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Summary 

 

Blur is a typical image artifact when pictures are taken with long exposure or with 

moving objects. A lot of research has been carried out on the topic of image 

deblurring. Many methods assume each pixel in the image undergoes the same 

amount of blur. However, the relative motion between a camera and the scene often 

causes spatially varying blur which is different at every pixel. Although it is observed 

that most of the image blurs are spatially variant in recent works (1), there is no 

existing model to represent or to reduce spatially varying  blurs.  

This thesis addresses the problem of modeling and correcting spatially varying image 

blurs caused by rigid camera motion. It first presents a new Projective Motion Blur 

Model which models a blurred image as an integration of a sequence of projectively 

transformed clear images. These projective transformations describe the camera’s 

motion during exposure. This formulation is derived according to the physical cause 

of the blurring effect and also offers a compact representation of the spatially varying 

blur. Subsequently, we propose the Projective Motion Richardson-Lucy (RL) 

algorithm to recover a clear image from an image undergoing spatially varying blur. 

We also incorporated state-of-the-art regularization image priors to improve 

deblurring results.  

We further investigated the deblurring problem when multiple blurred images of the 

same scene are available. To make use of complementary information in different 
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images, these blurred images must be registered to each other. However, existing 

image registration algorithms only apply on clear images. Hence, we propose a 

method to align blurred images. The algorithm in this thesis uses frequency domain 

properties of the blurred images for alignment, which is both efficient and effective. 

The key feature of this method is that it could align motion blurred images.  
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Chapter 1.   

Introduction 

 

1.1.  Modeling and Correcting Spatially Varying Motion Blur 

Motion blur is an artifact in photography caused by relative motion between the 

camera and an imaged scene during exposure. Ignoring the effects of defocusing and 

lens distortion, each point in the scene is imaged into its point spread function (PSF), 

sometimes also called the “blur kernel”, which describes the relative motion 

trajectory at that pixel position. Image deblurring, to recover a clear image from a 

blurry input, is a well studied problem and is known to be ill-posed that multiple 

different clear images can produce the same blurred image by convolution with an 

appropriate kernel. Nonetheless, this problem has received extensive study because of 

its utility in photography. A common assumption in motion deblurring is that the 

motion is spatially invariant so that each pixel, regardless of its position, shares the 

same global PSF. This assumption implies that the motion blur effect is caused by the 

camera’s translational motion.  Then the blurred image can be expressed as a 

convolution between the clear image I and blur kernel K, plus noise n:  

   = I ⊗ K + n (  1-1) 

The goal of image deblurring is to reconstruct the clear image I from a degraded 

image B. If both kernel and true image are unknown, the deblurring is called blind 
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deconvolution; if only the true image is unknown and blur kernel is known, the 

deblurring technique is called non-blind deconvolution. Well known non-blind 

deblurring algorithms include Richardson-Lucy (RL) algorithm (2) (3) and Wiener 

filter (4). While these algorithms can produce deblurred results, they often suffer from 

artifacts such as ringing due to frequency loss and poor PSF estimation. Recent works 

focus on how to improve deblurring results by imposing various image priors to 

better estimate of the PSF and to suppress ringing artifacts. Fergus et al (5) proposed 

a blind deconvolution technique by using natural image statistics to estimate a more 

accurate PSF. Several regularization terms were used to reduce artifacts during 

deblurring process, Dey et al (6) introduced total variation regularization in the RL 

algorithm, Levin et al (7) introduced the gradient sparsity prior and Yuan et al (8) 

proposed bilateral regularization on progressive multi-scale approach.  Shan et al (9) 

introduced regularization based on high order partial derivatives to constrain image 

noise. An evaluation on the state-of-the art deblurring algorithms was presented in 

Levin et al. (1). Other recent methods improved deblurring results relying on multiple 

images or special hardware setups. For example,   Yuan et al (10) used noisy and 

blurred images pair, Rav-Acha and Peleg (11) and Chen et al (12) used blurred 

images pair. Raskar et al (13), (14) coded the exposure to make the PSF more 

suitable for deconvolution.  Ben-Ezra and Nayar (15) (16) proposed a hybrid camera 

to capture a high resolution blurred image together with a low resolution video which 

was used to provide an accurate estimate of PSF. 

All these works assumed the blur is spatially invariant. However, in many cases, the 

PSF varies spatially over the degraded image. Early work by Sawchuk (17) addressed 
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spatially varying motion blur by image coordinate transformations, e.g. log-polar 

transformation, which transformed rotational motion into a spatially invariant 

representation and then solved it by conventional spatially invariant deconvolution 

algorithms. Another strategy was to segment the blurred image into multiple regions, 

each with a constant PSF (7) (18) (19) (20). However, this is difficult even in simple 

cases of rotation or zooming of the camera. Shan et al (21) handled spatially varying 

blur by restricting the relative motion to global rotation. Joshi et al (22) estimated a 

PSF at each pixel for images with defocus blur. Special hardware setups were also 

used to handle spatially varying blur. Tai et al (23) (25) extended the hybrid camera 

framework in (15) (16) to estimate a PSF at each pixel using optical flow.  

On the other hand, as recently discussed by Levin et al (1), the global PSF assumption 

for blurred images caused by camera motion is inaccurate for practical purposes. In 

their experiments, images taken by a handhold camera with motion blur exhibited 

notable amounts of camera rotation which causes the motion blur to be spatially 

varying within the image. As a result, Levin et al (1) advocated the need for better 

motion blur models as well as image priors to improve the deblurred results.   

In view of the need of dealing with spatially varying blur, we propose a new model 

which is able to describe spatially varying blur caused by camera motion during 

exposure. The new blur model is referred to as “Projective Motion Blur Model”. It 

represents the degraded image as an integration of the clear scene under a sequence of 

projective motions.  The benefits of this model are that 1) it describes the spatially 

varying blur on the whole image and 2) it does not require storing a different PSF at 

every pixel to describe the blur. During deblurring, it is not necessary to segment the 
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image into regions of locally invariant blur as in several previous works. However 

this blur model also has a drawback. Because this approach is not based on 

convolution with a PSF, it is very hard to be analyzed in the frequency domain. 

Another contribution of this project is a non-blind deblurring algorithm according to 

the proposed blur model. We extended the Richardson-Lucy (RL) algorithm to 

correct spatially varying motion blur under this novel “Projective Motion Blur 

Model”.  The modified RL algorithm is referred to as “Projective Motion Richardson-

Lucy algorithm”. To reduce the ringing artifacts in the result, regularizations derived 

from image priors can be incorporated, as in the conventional RL algorithm.   

In summary, this thesis focuses on developing the projective motion blur model and 

the non-blind deblurring algorithm.  The assumptions are: 1) the motion of the camera 

is known; 2) the scene is distance and static, so that the camera motion satisfies our 

Projective Motion Blur Model. Potential methods for accurately estimating the 

projective motion are briefly discussed as well.    

 

1.2.  Blurred Image Alignment 

Multiple blurred images of the same scene provide complementary information for 

deblurring, e.g. two blurred images were used to estimate a clear image in (12), and 

blurred/noisy image pair in (10). To overcome the difficulty of spatially varying blur, 

we propose to use multiple images as well. But this requires an alignment 

(registration) among these images in preprocessing stage. Image alignment is a 
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fundamental task that is used widely in many multi-image applications, such as image 

stabilization, image enhancement, panorama, satellite photo stitching and many other 

graphical applications. Traditional image alignment techniques include pixel-based 

method and feature-based method. A comprehensive review of image alignment can 

be found in (25). However traditional image alignment methods only work with clear 

images. Applying them to blurred images will lead to incorrect alignment especially 

when the blur is significant.   

The alignment on blurred images is non-trivial.  One approach is to first deblur the 

image. Rav-Acha et al (26) (11) proposed that by limiting the blur kernel to be one 

dimension, alignment and deblurring can be solved simultaneously.  Flusser and Suk 

(27) proposed a moment-based invariant to align blurred images with a centrally 

symmetric blur kernel. However, centrally symmetric kernel is more likely to happen 

in out-of-focus blur and is very rare in motion blur. So far there is no blur-invariant 

feature for an arbitrary shape kernel. To align arbitrary motion blurred image, Yuan et 

al (28) introduced a method to align Blurred/Non-Blurred image pair using the 

kernel’s sparseness prior.  Yuan et al (28) also observed the need for new method to 

align two blurred images.  

A simple and effective method is presented in this thesis to align two blurred images. 

Neither deblurring the images nor estimating the blur kernel, our method makes use 

of the fact that there are three color channels in one color image and all channels must 

have the same blur kernel.  Using this property, this project shows the alignment of 

two blurred images can be solved by aligning two unknown kernels in Fourier 

Domain. The blur kernel is assumed to be spatially invariant, and this method can 
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align two blurred images up to any affine transformation in principal. In this thesis, 

only alignment under similarity transformation is tested, due to limitation of the 

computational power, 

 

1.3.  Organization of this Thesis 

This thesis is organized in the following manner:  Chapter 2 is a literature review on 

the research topics on image alignment and deblurring, Chapter 3 describes the 

Projective Motion Blur Model and Projective Motion RL algorithm with 

implementation details. Chapter 4 provides an analysis on deblurring result, including 

the convergence properties of proposed algorithm and its sensitivity to noise. 

Projective Motion RL algorithm’s limitation and further research directions are also 

discussed in Chapter 4.   Chapter 5 presents the Blurred image alignment algorithm 

with analysis on its accuracy.  This thesis concludes in Chapter 6. 
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Chapter 2.   

Literature review  

 

2.1.  Image Coordinates 

To facilitate working on images with different resolutions, it is better to normalize the 

coordinates to [-1, 1] along x axis and [-a, a] along y axis, where ‘a’ is the aspect ratio. 

As shown in Figure 2-1, an image with size W × H and pixel coordinates   = ( ̅,  ) 

is mapped to normalized coordinates  = ( , ) , or  = ( , , 1)  in homogeneous 

coordinates.  Throughout this thesis, normalized homogeneous coordinates is used 

when referring to pixel coordinates.  

 

Figure 2-1: Mapping from pixel coordinates to normalized coordinates 
 

2.2.  Planar Transformations 

Various 2D planar transformations are shown in Figure 2-2 (29).  
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Figure 2-2 Planar transformations 

    
Translation: 2D translations can be written as   =  +   or 

   =     1    (  2-1) 

where I  is the 2×2 identity matrix. and  = (  ,   )′ 
Rotation + translation: This is also known as Euclidean transformation, since 

Euclidean distance is preserved. It can be written as  

 
  =     1    

                 where           =  cos − sin sin cos   (  2-2) 

is an orthonormal rotation matrix with    =   and | | = 1 

Rotation + translation + scaling: Also known as the similarity transform, it 

preserves angles between lines which can be written as 

   =      1    =   −       0 0 1      (  2-3) 

where    is an arbitrary scaling factor.  

Affine Transformation: Parallel lines remain parallel under affine transformations.  

   =                    0 0 1      
(  2-4) 
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Projective Transformation: This is also known as perspective transformation or 

homography.  

   =                                   (  2-5) 

   

2.3.  Traditional Pixel-based Image Alignment (Registration) 

Traditional Image alignment can usually be categorized into pixel-based and feature-

based alignments. Feature-based registration is more robust in general. However, 

when dealing with blurred image, most feature-based methods will fail as it is often 

hard to extract features or to keep the features invariant under blur, e.g. Harris corners 

and SIFT are not blur invariant according to a recent work by Yuan el al (28) “so far 

there is no blur-invariant feature for an arbitrary shape kernel”. Therefore this section 

will only talk about pixel-based alignment.  

Error metrics is the simplest way to align two images with relative translational 

motion. Given a template image I0(x) sampled with discrete pixel locations { xi = (xi ,yi ) } , the solution is to find the minimum of the cost function 

  ( ) =      (  +  ) −   (  )  =   (  )  (  2-6) 
 

where    is called residual error.   (∙)  can be absolute, square or other robust 

functions. 

Normalized cross-correlation is to find the maximized product of the two aligned 

image  



PROJECTIVE MOTION RICHARDSON-LUCY ALGORITHM & 
BLURRED IMAGE ALIGNMENT  GAO LONG 2010 

 

10 
 

  ( ) = ∑ |  (  +  ) −    | ∙ |  (  ) −    | = ∑ |  (  +  ) −    | ∙ |  (  ) −    |   
(  2-7) 

where    =   ∑   (  )  is the mean of the image. This method is invalid when either 

image has zero variance, as in that case denominator becomes zero. In fact, 

performance degrades in the case of low-contrast and noisy images. 

Fourier Domain 

If two images are related by a translation  = (  ,   ), which can be represented by      +   , +    =   ( ,  ). In Fourier Domain, it becomes 

   ( ,  ) =      (       )  ( ,  ) (  2-8) 

The cross-power spectrum is defined as 

  ( ,  ) =     ∗|    ∗| =     (       ) (  2-9) 

where * denotes complex conjugate. The translation can be found by applying inverse 

Fourier transform.   

 (  ,   ) =    max ,    ( ( ,  )) 
(  2-10) 

This technique is called phase correlation (29). 

If the two images also cantain rotations and scalings, it also can be solved in log-polar 

representations (30).   

In case of rotation,   ( , ) =   ( cos ′ +  sin ′ −   ,  cos ′ −  sin ′ −   ). In  

Fourier Domain it becomes 

  ( , ) =                 ( cos ′ +  sin ′ ,  cos ′ −  sin ′) (  2-11) 

By taking the magnitudes of  0 and  1,  
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   ( , ) =   ( cos  ′+  sin ′ ,  cos ′ −  sin ′) (  2-12) 

The magnitudes of the two spectra differ by a rotation. It can be converted to the 

translational case by using polar representation 

   ( , ) =   ( , −  ′) (  2-13) 

In a similar way, the scaling case   ( , ) =   (  ,   )  transforms into Fourier 

domain as  

   ( , ) = 1|  |  (  ,  ) (  2-14) 

which can be converted to translation movement using log representation, ignoring 

the multiplication factor 1/     
   ( ′, ′) =   (  −   ,   −  ′) (  2-15) 

where   = log( ) ,   = log( ) ,   = log( ) and   = log( ).  

Combining the translation, rotation and scaling (by single factor, i.e.a =  ) , the 

Fourier translation can be related by power magnitude in log-polar representation as: 

   ( ′,  ) =   (  −  ′,  −  ′) 
(  2-16) 

where   = log( ) and    = log( ). After removing rotation   and scaling factor   

in the images, translation can be recovered by phase correlation easily.  

The advantage of Fourier domain alignment is that it is more computationally 

efficient than that in pixel domain, especially after rotation and scaling transformation, 

but the two images have to be largely overlapped to make this algorithm work.  

 

2.4.  Non-Blurred /Blurred Image Pair Alignment.  
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As traditional alignment only works on clear images, Yuan et al (28) proposed this 

method to align a Clear/Blurred image pair, under the assumption that the image blur 

is caused by camera motion instead of out of focus blur. The main idea was to use the 

kernel’s sparseness prior to solve the alignment. Because clear image   and blurred 

image   were known, the blur kernel   can be solved by  

 

 =    min ‖ −  ⊗  ‖ + ‖ ‖  

subject to   ≥ 0 and     = 1 (  2-17) 

If the blur is caused by camera motion and the alignment is correct, the kernel   

should be sparse, as shown in Figure 2-3 (a). On the other hand, if alignment is 

incorrect, e.g. with an error of 0.7 degree, then estimated kernel by Equation (  2-17) 

could be much more noisy, as shown in Figure 2-3 (b).  It was also claimed that the 

true alignment produces the most sparse kernel (28). The alignment can then be 

solved by a coarse-to-fine brute force search. In (28), the alignment problem was 

resolved under affine transform by 4D search.  

  
(a)                           (b)  

Figure 2-3. Estimated kernel  
(a) by correct alignment, (b) with alignment error of 0.7° in rotation  

 

2.5.  Richardson-Lucy Deconvolution 

According to (2) (3), given the motion blurred image B and blur kernel K, the clear 

image I can be computed by Bayesian estimation. As all image intensities can be 
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normalized to range between 0 and 1, and the kernel entries sum to 1 (Figure 2-4). 

The pixel intensities can be treated as probabilities. As a result the blurred image  =  ⊗   can be represented as 

  (  ) =            (  ) (  2-18 ) 
 

where   (  ) =  ( ) ,      =  ( )  and          =  ( , )  is the value at   

position in the blur kernel centered at    position as shown in Figure 2-4 

 
Figure 2-4 Blur kernel   for pixel location x,  ∑  ( , ) = 1  

 

Therefore the pixel value of the clear image  (  ) can be computed according to 

pixel values of the blurred image  (  ) by the following formula.  

  (  ) =            (  ) 
(  2-19 ) 

 

By Bayes’ rule,          can be computed and  (  ) can be written as:  

  (  ) =           (  )∑           (  )  (  ) (  2-20 ) 

Both sides of this equation contain   (  ), which complicates the computation. To 

break the dependency, a general and acceptable practice is to make the best out of a 



PROJECTIVE MOTION RICHARDSON-LUCY ALGORITHM & 
BLURRED IMAGE ALIGNMENT  GAO LONG 2010 

 

14 
 

bad situation and to use a current estimation of  (  )  to approximate         . 

Hence an iterative algorithm is used as: 

 

                (  ) =            (  )∑            (  )       
=   (  )              ∑            (  ) =   (  )             

 
 

 
 (  2-21 ) 

where   is an iteration index. Under the conventional blur model that  =  ⊗  ,         =  ( ,  )  is the PSF at location y and ∑  ( , ) = 1 ,    =∑            (  ) =    ⊗   is the prediction of the blurred image according to 

estimated clear image   .   =     is the residual error (pixel-wise division) between 

the real blurred image and the predicted blurred image.  ∑             is the 

amendment term according to the residual, which can be computed by  ∗   . Here ⊗ and ∗  are convolution and correlation operators respecively. Hence the previous 

equation can be written as: 

     =   ×  ∗    ⊗  (  2-22 ) 

The Richardson-Lucy algorithm essentially minimizes the difference between the 

original blurred image    and the predicted blurred image     according to the 

Poisson noise model: 

 arg min  (  , ) 
(  2-23 ) 

where  ( ,  ) =      / !,  =  ′and  =   is the probability distribution function 

(pdf). Image noise is further assumed to be independent and identically distributed 
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(i.i.d.). In (3), Lucy showed that based on Poisson noise distribution,  ∗    ⊗  

converged to 1 and hence     =    as  → ∞, which is taken as a proof that the 

Richardson-Lucy algorithm converges.  

Other noise models, such as Gaussian model, also can be used. In this project, the 

approach used in (23) (31) is used to assume Gaussian noise model, taking log on 

both side of equation (  2-22 ) and re-define the variables to obtain 

     =   + ∗ ( −   ⊗  ) (  2-24 ) 

The convergence of equation (  2-24 ) was proved in (31). 

 

2.6.  Regulations  

The result derived in the previous section is a maximum likelihood with respect to 

Poisson or Gaussian noise models and imposes no regularization on the solution. The 

main problem is artifacts such as ringing.  Recent deblurring works (6), (32), (8)  

have shown that imposing certain images priors can significantly reduce the ringing 

artifact.   

Total variation 

The total variation (TV) regularization was introduced by Dey et al (6). The purpose 

of this regularization is to suppress image noise amplified during the deconvolution 

process by minimizing the magnitude of gradients in deblurred image: 
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    ( ) =   ‖∇ ( )‖    (  2-25 ) 

where ∇ ( ) is the first order derivative of   ( ) in x and y directions. Substituting 

this regularization term into Richardson-Lucy algorithm, the updating rule Equations 

(  2-22 ), (  2-24 ) become  

     =   1 −      ( ) × ∗    ⊗   (  2-26 ) 

and 

     =   +  ∗ ( −   ⊗ ) +      ( ) (  2-27 ) 

where     ( ) = −    |   |  and   is a parameter controlling the weight of 

regularization. As reported in (6),  = 0.002 was used in their experiments. 

Laplacian Regularization 

The Laplacian regularization, which is also called the sparseness prior, states that for 

the natural images their histogram of gradient magnitudes should follow a heavy-

tailed distribution such as the Laplacian distribution. The Laplacian regularization, 

suggested by (32) takes the following form: 

   ( ) =     (−1 |  | ) (  2-28 ) 

where   is a parameter controlling the shape of distribution, and term    is the 

variance of the image noise. In (32),   is set to 0.8 and  = 0.005. 

The updated rule is similar to Equations (  2-26 ) and (  2-27 ), by replacing     ( ) 
with    ( ) 
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    ( ) = −1     (−1 |  | )|  |       (  2-29 ) 

The implementation of (32) used a slightly different weighting scheme: 

    ( ) = − 1|  |       (  2-30 ) 

The effects of the two weighting schemes in Equations (  2-29 ) and (  2-30 ) are 

similar with larger regularization weight given to smaller gradient and vice versa. The 

effects of Laplacian regularization are to suppress noise and to reduce small ringing 

artifacts. It produces sharper edges comparing with the total variation method which 

tends to produce over-smooth results.  

Bilateral regularization 

In order to suppress ringing artifacts while preserving sharp edges, Yuan el al. (8) 

proposed an edge preserving bilateral regularization cost: 

   ( ) =     (‖ −  ‖ )(1 −   (‖ ( )−  ( )‖ )) ∈ ( )  
(  2-31 ) 

where Ω(x)  is the local neighborhood of x , and g (∙) ,  g (∙)  are two Gaussian 

functions with zero mean and variance of  σ   and σ   respectively.  

The updated rule is also similar to Equations (  2-26 ) and (  2-27 ), by replacing     ( ) with   ( ). According to (8)     ( ) is derived as  

    ( ) =     −       ∈ ( )  
(  2-32 ) 

    ( ) =   (‖ −  ‖ )  (‖ ( )−  ( )‖ ) ∙  ( )−  ( )   (  2-33) 
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The term    is a displacement operator which shifts the entire image     by the 

displacement vector ( −  ) . Equation (  2-32 ) actually calculates the overall 

intensity difference within a local neighborhood; therefore it is also referred to as  

“long range gradient”. The bilateral regularization reduces ringing artifacts 

significantly in the final deblurring result. 

 

2.7.  Deblurring Blurred/Noisy Image Pair  

This method was introduced by (10). Because the image blur is usually caused by 

long exposure time under low light environment, it was proposed to take one more 

image with higher ISO and shorter exposure time. Shorter exposure will provide a 

sharper image. However, high ISO often results in very noisy image because noise is 

also amplified.  By using both blurred and noisy images, a high quality image can be 

produced.  A clear image can be represented as the noisy image    with a lost detail 

layer ∆  , that is 

  =   + ∆  (  2-34 ) 

The the blurred image is  

  =  ⊗  (  2-35 ) 

By combining Equations (  2-34 ) and (  2-35 ) , the following is obtained 

 ∆ = ∆ ⊗  (  2-36 ) 

where ∆ = B −   ⊗ . 
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By using   =    as initial value, blur kernel   can be estimated by Equation (  2-17). ∆  in Equation (  2-36 ) is the only unknown and can be solved by Richardson-Lucy 

deconvolution. The final result can hence be solved using iterative method. In (10), 

the noisy image was also used to perform a gain control and to add details.  Therefore, 

instead of Equation (  2-35 ), the update rule becomes 

     =   +      ∆     (  2-37 ) 

      = (1 −  ) +    ∇      
(  2-38 ) 

Here, according to (10),  ∇    is the gradient of the denoised image at the lth level of 

Gaussian pyramid with standard deviation of 0.5 and  = 0.2, ∆     is solved by 

Equation (  2-36 ) using Richardson-Lucy algorithm.    =    

 

2.8.  Deblurring Blurred/Blurred Images  

This method was introduced by Chen et al (12). Two blurred images will provide 

more information and constraints than a single image. Their approach also used an 

iterative method by first estimating blur kernels, then estimating clear image and 

finally back to refine blur kernels.      

The initial kernel estimation for two blurred images can be obtained by minimizing 

the energy function  

  (  ,  ) =   (  ,  ) +       (  ) 
    (  2-39 ) 



PROJECTIVE MOTION RICHARDSON-LUCY ALGORITHM & 
BLURRED IMAGE ALIGNMENT  GAO LONG 2010 

 

20 
 

   (  ,  ) =   (  ⊗   −   ⊗   )  

Here  (r) = log (1 +        ) is a robust cost function.     (  ) is the kernel prior, 

including sparseness and continuity. More detail about     (  ) can be found in (12). 

With the kernel estimation, clear image can be reconstructed by minimizing 

deconvolution energy 

  ( ) =   ( ⊗   −   ) 
   +   ( ) (  2-40 ) 

where   ( ) is the regularization term, and sparseness prior as (12) is used. The final 

result was obtained by repeating the kernel estimation and clear image reconstruction. 

This method can be applied to multiple input images as well. However, to make this 

algorithm work well, an accurate alignment on input blurred image is essential.   

 

2.9.  Hybrid Camera 

One of the most difficult tasks in image deblurring is to estimate the blur kernel. Ben-

Ezra et al (15) (16) proposed that the blur kernel resulted from camera motion can be 

captured by using auxiliary hardware. The idea is to capture a video with low 

resolution but fast frame-rate during the image exposure so that the camera motion 

can be captured and blur kernel can be reconstructed. It was originally designed to 

solve spatially invariant deblurring problem. In latest development, (23) (25) 

extended the hybrid frame work to solve spatially varying blur by estimating a PSF at 

each pixel.  
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Chapter 3.   

Projective Motion Richardson-Lucy (RL) 

algorithm 

 

A recent research work (1) found the blur often varies over the image. Hence, we 

propose a novel blur model in this chapter to handle spatially varying blur. At the 

same time, we also derive a non-blind deblurring algorithm by extending the 

Richardson-Lucy algorithm.  

Figure 3-1 is an example of spatially varying blur and the deblurring result by PMRL.  

 
(a) RMS 33.4480                   (b) RMS 7.3261                  (c) RMS 3.3100                  (d) Ground Truth 

Figure 3-1 (a) An image degraded by spatially varying motion blur, (b) result by basic PMRL algorithm,  
(b) Result with regularizations. (d) Ground truth. The RMS errors are also shown below each image. 

 

3.1.  Projective Motion Blur Model 

This section describes the projective motion blur model and later this model is used to 
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derive the deblurring algorithm.  

An image consists of many pixels and each pixel’s intensity is determined by the 

amount of light received on the sensor (CCD/CMOS) over the exposure time. This 

can be represented as 

  ( ) =  ∆ ( ,  )  ≈  ∆ ( ,   ) 
   

 
  

 
(  3-1 ) 
 

where  ( ) is the image recorded after exposure, ∆ ( ,  ) is an image captured by the 

sensor within infinite small time interval    at the time instance t, [0,  ] is the total 

exposure time and   is a 3x1 vector indicating the homogenous pixel coordinates. In 

this model, if N is large enough then the difference between continuous integration 

and the discrete integration can be neglected. When there is no relative motion 

between the camera and the scene during the exposure, ∆ ( ,   ) ≅ ∆ ( ,   )  ≅ ⋯ ≅∆ ( ,   ) and a clear image is generated  ( ) ≅  ∆ ( ,   ) ≜   ( ). When there is 

relative motion,  ( ) becomes blur as a result of the summation of multiple unaligned 

images ∆ ( ,   ). As illustrated in Figure 3-2, motion blur is generated by integrating 

a clear image signal over the exposure time.  

 
Figure 3-2 Blurred image is considered as the integration of an image scene under projective motion 

 

For a rigid motion and static scene, it is reasonable to assume the relative motion 
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causes a 2D projective transformation in the image plane. i.e. ∆ ( ,   ) =∆ (ℎ  ,     ). Here ℎ  is the homography defined by a 3×3 non-singular matrix. 

Supposing all ℎ  are known, we can express ∆ ( ,   ) in   ( ) using the following 

formula 

 ∆ ( ,   ) = ∆   ℎ  
    ,    = 1   (   ) (  3-2 ) 

 

where   = ∏ ℎ       is also a homography. Hence, the projective motion blur can be 

expressed as   

  ( ) =  ∆ ( ,   ) 
   = 1    (   ) 

    (  3-3 ) 
 

where  ( ) is the motion blurred image and   ( ) is the clear image  to be estimated 

later in the deblurring process. According to this model, the blurred image is 

generated by averaging multiple clear images, where each image is a projective 

transformed version of the clear image   ( ).  Figure 3-3 illustrates the relationship 

between the projective motion blur model and the conventional representation.   

 
(a) Spatially invariant blur in both blur models               (b)Spatially variant blur in Projective motion blur model 

Figure 3-3 Compare of projective motion blur model and conventional model.   
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The conventional spatial invariant representation is a special case of the projective 

motion blur model, in that each ℎ  only contains a translation. The conventional PSF 

can have intensity variations, which are modeled by the different magnitude of 

translations in ℎ . In the planar translational motion, the conventional kernel-based 

model is a significantly more compact representation for the motion blur. However, in 

the case of other motions, e.g. rotation and zooming, the projective motion blur model 

is compact and intuitive.   

 

3.2.  Projective Motion Richardson Lucy (RL) Algorithm  

Projective Motion RL algorithm is derived from the conventional RL algorithm. As 

describe in Section 2.5. , original RL algorithm  minimizes the difference between the 

original blurred image    and the predicted blurred image     according to the 

Poisson noise model (3)(4).  

 arg min  (‖ −  ′‖ ) 
(  3-4 ) 

Given the motion blurred image B, the clear image I can be computed by Bayesian 

estimation. Because all image intensities are normalized to range from 0 to 1, and the 

kernel entries sum to 1, the pixel intensities can be regarded as probabilities. 

Therefore the pixel value I(x) can be represented as probability  (  ), which can be 

computed according to pixel values of the blurred image  (  ) by the following 

formula. 
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 (  ) =            (  ) 

=           (  )∑           (  )  (  ) (  3-5 ) 

The solution can be obtained by an iterative update procedural algorithm 

 

                (  ) =            (  )∑            (  )      
=   (  )              ∑            (  )  

=   (  )              

 
 
 

 

 
 
(  3-6 ) 

To understand Equation (  3-6 ),    = ∑            (  )  is the prediction of a 

blurred image according to the current estimation of clear image   .    =   /    is 

the residual errors. ∑               is the amendment term according to the residual, 

which integrates the residual errors distributed within the local windows of PSF 

according to         . Note that the index of summation is different from that of the 

generation of predicted blurred image.  

In fact (  3-6 ) does not assume the PSF to be the same at each pixel. When the PSF 

varies spatially and the variations satisfy Projective Motion Blur model, it satisfies  

         =    1 ,  =    0,   ℎ        (  3-7 ) 
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where  ∑         = ∑  ( =    )     =1.  Note that in this definition,          does not necessary correspond to a discrete integer coordinate of a pixel location. 

Rather the location can be fractional according to the motion defined by  =    . 

Therefore, bicubic interpolation is used to compute the value of   (   ). Hence B = ∑  ( =    )     ( ) =   ∑  (   )      which is the equation of the projective 

motion blur model Equation (  3-3 ) for generating the prediction of blurred image 

according to the clear image   given camera motion in terms of    
After substitution and simplification, the update rule for the projective motion blur 

model becomes:  

     (x) =   (x)× 1    (     ) 
    (  3-8 ) 

 
Figure 3-4 Overview of Projective Motion RL algorithm. (Eqn (  3-8) 

 

where   ( ) =  ( ) ′( )=  ( )  ∑   (   )    .  Equation (  3-8 ) is demonstrated graphically in 

Figure 3-4. 
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Similarly, if the image noise model follows a Gaussian distribution, our iterative 

algorithm becomes 

     (x) =   (x) + 1   (     ) 
    (  3-9 ) 

 

where  ( ) =  ( )−   ( ) . This approach has essentially replaced the global 

correlation and convolution operators in the original RL algorithm with a sequence of 

forward projective motions and their inverses.  It handles the entire image under a 

global rigid motion, which is spatially varying.  However on scale of each pixel, it is 

equivalent to the original RL algorithm, the only difference is that each pixel has a 

unique PSF. Therefore the convergence should remain the same as original RL 

algorithm.  

 

3.3.  Adding Regularization  

Similar to the conventional RL algorithm, the result derived in the previously section 

is a maximum likelihood estimation with respect to Poisson or Gaussian noise model 

and imposes no regularization on the solution. However, due to the similarity, 

regularization can be easily added into Projective Motion RL algorithm as follows.  

In Poisson Noise distribution: 

     =   1 −       ( )× 1    (     ) 
    (  3-10 ) 

In Gaussian Noise distribution: 
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     =   + 1    (     ) 
   +       ( ) (  3-11 )      can be several different regularization priors such as Total Variation, Laplacian 

regularization or Bilateral regularization. The derivation of        can be found in 

Section 2.6.  

 

3.4.  Motion Estimation 

This section describes two methods to estimated projective motion during the 

exposure time. The first one makes use of auxiliary hardware during image capturing, 

while the second one assumes uniform motion. General algorithm for motion 

estimation is to be developed in future research.  

Hybrid Camera  

A simple and direct method to estimate camera motion in terms of homographies 

during the exposure is to use the hybrid camera (16)(17)(24), as it can capture an 

auxiliary high frame rate low resolution video. In the auxiliary video, motion 

trajectory between each adjacent frame can be computed by image registration 

algorithm, and can be used as  ℎ  as described in equation (  3-2 ) . 

 

Uniform Motion Assumption 

In this method, a constant projection motion over the exposure time is assumed. 
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Hence, ℎ = ℎ = ⋯ = ℎ . According to the definition of   = ∏ ℎ     ,  

 ℎ =                         1 ≤  ≤   (  3-12) 
 

Thus ℎ  is computed as the N-th matrix root of    ,  and the estimation of series of ℎ  
is reduced to the estimation of   , which can be estimated by techniques used in (22) 

that simply relies on users to supply image correspondences to establish the 

transformation.  Another highly promising technique was proposed by Dai and Wu 

(33) to use the blurred objects alpha matte to estimate   . In my experiments, the 

approach in (22) was used.  

Blind Deblurring on Non-Uniform Rotational Motion  

This method was purposed by O. Whyte et al (39). By simplifying the Projective 

Motion Blur Model to purely rotational motion, blind deblurring algorithm in (6) can 

be used to solve the motion trajectories.   

If the motion only contains rotational motion, the homography H can be express as: 

  =          (  3-13) 
 

where K is camera’s intrinsic matrix and R describes the rotation in “angle-axis” 

representation by the vector  = (   ,   ,  )  . R becomes   

 

R( ) = e[ ]×  

[ ]× =  0 −      0 −  −    0   (  3-14) 
 

The blur model then becomes 
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 ( ) =   (   )   
  

                      =   (   ) ( )    

(  3-15) 
 

where  ( )  is the weight value, which corresponds to the time duration at the 

orientation  . In Eqn ( 3-16), the only unknown variable is  ( ), which is three 

dimensional in space (    ,   ,  ) . Similar to traditional PSF, sparseness and 

continuous priors also apply to  ( ). Then blind deblurring method in (6), which 

originally solves PSF in 2D, can be used to solve the weight  ( ) in 3D with proper 

modifications regarding to this new blur model. 
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Chapter 4.   

Experiment Results and Discussion 

 

4.1.  Convergence Analysis 

While the conventional RL algorithm guarantees convergence, convergence of 

Projective motion RL algorithm was examined empirically. At each iteration, the 

RMS error of the current result against ground truth image was computed. We ran our 

algorithm for a total of 5,000 iterations for each case. The convergence rate of our 

projective motion RL for both the Poisson noise distribution and the Gaussian noise 

model were compared.  Figure 4-1 shows the graphs plotting the RMS error against 

the number of iterations.  

 
Figure 4-1 Convergence rates of Projective Motion RL algorithm  

(a) the plot of RMS error against number of iterations and the input of motion blurred image.   
(b-f) Intermediate results at different iterations, Poisson noise Model is on top.  
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Typically, the result converges within 300 to 400 iterations for both the Poisson noise 

model and Gaussian noise model with the RMS errors difference between successive 

iterations less than 0.01. The Poisson noise model produce slightly better result in 

terms of RMS errors than that of Gaussian noise model, however, the two results are 

visually indistinguishable.  As the number of iterations increases, the difference of 

RMS errors between successive iterations decreases. However, after 500 iterations, 

the quality in the deblurred result becomes unnoticeable.  

 

4.2.  Qualitative Analysis 

To demonstrate the effectiveness of the Projective Motion RL algorithm, a series of 

experiments were carried out on synthetic images, real images and one hybrid camera 

data set. Figure 3-1 already showed a synthetic example of spatially varying motion 

blur where ℎ  is known. The Projective Motion RL algorithm is effective in dealing 

with the rigid spatially varying motion blur, especially with regularization added.  To 

further evaluate the algorithm, a testing set with 4 different images is tested: Mandrill, 

Lena, Cameraman and Fruits. The Mandrill example contains significant high 

frequency details in the hair regions. The Lena example contains high frequency 

details, smooth regions and step edges. The Cameraman is a gray level image. The 

Fruits example also contains many high frequency details and smooth regions. Each 

testing image is blurred by fifteen different motions from simple translational motion, 

rotation, zooming to full projective motion. Table 4-1 shows, from left to right, the 

resulting RMS of the blurred image, deblurred image with basic Projective Motion 
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RL algorithm and deblurred result with regularization. Some image results of these 

test cases are shown in the Appendix B.  

  Mandrill Lena Cameraman Fruits 

  I:RMS B:RMS R:RMS I:RMS B:RMS R:RMS I:RMS B:RMS R:RMS I:RMS B:RMS R:RMS 

T1 30.65 14.56 12.94 25.79 7.06 4.46 27.84 8.40 4.79 18.68 6.08 3.33 

T2 36.09 15.20 13.70 29.08 8.74 6.07 29.25 8.82 5.61 22.41 7.95 5.46 

T3 36.86 6.58 5.60 29.79 5.36 3.39 40.06 9.31 5.57 22.62 3.99 2.86 

T4 36.67 16.32 15.00 32.88 9.92 6.84 34.35 11.44 7.19 24.12 8.53 5.82 

T5 36.88 12.83 8.99 31.04 6.22 4.40 38.87 8.53 5.89 23.11 5.31 3.76 

T6 37.24 14.11 11.85 32.74 9.70 7.88 37.63 12.48 9.80 24.25 8.85 7.68 

T7 38.37 16.56 14.32 34.97 11.72 9.22 36.61 11.38 11.72 25.07 9.37 7.98 

T8 27.08 19.95 19.44 21.28 11.47 10.93 12.21 6.27 5.41 15.51 9.01 8.13 

T9 33.24 19.09 18.98 29.66 11.33 10.78 29.37 9.57 7.89 21.80 9.68 8.80 

T10 36.27 17.35 17.26 29.86 11.02 10.54 29.72 8.69 7.28 23.14 9.50 8.54 

T11 37.37 13.26 12.07 33.10 8.73 7.70 41.99 7.34 6.33 23.52 7.09 6.54 

T12 37.28 18.87 18.85 34.72 12.37 11.76 34.52 11.22 8.80 26.03 10.53 9.50 

T13 38.09 14.75 13.95 34.95 10.83 10.11 40.59 6.56 6.11 24.86 7.09 6.70 

T14 39.31 17.01 15.30 37.37 9.51 8.51 39.11 10.73 9.63 26.94 11.11 10.41 

T15 40.18 17.44 16.16 38.62 12.42 11.46 37.71 10.29 10.18 28.03 12.16 11.72 
Table 4-1 pixel RMS error for different example under different motion in synthetic test 

I:RMS  is RMS of blurred image, B:RMS is deblurred using basic PMRL and R:RMS is with regularization 
 

To test the Projective Motion RL algorithm on real images, the motion trajectories are 

obtained by two different approaches in Section 3.4.   Figure 4-2 shows an example 

of blurred image taken by hybrid camera obtained from (23). For this example, it 

shows the Projective Motion RL algorithm is more accurate than the conventional 

method, as there are some rotational motions involved in the motion which causes the 

PSF to vary slightly across the whole image. The result is comparable with (23), in 

which the optical flow for each pixel was calculated as PSF and low resolution 

images were also used as regularizations. Meanwhile Projective Motion RL algorithm 



PROJECTIVE MOTION RICHARDSON-LUCY ALGORITHM & 
BLURRED IMAGE ALIGNMENT  GAO LONG 2010 

 

34 
 

obtains the result only using the motion trajectory which is recovered from the low 

resolution images. 

 
(a) Blurred image                            (b) Result by blind-deconvolution  (5)          (c)Result by (16) 

 
(d) Result by   (23)                         (e) Result by Projective Motion RL                     

Figure 4-2. Image Deblurring on Hybrid Camera data set, with Close-up views and estimated blur kernels 
 

Figure 4-3 and Figure 4-4 show two real examples with zooming motion and 

rotational motion respectively, the overall blur motion HN is obtained by fitting the 

transformation matrix with user manually providing correspondences as  shown in 

Figure 4-3a. The sequence of ℎ  is then computed by assuming the motion to be 

uniform. The results of the Projective Moton RL algorithm without and with 

regularization are shown in (b) and (c) respectively. The suggested ground truth 

images are shown in (d) for comparison. In these real image examples, the ringing 

artifacts are larger than that in the synthetic examples. This is mainly because of error 

in estimation of ℎ .  
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(a) Input Blurred image                                    (b) Result from the basic PMRL 

 
(c) Result from PMRL with regularization         (d) a clear image taken the same place 

Figure 4-3 Example of Zooming blur 
 

 
(a) Input Blurred Image                                    (b) Result from the basic PMRL 

 
 (c) Result with regularization                   (d) a clear image 

Figure 4-4 Example of Rotational blur 
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4.3.  Run Time Analysis 

Current implementation takes about 15 minutes to run 500 iterations on a 512 ×512 

image with Intel(R)CPU L2400@1.66Ghz. The run time of Projective Motion RL 

algorithm depends on several factors, including the image size, number of discrete 

samplings (number of homographies) and number of iterations. Most of the run time 

in the current implementation is spent on the bicubic interpolation during the 

generation of predicted blurred image and the integration of the residual errors. One 

possible solution to speed up this process is to use GPU for the projective 

transformation at each dt.  

 

4.4.  Limitations 

The key advantage of the Projective Motion Blur Model is that it is in accordance 

with  to the physical phenomena causing the blur effect. Hence it offers a compact 

representation for the spatially varying blurs. The Projective Motion RL algorithm is 

derived directly from conventional RL algorithm with a similar formulation. It also 

incorporates with state-of-the-art regularizations.  

Currently the Projective Motion RL algorithm has several limitations. The first 

limitation is inherent from Projective Motion Blur Model that the blur is assumed to 

be motion blur instead of out-of-focus blur. Furthermore, the scene is assumed to be 

static without motion nor deformable object, and lacks significant depth variation.  
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4.5.  Further directions 

There can be several major future directions of this work. The first direction is to 

overcome the current limitations. There are several other causes that may generate 

spatially varying blur, such as lens distortion, combining motion with out-of-focus 

blur and moving object. It is possible to extend the current Projective Motion Blur 

Model to other distortion. Current blur is a sequence of transformations during 

exposure, other than projective transformation ∆ ( ,   ) =     (   ), transformations   ( ) that describe the other causes of the blur could also be used by replacing   . To 

deal with moving object and significant depth variation, image matting could be 

added to separate the object/depth layer. In order to keep each segmentation in 

accordance with the Projective Motion Blur Model, additional constraints could be 

imposed regarding the object’s motion.  

Other directions are to explore existing algorithms and hardware (e.g. coded exposure 

and coded aperture) to use this blur formulation instead of assuming a global PSF. It 

is possible to include more than one motion blurred images, e.g. noisy/blurred image 

pair or video deblurring. On video deblurring, the motion between adjacent frames 

can be used to estimate the blur motion, replacing user provided corresponding points. 

Then by developing a kernel refinement algorithm, the image and projective motion 

could be updated in an iterative manner. A challenging problem is to estimate blur 

motion under the Projective Motion Blur Model and to perform blind-deconvolution, 

as estimating a piecewise projective camera motion is very different from estimating 

global PSF in a conventional deblurring algorithm.   
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Chapter 5.   

Blurred Image Alignment 

 

5.1.  Background 

Multiple blurred images of the same scene provide complementary information for 

deblurring. Therefore, deblurring result can be improved by using multiple images. 

For example, two blurred images were used to estimate a clear image in (12), and 

blurred/noisy images pair was used in (10). To take advantage of multiple blurred 

images, these images should be aligned precisely. In this chapter, we propose a 

method to align two blurred images.  

Image alignment is a necessary and useful pre-processing step in quite a number of 

multi-image and video processing applications, e.g. image stabilization, image 

enhancement, video summarization and many other graphic applications. It is also 

well studied because of its applications in image processing. However, the traditional 

methods are designed for clear images and not suitable for blurred images, such as 

blurry photo from hand-held camera in low-light condition.   

Aligning blurred image is non-trivial. Feature-based methods have problems 

extracting features from blurred images as popular feature descriptors such as SIFT 

(34) is not invariant to blur. Pixel-based methods are also infeasible when the blur 

kernel is large.  The previous approaches for aligning blurred images are very limited 
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as either the blur had to be one-dimension (26) (11), or the kernel had to be centrally 

symmetric (27), e.g. Gaussian blur kernel. For kernels caused by camera motion, the 

work in (28) proposed a method to align blurred/non-blurred image pairs using kernel 

sparseness.  (28) also claimed there was no blur invariant feature for an arbitrarily 

shaped kernel.  

A simple and effective method is introduced in this chapter that uses the 

characteristics of the blurred image in the Fourier domain for alignment. The 

accuracy is comparable to (28) but the implementation and computation is much 

simpler. The key contribution is the ability to align two blurred images with 

arbitrarily shaped kernels.  

 

5.2.  Blurred image Alignment - Theory 

Suppose two blurred images of the same scene with different blur kernels can be 

aligned by an unknown transform H, a 3x3 homography matrix. In spatial domain it 

can be represented mathematically as follows: 

 
  =I( )⊗       =I(  )⊗     

 
 
(  5-1) 

where    is the blurred image, I( ) is the clear scene and      is the point spread 

function. ⊗ is the convolution operator.  

The goal is to find   so that the B2 can be aligned to B1 using    , which could be 

represented as 
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    =   (    ) =I(    ∙ )⊗    (    ) =  ( )⊗      (  5-2) 

Now,     and    are both convolutions of the same clear image I( ). So      is 

considered as the result of aligning    to the image   . Here   is assumed to be an 

affine transformation and       is the transformed version of     .  

Hence B1  and     can be transformed into the Fourier domain,  

 
  =I( )⊙        =  ( )⊙       

(  5-3) 

By dividing these two equations in Eqn.(  5-3), after some manipulations, we obtain  

 
     =           =        =        =         (  5-4) 

where    ,   ,    and    ,   ,     are the three different color channels in    

and    respectively. If the alignment is correct, the ratio between each channel of the 

blurred images should be           which only depends on blur kernels and is independent 

of the scene, as in the same image the blur kernel should be identical in each color 

channel. Therefore the alignment can be solved by minimizing the following equation: 

 

 =    min   (     , , −   )   

= arg min (    [  ( ),  ( ),  ( )]) 

where        ( ) =  (   ) (   (    )) 
  = 13       , ,  

(  5-5) 
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where  (∙)  denotes the Fourier Transform.  

 

5.3.  Implementation and Acceleration 

This section describes the search for H when it is a similarity transformation.  Similar 

method can be applied to search for a full affine transformation matrix H.  For 

similarity transform 

  ( ,  ,   ,   ) =   ∙ cos( ) sin( )   − sin( )  ∙ cos( )   0 0 1   (  5-6) 

here s is the scale factor,   is the rotation angle between the two images, and tx and ty 

are the translation. Meanwhile, translation (  ,   )  in the spatial domain does not 

affect the magnitude in the Fourier domain. Hence by first ignoring the translation, 

the minimization can be simplified to a 2D search for (s, ). During the experiments, 

the result shows the energy function is locally continuous, an example of energy 

function vs. scaling and rotation is shown in Figure 5-1(d). Therefore after a good 

initialization, searching on scaling and rotation can be further separated. In other 

words, from the second iteration onward, when searching for rotation angles, the 

scaling factor is fixed to the current best result. The same method is used to search for 

the scaling factor with the rotation angle fixed. In this way, the searching space is 

further reduced from 2D to 1D. 

To accelerate the searching process, multi-scaled coarse-to-fine implementation was 

used. The idea was to have a rough alignment on a smaller image as initialization, and 
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then work on a bigger image with higher accuracy. Each level scales by a factor of √2  and usually 3 to 4 different scales are used.  

The multi-scaled iterative coarse-to-fine method is designed as follows: 

1. Scale down both images to lower resolution. 

2. Search minimization solution of Equation (  5-5)in combination of rotation and 

scale (  ,  ) with a sampling intervals ( ∆ , ∆ ); 

3. Reduce sampling intervals to 1/3 ( ∆ , ∆ ) within the search ranges ( + 2 ∆ ,s +2 ∆ )  to increase accuracy; 

4. Search on rotation and scaling separately, based on the previous solution; 

5. Repeat step 3,4 once or twice to increase accuracy (optional), ; 

6. Scale the images to higher resolution,; 

7. Go to step 3 for next iteration until the result accuracy is satisfied.   

Initial step length ∆  is 1-3 degree in rotation and ∆  is 0.05-0.1 in scale depending 

on how different the images are. Usually 5 to 6 iterations lead to an accurate result.  

After the scale and rotation have been recovered, the translation tx and ty can be 

computed easily in spatial domain using conventional techniques such as normalized 

cross correlation (NCC). Due to the characteristics of digital image, the resolution of 

the NCC is only up to 1 pixel. However, it is usually enough for aligning blurred 

image, as the blur itself usually contains a translation motion and the error in 

translation can be compensated in blur kernel as well. If, in certain cases, a better 

resolution in translation alignment is required, image can be scaled to higher 

resolution by bi-cubic interpolation before NCC to increase accuracy, such as if the 
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image is scaled by factor of 5, the accuracy can be increase to 0.2 pixels on the 

original resolution. 

Furthermore, in order to obtain the desired solution, a few problems need to be 

handled properly. 

1. Image Out-of-Range.  During image transformation, it is very common to have 

empty region at the boundary of the image due to Out-of-Range effect. An 

example of the empty region (black region) is shown in Figure 5-1(c). These 

empty regions must be removed before alignment because they would 

significantly affect the result in the Fourier Domain.  

2. Edge Discontinuity.  Due to the discontinuity at the image boundary, very sharp 

responses in horizontal and vertical direction usually appear in Fourier Domain. 

To overcome this effect, the image boundary region has to be smooth and 

continuous, which could be done by matlab function edgetaper(). 

3. Divide-by-Zeros. In fact, a certain threshold must be set, not only to avoid 

divide-by-zeros but also to compensate the noise and the huge information lost in 

high frequency. Usually this threshold will filter out most of the high frequency 

regions, as for blurred image, the high frequency region is very weak in the 

Fourier domain.  

 

5.4.  Experiment and Result  

The algorithm was first tested on synthetic data, which were generated by 20 different 

images and 10 different blur kernels. Each image was transformed by a similarity 
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transformation, with random rotation between (-45 ̊ , 45 ̊) and scaling between (0.7 , 

1.8). Then 2 kernels were chosen randomly to generate blurred images.   The 

experiment was also repeated for different noise levels.  

  

(a)  Blurred Image 1         (b)  Blurred Image 2      (c) Registered Image 1   (d) energy function on rotation/scaling 
Figure 5-1. Example of Alignment on Synthetic Data 

 

An example of synthetic testing data set is in Figure 5-1. In the map of energy 

function (Figure 5-1.d), it shows the global minimum is at the true alignment. And the 

cost function is locally continuous so that the search on rotation and scaling can be 

further separated after the first initial.   

Figure 5-2 shows a typical searching procedure on aligning 2 images by 5 iterations. 

Left column is the energy function vs. estimated scaling, right column is the rotation 

and each row is one iteration. In the first iteration, it performs a searching on a 2D 

space to find the initialization.  From the second iteration onward, it performs 

searching on the scaling first followed by rotation to reduce the searching space from 

2D to 2 × 1D. 
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Figure 5-2. A Typical Search Routine for alignment 

 

The accuracy of the estimation can be evaluated easily from synthetic examples, as 

the ground truth is known. For the example shown in Figure 5-1, the estimated 

parameters are (2.327 ̊, 1.1469) with respected ground truth (2.3377 ̊, 1.1459). The 

error is (0.01 ̊, 0.001). In this example, the blur kernel was 32x32 with the image size 

320x240. The alignment error was sub-pixel.  

Table 5-1 shows the alignment accuracy for 6 tests on first 9 testing images with 

different noise levels. The average of absolute error is also shown at the bottom. The 

testing images are shown in Appendix A. The scaling factors and the rotation angles 

for each test were generated randomly.   
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Noise σ = 2   σ = 5 σ = 10   

Image T1 (x10-3) T2(x10-3) T3(x10-3) T4(x10-3) T5(x10-3) T6(x10-3) 

1 (-6.3 ̊,-0.6) (-6.8 ̊,1.3) (-14.9 ̊,-0.1) (-8.1 ̊,-1.3) (-25.3 ̊,-0.3) (-25.3 ̊,-0.2) 

2 (-9.0 ̊,-1.6) (-10.4 ̊,1.3) (-25.3 ̊,-0.3) (-25.3 ̊,-0.2) (-15.1 ̊,-1.4) (-22.1 ̊,-1.3) 

3 (5.7 ̊,1.1) (1.2 ̊,-1.0) (-28.5 ̊,0.2) (6.1 ̊,-2.2) (-24.1 ̊,0.4) (18.1 ̊,1.0) 

4 (-12.9 ̊,0.1) (-0.6 ̊,0.8) (-13.2 ̊,-1.6) (-3.8 ̊,2.5) (11.0 ̊,1.4) (-8.5 ̊,1.1) 

5 (5.4 ̊,-0.1) (-1.4 ̊,0.8) (25.0 ̊,1.0) (-10.7 ̊,2.3) (-10.9 ̊,-1.6) (-19.8 ̊,1.2) 

6 (6.8 ̊,0.6) (5.8 ̊,-0.9) (25.0 ̊,-2.1) (22.4 ̊,-0.6) (-34.8 ̊,0.7) (11.8 ̊,-1.4) 

7 (-7.2 ̊,0.2) (8.0 ̊,-1.4) (-7.8 ̊,-0.4) (-1.0 ̊,-2.1) (-24.9 ̊,0.9) (-27.1 ̊,-0.9) 

8 (4.6 ̊,-0.7) (12.8 ̊,-1.2) (2.7 ̊,-0.8) (-26.5 ̊,-1.8) (19.2 ̊,-2.0) (17.0 ̊,-0.8) 

9 (-9.6 ̊,-1.3) (-13.7 ̊,0.0) (10.1 ̊,-1.4) (15.5 ̊,-1.1) (18.0 ̊,2.0) (-15.5 ̊,-0.9) 

… … … … … … … 

Average (7.4 ̊,0.9) (9.8 ̊,1.1) (15.4 ̊,1.2) (14.4 ̊,1.6) (20.3 ̊,1.6) (18.3 ̊,1.4) 
Table 5-1. Error on synthetic images with different noise level. 

 

Although the formulation was derived from two blurred images, our method can also 

be applied to align a blurred image to a noisy image. We tested our alignment 

algorithm on the Blur/Noisy image pair from (28), as shown in Figure 5-3. 

 
(a)  Blurred Image 1              (b) Noisy Image           (c) Aligned result  

Figure 5-3. Real Image pairs from  (28) 
 

The estimated parameters are (15.566 ̊, 0.8514) while the suggested result given by  

(28) is (15.59 ̊, 0.852). The difference is (0.024 ̊, 0.0006), though the algorithm is 

completely different. As the result in  (28) only kept 2 digits in degree and 3 digits in 

scaling, the actual difference may be even smaller. In addition, this algorithm can also 
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tolerate the color shift due to white balance or lightening condition changes by 

normalizing each channel to same mean and variance.   

The run time is about 3 minutes by Matlab for image with size of 1024×768 on an 

Intel P4 3.2G desktop. Meanwhile the running time for  (28) was about 40 minutes. 
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Chapter 6.   

Conclusion  

 

This thesis addresses two problems, modeling and correcting spatially varying image 

blur and alignment on blurred images.  

Projective Motion Blur Model was designed to modeling spatially varying image blur 

caused by rigid camera motion with static scene. It treats the blur as an integration of 

a clear scene over exposure time with a sequence of projective transformations which 

describe the camera motion. This formulation is intuitive to the physical phenomena 

causing the blur effect and also offers a compact representation for the spatially 

varying motion blur. Subsequently, we propose the Projective Motion Richardson-

Lucy (RL) algorithm to recover a clear image from an image subject to spatially 

variant blur according to our Projective Motion Blur Model. We also incorporated 

state-of-the-art regularization image priors to improve deblurring results. The 

effectiveness of Projective Motion RL algorithm was demonstrated during 

experiment. There are also a few future research directions based on the Projective 

Motion Blur Model, e.g. projective motion estimation or refinement, deblurring with 

multiple blurred images, video deblurring and extension to other causes of spatially 

varying blur (e.g. lens distortion).  A more challenging problem is to perform blind-

deconvolution.  
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A blurred image alignment algorithm was also presented in this thesis, as a 

preprocessing step for the future research in multiple blurred images deblurring. This 

algorithm solved the problem of alignment on blurred images, which is especially 

useful in multiple images deblurring algorithm, such as previous work “Robust Dual 

Motion Deblurring” (12). Our method achieved a comparable accuracy with the 

alignment algorithm proposed in (28). While the algorithm in (28) only works on 

clear/blurred image pair, our algorithm could align two blurred images. In addition, 

comparing with algorithm in (28) which solved the alignment problem by estimating 

the kernel and measuring its sparseness, our method is more direct and efficient to 

align blurred image by measuring kernels ratio in the Fourier Domain. The run time 

was also more than 10 times faster. Therefore, the our alignment method is fast, 

accurate and capable on dealing with two blurred images.   
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Appendix A: Experiments on Blurred Image Alignment 

Testing Image: 

 
Blur Kernel:  

 
Experiment on accuracy analysis: 

1) Transform the original image with a random rotation degree and scale factor. (r,s) 

2) Randomly choose two blur kernels to generate two blurred images from both the 

original image and the transformed image. Noise is then added to blurred image. 

3) Measure the error between the alignment result and the ground truth.  

Example of Synthetic Blurred images and alignment result. 

  

 Image1 Image2 
Kernel No.6  No.5 
Scaling 0 1.1459 
Rotation 0 2.3377 ̊ 
Result  1.1469,2.327 ̊ 
Error  0.001, 0.011 ̊ 
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Appendix B: Test Results - Projective Motion RL 

Test Image: 

 
 

Test Motion : 

 
T1: Rotation T2: Scaling T3:Translation T4: T1+T2 T5:T1+T3 

 
T6: T2+T3 T7: T1+T2+T3 T8: Projective T9: T8+T1 T10: T8+T2 

  
T11: T8+T3 T12: T8+T4 T13: T8+T5 T14: T8+T6 T15: T8+T7 
     

Deblur Result: 

 

   
 Synthetic Blurred image (T2) Deblurred result By basic 

Projective Motion RL algorithm Deblurred result with regulation 

   
More results for Motion T1,T2,T3,T7,T15  are shown on following pages.  
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T1:Rotation                 Basic Deblur Result              Result with regulation 
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 T2: Zooming     
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T3: Translation     
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T7: T1+T2+T3     
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T15: T7+T8     

 

   

 

   

 

   

 

   

 


