω ∈ σ(S(φ)).
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2.2 Multiresolution Analysis (MRA)

In this section, we first introduce the multiresolution analysis (MRA) frame-

work, then introduce its explicit construction from by dilating PSI spaces.

MRA was formulated in the fall of 1986 by Mallat and Meyer [60], it provides

a natural framework for the understanding of orthonormal wavelet frames and for

the systematic construction of new examples [60, 59, 21, 22]. More precisely, an

MRA consists of a nested sequence (Vj)j∈Z of closed subspaces of L2(R) satisfying

(i). · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ; (2.8)

(ii).
⋃

j∈Z

Vj = L2(R); (2.9)

(iii).
⋂

j∈Z

Vj = {∅}, (2.10)

as depicted in Figure 2.1. Note that this is not the original MRA introduced by

Mallat in [60], it is a generalized version push forward by de Boor, DeVore and

Ron [26].

2.2.1 MRA Construction

To construct an MRA (Vj)j∈Z, we start from a PSI spaces S(φ), φ ∈ L2(R), and

define a sequence of closed subspaces by

(Vj)j∈Z := (DjS(φ))j∈Z. (2.11)

With the following result, we can see the MRA condition (2.10) is trivially

satisfied.

Theorem 2.3. [26][56] Let φ ∈ L2(R). Then, (Vj)j∈Z as defined in (2.11) satisfies

the MRA condition (2.10).

To make (Vj)j∈Z in (2.11) also satisfies the MRA condition (2.8), we introduce

the class of refinable functions.
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Figure 2.1: The MRA Framework

Definition 2.4. A function φ ∈ L2(R) is said to be refinable if φ satisfies a

refinement equation

φ =
∑

n∈Z

2 c(n)φ(2 · −n), (2.12)

where the discrete sequence c ∈ ℓ2(Z) is called the refinement mask of φ.

Note that the refinement equation (2.12) can be recast in Fourier domain as

φ̂(ω) = ĉ(ω/2)φ̂(ω/2), (2.13)

and the 2π-periodic function ĉ(ω) =
∑

n∈Z
c(n)e−inω is also referred to as the re-

finement mask for notational convenience.

Example 2.1. The characteristic function φ = χ[0,1) is refinable with the refine-

ment mask c = (· · · , 0, 1

2
, 1

2
, 0, · · · ). The corresponding refinement equation is given

by

φ = φ(2·) + φ(2 · −1).

Example 2.2. The hat function φ(x) =





1 − |x| x ∈ [−1, 1],

0 otherwise.

is refinable with the
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−1 −0.5 0 0.5 1
0
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0.4
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1
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2
φ( 2 · −1)

1

2
φ( 2 · + 1) 1

2
φ( 2 · −1)

φ( 2· )

φ

Figure 2.2: The hat function

refinement mask c = (· · · , 0, 1
4
, 1

2
, 1

4
, 0, · · · ). The corresponding refinement equation

is given by

φ =
1

2
φ(2 · +1) + φ(2·) +

1

2
φ(2 · −1),

as depicted in Figure 2.2.

If φ is refinable, then by (2.13) and the characterization result (2.4) we can

obtain Vj ⊆ Vj+1. In other words, if φ ∈ L2(R) is refinable, then (Vj)j∈Z in (2.11)

trivially satisfies the MRA condition (2.8) and (2.10). Thus the construction of

an MRA in this way is reduced to the problem when (Vj)j∈Z in (2.11) satisfies the

MRA condition (2.9). It is answered by the following result.

Theorem 2.4. [26][56] Let φ ∈ L2(R) be a refinable function. Then, (Vj)j∈Z as

defined in (2.11) satisfies the MRA condition (2.9) if and only if

⋂

j∈Z

(2jZ(φ̂)) is a set of measure zero, (2.14)

where Z(φ̂) is the zero set of φ̂.
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Theorem 2.4 implies that an MRA (Vj)j∈Z can be generated by any refinable

function φ ∈ L2(R) satisfying (2.14), and such φ is also called an MRA generator.

An interesting special case is worthy to be mentioned:

Corollary 2.1. [26][56] If a refinable function φ ∈ L2(R) is compactly supported,

then (Vj)j∈Z as defined in (2.11) forms an MRA, i.e., any compactly supported

refinable function φ ∈ L2(R) is an MRA generator.

Proof. Since φ has compact support, then φ̂ is analytic and its zero set is of measure

zero (unless φ = 0). The result is immediately followed from Theorem 2.4.

Corollary 2.1 draws our attention to the class of compactly supported refinable

functions. Coming up next, we will review the basic results of refinable functions,

especially the subclass of compactly supported refinable functions.

2.2.2 Refinable Functions

Now that we have introduced the PSI spaces and the MRA framework together

with its construction from refinable functions satisfying (2.14). In this subsection,

we review the basic results of refinable functions. We will see that the properties

of a refinable function φ are completely determined by its refinement mask c, and

also, not surprisingly, the Bessel set, frame and Riesz properties of E(φ) can be

recast in terms of the refinement mask c.

Theorem 2.5. ([22]) If the refinement mask c is a finitely supported sequence

satisfying
N2∑

n=N1

c(n) = 1,

then there exists a compactly supported refinable tempered distribution φ supported

in [N1, N2] unique up to a constant multiple, such that its Fourier transform admits
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the infinite product representation

φ̂(ω) = φ̂(0)
∞∏

j=1

ĉ(2−jω), (2.15)

where the infinite product converges uniformly on every compact set of R.

Theorem 2.6. ([5, 46]) Suppose φ̂(ω) :=
∏∞

n=1 ĉ(2
−nω) is well-defined for a.e.

ω ∈ R, and ĉ satisfies the inequality

|ĉ(ω)|2 + |ĉ(ω + π)|2 ≤ 1. (2.16)

Then

[φ̂, φ̂](ω) ≤ 1, a.e. ω ∈ R, (2.17)

i.e., E(φ) is a Bessel set of S(φ). Consequently, φ ∈ L2(R) with ‖φ‖L2(R) ≤ 1.

By Theorem 2.5 and Theorem 2.6, if the refinement mask c is finitely supported

with ĉ(0) = 1 and satisfying the inequality (2.16), then we immediately have E(φ)

is a Bessel set of S(φ) and ‖φ‖L2(R) ≤ 1.

Example 2.3. B-splines Bm, m ∈ N, are compactly supported refinable functions

with the corresponding refinement mask

ĉm(ω) = ei(m−K)ω/2
(1 + e−iω

2

)m
= e−iKω/2 cosm ω, m ∈ N,

where K = 0 if m is even, K = 1 if m is odd.

Obviously, |ĉm(ω)|2 + |ĉm(ω+π)|2 = cos2m ω+sin2m ω ≤ (cos2 ω+sin2 ω)m = 1.

By Theorem 2.6, we have [B̂m, B̂m] ≤ 1, i.e., for every m ∈ N, E(Bm) is a Bessel

set of S(Bm), and ‖Bm‖L2(R) ≤ 1.

Theorem 2.7. ([54]) If φ ∈ L1(R) is refinable, then

φ̂(2πk) = 0 for k ∈ Z\{0}. (2.18)
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Proof. It follows from (2.13) that

φ̂(ω) = φ̂(2−kω)

k∏

j=1

ĉ(2−jω). (2.19)

If | ĉ(0)| = |∑n∈Z
c(n)| < 1, then choosing ω = 0 in (2.19), we obtain φ̂(0) = 0.

Moreover, |ĉ(0)| < 1 implies that for any fixed ω ∈ R and sufficiently large j,

|ĉ(2−jω)| < 1.

Thus, letting k → ∞ in (2.19), we obtain φ̂ = 0. This is true for any ω ∈ R, hence

φ = 0. Now suppose | ĉ(0)| ≥ 1. Choosing ω = 2k+1kπ in (2.19), where k ∈ Z\{0},
we obtain

φ̂(2k+1kπ) = (ĉ(0))kφ̂(2kπ).

It follows that

|φ̂(2kπ)| ≤ |φ(2k+1kπ)|.

Letting k → ∞ in the above inequality and applying the Riemann-Lebesgue lemma,

we obtain

φ̂(2kπ) = 0, for k ∈ Z\{0}.

Notice that a compactly supported function φ ∈ L2(R) is also in L1(R), by

Theorem 2.7, we quickly have

Corollary 2.2. If a refinable function φ ∈ L2(R) is compactly supported, then

φ̂(2πk) = 0 for k ∈ Z\{0}.

Theorem 2.8. ([60, 59, 61]) Suppose φ ∈ L2(R) is refinable and also assume that

E(φ) is an orthonormal basis of S(φ), then its refinement mask c satisfies

ĉ(0) = 1, (2.20)
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and

|ĉ(ω)|2 + |ĉ(ω + π)|2 = 1. (2.21)

Note that a sequence c which satisfies (2.20) and (2.21) is called a conjugate

quadrature filter (CQF). And the two conditions, (2.20) and (2.21), are also

referred as the CQF condition in the wavelets literature.

Note that the CQF condition is not sufficient to define a refinable function φ

with orthonormal shifts. A counterexample is given by

Example 2.4. Let φ be a refinable function with its refinement mask

ĉ(ω) =
1 + e−3iω

2
, (2.22)

then

φ̂(ω) =

∞∏

j=1

ĉ(2−jω) = e−3iω/2 sin(3ω/2)

3ω/2
(2.23)

or

φ(x) =





1
3

0 ≤ x ≤ 3,

0 otherwise.
(2.24)

Obviously, the integer shifts of φ are not orthonormal.

Furthermore, we can obtain that [φ̂, φ̂](ω) = 1
3
+4

9
cos(ω)+2

9
cos(2ω), [φ̂, φ̂](2π

3
) =

0, i.e., E(φ) is also not a frame of S(φ) by Theorem 2.2. However, E(φ) is a Bessel

set of S(φ) by Theorem 2.6. Also, we can observe that ‖φ‖L2(R) =
√

3
3
< 1.

Definition 2.5. Given f ∈ L2(R), we call the function faudefined by

fau(x) := (f ∗ f(−·))(x) =

∫

R

f(t)f(t− x)dt

the autocorrelation of f . And for a given sequence c ∈ ℓ2(Z), we also call the

sequence caudefined by

cau(n) := (c ∗ c(−·))(n) =
∑

m∈Z

c(m)c(m− n)

the autocorrelation of c. Note that f̂au = |f̂ |2, ĉau = |ĉ|2.
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Definition 2.6. A continuous function φ is called interpolatory if

φ(0) = 1, and φ(k) = 0 for k ∈ Z\{0}. (2.25)

A refinable function φ which is also interpolatory is called a interpolatory

refinable function.

Lemma 2.1. (Riesz Lemma)([63]) If c is a finitely supported sequence satisfying

ĉ(ω) = ĉ(−ω),

then there exist a finitely supported sequence h such that

ĉ = |ĥ|2, (2.26)

i.e., c = hau, c is the autocorrelation of h.

Note that Riesz Lemma can be applied for the construction of a refinable func-

tion φ by starting from its autocorrelation φau. For example, a refinable function

with orthonormal shifts can be constructed from a interpolatory refinable function

as shown in the construction of Daubechies orthonormal wavelets [21, 22]. Later

we will see that pseudo spline of type I can be constructed from pseudo spline of

type II by applying the Riesz Lemma.

By Corollary 2.1, Corollary 2.2, Theorem 2.5 and Theorem 2.6, we can obtain

the following result which suffices for the construction of tight wavelet frames and

our later construction of tight wavelet frame packets.

Theorem 2.9. Suppose c is a finitely supported sequence supported on [N1, N2]

satisfying

ĉ(0) = 1,

and the inequality (2.16), i.e.,

|ĉ|2 + |ĉ(· + π)|2 ≤ 1.

Define φ̂(ω) :=
∏∞

n=1 ĉ(2
−nω). Then,
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• φ ∈ L2(R) with ‖φ‖L2(R) ≤ 1;

• [φ̂, φ̂] ≤ 1, i.e., E(φ) = {Ekφ : k ∈ Z} is a Bessel set of S(φ);

• φ is supported on [N1, N2];

• φ is an MRA generator;

• φ̂(0) = 1 and φ̂(2πk) = 0 for k ∈ Z\{0}.

2.3 Wavelet Frames (Affine Frames)

We have introduced PSI spaces and the framework of MRA in the previous two

sections. In this section, we first introduce the characterization of wavelet frames

(also referred to as affine frames), then we concentrate on the construction of tight

MRA-based wavelet frames via the unitary extension principle (UEP).

Definition 2.7. A wavelet system or an affine system X := X(Ψ) ⊂ L2(R)

is a collection of functions of the form

X = ∪j∈ZD
jE(Ψ),

where Ψ ⊂ L2(R) is finite, E(Ψ) = ∪ψ∈ΨE(ψ) is a finite union of the PSI spaces

E(ψ), ψ ∈ Ψ. The functions in Ψ are the generators of X, usually referred to as

mother wavelets.

Definition 2.8. Given an affine system (or wavelet system) X ⊂ L2(R), the

analysis operator T∗
X is defined by

T∗
X : L2(R) → ℓ2(X) : f →

(
〈f, g〉

)
g∈X .

If T∗
X is well-defined, bounded and bounded below, i.e., there exist two positive

constants C1, C2 such that the inequalities

C1‖f‖2
L2(R) ≤

∑

g∈X
|〈f, g〉|2 ≤ C2‖f‖2

L2(R), (2.27)
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hold for all f ∈ L2(R), then X is called an affine frame or a wavelet frame

of L2(R), where C1 and C2 are called the lower frame bound and the upper

frame bound, respectively.

In particular, if C1 = C2, then X is called a tight affine frame or a tight

wavelet frame of L2(R).

Historically, univariate tight wavelet frame characterization implicitly appeared

in [48, 37] in the work of Weiss et al in 1996. An explicit multivariate tight wavelet

frame characterization was obtained by Han in [39] in 1997. Independently, a

general characterization of wavelet frames was obtained by Ron and Shen in [66]

in 1997, they gave a general characterization of all affine frames (wavelet frames),

and specialized their results to the case of tight affine frames (tight wavelet frames).

Their success is largely due to the “dual Gramian” analysis [65] and the “quasi-

affine system” Xq(Ψ) [66] they invented.

Definition 2.9. [66] Given an affine system (or wavelet system) X(Ψ), the quasi-

affine system Xq(Ψ) is obtained by replacing, for each ψ ∈ Ψ, j < 0, and k ∈ Z,

the function ψj,k = 2j/2ψ(2j · −k) in X(Ψ), by the 2−j functions

2jψ(2j(· + α) − k), α = 0, 1, · · · , 2−j − 1.

Note that, while the wavelet system X(Ψ) is dilation-invariant but not shift-

invariant, the situation with the quasi-affine system Xq(Ψ) is complementary.

Theorem 2.10. [66, 13] X(Ψ) is a wavelet frame if and only if Xq(Ψ) is a wavelet

frame. Furthermore, the two frames have identical frame bounds. In particular,

X(Ψ) is tight if and only if Xq(Ψ) is tight.

To do the “dual Gramian” analysis of Xq(Ψ), they first introduce the affine

product:
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Definition 2.10. [66] Given wavelet system X(Ψ), the affine product is the

function Ψ[·, ·] : R × R → C,

Ψ[ω, ω′] =
∑

ψ∈Ψ

∞∑

k=κ(ω−ω′)

ψ̂(2kω)ψ̂(2kω′), (2.28)

where κ is the dyadic evaluation

κ : R → Z

ω 7→ inf{k ∈ Z : 2kω ∈ 2πZ}

(κ(0) := −∞, and κ(ω) := ∞ unless ω is 2π−periodic).

Then they analyze Xq(Ψ) via the “dual Gramian” fibers G̃(ω), ω ∈ R, which

may be only almost everywhere defined. Each fiber G̃(ω) is a non-negative defi-

nite self-adjoint matrix whose rows and columns are indexed by 2πZ, and whose

(α, β)-entry is

G̃(ω)(α, β) = Ψ[ω + α, ω + β].

Each fiber G̃(ω) is considered as an endomorphism of ℓ2(2πZ) with its norm

and inverse norm denoted by G∗(ω) and G∗−(ω) respectively, where

G∗ : R → R+

ω 7→ ‖G̃(ω)‖
G∗− : R → R+

ω 7→ ‖G̃(ω)−1‖

are the two norm functions.

Theorem 2.11. [66] Let X(Ψ) be a wavelet system and G∗ and G∗− be the dual

Gramian norm functions defined as above. Then X(Ψ) is a wavelet frame if and

only if

G∗,G∗− ∈ L∞(R).

Furthermore, the upper frame bound of X(Ψ) is ‖G∗‖L∞(R) and the lower frame

bound of X(Ψ) is 1/‖G∗−‖L∞(R).
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Theorem 2.12. [66] X(Ψ) is a tight wavelet frame with frame bounds C if and

only if

Ψ[ω, ω] = C, (2.29)

and

Ψ[ω, ω + 2π(2m+ 1)] = 0, (2.30)

for a.e. ω ∈ R and m ∈ Z.

Theorem 2.13. [66, 39, 48] A wavelet system X(Ψ) generated by a singleton

Ψ = {ψ} constitutes an orthonormal bases if and only if (2.30) holds, (2.29) holds

with C = 1, and ‖ψ‖L2(R) = 1 ,i.e.,

•
∞∑

k=0

ψ̂(2kω)ψ̂(2k(ω + 2π(2m+ 1))) = 0 for m ∈ Z and a.e. ω ∈ R;

•
∑

k∈Z

|ψ̂(2kω)|2 = 1 for a.e. ω ∈ R;

• ‖ψ‖L2(R) = 1.

However, the characterization results introduced in this section do not suggest

any construction of wavelet frames. To construct wavelet frames that are useful in

applications, we introduce the multiresolution analysis (MRA) in the next section.

2.3.1 MRA-based Wavelet Frames

Definition 2.11. [66, 24]. A wavelet system X(Ψ) is said to be MRA-based if

there exists an MRA (Vj)j∈Z such that Ψ ⊂ V1. If in addition X(Ψ) is a wavelet

frame, we call it an MRA-based Wavelet Frame.

Suppose that (Vj)j∈Z is an MRA generated by a refinable function φ ∈ L2(R)

with its refinement mask h0 ∈ ℓ2(Z). Let Ψ = {ψ1, · · · , ψr} and suppose there
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Figure 2.3: MRA-based Wavelet Frames

are r sequences h1, · · · , hr ∈ ℓ2(Z) also referred as wavelet masks such that ψi

satisfies the wavelet equation

ψi(x) =
∑

n∈Z

2hi(n)φ(2x− n), (2.31)

for i = 1, · · · , r. Then Ψ ⊂ V1 by (2.4). Also, we call the vector

h := [h0, h1, · · · , hr] (2.32)

a combined MRA mask, and denote its Fourier domain counterpart by

ĥ := [ĥ0, ĥ1, · · · , ĥr]. (2.33)

Definition 2.12. Let h = [h0, h1, · · · , hr] be a combined MRA mask, define

Θ(w) :=

∞∑

j=0

( r∑

i=1

|ĥi(2jω)|2
) j−1∏

m=0

|ĥ0(2
mω)|2. (2.34)

Note that the definition of Θ implies Θ is a 2π-periodic function satisfying the

following identity

Θ(ω) = Θ(2ω)|ĥ0(ω)|2 +

r∑

i=1

|ĥi(ω)|2, a.e. (2.35)
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For the statement of the characterization result of MRA-based wavelet frames,

we also impose the following mild conditions.

Assumptions 2.1. [24] All MRA-based constructions to be considered are assumed

to satisfy the following

• Each wavelet mask hi satisfies ĥi ∈ L∞(T), 1 ≤ i ≤ r;

• The MRA generator φ satisfies limω→0 φ̂(ω) = 1, with

[φ̂, φ̂] ∈ L∞(T),

i.e., E(φ) is a Bessel set of S(φ).

σ(V0) = σ(S(φ)), i.e., the spectrum of the shift invariant space V0 defined by

(2.7) , plays an important role in the theory of shift-invariant spaces [27, 28, 65].

The values assumed by the combined MRA mask ĥ outside the set σ(V0) affect

neither the MRA nor the resulting wavelet system X(Ψ). In particular, whenever

φ is compactly supported, we automatically have σ(V0) = [−π, π] up to a null set.

Theorem 2.14. [66] [24] Let X(Ψ) be an MRA-based wavelet system (or affine

system) associated an MRA (Vj)j∈Z generated by a refinable function φ. Suppose

that φ and the combined MRA mask h as defined in (2.32) satisfies Assumption

2.1. Then X(Ψ) is a tight wavelet frame (or tight affine frame) if and only if for

almost all ω ∈ σ(V0), the function Θ satisfies

lim
j→−∞

Θ(2jω) = 1, (2.36)

and

Θ(2ω)ĥ0(ω)ĥ0(ω + π) +
r∑

i=1

ĥi(ω)ĥi(ω + π) = 0. (2.37)

By restricting Θ = 1 on σ(V0), Theorem 2.14 can be simplified as the well-known

unitary extension principle (UEP) in the wavelet frame literature which makes

the construction of tight wavelet frames painless.
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Theorem 2.15. [66] [24] (UEP) Let X(Ψ) be an MRA-based wavelet system (or

affine system) associated an MRA (Vj)j∈Z generated by a refinable function φ.

Suppose that φ and the combined MRA mask h as defined in (2.32) satisfy the

Assumption 2.1. If for almost all ω ∈ σ(V0), h satisfies

HH∗ = I2×2, (2.38)

where

H =


 ĥ0(ω) ĥ1(ω) · · · ĥr(ω)

ĥ0(ω + π) ĥ1(ω + π) · · · ĥr(ω + π)


 ,

then X(Ψ) is a tight wavelet frame (or tight affine frame). And the condition (2.38)

is referred as the UEP condition.

Note that the UEP condition (2.38) is sometimes written as the following two

conditions
r∑

i=0

|ĥi(ω)|2 = 1, (2.39)

and
r∑

i=0

ĥi(ω)ĥi(ω + π) = 0. (2.40)

Definition 2.13. If a combined MRA mask h = [h0, h1, · · · , hr] satisfies the UEP

condition (2.38), or equivalently, (2.39) and (2.40), then we call it a combined

UEP mask.

2.3.2 Construction of Tight Wavelet Frames (TWF) via

UEP

The UEP condition (2.38) implies a necessary condition on h0, i.e.,

|ĥ0|2 + |ĥ0(· + π)|2 ≤ 1. (2.41)

where h0 is the refinement mask of the MRA generator φ.
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And also, Assumption 2.1 implies

ĥ0(0) = 1. (2.42)

These two conditions (2.41) and (2.42) turn out to be sufficient for the construction

of a tight wavelet frame if we further assume that

hi is finitely supported for i = 0, 1, · · · , r. (2.43)

In fact, with (2.41), (2.42) and(2.43), Assumption 2.1 can be removed by Theorem

2.9.

By UEP, the construction of compactly supported tight wavelet frames (or tight

affine frames) is reduced to finding a finitely supported sequence h0 satisfying (2.41)

and (2.42). As it can be shown later, such sequences can be easily obtained by

taking advantage of the equality

(
cos(ω/2)2 + sin(ω/2)2

)n ≡ 1, for all n ∈ N,

and the Riesz Lemma.

As a direct application of UEP, the following construction illustrates how UEP

makes the construction of MRA-based tight wavelet frames painless.

Construction 2.1. [66] Let m be a positive integer, and let ĥ0(ω) = e−iKω/2 cosm(ω/2),

where K = 0 if m is even, K = 1 if m is odd. It is the refinement mask of the

B-spline φ of order m.

Define

ĥn(ω) :=

√(
m

n

)
e−iKω/2in sinn(ω/2) cosm−n(ω/2), 1 ≤ n ≤ m,

and also define the combined MRA mask h := [h0, h1, · · · , hm]. We can observe

that
m∑

n=0

|ĥn(ω)|2 =
(
cos2(ω/2) + sin2(ω/2)

)m
= 1,
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m∑

n=0

ĥn(ω)ĥn(ω + π) =
(
sin(ω/2) cos(ω/2)

)m
(1 − 1)m = 0,

i.e., h satisfies the UEP condition (2.38) and h is a combined UEP mask.

Define ψn, n = 1, · · · , m by (2.31) and let Ψ = {ψ1, ψ2, · · · , ψm}. It follows

from UEP that the wavelet system X(Ψ) is a compactly supported tight wavelet

frame (tight affine frame).

When m = 1, we get the well-known Haar wavelet, which is an orthonormal

wavelet frame which was originally discovered by Haar in 1910 [38].

ψ(t) =





1 if 0 ≤ t < 1
2
,

−1 if 1
2
≤ t < 1,

0 otherwise,

(2.44)

which is piecewise constant. Its refinement mask and wavelet mask are

h0 = (· · · , 0, 1
2
,
1

2
, 0, · · · ),

and

h1 = (· · · , 0, 1
2
,−1

2
, 0, · · · ),

respectively.

Example 2.5. (Piecewise linear tight wavelet frame) [69] When m = 2, φ is the

B-spline of order 2. The refinement mask is

h0 = (· · · , 0, 1
4
,
1

2
,
1

4
, 0, · · · ).

The two wavelet masks are

h1 = (· · · , 0,
√

2

4
, 0,−

√
2

4
, 0, · · · )

h2 = (· · · , 0, 1
4
,−1

2
,
1

4
, 0, · · · ).

The plots of the two wavelets ψ1, ψ2 are depicted in Figure 2.4.
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Figure 2.4: Piecewise Linear Tight Wavelet Frame
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Figure 2.5: Piecewise Quadratic Tight Wavelet Frame

Example 2.6. (Piecewise quadratic tight wavelet frame)When m = 3, φ is the

B-spline of order 3. The refinement mask is

h0 = (· · · , 0, 1
8
,
3

8
,
3

8
,
1

8
, 0, · · · ).

The three wavelet masks are

h1 = (· · · , 0,
√

3

8
,

√
3

8
,−

√
3

8
,−

√
3

8
, 0, · · · ),

h2 = (· · · , 0,
√

3

8
,−

√
3

8
,−

√
3

8
,

√
3

8
, 0, · · · ),

h3 = (· · · , 0, 1
8
,−3

8
,
3

8
,−1

8
, 0, · · · ).

The plots of the 3 wavelets ψ1, ψ2, ψ3 are depicted in Figure 2.5.

Example 2.7. (Piecewise cubic tight wavelet frame) [69]When m = 4, φ is the

B-spline of order 4. The refinement mask is

h0 = (· · · , 0, 1

16
,
1

4
,
3

8
,
1

4
,

1

16
, 0, · · · ).
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Figure 2.6: Piecewise Cubic Tight Wavelet Frame

The four wavelet masks are

h1 = (· · · , 0, 1
8
,
1

4
, 0,−1

4
,−1

8
, 0, · · · ),

h2 = (· · · , 0,
√

6

16
, 0,−

√
6

8
, 0,

√
6

16
, 0, · · · ),

h3 = (· · · , 0, 1
8
,−1

4
, 0,

1

4
,−1

8
, 0, · · · ),

h4 = (· · · , 0, 1

16
,−1

4
,
3

8
,−1

4
,

1

16
, 0, · · · ).

The plots of the 4 wavelets ψ1, ψ2, ψ3, ψ4 are depicted in Figure 2.6.

As can be observed in the plots from Figure 2.4 to Figure 2.6, all the wavelets

in Construction 2.1 are symmetric or anti-symmetric.

By applying UEP, it is significantly simpler to construct tight wavelet frames

(or tight affine frames) as compared to the construction of orthonormal wavelets.

This is largely due to the fact that the construction of orthonormal wavelet frames

requires a refinable function φ with orthonormal shifts, i.e., E(φ) is required to be

an orthonormal basis of S(φ), which forces the refinement mask h0 to satisfy the

stringent CQF condition (2.21). In contrast, compactly supported tight wavelet

frames can be derived from any compactly supported refinable function φ with its

refinement mask satisfying the inequality (2.41), i.e., we only require that E(φ) is

a Bessel set of S(φ). Various constructions of compactly supported tight wavelet

frames can be found in [66, 68, 24, 11, 32].
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To study the approximation property of the MRA-based tight wavelet frames

constructed via UEP, we introduce the notion of frame approximation order.

Definition 2.14. Given a tight wavelet frame X(Ψ), we define the truncation

operator Qj , j ∈ Z, by

Qj : f 7→
∑

ψ∈Ψ

∑

j′<j

∑

k∈Z

〈f, ψj′,k〉ψj′,k, f ∈ L2(R).

We say that X(Ψ) provides frame approximation order s if, for every f in the

Sobolev spaces H
s(R), where H

s(R) is defined by

‖f‖2
Hs(R) :=

1

2π

∫

R

|f̂(ω)|2(1 + |ω|2)s dω <∞,

there exist a positive constant C, which is independent of f and j, and a positive

integer J such that

‖f −Qjf‖L2(R) ≤ C2−js‖f‖Hs(R), j ≥ J.

We say that X(Ψ) provides the spectral frame approximation order if it

provides frame approximation order s for any positive integer s.

The frame approximation order of an MRA-based tight wavelet frame has been

extensively studied in [24]. It was shown in [24, Lemma 2.4] that when X(Ψ) is an

MRA-based tight wavelet frame constructed via UEP in an MRA generated by a

refinable function φ ∈ L2(R), then

Qj = Pj , j ∈ Z,

where Pj is a linear operator for each j ∈ Z defined by

Pj : f 7→
∑

k∈Z

〈f, φj,k〉φj,k, f ∈ L2(R). (2.45)

The operator Pj was well studied by Jetter and Zhou [49, 50] in the framework

of quasi-interpolation which is the art of assigning suitable dual functionals to a
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given set of ‘approximating’ functions. By applying Jetter and Zhou [49] and [50,

Theorem 2.1], for an MRA-based tight wavelet frame X(Ψ), which is constructed

via UEP in an MRA generated by a refinable function φ ∈ L2(R) with φ̂(0) 6=
0, X(Ψ) provides frame approximation order s if and only if the following two

conditions hold

(a). [φ̂, φ̂] − |φ̂|2 = O(| · |2s); (2.46)

(b). 1 − |φ̂|2 = O(| · |s). (2.47)

For B-splines of order m, since

[B̂m, B̂m] − |B̂m|2 = O(| · |2m),

and

1 − |B̂m(ω)|2 = 1 − sin2m(ω/2)

(ω/2)2m
= O(|ω|2),

the MRA-based based frame constructed via UEP in an MRA generated by a B-

splines Bm can not exceed 2. As a consequence, the spline tight wavelet frames in

Construction 2.1 provide frame approximation order at most 2. To overcome this

drawback, we introduce a larger class of refinable functions called pseudo splines

for the generation of MRA spaces.

2.3.3 Construction of TWF from Pseudo Splines

Pseudo splines offer a rich set of compactly supported refinable functions contain-

ing B-splines as a particular interesting subset. Pseudo splines of type I were

introduced in [24] to obtained tight wavelet frames with desired approximation

order, and pseudo splines of type II were introduced later in [32] and were used

to construct symmetric tight wavelet frames, and also the regularity of both types

of pseudo splines was analyzed in [32]. Later on, it was shown in [31] that the

shifts of both types of pseudo splines are linearly independent[54, 57, 55, 64],
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Figure 2.7: Pseudo Splines of Type II

which is a necessary condition for the construction of bi-orthogonal wavelet bases

[16, 14, 22, 52, 51, 44, 40, 9], and these two types of pseudo splines were conse-

quently used to construct bi-orthogonal wavelet bases in [30].

Let m ∈ N and 0 ≤ l ≤ m− 1, the refinement mask am,l2 of a pseudo spline φm,l2

of type II is defined as the first l + 1 terms of the binomial expansion

(
cos2(ω/2) + sin2(ω/2)

)m+l
, (2.48)

i.e.,

âm,l2 (ω) := cos2m(ω/2)
l∑

n=0

(
m+ l

n

)
cos2(l−n)(ω/2) sin2n(ω/2)

= cos2m(ω/2)
l∑

n=0

(
m− 1 + n

n

)
sin2n(ω/2),

(2.49)

and the refinement mask mask am,l1 of a pseudo spline φm,l1 of type I is defined as

âm,l1 (ω) :=

√
âm,l2 (ω), (2.50)

which is obtained by taking the square root of the mask am,l2 using the Lemma 2.1

(Riesz Lemma [63]) . It follows from (2.50) that pseudo splines φm,l2 of type II are

the autocorrelation of their type I counterpart φm,l1 , i.e., φ̂m,l2 = |φ̂m,l1 |2.
It can be easily seen that B-spline [25] of order m is the pseudo spline φm,01 of

type I, and the scaling function in the construction of Daubechies’ orthonormal
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Figure 2.8: Pseudo Splines of Type I

wavelets with m vanishing moments is the pseudo spline φm,m−1
1 of type I. In other

words, pseudo splines of type I fill the gap between B-splines and orthonormal

refinable functions. We can also observe that the pseudo spline φm,02 of type II is

the B-spline of order 2m, and the pseudo spline φm,m−1
2 of type II is the autocorre-

lation of φm,m−1
1 . As it is well-known that the translates of φm,m−1

1 are orthonormal

[21, 22], φm,m−1
2 is thus interpolatory. Note that the refinement masks am,m−1

2 had

been used in the stationary subdivision schemes [4] and were called Lagrange in-

terpolation schemes studied by Deslauriers and Dubuc in [29]. Pseudo splines of

type II can be similarly understood as filling the gap between B-splines and inter-

polatory refinable functions. Moreover, pseudo splines of type II are symmetric,

and the symmetric property is desirable in applications.

Let c be a refinement mask of a pseudo spline φ (type I or type II), it can

be easily verified that c satisfies (2.41), (2.42) and(2.43), which are necessary and

sufficient conditions for the construction of compactly supported tight wavelet

frames by UEP. Consequently, both types of the pseudo splines can be used to

construct tight wavelet frames. Dong and Shen used the pseudo splines φm,m−1
2

of type II to construct compactly supported symmetric tight wavelet frames by

applying the Construction 2.2 [32].

Construction 2.2. [10, 32] Suppose h0 is a finitely supported sequence satisfying
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(2.41) and (2.42), define

ĥ1(ω) := e−iωĥ0(ω + π),

ĥ2(ω) := 2−1[A(ω) + e−iωA(ω)],

ĥ3(ω) := 2−1[A(ω) − e−iωA(ω)],

(2.51)

where A is a π−periodic trigonometric polynomial with real coefficients such that

|A(ω)|2 = 1 − |ĥ0(ω)|2 − |ĥ0(ω + π)|2. (2.52)

Then the combined MRA mask h = [h0, h1, h2, h3] satisfies the UEP condition

(2.38), i.e., h is a combined UEP mask. Define ψ1, ψ2, ψ3 by (2.31) and let Ψ =

{ψ1, ψ2, ψ3}, then X(Ψ) is a compactly supported tight wavelet frame (or tight

affine frame) by UEP. Furthermore, the corresponding wavelets ψ1, ψ2 and ψ3 are

symmetric or anti-symmetric whenever φ is symmetric.

As it was shown in [32], we can construct symmetric or anti-symmetric tight

wavelet frames from pseudo splines of type II by Construction 2.2.

Example 2.8. Let φ2,1
2 be the pseudo spline of type II, with its refinement mask

h0 = (· · · ,−1/32, 0, 9/32, 1/2, 9/32, 0,−1/32, · · · ).

By Construction 2.2, we can obtain the following 3 wavelet masks

h1 = (· · · , 1/32, 0,−9/32, 1/2,−9/32, 0, 1/32, · · ·),

h2 = (· · · ,−0.08246745105515, 0.00592089659317, 0.17085579870346,−0.09430924424149,

− 0.09430924424149, 0.17085579870346, 0.00592089659317,−0.08246745105515, · · ·),

h3 = (· · · ,−0.08246745105515,−0.00592089659317, 0.17085579870346, 0.09430924424149,

− 0.09430924424149,−0.17085579870346, 0.00592089659317, 0.08246745105515, · · ·).

The plots of φ2,1
2 and the 3 wavelets ψ1, ψ2, ψ3 are depicted in Figure 2.9.
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Figure 2.9: Tight Wavelet Frame Constructed by Pseudo Spline φ2,1
2 of type II

Example 2.9. Let φ3,1
2 be the pseudo spline of type II, with its refinement mask

h0 = (· · · ,−3/256,−1/32, 3/64, 9/32, 55/128, 9/32, 3/64,−1/32,−3/256, · · ·).

By Construction 2.2, we can obtain the following 3 wavelet masks

h1 = (· · · ,−3/256, 1/32, 3/64,−9/32, 55/128,−9/32, 3/64, 1/32,−3/256, · · ·),

h2 = (· · · ,−0.11081147447130, 0.00061965199100, 0.22356159594985, 0.00069934302526,

−0.11406911649481,−0.11406911649481, 0.00069934302526, 0.22356159594985,

0.00061965199100,−0.11081147447130, · · ·),

h3 = (· · · ,−0.11081147447130,−0.00061965199100, 0.22356159594985,−0.00069934302526,

−0.11406911649481, 0.11406911649481, 0.00069934302526,−0.22356159594985,

0.00061965199100, 0.11081147447130, · · ·).

The plots of φ3,1
2 and the 3 wavelets ψ1, ψ2, ψ3 are depicted in Figure 2.10.

2.4 Nonstationary Tight Wavelet Frames (NTWF)

As shown in the previous section, MRA-based tight wavelet frames of higher ap-

proximation order can be constructed via UEP by using pseudo splines. However,

we still can not achieve spectral frame approximation order. To attain spectral
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Figure 2.10: Tight Wavelet Frame Constructed by Pseudo Spline φ3,1
2 of type II

frame approximation order we have to switch to the construction of nonstation-

ary tight wavelet frame (NTWF) ([45]) to be introduced in this section.

Nonstationary wavelet systems are generally obtained from a sequence of non-

stationary refinable functions. Let {φj−1}j∈N be a sequence of functions in L2(R).

We say that {φj−1}j∈N is a sequence of nonstationary refinable functions if

φ̂j−1(ω) = âj(ω/2)φ̂j(ω/2), a.e. ω ∈ R, j ∈ N, (2.53)

where {âj}j∈N is a sequence of 2π-periodic trigonometric polynomials. Wavelet

functions ψℓj−1, j ∈ N and ℓ = 1, . . . ,Jj, are generally obtained from nonstationary

refinable functions φj, j ∈ N, via

ψ̂ℓj−1(ω) := b̂ℓj(ω/2)φ̂j(ω/2), j ∈ N, ℓ = 1, . . . ,Jj, (2.54)

where Jj are positive integers depending on j and the 2π-periodic trigonometric

polynomials b̂ℓj are the corresponding wavelet masks. We start with a nonstationary

tight wavelet frame in L2(R) generated by {φ0}∪{ψℓj}j∈N0,ℓ∈{1,...,Jj+1}, where N0 :=

N ∪ {0}. We call the following wavelet system

X
(
φ0;{ψℓj}j∈N0,ℓ∈{1,...,Jj+1}

)
:=

{φ0(· − k) : k ∈ Z} ∪ {ψℓj;j,k := DjEkψℓj : j ∈ N0, ℓ = 1, . . . ,Jj+1, k ∈ Z}
(2.55)



2.4 Nonstationary Tight Wavelet Frames (NTWF) 37

a nonstationary tight wavelet frame for L2(R) if

‖f‖2
L2(R) =

∑

k∈Z

|〈f, φ0(· − k)〉|2 +

∞∑

j=0

Jj+1∑

ℓ=1

∑

k∈Z

|〈f, ψℓj;j,k〉|2 for all f ∈ L2(R).

(2.56)

This is equivalent to

f =
∑

k∈Z

〈f, φ0(· − k)〉φ0(· − k) +
∞∑

j=0

Jj+1∑

ℓ=1

∑

k∈Z

〈f, ψℓj;j,k〉ψℓj;j,k, f ∈ L2(R). (2.57)

For a 2π-periodic trigonometric polynomial â, we denote deg(â) the smallest

nonnegative integer such that the Fourier coefficients of â vanish outside

[− deg(â), deg(â)].

The following result which can be regarded as the generalized unitary ex-

tension principle (GUEP) gave the explicit construction of NTWF.

Theorem 2.16. ([45, Theorem 1.1]) Let âj , j ∈ N, be 2π-periodic trigonometric

polynomials satisfying âj(0) = 1 for all j ∈ N and

∞∑

j=1

2−j deg(âj) <∞.

Define a sequence of nonstationary refinable functions {φj−1}j∈N by

φ̂j−1(ω) := âj(ω/2)φ̂j(ω/2) =
∞∏

n=1

ân+j−1(2
−nω), ω ∈ R, j ∈ N. (2.58)

Suppose that there exist 2π-periodic trigonometric polynomials b̂ℓj, j ∈ N and ℓ =

1, . . . ,Jj with each Jj being a positive integer depending on j, and each bj =

[aj , b
1
j , · · · , b

Jj

j ] is a combined UEP mask satisfying the UEP condition (2.38).

Define wavelet functions ψℓj−1, j ∈ N and ℓ = 1, . . . ,Jj, as in (2.54). Then

all functions φj−1 and ψℓj−1, j ∈ N and ℓ = 1, . . . ,Jj, are well-defined compactly

supported functions in L2(R), and the wavelet system X
(
φ0; {ψℓj}j∈N0,ℓ∈{1,...,Jj+1}

)

defined in (2.55) is an NTWF of L2(R).
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As an application of Theorem 2.16, it was shown in [46, Theorem 1.2]) that the

NTWF derived from masks of pseudo-splines can have spectral frame approxima-

tion order.

Construction 2.3. ([46, Theorem 1.2]) Let âj :=
̂
a
mj ,lj
2 (or âj :=

̂
a
mj ,lj
1 ) be defined

in (2.49) (or in (2.50)), where 0 ≤ lj ≤ mj−1 and mj (j ∈ N) are positive integers

satisfying

lim
j→∞

mj = ∞, lim inf
j→∞

(lj + 1)/mj > 0, and
∞∑

j=1

2−jmj <∞. (2.59)

For j ∈ N, let φj−1 be defined in (2.58) and ψ1
j−1, ψ

2
j−1, and ψ3

j−1 in (2.54) with

Jj = 3 and masks b̂1j , b̂
2
j and b̂3j being defined in Construction 2.2 from âj :=

̂
a
mj ,lj
2

(or âj :=
̂
a
mj ,lj
1 ). Then , the wavelet system X

(
φ0; {ψℓj}j∈N0,ℓ∈{1,...,Jj+1}

)
defined in

(2.55) is an NTWF of L2(R) with spectral frame approximation order.

2.5 Characterization of Sobolev Spaces by NTWF

Orthonormal tight wavelet frames had been used to characterize Sobolev spaces

H
s(R) by Meyer [62]. Characterization of Hs(R) using general tight wavelet frames

in terms of the weighted ℓ2−norm of the analysis wavelet coefficient sequences of

the functions was given in [2, 1]. Interestingly, it was shown in [45] that any

Sobolev space H
s(R) with fixed smoothness order s can be characterized in terms

of the weighted ℓ2−norm of the analysis wavelet coefficient sequences of a fixed

nonstationary tight wavelet frame constructed in [46] (Construction 2.3).

Before stating the characterization results, we introduce the notation of [·, ·]s,
i.e., the bracket product with smoothness order s. Precisely, for f, g ∈ L2(R), [·, ·]s
is defined as

[f, g]s =
∑

k∈Z

f(· + 2πk)g(· + 2πk)(1 + | · +2πk|2)s. (2.60)

Note that [f, g]0 = [f, g].
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Theorem 2.17. ([45, Theorem 1.2]) Let X
(
φ0; {ψℓj}j∈N0,ℓ∈{1,...,Jj+1}

)
be a nonsta-

tionary tight wavelet frame in L2(R) obtained in Theorem 2.16. Assume that for

α > 0 there exist a positive number C and a positive integer J such that

1 − |âj(ω)|2 ≤ C|ω|2α, ω ∈ R, j ≥ J, (2.61)

and

[φ̂j, φ̂j]α(ω) ≤ C, ω ∈ R, j ∈ N0, (2.62)

then for every −α < s < α, there exist two positive constants C1 and C2 such that

C1‖f‖2
Hs(R) ≤

∑

k∈Z

|〈f,Ekφ0〉|2 +

∞∑

j=0

Jj+1∑

ℓ=1

∑

k∈Z

22js|〈f, ψℓj;j,k〉|2 ≤ C2‖f‖2
Hs(R), (2.63)

for all f ∈ H
s(R).

Theorem 2.17 basically says that the weighted ℓ2-norm of the analysis wavelet

coefficient sequence

{
〈f,Ekφ0〉

}
k∈Z

∪
{
〈f, ψℓj;j,k〉

}
k∈Z,j∈N0,ℓ∈{1,...,Jj+1}

of a given function f ∈ H
s(R) decomposed under the tight wavelet frame system

X
(
φ0; {ψℓj}j∈N0,ℓ∈{1,...,Jj+1}

)

is equivalent to its Sobolev norm in H
s(R). The right hand side inequality is

called the upper bound of the characterization in (2.63) and the left hand side

inequality is called the lower bound.

For a tempered distribution f defined on R, we denote

ν2(f) := sup{s ∈ R : f ∈ H
s(R)}. (2.64)

If f 6∈ H
s(R) for any s ∈ R, then we simply set ν2(f) = −∞.

It was shown in [41, Theorem 2.3] that a compactly supported refinable function

φ ∈ L2(R) whose refinement mask is a trigonometric polynomial is in H
s(R) for
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some s > 0. Generally, for a refinable function φ with a trigonometric polynomial

refinement mask a, ν2(φ) can be computed via its mask [22, 42, 43, 70, 71, 53].

For a tempered distribution f defined on R, we also define

µ2(f) := sup{s ∈ R : [f̂ , f̂ ]s ∈ L∞(R)}. (2.65)

It was shown in [47, Proposition 2.6] that ν2(f) = µ2(f) for any compactly sup-

ported function f .

In particular, when φ ∈ L2(R) is refinable with its refinement mask c is finitely

supported, we can write ĉ(ω) = (1 + e−iω)mb̂(ω) for some nonnegative integer m

and some 2π-periodic trigonometric polynomial b̂(ω) with b̂(π) 6= 0. Let bau be

the autocorrelation of b, i.e., b̂au(ω) = |̂b(ω)|2 =
∑N

n=−N bau(n)e−inω, where N is

some nonnegative integer. Denote by ρ(c) the spectral radius of the square matrix
(
bau(2j − k)

)
−N≤j,k≤N . Define

ν2(c) := −1/2 − log2

√
ρ(c). (2.66)

It is known that ν2(c) ≤ ν2(φ) whenever φ is the compactly supported refinable

function associated with the finitely supported refinement mask c [42, 43, 47]. And

the equality holds when E(φ) forms a Riesz basis of S(φ) [42, 43, 47, 70, 71, 53].

By applying Theorem 2.17 we can obtain the result for the stationary case:

Theorem 2.18. Let X(Ψ) be a stationary tight wavelet frame constructed via UEP

in an MRA generated by a refinable function φ ∈ L2(R) whose refinement mask

h0 is a finitely supported sequence. Assume that for α > 0 there exists a positive

constant C such that

1 − |ĥ0(ω)|2 ≤ C|ω|2α, ω ∈ R,

and

[φ̂, φ̂]α(ω) ≤ C, ω ∈ R.
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If −α < s < α, then X(Ψ) can be normalized to a wavelet frame in H
s(R), i.e.,

there exist positive constants C1, C2 such that for any f ∈ H
s(R) we have

C1‖f‖2
Hs(R) ≤

∑

k∈Z

|〈f,Ekφ〉|2 +
∑

ψ∈Ψ

∑

j≥0,k∈Z

22js|〈f, ψj,k〉|2 ≤ C2‖f‖2
Hs(R). (2.67)



Chapter 3
Stationary Tight Wavelet Frame Packet

(STWFP)

One dimensional orthonormal wavelet packets were introduced in [18, 17, 20, 19]

and their multivariate counterpart can be found in [72]. Similar to the construction

of wavelet packets, we can build up a tight wavelet frame packet from a given tight

wavelet frame constructed by UEP [66, 24].

3.1 Construction of STWFP

Suppose we have a tight wavelet frame

X(Ψ) := {ψj,k : ψ ∈ Ψ, j, k ∈ Z}, (3.1)

where Ψ = {ψ1, · · · , ψr} ⊂ L2(R). And we fix this tight wavelet frame X(Ψ)

thought out this thesis for the discussion of both stationary and nonstationary

tight wavelet fame packet.

Let

Vj := span{φj,k : k ∈ Z},

Wj,i := span{ψi;j,k : k ∈ Z}, i = 0, 1, · · · , r.

42
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In a tight wavelet frame decomposition, each MRA space Vj is decomposed into a

lower resolution space Vj−1 plus r detail spaces Wj−1,i, i = 1, 2, · · · , r, i.e.,

Vj = Vj−1 +
r∑

i=1

Wj−1,i.

Note that, these r + 1 spaces Vj−1 and Wj−1,i, i = 1, · · · , r, are in general not

orthogonal. In other words, tight wavelet frame adds “redundancy”.

By recursively splitting the MRA spaces, we obtain the space decomposition

Vj = Vj−1 +

r∑

i=1

Wj−1,i

= Vj−2 +

j−1∑

k=j−2

r∑

i=1

Wk,i

= · · ·

= Vj0 +

j−1∑

k=j0

r∑

i=1

Wk,i

=

j−1∑

k=−∞

r∑

i=1

Wk,i,

as shown in Figure 3.1.

With the following result (in the orthonormal case, it is also referred as the

“splitting trick”), we can split a given tight wavelet frame to obtain a tight wavelet

frame packet.

Vj

Vj−1

Vj−2 Wj−2,1 Wj−2,2 · · · Wj−2,r

Wj−1,1 Wj−1,2 · · · Wj−1,r

Figure 3.1: Tight wavelet frame space decomposition
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Lemma 3.1. Let θ ∈ L2(R) and
{
θj,k : k ∈ Z

}
be a Bessel set of L2(R) with

Bessel bound Cθ for any fixed j ∈ Z, i.e.,

[θ̂, θ̂](ω) ≤ Cθ, ω ∈ R, (3.2)

where Cθ is a positive constant. Let h = [h0, h1, · · · , hr] be a combined UEP mask

satisfying the UEP condition (2.38). Define

θi(x) :=
∑

n

2 hi(n)θ(2x− n), (3.3)

Ui := span
{
θi;j−1,k : k ∈ Z

}
, (3.4)

and U := span
{
θj,k : k ∈ Z

}
for i = 0, · · · , r. Then

(i). ‖θ‖2
L2(R) ≤ Cθ. For i = 0, · · · , r, ‖θi‖2

L2(R) ≤ Cθ and

[θ̂i, θ̂i](ω) ≤ Cθ, ω ∈ R,

i.e., each set
{
θi;j−1,k : k ∈ Z

}
is a Bessel set.

(ii). For any sequence c ∈ ℓ2(Z), there are r+1 sequences ci, i = 0, · · · , r, defined

by

ci(k) =
√

2
∑

n∈Z

hi(n− 2k) c(n), k ∈ Z, (3.5)

such that

‖c‖2
ℓ2(Z) =

r∑

i=0

‖ci‖2
ℓ2(Z), (3.6)

and
∑

k∈Z

c(k) θj,k =

r∑

i=0

∑

k∈Z

ci(k) θi;j−1,k; (3.7)

(iii). In particular, for any f ∈ L2(R), let c(k) = 〈f, θj,k〉 for k ∈ Z, then c ∈ ℓ2(Z)

and (3.5),(3.6) and (3.7) yield

ci(k) = 〈f, θi;j−1,k〉, k ∈ Z, i = 0, · · · , r, (3.8)
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∑

k∈Z

|〈f, θj,k〉|2 =
r∑

i=0

∑

k∈Z

|〈f, θi;j−1,k〉|2, (3.9)

and
∑

k∈Z

〈f, θj,k〉 θj,k =
r∑

i=0

∑

k∈Z

〈f, θi;j−1,k〉 θi;j−1,k, (3.10)

respectively;

(iv). U has the decomposition

U = U0 + U1 + · · · + Ur. (3.11)

Proof. (i). It can be easily verified that

‖θ‖2
L2(R) =

1

2π

∫ π

−π
|θ̂(ω)|2dω =

1

2π

∫ π

−π
[θ̂, θ̂](ω)dω ≤ Cθ. (3.12)

Notice that (3.3) can be recast in Fourier domain as

θ̂i = (ĥiθ̂)(·/2).

On the other hand, the UEP condition (2.38) naturally implies

∑

ν∈{0,π}
|ĥi(· + ν)|2 ≤ 1, i = 0, · · · , r. (3.13)

Combined with (3.2) and (3.13), we can deduce that

[θ̂i, θ̂i](ω) =
[
(ĥiθ̂)(·/2), (ĥiθ̂)(·/2)

]
(ω)

=
∑

k∈Z

|(ĥiθ̂)((ω + 2πk)/2)|2

=
∑

ν∈{0,π}
|ĥi(ω/2 + ν)|2

∑

k∈Z

|θ̂(ω/2 + ν + 2πk)|2

=
∑

ν∈{0,π}
|ĥi(ω/2 + ν)|2[θ̂, θ̂](ω/2 + ν)

≤ Cθ
∑

ν∈{0,π}
|ĥi(ω/2 + ν)|2 a.e.

≤ Cθ, i = 0, · · · , r.
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It follows that ‖θi‖2
L2(R) ≤ Cθ for i = 0, 1, · · · , r. Thus, (i) is proved.

(ii). (3.5) can be recast in Fourier domain as

ĉi(ω) = 2−1/2
∑

ν∈{0,π}
(ĉ ĥi)(ω/2 + ν), i = 0, 1 · · · , r. (3.14)

By (3.14), we have

r∑

i=0

|ĉi(ω)|2 =
1

2

r∑

i=0

∑

ν1,ν2∈{0,π}
(ĉ ĥi)(ω/2 + ν1)(ĉ ĥi)(ω/2 + ν2)

=
1

2

r∑

i=0

∑

ν1,ν2∈{0,π}
ĉ(ω/2 + ν1)ĉ(ω/2 + ν2)ĥi(ω/2 + ν2)ĥi(ω/2 + ν1)

=
1

2

∑

ν1,ν2∈{0,π}
ĉ(ω/2 + ν1)ĉ(ω/2 + ν2)

r∑

i=0

ĥi(ω/2 + ν2)ĥi(ω/2 + ν1)

=
1

2

∑

ν1,ν2∈{0,π}
ĉ(ω/2 + ν1)ĉ(ω/2 + ν2) δν1,ν2

=
1

2

∑

ν∈{0,π}
|ĉ(ω/2 + ν)|2.

It follows that

r∑

i=0

‖ci‖2
ℓ2(Z) =

r∑

i=0

∑

k∈Z

|ci(k)|2

=

r∑

i=0

1

2π

∫ 2π

0

|ĉi(ω)|2dω

=
1

2π

∫ 2π

0

r∑

i=0

|ĉi(ω)|2dω

=
1

2π

∫ 2π

0

1

2

∑

ν∈{0,π}
|ĉ(ω/2 + ν)|2dω

=
1

2π

∫ π

0

∑

ν∈{0,π}
|ĉ(ω + ν)|2dω

=
1

2π

∫ 2π

0

|ĉ(ω)|2dω

=
∑

k

|c(k)|2 = ‖c‖2
ℓ2(Z),
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and (3.6) is proved.

Next, we prove (3.7) in a similar way. In Fourier domain, (3.7) becomes

2−j/2(ĉ θ̂)(2−jω) = 2(−j+1)/2
r∑

i=0

(ĉiθ̂i)(2
−j+1ω).

It can be shown that the RHS=LHS, explicitly,

RHS = 2(−j+1)/2
r∑

i=0

(ĉiθ̂i)(2
−j+1ω)

= 2(−j+1)/2

r∑

i=0

ĉi(2
−j+1ω)ĥi(2

−jω)θ̂(2−jω)

= 2−j/2θ̂(2−jω)

r∑

i=0

( ∑

ν∈{0,π}
(ĉ ĥi)(2

−jω + ν)

)
ĥi(2

−jω)

= 2−j/2θ̂(2−jω)
∑

ν∈{0,π}
ĉ(2−jω + ν)

(
r∑

i=0

ĥi(2
−jω + ν)ĥi(2

−jω)

)

= 2−j/2θ̂(2−jω)
∑

ν∈{0,π}
ĉ(2−jω + ν) δ0,ν

= 2−j/2θ̂(2−jω) ĉ(2−jω)

= 2−j/2(ĉθ̂)(2−jω) = LHS,

and we obtain (3.7). And (ii) is thus proved.

(iii). c ∈ ℓ2(Z) is easily followed from the Bessel set property of
{
θj,k : k ∈ Z

}
.

In addition, if we can obtain (3.8), then (3.9) and (3.10) are the direct consequence

of (3.6) and (3.7), respectively. It boils down to show that (3.8) is true. It can be
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shown from (3.5) that

ci(k) =
∑

n

√
2hi(n− 2k) c(n)

=
∑

n

√
2hi(n− 2k)〈f, θj,n〉

=
〈
f,
∑

n

√
2 hi(n− 2k)θj,n

〉

=
〈
f,
∑

m

√
2 hi(m)θj,2k+m

〉

= 〈f, θi;j−1,k〉, i = 0, 1, · · · , r.

And (iii) is thus proved.

(iv). It follows from (3.3) that

U0 + U1 + · · ·+ Ur ⊆ U.

Invoking (3.5) by taking c ∈ ℓ0(Z), where ℓ0(Z) is the spaces of finitely support

sequences, we can obtain

U ⊆ U0 + U1 + · · ·+ Ur.

Hence, (3.11) is proved. And we finish the proof of Lemma 3.1.

Remark 3.1. Since
{
θj,k : k ∈ Z

}
is a Bessel set, the space U∗ defined by

U∗ :=

{∑

k∈Z

c(k)θj,k : c ∈ ℓ2(Z)

}

is generally not closed as [θ̂, θ̂] may not have a positive lower bound. In other words,

U∗ is just a dense subset of U in general. Lemma 3.1 basically says we can always

split U , the completion of U∗, into r + 1 closed subspaces U0, U1, · · · , Ur by using

a combined UEP mask h = [h0, h1, · · · , hr]. Furthermore, if f ∈ U∗, i.e., f =
∑

k∈Z
c(k)θj,k for some c ∈ ℓ2(Z), then we can define fi =

∑
k∈Z

ci(k)θi;j−1,k, i =

0, · · · , r, where ci is computed from c by (3.5), and obtain the decomposition

fi ∈ Ui, i = 0, · · · , r,
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and the reconstruction

f =
r∑

i=0

fi,

together with the desirable norm preserving property

‖c‖2
ℓ2(Z) =

r∑

i=0

‖ci‖2
ℓ2(Z).

Lemma 3.1 is the base to build up tight wavelet frame packet. Note that, in the

assumption of this lemma, the combined UEP mask h may have no relation with θ.

We only need a arbitrarily given combined UEP mask. By this result, for a given

tight wavelet frame X(Ψ), we can further decompose the wavelet spaces Wj,i by

any combined UEP masks. And then by selectively and recursively decomposing

the wavelet spaces Wj,i, we can obtain various tight wavelet frames which are

altogether called a stationary tight wavelet frame packet.

Wj,i

b

b b b

b

b b b

b

b b b

Figure 3.2: Stationary tight wavelet frame packet decomposition

Furthermore, we can also recursively decompose Vj as well as Wj,i in the same

way, however, in this case we may change the underlying MRA spaces (Vj)j∈Z

associated with X(Ψ) if one of the lowpass filters in the set of combined UEP

masks decomposing Vj does not coincide with the refinement mask of φ which

generates (Vj)j∈Z, and all the tight wavelet frames obtained in this way with the
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MRA spaces (Vj)j∈Z are modified will be called a nonstationary tight wavelet

frame packet.

Vj

b

b b b

b

b b b

b

b b b

Figure 3.3: Nonstationary tight wavelet frame packet decomposition

As previously mentioned, given a tight wavelet frame X(Ψ), by Lemma 3.1 we

can further recursively split the wavelet spaces Wj,i by any combined UEP mask.

By selectively splitting of Wj,i, we can obtain tight wavelet frame packets. We can

obtain stationary tight wavelet frame packets by only selectively and recursively

splitting the wavelet spaces Wj,i.

For simplicity, we construct stationary tight wavelet frame packets by recur-

sively splitting Wj,i with the combined UEP mask h = [h0, h1, · · · , hr] associated

with the given tight wavelet frame X(Ψ), and set the coarsest scale j0 = 0.

We try two ways to construct a stationary tight wavelet frame packet, one is a

recursive way, the other one is the decomposition way. We first describe these two

methods, and later show that they are essentially the same.

A Recursive Construction of STWFP

Define p0 := φ, and for κ ∈ N, κ has the unique representation

κ = (r + 1)l + i
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for some l ∈ N0 and 0 ≤ i ≤ r, and we define pκ by

pκ = p(r+1)l+i :=
∑

n∈Z

2hi(n)pl(2 · −n). (3.15)

Note that definition (3.15) implies that p0 = φ and pi = ψi for i = 1, · · · , r.
Define

Pκ := span{pκ;0,k : k ∈ Z}, κ ∈ N0. (3.16)

(Note that (3.16) implies P0 = V0, Pi = W0,i for i = 1, · · · , r.)
Since X(Ψ) is a tight wavelet frame constructed via UEP in an MRA generated

by φ. We have

[φ̂, φ̂](ω) ≤ 1, ω ∈ R.

By invoking Lemma 3.1, for κ ∈ N we have

[pκ, pκ](ω) ≤ 1, ω ∈ R,

DPκ =

(r+1)(κ+1)−1∑

n=(r+1)κ

Pn,

and
∑

k∈Z

|〈f, pκ;1,k〉|2 =

(r+1)(κ+1)−1∑

n=(r+1)κ

∑

k∈Z

|〈f, pn;0,k〉|2,

for any f ∈ L2(R).

Generally, for j ∈ N, we can recursively apply Lemma 3.1 to obtain

Dj Pκ =

(r+1)j(κ+1)−1∑

n=(r+1)jκ

Pn; (3.17)

and
∑

k∈Z

|〈f, pκ;j,k〉|2 =

(r+1)j(κ+1)−1∑

n=(r+1)jκ

∑

k∈Z

|〈f, pn;0,k〉|2, (3.18)

for any f ∈ L2(R).
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For i = 1, · · · , r, substituting κ = i in (3.17) and (3.18), we can obtain

Wj,i = DjW0,i = Dj Pi =

(r+1)j(i+1)−1∑

n=(r+1)j i

Pn, (3.19)

and
∑

k∈Z

|〈f, ψi;j,k〉|2 =
∑

k∈Z

|〈f, pi;j,k〉|2 =

(r+1)j (i+1)−1∑

n=(r+1)j i

∑

k∈Z

|〈f, pn;0,k〉|2,

for any f ∈ L2(R), respectively.

Note that (3.19) means that each wavelet space Wj,i(j ≥ 1, i = 1, 2, · · · , r) can

be further decomposed into (r+1)j subspaces Pn, (r+1)ji ≤ n ≤ (r+1)j(i+1)−1.

Interestingly, if we take κ = 0 in (3.17) and (3.18), we can obtain,

Vj =

(r+1)j−1∑

n=0

Pn,

and
∑

k∈Z

|〈f, φj,k〉|2 =

(r+1)j−1∑

n=0

∑

k∈Z

|〈f, pn;0,k〉|2, (3.20)

for any f ∈ L2(R), respectively.

By choosing j to be a fixed level J > 0, the MRA property of (Vj)j∈Z leads to

L2(R) =

(r+1)J−1∑

n=0

Pn +

r∑

i=1

∑

j≥J
Wj,i. (3.21)

Theorem 3.1. For a given tight wavelet frame X(Ψ) constructed via UEP in an

MRA generated by φ, with the combined UEP mask h = [h0, h1, · · · , hr] satisfying

the UEP condition (2.38), define p0 := φ and define pn for n ∈ N as in (3.15),

then for any fixed J > 0,

P := {pn;0,k : 0 ≤ n ≤ (r + 1)J − 1, k ∈ Z} ∪ {ψj,k : ψ ∈ Ψ, k ∈ Z, j ≥ J}

is a tight wavelet frame.
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Proof. Since X(Ψ) is a tight wavelet frame of L2(R), by [24, Lemma 2.4], for any

f ∈ L2(R), we have

‖f‖2 =
∑

k∈Z

|〈f, φ0,k〉|2 +
∑

ψ∈Ψ

∑

j≥0

∑

k∈Z

|〈f, ψj,k〉|2

=
∑

k∈Z

|〈f, φJ,k〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2

Combined with (3.20), we can quickly deduce that

‖f‖2 =
∑

k∈Z

|〈f, φJ,k〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2

=

(r+1)j−1∑

n=0

∑

k∈Z

|〈f,Ekpn〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2,

for any f ∈ L2(R). And Theorem 3.1 is thus proved.

We can observe that Theorem 3.1 is corresponding to the special L2(R) space

decomposition of (3.21). Consequently, based on the tight wavelet frame P con-

structed above, we try to obtain other tight wavelet frames by choosing other

L2(R) space decompositions. To do this, we introduce the notation of the disjoint

partition ΛJ of a finite set of nonnegative integers

ΞJ := {n ∈ N0 : 0 ≤ n ≤ (r + 1)J − 1} (3.22)

into disjoint subsets of the form

Ij,κ := {(r + 1)jκ, · · · , (r + 1)j(κ+ 1) − 1}, j, κ ∈ N0,

i.e.,

ΛJ :=
{
Ij,κ :

⋃
Ij,κ = ΞJ

}
. (3.23)
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Then, it follows from (3.21) and (3.17) that

L2(R) =

(r+1)J−1∑

n=0

Pn +

r∑

i=1

∑

j≥J
Wj,i

=
∑

Ij,κ∈ΛJ

(r+1)j (κ+1)−1∑

n=(r+1)jκ

Pn +
r∑

i=1

∑

j≥J
Wj,i

=
∑

Ij,κ∈ΛJ

Dj Pκ +
r∑

i=1

∑

j≥J
Wj,i.

Theorem 3.2. For a given tight wavelet frame X(Ψ) constructed via UEP in an

MRA generated by φ, with the combined UEP mask h = [h0, h1, · · · , hr] satisfying

the UEP condition (2.38), define p0 := φ and define pn for n ∈ N as in (3.15).

For any fixed J > 0, ΛJ is a disjoint partition of ΞJ , where ΛJ and ΞJ are defined

in (3.23) and (3.22), respectively. Then

PΛJ
:= {pn;j,k : Ij,n ∈ ΛJ , k ∈ Z} ∪ {ψj,k : ψ ∈ Ψ, j ≥ J, k ∈ Z}

is a tight wavelet frame.

Proof. Notice that for any f ∈ L2(R), we have

∑

Ij,n∈ΛJ

∑

k∈Z

|〈f, pn;j,k〉|2 =
∑

Ij,n∈ΛJ

∑

k∈Z

(r+1)j(n+1)−1∑

n=(r+1)jn

|〈f, pn;0,k〉|2

=
∑

Ij,n∈ΛJ

(r+1)j(n+1)−1∑

n=(r+1)jn

∑

k∈Z

|〈f, pn;0,k〉|2

=

(r+1)J−1∑

n=0

|〈f, pn;0,k〉|2.

By invoking Theorem 3.1, we can obtain PΛJ
is a tight wavelet frame of L2(R).

For any fixed J > 0 and a disjoint partition ΛJ of ΞJ , we can obtain a tight

wavelet frame PΛJ
by Theorem 3.2. All tight wavelet frames constructed in this

way are called are called a stationary tight wavelet frame packet.
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Example 3.1. Let X(Ψ) be the piecewise linear tight wavelet frame as introduced

in Example 2.5, and let J = 2. By Theorem 3.1, we can obtain a stationary tight

wavelet frame packet, the plots of p0, p1, · · · , p8 are depicted in Figure 3.1.
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Figure 3.4: Piecewise linear tight wavelet frame packet

Example 3.2. Let X(Ψ) be the piecewise cubic tight wavelet frame as introduced

in Example 2.7, and let J = 2. By Theorem 3.1, we can obtain a stationary tight

wavelet frame packet, the plots of p0, p1, · · · , p15 are depicted in Figure 3.2.

A Decomposition Construction of STWFP

Besides the recursive derivation of stationary tight wavelet frame packets intro-

duced in the previous section, stationary tight wavelet frame packets can also be

constructed by directly decomposing of the MRA space VJ for a fixed level J > 0

to the level 0;
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Figure 3.5: Piecewise cubic tight wavelet frame packet

For a given tight wavelet frame X(Ψ) constructed via UEP in an MRA (Vj)j∈Z

generated by φ, and the associated combined UEP mask is h = [h0, h1, · · · , hr].
We now recursively decompose VJ for a fixed level J > 0 to level 0 by the fixed

combined UEP mask h.

At the first level of decomposition, By Lemma 3.1, VJ is decomposed with h

into the r + 1 spaces WJ−1,i, i ∈ Ω1, where Ω1 is a J-tuple index set defined by

Ω1 :=
{i = (iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ r, iJ−1 = · · · = i1 = 0

}
,

and for i = (iJ , iJ−1, · · · , i1), we definei(n) := in, n = 1, 2, · · · , J,

and with this notation we have

pi :=
∑

n∈Z

2hi(1)(n)φ(2 · −n),
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and WJ−1,i is defined by

WJ−1,i := span
{
pi;J−1,k : k ∈ Z

}
.

For any f ∈ L2(R), we have

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈Ω1

∑

k∈Z

|〈f, pi;J−1,k〉|2.

At the second level of decomposition, by Lemma 3.1, each space WJ−1,i, i ∈ Ω1

is decomposed with h into spaces WJ−2,i′, i′ ∈ Ωi
2, where Ωi

2 is a subset of Ω2

defined by

Ωi
2 := {i′ ∈ Ω2 : i′(1) = i(1)}

and Ω2 is a J-tuple index set defined by

Ω2 :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ r, 0 ≤ iJ−1 ≤ r, iJ−2 = · · · = i1 = 0
}
,

pi′ :=
∑

n∈Z

2hi′(2)(n)pi(2 · −n),

WJ−2,i′ := span
{
pi′;J−2,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pi;J−1,k〉|2 =
∑i′∈Ωi

2

∑

k∈Z

|〈f, pi′;J−2,k〉|2.

Generally, at the ℓ-th level (2 ≤ ℓ ≤ J) of decomposition, by Lemma 3.1, each

space WJ−ℓ+1,i, i ∈ Ωℓ−1 is decomposed with h into spaces WJ−ℓ,i′, i′ ∈ Ωi
ℓ, where

Ωi
ℓ is a subset of Ωℓ defined by

Ωi
ℓ := {i′ ∈ Ωℓ : i′(n) = i(n) for 1 ≤ n ≤ ℓ− 1} (3.24)

and Ωℓ is a J-tuple index set defined by

Ωℓ :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ−l ≤ r, 0 ≤ l ≤ ℓ, iJ−ℓ = · · · = i1 = 0
}
,
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pi′ :=
∑

n∈Z

2hi′(ℓ)(n)pi(2 · −n), (3.25)

WJ−ℓ,i′ := span
{
pi′;J−ℓ,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pi;J−ℓ+1,k〉|2 =
∑i′∈Ωi

ℓ

∑

k∈Z

|〈f, pi′;J−ℓ,k〉|2.
In particular, at the J-th level of decomposition, by Lemma 3.1, each space

W1,i, i ∈ ΩJ−1 is decomposed with h into spaces W0,i′, i′ ∈ Ωi
J , where Ωi

J is a

subset of ΩJ defined by

Ωi
J := {i′ ∈ ΩJ : i′(n) = i(n) for 1 ≤ n ≤ J − 1}

and ΩJ is a J-tuple index set defined by

ΩJ :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ il ≤ r, 1 ≤ l ≤ J
}
, (3.26)

pi′ :=
∑

n∈Z

2hi′(J)(n)pi(2 · −n),

W0,i′ := span
{
pi′;0,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pi;1,k〉|2 =
∑i′∈Ωi

J

∑

k∈Z

|〈f, pi′;0,k〉|2.
By combining all the inner product equations in the construction, we can obtain

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2. (3.27)

for any f ∈ L2(R), In other words, we obtain another representation of VJ , i.e.,

VJ = span
{
pi;0,k : k ∈ Z, i ∈ ΩJ

}
.
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Theorem 3.3. For a given tight wavelet frame X(Ψ), the system

ΠSta :=
{
pi;0,k, i ∈ ΩJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
,

is also a tight wavelet frame, where ΩJ is a index set defined in (3.26).

Proof. Since X(Ψ) is a tight wavelet frame of L2(R), by [24, Lemma 2.4], for any

f ∈ L2(R) we have

‖f‖2 =
∑

k∈Z

|〈f, φJ,k〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2.

On the other hand, from (3.27) we have

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2.
It follows that

‖f‖2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2.

Hence, Theorem 3.3 is proved.

Similar to the recursive construction of stationary tight wavelet frame packets,

based on the tight wavelet frame ΠSta constructed above, we can obtain a stationary

tight wavelet frame packet by performing various disjoint partitions ΛJ of ΩJ with

each partition separating ΩJ into disjoint subsets of the form

Ij,i :=

{
(iJ , · · · , ij+1, i

′
j , · · · , i′1) ∈ ΩJ : i = (iJ , · · · , ij+1, 0, · · · , 0) ∈ ΩJ−j

}
,

i.e.,

ΛJ :=
{
Ij,i :

⋃
Ij,i = ΩJ

}
. (3.28)

Theorem 3.4. For a given tight wavelet frame X(Ψ), let ΛJ be a disjoint partition

of ΩJ , where ΩJ and ΛJ are defined in (3.26) and (3.28), respectively. Then the

system

ΠSta
ΛJ

:=
{
pi;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
, (3.29)

is also a tight wavelet frame.
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Proof. Since ΛJ is a disjoint partition of ΩJ , for any f ∈ L2(R), we have

∑

Ij,i∈ΛJ

∑

k∈Z

|〈f, pi;j,k〉|2 =
∑

Ij,i∈ΛJ

∑i′∈Ij,i∑k∈Z

|〈f, pi′;0,k〉|2
=
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2.
By applying Theorem 3.3, Theorem 3.4 is proved.

Equivalence of the Two Constructions

We may find that these two constructions are quite similar. In fact, we can

show that they are equivalent. For convenience, we consider the multi-indexi = (iJ , · · · , i1) which is extensively used in our decomposition derivation of a

stationary tight wavelet frame packet as a base r + 1 number (iJ · · · i1)r+1 and

replace it with its decimal representation

i =
J∑

n=1

in(r + 1)n−1,

i.e., with the bijection

Υ : i → N0 : (iJ , · · · , i1) 7→
J∑

n=1

in(r + 1)n−1,

ΠSta :=
{
pi;0,k, i ∈ ΩJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

has a decimal index version

ΠSta :=
{
pn;0,k, 0 ≤ n ≤ (r + 1)J − 1

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
,

which is the same as the one derived in the recursive construction, and vice versa.

By taking into account that φ is a refinable function with its refinement mast

h0, we can quickly conclude from (3.25) that

pi∗ = φ,
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where i∗ = (0, 0, · · · , 0︸ ︷︷ ︸
J

).

Furthermore, by the From (3.24) and (3.25), we can observe that in the decom-

position way derivation, pi2, where i2 = (iJ , · · · , iℓ+1, iℓ, 0, · · · , 0), is constructed

from pi1, where i1 = (iJ , · · · , iℓ+1, 0, · · · , 0) through the equation

pi2 :=
∑

n∈Z

2 hiℓ(n)pi1(2 · −n).

By observing that

Υ(i2) =

J∑

n=ℓ

in(r + 1)n−1 = (r + 1)

J∑

n=ℓ+1

in(r + 1)n−1 + iℓ = (r + 1)Υ(i1) + iℓ,

i.e., Υ(i2) has the unique representation Υ(i2) = (r+1)Υ(i2)+iℓ, which is the same

as the recursive construction (3.15), we can conclude that these two derivations

are totally equivalent for the derivation of stationary tight wavelet frame packets.

For the nonstationary case, we generally do not have a recursive relation as in

the stationary case since the original MRA (Vj)j∈Z associated with X(Ψ) will not

be preserved. Hence, we adopt the decomposition method in our later construction

of nonstationary tight wavelet frame packets.

3.2 Characterization of Sobolev Spaces by STWFP

Once we build up a stationary tight wavelet frame packet (STWFP)

PSta
ΛJ

:=
{
pn;j,k : k ∈ Z, Ij,n ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
,

we can use the weighted ℓ2-norm of the analysis STWFP coefficient sequence

{
〈f, pn;j,k〉

}
k∈Z,Ij,n∈ΛJ

∪
{
〈f, ψj,k〉

}
k∈Z,j≥J,k∈Z,ψ∈Ψ

of a given function f ∈ H
s(R) to characterize its Sobolev norm in H

s(R).
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Theorem 3.5. For a given tight wavelet frame X(Ψ) constructed via UEP in an

MRA generated by φ, with the combined UEP mask h = [h0, h1, · · · , hr], define

p0 := φ and define pn for n ∈ N as in (3.15). Assume that for α > 0 there exists

a positive constant C such that

1 − |ĥ0(ω)|2 ≤ C|ω|2α, ω ∈ R, (3.30)

and

[φ̂, φ̂]α(ω) ≤ C, ω ∈ R. (3.31)

For any fixed J > 0, ΛJ is a disjoint partition of ΞJ , where ΛJ and ΞJ are defined

in (3.23) and (3.22), respectively. If −α < s < α, then

Ps
ΛJ

:= {2jspn;j,k : Ij,n ∈ ΛJ , k ∈ Z} ∪ {2jsψj,k : ψ ∈ Ψ, k ∈ Z, j ≥ J}

is a wavelet frame of Hs(R) , i.e., there exist two positive constants C1, C2 such

that

C1‖f‖2
Hs(R) ≤

∑

Ij,n∈ΛJ

∑

k∈Z

22js|〈f, pn;j,k〉|2

+
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

22js|〈f, ψj,k〉|2 ≤ C2‖f‖2
Hs(R), (3.32)

hold for all f ∈ H
s(R).



3.2 Characterization of Sobolev Spaces by STWFP 63

Proof. For −α < s < α, we can show that

∑

k∈Z

|〈f, φJ,k〉|2 =
1

2π

∫

T

2J |[f̂(2J ·), φ̂](ω)|2dω

≤ 2J−1

π

∫

T

[f̂(2J ·), f̂(2J ·)]−s(ω)[φ̂, φ̂]s(ω)dω

≤ ‖[φ̂, φ̂]s‖L∞(R)
2J−1

π

∫

T

[f̂(2J ·), f̂(2J ·)]s(ω)dω

≤ ‖[φ̂, φ̂]α‖L∞(R)
2J−1

π

∫

R

|f̂(2Jω)|2(1 + |ω|2)−sdω

≤ C

2π

∫

R

|f̂(ω)|2(1 + |2−Jω|2)−sdω

=
C

2π

∫

R

|f̂(ω)|2(1 + |ω|2)−s
(

1 + |ω|2
1 + |2−Jω|2

)s
dω

≤ Cmax{1, 22Js} 1

2π

∫

R

|f̂(ω)|2(1 + |ω|2)−sdω

= C max{1, 22Js}‖f‖2
H−s(R),

and in the last inequality we used the fact that

1 ≤ 1 + |ω|2
1 + |2−Jω|2 ≤ 22J , ω ∈ R, J ∈ N.

On the other hand,

∑

Ij,n∈ΛJ

∑

k∈Z

2−2js|〈f, pn;j,k〉|2 ≤ 22(J−1)|s|
∑

Ij,n∈ΛJ

∑

k∈Z

|〈f, pn;j,k〉|2

= 22(J−1)|s|
∑

Ij,n∈ΛJ

(r+1)j (n+1)−1∑

ℓ=(r+1)jn

∑

k∈Z

|〈f, pℓ;0,k〉|2

= 22(J−1)|s|
(r+1)J−1∑

n=0

∑

k∈Z

|〈f, pn;0,k〉|2

= 22(J−1)|s|
∑

k∈Z

|〈f, φJ,k〉|2

≤ C22(J−1)|s| max{1, 22Js}‖f‖2
H−s(R).
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In addition, it was shown in the proof of [45, Proposition 2.1] that (3.30) and

(3.31) yield

∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

2−2js|〈f, ψj,k〉|2 ≤ C‖Bs,t,J‖L∞(R)‖f‖2
H−s(R),

where

Bs,t,J(ω) :=
∞∑

j=J

2−2js(1 + |ω|2)s
(1 + |2−Jω|2)α

r∑

i=1

|ĥi(2−jω)|2 ∈ L∞(R).

Combining the two inequalities above, we can obtain

∑

Ij,n∈ΛJ

∑

k∈Z

2−2js|〈f, pn;j,k〉|2 +

∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

2−2js|〈f, ψj,k〉|2 ≤ C ′‖f‖2
H−s(R),

where C ′ := C
(
‖Bs,t,J‖L∞(R) + 22(J−1)|s| max{1, 22Js}

)
.

By a duality argument as in the proof of [45, Theorem 1.2] (Theorem 2.17), we

can obtain

1

C ′‖f‖
2
Hs(R) ≤

∑

Ij,n∈ΛJ

∑

k∈Z

22js|〈f, pn;j,k〉|2 +

∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

22js|〈f, ψj,k〉|2 ≤ C ′‖f‖2
Hs(R),

for all f ∈ H
s(R), (−α < s < α). Hence, Theorem 3.5 is proved.



Chapter 4
Nonstationary Tight Wavelet Frame

Packet (NTWFP)

In the stationary tight wavelet frame packet derivation, we decompose VJ by the

same combined UEP mask which generates the given tight wavelet frame X(Ψ),

so we keep the MRA (Vj)j∈Z associated with the given tight wavelet frame X(Ψ).

However, stationary MRA has its own limitations. As it is widely understood, we

can not obtain a compactly supported refinable function φ with a finitely supported

refinement mask such that φ ∈ C∞(R) in a stationary MRA [22]. In [15], C∞

nonstationary orthonormal wavelet bases of L2(R) are obtained. It was later shown

in [46] that compactly supported symmetric C∞ nonstationary tight wavelet frames

of L2(R) can be similarly obtained. Furthermore, it was pointed out in [46] that

such nonstationary tight wavelet frames can achieve spectral frame approximation

order. In a recent work [45], such nonstationary tight wavelet frames are used to

characterize Sobolev spaces of arbitrary smoothness. In this section, we present

the construction of nonstationary tight wavelet frame packet based on a given tight

wavelet frame X(Ψ) and then apply it to characterize Sobolve spaces.

65
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4.1 Construction of NTWFP

Given a tight wavelet frame X(Ψ) constructed via UEP in an MRA (Vj)j∈Z gener-

ated by φ. We construct the nonstationary tight wavelet frame packets by recur-

sively decomposing VJ with arbitrarily chosen combined UEP masks to the coarsest

scale 0. Note that each lowpass filter in the selected combined UEP mask does not

coincide with h0 which is the refinement mask of φ.

In the first step, we decompose VJ = span{φJ,k : k ∈ Z} with the combined

UEP mask bJ :=
[
bi : i ∈ Ω1

]
satisfying the UEP condition (2.38), where Ω1 ⊂ NJ

0

is a J−tuple index set defined by

Ω1 :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , iJ−1 = · · · = i1 = 0
}
,

in which J is a positive constant. By Lemma 3.1, we can decompose VJ into spaces

WJ−1,i, i ∈ Ω1, where

pi :=
∑

n∈Z

2bi(n)φ(2 · −n),

WJ−1,i := span
{
pi;J−1,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈Ω1

∑

k∈Z

|〈f, pi;J−1,k〉|2.

VJ

WJ−1,(0,0,··· ,0) WJ−1,(1,0,··· ,0) · · · WJ−1,(J ,0,··· ,0)

Figure 4.1: First level decomposition of VJ

At the second level of decomposition, by Lemma 3.1, each space WJ−1,i, i ∈ Ω1

is decomposed with a combined UEP mask bJ−1,i :=
[
bi′ : i′ ∈ Ωi

2

]
satisfying the
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UEP condition (2.38), where Ωi
2 is a subset of Ω2 defined by

Ωi
2 := {i′ ∈ Ω2 : i′(1) = i(1)}

and Ω2 ⊂ NJ
0 is a J−tuple index set defined by

Ω2 :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , 0 ≤ iJ−1 ≤ J (iJ ), iJ−2 = · · · = i1 = 0
}

in which J (iJ ) is a positive constant for each iJ , into spaces WJ−2,i′, i′ ∈ Ωi
2, where

pi′ :=
∑

n∈Z

2bi′(n)pi(2 · −n),

WJ−2,i′ := span
{
pi′;J−2,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pi;J−1,k〉|2 =
∑i′∈Ωi

2

∑

k∈Z

|〈f, pi′;J−2,k〉|2.

WJ−1,(iJ ,0,··· ,0)

WJ−2,(iJ ,0,··· ,0) WJ−2,(iJ ,1,··· ,0) · · · WJ−1,(iJ ,J (iJ ),··· ,0)

Figure 4.2: Second level decomposition of VJ

Generally, at the ℓ-th level (2 ≤ ℓ ≤ J) of decomposition, by Lemma 3.1, each

space WJ−ℓ+1,i, i ∈ Ωℓ−1 is decomposed with a combined UEP mask bJ−ℓ+1,i :=
[
bi′ : i′ ∈ Ωi

ℓ

]
satisfying the UEP condition (2.38), where Ωi

ℓ is a subset of Ωℓ

defined by

Ωi
ℓ := {i′ ∈ Ωℓ : i′(n) = i(n) for 1 ≤ n ≤ ℓ− 1}

and Ωℓ ⊂ NJ
0 is a J−tuple index set defined by

Ωℓ :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , 0 ≤ iJ−l ≤ J (iJ ,iJ−1··· ,iJ−l+1),

1 ≤ l ≤ ℓ, iJ−ℓ = · · · = i1 = 0
}



4.1 Construction of NTWFP 68

in which J (iJ ,iJ−1··· ,iJ−l+1) is a positive constant for each (iJ , iJ−1 · · · , iJ−l+1), into

spaces WJ−ℓ,i′, i′ ∈ Ωi
ℓ, where

pi′ :=
∑

n∈Z

2bi′(n)pi(2 · −n),

WJ−ℓ,i′ := span
{
pi′;J−ℓ,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pi;J−ℓ+1,k〉|2 =
∑i′∈Ωi

ℓ

∑

k∈Z

|〈f, pi′;J−ℓ,k〉|2.
In particular, at the J-th level of decomposition, by Lemma 3.1, each space

W1,i, i ∈ ΩJ−1 is decomposed with a combined UEP mask b1,i :=
[
bi′ : i′ ∈ Ωi

J

]

satisfying the UEP condition (2.38), where Ωi
J is a subset of ΩJ defined by

Ωi
J := {i′ ∈ ΩJ : i′(n) = i(n) for 1 ≤ n ≤ J − 1}

and ΩJ ⊂ NJ
0 is a J−tuple index set defined by

ΩJ :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , 0 ≤ iJ−l ≤ J (iJ ,iJ−1··· ,iJ−l+1), 1 ≤ l ≤ J
}

(4.1)

in which J (iJ ,iJ−1··· ,iJ−l+1) is a positive constant for each (iJ , iJ−1 · · · , iJ−l+1), into

spaces W0,i′, i′ ∈ Ωi
J , where

pi′ :=
∑

n∈Z

2bi′(n)pi(2 · −n),

W0,i′ := span
{
pi′;0,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pi;1,k〉|2 =
∑i′∈Ωi

J

∑

k∈Z

|〈f, pi′;0,k〉|2.
By combining all the inner product equations in the construction, we can obtain

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2. (4.2)
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W1,(iJ ,··· ,i2,0)

W0,(iJ ,··· ,i2,0) W0,(iJ ,··· ,i2,1) · · · W0,(iJ ,··· ,i2,J (iJ ,··· ,i2))

Figure 4.3: J-th level decomposition of VJ

for any f ∈ L2(R), In other words, we obtain another representation of VJ , i.e.,

VJ = span
{
pi;0,k : k ∈ Z, i ∈ ΩJ

}
.

Theorem 4.1. For a given tight wavelet frame X(Ψ), the system

Π :=
{
pi;0,k, i ∈ ΩJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
,

is also a tight wavelet frame, where ΩJ is a index set defined in (4.1).

Proof. Since X(Ψ) is a tight wavelet frame of L2(R), by [24, Lemma 2.4], for any

f ∈ L2(R) we have

‖f‖2 =
∑

k∈Z

|〈f, φJ,k〉|2 +
∑

ψ∈Ψ

∑

j≥J,k∈Z

|〈f, ψj,k〉|2.

On the other hand, from (4.2) we have

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2.
It follows that

‖f‖2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2.

Hence, Theorem 4.1 is proved.

As in the stationary case, based on the tight frame

Π =
{
pi;0,k, i ∈ ΩJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
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constructed above, we can obtain a library of tight wavelet frames of L2(R) by

partitioning ΩJ into disjoint subsets of the form

Ij,i :=
{

(iJ , · · · , ij+1, i
′
j , · · · , i′1) ∈ ΩJ : i = (iJ , · · · , ij+1, 0, · · · , 0) ∈ ΩJ−j

}
, (4.3)

i.e.,

ΛJ =
{
Ij,i :

⋃
Ij,i = ΩJ

}
. (4.4)

Theorem 4.2. For a given tight wavelet frame X(Ψ), let ΛJ be a disjoint partition

of ΩJ , where ΩJ and ΛJ are defined in (4.1) and (4.4), respectively. Then the

system

ΠΛJ
:=
{
pi;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
,

is also a tight wavelet frame.

Proof. Since ΛJ is a disjoint partition of ΩJ , for any f ∈ L2(R), we have

∑

Ij,i∈ΛJ

∑

k∈Z

|〈f, pi;j,k〉|2 =
∑

Ij,i∈ΛJ

∑i′∈Ij,i∑k∈Z

|〈f, pi′;0,k〉|2
=
∑i∈ΩJ

∑

k∈Z

|〈f, pi;0,k〉|2.
By applying Theorem 4.1, Theorem 4.2 is proved.

By Theorem 4.2, we can obtain various nonstationary tight wavelet frames ΠΛJ

based on various disjoint partitions of ΩJ . All such obtained nonstationary tight

wavelet frames ΠΛJ
are called a nonstationary tight wavelet frame packet.

Example 4.1. Let X(Ψ) be the piecewise linear tight wavelet frame as introduced

in Example 2.5, and let J = 2. By Theorem 4.1, we can obtain a stationary tight

wavelet frame packet, the plots of p0, p1, · · · , p8 are depicted in Figure 3.1.
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Figure 4.4: Piecewise linear tight wavelet frame packet

4.2 Characterization of Sobolev Spaces by NTWFP

Once we build up a nonstationary tight wavelet frame packet (NTWFP)

ΠΛJ
=
{
pi;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

we can use the weighted ℓ2-norm of the analysis NTWFP coefficient sequence

{
〈f, pi;j,k〉}k∈Z,Ij,i∈ΛJ

∪
{
〈f, ψj,k〉

}
k∈Z,j≥J,k∈Z,ψ∈Ψ

of a given function f ∈ H
s(R) to characterize its Sobolev norm in H

s(R).

Theorem 4.3. Suppose we have a nonstationary tight wavelet frame packet

ΠΛJ
=
{
pi;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
,

derived from a tight wavelet frame X(Ψ) constructed in an MRA generated by a

refinable function φ via UEP, with the associated combined UEP mask is h =
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[h0, h1, · · · , hr], where Ij,i and ΛJ are defined in (4.3) and (4.4), respectively. Sup-

pose

1 − |ĥ0(ω)|2 ≤ C|ω|2α, ω ∈ R, (4.5)

[φ̂, φ̂]α(ω) ≤ C, ω ∈ R, (4.6)

[p̂i, p̂i]α(ω) ≤ C, ω ∈ R, Ij,i ∈ ΛJ , (4.7)

If −α < s < α, then

Πs
Λ :=

{
2jspi;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
2jsψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

is a wavelet frame of Hs(R), i.e., there exist two positive constants C1, C2 such that

C1‖f‖2
Hs(R) ≤

∑

Ij,i∈ΛJ

∑

k∈Z

22js|〈f, pi;j,k〉|2
+

∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

22js|〈f, ψj,k〉|2 ≤ C2‖f‖2
Hs(R),

for all f ∈ H
s(R).

Proof. For −α < s < α, we can obtain

∑

k∈Z

|〈f, φJ,k〉|2 ≤ C max{1, 22Js}‖f‖2
H−s(R),

as in the proof of Theorem 3.5.

On the other hand,

∑

Ij,i∈ΛJ

∑

k∈Z

2−2js|〈f, pi;j,k〉|2 ≤ 22(J−1)|s|
∑

Ij,i∈ΛJ

∑

k∈Z

|〈f, pi;j,k〉|2
= 22(J−1)|s|

∑

k∈Z

|〈f, φJ,k〉|2

≤ C22(J−1)|s| max{1, 22Js}‖f‖2
H−s(R).

In addition, it was shown in the proof of [45, Proposition 2.1] that (4.5) and

(4.6) yield

∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

2−2js|〈f, ψj,k〉|2 ≤ C‖Bs,t,J‖L∞(R)‖f‖2
H−s(R),
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where

Bs,t,J(ω) :=
∞∑

j=J

2−2js(1 + |ω|2)s
(1 + |2−Jω|2)α

r∑

i=1

|ĥi(2−jω)|2 ∈ L∞(R).

Combining the two inequalities above, we can obtain

∑

Ij,i∈ΛJ

∑

k∈Z

2−2js|〈f, pi;j,k〉|2 +

∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

2−2js|〈f, ψj,k〉|2 ≤ C ′‖f‖2
H−s(R),

where C ′ := C
(
‖Bs,t,J‖L∞(R) + 22(J−1)|s| max{1, 22Js}

)
.

By a duality argument as in the proof of [45, Theorem 1.2] (Theorem 2.17), we

can obtain

1

C ′‖f‖
2
Hs(R) ≤

∑

Ij,i∈ΛJ

∑

k∈Z

22js|〈f, pi;j,k〉|2 +
∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

22js|〈f, ψj,k〉|2 ≤ C ′‖f‖2
Hs(R),

for all f ∈ H
s(R), (−α < s < α). Hence, Theorem 4.3 is proved.



Chapter 5
2−J -shift Invariant (SI) Tight Wavelet

Frame Packet

As pointed out in [66], the wavelets theory is intrinsically centered around the

“synthesis operator”, while the frame theory is centered around the “analysis op-

erator”. Theoretically, this is because the former one is irredundant while the latter

one is redundant. In applications, there is also a trend of shifting concentration on

these two operators.

In the early applications of wavelet frames, such as denoising [33, 35], image

compression, etc., the irredundant systems play a very crucial role. This is largely

due to that the application objects such as images have a sparse representation in

the wavelets domain in which a thresholding operation can be performed. In other

words, we are using a “good” analysis operator in the applications. The synthesis

problem is not focused since the system used is irredundant.

However, in the application of denoising by wavelets, Donoho discovered the

better performance offer by frames obtained by making the wavelets system to

74
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be a 2−J -shift invariant one, and he referred this new technique as “Translation-

invariant De-noising” [34]. It suggested that not only “sparsity” but also “redun-

dancy” is crucial in certain applications. It also called for new techniques dealing

with “redundancy”. Put it differently, we have to pay attention to the synthesis

operator since the good performance is due to a redundant system. From then

on, there was a widespread exploration on the power of “redundancy” which led

to the theory of “compressed sensing” which is the current state-of-the-art in the

exploration of the power of redundancy.

5.1 Introduction to Quasi-affine systems

We first introduce the notion of a quasi-affine system from level J . A quasi-

affine system from level J is defined as

Definition 5.1. Let Ψ = {ψ1, . . . , ψr} be a finite set of functions in L2(R). A

quasi-affine system from level J is defined as

Xq,J(Ψ) :=
{
ψq,Ji;j,k : 1 ≤ i ≤ r; j, k ∈ Z

}
,

where ψq,Ji;j,k is defined by

ψq,Ji;j,k :=





DjEkψi = 2j/2ψi(2
j · −k), j ≥ J ;

2
j−J

2 E2−JkDjψi = 2j−J/2ψi(2
j(· − 2−Jk)), j < J.

(5.1)

The quasi-affine system is obtained by oversampling the affine system. More

precisely, we oversample the affine system starting from level J − 1 and downward

to a 2−J -shift invariant system. Hence, the whole quasi-affine system is a 2−J -shift

invariant system. The quasi-affine system Xq
0(Ψ) from level 0 was first introduced

in [66] to convert a non-shift invariant affine system to a shift invariant system.

Further, it was shown in [66, Theorem 5.5] that the affine system X(Ψ) is a tight

wavelet frame (or tight affine frame) if and only if Xq,0(Ψ) is a tight frame (or tight
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quasi-affine frame). Note that [66, Theorem 5.5] was proved under a mild decay

condition which was subsequently removed by Chui et al [13]). It can be easily

observed that

Xq,J(Ψ) = DJXq,0(Ψ),

then by [66, Theorem 5.5] we can obtain the following result.

Theorem 5.1. [5]X(Ψ) is a tight wavelet frame (or tight affine frame) if and only

if Xq,J(Ψ) is a tight frame (or tight 2−J -quasi-affine frame).

5.2 Construction of 2−J-SI STWFP

For a given sequence h, we use h[j] to denote the 2j upsampling of h, i.e.,

h[j](n) =




h(2−jn), n ∈ 2jZ,

0, otherwise.

(5.2)

With the following result, we can split a given stationary (nonstationary) tight

wavelet frame into 2−J -shift invariant stationary (nonstationary) tight wavelet

frame packets.

Theorem 5.2. Let θ ∈ L2(R), j ≤ J and
{
θq,Jj,k : k ∈ Z

}
be a Bessel set with the

Bessel bound Cq
θ which is a positive constant, i.e.,

∑

k∈Z

|〈f, θq,Jj,k 〉|2 ≤ Cq
θ‖f‖2, (5.3)

holds for any f ∈ L2(R). Let h = [h0, · · · , hr] be a combined MRA mask satisfying

r∑

i=0

|ĥi(ω)|2 = 1. (5.4)

For i = 0, · · · , r, define

θq,Ji;j−1,k :=
∑

n∈Z

hi(n)θq,Jj,k (· − 2−jn), k ∈ Z, (5.5)
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U q,J
i := span

{
θq,Ji;j−1,k : k ∈ Z

}
. (5.6)

And also, define U q,J := span
{
θq,Jj,k : k ∈ Z

}
. Then

(i). For k ∈ Z and i = 0, · · · , r, θq,Ji;j−1,k ∈ L2(R), with ‖θq,Ji;j−1,k‖L2(R) ≤ ‖θq,Jj,k ‖L2(R)

and
r∑

i=0

‖θq,Ji;j−1,k‖2
L2(R) = ‖θq,Jj,k ‖2

L2(R);

(ii). For any sequence c ∈ ℓ2(Z), there are r+1 sequences ci, i = 0, · · · , r, defined

by

ci(k) :=
∑

n∈Z

h
[J−j]
i (n) c(k + n), k ∈ Z, (5.7)

such that
∑

k∈Z

|c(k)|2 =
r∑

i=0

∑

k∈Z

|ci(k)|2, (5.8)

and
∑

k∈Z

c(k) θq,Jj,k =
r∑

i=0

∑

k∈Z

ci(k) θ
q,J
i;j−1,k; (5.9)

(iii). In particular, for any f ∈ L2(R), let c(k) = 〈f, θq,Jj,k 〉 for k ∈ Z, then c ∈ ℓ2(Z)

and (5.7),(5.8) and (5.9) yield

ci(k) = 〈f, θq,Ji;j−1,k〉, k ∈ Z, i = 0, · · · , r, (5.10)

∑

k∈Z

|〈f, θq,Jj,k 〉|2 =

r∑

i=0

∑

k∈Z

|〈f, θq,Ji;j−1,k〉|2, (5.11)

and
∑

k∈Z

〈f, θq,Jj,k 〉 θq,Jj,k =
r∑

i=0

∑

k∈Z

〈f, θq,Ji;j−1,k〉 θq,Ji;j−1,k, (5.12)

respectively;

(iv).
{
θq,Ji;j−1,k : k ∈ Z

}
is a Bessel set for i = 0, · · · , r, with the space decomposition

U q,J = U q,J
0 + · · ·+ U q,J

r . (5.13)
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Proof. (i). (5.5) can be recast in Fourier domain as

̂θq,Ji;j−1,k(ω) = ĥi(2
−jω)θ̂q,Jj,k (ω), i = 0, · · · , r. (5.14)

Also, by invoking the condition (5.4), we can deduce that

r∑

i=0

‖θq,Ji;j−1,k‖2
L2(R) =

r∑

i=0

1

2π

∫

R

|ĥi(2−jω)θ̂q,Jj,k (ω)|2dω

=
1

2π

∫

R

|θ̂q,Jj,k (ω)|2
r∑

i=0

|ĥi(2−jω)|2dω

=
1

2π

∫

R

|θ̂q,Jj,k (ω)|2dω

= ‖θq,Jj,k ‖2
L2(R).

It follows that ‖θq,Ji;j−1,k‖2
L2(R) ≤ ‖θq,Jj,k ‖2

L2(R). And (i) is thus proved.

(ii). (5.7) can be recast in Fourier domain as

ĉi(ω) = ĉ(ω)ĥi(2
J−jω), i = 0, · · · , r. (5.15)

By (5.15), we have

r∑

i=0

|ĉi(ω)|2 =

r∑

i=0

|ĉ(ω)|2|ĥi(2J−jω)|2 = |ĉ(ω)|2
r∑

i=0

|ĥi(2J−jω)|2 = |ĉ(ω)|2.

It follows that

r∑

i=0

∑

k∈Z

|ci(k)|2 =
∑

k

|c(k)|2.

and (5.8) is proved.

In Fourier domain, (5.9) becomes

ĉ(2−Jω)θ̂q,Jj,0 (ω) =

r∑

i=0

ĉi(2
−Jω) ̂θq,Ji;j−1,0(ω).
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By (5.14) and (5.15), it can be shown that the RHS=LHS, explicitly,

RHS =
r∑

i=0

ĉ(2−Jω)ĥi(2
−jω)ĥi(2

−jω)θ̂q,Jj,0 (ω)

= ĉ(2−Jω)θ̂q,Jj,0 (ω)

r∑

i=0

|ĥi(2−jω)|2

= LHS,

thus (5.9) is proved.

(iii). By (5.3), we immediately have c ∈ ℓ2(Z). Also, we can deduce from (5.7)

to obtain

ci(k) =
∑

n

h
[J−j]
i (n) c(k + n)

=
∑

n

h
[J−j]
i (n)〈f, θq,Jj,k+n〉

=
∑

n

hi(n)〈f, θq,J
j,k+2J−jn

〉

=
〈
f,
∑

n

hi(n)θq,J
j,k+2J−jn

〉

=
〈
f,
∑

n

hi(n)θq,Jj,k (· − 2−jn)
〉

= 〈f, θq,Ji;j−1,k〉, i = 0, · · · , r.

Consequently, (5.11) and (5.12) followed from (5.8) and (5.9), respectively.

(iv). By (5.11) and (5.3), for any f ∈ L2(R), we have

∑

k∈Z

|〈f, θq,Ji;j−1,k〉|2 ≤
r∑

i=0

∑

k∈Z

|〈f, θq,Ji;j−1,k〉|2

=
∑

k∈Z

|〈f, θq,Jj,k 〉|2

≤ Cq
θ‖f‖2, i = 0, · · · , r.

And we obtain that for i = 0, · · · , r, each set
{
θq,Ji;j−1,k : k ∈ Z

}
is a Bessel set.
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From (5.5), we can get

θq,Ji;j−1,k =
∑

n∈Z

hi(n)θq,J
j,k+2J−jn

.

Consequently, U q,J
0 +· · ·+U q,J

r ⊆ U q,J . On the other hand, by taking c to be finitely

support sequences in (5.9), we can obtain U q,J ⊆ U q,J
0 + · · · + U q,J

r . Hence (5.13)

is proved.

As it is shown in the previous chapter, Lemma 3.1 is the base to construct sta-

tionary/nonstationary tight wavelet frame packets. In this chapter we will show

that Lemma 5.2 is the base for the construction of 2−J -shift invariant station-

ary/nonstationary tight wavelet frame packet.

Similar to the construction of the nonstationary tight wavelet frame packet,

from a given tight wavelet frame X(Ψ) constructed via UEP in an MRA generated

by the refinable function φ, we construct 2−J -shift invariant nonstationary tight

wavelet frame packet by recursively decomposing the MRA space VJ for a fixed

scale J to level 0 with any combined MRA mask h = [h0, · · · , hr] satisfying the

condition (5.4) which is much weaker than the UEP requirement.

In the first step, we decompose VJ = span{φJ,k : k ∈ Z} with the combined

MRA mask bJ :=
[
bi : i ∈ Ω1

]
satisfying the condition (5.4), where Ω1 ⊂ NJ

0 is a

J−tuple index set defined by

Ω1 :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , iJ−1 = · · · = i1 = 0
}
,

in which J is a positive constant. By Lemma 5.2, we can decompose VJ into spaces

W q,J
J−1,i, i ∈ Ω1, where

pq,Ji;J−1,k :=
∑

n∈Z

bi(n)φJ,k(· − 2−Jn), k ∈ Z,

W q,J
J−1,i := span

{
pq,Ji;J−1,k : k ∈ Z

}
.
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And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈Ω1

∑

k∈Z

|〈f, pq,Ji;J−1,k〉|2.

VJ

W q,J
J−1,(0,0,··· ,0) W q,J

J−1,(1,0,··· ,0) · · · W q,J
J−1,(J ,0,··· ,0)

Figure 5.1: First level 2−J-shift invariant decomposition of VJ

At the second level of decomposition, by Lemma 5.2, each space W q,J
J−1,i, i ∈ Ω1

is decomposed with a combined MRA mask bJ−1,i :=
[
bi′ : i′ ∈ Ωi

2

]
satisfying the

condition (5.4), where Ωi
2 is a subset of Ω2 defined by

Ωi
2 := {i′ ∈ Ω2 : i′(1) = i(1)}

and Ω2 ⊂ NJ
0 is a J−tuple index set defined by

Ω2 :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , 0 ≤ iJ−1 ≤ J (iJ ), iJ−2 = · · · = i1 = 0
}

in which J (iJ ) is a positive constant for each iJ , into spaces W q,J
J−2,i′, i′ ∈ Ωi

2, where

pq,Ji′;J−2,k :=
∑

n∈Z

bi′(n)pq,Ji;J−1,k(· − 2−J+1n), k ∈ Z,

W q,J
J−2,i′ := span

{
pq,Ji′;J−2,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pq,Ji;J−1,k〉|2 =
∑i′∈Ωi

2

∑

k∈Z

|〈f, pq,Ji′;J−2,k〉|2.
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W q,J
J−1,(iJ ,0,··· ,0)

W q,J
J−2,(iJ ,0,··· ,0) W q,J

J−2,(iJ ,1,··· ,0) · · · W q,J

J−1,(iJ ,J (iJ ),··· ,0)

Figure 5.2: Second level 2−J -shift invariant decomposition of VJ

Generally, at the ℓ-th level (2 ≤ ℓ ≤ J) of decomposition, by Lemma 5.2, each

space W q,J
J−ℓ+1,i, i ∈ Ωℓ−1 is decomposed with a combined MRA mask bJ−ℓ+1,i :=

[
bi′ : i′ ∈ Ωi

ℓ

]
satisfying the condition (5.4), where Ωi

ℓ is a subset of Ωℓ defined by

Ωi
ℓ := {i′ ∈ Ωℓ : i′(n) = i(n) for 1 ≤ n ≤ ℓ− 1}

and Ωℓ ⊂ NJ
0 is a J−tuple index set defined by

Ωℓ :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , 0 ≤ iJ−l ≤ J (iJ ,iJ−1··· ,iJ−l+1),

1 ≤ l ≤ ℓ, iJ−ℓ = · · · = i1 = 0
}

in which J (iJ ,iJ−1··· ,iJ−l+1) is a positive constant for each (iJ , iJ−1 · · · , iJ−l+1), into

spaces W q,J
J−ℓ,i′, i′ ∈ Ωi

ℓ, where

pq,Ji′;J−ℓ,k :=
∑

n∈Z

bi′(n)pq,Ji;J−ℓ+1,k(· − 2−J+ℓ−1n), k ∈ Z,

W q,J
J−ℓ,i′ := span

{
pq,Ji′;J−ℓ,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pq,Ji;J−ℓ+1,k〉|2 =
∑i′∈Ωi

ℓ

∑

k∈Z

|〈f, pq,Ji′;J−ℓ,k〉|2.
In particular, at the J-th level of decomposition, by Lemma 5.2, each space

W q,J
1,i , i ∈ ΩJ−1 is decomposed with a combined MRA mask b1,i :=

[
bi′ : i′ ∈ Ωi

J

]

satisfying the condition (5.4), where Ωi
J is a subset of ΩJ defined by

Ωi
J := {i′ ∈ ΩJ : i′(n) = i(n) for 1 ≤ n ≤ J − 1}
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and ΩJ ⊂ NJ
0 is a J−tuple index set defined by

ΩJ :=
{

(iJ , iJ−1, · · · , i1) : 0 ≤ iJ ≤ J , 0 ≤ iJ−l ≤ J (iJ ,iJ−1··· ,iJ−l+1), 1 ≤ l ≤ J
}

(5.16)

in which J (iJ ,iJ−1··· ,iJ−l+1) is a positive constant for each (iJ , iJ−1 · · · , iJ−l+1), into

spaces W q,J
0,i′ , i′ ∈ Ωi

J , where

pq,Ji′;0,k :=
∑

n∈Z

bi′(n)pq,Ji;1,k(· − 2−1n), k ∈ Z,

W q,J
0,i′ := span

{
pq,Ji′;0,k : k ∈ Z

}
.

And for any f ∈ L2(R) we have

∑

k∈Z

|〈f, pq,Ji;1,k〉|2 =
∑i′∈Ωi

J

∑

k∈Z

|〈f, pq,Ji′;0,k〉|2.
W q,J

1,(iJ ,··· ,i2,0)

W q,J
0,(iJ ,··· ,i2,0) W q,J

0,(iJ ,··· ,i2,1) · · · W q,J

0,(iJ ,··· ,i2,J (iJ ,··· ,i2))

Figure 5.3: J-th level 2−J -shift invariant decomposition of VJ

By combining all the inner product equations in the construction, we can obtain

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pq,Ji;0,k〉|2. (5.17)

for any f ∈ L2(R), In other words, we obtain another representation of VJ , i.e.,

VJ = span
{
pq,Ji;0,k : k ∈ Z, i ∈ ΩJ

}
.

Theorem 5.3. For a given tight wavelet frame X(Ψ), the system

Πq,J :=
{
pq,Ji;0,k : k ∈ Z, i ∈ ΩJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

is a 2−J -shift invariant tight wavelet frame.
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Proof. Since X(Ψ) is a tight wavelet frame of L2(R), by [24, Lemma 2.4], for any

f ∈ L2(R) we have

‖f‖2 =
∑

k∈Z

|〈f, φJ,k〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2.

On the other hand, from (5.17) we have

∑

k∈Z

|〈f, φJ,k〉|2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pq,Ji;0,k〉|2.
It follows that

‖f‖2 =
∑i∈ΩJ

∑

k∈Z

|〈f, pq,Ji;0,k〉|2 +
∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

|〈f, ψj,k〉|2.

Hence, Theorem 5.3 is proved.

As in the stationary case, based on the 2−J-shift invariant tight wavelet frame

Πq,J =
{
pq,Ji;0,k : k ∈ Z, i ∈ ΩJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

constructed above, we can obtain a library of 2−J -shift invariant tight wavelet

frames by partitioning ΩJ into disjoint subsets of the form

Ij,i :=
{

(iJ , · · · , ij+1, i
′
j , · · · , i′1) ∈ ΩJ : i = (iJ , · · · , ij+1, 0, · · · , 0) ∈ ΩJ−j

}
,

(5.18)

i.e.,

ΛJ =
{
Ij,i :

⋃
Ij,i = ΩJ

}
. (5.19)

Theorem 5.4. Let ΛJ be a disjoint partition of ΩJ , where ΩJ and ΛJ are defined

in (5.16) and (5.19), respectively. Then the system

Πq,J
ΛJ

:=
{
pq,Ji;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

is a 2−J -shift invariant tight wavelet frame.
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Proof. Taking into account that ΛJ is a disjoint partition of ΩJ , for any f ∈ L2(R),

we have

∑

Ij,i∈ΛJ

∑

k∈Z

|〈f, pq,Ji;j,k〉|2 =
∑

Ij,i∈ΛJ

∑i′∈Ij,i∑k∈Z

|〈f, pq,Ji′;0,k〉|2
=
∑i′∈ΩJ

∑

k∈Z

|〈f, pq,Ji′;0,k〉|2.
By applying Theorem 5.3, Theorem 5.4 is proved.

By Theorem 5.4, we can obtain various 2−J-shift invariant tight wavelet frames

Πq,J
ΛJ

from various disjoint partitions of ΩJ . All such obtained tight wavelet frames

Πq,J
ΛJ

are called 2−J -shift invariant nonstationary tight wavelet frame packets.

5.3 Characterization of Sobolev Spaces by 2−J-SI

NTWFP

Once we build up a 2−J -shift invariant nonstationary tight wavelet frame packet

(2−J -SI NTWFP)

Πq,J
ΛJ

=
{
pq,Ji;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

we can use the weighted ℓ2-norm of the analysis 2−J-SI NTWFP coefficient se-

quence
{
〈f, pq,Ji;j,k〉}k∈Z,Ij,i∈ΛJ

∪
{
〈f, ψj,k〉

}
k∈Z,j≥J,k∈Z,ψ∈Ψ

of a given function f ∈ H
s(R) to characterize its Sobolev norm in H

s(R).

Theorem 5.5. Suppose we have a 2−J-shift invariant stationary tight wavelet

frame packet

Πq,J
ΛJ

:=
{
pq,Ji;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
ψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}
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derived from a tight wavelet frame X(Ψ) constructed in an MRA generated by

a refinable function φ via UEP, with the associated combined UEP mask h =

[h0, h1, · · · , hr], where Ij,i and ΛJ are defined in (5.18) and (5.19), respectively.

Suppose

1 − |ĥ0(ω)|2 ≤ C|ω|2α, ω ∈ R, (5.20)

[φ̂, φ̂]α(ω) ≤ C, ω ∈ R, (5.21)

[p̂q,Ji;j,0, p̂q,Ji;j,0]α(ω) ≤ C, ω ∈ R, Ij,i ∈ ΛJ . (5.22)

If −α < s < α, then

Πq,J ;s
ΛJ

:=
{
2jspq,Ji;j,k : k ∈ Z, Ij,i ∈ ΛJ

}
∪
{
2jsψj,k : j ≥ J, k ∈ Z, ψ ∈ Ψ

}

is a wavelet frame of Hs(R), i.e., there exist two positive constants C1, C2 such that

C1‖f‖2
Hs(R) ≤

∑

Ij,i∈ΛJ

∑

k∈Z

22js|〈f, pq,Ji;j,k〉|2
+

∑

ψ∈Ψ

∑

j≥J

∑

k∈Z

22js|〈f, ψj,k〉|2 ≤ C2‖f‖2
Hs(R),

for all f ∈ H
s(R).

Proof. For −α < s < α, we can obtain

∑

k∈Z

|〈f, φJ,k〉|2 ≤ C max{1, 22Js}‖f‖2
H−s(R),

as in the proof of Theorem 3.5.

On the other hand,

∑

Ij,i∈ΛJ

∑

k∈Z

2−2js|〈f, pq,Ji;j,k〉|2 ≤ 22(J−1)|s|
∑

Ij,i∈ΛJ

∑

k∈Z

|〈f, pq,Ji;j,k〉|2
= 22(J−1)|s|

∑

k∈Z

|〈f, φJ,k〉|2

≤ C22(J−1)|s| max{1, 22Js}‖f‖2
H−s(R).
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In addition, it was shown in the proof of [45, Proposition 2.1] that (5.20) and

(5.21) yield

∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

2−2js|〈f, ψj,k〉|2 ≤ C‖Bs,t,J‖L∞(R)‖f‖2
H−s(R),

where

Bs,t,J(ω) :=
∞∑

j=J

2−2js(1 + |ω|2)s
(1 + |2−Jω|2)α

r∑

i=1

|ĥi(2−jω)|2 ∈ L∞(R).

Combining the two inequalities above, we can obtain

∑

Ij,i∈ΛJ

∑

k∈Z

2−2js|〈f, pq,Ji;j,k〉|2 +

∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

2−2js|〈f, ψj,k〉|2 ≤ C ′‖f‖2
H−s(R),

where C ′ := C
(
‖Bs,t,J‖L∞(R) + 22(J−1)|s| max{1, 22Js}

)
.

By a duality argument as in the proof of [45, Theorem 1.2] (Theorem 2.17), we

can obtain

1

C ′‖f‖
2
Hs(R) ≤

∑

Ij,i∈ΛJ

∑

k∈Z

22js|〈f, pq,Ji;j,k〉|2 +
∞∑

j=J

∑

ψ∈Ψ

∑

k∈Z

22js|〈f, ψj,k〉|2 ≤ C ′‖f‖2
Hs(R),

for all f ∈ H
s(R), (−α < s < α). Hence, Theorem 5.5 is proved.



Bibliography

[1] L. Borup, R. Gribonval, and M. Nielsen, Bi-framelet systems with few

vanishing moments characterize Besov spaces, Appl. Comput. Harmon. Anal.,

17 (2004), pp. 3–28.

[2] L. Borup, R. Gribonval, and M. Nielsen, Tight wavelet frames in

Lebesgue and Sobolev spaces, J. Funct. Spaces Appl., 2 (2004), pp. 227–252.

[3] J. Cai, R. Chan, L. Shen, and Z. Shen, Restoration of chopped and

nodded images by framelets, 2007. Preprint.

[4] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary sub-

division, Mem. Amer. Math. Soc., 93 (1991), pp. vi+186.

[5] A. Chai and Z. Shen, Deconvolution: a wavelet frame approach, Numer.

Math., 106 (2007), pp. 529–587.

[6] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen, Wavelet algorithms

for high-resolution image reconstruction, SIAM J. Sci. Comput., 24 (2003),

pp. 1408–1432 (electronic).

88



Bibliography 89

[7] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, Tight

frame: an efficient way for high-resolution image reconstruction, Appl. Com-

put. Harmon. Anal., 17 (2004), pp. 91–115.

[8] D.-R. Chen, On the splitting trick and wavelet frame packets, SIAM J. Math.

Anal., 31 (2000), pp. 726–739 (electronic).

[9] D.-R. Chen, B. Han, and S. D. Riemenschneider, Construction of

multivariate biorthogonal wavelets with arbitrary vanishing moments, Adv.

Comput. Math., 13 (2000), pp. 131–165.

[10] C. K. Chui and W. He, Compactly supported tight frames associated with

refinable functions, Appl. Comput. Harmon. Anal., 8 (2000), pp. 293–319.
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