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Summary

The aim of the thesis is two-fold: the first part is to discuss the development

of Adaptive Integral Method (AIM) solvers for the analysis of the electro-

magnetic scattering by large objects with composite media; the second part

is to discuss the acceleration of conventional AIM in the solution of large fi-

nite periodic array scattering problems. These two parts are closely-related

since many interesting and important problems considered now are finite

periodic structures and the unit cell in an array may be made of composite

materials, be it anisotropic or chiral.

The development of AIM for electromagnetic scattering by large objects

with composite media was considered and discussed. It is noted that we can

use Surface Integral Equation (SIE) method to solve the scattering problem

by homogeneous chiral objects which can greatly reduce the unknowns

compared to Volume Integral Equation (VIE). Therefore, we developed

AIM solver based on SIE to solve electromagnetic scattering by large chiral

and conducting objects. Numerical results demonstrate the accuracy of

our code as well as the efficiency in solving scattering by large chiral and

conducting objects.

The development of the AIM solver for solving the scattering problem

by large objects with the most general composite media, bi-anisotropic

media, was also explored. Due to the lack of closed form Green’s function

for the bi-anisotropic media, we developed our solver based on VIE through
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which free space Green’s function is utilized. Numerical results demonstrate

the accuracy of our code as well as the efficiency in solving scattering by

large bi-anisotropic and conducting objects.

Conventional AIM solvers has been known to be inadequate when ap-

plied to solve large periodic array problems. It is due to the ignorance of

the structure’s periodicity and hence the problem can become intractable.

However, recently developed macro basis functions can greatly reduce the

unknowns for a unit cell thus relief the burden of conventional AIM in

solving these problems. Therefore, the development of new AIM solvers

called accurate-sub-entire-domain AIM (ASED-AIM) are developed based

on the incorporation of the macro basis functions into conventional AIM.

Complexity analysis demonstrates that it is much more efficient than the

conventional AIM. Numerical results show its accuracy in calculating the

far field RCS through comparison with the conventional AIM.

Although ASED-AIM is accurate enough to calculate the far field RCS,

it is not accurate in calculating the near fields. However, characteristic basis

function method (CBFM) is a good candidate in calculating the near fields.

Therefore, we developed the CBFM/AIM algorithm. Numerical results

compared with AIM demonstrate that it is both accurate in calculating

the far fields and near fields.
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Chapter 1

Introduction

1.1 Electromagnetic Scattering and Adap-

tive Integral Method

Electromagnetic (EM) scattering is the disturbance of EM fields by the ob-

stacles or scatterers. It has wide applications in many areas. Many methods

have been developed for EM scattering problems. The first one is the ana-

lytical method, which is accurate but can only be applied for the solution

of canonical structures such as spheres. The second one is the asymptotic

method which only gives approximate solutions under certain situations.

The most popular method is the numerical method. It is rigorous and has

no limitations on the shapes of objects involved. Many categories of numer-

ical methods have been developed so far. One is the differential equation

solver such as Finite-Difference Time-Domain (FDTD) method [1] and Fi-

nite Element Method (FEM) [2], and another is the integral equation solver

such as Method of Moments (MoM).

The MoM has been popular since the publication of Harrington’s book

[3]. It has several advantages over the differential solvers. The first advan-
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tage is that it only needs to discretize the surface for problems with ho-

mogeneous media, while the differential solver has to discretize the whole

body. The second advantage is that it builds on the Green’s function,

thus the radiation boundary condition is automatically satisfied, while the

differential solver has to impose an artificially set boundary condition.

However, there are also some disadvantages of the MoM. The most

severe disadvantage is that when using the MoM to solve problems, it will

convert the integral equations into a dense matrix. The memory require-

ment of storing the dense matrix is O(N2) while the computational time for

solving the dense matrix is O(N3), if a direct solver such as the Gaussian

elimination method is used, or O(NiterN
2), if an iterative solver such as

the Generalized Minimal Residual Method (GMRES) is used. Here N de-

notes the number of unknowns and Niter denotes the number of iterations.

Therefore, the memory requirement and computational time will be very

demanding if the number of unknowns becomes large which prohibits the

direct use of the MoM to solve the large-scale problems prevailing today.

In order to alleviate the difficulties met in the solution of using the

MoM, and reduce the memory requirement and accelerate the solution pro-

cess, many fast solvers have been developed recently. There are many kinds

of fast solvers in literature now. One is Fast Multiple Method (FMM) [4,5]

and its extension Multilevel Fast Multipole Algorithm (MLFMA) [6–9].

They are developed on the addition theorem of the Green’s function, which

can express the interaction in one coordinate using another. The basic idea

is to divide the basis functions into groups similar to the telephone network.

The interaction of basis functions at a far distance is realized through the

hub of the group while the interaction of basis functions within the same

group are calculated directly. Hub A of one group aggregates the radiation

pattern of all the basis functions, translated to another hub B via the ad-
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dition theorem and then the hub B disaggregate the radiation pattern to

respective basis functions under its control. The computational complexity

for MLFMA is O(N logN) and the memory requirement is O(N).

Another fast solver is based on the translation invariance of the Green’s

functions, so that the matrix vector multiplication can be written as the

convolution in which the Fast Fourier Transform (FFT) can be used. The

pioneer one is the Conjugate Gradient FFT (CG-FFT) [10–15]. Its com-

putational complexity is O(N logN) and memory requirement is O(N).

However, it uses the rectangular grids to approximate the arbitrarily shaped

objects, which results in the staircase error. To overcome the drawback of

the CG-FFT, the Adaptive Integral Method (AIM) [16–20, 19, 21–26] and

the precorrect-FFT (p-FFT) methods [27–31] have been proposed. The

AIM and the p-FFT methods are similar in that they all have the same

solution process. That is, to project the basis functions onto grids, then to

calculate the far-zone interaction using FFT, interpolate the potential to

individual basis functions, and directly calculate the near zone interaction.

They only differ in the projection operators. The AIM is based on the mul-

tiple moment expansion while the p-FFT employs the far field matching

technique. The AIM has been successfully utilized in solving large scale

electromagnetic scattering problems of conducting objects [32], dielectric

objects [18], dielectric and conducting objects [17] and magnetodielectric

objects [22].

Until now, no one has applied the AIM to the bi-anisotropic media.

In the first part of the thesis, the author developed the AIM solvers for

the electromagnetic scattering by large-scale chiral and conducting objects

based on surface integral equations (SIE), and for EM scattering by bi-

anisotropic and conducting objects based on volume surface integral equa-

tions (VSIE). Recently, there is an increased research interest in the peri-
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odic structure problems. However, direct application of the conventional

AIM solver in these periodic structures is inadequate as no consideration

has been given to the periodicity of the structure. Macro basis functions

can greatly reduce the number of unknowns for a unit cell, thus greatly

relieve the computational burden. In the second part of the thesis, the

author developed the new AIM solvers based on the macro basis functions

to efficiently solve the scattering by large-scale finite array problems.

1.2 Literature Review

In this section, literature review will be given in the area of the MoM solu-

tion of electromagnetic scattering by composite media and the development

of macro basis functions.

1.2.1 Electromagnetic Scattering by composite me-

dia

In recent years, extensive research has been conducted on the interaction

between electromagnetic waves and composite media. The most general

form of the composite media is bi-anisotropic media, which is character-

ized by four constitutive tensor parameters. The dielectric, magnetodi-

electric, chiral, anisotropic, gyroelectric, gyromagnetic and Faraday chiral

materials are its subclasses. The composite media have been widely used

in the electromagnetic applications. Dielectric materials have been used

in optical circuits [33]. The magnetodielectric materials have been used as

metamaterials [34]. The chiral materials have been widely used as polar-

ization transformer [35] and antenna radome [36]. Gyromagnetic materials
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have been used in ferromagnetic film devices [37]. Other anisotropic and

bi-anisotropic materials have been widely used [38–41].

Because of wide applications, numerous methods have been applied to

solve the electromagnetic problems involving composite media. Analytical

methods such as Mie series have been used to solve electromagnetic scatter-

ing by canonical structures such as spheres and spherical shells with chiral

materials [42,43]. Spherical vector wave function method is applied to solve

scattering by spheres, spherical shells and conducting spheres coated with

uniaxial anisotropic [44], gyroelectric [45–47], gyromagnetic [48] materials.

Numerical methods are also applied to solve composite media scattering

problems. FDTD has been widely applied in solving electromagnetic prob-

lem with chiral materials [49–52]. FEM is also utilized for the solution of

chiral and bi-anisotropic media problem [53–55].

MoM is also widely used to solve the electromagnetic scattering prob-

lems with composite media. There are two ways in using the MoM, one is

based on the SIE and the other is based on the VIE. SIE can be applied for

piecewise homogeneous objects where the closed form of Green’s function

can be found while VIE is based on free space Green’s function thus it can

be applied for inhomogenous media where the closed form of Green’s func-

tion for the media is very difficult to obtain. Chiral media, since it has four

scalar constitutive parameters, thus, denotes the most general bi-isotropic

media. Moreover, for chiral objects, because of the field decomposition

method [56], the SIE can be formulated for the scattering by homogeneous

chiral objects. Kluskens et al. have solved two dimensional chiral scat-

tering problems [57, 58] and Worasawate et al. have used the method to

three dimensional case where scattering by a homogeneous body is con-

sidered [59]. So far, to the author’s knowledge, no one has considered the

general situation based on MoM where the scatterers can be of arbitrarily
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number, the scatterers can be homogeneous chiral or conducting ones, they

can be separate or coated by others. Therefore, in this thesis, the author

will develop the AIM solver for the fast and efficient solution of electromag-

netic scattering by large-scale chiral and conducting objects based on SIE.

For the most general media, bi-anisotropic media, which is characterized by

four tensor constitutive parameters, since no closed form Green’s function

exists, only VIE can be applied to solve the scattering problems. Actu-

ally, many authors have developed formulations for solving various kinds

of scattering problems. Schaubert et. al. developed Schaubert-Wilton-

Glisson (SWG) basis function [60] for the inhomogenous dielectric objects

which is widely used today. Lu et. al. developed the VSIE [61] for the

solution of dielectric and conducting objects. Su solved problems with gy-

roelectric objects [62]. Shanker et al. obtained solutions for anisotropic

objects with both permittivity and permeability as tensors [63]. Hasanovic

et al. solved inhomogeneous chiral objects problems [64]. So far, to the

best of author’s knowledge, no one has applied the VSIE for the solution

of the general bi-anisotropic and conducting objects. In this thesis, the

author will develop AIM for the fast and efficient solution of the scattering

by large-scale bi-anisotropic and conducting objects based on VSIE.

1.2.2 Macro Basis Functions

Research into the characteristics of periodic array of scatterers, e.g. pho-

tonic crystals [33] and meta-materials [34], has been actively pursued in

recent years. Due to their important applications, fast and accurate al-

gorithms for solving these problems are urgently needed. It is noted that

in the solution of these problems, truncated periodic structures are es-

sential for their accurate characterization. There are many methods in

solving these problems such as the array decomposition method based on
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FE-BI [65, 66], non-overlapping domain decomposition with non-matching

grids [67–71] and FETI-DPEM [72–76] based on FEM. The idea of array

decomposition method is based on the repetition of the array elements, thus

the Toeplitz matrix property is used to reduce the storage requirement and

the FFT is employed to accelerate the matrix vector multiplication. The

non-overlapping domain decomposition with non-matching grids is based

on cement technique, therefore nonconformal meshes for neighboring sub-

domain can be used. The FETI-DPEM, which is based on Lagrange mul-

tipliers, extends the idea of FETI-DP for the solution of scalar Helmholtz

equations.

The MoM can be also used to solve finite array problems. However,

the direct use of the MoM results in a dense matrix; thus, the MoM be-

comes numerically inefficient when solving large array problems, and this

has led to development of fast solvers, which aim to alleviate the computa-

tional burden. It should be realized, however, that the fast solvers such as

FMM and AIM are general-purpose in nature and, hence, are not set up

to take advantage of the quasi-periodic nature of the large array problems

with a view to reducing the computational burden. Recently, a number of

numerical techniques have been proposed for addressing the problems of

large-scale finite arrays using the MoM. One is based on the use of an in-

finite array approach as a starter, followed by corrections that account for

the edge effects introduced by the truncation of the infinite array [77–82].

The other type of algorithm for efficient analysis of scattering problems is

based on the use of macro-basis functions that are constructed by com-

bining low-level basis functions, which can conform to arbitrarily shaped

objects. Employing macro-basis functions greatly reduces the number of

unknowns without compromising the solution accuracy, enabling us to solve

large problems that are often beyond the scope of conventional methods.

Techniques that fall within this class are the characteristic basis function
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method (CBFM) [83–88], the synthetic-function approach [89–91], the ac-

curate sub-entire-domain (ASED) basis function method [92–94], the eigen-

current approach [95–97] and the subdomain multilevel approach [98–100].

A common attribute of all of these approaches is that their applications

leads to reduce the size of the matrix that is needed to solve to construct

the solution; however, they do differ, often considerably, in the way they

construct the macro-basis functions. It is worthy to note that ASED basis

functions, which were proposed by Cui et al. [92], is specifically designed

for treating finite periodic structure problems. The ASED basis functions

are obtained by the solution of a nine cell problem which considers the

most important coupling from near neighbors. The ASED method was

accelerated using CG-FFT [93] and later combined with the FMM to sig-

nificantly reduce memory requirement and computational complexity of

FMM in solving periodic array problems [94]. Although the ASED basis

function method is accurate enough to calculate far-field RCS, it seems to

be less accurate to calculate the near field. The CBFM, which is proposed

by Mittra et al. [83], can be used to treat the near field problems very well.

The CBFM obtains its macro basis functions through exciting the unit cell

with plane waves of arbitrarily incidence angles and polarizations and get

rid of the redundant information through SVD process. It has been exten-

sively used to solve a wide class of scattering and radiation problems. In

this thesis, the author first combine the conventional AIM with ASED basis

functions to calculate far field RCS of large scale finite array comprising of

conducting and dielectric objects. Then, the author proposes a new AIM

based on the CBFM to calculate both near-field and far-field parameters

of large-scale arrays.
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1.3 Outline of Thesis

There are seven chapters for the thesis. The first chapter is this chapter,

which serves as an introduction to the thesis. The second chapter intro-

duces the basic idea of AIM.

Chapter 3 discusses the development of the AIM solver for the scat-

tering by large-scale chiral and conducting objects. Chapter 4 discusses

the development of the AIM solver for the scattering by large-scale bi-

anisotropic and conducting objects. Chapter 5 discusses the development

of the ASED-AIM solver for the scattering by large-scale finite periodic

arrays. Chapter 6 discusses the development of the CBFM/AIM solver for

the scattering by large-scale finite periodic arrays.

Chapter 7 provides the conclusion of the thesis.

1.4 Some Original Contributions

The author has made some original contributions to the society when doing

his PhD research as listed below:

1. The author developed the the AIM solver based on SIE for the general

case of electromagnetic scattering by chiral and conducting objects.

The formulations incorporate situations whether the objects are pure

chiral objects or hybrid chiral and conducting objects, whether the

objects are separated or they are coated.

2. The author developed the AIM solver based on VSIE for the scatter-

ing by the large-scale bi-anisotropic and conducting objects.
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3. The author developed the ASED-AIM solver for the solution of elec-

tromagnetic scattering by the large-scale finite periodic array prob-

lems.

4. The author developed the CBFM/AIM solver for obtaining the far-

field and near-field information from finite periodic array problems.

The author also made some publications based on the contributions:

1.4.1 Book Chapters

Le-Wei Li, Ya-Nan Li and Li Hu, ”Wideband and Low Loss Metamaterials

for Microwave and RF Applications: Fast Algorithm and Antenna Design”,

in Metamaterials - Theory, Design, and Applications, Edited by Tie Jun

Cui, Springer, May 2009.

1.4.2 Journal Articles

1. Li Hu, Le-Wei Li, and Raj Mittra, ”Electromagnetic Scattering by

Finite Periodic Arrays Using CBFM/AIM”, IEEE Transactions on

Antennas & Propagations, vol. 58, no. 9, pp. 3086-3090, September,

2010.

2. C.-W. Qiu, L. Hu, and S. Zouhdi, ”Isotropic non-ideal cloaks provid-

ing improved invisibility by adaptive segmentation and optimal re-

fractive index profile from ordering isotropic materials”, Opt.Express,

Vol. 18, Issue 14, pp. 14950-14959, 2010.

3. Li Hu, Le-Wei Li, and Tat-Soon Yeo, ”Fast Solution to Electromag-

netic Scattering by Large-scaled Inhomogeneous Bi-anisotropic Ma-

terials Using AIM Method”, Progress In Electromagnetics Research,

vol. 99, pp. 21-36, 2009
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4. C.-W. Qiu, L. Hu, B. Zhang, B. Wu, S. Johnson and J. Joannopoulos,

”Spherical Cloaking Using Nonlinear Transformations for Improved

Segmentation into Concentric Isotropic Coatings”, Opt. Express, vol.

17, pp. 13467-13478, 2009

5. Li Hu, Le-Wei Li, and Tat-Soon Yeo, ”ASED-AIM Analysis of Scat-

tering by Large-scale Finite Periodic Arrays”, Progress In Electro-

magnetics Research B, vol. 18, pp. 381-399, 2009

6. C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, ”Spherical Cloaking with

Homogeneous Isotropic Multilayered Structures”, Phys. Rev. E, 79,

047602, 2009

1.4.3 Conference Papers

1. Li Hu and Le-Wei Li, ”CBFM-Based p-FFT Method: A New Al-

gorithm for Solving Large-Scale Finite Periodic Arrays Scattering

Problems”, December 7-10, 2009 Asia-Pacific Microwave Conference

(APMC 2009)

2. Li Hu and Le-Wei Li, ”ASED-AIM Analysis of EM Scattering by

3D Huge-Scale Finite Periodic Arrays”, the 2009 International Sym-

posium on Antennas and Propagation (ISAP 2009), October 20-23,

2009

3. Li Hu, Le-Wei Li, Wei-Bin Ewe, and Tat-Soon Yeo, ”AIM Analysis

of Large-scale Inhomogeneous Bi-anisotropic Scattering Problems”,

IEEE Antennas and Propagation Society International Symposium

2009 (APS 2009), Charleston, US, June 1-5, 2009

4. Li Hu, Le-Wei Li, Wei-Bin Ewe, and Tat-Soon Yeo, ”Solving Large

Scale Homogeneous Ciral Objects Scattering Problem Using AIM”,
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IEEE Antennas and Propagation Society International Symposium

2009 (APS 2009), Charleston, US, June 1-5, 2009

5. Li Hu, Le-Wei Li, Tat-Soon Yeo, and Ruediger Vahldieck, ”An Ac-

curate and Robust Approach for Evaluating VIE Impedance Matrix

Elements Using SWG Basis Functions”, (Invited Paper), Proc of 2008

Asia-Pacific Microwave Conference (APMC’08), Hong Kong/Macau,

China SAR on December 16-19/19-20, 2008.
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Chapter 2

Basic Idea of Adaptive

Integral Method

In this chapter, we discuss in detail about the basic idea and realization of

AIM. It forms the basis for later chapters since the implementation of the

specific AIM solvers is modified on the basic AIM implementation.

2.1 Basic Idea of AIM

The basic idea of AIM is to approximate the far zone interaction using

uniform grid points. Since the Green’s function is translational invariant,

the interaction between any two points is the same provided that their

relative distance is the same. Therefore, the resulting impedance matrix

of grid points is Toeplitz matrix and we can use FFT to accelerate the

matrix vector multiplication as well as reduce the memory requirement.

The algorithm of AIM can be summarized as the following four steps:

1. approximate the basis function by the associated uniform grid points,

which is called the projection process;
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2. calculate the grids interaction using FFT;

3. interpolate the potential calculated at grids to integration points of

associated testing functions;

4. correct the near zone interaction by removing the incorrect interaction

approximated by grids.

These four steps can be illustrated by Fig. 2.1. In the following sections,

we detailed the realization of each of the four steps.

Figure 2.1: The pictorial representation of the AIM.

2.2 Detailed Implementation of AIM

2.2.1 Projection

If the source and field point are far apart, the Green’s function is very

smooth which can be approximated by polynomials. In this way, the basis
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function can be approximated by grid points associated with it as illustrated

in Fig. 2.2.

γn ≈ γ̃n =
(M+1)3∑
u=1

Λnuδ(r − r′) (2.1)

Where γn is the basis function and γ̃n is the approximated grid basis

Figure 2.2: The representation of the basis function by associated grid
points.

function, M is the expansion order, Λnu is the projection coefficient and

r′ denotes the position of the grid point. In order to calculate Λnu, we

use multiple moment method. Here, Green’s function is approximated by

polynomials and we let the potential produced by two sets of basis functions

be equal, namely,

∫
αn

γn(x− x0)
m1(y − y0)

m2(z − z0)
m3dr

=
(M+1)3∑
u=1

(xnu − x0)
m1(ynu − y0)

m2(znu − z0)
m3Λnu (2.2)

where r0 = (x0, y0, z0) can be chosen arbitrarily, normally, it is chosen as

the center of the basis function. From this, we can obtain the projection

matrix Λ which is a very sparse matrix, each row has at most (M + 1)3

non-zero elements.
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2.2.2 Grid Interaction

After we project current on basis functions to the associated grid points, we

have current distribution on the grid points and we want to calculate the

grid potential resulted from current on these grid points. First we consider

1D problem in which only three grid points x1, x2, x3 exist along x-axis and

2x2 = x1 + x3. Then, the grid potential vector can be obtained from


g11 g12 g13

g21 g22 g23

g31 g32 g33




I1

I2

I3

 =


ϕ1

ϕ2

ϕ3

 (2.3)

where gmn is the Green’s function with m-th point as field point and n-th

point as source point. In is the current at n-th point. ϕm is the potential

at m-th point. since

gmn =
e−ik|rm−rn|

4π|rm − rn|
= gm−n (2.4)

we have

g11 = g22 = g33 = g0 (2.5)

g12 = g23 = g−1 (2.6)

g21 = g32 = g1 (2.7)

we have Level 1 Toeplitz matrix


g0 g−1 g−2

g1 g0 g−1

g2 g1 g0

 (2.8)
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thus, the Toeplitz matrix vector multiplication can be done via FFT. We

can introduce two vectors

g =
(

g0 g1 g2 0 g−2 g−1

)
(2.9)

and

I =
(

I1 I2 I3 0 0 0

)
(2.10)

and obtain grid potential via

(
ϕ1 ϕ2 ϕ3 ∗ ∗ ∗

)
= F−1 (F(g) · F(I)) (2.11)

where ∗ denotes don’t care term. Here, F and F−1 denote 1D FFT and

inverse FFT respectively, · denotes the element-wise multiplication. Gen-

erally, we can construct g and I via

gk =


gk−1 k ≤ Nx

gk−2Nx−1 k ≥ Nx + 2

0 otherwise

(2.12)

and

Ik =


Ik k ≤ Nx

0 otherwise
(2.13)

where Nx denotes Number of grid points in x-direction. In order to obtain



ϕ1

ϕ2

...

ϕNx


=



g11 g12 . . . g1Nx

g21 g22 . . . g2Nx

...
...

. . .
...

gNx gNx . . . gNxNx





I1

I2
...

INx


(2.14)
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we construct

(
ϕ1 ϕ2 . . . ϕNx ∗

)
= F−1 (F(g) · F(I)) (2.15)

For 3D problem, we have 3D Topelitz matrix-vector multiplication:



ϕ1,1,1

...

ϕNx,1,1

...

ϕNx,Ny ,1

...

ϕNx,Ny ,Nz



=



G
(2)

11 G
(2)

12 . . . G
(2)

1Nz

G
(2)

21 G
(2)

22 . . . G
(2)

2Nz

...
...

. . .
...

G
(2)

Nz
G

(2)

Nz
. . . G

(2)

NzNz





I1,1,1
...

INx,1,1

...

INx,Ny,1

...

INx,Ny,Nz



(2.16)

where Ny,Nz denote Number of grid points in y-direction and z-direction

respectively. G
(2)

mm′ is a Level-2 Topelitz matrix and can be written as

G
(2)

mm′ =



G
(1)

11 G
(1)

12 . . . G
(1)

1Ny

G
(1)

21 G
(1)

22 . . . G
(1)

2Ny

...
...

. . .
...

G
(1)

Ny1 G
(1)

Ny2 . . . G
(1)

NyNy


(2.17)

G
(1)

ll′ is a Level-1 Topelitz matrix and can be written as

G
(1)

ll′ =



g0,l−l′,m−m′ g−1,l−l′,m−m′ . . . g1−Nx,l−l′,m−m′

g1,l−l′,m−m′ g0,l−l′,m−m′ . . . g2−Nx,l−l′,m−m′

...
...

. . .
...

gNx−1,l−l′,m−m′ gNx−2,l−l′,m−m′ . . . g0,l−l′,m−m′


(2.18)
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and we can introduce two 3D arrays

gk,l,m =



gk−1,l−1,m−1, k ≤ Nx, l ≤ Ny,m ≤ Nz

gk−2Nx−1,l−1,m−1 k ≥ Nx + 2, l ≤ Ny,m ≤ Nz

gk−1,l−2Ny−1,m−1, k ≤ Nx, l ≥ Ny + 2,m ≤ Nz

gk−2Nx−1,l−2Ny−1,m−1 k ≥ Nx + 2, l ≥ Ny + 2,m ≤ Nz

gk−1,l−1,m−2Nz−1, k ≤ Nx, l ≤ Ny,m ≥ Nz + 2

gk−2Nx−1,l−1,m−2Nz−1 k ≥ Nx + 2, l ≤ Ny,m ≥ Nz + 2

gk−1,l−2Ny−1,m−2Nz−1, k ≤ Nx, l ≥ Ny + 2,m ≥ Nz + 2

gk−2Nx−1,l−2Ny−1,m−2Nz−1 k ≥ Nx + 2, l ≥ Ny + 2,m ≥ Nz + 2

0 otherwise

(2.19)

and

Ik,l,m =


Ik,l,m k ≤ Nx, l ≤ Ny,m ≤ Nz

0 otherwise
(2.20)

and obtain grid potential via

F−1 (F(g) · F(I)) (2.21)

here, F denotes 3D-FFT.

2.2.3 Interpolation

After we calculate the grid potential via FFT, we can interpolate the po-

tential to any point we want. Here, we use Lagrange polynomials as inter-

polation polynomials. For 1D problem, suppose we have two grid points

x1, x2 with potential ϕ1, ϕ2, we would like the potential ϕ at x, we can

construct

ϕ = ϕ1L1(x) + ϕ2L2(x) (2.22)
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where L1(x), L2(x) are Lagrange polynomials defined as

L1(x) =
x− x2

x1 − x2

(2.23)

L2(x) =
x− x1

x2 − x1

(2.24)

Generally, for Nx grid points, we have

ϕ =
Nx∑
i=1

ϕiLi(x) (2.25)

where

Li(x) =
Nx∏

j=1,j ̸=i

x− xj

xi − xj

(2.26)

for 3D problems, we have

ϕ =
∑
i,j,k

ϕi,j,kLi(x)Mj(y)Nk(z) (2.27)

where

Li(x) =
Nx∏

j=1,j ̸=i

x− xj

xi − xj

(2.28)

Mj(y) =
Ny∏

k=1,k ̸=j

y − yk
yj − yk

(2.29)

Nk(z) =
Nz∏

l=1,l ̸=k

z − zl
zk − zl

(2.30)

Suppose we use central point integration for the testing functions, in this

way, for each testing function, we have to interpolate the potentials at

the associate grid points to the center of the testing function. Hence, we

have the interpolation matrix Γ where each row has only at most (M +1)3

non-zero elements and the element can be written as

Γm,i,j,k = Li(x)Mj(y)Nk(z) (2.31)
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2.2.4 Near Zone Correction

Although grid interaction can approximate the original basis function in-

teraction pretty well in the far zone distance, it works badly at the near

zone because the Green’s function is singular when source and field points

are near. Therefore, we have to directly calculate the interaction and re-

move the incorrect ones contributed by the grid approximation, therefore,

we can define the near zone impedance matrix as

Znear
mn =


Zmn − Ẑmn, if dmn ≤ dnear

0, otherwise
(2.32)

where Zmn is directly calculated through MoM and Ẑmn is grid approxi-

mation, dmn is the distance between basis function m and n, dnear is the

near zone threshold. As a rule of thumb, dnear ≈ 0.4λ0 where λ0 is the free

space wavelength.

2.2.5 Add All Together

As mentioned above, the basic idea of AIM is to split the impedance matrix

vector multiplication into two parts:

ZI = Z
near

I +Z
far
I. (2.33)

For the near zone interaction, since Z
near

is a sparse matrix, we can directly

calculated the matrix vector multiplication and store the sparse matrix

where the memory requirement is O(N) and computational time is O(N)

where N is the number of unknowns. For the far zone interaction, we can

approximate the interaction via uniform grids. First, we project the current
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on the basis functions to the associate grids by

Î = ΛI. (2.34)

where Î is the current on the uniform grids, Λ is the projection matrix

obtained above. Then, we calculate the grid potential produced by grid

current via FFT transform as follows

ϕ̂ = F−1
{
F{g} · F{Î}

}
. (2.35)

where ϕ̂ is the grid potential, g is the 3D array defined above. After that,

we interpolate the grid potential to the center of the testing function via

ϕ = Γϕ̂ (2.36)

where Γ is the interpolation matrix defined above. Finally, we correct the

near zone interaction by adding Z
near

I. Since the projection and inter-

polation matrix are sparse, thus, the computer resource will be mainly

consumed by FFT process, the memory requirement for the far zone inter-

action is O(N) and computational time is O(N logN). Therefore, based

on the above discussions, we finally have the implementation of AIM:

ZI = Z
near

I + ΓF−1
{
F{g} · F{ΛI}

}
. (2.37)
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Chapter 3

Scattering by Large Chiral and

Conducting Objects

In this chapter, we will derive the integral equations for scattering by chiral

and conducting objects and then use AIM to speed up the solution process

as well as reduce the memory requirement. It is noted that we can use sur-

face integral equations for piecewise homogeneous chiral objects due to the

wave split method. It is also noted that the integral equations derived here

is very general in that it can be used to deal with piecewise homogeneous

media with bi-iostropic constitutive parameters, be it simple dielectric or

magneto-dielectric media. Moreover, the integral equations with the pres-

ence of conducting objects are also derived so the mixed conducting and

homogeneous media problems can be solved. The advantage of using sur-

face integral equations over volume integral equations is that the number

of unknowns are greatly reduced thus the electrical size of the problem in

consideration is much larger than that using volume integral equations.
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3.1 Surface Integral Equations

In this section, we first derive the surface integral equations for piecewise

homogeneous chiral media problems. Then, we take perfect conducting

object into consideration.

3.1.1 Integral equations for Chiral Objects

According to [59], the electric and magnetic fields radiated by J and K in

an unbounded chiral medium characterized by ϵ, µ, ξ are given below:

E = −ηLJ −MK (3.1)

H = MJ − 1

η
LK (3.2)

where η =
√

µ
ϵ
. The operators L and M are defined as:

LX =
j

2

{
(k+

∫
S
XG+dS + k−

∫
S
XG−dS) +∇[

1

k+

∫
S
(∇′ ·X)G+dS

+
1

k−

∫
S
(∇′ ·X)G−dS] +∇× (

∫
S
XG+dS −

∫
S
XG−dS)

}
(3.3)

MX =
1

2

{
(k+

∫
S
XG+dS − k−

∫
S
XG−dS) +∇[

1

k+

∫
S
(∇′ ·X)G+dS

− 1

k−

∫
S
(∇′ ·X)G−dS] +∇× (

∫
S
XG+dS +

∫
S
XG−dS)

}
. (3.4)

where The right-handed (+) and left-handed (-) circularly polarized wave

parameters are defined as

k± = ω(
√
µϵ± ξ) (3.5)

G± =
e−jk±|r − r′|
4π|r − r′| (3.6)
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When it comes to nonchiral medium, the operators will degenerate to

LX = jk
∫
S
XGdS +

j

k
∇

∫
S
(∇′ ·X)GdS (3.7)

MX = ∇×
∫
S
XGdS (3.8)

where k+ = k− = k, and G+ = G− = G.

There are two situations for chiral objects as shown in Fig. 3.1. In

(a) coated chiral objects (b) Discrete chiral objects.

Figure 3.1: Configuration of chiral objects.

Fig. 3.1(a), one chiral object with constitutive parameters (µ3, ϵ3, ξ3) is

coated by another chiral material with constitutive parameters (µ2, ϵ2, ξ2),

they are embedded in a nonchiral medium with constitutive parameters

(µ1, ϵ1). Surface electric and magnetic currents J ji,Kji flow along Surface

Sji. Unit vectors n̂ji point outward into background medium. On the outer

surface S21, only J21,K21 produce scattered fields in background medium

(µ1, ϵ1), thus

J21 = n̂21 ×H1 = n̂21 ×
{
H inc + (M1J21 −

1

η 1

L1K21)
}

(3.9)

K21 = −n̂21 ×E1 = −n̂21 ×
{
Einc + (−η1L1J21 −M1K21)

}
(3.10)

and on the inner surface S21, J32,K32 and J21,K21 produce scattered
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fields in medium (µ2, ϵ2, ξ2), thus

−J21 = −n̂21 ×
{
(−M2J21 +

1

η 2

L2K21) + (M2J32 −
1

η 2

L2K32)
}

(3.11)

−K21 = n̂21 ×
{
(η2L2J21 +M2K21) + (−η2L2J32 −M2K32)

}
(3.12)

Combining these two equations, we can obtain MFIE on S21

n̂21 ×H inc = −n̂21 × (M1 +M2)J21 + n̂21 × (
1

η1
L1 +

1

η2
L2)K21

+n̂21 ×M2J32 − n̂21 ×
1

η2
L2K32. (3.13)

and EFIE

n̂21 ×Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 +M2)K21

−n̂21 × η2L2J32 − n̂21 ×M2K32. (3.14)

Similarly, the coupled EFIE and MFIE on the surface S32 can be written

as

0 = n̂32 × (η2L2 + η3L3)J32 + n̂32 × (M2 +M3)K32

−n̂32 × η2L2J21 − n̂32 ×M2K21 (3.15)

0 = −n̂32 × (M2 +M3)J32 + n̂32 × (
1

η2
L2 +

1

η3
L3)K32

+n̂32 ×M2J21 − n̂32 ×
1

η2
L2K21. (3.16)

If we repeat the same procedure for the discrete scatterers as shown in

Fig. 3.1(b), we can obtain

n̂21 ×Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 +M2)K21

+n̂21 × η1L1J31 + n̂21 ×M1K31 (3.17)

n̂21 ×H inc = −n̂21 × (M1 +M2)J21 + n̂21 × (
1

η1
L1 +

1

η2
L2)K21
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−n̂21 ×M1J31 + n̂21 ×
1

η1
L1K31 (3.18)

n̂31 ×Einc = n̂31 × (η1L1 + η3L3)J31 + n̂31 × (M1 +M3)K31

+n̂31 × η1L1J21 + n̂31 ×M1K21 (3.19)

n̂31 ×H inc = −n̂31 × (M1 +M3)J31 + n̂31 × (
1

η1
L1 +

1

η3
L3)K31

−n̂31 ×M1J21 + n̂31 ×
1

η1
L1K21. (3.20)

3.1.2 Integral Equations for Conducting and Chiral

Objects

If conducting objects are present, we have to consider their contribution.

There are two situations as shown in Fig. 3.2. In Fig. 3.2(a), one con-

(a) conducting object coated with chiral material (b) Discrete chiral and
conducting objects.

Figure 3.2: Configuration of chiral and perfectly conducting scatterers.

ducting object is coated by a chiral material with constitutive parameters

(µ2, ϵ2, ξ2), they are embedded in a nonchiral medium with constitutive pa-

rameters (µ1, ϵ1). Surface electric and magnetic currents J ji,Kji flow along

Surface Sji. Unit vectors n̂ji point outward into background medium. On

the outer surface S21, only J21,K21 produce scattered fields in background
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medium (µ1, ϵ1), thus

J21 = n̂21 ×H1 = n̂21 ×
{
H inc + (M1J21 −

1

η 1

L1K21)
}

(3.21)

K21 = −n̂21 ×E1 = −n̂21 ×
{
Einc + (−η1L1J21 −M1K21)

}
(3.22)

and on the inner surface S21, J02 and J21,K21 produce scattered fields in

medium (µ2, ϵ2, ξ2), thus

−J21 = −n̂21 ×
{
(−M2J21 +

1

η 2

L2K21) + (M2J02)
}

(3.23)

−K21 = n̂21 ×
{
(η2L2J21 +M2K21) + (−η2L2J02)

}
(3.24)

Therefore, we have EFIE and MFIE on S21

n̂21 ×Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 +M2)K21

−n̂21 × η2L2J02 (3.25)

n̂21 ×H inc = −n̂21 × (M1 +M2)J21 + n̂21 × (
1

η1
L1 +

1

η2
L2)K21

+n̂21 ×M2J02. (3.26)

On the surface of the S02, we have

n̂02 × η2L2J02 = n̂02 × η2L2J21 + n̂02 ×M2K21 (3.27)

J02 − n̂02 ×M2J02 = −n̂02 ×M2J21 + n̂02 ×
1

η2
L2K21. (3.28)

In order to avoid internal resonance and make the impedance matrix well

conditioned, we should combine the two equations above and arrive at the

combined field integral equation as follows, where 0 ≤ α ≤ 1:

0 = n̂02 ×
{
α(η2L2J21 +M2K21 − η2L2J02) + (1− α)(−η2M2J21

+L2K21 + η2M2J02)

}
− (1− α)η2J02. (3.29)
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Now we consider the conducting scatterer placed beside a discrete chiral

scatterer as shown in Fig. 3.2(b). By following the same procedure, the

integral equations on the surface of the discrete chiral scatterer become

n̂21 ×Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 +M2)K21

+n̂21 × η1L1J01 (3.30)

n̂21 ×H inc = −n̂21 × (M1 +M2)J21 + n̂21 × (
1

η1
L1 +

1

η2
L2)K21

−n̂21 ×M1J01. (3.31)

The integral equations on the surface of the discrete conducting scatterer

are

Einc = n̂01 × {η1L1J01 + η1L1J21 +M1K21} (3.32)

n̂01 ×H inc =J01 − n̂01 ×
{
M1J01 −M1J21 +

1

η1
L1K21

}
. (3.33)

In order to avoid internal resonance and make the impedance matrix well

conditioned, we should combine the two equations above and arrive at the

combined field integral equation as follows, where 0 ≤ α ≤ 1:

n̂01 ×
{
αEinc + (1− α)η1H

inc

}

= (1− α)η1J01 + n̂01 ×
{
α(η1L1J21 +M1K21 + η1L1J01)

+ (1− α)(−η1M1J21 + L1K21 − η1M1J01)

}
. (3.34)
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3.2 Method of Moments for Chiral and Con-

ducting Objects

This section discusses the discretization of the above mentioned integral

equations into matrix equations. Using RWG basis functions, we can ex-

press the surface equivalent electric and magnetic current J ji and Kji (j

= 2 or 3 or 0) as follows:

J ji =
∑

Inj
fnj

(3.35)

Kji =
∑

Mnj
fnj

. (3.36)

For mixed chiral objects, substituting Eqns. (3.35)-(3.36) into Eqns. (3.15)-

(3.20), and applying the Galerkin’s testing procedure, we convert the inte-

gral equations to a linear equation system written as



Z
E2I2 Z

E2M2 θZ
E2I3 θZ

E2M3

Z
H2I2 Z

H2M2 θZ
H2I3 θZ

H2M3

θZ
E3I2 θZ

E3M2 Z
E3I3 Z

E3M3

θZ
H3I2 θZ

H3M2 Z
H3I3 Z

H3M3





I2

M2

I3

M3


=



E2

H2

δE3

δH3


(3.37)

where the (I2,M2) and (I3,M3) are the coefficients of the equivalent electric

and magnetic current densities on S2i and S3i, respectively. The elements

of the sub-matrices are defined as

ZE2I2
mn =

∫
Tm2

fm2
· (η1L1 + η2L2)fn2

dSm2 (3.38)

ZE2M2
mn =

∫
Tm2

fm2
· (M1 +M2)fn2

dSm2 (3.39)

ZE2I3
mn = −

∫
Tm2

fm2
· (η2L2)fn3

dSm2 (3.40)

ZE2M3
mn = −

∫
Tm2

fm2
· (M2)fn3

dSm2 (3.41)

ZH2I2
mn = −

∫
Tm2

fm2
· (M1 +M2)fn2

dSm2 (3.42)
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ZH2M2
mn =

∫
Tm2

fm2
· ( 1
η1
L1 +

1

η2
L2)fn2

dSm2 (3.43)

ZH2I3
mn =

∫
Tm2

fm2
· (M2)fn3

dSm2 (3.44)

ZH2M3
mn = −

∫
Tm2

fm2
· ( 1
η2
L2)fn3

dSm2 (3.45)

ZE3I2
mn = −

∫
Tm3

fm3
· (η2L2)fn2

dSm3 (3.46)

ZE3M2
mn = −

∫
Tm3

fm3
· (M2)fn2

dSm3 (3.47)

ZE3I3
mn =

∫
Tm3

fm3
· (η2L2 + η3L3)fn3

dSm3 (3.48)

ZE3M3
mn =

∫
Tm3

fm3
· (M2 +M3)fn3

dSm3 (3.49)

ZH3I2
mn =

∫
Tm3

fm3
· (M2)fn2

dSm3 (3.50)

ZH3M2
mn = −

∫
Tm3

fm3
· ( 1
η2
L2)fn2

dSm3 (3.51)

ZH3I3
mn = −

∫
Tm3

fm3
· (M2 +M3)fn3

dSm3 (3.52)

ZH3M3
mn =

∫
Tm3

fm3
· ( 1
η2
L2 +

1

η3
L3)fn3

dSm3 . (3.53)

The elements of the excitation electric and magnetic fields are thus ex-

pressed as

E2,m =
∫
Tm2

fm2
·EincdSm2 (3.54)

H2,m =
∫
Tm2

fm2
·H incdSm2 (3.55)

E3,m =
∫
Tm3

fm3
·EincdSm3 (3.56)

H3,m =
∫
Tm3

fm3
·H incdSm3 . (3.57)

For cases shown in Fig. 3.1(a) and Fig. 3.1(b), we let (δ = 0, θ = 1)

and (δ = 1, θ = −1) in Eqn. (3.37) respectively. The scattering by the

single chiral scatterer can be considered as the special case of mixed chiral

scatterers. The matrix equation can be directly obtained as

 Z
E2I2 Z

E2M2

Z
H2I2 Z

H2M2


 I2

M2

 =

 E2

H2

 . (3.58)
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For composite chiral and conducting objects, substituting Eqns. (3.35)-

(3.36) into Eqns. (3.25)-(3.34), and applying the Galerkin’s testing proce-

dure, we convert the integral equations to a linear equation system written

as 
Z

E2I2 Z
E2M2 θZ

E2I0

Z
H2I2 Z

H2M2 θZ
H2I0

θZ
E0I2 θZ

E0M2 Z
E0I0




I2

M2

I0

 =


E2

H2

δE0

 (3.59)

where I0 stands for coefficients of the equivalent electric current density

on S0i and the (I2,M2) are the coefficients of the equivalent electric and

magnetic current densities on S2i, respectively. The elements of the sub-

matrices are defined as

ZE2I2
mn =

∫
Tm2

fm2
· (η1L1 + η2L2)fn2

dSm2 (3.60)

ZE2M2
mn =

∫
Tm2

fm2
· (M1 +M2)fn2

dSm2 (3.61)

ZE2I0
mn = −

∫
Tm2

fm2
· (η2L2)fn0

dSm2 (3.62)

ZH2I2
mn = −

∫
Tm2

fm2
· (M1 +M2)fn2

dSm2 (3.63)

ZH2M2
mn =

∫
Tm2

fm2
· ( 1
η1
L1 +

1

η2
L2)fn2

dSm2 (3.64)

ZH2I0
mn =

∫
Tm2

fm2
· (M2)fn0

dSm2 (3.65)

ZE0I2
mn =

∫
Tm0

fm0
· (αη2L2 − (1− α)η2M2)fn2

dSm0 (3.66)

ZE0M2
mn =

∫
Tm0

fm0
· (αM2 + (1− α)L2)fn2

dSm0 (3.67)

ZE0I0
mn =

∫
Tm0

fm0
· (−αη2L2 + (1− α)η2M2)fn0

dSm0 . (3.68)

The elements of the excitation electric and magnetic fields are expressed as

E2,m =
∫
Tm2

fm2
·EincdSm2 (3.69)

H2,m =
∫
Tm2

fm2
·H incdSm2 (3.70)

E0,m =
∫
Tm0

fm0
· (αEinc + (1− α)η1H

inc)dSm0 . (3.71)
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For our problem, we let (δ = 0, θ = 1) and (δ = 1, θ = −1) in Eqn. (3.59)

for cases shown in Fig. 3.2(a) and Fig. 3.2(b), respectively.

3.3 Accuracy and Complexity of the Chiral

AIM Solver

This section discusses about the accuracy and complexity of the chiral

AIM solver. First, we discuss about the accuracy. We set up a numerical

experiment to test how well the approximation of AIM to MoM is in the

far zone distance and how far we should choose as the far zone distance. In

this experiment, we consider a conducting sphere with radius 1.0λ0 coated

with chiral material with thickness 0.1λ0, constitutive parameters ϵr = 2,

µr = 1, and ξr = 0.3. This experiment is general in that it considers both

chiral and conducting objects. The objects are discretized into triangle

meshes with average side length 0.1λ0. Then, we define the relative error

as

∆Zmn =
|Zmn − Ẑmn|

|Zmn|
. (3.72)

where Zmn is the impedance matrix element calculated by MoM and Ẑmn

is the impedance matrix element calculated by AIM. we take ZEI
mn as an

example. Similar calculations can be also carried out for other impedance

matrix elements. The ∆Zmn is plotted as a function of the distance between

elements for different grid sizes, as shown in Fig. 3.3. From Fig. 3.3, it is

clear that Ẑmn approximates Zmn very well at far zone distance, e.g., 0.4λ0.

The results also show that the smaller the grid size, the more accurate the

approximation is. Since reducing grid size could increase the FFT vector

size, we have to choose an appropriate grid size as a compromise to balance

the required accuracy and the given computer resources. Throughout this
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Figure 3.3: The relative error of for matrix elements of ZEI
mn using different

grid sizes.

paper, we choose a grid size of 0.1λ0 since the accuracy of 1% relative error

is good enough for most engineering applications.

Next, we explore the computational complexity and storage require-

ment of our AIM implementation. The matrix storage requirement and

CPU time per iteration are plotted in Fig. 3.4. From it, it is clear that

AIM solver has a very small requirement on memory as well as computa-

tional time, since the ordinary MoM solver requires O(N2) for memory and

O(N3) for computational time.

3.4 Numerical Results

In this section, we will present several examples to demonstrate the ac-

curacy and applicability of our AIM implementation to solve the scatter-

ing problems of chiral and conducting objects formulated using the SIE
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Figure 3.4: (a) Memory requirement and (b) CPU time for the AIM solver
versus the number of unknowns N.
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method. If not specified, the objects are illuminated by a θ-polarized plane

wave with incident angle of θinc = 0o and ϕinc = 0o.

3.4.1 A Multilayered Chiral Sphere

In the first example, in order to test the accuracy of our AIM solver for

the coated chiral scatterers, we consider a coated chiral sphere with inner

diameter d1 = 3.0λ0 and outer diameter d2 = 6.0λ0, where λ0 is the free

space wavelength. The constitutive parameters for the two layers are the

same: ϵr = 2, µr = 1 and ξr = 0.4 where ϵ = ϵ0ϵr, µ = µ0µr, and

ξ = ξr
√
ϵµ. The total number of unknowns is N = 228, 904. Fig. 3.5 shows

the bistatic RCS of the chiral sphere calculated using our code and also

the exact Mie series for comparison. In these figures, the first subscript

from the right on σ denotes the transmitter’s polarization and the second

denotes the receiver’s polarization. From Fig. 3.5, we can conclude that the

RCS results calculated from our code agree well with those exact solutions

in terms of the Mie series.

3.4.2 Nine Chiral Spheres

A nine-sphere scattering problem shown in Fig. 3.6 is studied in this subsec-

tion. The diameter of each sphere is 2λ0, of which five spheres (in yellow)

have relative permittivity ϵr1 = 1.75−j0.3 and four spheres (in green) have

relative permittivity ϵr2 = 2.25−j0.5. The ξr = 0 for all the spheres. There

is no spacing among the adjacent cells. The spheres are illuminated by a

θ-polarized plane wave at an incident angle of θinc = 90o and ϕinc = 180o.

The bistatic RCS result is calculated using 290,063 unknowns and shown

in Fig. 3.6(b). Also the result from [18] is shown for comparison and a good

agreement has been observed.
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Figure 3.5: Bistatic RCS in x-z plane of a multilayered chiral sphere. (a)
Co-polarized bistatic RCS; (b) Cross-polarized bistatic RCS.
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Figure 3.6: (a)Configuration of nine spheres with ϵr1 = 1.75 − j0.3, ϵr2 =
2.25 − j0.5 and ξr = 0. The diameter of each sphere is 2λ0. (b) Bistatic
RCS of nine spheres in x-y plane.
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3.4.3 A PEC Sphere with Chiral Coating

In the third example, we consider a PEC sphere with diameter d = 1.8λ0,

coated with a chiral material with a thickness of 0.1λ0. The constitutive

parameters for the chiral material are: ϵr = 2.667, µr = 1.333 and ξr = 0.5.

The total number of unknowns is N = 203, 748. The chiral sphere is

illuminated by a plane wave with k̂ towards the z-direction and E in the

x-direction. Fig. 3.7 shows the bistatic RCS of the chiral sphere calculated

using our code and also the Mie series for comparison. From Fig. 3.7, we

can conclude that the RCS results calculated from our code agree well with

those of the Mie series.

3.4.4 Four Chiral Spheres Over a PEC Plane

The last example considered is a system consisting of four spheres on the top

of a PEC plate shown in Fig. 3.8(a). There is no spacing among adjacent

spheres. The diameter of each sphere is 2λ0 and the relative permittivity of

each of the spheres is ϵr = 1.6− 0.4j and ξr = 0. The 8λ0 × 8λ0 PEC plate

is placed at z = 0 and the centers of the spheres are located 1.3λ0 above

the PEC plate. The bistatic RCS is computed using 230,984 unknowns and

shown in Fig. 3.8(b). Also shown is the result from [18]. A good agreement

has been observed.
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Figure 3.7: Bistatic RCS in x-z plane of a conducting sphere coated with
chiral material. (a) Co-polarized bistatic RCS; (b) cross-polarized bistatic
RCS.
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Figure 3.8: (a) Configuration of four spheres with ϵr = 1.6 − 0.4j and
ξr = 0, 1.3λ0 above a 8λ0 × 8λ0 PEC plate. The diameter of each sphere is
2λ0. (b) Bistatic RCS of the structure in x-z plane.
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Chapter 4

Scattering by Large

Conducting and

Bi-Anisotropic Objects

The most generalized composite media is bi-anisotropic media, which is

characterized by four constitutive parameter tensors. We do not have

closed form Green’s functions yet for it, thus we can only solve the scat-

tering problems involving bi-anisotropic media using VIEs which replace

the inhomogeneity using equivalent volume current sources, by which only

free space Green’s function is needed. In this chapter, the scattering prob-

lem of bi-anistoropic and conducting objects will be solved by using the

VSIE method. In the first section, constitutive parameters for general

bi-anisotropic media are introduced. In the second section, VSIE for scat-

tering by bi-anisotropic and conducting objects will be derived which will

be discretized in the following section. In the third section, MoM will be

applied to convert the integral equations into matrix forms; and in the

fourth section, the AIM algorithm will be modified to accelerate the solu-

tion process and reduce memory requirement. In the last section, numerical
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examples will be presented to demonstrate the accuracy and capabilities in

solving large bi-anisotropic and conducting objects.

4.1 Volume Integral Equations

Figure 4.1: Inhomogeneous bi-anisotropic scatterers in free space illumi-
nated by an electromagnetic wave.

Consider a homogeneous background medium with permittivity ϵ0 and

permeability µ0. If an inhomogeneous bi-anisotropic body is present in

the background, the fields in the region of bi-anisotropic body must satisfy

Maxwell equation:

∇×E = −jωB = − jωµ0H −MV (4.1)

∇×H = jωD= jωϵ0E + JV (4.2)

The constitutive relations for bi-anisotropic media are:

D= ϵ ·E + ξ ·H (4.3)

B = ζ ·E + µ ·H (4.4)
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which can be written as:

E =α1 ·D +α2 ·B (4.5)

H =α3 ·D +α4 ·B (4.6)

where the parameters are:

 α1 α2

α3 α4

 =

 ϵ ξ

ζ µ


−1

(4.7)

The expression of equivalent volume sources are:

JV = jω(ϵ− ϵ0I) ·E + jωξ ·H (4.8)

MV = jω(µ− µ0I) ·H + jωζ ·E (4.9)

which can be written as:

JV = jω(β1 ·D + β2 ·B) (4.10)

MV = jω(β3 ·D + β4 ·B) (4.11)

where the parameters are defined as:

 β1 β2

β3 β4

 =

 I − ϵ0α1 −ϵ0α2

−µ0α3 I − µ0α4

 (4.12)

Using mixed potential expression for source field relationship, the scattering

fields can be expressed by:

Esca = − jωA−∇ϕe −∇× F

ϵ0
(4.13)

Hsca = − jωF −∇ϕm +∇× A

µ0

(4.14)
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where A,F , ϕe, ϕm are magnetic vector potential, electric vector potential,

electric scalar potential, magnetic scalar potential which can be expressed

by:

A= µ0

∫
V
JVGdV ′ (4.15)

F = ϵ0

∫
V
MVGdV ′ (4.16)

ϕe =
1

ϵ0

∫
V
ρeGdV ′ (4.17)

ϕm =
1

µ0

∫
V
ρmGdV ′ (4.18)

where G is the free space Green’s function:

G(r, r′) =
e−jk0|r−r′|

4π|r − r′|
(4.19)

The relations between equivalent volume charge densities and currents are:

ρe = − 1

jω
∇ · JV (4.20)

ρm = − 1

jω
∇ ·MV (4.21)

Since the total fields are the sum of incident fields and scattering fields

induced by the bi-anisotropic body:

E =Einc +Esca (4.22)

H =H inc +Hsca (4.23)

based on eqns.(4.5)-(4.6) and eqns.(4.13)-(4.14), we obtain volume electric

and magnetic integral equations:

Einc =α1 ·D +α2 ·B + jωA+∇ϕe +∇× F

ϵ0
(4.24)

H inc =α3 ·D +α4 ·B + jωF +∇ϕm −∇× A

µ0

(4.25)
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When there are conducting objects besides the bi-anisotropic objects,

we should also consider the scattered fields by the conducting objects. In

this way, we can use VSIE to solve the problem. The scattered electric field

Esca and magnetic field Hsca by the induced surface electric current of the

conducting object are given by

Esca
S = −jωAS −∇VS (4.26)

Hsca
S =

1

µ0

∇×AS (4.27)

where AS and VS can be expressed as

AS = µ0

∫
S
JSGdS (4.28)

VS =
1

ϵ0

∫
S
ρSGdS (4.29)

with

ρS = − 1

jω
∇′

S · JS. (4.30)

In the bi-anisotropic region V , by taking the scattered field from the surface

current into consideration, the total electric field becomes

E = Einc +Esca
V +Esca

S . (4.31)

Similarly, the scattered field by volume current density also contributes to

the total field on conducting surface S. Since the tangential components

of total electric field vanish on conducting surface, we obtain the EFIE as

follows:

n̂×Einc = −n̂× [Esca
V +Esca

S ]. (4.32)

For a closed conducting surface, the MFIE can be obtained by considering

the tangential components of the total magnetic field on the conducting

surface, which are equal to the induced surface current components. Thus,
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we get

n̂×H inc = JS − n̂× [Hsca
V +Hsca

S ]. (4.33)

In order to avoid internal resonance and make the impedance matrix well

conditioned, the CFIE can be formulated for a closed conducting body by

linearly combining the EFIE and the MFIE such that

n̂× (αEinc + (1− α)η0H
inc) = (1− α)η0JS

−n̂× [α(Esca
V +Esca

S ) + (1− α)η0(H
sca
V +Hsca

S )]. (4.34)

where 0 ≤ α ≤ 1, and η0 =
√

µ0

ϵ0
is the free space impedance.

4.2 Method of Moments for Bi-Anisotropic

Media

The integral equations characterizing the interaction of electromagnetic

waves and composite of bi-anisotropic and PEC objects are summarized as

follows:

α1D +α2B + jωA+∇V +
1

ϵ0
∇× F = Einc (4.35)

α3D +α4B + jωF +∇U − 1

µ0

∇×A = H inc (4.36)

n̂× (αEinc + (1− α)η0H
inc) = (1− α)η0JS

−n̂× [α(Esca
V +Esca

S ) + (1− α)η0(H
sca
V +Hsca

S )]. (4.37)

The volume of bi-anisotropic material and the surface of conducting body

are discretized into tetrahedral elements and triangular patches, respec-

tively. These elements are used because of their flexibility to model arbi-

trarily shaped 3-D object. The surface current density is expanded using
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the RWG basis functions fS
n:

JS =
NS∑
n=1

ISnf
S
n. (4.38)

Within the bi-anisotropic region, to ensure the normal continuity of D and

B, the electric and magnetic flux density D and B are expanded using the

SWG basis functions fV
n as follows:

D =
1

jω

NV∑
n=1

Dnf
V
n (4.39)

B =
1

jω

NV∑
n=1

Bnf
V
n . (4.40)

Using the Galerkin’s procedure, testing Eqns. (4.35)-(4.36) with fV
m

and testing Eqn. (4.37) with fS
m, the hybrid integral equations will be

converted into a matrix equation system as


ZED

mn ZEB
mn ZEI

mn

ZHD
mn ZHB

mn ZHI
mn

ZSD
mn ZSB

mn ZSI
mn




Dn

Bn

ISn

 =


EV

m

HV
m

ES
m

 (4.41)

where

ZED
mn =

1

jω
⟨fV

m,α1 · fV
n ⟩+ jωµ0⟨fV

m,A1,n⟩

− 1

jωϵ0
⟨fV

m,∇ϕ1,n⟩+ ⟨fV
m,∇×A3,n⟩ (4.42)

ZEB
mn =

1

jω
⟨fV

m,α2 · fV
n ⟩+ jωµ0⟨fV

m,A2,n⟩

− 1

jωϵ0
⟨fV

m,∇ϕ2,n⟩+ ⟨fV
m,∇×A4,n⟩ (4.43)

ZEI
mn = jωµ0⟨fV

m,A
S
n⟩ −

1

jωϵ0
⟨fV

m,∇ϕS
n⟩ (4.44)

ZHD
mn =

1

jω
⟨fV

m,α3 · fV
n ⟩+ jωϵ0⟨fV

m,A3,n⟩

− 1

jωµ0

⟨fV
m,∇ϕ3,n⟩ − ⟨fV

m,∇×A1,n⟩ (4.45)
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ZHB
mn =

1

jω
⟨fV

m,α4 · fV
n ⟩+ jωϵ0⟨fV

m,A4,n⟩

− 1

jωµ0

⟨fV
m,∇ϕ4,n⟩ − ⟨fV

m,∇×A2,n⟩ (4.46)

ZHI
mn = − ⟨fV

m,∇×AS
n⟩ (4.47)

ZSD
mn = (1− α)η0n̂×

{
jωϵ0⟨fS

m,A3,n⟩ −
1

jωµ0

⟨fS
m,∇ϕ3,n⟩ − ⟨fS

m,∇×A1,n⟩
}

+ α

{
jωµ0⟨fS

m,A1,n⟩ −
1

jωϵ0
⟨fS

m,∇ϕ1,n⟩+ ⟨fS
m,∇×A3,n⟩

}
(4.48)

ZSB
mn = (1− α)η0n̂×

{
jωϵ0⟨fS

m,A4,n⟩ −
1

jωµ0

⟨fS
m,∇ϕ4,n⟩ − ⟨fS

m,∇×A2,n⟩
}

+ α

{
jωµ0⟨fS

m,A2,n⟩ −
1

jωϵ0
⟨fS

m,∇ϕ2,n⟩+ ⟨fS
m,∇×A4,n⟩

}
(4.49)

ZSI
mn = (1− α)η0⟨fS

m,f
S
n⟩+ α

{
jωµ0⟨fS

m,A
S
n⟩ −

1

jωϵ0
⟨fS

m,∇ϕS
n⟩

}
− (1− α)η0n̂×

{
⟨fS

m,∇×AS
n⟩

}
(4.50)

and the elements of the right hand side are:

EV
m = ⟨fV

m,E
inc⟩ (4.51)

HV
m = ⟨fV

m,H
inc⟩ (4.52)

ES
m = α⟨fS

m,E
inc⟩+ (1− α)η0n̂× ⟨fS

m,H
inc⟩ (4.53)

where the symmetric product of two functions f and g is defined as

⟨f , g⟩ =
∫
Ω
f · gdΩ (4.54)

and

Ai,n =
∫
Vn

βi · fV
nGdV ′ (4.55)

ϕi,n =
∫
Vn

∇ · (βi · fV
n )GdV ′ (4.56)

AS
n =

∫
Sn

fS
nGdS ′ (4.57)

ϕS
n =

∫
Sn

∇ · (fS
n)GdS ′. (4.58)
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4.3 Accuracy and Complexity of the AIM

Bi-Anisotropic Solver

This section discusses about the accuracy and complexity of the chiral

AIM solver. First, we discuss about the accuracy. We set up a numerical

experiment to test how well the approximation of AIM to MoM is in the

far zone distance and how far we should choose as the far zone distance. In

this experiment, we consider a conducting sphere with radius 2.0λ0 coated

with bi-anisotropic media, the thickness of the coating is 0.1λ with the

constitutive parameters ϵr = 2, µr = 1.5, and ξr = 0.3 where ϵ = ϵrϵ0I,

µ = µrµ0I, ξ = −jξr
√
ϵrϵ0µrµ0I and ζ = −ξ. The SWG and RWG basis

functions are used to expand the volume currents and surface currents to

discretize the integral equations. Then, we define the relative error as

∆Zmn =
|Zmn − Ẑmn|

|Zmn|
. (4.59)

where Zmn is the impedance matrix element calculated by MoM and Ẑmn

is the impedance matrix element calculated by AIM. we take ZED
mn as an

example. Similar calculations can be also carried out for other impedance

matrix elements. The ∆Zmn is plotted as a function of the distance between

elements for different grid sizes, as shown in Fig. 4.2. From Fig. 4.2, it is

clear that Ẑmn approximates Zmn very well at far zone distance, e.g., 0.4λ0.

The results also show that the smaller the grid size, the more accurate the

approximation is. Since reducing grid size could increase the FFT vector

size, we have to choose an appropriate grid size as a compromise to balance

the required accuracy and the given computer resources. Throughout this

paper, we choose a grid size of 0.1λ0 since the accuracy of 1% relative error

is good enough for most engineering applications.

Next, we explore the computational complexity and storage require-
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ment of our AIM implementation. The matrix storage requirement and

CPU time per iteration are plotted in Fig. 4.3. From it, it is clear that

AIM solver has a very small requirement on memory as well as computa-

tional time, since the ordinary MoM solver requires O(N2) for memory and

O(N3) for computational time.
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Figure 4.2: The relative error of AIM for matrix elements of ZED
mn using

different grid sizes.

4.4 Numerical Results Involving Large Bi-

Anisotropic Objects

In this section, several examples will be given to demonstrate the valid-

ity and efficiency of our code to solve the electromagnetic scattering by

large scale arbitrarily shaped bi-anisotropic objects. The GMRES solver

is adopted as the iterative solver and it terminates when the normalized

residue falls below 10−3. By default, the objects are illuminated by a plane
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Figure 4.3: The number of unknowns versus (a) memory requirement and
CPU time per iteration for the AIM solver.
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wave with k̂ in +z-direction and E in +x-direction. λ0 denotes the free

space wavelength.

4.4.1 Large Dielectric Objects

In this section, the first example we considered is a conducting sphere

coated with dielectric material. The diameter of the spherical core is 4.0λ0

and the thickness of the coating layer is 0.1λ0, with a relative permittivity

of ϵr = 2.0−1.0j. The bistatic RCS in x-z plane is computed with 249,093

unknowns and the result is shown in Fig. 4.4. The RCS result is compared

with the Mie series solution and a good agreement was observed.
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Figure 4.4: Bistatic RCS in x-z plane of a conducting sphere with diameter
4.0λ0 coated with dielectric material with a thickness of 0.1λ0, and a relative
permittivity ϵr = 2.0− 1.0j.

The second example we considered is a conducting trapezoidal plate

with coating on its sides as shown in Fig. 4.5. The length of the upper side

is 3 feet and 7 feet for the lower side. The height is 3 feet. The thickness of
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the plate is 1 inches. The thickness of the coating is 2 inches. The coating

layer has relative permittivity of ϵr = 4.5 − 9.0j. The monostatic RCSs

for θθ- and ϕϕ-polarizations in the x-y and x-z planes are computed at

1 GHz with 254,957 unknowns. The corresponding results are shown in

Fig. 4.6 and Fig. 4.7. A good agreement with published results [101, 102]

is observed.

Figure 4.5: The geometry of a trapezoidal plate (in blown) with coating
(in yellow) on its sides. The coating material has a relative permittivity,
ϵr = 4.5− 9.0j.

4.4.2 Large Magnetodielectric Objects

In this section, the first example we considered is a conducting sphere

coated with magnetodielectric material. The diameter of the spherical core

is 4.0λ0 and the thickness of the coating layer is 0.1λ0, with a relative

permittivity of ϵr = 1.6 − 0.8j, permeability of µr = 0.8 − 0.2j. The

bistatic RCS in x-z plane is computed with 225,703 unknowns and the

result is shown in Fig. 4.8. The RCS result is compared with the Mie series

solution and a good agreement is observed.

The second example is a multilayer cylinder coated with a dielectric
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Figure 4.6: Monostatic RCSs of a trapezoidal conducting plate with coated
sides shown in Fig. 4.5 at 1 GHz. (a) θθ-polarization in x-z plane. (b) ϕϕ-
polarization in x-z plane.
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Figure 4.7: Monostatic RCSs of a trapezoidal conducting plate with coated
sides shown in Fig. 4.5 at 1 GHz. (a) θθ-polarization in x-y plane. (b) ϕϕ-
polarization in x-y plane.
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Figure 4.8: Bistatic RCS of a conducting sphere with diameter 4.0λ0 coated
with magnetodielectric material with the thickness of the coating layer
0.1λ0, ϵr = 1.6− 0.8j, µr = 0.8− 0.2j in x-z plane.

material and the cross-section of the cylinder is shown in Fig. 4.9(a). The

diameter of the inner layer is 0.4λ0 and thickness of the other three layers

is 0.2λ0 each. The inner layer of the cylinder is made of lossy magnetic

material with relative permeability µr1 = 1.69− 0.01j and the outer layer

is made of lossy dielectric with relative permittivity ϵr1 = 1.69 − 0.01j.

The second and third layers of the cylinder are made of magnetodielectric

material with material properties ϵr2 = 1.21, µr2 = 1.44 and ϵr3 = 1.44,

µr3 = 1.21, respectively. The height of the cylinder is 2.0λ0. The cylinder

is coated with a dielectric layer having a thickness of 0.1λ0 and a relative

permittivity of ϵr5 = 1.69. The bistatic RCS of the cylinder in x-z plane is

computed using 295,913 unknowns and shown in Fig. 4.9(b). Also shown

is the result from [23]. A good agreement is observed.
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Figure 4.9: (a) The cross section of a multilayered cylinder made of mag-
netodielectric material with a layer of dielectric coating; (b) Bistatic RCS
of the cylinder shown in Fig. 4.9(a) in x-z plane.
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4.4.3 Large Objects with Chiral Material

In this section, the first example we consider is a chiral sphere with diameter

d = 2.0λ0. The constitutive parameters are: ϵr = 2, µr = 1, ξr =
ξ√
µϵ

= 0.3.

The bistatic RCS results are calculated using 218,602 unknowns. Fig. 4.10

shows the bistatic RCS values of the sphere in x-z plane calculated using

our code and also the Mie series [42] for comparison. From Fig. 4.10, we

can conclude that the RCS results calculated from our code are in a good

agreement with Mie series.

In the second example, we consider a conducting cone coated with

dispersive chiral material show in Fig. 4.11(a). The base diameter of the

cone is 1.2 m and the cross section of the cone is a equilateral triangle. The

thickness of the coating is 0.03 m. The constitutive equations for dispersive

chiral media can be written as

D(ω) = ϵ0ϵr(ω)E(ω)− jκ(ω)
√
ϵ0µ0H(ω) (4.60)

B(ω) = µ0µr(ω)H(ω) + jκ(ω)
√
ϵ0µ0E(ω). (4.61)

In most of the cases, the Lorentz model is used to characterize the dispersive

nature of permittivity and permeability. The Lorentz model is in the form

of

ϵr(ω) = ϵ∞r +
(ϵsr − ϵ∞r)ω

2
ϵ

ω2
ϵ − ω2 + j2ωϵξϵω

(4.62)

µr(ω) = µ∞r +
(µsr − µ∞r)ω

2
µ

ω2
µ − ω2 + j2ωµξµω

. (4.63)

The Condon model [50] is generally used to describe the dispersive nature

of chirality. The Condon model is in the form of

κ(ω) =
τκω

2
κω

ω2
κ − ω2 + j2ωκξκω

. (4.64)
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Figure 4.10: Bistatic RCS of a chiral sphere with diameter d = 2.0λ0,
ϵr = 2, µr = 1, and ξr = 0.3 in x-z plane. (a) Co-polarized Bistatic RCS;
(b) cross-polarized bistatic RCS.
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Figure 4.11: (a) The cross section of conducting cone coated with disper-
sive chiral material; (b) Bistatic RCS of the conducting cone coated with
dispersive chiral material shown in Fig. 4.11(a) in x-z plane at different
frequencies.
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If a chiral material with the following parameters is considered,

ϵ∞r = 2; ϵsr = 5; ωϵ = 2π × 2× 109; ξϵ = 0.5

µ∞r = 1.1; µsr = 1.8; ωµ = 2π × 2× 109; ξµ = 0.5

τκ = 0.5
ωκ
; ωκ = 2π × 2× 109; ξκ = 0.3,

(4.65)

the constitutive parameters can be evaluated at different frequencies. We

have, at 0.4 GHz, ϵr = 4.9950−0.6240j, µr = 1.7988−0.1456j, κ = 0.1026−

0.0128j; at 0.6 GHz, ϵr = 4.9735 − 0.9803j, µr = 1.7938 − 0.2287j, κ =

0.1586−0.0314j; at 1.2 GHz, ϵr = 4.4948−2.3389j, µr = 1.6821−0.5457j, κ =

0.3561− 0.2003j. The RCS values are calculated using 261,287 unknowns.

The RCS’s calculated at different frequencies are shown in Fig. 4.11(b).

4.4.4 Large Objects with Uniaxial Anisotropic Mate-

rial

In this section, the first example we consider is a conducting sphere with

diameter d = 3.0λ0 coated with uniaxial anisotropic material of a thickness

0.1λ0. The constitutive parameters are ϵt = 2.0− 0.1j, ϵz = 4.0− 0.2j and

µt = 2.0 − 0.1j, µz = 4.0 − 0.2j. The bistatic RCS results are calculated

using 289,295 unknowns. Fig. 4.12 shows the bistatic RCS of the sphere

calculated using our code and also the spherical vector wave functions [44]

for comparison. From Fig. 4.12, we can conclude that the RCS results

calculated from our code are in a good agreement with that obtained from

the spherical vector wave functions method.

The second example is a conducting cube coated with uniaxial anisotropic

material and the cross-section of the cube shown in Fig. 4.13(a). The side

of the cube is 3λ0 and thickness of the coating material is 0.1λ0. The consti-
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Figure 4.12: Bistatic RCS in x-z plane of a conducting sphere with diameter
d = 3.0λ0 coated with uniaxial anisotropic material with thickness 0.1λ0.

tutive parameters are: ϵ = ϵ0


2 0 0

0 2 0

0 0 5

 and µ = µ0


3 0 0

0 3 0

0 0 1

. The

bistatic RCS values of the cube are computed using 133,476 and 264,508

unknowns and shown in Fig. 4.13(b). From Fig. 4.13(b), it is clear that the

result has converged.

4.4.5 Large Objects with Gyroelectric Material

In this section, we first consider an example of electromagnetic scattering

by a conducting sphere coated with gyroelectric material. The diameter of

the sphere is 3.0λ0 and the thickness of the layer is 0.1λ0. The permittivity

tensor is ϵ = ϵ0


2.0− 0.1j j 0

−j 2.0− 0.1j 0

0 0 4.0− 0.2j

. The calculated

RCS results are computed with 289,295 unknowns and shown in Fig. 4.14.
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Figure 4.13: (a) The cross section of a conducting cube coated with
anisotropic material; (b) Bistatic RCS of the cube shown in Fig. 4.13(a).
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Also the result computed using vector wave function expansion method [47]

is presented for comparison and a good agreement has been observed.
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Figure 4.14: Bistatic RCS of a conducting sphere with the diameter 3.0λ0,
coated with gyroelectric material with the thickness of 0.1λ0.

The second example is a conducting structure coated with gyroelectric

material and the cross-section of the structure is shown in Fig. 4.15(a). It is

composed of a semi-sphere with diameter 3λ0 and the height of the cylinder

is 3λ0. The thickness of the coating material is 0.1λ0. The constitutive

parameters are: ϵ = ϵ0


2 j 0

−j 2 0

0 0 5

. The bistatic RCS of the cube is

computed using 130,942 and 271,341 unknowns and shown in Fig. 4.15(b).

From Fig. 4.15(b), it is clear that the result has converged.
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Figure 4.15: (a) The cross section of a conducting structure coated with gy-
roelectric material; (b) Bistatic RCS of the structure shown in Fig. 4.15(a).
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4.4.6 Large Objects with Gyromagnetic Material

In this section, the first example is a conducting sphere coated with gyro-

magnetic material with permeability tensor:

µ = µ0


2.0− 0.1j 1.0j 0

−1.0j 2.0− 0.1j 0

0 0 4.0− 0.2j

. The diameter of the

conducting sphere is 3.0λ0 and the coated thickness is 0.1λ0, respectively.

The calculated RCS results are computed with 295,289 unknowns and

shown in Fig. 4.16. Also the result computed using vector wave function

expansion method [48] is presented for comparison and a good agreement

has been observed.
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Figure 4.16: Bistatic RCS of a a conducting sphere coated with gyromag-
netic material. The diameter of the conducting sphere is 3.0λ0 and the
coated thickness is 0.1λ0.

The second example is a conducting structure coated with gyromag-

netic material shown in Fig. 4.17(a). The structure is the combination of a
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Figure 4.17: (a) A conducting structure coated with gyromagnetic material;
(b) Bistatic RCS of the conducting structure shown in Fig. 4.17(a) coated
with gyromagnetic material in x-z plane at different frequencies.
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cylinder with diameter 0.8 m, height 0.8 m and a cone whose cross section is

an equilateral triangle with side length 0.8 m. The coating is 0.03 m thick.

When biased by a DC magnetic field B0 = âzB0, gyromagnetic materials,

whose permittivity tensor ϵ = ϵ0I, are characterized by their permeabil-

ity tensors µ = µ0µr where with constitute parameters with permeability

tensor µr =


µ1 jµ2 0

−jµ2 µ1 0

0 0 µ3

 where the elements in the permeability

tensor are formulated as [103]:

µ1 = 1 +
(ω0 + jωα)ωm

(ω0 + jωα)2 − ω2
(4.66)

µ1 =
ωωm

(ω0 + jωα)2 − ω2
(4.67)

µ3 = 1 (4.68)

where α is the ferrite damping factor, ω0 is the Larmor precession fre-

quency, and ωm is the saturation magnetization frequency. The Larmor

precession frequency ω0 and the saturation magnetization frequency ωm

are determined by the DC magnetic field bias by [103]:

ω0 = γmH0 (4.69)

ωm = γmM0 (4.70)

where γm is the gyromagnetic ratio, H0 is the magnitude of the applied

DC magnetic field, and M0 is the magnitude of saturated magnetization

vector. M 0 is in the same direction of the applied magnetic field H0.

Once the Larmor precession frequency, saturation magnetization fre-

quency, and ferrite damping factor are given, the permeability tensor µ

can be evaluated at any frequency. For example, if we consider a ferrite
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material with the parameters of

α = 0.1 (4.71)

ω0 = 2π × 2× 109 (4.72)

ωm = 2π × 2× 109 (4.73)

we have, at 0.4 GHz, µr =


2.0412− 0.0226j 0.0087 + 0.2081j 0

−0.0087− 0.2081j 2.0412− 0.0226j 0

0 0 1



at 0.6 GHz, µr =


2.0974− 0.0394j 0.0217 + 0.3286j 0

−0.0217− 0.3286j 2.0974− 0.0394j 0

0 0 1



at 1.2 GHz, µr =


2.5346− 0.1951j 0.1717 + 0.9104j 0

−0.1717− 0.9104j 2.5346− 0.1951j 0

0 0 1

.

The calculated RCS results are computed with 276,875 unknowns and

shown in Fig. 4.17(b).

4.4.7 A Large Object coated with Faraday Chiral Ma-

terial

In this section, we consider an example of electromagnetic scattering by

a large conducting object coated with faraday chiral material. The struc-

ture considered is shown in Fig. 4.18(a). The structure is the combina-

tion of a semi-sphere with diameter 4.0λ0 and a cone whose cross sec-

tion is an equilateral triangle with side length 4.0λ0. The coating is 0.1λ0
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Figure 4.18: (a) A conducting structure coated with faraday chiral material;
(b) Bistatic RCS of the conducting structure coated with Faraday chiral
material shown in Fig. 4.18(a) in x-z plane.
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thick with constitute parameters as follows: ϵ = ϵ0


2.0 0.3j 0

−0.3j 2.0 0

0 0 3.0

,

µ = µ0


1.5 0.2j 0

−0.2j 1.5 0

0 0 2.0

, ξ =
√
µ0ϵ0


−0.3j 0.1 0

−0.1 −0.3j 0

0 0 −0.2j

, ζ =

√
µ0ϵ0


0.3j −0.1 0

0.1 0.3j 0

0 0 0.2j

. The calculated RCS results are computed

with 130,644 and 265,162 unknowns and shown in Fig. 4.18(b). From

Fig. 4.18(b), it is clear that the result has converged.
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Chapter 5

ASED-AIM Analysis of

Scattering by Periodic

Structures

In this Chapter, the Adaptive Integral Method (AIM) has been extended to

characterize electromagnetic scattering by large scale finite periodic arrays

with each cell comprising of either dielectric or metallic objects, by utilizing

accurate sub-entire-domain (ASED) basis function. The solution process

can be carried out in two steps. In the first step, a small problem is solved in

order to construct ASED basis functions to be implemented for the second

step. This problem consists of nine unit cells for two dimensional periodic

arrays and 27 unit cells for three dimensional periodic arrays. When di-

electric materials are involved in the cell which results in a large number of

unknowns for the small problem, the AIM can be used to accelerate the so-

lution process and reduce the memory requirement. In the second step, the

entire problem is solved using the ASED basis function constructed in the

first step. The AIM can be enhanced with the ASED basis function imple-

mented to solve the entire problem more efficiently. When calculating the

near interaction impedance matrix, computation time can be significantly
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reduced by using the near impedance matrix in the first step. The complex-

ity analysis shows that the computational time is O(N logN)+O(M logM)

and memory requirement is O(N) + O(M), where M denotes the number

of cells and N stands for the number of elements in one cell. The results

calculated respectively by the ASED-AIM and the existing AIM are then

compared and an excellent agreement has been observed, which demon-

strates the accuracy of the proposed method. In the meantime, memory

and computational time requirements have been considerably reduced us-

ing the ASED-AIM as compared to the existing AIM. Finally, an example

with over 10 million unknowns is given to demonstrate the efficiency of the

proposed method.

5.1 ASED-AIM Formulation

Electromagnetic scattering by periodic arrays of composite dielectric and

metallic structures can be characterized using volume-surface integral equa-

tion (VSIE) method. The basic equations are formulated below via the

boundary conditions satisfied by electric and magnetic field tangential com-

ponents:

Einc(r) =E(r)−Esca(r), r ∈ V (5.1)

Einc(r)
∣∣∣
tan

= − Esca(r)|tan , r ∈ S. (5.2)

Equivalent electric volume current JV (r) and equivalent electric surface

current JS(r) are related to total electric field E(r) and scattered electric

field Esca(r) via

JV (r) = jωκD(r) = jω(ϵ− ϵ0)E(r), r ∈ V (5.3)

Esca(r) = − jωµ0

∫
V
G(r, r′)JV (r

′)dV ′
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−jωµ0

∫
S
G(r, r′)JS(r

′)dS ′

+
∇

jωϵ0

∫
V
G(r, r′)∇′ · JV (r

′)dV ′

+
∇

jωϵ0

∫
S
G(r, r′)∇′ · JS(r

′)dS ′ (5.4)

where G(r, r′) denotes free space Green’s function, µ0 and ϵ0 represent free

space permeability and permittivity respectively, ϵ stands for permittivity

in the dielectric object, and κ = (ϵ − ϵ0)/ϵ identifies the contrast ratio of

scatterer material and its background medium.

For simplicity, we consider 2D large scale periodic structures. Three

dimensional periodic problems can be analyzed in the same fashion. If there

are N unknowns for each cell and M cells, the total number of unknowns

will be MN . This number of unknowns can be significantly reduced to

M via the ASED method. The basic idea of the ASED method is to first

construct the macro basis functions for each cell and then using this basis

function to represent a cell for the solution of the whole array. In order to

construct the macro basis functions, the ASED method is proposed to first

solve a small array problem. If the whole array is considered to construct

the ASED basis function, we can get the exact basis function to represent

the cell but the computational burden is too large. In order to balance the

computational burden and the accuracy, the ASED method is proposed

to solve a nine cell problem shown in Fig. 5.1(a) which takes the most

important coupling from the nearest neighbor into consideration [92].

For the p-th cell, where p = 0, . . . , 8, surface currents can be expanded,

in order to ensure the normal continuity of surface current in the metallic

surface, as follows:

JS
p =

NS∑
m=1

ISpmf
S
pm . (5.5)

In order to ensure the normal continuity of electric flux density inside the
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dielectric objects, Dp can be expanded as:

Dp =
1

jω

NV∑
m=1

IVpmf
V
pm (5.6)

thus, volume currents can be expanded as

JV
p =

NV∑
m=1

IVpmκf
V
pm (5.7)

where fS
pm and fV

pm denote respectively the RWG and SWG basis functions

associated with the m-th surface and volume basis functions of the p-th

cell, NS is the number of RWG basis functions while NV is the number of

SWG basis functions, and ISpm and IVpm stand for the respective unknown

coefficients to be solved for. Thus, electric current for the p-th cell can be

written as

Jp = JS
p + JV

p . (5.8)

The total current for the nine cell problem can be written as

J =
8∑

p=0

Jp (5.9)

where Jp, (p = 0, . . . , 8) are the so-called ASED basis functions to be solved

in the nine cell problem. We use the Galerkin procedure of MoM to test

the volume-surface integral equations and obtain the following matrix equa-

tions:

(Zpmqn) (Iqn) = (Vpm) (5.10)

where pm denotes the m-th testing function in the p-th cell while qn stands

for the n-th basis function in the q-th cell. The impedance matrix Z

comprises of 9× 9 sub-matrices of size N ×N with the p-th block row and

the q-th block column representing the interaction among elements inside

the (p, q)-th cell, where M denotes the total unknown number in a cell. For
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the p-th block row and q-th block column sub-matrix, it can be written in

terms of following block matrices

(Zpmqn) =

 ZV V
pmqn ZV S

pmqn

ZSV
pmqn ZSS

pmqn

 (5.11)

whose detailed block matrix expressions can be written as

ZV V
pmqn =

1

jω
< fV

pm ,
1

ϵ
fV

qn > +jωµ0 < fV
pm ,A

V
qn >

− 1

jωϵ0
< fV

pm ,∇ϕV
qn > (5.12)

ZV S
pmqn = jωµ0 < fV

pm ,A
S
qn > − 1

jωϵ0
< fV

pm ,∇ϕS
qn > (5.13)

ZSV
pmqn = jωµ0 < fS

pm ,A
V
qn > − 1

jωϵ0
< fS

pm ,∇ϕV
qn > (5.14)

ZSS
pmqn = < fS

pm ,f
S
qn > +jωµ0 < fS

pm ,A
S
qn >

− 1

jωϵ0
< fS

pm ,∇ϕS
qn > (5.15)

where

AV
qn =

∫
V
GfV

qndV
′ (5.16)

AS
qn =

∫
S
GfS

qndS
′ (5.17)

ϕV
qn =

∫
V
G∇′ · fV

qndV
′ (5.18)

ϕS
qn =

∫
S
G∇′ · fS

qndS
′. (5.19)

This matrix can be solved using the AIM when N becomes large. After

solving the nine-cell problem, we can obtain the nine types of cell basis

functions and the use them to solve the entire problem. Now the current

density for the q-th cell, where q = 1, . . . ,M (denoted by the superscript

C herein and subsequently) can be written as

JC
q = jqJp (5.20)
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Z

C

11 Z
C

12 · · · Z
C

1M

Z
C

21 Z
C

22 · · · Z
C

2M
...

...
. . .

...

Z
C

M1 Z
C

M2 · · · Z
C

MM

 ·


j1
j2
...
jM

 =


V C
1

V C
2
...

V C
M

 (5.21)

where jq denotes unknowns to be solved for and the Jp, (p = 0, . . . , 8)

denotes one of the nine ASED basis functions. The corresponding relation-

ship between the whole array and the ASED basis functions are shown in

Fig. 5.1. Thus, the reduced matrix equations can be written as Eqn. (6.13).

The cell impedance matrix elements can be written as

ZC
pq =

M∑
m=1

M∑
n=1

IpmZpmqnIqn (5.22)

where Zpmqn is the original matrix element. It is noted here that Ipm and Iqn

are the elements of the ASED basis functions obtained earlier and we have

to use the mapping in Fig. 5.1 to find the ASED basis functions for each

cell impedance matrix element. The unknowns to be solved is j1, j2, . . . jM .

These coefficients multiplied by the ASED basis functions define the actual

current distributions on each cell. In other words, the ASED basis functions

can be thought as the profile for the current distribution and jp provides

the magnitude of the distribution. V C
p = JT

p ·V p where V p is the excitation

vector for the p-th cell.

WhenM is large, we can use the AIM to accelerate the solution process.

We should combine the ASED approach with the AIM to solve large-scale

periodic structure problems. The basic idea of AIM is to calculate the

far-zone interaction via projecting the basis functions to, and interpolating

potentials from, grid space associated with each basis function while the

near zone interactions can be directly calculated. Since free space Green’s

function is translational invariant and the calculation is made based on

grid space, the FFT can be used to greatly reduce the memory requirement
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(a) (b)

Figure 5.1: Mapping of the ASED basis functions. (a) The nine-cell prob-
lem; (b) The entire problem.

and computational time. Using the conventional AIM, the matrix vector

multiplication can be written as

ZI = V H P I +Z
near

I (5.23)

where V is the interpolation matrix, H is the Green’s function matrix,

and P is the projection matrix. The mapping and calculations are made

using the following four steps:

1. to project the sources distributed on the basis functions onto the

regular grids by matching their vector and scalar potentials at some

given test points to guarantee the approximate equality of their far

fields;

2. to evaluate the potentials at other grid locations produced by these

grid-projected sources by a 3-D convolution;

3. to interpolate the grid point potentials onto the testing functions,

where the projection and interpolation operators are represented by
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sparse matrices, and the convolution can be carried out rapidly using

discrete FFTs; and

4. to compute the near-field interactions directly and remove the errors

introduced by the far-field operators.

The four steps of conventional AIM can be shown in Fig. 5.2(a). For the

(a)

(b)

Figure 5.2: (a) The pictorial representation of the conventional AIM; (b)
The pictorial representation of the ASED-AIM.

far zone interaction, the impedance matrix elements can be approximated
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as:

Zpmqn ≈ Z̃pmqn =
∑
s

∑
t

VmsHmsntPnt (5.24)

where Vms and Pnt denote the s-th and t-th interpolation and projection

matrix coefficients for the m-th basis function and in p-th cell respectively.∑
denotes summation of all the grids associated with the basis functions.

Thus, for cell interaction in the far zone, we have

ZC
pq =

∑
m

∑
n

IpmZpmqnIqn

≈
∑
m

∑
s

∑
n

∑
t

IpmVmsHmsntIqnPnt

= V C
p HpqP

C
q (5.25)

where the element is the sum of the contributions of m-th and n-th basis

functions in the p-th and q-th cells respectively. We denote V
C
and P

C

as the interpolation and projection matrices for cell basis functions. They

can be written explicitly as:

V C
p =

∑
m

∑
s

IpmVms (5.26)

PC
q =

∑
n

∑
t

IqnPnt . (5.27)

Now, Using the ASED-AIM, the matrix vector multiplication can be writ-

ten as

Z
C · IC

= V
C ·H · P V · IC

+Z
C,near · IC

(5.28)

which takes the four steps to manipulate as follows:

1. to sum-up all the projections from every basis functions within each

cell;

2. to evaluate the potentials at other grid locations produced by these

grid-projected sources using a 3-D convolution;
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3. to interpolate the grid point potentials onto each cell rather than

individual testing functions; and

4. to compute the near-field interactions directly from at most nine near-

by neighbors.

The four steps for implementing the ASED-AIM is shown graphically in

Fig. 5.2(b).

5.2 Complexity Analysis for ASED-AIM

In the first step of ASED-AIM, the conventional AIM is carried out to

solve a problem with 9N unknowns. Thus, the memory requirement and

computational time are O(N) and O(N logN), respectively. It should be

noted that in [94], the authors focused on metallic structures; thus, N is

usually small for a cell. For example, when N = 65, then the memory

requirement and computational time are not large. In this case, the MoM

can be employed to solve the nine-cell problem. But it is not the case when

composite metallic and dielectric objects are within a cell since N is large,

for example, N = 103. Thus, this portion of memory and computational

time should be taken into consideration as can be shown in the numerical

results later. In the second step of ASED-AIM, since there are only nine

types of cell basis functions, the memory requirement for interpolation and

projection matrix is a constant C and the computational time is O(M)

where M denotes the number of cells in the whole domain. For the FFT

operation, since the grid number Ng is proportional to the total number

of cells M , thus the memory requirement is O(M) and the computational

time is O(M logM).
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In [94], disaggregation (equivalent to interpolation in the AIM), aggre-

gation (equivalent to projection in the AIM) and translation (equivalent to

the FFT in the AIM) have to be carried for each k direction (which is of

order N) respectively per iteration. However, interpolation, and projection

are only need once and the FFT twice per iteration in the AIM, one for

forward FFT and the other for the inverse FFT. Thus, the computational

time can be reduced greatly. For the near interactions, the computational

time will be quite large if we calculate directly using

ZC,near
pq = ZC

pq − Z̃C
pq =

M∑
m=1

M∑
n=1

Ipm
(
Zpmqn − Z̃pmqn

)
Iqn (5.29)

since this operation takes O(N2) multiplication and addition. In fact, we

can utilize the near zone interaction matrix Znear in the first step. We know

that Znear is a sparse 9N×9N matrix, which is made up of 9×9 sub-matrices

with each matrix N ×N elements, each element is
(
Zpmqn − Z̃pmqn

)
. Con-

sider the fifth row of the sub-matrices which are calculated when the cell p

is surrounded by nine most near neighboring cells q, as shown in Fig. 5.1(a)

where p = 4 and q = 0, ..., 8. The sub-matrices are all sparse, since

Zpmqn − Z̃pmqn = 0, dpmqn > dnear (5.30)

where dnear is the near zone threshold. Thus, O(N2) multiplications and

additions can be greatly reduced using sparse matrix vector multiplication.

For the near zone interactions, there are at most nine near neighbors for

each cell; thus the memory requirement and the computational time are

O(M). Therefore, the total memory requirement is

M = O(N) + C +O(M) +O(M) = O(N) +O(M) (5.31)
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and the total computational time is

C = O(M logM)+O(N)+O(N logN)+O(N) = O(M logM)+O(N logN).

(5.32)

5.3 Numerical Results using ASED-AIM

In this section, several examples will be given to demonstrate the validity

and efficiency of our code to solve electromagnetic scattering by large scale

periodic structures consisting of composite metallic and dielectric objects.

The GMRES solver is adopted as the iterative solver and it terminates

when the normalized residue falls below 10−3.

5.3.1 2D Array Results

First, we consider a 2D periodic structure shown in Fig. 5.3. The unit cell

is shown in Fig. 5.3. The dielectric object is an cube with length 0.2λ0

and ϵr = 4. Above the cube is a metallic square patch with length 0.2λ0.

The entire objects are discretized with 467 tetrahedrons and 36 triangles

resulting in N = 1087 unknowns. In the first situation, we consider a

4× 4 array in x-y plane, where the periodicity in x-y plane is 0.4λ0. Three

cases are considered: the first case shown in Fig. 5.4 is normal incidence at

θi = 0o and ϕi = 0o; the second case shown in Fig. 5.5 is oblique incidence

at θi = 45o and ϕi = 0o; and the third case shown in Fig. 5.6 is grazing

incidence at θi = 90o and ϕi = 0o. The electric field is θ-polarized in all

the cases. The total number of unknowns is MN = 17, 248. The results

generated by the ASED-AIM are compared with conventional AIM results

and a good agreement has been observed. When the ASED-AIM is used to
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solve the problem, only 169 MB memory is needed and the computational

time is around 60 seconds for all three cases while using AIM, the memory

requirement is 300 MB and the solver CPU time is 102 seconds. Further

reduction of memory requirement and CPU time using the ASED-AIM will

be demonstrated in later examples.

Figure 5.3: Examples of arrays used in the calculations of numerical results.
(a) The structure of a unit cell, d = 0.2λ0. The yellow face above the cube
denotes a metallic patch while cube is a dielectric object with ϵr = 4. (b)
4× 4 array. (c) 4× 4× 4 array.

Now, we consider three array cases: 6×6 array shown in Fig. 5.7, 8×8

array shown in Fig. 5.8, and 10 × 10 array shown in Fig. 5.9 at normal

incident of plane wave which is θ-polarized. Comparison is made between

the ASED-AIM results and the AIM results and a good agreement has been

observed. The number of unknowns for the 6 × 6 array is 38,808 and it

requires memory of 169 MB and computational time of 54 seconds when the

ASED-AIM is used while it needs memory of 675 MB and computational
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Figure 5.4: Bistatic RCS of the 4×4 array with each cell shown in Fig. 5.3
with electric field θ-polarized at the normal incidence (θ = 0o). The gap
is 0.2λ0 in both x- and y-directions. The results are computed using the
AIM (circle line) and the ASED-AIM (solid line).
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Figure 5.5: Bistatic RCS of the 4×4 array with each cell shown in Fig. 5.3
with electric field θ-polarized at the oblique incidence (θ = 45o). The gap
is 0.2λ0 in both x- and y-directions. The results are computed using the
AIM (circle line) and the ASED-AIM (solid line).
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Figure 5.6: Bistatic RCS of the 4×4 array with each cell shown in Fig. 5.3
(θ = 90o) with electric field θ-polarized at the grazing incidence. The gap
is 0.2λ0 in both x- and y-directions. The results are computed using the
AIM (circle line) and the ASED-AIM (solid line).

time of 302 seconds when the conventional AIM is utilized. The number

of unknowns for the 8 × 8 array is 68,992 and it requires memory of 169

MB and computational time of 55 seconds when the ASED-AIM is applied,

while it needs memory of 1200 MB and computational time of 753 seconds

when the AIM is utilized. The number of unknowns for the 10× 10 array

is 107,800 and it requires memory of 170 MB and computational time of

55 seconds when the ASED-AIM is used, while it needs memory of 1874

MB and computational time of 1485 seconds when the AIM is applied. It

is now clear that the memory requirement and CPU time are almost the

same when the ASED-AIM is applied to solve problems with these different

array sizes, but the memory requirement and CPU time increase with the

array sizes when the conventional AIM is utilized.
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Figure 5.7: Bistatic RCS values of the 6 × 6 array with each cell shown
in Fig. 5.3 with electric field θ-polarized at the normal incidence (θ = 0o).
The gap is 0.2λ0 in both x- and y-directions. The results are computed
using the AIM (circle line) and the ASED-AIM (solid line).
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Figure 5.8: Bistatic RCS values of the 8 × 8 array with each cell shown
in Fig. 5.3 with electric field θ-polarized at the normal incidence (θ = 0o).
The gap is 0.2λ0 in both x- and y-directions. The results are computed
using the AIM (circle line) and the ASED-AIM (solid line).
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Figure 5.9: Bistatic RCS values of the 10× 10 array with each cell shown
in Fig. 5.3 with electric field θ-polarized at the normal incidence (θ = 0o).
The gap is 0.2λ0 in both x- and y-directions. The results are computed
using the AIM (circle line) and the ASED-AIM (solid line).

5.3.2 Efficiency for 2D arrays

Subsequently, we investigate the computational complexity and memory

requirement of the ASED-AIM and compare them with those of the con-

ventional AIM. Fig. 5.10(a) shows the relationship between the computa-

tional time and the number of unknowns using the ASED-AIM and the

AIM. Fig. 5.10(b) shows the relationship between the memory and the

number of unknowns using the ASED-AIM and the AIM. From Fig. 5.10,

it is clear that when the AIM is used, the computational time and the

memory requirement are proportional to the number of unknowns. When

the number of unknowns reaches 105, the memory requirement is over 103

MB and CPU time is over 103 seconds. When the ASED-AIM is used,

the computational time and the memory requirement are much less than

those when the conventional AIM is used. Even when the number of un-
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knowns reaches 10 million, the memory requirement for ASED-AIM is still

less than 103 MB and CPU time is less than 103 seconds. Especially, they

are nearly the same when the number of unknowns is less than 106. When

the number of unknowns goes up beyond 106, the memory requirement

and the CPU time become proportional to the number of unknowns. This

observation agrees well with the previous complexity analysis in literature.

Since the memory requirement is O(M) + O(N), the computational time

is O(M logM) +O(N logN). When M is small as compared to N , N de-

termines the memory requirement and computational time. It means that

most of CPU time and memory have been spent on the first stage of the

ASED-AIM. From our results, 168-MB memory and 50-second computa-

tional time have been used in the first stage. When number of unknowns

is smaller than 106, only several MB of memory and a few seconds of com-

putational time have been used in the second stage. When the number of

unknowns is larger than 106, effect of M becomes dominant. The memory

requirement and CPU time both increase linearly with N .

5.3.3 Results for 3D Arrays

The above method can also be extended to analyze 3D finite periodic struc-

tures. In this case, a smaller sub-domain of 27 cells is first considered.

Then, the entire domain of 27 types of cell basis functions is analyzed by

extending the above algorithm. In Fig. 5.11(a), the RCS values calculated

using the ASED-AIM and the AIM are compared for the 4 × 4 × 4 array

shown in Fig. 5.3, where the dimensions between each cell in x-, y-, and

z-directions are all 0.2λ. The array is illuminated at normal incidence by

a plane wave with electric field θ-polarized. From Fig. 5.11(a), it is clear

that RCS results using ASED-AIM and AIM are in a good agreement.

For the 4× 4× 4 array problem, the ASED-AIM code requires 68,992 un-
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Figure 5.10: The relationship between (a) computational time (b) memory
requirement and the number of unknowns within the ASED-AIM (triangle
line) and the AIM (circle line).
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knowns, 507-MB memory and 178-second computational time, while the

AIM code needs 1200-MB memory and 753-second computational time.

A 10 × 10 × 10 array problem was also considered, where the number of

unknowns is over 1 million. It takes the ASED-AIM code 516 MB in mem-

ory and 229 seconds in CPU time to calculate the RCS results shown in

Fig. 5.11(b). Compared with those required computational expenses used

in the 4 × 4 × 4 array problem, the memory requirement and CPU time

used for the 10 × 10 × 10 array problem increase only slightly from 507

MB to 516 MB and from 178 seconds to 229 seconds, respectively; while

the number of unknowns increases from 68,992 to over a million. The 3D

situation is very similar to the 2D situation, which demonstrates that the

ASED-AIM is also very efficient in solving electrically-large 3D periodic

structures.

5.3.4 Solving 100× 100 Array using ASED-AIM

Finally, we consider an electrically very large finite periodic structure with

100×100 array similar to Fig. 5.3(b). The structure is illuminated by plane

wave with θ = 0o and ϕ = 0o, electric field is θ-polarized. The total number

of unknowns in this example is 10.87 million. The calculated radar cross

section is shown in Fig. 5.12. For such an electrically large structure with

over 10 million unknowns, the ASED-AIM only requires 273 MB memory

and 1200 seconds, which demonstrates the efficiency of the new method

in solving problems of electromagnetic scattering by large-scale periodic

structures.
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Figure 5.11: Bistatic RCS values of the (a) 4×4×4 array and (b) 10×10×10
array with each cell shown in Fig. 5.3 with electric field θ-polarized at the
normal incidence (θ = 0o). The gap is 0.2λ in the x-, y- and z-directions.
The results are computed using the AIM (circle line) and the ASED-AIM
(solid line).
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Figure 5.12: Bistatic RCS of the 100 × 100 array with each cell shown in
Fig. 5.3 with electric field θ-polarized at the normal incidence (θ = 0o).
The gap is 0.2λ0 in all the x-, y-, and z-directions. The result is computed
using the ASED-AIM.
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Chapter 6

Scattering by Finite Periodic

Structures Using CBFM/AIM

In this chapter, we introduce a novel technique that combines the AIM al-

gorithm with the CBFM to solve the problem of electromagnetic scattering

by large but finite periodic arrays. An important advantage of using the

CBFM for this problem is that we only need to analyze a single unit cell

to construct the CBFs for the entire array. The CBFs are generated by

illuminating the unit cell with a plane wave incident from different angles,

for both the θ- and ϕ- polarizations. The initial set of CBFs, generated

in the manner described above, are then downselected by applying a SVD

procedure and retaining only the left singular vectors whose corresponding

singular values fall above a threshold. Next, in the conventional CBFM,

we derive a reduced matrix by applying the Galerkin procedure and solve

it directly if its size is manageable. However, when solving an array prob-

lem, which precludes the direct-solution option, we can utilize the AIM

algorithm, detailed below, not only to accelerate the solution but to reduce

memory requirements as well. Numerical examples are included in this

chapter to demonstrate the accuracy and the numerical efficiency of the
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proposed technique.

6.1 CBFM/AIM Algorithm

Although the CBFM/AIM algorithm is quite general, and useful for treat-

ing either metallic or dielectric objects, here we only consider a periodic

array of dielectric objects whose treatment is more involved than if the ele-

ments were just PEC. For dielectric objects, we can use the volume integral

equation formulation, and we begin by imposing the condition:

Einc(r) = E(r)−Esca(r), r ∈ V (6.1)

where Einc(r), Esca(r), and E(r) are the incident, scattered and total

fields, respectively.The polarization current J(r) induced in the dielectric

scatterer is related to the total electric field E(r) as follows:

J(r) = jωκD(r) = jω(ϵ− ϵ0)E(r), r ∈ V (6.2)

and

Esca(r) = −jωµ0

∫
V
G(r, r′)J(r′)dV ′+

∇
jωϵ0

∫
V
G(r, r′)∇′·J(r′)dV ′ (6.3)

where G(r, r′) denotes the free-space Green’s function; µ0 and ϵ0 represent

the free-space permeability and permittivity, respectively; ϵ is the permit-

tivity in the dielectric object; and κ = (ϵ − ϵ0)/ϵ identifies the contrast

ratio of the material of the scatterer and its background medium.

To ensure the continuity of the normal component of the electric flux

density inside the dielectric objects, electric flux density D in the p-th cell,
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denoted as the displacement vector Dp, expanded as

Dp =
1

jω

N∑
m=1

Ipmf pm (6.4)

and the volume current in the p-th cell can be written as

Jp =
N∑

m=1

Ipmκf pm (6.5)

where f pm denotes the SWG basis functions associated with the m-th vol-

ume basis functions of the p-th cell, N is the number of SWG basis func-

tions, and Ipm are the unknown coefficients. Next, we employ the Galerkin

procedure to test the volume integral equation to obtain the matrix equa-

tion: (
Zpq

)
(Iq) = (V p) . (6.6)

The elements of the impedance matrix Zpq can be expressed as

Zpmqn =
1

jω
< f pm ,

1

ϵ
f qn > +jωµ0 < f pm ,Aqn >

− 1

jωϵ0
< f pm ,∇ϕqn > (6.7)

where

Aqn =
∫
Vqn

G(κf qn)dV
′ (6.8)

ϕqn =
∫
Vqn

G∇′ · (κf qn)dV
′. (6.9)

For an array with M unit cells and N basis functions are associated with

each of these cells, the dimension of the linear equation MN can be large,

which may prevent a direct solution of the equation since the memory

requirement and the CPU time estimates are O[(MN)2] and O[(MN)3],

respectively. To circumvent this problem, we employ macro-basis func-

tions, such as the CBFs, to reduce the number of unknowns. The CBFM
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algorithm divides the original geometry into a number of subdomains and

then constructs the CBFs for each of these subdomains. Since the problem

at hand is a truncated periodic array, we can define each cell as a sub-

domain, enabling us to construct just a single set of the CBFs — a key

feature of the CBFM — and subsequently use it for all the cells, solving

the scattering problem for arbitrary incident angles.

Figure 6.1: CBFs are obtained through currents induced in one unit cell
under NPWS plane waves.

To construct such universal CBFs, we illuminate the unit cell with

plane waves, incident from NPWS angles (see Fig. 6.1), and consider both

vertical and horizontal polarizations. The number NPWS should be suffi-

ciently large to ensure that the current distribution induced on the scatterer

for an arbitrary incident angle and polarization can always be expressed

as a linear combination of the NPWS CBFs. Typically, the set of CBFs

are over-determined, and we perform SVD in order to remove the redun-

dancy and improve the conditioning number of the reduced matrix, which

we would generate later by using the CBFs. Fig. 6.2 shows the typical nor-

malized singular value distribution versus the index of singular values for

a spherical scatterer, whose dimensions are given in the numerical result

section. Based on previous experience, we choose the threshold value for

the normalized singular value to be 10−3. Let us denote K as the index
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Figure 6.2: Typical normalized singular value as a function of singular value
index.

above which the normalized singular value falls below 10−3. We construct

the CBFs by solving the matrix equation:

Z · IPWS = V PWS (6.10)

where Z denotes impedance matrix for a unit cell, and V PWS denotes the

NPWS plane wave excitations. Next, we use the SVD to express the set of

solutions IPWS as

IPWS = U S V
H

(6.11)

and we retain the K columns from the left singular value matrix U whose

singular values are above the threshold. As mentioned earlier, this process

not only removes the redundancy from the original solution, but serves to

improve the condition number of the reduced matrix as well.

For the p-th cell, the current can be written as Jp = I · αp where

αp = (α1
p, . . . , α

K
p )

T are unknowns to be determined by solving the reduced
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matrix equations. The cell impedance matrix elements (denoted by the

superscript C) can be written as

Z
C

pq = I
T
ZpqI. (6.12)

Thus, the reduced matrix equations can be written as Eqn. (6.13). When

KM is large, the matrix equation may not lend itself to a direct so-

lution since the memory requirement and computational complexity are

O((KM)2) and O((KM)3), respectively. However, we can use a fast itera-

tive solver, such as the AIM, to reduce the memory requirement as well as

the CPU time.

The underlying concept in the AIM algorithm is to compute the near-

zone interaction directly, and approximate the far zone interactions by using

the FFT. Since the number of near-zone interactions is small, and the FFT

operation is very efficient, both the memory, and the computational time

can be significantly reduced. The AIM algorithm can take advantage of

the translational invariance of the Green’s function, whether it be free-

space or multilayer type. Using the conventional AIM, the matrix vector

multiplication can be given by

ZX = W H P X +Z
near

X (6.14)

where W is the interpolation matrix, H is the Green’s function matrix,

P is the projection matrix, and Z
near

is the near-zone correction matrix.

For the far zone interaction, the block impedance matrix between p-th and
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q-th cell can be approximated as

Zpq ≈ Z
far

pq = W pHpqP q. (6.15)

Thus, for the cell interaction in the far zone, we have

Z
C

pq = I
T
ZpqI

≈ I
T
W pHpqP qI

=W
C

p HpqP
C

q (6.16)

where W
C

p and P
C

q are the interpolation and projection matrices for the

CBFs of p-th and q-th cells, respectively. They can be written explicitly as

W
C

p = I
T
W p (6.17)

P
C

q =P qI. (6.18)

Next, we use the CBFM/AIM to write the matrix vector multiplication,

written as

Z
C ·XC = W

C ·H · P C ·XC +Z
C,near ·XC (6.19)

whose implementation entails the use of the following four steps:

1. Summing up all the projections from all of the basis functions within

each cell;

2. Evaluating the potentials at other grid locations produced by these

grid-projected sources by using a 3-D convolution;

3. Interpolating the grid-point potentials onto each cell rather than in-

dividual testing functions;
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4. Computing the near-field interactions directly for the cells in the im-

mediate vicinity.

6.2 Complexity Analysis for CBFM/AIMAl-

gorithm

In this section, we present a brief analysis of the computational complexity

as well as memory requirement of the CBFM/AIM algorithm.

We begin by estimating the computational complexity of the algorithm.

In the step to obtain the CBFs, we need to solve Eqn. (6.10). If we were

to use a direct solver, the computational time would be O(N3), where N

denotes the number of unknowns in a unit cell. However, the computational

time reduces to O(N logN) if we use the AIM algorithm instead. Next we

estimate the computational complexity of the SVD process for obtaining

the CBFs. It is known to be C1NN2
PWS = O(N), where C1 is a constant

and NPWS is the number of plane wave excitations. For the near-zone

interactions, the interaction of each CBF in a given cell with each CBF in

the neighboring cell needs to be counted. Therefore, the computational cost

in each iteration step is approximately (C2K) ·(KM) = O(M), where C2 is

the number of near-neighbors of a given cell, K is the index above which the

normalized singular value falls below the threshold, and M is the number of

cells in the entire array. Since there are only M cells, the projection process

for all of the cells requires O(M) operations. The computational cost of the

FFT process is O(Ng logNg) = O(M logM), where Ng is the number of

grids enclosing the computational domain, which is proportional to number

of cells M . Similar to the projection process, the interpolation process also

needs O(M) operation. Adding these together, the total computational
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complexity can be expressed as

C =O(N logN) +O(N) +O(M) +O(M logM)

=O(N logN) +O(M logM). (6.20)

Next, by following a similar procedure, we can estimate the memory re-

quirement for the new algorithm. The memory required to construct the

CBFs is O(N2) if the entire matrix is stored and O(N) if the AIM is used.

The memory requirement for the SVD process is O(N). To compute the

near-region interactions between the elements, we need a memory of O(K2),

which is usually negligible. The memory requirements for the projection

and interpolation matrices are O(M). The memory requirement of the

FFT matrix is O(Ng). Hence, the total storage requirement is estimated

to be

M=O(N) +O(N) +O(K2) +O(M) +O(Ng)

=O(N) +O(M). (6.21)

We note from the above equation that both the computational complexity

and the memory requirement are comprised of two parts. The first of these

is related to M , the number of cells in the periodic array, while the second

is related to N , the number of basis functions in a cell, which can be very

large when either the permittivity of the dielectric scatterer or its volume is

large or when a cell is comprised of a large number of scatterers. Numerical

results will be presented in the next section to validate the above analysis.
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6.3 Numerical Results Involving CBFM/AIM

In this section, we present a number of illustrative examples to demonstrate

the accuracy and efficiency of the CBFM/AIM algorithm. We employ a

GMRES solver for the iteration and terminate the iterative solution process

when residual falls below 10−3.

6.3.1 2D-Array Results

Figure 6.3: Structures used in the examples. (a) A 4× 4 sphere array; (b)
a 2 × 2 × 2 sphere array; and (c) a 4 × 4 cylinder array; (d) a 4 × 4 cube
array.

The first example is a 2 × 2 array located in the x-y plane, and each

cell of the array is a sphere with radius 0.2λ0 and ϵr = 2. The periodic-

ity is 0.6λ0 in both the x- and y-dimensions. We consider the case of a

θ-polarized plane wave with an incident angle θinc = 0o, ϕinc = 0o. We com-

pare CBFM/AIM result with one from the conventional AIM. Fig. 6.4(a)

compares the bistatic RCS, while Figs. 6.4(b) and (c) present a comparison

of the magnitudes of the electric fields, calculated at a plane located at a

distance of z = 0.1λ below the array. An excellent agreement between the
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two confirms the accuracy of the CBFM/AIM algorithm for the 2D-array

problem in consideration.

In order to demonstrate that the CBFM/AIM is accurate with vary-

ing array size, the shape of the unit cell, the constitutive parameters, the

incidence of plane wave and the spacing between each cell, we investigated

many cases as shown below. For the examples below, we vary one parame-

ter while keep other parameters fixed. By default, the examples are a 4×4

sphere array with other parameters shown in the first example.

In the first case, we considered the effect of the array size to the accu-

racy of our CBFM/AIM solver. Here, we considered arrays of sizes 3 × 3

and 4× 4. We calculated both far field RCS and the magnitude of electric

field in the z = 0.1λ0 plane below the array. We compared CBFM/AIM re-

sult with one from the conventional AIM. The results are shown in Fig. 6.5

and Fig. 6.6. An excellent agreement between the CBFM/AIM and con-

ventional AIM confirms that the accuracy of the CBFM/AIM algorithm is

not affected by the size of the 2D-array problems under consideration.

In the second case, we investigated the effect of the shape of the unit cell

on the accuracy of our CBFM/AIM solver. We considered two examples:

the first one is a cylinder array shown in Fig. 6.3(c) with the radius of

the cylinder 0.2λ0 and the height 0.4λ0, the second one is a cube array

Fig. 6.3(d) with the dimension 0.4λ0. We calculated both far field RCS

and the magnitude of electric field. For the cylinder array, we calculated

the electric field in the z = 0.2λ0 plane above the array. For the cube

array, we calculated the electric field in the z = 0.5λ0 plane below the

array. We compared CBFM/AIM result with one from the conventional

AIM. The results of the cylinder array are shown in Fig. 6.7. The results

of the cube array are shown in Fig. 6.8. An excellent agreement between

the CBFM/AIM and conventional AIM confirms that the accuracy of the
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Figure 6.4: Far field RCS and magnitude of electric field calculated for 2×2
sphere array. (a) Bistatic RCS in the x-z plane; (b) electric field calculated
by CBFM/AIM; (c) electric field calculated by AIM.
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Figure 6.5: Far field RCS and magnitude of electric field calculated for a
3 × 3 sphere array. (a) Bistatic RCS in the x-z plane; (b) electric field
calculated by CBFM/AIM; (c) electric field calculated by AIM.
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Figure 6.6: Far field RCS and magnitude of electric field calculated for a
4 × 4 sphere array. (a) Bistatic RCS in the x-z plane; (b) electric field
calculated by CBFM/AIM; (c) electric field calculated by AIM.
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CBFM/AIM algorithm is robust against the variation of cell shape of the

2D-array problems under consideration.

In the third case, we investigated the effect of spacing between the unit

cell on the accuracy of our CBFM/AIM solver. We considered two spacing:

0.1λ0 and contacting elements. We calculated both far field RCS and the

magnitude of electric field in the z = 0.1λ0 plane below the array. We

compared CBFM/AIM result with one from the conventional AIM. The

results of the array with 0.1λ0 spacing are shown in Fig. 6.9. The results

of the array with contacting elements are shown in Fig. 6.10. Excellent

agreement between the CBFM/AIM and conventional AIM confirms that

the accuracy of the CBFM/AIM algorithm is robust against the variation

of spacing of the 2D-array problems in consideration.

In the fourth case, we investigated the effect of the direction of plane

wave incidence on the accuracy of our CBFM/AIM solver. We considered

two directions: θi = 135o and θi = 90o while ϕi = 0o, the plane waves are

θ-polarized. We calculated both far field RCS and the magnitude of electric

field in the z = 0.1λ0 plane below the array. We compared CBFM/AIM

result with one from the conventional AIM. The results of the array with

θi = 135o are shown in Fig. 6.11. The results of the array with θi = 90o are

shown in Fig. 6.12. An excellent agreement between the CBFM/AIM and

conventional AIM confirms that the accuracy of the CBFM/AIM algorithm

is robust against the variation of the direction of plane wave incidence.

In the last case, we investigated the effect of the constitutive parameters

of the unit cell on the accuracy of our CBFM/AIM solver. We considered

two parameters: ϵr = 4 and ϵr = 6. We calculated both far field RCS

and the magnitude of electric field in the z = 0.1λ0 plane below the array.

We compared CBFM/AIM result with one from the conventional AIM.

The results of the array with ϵr = 4 are shown in Fig. 6.13. The results
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Figure 6.7: Far field RCS and magnitude of electric field calculated for a
4 × 4 cylinder array. (a) Bistatic RCS in the x-z plane; (b) electric field
calculated by CBFM/AIM; (c) electric field calculated by AIM.
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Figure 6.8: Far field RCS and magnitude of electric field calculated for
a 4 × 4 cube array. (a) Bistatic RCS in the x-z plane; (b) electric field
calculated by CBFM/AIM; (c) electric field calculated by AIM.
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Figure 6.9: Far field RCS and magnitude of electric field calculated for a
4× 4 sphere array with 0.1λ0 spacing between each cell. (a) Bistatic RCS
in the x-z plane; (b) electric field calculated by CBFM/AIM; (c) electric
field calculated by AIM.
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Figure 6.10: Far field RCS and magnitude of electric field calculated for
a 4 × 4 sphere array with contacting elements. (a) Bistatic RCS in the
x-z plane; (b) electric field calculated by CBFM/AIM; (c) electric field
calculated by AIM.
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Figure 6.11: Far field RCS and magnitude of electric field calculated for a
4×4 sphere array incident by plane wave with θi = 135o . (a) Bistatic RCS
in the x-z plane; (b) electric field calculated by CBFM/AIM; (c) electric
field calculated by AIM.
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Figure 6.12: Far field RCS and magnitude of electric field calculated for a
4× 4 sphere array incident by plane wave with θi = 90o . (a) Bistatic RCS
in the x-z plane; (b) electric field calculated by CBFM/AIM; (c) electric
field calculated by AIM.
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of the array with ϵr = 6 are shown in Fig. 6.14. Excellent agreement

between the CBFM/AIM and conventional AIM confirms that the accuracy

of the CBFM/AIM algorithm is robust against the variation of constitutive

parameters of the 2D-array problems in consideration.

6.3.2 Efficiency for 2D-Array Problems

Our next step is to investigate the efficiency of the CBFM/AIM algorithm.

Fig. 6.15(a) and Fig. 6.15(b) display the CPU time and memory, respec-

tively, as we progressively increased the number of unknowns. It is evident

from the figures that the CBFM/AIM algorithm outperforms conventional

AIM, both in memory and computational time. We also note that the

memory requirement and computational time remains the same even when

the number of unknowns increases up to 106. This can be attributed to

the overhead involved in the setup process, which includes the evaluation

of the generation of the CBFs, the projection, the interpolation operation

and the evaluation of the near-zone impedance matrix dominates the entire

solution process and, hence, renders the overhead of the setup process to be

relatively independent of the size of array. With the increase in the number

of unknowns, the matrix-vector multiplication process begins to dominate

the solution process, and the overhead of this process becomes proportional

to the number of unknowns. The computational statistics of CBFM/AIM

for 2D arrays are listed in Table 6.1. It is evident, from this table, that the

number of CBFs is much smaller than the number of original unknowns,

and the memory requirement is smaller than 1 GB even when the number

of unknowns reaches 20 million. The total time required to solve a problem

involving over 20 million unknowns problem is around 1 hour.
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Figure 6.13: Far field RCS and magnitude of electric field calculated for
a 4 × 4 sphere array with ϵr = 4 . (a) Bistatic RCS in the x-z plane;
(b) electric field calculated by CBFM/AIM; (c) electric field calculated by
AIM.
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Figure 6.14: Far field RCS and magnitude of electric field calculated for
a 4 × 4 sphere array with ϵr = 6 . (a) Bistatic RCS in the x-z plane;
(b) electric field calculated by CBFM/AIM; (c) electric field calculated by
AIM.
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Figure 6.15: Relationship between number of unknowns, (a) computational
time and (b) memory requirement for 2D arrays.
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Table 6.1: Computational statistics of CBFM/AIM for various 2D arrays
simulations

size of total number of total number of memory total time

array unknowns CBFs (MB) (hh:mm:ss)

20× 20 1.0M 0.02M 69 00:03:52

40× 40 4.1M 0.09M 113 00:09:04

60× 60 9.2M 0.21M 188 00:16:07

80× 80 16.3M 0.38M 291 00:32:13

100× 100 25.5M 0.59M 424 01:06:08

6.3.3 3D-Array Cases

Having demonstrated the accuracy and efficiency of the CBFM/AIM al-

gorithm in solving the 2D-array type of scattering problems, we go on

to investigate its capability to handle 3D-array problems. Toward this

end, we consider an example which analyzes a 2 × 2 × 2 array shown in

Fig. 6.3(b). We calculate the RCS as well as the near field behavior for

this geometry, and then compare them with the conventional AIM results

displayed in Fig. 6.16; an excellent agreement is observed again. Next, we

investigate the efficiency of the CBFM/AIM for this example. The com-

putational complexity versus the number of unknowns for the 3-D case are

similar to those for the 2-D case, namely that CBFM/AIM is numerically

more efficient as well as less burdensome on the memory than the AIM

approach alone. Fig. 6.17(a) and Fig. 6.17(b) display the comparison be-

tween CBFM/AIM and AIM in CPU time and memory, respectively, as we

progressively increased the number of unknowns.

6.3.4 Large 2D and 3D Array Problems

Finally, to demonstrate the capability of the proposed method to solve large

problems, we analyze two large-array problems. The first one of these is a
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Figure 6.16: Far field RCS and magnitude of electric field calculated for
a 2 × 2 × 2 sphere array shown in Fig. 6.3(b). (a) Bistatic RCS in the
x-z plane; (b) electric field calculated by CBFM/AIM; (c) electric field
calculated by AIM.
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Figure 6.17: Relationship between number of unknowns, (a) computational
time and (b) memory requirement for 3D array.
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Table 6.2: Computational statistics of CBFM/AIM for various 3D array
simulations

size of total number of total number of memory total time

array unknowns CBFs (MB) (hh:mm:ss)

5× 5× 5 0.3M 0.01M 58 00:09:04

10× 10× 10 2.5M 0.06M 83 00:18:08

15× 15× 15 8.6M 0.20M 151 00:49:05

2D-array of a 100 × 100 spherical elements with 25.48 million unknowns.

The far field RCS is shown in Fig. 6.18. It requires only 424 MB memory

and one hour to solve the problem.
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Figure 6.18: Bistatic RCS in x-z plane for a 100×100 spherical array under
normal incidence of plane wave with k in the -z direction and E in the +x
direction.

The second one is a 15× 15× 15 array with 8.6 million unknowns, its

far field RCS is shown in Fig. 6.19. It requires only 151 MB memory and

one hour to solve the problem.
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Figure 6.19: Bistatic RCS in x-z plane for a 15 × 15 × 15 spherical array
under normal incidence of plane wave with k in the -z direction and E in
the +x direction.
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Chapter 7

Conclusion for the Thesis

In this thesis, the AIM solvers are developed for the electromagnetic scat-

tering by large-scale objects with composite materials and large-scale finite

periodic arrays. The scattering problems are characterized using the sur-

face integral equation method, the volume integral equation method, and

the hybrid volume-surface integral equation method. The MoM is applied

to discretize the integral equations and solve the resultant matrix equation

using an iterative solver. However, the MoM is inadequate when used to

solve large-scale electromagnetic problems. The AIM is used to acceler-

ate the matrix-vector multiplication in iterative solvers and to reduce the

memory requirement for matrix storage.

In Chapter 3, we have developed the AIM solver for the electromagnetic

scattering problems of large-scale objects with chiral materials, which is

formulated by using SIE. In the first section, we derive formulations of

fields-source relationship in an unbounded chiral medium which forms the

theoretical basis for later sections. It is clear that the unbounded chiral

medium can be equivalent to two dielectric media, and in the unbounded

chiral medium, the fields can be written as the sum of right-handed and

left-handed fields. Therefore, surface integral equation for chiral media can
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be derived. In the second section, we derive integral equations for a chiral

object, mixed chiral objects and composite chiral and conducting objects

respectively. In the third section, the MoM is used to discretize the integral

equations into matrix forms and then the AIM is modified to accelerate

the solution process and reduce the memory requirement. The Numerical

examples have been presented to show the accuracy and efficiency of our

code in solving the electromagnetic problems of chiral media.

In Chapter 4, we have formulated the scattering problems of compos-

ite bi-anisotropic and conducting objects using the hybrid VSIE method.

First, we show the constitutive relations for the most general bi-anisotropic

media. Second, we derive the VIE for fields inside the bi-anisotropic me-

dia and the VSIE when conducting objects are considered. Third, we use

the MoM to discretize the integral equations and apply the AIM to accel-

erate the solution process and reduce the memory requirement. We have

presented several numerical examples to demonstrate the accuracy and

applicability of the AIM in solving the scattering problems of composite

bi-anisotropic and conducting objects.

In Chapter 5, an extended AIM algorithm has been developed based on

the ASED basis functions to solve problems of electromagnetic scattering

by large-scale finite periodic arrays comprising of metallic and dielectric

objects. The VSIE is used to characterize the scattering property of pe-

riodic arrays. Two steps are needed in the ASED-AIM to solve the large

array problems. The first step is to solve a small-scale problem with nine

cells. We obtain the ASED basis function after the first step is completed.

In the second step, we use the ASED basis function for each cell and then

solve the entire problem. The AIM has been modified to incorporate the

ASED basis function which reduces the memory requirement and compu-

tational time significantly in solving the array problems. Numerical results
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demonstrate the accuracy of the ASED-AIM in comparison with conven-

tional AIM in solving finite array problems. Several large-scale examples

are also considered to illustrate its efficiency.

Although ASED-AIM is accurate in capturing the far field RCS info,

it is less accurate in the calculation of near field parameters. In order

to obtain the near field info, we developed CBFM/AIM method, which is

accurate in obtaining both the far field and near field info. In Chapter 6,

we presented a new approach that combines the CBFM with the AIM to

solve the problem of truncated periodic arrays, which may be either two-

or three-dimensional in nature. The generation of the CBFs is carried out

efficiently by taking advantage of the identical nature of the elements of

the array. Another important feature of the CBFM is that the size of the

reduced matrix is typically much smaller than the number of low-level basis

functions. It has shown that the memory requirement and the solve-time

can be reduced by incorporating the AIM algorithm in the CBFM. Several

numerical examples have been presented to demonstrate its accuracy in

calculating both near field and far field info as well as its efficiency. The

capability of the proposed technique to solve large problems have been

adequately demonstrated via several illustrative examples.
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